
Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

1 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

Document Title Explanation of Interrupt
Handling within AUTOSAR

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 307

Document Status obsolete

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R22-11

Document Change History
Date Release Changed by Change Description

2022-11-24 R22-11 AUTOSAR

Release

Management

 No content changes

 Document Status changed to

obsolete

2021-11-25 R21-11 AUTOSAR

Release

Management

 No content changes

2020-11-30 R20-11 AUTOSAR

Release

Management

 No content changes

2019-11-28 R19-11 AUTOSAR

Release

Management

 No content changes

 Changed Document Status from

Final to published

2018-10-31 4.4.0 AUTOSAR

Release

Management

 Editorial changes

2017-12-08 4.3.1 AUTOSAR

Release

Management

 Editorial changes

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Editorial changes

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Editorial changes

2013-03-15 4.1.1 AUTOSAR

Administration

 Finalized for Release 4.1

2010-02-02 3.1.4 AUTOSAR

Administration

 Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR

Administration

 Legal disclaimer revised

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

2 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

Document Change History
Date Release Changed by Change Description

2007-12-21 3.0.1 AUTOSAR

Administration

 Initial Release

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

3 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

Table of Contents

1 Introduction and purpose of document .. 4

2 Acronyms and abbreviations.. 5

3 Related documentation .. 6

3.1 Input documents ... 6

3.2 Related standards and norms .. 6

4 Summary of Interrupt Configuration ... 7

5 Overview of Interrupt Operation ... 9

5.1 Distinction between cat1 and cat2 interrupts ... 9

6 Steps in the operation of interrupts .. 11

6.1 Handling cat1 interrupts ... 11

6.1.1 Initial state ... 11

6.1.2 When the hardware requests an interrupt .. 11

6.2 Handling cat2 interrupts ... 13

6.2.1 Initial state ... 13

6.2.2 When the hardware requests an interrupt .. 13

7 Configuration of Interrupts ... 15

7.1 Device Driver configuration and code .. 15

7.1.1 Placement of Interrupt Handlers ... 16

7.2 OS configuration .. 16

7.3 BSW Scheduler configuration .. 17

7.3.1 TASK for main functions ... 17

7.3.2 Other TASKs in the stack .. 18

7.3.3 Critical sections ... 18

7.3.4 Summary ... 20

8 Recommendations for the use of cat1 interrupts ... 21

8.1.1 Communication between adjacent modules using cat1 interrupts 21

8.1.2 Trust... 22

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

4 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

1 Introduction and purpose of document

This document captures the way that interrupts work and are configured in Autosar.
The purpose of the document is to guide the specification work of the WPs that are
specifying modules that, in some way interact with interrupts.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

5 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

2 Acronyms and abbreviations

Acronym: Description:

ISR Interrupt Service Routine. Also used as a macro to declare in C a cat2
interrupt service routine.

RETI Return from Interrupt

GCE Generic Configuration Editor

Abbreviation: Description:

Cat2 Category 2. Cat2 ISRs are supported by the OS and can make OS calls.

Cat1 Category 1. Cat1 interrupts are not supported by the OS and are only
allowed to make a very small selection of OS calls to enable and disable all
interrupts.

Terminology: Description:

Interrupt
Handler

In the case of a Cat2 interrupts, the ISR is synonymous with Interrupt
Handler. In the case of Cat1 interrupt the Interrupt handler is the function
called by the hardware interrupt vector. In both cases the Interrupt handler is
the user code that is normally a part of the BSW module.
So we consider the Interrupt Handler to be a user level piece of code.
However, in the case of Cat2 interrupts are initially handled in the OS’s
interrupt handler before the user’s interrupt handler is called.

Interrupt Logic This is the MCU logic that controls all interrupts for all devices. This is
normally controlled by the OS.

Device A hardware I/O device that, for the purposes of this document, can also
cause interrupts.

Device
Interrupt
Enable Bit

This is the bit/bits within one hardware device, that is controlled by the
device driver, to enable/disable the interrupt source for that device only.

Interrupt
Frame

An interrupt frame is the code which is generated by the compiler, or the
assembler code, for prefix and postfix of interrupt routines. This code is
microcontroller specific

Definition Ref A reference from one part of the XML to another. In particular, the XML for a
BSW module may refer to another BSW module’s XML for certain
information. This prevents the same information appearing in multiple places
in the XML.

