
Specification of Health Monitoring
AUTOSAR FO R21-11

Document Title Specification of Health
Monitoring

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 850

Document Status published

Part of AUTOSAR Standard Foundation

Part of Standard Release R21-11

Document Change History
Date Release Changed by Description

2021-11-25 R21-11
AUTOSAR
Release
Management

• Add Application Interfaces for
SystemHealthMonitoring
• Add Mode Dependent Configuration

2020-11-30 R20-11
AUTOSAR
Release
Management

• Change document type from SWS to
ASWS
• Remove arbitration rules and actions
• Remove HealthChannel supervision
• Add SystemHealthMonitoring
• Remove spec item numbers from

API chapter

2019-11-28 R19-11
AUTOSAR
Release
Management

• Clarifications in specification of
supervisions
• Deleted parameter "‘number of

instances"’ from HealthChannel and
SupervisedEntity
• Removed SWS_HM_00071
• Changed Document Status from

Final to published

1 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

2019-03-29 1.5.1
AUTOSAR
Release
Management

• Updated acronyms table
• Added chapter with not applicable

requirements
• Added SWS_HM_00460 and

SWS_HM_00461
• Updated traceability to requirements

of RS Health Monitoring
• Moved figures out of requirement

trace items

2018-10-29 1.5.0
AUTOSAR
Release
Management

• Added API for retrieving supervision
status
• Clarified error recovery actions
• Modified parameter configuration
• Several editorial changes

2018-03-29 1.4.0
AUTOSAR
Release
Management

• Initial release as "draft"

2 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Table of Contents

1 Introduction and functional overview 6

1.1 Input documents and related standards and norms 6

2 Acronyms and abbreviations 6

3 Related documentation 8

4 Constraints and assumptions 9

4.1 Limitations and conditions of use . 9
4.2 Applicability to car domains . 9

5 Requirements Tracing 9

6 Functional specification 11

6.1 Functional Overview . 11
6.1.1 Functional Interfaces . 11
6.1.2 Basic concepts - Supervised Entitys, Checkpoints,

Graphs, Supervision Mode 13
6.1.3 Execution of Supervision Functions 14

6.1.3.1 Alive Supervision 14
6.1.3.2 Deadline Supervision 14
6.1.3.3 Logical Supervision 14

6.1.4 Determination of Supervision Status 15
6.1.4.1 Rule Pocessing . 15
6.1.4.2 Watchdog Control 15
6.1.4.3 Error Handling . 15

6.1.5 Functional Decomposition . 15
6.2 Execution of Supervision Functions and Determination of Supervision

Results . 17
6.2.1 Alive Supervision . 17

6.2.1.1 Alive Supervision Configuration 18
6.2.1.2 Alive Supervision Algorithm 20

6.2.2 Deadline Supervision 21
6.2.2.1 Deadline Supervision Configuration 21
6.2.2.2 Deadline Supervision Algorithm 24

6.2.3 Logical Supervision . 24
6.2.3.1 Logical Supervision Configuration 25
6.2.3.2 Logical Supervision Algorithm 28

6.3 Determination of Supervision Status 29
6.3.1 Determination of Local Supervision Status 29
6.3.2 Determination of Global Supervision Status 30

6.4 System Health Monitoring . 30
6.4.1 System Health Monitoring Architecture 30
6.4.2 Concept of Health Indicator 32

4 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

6.4.3 Application interfaces . 33
6.4.4 Usage of HealthIndicators . 33

7 Health Monitoring API specification 34

7.1 Provided API . 34
7.1.1 Reporting Checkpoints . 34
7.1.2 Reporting health status . 34
7.1.3 Forwarding information between health monitoring components 34
7.1.4 Init / DeInit . 34
7.1.5 Retrieving Supervision Status from application 35

7.2 Assumed API . 35
7.2.1 Triggering error handling . 35
7.2.2 Controlling watchdog . 35

8 Configuration Parameters 35

8.1 Overall configuration . 36
8.2 Mode-independent settings . 38

8.2.1 Supervised Entity . 38
8.3 Mode-dependent settings . 39

8.3.1 Alive Supervision . 39
8.3.2 Deadline Supervision 40
8.3.3 Logical Supervision . 40
8.3.4 Global Supervision . 41

9 Service Interfaces 42

9.1 Type definitions . 42
9.2 Provided Service Interfaces . 44

9.2.1 HealthIndicator . 44
9.2.2 HealthInfo . 45

5 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

1 Introduction and functional overview

1.1 Input documents and related standards and norms

This document specifies the functionality on the Health Monitoring and System
Health Monitoring.

Health Monitoring is required by [1, ISO 26262] (under the terms control flow
monitoring, external monitoring facility, watchdog, logical monitoring, temporal moni-
toring, program sequence monitoring) and this specification is supposed to address all
relevant requirements from this standard.

Health monitoring has the following error detection functions:

1. Alive Supervision - checking if Checkpoints happens with a correct fre-
quency

2. Deadline Supervision - checking the delta time between two Checkpoints

3. Logical Supervision - checking for correct sequence of execution of
Checkpoints

The Health Monitoring is supposed to be implemented by AUTOSAR classic plat-
form and AUTOSAR adaptive platform. It may be implemented by other platforms as
well.

The Health Monitoring requirements are specified in [2, RS HealthMonitoring].

The System Health Monitoring introduces platform agnostic health monitoring. It aims
to abstract the health monitoring on a system level by sharing of health information be-
tween different Adaptive, Classic or non-AUTOSAR platforms. The health information
shall be shared between different platforms using a standardized format of Health
Indicators. The abstract interfaces for exchanging the health information across
several platforms are provided in this document.

2 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to Health Monitoring
that are not included in the AUTOSAR Glossary [3].

Abbreviation / Acronym: Description:

Alive Indication An indication of a Supervised Entity to signal its aliveness
by calling a checkpoint used for Alive Supervision.

Alive Supervision Kind of supervision that checks if a Supervised Entity executed
in a correct frequency.

6 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Checkpoint A point in the control flow of a Supervised Entity where the activity
is reported.

Deadline Supervision Kind of supervision that checks if the execution time between two
Checkpoints is within minimum/maximum time limit.

Final Checkpoint The ending Checkpoint of a Graph. There can be zero or more
Final Checkpoints for each Graph.

Global Supervision Status Status that summarizes the Local Supervision Status of all Su-
pervised Entities of a software subsystem.

Graph A set of Checkpoints connected through Transitions, where at
least one of Checkpoints is an Initial Checkpoint. There is a path
(through Transitions) between any two Checkpoints of the Graph.

Health Channel Channel providing information about the health status of a
(sub)system. This might be the Global Supervision Status of an
application, the result any test routine or the status reported by
a (sub)system (e.g. voltage monitoring, OS kernel, ECU status,
...).

Health Channel Supervision Kind of supervision that checks if the health indicators registered
by the supervised software are within the tolerances/limits.

Health Monitoring Supervision of the software behaviour for correct timing and se-
quence.

Health Status A set of states that are relevant to the supervised software (e.g.
a Voltage State, an application state, the result of a RAM moni-
toring algorithm).

Health Status Supervision Check if the health indicators registered by the supervised soft-
ware are within the tolerances/limits.

Initial Checkpoint The starting Checkpoint of a Graph. There can be one or more
Initial Checkpoints for each Graph.

