
Software Component Template
AUTOSAR CP R21-11

Document Title Software Component Template
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 62

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R21-11

Document Change History
Date Release Changed by Description

2021-11-25 R21-11
AUTOSAR
Release
Management

• Introduction of imposition times for
constraints
• Clean-up of diagnostics service

needs
• New writing strategy for NvRAM
• minor corrections / clarifications /

editorial changes

2020-11-30 R20-11
AUTOSAR
Release
Management

• In-place Strategy for Array Data Type
• New Service Use Cases
• Optimization of Return Type for RTE

APIs
• minor corrections / clarifications /

editorial changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Support for optimized access to
coding data
• Support for meta-data on application

level
• Support for optimized storing of

bitfields in NvRAM
• minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation
• Changed Document Status from

Final to published

1 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Support for optional elements in
structured data types
• Improved description of service use

cases
• minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2017-12-08 4.3.1
AUTOSAR
Release
Management

• minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Improved support for Unions
• Improved upstream mapping
• Improved description of service use

cases
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Efficient NV data handling
• Introduction of data transformation
• Support for variable-size Arrays of

arbitrary data types
• Support for ASIL/QM development
• Minor corrections / clarifications /

editorial changes; For details please
refer to the BWCStatement

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Various fixes and clarifications

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Various fixes and clarifications

2 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2013-03-15 4.1.1 AUTOSAR
Administration

• Introduction of PRPortPrototype
• Definition of implicit communication

behavior
• Support for the formal analysis of

resource locking
• Introduction of refined scheduling of
RunnableEntitys
• Get information about activating
RTEEvent
• Connection of Mode Managers and

Mode Users with different number of
ModeDeclarations
• Support activation of
RunnableEntitys on remote
ECUs
• Support for ModeTransition
• Support for the definition of the

network representation of composite
data types
• ServiceNeeds for diagnostics over

IP
• Various fixes and clarifications

2011-12-22 4.0.3 AUTOSAR
Administration

• Added CompuMethod categories
SCALE_LINEAR_AND_TEXTTABLE
and SCALE_RATIONAL_
AND_TEXTTABLE (table 5.80)
• Clarification concerning the usage of

invalid values
• Revised support for data filters
• Support for partial networking
• Support for the specification of local

connections between
software-components
• Improved description of service

needs
• Change history of constraints and

specification items
• Miscellaneous improvements and

clarifications
• “Support for Standardization” moved

to Standardization Template [1]

3 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2011-04-15 4.0.2 AUTOSAR
Administration

• Remove restriction on data type of
inter-runnable variables
• Rework end-to-end communication

protection
• Add more constraints on the usage

of the meta-model
• Various fixes and clarifications

2009-12-18 4.0.1 AUTOSAR
Administration

• New requirements tracing table
• Support for fixed data exchange
• Implementation of meta-model

cleanup
• Fundamental revision of the data

type concept
• Support for variant handling
• Support for end-to-end

communication protection
• Support for documentation
• Support for stopping and restarting

of software-components
• Support for triggered events
• Support for explicit mapping of

interface elements
• Revised concept of mode

management
• Support for integrity and scaling at

ports
• Support for standardization within

AUTOSAR

2008-08-13 3.1.1 AUTOSAR
Administration

• Improved support for on-board
diagnostics
• Small layout adaptations made

2007-12-21 3.0.1 AUTOSAR
Administration

• Improved support for measurement
and calibration
• Improved semantics of delegation

ports
• Introduction of abstract memory

classes
• Document meta information

extended
• Small layout adaptations made

4 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2007-01-24 2.1.15 AUTOSAR
Administration

• Harmonization of the document with
other specifications (e.g. RTE)
• Introduction of a new concept to

support calibration and
measurement - harmonized with RTE
• Description of needs of the Software

Component Template toward
AUTOSAR services and of the
interaction of the Software
Component Template and services
(on XML level)
• Legal disclaimer revised
• Release notes added
• “Advice for users” added
• “Revision information” added

2006-05-16 2.0.0 AUTOSAR
Administration Second

2005-05-31 1.0.0 AUTOSAR
Administration Initial release

5 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

7 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Table of Contents

1 Introduction 29

1.1 Overview . 29
1.2 Scope . 29
1.3 Organization of the Meta-Model . 30
1.4 Structure of the Template . 32

1.4.1 Description of Software Components on VFB Level 32
1.4.2 Description of Software Components on RTE Level 32
1.4.3 Descriptions of Software Components on Implementation Level 33

1.5 Abbreviations . 33
1.6 Document Conventions . 34
1.7 Imposition Times of Constraints . 36
1.8 Requirements Tracing . 38

2 Conceptual Aspects 46

2.1 Introduction . 46
2.2 Measurement and Calibration . 46

2.2.1 Basic Approach of Measurement and Calibration 46
2.2.2 Calibration Parameters Overview 46
2.2.3 Using Calibration Parameters 47

2.2.3.1 Sharing Calibration Parameters within Compositions 47
2.2.3.2 Sharing Calibration Parameters between SwCompo-

nentPrototypes of the Same SwComponentType . . 49
2.2.3.3 Providing Instance Individual Characteristic Data . . 50

2.3 Runtime and Data Consistency Aspects 51
2.3.1 Background: the Issues . 51

2.3.1.1 Mutual Exclusion with Semaphores 51
2.3.1.2 Interrupt Disabling 52
2.3.1.3 Priority Ceiling . 52
2.3.1.4 Implicit Communication by Means of Variable Copies 52

2.3.2 Data Consistency at Runtime 53
2.3.3 Modeling Aspects of Data Consistency 54

2.4 Variant Handling in the Software Component Template 55
2.5 Communication Specification of Composition Component Types 57

2.5.1 Rationale . 57
2.6 PRPortPrototype . 58

2.6.1 Use Case 1 . 58
2.6.2 Use Case 2 . 59
2.6.3 Use Case 3 . 60
2.6.4 Solution . 60

2.7 Variable-size Array Data Types . 61
2.7.1 Overview and Use cases . 61

2.7.1.1 “Old-world” dynamic-size Arrays 61
2.7.1.2 “New-world” variable-size Arrays 63

2.7.2 Modeling Aspects regarding Application Data Types 65

8 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2.7.3 Modeling Aspects regarding Implementation Data Types . . 66
2.8 Optional Elements in Structures . 67

2.8.1 Background . 67

3 Overview: Software Components, Ports, and Interfaces 69

3.1 Introduction . 69
3.2 Software Component . 70

3.2.1 Overview . 70
3.2.2 PortPrototype . 71
3.2.3 AtomicSwComponentType 75
3.2.4 ParameterSwComponentType 77
3.2.5 Symbolic Name of a Software-Component 78

3.3 Composition . 79
3.3.1 Overview . 79
3.3.2 SwComponentPrototype . 80
3.3.3 Connectors . 83
3.3.4 Instantiation-specific RTEEvents 88

3.4 Port Interface . 90

4 Details: Software Components, Ports, and Interfaces 96

4.1 Introduction . 96
4.2 Port Interface Details . 96

4.2.1 Introduction . 96
4.2.2 Sender Receiver Communication 97

4.2.2.1 Sender Receiver Interface 97
4.2.2.2 Meta-data on the Application Software Level 101

4.2.3 Client Server Communication 103
4.2.3.1 Client Server Interface 103
4.2.3.2 Error Handling in Client/Server Communication . . . 109

4.2.4 External Trigger Event Communication 111
4.2.5 Communication of Modes . 114
4.2.6 Parameter Communication 119

4.3 PortInterface Mapping and Data Scaling 120
4.3.1 PortInterface Mapping . 122

4.3.1.1 Mapping of Sender Receiver Interface, Parameter In-
terface and Non Volatile Data Interface Elements . . 125

4.3.1.2 Mapping of Client Server Interface Elements 128
4.3.1.3 Mapping of Mode Interface Elements 131
4.3.1.4 Mapping of Trigger Interface Elements 135
4.3.1.5 Mapping of Elements of a composite Data Type . . . 136

4.3.2 Data Conversion . 142
4.3.2.1 Linear Data Scaling 143
4.3.2.2 Table Conversion . 144

4.3.3 Relevance for Data Transformation 149
4.4 Port Annotation . 152

4.4.1 Introduction . 152
4.4.2 SenderReceiverAnnotation 154

9 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4.4.3 ClientServerAnnotation . 157
4.4.4 Annotation for the I/O Hardware Abstraction Layer 158
4.4.5 Parameter Port Annotation 160
4.4.6 Mode Port Annotation . 161
4.4.7 Trigger Port Annotation . 162
4.4.8 Non Volatile Data Port Annotation 162
4.4.9 Delegated Port Annotations 163
4.4.10 General Annotation . 164

4.5 Communication Specification . 165
4.5.1 Communication Specification for Sender-Receiver Commu-

nication . 168
4.5.1.1 Receiver ComSpec 169
4.5.1.2 Sender ComSpec . 176
4.5.1.3 Data Filter . 181
4.5.1.4 Communication between Application and NV Block

Software Components 183
4.5.1.5 Communication behavior to be implemented by the

Software Component 185
4.5.2 Communication Specification for Client-Server Communication186

4.5.2.1 Client ComSpec . 186
4.5.2.2 Server ComSpec . 187

4.5.3 Communication Specification for Mode Switch Communication 189
4.5.3.1 Mode Switch Sender ComSpec 189
4.5.3.2 Mode Switch Receiver ComSpec 190

4.5.4 Communication Specification for Parameters 191
4.5.5 Communication Specification for NV Data 193

4.5.5.1 NV Require ComSpec 193
4.5.5.2 NV Provide ComSpec 194

4.5.6 Configuration of Data Transformation 195
4.6 Port Groups within Component Types 201
4.7 End to End Protection . 202
4.8 Partial Networking . 214

4.8.1 VFC Control Ports . 215
4.8.2 VFC Status Ports . 215

4.9 Formal Definition of implicit Communication Behavior 216
4.9.1 Consistency Needs on Receiver Side 221
4.9.2 Consistency Needs on Sender Side 222
4.9.3 Consistency Needs for Senders and receivers of the same

Data inside on RunnableEntityGroup 222

5 Data Description 223

5.1 Introduction . 223
5.2 Data Types . 227

5.2.1 Overview . 227
5.2.2 Data Type Mapping . 229
5.2.3 Data Categories . 233

10 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.2.4 Application Data Type . 237
5.2.4.1 Application Primitive Data Types 239
5.2.4.2 Application Composite Data Types 253

5.2.5 Implementation Data Type 267
5.2.5.1 Overview . 267
5.2.5.2 Modeling of Type Reference using Implementation

Data Type . 273
5.2.5.3 Modeling of Structure using Implementation Data Type274
5.2.5.4 Modeling of Union using Implementation Data Type . 276
5.2.5.5 Modeling of Array using Implementation Data Type . 277
5.2.5.6 Modeling of Pointer using Implementation Data Type 288

5.2.6 Base Type . 292
5.2.7 Data Type Terminology . 299

5.2.7.1 Primitive Type . 299
5.2.7.2 Compound Primitive Data Type 299
5.2.7.3 Integral Primitive Type 300
5.2.7.4 Variable-Size Array Data Type 301
5.2.7.5 Wrapped Union Data Type 301
5.2.7.6 Optional Element Structure 304

5.3 Data Prototypes . 305
5.3.1 Overview . 305
5.3.2 Data Constraints for DataPrototypes typed by Array DataTypes311
5.3.3 Reference to Data Prototypes 315

5.3.3.1 AUTOSAR Variable Ref 315
5.3.3.2 AUTOSAR Parameter Ref 316
5.3.3.3 Modeling Approach 318
5.3.3.4 Access into VariableDataPrototype typed by an Im-

plementationDataType 321
5.3.3.5 Access into ParameterDataPrototype typed by an

ImplementationDataType 324
5.4 Properties of Data Definitions . 326

5.4.1 Overview . 326
5.4.2 Invalid Value . 340
5.4.3 Properties for Measurement 345
5.4.4 Properties of Curves and Maps 347

5.4.4.1 Specification of grouped Axes 355
5.4.4.2 Specification of fix Axes 358

5.4.5 Setting an Axis Input Value 361
5.4.6 Setting a Group Axis . 366
5.4.7 Specifying Data Dependencies 371
5.4.8 Precedence of data properties with respect to data elements,

axis elements, computation methods, units 373
5.5 Elements used in Properties of Data Definitions 378

5.5.1 Computation Methods . 379
5.5.1.1 Category Values in the context of a CompuMethod . 389

11 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.5.1.2 Applicability of Attributes in the context of a Com-
puMethod . 390

5.5.1.3 CompuMethod and AutosarDataType 392
5.5.1.4 Example for Enumeration 394
5.5.1.5 Example for Linear Conversion 395
5.5.1.6 Example for Linear Conversion with texttable 395
5.5.1.7 Example for conversion specified by a rational function396
5.5.1.8 Example for BITFIELD_TEXTTABLE 397

5.5.2 Physical Units, Physical Dimensions and Unit Groups 400
5.5.3 Data Constraints . 407

5.5.3.1 Physical Limits . 414
5.5.4 Addressing Methods . 415
5.5.5 Record Layouts . 423

5.5.5.1 Specifying Record Layouts 424
5.5.5.2 RecordLayouts and DataTypes 432
5.5.5.3 Record Layouts and Interpolation Routines 439

5.5.6 Display Presentation . 440
5.6 Specification of Constant Values . 442

5.6.1 Overview . 442
5.6.2 Reference to Constant . 448
5.6.3 Values for Variable-Size Array 449
5.6.4 Values for Compound Primitive Data Types 451
5.6.5 Values for BITFIELD_TEXTTABLE 459
5.6.6 Specification of Values based on Rules 461

5.6.6.1 Support for primitive Data Types 461
5.6.6.2 Support for composite Data Types 470
5.6.6.3 Support for compound primitive Data Types 479

5.6.7 Examples . 480
5.6.7.1 Example for Constant Specification for CURVE . . . 480
5.6.7.2 Example for Constant Specification for MAP 481
5.6.7.3 Example for Constant Specification for MAP with two

STD_AXIS . 483
5.6.7.4 Example for Constant Specification for COM_AXIS . 484
5.6.7.5 Example for Constant Specification for an Array of

compound primitive Objects 485
5.7 Initial Values . 487

5.7.1 Overview . 487
5.7.2 Initial Value Representation 488
5.7.3 Constant Specification Mapping 490
5.7.4 Initial Values For CalibrationParameters 492
5.7.5 Initial Value for optional Element 494

5.7.5.1 Initial Value for optional ApplicationRecordElement . 494
5.7.5.2 Initial Value for optional ImplementationDataType-

Element . 495

6 Compatibility 496

12 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6.1 Introduction . 496
6.2 Compatibility of Data Types . 496

6.2.1 ApplicationDataType . 496
6.2.1.1 ApplicationPrimitiveDataType 496
6.2.1.2 ApplicationCompositeDataType 497

6.2.2 ImplementationDataType . 498
6.2.3 Compatibility of SwBaseType 500
6.2.4 Compatibility of SwDataDefProps 500

6.2.4.1 Compatibility of Units 501
6.2.4.2 Compatibility of PhysicalDimensions 502
6.2.4.3 Compatibility of Data Constraints 503
6.2.4.4 Compatibility in case of ImplementationDataType . . 504
6.2.4.5 Compatibility of CompuMethods 505
6.2.4.6 Compatibility of Record Layouts 507

6.2.5 Compatibility of ApplicationDataType and Implementation-
DataType . 508

6.3 Compatibility of Variable Data Prototypes and Parameter Data Prototypes512
6.4 Compatibility of Sender Receiver Interfaces, Parameter Interfaces and

Non Volatile Data Interfaces . 514
6.4.1 Connection of Required and Provided Port via Assem-

blySwConnector . 514
6.4.2 Connection of Inner and Outer Port via DelegationSwCon-

nector . 515
6.4.3 Connection of Required and Provided Port via PassThrough-

SwConnector . 516
6.4.4 Compatibility of ParameterDataPrototype and VariableDat-

aPrototype depending on PortInterface Type 517
6.5 Compatibility of Mode Switch Interfaces 518

6.5.1 Connection of Required and Provided Port via Assem-
blySwConnector . 518

6.5.2 Connection of Inner and Outer Port via DelegationSwCon-
nector . 519

6.5.3 Connection of Outer and Outer Port via PassThroughSwCon-
nector . 519

6.6 Compatibility of Mode Declaration Group Prototypes 520
6.7 Compatibility of Mode Declaration Groups 520
6.8 Compatibility of Argument Prototypes 521
6.9 Compatibility of Application Errors . 522
6.10 Compatibility of Client/Server Operations 522
6.11 Compatibility of Client Server Interfaces 523

6.11.1 Connection of Required and Provided Port via Assem-
blySwConnector . 523

6.11.2 Connection of Inner and Outer Port via DelegationSwCon-
nector . 523

6.11.3 Connection of Outer and Outer Port via PassThroughSwCon-
nector . 524

13 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6.12 Compatibility of Trigger Interfaces . 525
6.12.1 Connection of Required and Provided Port via Assem-

blySwConnector . 525
6.12.2 Connection of Inner and Outer Port via DelegationSwCon-

nector . 525
6.12.3 Connection of Outer and Outer Port via PassThroughSwCon-

nector . 526
6.13 Compatibility of Trigger . 526
6.14 Entire Delegation of a Provided Port Prototype 527

6.14.1 Split and Merge of PortInterface Elements 528
6.15 Compatibility in Case of a Flat ECU Extract 528
6.16 Compatibility Examples . 529

6.16.1 Compatibility on Assembly Level 530
6.16.1.1 Legal Use . 530
6.16.1.2 Illegal Use . 531

6.16.2 Compatibility on Delegation Level 531
6.16.2.1 Legal Use . 531
6.16.2.2 Illegal Use . 534

7 Internal Behavior 536

7.1 Introduction . 536
7.2 Runnable Entity . 542

7.2.1 Concurrency and Reentrancy of a RunnableEntity that can-
not be Invoked Concurrently 549

7.2.2 Concurrency and Reentrancy of a RunnableEntity that can
be Invoked Concurrently . 550

7.2.3 Timed Activation of Runnable Entities 551
7.2.4 Additional Remarks and Clarifications 552

7.2.4.1 Reentrancy and Multiple Instantiation 552
7.2.4.2 Reentrancy and “Library Functions” 553
7.2.4.3 Compatibility of ClientServerOperations triggering

the same RunnableEntity 553
7.2.4.4 Categories of Runnable Entities 554
7.2.4.5 Arguments of a Runnable Entity 555

7.2.5 Activation Reason of a Runnable Entity 557
7.2.6 Runnable Entity for Initialization Purpose 559

7.3 RTEEvent . 561
7.3.1 Defining an Event . 567
7.3.2 Defining how to Respond to an Event 570

7.4 Communication among Runnable Entities 572
7.4.1 Description Possibility 1: Exclusive Area 573

7.4.1.1 Entire Runnable Runs in the Exclusive Area 576
7.4.1.2 Runnable would Dynamically Enter and Leave the

Exclusive Area . 576
7.4.1.3 Configuration of API Generation 577

7.4.2 Description Possibility 2: Inter-Runnable Variable 578

14 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

7.4.3 Inter Runnable Triggering . 581
7.5 Data Access of RunnableEntities . 582

7.5.1 RunnableEntities and Sender Receiver Communication . . . 586
7.5.1.1 Terminology . 586
7.5.1.2 Data Access . 587
7.5.1.3 Explicit Sending and Receiving 589
7.5.1.4 Implicit Sending and Receiving 594
7.5.1.5 DataSendCompletedEvent 596
7.5.1.6 DataWriteCompletedEvent 596
7.5.1.7 DataReceivedEvent 597
7.5.1.8 DataReceiveErrorEvent 598

7.5.2 RunnableEntities and Client Server Communication 600
7.5.2.1 Invoking an Operation 600
7.5.2.2 Providing an Implementation of an Operation 605
7.5.2.3 Reacting on Data Transformation Errors 606

7.5.3 RunnableEntities and External Trigger Event Communication 606
7.5.3.1 Trigger Source . 606
7.5.3.2 Trigger Sink . 608

7.5.4 RunnableEntities and Parameter Access 608
7.5.4.1 InstantiationDataDefProps 610

7.5.5 RunnableEntities and Mode Communication 612
7.6 Port API Options . 612

7.6.1 Enable to Take Address . 614
7.6.2 Indirect API Generation . 615
7.6.3 Port Defined Argument Value 615
7.6.4 Supported Features . 616

7.6.4.1 Buffer Locking . 617
7.7 PerInstanceMemory . 618

7.7.1 PerInstanceMemory typed by “C” Data Types 619
7.7.2 PerInstanceMemory typed by AUTOSAR Data Types 620

7.8 Static Memory and Constant Memory 621
7.9 Included AUTOSAR Data Types . 622
7.10 Included Mode Declaration Groups . 623
7.11 Service Needs . 624

7.11.1 Overview . 624
7.11.2 Assignment of Service Needs to Ports and Data 626

7.12 Variation Point Proxy . 635

8 Implementation 641

9 Mode Management 646

9.1 Declaration of Modes . 646
9.2 Modes and Events . 651
9.3 Initialization / Finalization . 655
9.4 Mode Error Behavior . 656
9.5 Summary Meta-Model Excerpt Related to Modes 659

15 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

10 ECU Abstraction and Complex Drivers 661

10.1 Introduction . 661
10.2 High Level Hardware and Software Architecture 661
10.3 Interfaces and APIs . 664

10.3.1 ECU Abstraction and its AUTOSAR Interfaces 664
10.4 Sensors/Actuators . 665
10.5 I/O Hardware Abstraction . 667
10.6 Complex Driver . 668

11 Services 673

11.1 Overview: Generation of Service-related Model Elements 673
11.2 Extending the ECU Software Composition 676
11.3 Service Software Component Type . 677
11.4 Service Proxy Component Type . 680
11.5 Non Volatile Memory . 682

11.5.1 Introduction . 682
11.5.2 NvBlockComponent . 683
11.5.3 Software-Components using NVRAM data of NvBlockCom-

ponents . 685
11.5.4 Software-Components connected to NvBlockComponents . . 688
11.5.5 NvBlockDescriptor . 690

11.5.5.1 Writing Strategies . 692
11.5.5.2 NvBlockNeeds . 699
11.5.5.3 RAM Block and ROM Block 702
11.5.5.4 NvBlockDataMapping 702
11.5.5.5 Client Server Ports 709

11.5.6 BulkNvDataDescriptor . 711
11.5.7 SwcInternalBehavior of an NvBlockSwComponentType . . . 712

12 Software Component Documentation 716

13 Service Dependencies and Service Use Cases 720

13.1 Overview . 720
13.2 NvM Service Dependencies . 720

13.2.1 Nvm Use Case: Permanent RAM Block 721
13.2.2 Nvm Use Case: Temporary RAM Block 722
13.2.3 Nvm Use Case: RAM Block with explicit synchronization us-

ing Mirror Interfaces . 723
13.2.4 NVM Use Case: Software-Components using Nv Data pro-

vided by NvBlockSwComponentType (not ServiceSwCompo-
nent of NvM) . 724

13.3 Watchdog Service Dependencies . 725
13.3.1 Watchdog Service use Case: Local Supervision 725
13.3.2 Watchdog Service use Case: Global Supervision Status no-

tification . 727

16 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.3.3 Watchdog Service use Case: Control global supervision or
get global supervision status 727

13.3.4 Watchdog Service use Case: Software-component wants to
obtain the status of a local supervision 728

13.3.5 Watchdog Service use Case: Software-component wants to
report a checkpoint . 729

13.4 COM Manager Service Needs . 730
13.4.1 ComM Use Case: read current ComM Mode 730
13.4.2 ComM Use Case: request ComM Mode 730
13.4.3 ComM Use Case: Software-Component acts as a Mode

Manager that influences the ECU State 731
13.4.4 Read PNC ComM Mode . 731

13.5 ECU State Manager Service Needs . 732
13.5.1 EcuM Use Case: select Shutdown Target 732
13.5.2 EcuM Use Case: select Boot Target 733
13.5.3 EcuM Use Case: use Alarm Clock 733

13.6 BswM . 734
13.6.1 Partial Networking . 734
13.6.2 Mode Manager . 735
13.6.3 Mode User . 737
13.6.4 Mode Requester . 737

13.7 Crypto Service Dependencies . 738
13.7.1 Overview . 738
13.7.2 Crypto Service Use Cases 740

13.7.2.1 Crypto Service Use Case: Hash calculation 740
13.7.2.2 Crypto Service Use Case: MAC calculation 741
13.7.2.3 Crypto Service Use Case: MAC verification 741
13.7.2.4 Crypto Service Use Case: generation of random

numbers . 742
13.7.2.5 Crypto Service Use Case: Encryption with Authenti-

cated Encryption with Associated Data (AEAD) . . . 742
13.7.2.6 Crypto Service Use Case: Decryption with Authenti-

cated Encryption with Associated Data (AEAD) . . . 743
13.7.2.7 Crypto Service Use Case: encryption 743
13.7.2.8 Crypto Service Use Case: decryption 744
13.7.2.9 Crypto Service Use Case: signature generation . . . 745
13.7.2.10 Crypto Service Use Case: signature verification . . . 745
13.7.2.11 Crypto Service Use Case: usage of key management 746

13.7.3 Crypto Service Job Use Cases 746
13.7.3.1 Crypto Service Use Case: usage of job API to set

key valid . 746
13.7.3.2 Crypto Service Use Case: usage of job API to create

a random seed . 747
13.7.3.3 Crypto Service Use Case: usage of job API to gen-

erate a key . 747

17 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.7.3.4 Crypto Service Use Case: usage of job API to derive
a key . 748

13.7.3.5 Crypto Service Use Case: usage of job API to exe-
cute calculation of the public value for key exchange 748

13.7.3.6 Crypto Service Use Case: usage of job API to exe-
cute calculation of shared secret for key exchange . 749

13.7.3.7 Crypto Service Use Case: usage of job API to exe-
cute certificate parsing 750

13.7.3.8 Crypto Service Use Case: usage of job API to exe-
cute certificate verification 750

13.7.4 Crypto Key Management Use Cases 751
13.7.4.1 KeyM Service Use Case: Software-Component

wants check a certificate on KeyM 751
13.7.4.2 KeyM Service Use Case: Software-Component

wants to retrieve a certificate from KeyM 752
13.7.4.3 KeyM Service Use Case: Software-Component

wants to retrieve elements of a certificate from KeyM 752
13.7.4.4 KeyM Service Use Case: Software-Component

wants to check the existence of a certificate from KeyM753
13.7.4.5 KeyM Service Use Case: Software-Component

wants to store a (derived) key in KeyM 753
13.7.4.6 KeyM Service Use Case: Software-Component

wants to store a container with (encrypted) keys in
KeyM . 754

13.7.4.7 KeyM Service Use Case: Software-Component
wants to verify if cryptographic operation was exe-
cuted using a specific key 754

13.8 Diagnostic Service Dependency . 755
13.8.1 Development Approach . 755
13.8.2 Function Inhibition Needs . 756

13.8.2.1 Function Inhibition Manager Service use Case: read
function permission 757

13.8.2.2 Function Inhibition Manager Use Case: react on sup-
pressed or unavailable events 758

13.8.3 Diagnostic Event Needs . 758
13.8.3.1 Dem Service Use Case: diagnostic monitor, de-

bouncing by Dem . 767
13.8.3.2 Dem Service Use Case: diagnostic monitor, de-

bouncing by SWC 768
13.8.3.3 Dem Service Use Case: software-component pro-

vides information about operation cycles 769
13.8.3.4 Dem Service Use Case: software-component en-

ables reporting of DTCs in general 769
13.8.3.5 Dem Service Use Case: software-component en-

ables storage of subsequent DTCs 770

18 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.3.6 Dem Service Use Case: retrieve information of the
lamp status . 770

13.8.3.7 Dem Service Use Case: DEM provides information
that the fault storage overflows 771

13.8.3.8 Dem Service Use Case: software-component sup-
presses the storage of DTCs 772

13.8.3.9 Dem Service Use Case: software-component in-
forms that the PTO is active 772

13.8.3.10 Dem Service Use Case: software-component needs
information about any DTC status change 773

13.8.3.11 Dem Service Use Case: call operation if the data of
a given diagnostic event changes (I) 773

13.8.3.12 Dem Service Use Case: call operation if the data or
status of any diagnostic event changes (II) 774

13.8.3.13 Dem Service Use Case: software-component pro-
vides data for diagnostic purposes 775

13.8.3.14 Dem Service Use Case: software-component gets
information about a specific DTC 776

13.8.3.15 Dem Service Use Case: Software-Component wants
to be triggered on Monitor Status Changes 776

13.8.3.16 Dem Service Use Case: write parameter identifier by
software-component 777

13.8.3.17 Dem Service Use Case: read parameter identifier by
software-component 777

13.8.3.18 Dem Service Use Case: diagnostic monitor provides
monitor data, debouncing by Dem 778

13.8.3.19 Dem Service Use Case: diagnostic monitor provides
monitor data, debouncing by software-component . . 779

13.8.3.20 Dem Service Use Case: software-component
checks whether an event is suppressed 779

13.8.4 Diagnostic Communication Needs 780
13.8.4.1 Dcm Service Use Case: read/write current values by

Client Server Interface 785
13.8.4.2 Dcm Service Use Case: read/write current values of

specific DID by Client Server Interface 786
13.8.4.3 Dcm Service Use Case: read/write current values by

Sender Receiver Interface or Nv Data Interface . . . 786
13.8.4.4 Dcm Service Use Case: start/stop or request routine

results . 787
13.8.4.5 Dcm Service Use Case: IO control by Client Server

Interface . 788
13.8.4.6 Dcm Service Use Case: IO control by Sender Re-

ceiver Interface . 789
13.8.4.7 Dcm Service Use Case: Access to protocol, session

and security information 792

19 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.4.8 Dcm Service Use Case: Verify the access to security
level . 792

13.8.4.9 Dcm Service Use Case: multiple testers access one
ECU . 793

13.8.4.10 Dcm Service Use Case: Service Request Notification 793
13.8.4.11 Dcm Service Use Case: read/write and IOCtrl cur-

rent values by Client Server Interface 794
13.8.4.12 Dcm Service Use Case: A software-component acts

as a "file server" to a diagnostic tester 795
13.8.5 OBD related Needs . 796

13.8.5.1 Dem Service Use Case: In-Use-Monitor Perfor-
mance Ratio calculation 798

13.8.5.2 Dcm Service Use Case: read parameter identifier via
diagnostic services by Client Server Interface 799

13.8.5.3 Dcm Service Use Case: read parameter identifier via
diagnostic services by Sender Receiver Interface . . 800

13.8.5.4 Dcm Service Use Case: Request vehicle information 800
13.8.5.5 Dem Service Use Case: Read DTR data from SW-C

for OBD Service $06 801
13.8.5.6 Dcm Service Use Case: request control of on-board

system, test or component 802
13.8.5.7 Dem Service Use Case: In-Use-Monitoring Perfor-

mance Ratio Denominator interface 802
13.8.6 Diagnostics over IP . 803

13.8.6.1 DoIP Service Use Case: GID synchronization can
be necessary if the ECU is DoIP Gid synchronization
master . 806

13.8.6.2 DoIP Service Use Case: Vehicle information is
broadcast or can be requested by the tester 807

13.8.6.3 DoIP Service Use Case: Tester could also request
the power status with respect to diagnostics 807

13.8.6.4 DoIP Service Use Case: Routing activation mech-
anism is used which can lead to additional impact
regarding authentication or confirmation 808

13.8.6.5 DoIP Service Use Case: a DoIP entity needs to be
informed when an external tester is attached or acti-
vated. 808

13.8.6.6 Service Use Case: Set and reset Warning Indicator
Request bit . 809

13.8.6.7 DoIP Service Use Case: Atomic Software-
Component provides the further action byte to
the DoIP Service Component 810

13.8.7 Miscellaneous Diagnostic Service Use-Cases 811
13.8.7.1 Dcm Service Use Case: DiagnosticSessionControl . 811
13.8.7.2 Dcm Service Use Case: EcuReset 811

20 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.7.3 Dcm Service Use Case: EcuReset ModeRapidPow-
erShutDown . 812

13.8.7.4 Dcm Service Use Case: CommunicationControl . . . 812
13.8.7.5 Dcm Service Use Case: ControlDTCSetting 813
13.8.7.6 Dcm Service Use Case: Response On Event via di-

agnostic services . 813
13.8.7.7 Dcm Service Use Case: SecurityAccess 814
13.8.7.8 Service Use Case: Atomic Software-Component im-

plements a Hardware Shutdown 815
13.8.7.9 Service Use Case: Upload and download of data . . 815

13.9 Diagnostic Log and Trace Dependency 816
13.9.1 Dlt use Case:Application software component transmits de-

bug information . 817
13.10 Synchronized Time-Base Manager Dependency 817

13.10.1 StbM Use Case: start timer and potentially get notified about
its expiration . 818

13.10.2 StbM Use Case: Software-Components wants to get notifi-
cations of status changes . 819

13.10.3 StbM Use Case: Process time snapshot obtained from global
time slave for diagnostics purposes 820

13.10.4 StbM Use Case: Software-component represents a global
time master . 820

13.10.5 StbM Use Case: Software-component represents a global
time slave . 821

13.10.6 StbM Use Case: Software-component analyzes predictions
about the time synchronization process 822

13.11 Secure On-Board Communication . 822
13.11.1 SecOc Use Case: obtain the verification status of secure

communication . 823
13.11.2 SecOc Use Case: software component retires from secure

communication for a given period 824
13.11.3 SecOc Use Case: deliver freshness to SecOC I 824
13.11.4 SecOc Use Case: deliver freshness to SecOC II 825
13.11.5 SecOc Use Case: deliver freshness to SecOC III 825
13.11.6 SecOc Use Case: enable the sending of Pdus even if com-

putation of the MAC is not possible 826
13.11.7 SecOc Use Case: Receive notification about an authentica-

tion attempt . 826
13.12 J1939 Communication . 827

13.12.1 J1939RM Use Case: AtomicSwComponentType sends re-
quests to the bus . 828

13.12.2 J1939RM Use Case: AtomicSwComponentType accepts re-
quests from the bus . 829

13.12.3 J1939Dcm wants to retrieve calibration verification numbers
from an application software-component 829

13.13 Error Tracer . 830

21 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.13.1 Error Tracer Use Case: Default Error Tracer Service use
Case: report failure . 831

13.14 Vehicle-2-X Facilities . 832
13.14.1 V2xFac Use Case: Application software component provides

Vehicle specific data to the V2X-Stack for CAM transmission 833
13.14.2 V2xFac Use Case: V2xFac notifies application software com-

ponent about received messages 833
13.14.3 V2xFac Use Case: Application software component triggers

transmission of DENM message 834
13.14.4 V2xFac Use Case: Application software component pro-

cesses the MAP (topology) Extended Message 835
13.14.5 V2xFac Use Case: Application software component pro-

cesses Infrastructure to Vehicle Information Message 836
13.14.6 V2xFac Use Case: Application software component pro-

cesses Signal Phase And Timing Extended Message 836
13.15 Vehicle-2-X Management . 837

13.15.1 V2xM Use Case: Application software component provides
Vehicle specific data to the V2X-Stack for Position and Time
information . 838

13.15.2 V2xM Use Case: Application software component needs
V2X specific data from the V2X Manager 838

13.15.3 V2xM Use Case: Application software component has soft-
control over Pseudonym-Change within V2X Manager 839

13.15.4 V2xM Use Case: Application software component has the
ability to do Verification-on-Demand 839

13.15.5 V2xM Use Case: Application software component do loca-
tion based calculations . 840

13.16 Hardware Test Manager . 841
13.16.1 HtssM Service Use Case: Query results of hardware tests . 841

13.17 Intrusion Detection System Manager 842
13.17.1 IdsM Service Use Case: AtomicSwComponentType reports

security event . 842
13.17.2 IdsM Service Use Case: AtomicSwComponentType reports

security event using Smart Sensor API 843
13.17.3 IdsM Service Use Case: AtomicSwComponentType provides

time stamp to IdsM . 844

14 Rapid Prototyping Scenarios 845

14.1 Definition of Rapid Prototyping Scenario 845
14.2 Usage of RptContainers on M1 . 848
14.3 Usage of atpSplitable for RptContainers on M1 850
14.4 Modifications of the Meta-Model for supporting the RPT scenario . . . 850
14.5 Extended Buffer Access Method . 853

14.5.1 RP Preparation . 854
14.5.2 Service Points . 858

14.5.2.1 Service Functions 859

22 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

A Glossary 862

B Supported Special Use Cases 866

B.1 Asymmetric Data Transformation between a Software-Component and
a Complex Driver . 866

B.1.1 Overview . 866
B.1.2 Modeling Aspects . 867

C History of Constraints and Specification Items 869

C.1 Constraint History of this Document according to AUTOSAR R4.0.1 . . 869
C.1.1 Changed Constraints in R4.0.1 869
C.1.2 Added Constraints in R4.0.1 869
C.1.3 Deleted Constraints in R4.0.1 874

C.2 Constraint History of this Document according to AUTOSAR R4.0.2 . . 874
C.2.1 Changed Constraints in R4.0.2 874
C.2.2 Added Constraints in R4.0.2 875
C.2.3 Deleted Constraints in R4.0.2 876

C.3 Constraint History of this Document according to AUTOSAR R4.0.3 . . 876
C.3.1 Changed Constraints in R4.0.3 876
C.3.2 Added Constraints in R4.0.3 876
C.3.3 Added Specification Items in R4.0.3 879
C.3.4 Deleted Constraints in R4.0.3 894
C.3.5 Deleted Specification Items in R4.0.3 895

C.4 Constraint History of this Document according to AUTOSAR R4.1.1 . . 895
C.4.1 Changed Constraints in R4.1.1 895
C.4.2 Added Constraints in R4.1.1 896
C.4.3 Changed Specification Items in R4.1.1 899
C.4.4 Added Specification Items in R4.1.1 900
C.4.5 Deleted Constraints in R4.1.1 903
C.4.6 Deleted Specification Items in R4.1.1 903

C.5 Constraint History of this Document according to AUTOSAR R4.1.2 . . 904
C.5.1 Changed Constraints in R4.1.2 904
C.5.2 Added Constraints in R4.1.2 904
C.5.3 Changed Specification Items in R4.1.2 905
C.5.4 Added Specification Items in R4.1.2 905
C.5.5 Deleted Constraints in R4.1.2 906
C.5.6 Deleted Specification Items in R4.1.2 907

C.6 Constraint History of this Document according to AUTOSAR R4.1.3 . . 907
C.6.1 Added Traceables in R4.1.3 907
C.6.2 Changed Traceables in R4.1.3 907
C.6.3 Deleted Traceables in R4.1.3 907
C.6.4 Added Constraints in R4.1.3 908
C.6.5 Changed Constraints in R4.1.3 908
C.6.6 Deleted Constraints in R4.1.3 908

C.7 Constraint History of this Document according to AUTOSAR R4.2.1 . . 908
C.7.1 Added Traceables in R4.2.1 908

23 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.7.2 Changed Traceables in R4.2.1 911
C.7.3 Deleted Traceables in R4.2.1 912
C.7.4 Added Constraints in R4.2.1 912
C.7.5 Changed Constraints in R4.2.1 913
C.7.6 Deleted Constraints in R4.2.1 914

C.8 Constraint History of this Document according to AUTOSAR R4.2.2 . . 914
C.8.1 Added Traceables in R4.2.2 914
C.8.2 Changed Traceables in R4.2.2 915
C.8.3 Deleted Traceables in R4.2.2 916
C.8.4 Added Constraints in R4.2.2 916
C.8.5 Changed Constraints in R4.2.2 917
C.8.6 Deleted Constraints in R4.2.2 918

C.9 Constraint History of this Document according to AUTOSAR R4.3.0 . . 918
C.9.1 Added Traceables in R4.3.0 918
C.9.2 Changed Traceables in R4.3.0 921
C.9.3 Deleted Traceables in R4.3.0 923
C.9.4 Added Constraints in R4.3.0 924
C.9.5 Changed Constraints in R4.3.0 925
C.9.6 Deleted Constraints in R4.3.0 926

C.10 Constraint History of this Document according to AUTOSAR R4.3.1 . . 926
C.10.1 Added Traceables in R4.3.1 926
C.10.2 Changed Traceables in R4.3.1 927
C.10.3 Deleted Traceables in R4.3.1 928
C.10.4 Added Constraints in R4.3.1 928
C.10.5 Changed Constraints in R4.3.1 928
C.10.6 Deleted Constraints in R4.3.1 929

C.11 Constraint History of this Document according to AUTOSAR R4.4.0 . . 930
C.11.1 Added Traceables in R4.4.0 930
C.11.2 Changed Traceables in R4.4.0 931
C.11.3 Deleted Traceables in R4.4.0 933
C.11.4 Added Constraints in R4.4.0 934
C.11.5 Changed Constraints in R4.4.0 934
C.11.6 Deleted Constraints in R4.4.0 935

C.12 Constraint History of this Document according to AUTOSAR R19-11 . 936
C.12.1 Added Traceables in R19-11 936
C.12.2 Changed Traceables in R19-11 937
C.12.3 Deleted Traceables in R19-11 937
C.12.4 Added Constraints in R19-11 937
C.12.5 Changed Constraints in R19-11 939
C.12.6 Deleted Constraints in R19-11 939

C.13 Constraint History of this Document according to AUTOSAR R20-11 . 939
C.13.1 Added Traceables in R20-11 939
C.13.2 Changed Traceables in R20-11 940
C.13.3 Deleted Traceables in R20-11 941
C.13.4 Added Constraints in R20-11 941
C.13.5 Changed Constraints in R20-11 946

24 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.13.6 Deleted Constraints in R20-11 947
C.14 Constraint History of this Document according to AUTOSAR R21-11 . 947

C.14.1 Added Traceables in R21-11 947
C.14.2 Changed Traceables in R21-11 947
C.14.3 Deleted Traceables in R21-11 948
C.14.4 Added Constraints in R21-11 948
C.14.5 Changed Constraints in R21-11 949
C.14.6 Deleted Constraints in R21-11 966

D Modeling of InstanceRef 968

D.1 Introduction . 968
D.2 Modeling . 969

D.2.1 Components and Compositions 969
D.2.2 Definition of implicit Communication Behavior 983
D.2.3 Internal Behavior . 989

E Examples 996

E.1 Examples for the Definition of variable-size Arrays 996

F Mentioned Class Tables 1000

G Upstream Mapping 1036

G.1 Introduction . 1036
G.2 NvM . 1036
G.3 Com . 1044
G.4 WdgM . 1060
G.5 Dcm . 1061
G.6 Dem . 1092
G.7 BswM . 1100
G.8 MemMap . 1106
G.9 RTE . 1107
G.10 ECUC . 1113
G.11 OS . 1119
G.12 SecOC . 1119

H Splitable Elements in the Scope of this Document 1121

I Variation Points in the Scope of this Document 1124

25 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

References

[1] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[2] Specification of RTE Software
AUTOSAR_SWS_RTE

[3] Virtual Functional Bus
AUTOSAR_EXP_VFB

[4] Methodology for Classic Platform
AUTOSAR_TR_Methodology

[5] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

[6] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[7] Specification of Timing Extensions
AUTOSAR_TPS_TimingExtensions

[8] Requirements on Timing Extensions
AUTOSAR_RS_TimingExtensions

[9] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate

[10] System Template
AUTOSAR_TPS_SystemTemplate

[11] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate

[12] Requirements on Software Component Template
AUTOSAR_RS_SoftwareComponentTemplate

[13] Supplementary material of general blueprints for AUTOSAR
AUTOSAR_TR_GeneralBlueprintsSupplement

[14] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[15] Information technology – Universal Coded Character Set (UCS)
http://www.iso.org

[16] Specification of I/O Hardware Abstraction
AUTOSAR_SWS_IOHardwareAbstraction

[17] ISO 17356-4: Road vehicles – Open interface for embedded automotive applica-
tions – Part 4: OSEK/VDX Communication (COM)

26 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

http://www.iso.org

Software Component Template
AUTOSAR CP R21-11

[18] Specification of Module E2E Transformer
AUTOSAR_SWS_E2ETransformer

[19] Specification of SW-C End-to-End Communication Protection Library
AUTOSAR_SWS_E2ELibrary

[20] Specification of Communication Manager
AUTOSAR_SWS_COMManager

[21] Specification of Basic Software Mode Manager
AUTOSAR_SWS_BSWModeManager

[22] Specification of Communication
AUTOSAR_SWS_COM

[23] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

[24] ISO/IEC 9899:1999
http://www.iso.org

[25] AUTOSAR XML Schema Production Rules
AUTOSAR_TPS_XMLSchemaProductionRules

[26] ASAM MCD 2MC ASAP2 Interface Specification
http://www.asam.net
ASAP2-V1.51.pdf

[27] ASAM MCD 2 Harmonized Data Objects Version 1.1
harmonized-data-objects-V1.1.pdf

[28] Collection of blueprints for AUTOSAR M1 models
AUTOSAR_MOD_GeneralBlueprints

[29] ISO 26262:2018 (all parts) – Road vehicles – Functional Safety
http://www.iso.org

[30] ASAM AE Calibration Data Format V2.0.0
http://www.asam.net
ASAM-AE-CDF-V2_0_0-Users-Guide.pdf

[31] Specification of Operating System
AUTOSAR_SWS_OS

[32] ISO 17356-3: Road vehicles – Open interface for embedded automotive applica-
tions – Part 3: OSEK/VDX Operating System (OS)

[33] Specification of ECU Configuration Parameters (XML)
AUTOSAR_MOD_ECUConfigurationParameters

[34] Glossary
AUTOSAR_TR_Glossary

[35] Specification of NVRAM Manager

27 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

http://www.iso.org
http://www.asam.net
http://www.iso.org
http://www.asam.net

Software Component Template
AUTOSAR CP R21-11

AUTOSAR_SWS_NVRAMManager

[36] ASAM AE Functional Specification Exchange Format V1.0.0
http://www.asam.net
AE-FSX_V1.0.0.pdf

[37] Specification of Watchdog Manager
AUTOSAR_SWS_WatchdogManager

[38] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager

[39] Diagnostic Extract Template
AUTOSAR_TPS_DiagnosticExtractTemplate

[40] Specification of Function Inhibition Manager
AUTOSAR_SWS_FunctionInhibitionManager

[41] Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager

[42] Specification of Diagnostic Communication Manager
AUTOSAR_SWS_DiagnosticCommunicationManager

[43] Road vehicles – Diagnostic communication over Internet Protocol (DoIP)
http://www.iso.org

[44] Specification of Diagnostic Log and Trace
AUTOSAR_SWS_DiagnosticLogAndTrace

[45] Specification of Synchronized Time-Base Manager
AUTOSAR_SWS_SynchronizedTimeBaseManager

[46] Specification of Secure Onboard Communication
AUTOSAR_SWS_SecureOnboardCommunication

[47] Specification of a Request Manager for SAE J1939
AUTOSAR_SWS_SAEJ1939RequestManager

[48] Specification of Default Error Tracer
AUTOSAR_SWS_DefaultErrorTracer

[49] Specification of Vehicle-2-X Facilities
AUTOSAR_SWS_V2XFacilities

[50] Specification of Vehicle-2-X Management
AUTOSAR_SWS_V2XManagement

[51] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

[52] Specification of SOME/IP Transformer
AUTOSAR_SWS_SOMEIPTransformer

28 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

http://www.asam.net
http://www.iso.org
http://www.omg.org/spec/SPEM/2.0/

Software Component Template
AUTOSAR CP R21-11

1 Introduction

1.1 Overview

This document contains the specification of the AUTOSAR Software-Component
Template. Actually, it has been created as a supplement to the formal definition of
the Software-Component Template by means of the AUTOSAR meta-model. In
other words, this document in addition to the formal specification provides introductory
description and rationale for the part of the AUTOSAR meta-model relevant for the
definition of software-components.

In this context, the term software-component refers to a formally described piece of
software existing that needs the AUTOSAR RTE [2] for execution.

Please note that the general ideas behind the semantics of application software-
components have been described in the specification of the Virtual Functional
Bus [3]. The latter, however, represents conceptual work that strongly influences but
does not totally govern the formal definition of software-components.

Note further that this document does not provide any “best practice” recommendations
of software-component modeling nor does it require or enforce a certain methodol-
ogy. Note however, that the methodology aspect is covered by the specification of the
AUTOSAR methodology [4].

Although it is beyond any doubt reasonable to use a suitable AUTOSAR Authoring Tool
for dealing with AUTOSAR software-components, this specification does not make any
assumptions nor does it give recommendations regarding the tooling.

1.2 Scope

As already mentioned in chapter 1.1, the Scope of this document is the description of
AUTOSAR software-components. This work covers the following three aspects:

• A general description of SwComponentTypes using PortPrototypes and
PortInterfaces, i.e. this document defines the SwComponentType as an en-
tity which can be described through PortPrototypes which provide or require
PortInterfaces.

• A description of CompositionSwComponentTypes which are sub-systems
consisting out of connected instances of software-components, i.e. software-
components may be defined in the form of hierarchical subsystems which in turn
consist of software-components again. The description of such hierarchical struc-
tures is in scope of this document.

• A description of AtomicSwComponentType which is implemented as a piece of
software that can be mapped to an AUTOSAR ECU.
An AtomicSwComponentType therefore shows up in the ECU Software Archi-

29 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

tecture depicted in Figure 1.1. In this figure, the green (vertically striped) and
blue (diagonally striped) borders show the aspects that are described by the
Software-Component Template.

Figure 1.1: Scope of this document in the ECU SW Architecture [5]

Aspects of AUTOSAR Basic Software not relevant for the RTE are out of scope; these
are covered by the Basic Software Module Description Template [6].

Also, the document does not cover aspects of timing analysis with respect to the ex-
ecution of AUTOSAR software-components. This issue is explained in the Speci-
fication of Timing Extensions [7] as well as the corresponding requirement
specification [8].

1.3 Organization of the Meta-Model

Figure 1.2 sketches the overall structure of the meta-model which formally defines
the vocabulary required to describe AUTOSAR software-components. As the dia-
gram points out, other template specifications (e.g. ECU Resource Template [9]
and System Template [10]) also use the same modeling approach in order to define
an overall consistent model of AUTOSAR software description.

The dashed arrows in the diagram describe dependencies in terms of import-
relationships between the packages within the meta-model. For example, the package

30 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

SWComponentTemplate imports meta-classes defined in the packages Generic-
Structure [11] and ECUResourceTemplate [9].

Please note that this specification document will (with some well-defined exceptions)
mostly discuss meta-model elements defined in the package SWComponentTem-
plate.

SWComponentTemplate

SystemTemplate

ECUCDescriptionTemplate

BswModuleTemplate

ECUCParameterDefTemplate

GenericStructure
��� ����� ��	
�����

	������ ���������

����
������ ����

������� ���������

CommonStructureAutosarTopLevelStructure ���� 	����� �������

�������� ��� ���� ��

�� ������� ������ �

���������� ����������

���� ��� ���	����

	�������

StandardizationTemplate FeatureModelTemplate

DiagnosticExtract

EcuResourceTemplate

AdaptivePlatform

AbstractPlatform

Figure 1.2: Structure of the meta-model

For clarification, please note that the package GenericStructure contains some
fundamental infrastructure meta-classes and common patterns that are described
in [11]. As these are used by all other template specification the dependency asso-
ciations are not depicted in the diagram for the sake of clarity.

31 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

1.4 Structure of the Template

AUTOSAR software components are described on three distinctive levels, as shown in
Figure 1.3.

SwcInternalBehavior

AtomicSwComponentType

������� 	�
����
�� �� ��	� �����

��
�������
����
��
� ����� �����

�������
�����
 �����

SwcImplementation

«atpVariation,atpSplitable»

+internalBehavior 0..1

+behavior 0..1

Figure 1.3: The description of a software component is done on three levels

1.4.1 Description of Software Components on VFB Level

The highest (most abstract) description level is the Virtual Functional Bus [3].
In this document SwComponentTypes are described with the means of DataTypes,
PortInterfaces, PortPrototypes, and connections between them. At this level,
the fundamental communication properties of components and their communication
relationships among each other are expressed.

In the diagram depicted in Figure 1.3, this aspect is expressed by means of the de-
scription of AtomicSwComponentType1.

1.4.2 Description of Software Components on RTE Level

The middle level allows for behavior description of a given AtomicSwComponent-
Type. This so-called SwcInternalBehavior is expressed according to AUTOSAR
RTE concepts, e.g. RTEEvents and in terms of schedulable units, so-called
RunnableEntitys.

1To avoid clutter and require additional up-front information about the meta-model, Composition-
SwComponentTypes have not been added to the diagram.

32 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For instance, for a ClientServerOperation defined in the scope of a particular
ClientServerInterface on the VFB, the behavior specifies which RunnableEn-
tity is activated as a consequence of the invocation of the specific ClientServer-
Operation.

As sketched by Figure 1.3, there may be zero or one SwcInternalBehaviors ag-
gregated by a given AtomicSwComponentType. In response to the existence of the
stereotype �atpSplitable� at the aggregation it is possible to distribute the ag-
gregation over several physical files.

1.4.3 Descriptions of Software Components on Implementation Level

The lowest level of description specifies the implementation (i.e. in terms of the
AUTOSAR meta-model: the SwcImplementation) of a given SwcInternalBe-
havior description. More precisely, the RunnableEntitys of such a behavior are
mapped to code (source code or object code).

There may be different SwcImplementations that reference a specific SwcInter-
nalBehavior description, e.g. in different programming languages, or with differently
optimized code.

Please note that Implementation has been described in previous versions of this
document. In response to the evolution of the AUTOSAR concept the description of the
Implementation aspect has been moved to the “CommonStructure” (see Figure 1.2)
because it is also used for creating the Basic Software Module Description
Template [6].

However, the SwcImplementation still remains in the scope of this document as it
exclusively covers aspects of software-components rather than basic software mod-
ules.

1.5 Abbreviations

The following table contains a list of abbreviations used in the scope of this document
along with the spelled-out meaning of each of the abbreviations.

Abbreviation Meaning

API Application Programming Interface

BOM Byte Order Mark

CAN Controller Area Network

CSE Codes for Scaling Units

DCM Diagnostics Communication Manager

DCY Driving Cycle

DEM Diagnostics Event Manager

5

33 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Abbreviation Meaning

DID Diagnostic Identifier

DTC Diagnostic Trouble Code

DoIp Diagnostics over IP

ECU Electrical Control Unit

EPROM Erasable Programmable Read-Only Memory

EEPROM Electrically Erasable Programmable Read-Only Memory

FID Function Identifier

GID Group Identifier

ID Identifier

IO Input/Output

IP Internet Protocol

IUMPR In-Use Monitor Performance Ratio

ISO International Standardization Organization

MAC Message Authentication Code

MCAL Micro-Controller Abstraction

LIN Local Interconnect Network

MCD Measurement, Calibration, Diagnostics

NM Network Management

NV Non-Volatile

OBD On-Board Diagnostic

OEM Original Equipment Manufacturer

OS Operating System

PDU Protocol Data Unit

PID Parameter Identifier

PTO Power Take Off

RA Routing Activation

RAM Random Access Memory

ROM Read-Only Memory

RPT Rapid Prototyping

RTE Runtime Environment

SWC Software Component

TID Test Identifier

UDS Unified Diagnostic Services

UML Unified Modeling Language

VFB Virtual Functional Bus

WWH-OBD World-Wide Harmonized On-Board Diagnostics

XML Extensible Markup Language

XSD XML Schema Definition

Table 1.1: Abbreviations used in the scope of this Document

1.6 Document Conventions

Technical terms are typeset in mono spaced font, e.g. PortPrototype. As a general
rule, plural forms of technical terms are created by adding "s" to the singular form, e.g.

34 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

PortPrototypes. By this means the document resembles terminology used in the
AUTOSAR XML Schema.

This document contains constraints in textual form that are distinguished from the rest
of the text by a unique numerical constraint ID, a headline, and the actual constraint
text starting after the d character and terminated by the c character.

The purpose of these constraints is to literally constrain the interpretation of the
AUTOSAR meta-model such that it is possible to detect violations of the standardized
behavior implemented in an instance of the meta-model (i.e. on M1 level).

Makers of AUTOSAR tools are encouraged to add the numerical ID of a constraint that
corresponds to an M1 modeling issue as part of the diagnostic message issued by the
tool.

The attributes of the classes introduced in this document are listed in form of class
tables. They have the form shown in the example of the top-level element AUTOSAR:

Please note that constraints are not supposed to be enforceable at any given time in an
AUTOSAR workflow. During the development of a model, constraints may legitimately
be violated because an incomplete model will obviously show inconsistencies.

However, at specific points in the workflow, constraints shall be enforced as a safeguard
against misconfiguration.

The points in the workflow where constraints shall be enforced, sometimes also known
as the "binding time" of the constraint, are different for each model category, e.g. on the
classic platform, the constraints defined for software-components are typically enforced
prior to the generation of the RTE while the constraints against the definition of an Ecu
extract shall be applied when the Ecu configuration for the Com stack is created.

For each document, possible binding times of constraints are defined and the binding
times are typically mentioned in the constraint themselves to give a proper orientation
for implementers of AUTOSAR authoring tools.

Let AUTOSAR be an example of a typical class table. The first rows in the table have
the following meaning:

Class: The name of the class as defined in the UML model.

Package: The UML package the class is defined in. This is only listed to help locating
the class in the overall meta model.

Note: The comment the modeler gave for the class (class note). Stereotypes and UML
tags of the class are also denoted here.

Base Classes: If applicable, the list of direct base classes.

The headers in the table have the following meaning:

Attribute: The name of an attribute of the class. Note that AUTOSAR does not distin-
guish between class attributes and owned association ends.

35 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Type: The type of an attribute of the class.

Mul.: The assigned multiplicity of the attribute, i.e. how many instances of the given
data type are associated with the attribute.

Kind: Specifies, whether the attribute is aggregated in the class (aggr aggregation),
an UML attribute in the class (attr primitive attribute), or just referenced by it (ref
reference). Instance references are also indicated (iref instance reference) in this
field.

Note: The comment the modeler gave for the class attribute (role note). Stereotypes
and UML tags of the class are also denoted here.

Please note that the chapters that start with a letter instead of a numerical value rep-
resent the appendix of the document. The purpose of the appendix is to support the
explanation of certain aspects of the document and does not represent binding con-
ventions of the standard.

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see Standardization Template, chapter Support for
Traceability ([1]).

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see Standardization Template, chapter Support for Traceability
([1]).

1.7 Imposition Times of Constraints

The constraints formulated in this document have different actual imposition times
which denote the steps in the workflow when the respective constraint has to be im-
posed.

Some imposition times “include” other imposition times, an example for this relation is
discussed in the table 1.2.

The imposition times that are considered applicable in the scope of this document2 are
listed in Table 1.2.

Please note that the imposition times are intentionally rendered as technical terms
such that it is possible to link back from each constraint to the definition of the affected
imposition time in Table 1.2.

This document has been created to apply primarily for the AUTOSAR classic platform
and therefore the discussed imposition times also apply exclusively to the AUTOSAR
classic platform.

Some constraints, however, may also be meaningful in the context of other imposition
times, applicable for other AUTOSAR platforms.

2Different imposition times may be defined in the context of other AUTOSAR standard documents

36 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Imposition Time Description

at the time when the
contract phase generation
is executed

This imposition time is aimed at the time when a
software-component is ready for generating the
contract phase header files such that the
implementation of the software-component can be
started.

at the time when the RTE
is generated

This imposition time denotes the step in the workflow
where the model is considered complete such that
the generation of the RTE can be executed.

At the time when the RTE is generated, all
constraints that need to be imposed at the time when
the contract phase generation is executed and those
that are imposed at any time in the workflow also
need to be observed.

In other words, a constraint that is imposed at the
time when the contract phase generation is executed
shall also be imposed at the time when the RTE is
generated.

at any time in the
workflow

This means that the constraint is invariant of the
imposition time and therefore universally applicable.

Some model configurations never make sense and
therefore need to be restricted as early as possible
in order to avoid the situation where obviously
non-sensical model content is unjustifiably tolerated
until some step in the workflow.

And then (considerable) effort has to be spent for
cleaning up the model.

at the time when the
creation of the Composi-
tionSwComponentType is
finished

This imposition time applies to the creation of
compositions of software-components. This
imposition time is considered optional.

In other words, there may be use cases to deliver
CompositionSwComponentTypes that violate
constraints with this imposition time to another party.

But it may also make sense in some cases to make
sure, that a CompositionSwComponentType that
is going to be delivered to another party fulfills the
constraints associated with this binding time.

Table 1.2: Imposition Times considered in the scope of this document

From the appearance of an imposition time that only applies to the AUTOSAR classic
platform in the text of a constraint in this document, it shall not be concluded that the
constraint is exclusively applicable to the AUTOSAR classic platform.

37 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

1.8 Requirements Tracing

Requirements against this document are exclusively stated in the corresponding re-
quirements document [12].

The following table references the requirements specified in [12] and provides informa-
tion about individual specification items that fulfill a given requirement.

Requirement Description Satisfied by

[RS_SWCT_00010] AUTOSAR shall support inter-
and intra-ECU-communication
mechanisms with high reliability

[TPS_SWCT_01025] [TPS_SWCT_01026] [TPS_SWCT_01027]
[TPS_SWCT_01069] [TPS_SWCT_01070] [TPS_SWCT_01111]
[TPS_SWCT_01516] [TPS_SWCT_01573]

[RS_SWCT_00020] AUTOSAR shall provide open
and standardized software
interfaces for intra-ECU and
inter-ECU communication

[TPS_SWCT_01002]

[RS_SWCT_00030] AUTOSAR shall provide
complete interfaces to
application software and basic
software modules

[TPS_SWCT_01002] [TPS_SWCT_01003] [TPS_SWCT_01004]
[TPS_SWCT_01668] [TPS_SWCT_01672] [TPS_SWCT_01678]
[TPS_SWCT_01679] [TPS_SWCT_01694] [TPS_SWCT_01703]
[TPS_SWCT_01704] [TPS_SWCT_01705] [TPS_SWCT_01716]
[TPS_SWCT_01717] [TPS_SWCT_01718] [TPS_SWCT_01726]
[TPS_SWCT_01728] [TPS_SWCT_01729] [TPS_SWCT_01730]
[TPS_SWCT_01731] [TPS_SWCT_01732] [TPS_SWCT_01733]
[TPS_SWCT_01734] [TPS_SWCT_01735] [TPS_SWCT_01740]
[TPS_SWCT_01741] [TPS_SWCT_01742] [TPS_SWCT_01743]
[TPS_SWCT_01745] [TPS_SWCT_01763] [TPS_SWCT_01764]
[TPS_SWCT_01770] [TPS_SWCT_01776] [TPS_SWCT_01777]
[TPS_SWCT_01778] [TPS_SWCT_01779] [TPS_SWCT_01780]
[TPS_SWCT_01781] [TPS_SWCT_01782] [TPS_SWCT_01783]
[TPS_SWCT_01784] [TPS_SWCT_01788] [TPS_SWCT_01810]
[TPS_SWCT_01813] [TPS_SWCT_01814] [TPS_SWCT_01815]
[TPS_SWCT_01816] [TPS_SWCT_01817] [TPS_SWCT_01818]
[TPS_SWCT_01819] [TPS_SWCT_01826] [TPS_SWCT_01827]
[TPS_SWCT_01829] [TPS_SWCT_01830] [TPS_SWCT_01832]
[TPS_SWCT_02019] [TPS_SWCT_02020] [TPS_SWCT_02021]
[TPS_SWCT_02022] [TPS_SWCT_02024] [TPS_SWCT_02025]
[TPS_SWCT_02026] [TPS_SWCT_02027] [TPS_SWCT_02028]
[TPS_SWCT_02031] [TPS_SWCT_02032] [TPS_SWCT_02506]

[RS_SWCT_00070] AUTOSAR shall provide an
abstraction of the application
software from hardware

[TPS_SWCT_01030] [TPS_SWCT_01097] [TPS_SWCT_01098]

[RS_SWCT_00080] AUTOSAR shall provide an
independence of application
software from in-vehicle
communication technologies

[TPS_SWCT_01025] [TPS_SWCT_01026] [TPS_SWCT_01027]
[TPS_SWCT_01069] [TPS_SWCT_01070] [TPS_SWCT_01516]

[RS_SWCT_00090] AUTOSAR should provide an
independence of application
software from operating
systems

[TPS_SWCT_01030] [TPS_SWCT_01097] [TPS_SWCT_01098]

[RS_SWCT_00110] AUTOSAR shall provide a
functional interface view of the
entire system

[TPS_SWCT_01025] [TPS_SWCT_01026] [TPS_SWCT_01027]
[TPS_SWCT_01069] [TPS_SWCT_01070] [TPS_SWCT_01516]

[RS_SWCT_00120] AUTOSAR shall provide
protection/unlock mechanisms
for software through appropriate
services in the infrastructure

[TPS_SWCT_01031] [TPS_SWCT_01049] [TPS_SWCT_01050]
[TPS_SWCT_01051] [TPS_SWCT_01052] [TPS_SWCT_01053]
[TPS_SWCT_01054] [TPS_SWCT_01055] [TPS_SWCT_01321]
[TPS_SWCT_01592] [TPS_SWCT_01713] [TPS_SWCT_01714]

[RS_SWCT_00150] AUTOSAR shall provide means
to protect SW-Components
from malicious
SW-Components

[TPS_SWCT_01002]

5

38 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Requirement Description Satisfied by

[RS_SWCT_00160] AUTOSAR shall provide means
to achieve compositionality

[TPS_SWCT_01002]

[RS_SWCT_00170] AUTOSAR shall provide
diagnostics means during
runtime, for production and
services purposes

[TPS_SWCT_01028] [TPS_SWCT_01029] [TPS_SWCT_01129]
[TPS_SWCT_01132] [TPS_SWCT_01134] [TPS_SWCT_01135]
[TPS_SWCT_01136] [TPS_SWCT_01137] [TPS_SWCT_01138]
[TPS_SWCT_01139] [TPS_SWCT_01140] [TPS_SWCT_01425]
[TPS_SWCT_01426] [TPS_SWCT_01427] [TPS_SWCT_01453]
[TPS_SWCT_01582] [TPS_SWCT_01627] [TPS_SWCT_01628]
[TPS_SWCT_01629] [TPS_SWCT_01630] [TPS_SWCT_01631]
[TPS_SWCT_01632] [TPS_SWCT_01633] [TPS_SWCT_01634]
[TPS_SWCT_01639] [TPS_SWCT_01640] [TPS_SWCT_01654]
[TPS_SWCT_01655] [TPS_SWCT_01656] [TPS_SWCT_01657]
[TPS_SWCT_01690] [TPS_SWCT_01691] [TPS_SWCT_01706]
[TPS_SWCT_01707] [TPS_SWCT_01708] [TPS_SWCT_01709]
[TPS_SWCT_01711] [TPS_SWCT_01712] [TPS_SWCT_01715]
[TPS_SWCT_01739] [TPS_SWCT_01765] [TPS_SWCT_01766]
[TPS_SWCT_01767] [TPS_SWCT_01789] [TPS_SWCT_01790]
[TPS_SWCT_01791] [TPS_SWCT_01808] [TPS_SWCT_02002]
[TPS_SWCT_02003] [TPS_SWCT_02004] [TPS_SWCT_02005]
[TPS_SWCT_02007] [TPS_SWCT_02008] [TPS_SWCT_02009]
[TPS_SWCT_02010] [TPS_SWCT_02011] [TPS_SWCT_02012]
[TPS_SWCT_02013] [TPS_SWCT_02014] [TPS_SWCT_02015]
[TPS_SWCT_02016] [TPS_SWCT_02505]

[RS_SWCT_00190] AUTOSAR shall support
hierarchical design methods

[TPS_SWCT_01032] [TPS_SWCT_01033] [TPS_SWCT_01034]
[TPS_SWCT_01035] [TPS_SWCT_01036] [TPS_SWCT_01037]

[RS_SWCT_00200] Definitions of relations between
SW components are exhaustive
and formal

[TPS_SWCT_01002] [TPS_SWCT_01322] [TPS_SWCT_01323]
[TPS_SWCT_01325] [TPS_SWCT_01326] [TPS_SWCT_01328]
[TPS_SWCT_01329] [TPS_SWCT_01330] [TPS_SWCT_01331]
[TPS_SWCT_01333] [TPS_SWCT_01334] [TPS_SWCT_01335]
[TPS_SWCT_01336] [TPS_SWCT_01337] [TPS_SWCT_01338]
[TPS_SWCT_01339] [TPS_SWCT_01340] [TPS_SWCT_01341]
[TPS_SWCT_01342] [TPS_SWCT_01343] [TPS_SWCT_01345]
[TPS_SWCT_01346] [TPS_SWCT_01347] [TPS_SWCT_01348]
[TPS_SWCT_01349] [TPS_SWCT_01350] [TPS_SWCT_01351]
[TPS_SWCT_01352] [TPS_SWCT_01353] [TPS_SWCT_01557]
[TPS_SWCT_01558] [TPS_SWCT_01567] [TPS_SWCT_01663]

[RS_SWCT_00210] SW components are protected
from illegal access

[TPS_SWCT_01002]

[RS_SWCT_00220] Management of vehicle diversity
is supported by AUTOSAR

[TPS_SWCT_01038] [TPS_SWCT_01040] [TPS_SWCT_01041]
[TPS_SWCT_01042] [TPS_SWCT_01447]

[RS_SWCT_00230] The Software Component
Template shall provide the
ability to define naming
conventions for public symbols

[TPS_SWCT_01000] [TPS_SWCT_01001] [TPS_SWCT_01635]

[RS_SWCT_02000] AUTOSAR shall support a
top-down hierarchical design

[TPS_SWCT_01032] [TPS_SWCT_01033] [TPS_SWCT_01034]
[TPS_SWCT_01035] [TPS_SWCT_01036] [TPS_SWCT_01037]

[RS_SWCT_02010] Interfaces of atomic
software-components shall be
supported

[TPS_SWCT_01002]

[RS_SWCT_02020] Bottom-up design of
CompositionTypes shall be
supported

[TPS_SWCT_01032] [TPS_SWCT_01033] [TPS_SWCT_01034]
[TPS_SWCT_01035] [TPS_SWCT_01036] [TPS_SWCT_01037]

5

39 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Requirement Description Satisfied by

[RS_SWCT_02030] Specification of
Communications shall be
supported

[TPS_SWCT_01002] [TPS_SWCT_01025] [TPS_SWCT_01026]
[TPS_SWCT_01027] [TPS_SWCT_01087] [TPS_SWCT_01106]
[TPS_SWCT_01114] [TPS_SWCT_01115] [TPS_SWCT_01116]
[TPS_SWCT_01117] [TPS_SWCT_01118] [TPS_SWCT_01119]
[TPS_SWCT_01120] [TPS_SWCT_01121] [TPS_SWCT_01122]
[TPS_SWCT_01124] [TPS_SWCT_01196] [TPS_SWCT_01198]
[TPS_SWCT_01218] [TPS_SWCT_01454] [TPS_SWCT_01516]
[TPS_SWCT_01517] [TPS_SWCT_01801] [TPS_SWCT_01803]

[RS_SWCT_02060] Interaction with basic software
shall be considered

[TPS_SWCT_01005] [TPS_SWCT_01043] [TPS_SWCT_01044]
[TPS_SWCT_01045] [TPS_SWCT_01046] [TPS_SWCT_01556]
[TPS_SWCT_01660] [TPS_SWCT_01661] [TPS_SWCT_01689]
[TPS_SWCT_01693] [TPS_SWCT_01833]

[RS_SWCT_02080] Designing a Sensor Actuator
Component shall be supported

[TPS_SWCT_01047] [TPS_SWCT_01048]

[RS_SWCT_02090] Data-consistency for
communication among
RunnableEntities shall be
supported

[TPS_SWCT_01031] [TPS_SWCT_01049] [TPS_SWCT_01050]
[TPS_SWCT_01051] [TPS_SWCT_01052] [TPS_SWCT_01053]
[TPS_SWCT_01054] [TPS_SWCT_01055] [TPS_SWCT_01637]
[TPS_SWCT_01713] [TPS_SWCT_01714]

[RS_SWCT_02100] Definition of physical units shall
be supported

[TPS_SWCT_01056] [TPS_SWCT_01057] [TPS_SWCT_01058]
[TPS_SWCT_01059] [TPS_SWCT_01060] [TPS_SWCT_01061]
[TPS_SWCT_01068] [TPS_SWCT_01736] [TPS_SWCT_01737]

[RS_SWCT_02110] Definition of comments shall be
supported

[TPS_SWCT_01062] [TPS_SWCT_01203] [TPS_SWCT_01204]
[TPS_SWCT_01205] [TPS_SWCT_01206] [TPS_SWCT_01207]
[TPS_SWCT_01208] [TPS_SWCT_01209] [TPS_SWCT_01211]
[TPS_SWCT_01212] [TPS_SWCT_01214] [TPS_SWCT_01215]
[TPS_SWCT_01216] [TPS_SWCT_01217] [TPS_SWCT_01524]

[RS_SWCT_03000] The SW-Component template
shall support compositions

[TPS_SWCT_01032] [TPS_SWCT_01033] [TPS_SWCT_01034]
[TPS_SWCT_01035] [TPS_SWCT_01036] [TPS_SWCT_01037]

[RS_SWCT_03010] The SW-Component template
shall support interfaces

[TPS_SWCT_01025] [TPS_SWCT_01026] [TPS_SWCT_01069]
[TPS_SWCT_01070] [TPS_SWCT_01516]

[RS_SWCT_03040] The SW-Component template
shall support description of the
behavior

[TPS_SWCT_01022] [TPS_SWCT_01030] [TPS_SWCT_01075]
[TPS_SWCT_01098] [TPS_SWCT_01108] [TPS_SWCT_01153]
[TPS_SWCT_01154] [TPS_SWCT_01155] [TPS_SWCT_01156]
[TPS_SWCT_01157] [TPS_SWCT_01302] [TPS_SWCT_01303]
[TPS_SWCT_01304] [TPS_SWCT_01305] [TPS_SWCT_01306]
[TPS_SWCT_01307] [TPS_SWCT_01309] [TPS_SWCT_01310]
[TPS_SWCT_01312] [TPS_SWCT_01313] [TPS_SWCT_01314]
[TPS_SWCT_01315] [TPS_SWCT_01317] [TPS_SWCT_01318]
[TPS_SWCT_01320] [TPS_SWCT_01324] [TPS_SWCT_01354]
[TPS_SWCT_01355] [TPS_SWCT_01356] [TPS_SWCT_01357]
[TPS_SWCT_01358] [TPS_SWCT_01359] [TPS_SWCT_01360]
[TPS_SWCT_01361] [TPS_SWCT_01363] [TPS_SWCT_01366]
[TPS_SWCT_01367] [TPS_SWCT_01368] [TPS_SWCT_01369]
[TPS_SWCT_01469] [TPS_SWCT_01483] [TPS_SWCT_01519]
[TPS_SWCT_01520] [TPS_SWCT_01521] [TPS_SWCT_01522]
[TPS_SWCT_01523] [TPS_SWCT_01687] [TPS_SWCT_03500]
[TPS_SWCT_03501]

[RS_SWCT_03045] The SW-Component template
shall allow enabling of
RTE-Feature to get the
activating RTE-Event of
Runnable Entity

[TPS_SWCT_01469]

[RS_SWCT_03046] The SW-Component template
shall support instance specific
RTE-Events

[TPS_SWCT_02507]

[RS_SWCT_03050] The SW-Component template
shall support the definition of
schedulability

[TPS_SWCT_01030] [TPS_SWCT_01097] [TPS_SWCT_01098]

5

40 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Requirement Description Satisfied by

[RS_SWCT_03055] The SW-Component template
shall support optional
configuration of ExclusiveArea
usage within RunnableEntities

[TPS_SWCT_01457] [TPS_SWCT_01458] [TPS_SWCT_01459]
[TPS_SWCT_01460]

[RS_SWCT_03065] The SW-Component template
shall support the definition of
implicit communication behavior

[TPS_SWCT_01466] [TPS_SWCT_01470] [TPS_SWCT_01471]
[TPS_SWCT_01472] [TPS_SWCT_01473] [TPS_SWCT_01474]
[TPS_SWCT_01475] [TPS_SWCT_01476] [TPS_SWCT_01479]
[TPS_SWCT_01480] [TPS_SWCT_01481] [TPS_SWCT_01482]
[TPS_SWCT_01509] [TPS_SWCT_01625]

[RS_SWCT_03090] The SW-Component template
shall support the definition of
needed and usable sensors and
actuators

[TPS_SWCT_01047] [TPS_SWCT_01048]

[RS_SWCT_03100] The SW-Component template
shall support variant handling

[TPS_SWCT_01038] [TPS_SWCT_01040] [TPS_SWCT_01041]
[TPS_SWCT_01042] [TPS_SWCT_01370] [TPS_SWCT_01371]
[TPS_SWCT_01372] [TPS_SWCT_01373] [TPS_SWCT_01448]

[RS_SWCT_03110] The SW-Component template
shall support modes

[TPS_SWCT_01071] [TPS_SWCT_01153] [TPS_SWCT_01154]
[TPS_SWCT_01190] [TPS_SWCT_01376] [TPS_SWCT_01377]
[TPS_SWCT_01378] [TPS_SWCT_01379] [TPS_SWCT_01380]
[TPS_SWCT_01381] [TPS_SWCT_01382] [TPS_SWCT_01383]
[TPS_SWCT_01384] [TPS_SWCT_01385] [TPS_SWCT_01388]
[TPS_SWCT_01530] [TPS_SWCT_01531] [TPS_SWCT_01532]
[TPS_SWCT_01533] [TPS_SWCT_01534] [TPS_SWCT_01535]
[TPS_SWCT_01536] [TPS_SWCT_01541] [TPS_SWCT_01542]
[TPS_SWCT_01552] [TPS_SWCT_01553] [TPS_SWCT_01554]
[TPS_SWCT_01555] [TPS_SWCT_01581] [TPS_SWCT_01664]

[RS_SWCT_03115] The SW-Component template
shall support mapping of mode
declarations

[TPS_SWCT_01464] [TPS_SWCT_01465] [TPS_SWCT_01545]

[RS_SWCT_03120] The SW-Component template
shall support dependency on
modes

[TPS_SWCT_01077]

[RS_SWCT_03130] The SW-Component template
shall support connections
between PortInterfaces

[TPS_SWCT_01079] [TPS_SWCT_01080] [TPS_SWCT_01081]
[TPS_SWCT_01082] [TPS_SWCT_01083] [TPS_SWCT_01084]
[TPS_SWCT_01113] [TPS_SWCT_01507] [TPS_SWCT_01515]
[TPS_SWCT_01573] [TPS_SWCT_01843]

[RS_SWCT_03135] The SW-Component template
shall support record type
subsetting

[TPS_SWCT_01023] [TPS_SWCT_01024] [TPS_SWCT_01551]

[RS_SWCT_03136] The SW-Component template
shall support record type
subsetting with primitive types

[TPS_SWCT_01195]

[RS_SWCT_03140] The SW-Component template
shall support conditional
existence of PortPrototypes

[TPS_SWCT_01038]

[RS_SWCT_03141] The SW-Component template
shall support the conditional
existence of data element
prototypes, operation
prototypes, parameter
prototypes in an interface

[TPS_SWCT_01106]

[RS_SWCT_03142] The SW-Component template
shall support the conditional
existence of Component
Prototypes

[TPS_SWCT_01038]

5

41 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Requirement Description Satisfied by

[RS_SWCT_03143] The SW-Component template
shall support the conditional
existence of Connector
Prototypes

[TPS_SWCT_01040]

[RS_SWCT_03144] The SW-Component template
shall support a configurable
size of arrays

[TPS_SWCT_01076] [TPS_SWCT_01078]

[RS_SWCT_03148] Attributes swMinAxisPoints and
swMaxAxisPoints shall be
adjustable by an System
Constant Definition

[TPS_SWCT_01107] [TPS_SWCT_01181] [TPS_SWCT_01839]

[RS_SWCT_03149] The SW-Component template
shall support the conditional
existence of RunnableEntitys

[TPS_SWCT_01085]

[RS_SWCT_03150] The SW-Component template
shall support the conditional
existence of RTEEvents

[TPS_SWCT_01085]

[RS_SWCT_03151] The SW-Component template
shall support the conditional
existence of InterRunnable
Variables

[TPS_SWCT_01085]

[RS_SWCT_03152] The SW-Component template
shall support the conditional
accessibility for measurement

[TPS_SWCT_01130]

[RS_SWCT_03153] The SW-Component template
shall support the conditional
existence of parameter
prototypes

[TPS_SWCT_01085]

[RS_SWCT_03154] The SW-Component template
shall support conditional ports
for software components

[TPS_SWCT_01038]

[RS_SWCT_03155] The SW-Component template
shall support interfaces with
different resolutions

[TPS_SWCT_01099] [TPS_SWCT_01100] [TPS_SWCT_01101]
[TPS_SWCT_01102] [TPS_SWCT_01103] [TPS_SWCT_01104]
[TPS_SWCT_01105]

[RS_SWCT_03170] The SW-Component template
shall support fixed data
exchange

[TPS_SWCT_01102] [TPS_SWCT_01103] [TPS_SWCT_01104]

[RS_SWCT_03175] The SW-Component template
shall support the definition of
calibration datasets

[TPS_SWCT_01177] [TPS_SWCT_01178] [TPS_SWCT_01188]
[TPS_SWCT_01793] [TPS_SWCT_01794]

[RS_SWCT_03180] The SW-Component template
shall support SAE J1939
Protocol Features

[TPS_SWCT_01076] [TPS_SWCT_01673] [TPS_SWCT_01674]
[TPS_SWCT_01809]

[RS_SWCT_03181] The SW-Component template
shall support arrays of variable
number of elements within the
maximum size

[TPS_SWCT_01076] [TPS_SWCT_01127] [TPS_SWCT_01495]
[TPS_SWCT_01601] [TPS_SWCT_01602] [TPS_SWCT_01604]
[TPS_SWCT_01605] [TPS_SWCT_01606] [TPS_SWCT_01607]
[TPS_SWCT_01608] [TPS_SWCT_01610] [TPS_SWCT_01612]
[TPS_SWCT_01613] [TPS_SWCT_01614] [TPS_SWCT_01615]
[TPS_SWCT_01617] [TPS_SWCT_01618] [TPS_SWCT_01619]
[TPS_SWCT_01620] [TPS_SWCT_01621] [TPS_SWCT_01622]
[TPS_SWCT_01623] [TPS_SWCT_01636] [TPS_SWCT_01641]
[TPS_SWCT_01642] [TPS_SWCT_01644] [TPS_SWCT_01645]
[TPS_SWCT_01647] [TPS_SWCT_01648] [TPS_SWCT_01649]
[TPS_SWCT_01650] [TPS_SWCT_01793] [TPS_SWCT_01794]

[RS_SWCT_03182] The SW-Component template
shall support byte arrays of
variable number of elements

[TPS_SWCT_01127]

5

42 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Requirement Description Satisfied by

[RS_SWCT_03190] The SW-Component template
shall support the ability to
publish/specify the diagnostic
capabilities and its resources of
an SWC

[TPS_SWCT_01028] [TPS_SWCT_01029] [TPS_SWCT_01129]
[TPS_SWCT_01132] [TPS_SWCT_01134] [TPS_SWCT_01135]
[TPS_SWCT_01136] [TPS_SWCT_01137] [TPS_SWCT_01138]
[TPS_SWCT_01139] [TPS_SWCT_01140] [TPS_SWCT_01421]
[TPS_SWCT_01422] [TPS_SWCT_01425] [TPS_SWCT_01426]
[TPS_SWCT_01427] [TPS_SWCT_01453] [TPS_SWCT_01537]
[TPS_SWCT_01538] [TPS_SWCT_01539] [TPS_SWCT_01540]
[TPS_SWCT_01544] [TPS_SWCT_01546] [TPS_SWCT_01547]
[TPS_SWCT_01577] [TPS_SWCT_01578] [TPS_SWCT_01582]
[TPS_SWCT_01627] [TPS_SWCT_01628] [TPS_SWCT_01629]
[TPS_SWCT_01630] [TPS_SWCT_01631] [TPS_SWCT_01632]
[TPS_SWCT_01633] [TPS_SWCT_01634] [TPS_SWCT_01639]
[TPS_SWCT_01640] [TPS_SWCT_01654] [TPS_SWCT_01655]
[TPS_SWCT_01656] [TPS_SWCT_01657] [TPS_SWCT_01680]
[TPS_SWCT_01690] [TPS_SWCT_01691] [TPS_SWCT_01706]
[TPS_SWCT_01707] [TPS_SWCT_01708] [TPS_SWCT_01709]
[TPS_SWCT_01711] [TPS_SWCT_01712] [TPS_SWCT_01715]
[TPS_SWCT_01739] [TPS_SWCT_01746] [TPS_SWCT_01765]
[TPS_SWCT_01766] [TPS_SWCT_01767] [TPS_SWCT_01769]
[TPS_SWCT_01789] [TPS_SWCT_01790] [TPS_SWCT_01791]
[TPS_SWCT_01808] [TPS_SWCT_02002] [TPS_SWCT_02003]
[TPS_SWCT_02004] [TPS_SWCT_02005] [TPS_SWCT_02007]
[TPS_SWCT_02008] [TPS_SWCT_02009] [TPS_SWCT_02010]
[TPS_SWCT_02011] [TPS_SWCT_02012] [TPS_SWCT_02013]
[TPS_SWCT_02014] [TPS_SWCT_02015] [TPS_SWCT_02016]
[TPS_SWCT_02505]

[RS_SWCT_03200] The SW-Component template
shall support vehicle and
application mode management

[TPS_SWCT_01008] [TPS_SWCT_01009] [TPS_SWCT_01010]
[TPS_SWCT_01011] [TPS_SWCT_01016] [TPS_SWCT_01017]
[TPS_SWCT_01018] [TPS_SWCT_01019] [TPS_SWCT_01020]
[TPS_SWCT_01021] [TPS_SWCT_01063] [TPS_SWCT_01064]
[TPS_SWCT_01065] [TPS_SWCT_01066] [TPS_SWCT_01067]
[TPS_SWCT_01071] [TPS_SWCT_01126] [TPS_SWCT_01450]
[TPS_SWCT_01451] [TPS_SWCT_01552] [TPS_SWCT_01553]
[TPS_SWCT_01554] [TPS_SWCT_01572] [TPS_SWCT_01581]
[TPS_SWCT_01664] [TPS_SWCT_01811]

[RS_SWCT_03201] The SW-Component template
shall support Portgroups

[TPS_SWCT_01063] [TPS_SWCT_01064] [TPS_SWCT_01065]
[TPS_SWCT_01066] [TPS_SWCT_01096] [TPS_SWCT_01126]
[TPS_SWCT_01169] [TPS_SWCT_01173] [TPS_SWCT_01174]

[RS_SWCT_03202] The SW-Component template
shall support enabling SWCs to
request dedicated modes

[TPS_SWCT_01086] [TPS_SWCT_01201] [TPS_SWCT_01353]
[TPS_SWCT_01554] [TPS_SWCT_01572]

[RS_SWCT_03203] The SW-Component template
shall support propagation of
mode information

[TPS_SWCT_01086] [TPS_SWCT_01087] [TPS_SWCT_01200]
[TPS_SWCT_01201] [TPS_SWCT_01202] [TPS_SWCT_01552]
[TPS_SWCT_01553] [TPS_SWCT_01566] [TPS_SWCT_01664]

[RS_SWCT_03210] The SW-Component template
shall support integrity and
scaling at ports

[TPS_SWCT_01023] [TPS_SWCT_01024] [TPS_SWCT_01099]
[TPS_SWCT_01100] [TPS_SWCT_01101] [TPS_SWCT_01102]
[TPS_SWCT_01103] [TPS_SWCT_01104] [TPS_SWCT_01105]
[TPS_SWCT_01158] [TPS_SWCT_01159] [TPS_SWCT_01160]
[TPS_SWCT_01161] [TPS_SWCT_01162] [TPS_SWCT_01163]
[TPS_SWCT_01164] [TPS_SWCT_01165] [TPS_SWCT_01166]
[TPS_SWCT_01167] [TPS_SWCT_01168] [TPS_SWCT_01449]
[TPS_SWCT_01543] [TPS_SWCT_01549] [TPS_SWCT_01550]
[TPS_SWCT_01551] [TPS_SWCT_01560] [TPS_SWCT_01561]
[TPS_SWCT_01583] [TPS_SWCT_01768]

[RS_SWCT_03215] The SW-Component template
shall define the need to add
application data type on top of
implementation data type

[TPS_SWCT_01072] [TPS_SWCT_01073] [TPS_SWCT_01074]
[TPS_SWCT_01076] [TPS_SWCT_01078] [TPS_SWCT_01189]
[TPS_SWCT_01229] [TPS_SWCT_01231] [TPS_SWCT_01235]
[TPS_SWCT_01236] [TPS_SWCT_01247] [TPS_SWCT_01256]
[TPS_SWCT_01295] [TPS_SWCT_01296] [TPS_SWCT_01298]
[TPS_SWCT_01299] [TPS_SWCT_01300] [TPS_SWCT_01489]
[TPS_SWCT_01837]

5

43 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Requirement Description Satisfied by

[RS_SWCT_03216] The SW-Component template
shall support application data
type

[TPS_SWCT_01072] [TPS_SWCT_01073] [TPS_SWCT_01179]
[TPS_SWCT_01180] [TPS_SWCT_01181] [TPS_SWCT_01183]
[TPS_SWCT_01184] [TPS_SWCT_01185] [TPS_SWCT_01189]
[TPS_SWCT_01191] [TPS_SWCT_01229] [TPS_SWCT_01230]
[TPS_SWCT_01231] [TPS_SWCT_01235] [TPS_SWCT_01236]
[TPS_SWCT_01237] [TPS_SWCT_01240] [TPS_SWCT_01241]
[TPS_SWCT_01242] [TPS_SWCT_01243] [TPS_SWCT_01244]
[TPS_SWCT_01245] [TPS_SWCT_01247] [TPS_SWCT_01249]
[TPS_SWCT_01256] [TPS_SWCT_01486] [TPS_SWCT_01562]
[TPS_SWCT_01564] [TPS_SWCT_01565] [TPS_SWCT_01760]
[TPS_SWCT_01834] [TPS_SWCT_01835] [TPS_SWCT_01839]

[RS_SWCT_03217] The SW-Component template
shall support implementation
data type

[TPS_SWCT_01006] [TPS_SWCT_01007] [TPS_SWCT_01072]
[TPS_SWCT_01074] [TPS_SWCT_01183] [TPS_SWCT_01184]
[TPS_SWCT_01189] [TPS_SWCT_01191] [TPS_SWCT_01229]
[TPS_SWCT_01231] [TPS_SWCT_01232] [TPS_SWCT_01233]
[TPS_SWCT_01235] [TPS_SWCT_01236] [TPS_SWCT_01237]
[TPS_SWCT_01248] [TPS_SWCT_01250] [TPS_SWCT_01251]
[TPS_SWCT_01252] [TPS_SWCT_01253] [TPS_SWCT_01254]
[TPS_SWCT_01255] [TPS_SWCT_01257] [TPS_SWCT_01257]
[TPS_SWCT_01258] [TPS_SWCT_01259] [TPS_SWCT_01442]
[TPS_SWCT_01443] [TPS_SWCT_01478] [TPS_SWCT_01564]
[TPS_SWCT_01565] [TPS_SWCT_01610] [TPS_SWCT_01612]
[TPS_SWCT_01613] [TPS_SWCT_01614] [TPS_SWCT_01615]
[TPS_SWCT_01617] [TPS_SWCT_01618] [TPS_SWCT_01619]
[TPS_SWCT_01620] [TPS_SWCT_01621] [TPS_SWCT_01622]
[TPS_SWCT_01647] [TPS_SWCT_01648] [TPS_SWCT_01649]
[TPS_SWCT_01650] [TPS_SWCT_01700] [TPS_SWCT_01701]
[TPS_SWCT_01702] [TPS_SWCT_01759] [TPS_SWCT_01772]
[TPS_SWCT_01773]

[RS_SWCT_03218] The SW-Component template
shall support data types for
primitive data mapping

[TPS_SWCT_01477]

[RS_SWCT_03220] The SW-Component template
shall allow communication
attributes on compositions

[TPS_SWCT_01088] [TPS_SWCT_01568]

[RS_SWCT_03221] The SW-Component template
shall allow port specific
configuration of data
transformation properties

[TPS_SWCT_01222] [TPS_SWCT_01594] [TPS_SWCT_01595]
[TPS_SWCT_01596] [TPS_SWCT_01597] [TPS_SWCT_01598]
[TPS_SWCT_01599] [TPS_SWCT_01600] [TPS_SWCT_01626]
[TPS_SWCT_01812] [TPS_SWCT_03500] [TPS_SWCT_03501]

[RS_SWCT_03222] The SW-Component template
shall support error notification
for transformed data
communication

[TPS_SWCT_01616] [TPS_SWCT_01624] [TPS_SWCT_01626]

[RS_SWCT_03225] The SW-Component template
shall support an enhanced
non-volatile (NV) memory
interface

[TPS_SWCT_01141] [TPS_SWCT_01142] [TPS_SWCT_01143]
[TPS_SWCT_01227] [TPS_SWCT_01228] [TPS_SWCT_01584]
[TPS_SWCT_01585] [TPS_SWCT_01586] [TPS_SWCT_01587]
[TPS_SWCT_01588] [TPS_SWCT_01589] [TPS_SWCT_01590]
[TPS_SWCT_01662] [TPS_SWCT_01665] [TPS_SWCT_01666]
[TPS_SWCT_01675] [TPS_SWCT_01754] [TPS_SWCT_01755]
[TPS_SWCT_01795] [TPS_SWCT_01805] [TPS_SWCT_01806]
[TPS_SWCT_01807] [TPS_SWCT_02501] [TPS_SWCT_02502]
[TPS_SWCT_02503] [TPS_SWCT_02504]

[RS_SWCT_03230] The SW-Component template
shall support documentation of
M1 artifacts

[TPS_SWCT_01062] [TPS_SWCT_01699]

[RS_SWCT_03240] The SW-Component template
shall support end-to-end
communication protection

[TPS_SWCT_01089] [TPS_SWCT_01090] [TPS_SWCT_01091]
[TPS_SWCT_01092] [TPS_SWCT_01093] [TPS_SWCT_01094]
[TPS_SWCT_01095] [TPS_SWCT_01508] [TPS_SWCT_01529]

5

44 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Requirement Description Satisfied by

[RS_SWCT_03241] The SW-Component template
shall support partial networking

[TPS_SWCT_01169] [TPS_SWCT_01170] [TPS_SWCT_01171]
[TPS_SWCT_01172] [TPS_SWCT_01173] [TPS_SWCT_01174]
[TPS_SWCT_01175]

[RS_SWCT_03250] The SW-Component template
shall support bidirectional
communication

[TPS_SWCT_01112] [TPS_SWCT_01113] [TPS_SWCT_01454]
[TPS_SWCT_01455] [TPS_SWCT_01514] [TPS_SWCT_01573]

[RS_SWCT_03260] The SW-Component template
shall support rule-based
initialization of arrays

[TPS_SWCT_01484] [TPS_SWCT_01485] [TPS_SWCT_01493]
[TPS_SWCT_01494] [TPS_SWCT_01495] [TPS_SWCT_01528]
[TPS_SWCT_01609] [TPS_SWCT_01692]

[RS_SWCT_03270] The SW-Component template
shall support overriding the
activation period time on
instance level

[TPS_SWCT_02507]

[RS_SWCT_03280] The SW-Component template
shall support the description of
bypass points and bypass
scenarios

[TPS_SWCT_01719] [TPS_SWCT_01720] [TPS_SWCT_01721]
[TPS_SWCT_01722] [TPS_SWCT_01723] [TPS_SWCT_01724]
[TPS_SWCT_02046] [TPS_SWCT_02047] [TPS_SWCT_02048]
[TPS_SWCT_02049] [TPS_SWCT_02050] [TPS_SWCT_02051]
[TPS_SWCT_02052]

[RS_SWCT_03281] The SW-Component template
shall support post-build hooking
tools for rapid prototyping

[TPS_SWCT_02047]

[RS_SWCT_03282] The SW-Component template
shall support the description of
service points and rapid
prototyping scenarios

[TPS_SWCT_02046] [TPS_SWCT_02047]

[RS_SWCT_03290] The SW-Component template
shall support the initialization of
runnables without usage of
mode management

[TPS_SWCT_01525]

[RS_SWCT_03310] The SW-Component template
shall support Diagnostics over
IP

[TPS_SWCT_01537] [TPS_SWCT_01538] [TPS_SWCT_01539]
[TPS_SWCT_01544] [TPS_SWCT_01546] [TPS_SWCT_01547]
[TPS_SWCT_01746]

[RS_SWCT_03320] The SW-Component template
shall support the definition of
optional elements for
communication

[TPS_SWCT_01771] [TPS_SWCT_01772] [TPS_SWCT_01773]
[TPS_SWCT_01774] [TPS_SWCT_01775] [TPS_SWCT_01785]
[TPS_SWCT_01786] [TPS_SWCT_01821] [TPS_SWCT_01822]
[TPS_SWCT_01823]

Table 1.3: RequirementsTracing

45 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2 Conceptual Aspects

2.1 Introduction

For the sake of a compact description of relevant meta-model elements the discussion
and explanation of conceptual aspects has been concentrated in this chapter.

Reading this chapter is not a pre-requisite for understanding the subsequent chapters.
It just provides a central place for the detailed description of conceptual aspects used
in various other chapters of this document.

The actual explanation of the concept of a software-component starts in chapter 3.

2.2 Measurement and Calibration

2.2.1 Basic Approach of Measurement and Calibration

While performing the calibration process using an MCD tool (Measurement, Calibra-
tion, and Diagnostic) the calibration engineer needs to have a specific insight to the
data within the CPU at runtime.

This insight is provided by access to ECU internal variables (also called measure-
ments) as well as calibration parameters (sometimes also called characteristic value).
For more details, please refer to [TPS_SWCT_01418]

The description of measurement variables and calibration parameters is basically the
same. In AUTOSAR both appear finally as DataPrototypes.

2.2.2 Calibration Parameters Overview

A Calibration Parameter is a parameter which characterizes the dynamics of a control
algorithm. From a software implementation point of view, it is a variable with only
read-access during the normal operation of an ECU. Characteristics are specialized
DataPrototype entities in terms of its associated type but are used similarly.

[TPS_SWCT_01418] Ways to define a calibration parameter dThis means that Cal-
ibration Parameters can be defined

• individually for a SwComponentPrototype in the SwcInternalBehavior of
a SwComponentType via an aggregation of an ParameterDataPrototype in
the role of perInstanceParameter (similar to PerInstanceMemory).

• sharing between all SwComponentPrototypes of the same SwComponent-
Type in its SwcInternalBehavior via an aggregation of an ParameterDat-
aPrototype in the role of sharedParameter or constantMemory.

46 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• for several SwComponentPrototypes (using the port-/interface-concept with
ParameterInterfaces).

c()

Please note:

• The definition of perInstanceParameter is further described in chapter
2.2.3.3.

• Chapter 2.2.3.2 provides more information about the definition of sharedPa-
rameter or constantMemory.

• For more information regarding the definition of ParameterInterface, please
refer to chapter 2.2.3.1.

Curve Map AxisCurve Map Axis
Figure 2.1: Some Categories of calibration parameters

Note: the structure of various calibration objects is visualized in [13].

2.2.3 Using Calibration Parameters

As mentioned above, a ParameterDataPrototype can be used in the context of
SwcInternalBehavior as well as in the context of PortPrototypes.

2.2.3.1 Sharing Calibration Parameters within Compositions

To provide calibration parameters for being visible in other SwComponentTypes, a
dedicated ParameterSwComponentType (see Figure 3.4) that inherits from SwCom-
ponentType has to be used as a SwComponentPrototype within a Composition-
SwComponentType.

Class ParameterSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

5

47 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ParameterSwComponentType

Note The ParameterSwComponentType defines parameters and characteristic values accessible via provided
Ports. The provided values are the same for all connected SwComponentPrototypes

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Attribute Type Mult. Kind Note

constant
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstantSpecificationMapping to be
applied for the particular ParameterSwComponentType

Stereotypes: atpSplitable
Tags:atp.Splitkey=constantMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
particular ParameterSwComponentType

Stereotypes: atpSplitable
Tags:atp.Splitkey=dataTypeMapping

instantiation
DataDefProps

InstantiationDataDef
Props

* aggr The purpose of this is that within the context of a given
SwComponentType some data def properties of individual
instantiations can be modified.

The aggregation of InstantiationDataDefProps is subject
to variability with the purpose to support the conditional
existence of PortPrototypes

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 2.1: ParameterSwComponentType

[TPS_SWCT_01420] SwComponentType requiring access to shared calibration
parameters needs RPortPrototype typed by a ParameterInterface dEvery
SwComponentType requiring access to shared calibration parameters will have an
RPortPrototype typed by a ParameterInterface. The definition of this shared
calibration access in the context of a CompositionSwComponentTypewill be defined
by creating a SwConnector between the relevant SwComponentPrototypes.c()

Class ParameterInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A parameter interface declares a number of parameter and characteristic values to be exchanged
between parameter components and software components.

Tags:atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
DataInterface, Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mult. Kind Note

parameter ParameterData
Prototype

* aggr The ParameterDataPrototype of this ParameterInterface.

Table 2.2: ParameterInterface

[TPS_SWCT_01421] ParameterInterface is not restricted to parameters which
can actually can be calibrated dNote that a ParameterInterface is not restricted
to parameters which can actually can be calibrated. It can be used whenever there
shall be no write access to the data during normal operation of the software, i.e. only
constant data are visible over the interface.c(RS_SWCT_03190)

48 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The compatibility rules for ParameterInterfaces are described in chapter 6.4; the
compatibility rules for ParameterDataPrototypes are described in chapter 6.4.4.

