
Guide to BSW Distribution
AUTOSAR CP R22-11

Document Title Guide to BSW Distribution
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 631

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R22-11

Document Change History
Date Release Changed by Description

2022-11-24 R22-11
AUTOSAR
Release
Management

• Updated multicore type for CanXL
and Wdg

2021-11-25 R21-11
AUTOSAR
Release
Management

• Clarified partition scope of MCAL
• Removed restriction for BSW

partitions per core

2020-11-30 R20-11
AUTOSAR
Release
Management

• Added chapter on crypto-stack
distribution

2019-11-28 R19-11
AUTOSAR
Release
Management

• Incorporation of concept "BSW
Multicore Distribution"
• Changed Document Status from

Final to published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Incorporation of concept "MCAL
Multicore Distribution"

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Editorial changes

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Incorporation of concept
"Mechanisms and constraints to
protect ASIL BSW against QM BSW"
• Minor clarifications

1 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Clarified terms

2013-03-15 4.1.1 AUTOSAR
Administration • Initial release

2 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Contents

1 Introduction 6

2 BSW Distribution in Multi-Core Systems 7

2.1 Overview . 7
2.1.1 Supported Scenarios . 7
2.1.2 Performance Use Cases and Hardware Assigned to Different

Cores . 8
2.1.3 Technical Overview . 8

2.2 Parallel Execution of BSW modules . 11
2.2.1 Core-Dependent Branching 11
2.2.2 Master/Satellite-approach . 11
2.2.3 Using the BSW Scheduler for Inter-Partition-Communication 13
2.2.4 Using Shared Buffers (in systems without memory protection) 14
2.2.5 Accessing Hardware/Drivers 16
2.2.6 Concurrency safe implementation of modules 16
2.2.7 Kernel based Master-Satellite Realization 17
2.2.8 Atomic Operations Library 20

2.3 SchM Interfaces for Parallel BSW execution 20
2.4 Configuration of Basic Software in Partitioned Systems 21

2.4.1 Task Mapping . 21
2.4.2 General Configuration of Master and Satellites 25
2.4.3 Configuring the BswM (per Partition) 25
2.4.4 Configuring the EcuM (per Core) 26

2.5 MCAL Distribution . 27
2.5.1 Introduction . 27
2.5.2 Assumptions of Use . 27
2.5.3 Constraints . 28
2.5.4 Definition of MCAL Users . 28
2.5.5 Multiple Partitions versus Multi-Core MCAL 29
2.5.6 Multi-Core Capabilities Classification Criteria 30
2.5.7 Definition of MCAL Multi-Core Types 31
2.5.8 Mapping MCAL Modules to Multi-Core Types 35
2.5.9 Seperation Stragies and Mapping of Elements 37
2.5.10 Separation Strategies . 38
2.5.11 Mapping of Elements . 40
2.5.12 Examples . 44

2.6 Mapping Software to different Core Partitions 45
2.6.1 Allocation with Global scope 45
2.6.2 Allocation with Local scope 46
2.6.3 Allocation using Cloning capabilities 47
2.6.4 How to determine the Core Scope? 48

2.7 Com-Stack Distribution . 52
2.7.1 Introduction . 52
2.7.2 Assumptions of Use . 53

4 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

2.7.3 Constraints . 53
2.7.4 Functional Elements . 54
2.7.5 Architectural Components . 57

2.8 Crypto-Stack Distribution . 59
2.8.1 Freshness value handling . 60

3 BSW Distribution in Safety Systems 61

3.1 General overview on safety . 61
3.2 Safety solutions in AUTOSAR . 61

3.2.1 Some modules are always ASIL 64
3.2.2 Overall configuration . 64
3.2.3 Crossing partition boundaries 66
3.2.4 Access to peripherals / hardware 74
3.2.5 Startup, Shutdown and Sleep/Wakeup 76
3.2.6 Error handling . 77
3.2.7 Timing protection . 78
3.2.8 Combining Safety and Multi-Core 79
3.2.9 Performance Considerations 79
3.2.10 Constraints . 80

4 Outlook on Upcoming AUTOSAR Versions 81

4.1 Known limitations . 81
4.2 Inter BSW module calls in distributed BSW 81
4.3 Standardized BSW functional clusters 81

5 Glossary 83

5.1 Acronyms and abbreviations . 83
5.2 Technical Terms . 83

6 References 85

5 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

1 Introduction

This document is a general introduction to the distribution of BSW in AUTOSAR sys-
tems. It consists of two parts, one focusing on the distribution of BSW in case of
multi-core and the other focusing on distribution in case of safety.

chapter 2 guides to the development and configuration of AUTOSAR-compliant soft-
ware for multi-core systems. As of release 4.1, it addresses the allocation of AU-
TOSAR BSW modules [1] to partitions on multi-core systems and their interaction only.
The allocation of BSW modules to different BSW partitions allows for both enhanced
functional safety and increased performance.

In chapter 3 the BSW distribution in safety cases is described. As of release 4.2 AU-
TOSAR allows to map BSW modules into different partitions and to protect those par-
titions against each other.

chapter 4 gives an outlook of possible future extensions in the area of BSW distribution.

A glossary of technical terms and a list of references to external information are pro-
vided in chapter 5 and chapter 6.

6 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

2 BSW Distribution in Multi-Core Systems

2.1 Overview

This chapter contains a description of the supported scenarios for distributed execu-
tion of BSW modules on several partitions and cores and a number of use cases in
which a distribution of the BSW can enhance performance. It also introduces basic
synchronization concepts applicable to distributed BSW execution, and an introduction
to inter-partition communication.

2.1.1 Supported Scenarios

It is possible to assign functional clusters of BSW modules ("BSW Functional cluster"),
which are used by applications to access buses, non-volatile memory, I/O channels,
and watchdogs, to different BSW partitions for safety or performance reasons. The
clustering of BSW modules is currently not standardized. Except for the MCAL, parallel
usage of the same type of functional clusters in different partitions ("duplication") is not
generally supported, but it is possible by using a master satellite approach. Functional
clusters to partitions may be assigned such that

• a BSW functional cluster is only available in one partition

• a BSW functional cluster is available on all partitions with all interfaces

• a BSW functional cluster is distributed over multiple partitions, possibly with par-
tition specific subsets of functionality, to allow a high grade of concurrency.

By supporting the scenarios listed above, AUTOSAR addresses the following essential
features:

• All code for communication between BSW partitions can be generated for au-
tomatic adaptation to different system configurations. The cross partition com-
munication mechanism can be generated with focus on efficiency, or, in future
releases to help to provide freedom of interference.

• If access to system services (which are not part of a BSW functional cluster) is
required, the according interfaces shall be provided to each BSW partition that
needs the system service.

• Efficient access to HW abstraction and drivers is supported in each BSW parti-
tion.

In all scenarios, the communication between different module entities remains un-
changed (in comparison to BSW running in a single partition).

7 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

2.1.2 Performance Use Cases and Hardware Assigned to Different Cores

The following use cases are examples for how system performance can be improved
by allocation of the BSW to multiple partitions and cores, and how systems where
the access to the peripheral hardware is assigned to multiple cores benefit from the
allocation of the BSW to multiple partitions and cores.

• To increase system performance and to reduce resource consumption in systems
that are distributed over several cores, it may be necessary to allocate functional
clusters of BSW modules to different cores, e.g. communication modules on
BSW partition "A" and I/O modules on BSW partition "B", depending on hard-
ware architecture, load balancing and on distribution of SW-Cs. In particular, if
HW resources are accessed exclusively by one core in a Multi-Core system, the
performance is increased by locating the corresponding BSW users, services and
drivers on that core.

• Signal gateway functionality is implemented by allocating a FlexRay cluster on
one core and a CAN cluster on a different core. The two COM modules need to
be synchronized in this case, and there must be some direct cross core commu-
nication between the two COM instances. One of the COM modules might be the
master COM that coordinates the satellite COM on the other core.

• Two communication clusters are located on different cores, one accessing a CAN
bus and the other one controlling a FlexRay bus. In case the application SW
located above one of the communication clusters on the same core needs to
send on both buses, the core local COM modules can directly communicate with
their counterparts on the other core, to efficiently send the signal over either CAN
or FlexRay. For received messages, COM has no information about receivers
above the RTE. Therefore, COM has to forward the signals on the receiving side
to the RTE, and the RTE is responsible for communication.

2.1.3 Technical Overview

Below is a short summary of the technical solution as described in the following sec-
tions:

• Define clusters of BSW modules that contain preferably all three layers of a stack,
or, if needed, a subset of modules of a stack (e.g. communication, memory, I/O
stack).

• Module entities can be split into a master and satellites, which are assigned to
different BSW partitions. Masters and satellites can use non-standardized AU-
TOSAR interfaces, for internal cross partition communication. The master/satel-
lite approach is mainly used by distributed system service modules and for com-
munication between BSW clusters of the same type.

The proposed solution meets the demands on performance and safety while mini-
mizing the impact on already standardized BSW module interfaces ([RS_BRF_00206],

8 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

[RS_BRF_01160]). Most changes are hidden within modules (e.g. by providing master/
satellite implementations) without affecting other modules. Interfaces between different
modules do not change.

2.1.3.1 BSW Functional Clusters

BSW functional clusters are groups of functionally coherent BSW modules. Each func-
tional cluster includes a set of BSW modules. It is possible to have several BSW func-
tional clusters of the same type (e.g. several I/O clusters in different BSW partitions),
each using a different set of modules (e.g. IOHWA + ADC in one partition and IOHWA
+ ADC + DIO in the second partition).

The following types of clusters might be standardized in a later release:

• Communication cluster

• Memory cluster

• I/O cluster

• Watchdog cluster

The allocation of BSW functional clusters to BSW partitions is determined by the usage
of BSW modules by the application software. Functional clusters can be allocated to
different BSW partitions, and functional clusters of the same type can be available in
several BSW partitions. Different functional clusters can be allocated to the same or to
different BSW partitions.

The same functional cluster can only exist at most once per BSW partition.

BSW functional clusters are used by applications or other BSW modules to access
buses, memory, I/O channels and watchdogs, and they are usually required in one or
few BSW partitions only.

The introduction of BSW functional clusters does not change the existing AUTOSAR
interfaces between the BSW and the RTE, which are mainly used to implement AU-
TOSAR services, i.e. to communicate with the application layer. It may however change
the availability of standardized AUTOSAR interfaces on different partitions.

The internal structure of a BSW functional cluster, including its internal communication
between BSW modules, and the communication with system services that the BSW
functional cluster uses is not necessarily affected by the parallelization of the BSW,
and it does not need to change. It may however be adapted, for example in order to
fulfill special demands on concurrency like the support of different entities of the same
module running in different partitions.

The communication and synchronization between modules in BSW functional clusters
of the same type (e.g. in two communication clusters to support a gateway functionality)
is not standardized. It will be implemented by communication between entities (e.g. by

9 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

a master and satellites) of specific modules, which can use non-standardized interfaces
for communication across BSW partition boundaries, see Figure 2.1.

Figure 2.1: Functional clusters of the same type

Modules that do not belong to BSW functional clusters (e.g. system services) will
always be accessed within the same BSW partition where the BSW functional cluster
is located. As the interfaces do not change, these modules must be locally available in
each BSW partition, if needed.

2.1.3.2 Inter-BSW-partition communication

Function calls to tasks that are supposed to be executed in a different BSW partition/
on a different core cannot be implemented as simple C calls to this function, because
these calls would be handled on the local BSW partition.

The BSW Scheduler (SchM) therefore provides functions to invoke masters or satel-
lites of the same module on different BSW partitions using either client-server or
sender-receiver communication. Details on this API of the SchM are explained in
subsection 2.2.3.

2.1.3.3 Determining the Partition for Service Execution

The actual BSW partition for the handling of an RTE event is determined by its task
mapping. Basically, if an event is mapped to a task, it is executed within the partition
assigned to this task. If an event is not mapped to a task, it is executed within the same

10 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

partition as the task that caused the event. Details on the task mapping are described
in subsection 2.4.1 of this document.

Calls from BSW entities to other BSW entities are not mapped to a partition. They are
executed wherever they are called. Therefore, several calls to a BSW function may
be processed in parallel on different partitions and cores. Consequently such func-
tions must be designed and implemented carefully w.r.t. parallel execution in different
partitions; if necessary, they shall be reentrant or concurrency safe.

2.1.3.4 BSW partitions

Only partitions that have the configuration parameter EcucPartitionBswModule-
Execution set to true can execute BSW modules. Such partitions are called BSW
partitions. BSW partitions may additionally contain application software components
above the RTE.

2.2 Parallel Execution of BSW modules

This is the chapter for developers of BSW modules.

2.2.1 Core-Dependent Branching

Because entities of the same module share the same implementation, even if they
are running on different cores, different behavior cannot be realized by different code.
Instead, the specific behavior shall be determined by runtime information. It is possible
for example to use the core id for this, i.e. branch the control flow depending on the
return value of the OS APIs GetCoreID, or also GetApplicationID.

Another variant of implementing modules operating sharing the same implementation
but running on different cores can be realized basing on a different core individual
configuration. This requires to call the initialization routine Init per core passing a
pointer to the according configuration. This design pattern is considered as ideal to
implement a core-dependent branching for the MCAL.

2.2.2 Master/Satellite-approach

Modules that need to be accessed in different BSW partitions can be implemented
using the master/satellite pattern.

The distribution of work between master and satellite is implementation specific. One
extreme is that the satellite only provides the interfaces to the other modules in the
same BSW partition, and that it routes all requests to the master and answers back to
the other modules. At the other extreme, the satellite can provide the full functionality

11 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

locally (e.g. local mode management for a complete application which runs in the same
BSW partition) and only synchronizes its internal states with the master, if necessary.
There might even be several masters for different functionality, e.g. two PduR masters
for a distributed PduR gateway.

The master coordinates requests from the satellites and can filter or monitor incoming
satellite requests. The master and one or several satellites are treated like being one
module entity in some respect:

• Master and satellites are always vendor specific solutions, coming from the same
vendor.

• The interfaces of master and satellite to other module entities in general are the
same as specified in AUTOSAR for traditional modules. Master and satellite
should provide the same APIs. This means that when migrating to partitioned
systems, existing module entities can be replaced by a master and one or sev-
eral satellites, in most cases without changing other modules. Exceptions might
be module internal adaptations to additional delays which are caused by inter-
partition communication.

• Master and satellites have the same entry points in each BSW partition (i.e. they
start executing the same functions from shared memory) and internally branch
(e.g. by using the GetApplicationID API) to master or satellite specific code
according to the OS-Application (partition) they run in. Depending on the build
strategy, other implementations might be possible in multi-Core systems if each
core can execute its own code. Also, satellites might share the same code without
further branching.

• As an alternate realization the master- satellite approach could be implemented
in a way that the master is realized as a satellite too, while the real master im-
plementation consists of the BSW module kernel only so that all requests can
be exchanged with this kernel. This approach is considered as ideal for MCAL
implementations.

• The communication between master and satellites is not standardized. It is con-
sidered to be module-internal and is not visible to other modules.

• The communication between master and satellite can be initiated in either direc-
tion (i.e. by both the master and the satellites), as well as from one satellite to
another one.

• All interfaces between masters and satellites are only allowed to be connected
within the same distributed module.

• The communication between master and satellites can be implemented within
one BswModuleEntity, or between different BswModuleEntitys that belong
to the same BSW module.

• Depending on the application, usage of master/satellite may be appropriate or
not. For example, it may be more efficient to use separate, partition specific

12 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

watchdog clusters, which work independently from each other, rather than using
the Watchdog Manager in a master/satellite approach.

• The master is the part of a distributed BSW module that coordinates requests
by satellites and can filter or monitor incoming satellite requests. This may result
in additional fault detection or fault mitigation mechanisms. Generally, all errors
caused by distributed execution of a module should be handled module internally.

The master/satellite implementation is the standard solution for system services in par-
titioned systems.

