
Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

1 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Document Change History
Date Release Changed by Change Description

2022-11-24 R22-11 AUTOSAR
Release
Management

 Set items from draft to valid:

SRS_MemHwAb_14034

SRS_MemHwAb_14035

SRS_MemHwAb_14036

SRS_MemHwAb_14037

SRS_MemHwAb_14038

SRS_MemHwAb_14039

SRS_MemHwAb_14040

SRS_MemHwAb_14041

SRS_MemHwAb_14042

SRS_MemHwAb_14043

SRS_MemHwAb_14044

SRS_MemHwAb_14045

SRS_MemHwAb_14046

SRS_MemHwAb_14047

SRS_MemHwAb_14048

SRS_MemHwAb_14049

SRS_MemHwAb_14050

SRS_MemHwAb_14051

SRS_MemHwAb_14052

SRS_MemHwAb_14053

SRS_MemHwAb_14054

SRS_MemHwAb_14055

SRS_MemHwAb_14056

SRS_MemHwAb_14057

Document Title Requirements on Memory
Hardware Abstraction Layer

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 116

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R22-11

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

2 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Document Change History
Date Release Changed by Change Description

2021-11-25 R21-11 AUTOSAR
Release
Management

 Added MemAcc and Mem related

requirements (SRS_MemHwAb_14033

to SRS_MemHwAb_14056) due to

Memory stack rework concept

2020-11-30 R20-11 AUTOSAR
Release
Management

 No content changes

2019-11-28 R19-11 AUTOSAR
Release
Management

 No content changes

 Changed Document Status from Final

to published

2018-10-31 4.4.0 AUTOSAR
Release
Management

 Editorial changes

2017-12-08 4.3.1 AUTOSAR

Release

Management

 Editorial changes

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Added Requirements Tracing chapter

2015-07-31 4.2.2 AUTOSAR

Release

Management

 Requirements linked to BSW features

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Requirements linked to BSW features

2013-10-31 4.1.2 AUTOSAR

Release

Management

 Editorial changes

2013-03-15 4.1.1 AUTOSAR

Administration

 formal rework for requirements tracing

 requirements reworked according to

TPS_STDT_00078

 requirements linked to BSW & RTE

features

2010-02-02 3.1.4 AUTOSAR

Administration

 Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR

Administration

 Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR

Administration

 Document meta information extended

 Small layout adaptations made

2007-01-24 2.1.15 AUTOSAR

Administration

 “Advice for users” revised

 “Revision Information” added

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

3 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Document Change History
Date Release Changed by Change Description

2006-11-28 2.1 AUTOSAR

Administration

 Legal disclaimer revised

2006-05-16 2.0 AUTOSAR

Administration

 Initial release

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

4 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

5 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Table of Content
1 Scope of Document .. 6

2 How to read this document .. 7

2.1 Conventions used ... 7

2.2 Requirements structure .. 8

3 Acronyms and abbreviations.. 9

4 Functional Overview... 10

4.1 Memory Access Module ... 10

4.2 Memory Driver .. 10

4.3 EEPROM Abstraction Layer ... 10

4.4 Flash EEPROM Emulation ... 10

4.5 Memory Abstraction Interface ... 11

5 Requirements Tracing .. 12

6 Requirements Specification ... 14

6.1 Functional Requirements .. 14

6.1.1 Memory Abstraction Modules .. 14

6.1.2 Memory Abstraction Interface ... 30

6.1.3 Onboard Device Abstraction ... 33

6.2 Non-Functional Requirements (Qualities) .. 33

6.2.1 Memory Abstraction Modules .. 33

6.2.2 Memory Abstraction Interface ... 34

6.2.3 Onboard Device Abstraction ... 35

7 References ... 36

7.1 Deliverables of AUTOSAR ... 36

7.2 Related standards and norms .. 36

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

6 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

1 Scope of Document

This document specifies requirements on the modules making up the Memory
Hardware Abstraction Layer (MemHwA). The picture below shows the architecture
and context of this Memory Hardware Abstraction Layer.

Figure 1: Components and Interfaces of the Memory Hardware Abstraction Layer

The Flash EEPROM Emulation (FEE) module and EEPROM Abstraction (EA)
module shall provide a block based addressing scheme and a configurable, “virtually
unlimited” number of erase-write-cycles. Thus, the upper layer module (the NVRAM
manager) needs not be changed if the underlying memory driver and device is
changed.

The Memory Access (MemAcc) module shall abstract from the addressing scheme of
the underlying memory (Mem) drivers and provide an address based addressing
scheme. Also, it provides a device-agnostic address-based memory interface to
maintain the access coordination of different upper layer modules like NvM, BndM or
OTA client compenent and the synchronization of the hardware access. Thus, the
upper layer module (FEE, EA, BndM, etc.) needs not be changed if the underlying
Mem drivers and devices are changed.

The Memory Abstraction Interface (MemIf) shall replace the driver interface layers
(EEPROM and flash interface) and allow the NVRAM manager to access several
memory abstraction modules (FEE and EA modules).

Instead of the combination of FEE / flash driver and / or EA / EEPROM driver, a
vendor specific library might be used that provides the same functionality and API as
those memory abstraction modules. The internals of such a library are of no concern
as long as the functionality and API are supported. In case the vendor library
replaces all needed FEE and EA modules, the Memory Abstraction Interface shall
only be a bunch of macros.

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

7 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

2 How to read this document

Each requirement has its unique identifier starting with the prefix “BSW” (for “Basic
Software”). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

2.1 Conventions used

In requirements, the following specific semantics are used

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted . Note that the requirement level of the document in
which they are used modifies the force of these words.

 MUST: This word, or the terms "REQUIRED" or "SHALL", mean that the
definition is an absolute requirement of the specification.

 MUST NOT: This phrase, or the phrase „SHALL NOT“, means that the
definition is an absolute prohibition of the specification.

 SHOULD: This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

 SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean
that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing
any behavior described with this label.

 MAY: This word, or the adjective „OPTIONAL“, means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation,
which does not include a particular option, MUST be prepared to interoperate
with another implementation, which does include the option, though perhaps
with reduced functionality. In the same vein an implementation, which does
include a particular option, MUST be prepared to interoperate with another
implementation, which does not include the option (except, of course, for the
feature the option provides.)

The representation of requirements in AUTOSAR documents follows the table
specified in [5].

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

8 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

2.2 Requirements structure

Each module specific chapter contains a short functional description of the Basic
Software Module. Requirements of the same kind within each chapter are grouped
under the following headlines (where applicable):

Functional Requirements:
- Configuration (which elements of the module need to be configurable)
- Initialization
- Normal Operation
- Shutdown Operation
- Fault Operation
- ...

Non-Functional Requirements:
- Timing Requirements
- Resource Usage
- Usability
- Output for other WPs (e.g. Description Templates, Tooling,...)
- ...