ParameterInterface

AtpBlueprintable
AtpPrototype

PortPrototype

PPortPrototype RPortPrototype

+ mayBeUnconnected: Boolean [0..1]

AutosarDataPrototypeParameterDataPrototype «atpVariation»
SwDataDefProps

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean [0..1]
+ serviceKind: ServiceProviderEnum [0..1]

AtpPrototype

DataPrototype
DataInterface

AbstractProvidedPortPrototype AbstractRequiredPortPrototype

«isOfType»+requiredInterface

0..1
{redefines atpType}

+/swDataDefProps 0..1+parameter 0..*

«isOfType»+providedInterface

0..1
{redefines atpType}

Figure 2.2: ParameterInterface

[TPS_SWCT_01422] Delegation of PortPrototypes typed by a ParameterIn-
terface dAccess to shared calibration parameters can be provided and required even
over CompositionSwComponentTypes using DelegationSwConnectors and
AssemblySwConnectors.

This means that each access to calibration parameters between SwComponentPro-
totypes is explicitly visible.

If a SwConnector spans after the mapping of SwComponentPrototypes over two
different ECUs the system generation process has to ensure the proper allocation of
the ParameterDataPrototype while the calibration system has to cope with setting
the parameter synchronously on the affected ECUs.c(RS_SWCT_03190)

2.2.3.2 Sharing Calibration Parameters between SwComponentPrototypes of
the Same SwComponentType

To share calibration parameters between several SwComponentPrototypes of the
same SwComponentType, a ParameterDataPrototype is attached to an SwcIn-
ternalBehavior in sharedParameter role (see [TPS_SWCT_01418]).

When the SwcInternalBehavior is aggregated by an AtomicSwComponentType
the actual calibration parameters of the ParameterDataPrototype is the same for
all SwComponentPrototypes.

49 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01423] ParameterDataPrototype aggregated in the role con-
stantMemory dAdditionally, it is possible to describe the implementation of shared
characteristic values via a ParameterDataPrototype which is attached to an
SwcInternalBehavior in the role constantMemory.

In contrast to the ParameterDataPrototype in sharedParameter role this kind
of memory is not instantiated by the RTE. This supports more efficient implementa-
tions (especially for software components provided as object code) by avoidance of
the additional indirection caused by the RTE’s component data structure.c()

Further on this kind of memory reduces the dependencies of the software-component’s
implementation to generated RTE code which is appreciated for safety related function-
alities.

Nevertheless, the information about these characteristic values has to be taken into
account for the A2L file generation.

A typical example for this kind of sharing code between instances is dealing with two
lambda sensors in multiple cylinder-bank engines, where (at least) two SwComponent-
Prototypes for each lambda sensor will use the very same Calibration Parameters.

2.2.3.3 Providing Instance Individual Characteristic Data

[TPS_SWCT_01424] ParameterDataPrototype aggregated in the role perIn-
stanceParameter dTo provide instance individual calibration parameters a Param-
eterDataPrototype is owned by a SwcInternalBehavior in perInstancePa-
rameter role.

When the SwcInternalBehavior is attached to an AtomicSwComponentType, the
actual calibration values are specific for each SwComponentPrototype.c()

ParameterDataPrototype

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently:
Boolean [0..1]

+ symbol: CIdentifier [0..1]

AutosarParameterRef

AbstractAccessPoint
AtpStructureElement

Identifiable

ParameterAccess

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

������������	
 ����

�����������	��	���� �

��������������

AtpStructureElement

InternalBehavior

AtpPrototype

DataPrototype

AutosarDataPrototype

«atpVariation,atpSplitable»

+parameterAccess

0..*

«atpVariation,atpSplitable»

+perInstanceParameter

0..*

+accessedParameter

0..1

«instanceRef»

+autosarParameter 0..1+localParameter 0..1

«atpVariation,atpSplitable»

+sharedParameter

0..*

«atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»

+constantMemory

0..*

Figure 2.3: ParameterDataPrototypes in internal behavior

50 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2.3 Runtime and Data Consistency Aspects

2.3.1 Background: the Issues

This section gives some background information and lists possible strategies concern-
ing the implementation of the RunnableEntitys and the RTE with respect to efficient
communication between the RunnableEntitys.

The communication among RunnableEntitys can very efficiently be implemented
by means of “sharing memory”1.

This is technically feasible because it is always guaranteed that the RunnableEn-
titys within an AtomicSwComponentType are always gathered at a specific pro-
cessing unit (in other words: distribution is not an option).

Note that the purpose of communication among the RunnableEntitys is to establish
a data flow scheme. The latter is a very popular pattern in the application of control
theory to automotive embedded systems. So if “global variables” are used for estab-
lishing internal communication among RunnableEntitys they acquire the semantics
of so called state-messages.

Nevertheless, directly sharing memory between RunnableEntitys requires a seri-
ous problem to be solved: the guarantee of data consistency among communicating
RunnableEntitys. The RunnableEntitys will indeed be mapped to tasks so that
one RunnableEntity of an AtomicSwComponentType may be preempted by a dif-
ferent RunnableEntity of the same AtomicSwComponentType.

Please note that a purist approach to achieving data consistency not only applies to
single accesses of concurrently accessed variables. Rather, it would not be permitted
that the value of a concurrently accessed variable (with state-message semantics) is
unintentionally changed during the run-time of a RunnableEntity.

The following paragraphs describe some common strategies that can be used to en-
sure the required data-consistency. We do not attempt to describe the pros or cons of
these approaches.

2.3.1.1 Mutual Exclusion with Semaphores

Multi-threaded operating systems provide mutexes (mutual exclusion semaphores) that
protect access to an exclusive resource that is used from within several tasks.

1Please note that the term “sharing memory” can be interpreted on different levels. It is e.g. in the C
language possible to use variables with external linkage (a.k.a. “global variables”, although this term is
not officially defined by the C language) for the purpose of inter-Runnable communication.

51 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The RTE could use these OS-provided mutexes to make sure that the RunnableEn-
titys sharing a memory-space would never run concurrently. The RTE would make
sure the task running the RunnableEntity has taken an appropriate mutex before
accessing the memory shared between the RunnableEntitys.

2.3.1.2 Interrupt Disabling

Another alternative would be the disabling of interrupts during the run-time of
RunnableEntitys or at least for a period in time identical to the interval from the
first to the last usage of a concurrently accessed variable in a RunnableEntity. This
approach could lead to seriously non-deterministic execution timing.

2.3.1.3 Priority Ceiling

Priority ceiling allows for a non-blocking protection of shared resources. Provided that
the priority scheme is static, the AUTOSAR OS is capable of temporarily raising the
priority of a task that attempts to access a shared resource to the highest priority of all
tasks that would ever attempt to access the resource.

By this means is technically impossible that a task in temporary possession of a re-
source is ever preempted by a task that attempts to access the resource as well.

2.3.1.4 Implicit Communication by Means of Variable Copies

Another alternative is the usage of copies of concurrently accessed variables with state
message semantics. Note that this approach directly corresponds to the semantics of
“implicit” sender-receiver communication (see 7.5.1.2).

This means in particular that for a concurrently used variable a copy is created on
which a RunnableEntity entity can work without any danger of data inconsistency.

Figure 2.4: Generation of copy routines around RunnableEntitys

This concept requires additional code to write the value of the concurrently accessed
variable to the copy before the RunnableEntity that accesses the variable is exe-
cuted. The value of the copy shall be written back to the concurrently accessed variable
after the RunnableEntity has been terminated.

52 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This concept is sketched in Figure 2.4. Since it would be too expensive and error-prone
to manually care about the copy routines it would be a good idea to leave the creation
of the additional code to a suitable code generator.

The additional copy routines as sketched in Figure 2.4 already protect the particular
RunnableEntitys from unintended changes of concurrently accessed variables. It
would, however, be possible to further optimize the process by reducing the additional
code at the beginning and end of each task (see Figure 2.5).

2.3.2 Data Consistency at Runtime

In addition, copy routines will only be inserted where appropriate, e.g. a copy routine
for writing the value of a copy back to the concurrently accessed variable will only be
inserted if the RunnableEntity has write-access to the concurrently used variable.

Please note that the copy routines have to temporarily make sure that the copy process
is not interrupted in order to be capable of consistently copying the values from and to
the concurrently accessed variable.

These periods, however, are supposed to be very short compared with the overall
run-time consumption of the RunnableEntity and thus would not have a significant
impact on the runtime behavior.

Figure 2.5: Optimized insertion of copy routines

Further optimization criteria can be applied, for example: it would be perfectly safe
to avoid the creation of copies for RunnableEntitys that are scheduled in the task
with the highest priority of all tasks that (via contained RunnableEntitys) access a
certain concurrently accessed variable.

In order to keep the application code free of any dependencies from the code gener-
ation, access to concurrently accessed variables will be guarded by macros that are
later resolved by the code generator.

The presence of the guard macros directly supports reuse on the level of source code.
Reuse on the level of object code is only possible if the scheduling scenario (in terms
of the assignment of RunnableEntitys to priority levels) does not change.

This concept can only be implemented properly with the aid of a code generator if
the variables in question can be identified. In other words: the description of an

53 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtomicSwComponentType has to expose all concurrently accessed variables to the
outside world.

2.3.3 Modeling Aspects of Data Consistency

The intrinsic meaning of the terms “explicit communication” and “implicit communica-
tion” is explained in section 7.5.1.1. It would be fair to say that the distinction between
implicit and explicit communication establishes a usage pattern in the application do-
main, i.e. in the world of the developer of AUTOSAR software-components and their
implementation.

There is another facet to this subject, however, namely the question of how this pattern
is implemented in the meta-model. With respect to the application of the pattern for
port-based communication the details can be found in section 7.5.1.2, more specif-
ically in section 7.5.1.3. The consideration of the internal communication based on
so-called “inter-runnable variables” is described in section 7.4.2.

By reading the respective text sections it becomes apparent that the two applications
of the pattern are modeled differently. The port-based communication uses the Vari-
ableAccess to formalize different roles of accessing communication elements. Some
roles used for this purpose imply explicit communication (e.g. dataSendPoint) and
some represent implicit communication (e.g. dataWriteAccess).

The important thing about using the VariableAccess, however, is that the modeling
of communication roles is abstracted from the actual communication elements and
represents a uniform (meaning: it can refer to the target directly or by a so-called
InstanceRef) modeling approach that is applied for all use cases2.

Admittedly, this is handled differently for the internal communication. Here, the addi-
tional layer of abstraction is not used (although it would have been technically feasible
to do so) with respect to the clear separation of “inter-runnable variables with implicit
behavior” and “inter-runnable variables with explicit behavior” in the RTE.

The implementation of different communication roles (i.e. implicit vs. explicit) is done
by directly aggregating VariableDataPrototype in the roles explicitInter-
RunnableVariable and implicitInterRunnableVariable.

On the other hand, access to internal communication never requires the usage of an
InstanceRef and therefore the abstraction might be considered unnecessary over-
head that blows up the M1 model.

2On a related note, even for non-communication related data access the same pattern applies imple-
mented by ParameterAccess

54 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2.4 Variant Handling in the Software Component Template

The Software Component Template supports the creation of Variants in a subset
of its model elements. The full list of model elements that support variation can be
found in the appendix.

[TPS_SWCT_01038] Support for Variant Handling in the in Software Com-
ponent Template dThe Variant Handling support in the in Software Compo-
nent Template is mainly driven by the purpose to describe a variable system on
Virtual Functional Bus[3] level by varying

• the existence of SwComponentPrototypes

• the existence of SwConnectors

• the existence of Chapters of SwComponentDocumentation

• the existence of PortPrototypes

c(RS_SWCT_00220, RS_SWCT_03100, RS_SWCT_03140, RS_SWCT_03142,
RS_SWCT_03154)

This approach supports adjusting the number and kind of software-component in-
stances as well as their interconnection in a particular system variant.

[TPS_SWCT_01447] Applicable binding times for model elements in the scope
of the Software Component Template dThe first three cases are supporting Post-
Build binding. For the existence of PortPrototypes only preCompileTime is sup-
ported as latest Binding Time.c(RS_SWCT_00220)

[TPS_SWCT_01040] SwConnector exists depending on a PostBuild condition
dA SwConnector which exists depending on a PostBuild condition has an impact
on the behavior of API function calls that apply on a PortPrototype to which the
SwConnector is attached.

If the SwConnector does not exist, the behavior of the RTE API functions need to take
this into account.

This means that the RTE implementation of this PortPrototype resembles the be-
havior of an unconnected PortPrototype.c(RS_SWCT_00220, RS_SWCT_03100,
RS_SWCT_03143)

Please find more details in the specification of the RTE [2].

[TPS_SWCT_01041] API functions of not existing SwConnector are still part of
the software-component’s implementation dIf SwConnectors do not exist, the cor-
responding API functions are still part of the software-component’s implementation. It
is not possible to remove the API functions in a PostBuild step.

Therefore, the latest reasonable Binding Time for the conditional existence of a
PortPrototype is preCompileTime.c(RS_SWCT_00220, RS_SWCT_03100)

55 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01085] Variation on the behavior level dIn addition to variation of the
VFB-related model elements, the description of variant software-component implemen-
tations is supported. Please note that this requires a broad support of variability in the
Internal Behavior.

The identified main use case are

• the existence of RunnableEntitys

• the existence of RTEEvents

• the existence of VariableDataPrototypes in the roles implicitInter-
RunnableVariable and explicitInterRunnableVariable

• the existence of ParameterDataPrototypes in the roles perInstancePa-
rameter, sharedParameter, and constantMemory

c(RS_SWCT_03149, RS_SWCT_03150, RS_SWCT_03151, RS_SWCT_03153)

For the same reason that applies on the existence of PortPrototype the latest
Binding Time of these kinds of variability is preCompileTime.

In the meta-model, all locations that may exhibit variability are marked with the stereo-
type �atpVariation�. This allows the definition of possible variation points.
Tagged Values are used to specify additional information, for example the latest binding
time.

[TPS_SWCT_01042] Four types of locations in the meta-model which may exhibit
variability dThere are four types of locations in the meta-model which may exhibit
variability:

• Aggregations

• Associations

• Attribute Values

• Classes providing property sets

c(RS_SWCT_00220, RS_SWCT_03100)

The reasons for the attachment of the stereotype�atpVariation� to certain model
elements and the consequences for other model elements are explained in class tables
in the following chapters.

More details about the AUTOSAR Variant Handling Concept can be found in the
AUTOSAR Generic Structure Template [11].

56 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2.5 Communication Specification of Composition Component
Types

[TPS_SWCT_01088] ComSpecs defined by CompositionSwComponentTypes dIt
shall be possible to attach ComSpecs to PortPrototypes owned by Composition-
SwComponentTypes.c(RS_SWCT_03220)

2.5.1 Rationale

ComSpecs attached to a PortPrototype owned by an AtomicSwComponentType
have a direct impact on the generation of the RTE. The RTE Generator, on the other
hand, does not consider the existence of CompositionSwComponentTypes.

Nevertheless, there are some cases where the definition of a ComSpec attached to a
PortPrototype owned by a CompositionSwComponentType does make sense.

That is, in case an OEM wants to submit the definition of a CompositionSwCompo-
nentType to a supplier for adding more details and implementing the behavior the
OEM might want to point out that from the OEM’s point of view sender initValues
and receiver initValues apply for the elements of PortInterfaces used to type
the delegation PortPrototypes.

The idea is that the supplier takes over the initValues attached to the delegation
PortPrototypes and copies them to the PortPrototypes owned by SwCompo-
nentPrototypes of the CompositionSwComponentType.

[TPS_SWCT_01568] Consideration of RPortComSpec or PPortComSpec depend-
ing on the ownership dThe RTE Generator shall take the attributes of the RPortCom-
Spec or PPortComSpec of the PortPrototypes owned by AtomicSwComponent-
Types or ParameterSwComponentType and ignore the attributes of the RPortCom-
Spec or PPortComSpec attached to PortPrototypes owned by Composition-
SwComponentType.c(RS_SWCT_03220)

Therefore, the initValues of the delegation PortPrototype would be taken as
mere templates for the detailing of PortPrototypes connected to the delegation
PortPrototypes.

It is not required that the initValues of delegated PortPrototype and a Port-
Prototype connected by means of a DelegationSwConnector match.

Although this would certainly make sense in many cases, it is eventually still left to the
supplier to decide on the specific initValues applicable inside the Composition-
SwComponentType.

On the other hand, a requirement that the initValues defined on the surface of Com-
positionSwComponentType and the inside of the CompositionSwComponent-
Type shall be consistent in any case might effectively prevent reuse of existing Atom-
icSwComponentTypes.

57 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Please note that the ability to define a ComSpec in the context of a Composition-
SwComponentType implies that it shall be possible to define mappings of Applica-
tionDataTypes used in a PortInterface to their corresponding Implementa-
tionDataTypes.

For this purpose the CompositionSwComponentType owns a DataTypeMap-
pingSet in the role dataTypeMapping and a ConstantSpecificationMap-
pingSet in the role constantValueMapping.

SwComponentType

CompositionSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable

DataTypeMappingSet

ARElement

ConstantSpecificationMappingSet

«atpSplitable»

+dataTypeMapping 0..*

«atpSplitable»

+constantValueMapping 0..*

Figure 2.6: Specification of data type mapping for CompositionSwComponentType

2.6 PRPortPrototype

In some cases SwComponentTypes need to read and write the same piece of data.
One of the most prominent examples for this use case is the NvBlockSwComponent-
Type that factually ready and writes blocks of NvRAM.

Without the ability to combine read and write semantics in a kind of PortPrototype
that supports both read and write semantics, work-arounds have to be implemented
that come with a certain footprint on memory and processing time.

2.6.1 Use Case 1

Without the ability to define a combined read and write semantics the definition of an
RPortPrototype and a PPortPrototype is required for reading and writing the
applicable data.

Technically, this read and write access is related to the same data item in an NVRAM
Block. This requires a consistent connection of the PortPrototypes between
an NvBlockSwComponentType and ApplicationSwComponentType as well as a
consistent mapping of the corresponding RPortPrototype and a PPortPrototype
of the NvBlockSwComponentType and the related element of the ramBlock.

58 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Figure 2.7: Use Case 1 for the existence of PRPortPrototype

2.6.2 Use Case 2

It may happen that a SwComponentType need to consume the same data that it pro-
duces. If the only way to achieve this was the connection of a PPortPrototype
to an RPortPrototype of the same SwComponentType then the creator of the
SwComponentType cannot enforce this connection as it is created on a higher level of
abstraction in the context of a CompositionSwComponentType.

In other words, it is impossible to fully specify the semantics of the otherwise self-
contained SwComponentType.

Figure 2.8: Use Case 2 for the existence of PRPortPrototype

This means that only in the in best case one buffer for the data is needed. But depend-
ing on the mapping RunnableEntitys to OS tasks additional buffers may need to be
allocated by the RTE to fully implement the implicit communication pattern.

59 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

As an alternative, the ApplicationSwComponentType could utilize inter-runnable
variables but unfortunately this inhibits any optimization in the RTE and will consume
additional RAM. In contrast to the previous approach at least two buffers are needed.

2.6.3 Use Case 3

In this scenario, several ApplicationSwComponentTypes are iterating over the
same large set of data. This means each ApplicationSwComponentType imple-
ments one out of many steps of a complex data processing algorithm applied to the
same piece of data.

For example, this scenario may apply for video signal processing in camera applica-
tions. Typically, such applications will not be distributed over several ECUs.

It is clear that in this case the allocation of several buffers in the RTE is required to im-
plement the individual connections between the ApplicationSwComponentTypes.
In most cases, the processing has to be executed at a certain point in time in a dedi-
cated order.

Figure 2.9: Use Case 3 for the existence of PRPortPrototype

2.6.4 Solution

The solution to the above-mentioned use cases is the ability to define a PortProto-
type that can read and write the same piece of data. This solves both the described
problem of resource consumption and the problem of having to define multiple Port-
Prototypes as outlets for same piece of data item.

60 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The technical details of the definition of PRPortPrototype are explained in chapters
3.2.2 and 4.2.1.

2.7 Variable-size Array Data Types

2.7.1 Overview and Use cases

AUTOSAR supports the definition of array data types where the size of the actual
payload varies at run-time. As far as the configuration is concerned, it is possible to
specify a maximum number of array elements that shall not be exceeded at run-time.

In order to properly understand the approach, it is necessary to understand that the
support for Variable-Size Array Data Types has been introduced in two waves
that each had a different motivation.

2.7.1.1 “Old-world” dynamic-size Arrays

In the first wave, the support for Variable-Size Array Data Types was limited
to data types that basically boil down to an array where the base type is an unsigned
integer data type with a length of exactly one byte.

The main use cases for this scenario are derived from diagnostics requirements as
well as support for the J1939 communication protocol.

In both cases the actual length of a Variable-Size Array Data Type could be
determined from the context, i.e. either by the diagnostic basic-software module or by
the implementation of the J1939 TP.

For the lack of a better terminology, this specification distinguishes between “old-world”
dynamic-size arrays and “new-world” Variable-Size Array Data Types. It will
be necessary to clearly define the characteristics that allow for a disambiguation be-
tween the “old-world” dynamic-size arrays and “new-world” Variable-Size Array
Data Types.

[TPS_SWCT_01641] Definition of an “old-world” dynamic-size array data type by
means of an ApplicationArrayDataType dAn ApplicationArrayDataType
that doesn’t define attribute dynamicArraySizeProfile and that aggregates an
ApplicationArrayElement where attribute arraySizeSemantics exists and is
set to the value variableSize shall be considered an “old-world” dynamic-size array
data type.c(RS_SWCT_03181)

Please note that [TPS_SWCT_01641] can’t go any deeper into the specifics of the
given data type because it is intentionally focused on ApplicationDataTypes.
There are use cases where the distinction between “old-world” dynamic-size arrays
and “new-world” Variable-Size Array Data Types shall be done in the absence
of a corresponding ImplementationDataType.

61 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In general, the disambiguation becomes multi-faceted (but not necessarily easier)
if the definition of a corresponding ImplementationDataType is available (see
[TPS_SWCT_01642]).

[TPS_SWCT_01642] Definition of an “old-world” dynamic-size array data type
by means of an ImplementationDataType dAn ImplementationDataType that
(after all type references are resolved) fulfills all the following conditions shall be con-
sidered an “old-world” dynamic-size array data type:

• The value of attribute category is set to ARRAY

• The ImplementationDataType doesn’t define the attribute dynamicArray-
SizeProfile

• The ImplementationDataType aggregates a subElement where

– attribute arraySizeSemantics exists and is set to the value variable-
Size

– attribute arraySizeHandling does not exist

• One of the following conditions applies:

– subElement.category is set to VALUE or TYPE_REFERENCE that eventu-
ally boils down to VALUE and the attribute subElement.swDataDefProps.
baseType.baseTypeDefinition.baseTypeSize is set to the value 8
and the attribute baseTypeEncoding is set to NONE.

– subElement.category is set to TYPE_REFERENCE and the at-
tribute subElement.swDataDefProps.implementationDataType liter-
ally represents the Platform Data Type named uint8.

– subElement.category is set to TYPE_REFERENCE and the attribute
subElement.swDataDefProps.implementationDataType.short-
Name is set to uint8 and subElement.swDataDefProps.baseType.
baseTypeDefinition.nativeDeclaration does not exist.

c(RS_SWCT_03181)

By and large, the defining characteristics for “old-world” dynamic-size arrays is the
absence of a definition of the attribute ApplicationArrayDataType.dynamicAr-
raySizeProfile or ImplementationDataType.dynamicArraySizeProfile.

By regulation of [constr_1387], “old-world” dynamic-size arrays are not supported for
transmission by means of a data transformer. The only supported kind of Variable-
-Size Array Data Type that can be transmitted using a data transformer is the
“new-world” variable-size arrays.

62 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2.7.1.2 “New-world” variable-size Arrays

In contrast to this, the second wave of support for Variable-Size Array Data
Types was motivated by the application software layer itself.

Here, the situation is entirely different because the actual size cannot be determined
by any context software module. The application itself is responsible for maintaining
the proper length of a Variable-Size Array Data Type at run-time.

As a consequence, the specification of the actual array size at run-time needs to be re-
flected by the structure of the data types used for hosting the Variable-Size Array
Data Type.

[TPS_SWCT_01644] Definition of a “new-world” variable-size array data type by
means of an ApplicationArrayDataType dAn ApplicationArrayDataType
that fulfills all the following conditions shall be considered an “new-world” dynamic-size
array data type.

• The ApplicationArrayDataType defines attribute ApplicationArray-
DataType.dynamicArraySizeProfile.

• ApplicationArrayDataType aggregates an ApplicationArrayElement
that defines attribute ApplicationArrayElement.arraySizeHandling.

c(RS_SWCT_03181)

[TPS_SWCT_01645] Definition of a “new-world” variable-size array data type by
means of an ImplementationDataType dAn ImplementationDataType that ful-
fills all the following conditions shall be considered an “new-world” dynamic-size array
data type.

• The ImplementationDataType defines attribute Implementation-
DataType.dynamicArraySizeProfile.

• ImplementationDataType aggregates an ImplementationDataType-
Element that defines attribute ImplementationDataTypeElement.array-
SizeHandling.

c(RS_SWCT_03181)

In contrast to the first use case described above, the application-motivated Variable-
-Size Array Data Type cannot be limited in terms of the base type of the array
data type, i.e. limiting the underlying data type to an unsigned integer data type with a
length of exactly one byte is not an option.

On top of that, several possible structures of Variable-Size Array Data Types
have been required. This aspect is depicted in Figure 2.10.

[TPS_SWCT_01636] Definition of profiles for the definition of Variable-Size
Array Data Types dThe possible variants for Variable-Size Array Data
Types are:

63 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Linear The data type of the elements of the Variable-Size Array Data Type
itself does not consist of a Variable-Size Array Data Type.

This case corresponds to the possible value VSA_LINEAR of attribute dynami-
cArraySizeProfile.

Square The data type of the elements of the Variable-Size Array Data Type
itself consists of Variable-Size Array Data Types where the maximum
number of elements in all “second order” arrays is identical to the maximum
number of elements in the “first order” array.

This case corresponds to the possible value VSA_SQUARE of attribute dynami-
cArraySizeProfile.

Rectangular The data type of the elements of the Variable-Size Array Data
Type itself consists of Variable-Size Array Data Types where the maxi-
mum number of elements in “second order” arrays is identical but this value is
typically not identical3 to the maximum number of elements in the “first order”
array.

This case corresponds to the possible value VSA_RECTANGULAR of attribute
dynamicArraySizeProfile.

Fully Flexible The data type of the elements of the Variable-Size Array Data
Type itself consists of Variable-Size Array Data Types where the maxi-
mum number of elements in “second order” arrays is not necessarily identical
with each other and (obviously) not necessarily identical to the maximum num-
ber of elements in the “first order” array.

This case corresponds to the possible value VSA_FULLY_FLEXIBLE of attribute
dynamicArraySizeProfile.

c(RS_SWCT_03181)

The described cases directly correspond to the portrayal of different kinds of variable-
size arrays in Figure 2.10:

• The value VSA_LINEAR corresponds to the tag (a).

• The value VSA_SQUARE corresponds to the tag (b).

• The value VSA_RECTANGULAR corresponds to the tag (c).

• The value VSA_FULLY_FLEXIBLE corresponds to the tag (d).

Please note that the leaf elements in a Variable-Size Array Data Type doesn’t
have to be primitive data types. As mentioned before, it is possible to define multiple-
dimension Variable-Size Array Data Types.

The “terminal” elements can be recognized as such in that they don’t establish further
Variable-Size Array Data Types.

3If it was, the case boils down to the rectangular scenario tagged (b).

64 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

(a) (b) (c) (d)

Figure 2.10: Structural variety of array data types with variable size

Please note further that the modeling of Variable-Size Array Data Types is a
complex step governed by a collection of rules and constraints.

It is the expressed intent of this specification to keep the complexity of the rule set as
low as possible while still providing the user with a powerful modeling framework.

The major consequence of this conclusion is to keep the modeling as straightforward
as possible; in other words: intentionally cut away certain modeling variants for which
acceptable workarounds within the modeling framework itself exist.

One concrete example for such a restriction is that for ImplementationDataTypes,
Variable-Size Array Data Types can only be defined on the level of an Au-
tosarDataType.

It is intentionally not supported to define a Variable-Size Array Data Type on
the level of an ImplementationDataTypeElement because the intended seman-
tics can be realized by assigning the value TYPE_REFERENCE to the Implemen-
tationDataTypeElement.category and then let it reference to another Imple-
mentationDataType that in turn implements the Variable-Size Array Data
Type.

2.7.2 Modeling Aspects regarding Application Data Types

In the context of the AUTOSAR layered data type concept, the level of Application-
DataTypes is not concerned about the structure of how the Variable-Size Array
Data Types.

In other words, aspects of the implementation of this kind of data type is intentionally
abstracted as much as possible in order to support the idea behind the definition of
ApplicationDataTypes as a concept that is independent of an implementation to
the applicable degree.

Consequently, the support for Variable-Size Array Data Types on the level of
ApplicationDataTypes requires the addition of a couple of additional attributes.
Details can be found in chapter 5.2.4.2.

65 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

If a Variable-Size Array Data Type is modeled on the level of Application-
DataType it is necessary to also provide a companion ImplementationDataType
as well as a DataTypeMap that refers to both the ApplicationDataType and the
ImplementationDataType.

The contrary is not applicable, i.e. it is possible to define a Variable-Size Array
Data Type with only an ImplementationDataType, see [TPS_SWCT_01622].

2.7.3 Modeling Aspects regarding Implementation Data Types

On the other hand, the data type used for the actual hosting of the Variable-
-Size Array Data Type corresponds directly to the level of the Implementa-
tionDataType.

Here, it is possible to define how an ImplementationDataType can be used to
define a Variable-Size Array Data Type.

The definition of ImplementationDataType in the AUTOSAR meta-model comes
with a certain level of generic nature the support for Variable-Size Array Data
Types on this level comes as a mixture of dedicated attributes in the meta-model and
a set of recipes how to support different use cases of Variable-Size Array Data
Types.

This means that the definition of ImplementationDataTypes for the purpose of
creating Variable-Size Array Data Types only has a chance to take off if the
structure of these data types is replicated in different implementations of AUTOSAR
software.

Therefore, AUTOSAR defines a common way of how ImplementationDataTypes
for the purpose of creating Variable-Size Array Data Types shall be defined
such that the ImplementationDataType shall be of category STRUCTURE with
the following sub-elements:

1. A numerical value that determines the actual size. This element shall be called
the Size Indicator throughout this document.

2. An array of the base-type of the Variable-Size Array Data Type that im-
plements the payload of the Variable-Size Array Data Type. The dimen-
sion of the array shall be defined such that the intended maximum number of
elements fits in.

A Size Indicator of a Variable-Size Array Data Type holds the number of
valid elements of the array. This information is necessary for the RTE to handle the
array efficiently.

On the sender-side this indicator is actively updated by the software-component, which
is the only instance that knows how many elements of the array are valid.

66 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

So the number of valid elements and the Size Indicator have to be kept consistent
by the application. When the software-component sends the data over to the RTE, the
RTE hands the data over to the transformer.

The transformer may evaluate the Size Indicator (depends on the transformer)
and only work on the valid array elements. The output of the transformer can vary in
length and only contain necessary data. Therefore, it can be more resource saving.

On the receiver side, the last transformer in the execution order restores the data ele-
ments of the array and the value of the Size Indicator. This output is handed over
by the RTE to the software-component. The application is now aware of the number of
valid elements in the array.

The details of how ImplementationDataTypes need to be modeled for the imple-
mentation of Variable-Size Array Data Types can be found in chapter 5.2.5
and a couple of examples is available in the appendix E.1.

2.8 Optional Elements in Structures

2.8.1 Background

The AUTOSAR classic platform supports the usage of a TLV4 data encoding on the
SOME/IP transport layer. TLV is typically used where at least a part of the transmitted
data is only optionally existing and filled with meaningful values.

In other words: an optional part of a data structure may exist and carry meaningful val-
ues in one instance of data transmission and be completely missing in another instance
of the data transmission.

The receiving software needs to be able to identify whether the optional part exists and
read its value accordingly.

The receiving software also needs to be able to still execute meaningfully if the optional
part of such a data structure does not exist in the specific communication instance.

Consequently, it is necessary to be able to precisely identify the parts of a data struc-
ture that may become optional for specific instances of data transmission.

In terms of the AUTOSAR meta-model, the identification could - in principle - be at-
tached at various levels of abstraction:

AutosarDataType In this case the optionality that is only needed for communication
purposes would still be existing in all other usages of data types. This seems
unbalanced.

Admittedly, the definition of different optionality configurations for the same data
type may lead to the existence of a bunch of structurally identical data types that

4This abbreviation stands for tag-length-value

67 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

only vary in terms of optionality. The existence of variation points may help to
mitigate this effect, though.

PortInterface In this case the optionality is defined where it is actually required.
However, different optionality could - in principle - be defined for DataProto-
types typed by the same AutosarDataType.

This would lead to an increased effort for the definition of C data types in the
context of the same PortInterface.

Additional constraints have been identified in the context of the definition of RTE
APIs of the AUTOSAR classic platform that finally render this option as not viable.

ComSpec In this case (for more information please refer to section 4.5) the definition
of optionality would even be more specific in comparison to the definition of op-
tionality on the level of PortInterfaces.

On top of that, the task to define optionality in the vast majority of cases is done by
an OEM, whereas the model definition on the level of ComSpec requires the exis-
tence of SwComponentTypes and this definition is in many cases in the domain
of a supplier.

As a result of this consideration, AUTOSAR has opted for implementation of the con-
cept of defining the optionality on the level of the AutosarDataType.

68 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

3 Overview: Software Components, Ports, and
Interfaces

3.1 Introduction

The detailed introduction of all aspects of the Software Component Template in
one move is considered too complex. This chapter therefore provides an overview of
the main conceptual aspects of software components, ports and interfaces.

The overview will then be broken down into further details in chapter 4.

One of the goals of the AUTOSAR concept is the support of re-usability on the level of
application software.

In other words: it should be possible to re-use existing artifacts to create further model
elements instead of being forced to create every single modeling detail from scratch.

One of the consequences of this approach is the application of the so-called type-
prototype pattern [11].

The type-prototype pattern is created by using references from prototype to type that
are decorated with the�isOfType�.

[constr_10028] Existence of reference stereotyped�isOfType� dAny reference
that is decorated with the stereotype �isOfType� shall exist at any time in
the workflow.c()

Among other things, this concept allows for creating hierarchical structures of software-
components with arbitrary complexity. However, the creation of hierarchical structures
itself does not have an impact on the run-time behavior of the overall system.

The actual behavior is completely defined within the individual software-components.

This conclusion is backed by the understanding that software-components are devel-
oped against the so-called Virtual Functional Bus (VFB), an abstract communication
channel without direct dependency on ECUs and communication buses.

The VFB does not provide any means for expressing a hierarchy of software-
components.

Of course, the usage of the VFB has further consequences on the design of software-
components which shall not directly call the operating system or the communication
hardware.

As a result, software-components can be deployed to actual ECUs at a rather late
stage in the development process.

In order to make the description more precise, the following text preferably uses accu-
rate meta-model terms instead of the rather vague terminology of “composition” and
“software-component”.

69 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

3.2 Software Component

3.2.1 Overview

Application software within AUTOSAR is organized in self-contained units called Atom-
icSwComponentTypes. Such AtomicSwComponentTypes encapsulate the imple-
mentation of their functionality and behavior and merely expose well-defined connec-
tion points, called PortPrototypes, to the outside world.

AUTOSAR

Software-

Component

provided PortPrototype, ClientServerInterface.

provided PortPrototype, SenderReceiverInterface

PortPrototype characterised by Portinterface

attributes

SwConnector

required PortPrototype, ClientServerInterface.

required PortPrototype, SenderReceiverInterface

provided PortPrototype, SenderReceiverInterface

SwConnector

Figure 3.1: Graphical representation of software-components in AUTOSAR

The graphical appearance of AUTOSAR software-components according to [3] is de-
picted in Figure 3.1.

Class SwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for AUTOSAR software components.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType

Attribute Type Mult. Kind Note

consistency
Needs

ConsistencyNeeds * aggr This represents the collection of ConsistencyNeeds
owned by the enclosing SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

70 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwComponentType (abstract)

port PortPrototype * aggr The PortPrototypes through which this SwComponent
Type can communicate.

The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=port.shortName, port.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

portGroup PortGroup * aggr A port group being part of this component.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

swcMapping
Constraint

SwComponentMapping
Constraints

* ref Reference to constraints that are valid for this Sw
ComponentType.

swComponent
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

unitGroup UnitGroup * ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponentType.

Table 3.1: SwComponentType

3.2.2 PortPrototype

Please note that PortPrototypes of a SwComponentType are supposed to be used
for attaching SwConnectors that establish an actual connection between SwCompo-
nentPrototypes (see chapter 3.3).

[TPS_SWCT_01002] SwComponentTypes may only interact by means of their
PortPrototypes dAtomicSwComponentTypes (and also the more general SwCom-
ponentTypes may only interact by means of their PortPrototypes). Hidden com-
munication dependencies that are not expressed by means of PortPrototypes
are strictly forbidden.c(RS_SWCT_00020, RS_SWCT_00030, RS_SWCT_00150,
RS_SWCT_00160, RS_SWCT_00200, RS_SWCT_00210, RS_SWCT_02010, RS_-
SWCT_02030)

Therefore, software-components are in theory exchangeable as long as they imple-
ment the same functionality and provide the same public communication interface to
the remaining system.

[TPS_SWCT_01111] PortPrototypes need an additional model artifact, the
PortInterface dPlease note that PortPrototypes actually need an additional
model artifact, the PortInterface, for fully describing the details of the PortPro-
totype.c(RS_SWCT_00010)

71 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The concept of the PortInterface as another means for establishing a high degree
of re-usability is described in chapter 3.4.

Class PortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Attribute Type Mult. Kind Note

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

logAndTrace
Message
CollectionSet

LogAndTraceMessage
CollectionSet

0..1 ref Reference to a collection of Log or Trace messages that
will be used by the application.

Tags:atp.Status=draft

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table 3.2: PortPrototype

PPortPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

RPortPrototype

+ mayBeUnconnected: Boolean [0..1]

PRPortPrototype

AbstractRequiredPortPrototypeAbstractProvidedPortPrototype

Figure 3.2: Overview of PortPrototype

[TPS_SWCT_01112] Semantics of PortPrototypes dPortPrototypes can have
the following semantics:

• A require-port (in technical terms: RPortPrototype) requires certain services
or data.

72 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• A provide-port (or PPortPrototype) on the other hand provides services or
data.

• A provide-require-port (or PRPortPrototype) combines the ability to provide
and require services or data in one entity.

c(RS_SWCT_03250)

The semantics of PortPrototype is also depicted in Figure 3.2,

[TPS_SWCT_01573] A PRPortPrototype is never considered unconnected dA
PRPortPrototype is never considered unconnected, even if there are no SwCon-
nectors actually referring to it.c(RS_SWCT_00010, RS_SWCT_03250, RS_SWCT_-
03130)

Please note that [TPS_SWCT_01573] represents the immediate consequence of the
semantics defined in [TPS_SWCT_01112].

[TPS_SWCT_01113] Connecting two PortPrototypes dTwo SwComponentPro-
totypes are eventually connected by hooking up a PPortPrototype or PRPort-
Prototype of one SwComponentPrototype to a compatible RPortPrototype or
PRPortPrototype of the other SwComponentPrototypes.c(RS_SWCT_03130,
RS_SWCT_03250)

Please find more information concerning the definition of “compatibility” in section 6.

Class AbstractRequiredPortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This abstract class provides the ability to become a required PortPrototype.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Port
Prototype, Referrable

Subclasses PRPortPrototype, RPortPrototype

Attribute Type Mult. Kind Note

requiredCom
Spec

RPortComSpec * aggr Required communication attributes, one for each
interface element.

Table 3.3: AbstractRequiredPortPrototype

Class AbstractProvidedPortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This abstract class provides the ability to become a provided PortPrototype.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Port
Prototype, Referrable

Subclasses PPortPrototype, PRPortPrototype

Attribute Type Mult. Kind Note

providedCom
Spec

PPortComSpec * aggr Provided communication attributes per interface element
(data element or operation).

Table 3.4: AbstractProvidedPortPrototype

73 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class RPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port requiring a certain port interface.

Base ARObject , AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

mayBe
Unconnected

Boolean 0..1 attr If set to true, this attribute indicates that the enclosing
RPortPrototype may be left unconnected and that this
aspect has explicitly been considered in the
software-component’s design.

required
Interface

PortInterface 0..1 tref The interface that this port requires.

Stereotypes: isOfType

Table 3.5: RPortPrototype

Class PPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port providing a certain port interface.

Base ARObject , AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

provided
Interface

PortInterface 0..1 tref The interface that this port provides.

Stereotypes: isOfType

Table 3.6: PPortPrototype

Class PRPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This kind of PortPrototype can take the role of both a required and a provided PortPrototype.

Base ARObject , AbstractProvidedPortPrototype, AbstractRequiredPortPrototype, AtpBlueprintable, Atp
Feature, AtpPrototype, Identifiable, MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

provided
Required
Interface

PortInterface 0..1 tref This represents the PortInterface used to type the PRPort
Prototype

Stereotypes: isOfType

Table 3.7: PRPortPrototype

[TPS_SWCT_01096] PortGroup dPortPrototypes can be logically grouped into
PortGroups. This mechanism is used for implementing mode management features.c
(RS_SWCT_03201)

Further explanations about the semantics of meta-class PortGroup can be found in
chapter 4.6.

There are cases where an RPortPrototype is intentionally left unconnected. Such
a scenario would typically be reported if the RTE Generator is executed in strict mode.

By means of setting attribute RPortPrototype.mayBeUnconnected, the designer of
the respective software-component has the ability to express that the "open" RPort-
Prototype is part of the final design and shall not be reported, even in strict mode.

74 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The attribute can be used in combination of an RPortPrototype and any kind of
PortInterface.

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

RPortPrototype

+ mayBeUnconnected: Boolean [0..1]

PPortPrototype

������������	
 ����

�����������	��	���� �

��������������

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean [0..1]
+ serviceKind: ServiceProviderEnum [0..1]

PRPortPrototype

AbstractProvidedPortPrototypeAbstractRequiredPortPrototype

«atpVariation,atpSplitable»

+port

0..*

«isOfType»

+providedRequiredInterface
0..1
{redefines atpType}

«isOfType»

+requiredInterface
0..1
{redefines atpType}

«isOfType»

+providedInterface
0..1
{redefines atpType}

Figure 3.3: Components and Ports

Note that the attribute applies to the entire RPortPrototype, not to individual ele-
ments of the applicable PortInterface.

In other words, the attribute does not affect the case, where e.g. only one dataEle-
ment of several sender/receiver RPortPrototype is left unconsidered, as described
by [TPS_SWCT_01101].

Please note that the usage of RPortPrototype.mayBeUnconnected is potentially
dangerous because it removes a warning and this can be harmful if the suppression of
a legitimate warning were done by mistake.

It is therefore advised to handle the existence of RPortPrototype.mayBeUncon-
nected with care.

3.2.3 AtomicSwComponentType

[TPS_SWCT_01108] Added value of an AtomicSwComponentType dAs mentioned
before, the term AtomicSwComponentType is a specific form of the general concept
of the SwComponentType. The added value of an AtomicSwComponentType is that
it can aggregate an InternalBehaviorc(RS_SWCT_03040)

More information regarding the semantics of InternalBehavior can be found in
chapter 7.

75 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01109] Adding the SwcInternalBehavior in a later process step
dThe aggregation of SwcInternalBehavior is stereotyped �atpSplitable� to
allow for adding the SwcInternalBehavior in a later process step. In other words,
it is possible to completely develop the VFB view of a software-component and later
add more details like InternalBehavior.c()

Class AtomicSwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType

Attribute Type Mult. Kind Note

internalBehavior SwcInternalBehavior 0..1 aggr The SwcInternalBehaviors owned by an AtomicSw
ComponentType can be located in a different physical file.
Therefore the aggregation is <<atpSplitable>>.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the AtomicSw
ComponentType.

Stereotypes: atpSplitable
Tags:atp.Splitkey=symbolProps.shortName

Table 3.8: AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtomicSwComponentType CompositionSwComponentType

AtpPrototype

SwComponentPrototype

SensorActuatorSwComponentType

ParameterSwComponentType

ApplicationSwComponentType

EcuAbstractionSwComponentType

ComplexDeviceDriverSwComponentTypeNvBlockSwComponentType

ServiceProxySwComponentType

ServiceSwComponentType

������������	
 ����

�����������	��	���� � ���������

«isOfType»+type

0..1
{redefines atpType}

«atpVariation,atpSplitable»

+component 0..*

Figure 3.4: Overview of Component Types

There are several specialized SwComponentTypes to describe specific software-
components used in the different parts of the AUTOSAR Layered Architecture [5]. Fur-
ther details are mentioned in chapter 10 and 11.

76 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The ApplicationSwComponentType is a specialization of AtomicSwComponent-
Type for representing hardware-independent application software. The Parameter-
SwComponentType is a specialization of SwComponentType that can - in contrast to
AtomicSwComponentType - not aggregate SwcInternalBehavior.

The purpose of the NvBlockSwComponentType is described in detail in section
11.5.2. The ServiceSwComponentType is described in section 11.3. Further on,
the EcuAbstractionSwComponentType and the ComplexDeviceDriverSwCom-
ponentType are discussed in detail in section 10.

A description of the ServiceProxySwComponentType can be found in section 11.4
while the SensorActuatorSwComponentType is described in section 10.4.

Class ApplicationSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ApplicationSwComponentType is used to represent the application software.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mult. Kind Note

– – – – –

Table 3.9: ApplicationSwComponentType

3.2.4 ParameterSwComponentType

[constr_1092] ParameterSwComponentType dA ParameterSwComponentType
shall never aggregate a SwcInternalBehavior and also owns exclusively PPort-
Prototypes of type ParameterInterface.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

However, a ParameterSwComponentType shall have the ability to aggregate In-
stantiationDataDefProps. By this means it is possible to define role-specific
data properties of elements of composite data types used for the definition of calibra-
tion parameters in the scope of a ParameterSwComponentType.

For more information about this aspect please refer to section 7.5.4.

SwComponentType

ParameterSwComponentType

InstantiationDataDefProps
ARElement

ConstantSpecificationMappingSet

ARElement
AtpBlueprint

AtpBlueprintable

DataTypeMappingSet

������������	
 ����

�����������	��	���� �

��������������

«atpVariation»

+instantiationDataDefProps 0..*

«atpSplitable»

+dataTypeMapping 0..*

«atpSplitable»

+constantMapping 0..*

Figure 3.5: Details of ParameterSwComponentType

77 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

3.2.5 Symbolic Name of a Software-Component

Please note that an AtomicSwComponentType manifests itself in the source code of
an RTE into which an instance of the AtomicSwComponentType is deployed. This
implies potential naming conflicts if instances of AtomicSwComponentType that have
identical shortNames are deployed into a specific RTE.

[TPS_SWCT_01110] Symbolic name of a software-component dTo mitigate this po-
tential hazard it is possible to provide the AtomicSwComponentType along with an
accompanying symbolic name that can be used for resolving the name clash. The
symbolic name is provided by means of the attribute symbol of the meta-class Sym-
bolProps owned by AtomicSwComponentType in the role symbolProps.c()

Please note that more information about the symbolic name provided by means of the
attribute symbol of the meta-class SymbolProps owned by AtomicSwComponent-
Type in the role symbolProps can be found in Figure 3.6.

For more detailed information about how SymbolProps can be used to mitigate name
clashes occurring during the integration of software-components on an AUTOSAR
ECU, please refer to [4].

[TPS_SWCT_01000] Usage of attribute symbol of the symbolProps dIn partic-
ular, the RTE generator shall take over the value of the attribute symbol of the
symbolProps owned by a given AtomicSwComponentType. If and only if sym-
bolProps is not defined the RTE generator shall take the shortName of the
AtomicSwComponentType. For the generation of symbols for RunnableEntitys
[TPS_SWCT_01001] shall be observed.c(RS_SWCT_00230)

[TPS_SWCT_01001] Prefix symbols generated for the RunnableEntity dIf and
only if the attribute symbol of a symbolProps owned by an AtomicSwComponent-
Type exists, its value shall also be taken for prefixing the symbols generated for the
RunnableEntitys owned by the AtomicSwComponentType.c(RS_SWCT_00230)

Note: if symbolProps is not defined the behavior of the RTE generator is fully back-
wards compatible, i.e. existing implementations of RunnableEntitys do not have to
be touched in order to conform with this version of the AUTOSAR standard.

SwComponentType

AtomicSwComponentType

ImplementationProps

SymbolProps

SensorActuatorSwComponentType

ApplicationSwComponentType

EcuAbstractionSwComponentType

ComplexDeviceDriverSwComponentTypeNvBlockSwComponentType

ServiceProxySwComponentType

ServiceSwComponentType

«atpSplitable»

+symbolProps

0..1

Figure 3.6: Overview of AtomicSwComponentType

78 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This is a further measure to mitigate the risk of potential name clashes in the RTE
code.

[TPS_SWCT_01635] Naming conventions may support the effectiveness of Sym-
bolProps dOf course, there is a residual risk that even in the presence of Symbol-
Props name clashes may occur.

Therefore, the definition of naming conventions may facilitate the avoidance of name
clashes to the further degree.c(RS_SWCT_00230)

3.3 Composition

3.3.1 Overview

[TPS_SWCT_01032] CompositionSwComponentType dThe purpose of an
AUTOSAR CompositionSwComponentType is to allow the encapsulation of specific
functionality by aggregating existing software-components.c(RS_SWCT_00190,
RS_SWCT_02000, RS_SWCT_02020, RS_SWCT_03000)

[TPS_SWCT_01033] Nested definition of CompositionSwComponentTypes
dSince a CompositionSwComponentType is also a SwComponentType, it again
may be aggregated in further CompositionSwComponentTypes.c(RS_SWCT_-
00190, RS_SWCT_02000, RS_SWCT_02020, RS_SWCT_03000)

This recursive relation is formally expressed in Figure 3.7.

It is important to understand that while compositions allow for (sub-) system abstrac-
tion, they are solely an architectural element for the implementation of model scalabil-
ity. They simply group existing software-components and thereby take away complexity
when viewing or designing logical software architecture.

Therefore, the definition of CompositionSwComponentTypes has no effect on how
software-components interact with the Virtual Functional Bus (VFB). Composition-
SwComponentTypes do not add any new functionality to what is already provided by
the software-components they aggregate.

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpPrototype

SwComponentPrototype

������������	
 ����

�����������	��	���� � ���������CompositionSwComponentType

«isOfType»

+type

0..1
{redefines
atpType}

«atpVariation,atpSplitable»

+component 0..*

Figure 3.7: The recursive relation of software-components and compositions

[TPS_SWCT_01034] CompositionSwComponentTypes do not have any binary
footprint dAs the main consequence, CompositionSwComponentTypes do not have

79 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

any binary footprint in the ECU software.c(RS_SWCT_00190, RS_SWCT_02000,
RS_SWCT_02020, RS_SWCT_03000)

3.3.2 SwComponentPrototype

[TPS_SWCT_01035] CompositionSwComponentType aggregates SwCompo-
nentPrototypes dIn terms of the AUTOSAR meta-model, a composition of software-
components realized by the meta-class CompositionSwComponentType aggre-
gates SwComponentPrototypes which in turn are typed by a SwComponentType.c
(RS_SWCT_00190, RS_SWCT_02000, RS_SWCT_02020, RS_SWCT_03000)

Please note that a CompositionSwComponentType is also a SwComponentType.

Class CompositionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn are typed by Sw
ComponentTypes) as well as SwConnectors for primarily connecting SwComponentPrototypes among
each others and towards the surface of the CompositionSwComponentType. By this means, hierarchical
structures of software-components can be created.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Attribute Type Mult. Kind Note

component SwComponent
Prototype

* aggr The instantiated components that are part of this
composition. The aggregation of SwComponentPrototype
is subject to variability with the purpose to support the
conditional existence of a SwComponentPrototype.
Please be aware: if the conditional existence of Sw
ComponentPrototypes is resolved post-build the
deselected SwComponentPrototypes are still contained in
the ECUs build but the instances are inactive in that they
are not scheduled by the RTE.

The aggregation is marked as atpSplitable in order to
allow the addition of service components to the ECU
extract during the ECU integration.

The use case for having 0 components owned by the
CompositionSwComponentType could be to deliver an
empty CompositionSwComponentType to e.g. a supplier
for filling the internal structure.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=component.shortName, component.variation
Point.shortLabel
vh.latestBindingTime=postBuild

connector SwConnector * aggr SwConnectors have the principal ability to establish a
connection among PortPrototypes. They can have many
roles in the context of a CompositionSwComponentType.
Details are refined by subclasses.

The aggregation of SwConnectors is subject to variability
with the purpose to support variant data flow.

The aggregation is marked as atpSplitable in order to
allow the extension of the ECU extract with AssemblySw

5

5

80 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class CompositionSwComponentType

4
Connectors between ApplicationSwComponentTypes and
ServiceSwComponentTypes during the ECU integration.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=connector.shortName, connector.variation
Point.shortLabel
vh.latestBindingTime=postBuild

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstantSpecificationMapping to be
applied for initValues of PPortComSpecs and RPortCom
Spec.

Stereotypes: atpSplitable
Tags:atp.Splitkey=constantValueMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
used ApplicationDataTypes in PortInterfaces.

Background: when developing subsystems it may happen
that ApplicationDataTypes are used on the surface of
CompositionSwComponentTypes. In this case it would be
reasonable to be able to also provide the intended
mapping to the ImplementationDataTypes. However, this
mapping shall be informal and not technically binding for
the implementors mainly because the RTE generator is
not concerned about the CompositionSwComponent
Types.

Rationale: if the mapping of ApplicationDataTypes on the
delegated and inner PortPrototype matches then the
mapping to ImplementationDataTypes is not impacting
compatibility.

Stereotypes: atpSplitable
Tags:atp.Splitkey=dataTypeMapping

instantiation
RTEEventProps

InstantiationRTEEvent
Props

* aggr This allows to define instantiation specific properties for
RTE Events, in particular for instance specific scheduling.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instantiationRTEEventProps.shortLabel,
instantiationRTEEventProps.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

Table 3.10: CompositionSwComponentType

Class SwComponentPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note Role of a software component within a composition.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

type SwComponentType 0..1 tref Type of the instance.

Stereotypes: isOfType

Table 3.11: SwComponentPrototype

[TPS_SWCT_01036] SwComponentPrototype implements a specific role
dTherefore, a SwComponentPrototype implements the usage of a SwComponent-
Type in a specific role.c(RS_SWCT_00190, RS_SWCT_02000, RS_SWCT_02020,
RS_SWCT_03000)

81 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01037] arbitrary numbers of SwComponentPrototypes can be cre-
ated dIn general, arbitrary numbers of SwComponentPrototypes that refer to spe-
cific SwComponentTypes can be created.c(RS_SWCT_00190, RS_SWCT_02000,
RS_SWCT_02020, RS_SWCT_03000)

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

CompositionSwComponentType
AtpStructureElement

SwConnector

AtpPrototype

SwComponentPrototype

������������	
 ����

�����������	��	���� � ���������

������������	
 ����

�����������	��	���� � ��������������

AtpStructureElement
Identifiable

PortGroup

������������	
 ����

�����������	��	���� � ������	������	����

�����������������	����� � ��

InstantiationRTEEventProps

«atpIdentityContributor»
+ shortLabel: Identifier [0..1]

«atpVariation»

+portGroup

0..*

«atpVariation,atpSplitable»

+instantiationRTEEventProps

0..*
«atpVariation,atpSplitable»

+component

0..*

«atpVariation,atpSplitable»

+connector

0..*

«atpVariation,atpSplitable»

+port

0..*

Figure 3.8: Composition and the meta-classes aggregated

Example: a SwComponentPrototype “LeftDoorControl” fulfills the role of implement-
ing the SwComponentType “DoorControl” for the left door of a vehicle while the
SwComponentPrototype “RightDoorControl” fulfills the role of the SwComponent-
Type “DoorControl” for the right door.

[TPS_SWCT_01080] Delegation ports dNote that being a SwComponentType, a
CompositionSwComponentType also exposes PortPrototypes to the outside
world. However, the PortPrototypes are only delegated and do not play the same
role as PortPrototypes attached to AtomicSwComponentTypes.c(RS_SWCT_-
03130)

[TPS_SWCT_01081] Implications of being a delegation port dBeing a PortProto-
type attached to a CompositionSwComponentType has the following implications:

• The delegation has to follow the rules for basic compatibility.

• By creating PortPrototypes on the surface of a specific Composition-
SwComponentType it is explicitly decided whether the contents of an “inner” port
contained in the CompositionSwComponentType is exposed to the outside
world.

c(RS_SWCT_03130)

Please note that the rules for compatibility are described in chapter 6.

Please note further that the semantics of the delegation of PortPrototypes are sim-
ilar to encapsulation mechanisms like public and private members in object-oriented
programming languages.

82 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

One implication of the concept of CompositionSwComponentType is that the appli-
cation software of an entire vehicle eventually is represented by one Composition-
SwComponentType. This so-called top-level composition has a special role in the
context of the AUTOSAR System Template [10].

However, please note that a top-level composition might have (unconnected) Port-
Prototypes in order to allow for reuse as part of another system.

[constr_1035] Recursive definition of CompositionSwComponentType dThe re-
cursive definition of a CompositionSwComponentType that eventually contains
a SwComponentPrototype typed by the same CompositionSwComponentType
shall not be feasible at any time in the workflow.c()

3.3.3 Connectors

[TPS_SWCT_01079] SwConnector dNote that CompositionSwComponentType
also aggregates the abstract meta-class SwConnector for connecting the contained
SwComponentPrototypes among each other.c(RS_SWCT_03130)

More information can be found in Figure 3.8.

CompositionSwComponentTypes contain three kinds of SwConnectors:

• [TPS_SWCT_01082] AssemblySwConnector dAssemblySwConnectors in-
terconnect PortPrototypes of SwComponentPrototypes that are part of the
CompositionSwComponentType.c(RS_SWCT_03130)

• [TPS_SWCT_01083] DelegationSwConnector dDelegationSwConnec-
tors connect from “inner” PortPrototypes to delegated “outer” PortProto-
types.c(RS_SWCT_03130)

[TPS_SWCT_01084] Outer PortPrototype is referenced by multiple Del-
egationSwConnectors dIn the case that an outer PortPrototype is refer-
enced by multiple DelegationSwConnectors the semantic is the multiplica-
tion of the AssemblySwConnectors referencing the outer PortPrototypes.c
(RS_SWCT_03130)

• PassThroughSwConnector, see [TPS_SWCT_01507].

[constr_1086] SwConnector between two specific PortPrototypes dEach pair
of PortPrototypes can only be connected by one and only one SwConnector at
the time when the RTE is generated.c()

In other words, it is not supported to create two different SwConnectors that connect
the same pair of PortPrototypes.

[TPS_SWCT_01638] Existence of SwConnector between two PRPortProto-
types d[constr_1086] applies also in the case that two PRPortPrototypes are con-
nected with each other. In particular, the roles

83 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• AssemblySwConnector.requester

• AssemblySwConnector.provider

• PassThroughSwConnector.providedOuterPort

• PassThroughSwConnector.requiredOuterPort

do not establish a direction in this case.c()

For clarification, [TPS_SWCT_01638] means that the SwConnector represents the
ability for bi-directional communication between the two PRPortPrototypes.

[constr_1087] AssemblySwConnector inside CompositionSwComponentType
dAn AssemblySwConnector can only connect PortPrototypes of SwComponent-
Prototypes that are owned by the same CompositionSwComponentType at any
time in the workflow.c()

[constr_1088] DelegationSwConnector inside CompositionSwComponent-
Type dA DelegationSwConnector can only connect a PortPrototype of a
SwComponentPrototype that is owned by the same CompositionSwComponent-
Type that also owns the connected delegation PortPrototype at any time in
the workflow.c()

In the context of attaching a DelegationSwConnector to an inner PRPortProto-
type there is some ambiguity to be considered. In particular, from the formal point of
view it would be feasible to use either a PPortInCompositionInstanceRef or a
RPortInCompositionInstanceRef.

The ability to use one or the other meta-class arbitrarily is considered confusing. There-
fore, [TPS_SWCT_01515] has been defined to remove the unnecessary degree of
freedom.

[TPS_SWCT_01515] PPortInCompositionInstanceRef shall be used for at-
taching DelegationSwConnector to an inner PRPortPrototype dFor the imple-
mentation of the attachment of a DelegationSwConnector to an inner PRPortPro-
totype the meta-class PPortInCompositionInstanceRef shall be used.c(RS_-
SWCT_03130)

[constr_1100] Unconnected RPortPrototype typed by a DataInterface dFor
any element in an unconnected RPortPrototype typed by a DataInterface, there
shall be a requiredComSpec that defines an initValue at the time when the
RTE is generated.c()

Class SwConnector (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note The base class for connectors between ports. Connectors have to be identifiable to allow references from
the system constraint template.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

5

84 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwConnector (abstract)

Subclasses AssemblySwConnector, DelegationSwConnector, PassThroughSwConnector

Attribute Type Mult. Kind Note

mapping PortInterfaceMapping 0..1 ref Reference to a PortInterfaceMapping specifying the
mapping of unequal named PortInterface elements of the
two different PortInterfaces typing the two PortPrototypes
which are referenced by the ConnectorPrototype.

Table 3.12: SwConnector

One specific use case for the application of SwConnectors is exemplified by the fig-
ures 3.9 and 3.11. A specific CompositionSwComponentType exists in two variants
where one (more complex) variant foresees the existence of a SwComponentPro-
totype inside the CompositionSwComponentType (depicted by 3.9) and the other
(because it is implementing a simpler semantics) does not need the SwComponent-
Prototype.

Class AssemblySwConnector

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note AssemblySwConnectors are exclusively used to connect SwComponentPrototypes in the context of a
CompositionSwComponentType.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable, SwConnector

Attribute Type Mult. Kind Note

provider AbstractProvidedPort
Prototype

0..1 iref Instance of providing port.

InstanceRef implemented by:PPortInComposition
InstanceRef

requester AbstractRequiredPort
Prototype

0..1 iref Instance of requiring port.

InstanceRef implemented by:RPortInComposition
InstanceRef

Table 3.13: AssemblySwConnector

Class DelegationSwConnector

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note A delegation connector delegates one inner PortPrototype (a port of a component that is used inside the
composition) to a outer PortPrototype of compatible type that belongs directly to the composition (a port
that is owned by the composition).

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable, SwConnector

Attribute Type Mult. Kind Note

innerPort PortPrototype 0..1 iref The port that belongs to the ComponentPrototype in the
composition

Tags:xml.typeElement=true
InstanceRef implemented by:PortInCompositionType
InstanceRef

outerPort PortPrototype 0..1 ref The port that is located on the outside of the Composition
Type

Table 3.14: DelegationSwConnector

85 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1860] Multiplicity of DelegationSwConnector.innerPort dFor each
DelegationSwConnector, the reference DelegationSwConnector.innerPort
shall exist at the time when the creation of the CompositionSwCom-
ponentType is finished.c()

[constr_1861] Multiplicity of DelegationSwConnector.outerPort dFor each
DelegationSwConnector, the reference DelegationSwConnector.outerPort
shall exist at the time when the creation of the CompositionSwCom-
ponentType is finished.c()

Trigger

RunA1

Application SW Component

RTO

Composition SW Component

Figure 3.9: Use case for PassThroughSwConnector (I)

Without the ability to define a PassThroughSwConnector the second variant could
only be implemented by defining a dummy SwComponentPrototype inside the
CompositionSwComponentType. However, the dummy SwComponentPrototype
would need to define RunnableEntitys that are created for the sole purpose of being
able to shove the data from (e.g. for sender-receiver communication) RPortProto-
types to PPortPrototypes.

AtpStructureElement

SwConnector

AssemblySwConnector DelegationSwConnector

AtpBlueprintable
AtpPrototype

PortPrototype

AbstractProvidedPortPrototype

AbstractRequiredPortPrototype

PassThroughSwConnector

+requiredOuterPort 0..1

«instanceRef»

+requester 0..1

«instanceRef»

+provider 0..1 +providedOuterPort 0..1

«instanceRef»

+innerPort 0..1+outerPort 0..1

Figure 3.10: Connectors

86 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This would not only be cumbersome it would also obviously require additional re-
sources (memory and code) at run-time. Plus, the existence of addition RunnableEn-
titys also unnecessarily increases the propagation delay of information flowing
around inside the ECU.

[TPS_SWCT_01507] The role of PassThroughSwConnector dPassThrough-
SwConnector can be taken to connect PortPrototypes owned by the same Com-
positionSwComponentType. In other words, PassThroughSwConnector creates
a bypass inside a CompositionSwComponentType from the requiredOuterPort
to the providedOuterPort (or vice versa) without involving SwComponentProto-
types.c(RS_SWCT_03130)

[constr_1252] Creation of a loop involving a PassThroughSwConnector is not
allowed dat any time in the workflow, a PassThroughSwConnector is not
allowed if the required outer PortPrototype is directly or indirectly connected to the
provided outer PortPrototype without the placement of a SwComponentProto-
type typed by an AtomicSwComponentType in the chain of SwConnectors.c()

Application SW Component

Composition SW Component

PortInterfaceMapping

Figure 3.11: Use case for PassThroughSwConnector (II)

In other words, according to [constr_1252] it is not allowed to create a “infinite loop” by
means of a PassThroughSwConnector and at least one AssemblySwConnector
that connects the requiredOuterPort to the providedOuterPort.

Class PassThroughSwConnector

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note This kind of SwConnector can be used inside a CompositionSwComponentType to connect two
delegation PortPrototypes.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable, SwConnector

Attribute Type Mult. Kind Note

providedOuter
Port

AbstractProvidedPort
Prototype

0..1 ref This represents the provided outer delegation Port
Prototype of the PassThroughSwConnector.

requiredOuter
Port

AbstractRequiredPort
Prototype

0..1 ref This represents the required outer delegation Port
Prototype of the PassThroughSwConnector.

Table 3.15: PassThroughSwConnector

[constr_1862] Multiplicity of PassThroughSwConnector.requiredOuterPort
dFor each PassThroughSwConnector, the reference PassThroughSwConnector.

87 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

requiredOuterPort shall exist at the time when the creation of the
CompositionSwComponentType is finished.c()

[constr_1863] Multiplicity of PassThroughSwConnector.providedOuterPort
dFor each PassThroughSwConnector, the reference PassThroughSwConnector.
providedOuterPort shall exist at the time when the creation of the
CompositionSwComponentType is finished.c()

[TPS_SWCT_01843] Value of PassThroughSwConnector.category dMeta-class
PassThroughSwConnector can be used in different contexts:

• The PassThroughSwConnector is designed to implement VFB communication
and therefore is considered in the generation of the RTE. In this case the attribute
PassThroughSwConnector.category should either not exist or should be set
to the value VFB.

• The PassThroughSwConnector is used to support the early design of a sig-
nal/service translation. At some point, the early design is replaced by actual
ApplicationSwComponentTypes that finally implement the intended commu-
nication path sketched by the early design on the VFB.

For more details about designing a signal/service translation by means of a
PassThroughSwConnector, please refer to the TPS System Template [10]. To
indicate the usage of the PassThroughSwConnector for the early design pur-
pose, the value of the attribute PassThroughSwConnector.category should
be set to S2S_DESIGN.

c(RS_SWCT_03130)

Please note that, on the AUTOSAR adaptive platform, the PassThroughSwConnec-
tor is also used for the design of a signal/service translation in a way that is very
similar to the approach described in the TPS System Template [10]. More details can
be found in the TPS Manifest Specification [14].

3.3.4 Instantiation-specific RTEEvents

[TPS_SWCT_02507] Instantiation-specific RTEEvents dIt is possible to specify
instantiation specific properties of an RTEEvent by applying InstantiationR-
TEEventProps in the role instantiationRTEEventProps.

This allows to use the same ApplicationSwComponentType in different timing sce-
narios. Even if the scheduling is an issue of the SwcInternalBehavior, the instance
specific definition of timing needs to be specified on the level of a Composition-
SwComponentType.c(RS_SWCT_03046, RS_SWCT_03270)

As an example for [TPS_SWCT_02507], please consider a software-component that
implements a closed-loop control algorithm.

88 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This software-component can potentially be deployed to “slow” and “fast” control sce-
narios. As the actual time-base of the control algorithm is derived from the scheduling
implemented in the RTE it obviously facilitates the overall design if the timing can be
defined on “instance” level.

[constr_1233] InstantiationTimingEventProps shall only reference
TimingEvent dat any time in the workflow, an Instantiation-
TimingEventProps shall only reference TimingEvent in the role refinedEvent.
A reference to other kinds of RTEEvents is not supported.c()

[constr_1864] Multiplicity of InstantiationRTEEventProps.refinedEvent
dFor each InstantiationRTEEventProps, the instance-reference Instanti-
ationRTEEventProps.refinedEvent shall exist at the time when the RTE
is generated.c()

AbstractEvent
AtpStructureElement

RTEEvent

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

Identifiable

WaitPoint

+ timeout: TimeValue [0..1]

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

������������	
 ����

�����������	��	���� � ��������������

SwComponentType

AtomicSwComponentType

InstantiationTimingEventProps

+ period: TimeValue [0..1]

TimingEvent

+ offset: TimeValue [0..1]
+ period: TimeValue [0..1]

SwComponentType

CompositionSwComponentType

InstantiationRTEEventProps

«atpIdentityContributor»
+ shortLabel: Identifier [0..1]

������������	
 ����

�����������	��	���� �

������	������	����

�����������������	����

� � �� «atpVariation,atpSplitable»

+instantiationRTEEventProps 0..*

+startOnEvent

0..1

+trigger

0..1

+waitPoint 0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

«atpVariation,atpSplitable»

+event 0..*

«instanceRef»

+refinedEvent

0..1

«atpVariation,atpSplitable»

+runnable 0..*

Figure 3.12: Instantiation specific Properties of RTEEvents

Please note that the attribute shortLabel only contributes to model semantics if the
ability to split the definition of the aggregation CompositionSwComponentType.in-
stantiationRTEEventProps over several physical files is actually utilized1.

More explanation about the ability to split models over physical files can be found
in [11].

1In which case the shortLabel serves as a part of the splitkey

89 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class InstantiationRTEEventProps (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note This meta-class represents the ability to refine the properties of RTEEvents for particular instances of a
software component.

Base ARObject

Subclasses InstantiationTimingEventProps

Attribute Type Mult. Kind Note

refinedEvent RTEEvent 0..1 iref This instance ref denotes the Timing Event for which the
period shall be refined on an instance level.

InstanceRef implemented by:InstanceEventIn
CompositionInstanceRef

shortLabel Identifier 0..1 attr The main purpose of the shortLabel is to contribute to the
splitkey of aggregations that are <<atpSplitable>>.

Stereotypes: atpIdentityContributor

Table 3.16: InstantiationRTEEventProps

3.4 Port Interface

[TPS_SWCT_01025] The role of PortPrototypes in the AUTOSAR architecture
dA PortPrototype mainly contributes the functionality of being a connection point to
the AUTOSAR concept.

The details, i.e. with respect to what kind of information is actually transported between
two PortPrototypes is defined by the PortInterface.c(RS_SWCT_00010, RS_-
SWCT_00080, RS_SWCT_00110, RS_SWCT_02030, RS_SWCT_03010)

[TPS_SWCT_01026] The role of PortInterfaces in the AUTOSAR architecture d
PortInterfaces are used to support a design-by-contract work-flow, i.e. a Port-
Interface provides means to formally verify structural and dynamic compatibility
between software-components.c(RS_SWCT_00010, RS_SWCT_00080, RS_SWCT_-
00110, RS_SWCT_02030, RS_SWCT_03010)

In other words: PortInterfaces (see Figure 3.14) represent a pivotal point in the
AUTOSAR concept.

Please note that a PortInterface creates a name space for the information con-
tained. This allows for defining the details of a specific PortInterface without hav-
ing to care for possible side effects on other PortInterfaces. Again, this property
of the AUTOSAR concept directly supports re-usability.

[TPS_SWCT_01027] Different flavors of PortInterfaces dWithin the AUTOSAR
concept, different flavors of PortInterfaces are defined:

• SenderReceiverInterface

• NvDataInterface

• ParameterInterface

90 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• ModeSwitchInterface

• ClientServerInterface

• TriggerInterface

c(RS_SWCT_00010, RS_SWCT_00080, RS_SWCT_00110, RS_SWCT_02030)

SenderReceiverInterfaceNvDataInterfaceParameterInterface

PortInterface

DataInterface

Figure 3.13: DataInterface as an abstract base class

[TPS_SWCT_01069] DataInterface is defined as abstract base class dPlease
note that the conceptual relationship of SenderReceiverInterface, NvDataIn-
terface, and ParameterInterface is expressed by the definition of the abstract
base class DataInterface.c(RS_SWCT_00010, RS_SWCT_00080, RS_SWCT_-
00110, RS_SWCT_03010)

Please find more details about the specialization of the PortInterface concept in
chapter 4.2.3 and 4.2.2.

Class PortInterface (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Abstract base class for an interface that is either provided or required by a port of a software component.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ClientServerInterface, DataInterface, ModeSwitchInterface, TriggerInterface

Attribute Type Mult. Kind Note

isService Boolean 0..1 attr This flag is set if the PortInterface is to be used for
communication between an

• ApplicationSwComponentType or

• ServiceProxySwComponentType or

• SensorActuatorSwComponentType or

• ComplexDeviceDriverSwComponentType

• ServiceSwComponentType

• EcuAbstractionSwComponentType

and a ServiceSwComponentType (namely an AUTOSAR
Service) located on the same ECU. Otherwise the flag is
not set.

serviceKind ServiceProviderEnum 0..1 attr This attribute provides further details about the nature of
the applied service.

Table 3.17: PortInterface

[TPS_SWCT_01070] PortInterface acts as a type for a PortPrototype dFrom
an abstract point of view, a PortInterface acts as a type for a PortPrototype.

91 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This means in particular that several PortPrototypes can be typed by the same
PortInterface.c(RS_SWCT_00010, RS_SWCT_00080, RS_SWCT_00110, RS_-
SWCT_03010)

Class DataInterface (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note The purpose of this meta-class is to act as an abstract base class for subclasses that share the
semantics of being concerned about data (as opposed to e.g. operations).

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Subclasses NvDataInterface, ParameterInterface, SenderReceiverInterface

Attribute Type Mult. Kind Note

– – – – –

Table 3.18: DataInterface

Of course, this aspect facilitates the creation of valid connections between software-
components dramatically. By using a specific PortInterface for typing particular
PortPrototypes the latter are eligible for being connected to each other by definition.

However, the creation of a valid connection does not need to be based on the usage
of identical PortInterfaces. It is also possible to use different, but compatible
PortInterfaces. The details about compatibility of PortInterfaces are described
in chapter 6.

[constr_1036] Connect kinds of PortInterfaces dIt shall not be possible to con-
nect PortPrototypes typed by PortInterfaces of different kinds at the time
when the RTE is generated.

Subclasses of DataInterface make an exception to this rule and can be used for
creating connections to each other.c()

SenderReceiverInterface ClientServerInterface

AutosarDataPrototype

VariableDataPrototype

AtpStructureElement
Identifiable

ClientServerOperation

AutosarDataPrototype

ArgumentDataPrototype

AtpPrototype

ModeDeclarationGroupPrototype

ParameterInterface

AutosarDataPrototype

ParameterDataPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

TriggerInterface

AtpStructureElement
Identifiable

Trigger

ModeSwitchInterfaceNvDataInterface

DataInterface

+dataElement 0..* +nvData 0..*

«atpVariation»

+argument 0..* {ordered}

+modeGroup 0..1
«atpVariation»

+operation 0..*+trigger 0..*+parameter 0..*

Figure 3.14: PortInterfaces in the AUTOSAR meta-model

92 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For clarification, a connection between a PortPrototype typed by a Sender-
ReceiverInterface and a PortPrototype typed by a ClientServerInter-
face shall not be possible. However, the creation of a connection between a Port-
Prototype typed by a SenderReceiverInterface and a PortPrototype typed
by a ParameterInterface is supported.

[constr_1137] Applicability of ParameterInterface dA PPortPrototype typed
by a ParameterInterface can only be owned by a ParameterSwComponent-
Type or a CompositionSwComponentType at any time in the workflow.c
()

Please note that PortInterfaces also play an important role in the context of defin-
ing so-called AUTOSAR services. In particular, by means of the attribute isService
a PortInterface can define whether it is supposed to be used in the context of
an AUTOSAR service and in addition to this it may define (by means of the attribute
serviceKind) what kind of service is intended.

The creation of an AssemblySwConnector between PortPrototypes where the
respective PortInterfaces have set attribute isService to true puts require-
ments on the nature of the enclosing SwComponentTypes.

For example, it does not make sense to establish a service communication between
two SwComponentPrototypes that each are typed by ApplicationSwCompo-
nentTypes. For service communication, at least one of the participating SwCompo-
nentPrototypes has be to be typed by a ServiceSwComponentType.

[constr_10067] Creation of AssemblySwConnector for service communication
dIf an AssemblySwConnector is created between two PortPrototypes and the af-
fected PortInterfaces set the attribute isService to the value true, then at least
one of the SwComponentPrototypes shall be typed by a ServiceSwComponent-
Type. This constraint shall be imposed at the time when the RTE is gener-
ated.c()

The information contained in serviceKind can be used in various ways. The primary
intent is to distinguish between the usage of standardized AUTOSAR services from
the usage of a vendor-specific service. This information may have an impact on the
development- and build process of software-components that use the PortInter-
face.

In addition, it is also possible to use the information contained in serviceKind for
filtering the presentation of an AUTOSAR model in an AUTOSAR authoring tool and
e.g. display the nature of the service PortPrototypes independently of the content
of the corresponding PortInterface.

[TPS_SWCT_01003] Inconsistencies regarding the value of serviceKind and
the actual implementation of the PortInterface dIn case of inconsistencies be-
tween the value of serviceKind and the actual implementation of the PortInter-
face the implementation of the PortInterface wins over the value of attribute
PortInterface.serviceKind (which, for the intended purpose shall be considered
an annotation rather than a semantically binding information).c(RS_SWCT_00030)

93 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01004] Specific default value if serviceKind is not defined dif the
attribute serviceKind is not defined in the context of a specific PortInterface the
default value anyStandardized shall be assumed.c(RS_SWCT_00030)

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean [0..1]
+ serviceKind: ServiceProviderEnum [0..1]

«enumeration»
ServiceProviderEnum

 basicSoftwareModeManager
 comManager
 cryptoServiceManager
 diagnosticCommunicationManager
 diagnosticEventManager
 diagnosticLogAndTrace
 ecuManager
 functionInhibitionManager
 nonVolati leRamManager
 syncBaseTimeManager
 watchDogManager
 anyStandardized
 vendorSpecific
 operatingSystem
 defaultErrorTracer
 secureOnBoardCommunication
 j1939RequestManager
 errorTracer
 hardwareTestManager
 v2xFacil i ties
 v2xManagement
 j1939Dcm
 cryptoKeyManagement
 intrusionDetectionSecurityManagement

Figure 3.15: PortInterfaces and AUTOSAR services

[constr_1174] PortInterfaces used in the context of CompositionSwCompo-
nentTypes cannot refer to AUTOSAR services dCompositionSwComponent-
Types shall not own PortPrototypes typed by PortInterfaces where the at-
tribute isService is set to true at any time in the workflow.c()

Enumeration ServiceProviderEnum
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This represents a list of possible service providers

Literal Description

anyStandardized This value means that the specific nature is either unknown or it is not important for the given
purpose. This is also the default value for any attribute of type ServiceProviderEnum

Tags:atp.EnumerationLiteralIndex=0

basicSoftwareMode
Manager

The service relates to the Basic Software Mode Manager (BswM)

Tags:atp.EnumerationLiteralIndex=1

comManager The service relates to the COM Manager (ComM).

Tags:atp.EnumerationLiteralIndex=2

cryptoKey
Management

The service relates to the Key Manager (KeyM).

Tags:atp.EnumerationLiteralIndex=23

cryptoService
Manager

The service relates to the Crypto Service Manager (CsM).

Tags:atp.EnumerationLiteralIndex=3

defaultErrorTracer The service relates to the Default Error Tracer (DET)

Tags:atp.EnumerationLiteralIndex=4

diagnostic
Communication
Manager

The service relates to the Diagnostic Communication Manager (DCM).

Tags:atp.EnumerationLiteralIndex=6

5

94 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration ServiceProviderEnum
diagnosticEvent
Manager

The service relates to the Diagnostic Event Manager (DEM).

Tags:atp.EnumerationLiteralIndex=7

diagnosticLogAnd
Trace

The service relates to the Diagnostic Log and Trace (DLT).

Tags:atp.EnumerationLiteralIndex=8

ecuManager The service relates to the ECU Manager (EcuM).

Tags:atp.EnumerationLiteralIndex=9

errorTracer This service relates to the error tracer.

Tags:atp.EnumerationLiteralIndex=18

functionInhibition
Manager

The service relates to the Function Inhibition Manager (FIM).

Tags:atp.EnumerationLiteralIndex=10

hardwareTest
Manager

This service relates to the hardware test manager.

Tags:atp.EnumerationLiteralIndex=19

intrusionDetection
Security
Management

The service relates to the intrusion detection security management (IdsM).

Tags:atp.EnumerationLiteralIndex=24

j1939Dcm This service relates to the J1939 Dcm.

Tags:atp.EnumerationLiteralIndex=22

j1939Request
Manager

The service relates to the J1939Rm.

Tags:atp.EnumerationLiteralIndex=11

nonVolatileRam
Manager

The service relates to the Non-Volatile RAM Manager (NvM).

Tags:atp.EnumerationLiteralIndex=12

operatingSystem The service relates to the Operating System (OS).

Tags:atp.EnumerationLiteralIndex=13

secureOnBoard
Communication

The service relates to the SecOc module.

Tags:atp.EnumerationLiteralIndex=14

syncBaseTime
Manager

The service relates to the Sync Time Base Manager (StbM).

Tags:atp.EnumerationLiteralIndex=15

v2xFacilities This service relates to the Vehicle to X facilities.

Tags:atp.EnumerationLiteralIndex=20

v2xManagement This service relates to the Vehicle to X management.

Tags:atp.EnumerationLiteralIndex=21

vendorSpecific This value denotes a vendor-specific service.

Tags:atp.EnumerationLiteralIndex=16

watchDogManager The service relates to the Watchdog Manager (WdgM).

Tags:atp.EnumerationLiteralIndex=17

Table 3.19: ServiceProviderEnum

Please find more details about the relation of PortInterfaces to AUTOSAR services
in chapter 11.

95 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4 Details: Software Components, Ports, and
Interfaces

4.1 Introduction

The specification of the Virtual Functional Bus (VFB) [3] explains the main commu-
nication paradigms for communication among software-components: client/server for
operation-based communication, and sender/receiver for data-based communication.

The nature of the two communication paradigms is quite different, and so is the mod-
eling of SenderReceiverInterfaces and ClientServerInterfaces and their
related meta-classes.

[TPS_SWCT_01516] PortInterface describes the static structure of informa-
tion interchange dPortInterfaces are limited to the description of the static struc-
ture of the exchanged information; the dynamic attributes relevant for communica-
tion are attached to PortPrototypes.c(RS_SWCT_00010, RS_SWCT_00080, RS_-
SWCT_00110, RS_SWCT_02030, RS_SWCT_03010)

Please note that the dynamic attributes relevant for communication are described in
chapter 4.5.

4.2 Port Interface Details

4.2.1 Introduction

The usage of value encodings (for more information please refer to section 5.2.6) is
limited within the context of PortInterfaces.

[constr_1045] Supported value encodings for SwBaseType in the context of
PortInterfaces dThe supported value encodings for the usage within a PortIn-
terface are:

• 2C: Two’s complement

• IEEE754: floating-point numbers

• ISO-8859-1: single-byte coded character

• ISO-8859-2: single-byte coded character

• WINDOWS-1252: single-byte coded character

• UTF-8: UCS Transformation Format 8

• UTF-16: Character encoding for Unicode code points based on 16 bit code
units [15]

• UCS-2: Universal Character Set 2

96 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• NONE: Unsigned Integer

• BOOLEAN: This represents an integer to be interpreted as boolean.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1046] Applicability of [constr_1045] d[constr_1045] applies at the time
when the contract phase generation is executed only if the value of the
attribute isService is set to false.c()

[constr_1295] PortInterfaces and category DATA_REFERENCE dA DataPro-
totype defined in the context of a PortInterface used by an Application-
SwComponentType or SensorActuatorSwComponentType that is (after potential
indirections via TYPE_REFERENCE are resolved) either typed by or mapped to an
ImplementationDataType of category DATA_REFERENCE shall only be used if
either the provider or the requester of the information represents a ServiceSwCompo-
nentType, a ComplexDeviceDriverSwComponentType, a ParameterSwCom-
ponentType, or an NvBlockSwComponentType, or the EcuAbstractionSwCom-
ponentType.

This rule shall be imposed at the time when the RTE is generated.c()

Note: [constr_1295] corresponds to [SWS_RTE_07670].

4.2.2 Sender Receiver Communication

4.2.2.1 Sender Receiver Interface

[TPS_SWCT_01114] SenderReceiverInterface dSenderReceiverInter-
faces allow for the specification of the typically asynchronous communication pattern
where a sender provides data that is required by one or more receivers.

While the actual communication takes place via the respective PortPrototypes, a
SenderReceiverInterface allows for formally describing what kind of information
is sent and received.c(RS_SWCT_02030)

Class SenderReceiverInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A sender/receiver interface declares a number of data elements to be sent and received.

Tags:atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
DataInterface, Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mult. Kind Note

dataElement VariableDataPrototype * aggr The data elements of this SenderReceiverInterface.

invalidation
Policy

InvalidationPolicy * aggr InvalidationPolicy for a particular dataElement

5

97 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SenderReceiverInterface
metaDataItem
Set

MetaDataItemSet * aggr This aggregation defines fixed sets of meta-data items
associated with dataElements of the enclosing Sender
ReceiverInterface

Table 4.1: SenderReceiverInterface

Class InvalidationPolicy

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Specifies whether the component can actively invalidate a particular dataElement.

If no invalidationPolicy points to a dataElement this is considered to yield the identical result as if the
handleInvalid attribute was set to dontInvalidate.

Base ARObject

Attribute Type Mult. Kind Note

dataElement VariableDataPrototype 0..1 ref Reference to the dataElement for which the Invalidation
Policy applies.

handleInvalid HandleInvalidEnum 0..1 attr This attribute controls how invalidation is applied to the
dataElement.

Table 4.2: InvalidationPolicy

Enumeration HandleInvalidEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Strategies of handling the reception of invalidValue.

Literal Description

dontInvalidate Invalidation is switched off.

Tags:atp.EnumerationLiteralIndex=0

external
Replacement

Replace a received invalidValue. The replacement value is sourced from the externalReplacement.

Tags:atp.EnumerationLiteralIndex=1

keep The application software is supposed to handle signal invalidation on RTE API level either by Data
ReceiveErrorEvent or check of error code on read access.

Tags:atp.EnumerationLiteralIndex=2

replace Replace a received invalidValue. The replacement value is specified by the initValue.

Tags:atp.EnumerationLiteralIndex=3

Table 4.3: HandleInvalidEnum

A SenderReceiverInterface focuses on the description of information items rep-
resented by VariableDataPrototypes (see section 5.3).

A VariableDataPrototype aggregated in the role of dataElement represents
an atomic1 piece of information transmitted among PortPrototypes typed by a
SenderReceiverInterface.

[TPS_SWCT_01115] invalidationPolicy dAn invalidationPolicy specifies
whether the sending component can actively invalidate a particular dataElement and
which strategy of handling the reception of invalidValue on the receiver side shall
be implemented.c(RS_SWCT_02030)

1Note that the term “atomic” does not have any implication on the implementation on a concrete
computing platform

98 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Further information about the related concept of an invalidValue is provided in
chapter 5.4.2

[constr_1865] Existence of InvalidationPolicy.dataElement dFor each In-
validationPolicy, the reference InvalidationPolicy.dataElement shall ex-
ist at the time when the contract phase generation is executed.c()

SenderReceiverInterface VariableDataPrototype

DataPrototype

AutosarDataPrototype

InvalidationPolicy

+ handleInvalid:
HandleInvalidEnum [0..1]

«enumeration»
HandleInvalidEnum

 keep
 replace
 dontInvalidate
 externalReplacement

PortInterface

DataInterface

MetaDataItemSetMetaDataItem

+ length: PositiveInteger [0..1]

ValueSpecification

TextValueSpecification

+ value: VerbatimString [0..1]

+dataElement

0..*

+metaDataItemType 0..1

+invalidationPolicy 0..*

+metaDataItemSet 0..*

+dataElement

0..*

+dataElement

0..1

+metaDataItem

0..* {ordered}

Figure 4.1: dataElements of a SenderReceiverInterface

Note that a SenderReceiverInterface provides a name space for the definition of
VariableDataPrototypes.

In terms of the AUTOSAR meta-model this aspect is indicated by the inheritance re-
lation to DataPrototype (which in turn inherits from Identifiable). Please find
more information on the creation of name spaces in [11].

[TPS_SWCT_01116] swImplPolicy dThe swImplPolicy indicates the way how
a VariableDataPrototype shall be processed at the receiver’s side. If set to
queued the semantics is that the corresponding VariableDataPrototype needs
to be added to a queue (or in other words: a FIFO data structure) from which it is later
consumed by the actual receiver software-component.c(RS_SWCT_02030)

Please note that the swImplPolicy is described in section 5.4.

[constr_1200] Queued communication is not applicable for dataElements
owned by PRPortPrototype dThe swImplPolicy shall not be set to queued for
any dataElement owned by a PRPortPrototype at any time in the work-
flow.c()

[TPS_SWCT_01176] last-is-best semantics for sender-receiver communication
dIf swImplPolicy is set to any other valid value of SwImplPolicyEnum then last is
best semantics applies.c()

Please note that the definition of VariableDataPrototype may come very close
to the reader’s idea of a signal. However, different kinds of signals have a specific
meaning in the AUTOSAR concept, especially in the context of the AUTOSAR System
Template [10].

99 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01117] Communication patterns for sender-receiver communica-
tion dPortPrototypes typed by a SenderReceiverInterface may be connected
to establish a 1:n (i.e. one sender, multiple receivers) communication relationship. It
is also possible to establish an n:1 (i.e. many senders, one receiver) communication
pattern.c(RS_SWCT_02030)

[constr_1033] Communication scenarios for sender/receiver communication
dFor sender/receiver communication, it is not allowed to create a communication sce-
nario where n sender are connected to m receivers where m and n are both greater
than 1 at any time in the workflow.c()

Factually, [constr_1033] is not applicable to a scenario where several PRPortPro-
totypes are connected by a chain of AssemblySwConnectors or PassThrough-
SwConnectors.

RPortPrototype PPortPrototype PRPortPrototype

RPortPrototype No Yes Yes

PPortPrototype Yes No Yes

PRPortPrototype Yes Yes Yes

Table 4.4: Supported connections by AssemblySwConnector for
PortPrototypes typed by a SenderReceiverInterface or Nv-
DataInterface

[constr_1202] Supported connections by AssemblySwConnector for PortPro-
totypes typed by a SenderReceiverInterface or NvDataInterface dFor
the modeling of AssemblySwConnectors between PortPrototypes typed by a
SenderReceiverInterface or NvDataInterface, only the connections docu-
mented in Table 4.4 are supported by AUTOSAR at any time in the work-
flow.c()

innerPort outerPort

RPortPrototype PPortPrototype PRPortPrototype

RPortPrototype Yes No Yes

PPortPrototype No Yes Yes

PRPortPrototype Yes Yes Yes

Table 4.5: Supported connections by DelegationSwConnector for
PortPrototypes typed by a SenderReceiverInterface or Nv-
DataInterface

[constr_1203] Supported connections by DelegationSwConnector for Port-
Prototypes typed by a SenderReceiverInterface or NvDataInterface dFor
the modeling of DelegationSwConnectors between PortPrototypes typed by
a SenderReceiverInterface or NvDataInterface, only the connections doc-
umented in Table 4.5 are supported by AUTOSAR at any time in the work-
flow.c()

100 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4.2.2.2 Meta-data on the Application Software Level

There are cases where information available on different levels in the AUTOSAR basic
software stack need to be made available as meta-data on the application layer in order
to make the overall software function properly.

One example could be a software-component that is involved with communication us-
ing the J1939 protocol.

In such a case, the semantics of the information transmitted is strongly bound to the
source address and the sender needs to be able to set the source address individually.

[TPS_SWCT_01801] Support for Meta-Data dMeta-data on the application software
level can only be made available in the context of a SenderReceiverInterface.
No other kind of PortInterface supports the definition of meta-data.c(RS_SWCT_-
02030)

[TPS_SWCT_01802] Definition of meta-data in the context of a Sender-
ReceiverInterface dThe definition of meta-data in the context of a Sender-
ReceiverInterface involves two aspects:

• The available meta-data are defined by means of an ordered aggregation of meta-
class MetaDataItem at MetaDataItemSet that in turn is aggregated in the role
SenderReceiverInterface.metaDataItemSet.

• The involvement of dataElements with meta-data is specified by means of the
reference MetaDataItemSet.dataElement. In other words, the dataEle-
ments that are referenced by a MetaDataItemSet in the role dataElement
are involved with meta-data handling.

c()

Class MetaDataItem
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class represents a single meta-data item.

Base ARObject

Attribute Type Mult. Kind Note

length PositiveInteger 0..1 attr This attribute determines the length of the MetaDataItem
at run-time.

metaDataItem
Type

TextValueSpecification 0..1 aggr This aggregation contributes the specification of the
concrete meta-data item type.

Table 4.6: MetaDataItem

Class MetaDataItemSet
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class represents the ability to define a set of meta-data items to be used in SenderReceiver
Interfaces.

Base ARObject

5

101 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class MetaDataItemSet
Attribute Type Mult. Kind Note

dataElement VariableDataPrototype * ref This reference identifies the dataElement for which the
ordered list of meta-data items is defined.

metaDataItem
(ordered)

MetaDataItem * aggr This aggregation represents the ordered definition of
meta-data items.

Table 4.7: MetaDataItemSet

[constr_1726] Ordering of MetaDataItemSet.metaDataItem dThe ordering of the
elements of MetaDataItemSet.metaDataItem shall be done such that the Meta-
DataItem with the largest value of attribute length is located in the first position
and the MetaDataItem with the smallest value of attribute length is located in the
last position.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_01803] MetaDataItems define the same value of attribute length
dFor the case that MetaDataItems define the same value of attribute length the
ordering of these MetaDataItems among each other is not significant.c(RS_SWCT_-
02030)

[TPS_SWCT_01804] Standardized values of attribute MetaDataItem.meta-
DataItemType.value dThe following values of attribute MetaDataItem.meta-
DataItemType.value are standardized by AUTOSAR:

• PRIORITY_8

• SOURCE_ADDRESS_16

• TARGET_ADDRESS_16

• ADDRESS_EXTENSION_8

• SOCKET_CONNECTION_ID_16

• LIN_NAD_8

• CAN_ID_32

• ETHERNET_MAC_32

c()

[constr_1866] Existence of MetaDataItem.length dFor each MetaDataItem, at-
tribute length shall exist at the time when the contract phase genera-
tion is executed.c()

[constr_1867] Existence of MetaDataItem.metaDataItemType dFor each Meta-
DataItem, attribute metaDataItemType shall exist at the time when the
contract phase generation is executed.c()

102 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1868] Existence of MetaDataItemSet.dataElement dFor each Meta-
DataItemSet that aggregates at least one metaDataItem, at least one reference
to a dataElement shall exist at the time when the contract phase gen-
eration is executed.c()

4.2.3 Client Server Communication

The underlying semantics of a client/server communication is that a client may initiate
the execution of an operation by a server that supports the operation.

The server executes the operation and, when completed, it provides the client with the
result (synchronous operation call) or else the client checks for the completion of the
operation by itself (asynchronous operation call).

[constr_1037] Client shall not be connected to multiple servers dA client shall not
be connected to multiple servers such that an operation call would be handled by more
than one server at the time when the RTE is generated.c()

4.2.3.1 Client Server Interface

A ClientServerInterface, to some extent, is a counterpart to the Sender-
ReceiverInterface2.

Instead of defining pieces of information to be transferred among software-
components, a ClientServerInterface defines a collection of ClientServer-
Operations.

Class ClientServerInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A client/server interface declares a number of operations that can be invoked on a server by a client.

Tags:atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mult. Kind Note

operation ClientServerOperation * aggr ClientServerOperation(s) of this ClientServerInterface.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=blueprintDerivationTime

possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table 4.8: ClientServerInterface

2However, different connection patterns apply, see [constr_1037]

103 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ArgumentDataPrototype

+ direction: ArgumentDirectionEnum [0..1]
+ serverArgumentImplPolicy:

ServerArgumentImplPolicyEnum [0..1]

PortInterface

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

DataPrototype

AutosarDataPrototype

«enumeration»
ArgumentDirectionEnum

 in
 out
 inout

«enumeration»
ServerArgumentImplPolicyEnum

 useArgumentType
 useVoid

������������	
 ����

�����������	��	���� �

�������	����������	����

«atpVariation»

+argument

0..*
{ordered}

«atpVariation»

+operation 0..*

Figure 4.2: ClientServerOperations of a ClientServerInterface

[TPS_SWCT_01118] ClientServerInterface dA ClientServerInterface is
composed of ClientServerOperations, i.e. a ClientServerOperation can-
not be reused in the context of a different ClientServerInterface.c(RS_SWCT_-
02030)

[TPS_SWCT_01106] ClientServerOperation dA ClientServerOperation
consists of 0..* ArgumentDataPrototypes. The latter may be

• passed to the operation (i.e. the direction is “in”)

• passed to and returned from the operation (i.e. the direction is “inout”)

• returned from the operation (i.e. the direction is “out”)

The aggregation represents a variation point.c(RS_SWCT_02030, RS_SWCT_03141)

[TPS_SWCT_01844] Optional method arguments dAUTOSAR does not support the
existence of optional arguments within a ClientServerOperation.c()

The reason for the existence of the restriction in [TPS_SWCT_01844] on the
AUTOSAR classic platform is that the RTE does not have an API to handle optional
method arguments.

Class ClientServerOperation

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An operation declared within the scope of a client/server interface.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

argument
(ordered)

ArgumentDataPrototype * aggr An argument of this ClientServerOperation

Stereotypes: atpVariation
Tags:vh.latestBindingTime=blueprintDerivationTime

5

104 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ClientServerOperation

diagArgIntegrity Boolean 0..1 attr This attribute shall only be used in the implementation of
diagnostic routines to support the case where input and
output arguments are allocated in a shared buffer and
might unintentionally overwrite input arguments by
tentative write operations to output arguments.

This situation can happen during sliced execution or while
output parameters are arrays (call by reference). The
value true means that the ClientServerOperation is aware
of the usage of a shared buffer and takes precautions to
avoid unintentional overwrite of input arguments.

If the attribute does not exist or is set to false the Client
ServerOperation does not have to consider the usage of a
shared buffer.

possibleError ApplicationError * ref Possible errors that may by raised by the referring
operation.

Table 4.9: ClientServerOperation

Class ArgumentDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An argument of an operation, much like a data element, but also carries direction information and is
owned by a particular ClientServerOperation.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

direction ArgumentDirection
Enum

0..1 attr This attribute specifies the direction of the argument
prototype.

serverArgument
ImplPolicy

ServerArgumentImpl
PolicyEnum

0..1 attr This defines how the argument type of the servers
RunnableEntity is implemented.

If the attribute is not defined this has the same semantics
as if the attribute is set to the value useArgumentType for
primitive arguments and structures.

Table 4.10: ArgumentDataPrototype

[TPS_SWCT_01119] Direction of ArgumentDataPrototypes dTo cover these
cases, ArgumentDataPrototype defines an attribute direction, possible values
are in (pass to operation), out (return from operation), and inout (pass to and return
from operation).c(RS_SWCT_02030)

In many common programming languages (like C), an operation is yet another data
type. This makes it for example possible to pass a reference to an operation as an
argument to another operation.

This is not allowed in the AUTOSAR concept.

[TPS_SWCT_01517] ClientServerOperation cannot be passed as a reference
dIt is not possible to pass a reference to a ClientServerOperation as an Argu-
mentDataPrototype in another ClientServerOperation.c(RS_SWCT_02030)

Essentially, all ArgumentDataPrototypes in a ClientServerOperation can be
passed (conceptually) by value (from the client to the server and/or from the server to
the client depending on the direction of the ArgumentDataPrototype).

105 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1869] Existence of attribute ArgumentDataPrototype.direction dFor
each ArgumentDataPrototype, attribute direction shall be defined at the
time when the contract phase generation is executed.c()

[TPS_SWCT_01120] Client needs to provide ArgumentDataPrototypes dWhen
the client invokes an operation, it needs to provide a value for each ArgumentDat-
aPrototype that is of direction in or inout.c(RS_SWCT_02030)

[TPS_SWCT_01121] Pass correct data type dThe value passed to an Argument-
DataPrototype of direction in or inout needs to be of the corresponding
Datatype.c(RS_SWCT_02030)

[TPS_SWCT_01122] Synchronous call of ClientServerOperation dIn the case
of synchronous operation call, the client expects to receive a response to the invocation
of the operation.

As part of the response, it receives a value (of the correct AutosarDataType) for each
ArgumentDataPrototype that is of direction out or inout.c(RS_SWCT_02030)

Enumeration ArgumentDirectionEnum

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note Use cases:

• Arguments in ClientServerOperation can have different directions that need to be formally
indicated because they have an impact on how the function signature looks like eventually.

• Arguments in BswModuleEntry already determine a function signature, but the direction is
used to specify the semantics, especially of pointer arguments.

Literal Description

in The argument value is passed to the callee.

Tags:atp.EnumerationLiteralIndex=0

inout The argument value is passed to the callee but also passed back from the callee to the caller.