Code
Generator

A BSW module is delivered in two parts: code and a Code Generator. The
Code Generator consumes complete and correctly formed XML for the BSW
module and generates code and data that configures the module.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

6 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

3 Related documentation

3.1 Input documents

None

3.2 Related standards and norms

None

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

7 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

4 Summary of Interrupt Configuration

This chapter summarises the configuration parameters required for interrupts and
where (i.e. in which module) each parameter resides. This summary is from the
point-of-view of the ECU Configuration. It is assumed that some system configuration
editor with a high level view of the ECU is responsible for the parameter values being
placed in the ECU Configuration.

The following table represents a summary of the information to be found in the rest of
this document. For longer explanations for what the parameters mean, please read
the rest of this document.

BSW
Module

Code contained Parameters Contained
in XML

Rationale

OS All relevant code is
automatically
generated by the
OS code generator.

Interrupt Priority,
Category, Vector and
name.

All of these are necessary
in order to configure the
OS.

The high level tools need
to ensure that only legal
combinations of priority,
vector and category are
used.

BSW
Scheduler

Code to enter and
exit critical regions
that need to be
guarded in the
interrupt handler.
This code is
automatically
generated by the
BSW Scheduler’s
code generator.

Definition ref to OS object
that defines this interrupt.

Definition refs to other OS
objects (TASKs or
Interrupts) that access the
critical region.

The BSW Scheduler’s
code generation may also
generate RESOURCEs
that need to be pushed
into the OS’s
configuration XML.

The references to the OS
are required to find out the
priority and type of objects
(TASK or interrupt) that
access critical region.

Knowing these enables the
BSW Scheduler’s code
generator to generate the
appropriate code.

Device
driver
module

Declaration of the
interrupt handler.
This is in C and
written by the
module’s author, i.e.
it is not
automatically
generated.

Note that the
declarations are
different in the
category 1 and 2
cases.

Definition ref to OS object
that defines this interrupt.

The C definition of the
interrupt handler needs to
agree with the name and
the category in the OS
object.

The name of the handler
needs to be consistent
between the C source and
OS XML.

The C source may need
some information in the
OS XML for correct
generator (for example,
some compilers need a

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

8 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

BSW
Module

Code contained Parameters Contained
in XML

Rationale

vector address in order to
declare a cat 1 handler).

No timing information is to be found in the above table. This is because no timing
model exists currently. Therefore it is not clear how the BSW scheduler can be
configured to use anything other than interrupt enable and disable for critical
sections.

Note that this document makes references to the BSW Scheduler. Although the BSW
Scheduler is now being incorporated into the RTE the arguments presented are still
valid.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

9 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

5 Overview of Interrupt Operation

This overview first explains the steps involved in the handling of an interrupt and then
maps those steps onto the different BSW modules involved.

5.1 Distinction between cat1 and cat2 interrupts

There are significant differences between cat1 and cat2 interrupts. These are
summarized in the next table.

Attribute Cat1 Cat2

Interaction with the OS Cat1 interrupts are not
allowed to interact with the
OS data structures. In
practice this means that
the only OS calls they can
make are to
enable/disable all
interrupts.

Cat2 interrupts are allowed
to make most OS calls,
other are illegal.

Latency. This is the time
from the interrupt being
requested by the
hardware to the first
instruction of the Interrupt
Handler.

Cat1 interrupts have
typically lower latency than
cat2. This is their main
advantage.

Cat2 ISRs have typically
higher latency than cat1.

Support by the OS. This
means that the OS’s code
generator and libraries
abstract the interrupt from
the hardware in some
portable way.

Unsupported. This means
that the code to get safely
into and out of the interrupt
handler is not generated
by the OS and, therefore,
has to be generated in
some other way.
Typically the way that this
code is generated
depends upon the
compiler and processor.

Supported. This is by the
ISR macro in C files that
declares a function, in a
portable manner, to be an
interrupt handler. For
example,
ISR(Can_tx) {
/* some code */
}
This is their main
advantage.

Configuration. This
means capturing enough
information in the XML for
the OS so that interrupt
can be described.

The XML contains all the
relevant information about
cat1 interrupts. However, it
may or may not be used,
depending upon the target.

The XML contains all the
relevant information about
a cat2 interrupts. This is
then used to generate the
vector table and interrupt
hardware manipulation
code to get into and out of
cat2 ISRs.