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

9 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

3 Acronyms and abbreviations

Acronyms and abbreviations that have a local scope are not contained in the
AUTOSAR glossary. These must appear in a local glossary.

Acronyms /
abbreviations

Description:

(Logical) Block Continuous area of memory that can be individually addressed by the module user
(i.e. for read / write / erase / compare operations). The block size is statically
configurable (pre-compile time).

Page Smallest amount of memory that can be written in one pass.

Sector Smallest amount of memory that can be erased in one pass.

FEE Flash EEPROM Emulation

EA EEPROM Abstraction Layer

MemIf Memory Abstraction Interface

Mem Memory Driver

MemAcc Memory Access module

BndM Bulk non-volatile data Manager

OTA client Over The Air software update client

Sector Batch Combination of multiple consecutive sectors of the same size

Sub Address Area Combination of multiple non-contiguous sectors of the same size; used by
MemAcc

Address Area Combination of multiple Sub Address Area

MCU Microcontroller unit

MPU Microprocessor unit

AP AUTOSAR Adaptive Platform

CP AUTOSAR Classic Platform

As this is a document from professionals for professionals, all other terms are
expected to be known.

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

10 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

4 Functional Overview

4.1 Memory Access Module

The Memory Access (MemAcc) Module shall abstract any hardware dependency to
the upper layer module which makes the memory access completely technology
independent.
By abstracting the memory mapping in the Memory Access Module, the upper layer
module doesn’t need to know the physical segmentation of the underlying memory
technology because the Memory Access module provides a contiguous logical
memory area for the upper layer module.
The Memory Access Module shall handle all hardware independent functionality,
such as iteration over multiple flash pages to program large memory areas. Apart
from that it shall provide access coordination of different upper layer modules like
NvM, BndM or OTA client compenent and the synchronization of the hardware
access.

4.2 Memory Driver

The Memory Driver (Mem) shall provide a memory device agnostic interface to
support all kinds of memory devices like flash, EEPROM, phase change memory
(PCM), RAM, etc.
It supports basic services for reading, writing, and erasing of memory devices based
on the physical segmentation.
In contrast to the FLS and EEP Driver, the Memory Driver works on physical
addresses and supports data and code memory access.

4.3 EEPROM Abstraction Layer

The EEPROM Abstraction Layer (EA) shall extend the EEPROM driver such that it
provides upper layer modules with a virtual segmentation on a linear address space
and a “virtually limitless” number of erase / write cycles. Apart from that it shall
provide the same functionality as an EEPROM driver.

4.4 Flash EEPROM Emulation

The Flash EEPROM Emulation (FEE) shall emulate the behavior of the EEPROM
Abstraction Layer on flash memory technology. Thus it shall have the same
functional scope and API as the EEPROM Abstraction Layer and allow for a similar
configuration based on that of the underlying flash driver and flash device.

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

11 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

4.5 Memory Abstraction Interface

The Memory Abstraction Interface (MemIf) shall abstract from the number of
underlying FEE or EA modules and provide upper layer modules with a virtual
segmentation on a uniform linear address space.

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

12 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

5 Requirements Tracing

Requirement Description Satisfied by

RS_BRF_00129 AUTOSAR shall support
data corruption detection
and protection

SRS_MemHwAb_14014, SRS_MemHwAb_14015,
SRS_MemHwAb_14016

RS_BRF_01000 AUTOSAR architecture
shall organize the BSW in a
hardware independent and
a hardware dependent layer

SRS_MemHwAb_14017, SRS_MemHwAb_14018,
SRS_MemHwAb_14019, SRS_MemHwAb_14022,
SRS_MemHwAb_14024

RS_BRF_01800 AUTOSAR non-volatile
memory functionality shall
be divided into a hardware
dependent and independent
layer

SRS_MemHwAb_14017, SRS_MemHwAb_14018,
SRS_MemHwAb_14019, SRS_MemHwAb_14022,
SRS_MemHwAb_14024, SRS_MemHwAb_14048

RS_BRF_01808 AUTOSAR non-volatile
memory handling shall
support different kinds of
memory hardware

SRS_MemHwAb_14019, SRS_MemHwAb_14020,
SRS_MemHwAb_14021, SRS_MemHwAb_14039,
SRS_MemHwAb_14042, SRS_MemHwAb_14046

RS_BRF_01812 AUTOSAR non-volatile
memory functionality shall
support the prioritization
and asynchronous
execution of jobs

SRS_MemHwAb_14031, SRS_MemHwAb_14034,
SRS_MemHwAb_14038, SRS_MemHwAb_14044

RS_BRF_01816 AUTOSAR non-volatile
memory functionality shall
organize persistent data
based on logical memory
blocks

SRS_MemHwAb_14001, SRS_MemHwAb_14002,
SRS_MemHwAb_14010, SRS_MemHwAb_14013,
SRS_MemHwAb_14026, SRS_MemHwAb_14028,
SRS_MemHwAb_14029, SRS_MemHwAb_14032,
SRS_MemHwAb_14057

RS_BRF_01832 AUTOSAR non-volatile
memory shall handle logical
memory blocks
independent of its physical
address

SRS_MemHwAb_14005, SRS_MemHwAb_14006,
SRS_MemHwAb_14007, SRS_MemHwAb_14009,
SRS_MemHwAb_14057

RS_BRF_01840 AUTOSAR non-volatile
memory functionality shall
secure integrity of memory
blocks

SRS_MemHwAb_14014, SRS_MemHwAb_14015,
SRS_MemHwAb_14016

RS_BRF_01848 AUTOSAR non-volatile
memory functionality shall
provide mechanisms to
enhance hardware reliability

SRS_MemHwAb_14002, SRS_MemHwAb_14012

RS_BRF_01850 AUTOSAR non-volatile
memory functionality shall
be able to cope with
hardware lifetime
constraints

SRS_MemHwAb_14002, SRS_MemHwAb_14012

RS_BRF_02040 AUTOSAR BSW and RTE
shall ensure data
consistency

SRS_MemHwAb_14015, SRS_MemHwAb_14051,
SRS_MemHwAb_14053

RS_BRF_02232 AUTOSAR shall support
development with run-time

SRS_MemHwAb_14023

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

13 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

assertion checks

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

14 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

6 Requirements Specification

6.1 Functional Requirements

6.1.1 Memory Abstraction Modules

6.1.1.1 Configuration

6.1.1.1.1 [SRS_MemHwAb_14057] MemAcc module shall allow the configuration of

the non-contiguous physical memory areas of different memory devices to a
logical address area

⌈
Type: Valid

Description: MemAcc module shall allow the configuration of non-contiguous physical
memory areas of different memory devices to a logical address area.
The configuration parameters shall be used by the configuration tool to
generate the memory areas allocated to each upper layer module.
The following constraints shall be considered:
1) An address area can only be assigned to one upper layer module
2) Address areas can span multiple memory devices
3) Start address and length of memory access requests need to be aligned

to the according physical memory segmentation
4) Within a sub-address area, only one sector size is allowed
5) Only one job per address area is allowed

Rationale: 1) Encapsulate hardware dependencies from upper layer modules
2) Simplify the memory acess by providing a logical address space
3) Enable merging non-contiguous physical address areas to a contiguous

logical memory area
4) Enable merging of memory areas from different memory devices

Use Case: 1) Combination of internal and external memory devices to one address
area for the OTA software update use case. The combination of the
different physical areas to one logical address area simplifies the OTA
client implementation.