Tags:atp.EnumerationLiteralIndex=1

out The argument value is passed from the callee to the caller.

Tags:atp.EnumerationLiteralIndex=2

Table 4.11: ArgumentDirectionEnum

Each ClientServerOperation provides a name space for its ArgumentDataPro-
totypes and therefore has a unique identifier which identifies the operation within the
corresponding ClientServerInterface.

The ClientServerOperations have no ordering within a ClientServerInter-
face (there is no such thing as the “first” operation)3.

3In different parts of the definition of a ClientServerInterface, a “calling-order” of the
ClientServerOperations might be prescribed: the client might be required to use the
ClientServerOperations in a certain logical ordering.
However, this ordering has nothing to do with the order in which the ClientServerOperations are
listed in the definition of a ClientServerInterface

106 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01123] No default values for ArgumentDataPrototypes dIt is not
possible to define default values for ArgumentDataPrototypes defined in the con-
text of a ClientServerOperation. Default values might lead to complicated map-
pings to programming languages.c()

[TPS_SWCT_01124] Definition of ArgumentDataPrototypes within the context
of a ClientServerOperation is ordered dIn contrast to the unordered relation-
ship of ClientServerInterface to ClientServerOperation, the definition of
ArgumentDataPrototypes within the context of a ClientServerOperation is
ordered, i.e. a ClientServerOperation may have a first argument4.c(RS_SWCT_-
02030)

Please note that ArgumentDataPrototype inherits from AutosarDataPrototype
and therefore has a reference to a concrete AutosarDataType.

The RTE Generator uses the referred AutosarDataTypes to determine the data
types of the arguments depending on the value of the attribute ArgumentDataPro-
totype.serverArgumentImplPolicy.

Enumeration ServerArgumentImplPolicyEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This defines how the argument type of the servers RunnableEntity is implemented.

Literal Description

useArgumentType The argument type of the RunnableEntity is derived from the AutosarDataType of the Argument
Prototype.

Tags:atp.EnumerationLiteralIndex=0

useVoid The argument type of the RunnableEntity is void.

Tags:atp.EnumerationLiteralIndex=2

Table 4.12: ServerArgumentImplPolicyEnum

[constr_1286] serverArgumentImplPolicy and ArgumentDataPrototype
typed by primitive data types dThe value of the attribute ArgumentDataProto-
type.serverArgumentImplPolicy shall not be set to useVoid for an Argument-
DataPrototype of direction in that is typed by an AutosarDataType that boils
down to a primitive C data type (see [TPS_SWCT_01565]).

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

There is one use case for executing multiple ClientServerOperations using the
exact same RunnableEntity. This use case is sketched in Figure 4.3.

4Giving the ArgumentDataPrototypes of a ClientServerOperation both an ordering and a
unique identifier might seem redundant.
For example, in the operation “foo(a, b, c)”, we can refer to the “second argument” or to “the argument
named b”. In many common programming languages (like C or Java), only the ordering is actually used
by the client during the invocation of the server (the client invokes the operation as “foo(1,2,3)” not as
“foo(a=1,c=3,b=2)”).
In addition, the names of the arguments represent an arbitrary choice made when implementing of the
invocation. In C, only the data types and ordering of the arguments constitute the signature, not the
names of the arguments.

107 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In such a case, it may happen that the ClientServerOperations own Argument-
DataPrototypes that are typed by an array data type.

It may also happen that the individual ArgumentDataPrototypes that are typed by
array data types refer to a compatible element data type, but define a different number
of elements.

Server

RunnableEntity

n = 2

n = 3

n = 4

{A}

{B}

{C}

{A}

{B}

{C}

Figure 4.3: Use case for one server RunnableEntity processes calls from different
PortPrototypes

Please note that the server RunnableEntity needs information about the currently
used array length respectively structure size by usage of additional arguments passed
by the Client. This aspect is exemplified by Figure 4.3.

It is only natural that in such a case a Variable-Size Array Data Type would
be used because it comes with a built-in capability to indicate the number of elements
currently stored in the array without the need to add further arguments to the signature
of the RunnableEntity.

Note further that a ClientServerInterface does not define any timing information
(how quickly the client expects a response of the server). It does not define how the
threading works (if the client for example blocks until the response comes back from
the server).

It also does not define explicitly how information is passed between an implementation
of the client and the server and the underlying RTE (for example: through “pointers” or
“by value”).

RPortPrototype PPortPrototype PRPortPrototype

RPortPrototype No Yes Yes

PPortPrototype Yes No No

PRPortPrototype Yes No No

Table 4.13: Supported connections by AssemblySwConnector
for PortPrototypes typed by a ClientServerInterface, Mod-
eSwitchInterface, or TriggerInterface

[constr_1204] Supported connections by AssemblySwConnector for Port-
Prototypes typed by a ClientServerInterface, ModeSwitchInterface,
or TriggerInterface dFor the modeling of AssemblySwConnectors between

108 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

PortPrototypes typed by a ClientServerInterface, ModeSwitchInter-
face, or TriggerInterface, only the connections documented in Table 4.13 are
supported by AUTOSAR at any time in the workflow.c()

[constr_1205] Supported connections by DelegationSwConnector for Port-
Prototypes typed by a ClientServerInterface, ModeSwitchInterface, or
TriggerInterface dFor the modeling of DelegationSwConnectors between
PortPrototypes typed by a ClientServerInterface, ModeSwitchInter-
face, or TriggerInterface, only the connections documented in Table 4.14 are
supported by AUTOSAR at any time in the workflow.c()

innerPort outerPort

RPortPrototype PPortPrototype PRPortPrototype

RPortPrototype Yes No No

PPortPrototype No Yes No

PRPortPrototype No Yes No

Table 4.14: Supported connections by DelegationSwConnector
for PortPrototypes typed by a ClientServerInterface, Mod-
eSwitchInterface, or TriggerInterface

Please note that a restriction concerning the usage of attribute ClientServerOper-
ation.diagArgIntegrity is described in section 13.8.4.4.

4.2.3.2 Error Handling in Client/Server Communication

This section describes the handling of errors occurring either within an application
software-component or during the communication across the VFB [3]. Errors that are
created and consumed by basic software modules are not in the scope of this docu-
ment and therefore will not be discussed.

Therefore, errors in the scope of this document are divided into two simple classes:

• infrastructure errors and

• application errors.

A software-component implementation uses RTE API methods to communicate with
other software-components. During this communication certain errors can occur as a
result of infrastructure faults, like a bus is not working, or an expected data value was
not arriving in time.

These errors are listed in the RTE specification [2], as they are an inherent feature
of the infrastructure provided by the VFB. Software-components will therefore typically
not raise infrastructure errors on their own.

Instead, the AUTOSAR basic software and the RTE will determine infrastructure faults
and communicate the corresponding error codes to the relevant software-components.

109 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

PortInterface

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

Identifiable

ApplicationError

+ errorCode: Integer [0..1]

������������	
 ����

�����������������	����� � ��

�����������	��	���� � �������	� ��������	����

+possibleError 0..*

«atpVariation»

+operation

0..*

+possibleError 0..*

Figure 4.4: Application error meta-model

[TPS_SWCT_01491] AUTOSAR system does not need to explicitly describe in-
frastructure errors dAs the fixed set of infrastructure errors is defined as an implicit
part of the VFB, a developer of an AUTOSAR system does not need to explicitly de-
scribe these.

It is assumed that these might occur at run-time and application developers should take
measures to handle them.c()

Application errors, on the other hand, are specific to the functionality or information that
is described in form of a PortInterface. It is not possible to define such errors up
front, instead they are defined at design time of a certain PortInterface.

In principle, such ApplicationErrors could be part of all kinds of PortInter-
faces.

[constr_1102] ApplicationError in the scope of one SwComponentType dIf a
SwComponentType has PortPrototypes typed by different ClientServerIn-
terfaces with equal shortName and ApplicationErrors defined then the fol-
lowing condition applies: ApplicationErrors with the same shortName shall have
identical values of errorCodes.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Rationale for the existence of [constr_1102]: the RTE generator creates symbols for
the error codes in which the shortName of the ClientServerInterface and the
shortName of the ApplicationError occur.

[constr_1108] Value of ApplicationError.errorCode dThe value of Applica-
tionError.errorCode shall not exceed the closed interval 1 .. 63. The following
exception applies: only in case possibleError is supposed to represent E_OK the
value 0 shall be allowed.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

By [constr_1108] it is possible to ensure that only the six least significant bits of a return
value shall be used for indicating an application error.

110 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ApplicationError

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This is a user-defined error that is associated with an element of an AUTOSAR interface. It is specific for
the particular functionality or service provided by the AUTOSAR software component.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

errorCode Integer 0..1 attr The RTE generator is forced to assign this value to the
corresponding error symbol. Note that for error codes
certain ranges are predefined (see RTE specification).

Table 4.15: ApplicationError

Consequently, ClientServerOperations may be associated with a number of
ApplicationErrors they possibly raise. These errors are defined as part of the
ClientServerInterface.

[constr_1038] Reference to ApplicationError dA possibleError referenced
by a ClientServerOperation shall be owned by the PortInterface that also
owns the ClientServerOperation at any time in the workflow.c()

Please note that the meta-class ApplicationError is also used on the AUTOSAR
adaptive platform (see [14]) and therefore [constr_1038] cannot be more specific about
the nature of the enclosing PortInterface.

[constr_1870] Existence of attribute ApplicationError.errorCode dFor each
ApplicationError, attribute errorCode shall be defined at the time when
the contract phase generation is executed.c()

4.2.4 External Trigger Event Communication

[TPS_SWCT_01196] Semantics of an external trigger event communication dThe
underlying semantics of an external trigger event communication is that a trigger source
may initiate the execution of RunnableEntitys in the connected trigger sinks. Typ-
ically, (but not necessarily) these RunnableEntitys are executed in a sequential
order.c(RS_SWCT_02030)

[TPS_SWCT_01197] TriggerInterface dThe TriggerInterface defines a set
of Trigger to be communicated between software-components. The Trigger repre-
sents a special kind of events at which occurrence the trigger sinks shall react in a
particular manner.c()

Class TriggerInterface

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A trigger interface declares a number of triggers that can be sent by an trigger source.

Tags:atp.recommendedPackage=PortInterfaces

5

111 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class TriggerInterface

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mult. Kind Note

trigger Trigger * aggr The Trigger of this trigger interface.

Table 4.16: TriggerInterface

Class Trigger

Package M2::AUTOSARTemplates::CommonStructure::TriggerDeclaration

Note A trigger which is provided (i.e. released) or required (i.e. used to activate something) in the given
context.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

swImplPolicy SwImplPolicyEnum 0..1 attr This attribute, when set to value queued, allows for a
queued processing of Triggers.

triggerPeriod MultidimensionalTime 0..1 aggr Optional definition of a period in case of a periodically
(time or angle) driven external trigger.

Table 4.17: Trigger

Class MultidimensionalTime
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::MultidimensionalTime

Note This is used to specify a multidimensional time value based on ASAM CSE codes. It is specified by a
code which defined the basis of the time and a scaling factor which finally determines the time value.

If for example the cseCode is 100 and the cseCodeFactor is 360, it represents 360 angular degrees. If
the cseCode is 0 and the cseCodeFactor is 50 it represents 50 microseconds.

Base ARObject

Attribute Type Mult. Kind Note

cseCode CseCodeType 1 attr Specifies the time base by means of CSE codes.

cseCodeFactor Integer 1 attr The scaling factor for the time value based on the
specified CSE code.

Table 4.18: MultidimensionalTime

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean [0..1]
+ serviceKind: ServiceProviderEnum [0..1]

TriggerInterface

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

MultidimensionalTime

+ cseCode: CseCodeType
+ cseCodeFactor: Integer

+triggerPeriod

0..1

+trigger

0..*

Figure 4.5: Trigger of a TriggerInterface

As illustrated in Figure 4.5, a TriggerInterface is composed of Trigger.

112 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01198] Period for periodic triggering dA Trigger can optionally de-
fine a period for periodic triggering. It is expressed via the meta-class Multidi-
mensionalTime in terms of time or angle. Note that the main use case for this is
to specify the properties if the trigger is coming from the Basic Software e.g. from a
Complex Driver, it is not used as an input for the RTE generator.c(RS_SWCT_02030)

Apart from this, a TriggerInterface does not define any timing information (e.g.
how quickly the source expects a reaction of the sinks). This is property of the timing
information in the templates.

[constr_1104] Trigger sink and trigger source dAn RPortPrototype typed by a
TriggerInterface shall not be referenced by more than one SwConnectors that
are in turn referencing PPortPrototypes typed by TriggerInterfaces that con-
tain Triggers with the same shortName at the time when the RTE is gen-
erated.c()

[constr_1104] boils down to the requirement that trigger communication shall not be
implemented in an n:1 (where n > 1) scenario.

To be clear, the n:1 (where n > 1) scenario is not supported for trigger communication
because there is no active use case for it. Support would require the implementation
of queue management for Trigger communication.

[TPS_SWCT_01199] Queued processing of Triggers dIt may happen that at least
tentatively a Trigger source fires Triggers faster than they can be processed on
the side of the Trigger sink. To support this use case it is possible to process trigger
event communication in a queued manner.

In this case the Triggers are added to a queue from where the foremost trigger is
dequeued and processed when the processing of the current Trigger is done. Please
note that the queue size is not subject to definition in the scope of this document. The
actual queue size is defined during the process of RTE configuration.

The specification of whether a Trigger is subject to queued processing is controlled
by the attribute Trigger.swImplPolicy.c()

[constr_1169] Allowed values for Trigger.swImplPolicy dThe only allowed val-
ues for the attribute Trigger.swImplPolicy are either STANDARD (in which case the
Trigger processing does not use a queue) or QUEUED (in which case the processing
of Triggers positively uses a queue).

at the time when the contract phase generation is executed.c()

Please note that the value of Trigger.swImplPolicy is not the final word on the
implementation of a queue for the specific Trigger. The integrator still has the power
to overrule the application software developer’s verdict if applicable.

For more information regarding the ability to connect different kinds of PortProto-
types typed by a TriggerInterface to each other please refer to [constr_1204]
and [constr_1205].

113 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4.2.5 Communication of Modes

There are two distinctive use cases for the communication of modes via ports:

1. An actual mode transition can be communicated from a mode manager compo-
nent to its client components to enforce a mode switch.

2. A request for a mode transition can be communicated from any component to a
mode manager.

[TPS_SWCT_01087] Propagation of mode information dFor communicating a mode
switch (i.e. the first use case), the Software-Component Template describes the con-
cept of the communication of ModeDeclarationGroupPrototypes similar to the
communication of VariableDataPrototypes but it uses a special type of PortIn-
terface: the collections of ModeDeclarations that are required or provided by a
SwComponentType are defined by means of ModeSwitchInterfaces used to type
the PortPrototypes owned by the SwComponentType.c(RS_SWCT_02030, RS_-
SWCT_03203)

This aspect is depicted in Figure 4.6.

[constr_2049] Different ModeDeclarationGroups shall have different short-
Names. dA software component is not allowed to type multiple PortPrototypes
with ModeSwitchInterfaces where the contained ModeDeclarationGroupPro-
totypes are referencing ModeDeclarationGroups with identical shortNames but
different ModeDeclarations.

at the time when the contract phase generation is executedc()

Obviously, the rationale for [constr_2049] is to avoid conflicts in generated RTE files.

For instance:

Two ModeDeclarationGroups with identical shortName “Foo” are defined.

ModeDeclarationGroup “Foo”
contains the ModeDeclarations “X”, “Y”, “Z”

ModeDeclarationGroup “Foo*”
contains the ModeDeclarations “W”, “X”, “Y”, “Z”

In this case a software component is only allowed to use either “Foo” or “Foo*”

Class ModeSwitchInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A mode switch interface declares a ModeDeclarationGroupPrototype to be sent and received.

Tags:atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mult. Kind Note

5

114 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ModeSwitchInterface
modeGroup ModeDeclarationGroup

Prototype
0..1 aggr The ModeDeclarationGroupPrototype of this mode

interface.

Table 4.19: ModeSwitchInterface

Class ModeDeclarationGroupPrototype

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note The ModeDeclarationGroupPrototype specifies a set of Modes (ModeDeclarationGroup) which is
provided or required in the given context.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

swCalibration
Access

SwCalibrationAccess
Enum

0..1 attr This allows for specifying whether or not the enclosing
ModeDeclarationGroupPrototype can be measured at
run-time.

type ModeDeclarationGroup 0..1 tref The "collection of ModeDeclarations" (= ModeDeclaration
Group) supported by a component

Stereotypes: isOfType

Table 4.20: ModeDeclarationGroupPrototype

Please note that by aggregating SwCalibrationAccessEnum in the role swCal-
ibrationAccess a ModeDeclarationGroupPrototype gains the ability to be-
come measurable. This implies the following constraint:

[constr_1172] Allowed values of SwCalibrationAccessEnum for ModeDecla-
rationGroupPrototype dThe only allowed values of swCalibrationAccess ag-
gregated by ModeDeclarationGroupPrototype are notAccessible and read-
Only.

This rule shall be imposed at any time in the workflow.c()

[TPS_SWCT_01566] Define literals for an MCD system in the context of
a FlatInstanceDescriptor dIf ModeDeclarationGroupPrototype.swCali-
brationAccess is set to readOnly a referenced FlatInstanceDescriptor.sw-
DataDefProps may in turn refer to a CompuMethod that defines the particular liter-
als used in the MCD system for displaying values of the measured ModeDeclara-
tionGroupPrototypes.c(RS_SWCT_03203)

The existence of this use case is the reason for putting “AI” at the intersection of
compuMethod and FlatInstanceDescriptor.

Another possible scenario (that does not necessarily have to be related to ModeDec-
larationGroupPrototypes but to the definition of literals for MCD systems in gen-
eral) is that a FlatInstanceDescriptor does not exist (e.g. because the affected
piece of data exists in the basic software) but still it would be good to have the ability
to define particular literals for displaying values in an MCD system.

This case can be supported by the AUTOSAR standard as well by putting “AI” at the
intersection of compuMethod and McDataInstance in table 5.43.

115 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01200] ModeDeclarationGroupPrototype per ModeSwitchIn-
terface dThe multiplicity of the aggregation of ModeDeclarationGroupProto-
type to ModeSwitchInterface is pragmatically limited to 1.c(RS_SWCT_03203)

Admittedly, there would be no technical restriction to support a 0..* multiplicity but on
the other hand it does not seem as if any reasonable use case for such a scenario
exists.

If somehow a SwComponentType would have to consider two or even more Mod-
eDeclarationGroupPrototypes it is very likely that these would be part of different
ModeSwitchInterfaces.

The containment of a ModeDeclarationGroupPrototype in a ModeSwitchIn-
terface allows for explicitly defining SwConnectors which communicate between
SwComponentPrototypes and to define service interfaces for communication with
ServiceSwComponentTypes.

Due to the compatibility rules of PortInterfaces (see chapter 6) each SwCompo-
nentType can rely on the availability of required mode activations.

Please note that each SwComponentType can define (via their PortPrototypes
and ModeSwitchInterfaces) a list of required and provided ModeDeclara-
tionGroupPrototypes.

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

PortInterface

ModeSwitchInterface

������������	
 ����

�����������	��	���� �

�������	����������	����

+modeGroup

0..1

«atpVariation»

+modeDeclaration

0..*

+initialMode

0..1

«isOfType»

+type
0..1
{redefines atpType}

Figure 4.6: Mode Switch Interface

[TPS_SWCT_01201] CompositionSwComponentType requires and provides the
modes that are required or provided by its contained SwComponentPrototypes
dEventually, a CompositionSwComponentType requires and provides the modes
that are required or provided by its contained SwComponentPrototypes.

The delegation of these modes from SwComponentPrototypes to the enclosing
CompositionSwComponentType is explicitly described by DelegationSwConnec-
tors.c(RS_SWCT_03202, RS_SWCT_03203)

The formal description of a software-component does not make any assumptions about
the semantics of the required and provided ModeDeclarationGroupPrototypes.

It just requires and provides the ModeDeclarationGroupPrototypes by name. For
more information about mode declaration refer to section 9.1.

116 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01086] Request mode change dThe ability to request a mode (i.e. the
second use case) is modeled on the VFB via a SenderReceiverInterface and
for the RTE it is like a usual communication, that means the connector can also cross
ECU boundaries and the communicated dataElements have to be based on Au-
tosarDataTypes.c(RS_SWCT_03202, RS_SWCT_03203)

However, for semantic consistency with the first use case, a communicated mode re-
quest shall also be mapped to a corresponding ModeDeclarationGroup. This can
be defined by a mapping class as shown in figure 4.7.

The ImplementationDataType mapped to a certain ModeDeclarationGroup
can then be used in a PortInterface to represent a ModeDeclaration of the
associated ModeDeclarationGroup as a numerical value:

[constr_4002] Unambiguous mapping of modes to data types dWithin one
DataTypeMappingSet, a ModeDeclarationGroup shall not be mapped to dif-
ferent ImplementationDataTypes at the time when the contract phase
generation is executed.c()

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

ModeDeclarationGroupPrototypeMapping

ImplementationDataType

+ dynamicArraySizeProfi le: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

ARElement
AtpBlueprint

AtpBlueprintable

DataTypeMappingSet

ModeRequestTypeMap

ModeInterfaceMapping

AtpBlueprint
AtpBlueprintable

Identifiable

PortInterfaceMapping

ARElement
AtpBlueprint

AtpBlueprintable

PortInterfaceMappingSet
������������	
 ����

�����������	��	���� �

�������	����������	����

AtpBlueprint
AtpBlueprintable
AutosarDataType

AbstractImplementationDataType

+secondModeGroup

0..1

+modeMapping0..1 «isOfType»

+type 0..1
{redefines atpType}

+modeGroup

0..1

+firstModeGroup

0..1

+implementationDataType

0..1

+modeRequestTypeMap

0..*

«atpVariation»
+portInterfaceMapping0..*

Figure 4.7: Mapping of modes to data types

Class ModeRequestTypeMap

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Specifies a mapping between a ModeDeclarationGroup and an ImplementationDataType. This
ImplementationDataType shall be used to implement the ModeDeclarationGroup.

Base ARObject

Attribute Type Mult. Kind Note

5

117 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ModeRequestTypeMap

implementation
DataType

AbstractImplementation
DataType

0..1 ref This is the corresponding AbstractImplementationData
Type. It shall be modeled along the idea of an "unsigned
integer-like" data type.

modeGroup ModeDeclarationGroup 0..1 ref This is the corresponding ModeDeclarationGroup.

Table 4.21: ModeRequestTypeMap

[constr_1166] Restrictions of ModeRequestTypeMap dFor every ModeDeclara-
tionGroup referenced by a ModeDeclarationGroupPrototype used in a Port-
Prototype typed by a ModeSwitchInterface a ModeRequestTypeMap shall ex-
ist that points to the ModeDeclarationGroup and also to an eligible Implementa-
tionDataType.

The ModeRequestTypeMap shall be aggregated by a DataTypeMappingSet which
is referenced from the SwcInternalBehavior that is owned by the Application-
SwComponentType that also owns the PortPrototype.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

AtpPrototype

ModeDeclarationGroupPrototype

ModeDeclarationGroupPrototypeMapping

ARElement
AtpBlueprint

AtpBlueprintable

DataTypeMappingSet

ModeRequestTypeMap

AtpStructureElement

InternalBehavior

SwcInternalBehavior AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

AbstractProvidedPortPrototype

PPortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

ModeSwitchInterface

AbstractRequiredPortPrototype

RPortPrototype

AbstractProvidedPortPrototype
AbstractRequiredPortPrototype

PRPortPrototype

������������	
 ����

�����������	��	���� �

��������������

AtpBlueprint
AtpBlueprintable
AutosarDataType

AbstractImplementationDataType

PortInterfaceMapping

ModeInterfaceMapping

+modeRequestTypeMap0..*

«isOfType»

+requiredInterface

0..1
{redefines atpType}

+secondModeGroup 0..1

«atpVariation,atpSplitable»

+port 0..*

+firstModeGroup0..1

«isOfType»

+providedInterface

0..1
{redefines atpType}

+modeGroup 0..1

+implementationDataType 0..1

+modeMapping

0..1

+modeGroup 0..1

«isOfType»

+providedRequiredInterface

0..1
{redefines atpType}

«isOfType»

+type 0..1
{redefines
atpType}

«atpSplitable»

+dataTypeMapping

0..*

«atpVariation,atpSplitable»

+internalBehavior

0..1

Figure 4.8: Big picture of mode declaration mapping

[constr_1871] Existence of attribute ModeRequestTypeMap.implementation-
DataType dFor each ModeRequestTypeMap, attribute implementationDataType

118 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

shall exist at the time when the contract phase generation is exe-
cuted.c()

[constr_1872] Existence of attribute ModeRequestTypeMap.modeGroup dFor each
ModeRequestTypeMap, attribute modeGroup shall exist at the time when the
contract phase generation is executed.c()

[constr_1167] ImplementationDataTypes used as ModeRequestTypeMap.im-
plementationDataType dThe ImplementationDataType referenced by a Mod-
eRequestTypeMap shall either be of category VALUE or of category TYPE_REF-
ERENCE that in turn references an ImplementationDataType of category VALUE.

The baseType referenced by the ImplementationDataType shall have set the
value of the attribute BaseTypeDirectDefinition.baseTypeEncoding to NONE.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_01202] ApplicationDataType defines a subset of the values used
in the ModeDeclarationGroup dPlease note that the corresponding Applica-
tionDataType is defining a subset of the values used in the ModeDeclara-
tionGroup and the used labels may differ from the names used for the ModeDec-
larations.

It is in the responsibility of a system designer to maintain the data types and ModeDec-
larationGroups according to the functional needs.

For example, a ModeRequester may only request a subset of the available Modes (via
SenderReceiverInterface or ClientServerInterface). The ModeManager
may additionally decide to indicate failure.c(RS_SWCT_03203)

For more information regarding the ability to connect different kinds of PortProto-
types typed by a ModeSwitchInterface to each other please refer to [constr_1204]
and [constr_1205].

4.2.6 Parameter Communication

Of course, the “communication” of ParameterDataPrototypes as part of a Param-
eterInterface does not establish an actual transmission of data.

The term is used in a conceptual meaning; and the existence of something like a
ParameterInterface is justified by the mere idea of unifying the exposure of cali-
bration parameters at the surface of a software-component on the same formal level
as the exposure of other pieces of data, i.e. by means of a PortPrototype typed by
a PortInterface.

[constr_1312] PortPrototypes typed by a ParameterInterface dPortPro-
totypes typed by a ParameterInterface can either be PPortPrototypes or

119 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RPortPrototypes. The usage of PRPortPrototypes that are typed by a Param-
eterInterface is not supported at any time in the workflow.c()

4.3 PortInterface Mapping and Data Scaling

In former versions of this specification, the requirements on PortInterfaces to
match each other could lead to situations where PortInterfaces that were “prac-
tically” compatible would nevertheless be rejected because of formal reasons (e.g.
shortNames of dataElements do not match).

In order to also support scenarios where the developer of a CompositionSwCompo-
nentType needs to connect PortPrototypes that would match to each other but
don’t fulfill formal requirements the concept of “port interface mapping” has been intro-
duced.

[TPS_SWCT_01158] Cases for PortInterfaceMapping dIn general, the existence
of a PortInterfaceMapping is suitable in the following cases:

1. Two PortPrototypes shall be connected and the PortInterface elements
are compatible except the unequal shortNames. This requires a pure logical
mapping of the PortInterface elements.

2. PortInterface elements are logically equivalent but the range and resolution
is differently. This requires a data conversion respectively a re-scaling of the
provided data and arguments to the required data and arguments range and
resolution.

3. invalidationPolicy of PortInterface elements is different. This might re-
quire the implementation of different invalidation handling strategies for the same
dataElement in parallel on the same ECU.

4. Two PortPrototypes shall be connected and the PortInterface elements
shall be converted using the AUTOSAR data transformer approach.

c(RS_SWCT_03210)

More information about the AUTOSAR data transformer approach can be found in
section 4.3.3.

Typically, the mapping of such PortInterface is agreed once between the different
component vendors and system designer in the early phase of a project.

[TPS_SWCT_01159] Mapping is described separately from the SwConnector as
reusable ARElement dThe mapping is described separately from the SwConnector
as reusable ARElement. A set of PortInterfaceMappings is grouped in a Port-
InterfaceMappingSet.c(RS_SWCT_03210)

120 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01543] PortInterfaceMapping overrides all other compatibility
rules dThe existence of a PortInterfaceMapping overrides all other compatibil-
ity rules given that the following statements are fulfilled:

• [constr_1071] applies also for the application of a PortInterfaceMapping.

• [constr_1268] applies also for the application of a PortInterfaceMapping.

• [constr_1269] applies also for the application of a PortInterfaceMapping.

• [constr_1270] applies also for the application of a PortInterfaceMapping.

• A structural difference between mapped DataPrototypes can be mitigated by
means of a SubElementMapping. This includes the case that a “structure” data
type is mapped to an “array” data type and vice versa. [TPS_SWCT_01195] is
also applicable.

When using a PortInterfaceMapping, the developer of a software-component
needs to properly understand the consequences in terms of model semantics.c(RS_-
SWCT_03210)

Please note that [TPS_SWCT_01543] does not require a tool implementation to ignore
and let go unreported deviations of all other compatibility rules in the presence of a
PortInterfaceMapping.

If this is considered helpful, the tool may still issue warnings with respect to compatibil-
ity rules defined in section 6 but this is not mandated by the AUTOSAR standard. The
tool, however, shall not report errors in this case.

Class PortInterfaceMappingSet

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Specifies a set of (one or more) PortInterfaceMappings.

Tags:atp.recommendedPackage=PortInterfaceMappingSets

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

portInterface
Mapping

PortInterfaceMapping * aggr Specifies one PortInterfaceMapping to support the
connection of Ports typed by two different PortInterfaces
with PortInterface elements having unequal names and/or
unequal semantic (resolution or range).

Stereotypes: atpVariation
Tags:vh.latestBindingTime=blueprintDerivationTime

Table 4.22: PortInterfaceMappingSet

Class PortInterfaceMapping (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Specifies one PortInterfaceMapping to support the connection of Ports typed by two different Port
Interfaces with PortInterface elements having unequal names and/or unequal semantic (resolution or
range).

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, Referrable

5

121 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class PortInterfaceMapping (abstract)

Subclasses ClientServerInterfaceMapping, ModeInterfaceMapping, TriggerInterfaceMapping, VariableAndParameter
InterfaceMapping

Attribute Type Mult. Kind Note

– – – – –

Table 4.23: PortInterfaceMapping

4.3.1 PortInterface Mapping

By default, the shortNames of PortInterface elements are used to identify the
matching element pairs of connected PortPrototypes. In case of non-matching
shortNames (this might be due to distributed development, off-the-shelves develop-
ment, or reuse of software-components) it is required to explicitly specify which ele-
ments of PortInterfaces shall correlate to each other.

This definition is provided with PortInterfaceMappings.

Please note that the PortInterfaceMapping is a very powerful tool for expert users
to accommodate for various differences in the PortInterfaces of two PortProto-
types that shall be connected.

In general, it is possible to define a PortInterfaceMapping for all sub-classes of
SwConnectors. To make this possible, it is necessary to avoid talking about “provided”
or “required” ends because this could lead to confusion.

Specifically, it is possible that inside a CompositionSwComponentType a
PassThroughSwConnector is connected to a PPortPrototype.

From the perspective of the PassThroughSwConnector, however, the PPortPro-
totype might represent the “required” end of the communication relation inside the
CompositionSwComponentType.

CompositionSwComponentType

CompositionSwComponentType

SwComponentType

Outer
RPortPro-

totype DelegationSwConnector

PassThroughSwConnector
AssemblySwConnectorInner

RPortPro-
totype

RPortPro-
totype

PPortPro-
totype

S
T

S

T

S = Source, T = Target
S

T S

T

DelegationSwConnector

Inner
PPortPro-

totype

Outer
PPortPro-

totype

Figure 4.9: “Source” and “Target” end of a SwConnector in a sender/receiver-style sce-
nario

122 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

To avoid further confusion, the rules for the specification of the PortInterfaceMap-
ping are specified from the perspective of the SwConnector rather than the
PortPrototype.

For each SwConnector, a “source” and “target” end is postulated, reflecting the di-
rection of communication implemented by the SwConnector. This understanding is
depicted in Figure 4.9.

Please note that the “sender/receiver-style communication” (see section 4.2.2) is con-
ceptually also applicable for other kinds of communication:

• Mode switch communication5, see section 4.2.5

• External Trigger communication, see section 4.2.4

• NvData communication, see section 11.5.2

• Parameter “communication”, see 4.2.6

Note further that the association of the “source” and “target” end of an SwConnector
that represents a client/server communication (see section 4.2.3) is aligned along the
“primary” interaction, i.e. the call of a ClientServerOperation, see Figure 4.10.

CompositionSwComponentType

CompositionSwComponentType

SwComponentType

Outer
RPortPro-

totype
DelegationSwConnector

PassThroughSwConnector

AssemblySwConnector
Inner

RPortPro-
totype

RPortPro-
totype

PPortPro-
totype

S
T

S

T

S = Source, T = Target
T

S

S

T Outer
PPortPro-

totype

Inner
PPortPro-

totype

DelegationSwConnector

Figure 4.10: “Source” and “Target” end of a SwConnector in a client/server-style sce-
nario

Sender/Receiver Source Target

DelegationSwConnector Outer required PortPrototype Inner required PortPrototype

DelegationSwConnector Inner provided PortPrototype Outer provided PortPrototype

AssemblySwConnector Provided PortPrototype Required PortPrototype

PassThroughSwConnector Required PortPrototype Provided PortPrototype

Table 4.24: Definition of “source” and “target” of an SwConnector for a
sender/receiver-style interaction

5A mode request is implemented by a sender/receiver communication anyway and does therefore
not represent a dedicated communication pattern.

123 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The conclusion of Figure 4.9 regarding “source” and “target” end of an SwConnector
for a sender/receiver-style interaction is summarized in Table 4.24.

The conclusion of Figure 4.10 regarding “source” and “target” end of an SwConnector
for a client/server-style interaction is summarized in Table 4.25.

Client/Server Source Target

DelegationSwConnector Inner required PortPrototype Outer required PortPrototype

DelegationSwConnector Outer provided PortPrototype Inner provided PortPrototype

AssemblySwConnector Required PortPrototype Provided PortPrototype

PassThroughSwConnector Provided PortPrototype Required PortPrototype

Table 4.25: Definition of “source” and “target” of an SwConnector for a
client/server-style interaction

There are some documented restrictions for the application of PortInterfaceMap-
pings. But in general, the PortInterfaceMapping could potentially be used in
a harmful way by specifying mapping approaches that have no chance to be imple-
mentable in the context of an ECU, resulting in undefined semantics in the RTE, i.e.
the RTE Generator wouldn’t be able to properly process such a model.

[TPS_SWCT_01099] PortInterfaceMapping dEach PortInterfaceMapping
describes the mapping of the PortInterface elements of exactly two PortInter-
faces.c(RS_SWCT_03155, RS_SWCT_03210)

To apply the PortInterfaceMapping a SwConnector has to reference a PortIn-
terfaceMapping.

[constr_1151] Applicability of PortInterfaceMapping dA PortInterfaceMap-
ping is only applicable and valid for a SwConnector if the two PortPrototypes
which are referenced by the SwConnector are typed by the same two PortInter-
faces which are mapped by the PortInterfaceMapping. This rule shall be im-
posed at the time when the RTE is generated.c()

ARElement
AtpBlueprint

AtpBlueprintable

PortInterfaceMappingSet

AtpBlueprint
AtpBlueprintable

Identifiable

PortInterfaceMapping

TriggerInterfaceMappingModeInterfaceMappingClientServerInterfaceMappingVariableAndParameterInterfaceMapping

AtpStructureElement

SwConnector

������������	
 ����

�����������	��	���� � �������	����������	����

«atpVariation»

+portInterfaceMapping

0..*

+mapping

0..1

Figure 4.11: Relevant meta-classes for PortInterface element mapping

[TPS_SWCT_01100] Precedence of PortInterfaceMapping dThe mapping via
PortInterfaceMapping has a higher precedence than the mapping by equal
shortNames as defined in compatibility rules.

124 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

If a connector references an associated PortInterfaceMapping, this mapping shall
be strictly binding with respect to the number of mapped data elements.c(RS_SWCT_-
03155, RS_SWCT_03210)

Please note that the compatibility rules are described in chapter 6.

[TPS_SWCT_01101] Unmapped elements of PortInterfaces dUnmapped Port-
Interface elements will not be connected by the referencing SwConnector.c(RS_-
SWCT_03155, RS_SWCT_03210)

[constr_1583] PortInterfaceMapping for DataPrototype typed by Compound
Primitive Data Type dThere is one very limited use case to apply PortIn-
terfaceMapping for a DataPrototype typed by a Compound Primitive Data
Type: adjustment of the shortName of the DataPrototype. Everything else is not
supported. This rule shall be imposed at any time in the workflow.c()

4.3.1.1 Mapping of Sender Receiver Interface, Parameter Interface and Non
Volatile Data Interface Elements

[TPS_SWCT_01102] VariableAndParameterInterfaceMapping dThe Vari-
ableAndParameterInterfaceMapping defines the correlation of VariableDat-
aPrototypes and ParameterDataPrototypes defined in the context of DataIn-
terfaces, i.e. SenderReceiverInterface, NvDataInterface, or Parameter-
Interface.c(RS_SWCT_03155, RS_SWCT_03210, RS_SWCT_03170)

[constr_1159] Consistency of VariableAndParameterInterfaceMapping with
respect to the referenced DataInterfaces dWithin one VariableAndParame-
terInterfaceMapping all firstDataPrototypes shall belong to one and only
one DataInterface and all secondDataPrototypes shall belong to one other and
only one other DataInterface at any time in the workflow.c()

Please note that the relation of the “source” and “target” end of a SwConnector to the
roles firstDataPrototype and secondDataPrototype is not defined.

[TPS_SWCT_01103] Mapping between different kinds of PortInterfaces
dThereby it is possible to describe the mapping between different kinds of PortInter-
faces for instance a ParameterInterface and SenderReceiverInterface.c
(RS_SWCT_03155, RS_SWCT_03210, RS_SWCT_03170)

[TPS_SWCT_01104] Possible mappings are restricted by the swImplPolicy
dNevertheless, the possible mappings of VariableDataPrototypes and Param-
eterDataPrototypes are restricted by the swImplPolicy attribute.c(RS_SWCT_-
03155, RS_SWCT_03210, RS_SWCT_03170)

For more explanation of [TPS_SWCT_01104], please refer to [constr_1071].

[constr_1039] Relevance of swImplPolicy dIt is not possible to define a mapping
between an element where the swImplPolicy is set to queued and another element

125 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

where the swImplPolicy is set differently. This rule shall be imposed at any time
in the workflow.c()

This is required to fulfill the compatibility rules defined in table 6.2.

[constr_1635] Relevance of attribute isOptional dIf a SubElementMapping is
defined for the elements of a structured data type then the attribute isOptional6

shall either not exist for the firstElement and secondElement or it shall have
the identical value for the firstElement and secondElement. This rule shall be
imposed at the time when the RTE is generated.c()

VariableDataPrototype

DataPrototype

AutosarDataPrototype

ParameterDataPrototype

DataInterface

SenderReceiverInterface

DataInterface

ParameterInterface

DataInterface

NvDataInterface

PortInterfaceMapping

VariableAndParameterInterfaceMapping
DataPrototypeMapping

TextTableMapping

+ identicalMapping: Boolean [0..1]
+ mappingDirection: MappingDirectionEnum [0..1]

«atpVariation»
+ bitfieldTextTableMaskFirst: PositiveInteger [0..1]
+ bitfieldTextTableMaskSecond: PositiveInteger [0..1]

+secondDataPrototype 0..1

+dataMapping

0..*

+dataElement 0..*

+textTableMapping 0..2

+nvData 0..*

+firstDataPrototype 0..1

+parameter 0..*

Figure 4.12: Mapping of Sender Receiver Interface, Parameter Interface and Non Volatile
Data Interface elements

[constr_1040] Conversion of SenderReceiverInterfaces dThe conversion of el-
ements of SenderReceiverInterfaces is possible if one of the following conditions
applies at the time when the RTE is generated:

• The AutosarDataTypes of the referred DataPrototypes are compatible.

• A conversion of the data is available.

• A DataPrototypeMapping.firstToSecondDataTransformation is de-
fined.

c()

The compatibility of AutosarDataTypes is described in section 6.2. A description of
the conversion of data can be found in section 4.3.2.

6this is valid for both ApplicationRecordElement and ImplementationDataTypeElement

126 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class VariableAndParameterInterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of VariableDataPrototypes or ParameterDataPrototypes in context of two different
SenderReceiverInterfaces, NvDataInterfaces or ParameterInterfaces.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, PortInterfaceMapping,
Referrable

Attribute Type Mult. Kind Note

dataMapping DataPrototypeMapping * aggr Defines the mapping of two particular VariableData
Prototypes or ParameterDataPrototypes with unequal
names and/or unequal semantic (resolution or range) in
context of two different SenderReceiverInterfaces, Nv
DataInterfaces or ParameterInterfaces

Table 4.26: VariableAndParameterInterfaceMapping

Class DataPrototypeMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of two particular VariableDataPrototypes, ParameterDataPrototypes or Argument
DataPrototypes with non-equal shortNames, non-equal structure (specific condition is described by
[constr_1187]), and/or non-equal semantic (resolution or range) in context of two different Sender
ReceiverInterface, NvDataInterface or ParameterInterface or Operations.

If the semantic is unequal, the following rules apply: The textTableMapping is only applicable if the
referred DataPrototypes are typed by AutosarDataType referring to CompuMethods of category
TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE or BITFIELD_TEXTTABLE.

In the case that the DataPrototypes are typed by AutosarDataType either referring to CompuMethods of
category LINEAR, IDENTICAL or referring to no CompuMethod (which is similar as IDENTICAL) the
linear conversion factor is calculated out of the factorSiToUnit and offsetSiToUnit attributes of the referred
Units and the CompuRationalCoeffs of a compuInternalToPhys of the referred CompuMethods.

Base ARObject

Attribute Type Mult. Kind Note

firstData
Prototype

AutosarDataPrototype 0..1 ref First to be mapped DataPrototype in context of a Sender
ReceiverInterface, NvDataInterface, ParameterInterface
or Operation.

firstToSecond
Data
Transformation

DataTransformation 0..1 ref This reference defines the need to execute the Data
Transformation <Mip>_<transformerId> functions of the
transformation chain when communicating from the Data
PrototypeMapping.firstDataPrototype to the Data
PrototypeMapping.secondDataPrototype.

This reference also specifies the reverse Data
Transformation <Mip>_Inv_<transformerId> functions of
the transformation chain (i.e. from the DataPrototype
Mapping.secondDataPrototype to the DataPrototype
Mapping.firstDataPrototype) if the referenced Data
Transformation is symmetric, i.e. attribute Data
Transformation.dataTransformationKind is set to
symmetric.

secondData
Prototype

AutosarDataPrototype 0..1 ref Second to be mapped DataPrototype in context of a
SenderReceiverInterface, NvDataInterface, Parameter
Interface or Operation.

secondToFirst
Data
Transformation

DataTransformation 0..1 ref This defines the need to execute the reverse Data
Transformation <Mip>_Inv_<transformerId> functions of
the transformation chain when communicating from the
DataPrototypeMapping.secondDataPrototype to the Data
PrototypeMapping.firstDataPrototype.

subElement
Mapping

SubElementMapping * aggr This represents the owned SubelementMapping.

5

127 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class DataPrototypeMapping

textTable
Mapping

TextTableMapping 0..2 aggr Applied TextTableMapping(s)

Table 4.27: DataPrototypeMapping

[constr_1873] Existence of DataPrototypeMapping.firstDataPrototype
dFor each DataPrototypeMapping, the reference in the role firstDataProto-
type shall exist at the time when the RTE is generated.c()

[constr_1874] Existence of DataPrototypeMapping.secondDataPrototype
dFor each DataPrototypeMapping, the reference in the role secondDataProto-
type shall exist at the time when the RTE is generated.c()

4.3.1.2 Mapping of Client Server Interface Elements

[TPS_SWCT_01105] ClientServerInterfaceMapping dThe ClientServer-
InterfaceMapping defines the correlation of ClientServerOperations defined
in the context of two ClientServerInterfaces.c(RS_SWCT_03155, RS_SWCT_-
03210)

[constr_1237] Scope of mapped ClientServerOperations in the context of
a ClientServerOperationMapping dAll ClientServerOperations referenced
by a ClientServerOperationMapping in the role firstOperation shall belong
to exactly one ClientServerInterface.

All ClientServerOperations referenced by a ClientServerOperation-
Mapping in the role secondOperation shall belong to exactly one other
ClientServerInterface.

This rule shall be imposed at any time in the workflow.c()

[constr_1238] Scope of mapped ApplicationErrors in the context of a
ClientServerOperationMapping dAll ApplicationErrors referenced by a
ClientServerApplicationErrorMapping in the role firstApplication-
Error shall belong to exactly one ClientServerInterface.

All ApplicationErrors referenced by a ClientServerApplicationErrorMap-
ping in the role secondApplicationError shall belong to exactly one other
ClientServerInterface.

This rule shall be imposed at any time in the workflow.c()

[constr_1041] Conversion of ClientServerInterfaces dEither the Autosar-
DataTypes of the referred ArgumentDataPrototypes are compatible or a conver-
sion of the data is available at the time when the RTE is generated.c()

The compatibility of AutosarDataTypes is described in section 6.2. A description of the
conversion of data can be found in section 4.3.2.

128 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1240] Consistency of ArgumentDataPrototypes within the context of
a ClientServerOperationMapping dUnless a ClientServerOperationMap-
ping.firstToSecondDataTransformation exists, for each argument owned by

• a ClientServerOperationMapping.firstOperation and

• ClientServerOperationMapping.secondOperation,

a reference in the role

• ClientServerOperationMapping.argumentMapping.firstDataProto-
type or

• ClientServerOperationMapping.argumentMapping.secondDataPro-
totype

shall exist at any time in the workflow, originated by one of the
ClientServerOperationMapping.argumentMappings owned by the mentioned
ClientServerOperationMapping.c()

[constr_1268] ArgumentDataPrototype.direction shall be preserved in a
ClientServerOperationMapping dWithin the context of a ClientServerOper-
ationMapping, the value of the argument ArgumentDataPrototype.direction
of two mapped ArgumentDataPrototype shall be identical at any time in the
workflow.c()

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

PortInterface

ClientServerInterface

PortInterfaceMapping

ClientServerInterfaceMapping

ClientServerOperationMapping

ClientServerApplicationErrorMapping
Identifiable

ApplicationError

+ errorCode: Integer [0..1]

������������	
 ����

�����������������	����� �

��

�����������	��	���� �

�������	� ��������	����

Identifiable

DataTransformation

+ dataTransformationKind: DataTransformationKindEnum [0..1]
+ executeDespiteDataUnavailabili ty: Boolean

+secondApplicationError

0..1

+firstToSecondDataTransformation0..1

+firstApplicationError

0..1

+possibleError 0..*+errorMapping 0..*

«atpVariation»

+operation 0..*

+possibleError 0..*

+operationMapping 0..*

+firstOperation

0..1

+secondOperation

0..1

Figure 4.13: Mapping of ClientServerInterface elements and mapping of arguments

[constr_1269] Number of arguments shall be preserved in a ClientServerOp-
erationMapping dWithin the context of a ClientServerOperationMapping, the
number of arguments of firstOperation and secondOperation shall be identi-
cal at any time in the workflow.c()

129 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1270] ArgumentDataPrototype shall be mapped only once in a
ClientServerOperationMapping dWithin the context of a ClientServerOper-
ationMapping, each argument shall only be referenced once in the role first-
DataPrototype or secondDataPrototype at any time in the workflow.c
()

TextTableMapping

+ identicalMapping: Boolean [0..1]
+ mappingDirection: MappingDirectionEnum [0..1]

«atpVariation»
+ bitfieldTextTableMaskFirst: PositiveInteger [0..1]
+ bitfieldTextTableMaskSecond: PositiveInteger [0..1]

ArgumentDataPrototype

PortInterface

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

ClientServerOperationMapping

DataPrototypeMapping
DataPrototype

AutosarDataPrototype

������������	
 ����

�����������������	����� �

��

�����������	��	���� �

�������	� ��������	����

+firstDataPrototype

0..1

«atpVariation»

+operation

0..*

+firstOperation

0..1

+textTableMapping 0..2

«atpVariation»

+argument 0..* {ordered}

+secondDataPrototype

0..1

+secondOperation

0..1

+argumentMapping0..*

Figure 4.14: Mapping of ArgumentDataPrototypes

[constr_1469] Applicability of constraints depending on the existence of a data
transformation d[constr_1269], [constr_1270], [constr_1268], and [constr_1240] shall
– at any time in the workflow – not apply under the following conditions:

• A reference from the respective ClientServerOperationMapping to a
DataTransformation in the role firstToSecondDataTransformation
exists.

• The value of the attribute dataTransformationKind of the referenced
DataTransformation is set to DataTransformationKindEnum.asymmet-
ricFromByteArray or DataTransformationKindEnum.asymmetricTo-
ByteArray.

c()

Class ClientServerInterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of ClientServerOperations in context of two different ClientServerInterfaces.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, PortInterfaceMapping,
Referrable

Attribute Type Mult. Kind Note

errorMapping ClientServerApplication
ErrorMapping

* aggr Map two different ApplicationErrors defined in the context
of two different ClientServerInterfaces.

operation
Mapping

ClientServerOperation
Mapping

* aggr Mapping of two ClientServerOperations in two different
ClientServerInterfaces

Table 4.28: ClientServerInterfaceMapping

130 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ClientServerOperationMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of two particular ClientServerOperations in context of two different ClientServer
Interfaces.

Base ARObject

Attribute Type Mult. Kind Note

argument
Mapping

DataPrototypeMapping * aggr Defines the mapping of two particular ArgumentData
Prototypes with unequal names or unequal semantic
(resolution or range) in context of Operations.

firstOperation ClientServerOperation 0..1 ref First to-be-mapped ClientServerOperation of a Client
ServerInterface.

firstToSecond
Data
Transformation

DataTransformation 0..1 ref This reference indicates that a DataTransformation is
intended in the context of the ClientServerOperation
Mapping.

second
Operation

ClientServerOperation 0..1 ref Second to-be-mapped ClientServerOperation of a Client
ServerInterface.

Table 4.29: ClientServerOperationMapping

Class ClientServerApplicationErrorMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class represents the ability to map ApplicationErrors onto each other.

Base ARObject

Attribute Type Mult. Kind Note

firstApplication
Error

ApplicationError 0..1 ref This represents the first ApplicationError in the context of
the ClientServerApplicationErrorMapping.

second
ApplicationError

ApplicationError 0..1 ref This represents the second ApplicationError in the
context of the ClientServerApplicationErrorMapping.

Table 4.30: ClientServerApplicationErrorMapping

[constr_1875] Existence of reference ClientServerOperationMapping.
firstOperation dFor each ClientServerOperationMapping, the refer-
ence in the role firstOperation shall exist at the time when the RTE is
generated.c()

[constr_1876] Existence of reference ClientServerOperationMapping.sec-
ondOperation dFor each ClientServerOperationMapping, the reference in
the role secondOperation shall exist at the time when the RTE is gener-
ated.c()

4.3.1.3 Mapping of Mode Interface Elements

[TPS_SWCT_01160] ModeInterfaceMapping dThe ModeInterfaceMapping de-
fines the correlation of ModeDeclarationGroupPrototypes defined in the context
of ModeSwitchInterfaces.c(RS_SWCT_03210)

131 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01167] Validity of ModeInterfaceMapping dThe mapping of Mod-
eDeclarationGroupPrototypes is only valid if these are typed by (read “refer to”)
compatible ModeDeclarationGroups.c(RS_SWCT_03210)

The compatibility of ModeDeclarationGroups is described in chapter 6.7.

Class ModeInterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of ModeDeclarationGroupPrototypes in context of two different ModeInterfaces.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, PortInterfaceMapping,
Referrable

Attribute Type Mult. Kind Note

modeMapping ModeDeclarationGroup
PrototypeMapping

0..1 aggr Mapping of two ModeDeclarationGroupPrototypes in two
different ModeInterfaces

Table 4.31: ModeInterfaceMapping

Class ModeDeclarationGroupPrototypeMapping

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Defines the mapping of two particular ModeDeclarationGroupPrototypes (in the given context) that are
unequally named and/or require a reference to a ModeDeclarationMappingSet in order to become
compatible by definition of ModeDeclarationMappings.

Base ARObject

Attribute Type Mult. Kind Note

firstModeGroup ModeDeclarationGroup
Prototype

0..1 ref ModeDeclarationGroupPrototype to be mapped.

mode
Declaration
MappingSet

ModeDeclaration
MappingSet

0..1 ref This represents the available mappings of Mode
Declarations in the context ot this ModeDeclarationGroup
Prototype.

secondMode
Group

ModeDeclarationGroup
Prototype

0..1 ref ModeDeclarationGroupPrototype to be mapped.

Table 4.32: ModeDeclarationGroupPrototypeMapping

[constr_1877] Existence of reference ModeDeclarationGroupPrototypeMap-
ping.firstModeGroup dFor each ModeDeclarationGroupPrototypeMapping,
the reference in the role firstModeGroup shall exist at the time when the
RTE is generated.c()

[constr_1878] Existence of reference ModeDeclarationGroupPrototypeMap-
ping.secondModeGroup dFor each ModeDeclarationGroupPrototypeMap-
ping, the reference in the role secondModeGroup shall exist at the time when
the RTE is generated.c()

[TPS_SWCT_01449] Semantics of a ModeDeclarationGroupPrototypeMap-
ping dA ModeDeclarationGroupPrototypeMapping shall be used to identify two
ModeDeclarationGroups that afterwards shall be considered compatible. This also
applies if the two ModeDeclarationGroups deviate with respect to the contained
modeTransitions.c(RS_SWCT_03210)

132 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess:
SwCalibrationAccessEnum [0..1]

PortInterface

ModeSwitchInterface

PortInterfaceMapping

ModeInterfaceMapping

ModeDeclarationGroupPrototypeMapping

ARElement
AtpType

ModeDeclarationMappingSet

AtpStructureElement
Identifiable

ModeDeclarationMapping

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

������������	
 ����

�����������	��	���� �

�������	����������	����

«atpVariation»
+modeDeclaration 0..*

+secondModeGroup

0..1

+firstMode

0..*

+modeGroup 0..1

«isOfType»

+type
0..1
{redefines atpType}+modeDeclarationMappingSet0..1

+initialMode 0..1

+secondMode

0..1

+firstModeGroup

0..1

+modeDeclarationMapping0..*

+modeMapping 0..1

Figure 4.15: Mapping of ModeSwitchInterface elements

[constr_1246] Consistency of firstMode and secondMode in the scope of one
ModeDeclarationMappingSet dWithin the scope of one ModeDeclarationMap-
pingSet,

• all firstModes shall belong to one and only one ModeDeclarationGroup and

• all secondModes shall belong to one and only one other ModeDeclara-
tionGroup

at any time in the workflow.c()

[constr_1247] Consistency of ModeDeclarationMappingSet with respect to
the referenced firstModeGroup and secondModeGroup dIf a ModeDeclara-
tionGroupPrototypeMapping.modeDeclarationMappingSet exists, then

• the ModeDeclarationGroup owning the modeDeclarations referenced in
the role firstMode shall be the type of the ModeDeclarationGroupProto-
typeMapping.firstModeGroup and

• the ModeDeclarationGroup owning the modeDeclarations referenced in
the role secondMode shall be the type of the ModeDeclarationGroupPro-
totypeMapping.secondModeGroup.

This rule shall be imposed at any time in the workflow.c()

[TPS_SWCT_01462] ModeDeclarationMapping defines the explicit correlation
of ModeDeclarations dThe meta-class ModeDeclarationMapping defines the
explicit correlation of ModeDeclarations defined in the context of two ModeDecla-
rationGroups.c()

133 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01463] ModeDeclarationGroupPrototypeMapping.modeDecla-
rationMappingSet defines the applicable set of ModeDeclarationMappings
dThe attribute ModeDeclarationGroupPrototypeMapping.modeDeclaration-
MappingSet defines the applicable set of ModeDeclarationMappings for the
connection of ModeDeclarationGroupPrototypes typed by ModeDeclara-
tionGroups with differently named ModeDeclarations and/or with a different num-
ber of ModeDeclarations.c()

Class ModeDeclarationMappingSet

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class implements a container for ModeDeclarationGroupMappings

Tags:atp.recommendedPackage=PortInterfaceMappingSets

Base ARElement , ARObject , AtpClassifier , AtpType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

mode
Declaration
Mapping

ModeDeclaration
Mapping

* aggr This represents the collection of ModeDeclaration
Mappings owned by the enclosing ModeDeclaration
MappingSet.

Table 4.33: ModeDeclarationMappingSet

Class ModeDeclarationMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class implements a concrete mapping of two ModeDeclarations.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

firstMode ModeDeclaration * ref This represents the first ModeDeclaration of the Mode
DeclarationMapping. This reference has the multiplicity 1
.. * to support use cases where e.g. one mode of the
mode user is mapped to several modes of the mode
manager.

secondMode ModeDeclaration 0..1 ref This represents the second ModeDeclaration of the Mode
DeclarationMapping.

Table 4.34: ModeDeclarationMapping

[constr_1879] Existence of reference ModeDeclarationMapping.firstMode
dFor each ModeDeclarationMapping, at least one reference firstMode shall exist
at the time when the RTE is generated.c()

[constr_1880] Existence of reference ModeDeclarationMapping.secondMode
dFor each ModeDeclarationMapping, the reference secondMode shall exist at
the time when the RTE is generated.c()

[TPS_SWCT_01464] ModeDeclaration of a mode user is mapped to exactly one
ModeDeclaration of a mode manager dThe mode that corresponds to the Mod-
eDeclaration of the Mode User is entered or exited when the mode of the mode
manager that corresponds to the mapped (i.e. referenced by the same ModeDecla-
rationMapping) ModeDeclaration of the mode manager is entered or exited.c
(RS_SWCT_03115)

134 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01465] ModeDeclaration of a mode user is mapped to several
ModeDeclarations of a mode manager dThe mode that corresponds to the mapped
ModeDeclaration of the mode user is entered when any of the modes of the Mode
Manager that correspond to ModeDeclarations referenced by the applicable Mod-
eDeclarationMapping is entered.

The mode that corresponds to the mapped ModeDeclaration of the mode user is
exited when any of the modes of the Mode Manager that correspond to ModeDec-
larations referenced by the applicable ModeDeclarationMapping is exited if the
new mode is not mapped to related mode of the mode user.c(RS_SWCT_03115)

Please note if one ModeDeclaration of a mode user is mapped to several Mod-
eDeclarations of a mode manager by means of several ModeDeclarationMap-
pings the intended semantics is defined in a way that the individual mode transitions
of the mode manager are representing “exit” and “enter” events for the Mode User. In
other words, the individual transitions are recognizable by the mode user.

If one ModeDeclaration of a mode user is (by utilizing the multiplicity of the role
firstMode) mapped to several ModeDeclarations of a mode manager in the con-
text of a single ModeDeclarationMapping, the semantics is defined in a way that
the individual mode transitions of the Mode Manager are not recognizable to the Mode
User.

[constr_1209] Mapping of ModeDeclarations of mode user to ModeDeclara-
tion of mode manager dA configuration that maps several ModeDeclarations
representing modes of a mode user to one ModeDeclaration representing a mode
of a mode manager shall be rejected at any time in the workflow.c()

[constr_1210] Mapping of ModeDeclarations of mode user to all ModeDecla-
rations of mode manager dIf a ModeDeclarationMapping exists that references
a ModeDeclaration representing a mode of the mode manager, then ModeDecla-
rationMappings shall exist that map all modes of the mode manager to modes of
the mode user at the time when the RTE is generated.c()

Please note that [constr_1210] prevents the existence of configurations where the
mode user is not in a defined mode when no transition is ongoing.

[TPS_SWCT_01545] ModeDeclaration of a mode user that is not mapped to a
ModeDeclaration of a mode manager dA ModeDeclaration of a mode user that
is not mapped to a ModeDeclaration of a mode manager represents a valid model.
In this case the related mode is never entered nor exit during runtime of the ECU.c
(RS_SWCT_03115)

4.3.1.4 Mapping of Trigger Interface Elements

[TPS_SWCT_01161] TriggerInterfaceMapping dThe TriggerInter-
faceMapping defines the correlation of Triggers defined in the context Trigger-
Interfaces.c(RS_SWCT_03210)

135 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class TriggerInterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of unequal named Triggers in context of two different TriggerInterfaces.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, PortInterfaceMapping,
Referrable

Attribute Type Mult. Kind Note

triggerMapping TriggerMapping * aggr Mapping of two Trigger in two different TriggerInterface

Table 4.35: TriggerInterfaceMapping

Class TriggerMapping

Package M2::AUTOSARTemplates::CommonStructure::TriggerDeclaration

Note Defines the mapping of two particular unequally named Triggers in the given context.

Base ARObject

Attribute Type Mult. Kind Note

firstTrigger Trigger 0..1 ref A Trigger to be mapped.

secondTrigger Trigger 0..1 ref A Trigger to be mapped.

Table 4.36: TriggerMapping

[constr_1881] Existence of reference TriggerMapping.firstTrigger dFor each
TriggerMapping, the reference firstTrigger shall exist at the time when
the RTE is generated.c()

[constr_1882] Existence of reference TriggerMapping.secondTrigger dFor
each TriggerMapping, the reference secondTrigger shall exist at the time
when the RTE is generated.c()

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

TriggerMapping

PortInterfaceMapping

TriggerInterfaceMapping

PortInterface

TriggerInterface

+triggerMapping 0..* +trigger 0..*

+secondTrigger

0..1

+firstTrigger

0..1

Figure 4.16: Mapping of TriggerInterface elements

4.3.1.5 Mapping of Elements of a composite Data Type

The mapping of elements of PortInterfaces is not limited to mapping entire Dat-
aPrototypes onto each other.

[TPS_SWCT_01023] Mapping of elements of composite data types dFor applica-
tions of DataInterfaces it is also possible to formally describe the mapping of ele-
ments of ApplicationCompositeDataTypes or ImplementationDataTypes of

136 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

category STRUCTURE or ARRAY onto each other.c(RS_SWCT_03210, RS_SWCT_-
03135)

This ability (for which [constr_10087] applies) can be used if e.g. dataElements
on the “source” and “target” end side are typed by different ApplicationRecord-
DataTypes.

In this case the mapping of elements of ApplicationCompositeDataTypes or
ImplementationDataTypes of category STRUCTURE or ARRAY onto each other
allows for the definition of specific pairs of elements that fulfill the compatibility rules.

[constr_10087] Restriction for the existence of a SubElementMapping dThe exis-
tence of a DataPrototypeMapping.subElementMapping is only supported if the
PortPrototypes that are referenced by the respective SwConnector are typed by
a DataInterface at the time when the RTE is generated.c()

[TPS_SWCT_01551] Mapping of elements on the “source” end to elements on
the “target” end dUnless the attribute swImplPolicy is set to queued, it is not
required that all elements on the “source” end need to be mapped to elements on the
“target” end to achieve compatibility.c(RS_SWCT_03210, RS_SWCT_03135)

The details regarding the compatibility rules are explained in chapter 6.3.

[constr_1279] Unmapped elements of ApplicationCompositeDataTypes or
ImplementationDataTypes and the attribute swImplPolicy dIf the attribute
swImplPolicy is set to queued, then it is not allowed to have unmapped elements
of ApplicationCompositeDataTypes or ImplementationDataTypes of cate-
gory STRUCTURE or ARRAY on the “target” end at the time when the RTE is
generated.c()

[constr_1280] Unmapped dataElement on the “target” end shall have an init-
Value dIf elements of ApplicationCompositeDataTypes or Implementation-
DataTypes of category STRUCTURE or ARRAY are not considered in a SubEle-
mentMapping and the NonqueuedReceiverComSpec is aggregated by an Ab-
stractRequiredPortPrototype referenced by the “target” end, then the enclosing
dataElement shall have an initValue.

This rule shall be imposed at the time when the RTE is generated.c()

[TPS_SWCT_01024] Combination of ApplicationCompositeDataType and
nested ImplementationDataType dThe mapping of elements of Application-
CompositeDataTypes or ImplementationDataTypes of category STRUCTURE
or ARRAY works for both ApplicationCompositeDataType and nested Imple-
mentationDataTypes and even for combinations of them, i.e. one PortInterface
may use an ApplicationCompositeDataType while the other PortInterface
uses a nested ImplementationDataType.c(RS_SWCT_03210, RS_SWCT_03135)

137 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

DataPrototypeMapping TextTableMapping

+ identicalMapping: Boolean [0..1]
+ mappingDirection: MappingDirectionEnum [0..1]

«atpVariation»
+ bitfieldTextTableMaskFirst: PositiveInteger [0..1]
+ bitfieldTextTableMaskSecond: PositiveInteger [0..1]

SubElementMapping SubElementRef

ImplementationDataTypeSubElementRefApplicationCompositeDataTypeSubElementRef

DataPrototype

ApplicationCompositeElementDataPrototype

������������	
 ����

�����������	��	���� � ��������������

«enumeration»
MappingDirectionEnum

 bidirectional
 firstToSecond
 secondToFirst

ArVariableInImplementationDataInstanceRefArParameterInImplementationDataInstanceRef

AtpStructureElement
Identifiable

AbstractImplementationDataTypeElement

«atpVariation»

+secondElement

0..1

+textTableMapping

0..2

+contextDataPrototype
0..*
{ordered}+targetDataPrototype 0..1

+textTableMapping 0..2

+parameterImplementationDataTypeElement 0..1

«atpVariation»

+firstElement

0..1

+contextDataPrototype
0..*
{ordered}

+subElementMapping0..*

+implementationDataTypeElement 0..1

+targetDataPrototype 0..1

«instanceRef»

+applicationCompositeElement 0..1

Figure 4.17: Mapping of elements of composite data types

[TPS_SWCT_01195] Mapping of composite element to primitive DataPrototype
dIt is also possible to map an element of a composite data type on the “source” end to
a primitive DataPrototype on the “target” end.

For this purpose the multiplicity of the dataElement/nvData contained in the Port-
Prototype on the “source” end shall be set to 1 and the multiplicity of the dataEle-
ment/nvData contained in the PortPrototype on the “target” end shall be set to 0.c
(RS_SWCT_03136)

In general, the multiplicity of the respective dataElement/nvData contained in the
PortPrototype on the “source” end can technically also be set to 0 but this case is
reserved for future use.

[constr_1190] Only one mapping for composite to primitive use case dIn the
case described by [TPS_SWCT_01195] only one subElementMapping shall exist at
the enclosing DataPrototypeMapping at the time when the RTE is gen-
erated.c()

[constr_1300] Primitive DataPrototype on the “source” end shall not be
mapped to element of a composite data type on the “target” end of the SwCon-
nector dThe usage of DataPrototypeMapping or SubElementMapping does not
support the following configuration:

138 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• The AutosarDataPrototype contained in the PortPrototype on the
“source” end of an SwConnector is typed by an ApplicationPrimitive-
DataType of category VALUE or ImplementationDataType of category
VALUE or category TYPE_REFERENCE that eventually resolves to category
VALUE.

• The DataPrototypeMapping aggregates a subElementMapping that refers
to a ImplementationDataTypeElement or ApplicationCompositeEle-
mentDataPrototype contained in the PortPrototype on the “target” end.

This rule shall be imposed at any time in the workflow.c()

[constr_1611] Existence of ImplementationDataTypeSubElementRef.imple-
mentationDataTypeElement as opposed to ImplementationDataType-
SubElementRef.parameterImplementationDataTypeElement dFor any given
ImplementationDataTypeSubElementRef, either the aggregation

• ImplementationDataTypeSubElementRef.implementationDataType-
Element or

• ImplementationDataTypeSubElementRef.parameterImplementa-
tionDataTypeElement

shall exist at any time in the workflow.c()

In other words, the ImplementationDataTypeSubElementRef shall either refer
to the nested hierarchy inside a VariableDataPrototype or a ParameterDat-
aPrototype.

Class SubElementMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class allows for the definition of mappings of elements of a composite data type.

Base ARObject

Attribute Type Mult. Kind Note

firstElement SubElementRef 0..1 aggr This represents the first element referenced in the scope
of the mapping.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

secondElement SubElementRef 0..1 aggr This represents the second element referenced in the
scope of the mapping.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

textTable
Mapping

TextTableMapping 0..2 aggr This allows for the text-table translation of individual
elements of a composite data type.

Table 4.37: SubElementMapping

Class SubElementRef (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class provides the ability to reference elements of composite data type.

5

139 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SubElementRef (abstract)

Base ARObject

Subclasses ApplicationCompositeDataTypeSubElementRef, ImplementationDataTypeSubElementRef

Attribute Type Mult. Kind Note

– – – – –

Table 4.38: SubElementRef

Class ImplementationDataTypeSubElementRef

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class represents the specialization of SubElementMapping with respect to Implementation
DataTypes.

Base ARObject , SubElementRef

Attribute Type Mult. Kind Note

implementation
DataType
Element

ArVariableIn
ImplementationData
InstanceRef

0..1 aggr This represents the referenced implementationDataType
Element.

parameter
Implementation
DataType
Element

ArParameterIn
ImplementationData
InstanceRef

0..1 aggr This represents the referenced ImplementationDataType
Element.

Table 4.39: ImplementationDataTypeSubElementRef

Class ApplicationCompositeDataTypeSubElementRef

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class represents the specialization of SubElementMapping with respect to Application
CompositeDataTypes.

Base ARObject , SubElementRef

Attribute Type Mult. Kind Note

application
Composite
Element

ApplicationComposite
ElementDataPrototype

0..1 iref This represents the referenced ApplicationComposite
DataPrototype.

InstanceRef implemented by:ApplicationComposite
ElementInPortInterfaceInstanceRef

Table 4.40: ApplicationCompositeDataTypeSubElementRef

[constr_1883] Existence of ApplicationCompositeDataTypeSubElemen-
tRef.applicationCompositeElement dFor each ApplicationComposite-
DataTypeSubElementRef, the reference applicationCompositeElement shall
exist at the time when the RTE is generated.c()

[constr_1184] Consistency of rootDataPrototype and base in the context of
ApplicationCompositeElementInPortInterfaceInstanceRef dThe root-
DataPrototype referenced by ApplicationCompositeElementInPortInter-
faceInstanceRef shall be owned by the applicable subclass of DataInterface
referenced in the role base.

This implies that the rootDataPrototype shall be a ParameterDataPrototype
if the base is a ParameterInterface. Otherwise, the rootDataPrototype shall
be a VariableDataPrototype.

140 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be applied at at any time in the workflow.c()

ApplicationCompositeElementDataPrototype

AtpInstanceRef

ApplicationCompositeElementInPortInterfaceInstanceRef

AutosarDataPrototype

AtpPrototype

DataPrototype

SubElementRef

ApplicationCompositeDataTypeSubElementRef

PortInterface

DataInterface

«atpDerived»

+base 0..1
{redefines atpBase}

+applicationCompositeElement0..1

+targetDataPrototype

0..1
{redefines
atpTarget}

+rootDataPrototype 0..1
{subsets atpContextElement}

«instanceRef»

+applicationCompositeElement 0..1 +contextDataPrototype

0..*
{ordered,
subsets
atpContextElement}

Figure 4.18: Implementation of the InstanceRef for the mapping of elements of compos-
ite application data types

[constr_1185] Consistency of data types in the context of ApplicationCompos-
iteElementInPortInterfaceInstanceRef dThe definition of attributes con-
textDataPrototype and targetDataPrototype shall (via the type-prototype pat-
tern) be enclosed in the context of the definition of the data type used to type root-
DataPrototype at any time in the workflow.c()

In other words, it shall be possible to reach contextDataPrototype and target-
DataPrototype by means of the type-prototype chain created by the definition of the
data type used to type rootDataPrototype. And, as implied by the definition of the
InstanceRef, the contextDataPrototypes shall enclose each other and, eventually,
the targetDataPrototype.

ImplementationDataTypeElement

+ arrayImplPolicy:
ArrayImplPolicyEnum [0..1]

+ arraySizeHandling:
ArraySizeHandlingEnum [0..1]

+ arraySizeSemantics:
ArraySizeSemanticsEnum [0..1]

+ isOptional: Boolean [0..1]

«atpVariation»
+ arraySize: PositiveInteger [0..1]

ArVariableInImplementationDataInstanceRef

VariableDataPrototype
DataPrototype

AutosarDataPrototype

ARElement
AtpType

AutosarDataType

ImplementationDataType

+ dynamicArraySizeProfi le: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

SubElementRef

ImplementationDataTypeSubElementRef

������������	
 ����

�����������	��	���� �

��������������

AtpStructureElement
Identifiable

AbstractImplementationDataTypeElement

AtpBlueprint
AtpBlueprintable

AbstractImplementationDataType

«atpVariation»

+subElement 0..*
{ordered}

+targetDataPrototype

0..1

+contextDataPrototype

0..*
{ordered} +implementationDataTypeElement 0..1

«isOfType»

+type 0..1
{redefines atpType}

+rootVariableDataPrototype 0..1

«atpVariation»

+subElement

0..*
{ordered}

Figure 4.19: Implementation of the InstanceRef for the mapping of elements of a Vari-
ableDataPrototype typed by a composite implementation data type

141 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1186] Consistency of data types in the context of ArVariableInImple-
mentationDataInstanceRef dThe definition of attributes contextDataProto-
type and targetDataPrototype shall be enclosed in the context of the definition of
the data type used to type rootVariableDataPrototype at any time in the
workflow.c()

[constr_1518] Consistency of data types in the context of ArParameterInIm-
plementationDataInstanceRef dThe definition of attributes contextDataPro-
totype and targetDataPrototype shall be enclosed in the context of the defini-
tion of the data type used to type rootParameterDataPrototype at any time
in the workflow.c()

ImplementationDataTypeElement

+ arrayImplPolicy:
ArrayImplPolicyEnum [0..1]

+ arraySizeHandling:
ArraySizeHandlingEnum [0..1]

+ arraySizeSemantics:
ArraySizeSemanticsEnum [0..1]

+ isOptional: Boolean [0..1]

«atpVariation»
+ arraySize: PositiveInteger [0..1]

DataPrototype

AutosarDataPrototype

ARElement
AtpType

AutosarDataType

ImplementationDataType

+ dynamicArraySizeProfile: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

SubElementRef

ImplementationDataTypeSubElementRef

ArParameterInImplementationDataInstanceRef

ParameterDataPrototype

������������	
 ����

�����������	��	���� �

��������������

AtpStructureElement
Identifiable

AbstractImplementationDataTypeElement

AtpBlueprint
AtpBlueprintable

AbstractImplementationDataType

+rootParameterDataPrototype 0..1«isOfType»

+type 0..1
{redefines atpType}

«atpVariation»+subElement 0..*
{ordered}

+targetDataPrototype

0..1

+contextDataPrototype

0..*
{ordered}

«atpVariation»

+subElement

0..* {ordered}

+parameterImplementationDataTypeElement 0..1

Figure 4.20: Implementation of the InstanceRef for the mapping of elements of a Param-
eterDataPrototype typed by a composite implementation data type

4.3.2 Data Conversion

[TPS_SWCT_01560] Supported categorys of CompuMethods for data conver-
sion dData conversion shall be supported for AutosarDataTypes that refer to Com-
puMethods of category

• LINEAR,

• IDENTICAL,

• SCALE_LINEAR_AND_TEXTTABLE,

• TEXTTABLE,

• BITFIELD_TEXTTABLE, and

• RAT_FUNC - as long as the semantics of the latter comes down to a reciprocal
linear data scaling.

142 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_03210)

[TPS_SWCT_01561] Application of data conversion to composite Autosar-
DataTypes dData conversion is also applicable for composite AutosarDataTypes.
The actual conversion, however, shall be individually applied to each leaf element of a
given composite AutosarDataType.c(RS_SWCT_03210)

4.3.2.1 Linear Data Scaling

A Linear Data Scaling can be defined under following preconditions:

[TPS_SWCT_01549] Definition of linear data scaling dThe term Linear Scaling
is defined as follows:

1. Regarding the existence of CompuMethods one of the following cases shall ap-
ply:

(a) The involved AutosarDataTypes refer to CompuMethods of category
IDENTICAL, LINEAR, or RAT_FUNC.

(b) If one side (sender or receiver) does not refer to a CompuMethod then a
“default” CompuMethod of category IDENTICAL shall be assumed.

2. Regarding the existence of Units one of the following cases shall apply:

(a) The CompuMethods refer either to compatible Units or to Units that in
turn refer to compatible definitions of PhysicalDimension.

(b) Units and PhysicalDimensions do partially not exist on one side:

• If one side (sender or receiver) does not refer to a Unit, then an “imag-
inary” Unit with the properties defined in [TPS_SWCT_01492] shall be
assumed.

• if the PhysicalDimension is only defined on one side (sender or re-
ceiver) then it shall be considered as default for the other side.

3. Both CompuMethods fulfill the following condition:

Int =
N0 ∗ phys0 +N1 ∗ phys1 +N2 ∗ phys2 + ...+Ni ∗ physi

D0 ∗ phys0 +D1 ∗ phys1 +D2 ∗ phys2 + ...+Di ∗ physi

with

• N2=N3=...=Ni=0

• D1=D2=...=Di=0

• N1 6=0

• D0 6=0

The coefficient N0 represents the offset and can take any value.

143 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_03210)

[TPS_SWCT_01550] Definition of reciprocal linear data scaling dThe term Recip-
rocal Linear Scaling is defined as follows:

1. The involved AutosarDataTypes refer to CompuMethods of category RAT_-
FUNC.

2. The CompuMethods refer either to compatible Units or to Units that in turn
refer to compatible definitions of PhysicalDimension.

3. Both CompuMethods fulfill the following condition:

Int =
N0 ∗ phys0 +N1 ∗ phys1 +N2 ∗ phys2 + ...+Ni ∗ physi

D0 ∗ phys0 +D1 ∗ phys1 +D2 ∗ phys2 + ...+Di ∗ physi

with

• N1=N2=...=Ni=0

• D2=D3=...=Di=0

• N0 6=0

• D1 6=0

The coefficient D0 represents the (reciprocal) offset and can take any value.

c(RS_SWCT_03210)

[TPS_SWCT_01168] Linear conversion factor can be calculated dIn such cases
a linear conversion factor can be calculated out of the factorSiToUnit and off-
setSiToUnit attributes of the referred Units and the CompuRationalCoeffs of a
compuInternalToPhys/compuPhysToInternal of the referred CompuMethods.c
(RS_SWCT_03210)

4.3.2.2 Table Conversion

[TPS_SWCT_01162] Existence of TextTableMapping dA TextTableMapping
can be defined if the AutosarDataTypes refer to CompuMethods of cat-
egory TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE, and BITFIELD_TEXT-
TABLE.c(RS_SWCT_03210)

Please note that the use case behind the appearance of BITFIELD_TEXTTABLE in
[TPS_SWCT_01162] is the fact that BSW modules such as the Dem need to put data
into the NVRAM that has the nature of single bits embedded into a composite data type.

The TextTableMapping is defined as a table based conversion.

[TPS_SWCT_01163] Conversion from firstValue to secondValue dA first-
Value of a valuePair is converted into the secondValue in case of a data flow from
the firstDataPrototype to the secondDataPrototype.c(RS_SWCT_03210)

144 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01164] Conversion from secondValue to firstValue dIn case of a
data flow from the secondDataPrototype to firstDataPrototype the second-
Value is substituted by the firstValue.c(RS_SWCT_03210)

[TPS_SWCT_01165] Invertible mapping dIf the mappingDirection attribute is set
to bidirectional then the TextTableMapping has to be invertible. This requires
that the list of all firstValues and the list of all secondValues do not contain iden-
tical values inside a list.c(RS_SWCT_03210)

[TPS_SWCT_01166] Non-invertible mapping dFor non-invertible TextTableMap-
ping, a dedicated TextTableMapping for each direction can be defined.c(RS_-
SWCT_03210)

[constr_1303] Applicability of TextTableMapping depending on the value of
CompuMethod.category dIf – at the time when the RTE is generated – a
DataPrototypeMapping aggregates a TextTableMapping then only certain com-
binations of the value of the applicable CompuMethod.category are supported:

• category of firstDataPrototype: TEXTTABLE,
category of secondDataPrototype: TEXTTABLE

• category of firstDataPrototype: SCALE_LINEAR_AND_TEXTTABLE,
category of secondDataPrototype: TEXTTABLE

• category of firstDataPrototype: TEXTTABLE,
category of secondDataPrototype: SCALE_LINEAR_AND_TEXTTABLE

• category of firstDataPrototype: BITFIELD_TEXTTABLE,
category of secondDataPrototype: TEXTTABLE

• category of firstDataPrototype: TEXTTABLE,
category of secondDataPrototype: BITFIELD_TEXTTABLE

• category of firstDataPrototype: BITFIELD_TEXTTABLE,
category of secondDataPrototype: BITFIELD_TEXTTABLE

c()

To some extent, bitfields can be regarded as a hybrid between a primitive and a struc-
tured data type:

• On the one hand, a bitfield is defined in the context of a primitive Implementa-
tionDataType.

• On the other hand, by means of the definition of a mask, it is possible to define
isolated parts within the primitive ImplementationDataType that potentially
can be totally independent of each other with respect to the semantics of the data
that match the mask.

In other words, the existence of semantically independent and potentially isolated parts
within the primitive ImplementationDataType creates a similar characteristic as

145 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

if the definitions of the isolated parts were created by means of defining primitive Im-
plementationDataTypeElements within the context of a composite Implemen-
tationDataType.

And because it is possible to regard the “mission statement” of a DataPrototype
that refers to a CompuMethod of category BITFIELD_TEXTTABLE as to mimic the
semantics of a structured data type it is also possible to apply some rules that are
already in place for structured data types in this specific case as well.

This conclusion, in combination with the existence of [TPS_SWCT_01551], sets the
stage for [TPS_SWCT_01583].

[TPS_SWCT_01583] Completeness of TextTableMapping is not a requirement
dIf a DataPrototypeMapping contains one or more TextTableMapping(s) where
the DataPrototype on the sender side refers to a CompuMethod of category
BITFIELD_TEXTTABLE it is not required that for each possible value and each pos-
sible bit mask on the sender side corresponding values on the receiver side are speci-
fied.c(RS_SWCT_03210)

With respect to [TPS_SWCT_01583] it is still important to observe that within a single
mask all values on the sender side shall have a mapping to the receiver side.

Otherwise, the RTE generator would not be able to create mapping code that unam-
biguously takes care of mapping the correct values onto each other.

[constr_1313] Completeness of TextTableMapping for the values of a given bit
mask on the sender side dIf a DataPrototypeMapping contains one or more
TextTableMapping(s) where the DataPrototype on the sender side refers to a
CompuMethod of category BITFIELD_TEXTTABLE then all DataPrototypeMap-
ping.textTableMapping shall aggregate a collection of TextTableMapping.val-
uePair where each possible value of the sender bit mask7 is represented by
exactly one TextTableValuePair.firstValue ([TPS_SWCT_01163]) or Text-
TableValuePair.secondValue ([TPS_SWCT_01164]).

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1304] Existence of attribute bitfieldTextTableMaskFirst dThe at-
tribute bitfieldTextTableMaskFirst shall be defined only if the firstDat-
aPrototype of a DataPrototypeMapping refers to a CompuMethod that has the
value of category set to BITFIELD_TEXTTABLE.

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1305] Existence of attribute bitfieldTextTableMaskSecond dThe at-
tribute bitfieldTextTableMaskSecond shall be defined only if the secondDat-
aPrototype of a DataPrototypeMapping refers to a CompuMethod that has the
value of category set to BITFIELD_TEXTTABLE.

7Depending on the applicable case this means either bitfieldTextTableMaskFirst (ap-
plies if [TPS_SWCT_01163] is in place) or bitfieldTextTableMaskSecond for the case of
[TPS_SWCT_01164].

146 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1306] Limitation of TextTableMapping for CompuMethods that have
the value of category set to BITFIELD_TEXTTABLE dFor any TextTableMap-
pingwhere both firstDataPrototype and secondDataPrototype refer to Com-
puMethods that have the value of category set to BITFIELD_TEXTTABLE and
where the attribute TextTableMapping.valuePair exists the value of attribute
TextTableMapping.identicalMapping shall be set to false.

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1307] Consistency of values and masks in TextTableMapping dIf a
TextTableMapping element defines bit masks as bitfieldTextTableMask-
First or bitfieldTextTableMaskSecond then all contained TextTableMap-
ping.valuePair.firstValues as well as all TextTableMapping.valuePair.
secondValues shall not specify a value that would be ruled out when - depending on
the given value of TextTableMapping.mappingDirection - the relevant bit mask
is applied.

This rule shall be imposed at the time when the RTE is generated.c()

Example for [constr_1307]: For a bit mask 0b00001000 only the corresponding values
8 and 0 are allowed.

Class TextTableMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of two DataPrototypes typed by AutosarDataTypes that refer to CompuMethods of
category TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE or BITFIELD_TEXTTABLE.

Base ARObject

Attribute Type Mult. Kind Note

bitfieldTextTable
MaskFirst

PositiveInteger 0..1 attr This attribute can be used to support the mapping of bit
field to bit field, boolean values to bit fields, and vice
versa. The attribute defines the bit mask for the first
element of the TextTableMapping.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

bitfieldTextTable
MaskSecond

PositiveInteger 0..1 attr This attribute can be used to support the mapping of bit
field to bit field, boolean values to bit fields, and vice
versa. The attribute defines the bit mask for the second
element of the TextTableMapping.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

identical
Mapping

Boolean 0..1 attr If identicalMapping is set == true the values of the two
referenced DataPrototypes do not need any conversion of
the values.

mapping
Direction

MappingDirectionEnum 0..1 attr Specifies the conversion direction for which the TextTable
Mapping is applicable.

valuePair TextTableValuePair * aggr Defines a pair of values which are translated into each
other.

Table 4.41: TextTableMapping

147 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1884] Existence of attribute TextTableMapping.identicalMapping
dFor each TextTableMapping, the attribute identicalMapping shall exist at
the time when the RTE is generated.c()

[constr_1885] Existence of attribute TextTableMapping.mappingDirection
dFor each TextTableMapping, the attribute mappingDirection shall exist at
the time when the RTE is generated.c()

Enumeration MappingDirectionEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Specifies the conversion direction for which the mapping is applicable.

Literal Description

bidirectional The TextTableMapping is applicable in both directions.

Tags:atp.EnumerationLiteralIndex=0

firstToSecond The TextTableMapping is applicable in the direction from firstDataPrototype / firstOperationArgument
referring into the PortInterface of the PPortPrototype to secondDataPrototype / secondOperation
Argument referring into the PortInterface of the RPortPrototype.

Tags:atp.EnumerationLiteralIndex=1

secondToFirst The TextTableMapping is applicable in the direction from secondDataPrototype / secondOperation
Argument referring into the PortInterface of the PPortPrototype to firstDataPrototype / firstOperation
Argument referring into the PortInterface of the RPortPrototype.

Tags:atp.EnumerationLiteralIndex=2

Table 4.42: MappingDirectionEnum

Class TextTableValuePair
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines a pair of text values which are translated into each other.

Base ARObject

Attribute Type Mult. Kind Note

firstValue Numerical 0..1 attr Value of first DataPrototype provided similar to a
numerical ValueSpecification which is intended to be
assigned to a Primitive data element. Note that the
numerical value is a variant, it can be computed by a
formula.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

secondValue Numerical 0..1 attr Value of second DataPrototype provided similar to a
numerical ValueSpecification which is intended to be
assigned to a Primitive data element. Note that the
numerical value is a variant, it can be computed by a
formula.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 4.43: TextTableValuePair

[constr_1886] Existence of attribute TextTableValuePair.firstValue dFor
each TextTableValuePair, the attribute firstValue shall exist at the time
when the RTE is generated.c()

148 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1887] Existence of attribute TextTableValuePair.secondValue dFor
each TextTableValuePair, the attribute secondValue shall exist at the time
when the RTE is generated.c()

DataPrototypeMapping

TextTableMapping

+ identicalMapping: Boolean [0..1]
+ mappingDirection: MappingDirectionEnum [0..1]

«atpVariation»
+ bitfieldTextTableMaskFirst: PositiveInteger [0..1]
+ bitfieldTextTableMaskSecond: PositiveInteger [0..1]

TextTableValuePair

«atpVariation»
+ firstValue: Numerical [0..1]
+ secondValue: Numerical [0..1]

DataPrototype

AutosarDataPrototype

«enumeration»
MappingDirectionEnum

 bidirectional
 firstToSecond
 secondToFirst

+valuePair

0..*

+firstDataPrototype

0..1

+textTableMapping 0..2

+secondDataPrototype

0..1

Figure 4.21: Mapping of DataPrototypes that eventually refer to CompuMethods of
category TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE, and BITFIELD_TEXTTABLE

4.3.3 Relevance for Data Transformation

One (prominent) use-case for item 4 in [TPS_SWCT_01158] is the interaction between
the NvBlockSwComponentType and the AUTOSAR Dcm.

Specifically, the RTE will call a data transformer to convert the uint8-array representa-
tion of the diagnostic data available from a PortPrototype owned by the Dcm Ser-
viceSwComponentType to a VariableDataPrototype owned by a PortProto-
type of NvBlockSwComponentType.

For the configuration of this purpose, the applicable DataPrototypeMapping refers
to a DataTransformation in the role firstToSecondDataTransformation and
- for the case of two connected PortPrototypes that use asymmetric data transfor-
mation - secondToFirstDataTransformation (see Figure 4.22).

DataPrototypeMapping
Identifiable

DataTransformation

+ dataTransformationKind: DataTransformationKindEnum [0..1]
+ executeDespiteDataUnavailabili ty: Boolean

+firstToSecondDataTransformation

0..1

+secondToFirstDataTransformation

0..1

Figure 4.22: Configuration of Ecu-internal data transformation

Note that for this specific interaction between an ApplicationSwComponentType
and a ServiceSwComponentType [TPS_SWCT_01579]/[TPS_SWCT_01831] ap-
plies which defines that attribute isService shall be set to false for the dataEle-
ments in PortPrototypes typed by a SenderReceiverInterface.

149 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

SwComponentPrototype typed by
NvBlockSwComponentType SwComponentPrototype typed by

ServiceSwComponentType (Dcm)

firstToSecondDataTransformation

VariableAndParameterMapping

DataPrototypeMapping

VariableAndParameterMapping

DataPrototypeMapping

SenderReceiverInterface

dataElement

Byte-Array

secondToFirstDataTransformation

PRPortPrototype

PRPortPrototype

DataTransformation

dataTransformationKind=
asymmetricToByteArray

DataTransformation

dataTransformationKind=
asymmetricToByteArray

DataTransformation

dataTransformationKind=
asymmetricFromByteArray

DataTransformation

dataTransformationKind=
asymmetricFromByteArray

TransformationTechnology

protocol=SomeIp

TransformationTechnology

protocol=SomeIp

transformerChain

NvDataInterface

nvData

RecordElement 1

RecordElement 2

RecordElement 3

RecordElement 4

NvDataInterface

nvData

RecordElement 1

RecordElement 2

RecordElement 3

RecordElement 4

transformerChain

AssemblySwConnectorAssemblySwConnector

Figure 4.23: Use case for the existence of asymmetric data transformation in both direc-
tions

[TPS_SWCT_01768] Semantics of DataPrototypeMapping.secondToFirst-
DataTransformation dFor symmetric data transformations (i.e. the value of attribute
DataTransformation.dataTransformationKind is set to DataTransforma-
tionKindEnum.symmetric) it is sufficient to specify the reference firstToSec-
ondDataTransformation.

There are, however, use cases for asymmetric data transformations between two con-
nected PRPortPrototypes and in this case it is necessary to specify each direction
separately.

For this purpose, the reference secondToFirstDataTransformation exists in ad-
dition to firstToSecondDataTransformation.c(RS_SWCT_03210)

Figure 4.23 describes the most prominent use case for the necessity to specify both
firstToSecondDataTransformation and secondToFirstDataTransforma-
tion.

An SwComponentPrototype typed by NvBlockSwComponentType exposes a PR-
PortPrototype that is connected to another PRPortPrototype attached to an
SwComponentPrototype that represents the Dcm service software-component.

150 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The PRPortPrototype on the side of the NvBlockSwComponentType in typed by
an NvDataInterface that in turn aggregates a single nvData. The data type used
to define the nvData is a structured data type.

The service software-component representing the Dcm, however, is not capable of
dealing with structured data types. It can only handle primitive types and arrays of
primitive types, e.g. bytes.

Therefore, the existence of (asymmetric) data transformers is conveniently utilized to
serialize the content of the structured data type into a linear array and vice versa.

To expressly define this intended semantics, the DataPrototypeMapping defines
two references:

• firstToSecondDataTransformation that refers to a DataTransforma-
tion where attribute dataTransformationKind is set to the value asymmet-
ricToByteArray. This reference represents the direction from the NvBlock-
SwComponentType to the Dcm.

• secondToFirstDataTransformation that refers to a DataTransforma-
tion where attribute dataTransformationKind is set to the value asym-
metricFromByteArray. This reference represents the direction from the Dcm
to the NvBlockSwComponentType.

This approach to modeling is formalized in [constr_1631] and [constr_1632].

[constr_1631] Applicability of DataPrototypeMapping.secondToFirstData-
Transformation dThe reference to DataTransformation in the role DataPro-
totypeMapping.secondToFirstDataTransformation shall only exist if refer-
ence DataPrototypeMapping.firstToSecondDataTransformation exists and
refers to a DataTransformation where attribute dataTransformationKind ex-
ists and is not set to the value symmetric.

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1632] Restriction for firstToSecondDataTransformation and
secondToFirstDataTransformation dIf – at the time when the RTE is
generated – both the reference firstToSecondDataTransformation and the
reference secondToFirstDataTransformation exist in the context of the same
DataPrototypeMapping then

• the firstToSecondDataTransformation shall refer to a DataTransfor-
mation with attribute dataTransformationKind set to asymmetricTo-
ByteArray and

• the secondToFirstDataTransformation shall refer to a DataTransfor-
mation with attribute dataTransformationKind set to asymmetricFrom-
ByteArray.

c()

151 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class DataTransformation
Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note A DataTransformation represents a transformer chain. It is an ordered list of transformers.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

data
Transformation
Kind

DataTransformationKind
Enum

0..1 attr This attribute controls the kind of DataTransformation to
be applied.

executeDespite
Data
Unavailability

Boolean 1 attr Specifies whether the transformer chain is executed even
if no input data are available.

transformer
Chain (ordered)

Transformation
Technology

1..* ref This attribute represents the definition of a chain of
transformers that are supposed to be executed according
to the order of being referenced from DataTransformation.

Table 4.44: DataTransformation

[constr_1888] Existence of attribute DataTransformation.executeDespite-
DataUnavailability dFor each DataTransformation, the attribute execut-
eDespiteDataUnavailability shall exist at the time when the RTE is
generated.c()

Enumeration DataTransformationKindEnum
Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note This enumeration contributes to the definition of the scope of the DataTransformation.

Literal Description

asymmetricFrom
ByteArray

The DataTransformation shall only be applied to the receiving end only, i.e. transform from byte array
to data type.

Tags:atp.EnumerationLiteralIndex=0

asymmetricToByte
Array

The DataTransformation shall be applied to the sending end only, i.e. from data type to byte array.

Tags:atp.EnumerationLiteralIndex=1

symmetric The DataTransformation shall be applied at both the sending and the receiving end of the
communication.

Tags:atp.EnumerationLiteralIndex=2

Table 4.45: DataTransformationKindEnum

4.4 Port Annotation

4.4.1 Introduction

[TPS_SWCT_01203] PortPrototype may own port annotations dIn addition to the
formal specification required to implement the communication via ports, a PortPro-
totype may own so-called port annotations.

They do not directly influence the signature of calls via this PortPrototype, but con-
tain further information that may be useful for the application developers of the compo-
nents on both sides of the connection.c(RS_SWCT_02110)

152 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

A summary of port-level annotations can be found in Figure 4.24.

[TPS_SWCT_01204] GeneralAnnotation dBeside formally specified attributes it is
also possible to place textual information as provided in GeneralAnnotation.c(RS_-
SWCT_02110)

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

GeneralAnnotation

SenderReceiverAnnotation

constraints
{"port's interface is a SenderReceiverInterface"}

GeneralAnnotation

IoHwAbstractionServerAnnotation

constraints
{"port's interface is a cl ient/server interface using the operations GET and SET"}

GeneralAnnotation

ParameterPortAnnotation

constraints
{"The corresponding port interface shall be a ParameterInterface."}

GeneralAnnotation

DelegatedPortAnnotation

constraints
{aggregating PortPrototype is a port of a CompositionSwComponentType (DelegatedPort)}

GeneralAnnotation

ModePortAnnotation

constraints
{"The corresponding port interface shall be a ModeInterface."}

GeneralAnnotation

NvDataPortAnnotation

constraints
{"The corresponding port interface shall be a NvDataInterface."}

GeneralAnnotation

TriggerPortAnnotation

constraints
{"The corresponding port interface shall be a TriggerInterface."}

GeneralAnnotation

ClientServerAnnotation

constraints
{"The corresponding PortInterface shall be a ClientServerInterface."}

������������	
 ����

�����������	��	���� �

��������������

+clientServerAnnotation

0..*

«atpVariation,atpSplitable»

+port 0..*

+ioHwAbstractionServerAnnotation

0..*

+senderReceiverAnnotation

0..*

+failureMonitoring

0..1

+parameterPortAnnotation

0..*

+modePortAnnotation

0..*

+delegatedPortAnnotation

0..1

+triggerPortAnnotation

0..*

+nvDataPortAnnotation

0..*

Figure 4.24: Application Level Port Annotations Overview

153 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4.4.2 SenderReceiverAnnotation

Embedded automotive software is used to implement open-loop and closed-loop
control-algorithms. Therefore, a software-component description has to accommodate
typical control engineering description means which have only indirect influence of the
embedded software itself.

These annotations provide the (function-) developer with a direct indication whether
a certain software-component is appropriate for the control-algorithm to be designed.
A typical annotation is the signal quality which is characterized by several properties.
Each of the property is an annotation in its own.

[TPS_SWCT_01205] Typical annotations for sender/receiver communication
dTypical annotations for sender/receiver communication are:

• Signal Age: this attribute expresses that the associated software-component will
only work correctly given that the propagation of the signal from a sensor to a
consumer can be finished within a particular time-limit. Of course, this cannot be
identified on component or role level, but has to take into account the instance
view as well as the actual ECU- and bus-scheduling.

• Raw: a raw signal is typically taken directly from the basic software modules
of the ECU abstraction layer. In particular, no sensor software-component has
filtered its original value. A dataElement in an RPortPrototype of a SwCom-
ponentType using this annotation indicates to the control engineer (who devel-
ops a control-algorithm for this component) that the signal has to be filtered (This
relationship applies for SenderReceiverInterfaces).

• Filtered: this attribute indicates that a raw signal has been manipulated by some
application software-components by using a certain filter.

• Computed: this attribute indicates that this signal is not measured directly but
calculated from tentatively several other measured or calculated signals. In a
vehicle, there might be alternative signals to be used from other components
having a better quality, e.g. a raw signal.

• Min: this annotation indicates that the signal carries a minimum value. If, for
example, a reference value computed in the software-component is below that
value some dedicated actions (e.g. failure-mode) might have to be taken.

• Max: this annotation indicates that the signal carries a maximum value. If, for
example, a reference value computed in the software-component is above that
value some dedicated actions (e.g. failure-mode) might have to be taken.

In the meta-model this aspect is implemented by the abstract meta-class Sender-
ReceiverAnnotation which represents the base class of both SenderAnnota-
tion and ReceiverAnnotation.c(RS_SWCT_02110)

The relationship of abstract meta-class SenderReceiverAnnotation to Sender-
Annotation and ReceiverAnnotationis depicted in Figure 4.25.

154 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SenderReceiverAnnotation (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation of the data elements in a port that realizes a sender/receiver interface.

Base ARObject , GeneralAnnotation

Subclasses ReceiverAnnotation, SenderAnnotation

Attribute Type Mult. Kind Note

computed Boolean 0..1 attr Flag whether this data element was not measured directly
but instead was calculated from possibly several other
measured or calculated values.

dataElement VariableDataPrototype 0..1 ref The instance of VariableDataPrototype annotated.

limitKind DataLimitKindEnum 0..1 attr This min or max has not to be mismatched with the min-
and max for data-value in a compu-method. For example,
this annotation shows when the result of the calculation
performed in a RunnableEntity owned by one AtomicSw
ComponentType is transmitted to another AtomicSw
ComponentType whose RunnableEntity will use this value
as a limit, e.g. the max.power which can be used by that
software-component, or the current min. slip.

processingKind ProcessingKindEnum 0..1 attr This attribute controls how data is processed according to
the possible values of ProcessingKindEnum.

Table 4.46: SenderReceiverAnnotation

Class SenderAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation of a sender port, specifying properties of data elements that don’t affect communication or
generation of the RTE.

Base ARObject , GeneralAnnotation, SenderReceiverAnnotation

Attribute Type Mult. Kind Note

– – – – –

Table 4.47: SenderAnnotation

Class ReceiverAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation of a receiver port, specifying properties of data elements that don’t affect communication or
generation of the RTE. The given attributes are requirements on the required data.

Base ARObject , GeneralAnnotation, SenderReceiverAnnotation

Attribute Type Mult. Kind Note

signalAge MultidimensionalTime 0..1 aggr The maximum allowed age of the signal since it was
originally read by a sensor. This is a requirement
specified on the receiver side.

Table 4.48: ReceiverAnnotation

Enumeration ProcessingKindEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Kind of processing which has been applied to a data element.

Literal Description

5

155 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration ProcessingKindEnum

filtered Indicates that a raw signal has been manipulated by some application software components by using
filters.

Tags:atp.EnumerationLiteralIndex=0

none Indicates that none of the other option apply.