Logical Supervision Kind of online supervision of software that checks if the soft-
ware (Supervised Entity or set of Supervised Entities) is executed
in the sequence defined by the programmer (by the developed
code).

Local Supervision Status Status that represents the current result of Alive Supervision,
Deadline Supervision and Logical Supervision of a single Super-
vised Entity.

Machine see [3] AUTOSAR Glossary

Platform Health Management Health Monitoring for the Adaptive Platform

7 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Supervised Entity A whole or part of a software component type which is included
in the supervision. A Supervised Entity denotes a collection of
Checkpoints within the corresponding software component type.
A software component type can include zero, one or more Super-
vised Entities. A Supervised Entity may be instantiated multiple
times, in which case each instance is independently supervised.

Supervision Mode An overall state of a microcontroller or virtual machine or state
of a Function Group (in case of Adaptive Platform). Modes are
mutually exclusive. A mode can be e.g. Startup, Shutdown, Low
power.

Health Indicator Health Indicator provides an evaluation metric of current system
performance with regard to safety requirements.

System Health Monitor(SHM) System Health Monitor is responsible for monitoring the health of
a (Sub)-system. It provides Health Indicators that can be used
for system wide error handling across several Classic, Adaptive
and any third party platforms.

Local Health Monitor Local Health Monitor gathers health information of the platform
on which it is deployed.

Health Indicator Interface Health Indicator Interface is an interface used for communication
of Health Indicators using a standardized service field.

SE Supervised Entity.

SOTIF Safety Of The Intended Functionality [4].

Performance The Performance rates the performance with respect to malfunc-
tioning behavior.

Reliability Reliability evaluates how much to trust the system due to uncer-
tainties.

Table 2.1: Acronyms

3 Related documentation

References

[1] ISO 26262:2018 (all parts) – Road vehicles – Functional Safety
http://www.iso.org

[2] Requirements on Health Monitoring
AUTOSAR_RS_HealthMonitoring

[3] Glossary

8 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

http://www.iso.org

Specification of Health Monitoring
AUTOSAR FO R21-11

AUTOSAR_TR_Glossary

[4] ISO/PAS 21448:2019 – Road vehicles – Safety of the intended functionality
http://www.iso.org

[5] Explanation of System Health Monitoring
AUTOSAR_EXP_SystemHealthMonitoring

[6] Specification of Watchdog Manager
AUTOSAR_SWS_WatchdogManager

[7] Specification of Platform Health Management
AUTOSAR_SWS_PlatformHealthManagement

4 Constraints and assumptions

4.1 Limitations and conditions of use

• The logic for determination of Health Indicator values is not standardized
as a part of AUTOSAR.

• Deadline Supervision across Supervised Entitys is not completely
specified. It is not specified to which Local Supervision Status (Local
Supervision Status corresponds to a Supervised Entity) shall its result
contribute to (either to one corresponding to Source Checkpoint/Target Check-
point/ both).

4.2 Applicability to car domains

No restrictions.

5 Requirements Tracing

Requirement Description Satisfied by
[RS_HM_09125] Health Monitoring shall provide

an Alive Supervision
[ASWS_HM_00074]
[ASWS_HM_00083]
[ASWS_HM_00098]

[RS_HM_09163] Health Monitoring shall provide
configurable tolerances for
detected errors and configurable
delays of error reactions.

[ASWS_HM_00075]
[ASWS_HM_00079]

9 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

http://www.iso.org

Specification of Health Monitoring
AUTOSAR FO R21-11

Requirement Description Satisfied by
[RS_HM_09222] Health Monitoring shall provide

a Logical Supervision
[ASWS_HM_00252]
[ASWS_HM_00271]
[ASWS_HM_00273]
[ASWS_HM_00295]
[ASWS_HM_00296]
[ASWS_HM_00297]
[ASWS_HM_00331]

[RS_HM_09235] Health Monitoring shall provide
a Deadline Supervision

[ASWS_HM_00228]
[ASWS_HM_00229]
[ASWS_HM_00294]
[ASWS_HM_00299]
[ASWS_HM_00354]

[RS_HM_09242] Health Monitoring shall support
the supervision within and
across Supervised Entities.

[ASWS_HM_00460]

[RS_HM_09243] Health Monitoring shall support
the supervision of concurrent
and parallel Supervised Entities.

[ASWS_HM_00461]

[RS_HM_09249] Health Monitoring shall support
building safety-related systems.

[ASWS_HM_00074]
[ASWS_HM_00083]
[ASWS_HM_00098]
[ASWS_HM_00228]
[ASWS_HM_00229]
[ASWS_HM_00252]
[ASWS_HM_00271]
[ASWS_HM_00273]
[ASWS_HM_00294]
[ASWS_HM_00295]
[ASWS_HM_00296]
[ASWS_HM_00297]
[ASWS_HM_00299]
[ASWS_HM_00331]
[ASWS_HM_00354]
[ASWS_HM_00460]
[ASWS_HM_00461]

[RS_HM_09300] System Health Monitor shall
transmit Health Indicators as
standardized service events

[ASWS_HM_00510]

[RS_HM_09301] SHM shall receive relevant
health information from local
health monitors

[ASWS_HM_00501]
[ASWS_HM_00513]

[RS_HM_09302] Communication between SHM
and local health monitors shall
be E2E protected

[ASWS_HM_00503]

10 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Requirement Description Satisfied by
[RS_HM_09303] SHM shall be platform agnostic [ASWS_HM_00501]

[ASWS_HM_00502]
[ASWS_HM_00503]
[ASWS_HM_00504]
[ASWS_HM_00505]
[ASWS_HM_00506]
[ASWS_HM_00509]
[ASWS_HM_00510]
[ASWS_HM_00511]
[ASWS_HM_00512]
[ASWS_HM_00513]
[ASWS_HM_00514]
[ASWS_HM_00515]
[ASWS_HM_00516]
[ASWS_HM_00517]
[ASWS_HM_00518]
[ASWS_HM_00519]
[ASWS_HM_00520]
[ASWS_HM_00521]
[ASWS_HM_00522]
[ASWS_HM_00523]

[RS_HM_09304] SHM shall determine Health
Indicators.

[ASWS_HM_00501]
[ASWS_HM_00504]

[RS_HM_09305] SHM should support
redundancy concepts

[ASWS_HM_00504]
[ASWS_HM_00505]

[RS_HM_09308] Communication between SHM
instances shall be E2E protected

[ASWS_HM_00506]

[RS_HM_09309] Cyclic communication between
SHM and local health monitors
shall be used for aliveness
checks

[ASWS_HM_00502]
[ASWS_HM_00509]

[RS_HM_09310] Cyclic communication between
SHM instances shall be used for
aliveness checks

[ASWS_HM_00509]

6 Functional specification

6.1 Functional Overview

This section presents black-box functional overview of the Health Monitoring. It
does not define any requirements nor details on the functionality.

6.1.1 Functional Interfaces

The Health Monitoring supervises the execution of a configurable number of Su-
pervised Entitys and it also supervises their Health Status. When it detects
a violation of the configured temporal and/or logical constraints on program execution
or a violation of the configured health constraints, it triggers the appropriate error han-

11 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

dlers. Health Monitoring controls also the Watchdogs correspondingly, see Figure
6.1.