2) The OTA software update client use case may need one address area
for active software and one address area for inactive software.

3) BndM with non-contiguous physical memory.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01816, RS_BRF_01832)

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

15 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Figure 2: Overview of Address Translation/Mapping

6.1.1.1.2 [SRS_MemHwAb_14034] MemAcc module shall allow the configuration of

the priority for different logical address areas

⌈
Type: Valid

Description: MemAcc module shall allow the configuration of the priority for different
logical address areas.
This configuration parameter shall be used by the configuration tool to
generate the assigned priority for each upper layer module (address area).

Rationale: 1) Prioritization of writing crash data while OTA update running in the
background.

2) Typically, code- and data flash share the same flash controller, therefore
the write access of different upper layer modules or different CPUs
needs to be prioritized/synchronized.

Use Case: 1) Shared data flash access of BNDM and FEE.
2) OTA software update in combination with FEE and shared hardware

resources between code and data flash
3) FEE and HSM with shared data flash

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01812)

6.1.1.1.3 [SRS_MemHwAb_14035] MemAcc module shall support variant mapping

⌈
Type: Valid

Description: MemAcc module shall support variant mapping of two physical address
areas to one virtual address area at initialization time.

Rationale: For OTA software update use cases with an active and inactive memory
area, the memory access from the OTA software update client shall always
work with the same address area. Therefore, a variant mapping of two
physical memory areas is necessary to one logical address area is needed.
The variant selection shall be done at startup time.

Use Case: OTA software update use case with active/inactive memory areas.

Dependencies: --

Supporting Material: --

⌋()

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

16 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

6.1.1.1.4 [SRS_MemHwAb_14036] Mem driver shall be statically configurable

⌈
Type: Valid

Description: The Mem driver shall allow the configuration of the physical attributes of a
memory device like the memory segmentation or any memory device
technology specific attributes.

Rationale: Basic configuration

Use Case: Physical segmentation needs to be considered by upper layer modules to
align memory access requests.

Dependencies: --

Supporting Material: --

⌋()

6.1.1.1.5 [SRS_MemHwAb_14001] The FEE and EA modules shall allow the

configuration of the alignment of the start and end addresses of logical
blocks

⌈
Type: Valid

Description: The FEE and EA modules shall allow the configuration of the alignment of
the start and end addresses of logical blocks.
This configuration parameter shall be used by the configuration tool to
generate the block numbers according to the block start addresses.

Rationale: 1) Ease handling of blocks inside the FEE and EA modules by aligning
logical blocks to the underlying physical memory technology.
2) Allow for FEE and EA modules to calculate block start addresses instead
of requiring a lookup table to map logical to physical addresses.

Use Case: 1) The Freescale Star12 has an internal EEPROM with 4 byte sector and 2
byte page size. By aligning the block start and end addresses to 4 byte
boundaries the handling of blocks can be simplified since read-modify-write
behavior is no longer needed.
2) Example: The address alignment is set to 4 (bytes). The first logical block
gets the block number 1, its start address is 0 (a device specific base
address is added by the underlying memory driver). The block size is 22
bytes, so it takes up 6 4-byte “pages”. The next logical block should then get
not the number 2 but the number 7, thus allowing the memory abstraction
module to deduce that its start address is 24 ((block number -1) * page size).

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01816)

6.1.1.1.6 [SRS_MemHwAb_14002] The FEE and EA modules shall allow the

configuration of a required number of write cycles for each logical block

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

17 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: The FEE and EA modules shall allow the configuration of a required number
of write cycles for each logical block.

Rationale: Abstract from hardware properties of underlying physical devices.

Use Case: An external flash device is specified for 10.000 erase cycles per erase unit.
A logical block is configured that requires 50.000 erase cycles.
The FEE has to make sure that this logical block can be written 50.000 times
while at the same time no flash cell must be erased more than 10.000 times.

Dependencies: [SRS_MemHwAb_14012] Spreading of write access

Supporting Material: --

⌋(RS_BRF_01848, RS_BRF_01850, RS_BRF_01816)

6.1.1.1.7 [SRS_MemHwAb_14026] The block numbers 0x0000 and 0xFFFF shall not
be used

⌈

Type: Valid

Description: The block numbers 0x0000 and 0xFFFF shall not be used by the memory
abstraction module / generated by the configuration tool.

Rationale: These numbers can not be distinguished from the erased value of a flash or
EEPROM device.

Use Case: The implementation stores the block number in non-volatile memory e.g. to
mark the start or end of a logical block. When these numbers would be used,
that marker could not be found / distinguished from an empty EEPROM or
flash memory.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01816)

6.1.1.2 Initialization

6.1.1.2.1 [SRS_MemHwAb_14037] MemAcc module and Mem driver shall provide

an interface for initialization

⌈
Type: Valid

Description: MemAcc module and Mem driver shall provide an interface for initialization
of all states and all global variables of the module.
Before initialization, MemAcc module and Mem driver are inactive.

Rationale: Basic functionality

Use Case: ECU initialization.

Dependencies: --

Supporting Material: --

⌋()

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

18 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

6.1.1.3 Normal Operation

6.1.1.3.1 [SRS_MemHwAb_14038] MemAcc module and Mem driver shall provide

asynchronous memory access functions

⌈
Type: Valid

Description: MemAcc module and Mem driver shall provide asynchronous functions for
accessing memory devices.

Rationale: Basic functionality

Use Case: Memory access functions must be non-blocking since the upper layer
modules expect an asynchronous interface.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01812)

6.1.1.3.2 [SRS_MemHwAb_14039] MemAcc module and Mem driver shall support
optional services

⌈
Type: Valid

Description: MemAcc module and Mem driver shall provide measures to make Mem
driver services optional and indicate to the upper layer module that a specific
service is not available.

Rationale: The erase service is not needed for all memory device technologies, e.g.,
phase change memory (PCM).

Use Case: 1) Memory device technologies which don’t need an erase service
2) Read-only Mem drivers

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01808)

6.1.1.3.3 [SRS_MemHwAb_14040] MemAcc module and Mem driver shall provide

a synchronous status function

⌈
Type: Valid

Description: MemAcc module and Mem driver shall provide a synchronous function which
returns the job processing status.

Rationale: Provide memory job processing status to the upper layer module.

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

6.1.1.3.4 [SRS_MemHwAb_14041] MemAcc module shall provide a job notification
mechanism for the upper layer modules

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

19 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: MemAcc module and Mem driver shall provide a notification mechanism to
notify the upper layer module about the completion of a memory job request.