Tags:atp.EnumerationLiteralIndex=1

raw Specifies that a signal is taken directly from the basic software modules, i.e. from the ECU abstraction
layer. It indicates to a developer that the control algorithm in the software has to provide filters.

Tags:atp.EnumerationLiteralIndex=2

Table 4.49: ProcessingKindEnum

Enumeration DataLimitKindEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Indicates whether the data element carries a minimum or maximum value, thereby limiting the current
range of another value.

Literal Description

max Limitation to maximum value

Tags:atp.EnumerationLiteralIndex=0

min Limitation to minimum value

Tags:atp.EnumerationLiteralIndex=1

none No limitation applicable

Tags:atp.EnumerationLiteralIndex=2

Table 4.50: DataLimitKindEnum

[TPS_SWCT_01206] Min and Max annotations are valid for a certain amount of
time dThe Min and Max annotations are valid for a certain amount of time. The value
is likely to change to another valid value while the ECU is running. e.g. the maximal
torque which can be requested from an engine is a typical use-case.c(RS_SWCT_-
02110)

This value might vary depending on e.g. the status of the climate control system.
Therefore, these annotations shall not be mismatched with the min and max attributes
of CompuMethods.

The application level port annotations for sender/receiver communication have to be
associated to each dataElement in a PortPrototype, e.g. there might be a “raw”
dataElement and a “filtered” dataElement in the same PortPrototype!

[TPS_SWCT_01207] VariableDataPrototypes use the same application-level
SenderReceiverAnnotation dFurthermore, if two VariableDataPrototypes
use the same application-level SenderReceiverAnnotation, a reference from the
annotation to the VariableDataPrototypes will be established by an appropriate
tool.c(RS_SWCT_02110)

156 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpBlueprintable
AtpPrototype

PortPrototype

GeneralAnnotation

SenderReceiverAnnotation

+ computed: Boolean [0..1]
+ l imitKind: DataLimitKindEnum [0..1]
+ processingKind: ProcessingKindEnum [0..1]

constraints
{"port's interface is a SenderReceiverInterface"}

SenderAnnotation ReceiverAnnotation

«enumeration»
ProcessingKindEnum

 none
 raw
 fi l tered

«enumeration»
DataLimitKindEnum

 none
 min
 max

MultidimensionalTime

+ cseCode: CseCodeType
+ cseCodeFactor: Integer

AutosarDataPrototype

VariableDataPrototype
+senderReceiverAnnotation

0..*

+signalAge

0..1

+dataElement

0..1

Figure 4.25: SenderReceiverAnnotation

[TPS_SWCT_01208] Grouping for SenderReceiverAnnotation dThe Sender-
ReceiverAnnotation for sender/receiver communication are grouped into

• processing type, indicating to some extent the direct quality of the signal,

• computed, which is just a flag or,

• limit type, showing the component expects an actual limit.

In the case of an RPortPrototype, the signal age of the value, carried by the asso-
ciated SwConnector, can be specified. Each of these groups can be interpreted as a
property of the signal-quality.c(RS_SWCT_02110)

For more information about meta-class SenderReceiverAnnotation please refer
to Figure 4.25.

[constr_4004] Context of SenderReceiverAnnotation dA SenderReceiver-
Annotation shall only be aggregated by a PortPrototype typed by a Sender-
ReceiverInterface at any time in the workflow.c()

4.4.3 ClientServerAnnotation

[TPS_SWCT_01209] ClientServerAnnotation dThe ClientServerAnnota-
tion can be used to provide more information with respect to the ClientServerOp-
eration of the PortPrototype.c(RS_SWCT_02110)

Class ClientServerAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a port regarding a certain Operation.

Base ARObject , GeneralAnnotation

Attribute Type Mult. Kind Note

operation ClientServerOperation 0..1 ref This represents the ClientServerOperation that the Client
ServerAnnotation corresponds to.

Table 4.51: ClientServerAnnotation

157 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The main use-case is to define additional information related to the ClientServer-
Operation.

AtpBlueprintable
AtpPrototype

PortPrototype

GeneralAnnotation

ClientServerAnnotation

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

+clientServerAnnotation

0..*

+operation

0..1

Figure 4.26: ClientServerAnnotation

[constr_4005] Context of ClientServerAnnotation dA ClientServerAnnota-
tion shall only be aggregated by a PortPrototype typed by a ClientServerIn-
terface at any time in the workflow.c()

4.4.4 Annotation for the I/O Hardware Abstraction Layer

Within the ECU-Abstraction Layer there are ECU-signals defined. These signals rep-
resent the electrical signals as they arrive in the micro-controller peripheral and are
fetched from the registers via the MCAL.

Access to the I/O Hardware Abstraction Layer is done via service interfaces, i.e. the I/O
Hardware Abstraction Layer provides GET- and SET-operations at the specified service
ports of a SensorActuatorSwComponentType.

[TPS_SWCT_01524] Usage of IoHwAbstractionServerAnnotation dIoHwAb-
stractionServerAnnotation can be used for all kinds of PortInterfaces ex-
cept NvDataInterface.c(RS_SWCT_02110)

Class IoHwAbstractionServerAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note The IoHwAbstractionServerAnnotation will only be used from a sensor- or an actuator component while
interacting with the IoHwAbstraction layer.

Note that the "server" in the name of this meta-class is not meant to restrict the usage to ClientServer
Interfaces.

Base ARObject , GeneralAnnotation

Attribute Type Mult. Kind Note

age MultidimensionalTime 0..1 aggr In case of a SET operation, the age will be interpreted as
Delay while in a GET operation (input) it specifies the
Lifetime of the signal within the IoHwAbstraction Layer

Tags:xml.sequenceOffset=10

argument ArgumentDataPrototype 0..1 ref Reference to the corresponding ArgumentDataPrototype.

Tags:xml.sequenceOffset=20

bswResolution Float 0..1 attr This value is determined by an appropriate combination
of the range, the unit as well as the data-elements type,
i.e. (ecuSignalRange.upperLimit-ecuSignalRange.lower
Limit) / (2ˆdatatypelength - 1)

Tags:xml.sequenceOffset=30

dataElement VariableDataPrototype 0..1 ref Reference to the corresponding VariableDataPrototype.

Tags:xml.sequenceOffset=40

5

158 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class IoHwAbstractionServerAnnotation
failure
Monitoring

PortPrototype 0..1 ref This is only applicable in SET operations. If it is enabled,
the IoHwAbstraction layer will monitor the result of the
operation and issue an diagnostic signal. This means
especially, that an additional client-server port has to be
created. Tools can use this information to cross-check
whether for each data-element in a SET operation with
FailureMonitoring enabled an additional port is created

The referenced port monitors a failure in the to be
monitored VariableDataPrototype of the IoHwAbstraction
layer. The referenced port has to be another port of the
same Actuator or Sensor Component.

Tags:xml.sequenceOffset=50

filtering
Debouncing

FilterDebouncingEnum 0..1 attr This attribute is used to indicate what kind of filtering/
debouncing has been put to the signal in the IoHw
Abstraction layer.

rawData means that no modification of the signal has
been applied. This is the default value debounceData
means that the signal is a mean value waitTimeData
means that the signal is delivered by a GET operation
after a certain amount of time

Tags:xml.sequenceOffset=60

pulseTest PulseTestEnum 0..1 attr This attribute indicates to the connected SensorActuator
SwComponentType whether the VariableDataPrototype
can be used to generate pulse test sequences using the
IoHwAbstraction layer

Tags:xml.sequenceOffset=70

trigger Trigger 0..1 ref Reference to the corresponding Trigger.

Tags:xml.sequenceOffset=80

Table 4.52: IoHwAbstractionServerAnnotation

AtpBlueprintable
AtpPrototype

PortPrototype

GeneralAnnotation

IoHwAbstractionServerAnnotation

+ bswResolution: Float [0..1]
+ fi l teringDebouncing: FilterDebouncingEnum [0..1]
+ pulseTest: PulseTestEnum [0..1]

«enumeration»
FilterDebouncingEnum

 rawData
 debounceData
 waitTimeDate

«enumeration»
PulseTestEnum

 disable
 enable

AutosarDataPrototype

VariableDataPrototype

DataInterface

SenderReceiverInterface

AutosarDataPrototype

ArgumentDataPrototype

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

MultidimensionalTime

+ cseCode: CseCodeType
+ cseCodeFactor: Integer

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy:
SwImplPolicyEnum [0..1]

PortInterface

TriggerInterface

������������	
 ����

�����������	��	���� �

�������	����������	����

«atpVariation»

+argument 0..* {ordered}

+age 0..1

+dataElement

0..1

+argument

0..1

+trigger 0..1

+ioHwAbstractionServerAnnotation 0..*

+triggerPeriod

0..1

+failureMonitoring0..1

+dataElement 0..*

+trigger

0..*

Figure 4.27: IoHwAbstractionServerAnnotation

159 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Enumeration FilterDebouncingEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note This enumeration defines possible values for the filter debouncing strategy.

Literal Description

debounceData The signal is a mean value

Tags:atp.EnumerationLiteralIndex=0

rawData Means that no modification of the signal has been applied. This is the default value

Tags:atp.EnumerationLiteralIndex=1

waitTimeDate The signal is delivered by a GET operation after a certain amount of time

Tags:atp.EnumerationLiteralIndex=2

Table 4.53: FilterDebouncingEnum

Enumeration PulseTestEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note This element indicates to the connected Actuator Software component whether the data-element can
be used to generate pulse test sequences using the IoHwAbstraction layer

Literal Description

disable Disables the pulse test

Tags:atp.EnumerationLiteralIndex=0

enable Enables the pulse test

Tags:atp.EnumerationLiteralIndex=1

Table 4.54: PulseTestEnum

[TPS_SWCT_01211] Assign several annotations to ArgumentDataPrototype
dThe ClientServerOperations provide an ArgumentDataPrototype where
several annotations can be assigned to.c(RS_SWCT_02110)

They are depicted in the IoHwAbstractionServerAnnotation meta-class in Fig-
ure 4.27.

A detailed description of the attributes can be found in the IoHwAbstraction Layer soft-
ware specification document [16].

For example, the signal age has a very dedicated meaning in this particular interface
with respect to a register whereas the signal age in the SenderReceiverAnnota-
tion is more generic. Especially, there is no relationship with the micro-controller
peripherals.

4.4.5 Parameter Port Annotation

[TPS_SWCT_01212] ParameterPortAnnotation dThe ParameterPortAnno-
tation can be used to provide more information with respect to calibration parameter
prototypes of the PortPrototype.

160 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The data provided at the PortPrototype is calibration parameters. The Parame-
terPortAnnotation provides a reference to a particular ParameterDataProto-
type.c(RS_SWCT_02110)

Class ParameterPortAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a port used for calibration regarding a certain ParameterDataPrototype.

Base ARObject , GeneralAnnotation

Attribute Type Mult. Kind Note

parameter ParameterData
Prototype

0..1 ref The instance of annotated ParameterDataPrototype.

Table 4.55: ParameterPortAnnotation

The main use-case is to allow easy access to the information which calibration param-
eters influence the data on the PortPrototype.

GeneralAnnotation

ParameterPortAnnotation

constraints
{"The corresponding port interface shall be a
ParameterInterface."}

AutosarDataPrototype

ParameterDataPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

+parameter

0..1

+parameterPortAnnotation

0..*

Figure 4.28: ParameterPortAnnotation

[constr_4006] Context of ParameterPortAnnotation dA ParameterPortAnno-
tation shall only be aggregated by a PPortPrototype owned by a Parameter-
SwComponentType at any time in the workflow.c()

4.4.6 Mode Port Annotation

[TPS_SWCT_01213] ModePortAnnotation dThe ModePortAnnotation can be
used to provide more information with respect to the mode declaration group prototype
of the PortPrototype.c()

Class ModePortAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a port used for calibration regarding a certain ModeDeclarationGroupPrototype.

Base ARObject , GeneralAnnotation

Attribute Type Mult. Kind Note

modeGroup ModeDeclarationGroup
Prototype

0..1 ref The instance of annotated ModeDeclarationGroup
Prototype.

Table 4.56: ModePortAnnotation

The main use-case is to allow for the definition of additional information related to the
mode declaration group prototype.

161 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

GeneralAnnotation

ModePortAnnotation

AtpBlueprintable
AtpPrototype

PortPrototype

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

+modePortAnnotation

0..*

+modeGroup

0..1

Figure 4.29: ModePortAnnotation

[constr_4007] Context of ModePortAnnotation dA ModePortAnnotation shall
only be aggregated by a PortPrototype typed by a ModeSwitchInterface at
any time in the workflow.c()

4.4.7 Trigger Port Annotation

[TPS_SWCT_01214] TriggerPortAnnotation dThe TriggerPortAnnotation
can be used to provide more information with respect to the Trigger of the Port-
Prototype.c(RS_SWCT_02110)

Class TriggerPortAnnotation

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a port used for calibration regarding a certain Trigger.

Base ARObject , GeneralAnnotation

Attribute Type Mult. Kind Note

trigger Trigger 0..1 ref The instance of annotated trigger.

Table 4.57: TriggerPortAnnotation

The main use-case is to define additional information related to the trigger.

GeneralAnnotation

TriggerPortAnnotation

AtpBlueprintable
AtpPrototype

PortPrototype

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

+triggerPortAnnotation

0..*

+trigger

0..1

Figure 4.30: TriggerPortAnnotation

[constr_4008] Context of TriggerPortAnnotation dA TriggerPortAnnota-
tion shall only be aggregated by a PortPrototype typed by a TriggerInterface
at any time in the workflow.c()

4.4.8 Non Volatile Data Port Annotation

[TPS_SWCT_01215] NvDataPortAnnotation dThe NvDataPortAnnotation
can be used to provide more information with respect to the non-volatile data of the
PortPrototype.c(RS_SWCT_02110)

162 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class NvDataPortAnnotation
Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a port regarding a certain VariableDataPrototype.

Base ARObject , GeneralAnnotation

Attribute Type Mult. Kind Note

variable VariableDataPrototype 0..1 ref The instance of nv data annotated.

Table 4.58: NvDataPortAnnotation

The main use-case is to define additional information related to the non-volatile data
elements.

GeneralAnnotation

NvDataPortAnnotation

AtpBlueprintable
AtpPrototype

PortPrototype

AutosarDataPrototype

VariableDataPrototype
+variable

0..1

+nvDataPortAnnotation

0..*

Figure 4.31: NvDataPortAnnotation

[constr_4009] Context of NvDataPortAnnotation dAn NvDataPortAnnotation
shall only be aggregated by a PortPrototype typed by an NvDataInterface at
any time in the workflow.c()

4.4.9 Delegated Port Annotations

[TPS_SWCT_01216] DelegatedPortAnnotation dThe DelegatedPortAnno-
tation is used to define the Signal Fan In or Signal Fan Out inside the Composi-
tionSwComponentType.

This information is used to pre-define and pre-check resulting communication patterns
in the VFB (1:n, n:1, 1:1) if empty CompositionSwComponentTypes are used as
interface definition for sub-systems.

The DelegatedPortAnnotation guides either the system designer in connecting
the empty CompositionSwComponentType or the sub-system designer in applying
communication pattern (1:n, n:1, 1:1) inside the CompositionSwComponentType.c
(RS_SWCT_02110)

Class DelegatedPortAnnotation

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Annotation to a "delegated port" to specify the Signal Fan In or Signal Fan Out inside the CompositionSw
ComponentType.

Base ARObject , GeneralAnnotation

Attribute Type Mult. Kind Note

signalFan SignalFanEnum 0..1 attr Specifies the Signal Fan In or Signal Fan Out inside the
Composition Type.

Table 4.59: DelegatedPortAnnotation

163 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Enumeration SignalFanEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::ApplicationAttributes

Note Signal Fan inside the Composition Component Type.

Literal Description

nfold The connections internally in the CompositionSwComponentType via DelegationSwConnectors and
AssemblySwConnectors are defined in a way that at least one data element present in the S/R
interface or one ClientServerOperation in the C/S interface of the outer PortPrototype is involved in a
1:n or n:1 communication pattern.

Tags:atp.EnumerationLiteralIndex=0

single The connections internally in the CompositionSwComponentType via DelegationSwConnectors and
AssemblySwConnectors are defined in a way that each VariableDataPrototype present in the S/R
interface or ClientServerOperation in the C/S interface of the outer PortPrototype is involved in a 1:1
communication pattern only.

Tags:atp.EnumerationLiteralIndex=1

Table 4.60: SignalFanEnum

[TPS_SWCT_01217] Semantics of DelegatedPortAnnotation.signalFan dThe
attribute values have following definition:

• single: the internal connections in the CompositionSwComponentType via
DelegationSwConnectors and AssemblySwConnectors are defined in a
way that each dataElement present in the SenderReceiverInterfaces or
operation in the ClientServerInterfaces of the outer PortPrototype
is involved in a 1:1 communication pattern only.

• nfold: The internal connections in the CompositionSwComponentType via
DelegationSwConnectors and AssemblySwConnectors are defined in a
way that at least one dataElement present in the SenderReceiverInter-
faces or one operation in the ClientServerInterfaces of the outer
PortPrototype is involved in a 1:n or n:1 communication pattern.

c(RS_SWCT_02110)

[constr_4010] Context of DelegatedPortAnnotation dA DelegatedPortAnno-
tation shall only be aggregated by a PortPrototype aggregated by a Composi-
tionSwComponentType.c()

4.4.10 General Annotation

Besides, formally specified attributes it is also possible to place textual information as
provided in the abstract GeneralAnnotation (see Figure 4.32 for an overview).

GeneralAnnotation

+ annotationOrigin: String

«atpMixed»
DocumentationBlock

MultilanguageLongName+annotationText

1

+label

0..1

Figure 4.32: textual information in annotations

164 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class GeneralAnnotation (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::GeneralAnnotation

Note This class represents textual comments (called annotations) which relate to the object in which it is
aggregated. These annotations are intended for use during the development process for transferring
information from one step of the development process to the next one.

The approach is similar to the "yellow pads" ...

This abstract class can be specialized in order to add some further formal properties.

Base ARObject

Subclasses Annotation, ClientServerAnnotation, DelegatedPortAnnotation, IoHwAbstractionServerAnnotation, Mode
PortAnnotation, NvDataPortAnnotation, ParameterPortAnnotation, SenderReceiverAnnotation, Trigger
PortAnnotation

Attribute Type Mult. Kind Note

annotation
Origin

String 1 attr This attribute identifies the origin of the annotation. It is an
arbitrary string since it can be an individual’s name as well
as the name of a tool or even the name of a process step.

Tags:xml.sequenceOffset=30

annotationText DocumentationBlock 1 aggr This is the text of the annotation.

Tags:xml.sequenceOffset=40

label MultilanguageLong
Name

0..1 aggr This is the headline for the annotation.

Tags:xml.sequenceOffset=20

Table 4.61: GeneralAnnotation

4.5 Communication Specification

[TPS_SWCT_01218] Big picture of ComSpec dThe highest level of description of in-
formation exchanged between components in an AUTOSAR system is the PortIn-
terfaces, as shown in earlier sections.

Such PortInterface however, only describes structure and does not include infor-
mation about whether communication needs to be done reliably, or whether an initial
value exists in case the real data is not yet available.

This information is role-specific, i.e. it shall be applied on the level of PortPrototypes
rather than PortInterfaces. Therefore, most communication-relevant attributes are
related to the PortPrototypes of an SwComponentType.

The communication attributes are organized in a so-called communication specifica-
tion (in terms of the meta-model: ComSpec) classes.c(RS_SWCT_02030)

Note that the communication specification is optional, i.e. its existence is not required in
any case. Figures 4.33 and 4.34 provide an overview of communication specifications.
The derived meta-classes are explained in the following sub-chapters.

As explained before, ComSpec meta-classes which are required on the level of a
SwComponentType are attached to the PortPrototype declarations which in turn
are part of the definition of a SwComponentType.

165 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RPortComSpecRPortPrototype

+ mayBeUnconnected: Boolean [0..1]

ClientComSpec ModeSwitchReceiverComSpec NvRequireComSpec ParameterRequireComSpec ReceiverComSpec

AbstractProvidedPortPrototype

PRPortPrototype

PortPrototype

AbstractRequiredPortPrototype

+requiredComSpec 0..*

Figure 4.33: Overview of communication attributes of RPortPrototype

Nevertheless, the usage of ComSpecs is not restricted to the PortPrototypes of
AtomicSwComponentTypes (for more details please refer to section 2.5).

Sections 7.5.1 and 7.5.2 then explain the sender-receiver and client-server communi-
cation patterns with respect to the RTE, the RTE events and the corresponding com-
munication attributes.

Several ComSpecs allow defining initValues in relation to the associated DataPro-
totype. For further details about the representation of initValues please refer to
section 5.7.2.

Furthermore, [constr_1043] applies such that only specific subclasses of ComSpec can
be owned by PortPrototypes typed by the corresponding kind of PortInterface.

PPortComSpecPPortPrototype

ModeSwitchSenderComSpec ParameterProvideComSpec SenderComSpec

AbstractRequiredPortPrototype

PRPortPrototype

PortPrototype

AbstractProvidedPortPrototype

+providedComSpec 0..*

Figure 4.34: Overview of communication attributes of PPortPrototype

[constr_1290] Limitation on the number of PPortComSpecs in the context of one
PPortPrototype dWithin the context of one PPortPrototype, there can only be
one PPortComSpec that references a given dataElement or operation at the
time when the contract phase generation is executed.c()

In other words, it is not allowed that two or more PPortComSpec exist in the context of
a one PPortPrototype that refer to the same dataElement or operation.

[constr_1291] Limitation on the number of RPortComSpecs in the context of one
PPortPrototype dWithin the context of one RPortPrototype, there can only be

166 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

one RPortComSpec that references a given dataElement or operation at the
time when the contract phase generation is executed.c()

In other words, it is not allowed that two or more RPortComSpec exist in the context of
a one RPortPrototype that refer to the same dataElement or operation.

[TPS_SWCT_01454] PRPortPrototype can own both RPortComSpecs and
PPortComSpecs dIn contrast to PPortPrototype and RPortPrototype, PRPort-
Prototype can own both RPortComSpecs and PPortComSpecs at the same time.c
(RS_SWCT_02030, RS_SWCT_03250)

Nevertheless, the following restriction applies:

[constr_1292] Limitation on the number of RPortComSpecs/PPortComSpecs in
the context of one PRPortPrototype dWithin the context of one PRPortProto-
type, there can only be one RPortComSpec and one PPortComSpec that refer-
ences a given dataElement or operation at the time when the contract
phase generation is executed.c()

In other words, it is not allowed that two or more PPortComSpec exist in the context of
a one PRPortPrototype that refer to the same dataElement or operation.

In the same manner, it is not allowed that two or more RPortComSpec exist in the con-
text of one PRPortPrototype that refer to the same dataElement or operation.

The rationale for the existence of [constr_1290], [constr_1291], and [constr_1292] is
that the AUTOSAR communication layer needs an unambiguous specification of the
communication behavior.

The existence of redundant RPortComSpecs/PPortComSpecs may easily be contra-
dicting each other and this would inhibit the creation of a valid configuration for the
AUTOSAR Com.

Class PPortComSpec (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of a provided PortPrototype. This class will contain attributes that are valid for
all kinds of provide ports, independent of client-server or sender-receiver communication patterns.

Base ARObject

Subclasses ModeSwitchSenderComSpec, NvProvideComSpec, ParameterProvideComSpec, SenderComSpec,
ServerComSpec

Attribute Type Mult. Kind Note

– – – – –

Table 4.62: PPortComSpec

Class RPortComSpec (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of a required PortPrototype. This class will contain attributes that are valid for
all kinds of require-ports, independent of client-server or sender-receiver communication patterns.

Base ARObject

5

167 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RPortComSpec (abstract)

Subclasses ClientComSpec, ModeSwitchReceiverComSpec, NvRequireComSpec, ParameterRequireComSpec,
ReceiverComSpec

Attribute Type Mult. Kind Note

– – – – –

Table 4.63: RPortComSpec

[constr_1043] PortInterface vs. ComSpec dThe allowed combinations at any
time in the workflow of a specific kind of PortInterface and a kind of Com-
Spec are documented in Table 4.64.c()

PortInterface ComSpec

SenderReceiverInterface SenderComSpec, ReceiverComSpec

ClientServerInterface ClientComSpec, ServerComSpec

ModeSwitchInterface ModeSwitchSenderComSpec, ModeSwitchReceiverComSpec

ParameterInterface ParameterProvideComSpec, ParameterRequireComSpec

NvDataInterface NvRequireComSpec, NvProvideComSpec

Table 4.64: PortInterface vs. ComSpec

As explained in section 2.5, there are cases where PortPrototypes owned by a
CompositionSwComponentType could have initValues.

Therefore, it is possible that PortPrototypes owned by CompositionSwCompo-
nentTypes can have ComSpecs. It is not required that the ComSpecs defined on the
composition level match the ComSpecs defined inside the CompositionSwCompo-
nentType.

If consistency would be required this constraint might be a major obstacle for integrat-
ing existing AtomicSwComponentTypes into a CompositionSwComponentType
that has PortPrototypes with ComSpecs.

4.5.1 Communication Specification for Sender-Receiver Communication

Communication specification applies in different ways to specific kinds of communica-
tion.

[TPS_SWCT_01219] ComSpec for queued and non-queued sender-receiver com-
munication dSender-receiver communication might be queued or non-queued. This
aspect is primarily reflected in the value of dataElement.swDataDefProps.swIm-
plPolicy.

If the value of this attribute is set to queued then QueuedSenderComSpec and/or
QueuedReceiverComSpec shall be defined. In all other applicable cases Non-
queuedSenderComSpec or NonqueuedReceiverComSpec shall be used.

168 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Thus, the constraints [constr_1129], [constr_1130], [constr_1131], and [constr_1132]
shall apply.

While in the case of queued communication the queueLength attribute remains the
only information item the non-queued case foresees several attributes for controlling
communication behavior.c()

4.5.1.1 Receiver ComSpec

Figure 4.35 shows the meta-model of the communication attributes relevant sender-
receiver communication at an RPortPrototype.

RPortComSpec

ReceiverComSpec

+ handleOutOfRange: HandleOutOfRangeEnum [0..1]
+ handleOutOfRangeStatus: HandleOutOfRangeStatusEnum [0..1]
+ maxNoNewOrRepeatedData: PositiveInteger [0..1]
+ syncCounterInit: PositiveInteger [0..1]

«atpVariation»
+ maxDeltaCounterInit: PositiveInteger [0..1]
+ usesEndToEndProtection: Boolean [0..1]

NonqueuedReceiverComSpec

+ aliveTimeout: TimeValue [0..1]
+ enableUpdate: Boolean [0..1]
+ handleDataStatus: Boolean [0..1]
+ handleNeverReceived: Boolean [0..1]
+ handleTimeoutType:

HandleTimeoutEnum [0..1]

QueuedReceiverComSpec

+ queueLength: PositiveInteger [0..1]

ValueSpecification

+ shortLabel: Identifier [0..1]

DataFilter

+ dataFilterType: DataFilterTypeEnum [0..1]
+ mask: UnlimitedInteger [0..1]
+ max: UnlimitedInteger [0..1]
+ min: UnlimitedInteger [0..1]
+ offset: PositiveInteger [0..1]
+ period: PositiveInteger [0..1]
+ x: UnlimitedInteger [0..1]

«enumeration»
HandleTimeoutEnum

 replace
 none
 replaceByTimeoutSubstitutionValue

«atpVariation»
SwDataDefProps

«enumeration»
HandleOutOfRangeEnum

 none
 ignore
 saturate
 default
 invalid
 externalReplacement

«enumeration»
HandleOutOfRangeStatusEnum

 silent
 indicate

CompositeNetworkRepresentation
DataPrototype

ApplicationCompositeElementDataPrototype

PortPrototype

AbstractRequiredPortPrototype

Describable

TransformationComSpecProps

AbstractAccessPoint
AtpStructureElement

Identifiable

VariableAccess

+ scope: VariableAccessScopeEnum [0..1]

VariableDataPrototype

DataPrototype

AutosarDataPrototype

ReceptionComSpecProps

+ dataUpdatePeriod: TimeValue [0..1]
+ timeout: TimeValue [0..1]

+replaceWith

0..1

+receptionProps 0..1

+transformationComSpecProps 0..*

+dataElement

0..1

+compositeNetworkRepresentation0..*

+initValue 0..1

«instanceRef»

+leafElement

0..1

+fi l ter 0..1

+requiredComSpec

0..*

+networkRepresentation 0..1

+timeoutSubstitutionValue 0..1

+networkRepresentation 0..1

Figure 4.35: Communication attributes of RPortPrototype with respect to sender-
receiver communication.

[constr_1538] Restriction for ReceiverComSpec.dataElement dThe reference
ReceiverComSpec.dataElement shall not refer to an ArgumentDataPrototype
or ParameterDataPrototype at any time in the workflow.c()

169 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1103] NonqueuedReceiverComSpec and enableUpdate dA Nonqueue-
dReceiverComSpec that has the value of attribute enableUpdate set to true at
the time when the contract phase generation is executed may not
reference a dataElement that in turn is referenced by a VariableAccess in the
role dataReadAccess.c()

In general, it is considered beneficial for software-components to define initValues
for all the dataElements received by RPortPrototypes.

These initValues are required by the RTE for several functionalities, e.g. :

• Providing a default value for not yet received dataElements (see
[TPS_SWCT_01220]).

• Providing default values in case of unconnected RPortPrototypes (see [con-
str_1100]).

• Partial mapping of composite data (see [constr_1280])

Therefore, the availability of initValue increases the flexibility of the usage of the
software-component in different scenarios.

On the other hand, there are also use cases where initValues are not mandatory,
i.e. the DataPrototype remains intentionally uninitialized. This is expressed by ap-
plying a SwAddrMethod where the sectionInitializationPolicy is set to NO-
INIT, or when the software component is intentionally only prepared for intra-partition
communication.

In response to these conflicting objectives [TPS_SWCT_01688] is written as a recom-
mendation as opposed to a binding constraint.

[TPS_SWCT_01688] initValue should exist in an RPortPrototype dThe op-
tional attribute initValue should exist if the enclosing NonqueuedReceiverCom-
Spec is owned by an RPortPrototype.c()

[TPS_SWCT_01455] Duplicate existence of initValue in the context of a PR-
PortPrototype dIf an initValue is defined in a NonqueuedReceiverComSpec
owned by a PRPortPrototype, its value shall be ignored.c(RS_SWCT_03250)

[TPS_SWCT_01220] initValue defines an initial value that shall be taken if the
corresponding dataElement has not yet been received dThe aggregation of Val-
ueSpecification in the role initValue defines an initial value that shall be taken
if the corresponding dataElement has not yet been received but the application soft-
ware is attempting to access its value.c()

[constr_1891] Existence of attribute NonqueuedReceiverComSpec.initValue
dFor each NonqueuedReceiverComSpec, attribute initValue shall exist at the
time when the contract phase generation is executed.c()

170 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ReceiverComSpec (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Receiver-specific communication attributes (RPortPrototype typed by SenderReceiverInterface).

Base ARObject , RPortComSpec

Subclasses NonqueuedReceiverComSpec, QueuedReceiverComSpec

Attribute Type Mult. Kind Note

composite
Network
Representation

CompositeNetwork
Representation

* aggr This represents a CompositeNetworkRepresentation
defined in the context of a ReceiverComSpec. The
purpose of this aggregation is to be able to specify the
network representation of leaf elements of Application
CompositeDataTypes.

dataElement AutosarDataPrototype 0..1 ref Data element these attributes belong to.

handleOutOf
Range

HandleOutOfRange
Enum

0..1 attr This attribute controls how values that are out of the
specified range are handled according to the values of
HandleOutOfRangeEnum.

handleOutOf
RangeStatus

HandleOutOfRange
StatusEnum

0..1 attr Control the way how return values are created in case of
an out-of-range situation.

maxDelta
CounterInit

PositiveInteger 0..1 attr Initial maximum allowed gap between two counter values
of two consecutively received valid Data, i.e. how many
subsequent lost data is accepted. For example, if the
receiver gets Data with counter 1 and MaxDeltaCounter
Init is 1, then at the next reception the receiver can accept
Counters with values 2 and 3, but not 4.

Note that if the receiver does not receive new Data at a
consecutive read, then the receiver increments the
tolerance by 1.

Caveat: The E2E wrapper approach involves
technologies that are not subjected to the AUTOSAR
standard and is superseded by the superior E2E
transformer approach (which is fully standardized by
AUTOSAR). Hence, new projects (without legacy
constraints due to carry-over parts) shall use the fully
standardized E2E transformer approach.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

maxNoNewOr
RepeatedData

PositiveInteger 0..1 attr The maximum amount of missing or repeated Data which
the receiver does not expect to exceed under normal
communication conditions.

Caveat: The E2E wrapper approach involves
technologies that are not subjected to the AUTOSAR
standard and is superseded by the superior E2E
transformer approach (which is fully standardized by
AUTOSAR). Hence, new projects (without legacy
constraints due to carry-over parts) shall use the fully
standardized E2E transformer approach.

network
Representation

SwDataDefProps 0..1 aggr A networkRepresentation is used to define how the data
Element is mapped to a communication bus.

receptionProps ReceptionComSpec
Props

0..1 aggr "This aggregation represents the definition transmission
props in the context of the enclosing ReceiverComSpec.

replaceWith VariableAccess 0..1 aggr This aggregation is used to identify the AutosarData
Prototype to be taken for sourcing an external
replacement in the out-of-range handling.

5

171 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ReceiverComSpec (abstract)

syncCounterInit PositiveInteger 0..1 attr Number of Data required for validating the consistency of
the counter that shall be received with a valid counter (i.e.
counter within the allowed lock-in range) after the
detection of an unexpected behavior of a received
counter.

Caveat: The E2E wrapper approach involves
technologies that are not subjected to the AUTOSAR
standard and is superseded by the superior E2E
transformer approach (which is fully standardized by
AUTOSAR). Hence, new projects (without legacy
constraints due to carry-over parts) shall use the fully
standardized E2E transformer approach.

transformation
ComSpecProps

TransformationCom
SpecProps

* aggr This references the TransformationComSpecProps which
define port-specific configuration for data transformation.

usesEndToEnd
Protection

Boolean 0..1 attr This indicates whether the corresponding dataElement
shall be transmitted using end-to-end protection.

Caveat: The E2E wrapper approach involves
technologies that are not subjected to the AUTOSAR
standard and is superseded by the superior E2E
transformer approach (which is fully standardized by
AUTOSAR). Hence, new projects (without legacy
constraints due to carry-over parts) shall use the fully
standardized E2E transformer approach.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 4.65: ReceiverComSpec

Enumeration HandleOutOfRangeStatusEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note This enumeration defines how the RTE handles values that are out of range.

Literal Description

indicate The RTE sets the return status to RTE_E_OUT_OF_RANGE if the received value is out of range and
the attribute handleOutOfRange is not set to "none" or "invalid".

Tags:atp.EnumerationLiteralIndex=0

silent The RTE sets the return status to RTE_E_OK

Tags:atp.EnumerationLiteralIndex=1

Table 4.66: HandleOutOfRangeStatusEnum

Class NonqueuedReceiverComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes specific to non-queued receiving.

Base ARObject , RPortComSpec, ReceiverComSpec

Attribute Type Mult. Kind Note

aliveTimeout TimeValue 0..1 attr Specify the amount of time (in seconds) after which the
software component (via the RTE) needs to be notified if
the corresponding data item have not been received
according to the specified timing description.

If the aliveTimeout attribute is 0 no timeout monitoring
shall be performed.

5

172 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class NonqueuedReceiverComSpec

enableUpdate Boolean 0..1 attr This attribute controls whether application code is entitled
to check whether the value of the corresponding Variable
DataPrototype has been updated.

filter DataFilter 0..1 aggr The applicable filter algorithm for filtering the value of the
corresponding dataElement.

handleData
Status

Boolean 0..1 attr If this attribute is set to true, then the Rte_IStatus API
shall exist. If the attribute does not exist or is set to false,
then the Rte_IStatus API may still exist in response to the
existence of further conditions.

handleNever
Received

Boolean 0..1 attr This attribute specifies whether for the corresponding
VariableDataPrototype the "never received" flag is
available. If yes, the RTE is supposed to assume that
initially the VariableDataPrototype has not been received
before. After the first reception of the corresponding
VariableDataPrototype the flag is cleared.

• If the value of this attribute is set to "true" the flag
is required.

• If set to "false", the RTE shall not support the
"never received" functionality for the
corresponding VariableDataPrototype.

handleTimeout
Type

HandleTimeoutEnum 0..1 attr This attribute controls the behavior with respect to the
handling of timeouts.

initValue ValueSpecification 0..1 aggr Initial value to be used in case the sending component is
not yet initialized. If the sender also specifies an initial
value, then the receiver’s value will be used.

timeout
Substitution
Value

ValueSpecification 0..1 aggr This attribute represents the substitution value applicable
in the case of a timeout.

Table 4.67: NonqueuedReceiverComSpec

Class QueuedReceiverComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes specific to queued receiving.

Base ARObject , RPortComSpec, ReceiverComSpec

Attribute Type Mult. Kind Note

queueLength PositiveInteger 0..1 attr Length of queue for received events.

Table 4.68: QueuedReceiverComSpec

[constr_1889] Existence of attribute QueuedReceiverComSpec.queueLength
dFor each QueuedReceiverComSpec, attribute queueLength shall exist at the
time when the contract phase generation is executed.c()

Class ReceptionComSpecProps

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note This meta-class defines a set of reception attributes which the application software is assumed to
implement.

Base ARObject

Attribute Type Mult. Kind Note

5

173 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ReceptionComSpecProps

dataUpdate
Period

TimeValue 0..1 attr This attribute defines the period in which the application
shall check for updated data. This attribute is used for the
configuration of the E2E protection, but may also indicate
a general data reception period.

timeout TimeValue 0..1 attr This attribute defines the time interval after which the
application shall assume that the to be received data
reception has timed out, i.e. the respective data has not
been received for that amount of time.

Table 4.69: ReceptionComSpecProps

Enumeration HandleTimeoutEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Strategies of handling a reception timeout violation.

Literal Description

none If set to none no replacement shall take place.

Tags:atp.EnumerationLiteralIndex=0

replace If set to replace, the replacement value shall be the ComInitValue.

Tags:atp.EnumerationLiteralIndex=1

replaceByTimeout
SubstitutionValue

If set to replace, the replacement value shall be the timeout substitution value.

Tags:atp.EnumerationLiteralIndex=2

Table 4.70: HandleTimeoutEnum

Primitive TimeValue
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This primitive type is taken for expressing time values. The numerical value is supposed to be interpreted
in the physical unit second.

Tags:
xml.xsd.customType=TIME-VALUE
xml.xsd.type=double

Table 4.71: TimeValue

[constr_1129] swImplPolicy and NonqueuedReceiverComSpec dThe attribute
swImplPolicy of a dataElement referenced by a NonqueuedReceiverComSpec
shall not be set to the value queued at the time when the contract phase
generation is executed.c()

[constr_1130] swImplPolicy and QueuedReceiverComSpec dThe attribute
swImplPolicy of a dataElement referenced by a QueuedReceiverComSpec
shall be set to the value queued at the time when the contract phase
generation is executed.c()

[constr_1188] Existence of ReceiverComSpec.replaceWith dThe aggregation of
VariableAccess in the role ReceiverComSpec.replaceWith shall exist if and
only if at least one of the following conditions is fulfilled:

• Attribute ReceiverComSpec.handleOutOfRange is set to the value exter-
nalReplacement.

174 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• Attribute SenderReceiverInterface.invalidationPolicy.handleIn-
valid is set to the value externalReplacement.

This rule shall be applied at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_01753] Application of compatibility rules for ReceiverComSpec.
replaceWith dCompatibility rules as formulated by [constr_1068] and [constr_1187]
shall be applicable for the reference ReceiverComSpec.replaceWith.c()

[TPS_SWCT_01223] networkRepresentation defines how a specific dataEle-
ment is represented on a communication bus dFor sender-receiver communication,
it is possible to specify how dataElements are represented given that the communi-
cation requires the usage of a dedicated communication bus.

That is, by means of the networkRepresentation it is possible to define how a
specific dataElement is represented on a communication bus. For this purpose the
networkRepresentation is implemented as an aggregation of SwDataDefProps.c
()

[TPS_SWCT_01224] CompuMethods of dataElement and the networkRepre-
sentation are used for conversion purposes dThe attached CompuMethods of
both the dataElement and the networkRepresentation can be used to identify
the conversion between the two.

The advantage of this approach is that this can also be used without any modifications
in combination with a general remapping and rescaling of dataElements between
different SwComponentTypes, regardless whether they are located on the same or on
different ECUs.c()

Please note that the decision whether to take the networkRepresentation for data
mapping is done in the context of the AUTOSAR System Template [10]. Please find
more detailed information about this aspect in the applicable specification.

[TPS_SWCT_01452] Applicability of networkRepresentation for Applica-
tionCompositeDataType dThe aggregation of networkRepresentation at the
ReceiverComSpec or SenderComSpec only applies for dataElements typed by
ApplicationPrimitiveDataTypes.

For the case of using an ApplicationCompositeDataType an additional mecha-
nism shall be used.

In particular, compositeNetworkRepresentation shall be used to define the net-
workRepresentation of leaf elements of ApplicationCompositeDataTypes.c
()

[constr_1196] Existence of networkRepresentation vs. compositeNet-
workRepresentation dIf a ReceiverComSpec or SenderComSpec aggregates
networkRepresentation it shall not aggregate compositeNetworkRepresen-
tation (and vice versa) at the time when the contract phase genera-
tion is executed.c()

175 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1197] Existence of compositeNetworkRepresentation shall be com-
prehensive dIf at least one compositeNetworkRepresentation exists then for
each leaf ApplicationCompositeElementDataPrototype of the affected Ap-
plicationCompositeDataType exactly one compositeNetworkRepresenta-
tion shall be defined at the time when the contract phase generation
is executed.

For each such compositeNetworkRepresentation, attributes leafElement
and networkRepresentation shall exist at the time when the contract
phase generation is executed.c()

Granted, the definition of [constr_1197] to some extent has a recursive character. The
meaning is that if it is actually intended to define a compositeNetworkRepresen-
tation then the definition shall be completely covering the entire set of leaf elements
of the corresponding ApplicationCompositeDataType. In other words, it’s all or
nothing.

[TPS_SWCT_01593] Semantics of attribute ReceiverComSpec.transforma-
tionComSpecProps dThe ReceiverComSpec.transformationComSpecProps
is used to configure PortPrototype-specific properties for data transformation in
case of receiving inter-ECU communication.c()

[TPS_SWCT_01682] The meaning of E2E-related attributes in a ReceiverCom-
Spec if a TransformationComSpecProps of type EndToEndTransformation-
ComSpecProps is defined. dThe attributes usesEndToEndProtection, sync-
CounterInit, maxDeltaCounterInit, and maxNoNewOrRepeatedData in Re-
ceiverComSpec have no meaning if a TransformationComSpecProps of type
EndToEndTransformationComSpecProps is defined in the same ReceiverCom-
Spec.c()

4.5.1.2 Sender ComSpec

The communication attributes on the sender side are sketched in Figure 4.36.

[constr_1131] swImplPolicy and NonqueuedSenderComSpec dThe attribute
swImplPolicy of a dataElement referenced by a NonqueuedSenderComSpec
shall not be set to the value queued at the time when the contract phase
generation is executed.c()

[constr_1132] swImplPolicy and QueuedSenderComSpec dThe attribute swIm-
plPolicy of a dataElement referenced by a QueuedSenderComSpec shall be
set to the value queued at the time when the contract phase genera-
tion is executed.c()

176 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01751] The meaning of E2E-related attributes in a SenderComSpec
if a TransformationComSpecProps of type EndToEndTransformationCom-
SpecProps is defined dThe attribute usesEndToEndProtection has no mean-
ing if a TransformationComSpecProps of type EndToEndTransformationCom-
SpecProps is defined in the same SenderComSpec.c()

PPortComSpec

SenderComSpec

+ handleOutOfRange: HandleOutOfRangeEnum [0..1]

«atpVariation»
+ usesEndToEndProtection: Boolean [0..1]

TransmissionAcknowledgementRequest

+ timeout: TimeValue [0..1]

QueuedSenderComSpec

ValueSpecification

+ shortLabel: Identifier [0..1]

NonqueuedSenderComSpec

«atpVariation»
SwDataDefProps

VariableDataPrototype

«enumeration»
HandleOutOfRangeEnum

 none
 ignore
 saturate
 default
 invalid
 externalReplacement

CompositeNetworkRepresentation

DataPrototype

ApplicationCompositeElementDataPrototype

DataPrototype

AutosarDataPrototype

PortPrototype

AbstractProvidedPortPrototype

DataFilter

+ dataFilterType:
DataFilterTypeEnum [0..1]

+ mask: UnlimitedInteger [0..1]
+ max: UnlimitedInteger [0..1]
+ min: UnlimitedInteger [0..1]
+ offset: PositiveInteger [0..1]
+ period: PositiveInteger [0..1]
+ x: UnlimitedInteger [0..1]

TransmissionComSpecProps

+ dataUpdatePeriod: TimeValue [0..1]
+ minimumSendInterval: TimeValue [0..1]
+ transmissionMode: TransmissionModeDefinitionEnum [0..1]

«enumeration»
TransmissionModeDefinitionEnum

 cyclic
 triggered
 cyclicAndOnChange

+dataElement

0..1

+transmissionAcknowledge 0..1 +initValue 0..1

+transmissionProps0..1

+compositeNetworkRepresentation0..*

+dataFilter 0..1

«instanceRef»

+leafElement 0..1

+networkRepresentation 0..1

+networkRepresentation 0..1+providedComSpec 0..*

Figure 4.36: Communication attributes of PPortPrototype with respect to sender-
receiver communication.

Please note:

• SenderComSpec.usesEndToEndProtection does not have any influence on
code generation.

It could be used, for example, by a validation framework to make sure that, if set
to True the dataElement meets a transformer configuration for all respective
SwConnectors connecting to the PortPrototype that owns the SenderCom-
Spec.

• SenderComSpec.usesEndToEndProtection could be used as a statement
from the application developer that the given dataElement shall be end-to-end
protected.

177 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

However, it seems far-fetched for an application developer to expressly state that
a dataElement shall not be end-to-end protected. This goes beyond the re-
sponsibility of an application developer.

Therefore, two relevant states for SenderComSpec.usesEndToEndProtec-
tion can be expected:

– attribute exists and is set to True (application developer asserts the neces-
sity to end-to-end protect the dataElement)

– attribute does not exist (application developer doesn’t care)

• The application developer may not have enough oversight to envision how the
dataElement is communicated, i.e. local vs. network communication. Setting
usesEndToEndProtection to True and then deploy the enclosing software-
component such that it communicates only locally on the respective PortProto-
type also seems unusual for the current situation regarding transformer-based
communication.

[constr_1539] Restriction for SenderComSpec.dataElement dThe reference
SenderComSpec.dataElement shall not refer to an ArgumentDataPrototype or
ParameterDataPrototype at the time when the contract phase gen-
eration is executed.c()

Class SenderComSpec (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes for a sender port (PPortPrototype typed by SenderReceiverInterface).

Base ARObject , PPortComSpec

Subclasses NonqueuedSenderComSpec, QueuedSenderComSpec

Attribute Type Mult. Kind Note

composite
Network
Representation

CompositeNetwork
Representation

* aggr This represents a CompositeNetworkRepresentation
defined in the context of a SenderComSpec.

dataElement AutosarDataPrototype 0..1 ref Data element these quality of service attributes apply to.

handleOutOf
Range

HandleOutOfRange
Enum

0..1 attr This attribute controls how out-of-range values shall be
dealt with.

network
Representation

SwDataDefProps 0..1 aggr A networkRepresentation is used to define how the data
Element is mapped to a communication bus.

transmission
Acknowledge

Transmission
Acknowledgement
Request

0..1 aggr Requested transmission acknowledgement for data
element.

transmission
Props

TransmissionComSpec
Props

0..1 aggr This aggregation represents the definition transmission
props in the context of the enclosing SenderComSpec.

usesEndToEnd
Protection

Boolean 0..1 attr This indicates whether the corresponding dataElement
shall be transmitted using end-to-end protection.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 4.72: SenderComSpec

178 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01820] Existence of attribute SenderComSpec.handleOutOfRange
dIf attribute SenderComSpec.handleOutOfRange does not exist at the time when
the RTE is generated then value none shall be assumed.c()

Class QueuedSenderComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes specific to distribution of events (PPortPrototype, SenderReceiverInterface and
dataElement carries an "event").

Base ARObject , PPortComSpec, SenderComSpec

Attribute Type Mult. Kind Note

– – – – –

Table 4.73: QueuedSenderComSpec

Class NonqueuedSenderComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes for non-queued sender/receiver communication (sender side)

Base ARObject , PPortComSpec, SenderComSpec

Attribute Type Mult. Kind Note

dataFilter DataFilter 0..1 aggr The applicable filter algorithm for filtering the value of the
corresponding dataElement.

initValue ValueSpecification 0..1 aggr Initial value to be sent if sender component is not yet fully
initialized, but receiver needs data already.

Table 4.74: NonqueuedSenderComSpec

Class TransmissionComSpecProps

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note This meta-class defines a set of transmission attributes which the application software is assumed to
implement.

Base ARObject

Attribute Type Mult. Kind Note

dataUpdate
Period

TimeValue 0..1 attr This attribute defines the period in which the application is
assumed to transmit the respective data.

minimumSend
Interval

TimeValue 0..1 attr This attribute defines the minimum interval between two
consecutive transmissions of the respective data the
application is assumed to ensure.

transmission
Mode

TransmissionMode
DefinitionEnum

0..1 attr The attribute defines the mode in which the application is
assumed to transmit the respective data.

Table 4.75: TransmissionComSpecProps

Class TransmissionAcknowledgementRequest

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Requests transmission acknowledgement that data has been sent successfully. Success/failure is
reported via a SendPoint of a RunnableEntity.

Base ARObject

Attribute Type Mult. Kind Note

5

179 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class TransmissionAcknowledgementRequest

timeout TimeValue 0..1 attr Number of seconds before an error is reported or in case
of allowed redundancy, the value is sent again.

Table 4.76: TransmissionAcknowledgementRequest

[constr_1892] Existence of attribute TransmissionAcknowledgementRequest.
timeout dFor each TransmissionAcknowledgementRequest, attribute timeout
shall exist at the time when the contract phase generation is exe-
cuted.c()

Enumeration HandleOutOfRangeEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note A value of this type is taken for controlling the range checking behavior of the AUTOSAR RTE.

Literal Description

default The RTE will use the initValue if the actual value is out of the specified bounds.

Tags:atp.EnumerationLiteralIndex=0

external
Replacement

This indicates that the value replacement is sourced from the attribute replaceWith.

Tags:atp.EnumerationLiteralIndex=1

ignore The RTE will ignore any attempt to send or receive the corresponding dataElement if the value is out
of the specified range.

Tags:atp.EnumerationLiteralIndex=2

invalid The RTE will use the invalidValue if the value is out of the specified bounds.

Tags:atp.EnumerationLiteralIndex=3

none A range check is not required.

Tags:atp.EnumerationLiteralIndex=4

saturate The RTE will saturate the value of the dataElement such that it is limited to the applicable upper
bound if it is greater than the upper bound. Consequently, it is limited to the applicable lower bound if
the value is less than the lower bound.

Tags:atp.EnumerationLiteralIndex=5

Table 4.77: HandleOutOfRangeEnum

Enumeration TransmissionModeDefinitionEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note This meta-class defines possible settings for the transmission mode.

Literal Description

cyclic The data is assumed to be transmitted in a cyclic manner. The cycle is defined by dataUpdatePeriod.

Tags:atp.EnumerationLiteralIndex=0

cyclicAndOn
Change

The data is assumed to be transmitted in a cyclic manner (with cycle time dataUpdatePeriod) and
additionally there may be arbitrary transmission if the data value changes (minimumSendInterval to
be respected, if defined).

Tags:atp.EnumerationLiteralIndex=2

triggered The data is assumed to be transmitted in an arbitrary manner (minimumSendInterval to be respected,
if defined).

Tags:atp.EnumerationLiteralIndex=1

Table 4.78: TransmissionModeDefinitionEnum

180 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class CompositeNetworkRepresentation

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note This meta-class is used to define the network representation of leaf elements of composite application
data types.

Base ARObject

Attribute Type Mult. Kind Note

leafElement ApplicationComposite
ElementDataPrototype

0..1 iref This represents that leaf element of an application
composite data type.

InstanceRef implemented by:ApplicationComposite
ElementInPortInterfaceInstanceRef

network
Representation

SwDataDefProps 0..1 aggr The SwDataDefProps owned by the CompositeNetwork
Representation are used to define the network
representation of the leaf element of an Application
CompositeDataType.

Table 4.79: CompositeNetworkRepresentation

4.5.1.3 Data Filter

Figure 4.37 shows the model of the communication attributes relevant for defining data
filters.

DataFilter

+ dataFilterType: DataFilterTypeEnum [0..1]
+ mask: UnlimitedInteger [0..1]
+ max: UnlimitedInteger [0..1]
+ min: UnlimitedInteger [0..1]
+ offset: PositiveInteger [0..1]
+ period: PositiveInteger [0..1]
+ x: UnlimitedInteger [0..1]

«enumeration»
DataFilterTypeEnum

 always
 maskedNewEqualsX
 maskedNewDiffersMaskedOld
 maskedNewDiffersX
 never
 newIsWithin
 newIsOutside
 oneEveryN

Figure 4.37: DataFilter and its communication attributes.

[TPS_SWCT_01221] DataFilter dFor every RPortPrototype or PPortProto-
type typed by a SenderReceiverInterface, a DataFilter can be defined given
that non-queued communication is foreseen.c()

Several filter algorithms formally described by the enumeration type DataFilter-
TypeEnum in the meta-model are taken from the ISO 17356-4 specification [17] that is
referenced by the RTE specification [2].

[TPS_SWCT_01222] Applicability of DataFilter dThis ISO 17356-4 specification
states that “filtering is only used for messages that can be interpreted as C lan-
guage unsigned integer types (characters, unsigned integers and enumerations).”c
(RS_SWCT_03221)

[constr_1044] Applicability of DataFilter dAccording to the origin of DataFil-
ter, i.e. ISO 17356-4 specification [17], DataFilters can only be applied to values
with an integer base type at any time in the workflow.c()

181 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class DataFilter
Package M2::AUTOSARTemplates::CommonStructure::Filter

Note Base class for data filters. The type of the filter is specified in attribute dataFilterType. Some of the filter
types require additional arguments which are specified as attributes of this class.

Base ARObject

Attribute Type Mult. Kind Note

dataFilterType DataFilterTypeEnum 0..1 attr This attribute specifies the type of the filter.

mask UnlimitedInteger 0..1 attr Mask for old and new value.

max UnlimitedInteger 0..1 attr Value to specify the upper boundary

min UnlimitedInteger 0..1 attr Value to specify the lower boundary

offset PositiveInteger 0..1 attr Specifies the initial number of messages to occur before
the first message is passed

period PositiveInteger 0..1 attr Specifies number of messages to occur before the
message is passed again

x UnlimitedInteger 0..1 attr Value to compare with

Table 4.80: DataFilter

[constr_1890] Existence of attribute DataFilter.dataFilterType dFor each
DataFilter, attribute dataFilterType shall exist at the time when the RTE
is generated.c()

Enumeration DataFilterTypeEnum

Package M2::AUTOSARTemplates::CommonStructure::Filter

Note This enum specifies the supported DataFilterTypes.

Literal Description

always No filtering is performed so that the message always passes.

Tags:atp.EnumerationLiteralIndex=0

maskedNewDiffers
MaskedOld

Pass messages where the masked value has changed.

(new_value&mask) !=(old_value&mask)

new_value: current value of the message

old_value: last value of the message (initialized with the initial value of the message, updated with
new_value if the new message value is not filtered out)

Tags:atp.EnumerationLiteralIndex=1

maskedNewDiffers
X

Pass messages whose masked value is not equal to a specific value x

(new_value&mask) != x

new_value: current value of the message

Tags:atp.EnumerationLiteralIndex=2

maskedNewEquals
X

Pass messages whose masked value is equal to a specific value x

(new_value&mask) == x

new_value: current value of the message

Tags:atp.EnumerationLiteralIndex=3

never The filter removes all messages.

Tags:atp.EnumerationLiteralIndex=4

5

182 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration DataFilterTypeEnum

newIsOutside Pass a message if its value is outside a predefined boundary.

(min > new_value) OR (new_value > max)

Tags:atp.EnumerationLiteralIndex=5

newIsWithin Pass a message if its value is within a predefined boundary.

min <= new_value <= max

Tags:atp.EnumerationLiteralIndex=6

oneEveryN Pass a message once every N message occurrences.

Algorithm: occurrence % period == offset

Start: occurrence = 0.

Each time the message is received or transmitted, occurrence is incremented by 1 after filtering.
Length of occurrence is 8 bit (minimum).

Tags:atp.EnumerationLiteralIndex=7

Table 4.81: DataFilterTypeEnum

4.5.1.4 Communication between Application and NV Block Software Compo-
nents

In many cases, communication between an NvBlockSwComponentType (see 11.5.2)
and an ApplicationSwComponentType is implemented based on mixed commu-
nication approaches, i.e. the ApplicationSwComponentType most likely uses
a PortPrototype typed by a SenderReceiverInterface while the NvBlock-
SwComponentType uses a PortPrototype typed by an NvDataInterface.

In such a case it is necessary to clarify the usage of attributes of the respective Com-
Spec on both the sender and receiver side. For this purpose, the constraints [con-
str_10071] and [constr_10072] are defined8.

[constr_10071] Allowed multiplicities of SenderComSpec attributes for commu-
nication between ApplicationSwComponentType and NvBlockSwComponent-
Type dThe allowed multiplicities for SenderComSpec attributes for a communica-
tion between ApplicationSwComponentType and NvBlockSwComponentType
are documented in Table 4.82.

This rule shall be imposed at the time when the RTE is generated.c()

8As a general rule, queued communication between ApplicationSwComponentType and
NvBlockSwComponentType is not supported by AUTOSAR. The tables 4.82 (referenced by [con-
str_10071]) and 4.83 (referenced by [constr_10072]) nevertheless contain a column that represents
the case of queued communication for the sake of completeness. But consequently, this column is
consistently filled with “n/a” entries in the respective tables.

183 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Sender ApplicationSwComponentType

Receiver NvBlockSwComponentType

Queuing Configuration non-queued queued

SenderComSpec.transmissionAcknowledge d/c n/a

SenderComSpec.dataElement 1 n/a

SenderComSpec.handleOutOfRange d/c n/a

SenderComSpec.usesEndToEndProtection d/c n/a

SenderComSpec.transmissionProps.dataUpdatePeriod 0..1 n/a

SenderComSpec.transmissionProps.minimumSendInterval 0..1 n/a

SenderComSpec.transmissionProps.transmissionMode 0..1 n/a

SenderComSpec.networkRepresentation d/c n/a

SenderComSpec.compositeNetworkRepresentation d/c n/a

NonqueuedSenderComSpec.dataFilter d/c n/a

NonqueuedSenderComSpec.initValue 0..1 n/a

Table 4.82: Allowed multiplicities of SenderComSpec attributes for communica-
tion between ApplicationSwComponentType and NvBlockSwComponentType

Please note that the abbreviation “d/c” stands for “don’t care”.

[constr_10072] Allowed multiplicities of SenderComSpec attributes for commu-
nication between NvBlockSwComponentType and ApplicationSwComponent-
Type dThe allowed multiplicities for SenderComSpec attributes for a communica-
tion between NvBlockSwComponentType and ApplicationSwComponentType
are documented in Table 4.83.

This rule shall be imposed at the time when the RTE is generated.c()

Sender NvBlockSwComponentType

Receiver ApplicationSwComponentType

Queuing Configuration non-queued queued

ReceiverComSpec.replaceWith 0 n/a

ReceiverComSpec.dataElement 1 n/a

ReceiverComSpec.receptionProps.dataUpdatePeriod 0 n/a

ReceiverComSpec.receptionProps.timeout 0 n/a

ReceiverComSpec.usesEndToEndProtection 0 n/a

ReceiverComSpec.maxDeltaCounterInit 0 n/a

ReceiverComSpec.handleOutOfRange 0 n/a

ReceiverComSpec.handleOutOfRangeStatus 0 n/a

ReceiverComSpec.maxNoNewOrRepeatedData 0 n/a

ReceiverComSpec.syncCounterInit 0 n/a

ReceiverComSpec.transformationComSpecProps 0 n/a

ReceiverComSpec.networkRepresentation 0 n/a

ReceiverComSpec.compositeNetworkRepresentation 0 n/a

QueuedReceiverComSpec.queueLength n/a n/a

NonqueuedReceiverComSpec.filter 0 n/a

NonqueuedReceiverComSpec.timeoutSubstitutionValue 0 n/a

5

184 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
NonqueuedReceiverComSpec.initValue 0..1 n/a

NonqueuedReceiverComSpec.aliveTimeout 0 n/a

NonqueuedReceiverComSpec.enableUpdate 0 n/a

NonqueuedReceiverComSpec.handleDataStatus 0 n/a

NonqueuedReceiverComSpec.handleNeverReceived 0..1 n/a

NonqueuedReceiverComSpec.handleTimeoutType 0 n/a

Table 4.83: Allowed multiplicities of ReceiverComSpec attributes for communi-
cation between NvBlockSwComponentType and ApplicationSwComponent-
Type

4.5.1.5 Communication behavior to be implemented by the Software Compo-
nent

AUTOSAR supports the handling of periodic data transmission and reception timeout
checking in the Classic AUTOSAR Basic Software layer. The definition of the transmis-
sion modes and time values is defined using the TPS_SystemTemplate [10].

The only value which is also available at the NonqueuedReceiverComSpec is the
aliveTimeout - as this value configures both communication stack timeout handling
(in case of remote communication) and RTE timeout handling (in case of local commu-
nication).

With the introduction of the transformer technology the aspects of periodic data trans-
mission and checking for timeout on reception may have to be implemented by the
application code. The main reason is that the E2E-Transformer needs to be called
periodically in order to keep its state machine up to date.

So, the application code needs to call the transmission / reception APIs periodically in
order to fulfill these timing requirements. But there may also be other reasons why the
application shall take care of the periodicity, for example in case the LdCom module
(which doesn’t have any timing features) is used.

The meta-classes TransmissionComSpecProps and ReceptionComSpecProps
have been introduced to define the expected communication behavior to be imple-
mented by the application code.

As the TransmissionComSpecProps and ReceptionComSpecProps define what
the expected communication behavior is, the values can also be utilized by commu-
nication (network) measurement tools to verify whether the application code actually
implements the attributes properly.

The attribute ReceptionComSpecProps.dataUpdatePeriod defines the time pe-
riod in which the receiving application shall call the reception API to check for new
data.

185 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The attribute ReceptionComSpecProps.timeout defines the time after which the
application shall assume that the to-be-received data reception has timed out.

The attribute NonqueuedReceiverComSpec.aliveTimeout might be defined as
well, resulting in duplicate timeout checks.

The communication stack / RTE would check for the value of attribute aliveTimeout
and the application code would check for the ReceptionComSpecProps.timeout.
Although it does not seem sensible to perform a timeout check twice, it is not forbidden.

The attribute TransmissionComSpecProps.dataUpdatePeriod defines the time
period in which the sending application shall call the send API.

The attributes TransmissionComSpecProps.minimumSendInterval and
TransmissionComSpecProps.transmissionMode define values which influence
the transmission behavior, implemented by the application code.

Note that the communication stack might also have a periodicity, minimum sending
time and transmission mode defined. And such doubled implementation might lead to
undesired effects. However AUTOSAR does not regulate the usage of the mechanisms
to be exclusive.

4.5.2 Communication Specification for Client-Server Communication

4.5.2.1 Client ComSpec

The communication aspects relevant for client communication are sketched in Figure
4.38.

RPortComSpec

ClientComSpec

+ endToEndCallResponseTimeout: TimeValue [0..1]

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

PortPrototype

AbstractRequiredPortPrototype

Describable

TransformationComSpecProps

+requiredComSpec

0..*

+operation

0..1

+transformationComSpecProps

0..*

Figure 4.38: Communication attributes of RPortPrototype with respect to client-server
communication.

[constr_1540] Existence of ClientComSpec.operation dThe reference Client-
ComSpec.operation shall exist if the AbstractRequiredPortPrototype that
owns the ClientComSpec is typed by a ClientServerInterface. This rule shall
be imposed at any time in the workflow.c()

186 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ClientComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Client-specific communication attributes (RPortPrototype typed by ClientServerInterface).

Base ARObject , RPortComSpec

Attribute Type Mult. Kind Note

endToEndCall
Response
Timeout

TimeValue 0..1 attr This attribute defines the maximum time interval in which
the application shall expect the servers’s response (time
between the sending of the call invocation until the arrival
of the server’s response).

operation ClientServerOperation 0..1 ref This represents the corresponding ClientServerOperation.

transformation
ComSpecProps

TransformationCom
SpecProps

* aggr This references the TransformationComSpecProps which
define port-specific configuration for data transformation.

Table 4.84: ClientComSpec

Note: on the AUTOSAR adaptive platform the ClientComSpec can also be used in
the context of RPortPrototypes typed by PortInterfaces that are not available
on the AUTOSAR classic platform. This is the motivation for the existence of [con-
str_1540].

[TPS_SWCT_01595] Semantics of attribute ClientComSpec.transformation-
ComSpecProps dThe attribute ClientComSpec.transformationComSpecProps
shall be used to configure PortPrototype-specific properties for data transforma-
tion in case of Client/Server inter-ECU communication for the reception of the server’s
response.c(RS_SWCT_03221)

4.5.2.2 Server ComSpec

The server side looks very similar but provides an attribute for specifying the queue
length.

PPortComSpec

ServerComSpec

+ queueLength: PositiveInteger [0..1]

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

PortPrototype

AbstractProvidedPortPrototype

Describable

TransformationComSpecProps

+operation 0..1

+providedComSpec

0..*

+transformationComSpecProps 0..*

Figure 4.39: Communication attributes of PPortPrototype with respect to client-server
communication.

187 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ServerComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes for a server port (PPortPrototype and ClientServerInterface).

Base ARObject , PPortComSpec

Attribute Type Mult. Kind Note

operation ClientServerOperation 0..1 ref Operation these communication attributes apply to.

queueLength PositiveInteger 0..1 attr Length of call queue on the server side. The queue is
implemented by the RTE. The value shall be greater or
equal to 1. Setting the value of queueLength to 1 implies
that incoming requests are rejected while another request
that arrived earlier is being processed.

transformation
ComSpecProps

TransformationCom
SpecProps

* aggr This references the TransformationComSpecProps which
define port-specific configuration for data transformation.

Table 4.85: ServerComSpec

[constr_1893] Existence of attribute ServerComSpec.queueLength dFor each
ServerComSpec, attribute queueLength shall exist at the time when the RTE
is generated.c()

[constr_1541] Existence of ServerComSpec.operation dThe reference Server-
ComSpec.operation shall exist if the AbstractProvidedPortPrototype that
owns the ServerComSpec is typed by a ClientServerInterface.

This rule shall be imposed at any time in the workflow.c()

Note: on the AUTOSAR adaptive platform the ServerComSpec can also be used in
the context of RPortPrototypes typed by PortInterfaces that are not available
on the AUTOSAR classic platform. This is the motivation for the existence of [con-
str_1541].

[TPS_SWCT_01225] RunnableEntity implements the functionality of more than
one ClientServerOperations dA single RunnableEntity can implement the
functionality of more than one ClientServerOperations.

For this purpose, one OperationInvokedEvent for each affected ClientServer-
Operation shall reference the respective RunnableEntity.

The attribute ServerComSpec.queueLength shall be taken for the determination of
the resulting queue length, [constr_1128] applies.c()

For more information about requirements towards ClientServerOperations trig-
gering the same RunnableEntity can be found in section 7.2.4.3, specifically [con-
str_2000].

[constr_1128] Queue length of ClientServerOperations associated with the
same RunnableEntity dIf two or more OperationInvokedEvents reference a
single RunnableEntity the value of the ServerComSpec attribute queueLength
shall be identical for all ServerComSpecs owned by PPortPrototypes of the en-
closing SwComponentType that reference one of the ClientServerOperations
that are also referenced by the OperationInvokedEvents.

188 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the RTE is generated.c()

[TPS_SWCT_01596] Semantics of attribute ServerComSpec.transformation-
ComSpecProps dThe attribute ServerComSpec.transformationComSpecProps
shall be used to configure PortPrototype-specific properties for data transforma-
tion in case of Client/Server inter-ECU communication for the reception of the client’s
request.c(RS_SWCT_03221)

See chapter 4.5.6 for details.

4.5.3 Communication Specification for Mode Switch Communication

4.5.3.1 Mode Switch Sender ComSpec

In analogy to the previous section, Figure 4.40 shows the meta-model elements rele-
vant for a mode switch communication.

On the sender side it is possible to specify that an acknowledgement is supposed to
be returned that indicates the successful processing of the mode switch request.

ModeSwitchSenderComSpec

+ enhancedModeApi: Boolean [0..1]
+ queueLength: PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

ModeSwitchedAckRequest

+ timeout: TimeValue [0..1]

PPortComSpec
PortPrototype

AbstractProvidedPortPrototype

+modeGroup

0..1

+providedComSpec

0..*

+modeSwitchedAck

0..1

Figure 4.40: Communication attributes of PPortPrototype with respect to mode switch
communication.

Class ModeSwitchSenderComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of PPortPrototypes with respect to mode communication

Base ARObject , PPortComSpec

Attribute Type Mult. Kind Note

enhancedMode
Api

Boolean 0..1 attr This controls the creation of the enhanced mode API that
returns information about the previous mode and the next
mode. If set to "true" the enhanced mode API is
supposed to be generated. For more details please refer
to the SWS_RTE.

modeGroup ModeDeclarationGroup
Prototype

0..1 ref ModeDeclarationGroupPrototype (of the same Port
Interface) to which these communication attributes apply.

5

189 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ModeSwitchSenderComSpec

modeSwitched
Ack

ModeSwitchedAck
Request

0..1 aggr If this aggregation exists an acknowledgement for the
successful processing of the mode switch request is
required.

queueLength PositiveInteger 0..1 attr Length of call queue on the mode user side. The queue is
implemented by the RTE. The value shall be greater or
equal to 1. Setting the value of queueLength to 1 implies
that incoming requests are rejected while another request
that arrived earlier is being processed.

Table 4.86: ModeSwitchSenderComSpec

Class ModeSwitchedAckRequest

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Requests acknowledgements that a mode switch has been proceeded successfully

Base ARObject

Attribute Type Mult. Kind Note

timeout TimeValue 0..1 attr Number of seconds before an error is reported or in case
of allowed redundancy, the value is sent again.

Table 4.87: ModeSwitchedAckRequest

[constr_1894] Existence of attribute ModeSwitchSenderComSpec.queueLength
dFor each ModeSwitchSenderComSpec, attribute queueLength shall exist at the
time when the RTE is generated.c()

[constr_1895] Existence of attribute ModeSwitchSenderComSpec.modeGroup
dFor each ModeSwitchSenderComSpec, attribute modeGroup shall exist at the
time when the contract phase generation is executed.c()

4.5.3.2 Mode Switch Receiver ComSpec

[TPS_SWCT_01514] Duplicate existence of enhancedModeApi in the context
of a PRPortPrototype dIf the attribute enhancedModeApi is defined in a Mod-
eSwitchReceiverComSpec owned by a PRPortPrototype, its value shall be ig-
nored.c(RS_SWCT_03250)

RPortComSpec

ModeSwitchReceiverComSpec

+ enhancedModeApi: Boolean [0..1]
+ supportsAsynchronousModeSwitch: Boolean [0..1]

PortPrototype

AbstractRequiredPortPrototype

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

+requiredComSpec

0..*

+modeGroup

0..1

Figure 4.41: Communication attributes of PPortPrototype with respect to mode switch
communication.

190 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ModeSwitchReceiverComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of RPortPrototypes with respect to mode communication

Base ARObject , RPortComSpec

Attribute Type Mult. Kind Note

enhancedMode
Api

Boolean 0..1 attr This controls the creation of the enhanced mode API that
returns information about the previous mode and the next
mode. If set to "true" the enhanced mode API is
supposed to be generated. For more details please refer
to the SWS_RTE.

modeGroup ModeDeclarationGroup
Prototype

0..1 ref ModeDeclarationGroupPrototype (of the same Port
Interface) to which these communication attributes apply.

supports
Asynchronous
ModeSwitch

Boolean 0..1 attr This attribute controls the behavior of the corresponding
RPortPrototype with respect to the question whether it
can deal with asynchronous mode switch requests, i.e. if
set to true, the RPortPrototype is able to deal with an
asynchronous mode switch request.

Table 4.88: ModeSwitchReceiverComSpec

[constr_1896] Existence of attribute ModeSwitchReceiverComSpec.modeGroup
dFor each ModeSwitchReceiverComSpec, attribute modeGroup shall exist at the
time when the contract phase generation is executed.c()

4.5.4 Communication Specification for Parameters

Granted, the definition of a ComSpec for ParameterDataPrototypes looks strange
on first sight. A ParameterDataPrototype owned by a PPortPrototype typed by
a ParameterInterface is not actually transmitted over any communication medium.
Therefore, the term communication should in this case be taken with a grain of salt.

However, it is generally necessary to be able to define role-specific initial values for Pa-
rameterDataPrototypes aggregated in a ParameterInterface. In other words,
the actual problem closely resembles the definition of initial values in the case of
sender-receiver communication.

[TPS_SWCT_01226] initValue on the level of a ComSpec is relevant for connec-
tions to the corresponding PortPrototype dPlease note that (along the example
of sender-receiver communication) only the initValue defined in the context of a
ParameterProvideComSpec or ParameterRequireComSpec is relevant for con-
nections to the corresponding PortPrototype. An initValue defined in the scope
of a ParameterDataPrototype is ignored.c()

Therefore, it is only reasonable to apply the existing and well-known pattern to the
definition of initial values for ParameterDataPrototypes aggregated in a Parame-
terInterface. The actual modeling is sketched in Figure 4.42 for provided Parame-
terDataPrototypes and in Figure 4.43 for required ParameterDataPrototypes.

191 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

PPortComSpec

ValueSpecification

+ shortLabel: Identifier [0..1]

ParameterProvideComSpec
AutosarDataPrototype

ParameterDataPrototype

PortPrototype

AbstractProvidedPortPrototype

+parameter

0..1

+providedComSpec

0..*

+initValue

0..1

Figure 4.42: Communication attributes of ParameterDataPrototypes with respect to
PPortPrototype

Class ParameterProvideComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note "Communication" specification that applies to parameters on the provided side of a connection.

Base ARObject , PPortComSpec

Attribute Type Mult. Kind Note

initValue ValueSpecification 0..1 aggr The initial value applicable for the corresponding
ParameterDataPrototype.

parameter ParameterData
Prototype

0..1 ref The ParameterDataPrototype to which the Parameter
ComSpec applies.

Table 4.89: ParameterProvideComSpec

[constr_1897] Existence of reference ParameterProvideComSpec.parameter
dFor each ParameterProvideComSpec, the reference parameter shall exist at
the time when the contract phase generation is executed.c()

RPortComSpec

ParameterRequireComSpecValueSpecification

+ shortLabel: Identifier [0..1]

AutosarDataPrototype

ParameterDataPrototype

PortPrototype

AbstractRequiredPortPrototype

+parameter

0..1

+initValue

0..1

+requiredComSpec

0..*

Figure 4.43: Communication attributes of ParameterDataPrototypes with respect to
RPortPrototype

Class ParameterRequireComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note "Communication" specification that applies to parameters on the required side of a connection.

Base ARObject , RPortComSpec

Attribute Type Mult. Kind Note

initValue ValueSpecification 0..1 aggr The initial value applicable for the corresponding
ParameterDataPrototype.

parameter ParameterData
Prototype

0..1 ref The ParameterDataPrototype to which the Parameter
RequireComSpec applies.

Table 4.90: ParameterRequireComSpec

192 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1898] Existence of reference ParameterRequireComSpec.parameter
dFor each ParameterRequireComSpec, the reference parameter shall exist at
the time when the contract phase generation is executed.c()

4.5.5 Communication Specification for NV Data

4.5.5.1 NV Require ComSpec

[TPS_SWCT_01227] Unconnected AbstractRequiredPortPrototype typed by
NvDataInterface dFor this purpose it is possible to let the AbstractRequired-
PortPrototype own an NvRequireComSpec that in turn owns a ValueSpecifi-
cation in the role of initValue.

It is therefore possible to provide an nvData with a reasonable value even if the
corresponding AbstractRequiredPortPrototype remains unconnected.c(RS_-
SWCT_03225)

NvRequireComSpec
AutosarDataPrototype

VariableDataPrototype
ValueSpecification

+ shortLabel: Identifier [0..1]

RPortComSpec PortPrototype

AbstractRequiredPortPrototype

+variable

0..1

+requiredComSpec

0..*

+initValue

0..1

Figure 4.44: Communication attributes of a required VariableDataPrototypes used in
the context of an NvDataInterface

[TPS_SWCT_01754] initValue defined in the context of a ComSpec dUnless
[TPS_SWCT_01755] applies, only the initValue defined in the context of a NvRe-
quireComSpec is relevant for connections to the corresponding PortPrototype.

An initValue defined in the scope of a VariableDataPrototype shall be ignored
anyway.c(RS_SWCT_03225)

[TPS_SWCT_01755] Duplicate existence of initValue in the context of a PR-
PortPrototype typed by an NvDataInterface dIf an initValue is defined in a
NvRequireComSpec owned by a PRPortPrototype, its value shall be ignored.

Instead, the initValue shall be taken from the NvProvideComSpec.ramBlock-
InitValue.c(RS_SWCT_03225)

Class NvRequireComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of RPortPrototypes with respect to Nv data communication on the required
side.

Base ARObject , RPortComSpec

Attribute Type Mult. Kind Note

5

193 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class NvRequireComSpec

initValue ValueSpecification 0..1 aggr The initial value owned by the NvComSpec

variable VariableDataPrototype 0..1 ref The VariableDataPrototype the ComSpec applies for.

Table 4.91: NvRequireComSpec

[constr_1899] Existence of reference NvRequireComSpec.variable dFor each
NvRequireComSpec, the reference variable shall exist at the time when the
contract phase generation is executed.c()

4.5.5.2 NV Provide ComSpec

[TPS_SWCT_01228] NvProvideComSpec dAs communication with an NvBlock-
SwComponentType is in most cases bi-directional it is also necessary to consider role-
specific communication attributes for AbstractProvidedPortPrototypes typed
by an NvDataInterface. For this purpose the NvProvideComSpec is defined.

The main purpose of this kind of ComSpec is the definition of initial values for the RAM
Block and the ROM Block that corresponds to an nvData defined in the context
of the NvDataInterface used to type the given AbstractProvidedPortProto-
type.c(RS_SWCT_03225)

More information about NvProvideComSpec please refer to Figure 4.45.

Note that these initial values can be taken as an input for designing an NvBlock-
SwComponentType, in particular the ramBlocks and romBlocks of NvBlockDe-
scriptors owned by the NvBlockSwComponentType. Further details are explained
in Figure 11.9.

Also, note that the romBlockInitValue provided in the NvProvideComSpec does
not necessarily have to be identical to the respective section within romBlock in the
NvBlockDescriptor.

This could happen if an NvBlockSwComponentType is already existing and an Ap-
plicationSwComponentType is connected to it. Finally, the romBlock inside the
NvBlockDescriptor is the only relevant information for the RTE generation.

PPortComSpec

NvProvideComSpecValueSpecification

+ shortLabel: Identifier [0..1]

AutosarDataPrototype

VariableDataPrototype

PortPrototype

AbstractProvidedPortPrototype
+providedComSpec

0..*

+variable

0..1

+romBlockInitValue

0..1

+ramBlockInitValue

0..1

Figure 4.45: Communication attributes of a provided VariableDataPrototypes used
in the context of an NvDataInterface

194 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In other words, by means of the NvProvideComSpec the author of an Applica-
tionSwComponentType can express detailed requirements on the later design of a
corresponding NvBlockSwComponentType.

Class NvProvideComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of PPortPrototypes with respect to Nv data communication on the provided
side.

Base ARObject , PPortComSpec

Attribute Type Mult. Kind Note

ramBlockInit
Value

ValueSpecification 0..1 aggr This represents the initial value of the RAM Block that
corresponds to the referenced variable.

romBlockInit
Value

ValueSpecification 0..1 aggr This represents the initial value of the ROM block that
corresponds to the referenced variable.

variable VariableDataPrototype 0..1 ref This represents the variable for which the ComSpec is
specified.

Table 4.92: NvProvideComSpec

[constr_1900] Existence of reference NvProvideComSpec.variable dFor each
NvProvideComSpec, the reference variable shall exist at the time when the
contract phase generation is executed.c()

4.5.6 Configuration of Data Transformation

The big picture of data transformation in AUTOSR is explained in the TPS System
Template [10]. This chapter focuses on the aspects of data transformation that are
related to the configuration of software-components.

Using the TransformationComSpecProps it is possible to define configuration op-
tions for specific transformers of inter-ECU communication which is subject to data
transformation.

[TPS_SWCT_01594] Semantics of TransformationComSpecProps dThe defini-
tion of a TransformationComSpecProps can always be provided in the SWC de-
scription but the configuration shall only have an effect if

1. the actual communication involves at least two EcuInstances

2. the respective data transformer (given by the used TransformationCom-
SpecProps) is used during data transformation (see DataTransformation)

c(RS_SWCT_03221)

For clarification, the configuration given in TransformationComSpecProps will sim-
ply be ignored if the conditions defined by [TPS_SWCT_01594] do not apply.

[TPS_SWCT_01597] PortPrototype-specific data transformation configuration
dMeta-class TransformationComSpecProps shall be used for the specification of

195 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

PortPrototype-specific configuration options for data transformation of inter-ECU
communication.c(RS_SWCT_03221)

Please note that only some transformers offer PortPrototype-specific configuration
(e.g. SOME/IP transformer doesn’t have TransformationComSpecProps).

Describable

TransformationComSpecProps
EndToEndTransformationComSpecProps

+ clearFromValidToInvalid: Boolean [0..1]
+ disableEndToEndCheck: Boolean [0..1]
+ disableEndToEndStateMachine: Boolean [0..1]
+ maxDeltaCounter: PositiveInteger [0..1]
+ maxErrorStateInit: PositiveInteger [0..1]
+ maxErrorStateInvalid: PositiveInteger [0..1]
+ maxErrorStateValid: PositiveInteger [0..1]
+ maxNoNewOrRepeatedData: PositiveInteger [0..1]
+ minOkStateInit: PositiveInteger [0..1]
+ minOkStateInvalid: PositiveInteger [0..1]
+ minOkStateValid: PositiveInteger [0..1]
+ syncCounterInit: PositiveInteger [0..1]
+ windowSizeInit: PositiveInteger [0..1]
+ windowSizeInvalid: PositiveInteger [0..1]
+ windowSizeValid: PositiveInteger [0..1]

UserDefinedTransformationComSpecProps
RPortComSpec

ReceiverComSpec

PPortComSpec

ServerComSpec

RPortComSpec

ClientComSpec

+ endToEndCallResponseTimeout: TimeValue [0..1]

ARElement

E2EProfileCompatibi li tyProps

+ transitToInvalidExtended: Boolean [0..1]

+transformationComSpecProps 0..*

+e2eProfi leCompatibi l ityProps

0..1

+transformationComSpecProps0..* +transformationComSpecProps 0..*

Figure 4.46: Specification of data transformation properties within ReceiverComSpec,
ServerComSpec, and ClientComSpec

Class TransformationComSpecProps (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note TransformationComSpecProps holds all the attributes for transformers that are port specific.

Base ARObject , Describable

Subclasses EndToEndTransformationComSpecProps, UserDefinedTransformationComSpecProps

Attribute Type Mult. Kind Note

– – – – –

Table 4.93: TransformationComSpecProps

It can be determined by the specific TransformationComSpecProps to which trans-
former this configuration is applicable:

• The configuration in EndToEndTransformationComSpecProps is applicable
to E2E transformer (protocol of TransformationTechnology is set to End-
ToEnd).

• The configuration in UserDefinedTransformationComSpecProps is appli-
cable to a user-defined transformer.

[TPS_SWCT_01598] More than one user-defined transformer is used within
one transformer chain dIf more than one user-defined transformer is used within
one transformer chain (defined by meta-class TransformationTechnology), the
UserDefinedTransformationComSpecProps shall be assigned to the correct

196 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

user-defined custom transformer in TransformationTechnology.c(RS_SWCT_-
03221)

ARElement

DataTransformationSet

Identifiable

DataTransformation

+ dataTransformationKind: DataTransformationKindEnum [0..1]
+ executeDespiteDataUnavailabili ty: Boolean

Identifiable

TransformationTechnology

+ hasInternalState: Boolean [0..1]
+ needsOriginalData: Boolean [0..1]
+ protocol: String
+ transformerClass: TransformerClassEnum
+ version: String

Describable

TransformationDescription

BufferProperties

+ headerLength: Integer
+ inPlace: Boolean

CompuScale

+ mask: PositiveInteger [0..1]
+ shortLabel: Identifier [0..1]
+ symbol: CIdentifier [0..1]

«atpVariation»
+ lowerLimit: Limit [0..1]
+ upperLimit: Limit [0..1]

������������	
 ����

�����������	��	���� �

������	������	����

«enumeration»
TransformerClassEnum

 serial izer
 safety
 security
 custom

Describable

«atpVariation»
TransformationISignalProps

+ csErrorReaction: CSTransformerErrorReactionEnum [0..1]

������������	
 ����

�����������	��	���� �

���������

FibexElement

ISignal

+ dataTypePolicy: DataTypePolicyEnum
+ iSignalType: ISignalTypeEnum [0..1]
+ length: UnlimitedInteger

������������	
 ����

�����������	��	���� �

������	������	����

DataPrototypeMapping

FibexElement

ISignalGroup«enumeration»
DataTransformationKindEnum

 symmetric
 asymmetricFromByteArray
 asymmetricToByteArray

+iSignal

0..*

+firstToSecondDataTransformation 0..1

+transformerChain
1..*

{ordered}

«atpVariation,atpSplitable»

+dataTransformation0..1

+transformationDescription0..1

«atpVariation»

+secondToFirstDataTransformation 0..1

+transformationTechnology0..*

«atpVariation,atpSplitable»

+transformationISignalProps 0..*

+transformer
1

«atpVariation,atpSplitable»

+comBasedSignalGroupTransformation 0..1

+transformationISignalProps 0..*

+bufferProperties 1

+dataTransformation0..*

«atpVariation,atpSplitable»

Figure 4.47: Big picture of data transformation in the AUTOSAR meta-model

[constr_1400] Reference to a specific DataTransformation dA specific Data-
Transformation shall only be referenced by either

• a DataPrototypeMapping in the role firstToSecondDataTransforma-
tion (and potentially secondToFirstDataTransformation) or

• an ISignal in the role dataTransformation or

• an ISignalGroup in the role comBasedSignalGroupTransformation or

• a ClientServerOperationMapping in the role firstToSecondData-
Transformation

197 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1401] Restrictions on the relation between DataPrototypeMapping and
DataTransformation dA VariableDataPrototype in the context of a PortPro-
totype shall – at the time when the RTE is generated – not be referenced
by a DataPrototypeMapping that references a DataTransformation while a
DataMapping exists that points to this VariableDataPrototype (via the System-
Signal) that also refers to an ISignal that in turn references a DataTransforma-
tion.c()

In other words: a VariableDataPrototype can either become a part of a Dat-
aPrototypeMapping-based data transformation or of an ISignal-based data trans-
formation.

Please note that in a composite software structure the VariableDataProto-
type can be delegated throughout the CompositionSwComponentType and [con-
str_1401] still applies.

Class TransformationTechnology

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note A TransformationTechnology is a transformer inside a transformer chain.

Tags:xml.namePlural=TRANSFORMATION-TECHNOLOGIES

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

bufferProperties BufferProperties 1 aggr Aggregation of the mandatory BufferProperties.

hasInternal
State

Boolean 0..1 attr This attribute defines whether the Transformer has an
internal state or not.

needsOriginal
Data

Boolean 0..1 attr Specifies whether this transformer gets access to the
SWC’s original data.

protocol String 1 attr Specifies the protocol that is implemented by this
transformer.

transformation
Description

Transformation
Description

0..1 aggr A transformer can be configured with transformer specific
parameters which are represented by the Transformer
Description.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

transformer
Class

TransformerClassEnum 1 attr Specifies to which transformer class this transformer
belongs.

version String 1 attr Version of the implemented protocol.

Table 4.94: TransformationTechnology

Class UserDefinedTransformationComSpecProps

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note The UserDefinedTransformationComSpecProps is used to specify port specific configuration properties
for custom transformers.

Base ARObject , Describable, TransformationComSpecProps

Attribute Type Mult. Kind Note

– – – – –

Table 4.95: UserDefinedTransformationComSpecProps

198 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Based on the user defined attributes inside UserDefinedTransformationCom-
SpecProps (which are, of course, not standardized), the generator of the user-
defined transformer shall determine to which user-defined transformer a UserDe-
finedTransformationComSpecProps belongs to.

[TPS_SWCT_01599] PortPrototype-specific configuration for custom trans-
formers dMeta-class UserDefinedTransformationComSpecProps shall be used
for the specification of PortPrototype-specific configuration options for custom
transformers.c(RS_SWCT_03221)

Please note that it is possible to add custom configuration items in UserDefined-
TransformationComSpecProps by means of the attribute adminData.sdg.

Class EndToEndTransformationComSpecProps

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note The class EndToEndTransformationIComSpecProps specifies port specific configuration properties for
EndToEnd transformer attributes.

Base ARObject , Describable, TransformationComSpecProps

Attribute Type Mult. Kind Note

clearFromValid
ToInvalid

Boolean 0..1 attr Clear monitoring window on transition from state Valid to
state Invalid.

disableEndTo
EndCheck

Boolean 0..1 attr Disables/Enables the E2E check. The E2Eheader is
removed from the payload independent from the setting of
this attribute.

disableEndTo
EndState
Machine

Boolean 0..1 attr Disables the E2EStateMachine (only E2E check
functionality is performed)

e2eProfile
Compatibility
Props

E2EProfileCompatibility
Props

0..1 ref Reference to additional settings for the E2E state
machine.

maxDelta
Counter

PositiveInteger 0..1 attr Maximum allowed difference between two counter values
of two consecutively received valid messages. For
example, if the receiver gets data with counter 1 and Max
DeltaCounter is 3, then at the next reception the receiver
can accept Counters with values 2, 3 or 4.

maxErrorState
Init

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INIT.

The minimum value is 0.

maxErrorState
Invalid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INVALID.

The minimum value is 0.

maxErrorState
Valid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_VALID.

The minimum value is 0.

maxNoNewOr
RepeatedData

PositiveInteger 0..1 attr EndToEndTransformationDescription holds these
attributes which are profile specific and have the same
value for all E2E transformers.

minOkStateInit PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INIT.

The minimum value is 1.
5

199 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class EndToEndTransformationComSpecProps

minOkState
Invalid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INVALID.

The minimum value is 1.

minOkState
Valid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_VALID.

The minimum value is 1.

syncCounterInit PositiveInteger 0..1 attr EndToEndTransformationDescription holds these
attributes which are profile specific and have the same
value for all E2E transformers.

windowSizeInit PositiveInteger 0..1 attr Size of the monitoring window of state Init for the E2E
state machine.

windowSize
Invalid

PositiveInteger 0..1 attr Size of the monitoring window of state Invalid for the E2E
state machine.

windowSize
Valid

PositiveInteger 0..1 attr Size of the monitoring window of state Valid for the E2E
state machine.

Table 4.96: EndToEndTransformationComSpecProps

[TPS_SWCT_01600] PortPrototype-specific configuration for data transform-
ers related to end-to-end protection dMeta-class EndToEndTransformationCom-
SpecProps shall be used for the specification of PortPrototype-specific config-
uration options for data transformers related to end-to-end protection.c(RS_SWCT_-
03221)

[TPS_SWCT_01812] Conditional relevance of attribute EndToEndTransforma-
tionComSpecProps.disableEndToEndStateMachine dIf EndToEndTransfor-
mationComSpecProps.disableEndToEndCheck is set to True then the value
EndToEndTransformationComSpecProps.disableEndToEndStateMachine
shall be ignored.c(RS_SWCT_03221)

Class E2EProfileCompatibilityProps

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note This meta-class collects settings for configuration of the E2E state machine.

Tags:atp.recommendedPackage=E2EProfileCompatibilityPropsCollection

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

transitToInvalid
Extended

Boolean 0..1 attr E2E State machine behavior concerning transition from
NODATA/INIT to INVALID

value=0 (false): no direct transition from NODATA to
INVALID, no transition from INIT to INVALID due to
counter-related faults (Autosar R19-11 or former
behavior)

value=1 (true): direct transition from NODATA to INVALID
covered, transition from INIT to INVALID due to
counter-related faults covered (state machine extended)

Table 4.97: E2EProfileCompatibilityProps

200 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_5234] Existence of attribute E2EProfileCompatibilityProps.
transitToInvalidExtended is mandatory for each EndToEndTrans-
formationComSpecProps dFor each EndToEndTransformationCom-
SpecProps, a reference in the role e2eProfileCompatibilityProps to
meta-class E2EProfileCompatibilityProps shall exist and the referenced
E2EProfileCompatibilityProps shall define a value for the attribute transit-
ToInvalidExtended at the time when the RTE is generated.c()

4.6 Port Groups within Component Types

[TPS_SWCT_01063] PortGroup dA SwComponentType can declare that some of its
PortPrototypes belong to a PortGroup.

Such a port group defines a logical grouping of PortPrototypes which is used as
input to configure the implementation of mode managers in the basic software, for
example the communication of bus signals associated with the grouped ports maybe
suppressed in a certain mode.c(RS_SWCT_03200, RS_SWCT_03201)

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

������������	
 ����

�����������	��	���� �

�������������� AtpStructureElement
Identifiable

PortGroup
«atpVariation»

+portGroup

0..*

«instanceRef»
+innerGroup

0..*

«atpVariation,atpSplitable»

+port

0..*

«atpVariation»

+outerPort 0..*

Figure 4.48: Declaration of PortGroups

Class PortGroup

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Group of ports which share a common functionality

, e.g. need specific network resources. This information shall be available on the VFB level in order to
delegate it properly via compositions. When propagated into the ECU extract, this information is used as
input for the configuration of Services like the Communication Manager.

A PortGroup is defined locally in a component (which can be a composition) and refers to the "outer"
ports belonging to the group as well as to the "inner" groups which propagate this group into the
components which are part of a composition. A PortGroup within an atomic SWC cannot be linked to
inner groups.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

innerGroup PortGroup * iref Links a PortGroup in a composition to another PortGroup,
that is defined in a component which is part of this
CompositionSwComponentType.

InstanceRef implemented by:InnerPortGroupIn
CompositionInstanceRef

5

201 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class PortGroup

outerPort PortPrototype * ref Outer PortPrototype of this AtomicSwComponentType
which belongs to the group. A port can belong to several
groups or to no group at all.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 4.98: PortGroup

[TPS_SWCT_01064] PortGroups have to be defined on the VFB level dThough
the declaration PortGroups is not relevant for the RTE, they have to be defined on
the VFB level, because they represent design decisions taken on this level.

Accordingly, PortGroups can be defined for CompositionSwComponentTypes as
well as for AtomicSwComponentTypes.c(RS_SWCT_03200, RS_SWCT_03201)

[TPS_SWCT_01065] PortPrototype may belong to more than one PortGroups
dA PortPrototype may belong to more than one PortGroups and PortGroups
can be associated with the “inner” PortGroups of SwComponentPrototypes which
are aggregated by the same SwComponentType as the PortGroup.

By this, PortGroups can be locally defined but still traced down the component hier-
archy.c(RS_SWCT_03200, RS_SWCT_03201)

[TPS_SWCT_01066] PortGroups can be associated with certain ServiceNeeds
dPortGroups can be associated with certain ServiceNeeds in order to trace the
information down to the configuration of the basic software.c(RS_SWCT_03200, RS_-
SWCT_03201)

For more details, see chapter 7.11.2.

[constr_1147] Standardized values for the attribute category of meta-class
PortGroup d

The following values of the attribute category of meta-class PortGroup are reserved
by the AUTOSAR standard:

• MODE_MANAGEMENT: This represents the usage of the PortGroup for the pur-
pose of mode management

• PARTIAL_NETWORKING: This represents the usage of the PortGroup for the
purpose of partial networking

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

4.7 End to End Protection

The aspect of end-to-end protection has seen different support by the AUTOSAR meta-
model.

202 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

On the one hand, there is the definition of dedicated meta-classes, e.g. EndToEnd-
Description, which aim at an implementation that uses a so-called E2E wrapper
(an approach with a software component above RTE invoking the E2E library) or
AUTOSAR Com module callout mechanism (with Com callouts used to invoke E2E
library).

This approach is documented in chapter 4.7 of this document.

As an alternative approach, it is possible to implement end-to-end protection using
so-called data transformers.

The detailed description of how this approach can be configured is beyond the scope
of this document. Please refer to the TPS System Template [10] where the details of
the alternative approach are explained.

Caveat: The E2E wrapper approach involves technologies that are not subjected to
the AUTOSAR standard and is superseded by the superior E2E transformer approach
(which is fully standardized by AUTOSAR, see [18]). Hence, new projects (without
legacy constraints due to carry-over parts) shall use the fully standardized E2E trans-
former approach.

As described in [19], there are cases where safety-related software-components pro-
tect the data exchanged between each other. For this purpose modeling support is
provided by the software-component template.

Note that several end-to-end profiles are selectable for a specific application. The
specific end-to-end profile is represented by the attribute category of meta-class
EndToEndDescription.

Semantically, the category value represents an identification of the specific end-to-
end profile applicable for the communication of the corresponding data element. Ac-
cording to [19] there are two pre-defined profiles that can be used.

[TPS_SWCT_01089] end-to-end communication protection dThe information spe-
cific to each profile is expressed by the set of attributes of EndToEndDescription
owned by EndToEndProtection in the role endToEndProfile.c(RS_SWCT_-
03240)

Class EndToEndDescription

Package M2::AUTOSARTemplates::SWComponentTemplate::EndToEndProtection

Note This meta-class contains information about end-to-end protection. The set of applicable attributes
depends on the actual value of the category attribute of EndToEndProtection.

Base ARObject

Attribute Type Mult. Kind Note

category NameToken 0..1 attr The category represents the identification of the concrete
E2E profile. The applicable values are specified in a
semantic constraint and determine the applicable
attributes of EndToEndDescription.

Tags:xml.sequenceOffset=-100

5

203 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class EndToEndDescription

counterOffset PositiveInteger 0..1 attr Bit offset of Counter from the beginning of the Array
representation of the Signal Group/VariableDataPrototype
(MSB order, bit numbering: bit 0 is the least important).
The offset shall be a multiplicity of 4 and it should be 8
whenever possible. For example, offset 8 means that the
counter will take the low nibble of the byte 1, i.e. bits 8 ..
11. If counterOffset is not present the value is defined by
the selected profile.

Tags:xml.sequenceOffset=-50

crcOffset PositiveInteger 0..1 attr Bit offset of CRC from the beginning of the Array
representation of the Signal Group/VariableDataPrototype
(MSB order, bit numbering: bit 0 is the least important).
The offset shall be a multiplicity of 8 and it should be 0
whenever possible. For example, offset 8 means that the
CRC will take the byte 1, i.e. bits 8..15. If crcOffset is not
present the value is defined by the selected profile.

Tags:xml.sequenceOffset=-60

dataId (ordered) PositiveInteger * attr This represents a unique numerical identifier.

Note: ID is used for protection against masquerading.
The details concerning the maximum number of values
(this information is specific for each E2E profile)
applicable for this attribute are controlled by a semantic
constraint that depends on the category of the EndToEnd
Protection.

Tags:xml.sequenceOffset=-90

dataIdMode PositiveInteger 0..1 attr There are three inclusion modes how the implicit two-byte
Data ID is included in the one-byte CRC:

• dataIDMode = 0: Two bytes are included in the
CRC (double ID configuration) This is used in
variant 1A.

• dataIDMode = 1: One of the two bytes byte is
included, alternating high and low byte,
depending on parity of the counter (alternating ID
configuration). For even counter low byte is
included; For odd counters the high byte is
included. This is used in variant 1B.

• dataIDMode = 2: Only low byte is included, high
byte is never used. This is applicable if the IDs in
a particular system are 8 bits.

• dataIdMode = 3: The low byte is included in the
implicit CRC calculation, the low nibble of the
high byte is transmitted along with the data (i.e. it
is explicitly included), the high nibble of the high
byte is not used. This is applicable for the IDs up
to 12 bits.

Tags:xml.sequenceOffset=-85

dataIdNibble
Offset

PositiveInteger 0..1 attr Bit offset of the low nibble of the high byte of Data ID. The
applicability of this attribute is controlled by [constr_1261].

Tags:xml.sequenceOffset=-25

dataLength PositiveInteger 0..1 attr This attribute represents the length of the Array
representation of the Signal Group/VariableDataPrototype
including CRC and Counter in bits.

Tags:xml.sequenceOffset=-80

5

204 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class EndToEndDescription

maxDelta
CounterInit

PositiveInteger 0..1 attr Initial maximum allowed gap between two counter values
of two consecutively received valid Data, i.e. how many
subsequent lost data is accepted. For example, if the
receiver gets Data with counter 1 and MaxDeltaCounter
Init is 1, then at the next reception the receiver can accept
Counters with values 2 and 3, but not 4.

Note that if the receiver does not receive new Data at a
consecutive read, then the receiver increments the
tolerance by 1.

Tags:xml.sequenceOffset=-70

maxNoNewOr
RepeatedData

PositiveInteger 0..1 attr The maximum amount of missing or repeated Data which
the receiver does not expect to exceed under normal
communication conditions.