Control of interrupt logic.
(Target dependency)

Where interrupt logic
needs to be manipulated
to get in or out of the
handler; whether or not

The OS performs the
appropriate manipulation.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

10 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

this happens depends
upon the target. For
example, some compilers
have an “interrupt” key
word to help with this.
However, the level of
support is very variable.

Communication with
other threads: either
tasks or other interrupts
handlers. This is really
about how mutual
exclusion on buffers is
handled.

In a TASK or lower priority
interrupt, exclusion would
be achieved by locking out
all interrupts. This is
because there is no API to
set the priority to specific
level and no API to
disable/enable a specific
interrupt source.

In the cat1 Interrupt
Handler there would be no
need to lock out interrupts
because the critical region
is shared with a lower
priority thread (a TASK or
lower priority interrupt).

We assume that there is
no use case for two Cat1
Interrupt Handlers to
directly communicate.

The OS RESOURCE
abstraction is the best way
to handle interaction
between cat2 ISR and
TASKs, or other cat2
ISRs. This mechanism
knows about cat2 interrupt
priorities as well as TASK
priorities and, therefore,
locks to the lowest priority
that guarantees exclusion.
The correct priority can be
calculated off-line by a
tool.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

11 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

6 Steps in the operation of interrupts

Due to the significant differences between cat1 and cat2 interrupts they are handled
in very different ways in the OS and application code. So this section gives an
overview of how they are handled.

In each case we discuss what state needs to be set up before the interrupt can
occur, and who is responsible for setting that state.

6.1 Handling cat1 interrupts

6.1.1 Initial state

The vector table entry for the interrupt needs to be set so that it points to the interrupt
handler.

For cat1 interrupts setting this entry is target-specific. Some implementations of the
Autosar OS may support setting the vector table whereas others may not. In the case
where the OS does not support this some other method needs to be used such as
compiler directives or modifying the vector table.

The interrupt handler needs to be declared correctly. Often there is compiler support
for this. For example:

__interrupt Can_tx() {
 /* some user application code */
}

However, sometimes there is no compiler support and, typically, the syntax and
semantics of the support change between compilers. So it may be necessary to
provide processor and compiler-specific support for declaring a cat1 handler.

The processor’s interrupt logic needs to be set up so that it can request an interrupt.
Typically there is no OS support for this in the cat1 case. So this would need to be
performed on a per-target basis.

The interrupting device needs to be set up so that it generates an interrupt under the
required conditions. This setup is required in the cat1 and cat2 cases and is typically
part of the device driver (i.e. in the user’s domain).

6.1.2 When the hardware requests an interrupt

These are the steps that occur from when a device requests an interrupt up to the
return to the interrupted thread.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

12 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

Action Responsibility

Requesting the interrupt Device

Prioritization. Waiting until the processor’s
priority is low enough that the interrupt can
be recognized.

Interrupt logic. Sometimes part of the CPU,
and sometimes not.

Recognizing the interrupt. This is allowing the
request to interrupt the CPU.

CPU

Saving interrupt state. CPU

Following the vector table’s entry into the
interrupt handler.

CPU

Interrupt handler preamble, such as saving
compiler-specific registers, etc.

Interrupt handler code generated in response
to the __interrupt keyword (or whatever
method was used).

Performing the action associated with the
interrupt.

User code in the interrupt handler. Note that
this code cannot make most OS calls.

Dismissing the interrupt in the device so that
it does not immediately re-occur.

User code in the interrupt handler. Note that
this code cannot make most OS calls.

Setting the interrupt controller’s state so that
the interrupt can occur again.

Post-amble code generated by the
__interrupt keyword (or whatever method
was used). However, may also be in the
user’s domain. Depends upon the compiler.

Restore compiler registers. Interrupt handler code generated in response
to the __interrupt keyword.

RETI Interrupt handler code generated in response
to the __interrupt keyword.

Restore state of interrupted thread. CPU

sd Cat1 InterruptHandler logic

Dev i ce Interrupt Logic CPU/MCU OS ISR/Interrupt

Handler

IRQ

IRQ

Interrupt Dispatch

Interrupt Frame Entry

User Code

Interrupt Frame Exit

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

13 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

6.2 Handling cat2 interrupts

These provide a much higher level of abstraction than cat1 interrupts but are more
expensive at run-time and consume more of the RAM and ROM allocated to the OS.