Rationale: Provide memory job processing status to the upper layer module.

Use Case: Reduce runtime overhead for upper layer modules by providing a job
nontification mechanism.

Dependencies: --

Supporting Material: --

⌋()

6.1.1.3.5 [SRS_MemHwAb_14042] MemAcc module shall support multiple Mem

drivers for different types of memory

⌈
Type: Valid

Description: MemAcc module shall support multiple memory drivers for different types of
memory (internal/external program flash, data flash, RAM, etc).

Rationale: Different memory device technologies require different memory driver
implementations

Use Case: 1) OTA software requires code memory access as well as data memory
access with different memory drivers

2) Usage of internal and external memory for OTA software updates

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01808)

6.1.1.3.6 [SRS_MemHwAb_14043] Mem driver and shall support multiple instances of

the same memory device

⌈
Type: Valid

Description: Mem driver shall support multiple instances of the same memory device.

Rationale: Memory instance handling enables the usage of the same driver for multiple
memory devices of the same type.

Use Case: The OTA software update use case requires multiple memory devices of the
same type to expand the memory resources.

Dependencies: --

Supporting Material: --

⌋()

6.1.1.3.7 [SRS_MemHwAb_14044] MemAcc module shall manage the memory job

requests from different upper layer modules

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

20 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: MemAcc module shall manage the memory job requests from different upper
layer modules.
The MemAcc job management includes
1) Splitting of access request according to the physical memory

segmentation
2) Processing of parallel job requests of distinct memory sub address areas

from different upper layer modules
3) Synchronization of conflicting hardware access requests
4) Prioritization of conflicting memory job requests from different upper

layer modules
5) Cancellation of job requests based on the physical memory

segmentation, i.e. flash page/sector

Rationale: The MemAcc job management reduces the impact on upper layer modules
and simplifies the implementation of the Mem drivers.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01812)

6.1.1.3.8 [SRS_MemHwAb_14045] MemAcc module and Mem driver shall provide

measures for dynamic driver activation

⌈
Type: Valid

Description: The Mem driver shall provide measures for dynamic driver activation.

Rationale: For some safety use-cases, it is undesirable that the Mem driver is available
in an executable form because the Mem driver might be accidently called
and overwrites the applications memory. Therefore, the Mem driver needs to
be dynamically downloaded to RAM or stored in encrypted form and just be
decrypted in RAM as needed.

Use Case: Safety use cases to prevent accidental overwriting of memory areas.

Dependencies: --

Supporting Material: --

⌋()

6.1.1.3.9 [SRS_MemHwAb_14046] MemAcc module and Mem driver shall provide

support for 64-Bit address range

⌈
Type: Valid

Description: MemAcc module and Mem driver shall provide the support for 64-Bit address
range.

Rationale: 64-Bit address range is required to access more than 4GBytes memory.

Use Case: Even though the typical CP ECUs don’t need to address more than 4GBytes,
for the OTA software update use case also CP MCUs need to be able to
handle more than 4GBytes if the memory is shared with a POSIX/AP MPU.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01808)

6.1.1.3.10 [SRS_MemHwAb_14047] MemAcc module shall provide optional support for

the initialization and main function triggering of memory drivers

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

21 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: MemAcc module shall provide optional support for the initialization and main
function triggering of Mem drivers.

Rationale: Since not all Mem drivers might be available all the time for some safety
usecases, the Mem drivers cannot directly be initialized/triggered by
ECUM/SCHM.

Use Case: For some safety use-cases, it is not desired that the Mem driver is available
in an executable form as the memory driver might be accidently called and
overwrites the applications memory. In this case, the Mem driver needs to be
either downloaded dynamically to RAM or stored in encrypted form and just
be decrypted in RAM as needed.

Dependencies: --

Supporting Material: --

⌋()

6.1.1.3.11 [SRS_MemHwAb_14048] Mem driver shall operate on physical
segmentation/physical addresses

⌈
Type: Valid

Description: The Mem driver shall only operate on the physical segmentation/physical
addresses defined by the memory device technology i.e., pages and sectors
for flash memory. Operations on larger areas than the physical segmentation
shall be handled by MemAcc module.

Rationale: Simplify Mem driver implementation.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01800)

6.1.1.3.12 [SRS_MemHwAb_14049] Mem driver shall use a standard binary format for
dynamic driver activation

⌈
Type: Valid

Description: The Mem driver shall use a standard binary format for dynamic driver
activation.

Rationale: Since the MemAcc module shall not be hardware dependent, the Mem driver
shall follow a standardized binary format so MemAcc can perform
consistency checks for the activation of Mem drivers and provide a
standardized method to call the Mem driver service functions.

Use Case: Safety use cases to prevent accidental overwriting of memory areas.

Dependencies: --

Supporting Material: --

⌋()

6.1.1.3.13 [SRS_MemHwAb_14050] Mem driver shall handle only one job at one time

⌈
Type: Valid

Description: The Mem driver shall handle only one job (read, write or erase) at one time.
Job requests during a running job shall be rejected.

Rationale: Different operations like write and erase can’t be handled at the same time
and the results are dependent on the execution order.

Use Case: --

Dependencies: --

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

22 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Supporting Material: --

⌋()

6.1.1.3.14 [SRS_MemHwAb_14051] Mem driver shall not buffer data

⌈
Type: Valid

Description: The Mem driver shall not buffer data. The Mem driver services shall use the
data buffers that are passed by the MemAcc module.

Rationale: Avoid copy unnecessary copy operations.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02040)

6.1.1.3.15 [SRS_MemHwAb_14052] Mem driver multi-core type mapping

⌈
Type: Valid

Description: The Mem driver shall support multi-core type II requirements

Rationale: To provide the most flexibility and to enable usage of hardware protection
mechanisms (safety use cases), Mem driver shall support multi-core type II
requirements.

Use Case: Multi-core and safety use cases

Dependencies: --

Supporting Material: --

⌋()

6.1.1.3.16 [SRS_MemHwAb_14053] Mem driver shall provide a function to a system

ECC handle to propagate ECC errors

⌈
Type: Valid

Description: Mem driver shall provide a function to a system ECC handle to propagate
non-correctable memory ECC errors to the Mem drive.

Rationale: Dealing with ECC errors needs to be done on a system level as the error
reaction needs to be handled on system level as well.

Use Case: Typically, the Mem driver cannot detect an ECC error, thus cannot indicate
an error to the upper layer module. Calling the Mem driver propagate ECC
error API from a system ECC handler provides a way to propagate an ECC
error using the normal fault handling mechanism to the Mem upper layer
modules.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02040)

6.1.1.3.17 [SRS_MemHwAb_14054] MemAcc module shall provide a function to retrieve

memory segmentation information

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

23 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: MemAcc module shall provide a function to retrieve memory segment
information

Rationale: Upper layer modules need to know segmentation of physical memory to
align MemAcc access requests. No reference in the configuration required
by upper layer modules.