Tags:xml.sequenceOffset=-40

syncCounterInit PositiveInteger 0..1 attr Number of Data required for validating the consistency of
the counter that shall be received with a valid counter (i.e.
counter within the allowed lock-in range) after the
detection of an unexpected behavior of a received
counter.

Tags:xml.sequenceOffset=-30

Table 4.99: EndToEndDescription

[constr_1901] Existence of attribute EndToEndDescription.category dFor each
EndToEndDescription, attribute category shall exist at the time when the
contract phase generation is executed.c()

[TPS_SWCT_01090] EndToEndProtection dEndToEndProtection is the Iden-
tifiable class that owns specific elements for referencing the to-be-protected data
elements and signals

• EndToEndProtectionVariablePrototype: a specific dataElement
owned by a specific PortPrototype

• EndToEndProtectionISignalIPdu: a specific ISignalGroup in the con-
text of an ISignalIPdu. For more details please refer to [10]

c(RS_SWCT_03240)

[TPS_SWCT_01091] Two cases for end-to-end protection dIn order to protect
a VariableDataPrototype the EndToEndProtectionVariablePrototype shall be
defined. If communication is defined between ECUs using AUTOSAR COM the End-
ToEndProtectionISignalIPdu shall be defined as well.c(RS_SWCT_03240)

The following features apply:

• [constr_1000] End-to-end protection is limited to sender/receive communi-
cation dend-to-end protection applies for sender/receiver communication only.c
()

• The value of the dataId is assigned by a central authority rather than by the
developer of the software-component.

205 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• The information about the dataId shall be available at both the sender and the
receiver(s).

• [TPS_SWCT_01508] Scope of end-to-end protection dEnd-to-end protection
applies to local (i.e. within the ECU) as well as remote (i.e. ECU to ECU) commu-
nication.c(RS_SWCT_03240)

[TPS_SWCT_01092] EndToEndProtectionSet dThe meta-class EndToEndPro-
tectionSet provides a container for EndToEndProtection. The aggregation is
stereotyped�atpSplitable� because the information about end-to-end protection
is added at a later step in the development workflow.c(RS_SWCT_03240)

It also has the stereotype �atpVariation� because this allows for implementing
the software-component in two variants, one that uses end-to-end protection and one
that does not use it. It also might happen that the communication ends themselves are
variant.

EndToEndProtection maintains InstanceRefs to one dataElement in the role
of sender and to one or many dataElements in the role of receiver. By this means
it is possible to support a 1:n communication scenario.

[TPS_SWCT_01093] Definition of end-to-end protection is splitable dEnd-
ToEndProtection aggregates EndToEndDescription using stereotype
�atpSplitable�.

By this means it is for the integrator of an ECU possible to generally specify the nature
of a specific end-to-end protection but leave the actual assignment of values (e.g. for
dataId) to a later process step.c(RS_SWCT_03240)

ARElement

EndToEndProtectionSet
Identifiable

EndToEndProtection

EndToEndDescription

+ category: NameToken [0..1]
+ counterOffset: PositiveInteger [0..1]
+ crcOffset: PositiveInteger [0..1]
+ dataId: PositiveInteger [0..*] {ordered}
+ dataIdMode: PositiveInteger [0..1]
+ dataIdNibbleOffset: PositiveInteger [0..1]
+ dataLength: PositiveInteger [0..1]
+ maxDeltaCounterInit: PositiveInteger [0..1]
+ maxNoNewOrRepeatedData: PositiveInteger [0..1]
+ syncCounterInit: PositiveInteger [0..1]

������������	
 ����

�����������	��	���� �

��������������

AtpInstanceRef

VariableDataPrototypeInSystemInstanceRef

AutosarDataPrototype

VariableDataPrototype

EndToEndProtectionVariablePrototype

«atpIdentityContributor»
+ shortLabel: Identifier [0..1]

+targetDataPrototype
0..1
{redefines atpTarget}

+receiver

0..*

«instanceRef»

+sender

0..1

«instanceRef»

+receiver

0..*

«atpSplitable»

+endToEndProfi le

0..1
«atpVariation,atpSplitable»

+endToEndProtection

0..*

+sender

0..1

«atpVariation,atpSplitable»

+endToEndProtectionVariablePrototype0..*

Figure 4.49: Details of the modeling of end-to-end protection

According to [19] the following constraints apply on the attributes of EndToEndPro-
tection (note that additional M1 constraints apply as described in [19]):

206 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1110] Value of category in EndToEndDescription dThe attribute cat-
egory of EndToEndDescription can have the following values:

• NONE

• PROFILE_01

• PROFILE_02

c()

[TPS_SWCT_01094] category of EndToEndDescription dThe values for the
category of EndToEndDescription mentioned in [constr_1110] are standardized
and reserved for being used in the way the AUTOSAR standard foresees.

In addition, it is positively possible to use other than the standardized values for the
category.c(RS_SWCT_03240)

This aspect will be clarified in more detail in later revisions of the AUTOSAR standard.
For the time being, it shall be noted that the usage of other than the standardized
values shall not create name clashes with future standardized values.

This can be achieved by using e.g. a company-specific prefix or suffix to the value of
category.

The semantics of the categorys is:

NONE this indicates that the E2E framework shall be enabled for the given sender/
receiver respectively the given iSignalIPdu. The wrapper code shall be
generated but it shall not invoke E2E library protection routines. E2E wrapper
works as pass-through.

This may be used when a profile selection or profile options are not yet selected
in a given system but it is required that the system can be built successfully
under consideration of the E2E library. This would also be applicable for migrating
from/to a system with/without E2E protection.

[TPS_SWCT_01095] category set to NONE dIf attributes exist in the presence
of the category being set to NONE, the attributes shall be ignored.c(RS_SWCT_-
03240)

PROFILE_01 This indicates that the settings of E2E profile 1 (that uses a SAE CRC8,
implicit 16-bit data ID, and a 4 bit alive counter) apply.

[constr_1113] Existence of attributes in PROFILE_01 dIn PROFILE_01, the
following attributes shall exist:

• dataLength

• dataId

at the time when the contract phase generation is exe-
cuted.c()

207 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Please note that the attribute maxDeltaCounterInit is also part of PRO-
FILE_01 but it does not necessarily have to exist provided that ReceiverCom-
Spec.maxDeltaCounterInit exists.

[constr_1170] Interpretation of attribute maxDeltaCounterInit owned by
EndToEndDescription dIf EndToEndProtection.endToEndProtection-
VariablePrototype.receiver is identical to the RPortPrototype.re-
quiredComSpec.dataElement and RPortPrototype.requiredComSpec.
maxDeltaCounterInit is defined then the value of RPortPrototype.re-
quiredComSpec.maxDeltaCounterInit shall be preferred over the value
of EndToEndProtection.endToEndProfile.maxDeltaCounterInit.

If the value of category of EndToEndDescription is set to PROFILE_01
and either the described correspondence rule concerning the referenced Vari-
ableDataPrototype is not fulfilled or RPortPrototype.requiredComSpec.
maxDeltaCounterInit is not defined then EndToEndProtection.end-
ToEndProfile.maxDeltaCounterInit shall exist.c()

[constr_1111] Constraints of dataId in PROFILE_01 dIn PROFILE_01, there
shall be only one element in the set and the applicable range of values is
[0 .. 65535].

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1112] Constraints of dataIdMode in PROFILE_01 dIn PROFILE_01,
the applicable range of values for dataIdMode is [0 .. 3].

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1114] Constraints of crcOffset in PROFILE_01 dIn PROFILE_01,
the applicable range of values for crcOffset is [0 .. 65535]. For the value of
this attribute the constraint value mod 4 = 0 applies.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1115] Constraints of counterOffset in PROFILE_01 dIn PRO-
FILE_01, the applicable range of values for counterOffset is [0 .. 65535].
For the value of this attribute the constraint value mod 4 = 0 applies.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1116] Constraints of dataLength in PROFILE_01 dIn PROFILE_01,
the applicable range of values for dataLength is [0 .. 240]. For the value of this
attribute the constraint value mod 8 = 0 applies.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

208 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1117] Constraints of maxDeltaCounterInit in PROFILE_01 dIn
PROFILE_01, the applicable range of values for EndToEndDescription.
maxDeltaCounterInit and ReceiverComSpec.maxDeltaCounterInit is
[0 .. 14].

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1211] Constraints of maxNoNewOrRepeatedData in PROFILE_-
01 dIn PROFILE_01, the applicable range of values for EndToEndDescrip-
tion.maxNoNewOrRepeatedData and ReceiverComSpec.maxNoNewOrRe-
peatedData is [0 .. 14].

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1212] Constraints of syncCounterInit in PROFILE_01 dIn PRO-
FILE_01, the applicable range of values for EndToEndDescription.sync-
CounterInit and ReceiverComSpec.syncCounterInit is [0 .. 14].

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1215] Interpretation of attribute maxNoNewOrRepeatedData owned
by EndToEndDescription in PROFILE_01 dIf EndToEndProtection.
endToEndProtectionVariablePrototype.receiver is identical to the
RPortPrototype.requiredComSpec.dataElement and RPortPrototype.
requiredComSpec.maxNoNewOrRepeatedData is defined then the value
of RPortPrototype.requiredComSpec.maxNoNewOrRepeatedData shall
be preferred over the value of EndToEndProtection.endToEndProfile.
maxNoNewOrRepeatedData.

If the value of category of EndToEndDescription is set to PROFILE_01
and either the described correspondence rule concerning the referenced Vari-
ableDataPrototype is not fulfilled or RPortPrototype.requiredComSpec.
maxNoNewOrRepeatedData is not defined then EndToEndProtection.end-
ToEndProfile.maxNoNewOrRepeatedData shall exist.c()

[constr_1216] Interpretation of attribute syncCounterInit owned by End-
ToEndDescription in PROFILE_01 dIf EndToEndProtection.endToEnd-
ProtectionVariablePrototype.receiver is identical to the RPort-
Prototype.requiredComSpec.dataElement and RPortPrototype.re-
quiredComSpec.syncCounterInit is defined then the value of RPortPro-
totype.requiredComSpec.syncCounterInit shall be preferred over the
value of EndToEndProtection.endToEndProfile.syncCounterInit.

If the value of category of EndToEndDescription is set to PROFILE_01
and either the described correspondence rule concerning the referenced Vari-
ableDataPrototype is not fulfilled or RPortPrototype.requiredComSpec.

209 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

syncCounterInit is not defined then EndToEndProtection.endToEnd-
Profile.syncCounterInit shall exist.c()

[constr_1261] Applicability for EndToEndDescription.dataIdNibble-
Offset dEndToEndDescription.dataIdNibbleOffset shall be used only
if EndToEndDescription.dataIdMode is set to the value 3 and at the same
time EndToEndDescription.category is set to PROFILE_01.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[TPS_SWCT_01529] Default value for EndToEndDescription.dataIdNib-
bleOffset dIf EndToEndDescription.dataIdMode is set to the value 3 and
at the same time EndToEndDescription.category is set to the value PRO-
FILE_01 and EndToEndDescription.dataIdNibbleOffset is not speci-
fied, then the default value of 12 (bits) shall be assumed for the attribute End-
ToEndDescription.dataIdNibbleOffset.c(RS_SWCT_03240)

PROFILE_02 this indicates that the settings of E2E profile 2 apply.

[constr_1118] Existence of attributes in PROFILE_02 dIn PROFILE_02, only
the following attributes shall exist:

• dataLength

• dataId

at the time when the contract phase generation is executedc
()

Please note that the attribute maxDeltaCounterInit is also part of PRO-
FILE_01 but it does not necessarily have to exist provided that ReceiverCom-
Spec.maxDeltaCounterInit exists.

[constr_1171] Interpretation of attribute maxDeltaCounterInit of End-
ToEndDescription dIf EndToEndProtection.endToEndProtectionVa-
riablePrototype.receiver is identical to the RPortPrototype.re-
quiredComSpec.dataElement and RPortPrototype.requiredComSpec.
maxDeltaCounterInit is defined then the value of RPortPrototype.re-
quiredComSpec.maxDeltaCounterInit shall be preferred over the value
of EndToEndProtection.endToEndProfile.maxDeltaCounterInit.

If the value of category of EndToEndDescription is set to PROFILE_02
and either the described correspondence rule concerning the referenced Vari-
ableDataPrototype is not fulfilled or RPortPrototype.requiredComSpec.
maxDeltaCounterInit is not defined then EndToEndProtection.end-
ToEndProfile.maxDeltaCounterInit shall exist.c()

[constr_1119] Constraints of dataLength in PROFILE_02 dIn PROFILE_02,
the applicable range of values for dataLength is [0 .. 65535]. For the value of
this attribute the constraint value mod 8 = 0 applies.

210 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1120] Constraints of dataId in PROFILE_02 dIn PROFILE_02, there
shall be exactly ordered 16 elements in the set and the applicable range of values
is [0 .. 255].

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1121] Constraints of maxDeltaCounterInit in PROFILE_02 dIn
PROFILE_02, the applicable range of values for EndToEndDescription.
maxDeltaCounterInit and ReceiverComSpec.maxDeltaCounterInit is
[0 .. 15].

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1213] Constraints of maxNoNewOrRepeatedData in PROFILE_-
02 dIn PROFILE_02, the applicable range of values for EndToEndDescrip-
tion.maxNoNewOrRepeatedData and ReceiverComSpec.maxNoNewOrRe-
peatedData is [0 .. 15].

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1214] Constraints of syncCounterInit in PROFILE_02 dIn PRO-
FILE_02, the applicable range of values for EndToEndDescription.sync-
CounterInit and ReceiverComSpec.syncCounterInit is [0 .. 15].

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_1217] Interpretation of attribute maxNoNewOrRepeatedData owned
by EndToEndDescription in PROFILE_02 dIf EndToEndProtection.
endToEndProtectionVariablePrototype.receiver is identical to the
RPortPrototype.requiredComSpec.dataElement and RPortPrototype.
requiredComSpec.maxNoNewOrRepeatedData is defined then the value
of RPortPrototype.requiredComSpec.maxNoNewOrRepeatedData shall
be preferred over the value of EndToEndProtection.endToEndProfile.
maxNoNewOrRepeatedData.

If the value of category of EndToEndDescription is set to PROFILE_02
and either the described correspondence rule concerning the referenced Vari-
ableDataPrototype is not fulfilled or RPortPrototype.requiredComSpec.
maxNoNewOrRepeatedData is not defined then EndToEndProtection.end-
ToEndProfile.maxNoNewOrRepeatedData shall exist.c()

211 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1218] Interpretation of attribute syncCounterInit owned by End-
ToEndDescription in PROFILE_02 dIf EndToEndProtection.endToEnd-
ProtectionVariablePrototype.receiver is identical to the RPort-
Prototype.requiredComSpec.dataElement and RPortPrototype.re-
quiredComSpec.syncCounterInit is defined then the value of RPortPro-
totype.requiredComSpec.syncCounterInit shall be preferred over the
value of EndToEndProtection.endToEndProfile.syncCounterInit.

If the value of category of EndToEndDescription is set to PROFILE_02
and either the described correspondence rule concerning the referenced Vari-
ableDataPrototype is not fulfilled or RPortPrototype.requiredComSpec.
syncCounterInit is not defined then EndToEndProtection.endToEnd-
Profile.syncCounterInit shall exist.c()

Class EndToEndProtectionSet
Package M2::AUTOSARTemplates::SWComponentTemplate::EndToEndProtection

Note This represents a container for collection EndToEndProtectionInformation.

Tags:atp.recommendedPackage=EndToEndProtectionSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

endToEnd
Protection

EndToEndProtection * aggr This is one particular EndToEndProtection.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=endToEndProtection.shortName, endToEnd
Protection.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table 4.100: EndToEndProtectionSet

Class EndToEndProtection
Package M2::AUTOSARTemplates::SWComponentTemplate::EndToEndProtection

Note This meta-class represents the ability to describe a particular end to end protection.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

endToEnd
Profile

EndToEndDescription 0..1 aggr This represents the particular EndToEndDescription.

Stereotypes: atpSplitable
Tags:atp.Splitkey=endToEndProfile

endToEnd
Protection
ISignalIPdu

EndToEndProtectionI
SignalIPdu

* aggr Defines to which ISignalIPdu - ISignalGroup pair this End
ToEndProtection shall apply.

In case several ISignalGroups are used to transport the
data (e.g. fan-out in the RTE) there may exist several End
ToEndProtectionISignalIPdu definitions.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=endToEndProtectionISignalIPdu, endToEnd
ProtectionISignalIPdu.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

212 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class EndToEndProtection
endToEnd
Protection
Variable
Prototype

EndToEndProtection
VariablePrototype

* aggr Defines to which VariableDataPrototypes in the roles of
one sender and one or more receivers this EndTo
Endprotection applies.

It shall be possible to aggregate several EndToEnd
ProtectionVariablePrototype in case additional
hierarchical decompositions are introduced subsequently.
In this case one particular PortPrototype is split into
multiple PortPrototypes and connectors, all representing
the same data entity.

Caveat: The E2E wrapper approach involves
technologies that are not subjected to the AUTOSAR
standard and is superseded by the superior E2E
transformer approach (which is fully standardized by
AUTOSAR). Hence, new projects (without legacy
constraints due to carry-over parts) shall use the fully
standardized E2E transformer approach.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=endToEndProtectionVariablePrototype.short
Label, endToEndProtectionVariablePrototype.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

Table 4.101: EndToEndProtection

[constr_1902] Existence of attribute EndToEndProtection.endToEndProfile
dFor each EndToEndProtection, attribute endToEndProfile shall exist at the
time when the contract phase generation is executed.c()

Class EndToEndProtectionVariablePrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::EndToEndProtection

Note It is possible to protect the data exchanged between software components. For this purpose, for each
communication to be protected, the user defines a separate EndToEndProtection (specifying a set of
protection settings) and refers to a variableDataPrototype in the role of sender and to one or many
variableDataPrototypes in the role of receiver. For details, see EndToEnd Library.

Caveat: The E2E wrapper approach involves technologies that are not subjected to the AUTOSAR
standard and is superseded by the superior E2E transformer approach (which is fully standardized by
AUTOSAR). Hence, new projects (without legacy constraints due to carry-over parts) shall use the fully
standardized E2E transformer approach.

Base ARObject

Attribute Type Mult. Kind Note

receiver VariableDataPrototype * iref This represents the receiver. Note that 1:n
communication is supported for this use case.

InstanceRef implemented by:VariableDataPrototypeIn
SystemInstanceRef

sender VariableDataPrototype 0..1 iref This represents the sender.

Can be optional if an ecu extract is provided and the
sender is part of the extract.

InstanceRef implemented by:VariableDataPrototypeIn
SystemInstanceRef

5

213 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class EndToEndProtectionVariablePrototype

shortLabel Identifier 0..1 attr This serves as part of the split key in case of more than
one EndToEndProtectionVariablePrototype is aggregated
in the bound model.

Stereotypes: atpIdentityContributor

Table 4.102: EndToEndProtectionVariablePrototype

Please note that using end-to-end protection it is explicitly supported that one sender
may correspond to one or more receivers.

[constr_1183] EndToEndProtectionVariablePrototypes aggregated by End-
ToEndProtection dAll EndToEndProtectionVariablePrototypes aggregated
by the same EndToEndProtection shall refer to the identical sender at the
time when the contract phase generation is executed.c()

4.8 Partial Networking

[TPS_SWCT_01169] Support for partial networking dOn the level of the Software
Component Template, partial networking is supported by means of the concept of a
“Virtual Function Cluster” (VFC).

The latter groups all communication on the VFB with respect to a given function. How-
ever, the conceptual idea of a Virtual Function Cluster is not represented in the meta-
model as such.

Instead, PortGroups are used to specify the grouping of PortPrototypes to the
higher conceptual level of a Virtual Function Cluster.c(RS_SWCT_03241, RS_SWCT_-
03201)

Please note that more information regarding the semantics of PortGroups can be
found in chapter 4.6.

There are no restrictions regarding the structure of PortGroup definitions on M1. One
PortPrototype may become a member of several PortGroups, thereby creating
overlapping PortGroups.

[TPS_SWCT_01170] Purpose of Virtual Function Cluster dThe purpose of Virtual
Function Cluster within the Software Component Template mainly has three aspects:

1. assign PortPrototypes (non service related) of Sender Receiver or Client
Server communication to Virtual Function Clusters.

2. control the behavior of the corresponding function in terms of whether it is re-
quired at a given point in time. This aspect is implemented by the concept of
a control port. Software-components that implement control ports of a Virtual
Function Cluster conceptually become VFC Controllers.

214 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

3. allow for the application software to retrieve the status of a given Virtual Function
Cluster. This aspect is implemented by the concept of a status port.

c(RS_SWCT_03241)

The usage of the generic concept of PortGroups for the purpose of partial networks
shall be indicated by setting the value of the attribute category of PortGroup to
PARTIAL_NETWORKING, see [constr_1147].

4.8.1 VFC Control Ports

[TPS_SWCT_01171] Purpose of a control port dThe purpose of a control port is to
request or release a VFC. Requesting means that the VFC is actively using commu-
nication resources while release boils down to the VFC being inactive, i.e. the corre-
sponding partial network may be shut down until further notice.

As the requesting and releasing semantics is implemented by means of interfacing the
BSW the corresponding control ports need to be typed by a PortInterface that has
the attribute isService set to true.c(RS_SWCT_03241)

[TPS_SWCT_01172] Requesting and releasing partial networks dFor requesting
and releasing partial networks, the BSW can be interfaced in two alternative (i.e. either
one or the other) ways:

• ComM: ClientServerInterface using the standardized ComM_UserRe-
quest.RequestComMode [20]

• BswM: SenderReceiverInterface using the standardized AppModeRe-
questInterface.requestedMode [21]

c(RS_SWCT_03241)

[TPS_SWCT_01173] Control port shall not become a part of the PortGroup
dPlease note that the control port shall not become a part of the PortGroup that
defines the particular VFC the control port is going to service.

The relationship is implemented by means of a specific SwcServiceDependency
that owns a RoleBasedPortAssignment to the intended control port and refers to
a PortGroup (that comprises the VFC) in the role representedPortGroup.c(RS_-
SWCT_03241, RS_SWCT_03201)

For further information, please refer to [TPS_SWCT_01126].

4.8.2 VFC Status Ports

[TPS_SWCT_01175] Actively query the status of a partial network dVery much like
mode management, the concept of partial networking supports the ability to actively
query the status of a partial network.

215 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This can be done by means of interfacing the BSW in three alternative (as in “one of”)
ways:

• ComM: ClientServerInterface using the standardized ComM_UserRe-
quest.GetCurrentComMode [20]

• ComM: ModeSwitchInterface using the standardized ComM_CurrentMode.
currentMode [20]

• BswM: ModeSwitchInterface using the standardized AppModeInter-
face.currentMode [21]

c(RS_SWCT_03241)

As mentioned above, the status of the ComM can be retrieved by either a
ClientServerInterface or a SenderReceiverInterface. Which of the two
alternatives applies in a specific case is up to the author of a software-component9.

When using one of the possible SenderReceiverInterfaces, the correspondence
of the status port concept with mode management extends to the point that the status
of the partial network is returned as an actual ModeDeclaration.

This implies that all mechanisms foreseen by the Software Component Template to
react on mode changes are in place and can be used within the application software.

To assure that the communication via PortPrototypes that belong to a partial net-
work is valid the software component shall consider the status of the partial network
before communicating in order to assert its activity.

[TPS_SWCT_01174] Status port shall not become a member of the PortGroup
dA status port shall not become a member of the PortGroup that corresponds to the
partial network subject to the status port.

The relationship is implemented by means of a specific SwcServiceDependency
that owns a RoleBasedPortAssignment to the intended status port and refers to
a PortGroup (that comprises the VFC) in the role representedPortGroup.c(RS_-
SWCT_03241, RS_SWCT_03201)

For further information, please refer to [TPS_SWCT_01126].

4.9 Formal Definition of implicit Communication Behavior

[TPS_SWCT_01509] Implicit communication behavior dThe purpose of the formal
definition of the behavior of a SwComponentType with respect to the implicit commu-
nication can conceptually condense to two basic aspects:

9The usage of the ClientServerInterface effectively implements a “pull” approach for the mode
information while the usage of the SenderReceiverInterface resembles a “push” approach if it is
used in combination with a SwcModeSwitchEvent.

216 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• Stable data during the execution of a group of RunnableEntitys. This means
that all data values read by different RunnableEntitys are from the same
age. Therefore, the value is not changing during the execution of the chain of
RunnableEntitys.

• Coherent data consumption and propagation for a group of DataProto-
types. This means that a set of interdependent data values are from the
same calculation iteration. Therefore, the set of values has to be propagated
at once to RunnableEntitys requiring the complete result of the calculation.
RunnableEntitys which are part of the calculation chain may still consume
partly updated values.

c(RS_SWCT_03065)

[TPS_SWCT_01481] The meaning of the term stability with respect to Consis-
tencyNeeds dThe meaning of the term stability is that the values of a group of Vari-
ableDataPrototypes shall not change values during the execution of a group of
RunnableEntitys.c(RS_SWCT_03065)

[TPS_SWCT_01482] The meaning of the term coherence with respect to Consis-
tencyNeeds dThe meaning of the term coherence means that the values of a group of
VariableDataPrototypes shall not be read by receiving RunnableEntitys until
all the producing RunnableEntitys are terminated.c(RS_SWCT_03065)

In response to these goals the meta-model provides means to express the correlation
between a group of RunnableEntitys and a group of DataPrototypes. These
groups might be defined hierarchically.

The information (in terms of ConsistencyNeeds) can be defined primarily during the
design of an AtomicSwComponentType but it is just as well possible to specify this
ConsistencyNeeds during the definition of CompositionSwComponentTypes.

For example, the existence of stable data is typically expected for the execution of
RunnableEntitys of several AtomicSwComponentTypes.

Please note that the two aspects stability and coherence are not necessarily con-
nected to each other. It is possible to require stability without coherence and vice
versa. For this purpose the roles dpgDoesNotRequireCoherency and regDoes-
NotRequireStability are needed.

[TPS_SWCT_01480] Stability and/or coherence is not required dIn order to be able
to clearly separate the aspect of stability from coherence it is possible to use the roles
dpgDoesNotRequireCoherency to express that a group of VariableDataProto-
types explicitly does not require consistency.

Likewise, regDoesNotRequireStability can be used to express that for a group
of RunnableEntitys stability with respect to data access is not required.c(RS_-
SWCT_03065)

217 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01479] Applicability of ConsistencyNeeds dConsistencyNeeds
can only be applied to RunnableEntitys that make use of “implicit” communication.c
(RS_SWCT_03065)

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprint
AtpBlueprintable

Identifiable

ConsistencyNeeds

������������	
 ����

�����������	��	���� �

��������������

�����������������	����� � ��

AtpStructureElement
Identifiable

RunnableEntityGroup

AtpStructureElement
Identifiable

DataPrototypeGroup

������������	
 ����

�����������	��	���� �

��������������

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

AutosarDataPrototype

VariableDataPrototype

DataInterface

SenderReceiverInterface

DataInterface

NvDataInterface

«atpVariation,atpSplitable»

+dpgDoesNotRequireCoherency 0..*

«instanceRef»

+runnableEntity 0..*

«atpVariation,atpSplitable»

+dpgRequiresCoherency 0..*

«atpVariation,atpSplitable»

+regDoesNotRequireStabil ity 0..*

«instanceRef»

+implicitDataAccess 0..*

«instanceRef»

+dataPrototypeGroup 0..*

+nvData 0..*+dataElement 0..*

«instanceRef»

+runnableEntityGroup 0..*

«atpVariation,atpSplitable»

+regRequiresStabil ity 0..*

«atpVariation,atpSplitable»

+consistencyNeeds 0..*

Figure 4.50: Formal definition of implicit communication behavior

[TPS_SWCT_01466] ConsistencyNeeds applied on RunnableEntitys that
do not use implicit communication dIf a ConsistencyNeeds is applied on
RunnableEntitys that do not use implicit communication, it shall be ignored.c(RS_-
SWCT_03065)

The formal definition of the implicit communication behavior foresees the grouping of
model elements in order to indicate their relevance for consistent implicit communica-
tion.

[TPS_SWCT_01470] RunnableEntityGroup dA RunnableEntitys belongs to a
specific RunnableEntityGroup if it is associated either directly with the given
RunnableEntityGroup or if the RunnableEntityGroup the RunnableEntity
belongs to is eventually (there can be more than one nesting level) referenced by the
given RunnableEntityGroup.c(RS_SWCT_03065)

[TPS_SWCT_01471] DataPrototypeGroup dA VariableDataPrototypes be-
longs to a specific DataPrototypeGroup if it is associated either directly with the
given DataPrototypeGroup or if the DataPrototypeGroup the VariableDat-
aPrototype belongs to is eventually (there can be more than one nesting level) ref-
erenced by the given DataPrototypeGroup.c(RS_SWCT_03065)

218 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1231] ConsistencyNeeds aggregated by CompositionSwComponent-
Type dIf ConsistencyNeeds are aggregated by a CompositionSwComponent-
Type the associations stereotyped �instanceRef� may only refer to context and
target elements within the context of this CompositionSwComponentType.

This rule shall be imposed at the time when the creation of the Compo-
sitionSwComponentType is finished.c()

For clarification, [constr_1231] includes VariableDataPrototypes owned by del-
egation PortPrototypes of the owning CompositionSwComponentType, Vari-
ableDataPrototypes in delegation PortPrototypes of CompositionSwCompo-
nentType instantiated in the enclosing CompositionSwComponentType, or Vari-
ableDataPrototypes in PortPrototypes owned by AtomicSwComponentTypes
instantiated inside the context of the enclosing CompositionSwComponentType.

[constr_1232] ConsistencyNeeds aggregated by AtomicSwComponentType dIf
ConsistencyNeeds are aggregated by a AtomicSwComponentType the asso-
ciations stereotyped �instanceRef� may only refer to context and target ele-
ments within the context of this AtomicSwComponentType at the time when
the contract phase generation is executed.c()

Strictly speaking, these are the RunnableEntitys and PortPrototypes of this
particular AtomicSwComponentType or RunnableEntityGroups and DataPro-
totypeGroups which are owned by the same AtomicSwComponentType.

Please note that pre-defined values for the category of RunnableEntityGroup
and DataPrototypeGroup are described in [1].

Class ConsistencyNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior

Note This meta-class represents the ability to define requirements on the implicit communication behavior.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

dpgDoesNot
Require
Coherency

DataPrototypeGroup * aggr This group of VariableDataPrototypes does not require
coherency with respect to the implicit communication
behavior.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dpgDoesNotRequireCoherency.shortName,
dpgDoesNotRequireCoherency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dpgRequires
Coherency

DataPrototypeGroup * aggr This group of VariableDataPrototypes requires coherency
with respect to the implicit communication behavior, i.e.
all read and write access to VariableDataPrototypes in the
DataPrototypeGroup by the RunnableEntitys of the
RunnableEntityGroup need to be handled in a coherent
manner.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dpgRequiresCoherency.shortName, dpg
RequiresCoherency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

219 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ConsistencyNeeds

regDoesNot
RequireStability

RunnableEntityGroup * aggr This group of RunnableEntities does not require stability
with respect to the implicit communication behavior.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=regDoesNotRequireStability.shortName, reg
DoesNotRequireStability.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

regRequires
Stability

RunnableEntityGroup * aggr This group of RunnableEntities requires stability with
respect to the implicit communication behavior, i.e. all
read and write access to VariableDataPrototypes in the
DataPrototypeGroup by the RunnableEntitys of the
RunnableEntityGroup need to be handled in a stable
manner.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=regRequiresStability.shortName, reg
RequiresStability.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table 4.103: ConsistencyNeeds

Class RunnableEntityGroup

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior

Note This meta-class represents the ability to define a collection of RunnableEntities. The collection can be
nested.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

runnableEntity RunnableEntity * iref This represents a collection of RunnableEntitys that
belong to the enclosing RunnableEntityGroup.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime
InstanceRef implemented by:RunnableEntityIn
CompositionInstanceRef

runnableEntity
Group

RunnableEntityGroup * iref This represents the ability to define nested groups of
RunnableEntitys.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime
InstanceRef implemented by:InnerRunnableEntity
GroupInCompositionInstanceRef

Table 4.104: RunnableEntityGroup

Class DataPrototypeGroup

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior

Note This meta-class represents the ability to define a collection of DataPrototypes that are subject to the
formal definition of implicit communication behavior. The definition of the collection can be nested.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

5

220 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class DataPrototypeGroup

dataPrototype
Group

DataPrototypeGroup * iref This represents the ability to define nested groups of
VariableDataPrototypes.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime
InstanceRef implemented by:InnerDataPrototypeGroup
InCompositionInstanceRef

implicitData
Access

VariableDataPrototype * iref This represents a collection of VariableDataPrototypes
that belong to the enclosing DataPrototypeGroup

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime
InstanceRef implemented by:VariableDataPrototypeIn
CompositionInstanceRef

Table 4.105: DataPrototypeGroup

4.9.1 Consistency Needs on Receiver Side

[TPS_SWCT_01472] Receiving SwComponentType owns a DataPrototype-
Group in the role dpgRequiresCoherency dIf a receiving SwComponentType
owns a DataPrototypeGroup in the role dpgRequiresCoherency for one or sev-
eral of its RunnableEntitys it is required that VariableDataPrototypes belong-
ing to the same DataPrototypeGroup are produced coherently. This means that the
values of the VariableDataPrototypes shall be of the same age.c(RS_SWCT_-
03065)

[TPS_SWCT_01473] Receiving SwComponentType owns a RunnableEntity-
Group in the role regRequiresStability dIf a receiving SwComponentType
owns a RunnableEntityGroup in the role regRequiresStability for one or sev-
eral of its RunnableEntitys it is required that the values of implicitly communicated
VariableDataPrototypes are kept stable over the execution of all RunnableEn-
titys belonging to the given RunnableEntityGroup.c(RS_SWCT_03065)

[TPS_SWCT_01474] Receiving SwComponentType owns a RunnableEntity-
Group in the role regRequiresStability and also owns one or several Dat-
aPrototypeGroups in the role dpgRequiresCoherency dIf a receiving SwCom-
ponentType owns a RunnableEntityGroup in the role regRequiresStability
and also owns one or several DataPrototypeGroups in the role dpgRequiresCo-
herency it is required that values of VariableDataPrototypes belonging to the
same DataPrototypeGroup are produced coherently.

This means that the values of the VariableDataPrototypes shall be of the same
age and are kept stable over the execution of all RunnableEntitys belonging to the
given RunnableEntityGroup.c(RS_SWCT_03065)

221 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4.9.2 Consistency Needs on Sender Side

[TPS_SWCT_01475] Sending SwComponentType owns a DataPrototypeGroup
in the role dpgRequiresCoherency dIf a sending SwComponentType owns a
DataPrototypeGroup in the role dpgRequiresCoherency for one or several of
its RunnableEntitys it is required that VariableDataPrototypes belonging to
the same DataPrototypeGroup are propagated at the same point of time to
RunnableEntitys which do not belong to the group of producing RunnableEn-
titys (which may, but don’t have to be formally described as a RunnableEntity-
Group).c(RS_SWCT_03065)

The coherence is created at the point in time when the RunnableEntitys of the
producing group of RunnableEntitys terminate (and the implicit data get updated).

If those RunnableEntitys are reading the data also, those read accesses will not
read the coherent values but the intermediary values written by RunnableEntitys of
the same group.

For all other RunnableEntitys that are not member of the producing group of
RunnableEntitys it appears as if the data have been updated at this very point
coherently.

In order to avoid incorrect configurations its possible to explicitly define the group of
RunnableEntitys for which the coherency does not apply.

[TPS_SWCT_01625] Sending SwComponentType owns a DataPrototypeGroup
in the role dpgRequiresCoherency and also RunnableEntityGroups dIf
a sending SwComponentType owns a DataPrototypeGroup in the role dp-
gRequiresCoherency, RunnableEntityGroups in the role regDoesNotRe-
quireStability may exist.

Read accesses from RunnableEntitys in those RunnableEntityGroups will not
read the coherent values but the intermediary values written by RunnableEntitys of
the same group.c(RS_SWCT_03065)

4.9.3 Consistency Needs for Senders and receivers of the same Data inside on
RunnableEntityGroup

[TPS_SWCT_01476] Sender and receiver of the same implicitly communicated
VariableDataPrototypes are associated with the same RunnableEntity-
Group dFor the case of sender and receiver of the same implicitly communi-
cated VariableDataPrototypes are associated with the same RunnableEnti-
tyGroup [TPS_SWCT_01472], [TPS_SWCT_01473], [TPS_SWCT_01475] as well
as [TPS_SWCT_01475] apply with the exception that updates of the values of im-
plicitly communicated VariableDataPrototypes inside the given RunnableEn-
tityGroup become visible immediately after the producing RunnableEntity was
terminated.c(RS_SWCT_03065)

222 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5 Data Description

5.1 Introduction

[TPS_SWCT_01229] Three different levels of abstraction regarding the definition
of data types dIn the context of defining data types and prototypes, the AUTOSAR
concept distinguishes between three different levels of abstraction as depicted in Table
5.1.c(RS_SWCT_03215, RS_SWCT_03216, RS_SWCT_03217)

Application Data Level

Implementation Data Level

Base Type Level

Table 5.1: Abstraction Levels for Describing Data

[TPS_SWCT_01230] Application Data Level dThe Application Data Level is the
common level at which ApplicationSwComponentTypes specify a data type or pro-
totype.

This level allows to define all the data attributes which are needed from the application
point of view, in order to exchange data between software components or between a
software component and a measurement and calibration tool. It is possible to specify
data communication of a complete Virtual Function Bus based on this level only.

This level includes among other things the numerical range of values, the data structure
as well as the physical semantics.

Data semantics (e.g. physical units) is not in the focus1 for the RTE in order to make
communication technically possible.

However, it is important for a unique interpretation of data in the application software
and in measurement and calibration systems.c(RS_SWCT_03216)

Please note that ApplicationDataTypes – by virtue of being platform-independent
by definition – do not become visible as data types in the code implementation of
software-components.

In former version of this specification, this level was not clearly separated from the
implementation level. These had the following drawbacks which are now solved:

• The model of primitive types (like integer, boolean, real, opaque) was anticipating
implementation aspects already on a very high level of design.

• The data type model used within ports, focusing on communication via the RTE,
was not sufficient to model all type-aspects of variables and parameters which are

1There are some aspects that affect the RTE, e.g. scaling of dataElements

223 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

visible within an AUTOSAR system for other purposes than RTE-communication,
namely NvM-data access, calibration, measurement, diagnostics, BSW-module
interfaces. Using a uniform type system covering all these aspects is now fa-
vored.

• Calibration parameters were not completely incorporated into the data type con-
cept. Some of their attributes (especially for curves and maps) could be spec-
ified only on the level of prototypes or were not completely formalized within
AUTOSAR (like SwRecordLayout).

• The data type system was not compatible with the usage in calibration standards
like ASAM-MCD (namely the usage of categorys).

• Adding implementation specific elements like a base type, was not possible with-
out formally changing the data type used in a VFB design. A mapping mecha-
nism that could be used in later project phases and is common in other parts of
AUTOSAR (e.g. for mapping components to ECUs) was missing.

• The RTE Specification contained many default rules and assumptions on how to
implement certain data types or prototypes in C. With a more formal description
of all relevant implementation aspects, the generation of C-interfaces is better
determined. But these aspects should be separated from the application level
design.

• Since there could be many data types on the application level in a big system, the
probability of name clashes in the interfaces to the RTE was rather high. Using a
separate set of types to implement the RTE interfaces solves this issue.

[TPS_SWCT_01231] Application level may impose strong requirements on the
design of the corresponding implementation level dIt should be pointed out, that
with the specification of computation methods and record layouts, the application level
imposes strong requirements on the design of the corresponding implementation level.
It might even be the case, that when anticipating different implementations, these ele-
ments might be chosen differently.

This is due to the nature of these elements which form a bridge from the physical
world to the numerical representation (and vice versa). Nonetheless, we consider the
specification of these elements as belonging to the application level.

On the one hand, this information is required by MCD-tools and thus shall be part of a
rather high-level design. On the other hand, this approach will allow to use a limited set
of implementation data types.c(RS_SWCT_03215, RS_SWCT_03216, RS_SWCT_-
03217)

Further information about the compatibility requirements between application level and
implementation level can be found in section 6.2.5.

[TPS_SWCT_01232] Implementation Data Level dThe Implementation Data Level
is closer to the actual code implementation in a programming language like C, though
it is still an abstraction of the code.

224 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Its values correspond to the actual binary numbers handled by the programming lan-
guage on the CPU. It contains concepts like pointers and unions which relate to the
organization of data in memory and are not relevant for the application level.

This level also defines structure, but it can be more granular. For example, the appli-
cation level may define a text to be transferred to an instrument cluster as a primitive
type (if the structure is not relevant for the application), whereas on the implementation
level it could be modeled as an array of bytes.c(RS_SWCT_03217)

[TPS_SWCT_01233] Use case for the Implementation Data Level dThere are sev-
eral use cases for this level in AUTOSAR:

• First, the Implementation Data level can be used in the description of interfaces,
and data (e.g. debug data) within the basic software, see [6] for more details on
these use cases.

• ImplementationDataTypes should also be used to describe the interfaces of
libraries which operate on a purely numerical level.

• Implementation Data is also used for the description of interfaces between
software-components and the basic software (namely AUTOSAR Services), be-
cause these typically cover implementation aspects only.

• It is possible to define communication in a VFB system directly on this level if the
physical and semantical abstraction is not of interest.

• Last not least the input for the RTE generator is defined by data descriptions on
this level. This means that in case a SWC defines its data only on application level
a corresponding set of implementation data types shall be created (or generated)
as part of the ECU extract before the RTE can be generated.

c(RS_SWCT_03217)

[TPS_SWCT_01234] Base Level dThe Base Type Level is used to describe the prim-
itive elements in terms of bits and bytes from which the implementation data is built up.
It is considered as a separate level in order to allow for reuse of the basic types defined
on this level.

These base types still do not completely determine the actual implementation on a
programming language, but they impose strong restrictions for this as they define for
example the number of bits and bytes to be used.

Depending on the use case, the base types can be defined as platform independent or
can also contain platform specific attributes (namely endianess and alignment).c()

[TPS_SWCT_01235] Mapping of data defined on the Application level to the Im-
plementation and Base Type level dIt is important to understand, that the mapping
of data defined on the Application level to the Implementation and Base Type level
depends on the medium on which the data is transported.

For example, if a physical value can be expressed with sufficient accuracy and range
by a 16-bit unsigned integer, it still might look very different when sent over CAN, when

225 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

seen by a software-component on a big-endian 32-bit machine or when seen by a
software-component on a little-endian 16-bit processor.

Conversion between several data implementations of the same application data type
might be necessary in case of communication between components on different ECUs.
AUTOSAR COM [22] is responsible for this.

It implies that the configuration depends on the definition of the data that are trans-
mitted between components2.c(RS_SWCT_03215, RS_SWCT_03216, RS_SWCT_-
03217)

AUTOSAR COM might need to convert a 16-bit integer between little-endian and big-
endian representations; whereas an array of 16 bytes does not need to be swapped
even if the endianess changes. In case of intra-ECU communication byte order con-
version is not necessary, since the software-components reside on the same machine.

[TPS_SWCT_01236] Big picture of data types dAnother way of approaching the con-
cept of data types in AUTOSAR (especially with respect to the question of what “kind”
of data type in related to which modeling meta-level) is to sketch the following “big
picture” of data types:

ApplicationDataType Defined on M2 - provides the meta-model for data types on
application level. It covers the application-relevant aspects of a data type.

An ApplicationDataType shall finally be mapped to an Implementation-
DataType.

ImplementationDataType Defined on M2 - provides the meta-model for data types
on implementation level. With respect to C source code, an Implementation-
DataType finally boils down to a typedef.

BaseType Defined on M2 - provides the platform-dependent part of an Implementa-
tionDataType. the dependency on the platform covers the following aspects:

• Definition on the level of the C language - using nativeDeclaration

• Technical representation on the target platform (byte order, alignment, en-
coding) as required for the support of MCD systems.

Platform Data Type Defined on M1 - provided by AUTOSAR. Platform types shall be
available on each platform on which an AUTOSAR-System can run.

The name of the Platform Data Type and the properties with respect to the
interface between modules / components is the same on every platform.

The particular representation varies from platform to platform.

Platform Data Types shall be modeled using Implementation-
DataTypes.

2More exactly speaking, the data shall be converted to and from a so-called SystemSignal.

226 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Note that in AUTOSAR R3.x the platform types are implemented manually and
could even not be expressed on ARXML model (see [SRS_Rte_00150]). In
AUTOSAR R4.1 the Platform Data Types can be represented in the ARXML
model. Subsequent releases of AUTOSAR may generate the Platform Data
Types directly from the ARXML Model.

Standard Type Defined on M1 - provided by AUTOSAR. Standard types are defined
by referring to platform types.

c(RS_SWCT_03215, RS_SWCT_03216, RS_SWCT_03217)

[TPS_SWCT_01237] SwDataDefProps dThe properties of data are summarized in
the meta-class SwDataDefProps. This meta-class itself is the superset of all applica-
ble properties.c(RS_SWCT_03216, RS_SWCT_03217)

Subsets of SwDataDefProps are applicable in specific case, for a summary please
refer to the following tables:

• The data categorys are summarized in table 5.6.

• Properties for ApplicationDataTypes are summarized in table 5.7.

• Properties for ImplementationDataTypes are summarized in table 5.17.

• Properties for DataPrototypes typed by ApplicationDataTypes are sum-
marized in table 5.34.

• Properties for DataPrototypes typed by ImplementationDataTypes are
summarized in table 5.35.

• Applicability of SwDataDefProps is summarized in table 5.43.

5.2 Data Types

5.2.1 Overview

As explained in section 5.1 it is possible to describe data provided by a software-
component from the application as well as from the implementation point of view.

[TPS_SWCT_01072] ApplicationDataType and ImplementationDataType
dThe common concept behind this is expressed by the abstract meta-class Autosar-
DataType, from which an ApplicationDataType and an Implementation-
DataType is derived.c(RS_SWCT_03215, RS_SWCT_03216, RS_SWCT_03217)

[TPS_SWCT_01073] Composite ApplicationDataType dAn Application-
DataType can be composed (in form of a record or an array) of elements which
themselves are typed by another ApplicationDataType.c(RS_SWCT_03215, RS_-
SWCT_03216)

227 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01074] Composite ImplementationDataType dAn Implementa-
tionDataType can also be composed of elements but in this case no type/prototype
concept (see [11]) has been applied. Both concepts will be explained in the following
chapters in more detail.c(RS_SWCT_03215, RS_SWCT_03217)

Figure 5.1 shows a summary of the basic meta-classes used for the definition of
AutosarDataTypes.

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

DataPrototype

ApplicationCompositeElementDataPrototype

����������	
������������������� ��

��	���	� �	 ����������	������� ��

����������	��������	� ��

����������	��������	��

ARElement
AtpBlueprint

AtpBlueprintable

DataTypeMappingSet

DataTypeMap ModeRequestTypeMap

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

«atpVariation»
SwDataDefProps

AtpBlueprint
AtpBlueprintable

AbstractImplementationDataType

+implementationDataType 0..1

«isOfType»

+type 0..1
{redefines atpType}

+swDataDefProps

0..1

+modeGroup 0..1

+modeRequestTypeMap 0..*

+applicationDataType 0..1

+dataTypeMap 0..*

+implementationDataType0..1

Figure 5.1: Summary of AutosarDataType

Class AutosarDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for user defined AUTOSAR data types for software.

Base ARElement , ARObject , AtpClassifier , AtpType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Subclasses AbstractImplementationDataType, ApplicationDataType

Attribute Type Mult. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this AutosarDataType.

Table 5.2: AutosarDataType

Class ApplicationDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

5

228 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ApplicationDataType (abstract)

Note ApplicationDataType defines a data type from the application point of view. Especially it should be used
whenever something "physical" is at stake.

An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.

It should be possible to model the application level aspects of a VFB system by using ApplicationData
Types only.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType

Attribute Type Mult. Kind Note

– – – – –

Table 5.3: ApplicationDataType

5.2.2 Data Type Mapping

As explained above, the concept of application data types as well as that of implemen-
tation data types can be used to instantiate a data prototype in an M1 model. However,
there are use cases, especially in order to generate the RTE contract for Applica-
tionSwComponentTypes, where it is required to consider both levels for one given
data prototype.

[TPS_SWCT_01189] DataTypeMap dThis is supported by the meta-class
DataTypeMap by which an ApplicationDataType and an Implementation-
DataType can be mapped to each other in order to describe both aspects of one
dataElement.c(RS_SWCT_03216, RS_SWCT_03217, RS_SWCT_03215)

Class DataTypeMap

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This class represents the relationship between ApplicationDataType and its implementing Abstract
ImplementationDataType.

Base ARObject

Attribute Type Mult. Kind Note

applicationData
Type

ApplicationDataType 0..1 ref This is the corresponding ApplicationDataType

implementation
DataType

AbstractImplementation
DataType

0..1 ref This is the corresponding AbstractImplementationData
Type.

Table 5.4: DataTypeMap

If, for example, a dataElement in a SenderReceiverInterface is typed by an
ApplicationDataType it shall additionally be associated to an Implementation-
DataType in order to be able to generate the RTE.

[constr_1903] Existence of reference DataTypeMap.applicationDataType dFor
each DataTypeMap, reference applicationDataType shall exist at the time
when the contract phase generation is executed.c()

229 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1904] Existence of reference DataTypeMap.implementationDataType
dFor each DataTypeMap, reference implementationDataType shall exist at the
time when the contract phase generation is executed.c()

[TPS_SWCT_01190] ModeRequestTypeMap dAnother mapping class, Mod-
eRequestTypeMap, has been introduced in order to allow the transport of mode re-
lated information via “normal” sender-receiver communication. Apart from this, mode
information is not handled by the usual type system but needs special meta-classes.c
(RS_SWCT_03110)

This aspect is explained in more detail in chapter 4.2.5.

Note that the mapping classes instead of direct associations have been introduced
for process reasons: It allows maintaining application and implementation types in
separate M1 artifacts without direct links.

For example, if a software component is moved to another hardware platform the map-
ping between application and implementation types might be changed in the scope of
the specific component without changing the overall VFB model.

[TPS_SWCT_01191] mapped ApplicationDataType and Implementation-
DataType shall be compatible dIn order to set up a valid DataTypeMap between
an ApplicationDataType and an ImplementationDataType the two types shall
be compatible.

Of course, if ImplementationDataTypes are generated from existing Applica-
tionDataTypes it is expected that they will be automatically compatible.c(RS_-
SWCT_03216, RS_SWCT_03217)

Please note that the compatibility between an ApplicationDataType and an Im-
plementationDataType mapped onto each other is clarified in chapter 6.2.5.

Furthermore, the various mappings are aggregated in a container DataTypeMap-
pingSet for easier maintenance in artifacts.

Class DataTypeMappingSet

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This class represents a list of mappings between ApplicationDataTypes and ImplementationDataTypes.
In addition, it can contain mappings between ImplementationDataTypes and ModeDeclarationGroups.

Tags:atp.recommendedPackage=DataTypeMappingSets

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

dataTypeMap DataTypeMap * aggr This is one particular association between an Application
DataType and its AbstractImplementationDataType.

modeRequest
TypeMap

ModeRequestTypeMap * aggr This is one particular association between an Mode
DeclarationGroup and its AbstractImplementationData
Type.

Table 5.5: DataTypeMappingSet

230 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Note that the meta-classes AutosarDataType, ModeDeclarationGroup and
DataTypeMappingSet are derived from ARElement. This means that these and
the meta-classes derived from them can be declared on the M1 level as part of an
ARPackage and thus can be used in some Software Component or Basic Software
Module Descriptions.

How to organize DataTypeMappingSets for a software system, for example whether
there is a separate mapping set for each ECU or even for each software component,
is considered as project specific. However, the RTE generator needs a well-defined
DataTypeMappingSet as input in relation those artifacts which might define data
typed as ApplicationDataTypes.

[TPS_SWCT_01192] Meta-classes that have an association to a DataTypeMap-
pingSet dTherefore, the following meta-classes in the scope of this document have
an association to a DataTypeMappingSet:

• InternalBehavior, because it represents the interface between the software
component’s code and the RTE and all data types belonging to the particular
component type have to be uniquely provided on implementation level.

• ParameterSwComponentType, for the same reason (this component type
doesn’t have an InternalBehavior).

• NvBlockDescriptor, because this meta-class also leads to generation of code
from data types and is not associated to an InternalBehavior.

• CompositionSwComponentType, to support the definition of ComSpecs in the
context of a CompositionSwComponentType. Please note that this definition
of a data type mapping is informal (i.e. it shall be taken as a hint for delegation
PortPrototypes that are not yet referenced by a DelegationSwConnector
or PassThroughSwConnector) and shall not be regarded as a binding contract
towards the inner elements of the CompositionSwComponentType.

c()

For more details about this aspect please refer to figure 5.85.

[TPS_SWCT_01193] Mappings between application and implementation types do
not necessarily have to form a 1:1 relation dIn general, it is not required that the sum
of all mappings between ApplicationDataType and ImplementationDataType
in a given system form a 1:1 relation. Depending on the use case and on the scope,
1:n as well as n:1 mappings are possible :

• Several ApplicationDataTypes may be mapped to the same Implementa-
tionDataType in the scope of a system, an ECU, or even a single Internal-
Behavior of an atomic software component.

Of course, this requires that the different ApplicationDataTypes are used for
different DataPrototypes and thus that the DataPrototypes are typed by
them (and not by the ImplementationDataTypes). This allows to establish

231 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

a more simple type system on the implementation level, than on the application
model level.

• The same ApplicationDataTypes may be mapped to different Implemen-
tationDataTypes for different ECUs. This scenario allows to choose the im-
plementation data types according to the needs of specific ECUs.

• The same ApplicationDataTypes may be mapped to different Implemen-
tationDataTypes even in the scope of a single ECU (more exactly speak-
ing, a single RTE), but only for different AtomicSwComponentTypes (see [con-
str_1004]).

This improves the portability of software components which were developed in-
dependently or are ported between ECUs.

c()

[constr_1004] Mapping of ApplicationDataTypes in the scope of single
AtomicSwComponentTypes dIn the scope of AtomicSwComponentType.inter-
nalBehavior.dataTypeMapping, each ApplicationDataType shall be mapped
to exactly one ImplementationDataType at the time when the contract
phase generation is executed.c()

ApplicationDataType ApplicationDataType

ImplementationDataType ImplementationDataType

compatible and connectedcompatible and connected

compatible and mappedcompatible and mapped

shall also be

compatible

shall also be

compatible

compatible and mappedcompatible and mapped

Figure 5.2: Compatibility of Data Types

[constr_1005] Compatibility of ImplementationDataTypes mapped to the same
ApplicationDataType dIt is required that ImplementationDataTypes which are
taken for connecting corresponding elements of PortInterfaces and thus refer to
compatible ApplicationDataTypes are also compatible among each other (so that

232 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RTE is able to cope with possible connections by converting the data accordingly) at
the time when the contract phase generation is executed.c()

This constraint is visualized in figure 5.2.

[constr_1636] Mapping of data types that represent an Optional Element
Structure dAn ApplicationRecordDataType with at least one element where
attribute isOptional is set to True shall only be mapped to an Implementa-
tionDataType that fulfills the structural requirements to represent an Optional
Element Structure (see [TPS_SWCT_01774]) at the time when the con-
tract phase generation is executed.c()

5.2.3 Data Categories

An AutosarDataType is derived from Identifiable, thus having a longName, a
shortName, a category, and several further attributes for administrative and docu-
mentation purposes (for details see [11]).

[TPS_SWCT_01238] Attribute category used in the context of Autosar-
DataType dThe category attribute is used to set constraints for the various proper-
ties which can be specified for an AutosarDataType. These properties are defined
by aggregating the meta-class SwDataDefProps which contains several attributes
and references.c()

Detailed explanations about the semantics of meta-class SwDataDefProps can be
found in chapter 5.4.

[constr_1006] applicable data categories dTable 5.6 defines the only applicable
categorys depending on specific model elements related to data definition properties
at any time in the workflow.c()

This approach avoids a very deep and complicated inheritance tree which otherwise
would be needed on the M2 level for AutosarDataType. There is to some extent a
redundancy between setting the category and defining the attributes of Autosar-
DataType.swDataDefProps. This redundancy is intended and allows to for a tool to
rule out senseless configurations via simple rules.

In former version of this specification the categories were only used for calibration
parameters. Due to several extensions the categories are now applicable for all use
cases of the AutosarDataType.

An overview on all valid categorys defined for AutosarDataType is shown in table
5.6. Some categorys are also applied to sub-elements of the type system (column
“Applicable to ...” in table 5.6). This is explained in more detail in the following sections.

Please note that the column “RTE + BSW” of table 5.6 is only applicable for cate-
gorys that are relevant either for ImplementationDataTypes and/or the aspect of
measurement and calibration in McDataInstance.

233 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Category Applicable to ... Use Case Description
A
p
p
l
i
c
a
t
i
o
n
A
r
r
a
y
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
R
e
c
o
r
d
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
P
r
i
m
i
t
i
v
e
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
R
e
c
o
r
d
E
l
e
m
e
n
t

A
p
p
l
i
c
a
t
i
o
n
A
r
r
a
y
E
l
e
m
e
n
t

A
p
p
l
i
c
a
t
i
o
n
V
a
l
u
e
S
p
e
c
i
f
i
c
a
t
i
o
n

A
p
p
l
i
c
a
t
i
o
n
R
u
l
e
B
a
s
e
d
V
a
l
u
e
S
p
e
c
i
f
i
c
a
t
i
o
n

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e
E
l
e
m
e
n
t

S
w
S
e
r
v
i
c
e
A
r
g

S
w
S
y
s
t
e
m
c
o
n
s
t

M
c
D
a
t
a
I
n
s
t
a
n
c
e

C
al

ib
ra

tio
n

M
ea

su
re

m
en

t
C

om
m

un
ic

at
io

n
Po

rt
In

te
rfa

ce
s

R
TE

+
B

S
W

VALUE x x x x x x x3 x x x x x x Contains a single value.

VAL_BLK x x x x x x x x

A value block defines values stored together within one cal-
ibration parameter object.

It is similar to an value array but it stores the values by
means of an axis instead (only important for calibration data
handling).

DATA_REF-
ERENCE

x x x x4 x
Contains an address of another DataPrototype (whose
type is given via SwDataDefProps.swPointerTarget-
Props).

FUNCTION_
REFERENCE

x x x x
Contains an address of a function prototype (whose signa-
ture is given via SwDataDefProps.swPointerTarget-
Props.functionPointerSignature).

TYPE_REF-
ERENCE

x x x x x
The element is defined via reference to another data type
(via SwDataDefProps.implementationDataType).

STRUCTURE x x x x x x x x x x

Holds one or several further elements which can have differ-
ent AutosarDataTypes.

The underlying elements are defined in the same manner as
normal data except for the association to SwAddrMethod:
This has to be the same for all underlying elements.

Corresponds to a Record if used in the application domain.

UNION x x x x x x x

Can hold values of different data types. It is similar to
STRUCTURE except that all of its members start at the same
location in memory.

A UNION data prototype can contain only one of its elements
at a time. The size of the UNION is at least the size of the
largest member.

Please find more information in [TPS_SWCT_01700].

ARRAY x x x x x x x x x x x An array of sub-elements which are of the same type.

BIT x x x x
One or several bits within a host variable, which are treated
as an own data object.

5

3This option has very few valid use cases, e.g. for defining a function pointer in native C notation, for
example: int (*SwCluC_BManif_VoidFncPtrType)(void);

4[constr_1295] applies!

234 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Category Applicable to ... Use Case Description

A
p
p
l
i
c
a
t
i
o
n
A
r
r
a
y
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
R
e
c
o
r
d
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
P
r
i
m
i
t
i
v
e
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
R
e
c
o
r
d
E
l
e
m
e
n
t

A
p
p
l
i
c
a
t
i
o
n
A
r
r
a
y
E
l
e
m
e
n
t

A
p
p
l
i
c
a
t
i
o
n
V
a
l
u
e
S
p
e
c
i
f
i
c
a
t
i
o
n

A
p
p
l
i
c
a
t
i
o
n
R
u
l
e
B
a
s
e
d
V
a
l
u
e
S
p
e
c
i
f
i
c
a
t
i
o
n

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e
E
l
e
m
e
n
t

S
w
S
e
r
v
i
c
e
A
r
g

S
w
S
y
s
t
e
m
c
o
n
s
t

M
c
D
a
t
a
I
n
s
t
a
n
c
e

C
al

ib
ra

tio
n

M
ea

su
re

m
en

t
C

om
m

un
ic

at
io

n
Po

rt
In

te
rfa

ce
s

R
TE

+
B

S
W

HOST x x x x

A HOST data type is like a simple VALUE, but it is used for
packed bit definition.

That means it can host several BIT variables which have
their own description and measurement access.

STRING x x x x x x x x
Contains a single value interpreted as a text string (note that
it appears as a single value for the application domain; the
internal representation can be an array).

BOOLEAN x x x x x x x x

Contains one boolean state. Depending on the CPU direct
addressing of single bits may not be available.

So a byte or a word can be used to store only one logical
state.

COM_AXIS x x x x x x x x

An axis definition as separate calibration parameter which
can be referenced by any CURVE, MAP, CUBOID, CUBE_4,
and CUBE_5.

The benefits by using a common axis is that it saves memory
space; because it is stored only one time and can be used in
multiple CURVEs, MAPs, CUBOIDs, CUBE_4s, and CUBE_5s.

RES_AXIS x x x x x x x x

A RES_AXIS (rescale axis) is also a shared axis like COM_-
AXIS, the difference is that this kind of axis can be used for
rescaling.

Note that the RES_AXIS is by nature a CURVE which is used
to implement a non linear scaling (rescale) of the axis.

In addition to saving memory space via the shared usage
like a COM_AXIS, it can compress a huge range to a non-
linear distributed axis points thus retaining the required ac-
curacy.

CURVE x x x x x x x x

Calibration parameter with one input value and one output
value. That means output values can be defined depending
on the input value. The granularity of implemented func-
tionality can be changed by using different number of axis
points.

A CURVE has always one input axis and one output axis. The
output axis is a characteristic of the curve and every time
present but the input axis can be defined within the curve
definition or separately.

5

235 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Category Applicable to ... Use Case Description

A
p
p
l
i
c
a
t
i
o
n
A
r
r
a
y
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
R
e
c
o
r
d
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
P
r
i
m
i
t
i
v
e
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
R
e
c
o
r
d
E
l
e
m
e
n
t

A
p
p
l
i
c
a
t
i
o
n
A
r
r
a
y
E
l
e
m
e
n
t

A
p
p
l
i
c
a
t
i
o
n
V
a
l
u
e
S
p
e
c
i
f
i
c
a
t
i
o
n

A
p
p
l
i
c
a
t
i
o
n
R
u
l
e
B
a
s
e
d
V
a
l
u
e
S
p
e
c
i
f
i
c
a
t
i
o
n

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e
E
l
e
m
e
n
t

S
w
S
e
r
v
i
c
e
A
r
g

S
w
S
y
s
t
e
m
c
o
n
s
t

M
c
D
a
t
a
I
n
s
t
a
n
c
e

C
al

ib
ra

tio
n

M
ea

su
re

m
en

t
C

om
m

un
ic

at
io

n
Po

rt
In

te
rfa

ce
s

R
TE

+
B

S
W

MAP x x x x x x x x

Calibration parameter with two input values and one output
value. That means output values can be defined depending
on the input values.

The granularity of implemented functionality can be changed
by using different number of axis points for y- and x-axis. A
MAP has always two input axes and one output axis.

The output axis is a characteristic of the MAP and every time
present but the input axes can be defined within the MAP
definition or separately.

CUBOID x x x x x x x x

Calibration parameter with three input values and one output
value. That means output values can be defined depending
on the input values.

The granularity of implemented functionality can be changed
by using different number of axis points for the input axes. A
CUBOID has always three input axes and one output axis.

The output axis is a characteristic of the CUBOID and every
time present but the input axes can be defined within the
CUBOID definition or separately.

CUBE_4 x x x x x x x x

Calibration parameter with four input values and one output
value. That means output values can be defined depending
on the input values.

The granularity of implemented functionality can be changed
by using different number of axis points for the input axes. A
CUBE_4 has always four input axes and one output axis.

The output axis is a characteristic of the CUBE_4 and every
time present but the input axes can be defined within the
CUBE_4 definition or separately.

CUBE_5 x x x x x x x x

Calibration parameter with five input values and one output
value. That means output values can be defined depending
on the input values.

The granularity of implemented functionality can be changed
by using different number of axis points for the input axes. A
CUBE_5 has always five input axes and one output axis.

The output axis is a characteristic of the CUBE_5 and every
time present but the input axes can be defined within the
CUBE_5 definition or separately.

MACRO x x This represents an argument to a C macro.

Table 5.6: Usage of category for Data Types

236 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01239] default value for attribute category used in the context of
SwSystemconst dThe default value for the category of a SwSystemconst shall be
VALUE. This has to be applied if no explicit definition of the category can be found.c
()

5.2.4 Application Data Type

[TPS_SWCT_01240] Subclasses of ApplicationDataType dThe abstract meta-
class ApplicationDataType is further derived into an ApplicationPrimitive-
DataType and an ApplicationCompositeDataType which are further explained
in the following sub-chapters.c(RS_SWCT_03216)

This aspect is further explained in Figure 5.3.

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

ApplicationCompositeDataTypeApplicationPrimitiveDataType

«atpVariation»
SwDataDefProps

ApplicationRecordDataType ApplicationArrayDataType

+ dynamicArraySizeProfi le:
String [0..1]

+swDataDefProps 0..1

Figure 5.3: Basic Meta-Model for ApplicationDataType

Attributes of SwDataDefProps Root Elem. Attribute Existence per Category

A
p
p
l
i
c
a
t
i
o
n
D
a
t
a
T
y
p
e

A
p
p
l
i
c
a
t
i
o
n
R
e
c
o
r
d
E
l
e
m
e
n
t

A
p
p
l
i
c
a
t
i
o
n
A
r
r
a
y
E
l
e
m
e
n
t

V
A
L
U
E

V
A
L
_
B
L
K

S
T
R
U
C
T
U
R
E

A
R
R
A
Y

S
T
R
I
N
G

B
O
O
L
E
A
N

C
O
M
_
A
X
I
S

R
E
S
_
A
X
I
S

C
U
R
V
E

M
A
P

C
U
B
O
I
D

C
U
B
E
_
4

C
U
B
E
_
5

additionalNativeTypeQualifier

annotation x x x * * * * * * * * * * * * *
baseType

compuMethod x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

dataConstr.dataConstrRule.
physConstrs x x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

dataConstr.dataConstrRule.in-
ternalConstrs

x x x d/c5 d/c d/c d/c d/c d/c d/c d/c d/c

displayFormat x x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

displayPresentation x x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

implementationDataType

5

5don’t care

237 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
invalidValue x 0..1 0..1 0..1

stepSize x x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swAddrMethod x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swAlignment

swBitRepresentation

swCalibrationAccess x x 0..1 0..1 0..1 0..1 0..1 0..1 1 1 1 1 1 1 1

swCalprmAxisSet x 1 1 1 1 1 1 1

swComparisonVariable

swDataDependency

swHostVariable

swImplPolicy x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swIntendedResolution x x x 0..1

swInterpolationMethod x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swIsVirtual

swPointerTargetProps

swRecordLayout x 0..1 0..16 0..1 1 1 1 1 1 1 1

swRefreshTiming x 0..1 0..1 0..1 0..1

swTextProps x 1

swValueBlockSize x 1
swValueBlockSizeMult x 1

unit x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

valueAxisDataType x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

Other Attributes below the Root Element
element:
ApplicationRecordElement x x x 1..*

element:
ApplicationArrayElement x x x 1

ApplicationArrayElement.array-
SizeSemantics

x 0..1

ApplicationArrayElement.
maxNumberOfElements

x 1

Table 5.7: Allowed Attributes vs. category for ApplicationDataTypes

Class ApplicationPrimitiveDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note A primitive data type defines a set of allowed values.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 5.8: ApplicationPrimitiveDataType

6This is required by [TPS_SWCT_01179].

238 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ApplicationCompositeDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for all application data types composed of other data types.

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Subclasses ApplicationArrayDataType, ApplicationRecordDataType

Attribute Type Mult. Kind Note

– – – – –

Table 5.9: ApplicationCompositeDataType

[TPS_SWCT_01241] Applicable categorys for subclasses of Application-
DataType dLike any AutosarDataType, also the primitive and composite types on
application level are characterized by their category and their SwDataDefProps.
For a given category, only a limited set of attributes of the SwDataDefProps makes
sense.c(RS_SWCT_03216)

[constr_1007] Allowed attributes of SwDataDefProps for Application-
DataTypes dThe allowed attributes of SwDataDefProps for Application-
DataTypes and their allowed multiplicities at any time in the workflow are
listed as an overview in table 5.7.c()

This list makes use of the SwDataDefProps and other meta-model elements which
are explained in detail in the further sections of this chapter.

5.2.4.1 Application Primitive Data Types

5.2.4.1.1 Data Types for Single Values

In contrast to prior versions (R3.x) of the AUTOSAR standard, the primitive application
data types on M2 level are no longer specified. Instead of this, the meta-class Appli-
cationPrimitiveDataType in combination with the attached swDataDefProps is
used on the level of the M2 (meta-) model to specify the details on M1 modeling level.

[TPS_SWCT_01242] category characterizes the nature of a data type on appli-
cation level dThe category is used in addition to characterize the nature of a data
type on application level.c(RS_SWCT_03216)

For example, the IntegerType as of AUTOSAR R3.x allows for specifying lower and
upper ranges that constrain the applicable value interval. That aspect is still supported
by this version of AUTOSAR, but the meta-model is different from the former approach.
Especially it is no more considered of importance to specify that an Application-
PrimitiveDataType is actually represented by “integer” numbers.

239 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ApplicationPrimitiveDataType

«atpVariation»
SwDataDefProps

ARElement
AtpBlueprint

AtpBlueprintable

DataConstr

DataConstrRule

+ constrLevel: Integer [0..1]

PhysConstrs

+ maxDiff: Numerical [0..1]
+ maxGradient: Numerical [0..1]
+ monotony: MonotonyEnum [0..1]

«atpVariation»
+ lowerLimit: Limit [0..1]
+ upperLimit: Limit [0..1]

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

+swDataDefProps

0..1

+dataConstrRule 0..*

+dataConstr

0..1

+physConstrs

0..1

Figure 5.4: Specification of Physical Limits

Figure 5.4 provides a sketch of how limits are defined now. The key feature is the ag-
gregation of SwDataDefProps at AutosarDataType. The meta-class SwDataDef-
Props allows for creating a reference to a DataConstr that in turn aggregates a
DataConstrRule.

The latter aggregates PhysConstrs and this meta-class finally owns two Limits in
the roles lowerLimit and upperLimit.

Another example is shown in Figure 5.5. By making again use of SwDataDefProps,
this figure shows how semantics in form of a CompuMethod and a Unit can be at-
tached.

Also, an initValue can be defined which is used by the RTE in order to initialize
values of VariableDataPrototypes/ParameterDataPrototypes defined locally
in a software-component.

ApplicationPrimitiveDataType

«atpVariation»
SwDataDefProps

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

ValueSpecification

ARElement
AtpBlueprint

AtpBlueprintable

CompuMethod

ARElement

Unit

+compuMethod

0..1

+unit

0..1

+invalidValue 0..1

+swDataDefProps

0..1

+unit 0..1

Figure 5.5: Some Properties of ApplicationPrimitiveDataTypes

Figure 5.6 illustrates the relationship between the data constraints for Application-
DataType, CompuMethod, ImplementationDataType, BaseType and also the
invalidValue for the case of an entirely linear or rational conversion.

Please note that Figure 5.6 is only applicable for linear and rational CompuMethods.

240 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

0 2
n

BaseType

Implementation

DataType

CompuMethod

Application

DataType
Upper [unit]Lower [unit]

Invalid Value

physConstrs of
ApplicationDataType

limits of CompuMethod

computed internalConstrs of
ApplicationDataType

internalConstrs of
ImplementationDataType

range by BaseType

InvalidValue inside the scope of the
CompuMethod is known to the
software-component

InvalidValue outside the scope of
the CompuMethod is transparent

to the software-component

Figure 5.6: Value ranges and invalid values for linear and rational CompuMethod

Figure 5.7 and Figure 5.8 depict a similar situation for the case of mixed Com-
puMethods where the invalidValue is defined in the discrete part of a Com-
puMethod.

0 2
n

BaseType

Implementation

DataType

CompuMethod

Application

DataType
Upper [unit]Lower [unit]

Invalid Value

physConstrs of
ApplicationDataType

limits of CompuMethod

computed internalConstrs of
ApplicationDataType

internalConstrs of
ImplementationDataType

range by BaseType

InvalidValue appears in the textual part of the CompuMethod and
is therefore known to the component

Textual Value defined as
part of the CompuMethod

Figure 5.7: Value ranges and invalid values with discrete invalidValue defined inside
the scope of the CompuMethod

241 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Figure 5.7 sketches a case where a CompuMethod has a linear and a discrete part and
the invalidValue is defined by means of one value that is defined in the discrete part
of the CompuMethod.

As mentioned by [TPS_SWCT_01834], the invalidValue shall be defined in the
physical domain in this case. In other words, the invalidValue shall be defined by
a symbol according to [TPS_SWCT_01432].

As a consequence of the definition of an invalidValue inside, the scope of a mixed
CompuMethod the invalidValue is visible to the software-component.

0 2
n

BaseType

Implementation

DataType

CompuMethod

Application

DataType Upper [unit]Lower [unit]

Invalid Value

physConstrs of
ApplicationDataType

limits of CompuMethod

computed internalConstrs of
ApplicationDataType

internalConstrs of
ImplementationDataType

range by BaseType

InvalidValue does not appear in the textual part of the
CompuMethod and is therefore not known to the component

Textual Value defined as
part of the CompuMethod

Figure 5.8: Value ranges and invalid values with discrete invalidValue defined outside
the scope of the CompuMethod

Figure 5.8, on the other hand, sketches a case where a CompuMethod has a linear
and a discrete part and the invalidValue is not within the defined linear interval and
not defined by means of one value out of the discrete part of the CompuMethod.

As mentioned by [TPS_SWCT_01835], the invalidValue shall be defined in the
internal domain in this case. In other words, the invalidValue shall be defined by a
NumericalValueSpecification.

As a consequence of the definition of an invalidValue outside the scope of a mixed
CompuMethod, the invalidValue is invisible (and therefore not accessible) to the
software-component.

If an ApplicationPrimitiveDataType does not define dataConstr, then implicit
constraints can be derived from physical meaning of the ApplicationDataType.

For example, if the data type represents a temperature the lower bound will not be able
to exceed 0K.

242 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For other physical meanings, it could be possible that the implicitly assumed limits go
from -INF to +INF.

In order to avoid ambiguity regarding the values of limits it is strongly recommended
defining a reasonable limit for ApplicationPrimitiveDataTypes.

[constr_2544] Limits need to be consistent d

• The limits of ApplicationDataType shall be inside the definition range of the
CompuMethod

The CompuMethod needs to be applicable for limits of an Application-
DataType. The reason is that the internal representation of the limits for the
ApplicationDataType are calculated by applying the CompuMethod.

• The such defined internal limits of the ApplicationDataType shall be within
or equal the internalConstrs of the mapped ImplementationDataType.

• The limits of the ImplementationDataType shall be within or equal to the
limits defined by the size of the BaseType.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_01834] invalidValue is inside the scope of the compuMethod dIf
the value of the invalidValue of an ApplicationPrimitiveDataType of cat-
egory VALUE is supposed to be inside the scope of the applicable CompuMethod, an
ApplicationValueSpecification shall be used to describe the invalidValue
of the ApplicationPrimitiveDataType.c(RS_SWCT_03216)

[TPS_SWCT_01834] means that the value of the ApplicationValueSpecifica-
tion shall be within the bounds defined by swDataDefProps.compuMethod.com-
puPhysToInternal.compuContent.compuScale.lowerLimit or upperLimit
or the inverse case that is based on the bounds defined by swDataDefProps.com-
puMethod.compuInternalToPhys.compuContent.compuScale.lowerLimit or
upperLimit.

[TPS_SWCT_01835] invalidValue is outside the scope of the compuMethod dIf
the value of the invalidValue of an ApplicationPrimitiveDataType of cat-
egory VALUE is supposed to be outside the scope of the applicable CompuMethod, a
NumericalValueSpecification (that provides a value in the internal representa-
tion) shall be used to describe the invalidValue of the ApplicationPrimitive-
DataType.c(RS_SWCT_03216)

Because of the existence of [TPS_SWCT_01834] and [TPS_SWCT_01834], the def-
inition of the invalidValue is fully specified and therefore [constr_1221] does not
apply to this case.

The handling of invalidValue for ApplicationPrimitiveDataType of cate-
gory STRING is defined by [constr_1242].

243 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For a more detailed description of the properties that can be defined for data types
(and data prototypes as well) see sections 5.4 and 5.4.2.

[TPS_SWCT_01760] Defining the dimension of an ApplicationPrimitive-
DataType of category VAL_BLK dAn ApplicationPrimitiveDataType of cat-
egory VAL_BLK that has only one dimension shall be described using the attribute
SwDataDefProps.swValueBlockSize.

An ApplicationPrimitiveDataType of category VAL_BLK that has more than
one dimension shall be described using the attribute SwDataDefProps.swValue-
BlockSizeMult.c(RS_SWCT_03216)

[constr_1610] Existence of SwDataDefProps.swValueBlockSize and Sw-
DataDefProps.swValueBlockSizeMult dAttributes SwDataDefProps.swVal-
ueBlockSize and SwDataDefProps.swValueBlockSizeMult shall not exist at
the same time in the context of a given SwDataDefProps.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

5.2.4.1.2 About Enumerations

[TPS_SWCT_01243] Definition of enumeration types dIn the AUTOSAR meta-
model, an enumeration is not implemented by means of an ApplicationCompos-
iteDataType.

Instead, a discrete set of integer numbers can be used as a structural description for
a single ApplicationPrimitiveDataType or an ImplementationDataType of
category VALUE or TYPE_REFERENCE that boils down to an Implementation-
DataType of category VALUE.

The mapping of the integer numbers to labels in the scope of the definition of an enu-
meration is considered part of the semantical definition via an attached CompuMethod
rather than part of the structural description.c(RS_SWCT_03216)

[TPS_SWCT_01562] Specification of values of an enumeration dFor the specifica-
tion of values of an enumeration on the basis of the labels defined in the applicable
CompuMethod it is necessary to distinguish two approaches based on the used Au-
tosarDataType:

• ImplementationDataType: as mentioned by [constr_1225], the definition of
the labels of an enumeration shall only be done by using TextValueSpecifi-
cation.

• ApplicationPrimitiveDataType: use the ApplicationValueSpecifi-
cation.swValueCont.swValuesPhys.vt or ApplicationRuleBasedVal-
ueSpecification.swValueCont.ruleBasedValues.arguments.vt.

c(RS_SWCT_03216)

244 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The relevant meta-classes in the context of SwDataDefProps are sketched in Figure
5.9. This includes all meta-classes that may contribute to the definition of the symbol
of a CompuScale in C code, see [TPS_SWCT_01431].

Compu

ARElement
AtpBlueprint

AtpBlueprintable

CompuMethod

+ displayFormat: DisplayFormatString [0..1]

CompuContent

CompuScales

CompuScale

+ mask: PositiveInteger [0..1]
+ shortLabel: Identifier [0..1]
+ symbol: CIdentifier [0..1]

«atpVariation»
+ lowerLimit: Limit [0..1]
+ upperLimit: Limit [0..1]

«atpVariation»
SwDataDefProps

CompuConst

CompuScaleConstantContents CompuScaleContentsCompuConstContent

CompuConstTextContent

+ vt: VerbatimString [0..1]

������������	
 ����

�����������	��	���� � �������	����������	����

������ � ���� !�"����!�#�$!!���� %&�'($&

+compuConst 0..1

+compuMethod

0..1

+compuInternalToPhys 0..1

+compuScaleContents

0..1

+compuContent 0..1

+compuInverseValue

0..1

+compuConstContentType0..1

«atpVariation»

+compuScale 0..* {ordered}+compuDefaultValue 0..1

+compuPhysToInternal 0..1

Figure 5.9: Relevant meta-classes for the specification of enumerations

An example of how an enumeration looks like in ARXML is contained in section 5.5.1.4.

5.2.4.1.3 Data Types for Calibration Parameters

[TPS_SWCT_01244] Data types for calibration parameters are also described as
primitive types dData types for calibration parameters are from the application per-
spective also described as primitive types. This is obvious, if they are simple values
(category VALUE). Also, the category STRING is treated as a primitive type on
application level.

Less obvious is the fact that ApplicationDataTypes of the categories VAL_BLK,
COM_AXIS, RES_AXIS, CURVE, MAP, CUBOID, CUBE_4, and CUBE_5 are not described
as composite data types (as far as the application level is concerned) although they
admittedly possess some kind of internal structure.

In contrast to ApplicationCompositeDataTypes, they are not composed similarly
of other AutosarDataTypes. Their substructure needs a special description in order
to be compatible with existing calibration techniques.c(RS_SWCT_03216)

245 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01245] SwDataDefProps control the structure of calibration param-
eters dThe substructure of these types is attached to the SwDataDefProps. By this
means it is possible to define on the level of DataPrototypes or other artifacts, where
the SwDataDefProps come into play.c(RS_SWCT_03216)

For details on these part of the SwDataDefProps see chapters 5.4.4 and 5.5.5.

5.2.4.1.4 Data Types for Textual Strings

[constr_1093] Definition of textual strings dAn ApplicationPrimitive-
DataType of category STRING shall have a swTextProps which determines the
arraySizeSemantics and swMaxTextSize.

This rule shall be imposed at the time when the contract phase genera-
tion is executedc()

[TPS_SWCT_01488] ApplicationPrimitiveDataType shall be interpreted as
a string of a particular encoding dTo indicate that an ApplicationPrimitive-
DataType shall be interpreted as a string of a particular encoding it shall reference
swDataDefProps.swTextProps.baseType and the only attribute of the referenced
SwBaseType relevant for this purpose is the BaseTypeDirectDefinition.base-
TypeEncoding.c()

[constr_1905] Existence of attribute SwTextProps.arraySizeSemantics dFor
each SwTextProps, attribute arraySizeSemantics shall exist at the time
when the contract phase generation is executed.c()

[constr_1906] Existence of attribute SwTextProps.swMaxTextSize dFor each
SwTextProps, attribute swMaxTextSize shall exist at the time when the
contract phase generation is executed.c()

[TPS_SWCT_01127] Byte array with variable size dSwTextProps can be used to
define byte arrays of variable size.c(RS_SWCT_03182, RS_SWCT_03181)

ApplicationPrimitiveDataType

SwTextProps

+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1]
+ swFillCharacter: Integer [0..1]

«atpVariation»
+ swMaxTextSize: Integer [0..1]

«atpVariation»
SwDataDefProps

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

AtpBlueprint
AtpBlueprintable

BaseType

SwBaseType

ARElement

SwRecordLayout

CompositeRuleBasedValueArgument

ApplicationValueSpecification

+ category: Identifier [0..1]

ValueSpecification

+ shortLabel: Identifier [0..1]

+swTextProps 0..1

+swDataDefProps

0..1

+swRecordLayout

0..1

+invalidValue

0..1

+baseType

0..1

Figure 5.10: Specification of textual strings

[TPS_SWCT_01246] SwRecordLayout may also be required for A2L generation
dA SwRecordLayout may also be required for the generation of A2L if the string is
part of calibration data.c()

246 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

As stated by [TPS_SWCT_01128], the definition of SwDataDefProps.swRecord-
Layout is considered mandatory anyway for ApplicationPrimitiveDataTypes
of category STRING.

Class SwTextProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This meta-class expresses particular properties applicable to strings in variables or calibration
parameters.

Base ARObject

Attribute Type Mult. Kind Note

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls the semantics of the arraysize for
the array representing the string in an Implementation
DataType.

It is there to support a safe conversion between
ApplicationDatatype and ImplementationDatatype, even
for variable length strings as required e.g. for Support of
SAE J1939.

baseType SwBaseType 0..1 ref This is the base type of one character in the string. In
particular this baseType denotes the intended encoding of
the characters in the string on level of ApplicationData
Type.

Tags:xml.sequenceOffset=30

swFillCharacter Integer 0..1 attr Filler character for text parameter to pad up to the
maximum length swMaxTextSize.

The value will be interpreted according to the encoding
specified in the associated base type of the data object,
e.g. 0x30 (hex) represents the ASCII character zero as
filler character and 0 (dec) represents an end of string as
filler character.

The usage of the fill character depends on the arraySize
Semantics.

Tags:xml.sequenceOffset=40

swMaxTextSize Integer 0..1 attr Specifies the maximum text size in characters. Note the
size in bytes depends on the encoding in the
corresponding baseType.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Table 5.10: SwTextProps

The following series of XML fragments exemplifies the definition of a data type for the
representation of a textual string. First, the applicable ApplicationPrimitive-
DataType is defined (see Figure 5.10).

Note that the category is set to the value STRING. Also, the ApplicationPrimi-
tiveDataType.swDataDefProps.swTextProps indicate the width of the string and
also define (by means of the reference to baseType) the encoding this string data type
is supposed to utilize.

Note further that the fact that an ApplicationDataType directly references (across
the implementation level) to a SwBaseType represents an exception to the rule that
ApplicationDataType should not be concerned about the lowest level of data
type definition in AUTOSAR.

247 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

If the bridging of the implementation level were accepted as a general pattern for the
modeling of ApplicationDataType it would easily be possible to bypass the imple-
mentation level to some extent and this would render ApplicationDataTypes less
versatile.

[TPS_SWCT_01128] SwRecordLayout needed for ApplicationPrimitive-
DataType of category STRING dAs mentioned in [TPS_SWCT_01179], an Ap-
plicationPrimitiveDataType of category STRING is considered a Compound
Primitive Data Type.

Therefore, it needs a reference to the definition of a SwRecordLayout that presets
the approach for creating a matching ImplementationDataType.c()

In this specific example the definition of the SwRecordLayout foresees the Applica-
tionPrimitiveDataType of category STRING to be implemented as a structured
data type that consists of:

1. the size of an instance of the string data type in terms of the number of characters
plus

2. an array that can be used to store the individual characters contained in an in-
stance of the string data type.

Listing 5.1: Example for the definition of a string ApplicationPrimitiveDataType

<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>MyApplicationStringType</SHORT-NAME>
<CATEGORY>STRING</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-TEXT-PROPS>
<ARRAY-SIZE-SEMANTICS>VARIABLE-SIZE</ARRAY-SIZE-SEMANTICS>
<SW-MAX-TEXT-SIZE>50</SW-MAX-TEXT-SIZE>
<BASE-TYPE-REF BASE="default" DEST="SW-BASE-TYPE">BaseTypes/

MyTextBaseType</BASE-TYPE-REF>
</SW-TEXT-PROPS>
<INVALID-VALUE>

<APPLICATION-VALUE-SPECIFICATION>
<CATEGORY>STRING</CATEGORY>
<SW-VALUE-CONT>

<SW-VALUES-PHYS>
<VT>inv</VT>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
</INVALID-VALUE>
<SW-RECORD-LAYOUT-REF BASE="default" DEST="SW-RECORD-LAYOUT">

RecordLayouts/StringDescriptor</SW-RECORD-LAYOUT-REF>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</APPLICATION-PRIMITIVE-DATA-TYPE>

248 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Depending on the used encoding the array may need to be bigger (in terms of the
number of elements) than the corresponding value of the size.

Furthermore, the definition of the SwRecordLayout already takes into account that
the implementation of an array data type by means of an ImplementationDataType
requires the definition of an ImplementationDataTypeElement.

The meaning of the standardized values of SwRecordLayoutV.swRecordLay-
outVProp are documented in [TPS_SWCT_01489]. In the scope of this example
the values COUNT and VALUE are used.

The fact that the swRecordLayoutGroupTo contains the value -1 means that the
iteration ends at the last element of the array.

Please note further that the discussed example of an ApplicationPrimitive-
DataType of category STRING also contains the definition of an invalidValue
for the string data type.

The next step is the definition of an ImplementationDataType that represents the
string type on the implementation level.

The definition of the ImplementationDataType can be derived from the definition
of the applicable SwRecordLayout.

Listing 5.2: Example for the definition of a SwRecordLayout for an ApplicationPrim-
itiveDataType of category STRING
<SW-RECORD-LAYOUT>

<SHORT-NAME>StringDescriptor</SHORT-NAME>
<LONG-NAME>

<L-4 L="EN">String by descriptor</L-4>
</LONG-NAME>
<INTRODUCTION>

<VERBATIM>
<L-5 L="EN" xml:space="default">

struct{
size,
char[]

}
</L-5>

</VERBATIM>
</INTRODUCTION>
<SW-RECORD-LAYOUT-GROUP>

<SW-RECORD-LAYOUT-V>
<SHORT-LABEL>size</SHORT-LABEL>
<SW-RECORD-LAYOUT-V-AXIS>STRING</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>

</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>

<SHORT-LABEL>chars</SHORT-LABEL>
<SW-RECORD-LAYOUT-GROUP-AXIS>STRING</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-FROM>0</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>

<SHORT-LABEL>char</SHORT-LABEL>

249 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>

</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>

</SW-RECORD-LAYOUT>

The next listing describes the data type of one character within the string data type.

Listing 5.3: Example for the definition of the character data type of a string Implemen-
tationDataType

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>uint8</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<BASE-TYPE-REF DEST="SW-BASE-TYPE">BaseTypes/uint8BT</BASE-TYPE-REF
>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE>

Please note that the ImplementationDataType also defines an invalidValue.
As mentioned in [TPS_SWCT_01487], the consistency of the invalidValue defined
in the scope of the ApplicationPrimitiveDataType of category STRING and
the invalidValue defined in the scope of the corresponding Implementation-
DataType cannot formally be checked.

Listing 5.4: Example for the definition of a string ImplementationDataType

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>MyImplementationStringType</SHORT-NAME>
<CATEGORY>STRUCTURE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<INVALID-VALUE>
<RECORD-VALUE-SPECIFICATION>

<FIELDS>
<NUMERICAL-VALUE-SPECIFICATION>

<VALUE>3</VALUE>
</NUMERICAL-VALUE-SPECIFICATION>
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<NUMERICAL-VALUE-SPECIFICATION>

<VALUE>105</VALUE>
</NUMERICAL-VALUE-SPECIFICATION>
<NUMERICAL-VALUE-SPECIFICATION>

<VALUE>110</VALUE>
</NUMERICAL-VALUE-SPECIFICATION>
<NUMERICAL-VALUE-SPECIFICATION>

<VALUE>118</VALUE>
</NUMERICAL-VALUE-SPECIFICATION>

</ELEMENTS>

250 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

</ARRAY-VALUE-SPECIFICATION>
</FIELDS>

</RECORD-VALUE-SPECIFICATION>
</INVALID-VALUE>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
<DYNAMIC-ARRAY-SIZE-PROFILE>VSA_LINEAR</DYNAMIC-ARRAY-SIZE-PROFILE>
<SUB-ELEMENTS>

<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>size</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-DATA-TYPE">
ImplementationDataTypes/uint8</IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>

<SHORT-NAME>string</SHORT-NAME>
<CATEGORY>ARRAY</CATEGORY>
<SUB-ELEMENTS>

<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>character</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<ARRAY-SIZE>200</ARRAY-SIZE>
<ARRAY-SIZE-HANDLING>ALL-INDICES-SAME-ARRAY-SIZE</ARRAY-SIZE-

HANDLING>
<ARRAY-SIZE-SEMANTICS>VARIABLE-SIZE</ARRAY-SIZE-SEMANTICS>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-DATA-
TYPE">ImplementationDataTypes/uint8</IMPLEMENTATION-DATA
-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>

</SUB-ELEMENTS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>

</SUB-ELEMENTS>
</IMPLEMENTATION-DATA-TYPE>

The ImplementationDataType with the shortName MyImplementation-
StringType (as exemplified in Listing 5.4) represents a variable-size string, i.e. the
number of characters may change at run-time. Of course, it is also possible to model a
fixed-size string, but in that case a size-indicator is not required.

Please note further that the size of the payload array in the definition of the Imple-
mentationDataType in Listing 5.4 has been set to the value 200 in order to accom-
modate for the definition of swMaxTextSize in the definition of the corresponding

251 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ApplicationDataType in combination with the fact that the value of baseTypeEn-
coding has been set to UTF-8.

For background, the value of attribute SwTextProps.swMaxTextSize shall be spec-
ified as the number of code points in the string.

Each code point will be encoded by a sequence of bytes, depending on the applicable
encoding. In the case of UTF-8, for example, each code point will be encoded by up
to four bytes.

On the level of ImplementationDataType, an array designed to hold a string con-
sisting of code points encoded using UTF-8 needs to be big enough to carry the num-
ber of code points (which may have been described by SwTextProps.swMaxText-
Size) times 4 bytes.

The interesting part about this definition is the fact that on the implementation level, it
was (driven by the definition of the SwRecordLayout) decided to implement the string
as a structure of a size element (that goes by the shortName “size”) and a value
element (that goes by the shortName “string”).

The value element is defined as an array data type and therefore has a sub-element
that goes by the shortName “character”.

The latter references (in the role swDataDefProps.implementationDataType)
the Platform Data Type “uint8” (that, according to the rules of Platform Data
Types, is realized by an ImplementationDataType “uint8”).

Please note that the ApplicationPrimitiveDataType named “MyApplication-
StringType” references the SwBaseType named “MyTextBaseType” which is defined
in the following XML fragment:

Listing 5.5: Example for the definition of a string SwBaseType

<SW-BASE-TYPE>
<SHORT-NAME>MyTextBaseType</SHORT-NAME>
<CATEGORY>FIXED_LENGTH</CATEGORY>
<BASE-TYPE-SIZE>8</BASE-TYPE-SIZE>
<BASE-TYPE-ENCODING>UTF-8</BASE-TYPE-ENCODING>

</SW-BASE-TYPE>
<SW-BASE-TYPE>

<SHORT-NAME>uint8BT</SHORT-NAME>
<CATEGORY>FIXED_LENGTH</CATEGORY>
<BASE-TYPE-SIZE>8</BASE-TYPE-SIZE>

</SW-BASE-TYPE>

The contribution of this definition of SwBaseType to the overall definition of a string
data type is represented by the definition of the character encoding (which is set to
UTF-8).

Listing 5.6: Example for the definition of the applicable DataTypeMappingSet

<DATA-TYPE-MAPPING-SET>
<SHORT-NAME>theExample</SHORT-NAME>
<DATA-TYPE-MAPS>

252 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<DATA-TYPE-MAP>
<APPLICATION-DATA-TYPE-REF BASE="default" DEST="APPLICATION-PRIMITIVE

-DATA-TYPE">ApplicationDataTypes/MyApplicationStringType</
APPLICATION-DATA-TYPE-REF>

<IMPLEMENTATION-DATA-TYPE-REF BASE="default" DEST="IMPLEMENTATION-
DATA-TYPE">ImplementationDataTypes/MyImplementationStringType</
IMPLEMENTATION-DATA-TYPE-REF>

</DATA-TYPE-MAP>
</DATA-TYPE-MAPS>

</DATA-TYPE-MAPPING-SET>

However, there is still one important part missing, i.e. the definition of the mapping
of ApplicationPrimitiveDataType to ImplementationDataType (and vice
versa, see Listing 5.6).

As mentioned before, the definition of an ImplementationDataType that corre-
sponds to an ApplicationPrimitiveDataType of category STRING can be
to some extent derived from the ApplicationPrimitiveDataType.swDataDef-
Props.swRecordLayout.

[TPS_SWCT_01570] DataTypeMap is mandatory in the presence of Applica-
tionPrimitiveDataType.swDataDefProps.swRecordLayout dThe definition of
a DataTypeMap is mandatory even if an ImplementationDataType has been de-
rived from an ApplicationPrimitiveDataType that defines a SwRecordLay-
out.c()

One motivation for the existence of [TPS_SWCT_01570] is that the integrator of an
AUTOSAR ECU may rightfully decide to take a different ImplementationDataType
other than the one that has been generated on the basis of the SwRecordLayout.

5.2.4.2 Application Composite Data Types

[TPS_SWCT_01247] ApplicationArrayDataType and ApplicationRecord-
DataType dThe meta-classes ApplicationArrayDataType and Application-
RecordDataType provide the means to define composite data types.

Such a composite data type is required if the application software wants to have ac-
cess to the individual elements of the composite as well as to do operations with the
whole composite, e.g. wants to communicate the complete record or array in a single
transaction.

It is possible to use a combination of ApplicationArrayDataType and Applica-
tionRecordDataType, so that an ApplicationArrayDataType could be defined
as ApplicationRecordElement of a ApplicationRecordDataType and in the
same manner a ApplicationRecordDataType could be used as the base-type of
an ApplicationArrayDataType. The creation of nested ApplicationCompos-
iteDataTypes is also possible.c(RS_SWCT_03215, RS_SWCT_03216)

253 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Details about meta-class ApplicationRecordDataType are depicted in Figure
5.11.

ApplicationDataType

ApplicationCompositeDataType

ApplicationArrayDataType

+ dynamicArraySizeProfi le: String [0..1]

ApplicationRecordDataType

ApplicationCompositeElementDataPrototype

ApplicationRecordElement

+ isOptional: Boolean [0..1]

ApplicationCompositeElementDataPrototype

ApplicationArrayElement

+ arraySizeHandling:
ArraySizeHandlingEnum [0..1]

+ arraySizeSemantics:
ArraySizeSemanticsEnum [0..1]

«atpVariation»
+ maxNumberOfElements: PositiveInteger

[0..1]

«enumeration»
ArraySizeSemanticsEnum

 fixedSize
 variableSize

������������	
 ����

�����������	��	���� �

��������������

«enumeration»
ArraySizeHandlingEnum

 allIndicesSameArraySize
 allIndicesDifferentArraySize
 inheritedFromArrayElementTypeSize

«atpVariation»

+element 0..* {ordered}+element 0..1

Figure 5.11: Summary of ApplicationCompositeDataType

5.2.4.2.1 ApplicationArrayDataType

[TPS_SWCT_01078] Configurable array size dThe size of an ApplicationArray-
DataType (in terms of the number of elements) is configured by means of the value
of attribute ApplicationArrayElement.maxNumberOfElements.

For the purpose of referring to an element of an ApplicationArrayDataType within
a software-component description, the element’s index runs from 0 to the value of
maxNumberOfElements-1.c(RS_SWCT_03144, RS_SWCT_03215)

Class ApplicationArrayDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which is an array, each element is of the same application data type.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow if it is a
variable size array.

element ApplicationArray
Element

0..1 aggr This association implements the concept of an array
element. That is, in some cases it is necessary to be able
to identify single array elements, e.g. as input values for
an interpolation routine.

Table 5.11: ApplicationArrayDataType

254 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1907] Existence of attribute ApplicationArrayDataType.element
dFor each ApplicationArrayDataType, the aggregation of ApplicationAr-
rayElement in the role element shall exist at the time when the RTE is
generated.c()

Class ApplicationArrayElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of the elements of an application array data type.

Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

arraySize
Handling

ArraySizeHandling
Enum

0..1 attr The way how the size of the array is handled.

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls how the information about the array
size shall be interpreted.

indexDataType ApplicationPrimitive
DataType

0..1 ref This reference can be taken to assign a CompuMethod of
category TEXTTABLE to the array. The texttable entries
associate a textual value to an index number such that
the element with that index number is represented by a
symbolic name.

maxNumberOf
Elements

PositiveInteger 0..1 attr The maximum number of elements that the array can
contain.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 5.12: ApplicationArrayElement

Please note that the information about the number of elements of a specific Appli-
cationArrayDataType is not absolute but allows for further interpretation.

[TPS_SWCT_01076] Number of elements of a specific ApplicationArray-
DataType might vary at run-time dThat is, there are cases where the number of
elements of a specific ApplicationArrayDataType might vary at run-time.

To be precise, the number of elements might vary between 0 and the value denoted by
maxNumberOfElements.

For this purpose an additional attribute arraySizeSemantics is available that can
be used to clarify the meaning of maxNumberOfElements.

For clarification, it might indeed happen that the actual number of elements in a specific
ApplicationArrayDataType yields 0 simply because the respective DataProto-
type is part of a higher-level protocol where under certain circumstances the Dat-
aPrototype of ApplicationArrayDataType is simply not required for expressing
a given semantics.c(RS_SWCT_03180, RS_SWCT_03181, RS_SWCT_03215, RS_-
SWCT_03144)

Enumeration ArraySizeSemanticsEnum

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

5

255 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration ArraySizeSemanticsEnum

Note This type controls how the information about the number of elements in an ApplicationArrayDataType
is to be interpreted.

Literal Description

fixedSize This means that the ApplicationArrayDataType will always have a fixed number of elements.

Tags:atp.EnumerationLiteralIndex=0

variableSize This implies that the actual number of elements in the ApplicationArrayDataType might vary at
run-time. The value of arraySize represents the maximum number of elements in the array.

Tags:atp.EnumerationLiteralIndex=1

Table 5.13: ArraySizeSemanticsEnum

Please note that the ability to define the semantic meaning of maxNumberOfEle-
ments is not only limited to the application data type level. The same approach also
applies for ImplementationDataType.

[constr_1152] category of ApplicationArrayElement and AutosarDataType
referenced in the role type shall be kept in sync dThe value of category of an
ApplicationArrayElement shall always be identical to the value of category of
the AutosarDataType referenced by the ApplicationArrayElement.c()

Enumeration ArraySizeHandlingEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This enumeration defines different ways to handle the sizes of variable size arrays.

Literal Description

allIndicesDifferent
ArraySize

All elements of the variable size array may have different sizes.