Figure 6.1: Scope of Health Monitoring

The Health Monitoring function can be split as a daisy chain. Each Health Mon-
itoring instance has the same interface to Supervised Entitys, Error handling
and Watchdog. In addition, the interface between the instances of Health Moni-
toring is standardized as well - it carries the results of Health Monitoring as
well as "raw data" (Checkpoint IDs, Health Status together with necessary context in-
formation). Each instance adds some context-specific data to Checkpoints (e.g.
process/task id).

In the example below (Figure 6.2), there are three instances of Health Monitoring,
each having different usage scenarios.

Figure 6.2: Scope of Health Monitoring Daisy Chain example

The data exchanged between Health Monitoring instances is configurable.

These are known use cases for Health Monitoring instances:

• The first instance is typically the same process/executable/application as the
Supervised Entity.

12 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

• Further instance(s) can be realized as services/daemons on the microcontroller

• Further or final instance can be realized on a remote machine.

A SystemHealthMonitor is responsible for combining health information of different
platforms and calculate Health Indicators on different abstraction levels. These
Health Indicators can then be used within the platform for stabilizing the system
or enhancing services with some kind of Health of Service. The SystemHealthMon-
itor is defined as a platform agnostic component which could be deployed anywhere
in the system.

6.1.2 Basic concepts - Supervised Entitys, Checkpoints, Graphs, Super-
vision Mode

The Health Monitoring supervises the execution of software. The logical units
of supervision are Checkpoints that belong to Supervised Entitys. There is
no fixed relationship between Supervised Entitys and the architectural building
blocks software, but typically a Supervised Entity may represent one software
component.

The Checkpoints and Transitions between the Checkpoints form a Graph. The
Checkpoints of a graph can belong to the same Supervised Entity or to different
Supervised Entitys.

[ASWS_HM_00460] dThe Health Monitoring shall supervise graphs with check-
points belonging to the same or different Supervised Entitys.c(RS_HM_09242,
RS_HM_09249)

[ASWS_HM_00461] dThe Health Monitoring shall simultaneously supervise
graphs of Supervised Entitys preempeted by other Supervised Entitys.c
(RS_HM_09243, RS_HM_09249)

A Graph may have one or more initial Checkpoints and one or more final Check-
points. Any sequence of starting with any Initial Checkpoint and finishing with
any Final Checkpoint is correct (assuming that the checkpoints belong to the same
Graph). After the final Checkpoint, any initial Checkpoint can be reported.

At runtime, Health Monitoring verifies if the configured Graphs are executed. This
is called Logical Supervision. Health Monitoring verifies also the timing of
Checkpoints and Transitions. The mechanism for periodic Checkpoints is called
Alive Supervision and for aperiodic Checkpoints it is called Deadline Su-
pervision.

The granularity of Checkpoints is not fixed by the Health Monitoring. Few
coarse-grained Checkpoints limit the detection abilities of the Health Monitor-
ing. For example, for an application with only one Checkpoint the Health Moni-
toring is only capable of detecting that this application (or one part of this application)
is cyclically running and check the timing constraints. In contrast, if that application has
Checkpoints at each block and branch, the Health Monitoring may also detect

13 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

failures in the control flow of that application. Fine granularity of Checkpoints causes
a complex and large configuration of the Health Monitoring.

Health Monitoring allows the definition of different Supervision Modes. Differ-
ent behavior of supervision functions can be configured for each Supervision Mode.

6.1.3 Execution of Supervision Functions

Health Monitoring offers Alive Supervision, Deadline Supervision,
Logical Supervision and Health Channel Supervision. All supervision
functions can be invoked independently.

6.1.3.1 Alive Supervision

Periodic Supervised Entitys have constraints on the number of times they are ex-
ecuted within a given time span. By means of Alive Supervision, The Health
Monitoring checks periodically if the Checkpoints of a Supervised Entity
have been reached within the given limits. This means that Health Monitoring
checks if a Supervised Entity is run not too frequently or not too rarely.

6.1.3.2 Deadline Supervision

Non-cyclic Supervised Entitys have individual constraints on the timing between
two Checkpoints. By means of Deadline Supervision, Health Monitoring
checks the time span of transitions between two Checkpoints (one Source Checkpoint
and one Target Checkpoint) of a Supervised Entity (for detection of early arrivals and
delays), and elapsed time after the Source Checkpoints (for detection of timeouts). This
means that Health Monitoring checks if some steps in a Supervised Entity
take a time that is within the configured minimum and maximum limits.

6.1.3.3 Logical Supervision

Logical Supervision is a fundamental technique for checking the correct execu-
tion of embedded system software. Please refer to the safety standards (IEC 61508
or ISO26262) when Logical Supervision is required. Logical Supervision
focuses on control flow errors, which cause a divergence from the valid (i.e. coded/-
compiled) program sequence during the error-free execution of the application. An
incorrect control flow occurs if one or more program instructions are processed either
in the incorrect sequence or are not even processed at all. Control flow errors can lead
to data corruption, microcontroller resets, or fail-silence violations.

14 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

For the control flow graph this implies that every time the Supervised Entity re-
ports a new Checkpoint, it must be verified that there is a Transition configured be-
tween the previous Checkpoint and the reported one.

6.1.4 Determination of Supervision Status

Based on the results of the Alive, Deadline and Logical supervision functions, the
Local Supervision Status of Supervised Entitys and a Global Super-
vision Status is calculated. Each status is determined by a state machine.

The Local Supervision Status is calculated for each Supervised Entity
and a Global Supervision Status is calculated based on the Local Super-
vision Status of all Supervised Entitys.

6.1.4.1 Rule Pocessing

Based on the results of supervision functions, Health Monitoring determines the
corresponding reaction.

6.1.4.2 Watchdog Control

Health Monitoring controls the hardware watchdog. When the Supervised En-
titys are not correctly evaluated due to a programming error or memory failure in the
watchdog protocol itself, it may still happen that the watchdog protocol erroneously
sets the triggering condition and no watchdog reset will be caused. Therefore, it may
be needed to use Supervised Entitys and Checkpoints (or some other inter-
nal supervision mechanism) within watchdog protocol itself, while avoiding recursion in
watchdog protocol.

6.1.4.3 Error Handling

Depending on the Local Supervision Status of each Supervised Entity
and on the Global Supervision Status, the Health Monitoring initiates
mechanisms to recover from supervision failures. These range from notifying a central
error handler to a global reset of the ECU.

6.1.5 Functional Decomposition

The Health Monitoring has the following logical steps:

1. Execution of all Supervision Functions - see 6.2

15 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

2. Determination of Supervision Status - see 6.3

The behavior of Health Monitoring is mode-dependent (see description of super-
vision mode in 6.1.2 and [2]).

Figure 6.3: Main functions of Health Monitoring

The Alive, Deadline and Logical supervision mechanisms supervise each Super-
vised Entity. A Supervised Entity may have between one and three mecha-
nisms enabled. Based on the results from each of enabled mechanisms, the status of
the Supervised Entity (called Local Status) is computed.

When the status of each Supervised Entity is determined, then based on each
Local Supervision Status, the status of all Supervised Entitys is deter-
mined (called Global Supervision Status).

Based on the results of Supervisions Functions (correct/incorrect), the Local Status
of each Supervised Entity is determined by means of the Local Supervision
Status state machine.

Based on Local Supervision Status of each Supervised Entity, the
Global Supervision Status is determined by means of Global Supervision
Status state machine.

16 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Based on the Global Supervision Status, the error handling and watchdog han-
dling take place.