Specific drivers also might have to provide local satellites, if the hardware can only be
accessed from a different core. The standard solution, if possible, is to execute the
same multi-core reentrant function in each partition and to separate the data to work
on into disjoint sets, one for each partition. For example, the COM module may work on
all IPDUs assigned to the bus that the BSW functional cluster of this module belongs
to. Concurrent access to the same hardware or shared data needs to be protected,
e.g. by ExclusiveAreas in this case.

In specific cases, modules within BSW functional clusters also need to be implemented
as master/satellite, if the BSW functional clusters are duplicated and the entities in
different BSW partitions need to be synchronized or need to exchange data. This
might apply to the Watchdog Manager, the NVRAM manager, and to network and state
managers in duplicated communication clusters. COM modules also might need to
have a master and a satellite to implement cross partition gateway functionality.

2.2.3 Using the BSW Scheduler for Inter-Partition-Communication

The BSW Scheduler (SchM) provides a number of functions to support communication
between BSW module entities that are executed in parallel. More precisely, it pro-
vides the following methods to handle synchronous and asynchronous calls (including
callbacks) as well as sender-receiver communication.

The functionality is generally similar to that of function calls between SWCs and the
BSW. However, because the RTE may not be available at certain points of time (es-
pecially during startup of an ECU), this functionality must be available within the BSW
itself.

• Std_ReturnType SchM_Call_<bsnp>[_<vi>_<ai>]_<name>(
[OUT <typeOfReturnValue> returnValue]
[IN|IN/OUT\|OUT]<data_1> ... [IN|IN/OUT|OUT] <data_n>)

or

Std_ReturnType SchM_Call_<bsnp>[_<vi>_<ai>]_<name>(
[IN|IN/OUT\|OUT]<data_1> ... [IN|IN/OUT|OUT] <data_n>)

13 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Invoke a client-server-operation, possibly crossing partition boundaries. The ac-
tual parameters data_1 ... data_n are information that is passed [IN] and/or
re-passed [IN/OUT | OUT] to/from the called service.

The presence of the parameter returnValue and its type <typeOfReturn-
Value> depend on the called service. For synchronous calls, the parameter is
present and <typeOfReturnValue> is the type returned by the called service.
For asynchronous client-server-operations and operations with return type void,
the parameter is omitted.

• Std_ReturnType SchM_Result_<bsnp>[_<vi>_<ai>]_<name>(
[IN|IN/OUT|OUT]<data_1> ... [IN|IN/OUT|OUT] <data_n>)

Callback from an asynchronous client-server-operation, possibly crossing parti-
tion boundaries.

The receiver of a callback is determined by the AsynchronousServerCallResult
Point of this callback. The AsynchronousServerCallResultPoint refers to the orig-
inating AsynchronousServerCallPoint, which in turn "knows" the calling module
entity.

• Std_ReturnType SchM_Send_<bsnp>[_<vi>_<ai>]_<name>(IN <data>)

Write data to a sender-receiver link between BSW modules, possibly crossing
partition boundaries.

• Std_ReturnType SchM_Receive_<bsnp>[_<vi>_<ai>]_<name>(OUT <data>)

Read data from a sender-receiver link between BSW modules, possibly crossing
partition boundaries.

2.2.4 Using Shared Buffers (in systems without memory protection)

In systems without memory protection between the BSW partitions, system services
and all BswCalledEntities can be called directly in every partition, including the com-
plete call tree. This requires a reentrant, concurrency safe implementation.

The services and other called entities might work on module internal data, which is
shared between different entities of the same module. All access to such data must
be protected by ExclusiveAreas. Appropriateness of concrete protection mechanisms
depends on the possible kinds of access. For example, concurrent writing generally
needs to be prohibited, whereas concurrent reading may be acceptable, as long as
only one partition writes at the same time.

BswSchedulableEntities are located on one core only and process the data periodically
or event driven.

14 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Figure 2.2: Invocation of same service on different cores

Figure 2.2 shows the example of a service "X", where the same API and the same
code is called directly by the RTE on different cores. This is the default, if the services
(respectively the OperationInvokedEvents) are not mapped to a task.

The code must be reentrant and concurrency safe, which means that all access to data
must be protected against concurrent access by the same or by a different entity of the
same module.

In this example, the same service "X" (BswCalledEntity) writes into a module internal
data buffer accessible from core 0 and from core 1. A "main function" (BswSchedu-
lableEntity), which is mapped to a task, reads the data from the buffer for further
processing. In order to prevent read/write-conflicts, this "main function" must be pro-
tected from reading the buffer while it is written.

This can be considered a special case of the generic master/satellite approach for
systems without memory protection between the BSW partitions.

The advantage of this approach is that the original, unchanged modules can be used,
as long as they are implemented concurrency safe, which is usually the case for single
core already, if different entities of the same module work on the same data, as shown
in the example for core 0. Compared to the AUTOSAR R4.0 solution, where all service
calls have to be routed to the master core, the performance can be improved consider-
ably without much effort (assuming there is no need to do cross-core communication
later).

The following must be considered for a concurrency safe, reentrant implementation:

• Access to all shared resources, e.g. buffers, is protected by ExclusiveAreas.

• Call trees can be made multi-core safe, if either called entities are safe, or calls
are protected by ExclusiveAreas (if lock times stay within a specified limit).

15 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

BswCalledEntities that are available to CDDs can also be called directly by the CDD.
The same rules apply as in R4.0.

The SchM must support cross core ExclusiveAreas, implemented by protected Spin-
locks. A protected spinlock is an exclusive area that has "OS_SPINLOCK" as its value
of RteExclusiveAreaImplMechanism. This kind of exclusive areas is available for
controlled access by BSW modules only. Protected spinlocks are handled by the Basic
Software Scheduler.

2.2.5 Accessing Hardware/Drivers

BswModuleEntitys of the MCAL (drivers) shall be accessed in the following way:

• Access by the BSW functional cluster within the BSW partition where the caller
is located. So for example the FLS driver belongs to the BSW functional cluster
"Memory". In case of NVM access, the NVM module might be provided on all
cores as a master/satellite implementation. The master uses the FLS driver on a
single core only. So the FLS driver is available on exactly that core.

• Any BSW required by the application shall be accessed in the BSW partition
where the caller is located. For example I/O drivers such as DIO, ADC and PWM
can be used by any core / partition. These are either realized as master/satel-
lite implementation or as a redundant implementation per core basing on atomic
access to the hardware.

The detailed realization of the MCAL multi-core approach is described in
section 2.5 “MCAL Distribution”.

2.2.6 Concurrency safe implementation of modules

Concurrency safety of BSW modules respectively the functions implemented by these
modules may be achieved by different mechanisms.

Generally, the following levels of reentrancy can be distinguished according to [TPS_-
BSWMDT_04103]. The concrete level of a BswModuleEntity is defined in the op-
tional attribute "reentrancyLevel".

• Multi-core reentrant: Unlimited concurrent execution of an interface is possible,
including preemption and parallel execution on multi-core systems. This level can
be either achieved by mutual exclusion when entering critical regions, or by the
absence of such regions, for example if there are no shared resources (including
hardware and memory).

• Single-core reentrant: Pseudo-concurrent execution (i.e. preemption) of an in-
terface is possible on single core systems. This is the highest level of reentrancy
defined by AUTOSAR 4.0.3. Because it does not explicitly cover multi-core sys-
tems, "concurrency safe" has been introduced additionally. This level can gener-

16 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

ally be ensured by the same mechanisms as "concurrency safe", but they must
be ensured to work across core boundaries.

• Non-reentrant: Concurrent execution of this interface is not possible.

If a module that is not concurrency safe is invoked in different partitions, there is no
warranty that the module will uphold its desired behavior. In this case, correct behavior
shall be ensured by the usage of the module, for example if the caller(s) prevent parallel
execution by using exclusive areas.

2.2.7 Kernel based Master-Satellite Realization

One way of realizing the master-satellite concept is the implementation of a module
split into kernel and according interfaces, which are provided for all partitions the mod-
ule shall be used from. The focus of the chapter is to describe the idea of the distribu-
tion of the according BSW module as a guidance for similar cases.

In a first step the service API’s are categorized, e.g. according to MCAL distribution
concept:

• Service API required by multiple cores / partitions for triggering and reading /
writing of data

• Service API which are required by one partition only (e.g. initialization, shutdown)

This will lead to the following BSW module architecture:

Figure 2.3

In the second step the SW designer needs to select an according BSW distribution
pattern for each service API following the below listed categories:

• Trigger a control flow from service API to kernel API (if required including data)

• Read of a symbol from a global buffer

• Write a symbol to a global buffer, which is later-on polled by the kernel

17 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

For reading and writing data, one will typically implement according get and set oper-
ations into the interface part of the BSW module, adding an according data protection
mean (e.g. spinlock) if necessary.

For transferring control flow, one will implement on the one hand side the user API
operation and on the other hand the same operation inside the kernel API. The relation
can be 1:1 (one user API matches one kernel API) or n:1 (several user API match one
kernel API).

All local API have to be allocated with local core scope and all global API with global
core scope applying the memory allocation specification (AUTOSAR_SWS_Memory
Mapping, see [2]).

Applying this idea to the PWM driver, one would get the following API distribution:

Control API with local scope:

CONTROL API Core Scope

Pwm_Init local (same partition as kernel)

Pwm_DeInit local (same partition as kernel)

Pwm_Main_PowerTransitionManager local (same partition as kernel)

Note that these API’s are restricted to the local kernel partition. The task calling the
transition manager needs to be scheduled within the same partition / on the same core.

User read/write API with global scope:

USER_RW API Access / Core Scope

Pwm_GetOutputState read global data

Pwm_GetCurrentPowerState read global data

Pwm_GetTargetPowerState read global data

Pwm_GetVersionInfo read static information

Pwm_DisableNotification write to global data (atomic flag)

Pwm_EnableNotification write to global data (atomic flag)

Note that these API’s are available to any partition, so these are also used if the call is
done from the same partition where the kernel resides.

User trigger API with global scope and related kernel API with local scope:

USER_TRIG_API / Global Scope KERNEL_API / Local Scope

Pwm_SetDutyCycle

Pwm_SetPeriodAndDuty

Pwm_Kernel_SetValues

Pwm_SetOutputToIdle Pwm_Kernel_SetOutputToIdle

Pwm_SetPowerState

Pwm_PreparePowerState

Pwm_Kernel_PowerStateManager

Note that the USER_TRIG_API is available to any partition, so these are also used
if the call is done from the same partition where the kernel resides. The KERNEL_

18 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

API however is not accessible to the user. It is internal only. The calls from the local
partition are passed through the USER_TRIG_API.

Finally, the picture below shall summarize the interface availability along the cores /
partitions for the given example, while the kernel API is hidden inside the BSW module
not visible to the outside.

Figure 2.4

The following points shall be noted in addition:

• All user callbacks shall be called in the local partition. The user needs then to
provide similarly a service API with global scope, which can be called. This is
useful as the implementer of each BSW module or CDD knows ideally how its
module is designed. Doing the other way around could waste CPU resources
instead as caller and called module might implement the partition transfer twice.

• It is strongly not recommended to apply this or other master-satellite concepts for
crossing partitions on the same core, e.g. motivated by safety, as this will also
waste CPU resources.

When choosing the according protection and multi-core means one shall always try
to achieve a blockade free implementation to allow parallel operation along multiple
cores.

19 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

2.2.8 Atomic Operations Library

Introducing the BMC Libray, AUTOSAR now provides a multi-core atomic library. The
interfaces of this library cover similar use cases / interfaces as the C11 standard atomic
library (http://en.cppreference.com/w/c/atomic).

The library shall support developers implementing efficient lock-free implementations
and so ease the implementation of distributed BSW (Master/Satellite) without the use
of a heavy weight mutex.

Atomic operations typically perform a read-modify-write sequence on a memory ad-
dress. For example, an atomic increment loads a value, increments it, and stores the
result in such a way that no other thread can modify the value in the middle. So, a
cross-core set request can be realized with atomic operations in an efficient way.

2.3 SchM Interfaces for Parallel BSW execution

This chapter describes the extensions to the SchM required by the concept "Enhanced
BSW allocation".

The Basic Software Scheduler (SchM) is responsible for handling the inter-partition
communication between BSW modules. This is conceptually similar to the handling
of inter-partition communication between SW-Cs by the RTE. Because the BSW mod-
ules are arranged below the RTE in the AUTOSAR architecture however, the commu-
nication must be available before the RTE is available. Therefore and for reasons of
performance, BSW modules use the SchM for communication.

For the distribution of BSW modules across several partitions, the SchM shall im-
plement the methods SchM_Call, SchM_Result, SchM_Send and SchM_Receive,
which are used to handle service calls and callbacks as well as writing data to and
reading data from a sender-receiver connection. For details on the signatures of these
functions, please refer to subsection 2.2.3, which describes the SchM extensions from
a BSW developer’s point of view.

The SchM can use IocSend (a direct call to the OS) to send data in inter-partition
communication. Other RTE internal mechanism might not be available during startup.

The Inter-OS-Application Communicator (IOC) shall be configured to provide Ioc-
Send_<Id> functions with a uniquely determined <Id> for all client-server and sender-
receiver connections that cross partition boundaries.

Analogously, the SchM shall use IocReceive to receive data from inter-partition com-
munication, and the IOC shall provide the corresponding IocReceive_<Id> func-
tions.

The following frame contains some pseudo code snippets that show how to use the
IOC for inter-partition communication.

1 void some_BSW_function() {

20 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

2 char *str = "some text";
3 SchM_Send_Data_Src_DstN(str);
4 }
5

6 Std_ReturnType SchM_Send_Data_Src_DstN(char *str) {
7 IocSend_1(str, 5);
8 ActivateTask(TASK1);
9 }

10

11 Std_ReturnType SchM_Receive_Data_Src_DstN(char *str) {
12 IocReceive_1(str);
13 }
14

15 TASK(TASK1) {
16 char data[20];
17 SchM_Receive_Data_Master_Sat1(data);
18

19 /* do something with data */
20 }

2.4 Configuration of Basic Software in Partitioned Systems

This is the chapter for integrators.

2.4.1 Task Mapping

The parallelization of BSW modules introduces several new subclasses of BswEvent
to the AUTOSAR metamodel. These classes are shown in Figure 2.5. Each BswEvent
(including instances of subclasses of BswEvent) is assigned to a BswSchedula-
bleEntity, which is started upon occurrence of the event.

21 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

AbstractEvent

BswEvent

BswTimingEvent

+ period: TimeValue [0..1]

BswInternalTriggerOccurredEvent

BswSchedulableEntity

BswModeSwitchEvent

+ activation: ModeActivationKind [0..1]

BswExternalTriggerOccurredEvent

ExecutableEntity

BswModuleEntity

InternalBehavior

BswInternalBehavior

BswModeSwitchedAckEvent

BswBackgroundEvent

BswOperationInvokedEvent

BswDataReceivedEvent

BswAsynchronousServerCallReturnsEvent

BswScheduleEvent

BswCalledEntity

BswModeManagerErrorEvent

BswOsTaskExecutionEvent

+startsOnEvent

0..1

«atpVariation,atpSplitable»

+event 0..*

«atpVariation,atpSplitable»

+entity 0..*

Figure 2.5: Events triggered by the invocation of BSW functions
22 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

A more fine grained description of the partition specific behavior of an entity can be
described by the use of BswDistinguishedPartitions, as shown in Figure 2.6.
A BswDistinguishedPartition is the abstract representation of a partition, which
allows to the mapping of a specific BswEvent, BswModuleCallPoint or BswVari-
ableAccess to a set of abstract partitions. The representation of a partition at this
point is an abstract one in the sense that it is part of the BSW module description
(according to the module description template), whereas a concrete partition is deter-
mined at ECU configuration time.

For example, if a module entity running in partition 1 provides data via a VariableData
Prototype to the same entity running in partitions 2 and 3, the BswModuleEntity
aggregates a dataSendPoint with a contextLimitiation to partition 1 and a dataSend
Point with a contextLimitation to partitions 2 and 3.