6.2.1 Initial state

The processor’s vector table entry for the interrupt needs to be set so that it points to
the OS. For cat2 interrupts setting this entry is handled by the OS’s code generator.

The interrupt handler needs to be declared correctly. This is defined as follows for
AUTOSAR:

ISR(Can_tx) {
 /* some user application code */
}

The ISR macro may or may not cause the OS to be entered when an interrupt
occurs. However, the main point of this macro is that it encapsulates a cat2 interrupt
handler. Therefore the code that ISR expands to is an implementation decision.

The processor’s interrupt logic needs to be set up so that it can request an interrupt.
In the cat2 case the OS handles this.

The interrupting device needs to be set up so that it generates an interrupt under the
required conditions. This setup is required in the cat1 and cat2 cases and is typically
part of the device driver (i.e. in the user’s domain).

6.2.2 When the hardware requests an interrupt

The CPU behavior required for a cat2 interrupt is the same as a cat1. Most other
aspects are different.

Action Responsibility

Requesting the interrupt Device

Prioritization. Waiting until the processor’s
priority is low enough that the interrupt can
be recognized.

Interrupt logic. Sometimes part of the CPU,
and sometimes not.

Recognizing the interrupt. This is allowing the
request to interrupt the CPU.

CPU

Saving interrupt state. CPU

Following the vector table’s entry into the OS. CPU

OS preamble, such as saving compiler-
specific registers, etc. Establishing an OS
wrapper around the ISR.

Code generated by the OS’s code generator
and code which is part of the OS library.

Performing the action associated with the
interrupt.

User code in the ISR. Note that this code can
make any OS calls.

Dismissing the interrupt in the device so that
it does no immediately re-occur.

User code in the ISR. Note that this code can
make any OS calls.

Leaving the handler and reentering the OS. When the OS is reentered it checks for TASK

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

14 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

activations and then runs appropriate tasks
at user priority.

Setting the interrupt logic’s state so that the
interrupt can occur again.

Part of the OS’s generated code and library.

Restore compiler registers. Part of the OS’s generated code and library.

RETI Part of the OS’s generated code and library.

Restore state of interrupted thread. CPU

sd Cat2 ISR logic

Dev i ce Interrupt Logic CPU/MCU OS ISR/Interrupt

Handler

IRQ

IRQ

Interrupt Dispatch

Interrupt Frame Entry

Call

User Code

Task Dispatch

Interrupt Frame Exit

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

15 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

7 Configuration of Interrupts

The discussion in chapter 5 identified the following actors in the handling of
interrupts:

 The device driver

 The OS

 The BSW scheduler

 Not-configured items

We will now consider the configuration issues for each of these actors, in both the
cat1 and cat2 cases.

7.1 Device Driver configuration and code

Each device driver needs to contain the code for the interrupt handler. i.e. the author
of the device driver must also write the interrupt handler code as part of the device
driver’s implementation. However, the code is different in the cat1 and cat2 cases.

Cat2 ISRS are the simplest because they have OS support. The code is based upon
the following template:

ISR(<name>) {
 <user code to handle ISR>
 <user code to dismiss interrupt>
}

The <name> must agree with that chosen in the OS configuration.

Cat1 interrupt handlers are a problem because they do not have OS support.
Typically the template would be:

<some target specific preamble to mark this function as an interrupt handler>
<name>() {
 <user code to handle ISR>
 <user code to set up interrupt controller>
 <user code to dismiss interrupt>
}

However, the exact code required is very processor and compiler specific and not
portable. This may not be a problem as device drivers tend not to be very portable
anyway.

It is the device driver author’s responsibility to write the handlers and, particularly in
the cat1 case, to ensure that the correct interaction with the interrupt controller takes
place.1

1 In the author’s experience this interaction is hard to get right. We expect this to be a source of bugs.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

16 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

7.1.1 Placement of Interrupt Handlers

Category 1 interrupt handlers are used because they have the fastest response time.
Therefore doing anything that slows down category 1 interrupts is counter productive.
Therefore category 1 interrupt handlers shall reside in the driver for that interrupting
device.

Category 2 handlers are slower and, therefore, more scope in their placement could
be allowed. However, to put them anywhere other than the same place as the
category 1 handlers multiplies complexity for no useful benefit.