6.2 Execution of Supervision Functions and Determination of Su-
pervision Results

Supervised Entitys are the units of supervision for the Health Monitoring.
Each Supervised Entitys (SupervisedEntity) can be supervised by a different
supervision function or a combination of them.

The following three supervision functions are executed at this stage:

• Alive Supervision (see 6.2.1)

• Deadline Supervision (see 6.2.2)

• Logical Supervision (see 6.2.3)

Each of three Supervision Functions results with a list of Results of Supervision Func-
tion for each Supervised Entity (SupervisedEntity) (highlighted in Blue on
Figure 6.3), where each Result is either correct or incorrect.

At Health Monitoring initialization, all the Results are set to correct. This means
that for every Supervised Entity (SupervisedEntity) there are three partial re-
sults (one from Alive Supervision, one from Deadline Supervision and one
from Logical Supervision).

In a given mode, each Supervised Entity (SupervisedEntity) may have zero,
one or more Alive Supervisions (AliveSupervision), each having one correc-
t/incorrect result.

In a given mode, each Supervised Entity (SupervisedEntity) may have zero,
one or more Deadline Supervisions (DeadlineSupervision), each having
one correct/incorrect result.

In a given mode, each Supervised Entity (SupervisedEntity) may have zero,
one or more Logical Supervisions (LogicalSupervision) (i.e. graphs) con-
figured, each having one correct/incorrect result.

In case there are zero active supervisions in a given mode, then Health Monitoring
sees no EXPIRED local stati, so the watchdog trigger condition can be invoked.

6.2.1 Alive Supervision

The Alive Supervision (AliveSupervision) offers a mechanism to periodically
check the execution reliability of one or several Supervised Entitys. This mecha-
nism supports a check of cyclic timing constraints of independent Supervised En-
titys.

17 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

6.2.1.1 Alive Supervision Configuration

To provide Alive Supervision (AliveSupervision), the Checkpoints and
their timing constraints need to be configured. The simplest configuration for
AliveSupervision is one Checkpoint without any Transitions, as shown in Figure
6.4)

Figure 6.4: Simplest Alive Supervision Checkpoint Configuration for a given Super-
vision Mode

Moreover, it is also possible to have more than one Checkpoint as shown in Figure
6.5)

18 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Figure 6.5: Multiple Checkpoints for Alive Supervision in one SupervisedEntity
for a given Supervision Mode

Each Checkpoint can have its own set of AliveSupervision Parameters. Transi-
tions are not used by AliveSupervision. Although each Checkpoint has its own

19 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

parameters, it is the SupervisedEntity for which status is determined based on the
frequency of Checkpoints.

The parameters of the AliveSupervision depend on the Supervision Mode and
are defined per Checkpoint (and not globally for the whole SupervisedEntity).

None, some, or all of theCheckpoints of a SupervisedEntity can be configured
for AliveSupervision in a given Mode. Moreover, in each Mode the AliveSuper-
vision options of Checkpoints can be different.

The ExpectedAliveIndications (EAI) specifies the amount of expected alive in-
dications from a given Checkpoint, within a fixed period of supervision cycles. The
period length is defined by AliveReferenceCycle.

An acceptable negative variation (MinMargin) and acceptable positive variation (Max-
Margin) can be configured.

The Health Monitoring has to support a configurable amount of independent Su-
pervised Entitys.

6.2.1.2 Alive Supervision Algorithm

To send an Alive Indication, a Supervised Entity (SupervisedEntity) invokes
the function ReportCheckpoint, which results with incrementation of an Alive
Counter for the Checkpoint.

The periodic examination of the Counter of each Checkpoint of a SupervisedEn-
tity by the Health Monitoring happens at every AliveReferenceCycle.

The Alive Reference Cycle (see AliveReferenceCycle) is the property of an
AliveSupervision of a Checkpoint in a given Supervision Mode.

[ASWS_HM_00098] dThe Health Monitoring shall perform for each Alive Super-
vision (AliveSupervision) configured in the active Mode, the examination of the
Alive Counter of each Checkpoint of the SupervisedEntity. The examination
shall be done at the period AliveReferenceCycle of the corresponding Alive Su-
pervision (AliveSupervision).c(RS_HM_09125, RS_HM_09249)

[ASWS_HM_00074] dThe Health Monitoring shall examine an Alive Counter by check-
ing if it is within the allowed tolerance (Expected - Min Margin; Expected + Max Margin)
(see ExpectedAliveIndications, MinMargin, MaxMargin).c(RS_HM_09125,
RS_HM_09249)

If any Checkpoint of a SupervisedEntity fails the examination, then the result of
Alive Supervision at this AliveReferenceCycle for the SupervisedEntity
is set to incorrect. Otherwise, it is set to correct.

[ASWS_HM_00075] dOn examination of the Alive Counter, if the result of Alive Su-
pervision is determined to be incorrect then, counter for failed alive supervision ref-
erence cycles shall be incremented unless it exceeds (is not greater than) configured

20 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Failure Tolerance (see configuration parameter FailedReferenceCyclesToler-
ance).c(RS_HM_09163)

[ASWS_HM_00079] dOn examination of the Alive Counter, if the result of Alive Super-
vision is determined to be correct then, counter for failed alive supervision reference
cycles shall be decremented unless it is zero.c(RS_HM_09163)

Health Monitoring only checks the Checkpoints that are configured for the current
Supervision Mode.

[ASWS_HM_00083] dThe Health Monitoring shall not perform the examination of
the Alive Counter of a Checkpoint if no corresponding Alive Supervision
(AliveSupervision) is defined in the current Supervision Mode.c(RS_HM_-
09125, RS_HM_09249)

6.2.2 Deadline Supervision

Deadline Supervision (DeadlineSupervision) checks the timing constraints
of non-cyclic Supervised Entitys. In these Supervised Entitys, a certain
event happens and a following event happens within a given time span. This time
span can have a maximum and minimum deadline (time window).

6.2.2.1 Deadline Supervision Configuration

For every DeadlineSupervision, two Checkpoints connected by a Transition are
configured. The Deadline is attached to the Transition from the Source Checkpoint
to the Target Checkpoint. The simplest DeadlineSupervision configuration con-
tains two Checkpoints and one Transition, as shown in Figure 6.6)

21 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Figure 6.6: Simplest Deadline Supervision Configuration for a given Supervision
Mode

More than one Transition can be defined in a SupervisedEntity. The Transitions
and the Checkpoints do not have to form a closed graph. Since only the Source
and the Target Checkpoints are considered by this Supervision Function, there can
be independent graphs, as shown in Figure 6.7). Moreover, the Checkpoints can be
chained.

22 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Figure 6.7: Multiple Transitions for Deadline Supervision in one Supervised En-
tity for a given Supervision Mode

The configuration of DeadlineSupervision is similar to the one of AliveSuper-
vision.

The parameters of the Deadline Supervision (see DeadlineSupervision) de-
pend on the Supervision Mode (ModeDependentSettings) and are defined for per
a set of two Checkpoints. None, some, or all of the Checkpoints of a Super-
visedEntity can be configured for DeadlineSupervision in a given Mode.

A DeadlineSupervision is defined as a set of Transitions with time constraints. A
Transition is defined as two references to two Checkpoints, called Source Check-
point and Target Checkpoint (see DeadlineSupervision). A Transition has min-
imum and maximum time MinDeadline, MaxDeadline.