InternalBehavior

BswInternalBehavior

ExecutableEntity

BswModuleEntity

AbstractEvent

BswEvent

Referrable

BswModuleCallPoint

Referrable

BswVariableAccess

Referrable

BswDistinguishedPartition

+contextLimitation

0..*

«atpVariation,atpSplitable»

+entity 0..*

«atpVariation,atpSplitable»

+callPoint

0..*

«atpVariation,atpSplitable»

+dataReceivePoint

0..*

«atpVariation,atpSplitable»

+distinguishedPartition 0..*

+startsOnEvent

0..1

+contextLimitation

0..*

«atpVariation,atpSplitable»

+dataSendPoint

0..*

«atpVariation,atpSplitable»

+event 0..*

+contextLimitation

0..*

Figure 2.6: Modeling partition specific properties of entities using BswDistinguished-
Partitions

The actual partition for the handling of an event is determined by its task mapping.

23 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Os

BswModuleTemplate

RteBswModuleInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

Implementation

BswImplementation

+ arReleaseVersion: RevisionLabelString [0..1]
+ vendorApiInfix: Identifier [0..1]

InternalBehavior

BswInternalBehavior

AbstractEvent

BswEvent

RteBswEventToTaskMapping:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteBswEventRef:
EcucForeignReferenceDef

destinationType = BSW-EVENT
lowerMultipl icity = 1
upperMultiplicity = *

OsTask:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteBswMappedToTaskRef:
EcucReferenceDef

lowerMultiplicity = 0
upperMultipl icity = 1

RteBswPositionInTask:
EcucIntegerParamDef

upperMultiplicity = 1
lowerMultipl icity = 0
min = 0
max = 65535

RteBswActivationOffset:
EcucFloatParamDef

min = 0
max = INF
lowerMultipl icity = 0
upperMultipl icity = 1

RteBswUsedOsEventRef:
EcucReferenceDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteBswUsedOsAlarmRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 0

RteBswUsedOsSchTblExpiryPointRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 0

OsEvent:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

OsScheduleTableExpiryPoint:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 1

OsAlarm:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteBswImplementationRef:
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = BSW-IMPLEMENTATION

RteOsSchedulePoint:
EcucEnumerationParamDef

lowerMultipl icity = 0
upperMultiplicity = 1

NONE:
EcucEnumerationLiteralDef

CONDITIONAL:
EcucEnumerationLiteralDef

UNCONDITIONAL:
EcucEnumerationLiteralDef

RteBswImmediateRestart:
EcucBooleanParamDef

defaultValue = false

RteSyncPoint:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswEventPredecessorSyncPointRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteBswEventSuccessorSyncPointRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteBswEventPeriod:
EcucFloatParamDef

lowerMultipl icity = 0
upperMultiplicity = 1

RteBswServerQueueLength:
EcucIntegerParamDef

upperMultipl icity = 1
lowerMultipl icity = 0
min = 0
max = 65535

+destination

+reference

+destination

+parameter

+subContainer

+destination

+parameter

+parameter

+literal

+reference

+behavior 0..1

+literal

+parameter

+reference

+destination

+reference

+reference

+parameter

+reference

+destination

+reference

+parameter

+literal

«atpVariation,atpSplitable»

+event 0..*

+destination

+reference

Figure 2.7: Mapping OperationInvokedEvents to tasks

24 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Figure 2.7 shows the corresponding excerpt from the AUTOSAR metamodel.

An RteBswEventToTaskMapping refers to a BswEvent (indirectly via its RteBsw-
EventRef) and to an OsTask (also indirectly via its RteBswMappedToTaskRef). The
task is in turn mapped to a partition, and the partition is mapped to a µC core, which
is the core responsible for the processing of the event. Mapping an event to a task is
optional; if an event is not mapped to a task, it is handled in its originating partition.
If no special mechanisms apply that prevent concurrent execution, a prerequisite for a
non-mandatory mapping of an event to a task is:

• if the BSW entity is shared between multiple BSW partitions the entity needs to
be concurrency safe

• in case it is exclusively available only on one BSW partition it needs to be at least
reentrant.

Please note that it is currently not allowed to map RunnableEntities of a SW compo-
nent to multiple partitions [SWS_Rte_07347]. For BSW it is possible to map the same
module entities to different tasks and partitions by using different BswEvents referring
to the same entity

2.4.2 General Configuration of Master and Satellites

Modules that shall be available in multiple partitions can be implemented as masters
and satellites. In this case, the master and all satellites of the same module share the
same code (which may implement core-dependent behavior however) and the same
configuration. Hence, a master and its satellites are treated as one module entity w.r.t.
their configuration.

The communication between master and satellites is not to be standardized. It is con-
sidered to be module-internal and it is not visible to other modules. However, since
it is recommended to use SchM mechanisms for internal communication, the non-
standardized client-server entries and data accesses in the BSWMD to connect master
and satellite need to be configured.

2.4.3 Configuring the BswM (per Partition)

On systems with distributed BSW there is one BSW Mode Manager (BswM) per parti-
tion (but one OS and EcuM per core, which is the same as long as we have one BSW
partition per core). Each of these BswMs can be configured independently. A BswM
mainly interacts with the state managers (ECU state manager and bus state managers,
for instance) on the same partition.

The BswM is also responsible for the initialization and shutdown of BSW modules
running in the same partition. Therefore, its configuration depends on the mapping of
BSW modules to partitions.

25 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

The configuration of the BswMs is split across the container BswMGeneral, which
contains shared configuration parameters of all BswM entities and BswMConfig con-
tainers, where one BswMConfig is defined for each BswM entity. Consequenty, the
mapping of a BswM to its partition is defined in the corresponding BswMConfig con-
tainer, which has a BswMPartitionRef pointing to the respective partition. This
mapping of BswM configurations to partitions ensures that for every partition the cor-
rect configuration of the BswM can be determined.

Additional extensions to the BswM configurations for the allocation of BSW modules to
multiple partitions are

• A reference BswMRequestRemoteMode in the container BswMAvailableAc-
tions. This action indicates a call to a BswM in a different partition, which is
used to propagate mode requests.

• References BswMBswMModeRequest and BswMBswMModeSwitchNotifica-
tion in the container BswMModeRequestSource. The BswMBswMMod-
eRequest indicates that the source of a mode request is a BswM running in
a different partition ([ECUC_BswM_00980], cf. [3]). BswMBswMModeSwitchNo-
tification indicates that another BswM has switched a mode.

• All functions listed in an action list that is processed by a BswM entity must be
available in the partition this BswM is running in.

2.4.4 Configuring the EcuM (per Core)

On systems with distributed BSW there is one EcuM per core (even if there are multiple
BSW partitions on that core). In other words, on every core there shall be one and only
one partition that runs the EcuM. The partition running the EcuM is determined by the
EcuMFlexEcucPartitionRef, which is specified in the container EcuMFlexUser-
Config of the EcuM configuration.

On architectures with a sequential start of cores, there is one designated master core
in which the boot loader starts the master EcuM via EcuM_init. The EcuM in the
master core starts some drivers, determines the Post Build configuration and starts all
remaining cores with all their satellite EcuMs.

On architectures where all cores are started at the same time, core dependent branch-
ing within the EcuM_init function can be used to achieve core-specific behavior. This
can in turn be used to identify the EcuM master (running on the master core), which is
responsible for the EcuM initialization on the slaves.

26 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

2.5 MCAL Distribution

2.5.1 Introduction

Because it is required to provide access to hardware features from several cores and
partitions the MCAL functionality needs to be provided to exactly that core it is required
and where it is useful to provide the functionality. So consequently the distribution
of MCAL modules is not identically done for all MCAL modules but needs to follow
the needs of the functional clusters described in the chapters before. The following
chapters shall guide through the classification of the required multi-core capabilities,
introduce an according multi-core type which is assigned to the individual modules.
Furthermore some basic design patterns shall be shown to allow the implementation
of the required functionality.

It shall be noted that the introduction of the multi-core MCAL requires the introduction
of asynchronously behaving interfaces to enable non-blocking parallel execution on
multiple cores. These are introduced to the individual SWS of the affected AUTOSAR
modules and not mentioned furthermore in the chapter below.

2.5.2 Assumptions of Use

To apply the MCAL distribution several assumptions of use shall be given, to define the
boundary conditions of the MCAL environment:

1. A multi-partition (multi-application) AUTOSAR operating system is required to
support the use cases defined within this concept.

2. The hardware implementation shall allow a mapping of peripherals at least to
cores. In future it is expected that hardware implementations allow a mapping to
cores and partitions.

3. It shall be possible to route hardware and software interrupts to one partition or
at least a dedicated core (for further routing by the OS).

4. Service modules which are required by the MCAL drivers shall support multi-core
use-cases by being able to accept calls to their service API’s on respectively by
any core. The relevant services are:

• Det

• Dem

• EcuM

• Os

• SchM

• NvM

27 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Furthermore it is assumed that a multi-core microcontroller is used however this is
not mandatory as the concept provides an identical set of service API’s regardless
whether it is a single- or multi-core implementation. Additionally it is possible to realize
mixed ASIL systems with segregation in space and time where the mappable MCAL
elements are assigned to the different partitions respecting the safety integrity level of
the resulting MCAL implementation.

An example is a system with two partitions on one core which both access the MCAL.
Without this concept, the driver must belong exclusively to one of the partitions, making
partition crossings execution time expensive. With the new concept, MCAL elements
can be individually assigned to the two partitions and thus eliminating the need to cross
partition boundaries.

2.5.3 Constraints

To realize the concept further constraints are defined to prevent inefficient and multi-
core blocking implementations. In this sense it is especially important to consider that
it is not sufficient anymore to implement exclusive areas on a single core but to ad-
ditionally ensure an access serialization in case resources need to be shared across
several partitions distributed to several cores.

• Access Serialization on a single core: For single-core systems concurrency prob-
lems are well understood and mitigated by exclusive areas, which limit concurrent
access to one process at a time. This is typically done by locking interrupts, em-
ploying OS resources or creating a non-pre-emptive scheduling. This effectively
means access-serialization of the different processes.

• Access Serialization across cores: Since exclusive areas only have a core-wide
scope, they are not sufficient to prevent concurrent access in multi-core environ-
ments. But as soon as it is required to access the same resource (e.g. by access
to the service API’s, processing of the ISRs and main-functions) it is required to
introduce cross-core means. Besides the usage of atomic resources, the worst -
because blocking - one would be the introduction of a cross-core exclusive area
by using a semaphore (spin lock) which would block several cores. Instead a
better option would be a classical master-satellite implementation basing on a
proprietary - lean - IOC.

As a summary, exclusive areas could technically be extended for multi-core scope
however these would be implemented, but these would cause a significant performance
drawback as two or even multiple cores would be blocked. So the concept will describe
according design patterns showing the optimal protection means aligned to the defined
multi-core types within this chapter.

2.5.4 Definition of MCAL Users

There are the following different MCAL users to be considered:

28 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

• Application SWC (above the RTE) via IoHwAbstr

• CDD or BSW Module (below the RTE)

So the MCAL multi-core support needs to be provided independently of the RTE to
cover both the use-cases.

2.5.5 Multiple Partitions versus Multi-Core MCAL

2.5.5.1 Considering Multiple Partitions

As the AUTOSAR standard allows the definition of multiple partitions per core, the
MCAL distribution concept needs to respect this idea for the purpose of later extensions
motivated for example by safety distribution. So, this concept implements the following
idea:

1. Mappable elements are not simply mapped to cores, but instead to partitions.
This is to allow, that one is able to implement further isolation features to the
MCAL at a later point in time to ensure for example freedom from interference in
between ADC channels.

2. MCAL interfaces instead are not mapped to partitions, but it is assumed that
these are available on the cores where the user partitions reside. This results in
the correct definition of the core scope, which is either GLOBAL or LOCAL. Sim-
ply spoken this means that interfaces required by partitions on a single core only,
might be allocated with LOCAL scope. Instead interfaces required by different
partitions on multiple cores shall be allocated with GLOBAL scope.

Conclusion: APIs are not mapped to partitions (just related to partitions).
Mappable elements are mapped to partitions for further distribution needs.

2.5.5.2 Impact on MCAL Symbol Allocation

Respecting the idea of multi-core on the one and multiple partitions on the other hand
will cause some influence on the mapping of MCAL driver internal data, constants as
well as peripherals. Depending on the driver design as well as the hardware capabilities
one can:

1. Map peripherals to cores or partitions, which might be protected by further hard-
ware means, such as: privilege levels (hypervisor, supervisor, user, ...), safety
partitions (by partition ID, task ID, ...) etc.

2. If required, allocate data in the individual partitions to ensure for example freedom
from interference in between those. But allocate the data at least with the same
core scope than the APIs using it. Map data and related operations to the same
core.

29 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Please note that allocating data to different partitions does not isolate those automati-
cally. To achieve this an according memory protection is required in addition.

Conclusion: Symbols shall be allocated with the same core scope than the APIs
(internal or public) using it.

2.5.6 Multi-Core Capabilities Classification Criteria

The following paragraphs are given to unify the understanding the required multi-core
capabilities from different point of perspective.

2.5.6.1 Criteria 1 - APIs Availability

To classify the multi-core capability of a MCAL module it is first essential to under-
stand the user expectation in the sense of "from what core the service API’s shall be
reachable". Out of this definition the following two cases can be derived:

• 1a: Local service API’s (executable on one core only)

• 1b: Global (distributed /shared) service API’s (executable on any core)

2.5.6.2 Criteria 2 - MCAL Kernel Execution Context

Secondly one needs to understand where the MCAL module kernel shall ideally reside/
located to limit the side effects of collisions on busses and bridges due to concurrent
access to HW peripherals from several cores. Defining a local kernel does not ex-
clude a multiplicity, to e.g. provide several kernels dealing with independent peripheral
modules or core individual resources. The following cases are defined:

• 2a: One Local kernel (executable on one core only)

• 2b: Global (distributed /shared) kernel (executable on any core)

2.5.6.3 Criteria 3 - HW Elements Mapping

As a third point one needs to consider the scope of mappable elements, refer to
subsection 2.5.11, including its data to the according kernel instance. Taking this as-
pect into account, one extends the classification according to the hardware capabilities
in terms of mapping of HW peripherals to cores. Here not only the pure hardware
capability needs to be considered but also the performance impact of the according
mapping. The following cases are defined:

• 3a: One HW element mappable to one core only

30 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

• 3b: One HW element mappable to several cores

2.5.6.4 Multi-Core Capabilities Classification Summary

The following table summarizes the scope of the required options for the shown criteria.

One Core Only Several Cores

APIs 1a 1b

Kernel Execution Context 2a 2b

HW Elements 3a 3b

Table 2.1: MC Capabilities Criteria

2.5.7 Definition of MCAL Multi-Core Types

The following paragraphs introduce according multi-core types to be applied to MCAL
modules classifying the according multi-core capabilities.

2.5.7.1 MCAL Multi-Core Module Type I

The MCAL modules are available on a single core only, the interfaces are not globally
available.

Type I = 1a + 2a + 3a

The type is defined as a single-core module providing its service API’s to one core only
and implementing the kernel on exactly this core as the according HW elements shall
be accessed by one core only.

Figure 2.8: Type I

31 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Examples of Type I are FLS, MEMIF and FEE. To limit the scope to this core, an
according SwAddrMethod with local scope can be applied.

2.5.7.2 MCAL Multi-Core Module Type II

The MCAL modules provides a distributed kernel, executed per core, acting on individ-
ually mapped HW elements.

Type II = 1b + 2b + 3a

The type is defined as a special kind of a multi-core module providing its service API’s
as well as control API’s (Init, DeInit etc.) on any core individual instance. So the action
is performed on the core the action is triggered on. Each core instance operates on
its own set of data. This especially makes sense for MCAL modules operating on HW
elements which can be mapped to one dedicated core. A typical example for this type
is, communication drivers such as CAN, ETH and FR.

Figure 2.9: Type II

2.5.7.3 MCAL Multi-Core Module Type III

The MCAL modules provides a distributed kernel executed per core acting on globally
available HW elements.

Type III = 1b + 2b + 3b

The type is defined as a special kind of a multi-core module providing its service API’s
on all cores but implementing the kernel in a global manner so that the action is per-
formed on the core the action is triggered on directly accessing the globally available
HW elements, mappable to any core including the related data. The according control

32 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

API’s (Init, DeInit etc.) instead are available on one single core only. Especially in case
the HW can be accessed atomically this module type is considered as useful. The
most prominent example is the DIO driver.