Tags:atp.EnumerationLiteralIndex=0

allIndicesSame
ArraySize

All elements of the variable size array have the same size.

Tags:atp.EnumerationLiteralIndex=1

inheritedFromArray
ElementTypeSize

The size of all dimensions of the variable size array is determined by the size of the contained array
element.

Tags:atp.EnumerationLiteralIndex=2

Table 5.14: ArraySizeHandlingEnum

5.2.4.2.1.1 Variable Size Array

[TPS_SWCT_01604] Enable Size Indicator dTo enable the RTE’s ability to
consider the number of valid elements inside a Variable-Size Array Data
Type the ApplicationArrayDataType.dynamicArraySizeProfile of Appli-
cationArrayDataType and ApplicationArrayElement.arraySizeHandling
shall be set.c(RS_SWCT_03181)

[TPS_SWCT_01601] Size Indicator shall be updated by software-component
dIf a software-component changes the number of valid elements in a variable size array,
it shall also update the Size Indicator in the ImplementationDataType.c(RS_-
SWCT_03181)

256 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01602] Size Indicator shall be read by the software-component
dIf a software-component receives a variable size array, it shall use the Size Indi-
cator in the ImplementationDataType to determine the number of valid elements
in the array.c(RS_SWCT_03181)

[TPS_SWCT_01605] Semantics of ApplicationArrayElement.arraySizeHan-
dling dThe attribute ApplicationArrayElement.arraySizeHandling specifies
how the size is determined in case of multi-dimensional variable size array.c(RS_-
SWCT_03181)

This allows to specify coherent relations between the sizes of the nested variable size
arrays in case of multiple dimensions.

With a suitable ImplementationDataType, it is possible to enable other software-
components, RTE, and other BSW modules to make use of the Size Indicator and
only transfer the valid data elements from the sender to the receiver.

[TPS_SWCT_01606] Internal structure of mapped ImplementationDataType
dThe attribute dynamicArraySizeProfile specifies which internal structure the
ImplementationDataType that is mapped to the ApplicationDataType shall
follow.c(RS_SWCT_03181)

[TPS_SWCT_01607] Profiles for internal structure of mapped Implementation-
DataType dFor the structure of the ImplementationDataType that is mapped
to the ApplicationDataType the following profiles are defined for dynamicAr-
raySizeProfile: VSA_LINEAR, VSA_SQUARE, VSA_RECTANGULAR, and VSA_-
FULLY_FLEXIBLE.c(RS_SWCT_03181)

[TPS_SWCT_01608] Custom profiles for internal structure of mapped Implemen-
tationDataType dCustom profiles can be added to dynamicArraySizeProfile.
They shall have a company-specific prefix.c(RS_SWCT_03181)

As it is a general rule for the definition of custom profiles or values of category, the
custom value should start with a company-specific prefix in order to avoid clashes with
later extensions of the AUTOSAR standard.

dynamicArraySizeProfile is used to specify how the number of elements of the
multiple dimensions of a variable size array correlate. They could be totally indepen-
dent (VSA_FULLY_FLEXIBLE) on the one hand or each dimension has the same num-
ber of valid elements (VSA_SQUARE).

[TPS_SWCT_01623] Justification for the existence of attributes Application-
ArrayDataType.dynamicArraySizeProfile and ApplicationArrayEle-
ment.arraySizeHandling dAt the first glance, the two attributes ApplicationAr-
rayDataType.dynamicArraySizeProfile and ApplicationArrayElement.
arraySizeHandling seem equivalent.

However, both are needed because they have to be used if multi dimensional variable
size arrays have to be described. In this case, multiple combinations of sizes could
occur which cannot be specified beforehand.c(RS_SWCT_03181)

257 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The ImplementationDataType has to follow certain rules depending on the chosen
profile. See chapter 5.2.5 for details.

[constr_1314] Profile VSA_LINEAR for ApplicationArrayDataType dIf the dy-
namicArraySizeProfile of ApplicationArrayDataType is set to VSA_LIN-
EAR, the contained ApplicationArrayElement shall fulfill all the following condi-
tions at the time when the contract phase generation is executed:

• The attribute ApplicationArrayElement.arraySizeSemantics shall set
to the value variableSize.

• The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

• The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value allIndicesSameArraySize.

• The ApplicationArrayElement shall be typed by an Application-
DataType that is not an ApplicationArrayDataType where the attribute
dynamicArraySizeProfile exists.

c()

The part of [constr_1314] that demands that the ApplicationArrayElement
shall be typed by an ApplicationDataType that is not an ApplicationArray-
DataType where the attribute dynamicArraySizeProfile exists basically boils
down to the simple explanation that the “leaf” data type of the Variable-Size Ar-
ray Data Type can be anything but a Variable-Size Array Data Type.

[constr_1315] Profile VSA_SQUARE for ApplicationArrayDataType dIf the
dynamicArraySizeProfile of ApplicationArrayDataType is set to VSA_-
SQUARE, the contained ApplicationArrayElement shall fulfill all the following con-
ditions :

• The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

• The attribute ApplicationArrayElement.maxNumberOfElements shall not
be defined.

• The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value inheritedFromArrayElementTypeSize.

• The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

The referred ApplicationArrayDataType shall refer over a chain (under consid-
eration of the number of dimensions of the “root” ApplicationArrayDataType) of
nested ApplicationArrayDataTypes with ApplicationArrayElements to an
ApplicationDataType that is not an ApplicationArrayDataType where the
attribute dynamicArraySizeProfile exists.

258 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The last ApplicationArrayDataType in that chain shall have an Application-
ArrayElement that fulfills all the following conditions:

• The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

• The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

• The attribute ApplicationArrayElement.arraySizeHandling set to the
value allIndicesSameArraySize.

All ApplicationArrayDataTypes before shall have an ApplicationArrayEle-
ment that fulfills all the following conditions:

• The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

• The attribute ApplicationArrayElement.maxNumberOfElements shall not
be defined.

• The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value inheritedFromArrayElementTypeSize.

• The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

The part of [constr_1315], [constr_1316], and [constr_1317] that demands that the re-
ferred ApplicationArrayDataType shall refer over a chain (under consideration
of the number of dimensions of the “root” ApplicationArrayDataType) of nested
ApplicationArrayDataTypes with ApplicationArrayElements to an Appli-
cationDataType that is not an ApplicationArrayDataType where the attribute
dynamicArraySizeProfile exists basically boils down to the simple explanation
that the “leaf” data type of the Variable-Size Array Data Type can be anything
but a Variable-Size Array Data Type.

[constr_1316] Profile VSA_RECTANGULAR for ApplicationArrayDataType dIf
the dynamicArraySizeProfile of ApplicationArrayDataType is set to VSA_-
RECTANGULAR the contained ApplicationArrayElement shall fulfill all the follow-
ing conditions :

• The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

• The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

• The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value allIndicesSameArraySize.

259 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

The referred ApplicationArrayDataType shall refer over a chain (under consid-
eration of the number of dimensions of the “root” ApplicationArrayDataType) of
nested ApplicationArrayDataTypes with ApplicationArrayElements to an
ApplicationDataType that is not an ApplicationArrayDataType where the
attribute dynamicArraySizeProfile exists.

The last ApplicationArrayDataType in that chain shall have an Application-
ArrayElement that fulfills all the following conditions:

• The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

• The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

• The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value allIndicesSameArraySize.

All ApplicationArrayDataTypes before shall have an ApplicationArrayEle-
ment that fulfills all the following conditions:

• The attribute ApplicationArrayElement.arraySizeSemantics shall set
to the value variableSize

• The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

• The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value allIndicesSameArraySize.

• The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

This rule shall be imposed vat the time when the contract phase gener-
ation is executed.c()

[constr_1317] Profile VSA_FULLY_FLEXIBLE for ApplicationArrayDataType
dIf the dynamicArraySizeProfile of ApplicationArrayDataType is set to
VSA_FULLY_FLEXIBLE, the contained ApplicationArrayElement shall fulfill all
the following conditions:

• The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

• The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

• The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value allIndicesDifferentArraySize.

260 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

The referred ApplicationArrayDataType shall refer over a chain (under consid-
eration of the number of dimensions of the “root” ApplicationArrayDataType) of
nested ApplicationArrayDataTypes with ApplicationArrayElements to an
ApplicationDataType that is not an ApplicationArrayDataType where the
attribute dynamicArraySizeProfile exist.

The last ApplicationArrayDataType in that chain shall have an Application-
ArrayElement that fulfills all the following conditions:

• The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

• The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

• The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value allIndicesSameArraySize.

All ApplicationArrayDataTypes before shall have an ApplicationArrayEle-
ment that fulfills all the following conditions:

• The attribute ApplicationArrayElement.arraySizeSemantics shall be
set to the value variableSize.

• The attribute ApplicationArrayElement.maxNumberOfElements shall be
defined.

• The attribute ApplicationArrayElement.arraySizeHandling shall be set
to the value allIndicesDifferentArraySize.

• The ApplicationArrayElement shall be typed by an ApplicationArray-
DataType.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

For examples, see Appendix E.1.

5.2.4.2.1.2 Multi-Dimensional Arrays

Figure 5.12 shows a three-dimensional array described with a set of Application-
ArrayDataTypes on the left-hand side. The array element is typed by an Applica-
tionPrimitiveDataType of category BOOLEAN. On the right-hand side the im-
plementation of the three-dimensional array is described with an Implementation-
DataType which contains three nested ImplementationDataTypeElements.

261 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Matching ApplicationArrayElements and ImplementationDataTypeEle-
ments are shown on the same layer. For the sake of clarity correlating maxNumberO-
fElements and arraySize attributes are described with the identical instance of a
SwSystemconst instead of a value. Further details of variant rich M1 models are not
in the scope of this example.

BOOLEAN_true_false_SysConDim1_SysConDim2_SysConDim3:
ApplicationArrayDataType

category = ARRAY

Dim1: ApplicationArrayElement

category = ARRAY
arraySizeSemantics = FIXED-SIZE
maxNumberOfElements = SysConDim1

SysConDim1:
SwSystemconst

BOOLEAN_true_false_SysConDim2_SysConDim3:
ApplicationArrayDataType

category = ARRAY

BOOLEAN_true_false_SysConDim3:
ApplicationArrayDataType

category = ARRAY

BOOLEAN_true_false:
ApplicationPrimitiveDataType

category = BOOLEAN

Dim2: ApplicationArrayElement

category = ARRAY
arraySizeSemantics = FIXED-SIZE
maxNumberOfElements = SysConDim2

Dim3: ApplicationArrayElement

category = BOOLEAN
arraySizeSemantics = FIXED-SIZE
maxNumberOfElements = SysConDim3

SysConDim2:
SwSystemconst

SysConDim3:
SwSystemconst

boolean_NcNrDim1_NcNrDim2_NcNrDim3: ImplementationDataType

category = ARRAY

Dim1: ImplementationDataTypeElement

category = ARRAY
arraySizeSemantics = FIXED-SIZE
arraySize = SysConDim1

Dim2: ImplementationDataTypeElement

category = ARRAY
arraySizeSemantics = FIXED-SIZE
arraySize = SysConDim2

Dim3: ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySizeSemantics = FIXED-SIZE
arraySize = SysConDim3

boolean:
ImplementationDataType

category = VALUE

«atpVariation»
:SwDataDefProps

DefaultDataTypeMapping:
DataTypeMappingSet

:DataTypeMap

+implementationDataType

+element

+type

+type

+implementationDataType

+element

+subElement+element

+subElement

+subElement

+dataTypeMap

+swDataDefProps

+applicationDataType

+type

Figure 5.12: Example of a three-dimensional array type

The data type of the array element is described by the ApplicationArrayDataType
with the means of a ApplicationPrimitiveDataType of category BOOLEAN. In
order to fulfill [constr_1152] the category of ApplicationArrayElement “Dim3”
is set to BOOLEAN.

262 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This ApplicationPrimitiveDataType “BOOLEAN” correlates to the Implemen-
tationDataType “boolean” of category VALUE which is typically the boolean type
of the AUTOSAR Platform Types. Please note here [constr_1063].

[TPS_SWCT_01256] Definition of multi-dimensional array data types dIn order
to describe multi dimensional arrays an ApplicationArrayElement references
again another ApplicationArrayDataType. Hereby, one ApplicationArray-
DataType per dimension is required.

This multiple dimensions do have a well-defined correlation to the individual dimen-
sions of an ImplementationDataType of category ARRAY when the Applica-
tionArrayDataType is mapped to an ImplementationDataType.

The ApplicationArrayElements are mapping in the order of the Applica-
tionArrayElement to ApplicationArrayDataType references to Implemen-
tationDataTypeElements in the order of first ImplementationDataTypeEle-
ment of the ImplementationDataType to leaf ImplementationDataTypeEle-
ment.

In other words the ApplicationArrayElement of the top-level ApplicationAr-
rayDataType relates to the first ImplementationDataTypeElement of the Im-
plementationDataType.

The ApplicationArrayElement of the referenced ApplicationArray-
DataTypes relates to the sub ImplementationDataTypeElements in the order of
the ApplicationArrayElement to ApplicationArrayDataType references.c
(RS_SWCT_03215, RS_SWCT_03216)

5.2.4.2.1.3 Index Data Type

The usage of an array represents an elegant way to group data with identical proper-
ties. This allows for an easy processing of the same functionality by iterating over the
array elements.

From a functional point of view, however, each array element may have a distinct mean-
ing that could be visible to the application software. To create this visibility, it is possible
to take advantage of an existing mechanism: CompuMethods of category TEXT-
TABLE.

[TPS_SWCT_01699] Usage of ApplicationArrayElement.indexDataType
dThe primary use case of the attribute ApplicationArrayElement.index-
DataType is the creation of composite data type mappings or the description of mea-
surement and calibration. Furthermore, the information could be used for documenta-
tion purposes.c(RS_SWCT_03230)

263 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ApplicationCompositeElementDataPrototype

ApplicationArrayElement

+ arraySizeHandling:
ArraySizeHandlingEnum [0..1]

+ arraySizeSemantics:
ArraySizeSemanticsEnum [0..1]

«atpVariation»
+ maxNumberOfElements: PositiveInteger

[0..1]

ApplicationPrimitiveDataType

«atpVariation»
SwDataDefProps

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

ARElement
AtpBlueprint

AtpBlueprintable

CompuMethod

+ displayFormat: DisplayFormatString [0..1]

ApplicationCompositeDataType

ApplicationArrayDataType

+ dynamicArraySizeProfile: String [0..1]

+swDataDefProps

0..1

+indexDataType

0..1

+element

0..1

+compuMethod

0..1

Figure 5.13: Modeling of the ApplicationArrayElement.indexDataType

[constr_1438] ApplicationArrayElement.indexDataType needs to refer to a
CompuMethod of category TEXTTABLE dThe reference ApplicationArrayEle-
ment.indexDataType shall only point to an ApplicationPrimitiveDataType
that in turn refers to a CompuMethod of category TEXTTABLE.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1440] Size of the CompuMethod of category TEXTTABLE referenced by
ApplicationArrayElement.indexDataType dThe interval defined by the Com-
puScales contained in the CompuMethod referenced by ApplicationArrayEle-
ment.indexDataType shall start at 0 and include all integer values until Applica-
tionArrayElement.maxNumberOfElements - 1.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1439] Requirements on ApplicationArrayElement if attribute index-
DataType exists dIf ApplicationArrayElement.indexDataType exists then the
attribute ApplicationArrayElement.arraySizeSemantics shall be set to the
value fixedSize and attribute arraySizeHandling shall not exist at the time
when the contract phase generation is executed.c()

Listing 5.7 exemplifies the definition of an indexDataType.

Listing 5.7: Example for array index data type
<APPLICATION-ARRAY-DATA-TYPE>

<SHORT-NAME>CylinderArray</SHORT-NAME>
<ELEMENT>

<SHORT-NAME>CylinderArrayElement</SHORT-NAME>
<ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>
<INDEX-DATA-TYPE-REF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">

myIndexDataType</INDEX-DATA-TYPE-REF>
</ELEMENT>

</APPLICATION-ARRAY-DATA-TYPE>
<APPLICATION-PRIMITIVE-DATA-TYPE>

<SHORT-NAME>myIndexDataType</SHORT-NAME>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

264 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<COMPU-METHOD-REF DEST="COMPU-METHOD">cylinders</COMPU-METHOD-REF>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</APPLICATION-PRIMITIVE-DATA-TYPE>

Listing 5.8 contains an example of a CompuMethod eligible for an indexDataType.

Listing 5.8: Example for a compu method used by an array index data type
<COMPU-METHOD>

<SHORT-NAME>cylinders</SHORT-NAME>
<CATEGORY>TEXTTABLE</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0</UPPER-LIMIT>
<COMPU-CONST>

<VT>Cylinder1</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">1</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">1</UPPER-LIMIT>
<COMPU-CONST>

<VT>Cylinder2</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">2</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">2</UPPER-LIMIT>
<COMPU-CONST>

<VT>Cylinder3</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">3</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">3</UPPER-LIMIT>
<COMPU-CONST>

<VT>Cylinder4</VT>
</COMPU-CONST>

</COMPU-SCALE>
</COMPU-SCALES>

</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

5.2.4.2.2 ApplicationRecordDataType

[TPS_SWCT_01249] ApplicationRecordDataType dA declaration of Applica-
tionRecordDataType describes a non-empty set of objects, each of which has a
unique identifier with respect to the ApplicationRecordDataType and each has
an own ApplicationDataType.

265 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The shortName of each ApplicationRecordElement within the scope of an Ap-
plicationRecordDataType shall be unique.c(RS_SWCT_03216)

Class ApplicationRecordDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which can be decomposed into prototypes of other application data types.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

element
(ordered)

ApplicationRecord
Element

* aggr Specifies an element of a record.

The aggregation of ApplicationRecordElement is subject
to variability with the purpose to support the conditional
existence of elements inside a ApplicationrecordData
Type.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 5.15: ApplicationRecordDataType

[constr_1908] Existence of attribute ApplicationRecordDataType.element
dFor each ApplicationRecordDataType, the aggregation of Application-
RecordElement in the role element shall exist at the time when the RTE is
generated.c()

Class ApplicationRecordElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of one particular element of an application record data type.

Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ApplicationRecordElement as optional. This
means the that, at runtime, the ApplicationRecord
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the ApplicationRecordElement as not valid at the sending
end of a communication and determine its validity at the
receiving end.

Table 5.16: ApplicationRecordElement

[TPS_SWCT_01771] Definition of optional elements on the level of Applica-
tionDataType dThe modeling approach for the definition of optional elements on the
level of ApplicationDataType is to set the attribute ApplicationRecordEle-
ment.isOptional to the value True.

If the attribute is not set or set to the value False then the respective Application-
RecordElement shall be considered mandatory.c(RS_SWCT_03320)

266 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.2.5 Implementation Data Type

5.2.5.1 Overview

[TPS_SWCT_01250] ImplementationDataType has been introduced to opti-
mize the formal support for data type handling on the implementation level dThe
concept of an ImplementationDataType has been introduced to optimize the for-
mal support for data type handling on the implementation level.

That is, an ImplementationDataType conceptually corresponds to the level of (C)
source code. For example, ImplementationDataTypes have a direct impact on the
contract (please find an explanation of this term in [2]) of a software-component and
the RTE.c(RS_SWCT_03217)

ImplementationDataType

+ dynamicArraySizeProfi le: String [0..1]
+ isStructWithOptionalElement: Boolean

[0..1]
+ typeEmitter: NameToken [0..1]

AbstractImplementationDataTypeElement

ImplementationDataTypeElement

+ arrayImplPolicy: ArrayImplPolicyEnum
[0..1]

+ arraySizeHandling:
ArraySizeHandlingEnum [0..1]

+ arraySizeSemantics:
ArraySizeSemanticsEnum [0..1]

+ isOptional: Boolean [0..1]

«atpVariation»
+ arraySize: PositiveInteger [0..1]

«atpVariation»
SwDataDefProps

+ additionalNativeTypeQualifier: NativeDeclarationString [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ displayPresentation: DisplayPresentationEnum [0..1]
+ stepSize: Float [0..1]
+ swAlignment: AlignmentType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: Numerical [0..1]
+ swInterpolationMethod: Identifier [0..1]
+ swIsVirtual: Boolean [0..1]

«atpVariation»
+ swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..*] {ordered}

SwPointerTargetProps

+ targetCategory: Identifier [0..1]
A

SwBitRepresentation

+ bitPosition: Integer [0..1]
+ numberOfBits: Integer [0..1]

AtpBlueprint
AtpBlueprintable

BaseType

SwBaseType

ARElement
AtpBlueprint

AtpBlueprintable

SwAddrMethod

ARElement
AtpType

AutosarDataType

ARElement
AtpBlueprint

AtpBlueprintable

BswModuleEntry

������������	
 ����

�����������	��	���� �

�������������� ImplementationProps

SymbolProps

AtpBlueprint
AtpBlueprintable

AbstractImplementationDataType

+baseType

0..1

+swBitRepresentation

0..1

+swDataDefProps0..1

+functionPointerSignature

0..1

+swAddrMethod

0..1

+swPointerTargetProps 0..1

«atpVariation»

+subElement

0..*
{ordered}

+swDataDefProps

0..1

«atpVariation»

+subElement
0..* {ordered}

+swDataDefProps

0..1

«atpSplitable»

+symbolProps 0..1

+implementationDataType0..1

Figure 5.14: SwDataDefProps used in the context of ImplementationDataType

The allowed existence and multiplicity of all the attributes of SwDataDefProps and
other properties depend on the category of the ImplementationDataType.

[constr_1178] Existence of attributes of SwDataDefProps in the context of Im-
plementationDataType dFor the sake of removing possible sources of ambiguity,
SwDataDefProps used in the context of ImplementationDataType can only have
one of

267 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• baseType

• swPointerTargetProps

• implementationDataType

at the time when the contract phase generation is executed.c()

[TPS_SWCT_01251] Limited set of values for category are applicable for Im-
plementationDataType dLike any AutosarDataType, also the data types on im-
plementation level are characterized by its category and its SwDataDefProps. For
a given category, only a limited set of attributes of the SwDataDefProps makes
sense.c(RS_SWCT_03217)

[constr_1009] SwDataDefProps applicable to ImplementationDataTypes dA
complete list of the SwDataDefProps and other attributes and their multiplicities which
are allowed for a given category is shown in table 5.17.

This rule shall be applied at any time in the workflow.c()

Attributes of SwDataDefProps Root Element Attribute Existence per Category

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e
E
l
e
m
e
n
t

S
w
P
o
i
n
t
e
r
T
a
r
g
e
t
P
r
o
p
s

S
w
S
e
r
v
i
c
e
A
r
g

V
A
L
U
E

D
A
T
A
_
R
E
F
E
R
E
N
C
E

F
U
N
C
T
I
O
N
_
R
E
F
E
R
E
N
C
E

T
Y
P
E
_
R
E
F
E
R
E
N
C
E

S
T
R
U
C
T
U
R
E

U
N
I
O
N

A
R
R
A
Y

additionalNativeTypeQualifier x x x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1

annotation x x x x * * * * * * *

baseType x x x x 1

compuMethod x x x x 0..1 0..1

dataConstr.dataConstrRule.physConstrs x x x x d/c7 d/c d/c

dataConstr.dataConstrRule.internalConstrs x x x x 0..1 0..1 0..1

displayFormat x x 0..1 0..1 0..1 0..1

displayPresentation x x 0..1 0..1

implementationDataType x x x x 1

invalidValue x x x 0..1 0..1 0..18 0..19

stepSize x x 0..1

5

7don’t care
8There is a use case for the definition of an invalidValue for category ARRAY and therefore

category STRUCTURE is also supported for the sake of symmetry.
9This represents an exception such that it would make sense to use an entire ArrayValueSpeci-

fication as the invalidValue because a string semantically is more than just a bunch of characters
in a row.

268 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Attributes of SwDataDefProps Root Element Attribute Existence per Category

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e
E
l
e
m
e
n
t

S
w
P
o
i
n
t
e
r
T
a
r
g
e
t
P
r
o
p
s

S
w
S
e
r
v
i
c
e
A
r
g

V
A
L
U
E

D
A
T
A
_
R
E
F
E
R
E
N
C
E

F
U
N
C
T
I
O
N
_
R
E
F
E
R
E
N
C
E

T
Y
P
E
_
R
E
F
E
R
E
N
C
E

S
T
R
U
C
T
U
R
E

U
N
I
O
N

A
R
R
A
Y

swAddrMethod x x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swAlignment x 0..1 0..1 0..1 0..1 0..1 0..1

swBitRepresentation

swCalibrationAccess x x 0..1 0..1 0..1 0..1 0..1

swCalprmAxisSet

swComparisonVariable

swDataDependency

swHostVariable

swImplPolicy x x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swIntendedResolution

swInterpolationMethod

swIsVirtual

swPointerTargetProps x x x x 1 1

swPointerTargetProps
.swDataDefProps x x x x 1

swPointerTargetProps
.functionPointerSignature x x x x 1

swRecordLayout

swRefreshTiming x x x x 0..1 0..1 0..1 0..1

swTextProps

swValueBlockSize

swValueBlockSizeMult

unit

valueAxisDataType

Other Attributes
subElement: ImplementationDataTypeElement x x 1..* 1..* 1

subElement.arraySizeSemantics x x 0..1

subElement.arraySize x x 1

Table 5.17: Allowed Attributes vs. category for ImplementationDataType

[constr_1694] Allowed target of SwDataDefProps.implementationDataType
dThe reference SwDataDefProps.implementationDataType shall only refer to an
ImplementationDataType. Any other subclass of AbstractImplementation-
DataType is not supported as a reference target.

This rule shall be applied at the time when the contract phase genera-
tion is executed.c()

269 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This list makes use of the SwDataDefProps and other meta-model elements which
are explained in detail in the further sections of this chapter.

Regulations regarding the applicable categorys for attribute Implementation-
DataType.swDataDefProps.compuMethod can be found in [constr_1158] inside
section 5.5.1.3.2.

AbstractImplementationDataType

ImplementationDataType

+ dynamicArraySizeProfile: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

ImplementationDataTypeElement

+ arrayImplPolicy: ArrayImplPolicyEnum [0..1]
+ arraySizeHandling: ArraySizeHandlingEnum [0..1]
+ arraySizeSemantics: ArraySizeSemanticsEnum [0..1]
+ isOptional: Boolean [0..1]

«atpVariation»
+ arraySize: PositiveInteger [0..1]

������������	
 ����

�����������	��	���� �

��������������

«enumeration»
ArraySizeSemanticsEnum

 fixedSize
 variableSize

ImplementationProps

SymbolProps

«enumeration»
ArraySizeHandlingEnum

 allIndicesSameArraySize
 allIndicesDifferentArraySize
 inheritedFromArrayElementTypeSize

AtpStructureElement
Identifiable

AbstractImplementationDataTypeElement

«enumeration»
ArrayImplPolicyEnum

 payloadAsArray
 payloadAsPointerToArray

«atpVariation»

+subElement
0..*

{ordered}

«atpVariation»

+subElement
0..* {ordered}

«atpSplitable»

+symbolProps

0..1

Figure 5.15: ImplementationDataType overview

[TPS_SWCT_01252] ImplementationDataType can express concepts not avail-
able on application level dAs a consequence of the specific focus, it is possible to
express concepts with an ImplementationDataType that are not supported on the
application level, i.e. by ApplicationDataType:

• ImplementationDataType supports the definition of pointers

• It is possible to define “alias” names just as in a typedef

• It is possible to define nested ImplementationDataTypes but in contrast to
the concept implemented for ApplicationDataType these implement a direct
aggregation of sub-elements rather than applying the type-prototype pattern.

c(RS_SWCT_03217)

The general structure of ImplementationDataType is sketched in Figure 5.15. If a
specific ImplementationDataType is supposed to define a composite data type, the
ImplementationDataType aggregates ImplementationDataTypeElements.

Class AbstractImplementationDataType (abstract)

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note This meta-class represents an abstract base class for different flavors of ImplementationDataType.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ImplementationDataType

Attribute Type Mult. Kind Note

5

270 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class AbstractImplementationDataType (abstract)

– – – – –

Table 5.18: AbstractImplementationDataType

Class ImplementationDataType

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.

Tags:atp.recommendedPackage=ImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.

If set to True, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Specifies an element of an array, struct, or union data
type.

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable
Tags:atp.Splitkey=symbolProps.shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table 5.19: ImplementationDataType

[TPS_SWCT_01248] Nested definition of ImplementationDataType dIf an Im-
plementationDataTypeElement also represents a composite data type, it can ag-
gregate ImplementationDataTypeElements in the role of subElement. Again,
the type-prototype pattern does not apply in this case.c(RS_SWCT_03217)

[TPS_SWCT_01253] Rules apply for the usage of the attribute Implementation-
DataType.typeEmitter dThe following set of values is supported for the usage of
the attribute ImplementationDataType.typeEmitter:

• attribute typeEmitter is NOT defined.

• attribute typeEmitter is set to “RTE”.

• attribute typeEmitter is set to the name of a header file.

271 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• attribute typeEmitter is set to anything else.

c(RS_SWCT_03217)

The consequence of setting the value of typeEmitter is explained in [2].

The usage of ImplementationDataTypes within an AnyInstanceRef is described
in detail in [11].

Class AbstractImplementationDataTypeElement (abstract)

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note This meta-class represents the ability to act as an abstract base class for specific derived meta-classes
that support the modeling of ImplementationDataTypes for a particular language binding.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Subclasses ImplementationDataTypeElement

Attribute Type Mult. Kind Note

– – – – –

Table 5.20: AbstractImplementationDataTypeElement

Class ImplementationDataTypeElement

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.

This element either consists of further subElements or it is further defined via its swDataDefProps.

There are several use cases within the system of ImplementationDataTypes fur such a local declaration:

• It can represent the elements of an array, defining the element type and array size

• It can represent an element of a struct, defining its type

• It can be the local declaration of a debug element.

Base ARObject , AbstractImplementationDataTypeElement , AtpClassifier , AtpFeature, AtpStructureElement ,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

arrayImplPolicy ArrayImplPolicyEnum 0..1 attr This attribute controls the implementation of the payload
of an array. It shall only be used if the enclosing
ImplementationDataType constitutes an array.

arraySize PositiveInteger 0..1 attr The existence of this attributes (if bigger than 0) defines
the size of an array and declares that this Implementation
DataTypeElement represents the type of each single
array element.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

arraySize
Handling

ArraySizeHandling
Enum

0..1 attr The way how the size of the array is handled in case of a
variable size array.

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls the meaning of the value of the
array size.

5

272 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ImplementationDataTypeElement

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ImplementationDataTypeElement as optional.
This means that, at runtime, the ImplementationDataType
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not valid at
the sending end of a communication and determine its
validity at the receiving end.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Element of an array, struct, or union in case of a nested
declaration (i.e. without using "typedefs").

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this ImplementationDataTypeElement.

Table 5.21: ImplementationDataTypeElement

5.2.5.2 Modeling of Type Reference using Implementation Data Type

[TPS_SWCT_01441] Nature of a TYPE_REFERENCE dA type reference (formally rep-
resented by an ImplementationDataType of category TYPE_REFERENCE) imple-
ments a redirection to common ImplementationDataTypes.c()

[TPS_SWCT_01442] ImplementationDataType of category TYPE_REFERENCE
does not define own properties dAs long as an ImplementationDataType of
category TYPE_REFERENCE does not define own properties, the properties of the
refined ImplementationDataType apply.c(RS_SWCT_03217)

[TPS_SWCT_01443] ImplementationDataType of category TYPE_REFERENCE
overwrites properties of refined ImplementationDataType dIf an implementa-
tion data types of category TYPE_REFERENCE defines own properties (e.g. Com-
puMethod), these properties overwrite the properties of the refined Implementa-
tionDataType.c(RS_SWCT_03217)

As explained by [constr_1050], Compatibility checks of ImplementationDataType
require a prior resolution of possible type references, i.e. the compatibility shall be
checked on the resolved ImplementationDataType.

[constr_1383] Existence of CompuMethod and DataConstr for Implemen-
tationDataTypes of category TYPE_REFERENCE dThe existence of Imple-
mentationDataType.swDataDefProps.compuMethod and Implementation-
DataType.swDataDefProps.dataConstr for ImplementationDataTypes of

273 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

category TYPE_REFERENCE is only allowed, if the respective Implementation-
DataType, after all type references are resolved, ends up in an Implementation-
DataType of category VALUE.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that, as a consequence of the existence of [constr_1383], it is possible
that the elements of a composite ImplementationDataType define individual Com-
puMethods. However, the definition of one CompuMethod that applies to the entire
composite ImplementationDataType is not supported.

5.2.5.3 Modeling of Structure using Implementation Data Type

[constr_1106] Structure shall have at least one element dAn Implementation-
DataType or ImplementationDataTypeElement of category STRUCTURE shall
own at least one ImplementationDataTypeElement at the time when the
contract phase generation is executed.c()

5.2.5.3.1 Modeling of Optional Element Structure with ImplementationDataType

The definition of an ImplementationDataType that represents an Optional El-
ement Structure shall not only rely on the existence of optional elements.

Also, the definition of the enclosing ImplementationDataType shall clearly signal
the intention by means of the dedicated attribute ImplementationDataType.is-
StructWithOptionalElement.

[TPS_SWCT_01772] Semantics of attribute ImplementationDataType.is-
StructWithOptionalElement dIf attribute ImplementationDataType.
isStructWithOptionalElement is set to True then the Implementation-
DataType advertises the intention to represent an Optional Element Struc-
ture such that the fulfillment of structural requirements for the existence of optional
elements can be formally checked.

Again, this attribute represents a formal specification that optionality is intended as
opposed to an ImplementationDataType that fulfills the structural requirements
out of different motivations.c(RS_SWCT_03217, RS_SWCT_03320)

[TPS_SWCT_01773] Definition of Optional Element Structure on the level
of ImplementationDataType dThe modeling approach for the definition of an Op-
tional Element Structure on the level of ImplementationDataType is to set
the attribute ImplementationDataTypeElement.isOptional to the value True.

274 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

If the attribute is not set or set to the value False then the respective Implementa-
tionDataTypeElement shall be considered mandatory.c(RS_SWCT_03217, RS_-
SWCT_03320)

[constr_1637] Existence of ImplementationDataTypeElement.isOptional
vs. ImplementationDataType.isStructWithOptionalElement dIf one Im-
plementationDataType.subElement sets attribute isOptional to the value
True then the enclosing ImplementationDataType shall also set attribute is-
StructWithOptionalElement to True.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

In order to be able to generate a proper RTE API for the access to optional elements of
data types in general it is necessary to impose structural requirements on the definition
of ImplementationDataType.

In particular, it is necessary at runtime to store the information about the availability
of a specific ImplementationDataTypeElement where attribute isOptional has
been set to the value True in the context of an ImplementationDataType of cat-
egory STRUCTURE.

An ImplementationDataType that represents an Optional Element Struc-
ture shall contain a special element which represents an availability bitfield.

This bitfield is implemented as an array of uint8 and shall hold one bit for each optional
element contained in the structured data type.

In particular, the applicable structural requirements for an Implementation-
DataType that represents an Optional Element Structure are described in the
following specification items.

[TPS_SWCT_01774] Modeling of ImplementationDataType with optional ele-
ments d

The following approach shall be taken to model an ImplementationDataType that
represents an Optional Element Structure:

• The first ImplementationDataTypeElement of Implementation-
DataType where attribute isStructWithOptionalElement is set to
True shall have the shortName availabilityBitfield. [constr_1638]
applies.

• This ImplementationDataTypeElement shall be of category ARRAY

• The ImplementationDataTypeElement shall set attribute arraySizeSe-
mantics to the value fixedSize.

• The ImplementationDataTypeElement shall aggregate a further Imple-
mentationDataTypeElement in the role subElement for which the following
requirements apply:

275 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

– The ImplementationDataTypeElement shall be of category TYPE_-
REFERENCE that eventually refers to an ImplementationDataType that -
one way or the other - implements an array of unsigned bytes, e.g. take the
Platform Data Type named uint8 as the element type10.

– The ImplementationDataTypeElement shall set the value of attribute
arraySize to max(1,ceil(numberOfOptionalElements / 8)).

c(RS_SWCT_03320)

[constr_1638] First ImplementationDataTypeElement of Implementation-
DataType that represents an Optional Element Structure dThe first Imple-
mentationDataTypeElement of ImplementationDataType that represents an
Optional Element Structure, i.e. the availabilityBitfield according to
[TPS_SWCT_01774], shall not set attribute isOptional to True at the time
when the contract phase generation is executed.c()

A further structural requirement applies.

[constr_1639] ImplementationDataTypeElement with attribute isOptional
set to True dImplementationDataTypeElement with attribute isOptional set to
True shall not be of category STRUCTURE at the time when the contract
phase generation is executed.c()

Instead, nested structures shall be created by modeling Implementation-
DataTypeElements of category TYPE_REFERENCE that in turn refer to Imple-
mentationDataTypes of category STRUCTURE.

Rationale: the existence of [constr_1639] simplifies the concept of the availability bit-
field.

The bitfield shall only contain information of the availability of the direct child elements
and not of elements of sub-structures.

By using the category TYPE_REFERENCE it is assured that a separate Implemen-
tationDataType of category STRUCTURE is generated for the sub-structure.

Since the AUTOSAR RTE provides the APIs to access the availability information on
the basis of an ImplementationDataType of category STRUCTURE, the usage of
anonymous structures with optional elements is not possible.

5.2.5.4 Modeling of Union using Implementation Data Type

[constr_1107] Union shall have at least one element dAn Implementation-
DataType or ImplementationDataTypeElement of category UNION shall own
at least one ImplementationDataTypeElement at the time when the con-
tract phase generation is executed.c()

10this relation could be expressed in a more formal way. But it would be a very expansive formal way
in an already complicated specification item. It is assumed that it is sufficient to convey the general idea.

276 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01759] Use cases for unions dThere are different use cases for the
definition of a union data type:

1. The DataPrototypes derived from the union data type shall be transported
over a communication network. For this purpose, it is necessary to apply a
special modeling in the form of a wrapped union data type, as explained by
[TPS_SWCT_01700].

2. The DataPrototypes created from the union data type are used internally
within the same ECU, e.g. as a PerInstanceMemory, romBlock, or ram-
Block. In this case the modeling of the union data type does not depend on
specific constraints.

c(RS_SWCT_03217)

In summary, there are cases where unions can be used in PortInterfaces, but
these are restricted to the fulfillment of certain conditions that are explained in [con-
str_1607].

[constr_1607] Only Wrapped Union Data Types in PortInterface dWithin the
scope of a PortInterface the usage of a Union data type is only supported

• for Wrapped Union Data Types.

• for a PortInterface that is used to type a PortPrototype that does not
appear as a context in an instanceRef owned by a DataMapping. See also
[constr_1441].

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

5.2.5.5 Modeling of Array using Implementation Data Type

5.2.5.5.1 Overview

[TPS_SWCT_01254] ImplementationDataType with array semantics dOf
course, it is also possible to define an ImplementationDataType that provides array
semantics.c(RS_SWCT_03217)

[TPS_SWCT_01006] ImplementationDataType.subElement.arraySize shall
be used to define the size of the array dThe primitive attribute Implementation-
DataType.subElement.arraySize shall be used to define the size of the array.c
(RS_SWCT_03217)

[TPS_SWCT_01007] Semantics of array index dFor an Implementation-
DataType that implements an array data type, the semantics of the array index is
such that

• it shall start with the value 0

277 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• it shall run to the value of arraySize -1

c(RS_SWCT_03217)

[constr_1105] Value of arraySize dThe value of the attribute arraySize of an
ImplementationDataTypeElement owned by an ImplementationDataType or
ImplementationDataTypeElement of category ARRAY shall be greater than 0
unless attribute ImplementationDataTypeElement.arraySizeHandling exists
and is set to the value inheritedFromArrayElementTypeSize.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_01478] Array size is defined as an attribute of the Implementa-
tionDataTypeElement dPlease note that the array size is not defined as an attribute
of the ImplementationDataType which stands for the whole array.

It is actually defined as an attribute of the ImplementationDataTypeElement
which is describing the array element (note that the same pattern is used in Appli-
cationArrayDataType).c(RS_SWCT_03217)

Consequently, if a “struct” element represents an array this specific struct-element is
given by an ImplementationDataTypeElement of category ARRAY which in turn
aggregates another ImplementationDataTypeElement of e.g. category VALUE
representing the array element and containing the size.

[TPS_SWCT_01255] Indicate whether the array is supposed to have a fixed size
or whether the actual size might change during run-time dIt is also possible to
indicate whether the array is supposed to have a fixed size or whether the actual size
might change during run-time.c(RS_SWCT_03217)

[constr_1783] Existence of attribute ImplementationDataTypeElement.ar-
rayImplPolicy dAttribute ImplementationDataTypeElement.arrayImplPol-
icy shall only exist at the time when the contract phase generation
is executed if the enclosing ImplementationDataType or Implementation-
DataTypeElement is of category ARRAY.c()

The usage of attribute ImplementationDataTypeElement.arrayImplPolicy
does not have an impact on model semantics, i.e. it does not impose further condi-
tions on the modeling of arrays.

The attribute merely influences the implementation of the respective array in the pro-
gramming language binding in the form of generated C code.

Enumeration ArrayImplPolicyEnum

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note This meta-class provides values to configure the implementation of the payload part of an array.

Literal Description

5

278 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration ArrayImplPolicyEnum

payloadAsArray This configuration demands the implementation of the payload as an array.

Tags:atp.EnumerationLiteralIndex=0

payloadAsPointerTo
Array

This configuration demands the implementation of the payload as a pointer to an array.

Tags:atp.EnumerationLiteralIndex=1

Table 5.22: ArrayImplPolicyEnum

5.2.5.5.2 Modeling of Variable-Size Array using Implementation Data Type

In the same way as for ApplicationDataTypes, it is also possible to specify a Size
Indicator of a variable size array which holds the number of valid elements of the
array in the ImplementationDataType.

Please find more information about this topic in section 5.2.4.2.1.1.

[TPS_SWCT_01622] Modeling of a Variable-Size Array Data Type only
with ImplementationDataType dThe modeling of a Variable-Size Array
Data Type does not require the existence of an ApplicationComposite-
DataType and a DataTypeMap. A Variable-Size Array Data Type can be
created by just setting up an ImplementationDataType.c(RS_SWCT_03217, RS_-
SWCT_03181)

[TPS_SWCT_01610] Modeling of a Variable-Size Array Data Type with
Size Indicator enabled dAn ImplementationDataType with category
STRUCTURE where the attribute ImplementationDataType.dynamicArray-
SizeProfile exists represents a Variable-Size Array Data Type with Size
Indicator enabled.

For the sake of a proper definition of terminology, this ImplementationDataType shall
be called the VSA ImplementationDataType.c(RS_SWCT_03217, RS_SWCT_-
03181)

[TPS_SWCT_01650] Structure of the VSA ImplementationDataType dThe VSA
ImplementationDataType shall consist of

• an ImplementationDataTypeElement representing the Size Indicator
and

• an ImplementationDataTypeElement representing the Payload of the
Variable-Size Array Data Type.

For the sake of a proper definition of terminology, these ImplementationDataType-
Elements shall be called the VSA Size Indicator ImplementationDataType-
Element and the VSA Payload ImplementationDataTypeElement respec-
tively.c(RS_SWCT_03217, RS_SWCT_03181)

279 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01612] arraySizeHandling specifies how the size is determined
darraySizeHandling specifies how the size is determined in case of multi-
dimensional variable size array.c(RS_SWCT_03217, RS_SWCT_03181)

The statement made by [TPS_SWCT_01612] allows the specification of coherency
between the sizes of the nested variable size arrays in case of multiple dimensions.

[TPS_SWCT_01613] Internal structure of mapped ImplementationDataType
dThe attribute dynamicArraySizeProfile specifies which internal structure the
ImplementationDataType shall follow.c(RS_SWCT_03217, RS_SWCT_03181)

[TPS_SWCT_01614] Profiles for internal structure of mapped Implementation-
DataType dFor the structure of the ImplementationDataType the following profiles
are defined for dynamicArraySizeProfile: VSA_LINEAR, VSA_SQUARE, VSA_-
RECTANGULAR and VSA_FULLY_FLEXIBLE.c(RS_SWCT_03217, RS_SWCT_03181)

[TPS_SWCT_01615] Custom profiles for internal structure of mapped Implemen-
tationDataType dCustom profiles can be added to dynamicArraySizeProfile.
They shall have a company-specific prefix.c(RS_SWCT_03217, RS_SWCT_03181)

For reasons of readability and comprehensibility the following constraints focus on the
payload of the Variable-Size Array Data Type only. For the Size Indica-
tor additional individual constraints do apply.

[constr_1318] Profile VSA_LINEAR for ImplementationDataType dIf the value of
attribute ImplementationDataType.dynamicArraySizeProfile is set to VSA_-
LINEAR, the ImplementationDataType shall aggregate a VSA Payload Imple-
mentationDataTypeElement that fulfills all the following conditions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall not be defined.

• The attribute ImplementationDataTypeElement.category shall be set to
ARRAY.

• The attribute ImplementationDataTypeElement.arraySize shall not be
defined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall not be defined.

The VSA Payload ImplementationDataTypeElement shall immediately aggre-
gate another ImplementationDataTypeElement that shall fulfill all the following
conditions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

• The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

280 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesSameArraySize.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1319] Profile VSA_SQUARE for ImplementationDataType dIf the value of
attribute ImplementationDataType.dynamicArraySizeProfile is set to VSA_-
SQUARE, the ImplementationDataType shall aggregate a VSA Payload Imple-
mentationDataTypeElement that fulfills all the following conditions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall not be defined.

• The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

• The attribute ImplementationDataTypeElement.arraySize shall not be
defined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall not be defined.

The VSA Payload ImplementationDataTypeElement shall immediately aggre-
gate another ImplementationDataTypeElement (representing the first dimension)
that shall fulfill all the following conditions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

• The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

• The attribute ImplementationDataTypeElement.arraySize shall not be
defined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value inheritedFromArrayElementTypeSize.

All intermediate ImplementationDataTypeElements in the aggregation chain
that do not terminate the chain shall fulfill all the following conditions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

• The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

• The attribute ImplementationDataTypeElement.arraySize shall not be
defined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value inheritedFromArrayElementTypeSize.

281 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The terminating ImplementationDataTypeElement in the aggregation chain shall
fulfill all the following conditions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

• The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesSameArraySize.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1320] Profile VSA_RECTANGULAR for ImplementationDataType dIf the
value of attribute ImplementationDataType.dynamicArraySizeProfile is set
to VSA_RECTANGULAR, the ImplementationDataType shall aggregate a VSA
Payload ImplementationDataTypeElement that fulfills all the following condi-
tions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall not be defined.

• The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

• The attribute ImplementationDataTypeElement.arraySize shall not be
defined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall not be defined.

The VSA Payload ImplementationDataTypeElement shall immediately aggre-
gate another ImplementationDataTypeElement (representing the first dimension)
that shall fulfill all the following conditions:

• The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

• The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesSameArraySize.

All intermediate ImplementationDataTypeElements in the aggregation chain
that do not terminate the chain shall fulfill all the following conditions:

282 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

• The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesSameArraySize.

The terminating ImplementationDataTypeElement in the aggregation chain shall
fulfill all the following conditions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

• The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesSameArraySize.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1321] Profile VSA_FULLY_FLEXIBLE for ImplementationDataType dIf
the value of attribute ImplementationDataType.dynamicArraySizeProfile is
set to the value VSA_FULLY_FLEXIBLE, the ImplementationDataType shall ag-
gregate a VSA Payload ImplementationDataTypeElement that fulfills all the fol-
lowing conditions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall not be defined.

• The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

• The attribute ImplementationDataTypeElement.arraySize shall not be
defined

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall not be defined.

The VSA Payload ImplementationDataTypeElement shall immediately aggre-
gate another ImplementationDataTypeElement (representing the first dimension)
that shall fulfill all the following conditions:

• The attribute ImplementationDataTypeElement.category shall be set to
STRUCTURE

283 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

• The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesDifferentArraySize.

The ImplementationDataTypeElement shall aggregate another Implementa-
tionDataTypeElement that fulfills the following conditions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall not be defined.

• The attribute ImplementationDataTypeElement.category shall be set to
the value ARRAY.

• The attribute ImplementationDataTypeElement.arraySize shall not be
defined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall not be defined.

The aggregation chain is continued by a (possible empty) sequence of a pair of
ImplementationDataTypeElements with the following characteristics:

• The first ImplementationDataTypeElement in the pair shall fulfill all the fol-
lowing conditions:

– The attribute ImplementationDataTypeElement.category shall be
set to STRUCTURE.

– The attribute ImplementationDataTypeElement.arraySizeSeman-
tics shall be set to the value variableSize.

– The attribute ImplementationDataTypeElement.arraySize shall be
defined.

– The attribute ImplementationDataTypeElement.arraySizeHan-
dling shall be set to the value allIndicesDifferentArraySize.

• The second ImplementationDataTypeElement in the pair shall fulfill all the
following conditions:

– The attribute ImplementationDataTypeElement.arraySizeSeman-
tics shall not be defined.

– The attribute ImplementationDataTypeElement.category shall be
set to the value ARRAY.

– The attribute ImplementationDataTypeElement.arraySize shall not
be defined.

284 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

– The attribute ImplementationDataTypeElement.arraySizeHan-
dling shall not be defined.

The terminating ImplementationDataTypeElement in the aggregation chain shall
fulfill all the following conditions:

• The attribute ImplementationDataTypeElement.arraySizeSemantics
shall be set to the value variableSize.

• The attribute ImplementationDataTypeElement.arraySize shall be de-
fined.

• The attribute ImplementationDataTypeElement.arraySizeHandling
shall be set to the value allIndicesSameArraySize.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1396] Restriction for the value of attribute category for non-terminating
ImplementationDataTypeElements taken to model a Variable-Size Array
Data Type dThe value of attribute category for non-terminating Implementa-
tionDataTypeElements taken to model a Variable-Size Array Data Type
shall not be set to TYPE_REFERENCE at the time when the contract phase
generation is executed.c()

[constr_1322] Size Indicator for undefined dynamicArraySizeProfile dIf
the ImplementationDataType.dynamicArraySizeProfile does not exist but
the ImplementationDataType is mapped to an ApplicationArrayDataType
where the attribute ApplicationArrayDataType.dynamicArraySizeProfile
exists, then the ImplementationDataType shall have the category STRUC-
TURE, representing a Variable-Size Array Data Type with Size Indica-
tor enabled at the time when the contract phase generation is ex-
ecuted.c()

[TPS_SWCT_01617] Structure of an ImplementationDataType that represents
a variable-sized array data type dThe ImplementationDataType that represents
a Variable-Size Array Data Type shall have the category STRUCTURE that
has two subElements.

The role of the subElements with the definition of a Variable-Size Array Data
Type is defined by [TPS_SWCT_01618], [TPS_SWCT_01619], [TPS_SWCT_01620],
and [TPS_SWCT_01621].c(RS_SWCT_03217, RS_SWCT_03181)

[TPS_SWCT_01618] Size Indicator for dynamicArraySizeProfile set to
VSA_LINEAR, VSA_SQUARE, or VSA_FULLY_FLEXIBLE dIf an Implementation-
DataType is mapped to an ApplicationArrayDataType which has the attribute
dynamicArraySizeProfile set to the value VSA_LINEAR, VSA_SQUARE or VSA_-
FULLY_FLEXIBLE, the first ImplementationDataType.subElement shall be an
integer large enough to hold the maximum number of valid elements of the variable
size array (according to maxNumberOfElements).

285 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This is the Size Indicator which holds the current number of valid elements of the
variable size array.c(RS_SWCT_03217, RS_SWCT_03181)

[TPS_SWCT_01647] Size Indicator for dynamicArraySizeProfile set to
VSA_LINEAR, VSA_SQUARE, or VSA_FULLY_FLEXIBLE if only Implementation-
DataType is present dFor each ImplementationDataType which has the attribute
dynamicArraySizeProfile set to the value VSA_LINEAR, VSA_SQUARE, or VSA_-
FULLY_FLEXIBLE, the first ImplementationDataType.subElement shall be an
integer large enough to hold the maximum number of valid elements of the variable
size array (according to arraySize).

This is the Size Indicator which holds the current number of valid elements of the
Variable-Size Array Data Type.c(RS_SWCT_03217, RS_SWCT_03181)

[TPS_SWCT_01619] Size Indicator for dynamicArraySizeProfile set to
VSA_RECTANGULAR dIf an ImplementationDataType is mapped to an Applica-
tionArrayDataType where the attribute ApplicationArrayDataType.dynami-
cArraySizeProfile exists and is set to the value VSA_RECTANGULAR, the first
ImplementationDataType.subElement shall be a ImplementationDataType-
Element with the category set to ARRAY and the attribute arraySize set to a value
equal to the number of the according dimension of the corresponding Application-
DataType.c(RS_SWCT_03217, RS_SWCT_03181)

[TPS_SWCT_01648] Size Indicator for dynamicArraySizeProfile set to
VSA_RECTANGULAR if only ImplementationDataType is present dFor each
ImplementationDataType where the attribute ImplementationDataType.dy-
namicArraySizeProfile exists and is set to the value VSA_RECTANGULAR,
the first ImplementationDataType.subElement shall be a Implementation-
DataTypeElement with the category set to ARRAY and the attribute arraySize
set to a value equal to the size of the according dimension of the rectangular array.c
(RS_SWCT_03217, RS_SWCT_03181)

[TPS_SWCT_01620] Size Indicator for dynamicArraySizeProfile set to
VSA_RECTANGULAR dThe elements of this Size Indicator array shall consist of
integers large enough to hold the maximum number of valid elements (according to
maxNumberOfElements).c(RS_SWCT_03217, RS_SWCT_03181)

This array holds the Size Indicators of all dimensions.

[TPS_SWCT_01621] Payload for dynamicArraySizeProfile dIf an Imple-
mentationDataType is mapped to an ApplicationArrayDataType where
the attribute dynamicArraySizeProfile exists, the second Implementation-
DataType.subElement shall be an array which can hold the data of the variable size
array with all dimensions defined for the ApplicationDataType.

The category shall be set to ARRAY and arraySize shall be set to maxNumberO-
fElements of the corresponding ApplicationArrayDataType.c(RS_SWCT_-
03217, RS_SWCT_03181)

286 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01649] Payload for dynamicArraySizeProfile if only Imple-
mentationDataType is present dEach ImplementationDataType where the at-
tribute dynamicArraySizeProfile exists shall aggregate a second Implementa-
tionDataType.subElement with the category set to ARRAY.c(RS_SWCT_03217,
RS_SWCT_03181)

For examples, see Appendix E.1.

An ImplementationDataType is also allowed to have SwDataDefProps (this fea-
ture is inherited from AutosarDataType), i.e. it can define various specific structural
and semantical attributes. Table 5.43 shows which SwDataDefProps will be typically
used here.

[TPS_SWCT_01257] ImplementationDataType or the aggregated Implemen-
tationDataTypeElements do not form closed sets dAn Implementation-
DataType or the aggregated ImplementationDataTypeElements do not form
closed sets but refer to further type definitions in one of four distinctive ways, depend-
ing on whether the type is implemented via a base type, a data or function pointer, or
a reference to another implementation data type:

1. Reference to an underlying SwBaseType corresponds to category VALUE.

2. Reference to BswModuleEntry in SwPointerTargetProps corresponds to
category FUNCTION_REFERENCE.

3. SwDataDefProps in SwPointerTargetProps corresponds to category
DATA_REFERENCE.

4. Reference to another ImplementationDataType corresponds to category
TYPE_REFERENCE.

c(RS_SWCT_03217, RS_SWCT_03217)

At the end, all the “leafs” of the complete tree formed by these references shall end up
in SwBaseTypes.

Figures 5.16, 5.17, and Figure 5.18 illustrate more examples about Typedefs and ref-
erences.

287 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.2.5.6 Modeling of Pointer using Implementation Data Type

MySimpleType:
ImplementationDataType

category = VALUE

:SwDataDefProps
uint16: SwBaseType

category = FIXED_LENGTH

:SwPointerTargetProps

targetCategory = TYPE_REFERENCE

:SwDataDefProps

:SwDataDefProps

MyPointerType:
ImplementationDataType

category = DATA_REFERENCE

������� �	
��	��
��� ������������� ������� ������������� �����	��������

:BaseTypeDirectDefinition

baseTypeEncoding = NONE
nativeDeclaration = unsigned short

Figure 5.16: Example (1) for TypeDefs

[TPS_SWCT_01258] Definition of a pointer to data dThe definition of a data pointer
requires a special meta-class SwPointerTargetProps which aggregates another
SwDataDefProps. This mechanism allows to describe the category and properties
of the pointer object itself as well as the category and properties of its target data
type.c(RS_SWCT_03217)

[constr_1177] Allowed targetCategory for SwPointerTargetProps dThe value
of targetCategory for SwPointerTargetProps can only be one of TYPE_REF-
ERENCE or FUNCTION_REFERENCE.

The only exception to this rule applies if the swDataDefProps owned by the Sw-
PointerTargetProps refers to a SwBaseType with native type declaration void, in
this case VALUE is also permitted.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

288 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

uint16: SwBaseType

category = FIXED_LENGTH

MyStructType: ImplementationDataType

category = STRUCTURE

������� ��	
��

�

����� ���	� ���

����	��	
������ ���

� ����	
�������

C1:: ImplementationDataTypeElement

category = VALUE

C2: ImplementationDataTypeElement

category = TYPE_REFERENCE

:SwDataDefProps :SwDataDefProps

OtherStructType: ImplementationDataType

category = STRUCTURE

:BaseTypeDirectDefinition

baseTypeEncoding = NONE
nativeDeclaration = unsigned short

Figure 5.17: Example (2) for TypeDefs

As far as the AUTOSAR meta-model is concerned, a pointer to a pointer could in
principle be implemented in two ways:

1. by defining an ImplementationDataType of category DATA_REFERENCE
that aggregates SwDataDefProps in the role swDataDefProps that in turn
aggregate SwPointerTargetProps in the role swPointerTargetProps
with attribute targetCategory set to TYPE_REFERENCE that aggregates Sw-
DataDefProps in the role swDataDefProps that references an Implementa-
tionDataType of category DATA_REFERENCE.

2. by defining an ImplementationDataType of category DATA_REFERENCE
that aggregates SwDataDefProps in the role swDataDefProps that in turn ag-
gregate SwPointerTargetProps in the role swPointerTargetProps with
attribute targetCategory set to DATA_REFERENCE (which is not allowed ac-
cording to [constr_1177]) that in turn aggregates SwDataDefProps in the role
swDataDefProps that aggregates SwPointerTargetProps in the role sw-
PointerTargetProps that references an ImplementationDataType of
category e.g. VALUE.

[constr_1254] Definition of a pointer to a pointer dAUTOSAR does not support
the definition of a pointer to a pointer by defining an ImplementationDataType
of category DATA_REFERENCE that aggregates SwDataDefProps in the role sw-
DataDefProps that in turn aggregate SwPointerTargetProps in the role sw-
PointerTargetProps with attribute targetCategory set to DATA_REFERENCE
that in turn aggregates SwDataDefProps in the role swDataDefProps that ag-
gregates SwPointerTargetProps in the role swPointerTargetProps that ref-
erences an ImplementationDataType of category e.g. VALUE.

289 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

For clarification, The AUTOSAR RTE does not support a definition of a pointer to a
pointer by way of option 2 anyway. For all intents and purposes, [constr_1254] merely
reflects this restriction on the level of AUTOSAR models.

Option 1 (which is also featured in Figure 5.18) is the only viable way that is positively
supported by the AUTOSAR RTE [2].

VOID: SwBaseType

category = FIXED_LENGTH

:SwDataDefProps

:SwDataDefProps

swImplPolicy = const

Foo: ImplementationDataType

category = DATA_REFERENCE

:BaseTypeDirectDefinition

baseTypeEncoding = VOID
nativeDeclaration = void

������� �	
�� �	� � �		

VOID: SwBaseType

category = FIXED_LENGTH

:SwDataDefProps

swImplPolicy = const

:SwDataDefProps

Foo: ImplementationDataType

category = DATA_REFERENCE

:BaseTypeDirectDefinition

baseTypeEncoding = VOID
nativeDeclaration = void

������� �	� � �	
�� �		

:SwPointerTargetProps

targetCategory = TYPE_REFERENCE

:SwDataDefProps

swImplPolicy = const

:SwDataDefProps

Foo: ImplementationDataType

category = DATA_REFERENCE

������� ��� � �	
�� �		

:SwPointerTargetProps

targetCategory = VALUE

:SwPointerTargetProps

targetCategory = VALUE

bar: ImplementationDataType

category = DATA_REFERENCE

Figure 5.18: Example (3) for TypeDefs

[TPS_SWCT_01259] Definition of a pointer to a function dAn Implementation-
DataType or one of its sub-elements can also describe a function pointer. This com-
pletes its ability to declare all kinds of local data and of possible arguments used in
library calls.

A function pointer is defined by the category FUNCTION_REFERENCE and the as-
sociation SwPointerTargetProps.functionPointerSignature that refers to a
BswModuleEntry. The latter essentially describes the signature of a function as ex-
plained in [6].c(RS_SWCT_03217)

290 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SwPointerTargetProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This element defines, that the data object (which is specified by the aggregating element) contains a
reference to another data object or to a function in the CPU code. This corresponds to a pointer in the
C-language.

The attributes of this element describe the category and the detailed properties of the target which is
either a data description or a function signature.

Base ARObject

Attribute Type Mult. Kind Note

functionPointer
Signature

BswModuleEntry 0..1 ref The referenced BswModuleEntry serves as the signature
of a function pointer definition. Primary use case: function
pointer passed as argument to other function.

Tags:xml.sequenceOffset=40

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of the target data type.

Tags:xml.sequenceOffset=30

targetCategory Identifier 0..1 attr This specifies the category of the target:

• In case of a data pointer, it shall specify the
category of the referenced data.

• In case of a function pointer, it could be used to
denote the category of the referenced Bsw
ModuleEntry. Since currently no categories for
BswModuleEntry are defined it will be empty.

Tags:xml.sequenceOffset=5

Table 5.23: SwPointerTargetProps

Please note that an ImplementationDataType manifests itself in the source code
of an RTE into which a DataPrototype typed by the ImplementationDataType
is deployed. This implies potential naming conflicts if ImplementationDataTypes
that have identical shortNames are deployed into a specific RTE.

[TPS_SWCT_01194] Symbolic name of an ImplementationDataType dTo miti-
gate this potential hazard it is possible to provide the ImplementationDataType
along with an accompanying symbolic name that can be used for resolving the name
clash.

The symbolic name is provided by means of the attribute symbol of the meta-class
SymbolProps owned by ImplementationDataType in the role symbolProps.c()

For more information about symbolProps, please refer to Figure 5.15.

Referrable

ImplementationProps

+ symbol: CIdentifier [0..1]

BswSchedulerNamePrefix SectionNamePrefix SymbolProps SymbolicNameProps

Figure 5.19: ImplementationProps and its subclasses

291 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ImplementationProps (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Defines a symbol to be used as (depending on the concrete case) either a complete replacement or a
prefix when generating code artifacts.

Base ARObject , Referrable

Subclasses BswSchedulerNamePrefix, ExecutableEntityActivationReason, SectionNamePrefix, SymbolProps,
SymbolicNameProps

Attribute Type Mult. Kind Note

symbol CIdentifier 0..1 attr The symbol to be used as (depending on the concrete
case) either a complete replacement or a prefix.

Table 5.24: ImplementationProps

[constr_1909] Existence of attribute ImplementationProps.symbol dFor each
ImplementationProps, the attribute symbol shall exist at the time when the
contract phase generation is executed.c()

Class SymbolProps

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This meta-class represents the ability to attach with the symbol attribute a symbolic name that is conform
to C language requirements to another meta-class, e.g. AtomicSwComponentType, that is a potential
subject to a name clash on the level of RTE source code.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 5.25: SymbolProps

5.2.6 Base Type

[TPS_SWCT_01260] SwBaseType dBaseType is used to specify the basic data type
level. AUTOSAR uses the meta-class SwBaseType which is derived from the abstract
class BaseType due to other use cases for BaseType in ASAM HDO.c()

[TPS_SWCT_01261] Use case for SwBaseType dOne use case for SwBaseType is
to serve as input for the RTE generator. It will always appear at the “leaves” of data
the types definitions which are relevant for RTE generation. It is used to generate the
corresponding C-code typedefs in case the attribute BaseTypeDirectDefinition.
nativeDeclaration exists.c()

[constr_1010] If nativeDeclaration does not exist dIf nativeDeclaration
does not exist in the SwBaseType, it is required that the shortName (e.g. “uint8”)
of the corresponding ImplementationDataType is equal to a name of one of the
Platform or Standard Types predefined in AUTOSAR code.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

292 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The consequence of [constr_1010] is that if the nativeDeclaration does not exist
the RTE generator will not consider the ImplementationDataType for the genera-
tion of data type definitions.

Still, the compiler will positively be able to resolve the data type because it can fall back
to the data type definitions contained in the header file for platform and standard data
types that has to be included by regulation of the AUTOSAR standard.

Please note that nativeDeclaration shall yield a valid C data type symbol, whether
this is done by a typedef or a by using the symbol11 of an integral data type is princi-
pally all the same.

Of course, using the symbol of an integral data type as the value of nativeDeclara-
tion increases the odds that the enclosing SwBaseType can be used independently
of the availability of the definition of a typedef that may or may not be available in a
given context.

[TPS_SWCT_01563] Applicable values for nativeDeclaration dFor the purpose
of avoiding portability issues the value nativeDeclaration should only consist of
the symbol of an integral C data type.c()

For more information on this refer to [23].

[TPS_SWCT_01263] Further use cases for SwBaseType dWithin the basic software
description, SwBaseType can be used (together with ImplementationDataTypes)
for documentation or to specify variables for debugging. Furthermore, SwBaseTypes
are required in the generation of support data for measurement and calibration tools.
Please refer to [6] for details on these use cases.c()

A more detailed description of BaseTypes can also be found in ASAM MCD 2 Harmo-
nized Data Objects.12

Class BaseType (abstract)

Package M2::MSR::AsamHdo::BaseTypes

Note This abstract meta-class represents the ability to specify a platform dependent base type.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses SwBaseType

Attribute Type Mult. Kind Note

5

11Note that the symbol does not necessarily have to consist of a single token, i.e. for all intents and
purposes (for example) unsigned char is also considered the symbol of an integral C data type.

12The definition of Harmonized Data Objects can be retrieved from ASAM at www.asam.net. Access
is limited to ASAM members.

293 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BaseType (abstract)

baseType
Definition

BaseTypeDefinition 1 aggr This is the actual definition of the base type.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.26: BaseType

The aggregation BaseType.baseTypeDefinition affects two abstract meta-
classes and is therefore never used directly. However, in order to not break the seman-
tics of the derived meta-classes SwBaseType and BaseTypeDirectDefinition a
constraint is still required.

[constr_1910] Existence of attribute BaseType.baseTypeDefinition dFor each
BaseType (which will be utilized in the form of SwBaseType), the aggregation in
the role baseTypeDefinition shall exist at the time when the contract
phase generation is executed.c()

Class SwBaseType

Package M2::MSR::AsamHdo::BaseTypes

Note This meta-class represents a base type used within ECU software.

Tags:atp.recommendedPackage=BaseTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, BaseType, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 5.27: SwBaseType

Class BaseTypeDefinition (abstract)

Package M2::MSR::AsamHdo::BaseTypes

Note This meta-class represents the ability to define a basetype.

Base ARObject

Subclasses BaseTypeDirectDefinition

Attribute Type Mult. Kind Note

– – – – –

Table 5.28: BaseTypeDefinition

Class BaseTypeDirectDefinition

Package M2::MSR::AsamHdo::BaseTypes

Note This BaseType is defined directly (as opposite to a derived BaseType)

Base ARObject , BaseTypeDefinition

Attribute Type Mult. Kind Note

5

294 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BaseTypeDirectDefinition

baseType
Encoding

BaseTypeEncoding
String

0..1 attr This specifies, how an object of the current BaseType is
encoded, e.g. in an ECU within a message sequence.

Tags:xml.sequenceOffset=90

baseTypeSize PositiveInteger 0..1 attr Describes the length of the data type specified in the
container in bits.

Tags:xml.sequenceOffset=70

byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base type.

Tags:xml.sequenceOffset=110

memAlignment PositiveInteger 0..1 attr This attribute describes the alignment of the memory
object in bits. E.g. "8" specifies, that the object in
question is aligned to a byte while "32" specifies that it is
aligned four byte. If the value is set to "0" the meaning
shall be interpreted as "unspecified".

Tags:xml.sequenceOffset=100

native
Declaration

NativeDeclarationString 0..1 attr This attribute describes the declaration of such a base
type in the native programming language, primarily in the
Programming language C. This can then be used by a
code generator to include the necessary declarations into
a header file. For example

BaseType with shortName: "MyUnsignedInt" native
Declaration: "unsigned short"

Results in

typedef unsigned short MyUnsignedInt;

If the attribute is not defined the referring Implementation
DataTypes will not be generated as a typedef by RTE.

If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and baseType
Size.

This is required to ensure the consistent handling and
interpretation by software components, RTE, COM and
MCM systems.

Tags:xml.sequenceOffset=120

Table 5.29: BaseTypeDirectDefinition

ARElement

BaseType
BaseTypeDefinition

BaseTypeDirectDefinition

+ baseTypeEncoding: BaseTypeEncodingString [0..1]
+ baseTypeSize: PositiveInteger [0..1]
+ byteOrder: ByteOrderEnum [0..1]
+ memAlignment: PositiveInteger [0..1]
+ nativeDeclaration: NativeDeclarationString [0..1]

AtpBlueprint
AtpBlueprintable

SwBaseType

+baseTypeDefinition

1

Figure 5.20: BaseType

Some additional hints to the properties of SwBaseType:

• [constr_1011] category of SwBaseType dFor the attribute SwBaseType.cat-
egory only the values FIXED_LENGTH and VOID are supported at the time
when the contract phase generation is executed.c()

295 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• [constr_1422] Value of category is VOID dIf the value of the attribute SwBase-
Type.category is set to VOID then the attribute baseTypeSize and base-
TypeEncoding shall not exist at the time when the contract phase
generation is executed.c()

• [constr_1012] Value of category is FIXED_LENGTH dIf the value of the at-
tribute SwBaseType.category is set to FIXED_LENGTH then the attribute
baseTypeSize shall be filled with content at the time when the con-
tract phase generation is executed.c()

• [TPS_SWCT_01444] Size of SwBaseType is specified in bits dIn both cases
(mentioned in [constr_1012]) the size of SwBaseType is specified in bits.c()

• The attribute baseTypeEncoding specifies how the values of the base type are
encoded.

[constr_1014] Supported value encodings for SwBaseType dThe supported
values for attribute BaseTypeDirectDefinition.baseTypeEncoding are:

– 1C: One’s complement

– 2C: Two’s complement

– BCD-P: Packed Binary Coded Decimals

– BCD-UP: Unpacked Binary Coded Decimals

– DSP-FRACTIONAL: Digital Signal Processor

– SM: Sign Magnitude

– IEEE754: floating-point numbers

– ISO-8859-1: single-byte coded character

– ISO-8859-2: single-byte coded character

– WINDOWS-1252: single-byte coded character

– UTF-8: UCS Transformation Format 8

– UTF-16: Character encoding for Unicode code points based on 16 bit code
units [15]

– UCS-2: Universal Character Set 2

– NONE: Unsigned Integer

– VOID: corresponds to a void in C. The encoding is not formally specified
here.

– BOOLEAN: This represents an unsigned integer to be interpreted as boolean.
The value shall be interpreted as true if the value of the unsigned integer
is 1 and it shall be interpreted as false if the value of the unsigned integer
is 0.

296 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

A CompuMethod shall be referenced by the corresponding Autosar-
DataType that implements the common sense behind the boolean concept,
i.e. define a TEXTTABLE with two CompuScales: e.g. true –> 1, false –>
0.

This rule shall be imposed at any time in the workflow.c()

• [TPS_SWCT_01262] memAlignment and byteOrder are platform-specific
dThe value of attributes BaseTypeDirectDefinition.memAlignment and
BaseTypeDirectDefinition.byteOrder is platform-specific and therefore
should be set only in use cases where this is really needed.

These attributes shall be considered as optional.

If a SwBaseType is platform-specific then also the ImplementationDataType
and software-component descriptions build on top of it become platform-specific.c
()

However, there are use cases for SwBaseType where this does not matter: es-
pecially the calibration support format which is generated in ECU-specific scope
(and also contains SwBaseType, see [6]) could well be platform-specific.

Further regulations apply for the case that the value UTF-16 is used for setting the
attribute BaseTypeDirectDefinition.baseTypeEncoding:

[constr_1398] Existence of attributes of BaseTypeDirectDefinition dIf the
value of attribute BaseTypeDirectDefinition.baseTypeEncoding is set to UTF-
-16 then the attribute BaseTypeDirectDefinition.byteOrder shall exist.

The only allowed values of BaseTypeDirectDefinition.byteOrder in this case
are mostSignificantByteFirst and mostSignificantByteLast.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

There is already predefined terminology (see [15]) existing that describes the two pos-
sible cases of byte orientation in a UTF-16-encoded string. The connection to this
terminology is defined by [TPS_SWCT_01651] and [TPS_SWCT_01652].

Enumeration ByteOrderEnum

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note When more than one byte is stored in the memory the order of those bytes may differ depending on
the architecture of the processing unit. If the least significant byte is stored at the lowest address, this
architecture is called little endian and otherwise it is called big endian.

ByteOrder is very important in case of communication between different PUs or ECUs.

Literal Description

mostSignificantByte
First

Most significant byte shall come at the lowest address (also known as BigEndian or as
Motorola-Format)

Tags:atp.EnumerationLiteralIndex=0

5

297 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration ByteOrderEnum

mostSignificantByte
Last

Most significant byte shall come highest address (also known as LittleEndian or as Intel-Format)

Tags:atp.EnumerationLiteralIndex=1

opaque For opaque data endianness conversion has to be configured to Opaque. See AUTOSAR COM
Specification for more details.

Tags:atp.EnumerationLiteralIndex=2

Table 5.30: ByteOrderEnum

[TPS_SWCT_01651] UTF-16BE dIf the value of attribute BaseTypeDirectDefini-
tion.baseTypeEncoding is set to UTF-16 and the attribute BaseTypeDirect-
Definition.byteOrder in this case are mostSignificantByteFirst then the
SwBaseType corresponds to the definition of UTF-16BE according to the Unicode
standard [15].c()

[TPS_SWCT_01652] UTF-16LE dIf the value of attribute BaseTypeDirectDefini-
tion.baseTypeEncoding is set to UTF-16 and the attribute BaseTypeDirect-
Definition.byteOrder in this case are mostSignificantByteLast then the
SwBaseType corresponds to the definition of UTF-16LE according to the Unicode
standard [15].c()

A further question that needs clarification is the usage of the so-called Byte Order
Mark which allows (at run-time) for determining the actual byte order directly from the
payload of a Unicode string.

As AUTOSAR has means to formally and comprehensively define the byte-order of any
given DataPrototype that can hold a string at run time, it is not necessary to support
a further instrument that takes care of the same purpose.

[TPS_SWCT_01653] UTF-16-encoded strings are not allowed to start with a BOM
dIf the value of attribute BaseTypeDirectDefinition.baseTypeEncoding is set
to UTF-16 then the value of a DataPrototype (which is effectively representing a
string) is not allowed to start with a Byte Order Mark (BOM).c()

Please note that [TPS_SWCT_01653] removes a possible redundancy in the definition
and execution of UTF-16-encoded strings.

The redundancy is not only regarded unnecessary but also potentially dangerous be-
cause it is not possible to check whether the definition is consistent with the execution
at configuration time.

From the formal point of view, [TPS_SWCT_01653] does not represent an actual con-
straint although it is formulated as such.

However, an AUTOSAR tool would not be able to properly check the condition at con-
figuration time and therefore this rule is published as a specification item.

298 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.2.7 Data Type Terminology

There are uses of data types that on the one hand need a handy term (because this
kind of data type is used a lot) but on the other hand cannot easily be expressed in
simple terms of meta-model elements (like ApplicationDataType).

Therefore, it is not an option to fully describe the characteristics of these kinds of data
types precisely every time one of these is used. A definition of terminology is supposed
to associate the mentioned kinds of data types with the term under which their use shall
be paraphrased.

5.2.7.1 Primitive Type

In some cases it is necessary to constrain that applicability of data types to primitive C
data types. It would be possible to describe the characteristics of eligible Autosar-
DataTypes at every single place in an AUTOSAR specification where this specific
limitation applies.

However, this may end up in lengthy and potentially inconsistent descriptions at differ-
ent places within AUTOSAR specifications. Therefore, this chapter provides a canoni-
cal definition of a primitive data type that can be referred to from other places.

[TPS_SWCT_01564] Non-recursive definition of a primitive data type dAn Au-
tosarDataType is considered a primitive data type if the following conditions apply:

• it is an ApplicationPrimitiveDataType of category VALUE or BOOLEAN

• it is an ImplementationDataType of category VALUE

c(RS_SWCT_03216, RS_SWCT_03217)

[TPS_SWCT_01565] Recursive definition of a primitive data type dAn Autosar-
DataType is considered a primitive data type if the following conditions apply:

• it is an AutosarDataType according to [TPS_SWCT_01564]

• it is an AutosarDataType of category TYPE_REFERENCE that, after all type-
references have been resolved, boils down an AutosarDataType according to
[TPS_SWCT_01564].

c(RS_SWCT_03216, RS_SWCT_03217)

5.2.7.2 Compound Primitive Data Type

[TPS_SWCT_01179] Compound Primitive Data Type dFor clarification, a “com-
pound primitive data type” is an ApplicationPrimitiveDataType of category
STRING, CURVE, MAP, CUBOID, CUBE_4, CUBE_5, COM_AXIS, RES_AXIS, and VAL_-
BLK.

299 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This implies the existence of a swRecordLayout owned by the swDataDefProps of
the ApplicationPrimitiveDataType that defines the mapping to a corresponding
ImplementationDataType.

The main characteristic of the “compound primitive data type” is that with respect to the
application data type layer its data type is considered a primitive data type but when it
comes to the implementation data type layer the type is implemented as a composite
data type according to the applicable SwRecordLayout.c(RS_SWCT_03216)

[TPS_SWCT_01486] ApplicationPrimitiveDataType of category STRING
may have invalidValue dThe only kind of Compound Primitive Data Type
that is allowed to define an invalidValue is an ApplicationPrimitive-
DataType of category STRING.c(RS_SWCT_03216)

[constr_1241] Compound Primitive Data Types and invalidValue dCom-
pound Primitive Data Types that have set the value of category other than
STRING shall not define invalidValue at the time when the contract
phase generation is executed.c()

5.2.7.3 Integral Primitive Type

The SenderReceiverToSignalMapping (see [10]) allows for the integral mapping
of a piece of data to a single SystemSignal. The specification of AUTOSAR COM
[22] imposes certain requirements on the characteristics of data that apply for the inte-
gral mapping.

[TPS_SWCT_01477] Integral Primitive Types dData types that qualify for be-
ing used in the context of a SenderReceiverToSignalMapping shall be called
Integral Primitive Types.c(RS_SWCT_03218)

[constr_1229] category of ImplementationDataType boils down to VALUE dAn
ImplementationDataType qualifies as an Integral Primitive Type if and
only if either

• its category is VALUE or TYPE_REFERENCE that eventually boils down to
VALUE or

• its category is ARRAY and it has only one subElement and one of the following
conditions applies:

– subElement.category is set to VALUE or TYPE_REFERENCE that even-
tually boils down to VALUE and the subElement refers to a SwBaseType
where baseTypeSize is set to the value 8 and the baseTypeEncoding
is set to NONE.

– subElement.category is set to TYPE_REFERENCE and the swDataDef-
Props.implementationDataType literally represents the Platform
Data Type named “uint8”.

300 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

– subElement.category is set to TYPE_REFERENCE and the attribute sw-
DataDefProps.implementationDataType.shortName is set to “uint8”
and swDataDefProps.baseType.baseTypeDefinition.nativeDec-
laration does not exist.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1230] ApplicationDataType that qualifies for Integral Primitive
Type dAn ApplicationDataType qualifies as an Integral Primitive Type if
and only if all the following conditions apply:

• ApplicationDataType.category is set to BOOLEAN, VALUE, STRING, or AR-
RAY

• in the applicable scope a DataTypeMap is available that refers to the given
ApplicationDataType

• the found DataTypeMap refers to an ImplementationDataType that fulfills
the requirements of [constr_1229]

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

5.2.7.4 Variable-Size Array Data Type

The definition of and further explanation regarding the term Variable-Size Array
Data Type can be found in chapter 2.7.

5.2.7.5 Wrapped Union Data Type

There are use cases for sending a DataPrototype that is effectively typed by a union
data type over a communication network. In this case, however, it is necessary to
not only send the DataPrototype itself but add an information about the applicable
member of the union as a form of “meta-data” to the transmission.

By this means the sender can identify the applicable member of the union and the
receiver can accordingly access the proper union element.

It is the nature of union data types that executable code shall symmetrically access
the union, i.e. the member that was written needs to be read, the usage of a union as a
“type converter” is heavily frowned upon (because it causes unspecified behavior from
ISO-C:99 [24] point of view) and shall be discouraged by AUTOSAR.

Thus, AUTOSAR needs to take this condition into account and define a specific mod-
eling for the handling of union data types.

301 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01700] Definition of unions that can be transmitted over a commu-
nication network dIf it is intended to send a data object typed by a union data type
over a communication bus then a specific modeling is required for this purpose.

• The union data type shall never be used as such, it shall always be enclosed in an
ImplementationDataType of category STRUCTURE that aggregates exactly
two ImplementationDataTypeElements:

– The first ImplementationDataTypeElement shall be used to identify
the applicable element of the actual union data type.

The shortName of this element shall be set to “memberSelector”, it shall
be of category VALUE, or of category TYPE_REFERENCE that finally
boils down to category VALUE.

Furthermore, it shall refer to a SwBaseType with attribute baseTypeEn-
coding set to NONE and attribute baseTypeSize set to the value 8, 16, or
32.

This ImplementationDataTypeElement shall be called the Member
Selector.

– The second ImplementationDataTypeElement shall be of category
UNION, it represents the actual union “payload”.

• The purpose of the Member Selector is to identify the element of the union
data type that applies for a given access to the union.

If the value of the Member Selector is set to 1 then the first subElement of
the ImplementationDataType of category UNION is applicable.

If the value of the Member Selector is set to 2 then the second subElement
is applicable and so on.

• The value of the Member Selector shall range between the value 1 and the
number of subElements of the ImplementationDataTypeElement of cat-
egory UNION. Once again, the index counting is 1-based!

• Obviously, the actual data type used to hold the Member Selector shall be
capable of storing a value that corresponds to the number of subElements of
the ImplementationDataTypeElement of category UNION.

• Constraint [constr_1441] applies.

c(RS_SWCT_03217)

[TPS_SWCT_01701] Wrapped Union Data Type dData types that fulfill the require-
ments of [TPS_SWCT_01700] shall be called Wrapped Union Data Types.c(RS_-
SWCT_03217)

[constr_1442] category TYPE_REFERENCE shall not be used for modeling the
“payload” of a Wrapped Union Data Type dFor the modeling of the “payload” part
of a Wrapped Union Data Type it shall not be possible at any time in the

302 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

workflow to use an ImplementationDataTypeElement of category TYPE_-
REFERENCE that finally (i.e. after all possible indirections are resolved) boils down to
category UNION.c()

The definition of the Wrapped Union Data Type represents the canonical way of
how union data types shall be used in AUTOSAR on the application and communication
level. Consequentially, the usage of the category value UNION is effectively limited
to an ImplementationDataTypeElement.

[constr_1444] Limited applicability of Wrapped Union Data Type dThere is no
support at any time in the workflow for the usage of Wrapped Union Data
Type in PortInterfaceMappings, and Diagnostics.c()

For the time being, AUTOSAR restricts the initialization of a union data type to the first
member of the union data type, see [constr_1445].

Listing 5.9: Simplified example of a Wrapped Union Data Type

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>UnionExample</SHORT-NAME>
<CATEGORY>STRUCTURE</CATEGORY>
<SUB-ELEMENTS>

<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>memberSelector</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>

</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>

<SHORT-NAME>payload</SHORT-NAME>
<CATEGORY>UNION</CATEGORY>
<SUB-ELEMENTS>

<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>primitive</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>

</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>

<SHORT-NAME>array</SHORT-NAME>
<CATEGORY>ARRAY</CATEGORY>
<SUB-ELEMENTS>

<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>arraySub</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<ARRAY-SIZE>4</ARRAY-SIZE>
<ARRAY-SIZE-SEMANTICS>FIXED-SIZE</ARRAY-SIZE-SEMANTICS>

</IMPLEMENTATION-DATA-TYPE-ELEMENT>
</SUB-ELEMENTS>

</IMPLEMENTATION-DATA-TYPE-ELEMENT>
</SUB-ELEMENTS>

</IMPLEMENTATION-DATA-TYPE-ELEMENT>
</SUB-ELEMENTS>

</IMPLEMENTATION-DATA-TYPE>

One obvious consequence of this restriction is that for any given ValueSpecifi-
cation taken to initialize a Wrapped Union Data Type the value of the Member
Selector is strictly locked to 1.

303 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1445] Initialization of the Member Selector of a Wrapped Union Data
Type dThe initValue for the Member Selector shall never be set to any value
other than 1.

This rule shall be imposed at any time in the workflow.c()

Another aspect of the initialization of a Wrapped Union Data Type is that the “pay-
load” part cannot be treated as a composite data type unless the first element of the
“payload” part is typed by a composite data type.

In other words, it is not possible to initialize the first subElement of an Implementa-
tionDataTypeElement of category UNION. It is only possible to assign an initial
value to the “payload” part itself.

[TPS_SWCT_01702] Initialization of the “payload” of a Wrapped Union Data
Type dThe initValue for the ImplementationDataTypeElement of category
UNION shall be assigned to the ImplementationDataTypeElement of category
UNION but it shall reflect the structure of the first subElement of the Implementa-
tionDataTypeElement of category UNION.c(RS_SWCT_03217)

In other words, if the first subElement of the ImplementationDataTypeElement
of category UNION is of a primitive type then a NumericalValueSpecification
shall be used to initialize the ImplementationDataTypeElement of category
UNION.

If the subElement is typed by a composite data type then a CompositeValueSpec-
ification shall be used to initialize the ImplementationDataTypeElement of
category UNION.

To summarize the initialization issue, a Wrapped Union Data Type is modeled as
a structure of two elements and requires a RecordValueSpecification that in turn
aggregates two ValueSpecifications, one for the Member Selector that shall
have no other value than 1, and one for the “payload”.

The structure of the second ValueSpecification depends on the data type used
for the first element of the “payload”.

The following example shows a simplified and stripped-down (e.g. without the Sw-
DataDefProps required to make the model complete) model of a Wrapped Union
Data Type.

5.2.7.6 Optional Element Structure

As already mentioned in section 2.8, there are use cases for structured data types that
contain optional elements that may or may not exist at a given time.

These data types require a specific modeling on both the level of Application-
DataType and the level of ImplementationDataType.

304 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01775] Structured data types with optional elements dA structured
data type that contains at least one optional element shall be called an Optional
Element Structure.c(RS_SWCT_03320)

On the level of ApplicationDataType, the existence of optional elements is sig-
naled by setting the attribute ApplicationRecordElement.isOptional to True.
For more details, please refer to section 5.2.4.2.2.

The description of how an Optional Element Structure shall be modeled using
ImplementationDataType can be found in section 5.2.5.3.1.

5.3 Data Prototypes

5.3.1 Overview

[TPS_SWCT_01264] Data prototypes implement a role of a data type dGenerally
speaking, a data prototype represents the implementation of a role of a data type within
the definition of another data type, e.g. a “typed” data object declared within a software
component or a port interface.

This means formally that it has an is-of-type relation to a data type and is usually
aggregated by another element, e.g. the internal behavior or a port interface.c()

In the meta-model, various kinds of data prototypes are derived from the abstract
DataPrototype as shown in figure 5.21.

The reason for the introduction of this hierarchy was the distinction between Autosar-
DataPrototype (which can be used for the application and implementation types as
well) and ApplicationCompositeElementDataPrototype (which is restricted to
be used within the application types).

ApplicationArrayElement

+ arraySizeHandling:
ArraySizeHandlingEnum [0..1]

+ arraySizeSemantics:
ArraySizeSemanticsEnum [0..1]

«atpVariation»
+ maxNumberOfElements:

PositiveInteger [0..1]

ApplicationCompositeElementDataPrototype

ApplicationRecordElement

+ isOptional: Boolean [0..1]

AutosarDataPrototype

AtpPrototype

DataPrototype

ParameterDataPrototypeVariableDataPrototype

ArgumentDataPrototype

+ direction: ArgumentDirectionEnum [0..1]
+ serverArgumentImplPolicy: ServerArgumentImplPolicyEnum [0..1]

«atpVariation»
SwDataDefProps

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType
+/swDataDefProps

0..1

«isOfType»

+type0..1
{redefines atpType}

«isOfType»

+type0..1
{redefines atpType}

+swDataDefProps

0..1

Figure 5.21: Data Prototypes Overview

305 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class DataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Base class for prototypical roles of any data type.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ApplicationCompositeElementDataPrototype, AutosarDataPrototype

Attribute Type Mult. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr This property allows to specify data definition properties
which apply on data prototype level.

Table 5.31: DataPrototype

Class AutosarDataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Base class for prototypical roles of an AutosarDataType.

Base ARObject , AtpFeature, AtpPrototype, DataPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ArgumentDataPrototype, ParameterDataPrototype, VariableDataPrototype

Attribute Type Mult. Kind Note

type AutosarDataType 0..1 tref This represents the corresponding data type.

Stereotypes: isOfType

Table 5.32: AutosarDataPrototype

Class ApplicationCompositeElementDataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note This class represents a data prototype which is aggregated within a composite application data type
(record or array). It is introduced to provide a better distinction between target and context in instance
Refs.

Base ARObject , AtpFeature, AtpPrototype, DataPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ApplicationArrayElement, ApplicationRecordElement

Attribute Type Mult. Kind Note

type ApplicationDataType 0..1 tref This represents the corresponding data type.

Stereotypes: isOfType

Table 5.33: ApplicationCompositeElementDataPrototype

Because these DataPrototypes are modeled as own meta-classes it is possible
to define own attributes for them (on M2) which (in the M1 model) could extend or
constrain the attribute values already set via the corresponding data type.

[TPS_SWCT_01265] DataPrototype aggregates an own set of SwDataDef-
Props dThis mechanism is used here in the way that DataPrototype aggregates
an own set of SwDataDefProps. Thus, each kind of DataPrototype has the ability
to extend or even overwrite the SwDataDefProps already defined by its Applica-
tionDataType or ImplementationDataType.

This mechanism, if carefully applied, allows for a better reuse of data types because
they can be kept free of the properties which vary according to the context or are
defined in later project phases.c()

306 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Chapter 5.4 describes more details about this aspect of the meta-model.

[TPS_SWCT_01445] Applicability of SwDataDefProps for DataPrototypes dThe
applicability of SwDataDefProps for DataPrototypes shall follow the same rules as
for the categorys of the corresponding AutosarDataTypes.c()

The applicability of SwDataDefProps for DataPrototypes is documented in Table
5.7.

Further information can be found in table 5.34 and table 5.35.

Please note that table 5.34 does not include the ApplicationRecordElement and
ApplicationArrayElement because these specializations of ApplicationCom-
positeElementDataPrototype are already part of table 5.7. The same applies for
table 5.35 which does not include the ImplementationDataTypeElement.

Attributes of SwDataDefProps Root El. Attribute Existence per Category

D
a
t
a
P
r
o
t
o
t
y
p
e

I
n
s
t
a
n
t
i
a
t
i
o
n
D
a
t
a
D
e
f
P
r
o
p
s

P
a
r
a
m
e
t
e
r
A
c
c
e
s
s

V
A
L
U
E

V
A
L
_
B
L
K

S
T
R
U
C
T
U
R
E

A
R
R
A
Y

S
T
R
I
N
G

B
O
O
L
E
A
N

C
O
M
_
A
X
I
S

R
E
S
_
A
X
I
S

C
U
R
V
E

M
A
P

C
U
B
O
I
D

C
U
B
E
_
4

C
U
B
E
_
5

additionalNativeTypeQualifier

annotation x x x * * * * * * * * * * * * *

baseType

compuMethod

dataConstr.dataConstrRule.physCon-
strs

x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

dataConstr.dataConstrRule.internal-
Constrs

x x d/c13 d/c d/c d/c d/c d/c d/c d/c d/c

displayFormat x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

displayPresentation x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

implementationDataType

invalidValue

stepSize x x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swAddrMethod x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swAlignment x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swBitRepresentation

swCalibrationAccess x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swCalprmAxisSet

swCalprmAxisSet.swCalprmAxis/SwAxis-
Grouped.swCalprmRef x x 0..1 0..1 0..1 0..1 0..1 0..1

swCalprmAxisSet.swCalprmAxis/SwAx-
isIndividual.swVariableRef x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

5

13don’t care

307 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Attributes of SwDataDefProps Root El. Attribute Existence per Category

D
a
t
a
P
r
o
t
o
t
y
p
e

I
n
s
t
a
n
t
i
a
t
i
o
n
D
a
t
a
D
e
f
P
r
o
p
s

P
a
r
a
m
e
t
e
r
A
c
c
e
s
s

V
A
L
U
E

V
A
L
_
B
L
K

S
T
R
U
C
T
U
R
E

A
R
R
A
Y

S
T
R
I
N
G

B
O
O
L
E
A
N

C
O
M
_
A
X
I
S

R
E
S
_
A
X
I
S

C
U
R
V
E

M
A
P

C
U
B
O
I
D

C
U
B
E
_
4

C
U
B
E
_
5

swCalprmAxisSet.swCalprmAxis/SwAxis-
Grouped.sharedAxisType

swCalprmAxisSet.swCalprmAxis/SwAx-
isIndividual.inputVariableType

swCalprmAxisSet.swCalprmAxis/SwAx-
isIndividual.unit
swComparisonVariable x 0..1 0..1 0..1 0..1 0..1

swDataDependency x x 0..1 0..1 0..1 0..1 0..1 0..1

swHostVariable

swImplPolicy x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swIntendedResolution

swInterpolationMethod x x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swIsVirtual x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swPointerTargetProps

swRecordLayout

swRefreshTiming x x 0..1 0..1 0..1 0..1

swTextProps

swValueBlockSize

swValueBlockSizeMult

unit

valueAxisDataType

Table 5.34: Allowed Attributes vs. category for DataPrototypes typed by Application
Data Types

[constr_1289] Allowed Attributes vs. category for DataPrototypes typed by
ApplicationDataTypes dThe allowed values of Attributes per category for Dat-
aPrototypes typed by ApplicationDataTypes are documented in table 5.34.

This rule shall be imposed at any time in the workflow.c()

[constr_1288] Allowed Attributes vs. category for DataPrototypes typed by
ImplementationDataTypes dThe allowed values per category for DataProto-
types typed by ImplementationDataTypes are documented in table 5.35.

This rule shall be imposed at any time in the workflow.c()

308 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Attributes of SwDataDefProps Root Element Attribute Existence per Category

D
a
t
a
P
r
o
t
o
t
y
p
e

I
n
s
t
a
n
t
i
a
t
i
o
n
D
a
t
a
D
e
f
P
r
o
p
s

P
a
r
a
m
e
t
e
r
A
c
c
e
s
s

V
A
L
U
E

D
A
T
A
_
R
E
F
E
R
E
N
C
E

F
U
N
C
T
I
O
N
_
R
E
F
E
R
E
N
C
E

T
Y
P
E
_
R
E
F
E
R
E
N
C
E

S
T
R
U
C
T
U
R
E

U
N
I
O
N

A
R
R
A
Y

additionalNativeTypeQualifier

annotation x x * * * * * * * *
baseType

compuMethod

dataConstr.dataConstrRule.physConstrs x x d/c14 d/c d/c

dataConstr.dataConstrRule.internalConstrs x x 0..1 0..1 0..1

displayFormat x x 0..1 0..1 0..1 0..1 0..1

displayPresentation x x 0..1 0..1 0..1

implementationDataType

invalidValue

stepSize x x 0..1 0..1

swAddrMethod x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swAlignment x x 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swBitRepresentation

swCalibrationAccess x x 0..1 0..1 0..1 0..1 0..1

swCalprmAxisSet

swComparisonVariable

swDataDependency

swHostVariable

swImplPolicy x 0..1 0..1 0..1 0..1 0..1 0..1 0..1

swIntendedResolution

swInterpolationMethod

swIsVirtual

swPointerTargetProps

swPointerTargetProps.swDataDefProps

swPointerTargetProps.functionPointerSignature

swRecordLayout

swRefreshTiming x x 0..1 0..1 0..1 0..1 0..1

swTextProps

swValueBlockSize

swValueBlockSizeMult

unit

valueAxisDataType

Table 5.35: Allowed Attributes vs. category for DataPrototypes typed by Imple-
mentationDataTypes

14don’t care

309 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01266] Three non-abstract classes derived from AutosarDataPro-
totype dThere are three non-abstract classes derived from AutosarDataProto-
type which reflect the main use cases in the SWC-Template:

• Operation arguments (ArgumentDataPrototype) in a client-server interface.

• Variables (VariableDataPrototype) which are changed by the application
software at runtime.

• Parameters (ParameterDataPrototype) which are constant (except for cali-
bration access) from the application point of view.

c()

Class VariableDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a
VariableDataPrototype allocates "static" memory on the ECU. In some cases optimization strategies
might lead to a situation where the memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used
executes.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table 5.36: VariableDataPrototype

Class ParameterDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A parameter element used for parameter interface and internal behavior, supporting signal like parameter
and characteristic value communication patterns and parameter and characteristic value definition.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the ParameterDataPrototype

Table 5.37: ParameterDataPrototype

[TPS_SWCT_01267] DataPrototype can be aggregated in different roles dNote
that even though the meta-classes VariableDataPrototype and ParameterDat-
aPrototype already express specific use cases of the underlying data type the same
DataPrototype can still be aggregated in different roles, e.g. in the SwcInternal-
Behavior to express different methods how to access it.c()

An example is the aggregation of VariableDataPrototype by SwcInternalBe-
havior in the roles of either implicitInterRunnableVariable or explicit-
InterRunnableVariable. Find more information concerning these use cases in
chapter 7.

310 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01268] Definition of initValue for a VariableDataPrototype or
a ParameterDataPrototype dIt is possible to assign an initValue for both a
VariableDataPrototype and a ParameterDataPrototype.c()

This aspect is sketched in Figure 5.22.

[TPS_SWCT_01269] In PortInterfaces, initial values defined for DataProto-
types are ignored dThese initValues have no meaning for DataPrototypes
within PortInterfaces because in this case a more specific definition of initial values
via the so-called ComSpec is required.c()

For more information, please refer to chapter 4.5.

AutosarDataPrototype

VariableDataPrototype
ValueSpecification

+ shortLabel: Identifier [0..1]

AutosarDataPrototype

ParameterDataPrototype
+initValue

0..1

+initValue

0..1

Figure 5.22: Initial value for AutosarDataPrototypes

Find more information about the interpretation of initValue in section 5.7.

[constr_1416] Existence of ApplicationArrayElement.maxNumberOfEle-
ments dThe attribute ApplicationArrayElement.maxNumberOfElements shall
exist at the time when the contract phase generation is executed
for all ApplicationArrayElements defined in the scope of an ApplicationAr-
rayDataType where the attribute ApplicationArrayDataType.dynamicArray-
SizeProfile does not exist.c()

This means that for fixed-size array data types the attribute ApplicationArrayEle-
ment.maxNumberOfElements shall be defined for every dimension of the fixed-size
array data.

5.3.2 Data Constraints for DataPrototypes typed by Array DataTypes

There are cases where it should be possible to reference different DataConstrs
from DataPrototypes of category ARRAY typed by either an ApplicationAr-
rayDataType or an ImplementationDataType of category ARRAY.

For example, consider a predefined AutosarDataType of category ARRAY with
uint8 elements, but without the definition of DataConstrs.

This AutosarDataType is instantiated several times by means of the existence of
DataPrototypes of category ARRAY.

Each of the derived DataPrototypes of category ARRAY may have individual upper
and lower limits which apply to all elements, e.g. one DataPrototype has a range of
0..3 while another has a range of 0..7 for all elements.

This use case occurs, for example, when communicating array-data with different
ranges over the network.

311 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The motivation to specify the DataConstr at the DataPrototype of category
ARRAY is:

• Make explicit that all derived DataPrototypes are based on the same Au-
tosarDataType.

• Reduce the number of AutosarDataTypes in the model and in the code.

• Specify the DataConstrs only once where needed.

• Make explicit that all array elements have the same DataConstrs.

The same motivation also applies to the SwDataDefProps.displayFormat and
SwDataDefProps.stepSize attributes of DataPrototypes of category ARRAY.

AUTOSAR supports this use case under the following conditions:

[constr_1407] Definition of SwDataDefProps.dataConstr depending on the ca-
pabilities of the data type dThe definition of a SwDataDefProps.dataConstr ac-
cording to [constr_1288] and [constr_1289] is only supported for a DataPrototype
of category ARRAY if the corresponding ApplicationArrayDataType or Imple-
mentationDataType of category ARRAY also supports the specification of a Sw-
DataDefProps.dataConstr.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

The prioritization of SwDataDefProps.dataConstr for a DataPrototype of cat-
egory ARRAY follows the spirit given in [constr_1015] for the inheritance of DataPro-
totypes from AutosarDataTypes.