23 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

6.2.2.2 Deadline Supervision Algorithm

When a Source Checkpoint (i.e. the Source Checkpoint referenced by the
CheckpointTransition, see DeadlineSupervision) or a Target Checkpoint
is reached, a SupervisedEntity invokes the function ReportCheckpoint, which
will calculate the time expired between the Source Checkpoint and the Target Check-
point.

The calculation is performed either at the occurrence of the Target Checkpoint or at
the moment the elapsed time after Source Checkpoint is above the maximum limit (
MaxDeadline).

[ASWS_HM_00294] dIf the time difference between the Target Checkpoint and the
Source Checkpoint is not within the minimum and the maximum limits (that is, the
time difference is either less than MinDeadline or greater than MaxDeadline), then
the result of DeadlineSupervision for this SupervisedEntity shall be defined
as incorrect. Otherwise, it shall be defined as correct.c(RS_HM_09235, RS_HM_-
09249)

[ASWS_HM_00228] dIf the Target Checkpoint is not reached even though the time
since reaching the Source Checkpoint has crossed the maximum limit (that is, the time
elapsed since reaching Source Checkpoint is greater than MaxDeadline), then the
result of DeadlineSupervision for this SupervisedEntity shall be defined as
incorrect.c(RS_HM_09235, RS_HM_09249)

[ASWS_HM_00229] dWhen a given Source Checkpoint is reached two or more
times on or before the expiration of the maximum limit without reaching the corre-
sponding Target Checkpoint, this shall be considered as an error and the result of
the DeadlineSupervision for this SupervisedEntity shall be considered as in-
correct.c(RS_HM_09235, RS_HM_09249)

[ASWS_HM_00354] dWhen a given Target Checkpoint is reached before the oc-
currence of the corresponding Source Checkpoint, the function ReportCheckpoint

[SWS_HM_00447] shall ignore this Checkpoint and not update the result of the
Deadline Supervision for the Supervised Entity.c(RS_HM_09235, RS_HM_09249)

This means also that it is not considered as an error by DeadlineSupervision if a
given Target Checkpoint is reached several times in a sequence.

[ASWS_HM_00299] dFor any reported Checkpoint that is neither a Source Check-
point nor a Target Checkpoint , the function ReportCheckpoint shall ignore this
Checkpoint and not update the result of the Deadline Supervision for the Supervised
Entity.c(RS_HM_09235, RS_HM_09249)

6.2.3 Logical Supervision

Logical Supervision checks if the code of Supervised Entitys is executed in
the correct sequence.

24 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

6.2.3.1 Logical Supervision Configuration

For every Logical Supervision (LogicalSupervision), there is a Graph of
Checkpoints connected by Transitions. The Graph abstracts the behavior of the
SupervisedEntity. There is a 1 to 1 correspondance between a Graph and the
LogicalSupervision container.

In addition, a Checkpoint shall belong to maximum one Graph, overlapping Graph
are not possible.

As an example for a SupervisedEntity, let us consider the following code fragment,
which contains the Checkpoints CP0-0 to CP0-6.

Figure 6.8: Example of Checkpoints

This SupervisedEntity can be represented by the Graph shown in Figure 6.9.

25 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

SE0

CP0-0

CP0-1

CP0-2

CP0-3 CP0-4

CP0-5

CP0-6

Figure 6.9: Example Control Flow Graph

A more abstract view of the SupervisedEntity is given by the Graph shown in
Figure 6.10), where the Checkpoint CP0-1 represents the complete while loop.

26 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

SE0

CP0-0

CP0-1

CP0-6

Figure 6.10: Abstracted Example Control Flow Graph

In a Graphs, Checkpoints can belong to the same SupervisedEntity or to dif-
ferent Supervised Entitys, no restriction is imposed. The transitions between
Checkpoints in a Graph are dependent on the Supervision Mode.

The parameters of the Graphs (see LogicalSupervision) are the Transitions that
are contained in a Supervision Mode (see ModeDependentSettings). Each Tran-
sition connects two Checkpoints. The Checkpoints exist irrespective if they are
connected by any transitions.

27 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

6.2.3.2 Logical Supervision Algorithm

Immediately after initialization of the Health Monitoring, there has not yet been a
Checkpoint reported, i.e. all the Supervised Entitys are passive. Each Graph
is considered as inactive.

Each Graph represents one LogicalSupervision, but it may spans across possibly
several Supervised Entitys. Assuming N Graphs that cross a Supervised En-
tity, this implies N results from the LogicalSupervision for the SupervisedEn-
tity

[ASWS_HM_00271] dThe Health Monitoring shall mantain the activity status of
each Graph.c(RS_HM_09222, RS_HM_09249)

[ASWS_HM_00296] dAt the initialization, the Health Monitoring shall consider each
Graph as inactive.c(RS_HM_09222, RS_HM_09249)

Each Graph may have one or more Initial Checkpoints. Initial Checkpoints are
Checkpoints with which a Graph can start.

To notify reaching a Checkpoint, a SupervisedEntity invokes the function Re-
portCheckpoint, which results with execution of Logical Supervision algo-
rithm.

Because a Checkpoint can belong to only one Graph, the function ReportCheck-
point is able to identify to which Graph a Checkpoint belongs.

[ASWS_HM_00295] dThe function ReportCheckpoint shall identify to which one
Graph a reached Checkpoint belongs.c(RS_HM_09222, RS_HM_09249)

If a Graph is active, the function ReportCheckpoint checks for each new Check-
point if the Transition between the stored Checkpoint and the newly reported
Checkpoint is allowed.

[ASWS_HM_00252] dThe function ReportCheckpoint shall verify if the reported
Checkpoint belonging to a Graph is a correct one by the following checks:

1. If the Graph of the reported Checkpoint is inactive, then:

a. If the Checkpoint is an Initial Checkpoint (see LogicalSupervision),
then the result of this Logical Supervision within the SupervisedEntity
of the reported Checkpoint is correct, otherwise incorrect.

2. Else if the Graph is active and all previously called Checkpoints of this Graph
were called in the right sequence, then:

a. If the reported Checkpoint is a successor of the stored Checkpoint within
the Graph of the reported Checkpoint (this means there is a Transition with
Source and Target), then the result of this Logical Supervision for Su-
pervisedEntity of the reported Checkpoint is correct, otherwise incorrect.

28 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

3. Else (i.e. the Graph is active, but at least one Checkpoint in this Graph was
previously called in a wrong sequence):

a. The result of this Logical Supervision of the Supervised Entity keeps incorrect.

The above requirement means that in case of an incorrect transition, the Su-
pervisedEntity that is considered as erroneous is the one that reported the
incorrect Checkpoint.

c(RS_HM_09222, RS_HM_09249)

If a Checkpoint is one of the initial Checkpoints of a Graph, then the Graph is set
as active.

Note that if a Graph contains multiple initial Checkpoints, either of them are allowed
to be entered when the Graph is inactive: when an initial Checkpoint is reported, the
corresponding Graph becomes active, so another initial Checkpoint is allowed only if
a Transition is configured from the first Checkpoint to the second one as a Graph can
have only one active checkpoint at a specific time.