Therefore category 2 interrupt handlers shall also reside in the driver for that
interrupting device – there is no thunk in the BSW Scheduler or elsewhere. The term
“thunk” in this context means a short piece of code in the BSW Scheduler that simply
calls the real handler in the device driver.

7.2 OS configuration

The OS needs to know some fairly complex information in order to configure
interrupts correctly. In both cat1 and cat2 cases the following must be known:

 The interrupt vector

 The interrupt priority

 The Interrupt Handler’s <name>

 The category

On some targets one parameter implies a limited range of values for another. For
example, on the TriCore the vector implies the priority. So not all combinations of
vector, priority and category are legal.

The Interrupt Handler’s <name> can be set either by the person configuring the OS
or the person configuring the device driver. It doesn’t really matter who thinks of the
name provided that the same name is used in the OS configuration and in the device
driver.

Setting the vector, priority and category is much more interesting.2

The category (cat1 or cat2) selected in the OS configuration must agree with the
implementation strategy chosen in the driver and interface. For validator 2 style
configuration3, the person writing the configuration must ensure that the
implementation strategies in the driver, interface and the OS category agree with
each other.

In the longer term, however, it would be preferable to have some automatic support.
For example, the XML for each module describes which categories are allowed and
the configuration captures which category is used. This will enable automatic code
generation.

2 Especially as the Autosar XML has no parameters for the vector or priority.
3 This is where all modules are configured automatically by hand. i.e. there is no automatic cross
module checking or consistency.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

17 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

So for validator 2 it is probably adequate that the GCE and operator manually select
the category based upon information about the implementation of the BSW module.

Setting the vector and priority will also be manual (i.e. via the GCE) in validator 2.
However, once again, in the long term, some automated help would be required.

There is typically a degree of dependency between the category, vector and priority.4
The GCE does not patrol these dependencies and so they must be patrolled by the
user of the GCE in conjunction with the manuals for the OS.

In the medium term one would expect knowledge of these dependencies to be built
into higher level authoring tools so that the correct relationships are guaranteed by
the authoring tools.

So the priority and vector are also configuration items for the OS.

The RESOURCEs to be supplied by the OS must also be specified. In order for these
to work correctly the OS must know all the objects (TASKs and ISRs) that refer to
each RESOURCE.5 The BSW Scheduler is responsible for handling critical regions
and, therefore, is logically responsible for configuring the OS. However, the BSW
scheduler needs knowledge of what critical sections each BSW module needs.

There is no extra OS configuration required for the suspend and resume all interrupts
calls.

7.3 BSW Scheduler configuration

The BSW scheduler fulfils two purposes:
1. to provide a TASK that calls the BSW main functions, and
2. to provide code that is responsible for locking critical sections. Therefore

critical sections are implemented via the BSW Scheduler only.

The configuration of these two aspects will now be discussed. This discussion relies
very heavily upon the author’s experience of the communications stack.

The authors are also making the assumption that the BSW scheduler will be written
so that it attempts to use the most appropriate method for protecting critical regions.6

7.3.1 TASK for main functions

The configuration for the BSW scheduler needs to know which main functions to call
and in what order. Typically the code generator for the BSW scheduler will generate
code that calls the main functions in order. For example (I’ve made up plausible
names):

4 Many implementations mandate that at cat1 interrupts must be of a higher priority than the highest
cat2 interrupt.
5 If the OS does not get all of this information correctly critical sections will have obscure bugs.
6 For more information on this see [1].

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

18 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

void Run_com_stack() {
 canif_main_rx();
 linif_main_rx();
 frif_main_rx();
 pdur_main_rx();
 pdumux_main_rx();
 com_main_rx();
 com_main_gw();
 com_main_tx();

etc…
TerminateTask();

}

This means that the BSW scheduler needs to know the TASKs that contains the
main functions in order to tell the OS configuration to configure the RESOURCEs
correctly. The BSW scheduler also needs to know the threads of control through the
BSW modules and the critical regions referenced. The BSW Scheduler needs to be
able to find this information from its configuration data.

7.3.2 Other TASKs in the stack

Typically, BSW modules are entered from flows of control other than the main
functions. Therefore, also of interest is, for example, the context that the BSW is
entered in from the RTE. This is because the RTE’s TASK (or one of its many
TASKs) will also, eventually access a critical section and, therefore, call the BSW
scheduler. Therefore the RTE’s TASK (or TASKs) need to be added to the list that
references the RESOURCE used.