Use Case: OTA software update client with non-uniform sector layout

Dependencies: --

Supporting Material: --

⌋()

6.1.1.3.18 [SRS_MemHwAb_14055] MemAcc module shall provide a lock function to

enable/disable the direct memory access from application

⌈

Type: Valid

Description: MemAcc module shall provide lock function to enable/disable the direct
memory access from application.

Rationale: Lock functionality is required to avoid the parallel access of the same
memory through MemAcc (i.e., from FEE, BNDM & OTA client etc.) and
directly from application.

Use Case: BNDM use case writes the memory through MemAcc and reads the data
directly.

Dependencies: --

Supporting Material: --

⌋()

6.1.1.3.19 [SRS_MemHwAb_14056] MemAcc module and Mem driver shall provide a

generic function to access the hardware specific functionalities

⌈
Type: Valid

Description: MemAcc module shall provide a generic function to access the hardware
specific functionalities.

Rationale: The generic function enables MemAcc to be hardware independent.

Use Case: Hardware specific fault handling and additional hardware features not
addressed by the standard MemAcc APIs.

Dependencies: --

Supporting Material: --

⌋()

6.1.1.3.20 [SRS_MemHwAb_14005] The FEE and EA modules shall provide

upper layer modules with a virtual 32bit address space

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

24 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: The Flash EEPROM Emulation (FEE) and EEPROM Abstraction (EA) shall
provide upper layer modules with a virtual 32bit address space.

These 32 bit virtual (logical) addresses shall consist of a 16 bit logical block
identifier and a 16 bit address offset within this logical block. Thus the
memory abstraction layer shall support a (theoretical) number of 65534
logical (distinguishable) blocks per underlying physical device. Each block
can have a (theoretical) size of 64 KBytes.

Rationale: Abstract from hardware properties that would require changing the NVRAM
manager if the underlying devices / drivers change.

Use Case: 1) Support systems with a high number of small blocks
2) Support systems with a few big blocks like e.g. MMI systems (fonts,
speech) or navigation (maps, routes).
3) Allow NVRAM manager to encode block management information (e.g.
block type) in the logical block identifier (by making it big enough)

Dependencies: [SRS_MemHwAb_14026] Don’t use certain block numbers

Supporting Material: Figure 3: Virtual vs. physical address space

⌋(RS_BRF_01832)

Figure 3: Virtual vs. physical address space

6.1.1.3.21 [SRS_MemHwAb_14006] The start address for a block erase or write

operation shall always be aligned to the virtual 64K boundary

⌈

Block 1

Block 2

Block 3

32 Bytes

100 Bytes

38 Bytes

Note: Sizes not shown to scale

Virtual address space

Page size: 64 KBytes

Physical address space

Page size: 8 Bytes

100 Bytes

32 Bytes

38 Bytes

16 Bit Block Number

16 Bit Block Offset

Block #1 with 32 byte

uses 4 pages, no

internal residue

Block #5 with 100 byte

uses 13 pages, 4 byte

internal residue

Block #17 with 38 byte

uses 5 pages, 2 byte

internal residue

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

25 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: The start address for a block erase or write operation shall always be aligned
to the virtual 64K boundary.

In other words: The offset shall be ignored for block erase / write requests,
every block erase / write request starts at address offset zero.

Rationale: Allow optimized erase / write operations in underlying emulation modules
and drivers if virtual 64K boundaries are mapped to physical sector / page
boundaries.

Use Case: Optimization of FEE and EA, simplify configuration and implementation.

Dependencies: --

Supporting Material: Just to make this clear: you can not erase or write only parts of the
configured block, it’s either all or nothing.

⌋(RS_BRF_01832)

6.1.1.3.22 [SRS_MemHwAb_14007] The start address and length for reading a
block shall not be limited to a certain alignment

⌈

Type: Valid

Description: The start address and length for reading a block shall not be limited to a
certain alignment, i.e. it shall be possible to read one byte starting from any
memory address.

Rationale: Byte-wise reading of flash / EEPROM.

Use Case: CRC calculation in the NVRAM manager.

Dependencies: --

Supporting Material: This allows reading a logical block in several passes, e.g. needed for CRC
calculation.
Note 1: If there are certain hardware properties that require an alignment of
the read address, e.g. only 32bit aligned read possible, this shall be handled
by the underlying driver.
Note 2: This requirement shall allow the NVRAM manager to do a byte-wise
read access on a logical block, it does not require the NVRAM manager to
do so.

⌋(RS_BRF_01832)

6.1.1.3.23 [SRS_MemHwAb_14009] The FEE and EA modules shall provide a

conversion between the logical linear addresses and the physical memory
addresses

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

26 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: The FEE and EA modules shall provide an unambiguous conversion
between the logical linear addresses and the addresses used to access the
underlying flash memory or EEPROM.

Rationale: The physical device and the start address of a logical block shall be derived
from the logical block identifier.

Use Case: Transparent mapping of logical blocks to several physical non-volatile
memory devices.

Dependencies: --

Supporting Material: The memory addresses obtained by that conversion are address offsets to a
device specific base address as described in the flash and EEPROM driver
specifications.

⌋(RS_BRF_01832)

6.1.1.3.24 [SRS_MemHwAb_14010] The FEE and EA modules shall provide a
write service that operates only on complete configured logical blocks

⌈

Type: Valid

Description: The FEE and EA modules shall provide a write service that operates only on
complete configured logical blocks.

Rationale: Decouple the upper layer modules from driver internals.

Use Case: The upper layer module shall only make one call to the Memory Abstraction
Interface to write a logical block to non-volatile memory. If there are several
passes needed to write all of the addressed memory area, this shall be
handled internally in the FEE or EA modules or the underlying device
drivers.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01816)

6.1.1.3.25 [SRS_MemHwAb_14029] The FEE and EA modules shall provide a

read service that allows reading all or part of a logical block

⌈

Type: Valid

Description: The FEE and EA modules shall provide a read service that allows reading all
or part of a logical block.

Rationale: Allow for reading of NV memory.

Use Case: Read functionality of the NVRAM manager.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01816)

6.1.1.3.26 [SRS_MemHwAb_14031] The FEE and EA modules shall provide a
service that allows canceling an ongoing asynchronous operation

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

27 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: The FEE and EA modules shall provide a service that allows canceling an
ongoing asynchronous operation like e.g. a read, write, erase or compare
operation.

Rationale: Needed for writing “immediate” data.

Use Case: Immediate data (crash data) has to be written, while a read operation is
currently in process.

Dependencies: [SRS_MemHwAb_14013] Writing of “immediate” data must not be delayed

Supporting Material: --

⌋(RS_BRF_01812)

6.1.1.3.27 [SRS_MemHwAb_14028] The FEE and EA modules shall provide a
service to invalidate a logical block

⌈

Type: Valid

Description: The FEE and EA modules shall provide a service to invalidate a logical
block. This shall be done by setting the module internal block management
data appropriately.
Note: Erasing the contents of the physical memory is an implementation
option but not required.