[ASWS_HM_00331] dIf the result of the Logical Supervision triggered by Re-
portCheckpoint is correct and the Checkpoint is defined as a final one, then the
function ReportCheckpoint shall set Graph as inactive. After a final checkpoint,
only initial checkpoints are possible.c(RS_HM_09222, RS_HM_09249)

[ASWS_HM_00297] dFor any reported Checkpoint that does not belong to any
Graph, the function ReportCheckpoint shall ignore it and not update the result
of the Logical Supervision for the SupervisedEntity.c(RS_HM_09222, RS_-
HM_09249)

This is because the checkpoint may be used by other Supervision Functions (Alive or
Deadline).

[ASWS_HM_00273] dIf the function ReportCheckpoint determines that the result of
the Logical Supervision for the given Checkpoint is true, and the Checkpoint
is the initial one (see LogicalSupervision), then the Graph corresponding to the
Checkpoint shall be considered as active.c(RS_HM_09222, RS_HM_09249)

6.3 Determination of Supervision Status

Based on the Supervision Results determined in section 6.2, the Local Supervi-
sion Status and Global Supervision Status (see LocalSupervision and
GlobalSupervision) is determined.

6.3.1 Determination of Local Supervision Status

The Local Supervision Status state machine determines the status of the Su-
pervisedEntity. This is done based on the following:

29 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

1. Previous value of the Local Supervision Status,

2. Current values of: result of AliveSupervisions, result of DeadlineSu-
pervisions, result of LogicalSupervisions involving Checkpoints cor-
responding to the Supervised Entity.

Details of determination of Local Supervision status is Platform Specific. Hence, it is
not described in this document.

6.3.2 Determination of Global Supervision Status

Based on the Local Supervision Status of all Supervised Entitys of a soft-
ware subsystem, the Global Supervision Status is computed.

Details of determination of Global Supervision status is Platform Specific. Hence, it is
not described in this document.

6.4 System Health Monitoring

The previous chapters described Health Monitoring on platform level. In a distributed
system using different platforms AP, CP, Non-AUTOSAR, a global monitor is necessary
for evaluating and sharing health information on a vehicle level.

A standardized format for Health Indicator will be introduced for sharing health
information of platforms, features, domains or even vehicles. These Health Indi-
cator can either be used for platform level recovery actions, or to enhance services
with a Health of Service, similar to Quality of Service (QoS).

Abstract interfaces for System Health Monitor to local health monitors shall be speci-
fied, allowing platform agnostic health management of several Adaptive, Classic and
third-party platforms.

6.4.1 System Health Monitoring Architecture

The SystemHealthMonitor is intended for platform agnostic safety monitoring. For
this reason the SystemHealthMonitor is introduced as an abstract component ac-
cording to AUTOSAR_TPS_AbstractPlatformSpecification. A SystemHealthMoni-
tor gathers health information of abstract LocalHealthMonitors. These Local-
HealthMonitors are deployed on platform level and collect the health information
of the platform itself. The LocalHealthMonitor on platform level might be imple-
mented as a client SystemHealthMonitor as seen in the [5, EXP-SHM], or some
functional cluster. The local information might include monitoring results of Platform
Health Monitor(in AP)/Watchdog Manager(in CP), State Manager(in AP)/Basic Soft-
ware Mode Manager(in CP) or hardware information e.g highTemp. Components like

30 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

the State Manager are highly project specific and it can thus not be fully standardized
which information the LocalHealthMonitor reports.

Figure 6.11: Overview of Health Information exchange between different platforms

The collected information can be used to create a platform Health Indicator, giv-
ing an overall estimation of the platform health.

[ASWS_HM_00501]{DRAFT} dThe LocalHealthMonitor shall create a platform
Health Indicator, based on the locally reported health information.c(RS_HM_-
09301, RS_HM_09304, RS_HM_09303)

Information exchanged with SHM is considered safety relevant. Therefore, communi-
cation between SHM instance and local monitors and between multiple SHM instances
shall be cyclic. Safety mechanisms like E2E protection shall be used to detect possi-
ble message loss, delay, alteration etc. The detectable errors depend on the chosen
E2E profile and are project specific. Cycle exchange of Health Indicators can be used
as periodical heart beat, giving an indication on the availability of the platforms and of
SHM. A missed message means no confidence of correct behavior and should be con-
sidered in Health Indicator determination on SHM side and for recovery action
on platform level.

[ASWS_HM_00502]{DRAFT} dThe platform Health Indicator and the local
health information shall be cyclically reported to the SystemHealthMonitor.c(RS_-
HM_09309, RS_HM_09303)

[ASWS_HM_00509]{DRAFT} dThe Health Indicator calculated by SHM shall be
reported cyclically to subscribers.c(RS_HM_09309, RS_HM_09310, RS_HM_09303)

[ASWS_HM_00503]{DRAFT} dInformation exchange between LocalHealthMoni-
tor and SystemHealthMonitor shall be E2E protected.c(RS_HM_09302, RS_-
HM_09303)

31 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

[ASWS_HM_00504]{DRAFT} dThe SystemHealthMonitor shall gather and evalu-
ate health information of all LocalHealthMonitors in its subsystem. Together with
Health Indicators of other SystemHealthMonitors the subsystem information
can be used to create Health Indicators at a higher level of abstraction.c(RS_-
HM_09305, RS_HM_09304, RS_HM_09303)

As one SystemHealthMonitor poses the threat of a single point of failure for its
subsystem, multiple SystemHealthMonitors might receive the local health infor-
mation, but only one of them should be actively calculating and providing the Health
Indicators.

[ASWS_HM_00505]{DRAFT} dA dedicated/particular Health Indicator shall be
provided by only one SystemHealthMonitor at a given point of time.c(RS_HM_-
09305, RS_HM_09303)

6.4.2 Concept of Health Indicator

Health Indicators provide an evaluation metric of current system performance
with regard to safety requirements. Health information of safety monitors is analyzed
and used to determine Health Indicators on different abstraction levels. The
Health Indicator is defined as a tuple of ID, Performance, Reliability, Timestamp
and SubsystemState. The Performance rates the performance with respect to mal-
functioning behavior. Reliability evaluates how much to trust the system due to un-
certainties. SubsystemState is a systemspecific Health status of the Subsystem Sub
= {sub1,..., subn}. Different SubsystemStates are based on availability and availability
requirements. Health Indicators can be results of supervisions on hardware, software,
user, or the vehicle’s environment. Combining monitoring results with well-defined
safety properties, a corresponding health triple is determined. The three core param-
eters of the Health Indicator are supposed to capture different safety aspects required
by different safety standards. The Degradation parameter is operating at the most ab-
stract level. Only based on binary availability indications an overall degradation state is
determined. ISO-26262 [1] and ISO-21448 [4] take further aspects into consideration
than just the availability. ISO-26262 focuses on hazards arising from malfunctioning
of E/E Systems whereas SOTIF refers to hazards caused by performance limitations.
To this end, the scope of SOTIF demands including the vehicle’s interaction with its
environment, users, and other cars to capture uncertainties introduced by them. To in-
clude ISO-26262 and SOTIF into the Health Indicator, the Performance and Reliability
parameters are used.

The timestamp can be used to store information when the HealthIndicator was created.
A unique HealthIndicatorID shall be used to distinguish Health Indicators and
assign them to a specific subsystem (e.g feature,platform,domain).

SystemHealthMonitors can operate on different abstraction levels. Monitoring re-
sults on platform level can be grouped on the level of functional features. Functional
features might then be grouped in domains and all of this might give an health indi-
cation for the vehicle. These abstraction levels are not standardized and just given as

32 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

an example. Each SystemHealthMonitor can handle multiple subsystems at different
abstraction levels and thus provides multiple HealthIndicators.