All such flows of control into the BSW must be identified and used to configure the
BSW scheduler and hence the OS.

7.3.3 Critical sections

This chapter is in 3 sub-sections. The first two sub-sections discuss the issues
around critical sections in the two categories of interrupt handler. The final sub-
section discusses critical section implementation in the BSW scheduler. So the first
two sub-sections describe the problems that the interrupt handlers have and the third
sub-section describes how the BSW Scheduler helps to solve those problems.

7.3.3.1 Mutual exclusion in category 1 handlers

1) Assume that we have a cat1 interrupt called C1 and some other thread (either a
TASK or an interrupt) called T1.

2) Assume that the priority(C1) > priority(T1).

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

19 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

Assumption 2 implies that, when C1 is running T1 cannot pre-empt, and if T1 is
running then C1 can pre-empt. Therefore it is necessary to place protection in T1.
Typically this protection is to contain the critical section in matching

SuspendAllInterrupts and ResumeAllInterrupts calls.

The complimentary case is when:
3) assume that priority(C1) < priority(T1).

In this case T1 must be another cat1 interrupt. (i.e. it cannot be anything else) and,
therefore, it is C1’s responsibility to contain the critical section protection. We assume
that there is no use case for this in Autosar. However, for completeness we now
describe the issues in this case.

The dependency between the code and the configuration must be guaranteed to be
consistent. This can be done two ways:

 Manually: put the suspend and resume calls into the driver, low overheads
and high probability of getting it wrong, or

 Automatically: using the BSW Scheduler module, put the suspend and resume
calls into the BS W scheduler with calls to the BSW scheduler in the driver.
This has higher overheads and lower probability of getting it wrong.

We would suggest that the BSW scheduler handles this problem, i.e. the automatic
option. Therefore it is necessary for the BSW scheduler’s configuration to know the
category of an interrupt handler.

7.3.3.2 Mutual exclusion in category 2 handlers

In order to achieve mutual exclusion between TASKs and CAT2 ISRs OS
RESOURCEs may be used. Interrupt locking can also be used, and is also
discussed. RESOURCEs work in all 2 unique cases in the cross product (TASK/ISR,
ISR/ISR).

Disabling interrupts can also be used for mutual exclusion. If the two ISRs are of the
same priority there is no need for mutual exclusion because they can not run at the
same time.

In the user code a critical section is enclosed in calls to the BSW scheduler to enter
and leave the critical section. In the BSW scheduler these enter/leave calls are
resolved either into resource lock and unlock calls or into interrupt suspend and
resume calls. The choice is in the domain of the BSW scheduler’s configuration
algorithms. However, whichever decision is made, the BSW scheduler needs to have
the right information to make that decision and must also inform the OS of any
additional configuration objects.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

20 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

7.3.3.3 Critical sections in the BSW Scheduler

In the BSW scheduler critical sections will typically be implemented in one of two
ways:

 Suspend/resume or enable/disable interrupts

 RESOURCEs

This is an important point for the configuration point-of-view. In order to protect
critical sections the BSW scheduler could simply suspend/resume all interrupts to
enter/leave critical sections. This is very simple to configure requiring almost no
knowledge of the application’s behavior (i.e. you don’t need extra RESOURCEs and,
therefore, don’t need to know which TASKs/ISRs reference them). However, it also
can lead to very long high priority blocking times if the time spent in the critical
sections is long.

A better BSW scheduler will use RESOURCEs so that less time is spent at high
priority. However, much more information is required for this. In the discussion above
we attempted to identify where that information comes from.

A further solution is to make everything a Cat2 ISR or TASK. Then Suspend/Resume
OS Interrupts can be used. This requires no knowledge of which BSW requires which
RESOURCE. However, it does block out all TASKS and cat2 ISRs in every critical
section.

The decision about which scheme is the most appropriate depends upon having
timing figures for many parts of the BSW software and a timing model. Currently
neither of these exist.

In the case where the BSW scheduler is used to decouple cat1 interrupts (see
section 8) then it is only permitted to use suspend/resume all interrupts.

7.3.4 Summary

The configuration of the BSW scheduler is a problem. To configure it trivially (the
suspend/resume interrupts case) is simple but has significant disadvantages such as
long high priority blocking times. A better configuration (RESOURCEs) needs a lot of
information in the BSW scheduler that must then be transferred to the OS. It is not
clear how this information is obtained.