Figure 2.10: Type III

2.5.7.4 MCAL Multi-Core Module Type IV

The MCAL module provides interfaces available on any core and one kernel on a single
core accessing the mappable element by one core only

Type IV = 1b + 2a + 3a

The type is defined as a special kind of multi-core module which provides its service
API’s across all cores but implements the kernel on one core only performing the
access the mappable HW elements. The kernel could be allocated with the SwAd-
drMethod "local". This case requires proprietary multi-core means to perform syn-
chronization (serialization) of requests towards the kernel. Such multi-core means
could be a highly efficient message passing basing on polling or interrupts, a multi-
buffering in combination with semaphores (for low recurrences). The according control
API’s (Init, DeInit etc.) of the type IV MCAL module are available on the core the kernel
resides only with the according local scope. Examples for such a kind of BSW modules
are ADC, PWM, ICU and OCU. This is a classical master-satellite implementation.

33 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Figure 2.11: Type IV

2.5.7.5 MCAL Multi-Core Module Type V

The MCAL module provides interfaces available on any core and multiple kernels on
individual cores accessing the mappable element by the according core individually.

Type V = 1b + 2a + 3b

This multi-core module is an extension of type IV which can be realized with HW im-
plementations which allows a fully independent handling of peripheral modules or sub-
modules. This is a rather academic constellation, no example picture is given.

2.5.7.6 MCAL Multi-Core Type Summary

The following table summarizes the scope of the defined MCAL multi-core module
types:

APIs Kernel Execution HW Elements

Only one
Core

Several
Cores

Only one
Core

Several
Cores

Only one
Core

Several
Cores

1a 1b 2a 2b 3a 3b
Type I X X X

Type II X X X

Type III X X X

5

34 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

4
Type IV X X X

Type V X X X

Table 2.2: MC Capabilities Classification

2.5.8 Mapping MCAL Modules to Multi-Core Types

The concept shall be generally applied to all MCAL drivers, which are listed in the
following table:

Module Abbreviation MSN SW Layer

Adc ADC Driver I/O Drivers

Can CAN Driver Communication Drivers

CanTrcv CAN Transceiver Driver Communication HW Abstraction

CorTst Core test Microcontroller Drivers

Dio DIO Driver I/O Drivers
Eth Ethernet Driver Communication Drivers

EthSwt Ethernet Switch Driver Communication HW Abstraction
EthTrcv Ethernet Transceiver Driver Communication HW Abstraction
Fr FlexRay Driver Communication Drivers

FrTrcv FlexRay Transceiver Driver Communication HW Abstraction

Gpt GPT Driver Microcontroller Drivers

Icu ICU Driver I/O Drivers
Lin LIN Driver Communication Drivers
LinTrcv LIN Transceiver Driver Communication HW Abstraction
Mcu MCU Driver Microcontroller Drivers

Mem Memory Driver Memory Drivers

Ocu OCU Driver I/O Drivers
Port Port Driver I/O Drivers
Pwm PWM Driver I/O Drivers
RamTst RAM Test Memory Drivers

Spi SPI Handler Driver Communication Drivers

Ttcan TTCAN Driver Communication Drivers
WEth Wireless Ethernet Driver Wireless Comm. Drivers
WEthTrcv Wireless Ethernet Transceiver Wireless Comm. HW Abstraction

Table 2.3: Relevant Modules

To identify the multi-core type and mapping relation of the standardized MCAL modules
one first needs to identify the HW "natural element" which shall be accessed by the
module. Furthermore one need to identify the mappable element means the element
which the user running on an individual core likes to access. Out of the definition
one can then derive the relation of mappable elements to cores. Here the mappable
element (ME) is shown in relation to the number of cores (Core) it can get mapped to.
As a final conclusion the according multi-core type is shown required to derive a later
design pattern recommendation for implementing the according AUTOSAR module.

35 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Driver HW "Natural"
Element

Mappable Element
(ME)

Relation (ME : Core) Multi-Core Type

Adc HW Units Channel group n:m Type IV

Can CAN Controller Network n:1 Type II

CanTrcv Transceiver ASIC Network n:1 Type II

CanXL CAN XL Controller Network n:m Type III

CanXLTrcv Transceiver ASIC Network n:m Type III

CorTst Core Core 1:1 Type II

Crypto HW based: HSM

SW based: Job

Job n:1 Type II

Dio Port / Channel (HW
dependent)

Port / Channel n:m Type III

Eth MAC Network n:1 Type II

EthSwt Switch ASIC Network n:1 Type II

EthTrcv Transceiver ASIC Network n:1 Type II

Eep EEPROM Driver MCAL Module 1:1 Type I

Fls Flash MCAL Module 1:1 Type I

FlsTst Flash Test MCAL Module 1:1 Type I

Fr Controller Network n:1 Type II

FrTrcv Transceiver ASIC Network n:1 Type II

Gpt Timer Resource Local Timer

Global Timer

n:1

1:m

Type II

Type III

Icu Timer / Edge Detector ICU Channel n:m Type IV

Lin Lin Channel Network n:1 Type II

LinTrcv Transceiver ASIC Network n:1 Type II

Mcu Core Core, System 1:1 Type II

Mem Memory, e.g. Flash Memory Instance n:1 Type II

Ocu Timer OCU Channel n:m Type IV

Port Port / Channel (HW
dependent)

Port / Channel n:m Type III

Pwm Timer PWM Channel n:m Type IV

RamTst Core Core, System n:1 Type II

Spi Channel (for
individual sequences)
/ Device

Spi Device n:m Type IV

Ttcan CAN Controller Network n:1 Type II

Wdg Watchdog Driver Watchdog Resource 1:1 Type I

WEth MAC Network n:1 Type II

WEthTrcv Transceiver ASIC Network n:1 Type II

Table 2.4: Relevant Modules

As a conclusion drivers belonging to type I which are consequently not impacted by
this concept are listed below. For each driver, a rationale is given why it is deemed to
be not relevant.

• Eep (EEPROM Driver): Memory services (NvM) are bound to one core. Hence
there is no need for multi-core functionalities of the driver.

36 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

• Fls (Flash Driver): Memory services (NvM) are bound to one core. Hence there
is no need for multi-core functionalities of the driver.

• FlsTst (Flash Test): Flash Test offers no potential for additional (application) use
cases. Its purpose is to Check the functionality of the microcontrollers’ flash
memory as kind of a service. There are typically no SW functionalities realized
with this module.

• Wdg (Watchdog Driver): Although there are multiple watchdogs on a multi-core
system, each of them is triggered by just one core locally via a corresponding
Task/ISR. The configuration (Wdg_SetTriggerCondition) of all the watch-
dogs is done only on one core to ensure system-wide behaviour.

2.5.9 Seperation Stragies and Mapping of Elements

The challenge of the MCAL multi-core distribution is how to deal with global resources.
These are:

• Global data

• Shared special function registers

• Peripheral registers

According to the given constraints in the chapters before it is obvious that two process
contexts will access an identical global resource simultaneously. This can lead to:

• Corrupted data (Especially a problem with complex (non-atomic) data types.)

– Part of the data is written by the first process; another part is written by a
second process.

– Only part of the data is written, and then the writing process is pre-empted,
leaving a corrupt data-set.

• Races with read-modify-write data:

– Data written by a process (e.g. increment of a value) gets lost due to two
interleaved read-modify-write operations.

In MCAL drivers, there are up to three elements which can have their own process
contexts:

• Main function: Mapped- and executed in task context

• Service API: Called in the context of one or several tasks or ISR

• Interrupt Service Routine: Called in interrupt context

Especially service API’s might be called in several process contexts. Depending on the
architecture and functionality realized by the SW.

37 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

This chapter describes the multi-core capabilities according to the mappable element
(which corresponds to the functional elements) which are mentioned earlier in this
document and which shall be annotated to the MCAL driver. In addition the chapter
defines basic separation strategies required to implement the mappable elements.

2.5.10 Separation Strategies

2.5.10.1 Separation on HW Level

One of the ideal ways to be able to realize a multi-core implementation according to
the defined multi-core-types is by distribution/separation on hardware level.

Ideal case is when the HW supports distribution/separation of physical peripherals, i.e:
mapping peripheral modules to individual cores.

Note: This HW level separation requires independed register-sets of the individual
peripheral which can be controlled from one core without impacting another one as
shown in Figure 2.12.

Figure 2.12: Independent Register-Set HW Level Separation

As shown in Figure 2.12, the register-sets behind the individual hardware/peripheral el-
ements are independent of each other and so can be considered as mappable element.
Mappable element means, one element can be mapped to a certain core exclusively.
In case the register-set element allows an atomic access, mapping to multiple cores
can be supported with this separation approach too.

2.5.10.2 Separation on SW Level

Not all microcontrollers provide strictly separated register sets, respectively function-
ality of the hardware element (peripheral, core, memory). Typically those hardware
elements require a common set of registers to control the functionality which cannot

38 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

be atomically accessed .This is the case for several peripheral modules and peripheral
features. Due to that a separation by software is required.

Figure 2.13: Shared Register-Set Separable on SW Level

For that purpose a software design pattern needs to be applied what can be in the
worst case a spinlock (semaphore) in between the MCAL modules accessing the same
hardware element from different cores. The performance impact of the exclusive area
depends on the hardware element it shall be applied as well as the implementation of
the spinlock. So for example hardware elements which are only written occasionally
e.g. during start up or shutdown of the controller have a far less impact compared to
"business" registers which are accessed frequently.

Figure 2.14: Separable Module on SW Level Example

39 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

An alternate solution to the protection of shared registers is to limit the access to one
core only by finally changing the scope of the mappable element towards the next
higher hardware element which allows an exclusive mapping to one core. Refer to
Figure 2.13. For that purpose all accesses to the hardware element are coordinated by
one core while all cores transfer their requests using a messaging system (as IOC, but
optimized to the MCAL needs). This use case requires that all service API implemented
for MCAL modules dealing with such hardware elements behave asynchronously so
that a no core is blocked by another one. As mentioned for the spinlock strategy above
the implementation has a high influence on the performance in case it is done wrongly.

Figure 2.15: Separation on SW level Alternative Solution

2.5.11 Mapping of Elements

2.5.11.1 The Single-Core Module as Mappable Element

The mappable element is the MCAL module itself according to Multi-Core Type I. With
this capability a MCAL driver does not provide any multi-core specific implementation
and hence does not enable one of the new use cases. The reason for that is that the
used hardware element does not allow any kind of concurrent access without a highly
complex protection strategy.

Nevertheless the concept impacts the mapping of this MCAL driver as it is required to
map the whole driver to a core. This is done by mapping its cyclic main function(s) and/
or interrupt routine(s) (if there are any of these) to exactly one OS Application.

40 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

By doing so, the driver is exclusively available on the core on which this OS Application
is assigned to. As a consequence the scope of the MCAL driver becomes local. This
capability is fulfilled by any standard single-core implementation.

Figure 2.16: Mappable Element - Single Core Module

Figure 2.16 shows the simplified model of such a MCAL module. All core bound ele-
ments (service API, ISR and main function) have access to the according data (with
local scope) and the microcontroller registers (mappable to this core). There is no
separation regarding:

• Data (RAM, Register)

• Processing (Main functions)

All mappable µC elements (e.g. Timer channels) are handled by the same main func-
tion; all service APIs can control all µC elements. As a consequence the service API
can be called by one core only.

The resulting mapping rule is: The module shall be mapped to one core only.
Consequently the related hardware element is mapped to the same core only.

2.5.11.2 The Independent Hardware Element as Mappable Element

The mappable element is an independent hardware element such as a HW periph-
eral (e.g. CAN controller, Ethernet controller), core or memory which can be exclu-
sively mapped to one core and consequently to one instance of a MCAL module. This
mappable element is required to implement the described multi core type II, and also
multi-core type IV, refer to MCAL Multi-Core Module Type II.

41 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

As a conclusion the related ISRs and service APIs are mapped to the same core too.
If for example a peripheral has two independent peripheral modules, means elements
(e.g. CAN networks) one is mapped to core 1 and the other to core 2. Each core only
accesses the register set which is relevant for its peripheral element.

The same applies to the data of the MCAL driver which are now in local scope of the
according driver instance. So data must be separated by element respectively core if
it cannot be mapped 1:1 to the peripheral elements.

Figure 2.17: Mappable Element - Independent HW

This principle still applies if there are shared data and/or registers if they do not require
exclusive access. The global driver status can for example be read atomically. Same
applies to status registers which are readable without side effects.

From the behavioral point of view, MCAL modules realizing this principle appear to be
instantiated multiple times, each instance includes a subset of the mappable elements
but using a common code available with global scope.

The resulting mapping rule is: An independent hardware element shall be mapped
to one core only. Consequently the MCAL module instance operating on the
hardware element is mapped to the same core.

2.5.11.3 The Atomic Hardware Element as Mappable Element

The mappable element in this special case is an independent hardware element such
as a HW peripheral feature which can be accessed atomically using the native access
width of the hardware busses (e.g. 32bit for a 32bit microcontroller). This allows a
mapping to several cores without the necessity to take care about concurrent access
(e.g. DIO). Consequently this mappable element is required to implement multi core
type III, described in section MCAL Multi-Core Module Type III.

42 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Figure 2.18: Mappable Element - Atomic HW

For this kind of mappable element there is typically a simple implementation available
not implementing a main function as the access is done by the service API directly. In
case data are used it is required that the access can be done atomic similarly to the
mappable hardware element.

The resulting mapping rule is: An atomic hardware element can be mapped to any
and even multiple cores. Consequently the MCAL module is mapped to the cores
the hardware element is mapped to.

2.5.11.4 The Multi-Core-Module as Mappable Element

In this case the mappable element is again the MCAL module which can be mapped
to at least one or multiple cores. The MCAL module itself is implemented according
to multi-core type IV and applies one of the shown software separation strategies.
However the service API are available on all cores the MCAL module is mapped to.
The ISR of the MCAL module are ideally mapped to the core the user is running on.
Typical MCAL modules are IO drivers required by any core implementing non atomic
hardware elements, such as ADC, PWM, ICU, OCU and SPI.

The resulting mapping rule is: A multi-core MCAL module can be mapped to any
and even multiple cores. Consequently all hardware elements are mapped to all
cores the MCAL module is used on.

43 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

2.5.12 Examples

As a conclusion the MCAL distribution provides required service API to the cores these
are needed. This is done depending on the multi-core type and the related mappable
element. Consequently a few examples shall be shown below:

Example 1: DIO Concurrently Access by 2 IoHwAb

Figure 2.19: Example 1 - DIO - Concurrently Accessed by 2 IoHWAb on Different Cores

In the example Channel 5 of DIO is assigned to core 1 and core 2 whereas channel
6 is assigned to core 2. Each core contains an IOHWAB module. Both modules are
allowed to directly call Dio_WriteChannel in their local core context. Limitation is
that these only write to the channels assigned to the same core.

Example 2: DIO Accessed by 2 IoHwAb

Figure 2.20: Example 2 - DIO - Accessed by CanTrcv and IoHWAb on Different Cores

44 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

As shown in the example, DIO is used by the CAN transceiver on core 1 and in
the same time by the IOHWAB on core 2. Both DIO-users can directly call Dio_-
WriteChannel in their local core context.

Example 3: DIO Accessed By Master\Satellite Services

Figure 2.21: Example 3 - DIO - Accessed by Dem Master and Satellite

As shown in the example, DIO reports a diagnostic error to DEM. The call to DEM
is issued on the core it occurs. DIO is not responsible to change the call context
to another core. This of course requires that DEM provides its service API to the
according core / partition.

2.6 Mapping Software to different Core Partitions

To be able to map symbols of a BSW module (or any other software) to the correct
memory the memory mapping mechanism according to AUTOSAR_SWS_MemMap [2]
shall be applied which offers an according multi-core support by introducing a core
scope for the Software Addressing Methods. One can either apply GLOBAL (shared)
or core LOCAL scope. Adding no scope, the mechanism assumes that GLOBAL scope
is intended.