Figure 6.12: Example abstraction levels for Health Indicators

Health Indicators of subsystems can be used to build Health Indicators on
feature level. These can then be combined to build Health Indicators on domain
level and finally on vehicle level. Further explanation how these Health Indicators
could look like for their respective domain can be found in the EXP_SHM.

[ASWS_HM_00506]{DRAFT} dReporting of Health Indicators from SHM to sub-
scribers shall be E2E protected.c(RS_HM_09308, RS_HM_09303)

6.4.3 Application interfaces

For reporting the actual health information a standardized interface shall be used.
The platform HealthIndicator can be provided over the HealthIndicatorInter-
face and local health information over the HealthInfoInterface. Local health
information can contain health information from functional clusters e.g. supervision re-
sults from PHM/SM or external monitors (e.g voltage monitor). These interfaces are
described as service interfaces in chapter 9

6.4.4 Usage of HealthIndicators

Health Indicators can be used for directly exchanging health information of sub-
systems. Each consumer interested in a specific Health Indicator can access

33 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

it over the HealthIndicatorInterface. Local platform managers (State Man-
ager/Basic Software Mode Manager) could use the HIs of other platforms to degrade
their own platform or activate backup functions, for platforms with bad health. This
would allow decentralized system degradation across multiple platforms. Similarly ap-
plications might want to know the HI of features providing them with input, in order to
decide whether to trust this information.

7 Health Monitoring API specification

This chapter specifies the API of Health Monitoring that is referred in other doc-
ument parts. It is defined in generic/abstract way, so that it can be implemented on
different platforms. For exact API name and semantics please refer to corresponding
Platform specific documents ([6] in case of Classic Platform and [7] in case of Adaptive
platform).

7.1 Provided API

7.1.1 Reporting Checkpoints

Health Monitoring provides a method to report the current code location, repre-
sented by a Checkpoint

1 ReportCheckpoint(CheckpointID id)

7.1.2 Reporting health status

Health Monitoring provides a method to report the health status information
1 ReportHealthStatus(HealthStatusID id, HealthStatus status)

7.1.3 Forwarding information between health monitoring components

Health Monitoring provides a method to report the information collected and de-
termined by one Health Monitoring component, so that they can be forwarded to
another Health Monitoring component.

1 ReportHealthMonitoring(HealthMonitoring montoringData)

7.1.4 Init / DeInit

Health Monitoring provides a method to initialize the service.

34 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

1 Init()

Health Monitoring provides a method to deinitialize the service.
1 DeInit()

7.1.5 Retrieving Supervision Status from application

Health Monitoring provides a method to report the Local Status of a Supervised
Entity to the application.

1 GetLocalStatus(LocalStatusType* LocalStatus)

Health Monitoring provides a method to report the Global Status to which the
specified Supervised Entity belongs to the application.

1 GetGlobalStatus(GlobalStatusType* GlobalStatus)

7.2 Assumed API

This section specified an API that is used by Health Monitoring.

7.2.1 Triggering error handling

Health Monitoring provides a method to trigger a defined error handler, providing
the identifier of this error.

1 TriggerErrorHandler(ErrorID id)

7.2.2 Controlling watchdog

Health Monitoring provides a method to control the watchdog drivers.
1 ControlWatchdog(ControlData control)

8 Configuration Parameters

This chapter specifies a configuration model of Health Monitoring. The options
defined here are referenced/used in chapter 6.

This configuration, which is abstract and platform-independent is supposed to be im-
plemented/instantiated by the specific platforms, e.g. by AUTOSAR AP.

35 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

8.1 Overall configuration

The configuration of a Machine (representing MCU, virtual machine, partition) is split
into two categories:

1. ModeIndependentSettings - containing only static information: what are pos-
sible SupervisedEntitys and possible Health Channels

2. ModeDependentSettings - containing all supervision function configurations.

It means all supervision configuration is fully mode-dependent.

A system is made of several Machines. Therefore, Health Monitoring is allocated
to a specific Machine.

It is possible that there are several independent suppliers of software for the same
Machine. Therefore, each of suppliers can supply any part of the configuration, for
any configuration classes.

ModeDependentSettings contains also the configuration of watchdogs - but this
part is not standardized (marked in blue).

The definitions of Machines (machines/virtual machines/partitions) are assumed to be
provided externally (by other specifications) therefore they are only referenced here.

36 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Figure 8.1: Overall configuration

37 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

8.2 Mode-independent settings

ModeIndependentSettings contain static information: what are possible Super-
visedEntitys and possible Health Channel.

Implementation hint: This part of configuration is typically used to generate the type-
safe API to Applications.

8.2.1 Supervised Entity

A SupervisedEntity is a collection of Checkpoints that can occur during the
runtime of a software.

A SupervisedEntity has the following options:

1. Name: Globally unique name identifier, used by Applications

2. ID: Globally unique identifier (number)

Note that on AUTOSAR AP, the uniqueness of the name can be ensured by using a
namespace as a part of the identificaiton.

A has the following options:

1. Name: Name, used by Applications, unique within the SupervisedEntity.

2. ID: Identifier of the Checkpoint, unique within the SupervisedEntity.

Figure 8.2: Supervised Entity

Note: On AUTOSAR AP, a Supervised Entity results with an enum, named af-
ter the Supervised Entitys namespace and name, with the enumerations corre-
sponding to the checkpoints.

38 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

8.3 Mode-dependent settings

ModeDependentSettings contain all supervision function configurations.

Implementation hint: This part of configuration is typically used by non-generated code
to perform the supervision at runtime.

8.3.1 Alive Supervision

AliveSupervision checks the amount of reported alive indications within the
AliveReferenceCycle, which is to be within ExpectedAliveIndications -
MinMargin and ExpectedAliveIndications + MaxMargin.

AliveSupervision has the following options:

1. AliveReferenceCycle: time period at which the Alive Supervision
mechanism compares the amount of received Alive Indications of the
Checkpoint against the expected/configured amount.

2. ExpectedAliveIndications: the amount of expected alive indications of the
Checkpoint within AliveReferenceCycle

3. MaxMargin: amount of acceptable missing alive indications within AliveRef-
erenceCycle

4. MinMargin: amount of acceptable additional alive indications within AliveRef-
erenceCycle

5. FailedReferenceCyclesTolerance: acceptable amount of AliveRefer-
enceCycles with incorrect/failed alive supervision

A Checkpoint uniquely identifies a specific location in source code. Different execu-
tions of the same code (e.g. due to multithreading or running the same application in
several instances) share the same Checkpoint identification.

Figure 8.3: Alive Supervision

39 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

8.3.2 Deadline Supervision

DeadlineSupervision has the following options:

1. MaxDeadline: longest time span allowed.

2. MinDeadline: shortest time span allowed.

Figure 8.4: Deadline Supervision

8.3.3 Logical Supervision

LogicalSupervision is a collection of CheckpointTransitions.

A LogicalSupervision can be seen one graph.

As LogicalSupervision represents a graph, so it is possible to configure the initial
and/or the final Checkpoints by referring to those Checkpoints.

A CheckpointTransition has its Source and Target Checkpoint. One
Checkpoint can have multiple Transitions - this way it is possible to configure merges
and forks in the graph (e.g. from A you can go to B or to C).