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

21 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

8 Recommendations for the use of cat1 interrupts

Most device drivers will be able to use cat2 ISR and shall use cat2 ISRs as the
preferred method for handling interrupts.

Cat1 interrupts shall only to be used in the following limited set of circumstances:

 When the interrupt arrival rate causes unacceptable overheads in the OS due
cat2 wrappers, or

 when the interrupt latency must be so low that a cat2 ISR is not fast enough.

 when the defined Interrupt Handler would require low jitter.

When a Cat1 interrupt is used in a driver the interrupt should be decoupled as soon
as possible. At the latest this should be the layer immediately above the driver.

8.1.1 Communication between adjacent modules using cat1 interrupts

Propagating cat1 interrupts too far from the driver is a problem because it means
that, for critical sections, large amounts of the stack (memory, communications,
whatever) need to know about cat1 interrupts and the blocking times are long.

Long blocking times are a special worry with cat1 interrupts because all interrupts
are blocked out. Not just a subset.

Therefore cat1 interrupts shall be decoupled as soon as possible. In practice this will
work as follows. The figure below show two adjacent modules: a driver that handles
cat1 interrupts and an interface.

When the Upper layer wants to send data downwards it asks the interface. The
interface locks the buffer by suspending all interrupts via the BSW Scheduler, copies

Hardware

Driver

Interface

interrupt

buffer
Main function

Upper layer

Explanation of Interrupt Handling within AUTOSAR
AUTOSAR CP R22-11

22 of 22 Document ID 307: AUTOSAR_EXP_InterruptHandlingExplanation

the data into the buffer or directly to the driver, and then resumes interrupts again via
the BSW Scheduler.

When data is received by the driver via an interrupt the driver asks the interface to
buffer the data and then exits. This minimizes the amount of time spent at the cat1
priority. At some later point in time the main function is run. This locks out the cat1
interrupts and then copies the data upwards from the buffer by making calls to the
upper layer(s).

If the data to be copied to the upper layers then it may be necessary to code the
main function as a series of small critical sections. For example, the next piece of
code shows one large critical section.

Suspend interrupts();
While data in buffers {
 Copy single buffer
}
Resume interrupts();

This is the smallest and fastest implementation but has the longest blocking time. A
similar implementation is:

While data in buffers {

Suspend interrupts();
 Copy single buffer

Resume interrupts();
}

This is less efficient but has a shorter blocking time and, therefore, is less likely to
delay rapidly occurring cat1 interrupts.

8.1.2 Trust

Temporal and spatial protection is specified for the OS to support untrusted code in
order to detect and prevent time or space overruns. These checks cannot be
implemented for cat1 interrupts. Therefore all cat1 interrupt handlers must be trusted.

However, the situation is rather worse than would be indicated by the previous
paragraph. Any code that locks out all interrupts (by suspend all interrupts) also
prevents the timer that monitors execution time from interrupting. Therefore temporal
protection of any module that, even without its knowledge as this is a BSW
scheduler decision, locks out all interrupts must be trusted.

The ramification of this is that the simple BSW scheduler implementation, using only
disable interrupts for mutual exclusion, implies that all BSW modules must be trusted
in such an ECU.

	1 Introduction and purpose of document
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Summary of Interrupt Configuration
	5 Overview of Interrupt Operation
	5.1 Distinction between cat1 and cat2 interrupts

	6 Steps in the operation of interrupts
	6.1 Handling cat1 interrupts
	6.1.1 Initial state
	6.1.2 When the hardware requests an interrupt

	6.2 Handling cat2 interrupts
	6.2.1 Initial state
	6.2.2 When the hardware requests an interrupt

	7 Configuration of Interrupts
	7.1 Device Driver configuration and code
	7.1.1 Placement of Interrupt Handlers

	7.2 OS configuration
	7.3 BSW Scheduler configuration
	7.3.1 TASK for main functions
	7.3.2 Other TASKs in the stack
	7.3.3 Critical sections
	7.3.3.1 Mutual exclusion in category 1 handlers
	7.3.3.2 Mutual exclusion in category 2 handlers
	7.3.3.3 Critical sections in the BSW Scheduler

	7.3.4 Summary

	8 Recommendations for the use of cat1 interrupts
	8.1.1 Communication between adjacent modules using cat1 interrupts
	8.1.2 Trust