The following little example considers the core scope only not taking care about the
additional safety partition information. Therefore, it is assumed that all examples con-
sider QM software only. To comply with the latest standard ’QM’ is added to the SwAd-
drMethod accordingly.

2.6.1 Allocation with Global scope

For GLOBAL (shared) allocation the implementer does not need to consider anything
special as it is the default allocation making the allocated symbol visible within all cores.

45 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Example:

Memory Allocation Keyword Explanation

PWM_START_SEC_CODE_QM Simple way to allocate global memory

According to the BSW module design it could be nevertheless interesting to map a
certain amount of code differently, e.g. to map a library routine to a fast clone RAM
area. One could do it in two different ways.

Option 1 - Different SwAddrMethod:

Memory Allocation Keyword Explanation

PWM_START_SEC_CODE_LIB_QM Library operation

PWM_START_SEC_CODE_USERIF_QM User Interface

PWM_START_SEC_CODE_CTRL_QM Control interfaces, e.g. Init, Shutdown

Option 2 - Different Prefix using the implementation extension ’IE’:

Memory Allocation Keyword Explanation

PWM_LIB_START_SEC_CODE_QM Code of library implementation

PWM_USERIF_START_SEC_CODE_QM Code of user interfaces

PWM_CTRL_START_SEC_CODE_QM Code of control interfaces

Even if both options are technically feasible it is recommended to apply option 1 in
the case the selected SwAddrMethods are re-used in an identical way across several
BSW modules of one vendor, represented in a vendor specific SwAddrMethod catalog.
Equipping the according SwAddrMethod with either standardized or vendor specific
attributes one can easily apply an automated Memory Mapping later on. Therefore, a
generic mapping can be applied.

Option 2 instead is not the recommended way of doing as the SwAddrMethod applied
is the same and so identical options are provided so that the Memory Mapping will re-
quire user interaction to map according to the Prefix. Consequently, a specific mapping
is required. However, there might be cases where it does not make sense to introduce
very special (almost module specific) SwAddrMethods in a generic catalog. Instead,
option 2 might be applied.

2.6.2 Allocation with Local scope

According to the distribution concept, it is required to map symbols to a special core,
which is not known at software development time but instead at integration time. Means
during software development the author needs to express the need of local allocation.

Example:

46 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Memory Allocation Keyword Explanation

PWM_FEATURE_A_START_SEC_CODE_QM_LOCAL A special feature to be mapped to a specific core
independently of feature B

PWM_FEATURE_B_START_SEC_CODE_QM_LOCAL A special feature to be mapped to a specific core
independently of feature A

According to the description given at the global allocation section it is recommended to
keep a vendor generic SwAddrMethod ’CODE_QM_LOCAL’ which is mapped accord-
ing to the prefix. Means during the Memory Mapping process the core scope attribute
’coreLocal’ can be considered accordingly.

When mapping the integrator needs to map FEATURE_A and FEATURE_B to the ac-
cording cores.

So as a bottom line the use of the LOCAL suffix in the memory allocation keyword as
well as the use of the core scope attribute ’coreLocal’ in the SwAddrMethods express
the intent of the software developer that a particular piece of code and/or data shall
be mapped to core local memory. By using different Prefixes in the memory allocation
keyword (e.g., FEATURE_A and FEATURE_B in the above example) the software de-
veloper gives the integrator the possibility to decide upon integration time to which core
the piece of code and/or data effectively will be mapped to.

For generated configuration code, it would also be possible that a generator already
knows the core the symbols shall be mapped to. Consequently, the following example
would be feasible too:

Example:

Memory Allocation Keyword Explanation

PWM_CNF_CORE0_START_SEC_CODE_QM_LOCAL Generated configuration code to be mapped to core 0

PWM_CNF_CORE1_START_SEC_CODE_QM_LOCAL Generated configuration code to be mapped to core 0

2.6.3 Allocation using Cloning capabilities

Special hardware architectures offer in addition the possibility of true memory area
cloning, means those provide a local memory on each individual core at an identical
global address. So, one could - for example for Multi-Core-Type II / III implementations
- use a symbol with an identical name and address on each core. However, later-on the
individual cores would act on the according individual local memory. Those symbols
need to be allocated with a global SwAddrMethod or a specific prefix.

Option 1 - Different SwAddrMethod:

Memory Allocation Keyword Explanation

MFL_START_SEC_CODE_CLONE_QM Something to clone

47 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

However, when using a special SwAddrMethod for the purpose of CLONE one needs
to consider that this one is hardware dependent and may not be supported on all plat-
forms. So consequently, the integrator would need to remove the cloning capability by
mapping it elsewhere. Especially for variables, this cannot be easily done as the sym-
bol would automatically become GLOBAL and one would cause according resource
access conflicts. Instead, a change of the code would be required.

As a conclusion, a different prefix shall be applied instead.

Option 2 - Different Prefix using the implementation extension ’IE’:

Memory Allocation Keyword Explanation

MFL_ADD_START_SEC_CODE_LIB_QM Add operations - which might be cloned to speed up
performance - if supported by HW

MFL_MUL_START_SEC_CODE_LIB_QM Multiplication operations - which might be cloned to speed
up performance - if supported by HW

Finally, the prefix usage allows to implement a generic software which can be either
cloned or not independently of the used SwAddrMethod. Therefore, the integrator can
finally decide what to clone or what to allocate in global memory. But note that also in
this case the cloning of data needs to be considered inside the implementation what
might lead to a variant of code (e.g. by conditional compilation). So the cloning can
be recommended most likely for library implementations, or highly performance critical
items such as interrupt nesting counters of the OS.

Note: In case a software designed for cloning is mapped to global memory the linker
will cause an error for all variables originally intended for cloning. This is caused by the
fact, that the variable would be instantiated several times with the same namespace.

2.6.4 How to determine the Core Scope?

The pattern on how to determine the core scope of symbols to be allocated is shown
basing on the MCAL distribution concept. The idea can be applied to any other BSW
module similarly.

2.6.4.1 Determining the Core Scope of MCAL symbols

Before expressing the core scope using the memory allocation mechanism one needs
to identify what symbol of the module implementation (e.g. code, constants, variables)
shall be available with what core scope. This can be done by associating an according
symbol to a mappable element as described in the according BSW module specifica-
tion following the MCAL distribution concept.

In the following step one needs to determine the number of partitions the mappable
element can be mapped to. If the mapping targets a single partition only (1:1 mapping)

48 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

then the symbols shall be considered as core LOCAL. If the mapping targets several
partitions (1:n) then the scope shall be considered as core GLOBAL.

Figure 2.22: Mappable elements, related APIs and partition mapping

In Figure 2.22 one can see two mappable elements where element 1 can be mapped
to multiple partitions and element 2 can be mapped to one partition only. Element 1 is
associated to API A and element 2 to API B. Consequently, this would result in API A
as GLOBAL and API B as LOCAL scope.

Applying the rule on the according MCAL implementations one needs to consider that
one is not able to give a detailed recommendation for each MCAL API because the
core scope might differ depending on the kernel implementation. So, it is at the end
implementation specific.

2.6.4.2 Applying MemMap to the according Multi-Core-Types

The following table summarizes the typical resulting scope according to the MultiCore-
Type definition for code, constants and variables. Other memory types are design
specific or use typically a global memory scope, such as calibration data.

Multi-Core-Type Feature / Type Code / Constants Variables

Legacy GLOBAL GLOBALType I (single core / legacy)

Single Core LOCAL LOCAL

Type II (running on core local data) - GLOBAL LOCAL

Type III (usable from any core) - GLOBAL GLOBAL

Kernel LOCALType IV (core local kernel)
User API’s GLOBAL

GLOBAL

Note: Older existing AUTOSAR BSW implementations usually comply with MultiCore-
Type I or III (libraries). Especially for type I, the global memory allocation is used as
this was state of the art before. Therefore, it is possible for backward compatibility to
allocate Type I modules using the GLOBAL SwAddrMethod, but one shall consider
that other cores might call the operations due to the global scope.

49 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

2.6.4.3 Allocating Driver internal Symbols

The allocation of MCAL driver internal symbols depends on the design and the way
how these symbols are used by either public or internal interfaces. One can finally
define the following rules:

1. The core scope of the allocated symbol shall have the scope GLOBAL if one
of the using APIs has GLOBAL scope. Otherwise it shall be LOCAL. This rule
applies only for CODE, CONST, VAR_INIT and VAR_CLEARED.

2. The partition scope might be limited further by appending a special memory allo-
cation keyword, or an according safety integrity level information.

2.6.4.4 Allocation Example for Multi-Core-Type IV

Taking the example previously shown in this document, one can find a typical multi-
core-type IV example with LOCAL as well as GLOBAL scope not showing the partition
approach here.

Figure 2.23: Multi-Core-Type IV Driver Example

The GLOBAL interface operations which are usable by any core and partition have
similarly the GLOBAL scope. These are:

• XXX_Trigger() - XXX_SEC_CODE_...

• XXX_Get() - XXX_SEC_CODE_...

• XXX_Set() - XXX_SEC_CODE_...

The data elements used by these GLOBAL interfaces including the spinlock are global
too as these need to be accessible by any core. These are:

• XXX_Data - XXX_SEC_VAR_INIT_...

• XXX_Lock - XXX_SEC_VAR_INIT_...

50 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Instead the LOCAL interfaces, such as the control interface and internal interfaces as
well as LOCAL data have the core scope LOCAL. So, these symbols can only used by
the core these are mapped to.

• XXX_Init() - XXX_CONTROL_SEC_CODE_..._LOCAL_...

• XXX_DeInit() - XXX_CONTROL_SEC_CODE_..._LOCAL_...

• XXX_KERNEL_Data - XXX_KERNEL_SEC_VAR_INIT_..._LOCAL_...

• XXX_KERNEL_Rcv() - XXX_CONTROL_SEC_CODE_..._LOCAL_...

Please note that the shown example is design specific and might be implemented
differently.

2.6.4.5 Allocation Example for Multi-Core-Type II

Another interesting use case is a driver of multi-core-type II which is working on core
individual data. These data (and similar the HW peripherals) need to be accessed by
the GLOBAL code when running on the according core. Therefor one needs to pass
a pointer to the core specific data or even configuration structure when initializing the
driver. This configuration can then be stored to a cloned pointer which exists on a
per core memory but with a global address so that the driver code seems to access a
global instance.

Figure 2.24: Multi-Core-Type II Driver Example

All code of the driver is generally allocated with GLOBAL scope:

• XXX_Init() - XXX_SEC_CODE_...

• XXX_DeInit() - XXX_SEC_CODE_...

• XXX_Trigger() - XXX_SEC_CODE_...

51 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

• XXX_Get() - XXX_SEC_CODE_...

• XXX_Set() - XXX_SEC_CODE_...

The Pointer to the active data instance is also allocated with GLOBAL scope:

• XXX_ActiveData - XXX_SEC_VAR_INIT_CLONE_...

Instead the core individual data (this can be also constants) are allocated with LOCAL
scope and shall be accessed on the core these are allocated only.

• XXX_CORE1_Data - XXX_CORE1_SEC_VAR_INIT_..._LOCAL_...

• XXX_CORE2_Data - XXX_CORE2_SEC_VAR_INIT_..._LOCAL_...

Please note that the shown example is design and hardware specific and requires the
support of the cloning capability.

2.7 Com-Stack Distribution

The proposed solution will provide concrete means to improve the usage of AUTOSAR
BSW on multi-core microcontrollers.

Only minor impact on backward compatibility because this concept introduces mainly
new optional functionality.

2.7.1 Introduction

The increasing use of multi-core processors makes it more and more important to
efficiently use the provided cores of the controllers. Limiting the deployment of huge
basic software packages like the Com-Stack to one single core is heavily limiting the
effective use of the microcontroller’s resources. Therefore, the distribution of the Com-
Stack is a key for further basic software distribution.

The Com-Stack distribution requires specification changes in several BSW modules
but shall not break existing contracts between modules. It is one goal of this concept to
keep existing functionalities. The concept shall only extend the current functionalities
by additional mapping scenarios.

Functionalities (sequences) which are not or only hardly adaptable to the new mapping
scenarios will be kept as they are. To avoid unexpected behavior, limitations will be
created which limit the mapping to the AUTOSAR scheme.

The main impact on interface level will be the change of some APIs from synchronous
to asynchronous. For instance, when a job triggered on one core needs to be executed
on another core and the initiating core should not be forced to wait (i.e. in a spinlock)
until the job has finished.

52 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

The main benefit of this concept is the increased support for load distribution of the
AUTOSAR stack by supporting additional distribution techniques.

2.7.2 Assumptions of Use

To apply the Com-Stack distribution several assumptions of use shall be given, to define
the boundary conditions of the BSW environment:

1. The hardware implementation shall allow an individual mapping of peripherals to
partitions or at least a dedicated core

2. It shall be possible to route hardware and software interrupts to one partition or at
least a dedicated core (Hint: Routing of interrupts means to implement a kind of
message passing, e.g. if the interrupt occurs on core1, but one needs to execute
the code of ISR on core2 one needs to route the context from core 1 to 2 before
the ISR is executed)

3. Single instance Crypto-Stack located in one AUTOSAR partition, where the whole
Crypto processing takes place

4. The standard assignment of PDUs to Com instances does not consider ASW
deployment but follows an assignment of PDUs according to the linked network
type

5. Any interaction with EcuM needs to be done with the core-local EcuM instance

2.7.3 Constraints

To keep the complexity of the Com-Stack distribution in a manageable range several
constraints need to be taken in account.

Constraints:

1. The Com-Stack distribution is limited to a setup, where each network specific
stack can be allocated to one core

(a) Channel individual distribution in order to distribute finer grained is not sup-
ported by AUTOSAR yet

(b) CAN XL is an exception to this rule. Here a setup shall be supported, where
a single CAN XL driver serves both the CAN stack and the Ethernet stack,
which could be allocated to different cores.

2. A multi-partition (multi-application) AUTOSAR operating system is required to
support the BSW distribution use cases

3. There shall be one partition, where the central modules for communication related
state, mode and network management are assigned to (in this partition an EcuM
instance shall be available as well).

53 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

4. There shall be one single SecOC instance which can be allocated to one core

5. TriggerTransmit (e.g. LIN, FlexRay) shall only be used "core local"

(a) i.e. each TriggerTransmit PDU has to be assigned to the same partition,
where the according network type is located at (no context switch between
Com and <Net>If)

(b) Gateway use cases are excluded from this constraint (cross core routings
supported, as the PDU buffer is managed by PduR)

6. Com assumes signal related API calls always occur in the partition, where the
affected signal (Pdu) is located in

(a) Rationale: It might be possible for a software component to send data to
another ECU via a PDU, which might be located in a different partition than
the sending software component. In this case, Rte shall take care to switch
the context to the target partition before calling Com APIs.

7. V2X stack has to be mapped to the same partition as the other Ethernet related
modules

8. The entire J1939 stack (all J1939 modules) shall be assigned to the same parti-
tion as the DEM (due to the wide API between J1939DCM and DEM).

9. In a setup with a distributed Com-Stack, the post-build time configuration feature
is not supported.

10. The APIs of the BusMirroring module shall only be called in the partition to which
BusMirroring module is mapped to (via MirrorEcucPartitionRef).

2.7.4 Functional Elements

2.7.4.1 I-PDU configuration in a distributed environment

In an environment with a distributed Com-Stack, the network dependent module clus-
ters are mapped to different cores (e.g. Can is mapped to Core 0, FlexRay to Core 1
and Ethernet to Core 2).

To manage this setup in the Com and IpduM module in an efficient way, individual
main functions per network type can be defined, i.e. Com_MainFunctionTx_Can/Fr/
Eth, Com_MainFunctionRx_Can/Fr/Eth, IpduM_MainFunctionTx_Can/Fr/Eth, IpduM_
MainFunctionRx_Can/Fr/Eth.

All PDUs are assigned to the available main function instances according to the net-
work type.

In this setup the PduR as the central instance for routing PDUs can call the target of
each routing path directly, means RxIndications and TxConfirmations can be handled
on the local instances as source and target are always located in the same partition.