Rationale: To enable a data block to be marked as invalid by the upper layer.

Use Case: Allow an application to mark data as outdated or no longer valid when
physically erasing the data is not possible or not desirable (e.g. on flash
memory technology).

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01816)

6.1.1.3.28 [SRS_MemHwAb_14012] Spreading of write access

⌈

Type: Valid

Description: If the configured number of write cycles for a logical block exceeds the
number provided by the underlying physical device, the FEE or EA module
has to provide sufficient mechanisms to spread the write requests for that
logical block over a bigger memory area.

Rationale: Allow for “unlimited” number of write cycles while simultaneously preventing
memory cells from being erased more often than specified by the hardware
vendor.

Use Case: An external flash device is specified for 10.000 erase cycles per erase unit.
A logical block is configured that requires 50.000 write cycles.
The FEE has to make sure that this logical block can be written 50.000 times
while at the same time no flash cell must be erased more than 10.000 times.

Dependencies: [SRS_MemHwAb_14002] Configuration of number of required write cycles

Supporting Material: This requirement replaces [BSW032] Spreading of write access and
[SRS_LIBS_08530] NVRAM block type – walking from MemSvc SRS.

⌋(RS_BRF_01848, RS_BRF_01850)

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

28 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

6.1.1.3.29 [SRS_MemHwAb_14013] Writing of immediate data shall not be

delayed by internal management operations nor by erasing the memory area
to be written to

⌈

Type: Valid

Description: Writing of immediate data shall not be delayed by internal management
operations nor by erasing the memory area to be written to.
If internal management operations are under way when immediate data has
to be written, they have to be interrupted until the data has been written to
non-volatile memory.

There has to be a pre-erased memory area for writing of immediate data
available at all times.

Rationale: Immediate data has to be written immediately (that’s what the name implies)
that is as fast as the underlying hardware allows.

Use Case: The FEE is reorganizing the blocks currently stored in flash when crash data
has to be written.

Dependencies: If an ongoing hardware access, e.g. an erase operation, can not be aborted
its runtime has to be taken into account as the maximum allowable delay for
immediate write operations.

Supporting Material: --

⌋(RS_BRF_01816)

6.1.1.3.30 [SRS_MemHwAb_14032] The FEE and EA modules shall provide an
erase service that operates only on complete logical blocks containing
immediate data

⌈

Type: Valid

Description: The FEE and EA modules shall provide an erase service that operates only
on complete logical blocks containing immediate data.

Rationale: SRS_MemHwAb_14013 requires pre-erased memory, therefore this memory
areas have to be somehow erasable.

Use Case: --

Dependencies: [SRS_MemHwAb_14013] Writing of “immediate” data must not be delayed

Supporting Material: - This service should only be called by a special application like e.g.
diagnostics.

- A possible implementation would be to invalidate the block containing
immediate data and subsequently force a re-organization of blocks.
During this re-organization invalidated blocks shall not be copied to the
new memory location, thus the memory area for the immediate data will
be (left) erased.

⌋(RS_BRF_01816)

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

29 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

6.1.1.4 Shutdown Operation

The modules of the Memory Abstraction Layer don’t need any shutdown capabilities
(also there are no shutdown capabilities in the flash or EEPROM driver).

6.1.1.5 Fault Operation

6.1.1.5.1 [SRS_MemHwAb_14014] The FEE and EA modules shall detect possible
data inconsistencies due to aborted / interrupted write operations

⌈

Type: Valid

Description: The FEE and EA modules shall detect possible data inconsistencies due to
aborted / interrupted write operations.

Rationale: The “user” shall not work on inconsistent data therefore it has to be
recognized.

Use Case: 1) A write operation is interrupted by a loss of power, after power-on-reset
the possible inconsistency of data shall be detected upon the next read
access to the affected memory area.
2) A write operation is cancelled by the upper layer. Upon next read access
to the affected memory area the possible data inconsistency shall be
detected.

Dependencies: --

Supporting Material: Depending on the implementation, the physical device and the point in the
write operation at which the interrupt occurs the FEE or EA module might be
able to determine that the operation has failed but not which was the block
that should have been written.

⌋(RS_BRF_00129,RS_BRF_01840)

6.1.1.5.2 [SRS_MemHwAb_14015] The FEE and EA modules shall report possible

data inconsistencies

⌈

Type: Valid

Description: The FEE and EA modules shall report possible data inconsistencies due to
aborted / interrupted write operations to the DEM exactly once. After that the
inconsistent memory area has to be marked such that no further errors are
reported for that block.

Rationale: Avoid “endless loops” in error reporting on every block read operation.

Use Case: A write operation is interrupted or cancelled, the inconsistency is detected
and reported upon the next read access to the affected memory area.

Dependencies: [SRS_MemHwAb_14014] Detection of data inconsistencies

Supporting Material: Depending on the implementation and the point in the write operation at
which the interrupt occurs the FEE or EA module might be able to determine
that the operation has failed but not which was the block that should have
been written.
In this case a read operation on that block might return old (outdated) data to
the caller if such data is available. If this is not desired from the application,
the block has to be explicitly invalidated before it is overwritten.

⌋(RS_BRF_00129,RS_BRF_01840,RS_BRF_02040)

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

30 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

6.1.1.5.3 [SRS_MemHwAb_14016] The FEE and EA modules shall not return
inconsistent data to the caller

⌈

Type: Valid

Description: The FEE and EA modules shall not return inconsistent data to the caller.

Rationale: The “user” shall not work on inconsistent data.

Use Case: A write operation is interrupted or cancelled, the data of that block thus is
inconsistent. This inconsistency is detected on the next read access to that
block, the data shall then not be returned to the caller.

Dependencies: [SRS_MemHwAb_14014] Detection of data inconsistencies

Supporting Material: Depending on the implementation and the point in the write operation at
which the interrupt occurs the FEE or EA module might be able to determine
that the operation has failed but not which was the block that should have
been written.
In this case a read operation on that block might return old (outdated) data to
the caller if such data is available. If this is not desired from the application,
the block has to be explicitly invalidated before it is overwritten.
Providing default data for an inconsistent block is the job of the NVRAM
manager.

⌋(RS_BRF_00129,RS_BRF_01840)

6.1.2 Memory Abstraction Interface

The following requirements have been taken over from the SPAL SRS on Memory
Abstraction and have been adapted (in wording only) to the architectural concept
shown in Figure 1.

6.1.2.1 General

6.1.2.1.1 [SRS_MemHwAb_14019] The Memory Abstraction Interface shall provide
uniform access to the API services of the underlying memory abstraction
modules

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

31 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: The Memory Abstraction Interface shall provide uniform access to those API
services of the underlying memory abstraction modules that are required for
usage within the NVRAM manager.
Further comments:
The initialization routines and the job processing functions are not mapped
by the memory abstraction interface.