40 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Figure 8.5: Logical Supervision

8.3.4 Global Supervision

A GlobalSupervision is an overall state of a software subsystem. There can be
one or a few GlobalSupervisions per Machine.

GlobalSupervision is a "worst-of" of all contained LocalSupervisions.

LocalSupervision represents the state of a SupervisedEntity. It comprises of
all AliveSupervisions, DeadlineSupervisions and LogicalSupervisions pertaining to a
SupervisedEntity.

41 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

9 Service Interfaces

9.1 Type definitions

[ASWS_HM_00511]{DRAFT} d

Name HealthIndicator

Kind STRUCTURE

Subelements HealthIndicatorID uint8_t
Timestamp uint32_t (optional)
Performance int16_t (optional)
Reliability int16_t (optional)
SubsystemState enum [uint8_t] (optional)

Derived from -

Description Health Indicator provides an evaluation metric of current system performance with regard
to safety requirements

c(RS_HM_09303)

[ASWS_HM_00515]{DRAFT} d

Name HealthInfo

Kind STRUCTURE

Subelements GlobalSupervisionInfoVector (optional)
HealthChannelInfoVector (optional)
FunctionGroupInfoVector (optional)
LocalSupervisionInfoVector (optional)
BswMModeName string (optional)

Derived from -

Description Structure containing different Health Information pairs [Shortname+Value].

c(RS_HM_09303)

[ASWS_HM_00516]{DRAFT} d

Name GlobalSupervisionInfo

Kind STRUCTURE

Subelements Name string
Status enum[uint8_t]

Derived from -

Description Structure containing Global Supervision Status information.

c(RS_HM_09303)

[ASWS_HM_00517]{DRAFT} d

42 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Name GlobalSupervisionInfoVector

Kind VECTOR

Subelements GlobalSupervisionInfo

Derived from -

Description A list of Global Supervision Status Information

c(RS_HM_09303)

[ASWS_HM_00518]{DRAFT} d

Name FunctionGroupInfo

Kind STRUCTURE

Subelements Name string
State string

Derived from -

Description Structure containing a Function Group State.

c(RS_HM_09303)

[ASWS_HM_00519]{DRAFT} d

Name FunctionGroupInfoVector

Kind VECTOR

Subelements FunctionGroupInfo

Derived from -

Description A list of Function Group State Information

c(RS_HM_09303)

[ASWS_HM_00520]{DRAFT} d

Name HealthChannelInfo

Kind STRUCTURE

Subelements Name string
Status string

Derived from -

Description A structure containing a Health Channel Status information.

c(RS_HM_09303)

[ASWS_HM_00521]{DRAFT} d

Name HealthChannelInfoVector

Kind VECTOR

Subelements HealthChannelInfo
5

43 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

4
Derived from -

Description A list of Health Channel Status information.

c(RS_HM_09303)

[ASWS_HM_00522]{DRAFT} d

Name LocalSupervisionInfo

Kind STRUCTURE

Subelements Name string
Status enum[uint8_t]

Derived from -

Description Structure containing a Local Supervision Status

c(RS_HM_09303)

[ASWS_HM_00523]{DRAFT} d

Name LocalSupervisionInfoVector

Kind VECTOR

Subelements LocalSupervisionInfo

Derived from -

Description A list of Local Supervision Status Information

c(RS_HM_09303)

Note: Following Health Information are supported in Adaptive Platform:

• GlobalSupervisionInfo

• HealthChannelInfo

• FunctionGroupInfo

Following Health Information are supported in Classic Platform:

• GlobalSupervisionInfo

• LocalSupervisionInfo

• BswMModeName

9.2 Provided Service Interfaces

9.2.1 HealthIndicator

Port [ASWS_HM_00510]{DRAFT} d

44 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

Specification of Health Monitoring
AUTOSAR FO R21-11

Name HealthIndicatorInterface

Kind ProvidedPort Interface HealthIndicatorInterface

Description Report HealthIndicator

Variation

c(RS_HM_09300, RS_HM_09303)

Service Interface [ASWS_HM_00512]{DRAFT} d

Name HealthIndicator
Events HealthIndicatorEvent

Description The reported Health Indicator.

Type HealthIndicator

c(RS_HM_09303)

9.2.2 HealthInfo

Port [ASWS_HM_00513]{DRAFT} d

Name HealthInfoInterface

Kind ProvidedPort Interface HealthInfoInterface

Description Report HealthInfo

Variation

c(RS_HM_09301, RS_HM_09303)

Service Interface [ASWS_HM_00514]{DRAFT} d

Name HealthInfo
Events HealthInfoEvent

Description The reported Health Information

Type HealthInfo

c(RS_HM_09303)

45 of 45 Document ID 850: AUTOSAR_ASWS_HealthMonitoring

	1 Introduction and functional overview
	1.1 Input documents and related standards and norms

	2 Acronyms and abbreviations
	3 Related documentation
	4 Constraints and assumptions
	4.1 Limitations and conditions of use
	4.2 Applicability to car domains

	5 Requirements Tracing
	6 Functional specification
	6.1 Functional Overview
	6.1.1 Functional Interfaces
	6.1.2 Basic concepts - Supervised Entitys, Checkpoints, Graphs, Supervision Mode
	6.1.3 Execution of Supervision Functions
	6.1.3.1 Alive Supervision
	6.1.3.2 Deadline Supervision
	6.1.3.3 Logical Supervision

	6.1.4 Determination of Supervision Status
	6.1.4.1 Rule Pocessing
	6.1.4.2 Watchdog Control
	6.1.4.3 Error Handling

	6.1.5 Functional Decomposition

	6.2 Execution of Supervision Functions and Determination of Supervision Results
	6.2.1 Alive Supervision
	6.2.1.1 Alive Supervision Configuration
	6.2.1.2 Alive Supervision Algorithm

	6.2.2 Deadline Supervision
	6.2.2.1 Deadline Supervision Configuration
	6.2.2.2 Deadline Supervision Algorithm

	6.2.3 Logical Supervision
	6.2.3.1 Logical Supervision Configuration
	6.2.3.2 Logical Supervision Algorithm

	6.3 Determination of Supervision Status
	6.3.1 Determination of Local Supervision Status
	6.3.2 Determination of Global Supervision Status

	6.4 System Health Monitoring
	6.4.1 System Health Monitoring Architecture
	6.4.2 Concept of Health Indicator
	6.4.3 Application interfaces
	6.4.4 Usage of HealthIndicators

	7 Health Monitoring API specification
	7.1 Provided API
	7.1.1 Reporting Checkpoints
	7.1.2 Reporting health status
	7.1.3 Forwarding information between health monitoring components
	7.1.4 Init / DeInit
	7.1.5 Retrieving Supervision Status from application

	7.2 Assumed API
	7.2.1 Triggering error handling
	7.2.2 Controlling watchdog

	8 Configuration Parameters
	8.1 Overall configuration
	8.2 Mode-independent settings
	8.2.1 Supervised Entity

	8.3 Mode-dependent settings
	8.3.1 Alive Supervision
	8.3.2 Deadline Supervision
	8.3.3 Logical Supervision
	8.3.4 Global Supervision

	9 Service Interfaces
	9.1 Type definitions
	9.2 Provided Service Interfaces
	9.2.1 HealthIndicator
	9.2.2 HealthInfo