54 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

For PDUs with direct transmission, it is recommended to assign them to a Com/Ipdu
M instance located in the same partition as the according network. This is however,
no limitation, as PDURouter would care to transfer the according I-PDU to the right
target partition, in case upper- and lower-layer connection is not assigned to the same
partition. For sure, there are drawbacks if doing so, mainly affecting the system perfor-
mance and resource consumption, but in principle, it is not limited by the approach.

In case TriggerTransmit handling is used, the according PDU must be assigned to
a Com/IpduM instance located in the same partition as the according network (i.e.
the assignment of TriggerTransmit PDUs to a Com/IpduM instance located in another
partition, as the according network is not supported at all).

A special case is the LdCom module, as it is just a pure forwarding component, which
has neither buffers nor tasks and thus no own execution context.

Therefore, the assignment of PDUs to partitions (via MainFunctions) like for Com does
not work for LdCom and therefore needs to be covered more individually.

One approach could be to deal with LdCom data in the UL (most likely Rte) only in the
partition, where the underlying network type is assigned to. In this setup, PduR would
forward the I-PDU without dispatching.

Another approach would be to inform PduR in which UL context the LdCom I-PDUs will
be handled (e.g., where Rte_LdComCbkRxIndication_<sn> API shall be called;
where LdCom_Transmit is called from UL (most likely Rte)). This information can be
provided to the PduR via the Pdu to partition assignment (EcucPduDefaultParti-
tionRef or EcucPduDedicatedPartition for LdCom module) on basis of the Ecu
C Pdu.

In this case, the PduR will dispatch, if upper and lower layer connections are assigned
to different partitions.

2.7.4.2 Pdu gateway

In general, one major job of the PduR is to take care of PDU routings between different
networks. The principles how to master this in a multi-core environment are described
in the following section.

In case the network specific module clusters are assigned to different cores, the Pdu
R needs to take care to bring the context from source (RxIndication) partition (core) to
target partition (core) and call the transmit API towards the lower layer only there.

In case direct transmission communication pattern is used, the PduR needs to cover
following scenarios.

Routings just within the same network-type do not need any special treatment, means
PduR can call the transmit API in context of RxIndication directly (no PDU buffering
within PduR required).

55 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

The same handling can be applied for routings between different network types as-
signed to the same EcuC partition.

Routings between different network types assigned to different EcuC partitions (cores)
require special treatment. In particular this means the PduR has to buffer the received
PDU (in a shared memory area) and provide an execution context on the target core,
where the PduR must call the transmit API for the buffered PDU.

Pdu gateway routings with TriggerTransmit handling need to be managed in a slightly
different way as the PDU is provided to the lower layer Interface module in the context
of the PduR TriggerTransmit callback.

Due to this pattern the PduR needs to buffer the received PDU in any case, even so
the routing takes place within one network type.

Therefore, the required extension is limited to routings between different network types
assigned to different EcuC partitions. In this case the PduR needs to switch the context
from source to target, before calling the transmit API in addition to the normal routing
mechanisms and take care to store the buffer in a shared memory area, which can be
accessed from both contexts. The PduR needs to apply appropriate data protection
mechanisms to guarantee data consistency even in a multi-core setup.

2.7.4.3 Connection to security stack via SecOC

In order to achieve an efficient treatment of the security relevant PDUs, the same prin-
ciples like used for Com/IpduM with the split MainFunctions can also be applied to the
SecOC and the crypto stack.

2.7.4.4 <Net>Tp Routing

In a gateway use-case for transport protocol modules, the PduR_TpStartOfRecep-
tion is managed by PduR locally, means no inter-partition activity is triggered.

The behavior of PduR_TpCopyRxData and PduR_TpRxIndication shall depend on
the routing variant.

In a direct gateway routing use-case, for transport protocol modules PduR_TpCopy-
RxData shall only copy data into Tp buffer (no calls across core boundaries shall be
made).

PduR shall transfer the context to the target partition only within PduR_TpRxIndica-
tion call.

In a routing-on-the-fly gateway, use-case PduR shall transfer the context to the target
partition either

• if PduRTpThreshold is reached within PduR_TpCopyRxData call

56 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

• if PduR_TpRxIndication is called before threshold is reached

In both flavors, TpTransmit API is called in context of target partition.

In case source and target are in same partition, the TpTransmit can be called directly
inside the source partition.

2.7.4.5 Mode, state and network management

ComM and Nm shall take care for all interactions with <Net>Nm and <Net>SM mod-
ules, even so the network type is assigned to another partition. By doing so a central-
ized approach can be realized and the multi-core impact is limited to very few dedicated
modules.

The kernels of ComM and Nm modules shall be assigned to the same partition in order
to keep the interaction between these two central modules simple.

In addition, Dcm shall be assigned to the same core as ComM, so the mode APIs
between Dcm and ComM can be kept as intra-partition communication.

In order to enable an efficient implementation of the NetworkManagement, the users of
"Extra services provided by NM Interface" should call the respective APIs (e.g. Nm_-
GetUserData) only in the partition, where the underlying <Bus>Nm is assigned to. In
this setup, synchronous inter-core calls can be avoided.

2.7.4.6 Startup/shutdown

EcuM calls towards other BSW modules shall only happen in case they are used in the
pre OS phase. Otherwise, they shall be called via BswM, means by the partition-local
instance of BswM.

2.7.5 Architectural Components

2.7.5.1 PduR as central inter-core dispatcher

The PduR shall cover all I-PDU related multi-core features caused by a setup with
distributed network dependent module clusters in case <Net>If interfacing is used.

In order to ensure a high efficiency and performance the following types of PduR rout-
ing paths are excluded from the set of routing paths for which the PduR takes care of
a potentially required core/partition transition. Thus, for those excluded routing paths
the PduR does not need to check, if the source and the destination(s) of a routing path
are assigned to different cores/partitions but can act like in a single partition setup.

• Transport protocol Interfacing

57 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

– Transport protocol Reception/Transmission requires special means

– Tp routing use cases are covered by Pdu Gateway

• Reception / Transmission of global time sync messages

– Time sync messages must not be delayed, so standard PduR mechanism
with asynchronous processing not sufficient

– Special means for time synchronization need to be covered by StbM

As the PduR shall be capable to dispatch inter-partition communication, it needs to
know the partition, to which each communication partner is assigned to. To provide
this information, the Pdu configuration element in the EcuC module is augmented by
the following configuration elements:

• EcucPduDefaultPartitionRef to provide a default reference to an Ecuc-
Partition.

• A list of EcucPduDedicatedPartition container to provide individual refer-
ences to an EcucPartition on a per BSW module instance basis which over-
ride the default reference of the EcucPduDefaultPartitionRef. EcucP-
duDedicatedPartition in turn consists of the two elements EcucPduDedi-
catedPartitionRef referencing an EcucPartition and a foreign reference
to the EcucModuleConfigurationValues of a BSW module named EcucPduDed-
icatedPartitionBswModuleRef.

Based on the above described partition assignment the PDURouter will assume an
intra- or inter-partition routing.

2.7.5.2 Hints for partition assignment of I-PDUs

In case the PDURouter multi-core support is enabled, each module needs to take care
to provide its partition assignment information for all referenced PDUs. The PDURouter
will check EcuC PDU configuration to find partition assignment for source / target of
each routing path.

Some hints, how a default partition assignment can be defined:

• The default partition for a PDU is assigned based on its <Net> connections
(<Net>If or <Net>Tp or <Net>Nm ...), as all network dependent modules are as-
signed to one dedicated partition.

• If default partition for a PDU is still undefined, do assignment according to Main
Function reference

• If default partition for a PDU is still empty, the default partition needs to be handled
individually during integration (not mandatory)

Rules for dedicated partition assignment

58 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

• Based on module features the dedicated partitions should be added to EcuC
configuration module individually

• In case the module connection is on a different partition then the default partition
assignment, it needs to introduce a dedicated partition container to EcuC Pdu
config

For each routing path the PDURouter shall check, if

• A dedicated partition assignment for the connected module is found inside the
according PDU configuration

• default partition assignment found

If partition assignment information of an I-PDU is missing, the PDURouter cannot judge
properly which kind of routing path should be realized.

The PDURouter behavior for such cases shall be kept implementation specific, but at
least a warning should be raised.

Recommendation would be to raise an error and inform the user about the missing
information.

Examples for PDU partition assignments

• In case either source or target module of a routing path is LdCom the partition
assignment depends on SWC deployment, as the LdCom has no own context
and just forwards the call to/from PDURouter.

• For Com module take over partition assignment from Com internal MainFunction
assignment to EcuC PDU configuration

• For IpduM take over partition assignment from Com internal MainFunction as-
signment to EcuC PDU configuration

Example: The COM module transmits an I-PDU via CanIf. CanIf is assigned to par-
tition 1, means all CanIf_Transmit calls need to be executed in this partition. On
COM module level, the I-PDU is assigned to a Com_MainFunction instance running in
partition 2. In this case, the PDURouter has to dispatch, as partition boundaries are
crossed (inter-partition communication).

2.8 Crypto-Stack Distribution

In order to provide a load distribution amongst different partitions, the different parts
of the Crypto-Stack shall be allocated to the different partitions. Hereby it shall be
supported that such a partitioning happens on a crypto instance basis, i.e., the crypto
driver instances shall be locatable onto different distinct partitions.

In order to support such a flexible allocation, the main threads of execution in the
SecOC module (namely the respective MainFunctions) can be split into different Main
Functions (at least one per partition).

59 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Furthermore, also the Csm module can be split into different MainFunctions (at least
one per partition).

In such a setup it is mandatory to assign all the Csm Queues to a dedicated Main
Function to define the partition, where the respective Jobs has to be processed.

This way the flow through the crypto stack stays within the scope of a single partition
and therefore does not require special multi-partition capable means.

The inter-partition communication between SecOC and PduR is managed by PduR.

In order to manage different timing requirements each MainFunction instance defines
its time base individually.

This setup brings a couple of constraints for the configuration in order to run the crypto
stack in an efficient way.

All CsmJobs, to which a SecOC_MainFunction points to, shall be assigned to Csm_-
MainFunctions which are assigned to the same partition like the respective SecOC_-
MainFunction. I.e. Csm processing of a Job needs to be handled in the same
partition like SecOC processing.

In such a setup, Csm module can assume all Csm_<Service> API calls always occur
in the partition, where the respective CsmJob is located in (thus no multicore extension
for Csm’s service APIs required).

2.8.1 Freshness value handling

In case the crypto stack is distributed across several partitions also the access to the
freshness-manager SWC(s) is impacted, as multiple partitions need to access this
SWC(s).

This is not beneficial for the performance (execution time) since there is a partition
crossing involved.

There are three ways to deal with the freshness value in a distributed environment,
which can be used in parallel:

• Leave as is and the RTE handles the partition crossing

Note: Rather high impact on execution time

• Provide multiple freshness-SWCs (one per partition)

Note: To achieve an efficient setup the entire processing chain (ComIpdu, SecOC
PduProcessing, CsmJob, ...) should be assigned to the same partition

• Use the configurable C-API in SecOC (Configuration parameter: SecOC-
QueryFreshnessValue) and use a multi-core capable "library" instead

60 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

3 BSW Distribution in Safety Systems

3.1 General overview on safety

In today’s cars several ECUs may control safety relevant actuators depending on the
functionality of the vehicle. Examples are electronic steering lock systems, adaptive
cruise control systems or braking systems. If such a system shows a misbehavior
a dangerous situation can occur where the driver is no longer able to drive the car
in a save manner. To avoid such failures the specific ECUs must be developed in
a way that the system can detect and react in a controlled way to such faults. The
ISO 26262 [4] is the norm which describes how the development of such ECUs shall
be performed to realize a save system. This norm defines four "Automotive Integrity
Safety Levels" (ASIL) which classify the risk of the system. Based on the risks specific
(safety) requirements of the system are derived. These requirements may be related to
hardware (e.g. support for multiple channels to allow detection of hardware problems)
or software (e.g. control flow checking) or both. In AUTOSAR we focus on software, so
the hardware part will no longer be considered here. Be aware that an ASIL is always
defined for a system, which means hard- and software, and with respect to software
application software and basic software.

3.2 Safety solutions in AUTOSAR

AUTOSAR up to R4.1 supports safety systems by offering different base mechanisms
which are typically required in such ECUs. The following list contains the main safety
mechanisms:

• Partitioning of SWCs to support the isolation in space. This means that it is
possible to separate SWCs of different ASIL from each other and to make sure
that the SWCs are not able to write to other SWCs data. The realization requires
hardware support (a memory protection or memory management unit) and is
realized in the Os module and used by the Rte.

• Timing and control flow supervision to monitor executing entities and to detect
faults caused by blocking or wrong execution. In AUTOSAR the Os and the Wdg
M take care of this issue.

• A safe communication via end-to-end protection is possible between ECUs (and
even inside an ECU). This guarantees e.g. that the data which is send is not
modified between the sender and the receiver(s). The responsible module is the
E2Elibrary.

Some other modules support additional mechanisms which are also useful in safety
systems (e.g. CoreTest or RamTest).

The following picture shows how an AUTOSAR R4.1 can be used to support an ASIL
ECU.

61 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Figure 3.1: All BSW developed according ASIL

The approach works but has one big disadvantage: all BSW modules must be devel-
oped according the highest ASIL of the system. This causes a lot of additional work
even if only some of the BSW modules are really required for a specific safety require-
ment.

Starting with R4.2 AUTOSAR offers an additional way how a safe system can be de-
veloped without the requirement to implement the whole BSW with the according ASIL.
The key aspects of the new approach are:

• The BSW modules are not all mapped to one partition, but can be placed in
separate partitions depending on the ASIL need. This means that a system can
have several QM and ASIL partitions.

Caution: Although it’s possible to have more than one QM BSW partition per
core, this should be avoided to be able to reuse existing QM BSW modules with-
out modification. The reason is that these would need CallTrustedFunction
wrappers for the cross-partition communication.

• The impact of the approach to single BSW modules is minimal. This means
the scope of the modules is the same on ASIL and QM. There is no change of
interfaces between modules.

• Only the modules which provide the safety relevant features (e.g. the memory
protection offered by the Os) need to be developed according to the system’s
ASIL. Sometimes it is even possible to limit the required ASIL functionality to a
subset of a BSW module.

62 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

The ASIL modules inside the ASIL partition(s) need to be specifically developed. They
not only need to meet the requirements of the ASIL level, but they also need to detect
if they are called from inside the partition or outside the partition.

With this approach it is possible:

• To reuse existing BSW modules which were developed on QM level (no ASIL)
without module modification.

The proposed approach has to be assessed case by case in order to estimate the
applicability of this approach for the particular safety case and the benefits of combining
QM/ASIL modules compared to a pure ASIL approach.

BSW modules can be placed in different partitions. AUTOSAR supports several QM
and ASIL partitions. The following figure shows an example mapping. Here the ASIL
SWC has save access to some hardware via an own partition in the BSW which con-
tains an IoHwAbs and the needed drivers below.

Figure 3.2: BSW modules mapped in different partitions

It is strongly recommended that QM BSW partitions run in user mode if possible in case
we have BSW ASIL partitions in the system to avoid changes to hardware registers
(e.g. MPU settings). If this is not possible (e.g. hardware supports supervisor mode
only) you need additional means to assure freedom from interference.

63 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

3.2.1 Some modules are always ASIL

Since the protection mechanism is provided by some specific BSW modules (e.g. the
Operating System) these modules have to be developed according to the highest ASIL
in the system. If they are not developed at this level it cannot be assured that they are
able to fulfill their supervision task. The decision which modules have to be developed
to ASIL is always project specific and is determined from the safety requirements of
the system.

3.2.2 Overall configuration

The separation of BSW modules in different BSW partitions for safety needs to be
configured in the ECU configuration. The mapping is done in the EcuC and Os config-
urations.

For each such BSW partition an OsApplication is required. The following settings apply
to the Os configuration of each BSW OsApplication:

Name Value for BSW partitions

OsTrusted TRUE

OsTrustedApplicationWithProtection TRUE or FALSE

OsTrustedApplicationDelayTimingViolationCall TRUE

Other attributes of the OsApplication can be filled as needed. Note that hook functions
of BSW partitions have no meaning in AUTOSAR and shall be avoided.