[TPS_SWCT_01796] Prioritization of SwDataDefProps.dataConstr for a Dat-
aPrototype of category ARRAY dA SwDataDefProps.dataConstr specified for
a DataPrototype of category ARRAY refines the SwDataDefProps.dataCon-
str specified at the corresponding ApplicationArrayDataType or Implementa-
tionDataType of category ARRAY.c()

[constr_1408] Definition of SwDataDefProps.displayFormat depending on the
capabilities of the data type dThe definition of a SwDataDefProps.displayFor-
mat according to [constr_1288] and [constr_1289] is only supported for a DataPro-
totype of category ARRAY if the corresponding ApplicationArrayDataType or
ImplementationDataType of category ARRAY also supports the specification of
a SwDataDefProps.displayFormat.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

The prioritization of SwDataDefProps.displayFormat for a DataPrototype of
category ARRAY follows the spirit given in [constr_1015] for the inheritance of Dat-
aPrototypes from AutosarDataTypes.

312 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01797] Prioritization of SwDataDefProps.displayFormat for a
DataPrototype of category ARRAY dA SwDataDefProps.displayFormat spec-
ified for a DataPrototype of category ARRAY refines the SwDataDefProps.dis-
playFormat specified at the corresponding ApplicationArrayDataType or Im-
plementationDataType of category ARRAY.c()

[constr_1413] Definition of SwDataDefProps.stepSize depending on the capa-
bilities of the data type dThe definition of a SwDataDefProps.stepSize accord-
ing to [constr_1288] and [constr_1289] is only supported for a DataPrototype of
category ARRAY if the corresponding ApplicationArrayDataType or Imple-
mentationDataType of category ARRAY also supports the specification of a Sw-
DataDefProps.stepSize.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

The prioritization of SwDataDefProps.stepSize for a DataPrototype of cate-
gory ARRAY follows the spirit given in [constr_1015] for the inheritance of DataPro-
totypes from AutosarDataTypes.

[TPS_SWCT_01798] Prioritization of SwDataDefProps.stepSize for a Dat-
aPrototype of category ARRAY dA SwDataDefProps.stepSize specified for
a DataPrototype of category ARRAY refines the SwDataDefProps.stepSize
specified at the corresponding ApplicationArrayDataType or Implementa-
tionDataType of category ARRAY.c()

[constr_1409] Definition of SwDataDefProps.dataConstr depending on the ca-
pabilities of the element data type dThe definition of a SwDataDefProps.dataCon-
str according to [constr_1007] and [constr_1009] is only supported for an Appli-
cationArrayDataType or an ImplementationDataType of category ARRAY
if the aggregated ApplicationArrayDataType.element or Implementation-
DataType.subElement also supports the specification of a SwDataDefProps.dat-
aConstr.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1718] Inheritance of SwDataDefProps.dataConstr from an array data
type to the array elements dA SwDataDefProps.dataConstr specified for an Ap-
plicationArrayDataType or ImplementationDataType of category ARRAY
applies to all array leaf elements represented by (potentially multiple levels of) Appli-
cationArrayDataType.element or ImplementationDataType.subElement.

In this case, the ApplicationArrayDataType.element or Implementation-
DataType.subElement shall not have an own SwDataDefProps.dataConstr.
This also applies for multi-dimensional array data types.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

313 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1410] Definition of SwDataDefProps.displayFormat depending on the
capabilities of the element data type dThe definition of a SwDataDefProps.dis-
playFormat according to [constr_1007] and [constr_1009] is only supported for an
ApplicationArrayDataType or an ImplementationDataType of category
ARRAY if the aggregated ApplicationArrayDataType.element or Implementa-
tionDataType.subElement also supports the specification of a SwDataDefProps.
displayFormat.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1719] Inheritance of SwDataDefProps.displayFormat from an array
data type to the array elements dA SwDataDefProps.displayFormat specified
for an ApplicationArrayDataType or ImplementationDataType of category
ARRAY applies to all array leaf elements represented by (potentially multiple levels of)
ApplicationArrayDataType.element or ImplementationDataType.subEle-
ment.

In this case, the ApplicationArrayDataType.element or Implementation-
DataType.subElement shall not have an own SwDataDefProps.displayFormat.
This also applies for multi-dimensional array data types.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1414] Definition of SwDataDefProps.stepSize depending on the capa-
bilities of the element data type dThe definition of a SwDataDefProps.stepSize
according to [constr_1007] and [constr_1009] is only supported for an Application-
ArrayDataType or an ImplementationDataType of category ARRAY if the ag-
gregated ApplicationArrayDataType.element or ImplementationDataType.
subElement also supports the specification of a SwDataDefProps.stepSize.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1720] Inheritance of SwDataDefProps.stepSize from an array data type
to the array elements dA SwDataDefProps.stepSize specified for an Applica-
tionArrayDataType or ImplementationDataType of category ARRAY applies
to all array leaf elements represented by (potentially multiple levels of) Application-
ArrayDataType.element or ImplementationDataType.subElement.

In this case, the ApplicationArrayDataType.element or Implementation-
DataType.subElement shall not have an own SwDataDefProps.stepSize. This
also applies for multi-dimensional array data types.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

314 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.3.3 Reference to Data Prototypes

This chapter explains the various patterns for referencing DataPrototypes.

[TPS_SWCT_01446] References to a DataPrototype may or may not imply the
necessity for using an instanceRef dAs references to a DataPrototype may
or may not imply the necessity for using an instanceRef this would mean that in
some places the meta-model would have to implement both variants depending on the
use case. To avoid this, AUTOSAR defines a unified reference implementation for
VariableDataPrototypes and ParameterDataPrototypes.c()

5.3.3.1 AUTOSAR Variable Ref

[TPS_SWCT_01270] AutosarVariableRef dWith the advent of AutosarVari-
ableRef it is possible to implement a uniform reference to a VariableDataPro-
totype that covers all foreseen use cases:

• Reference to a localVariable, no AtpInstanceRef required.

• Reference to an autosarVariable (which involves an AtpInstanceRef).

• Reference to the internal structure of a VariableDataPrototype implemented
using a composite ImplementationDataType.

c()

Class AutosarVariableRef
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements

Note This class represents a reference to a variable within AUTOSAR which can be one of the following use
cases:

localVariable:

• localVariable which is used as whole (e.g. InterRunnableVariable, inputValue for curve)

autosarVariable:

• a variable provided via Port which is used as whole (e.g. dataAccesspoints)

• an element inside of a composite local variable typed by ApplicationDatatype (e.g. inputValue for
a curve)

• an element inside of a composite variable provided via Port and typed by ApplicationDatatype
(e.g. inputValue for a curve)

autosarVariableInImplDatatype:

• an element inside of a composite local variable typed by ImplementationDatatype (e.g. nvram
Data mapping)

• an element inside of a composite variable provided via Port and typed by Implementation
Datatype (e.g. inputValue for a curve)

Base ARObject

Attribute Type Mult. Kind Note

5

315 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class AutosarVariableRef
autosarVariable DataPrototype 0..1 iref This references a variable which is provided by a port

and/or which is part of a CompositeDataType.

InstanceRef implemented by:VariableInAtomicSWC
TypeInstanceRef

autosarVariable
InImplDatatype

ArVariableIn
ImplementationData
InstanceRef

0..1 aggr This is used if the target variable is inside of variableData
Prototype typed by an ImplementationDataType.

localVariable VariableDataPrototype 0..1 ref This reference is used if the variable is local to the current
component. It would also be possible to use the instance
refence here. Such an instance ref would not have a
contextElement, since the current instance is the context.
But the local instance is a special case which may provide
further optimization. Therefore an explicit reference is
provided for this case.

Table 5.38: AutosarVariableRef

AutosarVariableRef

AutosarDataPrototype

VariableDataPrototype

AtpInstanceRef

VariableInAtomicSWCTypeInstanceRef

ArVariableInImplementationDataInstanceRef

+autosarVariableInImplDatatype 0..1

+autosarVariable 0..1

+rootVariableDataPrototype

0..1

+localVariable 0..1

Figure 5.23: Implementation of AutosarVariableRef

Rules for the modeling and semantics of an AtpInstanceRef are defined in [11].

[constr_2536] Target of an autosarVariable in AutosarVariableRef shall re-
fer to a variable dThe target of autosarVariable (which in fact is an instance ref) in
AutosarVariableRef shall either be or be nested in VariableDataPrototype.
This means that the target shall either be a VariableDataPrototype or an Appli-
cationCompositeElementDataPrototype that in turn is owned by a Variable-
DataPrototype.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

5.3.3.2 AUTOSAR Parameter Ref

[TPS_SWCT_01271] AutosarParameterRef dWith the advent of AutosarParam-
eterRef, it is possible to implement a uniform reference to a ParameterDataPro-
totype that covers all foreseen use cases:

• Reference to a localParameter, no AtpInstanceRef required.

• Reference to an autosarParameter (which involves an AtpInstanceRef).

316 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c()

Please note that there is a very limited amount of use-cases available where the
AutosarParameterRef can (with the active consent of the AUTOSAR standard) ref-
erence a VariableDataPrototype.

[constr_1173] Applicability of AutosarParameterRef referencing a Variable-
DataPrototype dA reference from AutosarParameterRef to VariableDat-
aPrototype is only applicable if the AutosarParameterRef is used in the
context of SwAxisGrouped at the time when the contract phase gener-
ation is executed.c()

For example, the use case referenced in [constr_1173] applies if it is required to store
a grouped axis in a variable in order to adapt the axis during run-time of the ECU
by a dedicated algorithm. Note that in all cases where [constr_1173] does not apply
[constr_2535] shall be fulfilled.

Class AutosarParameterRef
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements

Note This class represents a reference to a parameter within AUTOSAR which can be one of the following use
cases:

localParameter:

• localParameter which is used as whole (e.g. sharedAxis for curve)

autosarVariable:

• a parameter provided via PortPrototype which is used as whole (e.g. parameterAccess)

• an element inside of a composite local parameter typed by ApplicationDatatype (e.g. sharedAxis
for a curve)

• an element inside of a composite parameter provided via Port and typed by ApplicationDatatype
(e.g. sharedAxis for a curve)

autosarParameterInImplDatatype:

• an element inside of a composite local parameter typed by ImplementationDatatype

• an element inside of a composite parameter provided via PortPrototype and typed by
ImplementationDatatype

Base ARObject

Attribute Type Mult. Kind Note

autosar
Parameter

DataPrototype 0..1 iref This instance reference is used if the calibration
parameter is either imported via a port or is part of a
composite data structure.

InstanceRef implemented by:ParameterInAtomicSWC
TypeInstanceRef

localParameter DataPrototype 0..1 ref In the majority of cases this reference goes to Parameter
DataPrototypes rather than VariableDataPrototypes.
Pointing the reference to a VariableDataPrototype is
limited to special use cases, e.g. if the AutosarParameter
Ref is used in the context of an SwAxisGrouped.

This reference is used if the arParameter is local to the
current component.

Of course, it would technically also be feasible to use an
InstanceRef for this case. However, the InstanceRef

5

5

317 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class AutosarParameterRef

4
would not have a contextElement (because the current
instance is the context).

Hence, the local instance is a special case which may
provide further optimization. Therefore an explicit
reference is provided for this case.

Table 5.39: AutosarParameterRef

[constr_2535] Target of an autosarParameter in AutosarParameterRef shall
refer to a parameter dExcept for the specifically described cases where [constr_1173],
applies the target of autosarParameter (which in fact is an instance ref) in Au-
tosarParameterRef shall either be or be nested in ParameterDataPrototype.
This means that the target shall either be a ParameterDataPrototype or an Ap-
plicationCompositeElementDataPrototype that in turn is owned by a Param-
eterDataPrototype.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

5.3.3.3 Modeling Approach

The attribute Ref.index shall be used whenever a model element that represents an
array is referenced in a scalar context, i.e. when the reference is supposed to identify
a specific array element.

Primitive Ref
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This primitive denotes a name based reference. For detailed syntax see the xsd.pattern.

• first slash (relative or absolute reference) [optional]

• Identifier [required]

• a sequence of slashes and Identifiers [optional]

This primitive is used by the meta-model tools to create the references.

Tags:
xml.xsd.customType=REF
xml.xsd.pattern=/?[a-zA-Z][a-zA-Z0-9_]{0,127}(/[a-zA-Z][a-zA-Z0-9_]{0,127})*
xml.xsd.type=string

Attribute Type Mult. Kind Note

base Identifier 0..1 attr This attribute reflects the base to be used for this
reference.

Tags:xml.attribute=true

blueprintValue String 0..1 attr This represents a description that documents how the
value shall be defined when deriving objects from the
blueprint.

Tags:
atp.Status=draft
xml.attribute=true

5

318 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Primitive Ref
index PositiveInteger 0..1 attr This attribute supports the use case to point on specific

elements in an array. This is in particular required if
arrays are used to implement particular data objects.

Tags:xml.attribute=true

Table 5.40: Ref

A very typical example for such a situation is the access to an element of an Appli-
cationArrayDataType by means of a reference to ApplicationArrayElement
in which the index attribute is used.

The usage of the index attribute does not make sense if the context of the access is
already scalar, e.g. accessing an ApplicationRecordElement in the context of an
ApplicationRecordDataType, the usage of the attribute index in a context that is
already scalar by nature would also be misleading and is therefore prohibited.

[constr_1161] Applicability of the attribute Ref.index dThe usage of attribute Ref.
index is limited to references to the following meta-classes:

• ApplicationArrayElement

• Sub-classes of AbstractImplementationDataTypeElement.

This rule shall be imposed at any time in the workflow.c()

AtpInstanceRef

ParameterInAtomicSWCTypeInstanceRef

AtpBlueprintable
AtpPrototype

PortPrototype

ApplicationCompositeElementDataPrototype

AutosarParameterRef

AtpPrototype

DataPrototype

SwComponentType

AtomicSwComponentType

+contextDataPrototype

0..*
{ordered,
subsets
atpContextElement}

«atpDerived»

+base 0..1
{redefines
atpBase}

+rootParameterDataPrototype

0..1
{subsets
atpContextElement}

+targetDataPrototype

0..1
{redefines
atpTarget}+localParameter 0..1

+autosarParameter 0..1

+portPrototype 0..1
{subsets
atpContextElement}

«instanceRef»
+autosarParameter 0..1

Figure 5.24: Implementation of the InstanceRef for AutosarParameterRef

Note: If the target of the AtpInstanceRef is an AutosarDataPrototype then the
rootVariableDataPrototype shall not exist.

The implementation of the AtpInstanceRefs for AutosarVariableRef and Au-
tosarParameterRef probably needs some clarification regarding the references to
DataPrototypes.

319 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01374] Implementation of AutosarParameterRef dThe reference to
rootParameterDataPrototype is not redundant. It is required for identifying the
autosarParameter itself in a ParameterInterface for the case that the tar-
getDataPrototype is an ApplicationCompositeElementDataPrototype.c()

As explained before, the implementation of AutosarParameterRef in a specific case
is subject to [constr_1173].

[constr_1608] Existence of rootParameterDataPrototype dThe reference
rootParameterDataPrototype shall exist at any time in the workflow if
and only if

• AutosarDataType of the autosarParameter is a composite data type and

• targetDataPrototype refers to a DataPrototype inside the rootParam-
eterDataPrototype.

c()

Note: If the target of the AtpInstanceRef is an AutosarDataPrototype then the
rootParameterDataPrototype shall not exist.

[TPS_SWCT_01375] Implementation of AutosarVariableRef dThe reference to
rootVariableDataPrototype is not redundant. It is required for identifying the
autosarVariable itself in a SenderReceiverInterface or NvDataInterface
for the case that the targetDataPrototype is an ApplicationCompositeEle-
mentDataPrototype.c()

AutosarDataPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

ApplicationCompositeElementDataPrototype

VariableDataPrototype

AutosarVariableRef

AtpInstanceRef

VariableInAtomicSWCTypeInstanceRef

AtpPrototype

DataPrototype

SwComponentType

AtomicSwComponentType

+rootVariableDataPrototype

0..1
{subsets
atpContextElement}

+localVariable 0..1

+targetDataPrototype

0..1
{redefines
atpTarget}

«atpDerived»

+base 0..1
{redefines
atpBase}

«instanceRef»

+autosarVariable 0..1

+autosarVariable 0..1

+portPrototype 0..1
{subsets
atpContextElement}

+contextDataPrototype

0..*
{ordered,
subsets
atpContextElement}

Figure 5.25: Implementation of the InstanceRef for AutosarVariableRef

320 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1609] Existence of rootVariableDataPrototype dThe reference root-
VariableDataPrototype shall exist at any time in the workflow if and
only if

• the AutosarDataType of the autosarVariable is a composite data type and

• the targetDataPrototype refers to a DataPrototype inside the root-
VariableDataPrototype.

c()

5.3.3.4 Access into VariableDataPrototype typed by an Implementation-
DataType

The meta-class ArVariableInImplementationDataInstanceRef, despite the
name, has formally no relationship to AtpInstanceRef. Therefore, the following
definition applies:

[TPS_SWCT_01681] Context path in ArVariableInImplementationDataIn-
stanceRef dThe references in the roles

• portPrototype

• rootVariableDataPrototype

• ordered collection of contextDataPrototype

• targetDataPrototype

constitute the path leading from the root to the specified inner instance of a
dataElement inside a VariableDataPrototype typed by an Implementation-
DataType.c()

This relation is also depicted in Figure 5.26.

ArVariableInImplementationDataInstanceRef

ImplementationDataTypeElement

AtpBlueprintable
AtpPrototype

PortPrototype

VariableDataPrototype
AbstractImplementationDataType

ImplementationDataType

DataPrototype

AutosarDataPrototype

ARElement
AtpType

AutosarDataType
������������	
 ����

�����������	��	���� �

��������������

AtpStructureElement
Identifiable

AbstractImplementationDataTypeElement

«atpVariation»

+subElement

0..* {ordered}

«isOfType»

+type 0..1
{redefines atpType}

+targetDataPrototype 0..1

+rootVariableDataPrototype 0..1

+contextDataPrototype
0..*
{ordered}+portPrototype 0..1

Figure 5.26: Implementation of ArVariableInImplementationDataInstanceRef

321 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

:ImplementationDataType

category = ARRAY

:ImplementationDataTypeElement

category = TYPE_REFERENCE

:VariableDataPrototype:ArVariableInImplementationDataInstanceRef

:ImplementationDataTypeElement

category = ARRAY

:ImplementationDataType

category = TYPE_REFERENCE

:ImplementationDataType

category = STRUCTURE

:ImplementationDataTypeElement

category = TYPE_REFERENCE

:
ImplementationDataTypeElement

category = STRUCTURE

:ImplementationDataTypeElement

category = VALUE

:
ImplementationDataTypeElement

category = VALUE

:SwBaseType

category = FIXED_LENGTH

:ImplementationDataType

category = VALUE

��������� 	�
� ����
�� ���

����	� �� ��� ���
��� ���

�
��

���	�����
�����
�
�����	����� ����

� �� ���	�����
�����
�
���� ��

�
������ �����

���	�����
�����
�
���� �� ���

������� �!"#$���%�����&'#

�
�� 	�
�

���	�����
�����
�
�����	����� �����

� ����� �� ���

���	�����
�����
�
���� �� ���

�
�����
�
(��������

�� ��� �
� �� � ��������	� ����� ��

���	�����
�����
�
���� �� �
������

��)�*��+���,-�. �/� ����
�� ���

����	� �� ��� ���
��� ���0

+contextDataPrototype

{index = 2}

+implementationDataType

+subElement

+type

+rootVariableDataPrototype

+subElement

+baseType

+contextDataPrototype

{index = 1}

+targetDataPrototype

+implementationDataType

+subElement

+subElement

+subElement

+subElement

+implementationDataType

Figure 5.27: Example for the usage of ArVariableInImplementationDataIn-
stanceRef

[constr_1423] Completeness of references ArVariableInImplementation-
DataInstanceRef.contextDataPrototype dThe reference ArVariableInIm-
plementationDataInstanceRef.contextDataPrototype shall be defined for

322 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• each leaf (i.e. the end of a chain of aggregating elements) Implementation-
DataTypeElement of category TYPE_REFERENCE in a chain of referencing
ImplementationDataTypes which is not the targetDataPrototype

• and each ImplementationDataTypeElement owned by an Implementa-
tionDataType or ImplementationDataTypeElement of category ARRAY
in a chain of referencing ImplementationDataTypes

starting from the ImplementationDataTypes of the rootVariableDataProto-
type down to the leaf ImplementationDataTypeElement which is typed (directly
or indirectly via ImplementationDataType of category TYPE_REFERENCE) by the
ImplementationDataType of the targetDataPrototype.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Figure 5.27 contains an example of a nested ImplementationDataType along with
the application of ArVariableInImplementationDataInstanceRef. The exam-
ple contains both cases for the definition of a contextDataPrototype mentioned in
[constr_1423].

[constr_1424] Existence of ArVariableInImplementationDataInstanceRef.
contextDataPrototype dThe attribute ArVariableInImplementation-
DataInstanceRef.contextDataPrototype shall only exist at any time in
the workflow for an ImplementationDataTypeElement category TYPE_-
REFERENCE or ARRAY.c()

Technically, it would be possible to avoid the context for a one-dimensional array in
the hierarchy. The context is still required because then the rule for the existence of
contexts becomes much simpler.

Class ArVariableInImplementationDataInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements

Note This class represents the ability to navigate into a data element inside of an VariableDataPrototype which
is typed by an ImplementationDatatype.

Note that it shall not be used if the target is the VariableDataPrototype itself (e.g. if its a primitive).

Note that this class follows the pattern of an InstanceRef but is not implemented based on the abstract
classes because the ImplementationDataType isn’t either, especially because ImplementationDataType
Element isn’t derived from AtpPrototype.

Base ARObject

Attribute Type Mult. Kind Note

contextData
Prototype
(ordered)

AbstractImplementation
DataTypeElement

* ref This is a context in case there are subelements with
explicit types. The reference has to be ordered to
properly reflect the nested structure.

Tags:xml.sequenceOffset=30

portPrototype PortPrototype 0..1 ref This is the port providing/receiving the root of the variable

Tags:xml.sequenceOffset=10

5

323 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ArVariableInImplementationDataInstanceRef

rootVariable
DataPrototype

VariableDataPrototype 0..1 ref This refers to the VariableDataPrototype typed by the
ImplementationDatatype in which the target can be found.

Tags:xml.sequenceOffset=20

targetData
Prototype

AbstractImplementation
DataTypeElement

0..1 ref This reference points to the target ImplementationData
TypeElement.

Tags:xml.sequenceOffset=40

Table 5.41: ArVariableInImplementationDataInstanceRef

[constr_1911] Existence of ArVariableInImplementationDataInstanceRef.
targetDataPrototype dFor each ArVariableInImplementationDataIn-
stanceRef, the reference targetDataPrototype shall exist at the time when
the contract phase generation is executed.c()

5.3.3.5 Access into ParameterDataPrototype typed by an Implementation-
DataType

Please note that it is also possible to access the inside of a nested ParameterDat-
aPrototype typed by an ImplementationDataType in pretty much the same way
as this is possible for a VariableDataPrototype typed by an Implementation-
DataType.

[TPS_SWCT_01738] Context path in ArParameterInImplementationDataIn-
stanceRef dThe references in the roles

• portPrototype

• rootParameterDataPrototype

• ordered collection of contextDataPrototype

• targetDataPrototype

constitute the path leading from the root to the specified inner instance of a parameter
inside a ParameterDataPrototype typed by an ImplementationDataType.c()

ArParameterInImplementationDataInstanceRef

ParameterDataPrototype ImplementationDataTypeElement

AtpBlueprintable
AtpPrototype

PortPrototype

AbstractImplementationDataType

ImplementationDataType

DataPrototype

AutosarDataPrototype

ARElement
AtpType

AutosarDataType

AtpStructureElement
Identifiable

AbstractImplementationDataTypeElement
������������	
 ����

�����������	��	���� �

��������������

«isOfType»

+type

0..1
{redefines atpType}

+rootParameterDataPrototype 0..1

+contextDataPrototype
0..*

{ordered}+targetDataPrototype 0..1+portPrototype 0..1

«atpVariation»

+subElement

0..* {ordered}

Figure 5.28: Implementation of ArParameterInImplementationDataInstanceRef

324 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This relation is also depicted in Figure 5.28.

[constr_1516] Completeness of references ArParameterInImplementation-
DataInstanceRef.contextDataPrototype dThe reference ArParameterInIm-
plementationDataInstanceRef.contextDataPrototype shall be defined for

• each leaf (i.e. the end of a chain of aggregating elements) Implementation-
DataTypeElement of category TYPE_REFERENCE in a chain of referencing
ImplementationDataTypes which is not the targetDataPrototype

• and each ImplementationDataTypeElement owned by an Implementa-
tionDataType or ImplementationDataTypeElement of category ARRAY
in a chain of referencing ImplementationDataTypes

starting from the ImplementationDataTypes of the rootParameterDataProto-
type down to the leaf ImplementationDataTypeElement which is typed (directly
or indirectly via ImplementationDataType of category TYPE_REFERENCE) by the
ImplementationDataType of the targetDataPrototype.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1517] Existence of ArParameterInImplementationDataIn-
stanceRef.contextDataPrototype dThe attribute ArParameterInImple-
mentationDataInstanceRef.contextDataPrototype shall only exist at any
time in the workflow for an ImplementationDataTypeElement category
TYPE_REFERENCE or ARRAY.c()

Technically, it would be possible to avoid the context for a one-dimensional array in
the hierarchy. The context is still required because then the rule for the existence of
contexts becomes much simpler.

Class ArParameterInImplementationDataInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements

Note This class represents the ability to navigate into an element inside of an ParameterDataPrototype typed
by an ImplementationDatatype.

Note that it shall not be used if the target is the ParameterDataPrototype itself (e.g. if the target is a
primitive data type).

Note that this class follows the pattern of an InstanceRef but is not implemented based on the abstract
classes because the ImplementationDataType isn’t either, especially because ImplementationDataType
Element (intentionally) isn’t derived from AtpPrototype.

Base ARObject

Attribute Type Mult. Kind Note

contextData
Prototype
(ordered)

AbstractImplementation
DataTypeElement

* ref This is a context in case there are subelements with
explicit types. The reference has to be ordered to
properly reflect the nested structure.

portPrototype PortPrototype 0..1 ref This reference points to the PortPrototype providing/
receiving the root of the parameter.

rootParameter
DataPrototype

ParameterData
Prototype

0..1 ref This refers to the ParameterDataPrototype typed by the
implementationDataType in which the target can be
found.

5

325 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ArParameterInImplementationDataInstanceRef

targetData
Prototype

AbstractImplementation
DataTypeElement

0..1 ref This reference points to the target ImplementationData
TypeElement.

Table 5.42: ArParameterInImplementationDataInstanceRef

[constr_1912] Existence of reference ArParameterInImplementationDataIn-
stanceRef.targetDataPrototype dFor each ArParameterInImplementa-
tionDataInstanceRef, the reference targetDataPrototype shall exist at the
time when the contract phase generation is executed.c()

5.4 Properties of Data Definitions

5.4.1 Overview

As it has already been shown in the previous chapters, various properties and asso-
ciations can be attached to the definition of data types as well as prototypes. These
are described by the meta-class SwDataDefProps which covers all properties of a
particular data object under various aspects.

In general, the properties specified within SwDataDefProps may apply to all kind of
data declared within the software-component template and within the basic software
module description template as well, e.g. component local data, data used for commu-
nication, data used for measurement as well as for calibration.

However, there are constraints for the attributes depending on the role of the data:

Attributes of SwDataDefProps Usage For Place of Setting

R
TE

A
2L

O
th

er
U

sa
ge

A
p
p
l
i
c
a
t
i
o
n
D
a
t
a
T
y
p
e

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e

D
a
t
a
P
r
o
t
o
t
y
p
e

I
n
s
t
a
n
t
i
a
t
i
o
n
D
a
t
a
D
e
f
P
r
o
p
s

P
a
r
a
m
e
t
e
r
A
c
c
e
s
s

C
om

S
pe

c

S
w
S
e
r
v
i
c
e
A
r
g

F
l
a
t
I
n
s
t
a
n
c
e
D
e
s
c
r
i
p
t
o
r

M
c
D
a
t
a
I
n
s
t
a
n
c
e

S
w
S
y
s
t
e
m
c
o
n
s
t

P
e
r
I
n
s
t
a
n
c
e
M
e
m
o
r
y

additionalNativeTypeQualifier x x NA D I NA NA NA D NA S NA NA

annotation x D A A A A A D NA A D NA
baseType x x x NA D I I I R D NA S M NA

compuMethod x x x D AI I I NA R I AI S D NA

dataConstr x x x D C R R I NA R NA S D NA

displayFormat x D A R R I NA R NA S D NA

displayPresentation x x x D A R R NA NA NA NA S NA NA
5

326 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Attributes of SwDataDefProps Usage For Place of Setting

R
TE

A
2L

O
th

er
U

sa
ge

A
p
p
l
i
c
a
t
i
o
n
D
a
t
a
T
y
p
e

I
m
p
l
e
m
e
n
t
a
t
i
o
n
D
a
t
a
T
y
p
e

D
a
t
a
P
r
o
t
o
t
y
p
e

I
n
s
t
a
n
t
i
a
t
i
o
n
D
a
t
a
D
e
f
P
r
o
p
s

P
a
r
a
m
e
t
e
r
A
c
c
e
s
s

C
om

S
pe

c

S
w
S
e
r
v
i
c
e
A
r
g

F
l
a
t
I
n
s
t
a
n
c
e
D
e
s
c
r
i
p
t
o
r

M
c
D
a
t
a
I
n
s
t
a
n
c
e

S
w
S
y
s
t
e
m
c
o
n
s
t

P
e
r
I
n
s
t
a
n
c
e
M
e
m
o
r
y

implementationDataType x x NA D I I I NA D NA NA NA NA

invalidValue x x D A I I NA D NA NA S NA NA

stepSize x D A A A A NA NA A S NA NA

swAddrMethod x x x D R R R NA NA NA R NA NA D
swAlignment x x NA D R R NA NA NA NA NA NA NA

swBitRepresentation x x NA NA NA NA NA NA NA NA D NA NA

swCalibrationAccess x x D R R R NA NA R R S D NA

swCalprmAxisSet x x D NA I I I NA NA NA S NA NA

swCalprmAxisSet.swCalprmAxis
/SwAxisGrouped.swCalprmRef x NA NA NA D R NA NA NA S NA NA

swCalprmAxisSet.swCalprmAxis
/SwAxisIndividual.swVariableRef x NA NA NA D R NA NA NA S NA NA

swCalprmAxisSet.swCalprmAxis
/SwAxisGrouped.sharedAxisType x D NA NA NA NA NA NA NA S NA NA

swCalprmAxisSet.swCalprmAxis
/SwAxisIndividual.inputVariableType x D NA NA NA NA NA NA NA S NA NA

swCalprmAxisSet/SwAxisIndividual.unit opt. D NA I I I NA I NA S NA NA

swComparisonVariable x NA NA NA NA D NA NA NA S NA NA

swDataDependency x x NA NA D R NA NA NA NA S NA NA

swHostVariable x x NA NA NA NA NA NA NA NA D NA NA
swImplPolicy x x D A A NA NA NA D NA NA NA NA

swIntendedResolution x D15 NA NA NA NA NA NA NA NA NA NA

swInterpolationMethod x D I R R R NA NA NA S NA NA

swIsVirtual x NA NA D R NA NA NA NA S NA NA

swPointerTargetProps x NA D I NA NA NA D NA NA NA NA

swRecordLayout x x x D NA I I I NA NA NA S NA NA

swRefreshTiming x D R R R NA NA R R R NA NA

swTextProps x x D I I I I NA NA NA S NA NA

swValueBlockSize x x D I I I I NA NA NA S NA NA

swValueBlockSizeMult x x D I I I I NA NA NA S NA NA

unit x x D I I I NA NA I NA S D NA

valueAxisDataType x x D I I I I NA NA NA S NA NA

Table 5.43: Usage of Attributes of SwDataDefProps
Please note that this table is (by reference) a part of [constr_1015]

15swIntendedResolution is used only in an early phase of the definition of data types, namely
in the context of the definition of so-called blueprints. To that extent, swIntendedResolution rep-
resents a non-binding requirement that shall later be considered for the definition of an appropriate
CompuMethod.

327 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1015] Prioritization of SwDataDefProps dThe prioritization and usage of at-
tributes of meta-class SwDataDefProps shall follow the restrictions given in table 5.43
at the time when the contract phase generation is executed.c()

The following settings apply in table 5.43:

D Define the attribute independent of settings to the left.

R Use or re-define definition from the left in the scope of this element.

A Add attribute if not defined on the left, or as additional information.

If the attribute has an upper multiplicity > 1 and the attribute is defined on the left
then the attribute is added to the attribute defined on the left.

If the attribute has an upper multiplicity of 1 and the attribute is not defined on the
left then the attribute is defined.

If the attribute has an upper multiplicity of 1 and the attribute is already defined
on the left then the attribute is not redefined but this is considered as invalid
configuration.

I Inherit the definition from the left for usage in the scope of this element.

NA Attribute is not applicable for usage in the scope of this element.

M Attribute is meaningless in the scope of this element. As it was allowed in previous
versions, declaring it as Not Applicable (NA) would break compatibility. Tools
shall ignore such an attribute without a warning.

C This means that the left element constrains right element.

AI If the attribute is already defined on the left then the attribute is not redefined but
adds implementation-related information.

Example: an ApplicationDataType of category BOOLEAN supports the def-
inition of an own CompuMethod to define the semantics of e.g. (ON, OFF) or
(HIGH, LOW) or (PASSED, FAILED) as long as the number of values match
and matching pairs of values on application level and implementation level
exist. In contrast, the corresponding ImplementationDataType uses (true,
false) as the applicable literals in any of the above mentioned cases.

S Create a “Self-contained” artifact based on the left.

Example: A CompuMethod defined in the context of a System of category
ECU_EXTRACT is copied into the separate artifact for the McSupportData and
references need to be updated to the copy.

Use case: Provide a McDataGenerator with a single, self-contained file to do its
job.

328 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Some property names contain the term “variable” or “calprm”, this comes from histor-
ical16 reasons and can be taken as some hint where the property most likely applies
to.

The usage of the "/" in the table rows mentioning the content of swCalprmAxisSet.
swCalprmAxis, in particular SwAxisGrouped.swCalprmRef and SwAxisGrouped.
sharedAxisType resp. SwAxisIndividual.swVariableRef, SwAxisIndivid-
ual.unit, and SwAxisIndividual.inputVariableType represents a "shortcut"
that glosses over a specific aspect of the modeling of SwCalprmAxis that is visible in
the model but does not appear in the AUTOSAR XML schema, see Figure 5.29 (which
contains all the meta-classes and roles mentioned in the table entries).

In particular, the "shortcut" affects the existence of meta-class SwCalprmAxisType-
Props and its aggregation in the role SwCalprmAxis.swCalprmAxisTypeProps.
As depicted in Figure 5.29, SwCalprmAxisTypeProps acts as an abstract base class
to both SwAxisGrouped and SwAxisIndividual.

In ARXML files that conform to the AUTOSAR XML schema, however, both SwAx-
isGrouped and SwAxisIndividual appear as direct child elements of SwCal-
prmAxis.

SwAxisGrouped

+ swAxisIndex: AxisIndexType [0..1]

SwCalprmAxisTypeProps

+ maxGradient: Float [0..1]
+ monotony: MonotonyEnum [0..1]

SwCalprmAxis

+ category: CalprmAxisCategoryEnum [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ swAxisIndex: AxisIndexType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

SwCalprmAxisSet

«atpVariation»
SwDataDefProps

SwAxisIndividual

«atpVariation»
+ swMaxAxisPoints: Integer [0..1]
+ swMinAxisPoints: Integer [0..1]

ApplicationDataType

ApplicationPrimitiveDataType

SwVariableRefProxy

SwCalprmRefProxy

ARElement

Unit

+ factorSiToUnit: Float [0..1]
+ offsetSiToUnit: Float [0..1]

+sharedAxisType

0..1

+swVariableRef

0..* {ordered}

+swCalprmRef

1

+swCalprmAxisTypeProps

0..1

+unit

0..1

+swCalprmAxisSet 0..1

+inputVariableType

0..1

+swCalprmAxis

0..*

Figure 5.29: Modeling of SwAxisGrouped and SwAxisIndividual

This difference between meta-model and AUTOSAR XML schema is explained by the
existence of a set of tags at the aggregation SwCalprmAxis.swCalprmAxisType-
Props. The details of how these tags impact the schema generation are explained in
the TPS XML Schema Production Rules [25].

To summarize, the "shortcut" in the table rows simply approximates the situation in
ARXML instead of reflecting the actual modeling in the AUTOSAR meta-model.

16In the beginning of ASAM and MSR, measurements and calibration parameters (characteristics)
were separated and the properties were merged over time.

329 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class <<atpVariation>> SwDataDefProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This class is a collection of properties relevant for data objects under various aspects. One could
consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.

SwDataDefProps covers various aspects:

• Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but
also the recordLayouts which specify how such elements are mapped/converted to the Data
Types in the programming language (or in AUTOSAR). This is mainly expressed by properties
like swRecordLayout and swCalprmAxisSet

• Implementation aspects, mainly expressed by swImplPolicy, swVariableAccessImplPolicy, sw
AddrMethod, swPointerTagetProps, baseType, implementationDataType and additionalNative
TypeQualifier

• Access policy for the MCD system, mainly expressed by swCalibrationAccess

• Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr,
invalidValue

• Code generation policy provided by swRecordLayout

Tags:vh.latestBindingTime=codeGenerationTime

Base ARObject

Attribute Type Mult. Kind Note

additionalNative
TypeQualifier

NativeDeclarationString 0..1 attr This attribute is used to declare native qualifiers of the
programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.

Tags:xml.sequenceOffset=235

annotation Annotation * aggr This aggregation allows to add annotations (yellow pads
...) related to the current data object.

Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

baseType SwBaseType 0..1 ref Base type associated with the containing data object.

Tags:xml.sequenceOffset=50

compuMethod CompuMethod 0..1 ref Computation method associated with the semantics of
this data object.

Tags:xml.sequenceOffset=180

dataConstr DataConstr 0..1 ref Data constraint for this data object.

Tags:xml.sequenceOffset=190

displayFormat DisplayFormatString 0..1 attr This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.

Tags:xml.sequenceOffset=210

display
Presentation

DisplayPresentation
Enum

0..1 attr This attribute controls the presentation of the related data
for measurement and calibration tools.

5

330 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class <<atpVariation>> SwDataDefProps

implementation
DataType

AbstractImplementation
DataType

0..1 ref This association denotes the ImplementationDataType of
a data declaration via its aggregated SwDataDefProps. It
is used whenever a data declaration is not directly
referring to a base type. Especially

• redefinition of an ImplementationDataType via a
"typedef" to another ImplementationDatatype

• the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly

• the data type of an array or record element within
an ImplementationDataType, if it does not refer to
a base type directly

• the data type of an SwServiceArg, if it does not
refer to a base type directly

Tags:xml.sequenceOffset=215

invalidValue ValueSpecification 0..1 aggr Optional value to express invalidity of the actual data
element.

Tags:xml.sequenceOffset=255

stepSize Float 0..1 attr This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod SwAddrMethod 0..1 ref Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.

Tags:xml.sequenceOffset=30

swAlignment AlignmentType 0..1 attr The attribute describes the intended typical alignment of
the DataPrototype. If the attribute is not defined the
alignment is determined by the swBaseType size and the
memoryAllocationKeywordPolicy of the referenced Sw
AddrMethod.

Tags:xml.sequenceOffset=33

swBit
Representation

SwBitRepresentation 0..1 aggr Description of the binary representation in case of a bit
variable.

Tags:xml.sequenceOffset=60

swCalibration
Access

SwCalibrationAccess
Enum

0..1 attr Specifies the read or write access by MCD tools for this
data object.

Tags:xml.sequenceOffset=70

swCalprmAxis
Set

SwCalprmAxisSet 0..1 aggr This specifies the properties of the axes in case of a
curve or map etc. This is mainly applicable to calibration
parameters.

Tags:xml.sequenceOffset=90

swComparison
Variable

SwVariableRefProxy * aggr Variables used for comparison in an MCD process.

Tags:
xml.sequenceOffset=170
xml.typeElement=false

swData
Dependency

SwDataDependency 0..1 aggr Describes how the value of the data object has to be
calculated from the value of another data object (by the
MCD system).

Tags:xml.sequenceOffset=200

5

331 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class <<atpVariation>> SwDataDefProps

swHostVariable SwVariableRefProxy 0..1 aggr Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.

Tags:
xml.sequenceOffset=220
xml.typeElement=false

swImplPolicy SwImplPolicyEnum 0..1 attr Implementation policy for this data object.

Tags:xml.sequenceOffset=230

swIntended
Resolution

Numerical 0..1 attr The purpose of this element is to describe the requested
quantization of data objects early on in the design
process.

The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).

In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swIntendedResolution.

The resolution is specified in the physical domain
according to the property "unit".

Tags:xml.sequenceOffset=240

swInterpolation
Method

Identifier 0..1 attr This is a keyword identifying the mathematical method to
be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.

Tags:xml.sequenceOffset=250

swIsVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects
do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .

Tags:xml.sequenceOffset=260

swPointerTarget
Props

SwPointerTargetProps 0..1 aggr Specifies that the containing data object is a pointer to
another data object.

Tags:xml.sequenceOffset=280

swRecord
Layout

SwRecordLayout 0..1 ref Record layout for this data object.

Tags:xml.sequenceOffset=290

swRefresh
Timing

MultidimensionalTime 0..1 aggr This element specifies the frequency in which the object
involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.

So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.

Tags:xml.sequenceOffset=300

swTextProps SwTextProps 0..1 aggr the specific properties if the data object is a text object.

Tags:xml.sequenceOffset=120

swValueBlock
Size

Numerical 0..1 attr This represents the size of a Value Block

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

5

332 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class <<atpVariation>> SwDataDefProps

swValueBlock
SizeMult
(ordered)

Numerical * attr This attribute is used to specify the dimensions of a value
block (VAL_BLK) for the case that that value block has
more than one dimension.

The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
second entry represents the second dimension, and so
on.

For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

unit Unit 0..1 ref Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.

Tags:xml.sequenceOffset=350

valueAxisData
Type

ApplicationPrimitive
DataType

0..1 ref The referenced ApplicationPrimitiveDataType represents
the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.

Tags:xml.sequenceOffset=355

Table 5.44: SwDataDefProps

Primitive NativeDeclarationString

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This string contains a native data declaration of a data type in a programming language. It is basically a
string, but white-space shall be preserved.

Tags:
xml.xsd.customType=NATIVE-DECLARATION-STRING
xml.xsd.type=string
xml.xsd.whiteSpace=preserve

Table 5.45: NativeDeclarationString

Class SwBitRepresentation

Package M2::MSR::DataDictionary::DataDefProperties

Note Description of the structure of a bit variable: Comprises of the bitPosition in a memory object (e.g. sw
HostVariable, which stands parallel to swBitRepresentation) and the numberOfBits . In this way,
interrelated memory areas can be described. Non-related memory areas are not supported.

Base ARObject

Attribute Type Mult. Kind Note

bitPosition Integer 0..1 attr If the "bit data object" is hosted within another data object
(e.g. if the memory can be accessed via byte as well as
bit address), this attribute specifies the position of the
data object. The count starts at zero (0).

Tags:xml.sequenceOffset=20

numberOfBits Integer 0..1 attr Number of bits allocated by a "bit data object" within its
host data object.

Tags:xml.sequenceOffset=30

Table 5.46: SwBitRepresentation

333 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Primitive DisplayFormatString

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This is a display format specifier for the display of values e.g. in documents or in measurement and
calibration systems.

The display format specifier is a subset of the ANSI C printf specifiers with the following form:

% [flags] [width] [.prec] type character

For more details refer to "ASAM-HarmonizedDataObjects-V1.1.pdf" chapter 13.3.2 DISPLAY OF DATA.

Due to the numerical nature of value settings, only the following type characters are allowed:

• d: Signed decimal integer

• i: Signed decimal integer

• o: Unsigned octal integer

• u: Unsigned decimal integer

• x: Unsigned hexadecimal integer, using "abcdef"

• X: Unsigned hexadecimal integer, using "ABCDEF"

• e: Signed value having the form [-]d.dddd e [sign]ddd where d is a single decimal digit, dddd is
one or more decimal digits, ddd is exactly three decimal digits, and sign is + or -

• E: Identical to the e format except that E rather than e introduces the exponent

• f: Signed value having the form [-]dddd.dddd, where dddd is one or more decimal digits; the
number of digits before the decimal point depends on the magnitude of the number, and the
number of digits after the decimal point depends on the requested precision

• g: Signed value printed in f or e format, whichever is more compact for the given value and
precision; trailing zeros are truncated, and the decimal point appears only if one or more digits
follow it

• G: Identical to the g format, except that E, rather than e, introduces the exponent (where
appropriate)

Tags:
xml.xsd.customType=DISPLAY-FORMAT-STRING
xml.xsd.pattern=%[\-+#]?[0-9]*(\.[0-9]+)?[diouxXfeEgGcs]
xml.xsd.type=string

Table 5.47: DisplayFormatString

Class Annotation
Package M2::MSR::Documentation::Annotation

Note This is a plain annotation which does not have further formal data.

Base ARObject , GeneralAnnotation

Attribute Type Mult. Kind Note

– – – – –

Table 5.48: Annotation

[constr_1244] DataPrototypes used in application software shall not be typed
by C enums dA ImplementationDataType that is used to type a DataProto-
type owned by an AtomicSwComponentType shall not set swDataDefProps.ad-
ditionalNativeTypeQualifier to enum at the time when the contract
phase generation is executed.c()

[TPS_SWCT_01272] Semantics of swComparisonVariable dPlease note that
swComparisonVariables shall be displayed in the MCD system on the ordinate
in a curve.

334 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

By showing the input value and the comparison value the calibration engineer can see if
the current working point is above or below a curve provident thresholds. For example,
in a curve specifying a temperature-depending gear shift threshold engine speed the
engine speed can be shown as “comparisonVariable”.

These variables can be used to display the value of a variable on the value axis of a
calibration parameter (characteristic), that is currently displayed in the MCD-System.

The purpose is to compare the appropriate result from the calibration parameter in
question, with a value being calculated or taken from a sensor (the comparison vari-
able).

The sole purpose of this comparison-variable is therefore to serve the calibration pro-
cess.c()

tx tmot

Vs

V

Figure 5.30: Explanation of swComparisonVariable

The meaning behind swComparisonVariable is depicted in Figure 5.30. Legend:
tx represents the current temperature and tmot represents the motor temperature.

V represents the current speed as shown in the MCD system for comparison: this is
the swComparisonVariable.

Likewise, Vs represents the speed characteristic over the temperature.

Enumeration SwCalibrationAccessEnum
Package M2::MSR::DataDictionary::DataDefProperties

Note Determines the access rights to a data object w.r.t. measurement and calibration.

Literal Description

notAccessible The element will not be accessible via MCD tools, i.e. will not appear in the ASAP file.

Tags:atp.EnumerationLiteralIndex=0

readOnly The element will only appear as read-only in an ASAP file.

Tags:atp.EnumerationLiteralIndex=1

readWrite The element will appear in the ASAP file with both read and write access.

Tags:atp.EnumerationLiteralIndex=2

Table 5.49: SwCalibrationAccessEnum

335 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01273] Precedence rules for the application of SwDataDefProps d
SwDataDefProps can be specified on various levels, from type over prototype to in-
stantiation, finally data access and calibration support after RTE generation. In general,
properties specified on prototype level override the ones specified on type level.

More formally, the precedence of such properties is:

1. attributes of SwDataDefProps defined on ApplicationDataType which may
be overwritten by

2. attributes of SwDataDefProps defined on ImplementationDataType which
may be overwritten by

3. attributes of SwDataDefProps defined on DataPrototype which may be over-
written by

4. attributes of SwDataDefProps defined on InstantiationDataDefProps
which may be overwritten by

5. attributes of SwDataDefProps defined on ParameterAccess respectively Ar-
gument which may be overwritten by

6. attributes of SwDataDefProps defined on FlatInstanceDescriptor which
may be overwritten by

7. attributes of SwDataDefProps defined on McDataInstance

c()

Note that details about applicable attributes of SwDataDefProps can be found in Ta-
ble 5.43.

[TPS_SWCT_01274] SwDataDefProps used to support calibration and measure-
ment dThe last item in the list of use cases contained in [TPS_SWCT_01273] denotes
that SwDataDefProps are also used as part of McSupportData which is a direct in-
put to the generation of measurement and calibration configuration formats (so-called
A2L-files).

This use case is further explained in [6]. Since these data are generated by the RTE,
they will use a copy of the properties according to the precedence given above.

However, even in this use case which comes after RTE generation it is possible that
properties relevant for the MCD system are added which had been undefined so far.

This for example, applies to the attribute swRefreshTiming which denotes a timing
information relevant for the measurement system; this information may be set rather
late in the process chain.c()

Obviously such an override is not applicable in all cases. In particular, the properties
covering the structure shall not be redefined on DataPrototype. Implementation
policy, semantics and code generation policy may be changed under consideration of
compatibility rules.

336 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Access policy for the MCD system is the most likely subject to be redefined on the
DataPrototype of even on an instantiation level.

Section 5.4.3 describes how SwDataDefProps are used for measuring purposes
while Section 5.4.4 describes the construction of characteristics based on the com-
bination of SwDataDefProps with DataPrototypes.

Section 2.2.2 describes in which context calibration parameters can be defined. Fi-
nally, sections 2.2.3, 7.5.4, and 5.5.4 show how calibration parameters are used in
RunnableEntitys and show the link to an actual ECU implementation.

Enumeration SwImplPolicyEnum

Package M2::MSR::DataDictionary::DataDefProperties

Note Specifies the implementation strategy with respect to consistency mechanisms of variables.

Literal Description

const forced implementation such that the running software within the ECU shall not modify it. For example
implemented with the "const" modifier in C. This can be applied for parameters (not for those in
NVRAM) as well as argument data prototypes.

Tags:atp.EnumerationLiteralIndex=0

fixed This data element is fixed. In particular this indicates, that it might also be implemented e.g. as in
place data, (#DEFINE).

Tags:atp.EnumerationLiteralIndex=1

measurementPoint The data element is created for measurement purposes only. The data element is never read directly
within the ECU software. In contrast to a "standard" data element in an unconnected provide port is,
this unconnection is guaranteed for measurementPoint data elements.

Tags:atp.EnumerationLiteralIndex=2

queued The content of the data element is queued and the data element has ’event’ semantics, i.e. data
elements are stored in a queue and all data elements are processed in ’first in first out’ order. The
queuing is intended to be implemented by RTE Generator. This value is not applicable for parameters.

Tags:atp.EnumerationLiteralIndex=3

standard This is applicable for all kinds of data elements. For variable data prototypes the ’last is best’
semantics applies. For parameter there is no specific implementation directive.

Tags:atp.EnumerationLiteralIndex=4

Table 5.50: SwImplPolicyEnum

[TPS_SWCT_01275] values of the attribute swImplPolicy are restricted depend-
ing on the context dThe values of the attribute swImplPolicy are restricted (sum-
marized in table 5.51) depending on the context. This restriction reflects the fact that
not all possible implementation strategies are useful or supported for all kinds of Dat-
aPrototypes.c()

The restrictions summarized in table 5.51 are formalized in a set of constraints below
the table.

Please note that the usage of swImplPolicy is further constraint in the combination
with the attribute value swCalibrationAccess as described in [constr_1017].

337 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Attribute of SwImplPolicyEnum VariableDataPrototype ParameterDataPrototype Misc.

V
a
r
i
a
b
l
e
D
a
t
a
P
r
o
t
o
t
y
p
e

in
S
e
n
d
e
r
R
e
c
e
i
v
e
r
I
n
t
e
r
f
a
c
e

V
a
r
i
a
b
l
e
D
a
t
a
P
r
o
t
o
t
y
p
e

in
N
v
D
a
t
a
I
n
t
e
r
f
a
c
e

V
a
r
i
a
b
l
e
D
a
t
a
P
r
o
t
o
t
y
p
e

in
ro

le
r
a
m
B
l
o
c
k

V
a
r
i
a
b
l
e
D
a
t
a
P
r
o
t
o
t
y
p
e

in
ro

le
i
m
p
l
i
c
i
t
I
n
t
e
r
R
u
n
n
a
b
l
e
V
a
r
i
a
b
l
e

V
a
r
i
a
b
l
e
D
a
t
a
P
r
o
t
o
t
y
p
e

in
ro

le
e
x
p
l
i
c
i
t
I
n
t
e
r
R
u
n
n
a
b
l
e
V
a
r
i
a
b
l
e

V
a
r
i
a
b
l
e
D
a
t
a
P
r
o
t
o
t
y
p
e

in
ro

le
a
r
T
y
p
e
d
P
e
r
I
n
s
t
a
n
c
e
M
e
m
o
r
y

V
a
r
i
a
b
l
e
D
a
t
a
P
r
o
t
o
t
y
p
e

in
ro

le
s
t
a
t
i
c
M
e
m
o
r
y

P
a
r
a
m
e
t
e
r
D
a
t
a
P
r
o
t
o
t
y
p
e

in
P
a
r
a
m
e
t
e
r
I
n
t
e
r
f
a
c
e

P
a
r
a
m
e
t
e
r
D
a
t
a
P
r
o
t
o
t
y
p
e

in
ro

le
r
o
m
B
l
o
c
k

P
a
r
a
m
e
t
e
r
D
a
t
a
P
r
o
t
o
t
y
p
e

in
ro

le
s
h
a
r
e
d
P
a
r
a
m
e
t
e
r

P
a
r
a
m
e
t
e
r
D
a
t
a
P
r
o
t
o
t
y
p
e

in
ro

le
p
e
r
I
n
s
t
a
n
c
e
P
a
r
a
m
e
t
e
r

P
a
r
a
m
e
t
e
r
D
a
t
a
P
r
o
t
o
t
y
p
e

in
ro

le
c
o
n
s
t
a
n
t
M
e
m
o
r
y

A
r
g
u
m
e
n
t
D
a
t
a
P
r
o
t
o
t
y
p
e

S
w
S
e
r
v
i
c
e
A
r
g

const NA NA NA NA NA NA NA x NA x x x NA x
fixed NA NA NA NA NA NA NA x NA NA NA x NA NA

measurementPoint x NA NA NA NA x x NA NA NA NA NA NA NA
queued x NA NA NA NA NA NA NA NA NA NA NA NA NA

standard x x x x x x x x x x x x x x

Table 5.51: Allowed attributes values for swImplPolicy vs. DataPrototypes and their
roles

The following settings apply in table 5.51:

x Attribute is applicable for usage in the scope of this element.

NA Attribute is not applicable for usage in the scope of this element.

[constr_2035] swImplPolicy for VariableDataPrototype in Sender-
ReceiverInterface dThe overriding value of attribute swImplPolicy of a
VariableDataPrototype owned by a SenderReceiverInterface shall be
either standard, queued, or measurementPoint.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2036] swImplPolicy for VariableDataPrototype in NvDataInter-
face dThe overriding value of attribute swImplPolicy of a VariableDataProto-
type owned by a NvDataInterface shall be standard.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2037] swImplPolicy for VariableDataPrototype in the role ram-
Block dThe overriding value of attribute swImplPolicy of a VariableDataProto-
type aggregated in the role NvBlockDescriptor.ramBlock shall be standard.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

338 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_2038] swImplPolicy for VariableDataPrototype in the role implic-
itInterRunnableVariable dThe overriding value of attribute swImplPolicy of
a VariableDataPrototype aggregated in the role SwcInternalBehavior.im-
plicitInterRunnableVariable shall be standard.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2039] swImplPolicy for VariableDataPrototype in the role explic-
itInterRunnableVariable dThe overriding value of attribute swImplPolicy of
a VariableDataPrototype aggregated in the role SwcInternalBehavior.ex-
plicitInterRunnableVariable shall be standard.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2040] swImplPolicy for VariableDataPrototype in the role arType-
dPerInstanceMemory dThe overriding value of attribute swImplPolicy of a Vari-
ableDataPrototype aggregated in the role SwcInternalBehavior.arTyped-
PerInstanceMemory shall be standard or measurementPoint.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2041] swImplPolicy for VariableDataPrototype in the role stat-
icMemory dThe overriding value of attribute swImplPolicy of a VariableDat-
aPrototype aggregated in the role InternalBehavior.staticMemory shall be
standard or measurementPoint.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2042] swImplPolicy for ParameterDataPrototype in ParameterIn-
terface dThe overriding value of attribute swImplPolicy of a ParameterDat-
aPrototype owned by a ParameterInterface shall be either standard, const,
or fixed.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2043] swImplPolicy for ParameterDataPrototype in the role
romBlock dThe overriding value of attribute swImplPolicy a ParameterDataPro-
totype aggregated in the role NvBlockDescriptor.romBlock shall be standard.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2044] swImplPolicy for ParameterDataPrototype in the role
sharedParameter dThe overriding value of attribute swImplPolicy of a Param-
eterDataPrototype aggregated in the role SwcInternalBehavior.sharedPa-
rameter shall be standard or const.

339 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2045] swImplPolicy for ParameterDataPrototype in the role perIn-
stanceParameter dThe overriding value of attribute swImplPolicy of a Param-
eterDataPrototype in the role SwcInternalBehavior.perInstanceParame-
ter shall be standard or const.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2046] swImplPolicy for ParameterDataPrototype in the role con-
stantMemory dThe overriding value of attribute swImplPolicy of a Parame-
terDataPrototype aggregated in the role InternalBehavior.constantMemory
shall be standard, const, or fixed.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2047] swImplPolicy for ArgumentDataPrototype dThe overriding value
of attribute swImplPolicy of an ArgumentDataPrototype shall be standard.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2048] swImplPolicy for SwServiceArg dThe overriding value of attribute
swImplPolicy of a SwServiceArg shall be standard or const.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_02000] Default value for attribute swImplPolicy dIf the attribute
swImplPolicy is not explicitly set at any of the locations listed in “Place of Setting”
for SwDataDefProps, the default value standard applies.c()

Please note that the locations listed in “Place of Setting” for SwDataDefProps are
described in Table 5.43.

5.4.2 Invalid Value

The diagram 5.5 shows that in addition to the semantics defined through the com-
puMethod (explained below in chapter 5.5.1), also an invalidValue can be speci-
fied. This is a requirement of the VFB [3], allowing expressing which specific value is
used to indicate invalidation.

«atpVariation»
SwDataDefProps

ValueSpecification
ARElement

AtpType

AutosarDataType

+invalidValue

0..1

+swDataDefProps

0..1

Figure 5.31: Invalid value

340 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The invalidValue can be used in different flavors (also illustrated in Figure 5.6):

• [TPS_SWCT_01432] Keep the invalidValue transparent to the sending
and receiving software components dOn the one hand it is possible to keep
the invalidValue transparent to the sending and receiving software compo-
nents. In this case the invalidation API of the RTE on the sender side has to be
used.

The receiving software component can either use the data receive status or the
DataReceiveErrorEvent respectively DataReceivedEvent to decide about
the validity of the received data or the receiving software component can rely on
the reception of an initValue as a default value in case of data invalidation.

In this case the invalid value should (and usually will) be outside the range limits
defined by the compuMethod.c()

• [TPS_SWCT_01434] Sender and receiver have knowledge of invalid value
dOn the other hand it is possible that the communicating software components
do have knowledge about the invalidValue and the invalidValue is visible
for them.

This is in particular the case if the sender and receiver are calculating a checksum
over a larger data structure to implement an end to end communication protec-
tion. To ensure the integrity of the checksums it is required to set invalid values
by the sending component directly and to receive invalid values unchanged.

In this case the invalid value should (and usually will) be inside the range limits
defined by the compuMethod.c()

• [TPS_SWCT_01436] Different receivers require different handling of data
invalidation dIt is possible that in case of 1:n communication different receivers
requiring a different handling of data invalidation depending on the criticality of
its functionality. For instance, one receiver applies the checksum based end to
end communication protection and another receiver relies on the substitution of
invalid values by invalidValues.c()

A typical use case for putting the invalidValue inside the boundaries of the appli-
cable CompuMethod is a composite data type that contains the values of all individual
wheel speeds. If one of the sensors fails and starts to send invalidValue it would
probably not make sense to consider the whole composite data element invalid.

It may very likely still be possible to make sense of the remaining intact wheel speed
values and carry on with whatever business the receiving software-component has with
that data.

From this perspective, it would obviously be OK for the sending software-component to
actively send the invalidValue that is then processed as a “regular” value without
applying additional semantics by the RTE/Com.

[TPS_SWCT_01646] Sending invalidValue without invalidation applied by
RTE/Com dFor intentionally sending invalidValue without invalidation applied by

341 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RTE/Com the SenderReceiverInterface.invalidationPolicy.handleIn-
valid shall be set to the value HandleInvalidEnum.dontInvalidate.c()

[constr_1390] Restriction to the value of SenderReceiverInterface.inval-
idationPolicy.handleInvalid dIf the value of SenderReceiverInterface.
invalidationPolicy.handleInvalid is set to any value other than HandleIn-
validEnum.dontInvalidate then the invalidValue shall not be within the in-
terval defined by the CompuMethod of the applicable dataElement at the time
when the contract phase generation is executed.c()

Please note that ApplicationPrimitiveDataTypes of category VALUE in prin-
ciple can have an invalidValue provided by a NumericalValueSpecification
because the value of the attribute invalidValue can be outside the range of the
applicable CompuMethod (see [TPS_SWCT_01432]).

[TPS_SWCT_01437] invalidValue can also be specified without setting a
compuMethod dAn invalidValue can also be specified without setting a com-
puMethod.c()

Figure 5.6 illustrates the relationship between ApplicationDataType, Com-
puMethod, ImplementationDataType, invalidValue, BaseType.

[constr_2545] invalidValue shall fit in the specified ranges dThe invalid-
Value shall be in the range of the ImplementationDataType at the time when
the contract phase generation is executed.c()

Please note that the invalidValue is a ValueSpecification. Of course, it would
technically be possible to use any subclass of ValueSpecification at this place.

[constr_1016] Restriction of invalidValue for ImplementationDataType
and ImplementationDataTypeElement dinvalidValue for Implementation-
DataType and ImplementationDataTypeElement is restricted to be either a com-
patible NumericalValueSpecification, TextValueSpecification (caution,
[constr_1284] applies) or a ConstantReference that in turn points to a compatible
ValueSpecification.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1384] Definition of invalidValue for DataPrototype typed by Appli-
cationPrimitiveDataType of category CURVE, MAP, CUBOID, CUBE_4, CUBE_-
5, COM_AXIS, RES_AXIS, and VAL_BLK dAn invalidValue shall not be specified
for a DataPrototype typed by ApplicationPrimitiveDataType of category
CURVE, MAP, CUBOID, CUBE_4, CUBE_5, COM_AXIS, RES_AXIS, and VAL_BLK at
any time in the workflow.c()

Rationale for [constr_1384]: there is no use case for sending a DataPrototype typed
by ApplicationPrimitiveDataType of category CURVE, MAP, CUBOID, CUBE_-
4, CUBE_5, COM_AXIS, RES_AXIS, and VAL_BLK over a communication bus.

342 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1242] Restriction of invalidValue for ApplicationPrimitive-
DataType of category STRING dinvalidValue for ApplicationPrimitive-
DataType of category STRING ([constr_1241] applies) is restricted to be either
a compatible ApplicationValueSpecification or a ConstantReference that
in turn points to a compatible ApplicationValueSpecification at the time
when the contract phase generation is executed.c()

[TPS_SWCT_01487] Correspondence of invalidValue for ApplicationPrim-
itiveDataType and ImplementationDataType dThe invalidValue specified
on the level of an ApplicationPrimitiveDataType shall correspond to the in-
validValue specified on the level of a compatible ImplementationDataType. The
terms “corresponds” boils down to:

• category VALUE or BOOLEAN: application of CompuMethod

• category STRING: mapping of the encoding on the ApplicationPrimi-
tiveDataType side to the numerical values on the level of the Implementa-
tionDataType (shall reference SwBaseType with baseTypeEncoding set to
NONE). There is no formal support defined to check that the values of invalid-
Value really correspond to each other.

c()

[constr_1225] DataPrototype is typed by an ImplementationDataType that
references a CompuMethod of category TEXTTABLE or BITFIELD_TEXTTABLE dIf
a DataPrototype is typed by an ImplementationDataType that references a
CompuMethod of category TEXTTABLE or BITFIELD_TEXTTABLE the applicable
ValueSpecification shall be a TextValueSpecification.

In this case the value provided shall match to one of the applicable text values (vt,
shortLabel, symbol) defined by the applicable CompuScales.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that several attributes of meta-class CompuScale can be taken to describe
the actual value. It is therefore necessary to clarify what happens if several of these
attributes exist within the context of one CompuScale. This clarification can be found
in [TPS_SWCT_01696].

[TPS_SWCT_01467] ImplementationDataType references an SwBaseTypewith
a string encoding dIf an ImplementationDataType references an SwBaseType
with a string encoding the initValue shall still be provided as numerical values ac-
cording to the string encoding.c()

[constr_1302] Restriction of data invalidation dData invalidation is only applicable
for one of the following cases applicable on the receiving side:

343 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

1. VariableDataPrototypes typed by either an ApplicationPrimitive-
DataType or an ImplementationDataType of category VALUE or TYPE_-
REFERENCE that boils down to category VALUE that have defined an invalid-
Value.

2. VariableDataPrototypes typed by either an ApplicationComposite-
DataType or an ImplementationDataType of category STRUCTURE, or
ARRAY or of category TYPE_REFERENCE that boils down to category STRUC-
TURE, or ARRAY that have at least one primitive element with an invalidValue.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that [constr_1302], in general, leaves room for the definition of an invalid
value for a DataPrototype typed by a Wrapped Union Data Type because it
demands the existence of a primitive element that has an invalidValue. In the
case of a Wrapped Union Data Type, the primitive element could be the Member
Selector, and thus [constr_1302] would technically be fulfilled.

On the one hand, it does not make sense to just define an invalid value for the Member
Selector from the semantic point of view. On the other hand, the actual payload may
not even have an invalid value according to [constr_1009] or [constr_1288], respec-
tively.

In order to simplify the situation and make a clear statement, [constr_1446] has been
defined.

[constr_1446] No definition of invalidValue for a Wrapped Union Data Type
dThe definition of an invalidValue for a DataPrototype typed by a Wrapped
Union Data Type is not supported at any time in the workflow.c()

[constr_1140] Combination of invalidValue with the attribute handleInvalid
dThe combination of setting the attribute handleInvalid of the meta-class Inval-
idationPolicy owned by SenderReceiverInterface to value replace and of
setting the value of the attribute initValue owned by a corresponding Nonqueue-
dReceiverComSpec effectively to the value of the invalidValue (owned by a corre-
sponding SwDataDefProps) is not supported at the time when the contract
phase generation is executed.c()

The term “corresponding” (as utilized in [constr_1140]) refers to the fact that informa-
tion regarding the fulfillment of [constr_1140] is factually distributed over different areas
of the meta-model. For clarification, the following relationship should be considered:

The SenderReceiverInterface defines how to deal with an invalid value by means
of the attribute handleInvalid on the basis of individual dataElements. The
SenderReceiverInterface is taken for typing a RPortPrototype that in turn
owns a ReceiverComSpec. [constr_1140] applies if the particular ReceiverCom-
Spec is actually a NonqueuedReceiverComSpec that refers to the same dataEle-
ment.

344 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

SenderReceiverInterface

AutosarDataPrototype

VariableDataPrototype

InvalidationPolicy

+ handleInvalid: HandleInvalidEnum [0..1]

«enumeration»
HandleInvalidEnum

 keep
 replace
 dontInvalidate
 externalReplacement

ReceiverComSpec

+ handleOutOfRange: HandleOutOfRangeEnum [0..1]
+ handleOutOfRangeStatus: HandleOutOfRangeStatusEnum [0..1]
+ maxNoNewOrRepeatedData: PositiveInteger [0..1]
+ syncCounterInit: PositiveInteger [0..1]

«atpVariation»
+ maxDeltaCounterInit: PositiveInteger [0..1]
+ usesEndToEndProtection: Boolean [0..1]

NonqueuedReceiverComSpec

+ aliveTimeout: TimeValue [0..1]
+ enableUpdate: Boolean [0..1]
+ handleDataStatus: Boolean [0..1]
+ handleNeverReceived: Boolean [0..1]
+ handleTimeoutType: HandleTimeoutEnum [0..1]

ValueSpecification

+ shortLabel: Identifier [0..1]

RPortPrototype

+ mayBeUnconnected: Boolean [0..1]

«atpVariation»
SwDataDefProps

DataInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean [0..1]
+ serviceKind: ServiceProviderEnum [0..1]

RPortComSpec

PortPrototype

AbstractRequiredPortPrototype

+invalidValue

0..1

+networkRepresentation 0..1 +initValue 0..1

+dataElement 0..1

+requiredComSpec

0..*

+timeoutSubstitutionValue 0..1+invalidationPolicy 0..*

+dataElement 0..*

«isOfType»

+requiredInterface

0..1
{redefines atpType}

Figure 5.32: Relationships required to consider the invalidValue

In this case the invalidValue owned by the SwDataDefProps that in turn is owned
by the respective dataElement is relevant for the fulfillment of [constr_1140]. The
“big picture” of this relationship is sketched in Figure 5.32.

[constr_1219] Invalidation depends on the value of swImplPolicy dInvalidation of
dataElements is only supported for dataElements where the value of swImplPol-
icy is not set to queued at the time when the contract phase genera-
tion is executed.c()

[constr_1282] Restriction concerning the usage of RuleBasedValueSpeci-
fication or a ReferenceValueSpecification for the specification of an
invalidValue dThe aggregation of a RuleBasedValueSpecification or a
ReferenceValueSpecification for the definition of a ApplicationPrimi-
tiveDataType.swDataDefProps.invalidValue is not supported at the time
when the contract phase generation is executed.c()

5.4.3 Properties for Measurement

In embedded automotive software design, measurement means access to memory
locations in an ECU and transferring its contents to the measurement & calibration
system. While in classical software design, variables abstract the memory locations in
the code, AUTOSAR provides for this purpose the DataPrototype with its various
specializations:

345 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• VariableDataPrototype of a SenderReceiverInterface or NvDataIn-
terface used in a PortPrototype (of a SwComponentPrototype), to cap-
ture sender-receiver and non-volatile data communication between SwCompo-
nentPrototypes

• ArgumentDataPrototype of a ClientServerOperation in a
ClientServerInterface to capture client-server communication between
SwComponentPrototypes.

• VariableDataPrototype in the context of an SwcInternalBehavior to

– capture communication between RunnableEntitys within a SwCompo-
nentPrototype

– handle data in a non-volatile memory block

– provide pure software component internal memory which has to be accessi-
ble for an MCD system

[TPS_SWCT_01440] Measurement is not limited to primitive objects dThe ability
of being measured is not restricted to primitive data (category VALUE) but can also
be applied to composite data (category STRUCTURE or ARRAY).c()

The following semantical and structural features from SwDataDefProps are relevant
(among other purposes) for the measurement system:

• swCalibrationAccess

• swImplPolicy

• compuMethod

• unit (if not specified by compuMethod)

• baseType

• swAddrMethod

[TPS_SWCT_01130] Measurement and calibration access to model elements is
defined by swCalibrationAccess dThe ability to be accessed by e.g. a calibration
tool is given by setting the swCalibrationAccess attribute.c(RS_SWCT_03152)

The following table shows all valid settings of swCalibrationAccess:

swImplPolicy swCalibrationAccess

notAccessible readOnly readWrite

fixed yes not supported not supported

const yes yes not supported

standard yes yes yes

queued yes not supported not supported

measurementPoint not supported yes not supported

Table 5.52: Supported combinations of swImplPolicy and swCalibrationAccess

346 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01559] Default value for attribute SwDataDefProps.swCalibra-
tionAccess dThe default value for the attribute SwDataDefProps.swCalibra-
tionAccess is SwCalibrationAccessEnum.notAccessible.c()

[constr_1017] Supported combinations of swImplPolicy and swCalibra-
tionAccess dThe table 5.52 defines the supported combinations at the
time when the contract phase generation is executed of swImplPol-
icy and swCalibrationAccess attribute setting.c()

[constr_1018] measurementPoint shall not be referenced by a VariableAc-
cess aggregated by RunnableEntity in the role dataReadAccess dDue to the
nature of dataElements characterized by setting the swImplPolicy to measure-
mentPoint, such dataElements shall not be referenced by a VariableAccess
aggregated by RunnableEntity in the role dataReadAccess at the time when
the contract phase generation is executed.c()

5.4.4 Properties of Curves and Maps

A characteristic table is defined by setting the category of the corresponding Au-
tosarDataType or DataPrototype to CURVE respectively MAP, CUBOID, CUBE_4,
and CUBE_5.

Its SwDataDefProps determine an axis description. The type of the functional values
is given by the attached SwBaseType and the CompuMethod.

The axis description itself is defined by the meta-model element SwCalprmAxisSet
aggregating the appropriate number of SwCalprmAxisTypeProps.

This is the base class for a so called “individual axis” (formalized by meta-class SwAx-
isIndividual) or a “grouped axis” (formalized by meta-class SwAxisGrouped).

The latter is used to share axis points by several characteristic tables. Figure 5.33
shows an overview on the relevant meta-model elements.

The type of the functional values is given by the attached SwBaseType and the Com-
puMethod or by the referenced ApplicationDataType.

If an ApplicationDataType is referenced (via valueAxisDataType) this super-
sedes CompuMethod, Unit, and BaseType if these are defined in parallel.

347 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

SwCalprmAxisTypeProps

SwAxisGrouped

SwCalprmAxis

SwAxisGeneric SwAxisIndividual

SwVariableRefProxy

ApplicationDataType

ApplicationPrimitiveDataType

SwCalprmRefProxy

ARElement

Unit

ARElement
AtpBlueprint

AtpBlueprintable

CompuMethod

ARElement
AtpBlueprint

AtpBlueprintable

DataConstr

+swCalprmAxisTypeProps0..1

+dataConstr

0..1

+inputVariableType

0..1

+swVariableRef

0..*
{ordered}

+unit

0..1

+swCalprmRef

1

+compuMethod

0..1

+swAxisGeneric

0..1

+sharedAxisType

0..1

+unit 0..1

Figure 5.33: Overview on the Meta-Model for Axis Description

SwGenericAxisParam

«atpVariation»
+ vf: Numerical [0..*] {ordered}

ARElement

SwAxisType
SwAxisGeneric

Identifiable

SwGenericAxisParamType

+swAxisType

0..1

+swGenericAxisParamType

0..1

+swGenericAxisParamType

0..*

+swGenericAxisParam

0..*

Figure 5.34: Overview on a Generic Axis

Figure 5.35 shows how an individual axis is represented by the meta-model. The corre-
sponding M1 Model is illustrated in Figure 5.36. The SwAxisIndividual references
value-models to account the minimum and the maximum number of axis values as well
as the number of axis points.

«atpVariation»
SwDataDefProps

ARElement

Unit

ARElement
AtpBlueprint

AtpBlueprintable

CompuMethod

AtpBlueprint
AtpBlueprintable

BaseType

SwBaseType

ARElement
AtpBlueprint

AtpBlueprintable

DataConstr

ARElement
AtpBlueprint

AtpBlueprintable

SwAddrMethod

SwCalprmAxis SwCalprmAxisSet

SwCalprmAxisTypeProps

SwAxisIndividualSwVariableRefProxySwAxisGrouped SwCalprmRefProxy

ARElement

SwRecordLayout

+swCalprmAxisSet

0..1

+compuMethod 0..1

+swCalprmAxisTypeProps

0..1

+unit 0..1

+swCalprmRef

1

+swVariableRef

0..* {ordered}

+compuMethod
0..1

+dataConstr 0..1

+swAddrMethod 0..1

+swCalprmAxis

0..*

+swRecordLayout 0..1 +baseType 0..1

+dataConstr 0..1+unit 0..1

+unit

0..1

Figure 5.35: Meta-Model Elements used for a Curve

348 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Hence, the size of the structure to hold the functional values is determined by the
number of axis values for all axes. The type of the axis values is determined when the
type of the referenced input value (swVariableRef) has been set. For further details
see section 5.4.5.

[TPS_SWCT_01107] swMinAxisPoints and swMaxAxisPoints represent varia-
tion points dThe value of attributes swMinAxisPoints and swMaxAxisPoints is
subject to variant handling.c(RS_SWCT_03148)

Element: ApplicationDataType

category = CURVE
shortName = MyCurve

swDataDefProps: SwDataDefProps

swCalprmAxisSet:
SwCalprmAxisSet

swCalprmAxis: SwCalprmAxis

swCalprmAxisTypeProps:
SwAxisIndividual

Element: CompuMethod

Element: SwAddrMethod

Element: Unit

Element:
ApplicationPrimitiveDataType

Element: Unit

swDataDefProps: SwDataDefProps

Element: SwRecordLayout

Element: CompuMethod

���� �� �� ���	
	����

Figure 5.36: Illustration of a Curve in M1

Class SwCalprmAxisSet

Package M2::MSR::DataDictionary::CalibrationParameter

Note This element specifies the input parameter axes (abscissas) of parameters (and variables, if these are
used adaptively).

Base ARObject

Attribute Type Mult. Kind Note

5

349 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwCalprmAxisSet

swCalprmAxis SwCalprmAxis * aggr One axis belonging to this SwCalprmAxisSet

Tags:
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.53: SwCalprmAxisSet

Class SwCalprmAxis

Package M2::MSR::DataDictionary::CalibrationParameter

Note This element specifies an individual input parameter axis (abscissa).

Base ARObject

Attribute Type Mult. Kind Note

category CalprmAxisCategory
Enum

0..1 attr This property specifies the category of a particular axis.

Tags:xml.sequenceOffset=30

displayFormat DisplayFormatString 0..1 attr This property specifies how the axis values shall be
displayed e.g. in documents or in measurement and
calibration tools.

Tags:xml.sequenceOffset=100

swAxisIndex AxisIndexType 0..1 attr This attribute specifies which axis is specified by the
containing SwCalprmAxis.

For example in a curve this is usually "1". In a map this is
"1" or "2".

Tags:xml.sequenceOffset=20

swCalibration
Access

SwCalibrationAccess
Enum

0..1 attr Describes the applicability of parameters and variables.

Tags:xml.sequenceOffset=90

swCalprmAxis
TypeProps

SwCalprmAxisType
Props

0..1 aggr specific properties depending on the type of the axis.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=40
xml.typeElement=true
xml.typeWrapperElement=false

Table 5.54: SwCalprmAxis

Enumeration CalprmAxisCategoryEnum

Package M2::MSR::DataDictionary::CalibrationParameter

Note This enum specifies the possible values of the category property within SwCalprmAxis.

Literal Description

comAxis COM_AXIS is equal to an STD_AXIS, the difference is, that a COM_AXIS is an shared axis, that
means this axis can be used multiple times by different CURVEs, MAPs, CUBOIDs, CUBE_4s, and
CUBE_5s.

Tags:
atp.EnumerationLiteralIndex=0
xml.name=COM_AXIS

5

350 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration CalprmAxisCategoryEnum

fixAXIS FIX_AXIS means that the input axis is not stored. The axis is calculated using parameters and so on
it is also not possible to modify the axis points.

Tags:
atp.EnumerationLiteralIndex=4
xml.name=FIX_AXIS

resAxis RES_AXIS is also an shared axis like COM_AXIS, the difference is that this kind of axis can be used
for rescaling.

Tags:
atp.EnumerationLiteralIndex=6
xml.name=RES_AXIS

stdAxis STD_AXIS means that input and output axis definition are stored within this CURVE, MAP, CUBOID,
CUBE_4, and CUBE_5.

There is no shared or calculated axis.

Tags:
atp.EnumerationLiteralIndex=8
xml.name=STD_AXIS

Table 5.55: CalprmAxisCategoryEnum

Class SwCalprmAxisTypeProps (abstract)

Package M2::MSR::DataDictionary::CalibrationParameter

Note Base class for the type of the calibration axis. This provides the particular model of the specialization. If
the specialization would be the directly from SwCalPrmAxis, the sequence of common properties and the
specializes ones would be different.

Base ARObject

Subclasses SwAxisGrouped, SwAxisIndividual

Attribute Type Mult. Kind Note

maxGradient Float 0..1 attr This attribute defines the maximum permissible gradient
for an adjustable object (curve, map or cuboid) with
respect to a specific axis. MaxGrad = maximum(
absolute((Value i,k - Value i-1,k)/(Axis Point i - Axis Point
i-1)))

monotony MonotonyEnum 0..1 attr This attribute specifies the monotony constraint for an
adjustable object (curve, map or cuboid) with respect to a
specific axis. This information can be used by MCD
system to verify whether the monotony constraint is
fulfilled and to prevent from changes violating the
constraint.

Table 5.56: SwCalprmAxisTypeProps

Class SwAxisIndividual
Package M2::MSR::DataDictionary::Axis

Note This meta-class describes an axis integrated into a parameter (field etc.). The integration makes this
individual to each parameter. The so-called grouped axis represents the counterpart to this. It is
conceived as an independent parameter (see class SwAxisGrouped).

Base ARObject , SwCalprmAxisTypeProps

Attribute Type Mult. Kind Note

compuMethod CompuMethod 0..1 ref This is the compuMethod which is expected for the axis. It
is used in early stages if the particular input-value is not
yet available.

Tags:xml.sequenceOffset=30

5

351 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwAxisIndividual
dataConstr DataConstr 0..1 ref Refers to constraints, e.g. for plausibility checks.

Tags:xml.sequenceOffset=80

inputVariable
Type

ApplicationPrimitive
DataType

0..1 ref This is the datatype of the input value for the axis. This
allows to define e.g. a type of curve, where the input
value is finalized at the access point.

swAxisGeneric SwAxisGeneric 0..1 aggr this specifies the properties of a generic axis if applicable.

Tags:xml.sequenceOffset=90

swMaxAxis
Points

Integer 0..1 attr Maximum number of base points contained in the axis of
a map or curve.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

swMinAxis
Points

Integer 0..1 attr Minimum number of base points contained in the axis of a
map or curve.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=70

swVariableRef
(ordered)

SwVariableRefProxy * aggr Refers to input variables of the axis. It is possible to
specify more than one variable. Here the following is
valid:

• The variable with the highest priority shall be
given first. It is used in the generation of the code
and is also displayed first in the application
system.

• All variables referenced shall be of the same
physical nature. This is usually detected in that
the conversion formulae affected refer back to
the same SI-units.

In AUTOSAR this ensured by the constraint, that the
referenced input variables shall use a type compatible to
"inputVariableType".

• This multiple referencing allows a base point
distribution for more than one input variable to be
used. One example of this are the temperature
curves which can depend both on the induction
air temperature and the engine temperature.

These variables can be displayed simultaneously by MCD
systems (adjustment systems), enabling operating points
to be shown in the curves.

Tags:
xml.roleElement=false
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

unit Unit 0..1 ref This represents the physical unit of the input value of the
axis. It is provided to support the case that the particular
input variable is not yet known.

Tags:xml.sequenceOffset=40

Table 5.57: SwAxisIndividual

352 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SwAxisGeneric
Package M2::MSR::DataDictionary::Axis

Note This meta-class defines a generic axis. In a generic axis the axispoints points are calculated in the ECU.

The ECU is equipped with a fixed calculation algorithm. Parameters for the algorithm can be stored in the
data component of the ECU. Therefore these parameters are specified in the data declaration, not in the
calibration data.

Base ARObject

Attribute Type Mult. Kind Note

swAxisType SwAxisType 0..1 ref Associated axis calculation strategy.

Tags:xml.sequenceOffset=20

swGenericAxis
Param

SwGenericAxisParam * aggr Specific parameter of a generic axis.

Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=40
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.58: SwAxisGeneric

Class SwAxisType

Package M2::MSR::DataDictionary::Axis

Note This meta-class represents a specific axis calculation strategy. No formal specification is given, due to
the fact that it is possible to use arbitrary algorithms for calculating axis-points.

Instead, the algorithm is described verbally but the parameters are specified formally with respect to their
names and constraints. As a result, SwAxisType mainly reserves appropriate keywords.

Tags:atp.recommendedPackage=SwAxisTypes

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

swGenericAxis
Desc

DocumentationBlock 0..1 aggr Associated axis description in textual form.

Tags:xml.sequenceOffset=20

swGenericAxis
ParamType

SwGenericAxisParam
Type

* aggr Parameters for this calculation algorithm.

Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.59: SwAxisType

Class SwGenericAxisParam
Package M2::MSR::DataDictionary::Axis

Note This meta-class describes a specific parameter of a generic axis. The name of the parameter is defined
through a reference to a parameter type defined on a corresponding axis type.

The value of the parameter is given here in case that it is not changeable during calibration. Example is
shift / offset in a fixed axis.

Base ARObject

Attribute Type Mult. Kind Note

5

353 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwGenericAxisParam
swGenericAxis
ParamType

SwGenericAxisParam
Type

0..1 ref Parameter type defined on a corresponding axis type.
References can only be made to axis parameters types
which are defined within the referenced axis type.

Tags:xml.sequenceOffset=20

vf (ordered) Numerical * attr This attribute represents the value of the generic axis
parameter.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=30
xml.typeElement=false

Table 5.60: SwGenericAxisParam

Class SwGenericAxisParamType

Package M2::MSR::DataDictionary::Axis

Note This meta-class describes a generic axis parameter type, namely:

• Plausibility checks can be specified via dataConstr.

• Textual description (desc), as a formal description is not of any use, due to the large variety of
possibilities.

• If this parameter contains structures, these can be simulated through the recursive use of Sw
GenericAxisParamTypes.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

dataConstr DataConstr 0..1 ref This reference denoted data constraints applicable to the
generic axis parameter.

Tags:xml.sequenceOffset=20

Table 5.61: SwGenericAxisParamType

Class SwAxisGrouped

Package M2::MSR::DataDictionary::Axis

Note An SwAxisGrouped is an axis which is shared between multiple calibration parameters.

Base ARObject , SwCalprmAxisTypeProps

Attribute Type Mult. Kind Note

sharedAxisType ApplicationPrimitive
DataType

0..1 ref This is the datatype of the calibration parameter providing
the shared axis.

5

354 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwAxisGrouped

swAxisIndex AxisIndexType 0..1 attr Describes which axis of the referenced calibration
parameter provides the values for the group axis. The
index satisfies the following convention:

• 0 = value axis. in this case, the interpolation
result of the referenced parameter is used as a
base point index.

• The index should only be specified if the
parameter under swCalprm contains more than
one axis. It is standard practice for the axis index
of parameters with more than one axis, to be set
to 1, if data has not been assigned to swAxis
Index.

Tags:xml.sequenceOffset=20

swCalprmRef SwCalprmRefProxy 1 aggr This property specifes the calibration parameter which
serves as the input axis. In AUTOSAR, the type of the
referenced Calibration parameter shall be compatible to
the type specified by sharedAxisType.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.62: SwAxisGrouped

5.4.4.1 Specification of grouped Axes

Please note that SwAxisGrouped has a dual nature in that it is used to

• define the data type of the shared axis (see Figure 5.37)

• identify the specific DataPrototype that implements a shared axis in the con-
text of a specific access to the enclosing curve (see Figure 5.38)

Figure 5.37 depicts the usage of SwAxisGrouped for the definition of an Applica-
tionPrimitiveDataType that implements a curve.

It is worth noticing that ApplicationPrimitiveDataType appears in two different
roles in the diagram:

• The definition of the ApplicationPrimitiveDataType of the curve itself is
depicted in the upper part of the diagram.

• The selection of the ApplicationPrimitiveDataType that represents the
grouped axis is depicted in the lower part of the diagram.

The modeling depicted in Figure 5.37 can be further clarified by an example model
that is reduced to the minimum content to exemplify the use case. Here, the role of the
usage of SwAxisGrouped is to define the data type of the curve itself and of a shared
axis:

355 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

SwAxisGrouped

+ swAxisIndex: AxisIndexType [0..1]

SwCalprmAxisTypeProps

+ maxGradient: Float [0..1]
+ monotony: MonotonyEnum [0..1]

SwCalprmAxis

+ category: CalprmAxisCategoryEnum [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ swAxisIndex: AxisIndexType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

SwCalprmAxisSet

«atpVariation»
SwDataDefProps

ApplicationPrimitiveDataType

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

Selection of Axis DataType

Definition of Curve DataType

+sharedAxisType 0..1

+swCalprmAxisTypeProps 0..1

+swDataDefProps

0..1

+swCalprmAxisSet 0..1

+swCalprmAxis 0..*

Figure 5.37: Definition of an ApplicationPrimitiveDataType that implements a curve

Listing 5.10: Usage of SwAxisGrouped to define the data type of a shared axis
<APPLICATION-PRIMITIVE-DATA-TYPE>

<SHORT-NAME>MyAppType</SHORT-NAME>
<CATEGORY>CURVE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-CALPRM-AXIS-SET>
<SW-CALPRM-AXIS>

<SW-AXIS-GROUPED>
<SHARED-AXIS-TYPE-REF
DEST="APPLICATION-PRIMITIVE-DATA-TYPE">/ApplicationDataTypes/

MyAxisDataType</SHARED-AXIS-TYPE-REF>
</SW-AXIS-GROUPED>

</SW-CALPRM-AXIS>
</SW-CALPRM-AXIS-SET>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>
<APPLICATION-PRIMITIVE-DATA-TYPE>

<SHORT-NAME>MyAxisDataType</SHORT-NAME>
</APPLICATION-PRIMITIVE-DATA-TYPE>

Figure 5.38 depicts the usage of SwAxisGrouped in the context of a Parameter-
Access (which, in the case of a curve, typically results in the call of an interpolation
method for the respective curve and the specific axis that is supposed to be used in
the interpolation).

Also in this case, the diagram depicts two distinct (yet related) aspects:

356 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• In the upper part of the diagram, the definition of the access to the DataProto-
type that represents the specific curve inside the enclosing SwComponentPro-
totype is modeled by means of the ParameterAccess.accessedParame-
ter.

• In the lower part of the diagram, the identification of the DataPrototype that
represents the grouped axis inside the enclosing SwComponentPrototype is
modeled by means of the SwAxisGrouped.swCalprmRef.arParameter.

SwAxisGrouped

+ swAxisIndex: AxisIndexType [0..1]

SwCalprmAxisTypeProps

+ maxGradient: Float [0..1]
+ monotony: MonotonyEnum [0..1]

SwCalprmAxis

+ category: CalprmAxisCategoryEnum [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ swAxisIndex: AxisIndexType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

SwCalprmAxisSet

«atpVariation»
SwDataDefProps

SwCalprmRefProxy

AutosarParameterRef
AtpPrototype

DataPrototype

Definition of Parameter Access

AbstractAccessPoint
AtpStructureElement

Identifiable

ParameterAccess

Selection of DataPrototype

+swDataDefProps

0..1

«instanceRef»

+autosarParameter

0..1

+accessedParameter0..1

+swCalprmRef

1

+swCalprmAxis 0..*

+localParameter

0..1

+swCalprmAxisSet 0..1

+swCalprmAxisTypeProps 0..1

+arParameter 0..1

Figure 5.38: Usage of SwAxisGrouped in the context of a ParameterAccess

The following bare-bones model listing exemplifies the usage of SwAxisGrouped in
the context of a ParameterAccess where a specific local parameter is identified to
take the role of the shared axis in the specific access to the curve.

Listing 5.11: Usage ofSwAxisGrouped in the context of a ParameterAccess

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>A</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>B</SHORT-NAME>
<PER-INSTANCE-PARAMETERS>

<PARAMETER-DATA-PROTOTYPE>
<SHORT-NAME>Axis</SHORT-NAME>

</PARAMETER-DATA-PROTOTYPE>
<PARAMETER-DATA-PROTOTYPE>

<SHORT-NAME>Curve</SHORT-NAME>
</PARAMETER-DATA-PROTOTYPE>

</PER-INSTANCE-PARAMETERS>
<RUNNABLES>

<RUNNABLE-ENTITY>
<SHORT-NAME>MyRunnable</SHORT-NAME>
<PARAMETER-ACCESSS>

357 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<PARAMETER-ACCESS>
<SHORT-NAME>MyParamAccess</SHORT-NAME>
<ACCESSED-PARAMETER>

<LOCAL-PARAMETER-REF DEST="AUTOSAR-DATA-PROTOTYPE">/P/A/B/
Curve</LOCAL-PARAMETER-REF>

</ACCESSED-PARAMETER>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-CALPRM-AXIS-SET>
<SW-CALPRM-AXIS>

<SW-AXIS-GROUPED>
<AR-PARAMETER>

<LOCAL-PARAMETER-REF DEST="AUTOSAR-DATA-
PROTOTYPE">/P/A/B/Axis</LOCAL-PARAMETER-REF>

</AR-PARAMETER>
</SW-AXIS-GROUPED>

</SW-CALPRM-AXIS>
</SW-CALPRM-AXIS-SET>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</PARAMETER-ACCESS>

</PARAMETER-ACCESSS>
</RUNNABLE-ENTITY>

</RUNNABLES>
</SWC-INTERNAL-BEHAVIOR>

</INTERNAL-BEHAVIORS>
</APPLICATION-SW-COMPONENT-TYPE>

5.4.4.2 Specification of fix Axes

In most cases the axes of a curve or map are accessible to a calibration software and
it is possible to calibrate axes points and their corresponding values.

There are cases, however, where axes are intentionally declared as fix and where no
intention exists to change the properties of the axis ever17.

These axes are also known as fix axes. The support for the creation of fix axes in the
meta-model is based upon the usage of SwAxisGeneric as depicted in Figure 5.34.

[TPS_SWCT_01747] Value of category for fix axis dA fix axis shall be modeled as
an SwCalprmAxis with attribute category set to the value FIX_AXIS.c()

[TPS_SWCT_01748] Sub-categories of fix axes dThere are different sub-categories
of fix axes:

• Fix axis where the distance between axis points can be computed according to a
standardized algorithm.

17Typically, a calibration software does not have the ability to manipulate (or even inspect) the axis’
properties by inspecting the ECU’s memory.

358 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In this case, fix axes of arbitrary length can be described by feeding three argu-
ments defined in the context of the axis description into the axis algorithm.

Consequently, the memory footprint of different fix axis of this category is liter-
ally identical, independently of the number of axis points.

The following variations exist:

– Subcategory PAR, i.e. category = FIX_AXIS_PAR: the axis is created
out of a starting value and a shift that creates further axis points as using a
power-of-two algorithm. The details can be found in [26].

– Subcategory PAR_DIST, i.e. category = FIX_AXIS_PAR_DIST: the axis
is created out of a starting value and an offset that adds further axis points
with the distance given by offset. The details can be found in [26].

• Fix axis where the axis points are defined as a list of values directly in the axis
definition. This variety boils down to

– Subcategory PAR_LIST, i.e. category = FIX_AXIS_PAR_LIST: the axis
is created out of a list of numerical values that represent the axis points. The
details can be found in [26].

These values of category shall be used for SwAxisType.c()

As mentioned before, the modeling of a fix axis is based upon the definition of the
SwAxisGeneric. But this statement by itself is not yet sufficient to unambiguously
clarify the details of the modeling.

For this purpose, it is necessary to provide further information about the specifics of the
roles SwAxisGeneric.swAxisType and SwAxisGeneric.swGenericAxisParam.

[TPS_SWCT_01749] Semantics of SwAxisGeneric.swAxisType in the definition
of a fix axis dThe role SwAxisGeneric.swAxisType specifies the category of the
fix axis according to [TPS_SWCT_01748].c()

category of swAxisType category of SwGenericAxis-
ParamType

Multiplicity of swGenericAxis-
Param

Multiplicity of vf

OFFSET 1 1FIX_AXIS_PAR

SHIFT 1 1

OFFSET 1 1FIX_AXIS_PAR_DIST

DISTANCE 1 1

FIX_AXIS_PAR_LIST LIST 1 1..*

Table 5.63: Modeling of SwAxisGeneric

[constr_1544] Modeling of SwAxisGeneric for the definition of a fix axis dThe
standardized values and multiplicities within the model of an SwAxisGeneric accord-
ing to [TPS_SWCT_01479] and [TPS_SWCT_01480] are documented in Table 5.63.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

359 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01750] Semantics of SwAxisGeneric.swGenericAxisParam in the
definition of a fix axis dThe role SwAxisGeneric.swGenericAxisParam provides
the actual numeric values for the definition of the axis.

The semantics of a provided numerical value is clarified by the attribute SwGeneri-
cAxisParamType.category where meta-class SwGenericAxisParamType is ref-
erenced in the role swGenericAxisParamType.c()

The modeling of an axis of category FIX_AXIS_PAR is sketched in the following ex-
ample model (Figure 5.39).

MyFixAxisDataType:
ApplicationPrimitiveDataType

category = CURVE

swDataDefProps:
SwDataDefProps

swCalprmAxisSet:
SwCalprmAxisSet

swCalprmAxis: SwCalprmAxis

category = FIX_AXIS
swAxisIndex = 1

swCalprmAxisTypeProps:
SwAxisIndividual

swAxisGeneric: SwAxisGenericoffset: SwGenericAxisParam

vf = 0

shift: SwGenericAxisParam

vf = 2

offset: SwGenericAxisParamType

category = OFFSET

shift: SwGenericAxisParamType

category = SHIFT

swAxisType: SwAxisType

category = FIX_AXIS_PAR

Figure 5.39: Modeling of a fix axis of category FIX_AXIS_PAR

The modeling of an axis of category FIX_AXIS_PAR_DIST is sketched in the following
example model (Figure 5.40).

MyFixAxisDataType:
ApplicationPrimitiveDataType

category = CURVE

swDataDefProps: SwDataDefProps swCalprmAxisSet: SwCalprmAxisSet

swCalprmAxis: SwCalprmAxis

category = FIX_AXIS
swAxisIndex = 1

swCalprmAxisTypeProps:
SwAxisIndividual

swAxisGeneric: SwAxisGenericoffset: SwGenericAxisParam

vf = 3

distance: SwGenericAxisParam

vf = 5

offset: SwGenericAxisParamType

category = OFFSET

distance: SwGenericAxisParamType

category = DISTANCE

swAxisType: SwAxisType

category = FIX_AXIS_PAR_DIST

Figure 5.40: Modeling of a fix axis of category FIX_AXIS_PAR_DIST

The modeling of an axis of category FIX_AXIS_PAR_LIST is sketched in the following
example model (Figure 5.41).

360 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

MyFixAxisDataType:
ApplicationPrimitiveDataType

category = CURVE

swDataDefProps:
SwDataDefProps

swCalprmAxisSet:
SwCalprmAxisSet

swCalprmAxis:
SwCalprmAxis

category = FIX_AXIS
swAxisIndex = 1

swCalprmAxisTypeProps:
SwAxisIndividual

swAxisGeneric: SwAxisGeneric

:SwGenericAxisParam

vf = 1,5,42

axisPoint2:
SwGenericAxisParamType

category = LIST

swAxisType: SwAxisType

category = FIX_AXIS_PAR_LIST

Figure 5.41: Modeling of a fix axis of category FIX_AXIS_PAR_LIST

Please note that the axis points and values of a fix axis are defined in the definition of
the fix axis itself and therefore any initial value assigned to a fix axis would be ignored
anyway.

This might lead to confusion such that the initial value does not make it into the soft-
ware. In order to avoid such confusion AUTOSAR does not support the definition of
an initial value for a fix axis.

This regulation is reflected in the existence of [constr_1545].

[constr_1545] No initialization for fix axis dAn ApplicationValueSpecifica-
tion taken to initialize an ApplicationPrimitiveDataType that contains a fix
axis shall not contain initial values for the axis index of the fix axis inside the Appli-
cationPrimitiveDataType at any time in the workflow.c()

Please note that the calibration software may still have access to axis points and values
of the fix axis if these properties are specified in an A2L file.

For this purpose McDataInstance needs to be set up properly. The details are ex-
plained in [6].

5.4.5 Setting an Axis Input Value

When an interpolation routine is called, an input value has to be provided to find the ap-
propriate axis entry in the implementation of a RunnableEntity. However, this input
value cannot be arbitrarily chosen but only be selected from available VariableDat-
aPrototype assigned to it.

In an axis definition attached to an ApplicationPrimitiveDataType, it is possible
to specify the data type of the input values by means of the reference SwAxisIndi-
vidual.inputVariableType.

However, the reference SwAxisIndividual.inputVariableType does not neces-
sarily have to exist.

361 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This leaves the consideration of compatibility between the DataPrototype(s) refer-
enced by means of SwAxisIndividual.swVariableRef and the actual axis speci-
fication to the following attributes:

• SwAxisIndividual.dataConstr

• SwAxisIndividual.compuMethod

• SwAxisIndividual.unit

[TPS_SWCT_01676] Preferred approach to checking the compatibility of input
value and axis dThe compatibility in terms of data type between the description of
an SwAxisIndividual and the DataPrototype(s) used as an input variable to the
respective interpolation routine shall preferably be checked alternatively between

• the ApplicationPrimitiveDataType(s) of DataPrototype(s) referenced
by means of SwAxisIndividual.swVariableRef (the provider in terms of
compatibility)

• the ApplicationPrimitiveDataType referenced by means of SwAxisIn-
dividual.inputVariableType (The requester in terms of compatibility).

For compatibility, the compuMethod of SwAxisIndividual.swVariableRef and
the ApplicationPrimitiveDataType referenced by means of SwAxisIndivid-
ual.inputVariableType shall not be considered.c()

Rationale: in many cases the input variable is defined by a float data type to take
benefit from the precision in computations. But the axis data type is an integer data
type to save memory. In this situation, a requirement for compatible compuMethods
would exclude the described scenario.

The implementation of the software-component shall make sure that the float value is
properly converted and rescaled to an integer data type compatible to the axis data
type.

[TPS_SWCT_01677] Fall-back approach to checking the compatibility of input
value and axis dIf the reference SwAxisIndividual.inputVariableType does
not exist then the compatibility in terms of data type between the description of an
SwAxisIndividual and the DataPrototype(s) used as an input variable to the re-
spective interpolation routine shall be checked on the basis of the following references:

• SwAxisIndividual.dataConstr

• SwAxisIndividual.unit

respectively

• SwAxisIndividual.dataConstr

• SwAxisIndividual.compuMethod.unit

362 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

against their respective counterparts in the ApplicationPrimitiveDataTypes
of the DataPrototype(s) referenced by means of SwAxisIndividual.swVari-
ableRef.c()

[constr_1420] Existence of SwAxisIndividual.inputVariableType dIf the ref-
erence SwAxisIndividual.inputVariableType does not exist then either:

• SwAxisIndividual.dataConstr

• SwAxisIndividual.unit

or

• SwAxisIndividual.dataConstr

• SwAxisIndividual.compuMethod.unit

shall exist at the time when the contract phase generation is exe-
cuted.c()

The constraint is necessary for the generation of the respective specification of the axis
in A2L.