Rationale: Allow usage of memory abstraction modules by one uniform interface.

Use Case: Allow the upper layer module access to internal and external memory
devices without any difference.

Dependencies: --

Supporting Material: This requirement shall replace [BSW12172].

⌋(RS_BRF_01000,RS_BRF_01800,RS_BRF_01808)

6.1.2.1.2 [SRS_MemHwAb_14020] The Memory Abstraction Interface shall allow the

selection of an underlying memory abstraction module by using a device
index

⌈

Type: Valid

Description: The Memory Abstraction Interface shall allow the selection of an underlying
memory abstraction module (FEE or EA module) by using a device index.

Rationale: Requirement of the NVRAM Manager

Use Case: The NVRAM Manager uses a device index for selecting the appropriate
memory abstraction module.

Dependencies: --

Supporting Material: SWS NVRAM Manager
This requirement shall replace [BSW12173].

⌋(RS_BRF_01808)

6.1.2.2 Configuration

6.1.2.2.1 [SRS_MemHwAb_14021] The Memory Abstraction Interface shall allow the

pre-compile time configuration of the number of underlying memory
abstraction modules

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

32 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: The Memory Abstraction Interface shall allow the pre-compile time
configuration of the number of underlying memory abstraction modules.

Rationale: Flexibility

Use Case: One ECU only uses internal EEPROM (thus needing one EA module),
another ECU uses both internal plus external EEPROM (thus needing two
EA modules).

Dependencies: --

Supporting Material: WP Architecture
This requirement shall replace [BSW12174].

⌋(RS_BRF_01808)

6.1.2.3 Normal Operation

6.1.2.3.1 [SRS_MemHwAb_14022] The Memory Abstraction Interface shall preserve

the functionality of the underlying memory abstraction module

⌈

Type: Valid

Description: The Memory Abstraction Interface shall preserve the functionality of the
underlying memory abstraction module. It shall not provide additional
functionality.

Rationale: Simplicity, efficiency

Use Case: The memory abstraction modules abstract from all hardware properties, the
Memory Abstraction Interface does not need to add anything (it only is
needed to access more than one memory abstraction module).

Dependencies: --

Supporting Material: This requirement shall replace [BSW12175].

⌋(RS_BRF_01000,RS_BRF_01800)

6.1.2.4 Fault Operation

6.1.2.4.1 [SRS_MemHwAb_14023] The Memory Abstraction Interface shall only
check those parameters that are used within the interface itself

⌈

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

33 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

Type: Valid

Description: The Memory Abstraction Interface shall only check those parameters that
are used within the interface itself and that are not passed to the underlying
memory abstraction modules.

Rationale: Simplicity, efficiency: avoid double checking of parameters.

Use Case: The device index may be checked (depending on the setting of the
development error detection switch). The block address shall not be
checked.

Dependencies: --

Supporting Material: This requirement shall replace [BSW12176].

⌋(RS_BRF_02232)

6.1.3 Onboard Device Abstraction

For the Onboard Device Abstraction the same requirements like for the Memory
Hardware Abstraction apply. One member of the Onboard Device Abstraction is the
Watchdog Interface.

6.2 Non-Functional Requirements (Qualities)

6.2.1 Memory Abstraction Modules

6.2.1.1 [SRS_MemHwAb_14017] The EA module shall extend the functional
scope of an EEPROM driver

⌈

Type: Valid

Description: The EEPROM Abstraction Layer (EA) shall extend the functional scope of an
EEPROM driver. In addition to the properties of an EEPROM driver, the EA
shall work on a virtual 32bit address space and it shall abstract completely
from the limitation of erase / write cycles given by the underlying device.

Rationale: Uniform handling of all EEPROM devices.

Use Case: The NVRAM manager shall not need to be changed if the underlying
EEPROM drivers and devices change.

Dependencies: --

Supporting Material: AUTOSAR SRS EEPROM driver

⌋(RS_BRF_01000,RS_BRF_01800)

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

34 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

6.2.1.2 [SRS_MemHwAb_14018] The FEE module shall extend the functional
scope of an internal flash driver

⌈

Type: Valid

Description: The Flash EEPROM Emulation (FEE) shall extend the functional scope of an
internal flash driver. It shall have the same functional scope and API as an
EA module.

Rationale: Uniform handling of all flash devices.

Use Case: The NVRAM manager shall not need to be changed if the underlying flash
drivers and devices change.

Dependencies: [SRS_MemHwAb_14017] Scope of EEPROM Abstraction Layer

Supporting Material: AUTOSAR SRS EEPROM driver
AUTOSAR SRS Flash driver

⌋(RS_BRF_01000,RS_BRF_01800)

6.2.2 Memory Abstraction Interface

6.2.2.1 Timing Requirements

6.2.2.1.1 [SRS_MemHwAb_14024] The Memory Abstraction Interface shall preserve

the timing behavior of the underlying memory abstraction modules and their
APIs

⌈

Type: Valid

Description: The Memory Abstraction Interface shall preserve the timing behavior of the
underlying memory abstraction modules and their APIs by 1:1 mapping of
the Memory Abstraction Interface API to the memory abstraction modules’
API

Rationale: Simplicity, efficiency

Use Case: Example:
The write service of the Memory Abstraction Interface is directly mapped to
the write service of an underlying memory abstraction module (FEE or EA).

Dependencies: --

Supporting Material: WP Architecture
This requirement shall replace [BSW12177].

⌋(RS_BRF_01000,RS_BRF_01800)

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

35 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

6.2.3 Onboard Device Abstraction

For the Onboard Device Abstraction the same requirements like for the Memory
Hardware Abstraction apply. One member of the Onboard Device Abstraction is the
Watchdog Interface.

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R22-11

36 of 36 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

7 References

7.1 Deliverables of AUTOSAR

[1] List of Basic Software Modules

AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules,
AUTOSAR_SRS_BSWGeneral.pdf

[4] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[5] Software Standardization Template
AUTOSAR_TPS_StandardizationTemplate.pdf

7.2 Related standards and norms

None

	1 Scope of Document
	2 How to read this document
	2.1 Conventions used
	2.2 Requirements structure

	3 Acronyms and abbreviations
	4 Functional Overview
	4.1 Memory Access Module
	4.2 Memory Driver
	4.3 EEPROM Abstraction Layer
	4.4 Flash EEPROM Emulation
	4.5 Memory Abstraction Interface