Additionally note that the OSApplication TRUSTED attribute (OsTrusted) of the OS-
Application is not related to ASIL/non-ASIL.

Afterwards the BSW modules, which are used, have to be configured and mapped to
the different partitions. The mapping is done in EcuC:

64 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

EcucPartition:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

EcuC: EcucModuleDef

upperMultipl icity = 1
lowerMultiplicity = 0

EcucPartitionCollection:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = 1

PartitionCanBeRestarted:
EcucBooleanParamDef

AtpPrototype

SwComponentPrototype

EcucPartitionSoftwareComponentInstanceRef:
EcucInstanceReferenceDef

destinationType = SW-COMPONENT-PROTOTYPE
upperMultiplicity = *
lowerMultipl icity = 0
destinationContext = ROOT-SW-COMPOSITION-PROTOTYPE

EcucDefaultBswPartition:
EcucBooleanParamDef

lowerMultipl icity = 0
upperMultiplicity = 1

EcucCoreDefinition:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

EcucCoreId:
EcucIntegerParamDef

min = 0
max = 65535

OsApplicationCoreRef:
EcucReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1

OsAppEcucPartitionRef:
EcucReferenceDef

lowerMultipl icity = 0
upperMultiplicity = 1

OsApplication:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

EcucPartitionBswModuleDistinguishedPartition:
EcucForeignReferenceDef

destinationType = BSW-DISTINGUISHED-PARTITION
upperMultiplicity = *
lowerMultipl icity = 0

Referrable

BswDistinguishedPartition

SW Component Template

BSW Module Description Template

+container

+destination

+destination
+reference

+parameter

+reference

+subContainer

+reference

+parameter

+reference

+parameter

Figure 3.3: EcuC configuration - mapping of BSW to partitions

The EcucPartitionCollection (multiplicity 0..1) contains all partitions of the sys-
tem. For each of them a sub container EcucPartition (0..*) exists which contains
references (EcucPartitionBswModuleDistinguishedPartition (0..*)) to the
BSW modules (via BSWDT) which are placed into this partition.

The following settings apply to the EcucPartition configuration of each BSW parti-
tion:

Name Value for BSW partitions

PartitionCanBeRestarted FALSE

OsAppEcucPartitionRef Link to the OsApplication of this partition

65 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

3.2.3 Crossing partition boundaries

When BSW modules are placed into different partitions, the crossing of boundaries is
the biggest issue which needs to be solved. The following figure shows the scenario in
a quite general view:

Figure 3.4: Cross partition call

This is due to the fact that the called service assumes that it has full access to module
local data, which is not true if the call is performed from another partition because
the memory protection settings are still those of the caller. In general there are 3
possibilities how the problem can be solved:

1. Instead of a direct call the caller can do an ActivateTask to a Task from the
callee partition. In this case the activated Task will perform the real call to the
function. Instead of the ActivateTask a SetEvent can be used as an alterna-
tive. Note that both mechanisms work in an asynchronous way which means that
the original caller may need to wait or have to poll for the result

2. The caller can use CallTrustedFunction to enter the callee partition, or the
callee after being called use CallTrustedFunction to hand over to its parti-
tion. After entering the function can be called directly. CallTrustedFunction
makes sure that the caller gets the appropriate rights to make the call, e.g. chang-
ing the memory protection to the setting of the called function.

3. The call of the function may be directly possible if the called function does not
write to own data or calls other functions which write to such data. E.g. if the
function just reads out a value and return it. Basically, such a function behaves
like a library.

Dependent on the mapping of the BSW modules to different partitions the right option
has to be chosen. For all function calls between BSW modules located in different
partitions which are synchronous, we will focus on the calling possibilities (2) and (3).
Because as already stated QM modules are not changed, we have to encapsulate
calls which are made from QM partitions to ASIL and vice versa. The ASIL module
is always responsible to handle the boundary crossing since the QM module is not
touched and does not know this border. This means that if the ASIL module is the
caller, the boundary handling needs to take place on the caller side, and if the ASIL
module is the callee, the boundary handling needs to take place on the callees side

The following descriptions focus on ASIL and QM BSW modules. Besides BSW mod-
ules also CDD might be included in the system. For CDDs the same rules and restric-
tions apply (if not otherwise explicitly stated)

66 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

3.2.3.1 QM modules calls ASIL

Figure 3.5: QM calls ASIL

As already stated the QM module which performs the call is unchanged. Even more:
The QM not even knows that the called function (module) belongs to a different parti-
tion. This means we have to encapsulate the called function into a stub which performs
the boundary crossing.

Figure 3.6: Details of QM calls ASIL

This stub function can be static or generated and belongs to the called module. It
can be seen as a new function entry of the called function of the ASIL module. The
following message sequence chart shows the calling sequence. As you can see the
stub itself also has two parts, one on the caller side and one on the callee partition.

Figure 3.7: Call sequence when a stub is used

67 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

The stub itself can be static (hand written) or generated based on the available config-
uration information. The next two sub chapters are detailing the different approaches.

3.2.3.1.1 Static stub

A static stub has to cover all situations. In our case the important issue is to find the
caller partition in order to make type of call. The next code fragment shows an example
of a static stub:

1 StdReturnType module_function()
2 {
3 runId = GetCurrentApplicationId();
4 if (runId == module_applicationId)
5 { /* direct call possible */
6 return Modulemodule_function_real()
7 } else {
8 CallTrustedFunction(MODULE_REALFUNCTION_ID,NULL)
9 ...

10 }
11 }

Note that you have to init your own module application Id (or use directly the generated
application name)

3.2.3.1.2 Generated stub

If an optimized version of the stub shall be generated the generator needs all infor-
mation (e.g. who calls the function) in order to create the best code. If information
is missing or incomplete the generated code might either not be able to generate the
code at all or the code may fail during runtime.

AUTOSAR has an abstraction for calls between different partitions. This method is
used in multicore systems to allow modules a communication between different parti-
tions on different cores.

The mechanism used by the generated code is offered by the SchM: SchM_Call.
The SchM_Call will then be mapped within the SchM to one of the methods listed in
subsection 3.2.2.

For finding the best method for crossing the boundary the central question is:

Who will call the function (and use the stub)?

This information must be provided by the user via the SchM configuration. The config-
uration consists of caller, callee and references to their modules (and also implicit to
the partitions). The following diagram from the RTE shows the configuration of SchM_-
Call:

68 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

RteBswModuleInstance: EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger [0..1]

Referrable

BswModuleClientServerEntry

+ isReentrant: Boolean [0..1]
+ isSynchronous: Boolean [0..1]

BswModuleTemplate

RteBswRequiredClientServerConnection:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswRequiredClientServerEntryRef: EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultipl icity = 1
destinationType = BSW-MODULE-CLIENT-SERVER-ENTRY

RteBswProvidedClientServerEntryRef: EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultiplicity = 1
destinationType = BSW-MODULE-CLIENT-SERVER-ENTRY

RteBswProvidedClientServerEntryModInstRef: EcucReferenceDef

«atpVariation,atpSplitable»

+providedClientServerEntry

0..*

«atpVariation,atpSplitable»

+requiredClientServerEntry

0..*

+subContainer

+reference

+reference

+destination

+reference

Figure 3.8: Configuration of SchM_Call()

Based on this information and the information where a BSW module is placed, the Sch
M can generate optimized version of the SchM_Call.

E.g. if there is only one stub user and this user is placed in the same partition as the
called BSW module a direct call is possible. Example of a stub using SchM_Call:

1 Std_ReturnType module_function()
2 {
3 Std_ReturnType r;
4 (void) SchM_Call_target_module_function(&r);
5 Return r;
6 }

The approach to generate a stub has some limits which need to be considered during
system development:

• Calls from integrator code: A configuration via SchM_Call is not possible for
integrator code since this code does not belong to any BSW module and does
not have any configuration (EcuConfiguration) and module (BSWDT) information
which could be used. In such cases a hand written static stub has to be used.

69 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

• A SchM_Call configures exactly one caller-callee relationship. If a function is
called by different callers, the generated part of the stub cannot distinguish which
SchM_Call is required for which caller. In such cases a static stub is required.

Note: If also the QM caller would use a SchM_Call instead of the real function name
the stub could be avoided completely. But this would contradict the target to reuse
existing QM code unmodified.

For parameter handling see subsubsection 3.2.3.5.

3.2.3.2 ASIL calls QM partition

Figure 3.9: ASIL calls QM

This chapter covers now the direction of an ASIL caller and a QM callee. Here the ASIL
module already knows that a boundary crossing is required. (Otherwise the called QM
function would be an ASIL function). Since the QM function shall not detect any differ-
ence when called from an ASIL function or from a QM function in the same partition, it
must be called as would the call be locally performed.

As a consequence of this we need again a code fragment which performs the real call.
This code fragment in this case is named wrapper.

Figure 3.10: Wrapper for ASIL calls to QM

This wrapper function can be statically or dynamically generated and belongs to the
caller module but is partly executed in the partition of the callee. The following message
sequence chart shows the calling sequence, when CallTrustedFunction is used:

70 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Figure 3.11: Call sequence when a wrapper is used

We can again differentiate in a static wrapper and wrappers which are generated out
of the configuration.

Note that independent of the technical solution it needs to be checked whether such
calls are allowed within the project specific safety goals.

3.2.3.2.1 Static wrapper

The following code fragment shows a possible wrapper in case only one "user" calls
the function (in other cases the buffer handling needs to be extended).

In the example the CallTrustedFunction mechanism is used:
1 uint8 wrapper_function()
2 {
3 /* ... */
4 CallTrustedFunction(MODULE_REALFUNCTION_ID,NULL)
5 return function_return_value;
6 }

This is the second part of the wrapper which is located in the callee partition:
1 uint8 function_return_value;
2

3 void TRUSTED_call_function (TrustedFunctionIndexType a,
4 parameter_struct *local_struct)
5 {
6 function_return_value = function();
7 return;

71 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

8 }

3.2.3.2.2 Generated wrapper

If the wrapper shall be generated the generator needs specific information in order to
create the best code. If information is missing or incomplete the generated wrapper
code might fail.

Like the stub handling In subsubsection 3.2.3.1 we can use the SchM_Call service to
hide the partition transitioning. In contrast to the stubs we need not to focus on possible
users of the wrapper - the users are just the ASIL module functions - but on the called
function. This means we have to find out the callees partition in order to make the
right call. Since we only support one QM partition, we can just look this up (parameter
EcucPartitionBswQmModuleExecution ist TRUE) and know where the call must
be performed.

There is also one limitation of this approach:

• Calls to integrator code: A configuration via SchM_Call is not possible since
the integrator code does not belong to any BSW module and does not have any
configuration (EcuConfiguration) and module (BSWDT) information which could
be used. In such cases a separate static wrapper has to be used to encapsu-
late calls from integrator code and the integrator code need small changes, e.g.
changing the name of the called function to avoid name clashes.

For parameter handling see subsubsection 3.2.3.5.

3.2.3.3 ASIL calls ASIL

The case of an ASIL to ASIL call can be seen as a combination of
subsubsection 3.2.3.2 and subsubsection 3.2.3.1. Also here a generic glue code might
be needed if the modules are not placed in the same ASIL partition. In this case either
the caller or the callee have to provide this glue code. In an ASIL system the glue code
is normally provided by those modules which have the higher ASIL. The glue code can
be created statically or can be generated.

For the generation of the glue code the following limitations exist:

• Calls to integrator code: A configuration via SchM_Call is not possible since
the integrator code does not belong to any BSW module and does not have any
configuration (EcuConfiguration) and module (BSWDT) information which could
be used. In such cases

– Either a static glue code has to be used to encapsulate calls from/to integra-
tor code and the integrator code might need small changes, e.g. changing
the name of the called function to avoid name clashes.

72 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

– or offer vendor specific configuration parameter which holds per callout a
reference to the OsApplication where the integration code is placed.

• If we know only the address of the callee (this can happen if the interface is
generic and function pointers are used for the call, e.g. in the PDU Router) we
need a dedicated vendor specific configuration parameter for the ASIL module
which provides the information in which partition the callee is located.

3.2.3.4 QM calls QM

This caller-callee combination is only supported if the involved BSW QM partitions
share the same memory access rights or the BSW QM modules are modified to en-
capsulate cross-partition calls in CallTrustedFunction wrappers. This however
violates the initial assumption for this approach to reuse existing BSW modules without
modification.

3.2.3.5 Parameter passing

In the previous sections we showed how a call to a function in another partition can
be made. Besides the real call mechanism there is another important topic and this
is the passing of parameters to the callee and passing results back to the caller. The
question behind this is: How does the callee access these parameters and how can
results be propagated back to the caller.

AUTOSAR differentiates between IN, OUT and INOUT parameters which are passed.
IN parameters are not critical, because they are normally passed by value and even for
cases where a by reference passing is done the callee is not allowed to write to them.
This means that they do not pass any information back to the caller.

OUT and INOUT parameters are used to return results from the callee back to the
caller. The question now is: how can these values passed back to the caller if callee
and caller are not in the same partition.

In general the following methods are possible:

1. If caller and callee are in different partitions the callee works on a copy (for INOUT
data) or empty space (OUT data) and when returning back to the caller the values
are copied back. For the inter partition communication of data AUTOSAR offers
the IOC mechanism of the Os. However, often usage of IOC can be avoided by
copying such that only read access is needed.

2. A hardware specific solution: In such cases a copy / extra buffer is avoided by
using dedicated hardware features of the used microcontroller which guarantee
freedom of interference. E.g. If the hardware allows for private shared memory
areas between caller and callee.

73 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

In the following we will show how (1) works. Option (2) depends on the used hardware
and is not standardized in AUTOSAR. The following code fragment shows an example
how the parameter passing works (case: ASIL calls QM)

1 /* caller side code */
2 Std_ReturnType _Dem_GetOperationCycleState(
3 uint8 id,
4 Dem_OperationCycleStateType* state)
5 {
6 ...
7 /* setup params struct with arguments */
8

9 ret = CallTrustedFunction(GETCYCLESTATE,¶ms)
10 if (ret == E_OK)
11 {
12 IocReceive_RETURNVALUEGETCYCLESTATE(&ret);
13 IocReceive_VALUEGETCYCLESTATE(state);
14 }
15 return ret;
16 }

1 /* callee side code */
2 void TRUSTED_GETCYCLESTATE(TrustedFunctionIndexType a,
3 parameter_struct *local_struct)
4 {
5 Std_ReturnType localreturn;
6 uint 8 localid;
7 Dem_OperationCycleStateType localstate
8

9 /* setup parameters from local_struct */
10 ...
11

12 localreturn = Dem_GetOperationCycleState(localid,
13 &localstate);
14 IocSend_RETURNVALUEGETCYCLESTATE(localreturn);
15 IocSend_VALUEGETCYCLESTATE(localstate);
16

17 return;
18 }

Note that the above example is quite typical for AUTOSAR inter-partition calls. It as-
sumes that the lifetime of the buffer is equal to the duration of the called function. If
this is different, e.g. one function which just provides a buffer and another function at
a later time indicate that the buffer is now ready (example: NvM read mechanism) an
adoption is needed.

3.2.4 Access to peripherals / hardware

In AUTOSAR the access to peripherals or hardware is limited to BSW modules. Typi-
cally only some of them require a real access, e.g.:

74 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

• The Os switches between different contexts and need to read/write the context
registers. Also interrupt locking requires normally access to hardware registers
or execution of privileged instructions.

• During startup the Mcu driver needs to enable the microcontroller clocks and may
perform further initialization of registers

• IO drivers need to access their part of the hardware.

• ...

If parts of the BSW are now running in a partition where the memory protection is
enabled the full access to hardware is normally no longer possible. In such cases a
hardware access can be realized by:

1. "CDD approach": Create a piece of code which access the required hardware and
map this code to a trusted OsAppication with memory protection disabled. This
allows the code to have full access. From within your BSW module all hardware
access must then call this small piece of code. In this case this code has full
access to hardware.

2. "Hardware approach": If possible map the hardware registers into the address
space of the partition which requires the access. This normally opens the access
to these registers for the BSW modules which are located in the partition. The
availability of this method depends strongly on the used microcontroller and the
capabilities of the memory protection unit.

Example for the "CDD approach": A CDD offers methods to read (peek) and write
(poke) hardware registers. Note that in such cases it should be mentioned that addi-
tionally an access management is necessary ("Who is allowed to call these functions?")
because otherwise you could not guarantee freedom from interference.

The CDD is mapped to an partition with full memory access.

75 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Figure 3.12: CDD approach

Note that some modules typically have implicit access, because their code is executed
before the memory protection scheme is started in the Os. Details can be found in the
next chapter.

3.2.5 Startup, Shutdown and Sleep/Wakeup

3.2.5.1 Startup

In AUTOSAR the startup is handled by the EcuM module. It takes care about the right
order during system start. In an ASIL system the user has to take care that during
startup no relevant data is overwritten or the issue is at least detected. Such faults
can happen because the memory protection is not yet running because the Os is not
yet started. The following figure from the EcuM shows the default sequence during
startup.

76 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

«module»

Os

C Init Code «module»

EcuM

BSW Task (OS task
or cyclic call)

Boot Menu

ResetReset

ref
StartPostOS Sequence

ref
StartPreOS Sequence

EcuM_StartupTwo()

EcuM_Init()

Reset
Vector()

StartOS()

Jump()

ActivateTask()

StartupHook()

Set up
stack()

Figure 3.13: Startup of ECU

As a general hint it is always good to minimize the amount of code which is executed
before the Os starts. Depending on the ASIL it might be required to develop all code
of the startup as ASIL or to find other ways to make sure that nothing bad happened
during startup e.g. by checking relevant data at a later point in time.

3.2.5.2 Shutdown

For the shutdown we have to distinguish different scenarios. From AUTOSAR per-
spective the EcuM also handles the shutdown. Compared with the startup we have a
situation where the memory protection is enabled also during shutdown.

3.2.5.3 Sleep / Wakeup

In AUTOSAR EcuM takes also care for the sleep / wakeup handling. If a system has
specific safety requirements in this area, also the EcuM shall take care. E.g. check if
users are allowed to trigger a sleep / do a wakeup validation.

3.2.6 Error handling

When BSW modules are mapped to different partitions they do not change the overall
AUTOSAR error handling. E.g. calls to Dem or Det still take place and - depending on
the mapping - may cross partition boundaries.

77 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Nevertheless the use of more than one partition with BSW modules introduces some
new fault scenarios:

• A BSW function located in a trusted memory protected partition may cause a
memory violation.

• A BSW function may be executed with timing protection and may run out of time,
causing a timing violation.

• A BSW function may try to access some hardware registers where it has no
access to.

• ...

In AUTOSAR systems without BSW distribution these issues are normally not detected
because the timing protection is not used for BSW tasks. This may cause problems
during normal program execution probably or at a later point in time.

In a partitioned system where the protection is enabled also for BSW modules the
problems are detected and reported via the OsProtectionHook. Although it is possible
to restart a single OsApplication, restarting of single BSW partitions is not possible,
since the BSW as whole has too many dependencies between the modules. This
means that also for partitioned systems a protection fault is fatal and will cause a
restart of the system. The advantage is that the fault can be detected much earlier and
the restart can be made in a more controlled manner.

3.2.7 Timing protection

From the errors mentioned in subsection 3.2.6 the timing faults are a special case since
they may happen at any time. E.g. consider the following example:

Figure 3.14: Timing fault

78 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

Here a runnable of a SWC calls an AUTOSAR service and continues execution in the
QM BSW partition. From here a call to an ASIL module located in a different partition
is performed. Then - right within the ASIL module - the timing violation takes place.
The ASIL module has no chance to detect the problem and the system will shutdown.

To avoid such scenarios, trusted OsApplications have the ability to delay timing viola-
tion up to the point when the causing task (or ISR) leaves the partition. If both BSW
partitions have the flag enabled the timing violation is reported at the point where the
call from the SWC to the BSW module returns. Then it causes a violation and may
end with a restart of the QM Application partition. The advantage here is that the BSW
does not report the issue and there is no need for a shutdown.

The feature can be enabled for each trusted OsApplication via the configuration pa-
rameter OsTrustedApplicationDelayTimingViolationCall.

3.2.8 Combining Safety and Multi-Core

In case ASIL systems are implemented using a multi-core architecture, all considera-
tions made until now for both, safety and multi-core, are valid. In a multi-core system,
the BSW is assigned to core specific partitions. If safety is added, we have core spe-
cific QM and ASIL partitions. The specific multi-core configuration parameters and the
specific safety configuration parameters are independent and need to be set according
to the multi-core respectively safety needs.

3.2.9 Performance Considerations

The main goal for BSW distribution within safety systems is the minimized effort if only
(small) parts of the system need to be developed according to ASIL. The drawback is
that the protection schema causes additional overhead. The amount of time required
for the overhead depends on the project and on the mapping of the BSW modules and
the frequency of interaction between the partitions.

The overhead will be minimized if ...

• ... as few as possible BSW partitions are used. Adding more partitions causes in
all cases more overhead.

• ... mapping of BSW modules follows the "nearest" approach. This means that
modules with a high interaction should be placed in one partition. E.g. placing
the whole communication stack in on partition is much faster than splitting it up
and placing e.g. the PduR in a separate partition.

• ... the number of inter partition calls is minimized. The possibilities for the user
are normally limited since AUTOSAR defines the interaction between the BSW
modules. Nevertheless integrator code and CDDs can be written in such way
that the number of such inter partition calls is minimal.

79 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

• ... specific hardware features are supported. E.g. if there is a possibility to have
more memory regions by hardware they can be utilized to avoid copying data for
OUT or INOUT parameters. Note that it is not enough that the hardware offers
such mechanisms; the AUTOSAR vendor must also utilize it (e.g. by supporting
such features in the Os or memory mapping handling).

• ... avoid IOC calls. IOC will always do a copy of your data. Thus avoiding calls to
it will increase the performance. In general try to "pull" the data instead of "push",
this means the caller shall (after return of CallTrustedFunction) try to read
the data. The buffer shall be on the callee side if possible.

3.2.10 Constraints

The approach to separate BSW modules into different partitions works, but has limita-
tions depending on the available hardware:

• On some MCUs the access to registers is limited to specific processor modes. In
such cases a peek/poke approach (see subsection 3.2.4) is usable but consumes
more time than a direct access. The amount of time spend for these functions
may be fine for startup or shutdown, but not during normal operation if performed
with high frequency.

• Normally only write access is limited between (BSW) partitions. Sometimes even
a read access to peripheral registers has write effects (e.g. reading the buffer of
received characters). In such cases also the read access may be limited.

• Sometimes the hardware does not support the use of memory protection while
executing in privileged modes. In such cases it is recommended to run all par-
titions in non-privileged modes to use memory protection. The amount of code
which requires privilege modes shall be minimal in such cases.

Note that for those measures typically the MCAL vendor is responsible. This may also
apply for an MCAL qualified to an ASIL if the BSW is only QM.

80 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

4 Outlook on Upcoming AUTOSAR Versions

In this chapter, we list changes to the distribution of BSW that may occur in the next
backward incompatible release of AUTOSAR. Hence, the content of this chapter is
not applicable to AUTOSAR 4.x implementations, but is supposed to show possible
extensions and enhancements for future versions of AUTOSAR. Note that all these
topics need to be considered in parallel, because definitions of BSW functional clusters
and their standardized interfaces, which will be named "Standardized AUTOSAR BSW
Cluster Interface" then, are needed to support a safety use case.

4.1 Known limitations

The support for Basic Software Allocation in AUTOSAR is currently limited to backward
compatible changes (w.r.t. AUTOSAR 4.0.3). This currently results in the following
restrictions, which may not apply to future releases of AUTOSAR:

• Communication between master and satellites is not standardized.

• BSW functional clusters and their AUTOSAR BSW Cluster Interface are not stan-
dardized.

Since CONC 691 is still draft, this also applies to the properties of the Mem driver
mentioned in subsection 2.5.8.

4.2 Inter BSW module calls in distributed BSW

Currently the BSW distribution has the constraint that existing QM modules shall be
reused as is. If we would weaken this we can allow a more performant communication
between modules. E.g. it could be possible to include SchM_Calls directly at the
caller and to avoid the stubs. (Typically the caller knows the context of the call and can
prepare the best environment for the call).

Also multi-core systems would benefit if all inter BSW module calls are encapsulated
with a SchM_Call.

4.3 Standardized BSW functional clusters

BSW functional clusters are groups of functionally coherent BSW modules. Each BSW
functional cluster includes a set of BSW modules. It is possible to have several func-
tional clusters of the same type (e.g. several I/O clusters in different partitions), each
using a different set of modules (e.g. IOHWA + ADC in one partition and IOHWA +
ADC + DIO in the second partition). Each functional cluster has a "AUTOSAR BSW
Cluster Interface", which is used to communicate with other functional clusters

81 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

BSW functional clusters can be allocated to different partitions, and functional clusters
of the same type can be available in several partitions. Different functional clusters can
be allocated to the same or to different partitions.

The same functional cluster can only exist at most once in each partition.

But this whole cluster allocation and the resulting real interfaces are not yet standard-
ized, just the technique is proposed here. Thus:

Upcoming versions of AUTOSAR may standardize one or more of the following:

• Define which modules are assigned to which BSW functional cluster (=> "Stan-
dardized BSW functional cluster"). It is very likely that modules of the same stack
(for instance I/O services, I/O hardware abstraction and I/O drivers) will be as-
signed to the same functional cluster.

• Standardize communication between functional clusters of different types via
"Standardized AUTOSAR BSW cluster interfaces", as shown in Figure 4.1.

Figure 4.1: Standardized BSW Functional Clusters

82 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

5 Glossary

All technical terms used throughout this document - except the ones listed here - can
be found in the official AUTOSAR glossary [5] or the Software Component Template
Specification [6].

5.1 Acronyms and abbreviations

Abbreviation Explanation

ASIL Automotive Safety Integrity Level

QM Quality Managed (i.e. not developed according to ASIL requirements)

IOC Inter OS-Application communicator, part of OS

MCU microcontroller unit, µC

MCAL microcontroller abstraction layer

5.2 Technical Terms

Term Explanation

BSW functional cluster A coherent group of BSW modules. The technique is proposed in this document, but a real
allocation of modules to clusters is currently not standardized. A BSW functional cluster
may be similar to what usually is called a "stack", but it would also be possible to combine
several stacks into a cluster or to distribute a stack across several clusters. A BSW
functional cluster includes the superset of modules, which can be part of the functional
cluster, but not all modules need to be available in a specific implementation. In case the
real allocation of BSW modules to BSW functional clusters is standardized in future, they
probably will be named "Standardized BSW functional clusters".

BSW functional clusters can be allocated to different partitions, and clusters of the same
type can be available in several partitions (either on the same or on different cores).
Different functional clusters can be allocated to the same partition.

Note: Contrary to ICC2 clustering, the internal structure and the interfaces between the
modules within the functional cluster are not affected by the BSW multi-core support in
AUTOSAR 4.1.1.

AUTOSAR BSW Cluster
Interface

Interfaces between BSW functional clusters resulting from a vendor/project specific
definition of BSW functional clusters. The technique is proposed in this document in a
vendor/project specific way. But the allocation of modules to BSW functional clusters and
thus the resulting interfaces are not standardized yet (if possible at all). This term may be
defined in an upcoming release of AUTOSAR as "Standardized AUTOSAR BSW Cluster
Interface" after standardization.

Contrary to the standardized AUTOSAR interfaces, AUTOSAR BSW Cluster Interfaces
shall not be connected to SW-Cs or BSW modules on other MCUs.

Master Part of a distributed BSW module that coordinates requests by satellites and can filter or
monitor incoming satellite requests. The master may work properly even if the satellites are
not available. In future versions of AUTOSAR, where case partitioning may be used to
enhance safety, it may be recommended or mandatory to locate the master in a partition
with a high trust level, e.g. in a trusted partition.

5

83 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

4
Satellite Part of a distributed BSW module. The distribution of work between master and satellite is

implementation specific. One possibility is that the satellite only provides the interfaces to
the other modules and routes all requests to the master and answers back to the other
modules. In a different scenario, the satellite can provide the full functionality locally and
only synchronizes its internal states with the master if necessary. Intermediate forms
between these two scenarios are possible, but the satellites in general cannot work without
the master.

84 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

Guide to BSW Distribution
AUTOSAR CP R22-11

6 References

[1] Requirements on Basic Software Module Description Template
AUTOSAR_RS_BSWModuleDescriptionTemplate

[2] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping

[3] Specification of Basic Software Mode Manager
AUTOSAR_SWS_BSWModeManager

[4] ISO 26262:2018 (all parts) – Road vehicles – Functional Safety
http://www.iso.org

[5] Glossary
AUTOSAR_TR_Glossary

[6] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

85 of 85 Document ID 631: AUTOSAR_EXP_BSWDistributionGuide

http://www.iso.org

	1 Introduction
	2 BSW Distribution in Multi-Core Systems
	2.1 Overview
	2.1.1 Supported Scenarios
	2.1.2 Performance Use Cases and Hardware Assigned to Different Cores
	2.1.3 Technical Overview

	2.2 Parallel Execution of BSW modules
	2.2.1 Core-Dependent Branching
	2.2.2 Master/Satellite-approach
	2.2.3 Using the BSW Scheduler for Inter-Partition-Communication
	2.2.4 Using Shared Buffers (in systems without memory protection)
	2.2.5 Accessing Hardware/Drivers
	2.2.6 Concurrency safe implementation of modules
	2.2.7 Kernel based Master-Satellite Realization
	2.2.8 Atomic Operations Library

	2.3 SchM Interfaces for Parallel BSW execution
	2.4 Configuration of Basic Software in Partitioned Systems
	2.4.1 Task Mapping
	2.4.2 General Configuration of Master and Satellites
	2.4.3 Configuring the BswM (per Partition)
	2.4.4 Configuring the EcuM (per Core)

	2.5 MCAL Distribution
	2.5.1 Introduction
	2.5.2 Assumptions of Use
	2.5.3 Constraints
	2.5.4 Definition of MCAL Users
	2.5.5 Multiple Partitions versus Multi-Core MCAL
	2.5.6 Multi-Core Capabilities Classification Criteria
	2.5.7 Definition of MCAL Multi-Core Types
	2.5.8 Mapping MCAL Modules to Multi-Core Types
	2.5.9 Seperation Stragies and Mapping of Elements
	2.5.10 Separation Strategies
	2.5.11 Mapping of Elements
	2.5.12 Examples

	2.6 Mapping Software to different Core Partitions
	2.6.1 Allocation with Global scope
	2.6.2 Allocation with Local scope
	2.6.3 Allocation using Cloning capabilities
	2.6.4 How to determine the Core Scope?

	2.7 Com-Stack Distribution
	2.7.1 Introduction
	2.7.2 Assumptions of Use
	2.7.3 Constraints
	2.7.4 Functional Elements
	2.7.5 Architectural Components

	2.8 Crypto-Stack Distribution
	2.8.1 Freshness value handling

	3 BSW Distribution in Safety Systems
	3.1 General overview on safety
	3.2 Safety solutions in AUTOSAR
	3.2.1 Some modules are always ASIL
	3.2.2 Overall configuration
	3.2.3 Crossing partition boundaries
	3.2.4 Access to peripherals / hardware
	3.2.5 Startup, Shutdown and Sleep/Wakeup
	3.2.6 Error handling
	3.2.7 Timing protection
	3.2.8 Combining Safety and Multi-Core
	3.2.9 Performance Considerations
	3.2.10 Constraints

	4 Outlook on Upcoming AUTOSAR Versions
	4.1 Known limitations
	4.2 Inter BSW module calls in distributed BSW
	4.3 Standardized BSW functional clusters

	5 Glossary
	5.1 Acronyms and abbreviations
	5.2 Technical Terms

	6 References