	5 Requirements Tracing
	6 Requirements Specification
	6.1 Functional Requirements
	6.1.1 Memory Abstraction Modules
	6.1.1.1 Configuration
	6.1.1.1.1 [SRS_MemHwAb_14057] MemAcc module shall allow the configuration of the non-contiguous physical memory areas of different memory devices to a logical address area
	6.1.1.1.2 [SRS_MemHwAb_14034] MemAcc module shall allow the configuration of the priority for different logical address areas
	6.1.1.1.3 [SRS_MemHwAb_14035] MemAcc module shall support variant mapping
	6.1.1.1.4 [SRS_MemHwAb_14036] Mem driver shall be statically configurable
	6.1.1.1.5 [SRS_MemHwAb_14001] The FEE and EA modules shall allow the configuration of the alignment of the start and end addresses of logical blocks
	6.1.1.1.6 [SRS_MemHwAb_14002] The FEE and EA modules shall allow the configuration of a required number of write cycles for each logical block
	6.1.1.1.7 [SRS_MemHwAb_14026] The block numbers 0x0000 and 0xFFFF shall not be used

	6.1.1.2 Initialization
	6.1.1.2.1 [SRS_MemHwAb_14037] MemAcc module and Mem driver shall provide an interface for initialization

	6.1.1.3 Normal Operation
	6.1.1.3.1 [SRS_MemHwAb_14038] MemAcc module and Mem driver shall provide asynchronous memory access functions
	6.1.1.3.2 [SRS_MemHwAb_14039] MemAcc module and Mem driver shall support optional services
	6.1.1.3.3 [SRS_MemHwAb_14040] MemAcc module and Mem driver shall provide a synchronous status function
	6.1.1.3.4 [SRS_MemHwAb_14041] MemAcc module shall provide a job notification mechanism for the upper layer modules
	6.1.1.3.5 [SRS_MemHwAb_14042] MemAcc module shall support multiple Mem drivers for different types of memory
	6.1.1.3.6 [SRS_MemHwAb_14043] Mem driver and shall support multiple instances of the same memory device
	6.1.1.3.7 [SRS_MemHwAb_14044] MemAcc module shall manage the memory job requests from different upper layer modules
	6.1.1.3.8 [SRS_MemHwAb_14045] MemAcc module and Mem driver shall provide measures for dynamic driver activation
	6.1.1.3.9 [SRS_MemHwAb_14046] MemAcc module and Mem driver shall provide support for 64-Bit address range
	6.1.1.3.10 [SRS_MemHwAb_14047] MemAcc module shall provide optional support for the initialization and main function triggering of memory drivers
	6.1.1.3.11 [SRS_MemHwAb_14048] Mem driver shall operate on physical segmentation/physical addresses
	6.1.1.3.12 [SRS_MemHwAb_14049] Mem driver shall use a standard binary format for dynamic driver activation
	6.1.1.3.13 [SRS_MemHwAb_14050] Mem driver shall handle only one job at one time
	6.1.1.3.14 [SRS_MemHwAb_14051] Mem driver shall not buffer data
	6.1.1.3.15 [SRS_MemHwAb_14052] Mem driver multi-core type mapping
	6.1.1.3.16 [SRS_MemHwAb_14053] Mem driver shall provide a function to a system ECC handle to propagate ECC errors
	6.1.1.3.17 [SRS_MemHwAb_14054] MemAcc module shall provide a function to retrieve memory segmentation information
	6.1.1.3.18 [SRS_MemHwAb_14055] MemAcc module shall provide a lock function to enable/disable the direct memory access from application
	6.1.1.3.19 [SRS_MemHwAb_14056] MemAcc module and Mem driver shall provide a generic function to access the hardware specific functionalities
	6.1.1.3.20 [SRS_MemHwAb_14005] The FEE and EA modules shall provide upper layer modules with a virtual 32bit address space
	6.1.1.3.21 [SRS_MemHwAb_14006] The start address for a block erase or write operation shall always be aligned to the virtual 64K boundary
	6.1.1.3.22 [SRS_MemHwAb_14007] The start address and length for reading a block shall not be limited to a certain alignment
	6.1.1.3.23 [SRS_MemHwAb_14009] The FEE and EA modules shall provide a conversion between the logical linear addresses and the physical memory addresses
	6.1.1.3.24 [SRS_MemHwAb_14010] The FEE and EA modules shall provide a write service that operates only on complete configured logical blocks
	6.1.1.3.25 [SRS_MemHwAb_14029] The FEE and EA modules shall provide a read service that allows reading all or part of a logical block
	6.1.1.3.26 [SRS_MemHwAb_14031] The FEE and EA modules shall provide a service that allows canceling an ongoing asynchronous operation
	6.1.1.3.27 [SRS_MemHwAb_14028] The FEE and EA modules shall provide a service to invalidate a logical block
	6.1.1.3.28 [SRS_MemHwAb_14012] Spreading of write access
	6.1.1.3.29 [SRS_MemHwAb_14013] Writing of immediate data shall not be delayed by internal management operations nor by erasing the memory area to be written to
	6.1.1.3.30 [SRS_MemHwAb_14032] The FEE and EA modules shall provide an erase service that operates only on complete logical blocks containing immediate data

	6.1.1.4 Shutdown Operation
	6.1.1.5 Fault Operation
	6.1.1.5.1 [SRS_MemHwAb_14014] The FEE and EA modules shall detect possible data inconsistencies due to aborted / interrupted write operations
	6.1.1.5.2 [SRS_MemHwAb_14015] The FEE and EA modules shall report possible data inconsistencies
	6.1.1.5.3 [SRS_MemHwAb_14016] The FEE and EA modules shall not return inconsistent data to the caller

	6.1.2 Memory Abstraction Interface
	6.1.2.1 General
	6.1.2.1.1 [SRS_MemHwAb_14019] The Memory Abstraction Interface shall provide uniform access to the API services of the underlying memory abstraction modules
	6.1.2.1.2 [SRS_MemHwAb_14020] The Memory Abstraction Interface shall allow the selection of an underlying memory abstraction module by using a device index

	6.1.2.2 Configuration
	6.1.2.2.1 [SRS_MemHwAb_14021] The Memory Abstraction Interface shall allow the pre-compile time configuration of the number of underlying memory abstraction modules

	6.1.2.3 Normal Operation
	6.1.2.3.1 [SRS_MemHwAb_14022] The Memory Abstraction Interface shall preserve the functionality of the underlying memory abstraction module

	6.1.2.4 Fault Operation
	6.1.2.4.1 [SRS_MemHwAb_14023] The Memory Abstraction Interface shall only check those parameters that are used within the interface itself

	6.1.3 Onboard Device Abstraction

	6.2 Non-Functional Requirements (Qualities)
	6.2.1 Memory Abstraction Modules
	6.2.1.1 [SRS_MemHwAb_14017] The EA module shall extend the functional scope of an EEPROM driver
	6.2.1.2 [SRS_MemHwAb_14018] The FEE module shall extend the functional scope of an internal flash driver

	6.2.2 Memory Abstraction Interface
	6.2.2.1 Timing Requirements
	6.2.2.1.1 [SRS_MemHwAb_14024] The Memory Abstraction Interface shall preserve the timing behavior of the underlying memory abstraction modules and their APIs

	6.2.3 Onboard Device Abstraction

	7 References
	7.1 Deliverables of AUTOSAR
	7.2 Related standards and norms