«atpVariation»
SwDataDefProps

SwAxisIndividual

SwCalprmAxisTypeProps

SwCalprmAxis

SwCalprmAxisSet ParameterDataPrototype

AutosarDataPrototype

SwVariableRefProxy

SwAxisGrouped

SwCalprmRefProxy

AutosarParameterRefAutosarVariableRef

VariableDataPrototype

AtpPrototype

DataPrototype

+swCalprmAxisSet 0..1

+/swDataDefProps 0..1

+localParameter 0..1

+swVariableRef 0..*
{ordered}

+autosarVariable 0..1

+localVariable 0..1

+swCalprmAxisTypeProps 0..1
+arParameter 0..1

+swCalprmRef 1

+swCalprmAxis 0..*

Figure 5.42: Extended Axis Elements and Input Variable Reference

Every ParameterDataPrototype then allows to specify zero or more input values
(being type compatible to inputVariableType) in its axis description.

363 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This means that at the specification time of an SwcInternalBehavior, a list of input
values has to be specified where the implementer of a RunnableEntity can choose
of. The input values are DataPrototype entities either being

• a VariableDataPrototype in a SenderReceiverInterface or Nv-
DataInterface of a PortPrototype, of the AtomicSwComponentType
where the SwcInternalBehavior is associated to, or an ArgumentDataPro-
totype in a ClientServerOperation of a ClientServerInterface in a
PortPrototype of the AtomicSwComponentType where the InternalBe-
havior is associated to, or

• a VariableDataPrototype within the SwcInternalBehavior.

To achieve this, SwAxisIndividual is aggregating a SwVariableRefProxy.

Originally, MSRSW uses a AutosarVariableRef to set the input value of an axis
appropriately. In AUTOSAR, this has been extended by first introducing a SwVari-
ableRefProxy.

Note that this is a specific use case for the role SwVariableRefProxy.autosar-
Variable.

Note further that the use cases for the existence of the attributes SwVariableRef-
Proxy.autosarVariable and SwVariableRefProxy.mcDataInstanceVar are
entirely disjoint and therefore the simultaneous existence of these two attributes would
not make any sense at all.

Therefore, [constr_1382] has been introduced to clarify this aspect.

[constr_1382] Mutually exclusive existence of attributes SwVariableRefProxy.
autosarVariable vs. SwVariableRefProxy.mcDataInstanceVar dIn any
given AUTOSAR model, the aggregations SwVariableRefProxy.autosarVari-
able and SwVariableRefProxy.mcDataInstanceVar shall never exist at the
same time at any time in the workflow.c()

As shown in Figure 5.42, this approach is also used to represent a AutosarVari-
ableRef in all roles, e.g. the result of an interpolation routine applied to an axis, the
input value determination, a list of dependent parameters, and swDataDependency.

With the means of ApplicationArrayDataTypes it’s possible to define DataPro-
totypes holding an n-dimensional array of Compound Primitive Data Types of
category CURVE, MAP, CUBOID, CUBE_4, CUBE_5, COM_AXIS, or RES_AXIS.

For those DataPrototypes input values for the axes should be described to enable
a display of the working point in the MCD system.

Thereby, typically the whole array of the contained axes is either associated with an
array of variables or with a single value. In the case of arrays typically the n-th axis is
combined with the n-th input value.

[constr_1425] Definition of swCalprmAxisSet.swCalprmAxis / SwAxisIndi-
vidual.swVariableRef depending on the capabilities of the data type dThe

364 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

definition of a swCalprmAxisSet.swCalprmAxis / SwAxisIndividual.swVari-
ableRef in the context of an InstantiationDataDefProps or a Parameter-
Access is only supported for a DataPrototype of category ARRAY if the data
type of the ApplicationArrayElement also supports the specification of a swCal-
prmAxisSet.swCalprmAxis / SwAxisIndividual.swVariableRef according to
[constr_1289].

Thereby, multiple ApplicationArrayDataTypes might be nested to express mul-
tiple array dimensions. This rule shall be imposed at the time when the con-
tract phase generation is executed.c()

[TPS_SWCT_01683] Specification of an array of input variable for an array of
axes dFor DataPrototypes typed by an array of elements of category CURVE, MAP,
CUBOID, CUBE_4, CUBE_5, COM_AXIS, or RES_AXIS the applied Instantiation-
DataDefProps or ParameterAccess may reference a VariableDataPrototype
typed by an ApplicationArrayDataType with the means of SwAxisIndividual.
swVariableRef.autosarVariable.

This expresses the semantic that the nth element in the axis array uses the nth value in
the input variable array for the specific SwAxisGrouped.swAxisIndex.c()

Figure 5.43: The nth COM_AXIS in the array of COM_AXISs uses the nth VALUE in the array
of VALUEs as working point.

Please note that in this case the two associated arrays needs to have same number of
dimensions and sizes of the dimensions.

[constr_1426] Consistency of array sizes for axes and input variable array dThe
number of array dimension defined by ApplicationArrayDataTypes and the val-
ues of the maxNumberOfElements attributes for the array of elements of category
CURVE, MAP, CUBOID, CUBE_4, CUBE_5, COM_AXIS, or RES_AXIS shall be iden-
tical to the number of array dimension and according value of the maxNumberO-
fElements of the VariableDataPrototype referenced by SwAxisIndividual.
swVariableRef.autosarVariable.

365 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

InstantiationDataDefProps

COM_AXIS

parameterInstance

COM_AXIS

COM_AXIS

COM_AXIS

COM_AXIS

VALUE

swDataDefProps.

swCalprmAxisSet.swCalprmAxis.

swCalprmAxisTypeProps

(as SwAxisIndividual).swVariableRef

Figure 5.44: Each COM_AXIS in the array of COM_AXISs uses the identical VALUE as
working point.

[TPS_SWCT_01684] Specification of a single input variable for an array of axes
dFor DataPrototypes typed by an array of elements of category CURVE, MAP,
CUBOID, CUBE_4, CUBE_5, COM_AXIS, or RES_AXIS the applied Instantiation-
DataDefProps or ParameterAccess may reference a VariableDataPrototype
typed by an ApplicationPrimitiveDataType with the means of SwAxisIndi-
vidual.swVariableRef.autosarVariable.

This expresses the semantic that each element in the axis array uses the identical input
variable for the specific SwAxisGrouped.swAxisIndex.c()

5.4.6 Setting a Group Axis

Grouped curves share the same axis definition. In MSRSW, this is shown by referenc-
ing the SwCalprm, representing an individual curve, from a SwAxisGrouped.

Note that this does not describe which axis shall be taken from a reference swCalprm-
Ref acting as a shared axis. This would be done in SwAxisGrouped.swAxisIndex.

AUTOSAR applies a similar proxy approach for parameters as for the variables. There-
fore, an SwCalprmRefProxy has been introduced in MSRSW, and is aggregated by
the SwAxisGrouped element.

The SwCalprmRefProxy aggregates an AutosarParameterRef providing an as-
sociation to a ParameterDataPrototype, representing a curve with an axis. When

366 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

defining the data-type of a parameter, the type of the shared axis is defined in
sharedAxisType.

[constr_1020] ParameterDataPrototype needs to be of compatible data type
as referenced in sharedAxisType dFinally, the ParameterDataPrototype as-
signed in swCalprmRef shall be typed by data type compatible to sharedAxisType
at the time when the contract phase generation is executed.c()

The AUTOSAR-style is shown in the upper left part of Figure 5.42, while in the upper
middle the MSRSW style is shown, referencing the SwCalprm.

SwVariableRefProxy «atpVariation»
SwDataDefProps

+ additionalNativeTypeQualifier:
NativeDeclarationString [0..1]

+ displayFormat: DisplayFormatString [0..1]
+ displayPresentation:

DisplayPresentationEnum [0..1]
+ stepSize: Float [0..1]
+ swAlignment: AlignmentType [0..1]
+ swCalibrationAccess:

SwCalibrationAccessEnum [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: Numerical [0..1]
+ swInterpolationMethod: Identifier [0..1]
+ swIsVirtual: Boolean [0..1]

«atpVariation»
+ swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..*]

{ordered}

«atpMixed»
SwDataDependencyArgs

SwAxisIndividual

«atpVariation»
+ swMaxAxisPoints: Integer [0..1]
+ swMinAxisPoints: Integer [0..1]

SwCalprmAxisTypeProps

+ maxGradient: Float [0..1]
+ monotony: MonotonyEnum [0..1]

SwCalprmAxis

+ category: CalprmAxisCategoryEnum [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ swAxisIndex: AxisIndexType [0..1]
+ swCalibrationAccess:

SwCalibrationAccessEnum [0..1]

SwCalprmAxisSet

SwDataDependency

+swCalprmAxisTypeProps 0..1

+swVariable

0..1

+swCalprmAxis 0..*

+swCalprmAxisSet

0..1

+swVariableRef 0..*
{ordered}

+swDataDependencyArgs

0..1

+swHostVariable

0..1

+swComparisonVariable

0..*

+swDataDependency

0..1

Figure 5.45: Applying Proxy Variable Reference Mechanism

SwCalprmAxisTypeProps

SwAxisGrouped

+ swAxisIndex: AxisIndexType [0..1]

SwCalprmRefProxy

AutosarParameterRef

«atpMixed»
SwDataDependencyArgs

ParameterDataPrototype

AtpInstanceRef

ParameterInAtomicSWCTypeInstanceRef

AtpPrototype

DataPrototype
AutosarDataPrototype

+swCalprmRef

0..1

+arParameter 0..1

«instanceRef»

+autosarParameter 0..1+autosarParameter 0..1

+swCalprmRef

1

+targetDataPrototype

0..1
{redefines atpTarget}

+localParameter 0..1

Figure 5.46: Applying Proxy Parameter Reference Mechanism

367 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SwCalprmRefProxy

Package M2::MSR::DataDictionary::DatadictionaryProxies

Note Wrapper class for different kinds of references to a calibration parameter.

Base ARObject

Attribute Type Mult. Kind Note

arParameter AutosarParameterRef 0..1 aggr This represents a Parameter within AUTOSAR. Note that
the Datatype of the referenced ParameterDataPrototype
shall be an ApplicationDataType of category VALUE.

mcDataInstance McDataInstance 0..1 ref This reference is used in the McSupport file to express
the final instance of group axis etc. It is not allowed to use
this outside of an McDataInstance.

The referenced mcDataInstance shall be originated from
a ParameterDataPrototype.

Table 5.64: SwCalprmRefProxy

Class SwVariableRefProxy

Package M2::MSR::DataDictionary::DatadictionaryProxies

Note Proxy class for several kinds of references to a variable.

Base ARObject

Attribute Type Mult. Kind Note

autosarVariable AutosarVariableRef 0..1 aggr This represents the reference to a Variable in an Autosar
system. Note that the target of the reference within
AutosarVariableRef shall be typed by a primitive data type

mcDataInstance
Var

McDataInstance 0..1 ref This reference is used in the McSupport file to express
the final instance of input values etc. It is not allowed to
use this outside of an McDataInstance.

The referenced mcDataInstance shall be originated from
a VariableDataPrototype.

Table 5.65: SwVariableRefProxy

SwVariableRefProxyAutosarVariableRef

Identifiable

McDataInstance

SwCalprmRefProxy AutosarParameterRef+arParameter

0..1

+autosarVariable

0..1

+mcDataInstanceVar 0..1 +mcDataInstance0..1

Figure 5.47: Proxy reference classes

The basic patterns for referencing DataPrototypes are explained in section 5.3.3. In
the context of this chapter it is worth to remark that the definition of access to calibration
parameters is implemented in the context of a RunnableEntity (see Figure 7.3).

As the definition of a calibration parameter may involve the definition of several axes
the necessity to provide this amount of information might become cumbersome and
(to some extent) redundant and difficult to maintain if the same calibration parameter
is accessed from within several RunnableEntitys. In other words: in this case it
would be necessary to repeat the more or less complex set of information for each
RunnableEntity.

368 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

To avoid this unnecessary level of complexity for the definition of access to calibration
parameters, it is possible to define the access to the calibration parameter on the level
of InstantiationDataDefProps which have been defined to facilitate this kind of
re-use (for more information please refer to section 7.5.4). This ability is also docu-
mented in Table 5.43.

With the means of ApplicationArrayDataTypes its possible to define DataPro-
totypes holding an n-dimensional array of Compound Primitive Data Types of
category CURVE, MAP, CUBOID, CUBE_4, and CUBE_5.

For those DataPrototypes, group axis/axes needs to be defined in case SwAxisIn-
dividuals are not used for all SwCalprmAxis definitions.

Thereby, typically the whole array of elements of category CURVE, MAP, CUBOID,
CUBE_4, and CUBE_5 is either associated with an array of group axes or alternatively
with a single group axis.

In the case of arrays typically the nth CURVE, MAP, CUBOID, CUBE_4, and CUBE_5 is
combined with the nth COM_AXIS or RES_AXIS.

Figure 5.48: The nth CURVE in the array of CURVEs relates to the nth COM_AXIS in the array
of COM_AXISs

[constr_1427] Definition of swCalprmAxisSet.swCalprmAxis / SwAxis-
Grouped.swCalprmRef depending on the capabilities of the data type dThe def-
inition of a swCalprmAxisSet.swCalprmAxis / SwAxisGrouped.swCalprmRef in
the context of an InstantiationDataDefProps or a ParameterAccess is only
supported for a DataPrototype of category ARRAY if the data type of the Ap-
plicationArrayElement also supports the specification of a swCalprmAxisSet.
swCalprmAxis/ SwAxisGrouped.swCalprmRef according to [constr_1289].

Thereby, multiple ApplicationArrayDataTypes might be nested to express mul-
tiple array dimensions. This rule shall be imposed at the time when the con-
tract phase generation is executed.c()

369 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01685] Specification of an array of group axes for an array of cat-
egory CURVE, MAP, CUBOID, CUBE_4, or CUBE_5 dFor DataPrototypes typed by an
array of elements of category CURVE, MAP, CUBOID, CUBE_4, or CUBE_5 the ap-
plied InstantiationDataDefProps or ParameterAccess may reference a Dat-
aPrototype typed by an ApplicationArrayDataType with the means of SwAx-
isGrouped.swCalprmRef.arParameter.

This expresses the semantic that the nth element in the CURVE, MAP, CUBOID, CUBE_4,
or CUBE_5 array uses the nth group axis in the COM_AXIS or RES_AXIS array for the
specific SwAxisGrouped.swAxisIndex.c()

Please note that in this case the two associated arrays needs to have same number of
dimensions and sizes of the dimensions.

[constr_1428] Consistency of array sizes for arrays of elements of category
CURVE, MAP, CUBOID, CUBE_4, or CUBE_5 arrays and used group axes arrays dThe
number of array dimension defined by ApplicationArrayDataTypes and the val-
ues of attribute maxNumberOfElements attributes for the array of elements of cate-
gory CURVE, MAP, CUBOID, CUBE_4, or CUBE_5 needs to be identical to the number
of array dimension and according value of the maxNumberOfElements of the Dat-
aPrototype referenced by SwAxisGrouped.swCalprmRef.arParameter at the
time when the contract phase generation is executed.c()

Figure 5.49: Each MAP in the array of CURVEs uses the identical COM_AXIS

[TPS_SWCT_01686] Specification of a single group axis for an array of elements
of category CURVE, MAP, CUBOID, CUBE_4, or CUBE_5 dFor DataPrototypes
typed by an array of elements of category CURVE, MAP, CUBOID, CUBE_4, or CUBE_-
5 the applied InstantiationDataDefProps or ParameterAccess may reference
a DataPrototype typed by a ApplicationPrimitiveDataTypes of category

370 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

COM_AXIS or RES_AXIS with the means of SwAxisGrouped.swCalprmRef.arPa-
rameter.

This expresses the semantic that each element in the CURVE, MAP, CUBOID, CUBE_4,
or CUBE_5 array uses the identical COM_AXIS or RES_AXIS for the specific SwAxis-
Grouped.swAxisIndex.c()

5.4.7 Specifying Data Dependencies

SwDataDependency allows dependent data elements to be specified. For exam-
ple, other ParameterDataPrototypes can be combined into one ParameterDat-
aPrototypewhose consistent value is automatically derived by the measurement and
calibration system. Upon adjusting one of the parameters, the dependent parameter is
then also automatically adjusted according to the chosen formula.

Consider for example a rectangular triangle with a hypotenuse of length 1, where the
length of the other sides are the parameters A and B. When adjusting parameter A,
the parameter B has to be adjusted accordingly to B =

√
(1− A ∗ A). Also, other

parameters might depend on B, e.g. B_AREA = B ∗ B or TRIANGULAR_AREA =
(A ∗B)/2. This example is shown in listing 5.12.

A dependent parameter should not be adjustable by itself. The only way to influence
its value is through the adjustment of a parameter it depends on.

Listing 5.12: Data Dependency
<PER-INSTANCE-PARAMETERS>

<PARAMETER-DATA-PROTOTYPE>
<SHORT-NAME>A</SHORT-NAME>
<DESC>

<L-2 L="DE">The independent Parameter</L-2>
</DESC>
<CATEGORY>VALUE</CATEGORY>

</PARAMETER-DATA-PROTOTYPE>
<PARAMETER-DATA-PROTOTYPE>

<SHORT-NAME>B</SHORT-NAME>
<DESC>

<L-2 L="DE">The dependent Parameter</L-2>
</DESC>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-DATA-DEPENDENCY>
<SW-DATA-DEPENDENCY-FORMULA>SQRT(X1 * X1)</SW-DATA-DEPENDENCY-

FORMULA>
<SW-DATA-DEPENDENCY-ARGS>

<AR-PARAMETER>
<LOCAL-PARAMETER-REF DEST="PARAMETER-DATA-PROTOTYPE">/

DataDependency/foo/bar/A</LOCAL-PARAMETER-REF>
</AR-PARAMETER>

</SW-DATA-DEPENDENCY-ARGS>

371 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

</SW-DATA-DEPENDENCY>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</PARAMETER-DATA-PROTOTYPE>
<PARAMETER-DATA-PROTOTYPE>

<SHORT-NAME>B_AREA</SHORT-NAME>
<DESC>

<L-2 L="DE">The dependent Parameter</L-2>
</DESC>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-DATA-DEPENDENCY>
<SW-DATA-DEPENDENCY-FORMULA>X1 * X1</SW-DATA-DEPENDENCY-FORMULA

>
<SW-DATA-DEPENDENCY-ARGS>

<AR-PARAMETER>
<LOCAL-PARAMETER-REF DEST="PARAMETER-DATA-PROTOTYPE">/

DataDependency/foo/bar/B</LOCAL-PARAMETER-REF>
</AR-PARAMETER>

</SW-DATA-DEPENDENCY-ARGS>
</SW-DATA-DEPENDENCY>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</PARAMETER-DATA-PROTOTYPE>
<PARAMETER-DATA-PROTOTYPE>

<SHORT-NAME>TRIANGULAR_AREA</SHORT-NAME>
<DESC>

<L-2 L="DE">The dependent Parameter</L-2>
</DESC>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-DATA-DEPENDENCY>
<SW-DATA-DEPENDENCY-FORMULA>(X1 * X2) / 2</SW-DATA-DEPENDENCY-

FORMULA>
<SW-DATA-DEPENDENCY-ARGS>

<AR-PARAMETER>
<LOCAL-PARAMETER-REF DEST="PARAMETER-DATA-PROTOTYPE">/

DataDependency/foo/bar/A</LOCAL-PARAMETER-REF>
</AR-PARAMETER>
<AR-PARAMETER>

<LOCAL-PARAMETER-REF DEST="PARAMETER-DATA-PROTOTYPE">/
DataDependency/foo/bar/B</LOCAL-PARAMETER-REF>

</AR-PARAMETER>
</SW-DATA-DEPENDENCY-ARGS>

</SW-DATA-DEPENDENCY>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</PARAMETER-DATA-PROTOTYPE>
</PER-INSTANCE-PARAMETERS>

372 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SwDataDependency

Package M2::MSR::DataDictionary::DataDefProperties

Note This element describes the interdependencies of data objects, e.g. variables and parameters.

Use cases:

• Calculate the value of a calibration parameter (by the MCD system) from the value(s) of other
calibration parameters.

• Virtual data - that means the data object is not directly in the ecu and this property describes
how the "virtual variable" can be computed from the real ones (by the MCD system).

Base ARObject

Attribute Type Mult. Kind Note

swData
Dependency
Args

SwDataDependency
Args

0..1 aggr Specifies the arguments used in the data dependency.
Note that this is 0..1 since the aggregated class is a
container (atpMixed).

Tags:xml.sequenceOffset=40

swData
Dependency
Formula

CompuGenericMath 0..1 aggr This element describes the formula with which the
dependencies between the participating objects are
defined.

Tags:xml.sequenceOffset=30

Table 5.66: SwDataDependency

Class <<atpMixed>> SwDataDependencyArgs

Package M2::MSR::DataDictionary::DataDefProperties

Note This element specifies the elements used in a SwDataDependency.

Base ARObject

Attribute Type Mult. Kind Note

swCalprmRef SwCalprmRefProxy 0..1 aggr Specifies a calibration parameter as an input argument to
the dependency.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=60
xml.typeElement=false
xml.typeWrapperElement=false

swVariable SwVariableRefProxy 0..1 aggr Specifies a variable as an input argument to the
dependency.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=70
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.67: SwDataDependencyArgs

5.4.8 Precedence of data properties with respect to data elements, axis ele-
ments, computation methods, units

There are similar attributes defined in SwDataDefProps as well as in SwCalprmAxis
as well as in CompuMethod. Therefore, we need to define which attribute value wins
in the overall process from SWC-Description to MC-Support to ASAM-A2L.

373 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

TypeProperties

ARElement
AtpBlueprint

AtpBlueprintable

DataConstr

ARElement
AtpBlueprint

AtpBlueprintable

CompuMethod

+ displayFormat:
DisplayFormatString [0..1]

SwAxisIndividual

«atpVariation»
+ swMaxAxisPoints: Integer [0..1]
+ swMinAxisPoints: Integer [0..1]

SwVariableRefProxy

ARElement

Unit

+ factorSiToUnit: Float [0..1]
+ offsetSiToUnit: Float [0..1]

ApplicationPrimitiveDataType

SwCalprmAxisTypeProps

+ maxGradient: Float [0..1]
+ monotony: MonotonyEnum [0..1]

SwCalprmAxis

+ category: CalprmAxisCategoryEnum [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ swAxisIndex: AxisIndexType [0..1]
+ swCalibrationAccess:

SwCalibrationAccessEnum [0..1]

SwCalprmAxisSet

«atpVariation»
SwDataDefProps

+ additionalNativeTypeQualifier:
NativeDeclarationString [0..1]

+ displayFormat: DisplayFormatString [0..1]
+ displayPresentation:

DisplayPresentationEnum [0..1]
+ stepSize: Float [0..1]
+ swAlignment: AlignmentType [0..1]
+ swCalibrationAccess:

SwCalibrationAccessEnum [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: Numerical [0..1]
+ swInterpolationMethod: Identifier [0..1]
+ swIsVirtual: Boolean [0..1]

«atpVariation»
+ swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..*]

{ordered}

AtpBlueprint
AtpBlueprintable

ApplicationDataType

ARElement
AtpType

AutosarDataType

+unit 0..1

+compuMethod

0..1

+inputVariableType

0..1

+unit

0..1

+compuMethod

0..1

+dataConstr

0..1

+swVariableRef

0..*
{ordered}

+unit

0..1

+valueAxisDataType

0..1

+swCalprmAxis

0..*

+dataConstr

0..1

+swCalprmAxisSet 0..1

+swDataDefProps

0..1

+swCalprmAxisTypeProps

0..1

Figure 5.50: Various Attributes in the Context of SwDataDefProps

Figure 5.50 illustrates the fact that some attributes in SwDataDefProps can also be
expressed in sub-elements respectively in referenced elements.

[TPS_SWCT_01496] General precedence rule for attributes of SwDataDefProps
dThe general precedence rule is that

• SwDataDefProps wins over valueAxisDataType (exception: compuMethod
and unit).

• SwDataDefProps wins over compuMethod.

• SwDataDefProps wins over swCalprmAxisSet.

• SwDataDefProps.swCalprmAxisSet wins over swCalprmAxisSet.swCal-
prmAxis.swCalprmAxisTypeProps.compuMethod
or SwAxisIndividual.inputVariableType.

374 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• SwAxisIndividual.inputVariableType wins over SwAxisIndividual.
compuMethod, SwAxisIndividual.unit, but not over SwAxisIndividual.
dataConstr.

c()

The following examples illustrate particular cases (the highest precedence comes first):

• [TPS_SWCT_01497] Precedence of the unit of value axis dFor the usage of
unit of value axis the following precedence rule is defined:

– SwDataDefProps.valueAxisDataType.swDataDefProps.unit

– SwDataDefProps.valueAxisDataType.swDataDefProps.com-
puMethod.unit

– SwDataDefProps.unit

– SwDataDefProps.compuMethod.unit

c()

[constr_2550] Units of value axis shall be consistent dThe units specified in
the context of value axis shall be the same, even if there is a precedence rule.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

In particular, [constr_2550] reflects the fact that a Unit may be specified in dif-
ferent phases of the development process but finally need to be consistent.

• [TPS_SWCT_01498] Precedence of the DataConstr of value axis dFor the
usage of DataConstr of value axis the following precedence rule is defined:

– SwDataDefProps.dataConstr

– SwDataDefProps.valueAxisDataType.swDataDefProps.dataCon-
str

c()

[constr_2548] Data constraint of value axis shall match dThe values compli-
ant to SwDataDefProps.dataConstr shall also be compliant to SwDataDef-
Props.valueAxisDataType.swDataDefProps.dataConstr.

In other words SwDataDefProps.dataConstr win over but are not allowed to
relax SwDataDefProps.valueAxisDataType.swDataDefProps.dataCon-
str but are not allowed.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

• [TPS_SWCT_01499] Precedence of the CompuMethod of value axis dFor the
usage of CompuMethod of value axis the following precedence rule is defined:

375 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

– SwDataDefProps.valueAxisDataType.swDataDefProps.com-
puMethod

– SwDataDefProps.compuMethod

c()

• [TPS_SWCT_01500] Precedence of the display format of value axis dFor the
usage of display format of value axis the following precedence rule is defined:

– SwDataDefProps.displayFormat

– SwDataDefProps.valueAxisDataType.swDataDefProps.display-
Format

– SwDataDefProps.valueAxisDataType.swDataDefProps.com-
puMethod.displayFormat

– SwDataDefProps.compuMethod.displayFormat

c()

Note that this deviates from the general rule since displayFormat is not an
essential property. The last item in the list above is the consequence of the fact
that if there is a valueAxisDataType it supersedes the compuMethod

• [TPS_SWCT_01501] Precedence of the calibration access of value axis dFor
the usage of calibration access of value axis the following precedence rule is
defined:

– SwDataDefProps.swCalibrationAccess

– SwDataDefProps.valueAxisDataType.swDataDefProps.swCali-
brationAccess

c()

Note that this deviates from the general rule since swCalibrationAccess is
not such an essential property.

• [TPS_SWCT_01502] Precedence of the Unit of the input axis dFor the usage
of Unit of the input axis the following precedence rule is defined:

– SwAxisIndividual.unit

– SwAxisIndividual.compuMethod.unit

– SwAxisIndividual.inputVariableType.swDataDefProps.unit

– SwAxisIndividual.swVariableRef.autosarVariable.autosar-
Variable.type.swDataDefProps.compuMethod.unit

– SwAxisIndividual.swVariableRef.autosarVariable.autosar-
Variable.type.swDataDefProps.unit

c()

376 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_2549] Units of input axis shall be consistent dThe units specified in
the context of an input axis shall be compatible, even if there is a precedence
rule.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

[constr_2549] reflects the fact that unit may be specified in different phases of
the development process but finally need to be consistent.

• [TPS_SWCT_01503] Precedence of the DataConstr of the input axis dFor
the usage of DataConstr of the input axis the following precedence rule is de-
fined:

– SwAxisIndividual.dataConstr

– SwAxisIndividual.inputVariableType.swDataDefProps.data-
Constr

– SwAxisIndividual.swVariableRef.type.swDataDefProps.data-
Constr

c()

Please note that the attribute SwAxisIndividual.inputVariableType.sw-
DataDefProps.dataConstr represents the input value, not the axis itself. For
this reason, there is no specific constraint defined that the dataConstr needs
to fulfill.

• [TPS_SWCT_01504] Precedence of the display format of the input axis dFor
the usage of display format of the input axis the following precedence rule is
defined:

– SwCalprmAxis.displayFormat

– SwCalprmAxis.swCalprmAxisTypeProps.compuMethod.display-
Format

– SwCalprmAxis.swCalprmAxisTypeProps.inputVariableType.
swDataDefProps.displayFormat

– SwCalprmAxis.swCalprmAxisTypeProps.inputVariableType.
swDataDefProps.compuMethod.displayFormat

– SwCalprmAxis.swCalprmAxisTypeProps.swVariableRef.type.
swDataDefProps.displayFormat

– SwCalprmAxis.swCalprmAxisTypeProps.swVariableRef.type.
swDataDefProps.compuMethod.displayFormat

c()

377 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Please note that SwAxisIndividual.inputVariableType.swDataDef-
Props.dataConstr represent the input value and not the axis itself. For this
reason there is no specific constraint that displayFormat needs to match.

• [TPS_SWCT_01505] Precedence of calibration access along structure hier-
archies in complex types dFor the usage of calibration access along structure
hierarchies in complex types the precedence rule is defined in table 5.68.c()

The interpretation of table 5.68 is that it lists possible combinations of values of
SwCalibrationAccessEnum for outer and inner elements of a complex data
type and the (in the column "result") indicates value of SwCalibrationAc-
cessEnum applicable for this specific combination.

• [TPS_SWCT_01506] Precedence of the calibration access of input axis dFor
the usage of calibration access of input axis the following precedence rule is
defined:

– SwDataDefProps.swCalibrationAccess

– SwCalprmAxis.swCalibrationAccess

c()

Note that the swCalibrationAccess defined on a Compound Primitive
Data Type (see [TPS_SWCT_01179]) reflects the entire curve or map.

Therefore, if the entire curve or map cannot be accessed by the measurement
calibration diagnostic system (MCD-System), the axis can also not be accessed.
On the other hand it might be that access is granted for the value axis only but
not for the axis points.

outer inner result
notAccessible * notAccessible

readOnly readOnly readOnly

readOnly readWrite readOnly

readOnly notAccessible notAccessible

readWrite notAccessible notAccessible

readWrite readOnly readOnly

readWrite readWrite readWrite

Table 5.68: Precedence of swCalibrationAccess along structure hier-
archies

5.5 Elements used in Properties of Data Definitions

This section describes further elements which are attached to SwDataDefProps via
associations.

378 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.5.1 Computation Methods

[TPS_SWCT_01276] Computation methods dAn important part of semantics is the
specification of a so-called computation method which specifies the conversion be-
tween the physical and the internal representation of data. This usually makes sense
only for primitive data types.c()

An ApplicationCompositeDataType cannot be given a particular semantic mean-
ing as a whole but it is obviously possible to specify the semantics of all or a part of the
contained elements, i.e. the ApplicationPrimitiveDataTypes.

Class CompuMethod

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to express the relationship between a physical value and the
mathematical representation.

Note that this is still independent of the technical implementation in data types. It only specifies the
formula how the internal value corresponds to its physical pendant.

Tags:atp.recommendedPackage=CompuMethods

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

compuInternal
ToPhys

Compu 0..1 aggr This specifies the computation from internal values to
physical values.

Tags:xml.sequenceOffset=80

compuPhysTo
Internal

Compu 0..1 aggr This represents the computation from physical values to
the internal values.

Tags:xml.sequenceOffset=90

displayFormat DisplayFormatString 0..1 attr This property specifies, how the physical value shall be
displayed e.g. in documents or measurement and
calibration tools.

Tags:xml.sequenceOffset=20

unit Unit 0..1 ref This is the physical unit of the Physical values for which
the CompuMethod applies.

Tags:xml.sequenceOffset=30

Table 5.69: CompuMethod

This meta-class CompuMethod was actually taken from the ASAM standard’s harmo-
nized data objects. This is also indicated by the green color of the meta-classes in the
diagram.

Some categorys of CompuMethod cannot be successfully converted to A2L [26] be-
cause A2L does not provide an equivalent semantics that comes close to the respective
AUTOSAR semantics.

A prominent example for such a case is a CompuMethod of category SCALE_LIN-
EAR_AND_TEXTTABLE that actually has more than one linear interval and a texttable
part.

[constr_1142] category of CompuMethod shall not be extended dIn contrast to the
general rule that category can be extended by user-specific values it is not allowed

379 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

to extend the meaning of the attribute category of meta-class CompuMethod at any
time in the workflow.c()

[TPS_SWCT_01277] Computation methods are used for the conversion of inter-
nal values into their physical representation and vice versa dCompuMethods are
used for the conversion of internal values into their physical representation and vice
versa. The direction of the conversion depends on the origin of the value to be con-
verted:

• If the value is provided by the ECU, then the conversion direction is from internal
to physical.

• If a physical value is provided by the tester, it is converted to internal values before
being sent to the ECU

c()

[TPS_SWCT_01548] Limits of a CompuMethod dIn case CompuScale.lowerLimit
and CompuScale.upperLimit are used to constrain the applicable range of the con-
version of a CompuMethod, they logically represent the limiting values before the con-
version is applied.c()

In other words, the limits are applied on the source end of the conversion rather than
to the result that comes out at the other end of the conversion.

This is obviously a lot safer than the opposite approach where a given physical/internal
value would first be converted to its internal/physical equivalent and then, after the con-
version is finished there would be (as a second step) the obligation to check whether
the result of the conversion is actually valid in terms of the applicable limits.

ARElement
AtpBlueprint

AtpBlueprintable

CompuMethod

+ displayFormat: DisplayFormatString [0..1]

CompuScale

+ mask: PositiveInteger [0..1]
+ shortLabel: Identifier [0..1]
+ symbol: CIdentifier [0..1]

«atpVariation»
+ lowerLimit: Limit [0..1]
+ upperLimit: Limit [0..1]

Compu CompuContent

CompuScales

ARElement

Unit

+ factorSiToUnit: Float [0..1]
+ offsetSiToUnit: Float [0..1]

ARElement

PhysicalDimension

+ currentExp: Numerical [0..1]
+ lengthExp: Numerical [0..1]
+ luminousIntensityExp: Numerical [0..1]
+ massExp: Numerical [0..1]
+ molarAmountExp: Numerical [0..1]
+ temperatureExp: Numerical [0..1]
+ timeExp: Numerical [0..1]

������������	
 ����

�����������	��	���� �

�������	����������	����

������ �

���� !�"����!�#�$!!�

��� %&�'($&

+compuPhysToInternal

0..1

+compuContent

0..1

+unit 0..1

+physicalDimension

0..1

«atpVariation»

+compuScale 0..* {ordered}

+compuInternalToPhys

0..1

Figure 5.51: A CompuMethod and its attributes define data semantics

[TPS_SWCT_01278] CompuMethods can also be used to assign symbolic names
to internal values dCompuMethods can also be used to assign symbolic names to
internal values (like an enumeration in C) or to ranges of internal values or to single
bits (like a bitfield in C).

380 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This is also considered as a conversion between internal numbers and a semantical
representation. Some examples are given below.c()

Actually, the preferred conversion direction depends on the use case.

CompuScale

+ mask: PositiveInteger [0..1]
+ shortLabel: Identifier [0..1]
+ symbol: CIdentifier [0..1]

«atpVariation»
+ lowerLimit: Limit [0..1]
+ upperLimit: Limit [0..1]

CompuScaleContents

CompuScaleRationalFormula

CompuRationalCoeffs

CompuNominatorDenominator

«atpVariation»
+ v: Numerical [0..*] {ordered}

CompuScaleConstantContents

CompuConst
+compuInverseValue

0..1

+compuScaleContents

0..1

+compuRationalCoeffs0..1

+compuDenominator
0..1

+compuConst 0..1

+compuNumerator 0..1

Figure 5.52: A CompuScale and its attributes define data semantics

In the following, the internal-to-physical conversion direction is used as the default.
Usually a CompuMethod is defined for one conversion direction only even if it is used
in both directions.

For simple functions like identical (1:1 conversion) or linear functions this is sufficient
because the inverse function can be derived quite easily from the defined function. In
this case also the limits for the reverse direction can be gained by applying the forward
function to the forward limits.

For more complex functions (e.g. rational functions) it is usually not possible to com-
pute the inverse function automatically. More seriously, the inversion yields ambiguous
results if the function is not monotonic. To deal with such possible ambiguities directly,
an inverse value can be provided explicitly for the function or for each of its parts re-
spectively.

[constr_1022] Limits shall be defined for each direction of CompuMethod dIn
case that both domains are specified in the CompuMethod both shall have explicitly
defined limits at the time when the contract phase generation is ex-
ecuted.c()

[TPS_SWCT_01280] CompuMethod applied to values outside of its limits dIf a
CompuMethod is applied to values outside its limits, it is up to the MCD-tool (Mea-
surement, Calibration, Diagnostic tool) to indicate this to the user. In this case the
CompuMethod shall not be applied at all.c()

[constr_1175] Depending on its category, CompuMethod shall refer to a unit
dAs a CompuMethod specifies the conversion between the physical world and the nu-
merical values, it shall refer to a unit unless the CompuMethod’s category is one of
TEXTTABLE, BITFIELD_TEXTTABLE, or IDENTICAL.

381 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1175] does not imply that CompuMethods where the category is one of
TEXTTABLE, BITFIELD_TEXTTABLE, or IDENTICAL are not allowed to refer to a
unit. They may still refer to a unit, but according to [constr_1175] this relation is not
mandated.

A further implication is that the unit itself may not have a dimension, i.e. all exponents
of SI units are 0.

Figure 5.51 sketches a conceptual overview of CompuMethod. It consists of the fol-
lowing attributes:

• [TPS_SWCT_01281] Unit associated with a PhysicalDimension dA unit
(described in next section) can be associated with a PhysicalDimension.c()

Note that quantities like “%” are not derived from SI units. However, they have a
meaning in the physical world and need to be represented in form of data types.
Therefore, a CompuMethod also applies in those cases.

• [TPS_SWCT_01430] Conversion specification from internal to physical val-
ues as well as the reverse conversion dA conversion specification from internal
to physical values, as well as the reverse conversion. Both of them in turn con-
sist of an abstract CompuContent. Derived classes allow the specification of a
conversion formula in two different ways.c()

[constr_1024] Stepwise definition of CompuMethods dIn a bound model, the
intervals (i.e. determined by attributes CompuScale.lowerLimit and CompuS-
cale.upperLimit) defined by CompuScales used in the context of a given
CompuMethod of all values of category except BITFIELD_TEXTTABLE shall
not overlap.

For CompuMethods of category BITFIELD_TEXTTABLE, the combination
of the interval created by attributes CompuScale.upperLimit, CompuScale.
lowerLimit and CompuScale.mask shall be unique in the context of the en-
closing CompuMethod.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

The possible values of CompuMethod.category are listed in Table 5.80.

[TPS_SWCT_01667] Avoidance of overlapping of directly adjacent intervals
within CompuMethods dIntervals of a given CompuMethod may be located di-
rectly adjacent to each other.

This means that the upperLimit of one CompuScale has the same numerical
value as the lowerLimit of another CompuScale defined within the context of
the CompuMethod.

382 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In this case, it is necessary to properly set the attribute CompuScale.lower-
Limit.intervalType or CompuScale.upperLimit.intervalType in order
to avoid an overlapping.

Specifically, one of the interval boundaries shall be set to intervalType.open
in order to avoid an overlapping.c()

• [TPS_SWCT_01282] Number of intervals in which a given conversion ap-
plies dCompuScales is a number of intervals (called CompuScale) within which
a certain conversion applies. The respective interval is given in terms of upper
and lower limit.

Within each CompuScale we have the abstract CompuScaleContents. To deal
with possible ambiguities directly, an inverse value can be provided explicitly for
that particular scale (compuInverseValue).c()

Please note that limits are explained in more detail in chapter 5.2.4.1.

• As the diagram shows, CompuScaleContents is an abstract meta-class. A
number of derived meta-classes allow the specification of a conversion formula
in a variety of ways, including:

– mapping the whole interval to a constant (CompuConst)

– providing rational coefficients of the conversion formula (CompuRational-
Coeffs)

• [TPS_SWCT_01283] Rational function dThe rational function is specified as
rational coefficients for the numerator (compuNumerator) and the denominator
(compuDenominator). CompuNominatorDenominator can have as many V
elements as needed for the rational function.

The sequence of the values V carries the information for the exponents, that
means the first V is the coefficient for x0, the second V is the coefficient for x1,
etc. With this sequence the values of the exponents can be entirely represented.c
()

[constr_1025] Avoid division by zero in rational formula dThe rational formula
shall not yield any division by zero at any time in the workflow.c()

[TPS_SWCT_01284] CompuScalemight require a representation in the generated
RTE C code dA CompuScale might require a representation in the generated RTE C
code. For this purpose it is necessary to identify a property that controls how to symbol
used for the CompuScale in the C code is created.

The symbol itself can be created out of different sources according to a standardized
precedence schema.c()

[TPS_SWCT_01569] Definition of CompuScale Code Symbolic Name dIn C
code, a CompuScale is represented by an identifier that is, as far as AUTOSAR mod-
eling is concerned, called a CompuScale Symbolic Name.

383 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The CompuScale Code Symbolic Name may be taken from CompuScale.sym-
bol, CompuConstTextContent.vt, or CompuScale.shortLabel. The details are
explained in [TPS_SWCT_01431].c()

[TPS_SWCT_01431] Finding the symbol for the representation of a CompuScale
with a point-range in C code dIn general, the value of the attributes symbol, vt, and
shortLabel can be taken as the source for naming the symbol that represents the
CompuScale in the C code.

The following rule applies (lower values indicate higher priority) for all CompuScales
with a point-range:

1. Take the value of symbol if this attribute exists.

2. Take the value of vt if it makes a valid C identifier.

3. Take the value of shortLabel if it exists.

Fail if none of the possible options apply.

c()

[TPS_SWCT_01695] Relation between ValueSpecification and the defini-
tion of CompuScales dIn order to find a match between the content of a Val-
ueSpecification and a CompuScale the content of the ValueSpecification
shall be checked against the CompuScale Value Symbolic Names according to
[TPS_SWCT_01696].

If no matching CompuScale Value Symbolic Names can be found then the Val-
ueSpecification shall be considered unusable in the context of the CompuMethod
that is subject to [constr_1146].c()

[TPS_SWCT_01696] CompuScale Value Symbolic Name dThe value of the Com-
puScale Value Symbolic Name of a given CompuScale shall be obtained by tak-
ing the values of the following attributes according to the following priority (lower values
indicate higher priority):

1. Take the value of symbol if this attribute exists.

2. Take the value of vt if this attribute exists.

3. Take the value of shortLabel if it exists.

c()

Just to be sure, the (obvious) difference between a CompuScale Value Symbolic
Name and a CompuScale Code Symbolic Name is that the former is not required
to pass as a valid C identifier.

384 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1434] CompuScales shall not have identical CompuScale Value Sym-
bolic Names dIn a CompuMethod that is subject to [constr_1146], no two Com-
puScales shall have identical CompuScale Value Symbolic Names (accord-
ing to [TPS_SWCT_01696]) at the time when the contract phase gener-
ation is executed.c()

[constr_1146] Applicability of a symbol for a CompuScale in C code dThe sym-
bol attribute shall only be provided for CompuScales where the category of the
enclosing CompuMethod is one of the following:

• TEXTTABLE

• SCALE_LINEAR_AND_TEXTTABLE

• SCALE_RATIONAL_AND_TEXTTABLE

• BITFIELD_TEXTTABLE

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Class Compu

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to express one particular computation.

Base ARObject

Attribute Type Mult. Kind Note

compuContent CompuContent 0..1 aggr This specifies the details of the computation.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

compuDefault
Value

CompuConst 0..1 aggr This property can be used to specify an output value for a
conversion formula, if the value to be converted lies
outside the plausibility limit. Although this is possible for
all conversion formulae, it is especially valid for variables
with tabular conversion formulae.

Tags:xml.sequenceOffset=70

Table 5.70: Compu

Class CompuContent (abstract)

Package M2::MSR::AsamHdo::ComputationMethod

Note This abstract meta-class represents the various definition means of a computation method.

Base ARObject

Subclasses CompuScales

Attribute Type Mult. Kind Note

– – – – –

Table 5.71: CompuContent

385 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class CompuScale

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to specify one segment of a segmented computation method.

Base ARObject

Attribute Type Mult. Kind Note

compuInverse
Value

CompuConst 0..1 aggr This is the inverse value of the constraint. This supports
the case that the scale is not reversible per se.

Tags:xml.sequenceOffset=60

compuScale
Contents

CompuScaleContents 0..1 aggr This represents the computation details of the scale.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=70
xml.typeElement=false
xml.typeWrapperElement=false

desc MultiLanguageOverview
Paragraph

0..1 aggr <desc> represents a general but brief description of the
object in question.

Tags:xml.sequenceOffset=30

lowerLimit Limit 0..1 attr This specifies the lower limit of the scale.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

mask PositiveInteger 0..1 attr In difference to all the other computational methods every
COMPU-SCALE will be applied including the bit MASK.
Therefore it is allowed for this type of COMPU-METHOD,
that COMPU-SCALES overlap.

To calculate the string reverse to a value, the string has to
be split and the according value for each substring has to
be summed up. The sum is finally transmitted.

The processing has to be done in order of the
COMPU-SCALE elements.

Tags:xml.sequenceOffset=35

shortLabel Identifier 0..1 attr This element specifies a short name for the particular
scale. The name can for example be used to derive a
programming language identifier.

Tags:xml.sequenceOffset=20

symbol CIdentifier 0..1 attr The symbol, if provided, is used by code generators to get
a C identifier for the CompuScale. The name will be used
as is for the code generation, therefore it needs to be
unique within the generation context.

Tags:xml.sequenceOffset=25

upperLimit Limit 0..1 attr This specifies the upper limit of a of the scale.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

Table 5.72: CompuScale

386 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class CompuScales

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to stepwise express a computation method.

Base ARObject , CompuContent

Attribute Type Mult. Kind Note

compuScale
(ordered)

CompuScale * aggr This represents one scale within the compu method. Note
that it contains a Variationpoint in order to support
blueprints of enumerations.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=blueprintDerivationTime
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=40
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.73: CompuScales

Class CompuScaleContents (abstract)

Package M2::MSR::AsamHdo::ComputationMethod

Note This abstract meta-class represents the content of one particular scale.

Base ARObject

Subclasses CompuScaleConstantContents, CompuScaleRationalFormula

Attribute Type Mult. Kind Note

– – – – –

Table 5.74: CompuScaleContents

Class CompuRationalCoeffs

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to express a rational function by specifying the coefficients of
nominator and denominator.

Base ARObject

Attribute Type Mult. Kind Note

compu
Denominator

CompuNominator
Denominator

0..1 aggr This is the denominator of the expression.

Tags:xml.sequenceOffset=30

compu
Numerator

CompuNominator
Denominator

0..1 aggr This is the numerator of the rational expression.

Tags:xml.sequenceOffset=20

Table 5.75: CompuRationalCoeffs

[constr_1913] Existence of attribute CompuRationalCoeffs.compuDenomina-
tor dFor each CompuRationalCoeffs, the attribute compuDenominator shall ex-
ist at the time when the contract phase generation is executed.c()

[constr_1914] Existence of attribute CompuRationalCoeffs.compuNumerator
dFor each CompuRationalCoeffs, the attribute compuNumerator shall exist at
the time when the contract phase generation is executed.c()

387 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class CompuConst

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the fact that the value of a computation method scale is constant.

Base ARObject

Attribute Type Mult. Kind Note

compuConst
ContentType

CompuConstContent 0..1 aggr This is the actual content of the constant compu method
scale.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=10
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.76: CompuConst

Class CompuScaleRationalFormula

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the fact that the computation in this scale is represented as rational term.

Base ARObject , CompuScaleContents

Attribute Type Mult. Kind Note

compuRational
Coeffs

CompuRationalCoeffs 0..1 aggr This specifies the coefficients of the rational formula.

Tags:xml.sequenceOffset=110

Table 5.77: CompuScaleRationalFormula

Class CompuScaleConstantContents

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the fact that a particular scale of the computation method is constant.

Base ARObject , CompuScaleContents

Attribute Type Mult. Kind Note

compuConst CompuConst 0..1 aggr This represents the fact that the scale is a constant. The
use case is mainly a non interpolated scale. It is a
simplification of the fact that a constant scale can also be
expressed as rational function of order 0.

Tags:xml.sequenceOffset=90

Table 5.78: CompuScaleConstantContents

Class CompuNominatorDenominator

Package M2::MSR::AsamHdo::ComputationMethod

Note This class represents the ability to express a polynomial either as Nominator or as Denominator.

Base ARObject

Attribute Type Mult. Kind Note

5

388 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class CompuNominatorDenominator

v (ordered) Numerical * attr this is the list of polynomial factors. Note that the first vf
represents the power=0. The polynomial is v[0] * xˆ0 +
v[1] * xˆ1 ...

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.79: CompuNominatorDenominator

Please note that the values of coefficients within a rational formula are not restricted
to integer values. It is possible to use floating-point values as well.

The values of exponents cannot be set arbitrarily but are implicitly defined by the
appearance of coefficients in CompuNominatorDenominator.v, i.e. the first value in
the ordered list of CompuNominatorDenominator.v represents the exponent 0, the
second CompuNominatorDenominator.v represents the exponent 1, and so on.

5.5.1.1 Category Values in the context of a CompuMethod

For a detailed description of CompuMethods, please refer to the ASAM MCD 2 Har-
monized Data Objects [27].

Table 5.80 contains a definition of possible values for the attribute category.

ASAM Category Meaning Specific properties

IDENTICAL
This CompuMethod just hands
over the internal value with an
optional unit.

Only the base elements are allowed and unit, physCon-
strs and internalConstrs are optional. This is the sim-
plest type of a CompuMethod.

LINEAR

A linear conversion can be per-
formed in two steps: The inter-
nal value is multiplied with a fac-
tor; after that, an offset is added
to the result of the multiplication.

Exactly one CompuScale, with two v in compuNumerator
and one v in compuDenominator.

SCALE_LINEAR

Used for a piecewise linear con-
version.

More than one compuScale can be defined. Additionally
there have to be the upperLimit and lowerLimit ele-
ments which define the region of validity for the linear func-
tion. The boundaries of the regions shall not overlap.

SCALE_LINEAR_AND_
TEXTTABLE

Used for piecewise definition of
one or more linear and several
texttable scales.

Properties depend on the used scale function. For de-
tails see definition of SCALE_LINEAR and TEXTTABLE. The
scales shall each provide lowerLimit and upperLimit
definitions.

5

389 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
ASAM Category Meaning Specific properties

RAT_FUNC

The rational function type is sim-
ilar to the linear type without
the restrictions for the com-
puNumerators and compuDe-
nominators.

It can have as many v elements as needed for the rational
function. The sequence of the values v carries the informa-
tion for the exponents, that means the first v is the coefficient
for x0, the second v is the coefficient for x1, etc.

With this sequence the values of the exponents can be en-
tirely represented. A rational function is only applicable for
conversions in the direction that it is defined for, i.e. the auto-
matic calculation of the inverse function is not supported by
the MCD system.

SCALE_RAT_FUNC Used for piecewise defined ra-
tional conversion.

SCALE_RATIONAL_AND_
TEXTTABLE

Used for piecewise definition of
one rational and several text-
table scales.

Properties depend on the used scale function. For details
see definition of SCALE_RAT_FUNC and TEXTTABLE. The
scales shall each provide lowerLimit and upperLimit
definitions.

TEXTTABLE

The type TEXTTABLE is used
for transformations of the inter-
nal value into textual elements.

The result is placed in the vt member of CompuConst. The
compuDefaultValue is optional. If the reverse calculation
is needed then for each scale the compuInverseValue can
be used to define the reverse calculation result.

If no inverse value is explicitly defined then the smallest pos-
sible value of the scale will be used as result of the reverse
calculation.

[constr_1134] applies!

TAB_NOINTP Similar to TEXTTABLE, but for
numerical values.

The values per scale are defined in CompuConst.

BITFIELD_TEXTTABLE

Similar to TEXTTABLE but for bit
fields.

BITFIELD_TEXTTABLE is derived from TEXTTABLE. The
main difference is that TEXTTABLE results to a single value
while BITFIELD_TEXTTABLE results to a concatenated
value set.

In difference to all the other computational methods every
CompuScale will be applied including the bit mask speci-
fied in mask. Therefore it is allowed for this type of Com-
puMethod, that CompuScales overlap.

To calculate the string reverse to a value, the string has to
be split and the according value for each substring has to be
summed up. The sum is finally transmitted. The processing
has to be done in order of the CompuScale elements.

[constr_1135] applies!

Table 5.80: ASAM compuMethod

[constr_1134] Allowed structure of TEXTTABLE dThe existence of physConstrs is
not allowed and compuInternalToPhys shall exist with compuScales consisting of
upperLimit and lowerLimit at any time in the workflow.c()

[constr_1135] Limit of vt in BITFIELD_TEXTTABLE dThe separator for splitting the
string representing the value is “|” and is therefore forbidden to appear in vt at any
time in the workflow.c()

5.5.1.2 Applicability of Attributes in the context of a CompuMethod

This section summarizes the applicability of CompuMethod in terms of which attributes
of CompuMethod and related meta-classes (e.g. CompuScale, CompuConst) shall be

390 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

used depending on the nature of the CompuMethod, expressed by means of the value
of attribute category.

[constr_1375] Existence of attributes of CompuMethod and related meta-classes
dThe existence of attributes of CompuMethod and related meta-classes depending on
the value of the category shall follow the restrictions documented in Table 5.81.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Attribute Existence per Category

Attributes of CompuMethod I
D
E
N
T
I
C
A
L

L
I
N
E
A
R

S
C
A
L
E
_
L
I
N
E
A
R

R
A
T
_
F
U
N
C

S
C
A
L
E
_
R
A
T
_
F
U
N
C

T
E
X
T
T
A
B
L
E

B
I
T
F
I
E
L
D
_
T
E
X
T
T
A
B
L
E

S
C
A
L
E
_
L
I
N
E
A
R
_
A
N
D
_
T
E
X
T
T
A
B
L
E

S
C
A
L
E
_
R
A
T
I
O
N
A
L
_
A
N
D
_
T
E
X
T
T
A
B
L
E

T
A
B
_
N
O
I
N
T
P

compuInternalToPhys N/A D(1) D(1) D(2) D(2) D D D(8) D(2) D

compuPhysToInternal N/A D(1) D(1) D(2) D(2) N/A N/A N/A D(2,3) N/A

Attributes of meta-classes related to CompuMethod

compuDefaultValue N/A O(6) O(6) O(6) O(6) O(6) O(6) O(6) O(6) O(6)

CompuScale N/A D/1..1 D/1..n D/1..1 D/1..n D/1..n D/1..n D/1..n D/1..n D/1..n

CompuScale.compuInverseValue N/A N/A N/A O(2) O(2) O(5) N/A O(2,5) O(2,5) O(5)

CompuScale.lowerLimit N/A O D D(4) D(4) D D D D(4) D

CompuScale.mask N/A N/A N/A N/A N/A N/A D N/A N/A N/A

CompuScale.shortLabel N/A N/A N/A N/A N/A O(7) O(7) O(7) O(7) N/A

CompuScale.symbol N/A N/A N/A N/A N/A O(7) O(7) O(7) O(7) N/A

CompuScale.upperLimit N/A O D D(4) D(4) D D D D(4) D

CompuConst N/A N/A N/A N/A N/A D/vt D/vt D/vt D/vt D/vt or vf

CompuRationalCoeffs N/A D D D D N/A N/A D D N/A

CompuRationalCoeffs.compuDenominator N/A D/1v D/1v D D N/A N/A D/1v D N/A

CompuRationalCoeffs.compuNumerator N/A D/2v D/2v D D N/A N/A D/2v D N/A

Table 5.81: Allowed Attributes vs. category for CompuMethods

For clarification, the first two rows of Table 5.81 define the applicability of the imme-
diate attributes of meta-class CompuMethod, the remainder of the table then goes
into further detail regarding the usage of the attributes of related meta-classes (e.g.
CompuScale, CompuConst).

Please note that annotations apply to the individual cell values. These annotations are
formulated by means of a numerical value in parentheses, e.g. (1).

The legend for the individual annotations can be found below Table 5.81.

The following legend applies to the cells in table 5.81:

391 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

D Define the attribute.

N/A Attribute is not applicable for usage in the scope of this element.

O Optionally define the attribute.

In addition to the primary cell legend the following annotations apply to the cells in
table 5.81:

(1) In this case either compuPhysToInternal or compuInternalToPhys shall be
defined.

(2) In this case both compuPhysToInternal and compuInternalToPhys shall
be defined unless compuInverseValue exists (see [TPS_SWCT_01282]). In
other words, if the explicit definition of a compuInverseValue exists then there
is no need to define conversions from internal to physical and vice versa.

(3) Not applicable for CompuScales where attribute compuScaleContents.compu-
Const exists.

(4) Limits shall be defined according to [constr_1022].

(5) Restrictions on the structure of the CompuMethod according to [constr_1134] ap-
ply.

(6) Specify an output value for a conversion formula if the value to be converted yields
outside the plausibility limit (for more information, please refer to the class table
of Compu).

(7) Restricted applicability for the attribute CompuScale.symbol, see [constr_1146].

(8) Mandatory for CompuConst; enforced for CompuRationalCoeffs.

5.5.1.3 CompuMethod and AutosarDataType

This chapter clarifies the applicability of CompuMethod for the relevant concrete sub-
classes of AutosarDataType.

5.5.1.3.1 CompuMethod and ApplicationDataType

For ApplicationDataType, there are (see Table 5.7) a number values of cate-
gory that allow for the definition of a ApplicationDataType.swDataDefProps.
compuMethod.

Table 5.82 visualizes the allowed combinations of ApplicationDataType.cate-
gory vs. CompuMethod.category.

392 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

I
D
E
N
T
I
C
A
L

L
I
N
E
A
R

S
C
A
L
E
_
L
I
N
E
A
R

S
C
A
L
E
_
L
I
N
E
A
R
_
A
N
D
_
T
E
X
T
T
A
B
L
E

R
A
T
_
F
U
N
C

S
C
A
L
E
_
R
A
T
I
O
N
A
L
_
A
N
D
_
T
E
X
T
T
A
B
L
E

T
E
X
T
T
A
B
L
E

T
A
B
_
N
O
I
N
T
P

B
I
T
F
I
E
L
D
_
T
E
X
T
T
A
B
L
E

VALUE x x x x x x x x x

VAL_BLK x x x x x x x x x

BOOLEAN n/a n/a n/a n/a n/a n/a x n/a n/a

CURVE x x x x x x x x x

MAP x x x x x x x x x

CUBOID x x x x x x x x x

CUBE_4 x x x x x x x x x

CUBE_5 x x x x x x x x x

Table 5.82: ApplicationDataType.category vs. Com-
puMethod.category

The rows of Table 5.82 represent values of category for ApplicationDataType
that are cleared for the definition of a CompuMethod according to Table 5.7.

The columns of Table 5.82 represent values of category for CompuMethod.

[constr_1634] Allowed combinations of ApplicationDataType.category vs.
CompuMethod.category dThe allowed combinations of ApplicationDataType.
category vs. CompuMethod.category at the time when the contract
phase generation is executed are described by Table 5.82.c()

5.5.1.3.2 CompuMethod and ImplementationDataType

For ImplementationDataType, there are (see Table 5.17) only two values of cat-
egory that allow for the definition of a ImplementationDataType.swDataDef-
Props.compuMethod: TEXTTABLE and BITFIELD_TEXTTABLE.

[constr_1158] Applicable categorys for attribute ImplementationDataType.
swDataDefProps.compuMethod dThe definition of the reference Implementa-
tionDataType.swDataDefProps.compuMethod is restricted to a CompuMethod of
either category BITFIELD_TEXTTABLE or category TEXTTABLE (these might be
seen as implementation specific in certain cases).

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

The statement made by [constr_1158] is further visualized by Table 5.83.

393 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

I
D
E
N
T
I
C
A
L

L
I
N
E
A
R

S
C
A
L
E
_
L
I
N
E
A
R

S
C
A
L
E
_
L
I
N
E
A
R
_
A
N
D
_
T
E
X
T
T
A
B
L
E

R
A
T
_
F
U
N
C

S
C
A
L
E
_
R
A
T
I
O
N
A
L
_
A
N
D
_
T
E
X
T
T
A
B
L
E

T
E
X
T
T
A
B
L
E

T
A
B
_
N
O
I
N
T
P

B
I
T
F
I
E
L
D
_
T
E
X
T
T
A
B
L
E

VALUE n/a n/a n/a n/a n/a n/a x n/a x

TYPE_REFERENCE n/a n/a n/a n/a n/a n/a x n/a x

Table 5.83: ImplementationDataType.category vs. Com-
puMethod.category

The rows of Table 5.83 represent values of category for Implementation-
DataType that are cleared for the definition of a CompuMethod according to Table
5.17.

The columns of Table 5.83 represent values of category for CompuMethod.

5.5.1.4 Example for Enumeration

The following example illustrates how an enumeration is specified using Com-
puMethod.

Listing 5.13: example for enumeration
<COMPU-METHOD>

<SHORT-NAME>boolean</SHORT-NAME>
<CATEGORY>TEXTTABLE</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0</UPPER-LIMIT>
<COMPU-CONST>

<VT>false</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">1</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">1</UPPER-LIMIT>
<COMPU-CONST>

<VT>true</VT>
</COMPU-CONST>

</COMPU-SCALE>
</COMPU-SCALES>

</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

394 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.5.1.5 Example for Linear Conversion

The following examples illustrate how a linear conversion is specified using Com-
puMethod.

F[km/h] = 30[km/h] + 2[km/h] ∗ x

Listing 5.14: example for linear CompuMethod
<COMPU-METHOD>

<SHORT-NAME>linear</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<UNIT-REF DEST="UNIT">kmph</UNIT-REF>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR>

<V>30</V>
<V>2</V>

</COMPU-NUMERATOR>
<COMPU-DENOMINATOR>

<V>1</V>
</COMPU-DENOMINATOR>

</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>

</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>

</COMPU-METHOD>

5.5.1.6 Example for Linear Conversion with texttable

The following example illustrates how a linear conversion with a texttable is specified
using CompuMethod.

Listing 5.15: example for linear and texttable CompuMethod

<COMPU-METHOD>
<SHORT-NAME>linearAndTexttable</SHORT-NAME>
<CATEGORY>SCALE_LINEAR_AND_TEXTTABLE</CATEGORY>
<UNIT-REF DEST="UNIT">kmph</UNIT-REF>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">300</UPPER-LIMIT>
<COMPU-RATIONAL-COEFFS>

<COMPU-NUMERATOR>
<V>30</V>
<V>2</V>

</COMPU-NUMERATOR>
<COMPU-DENOMINATOR>

395 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<V>1</V>
</COMPU-DENOMINATOR>

</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>
<COMPU-SCALE>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">350</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">350</UPPER-LIMIT>
<COMPU-CONST>

<VT>SensorError</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">351</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">351</UPPER-LIMIT>
<COMPU-CONST>

<VT>SignalNotAvailable</VT>
</COMPU-CONST>

</COMPU-SCALE>
</COMPU-SCALES>

</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

5.5.1.7 Example for conversion specified by a rational function

The semantics of rational function is:

Internal =
v0 ∗ phys0 + v1 ∗ phys1 + v2 ∗ phys2 + ...

v0 ∗ phys0 + v∗1phys
1 + v2 ∗ phys2 + ...

The following example illustrates a reciprocal conversion.

I =
1000

60 + 2[K−1] ∗ P[K]

Listing 5.16: example for rational CompuMethod
<COMPU-METHOD>

<SHORT-NAME>rational</SHORT-NAME>
<CATEGORY>RAT_FUNC</CATEGORY>
<UNIT-REF DEST="UNIT">Kelvin</UNIT-REF>
<COMPU-PHYS-TO-INTERNAL>

<COMPU-SCALES>
<COMPU-SCALE>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">-29</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="OPEN">INF</UPPER-LIMIT>
<COMPU-RATIONAL-COEFFS>

<COMPU-NUMERATOR>
<V>1000</V>

</COMPU-NUMERATOR>
<COMPU-DENOMINATOR>

<V>60</V>

396 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<V>2</V>
</COMPU-DENOMINATOR>

</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>

</COMPU-SCALES>
</COMPU-PHYS-TO-INTERNAL>

</COMPU-METHOD>

5.5.1.8 Example for BITFIELD_TEXTTABLE

The following example shows how a CompuMethod of category BITFIELD_TEXT-
TABLE can be used to assign a special meaning to each bit of an AutosarDataType
of category VALUE:

Bit 0 front left 0(0) = no, 1(1) = yes

Bit 1 front right 0(0) = no, 1(2) = yes

Bit 2 rear left 0(0) = no, 1(4) = yes

Bit 3 rear right 0(0) = no, 1(8) = yes

Bit 4-5 problem

00(00) = flat tire
01(16) = low pressure
10(32) = unbalanced
11(48) = unknown

All Bits error 11111111 = invalid value

Table 5.84: Example Bitfield

Note that this example is somehow tricky. Bit 6+7 are not used for valid data, but are
part of the mask. By this the error can safely be masked out.

Internal: 28

28 = 0b0001_1100
Bit 7654 3210

Physical:

“problem = low pressure | rear right = yes | rear left = yes | front right = no | front left = no”

Listing 5.17: example for bit field text table CompuMethod

<COMPU-METHOD>
<SHORT-NAME>Texttable</SHORT-NAME>
<CATEGORY>BITFIELD_TEXTTABLE</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<!-- problem -->
<COMPU-SCALE>

<SHORT-LABEL>problem</SHORT-LABEL>
<SYMBOL>problem_flat_tire</SYMBOL>
<MASK>0b11110000</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>

397 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<COMPU-CONST>
<VT>flat tire</VT>

</COMPU-CONST>
</COMPU-SCALE>
<COMPU-SCALE>

<SHORT-LABEL>problem</SHORT-LABEL>
<SYMBOL>problem_low_pressure</SYMBOL>
<MASK>0b11110000</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00010000</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00010000</UPPER-LIMIT>
<COMPU-CONST>

<VT>low pressure</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<SHORT-LABEL>problem</SHORT-LABEL>
<SYMBOL>problem_unbalanced</SYMBOL>
<MASK>0b11110000</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00100000</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00100000</UPPER-LIMIT>
<COMPU-CONST>

<VT>unbalanced</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<SHORT-LABEL>problem</SHORT-LABEL>
<SYMBOL>problem_unknown</SYMBOL>
<MASK>0b11110000</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00110000</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00110000</UPPER-LIMIT>
<COMPU-CONST>

<VT>unknown</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<SHORT-LABEL>problem</SHORT-LABEL>
<SYMBOL>problem_invalid</SYMBOL>
<MASK>0b11110000</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b11110000</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b11110000</UPPER-LIMIT>
<COMPU-CONST>

<VT>invalid</VT>
</COMPU-CONST>

</COMPU-SCALE>
<!-- rear right -->
<COMPU-SCALE>

<SHORT-LABEL>rearRight</SHORT-LABEL>
<SYMBOL>rearRight_no</SYMBOL>
<MASK>0b11001000</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
<COMPU-CONST>

<VT>no</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

398 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<SHORT-LABEL>rearRight</SHORT-LABEL>
<SYMBOL>rearRight_yes</SYMBOL>
<MASK>0b11001000</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00001000</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00001000</UPPER-LIMIT>
<COMPU-CONST>

<VT>yes</VT>
</COMPU-CONST>

</COMPU-SCALE>
<!-- rear left -->
<COMPU-SCALE>

<SHORT-LABEL>rearLeft</SHORT-LABEL>
<SYMBOL>rearLeft_no</SYMBOL>
<MASK>0b11000100</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
<COMPU-CONST>

<VT>no</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<SHORT-LABEL>rearLeft</SHORT-LABEL>
<SYMBOL>rearLeft_yes</SYMBOL>
<MASK>0b11000100</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000100</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000100</UPPER-LIMIT>
<COMPU-CONST>

<VT>yes</VT>
</COMPU-CONST>

</COMPU-SCALE>
<!-- front right -->
<COMPU-SCALE>

<SHORT-LABEL>frontRight</SHORT-LABEL>
<SYMBOL>frontRight_no</SYMBOL>
<MASK>0b11000010</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
<COMPU-CONST>

<VT>no</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<SHORT-LABEL>frontRight</SHORT-LABEL>
<SYMBOL>frontRight_yes</SYMBOL>
<MASK>0b11000010</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000010</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000010</UPPER-LIMIT>
<COMPU-CONST>

<VT>yes</VT>
</COMPU-CONST>

</COMPU-SCALE>
<!-- front left -->
<COMPU-SCALE>

<SHORT-LABEL>frontLeft</SHORT-LABEL>
<SYMBOL>frontLeft_no</SYMBOL>
<MASK>0b11000001</MASK>

399 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
<COMPU-CONST>

<VT>no</VT>
</COMPU-CONST>

</COMPU-SCALE>
<COMPU-SCALE>

<SHORT-LABEL>frontLeft</SHORT-LABEL>
<SYMBOL>frontLeft_yes</SYMBOL>
<MASK>0b11000001</MASK>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000001</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000001</UPPER-LIMIT>
<COMPU-CONST>

<VT>yes</VT>
</COMPU-CONST>

</COMPU-SCALE>
</COMPU-SCALES>

</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

Class CompuConstTextContent

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the textual content of a scale.

Base ARObject , CompuConstContent

Attribute Type Mult. Kind Note

vt VerbatimString 0..1 attr This represents a textual constant in the computation
method.

Table 5.85: CompuConstTextContent

Class CompuConstNumericContent

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the fact that the constant value of the computation method is a numerical
value. It is separated from CompuConstFormulaContent to support compatibility with ASAM HDO.

Base ARObject , CompuConstContent

Attribute Type Mult. Kind Note

v Numerical 0..1 attr This represents the numerical value.

Tags:xml.sequenceOffset=50

Table 5.86: CompuConstNumericContent

5.5.2 Physical Units, Physical Dimensions and Unit Groups

[TPS_SWCT_01285] Physical dimension dAnother important part of the semantics
associated with a data type is its physical dimension. Units are used to augment the
value with additional information like m/s or liter. This is necessary for a correct inter-
pretation of the physical value for input and output processes.

The conversion of values into other units like km/h into miles/h is also possible. There-
fore, the unit involves information about its physical dimensions.c()

400 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01056] Physical dimension dThe substructure of physical dimensions
defines all used quantities in the SI-System18 (e.g. velocity as length/time corresponds
to m/s).c(RS_SWCT_02100)

[TPS_SWCT_01057] Unit references one physical dimension dThe unit references
one physical dimension. If the physical dimensions of two units are identical, a conver-
sion between them is basically possible.c(RS_SWCT_02100)

Class Unit
Package M2::MSR::AsamHdo::Units

Note This is a physical measurement unit. All units that might be defined should stem from SI units. In order to
convert one unit into another factor and offset are defined.

For the calculation from SI-unit to the defined unit the factor (factorSiToUnit) and the offset (offsetSiTo
Unit) are applied as follows:

x [{unit}] := y * [{siUnit}] * factorSiToUnit [[unit]/{siUnit}] + offsetSiToUnit [{unit}]

For the calculation from a unit to SI-unit the reciprocal of the factor (factorSiToUnit) and the negation of
the offset (offsetSiToUnit) are applied.

y {siUnit} := (x*{unit} - offsetSiToUnit [{unit}]) / (factorSiToUnit [[unit]/{siUnit}]

Tags:atp.recommendedPackage=Units

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

displayName SingleLanguageUnit
Names

0..1 aggr This specifies how the unit shall be displayed in
documents or in user interfaces of tools.The displayName
corresponds to the Unit.Display in an ASAM MCD-2MC
file.

Tags:xml.sequenceOffset=20

factorSiToUnit Float 0..1 attr This is the factor for the conversion from SI Units to units.

The inverse is used for conversion from units to SI Units.

Tags:xml.sequenceOffset=30

offsetSiToUnit Float 0..1 attr This is the offset for the conversion from and to siUnits.

Tags:xml.sequenceOffset=40

physical
Dimension

PhysicalDimension 0..1 ref This association represents the physical dimension to
which the unit belongs to. Note that only values with units
of the same physical dimensions might be converted.

Tags:xml.sequenceOffset=50

Table 5.87: Unit

[TPS_SWCT_01058] UnitGroup dThe UnitGroups determine if such a conversion
is appropriate.c(RS_SWCT_02100)

Figure 5.53 depicts the concept how units are defined.

For a detailed description of these elements please refer to the [27]. Standard units
are already predefined for AUTOSAR in form of a description file.

[TPS_SWCT_01736] Default values for Unit.physicalDimension dIf a Unit
does not define the attribute Unit.physicalDimension, the default Physi-
calDimension with the shortName NoDimension applies where all physical ex-
ponents are set to 0.c(RS_SWCT_02100)

18For the definition of what SI units are, see http://physics.nist.gov/cuu/Units/

401 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ARElement

Unit

+ factorSiToUnit: Float [0..1]
+ offsetSiToUnit: Float [0..1]

ARElement

PhysicalDimension

+ currentExp: Numerical [0..1]
+ lengthExp: Numerical [0..1]
+ luminousIntensityExp: Numerical [0..1]
+ massExp: Numerical [0..1]
+ molarAmountExp: Numerical [0..1]
+ temperatureExp: Numerical [0..1]
+ timeExp: Numerical [0..1]MixedContentForUnitNames

«atpMixedString»
SingleLanguageUnitNames

ARElement

UnitGroup +physicalDimension

0..1

+unit

0..*

+displayName 0..1

Figure 5.53: Definition of SI based units

[TPS_SWCT_01059] Exponent for each of the seven fundamental dimensions
dFor basing a new unit directly upon SI units an exponent for each of the seven funda-
mental dimensions and its corresponding SI unit needs to be specified.c(RS_SWCT_-
02100)

[TPS_SWCT_01737] Default values for physical exponents dThe default value
of attributes currentExp, lengthExp, luminousIntensityExp, massExp, mo-
larAmountExp, temperatureExp, timeExp is 0.c(RS_SWCT_02100)

[TPS_SWCT_01060] Negative exponents dNegative exponents are allowed.c(RS_-
SWCT_02100)

Note that quantities like "%" are not derived from SI units and therefore have no asso-
ciation to a physical dimension.

Class PhysicalDimension

Package M2::MSR::AsamHdo::Units

Note This class represents a physical dimension. If the physical dimension of two units is identical, then a
conversion between them is possible. The conversion between units is related to the definition of the
physical dimension.

Note that the equivalence of the exponents does not per se define the convertibility. For example Energy
and Torque share the same exponents (Nm).

Please note further the value of an exponent does not necessarily have to be an integer number. It is
also possible that the value yields a rational number, e.g. to compute the square root of a given physical
quantity. In this case the exponent value would be a rational number where the numerator value is 1 and
the denominator value is 2.

Tags:atp.recommendedPackage=PhysicalDimensions

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

currentExp Numerical 0..1 attr This attribute represents the exponent of the physical
dimension "electric current".

Tags:xml.sequenceOffset=50

lengthExp Numerical 0..1 attr The exponent of the physical dimension "length".

Tags:xml.sequenceOffset=20

luminous
IntensityExp

Numerical 0..1 attr The exponent of the physical dimension "luminous
intensity".

Tags:xml.sequenceOffset=80

massExp Numerical 0..1 attr The exponent of the physical dimension "mass".

Tags:xml.sequenceOffset=30

5

402 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class PhysicalDimension

molarAmount
Exp

Numerical 0..1 attr The exponent of the physical dimension "quantity of
substance".

Tags:xml.sequenceOffset=70

temperatureExp Numerical 0..1 attr The exponent of the physical dimension "temperature".

Tags:xml.sequenceOffset=60

timeExp Numerical 0..1 attr The exponent of the physical dimension "time".

Tags:xml.sequenceOffset=40

Table 5.88: PhysicalDimension

AUTOSAR provides the ability to map two PhysicalDimensions onto each other
with the implication that the two mapped PhysicalDimensions shall be considered
compatible (for more explanation please refer to [constr_1053]).

ARElement

PhysicalDimensionMappingSet

PhysicalDimensionMapping

ARElement

PhysicalDimension

+ currentExp: Numerical [0..1]
+ lengthExp: Numerical [0..1]
+ luminousIntensityExp: Numerical [0..1]
+ massExp: Numerical [0..1]
+ molarAmountExp: Numerical [0..1]
+ temperatureExp: Numerical [0..1]
+ timeExp: Numerical [0..1]

+secondPhysicalDimension

0..1

+physicalDimensionMapping 0..*
+firstPhysicalDimension

0..1

Figure 5.54: Modeling of PhysicalDimensionMapping

PhysicalDimensionMappings are aggregated in form of PhysicalDimension-
MappingSets. This allows for gathering semantically related PhysicalDimension-
Mappings into the same PhysicalDimensionMappingSet.

Class PhysicalDimensionMappingSet

Package M2::MSR::AsamHdo::Units

Note This class represents a container for a list of mappings between PhysicalDimensions.

Tags:atp.recommendedPackage=PhysicalDimensionMappingSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

physical
Dimension
Mapping

PhysicalDimension
Mapping

* aggr This aggregation represents a concrete collections of
PhysicalDimensionMappings in the context of one
PhysicalDimensionMappingSet.

Table 5.89: PhysicalDimensionMappingSet

Class PhysicalDimensionMapping

Package M2::MSR::AsamHdo::Units

Note This class represents a specific mapping between two PhysicalDimensions.

Base ARObject

Attribute Type Mult. Kind Note

5

403 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class PhysicalDimensionMapping

firstPhysical
Dimension

PhysicalDimension 0..1 ref This represents the first PhysicalDimension of the
enclosing PhysicalDimensionMapping.

secondPhysical
Dimension

PhysicalDimension 0..1 ref This represents the first PhysicalDimension of the
enclosing PhysicalDimensionMapping.

Table 5.90: PhysicalDimensionMapping

[constr_1915] Existence of attribute PhysicalDimensionMapping.firstPhys-
icalDimension dFor each PhysicalDimensionMapping, attribute firstPhys-
icalDimension shall exist at the time when the contract phase gener-
ation is executed.c()

[constr_1916] Existence of attribute PhysicalDimensionMapping.second-
PhysicalDimension dFor each PhysicalDimensionMapping, attribute sec-
ondPhysicalDimension shall exist at the time when the contract phase
generation is executed.c()

In the following example, the units “km” and “m” and their physical dimension named
“Len1” are specified. The SI base unit is “m” (Meter).

The default value of attribute Unit.offsetSiToUnit is 0, the default of Unit.fac-
torSiToUnit is 1 (see [TPS_SWCT_01492]).

Given the equality 1 km == 1000 m, the following equation applies:

x[km] := y ∗ [m] ∗ 0.001[km/m] + 0[km]

This correlation is reflected in the example ARXML contained in Listing 5.18.

Listing 5.18: Example for Unit and PhysicalDimension

<UNIT>
<SHORT-NAME>KiloMtr</SHORT-NAME>
<LONG-NAME>

<L-4 L="EN">Kilo Meter</L-4>
</LONG-NAME>
<DISPLAY-NAME>km</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>0.001</FACTOR-SI-TO-UNIT>
<OFFSET-SI-TO-UNIT>0</OFFSET-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF BASE="PhysicalDimensions" DEST="PHYSICAL-

DIMENSION">/SiUnit/Len1</PHYSICAL-DIMENSION-REF>
</UNIT>

<UNIT>
<SHORT-NAME>Mtr</SHORT-NAME>
<LONG-NAME>

<L-4 L="EN">Meter</L-4>
</LONG-NAME>
<DISPLAY-NAME>m</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>1</FACTOR-SI-TO-UNIT>
<OFFSET-SI-TO-UNIT>0</OFFSET-SI-TO-UNIT>

404 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<PHYSICAL-DIMENSION-REF BASE="PhysicalDimensions" DEST="PHYSICAL-
DIMENSION">/SiUnit/Len1</PHYSICAL-DIMENSION-REF>

</UNIT>

<PHYSICAL-DIMENSION>
<SHORT-NAME>Len1</SHORT-NAME>
<LONG-NAME>

<L-4 L="EN">Length 1</L-4>
</LONG-NAME>
<LENGTH-EXP>1</LENGTH-EXP>

</PHYSICAL-DIMENSION>

[constr_1026] Compatibility of Units dFor data types or prototypes, units should
be referenced from within the associated CompuMethod. But if it is referenced from
within SwDataDefProps and/or PhysConstrs (for exceptional use cases) it shall be
compatible (for more details please refer to [constr_1052]) to the ones referenced from
the referred CompuMethod.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that for the sake of model consistency, it is also possible to define a mean-
ingless Unit for all the pieces of data that conceptually do not really have a Unit at-
tached to them (e.g. ApplicationPrimitiveDataTypes of category BOOLEAN).

By looking at the model, it becomes clear that the subject of whether to assign a
Unit has been given a thought and the lack of a Unit is not simply the result of
an oversight. For example, the AUTOSAR General Blueprints [28] define the Unit
NoUnit for exactly this purpose.

[constr_1255] ApplicationPrimitiveDataTypes of category BOOLEAN and
STRING dIf a Unit is referenced from within SwDataDefProps and/or PhysCon-
strs owned by an ApplicationPrimitiveDataTypes of category BOOLEAN
and STRING it is required that this Unit represents a meaningless unit, i.e. the ref-
erenced physicalDimension shall not define any exponent value other than 0 at
any time in the workflow.c()

[TPS_SWCT_01068] Units can be grouped with the help of UnitGroup dUnits
can be grouped with the help of UnitGroup. This grouping is intended as a logical
grouping which allows for example an MCD (Measurement Calibration Diagnostic) de-
vice to present different unit systems to the user such that he can choose the most
appropriate one.c(RS_SWCT_02100)

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

ARElement

UnitGroup+unitGroup

0..*

Figure 5.55: Relation of SwComponentType to UnitGroup

405 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class UnitGroup

Package M2::MSR::AsamHdo::Units

Note This meta-class represents the ability to specify a logical grouping of units.The category denotes the unit
system that the referenced units are associated to.

In this way, e.g. country-specific unit systems (CATEGORY="COUNTRY") can be defined as well as
specific unit systems for certain application domains.

In the same way a group of equivalent units, can be defined which are used in different countries, by
setting CATEGORY="EQUIV_UNITS". KmPerHour and MilesPerHour could such be combined to one
group named "vehicle_speed". The unit MeterPerSec would not belong to this group because it is
normally not used for vehicle speed. But all of the mentioned units could be combined to one group
named "speed".

Note that the UnitGroup does not ensure the physical compliance of the units. This is maintained by the
physical dimension.

Tags:atp.recommendedPackage=UnitGroups

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

unit Unit * ref This represents one particular unit in the UnitGroup.

Tags:xml.sequenceOffset=20

Table 5.91: UnitGroup

The association from SwComponentType to UnitGroup (beside the obvious use case
to allow for the specification of unitGroups relevant for the enclosing SwComponent-
Type in particular) is supposed to support the identification of UnitGroups relevant
for the enclosing System. This aspect facilitates the creation of ASAM MCD2 files for
a concrete ECU.

According to [27] the following three values for categorys are recommended in the
context of UnitGroup:

• COUNTRY collects units which are common in a particular country, denoted by the
shortName / longName of the UnitGroup

• CALCULATION refers to specific units intended for the creation of data types. In
this category of UnitGroup, several Units may refer to the same Physi-
calDimension as well as to different PhysicalDimension.

• EQUIV_UNITS define a group of equivalent units, which are used for example in
different countries.

Additional values for category may be mutually agreed between the stakeholders.

In the example shown in Figure 5.56, Units are classified by country and use.

[TPS_SWCT_01061] Conversion of units dIf a unit has to be converted according to
the chosen country code, the physicalDimension of both units shall be the same.
If another unit shares the same UnitGroup with a category of EQUIV_UNITS it is
preferred as target of the conversion.c(RS_SWCT_02100)

Assume "MilesPerHour" should be converted to a European unit: Based on the phys-
icalDimension a conversion to "MeterPerSec" as well as "KmPerHour" is possible.

406 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In this case "KmPerHour" is preferred because "MilesPerHour" and "KmPerHour" are
both members of the UnitGroup named "VehicleSpeed".

In contrast to this, "MeterPerSec" is not considered as appropriate for "VehicleSpeed"
in this specific example.

Figure 5.56: Example for units and unit groups

5.5.3 Data Constraints

Section 5.2.4.1 already shows an example on how to define constraints for the physical
range of a data type, see Figure 5.4.

[TPS_SWCT_01286] DataConstr dIn general, the meta-class DataConstr can be
aggregated (via SwDataDefProps.dataConstr) to define various constraints for the
possible values of a data type. This includes limits for the physical and internal range,
as well as special constraints (monotony) for the setup of axis definition.c()

Figure 5.57 and the following class tables show the meta-classes involved in the defi-
nition of constraints.

A more detailed documentation of these meta-classes can be found in [27]. As refine-
ment of these definitions, the following values apply for constrLevel:

[constr_2561] Application of DataConstrRule.constrLevel dDataConstr-
Rule.constrLevel is limited to

0: This represents so called “hard limits”. They shall always be specified.

1: This represents so called “soft limits”. Soft limits may be violated after confirmation
by the user of an MCD-System.

This rule applies at any time in the workflow. Other values may exist, but the
semantics is outside the AUTOSAR scope.

407 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c()

[TPS_SWCT_01287] Standard limits and extended limits in the ASAM-MCD2
(ASAP2) specification dThe ASAM-MCD2 (ASAP2) specification [26] defines stan-
dard limits and extended limits. If extended limits exist, the standard limits may be
violated upon user confirmation. Note that in consequence, of this definition, the fol-
lowing approach applies for A2L generation:

• If only one DataConstrRule with constrLevel set to 0 is specified, it repre-
sents the standard limits in A2L. No extended limits are generated.

• If two DataConstrRule exist, then:

– the one with constrLevel set to 0 represents to the extended limits

– the one with constrLevel set to 1 represents to the standard limits

Note that even if this is somehow counter-intuitive (since the one with constrLevel
set to 0 changes its role), it matches the best to the definitions in ASAM-MCD2.c()

DataConstrRule

+ constrLevel: Integer [0..1]

ARElement
AtpBlueprint

AtpBlueprintable

DataConstr

PhysConstrs

+ maxDiff: Numerical [0..1]
+ maxGradient: Numerical [0..1]
+ monotony: MonotonyEnum [0..1]

«atpVariation»
+ lowerLimit: Limit [0..1]
+ upperLimit: Limit [0..1]

InternalConstrs

+ maxDiff: Numerical [0..1]
+ maxGradient: Numerical [0..1]
+ monotony: MonotonyEnum [0..1]

«atpVariation»
+ lowerLimit: Limit [0..1]
+ upperLimit: Limit [0..1]

ScaleConstr

+ shortLabel: Identifier [0..1]
+ validity: ScaleConstrValidityEnum [0..1]

«atpVariation»
+ lowerLimit: Limit [0..1]
+ upperLimit: Limit [0..1]

«atpVariation»
SwDataDefProps

ARElement

Unit

+ factorSiToUnit: Float [0..1]
+ offsetSiToUnit: Float [0..1]

�� ����� �� 	
���
�� ��	��
��� �� ����

���� ��� ����������
����
����� �
��
��

�
������ �� 	������ 	
��
��� ��� �	��!

+physConstrs 0..1

+scaleConstr

0..*
{ordered}

+unit 0..1 +dataConstrRule 0..*

+dataConstr

0..1

+internalConstrs 0..1

+scaleConstr

0..*
{ordered}

+unit 0..1

Figure 5.57: Meta-model for defining Data Constraints

Class DataConstr
Package M2::MSR::AsamHdo::Constraints::GlobalConstraints

Note This meta-class represents the ability to specify constraints on data.

Tags:atp.recommendedPackage=DataConstrs

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

5

408 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class DataConstr
dataConstrRule DataConstrRule * aggr This is one particular rule within the data constraints.

Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.92: DataConstr

Class DataConstrRule
Package M2::MSR::AsamHdo::Constraints::GlobalConstraints

Note This meta-class represents the ability to express one specific data constraint rule.

Base ARObject

Attribute Type Mult. Kind Note

constrLevel Integer 0..1 attr This attribute describes the category of a constraint. One
of its functions is in the area of constraint violation, where
it can be used from a certain level, to produce error
messages.

The lower the level, the more stringent the check.

Used to distinguish hard or soft limits.

Tags:xml.sequenceOffset=20

internalConstrs InternalConstrs 0..1 aggr Describes the limitations applicable on the internal
domain (as opposed to the physical domain).

Tags:xml.sequenceOffset=40

physConstrs PhysConstrs 0..1 aggr Describes the limitations applicable on the physical
domain (as opposed to the internal domain).

Tags:xml.sequenceOffset=30

Table 5.93: DataConstrRule

Class PhysConstrs

Package M2::MSR::AsamHdo::Constraints::GlobalConstraints

Note This meta-class represents the ability to express physical constraints. Therefore it has (in opposite to
InternalConstrs) a reference to a Unit.

Base ARObject

Attribute Type Mult. Kind Note

lowerLimit Limit 0..1 attr This specifies the lower limit of the constraint.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

maxDiff Numerical 0..1 attr Maximum difference that is permitted between two
consecutive values if the constraint is applied to an axis.

Tags:xml.sequenceOffset=60

maxGradient Numerical 0..1 attr This element specifies the maximum slope that may be
used in curves and maps.

Tags:xml.sequenceOffset=50

5

409 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class PhysConstrs

monotony MonotonyEnum 0..1 attr This specifies the monotony constraints on the data
object. Note that this applies only to curves and maps.

Tags:xml.sequenceOffset=70

scaleConstr
(ordered)

ScaleConstr * aggr This is one particular scale which contributes to the data
constraints.

Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=40
xml.typeElement=false
xml.typeWrapperElement=false

unit Unit 0..1 ref This is the unit to which the physical constraints relate to.
In particular, it is the physical unit of the specified limits.

Tags:xml.sequenceOffset=80

upperLimit Limit 0..1 attr This specifies the upper limit of the constraint.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

Table 5.94: PhysConstrs

Class InternalConstrs
Package M2::MSR::AsamHdo::Constraints::GlobalConstraints

Note This meta-class represents the ability to express internal constraints.

Base ARObject

Attribute Type Mult. Kind Note

lowerLimit Limit 0..1 attr This specifies the lower limit of the constraint.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

maxDiff Numerical 0..1 attr Maximum difference that is permitted between two
consecutive values if the constraint is applied to an axis.

Tags:xml.sequenceOffset=60

maxGradient Numerical 0..1 attr This element specifies the maximum slope that may be
used in maps and curves.

Tags:xml.sequenceOffset=50

monotony MonotonyEnum 0..1 attr This element specifies the monotony characteristics of
the current internal or physical limits. The following table
shows the monotony characteristics which are to be filled
through the corresponding values.

If the element has no contents or if it is omitted, "no
Monotony" is the default content.

Tags:xml.sequenceOffset=70

5

410 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class InternalConstrs
scaleConstr
(ordered)

ScaleConstr * aggr This is one particular scale which contributes to the data
constraints.

Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=40
xml.typeElement=false
xml.typeWrapperElement=false

upperLimit Limit 0..1 attr This specifies the upper limit defined by the constraint.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

Table 5.95: InternalConstrs

Class ScaleConstr
Package M2::MSR::AsamHdo::Constraints::GlobalConstraints

Note This meta-class represents the ability to specify constraints as a list of intervals (called scales).

Base ARObject

Attribute Type Mult. Kind Note

desc MultiLanguageOverview
Paragraph

0..1 aggr <desc> represents a general but brief description of the
object in question.

Tags:xml.sequenceOffset=30

lowerLimit Limit 0..1 attr This specifies the lower limit of the scale.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

shortLabel Identifier 0..1 attr This element specifies a short name for the scaleConstr.
This can for example be used to create more specific
messages of a constraint checker. The constraints cannot
be associated in the meta-model, therefore shortLabel is
somehow a substitute for shortName.

Tags:xml.sequenceOffset=20

upperLimit Limit 0..1 attr This specifies the upper limit of a the scale.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

validity ScaleConstrValidity
Enum

0..1 attr Specifies if the values defined by the scales are
considered to be valid. If the attribute is missing then the
default value is "VALID".

Tags:xml.attribute=true

Table 5.96: ScaleConstr

Enumeration ScaleConstrValidityEnum

Package M2::MSR::AsamHdo::Constraints::GlobalConstraints

Note This enumerator specifies the possible values of a scale.

Literal Description

5

411 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration ScaleConstrValidityEnum

notAvailable Currently invalid area The value usually is presented by the ECU but can currently not be performed
due to e.g. initialization or temporary problems. Please note, that this behavior appears during
runtime and cannot be handled while data is edited.

Tags:atp.EnumerationLiteralIndex=0

notDefined Indicates an area which is marked in a specification (e.g. as reserved) Shall usually not be set by the
ECU but is used by a tester to verify correct ECU.

Tags:atp.EnumerationLiteralIndex=1

notValid The ECU cannot process the requested data.

Tags:atp.EnumerationLiteralIndex=2

valid Current value is within a valid range and can be presented to user as is.

Tags:atp.EnumerationLiteralIndex=3

Table 5.97: ScaleConstrValidityEnum

Primitive Limit
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This class represents the ability to express a numerical limit. Note that this is in fact a NumericalVariation
Point but has the additional attribute intervalType.

Tags:
xml.xsd.customType=LIMIT-VALUE
xml.xsd.pattern=(0[xX][0-9a-fA-F]+)|(0[0-7]+)|(0[bB][0-1]+)|(([+\-]?[1-9]
[0-9]+(\.[0-9]+)?|[+\-]?[0-9](\.[0-9]+)?)([eE]([+\-]?)[0-9]+)?)|\.0|INF|-INF|NaN
xml.xsd.type=string

Attribute Type Mult. Kind Note

intervalType IntervalTypeEnum 0..1 attr This specifies the type of the interval. If the attribute is
missing the interval shall be considered as "CLOSED".

Tags:xml.attribute=true

Table 5.98: Limit

Enumeration MonotonyEnum

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This enumerator denotes the values for specification of monotony for e.g. curves.

Literal Description

decreasing This indicates that the related curve needs to be monotony decreasing.

Tags:atp.EnumerationLiteralIndex=0

increasing This indicates that the related curve needs to be monotony increasing.

Tags:atp.EnumerationLiteralIndex=1

monotonous This indicates that the values shall be monotonously decreasing or increasing, depending on the
trend set by the first values of the series.

Tags:atp.EnumerationLiteralIndex=2

noMonotony This indicates that the related curve needs not to be monotony.

Tags:atp.EnumerationLiteralIndex=3

strictlyDecreasing This indicates that the related curve needs to be strictly monotony decreasing.

Tags:atp.EnumerationLiteralIndex=4

strictlyIncreasing This indicates that the related curve needs to be strictly monotony increasing.

Tags:atp.EnumerationLiteralIndex=5

5

412 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration MonotonyEnum

strictMonotonous This indicates that the values shall be strict monotonously decreasing or increasing, depending on
the trend set by the first values of the series.

Tags:atp.EnumerationLiteralIndex=6

Table 5.99: MonotonyEnum

[TPS_SWCT_01288] Interpretation of PhysConstrs and InternalConstrs by
tools dDataConstr is an ARElement which can be reused by several data type
specifications. Especially an ImplementationDataType and an Application-
DataType which are mapped to each other, can refer to the same constraints, or they
can define their own constraints.

To avoid conflicts, in both cases PhysConstrs shall be interpreted by tools only with
respect to application data types while InternalConstrs shall be interpreted only
with respect to implementation data types.

If only PhysConstrs are provided to ApplicationDataTypes the CompuMethod
can be used to compute the InternalConstrs.c()

[TPS_SWCT_01289] Semantics of Limit dTechnically, a Limit specifies a bound-
ary of the interval of valid values for a given context (i.e. a data type). Please note that
the boundary might or might not be part of the interval itself, i.e. the interval might be
open or closed. From the formal point of view, the range represents all real numbers
defined by:

range = {x ∈ < ‖ lowerLimit.value < x < upperLimit.value}
∪{lowerLimit.value ‖ lowerLimit.intervalType == “CLOSED′′}
∪{upperLimit.value ‖ upperLimit.intervalType == “CLOSED′′}

c()

Please note that Limit inherits from AbstractNumericalVariationPoint. This
means it is a number which may be subject to variability. For this reason, it is not
possible to constrain the content already in the xml schema.

[constr_1191] Value of Limit shall yield a numerical value dAfter all variability is
bound, the content obtained from a limit shall yield a numerical value at any time
in the workflow.c()

Nevertheless, it is not possible to distinguish on this level between float and integer
values. Consequently, [constr_1191] will not take the burden from an AUTOSAR tool
to decide whether the value provided as a limit actually makes sense in any of the given
contexts.

413 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Enumeration IntervalTypeEnum

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This enumerator specifies the type of an interval.

Literal Description

closed The area is limited by the value given. The value itself is included.

Tags:atp.EnumerationLiteralIndex=0

open The area is limited by the value given. The value itself is not included.

Tags:atp.EnumerationLiteralIndex=2

Table 5.100: IntervalTypeEnum

5.5.3.1 Physical Limits

Physical limits can be given at various palaces in the AUTOSAR Meta-Model, e.g. in
context of ApplicationDataTypes, DataPrototypes but also without the usage of
the type prototype pattern in Compound Primitive Data Types (e.g SwAxisIn-
dividual.dataConstr).

Nevertheless, the usage of PhysConstrs requires a CompuMethod for the calculation
of the numerical limits, which cannot be applied for textual conversions. For this reason
following definition applies:

[TPS_SWCT_01761] Physical limits of pure textual conversions dIt is not possible
to define the lower or upper limit of a set of textual labels. Therefore, it is not possible
to define limits for an object that can only take elements of a set of textual labels as the
value.c()

Please note, as a consequence of [TPS_SWCT_01761] for data defined by means of a
CompuMethod of category TEXTTABLE or BITFIELD_TEXTTABLE and additionally
a DataConstr with a dataConstrRule.physConstrs the given physConstrs has
no meaning.

[TPS_SWCT_01762] Physical limits of mixed textual conversions dThe defini-
tion of the physical limits of a piece of data described by a CompuMethod of cat-
egory SCALE_LINEAR_AND_TEXTTABLE and SCALE_RATIONAL_AND_TEXTTABLE
can only be specified for the linear or rational part.

In addition, the defined textual labels can be used for the conversion.c()

For clarification, [TPS_SWCT_01761] and [TPS_SWCT_01762] do not limit the usage
of DataConstr.dataConstrRule.internalConstrs which may define further and
even tighter constraints on implementation level.

Those internalConstrs might be even given in context of a Compound Primi-
tive Data Type (for example, in the context of an SwAxisIndividual.input-
VariableType or SwAxisIndividual.dataConstr).

414 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.5.4 Addressing Methods

In an ECU there might be various methods to access a particular object (e.g. mea-
surement or calibration parameter) according to a given address. This variety might
come from different kind of memory (near, far, . . .) but also from indirections which are
introduced by the compiler.

[TPS_SWCT_01290] SwAddrMethod dIn order to allow a measurement and calibra-
tion system to access such objects SwAddrMethods are specified. Another purpose
of this feature is to support the definition of abstract memory sections, i.e. to specify
which variables shall be put together in the same sections in case of generated code
(especially for data allocated by the RTE).

SwAddrMethod will be used to group data, for example, to cover the fact that some-
times it is required that one or more calibration parameters out of the overall collection
of calibration parameters of a SwComponentPrototype respectively an AUTOSAR
software component shall be placed in another memory location than the other param-
eters of the SwComponentPrototype respectively the AUTOSAR software compo-
nent.c()

[TPS_SWCT_01291] Association of MemorySection with SwAddrMethod dIn
Implementation the particular MemorySection is associated with the SwAd-
drMethod. This association indicates that all objects of the associated addressing
method shall be placed in the given memory section.c()

Class MemorySection

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::MemorySectionUsage

Note Provides a description of an abstract memory section used in the Implementation for code or data. It shall
be declared by the Implementation Description of the module or component, which actually allocates the
memory in its code. This means in case of data prototypes which are allocated by the RTE, that the
generated Implementation Description of the RTE shall contain the corresponding MemorySections.

The attribute "symbol" (if symbol is missing: "shortName") defines the module or component specific
section name used in the code. For details see the document "Specification of Memory Mapping".
Typically the section name is build according the pattern:

<SwAddrMethod shortName>[_<further specialization nominator>][_<alignment>]

where

• [<SwAddrMethod shortName>] is the shortName of the referenced SwAddrMethod

• [_<further specialization nominator>] is an optional infix to indicate the specialization in the
case that several MemorySections for different purpose of the same Implementation Description
referring to the same or equally named SwAddrMethods.

• [_<alignment>] is the alignment attributes value and is only applicable in the case that the
memoryAllocationKeywordPolicy value of the referenced SwAddrMethod is set to addrMethod
ShortNameAndAlignment

MemorySection used to Implement the code of RunnableEntitys and BswSchedulableEntitys shall have a
symbol (if missing: shortName) identical to the referred SwAddrMethod to conform to the generated RTE
header files.

In addition to the section name described above, a prefix is used in the corresponding macro code in
order to define a name space. This prefix is by default given by the shortName of the BswModule
Description resp. the SwComponentType. It can be superseded by the prefix attribute.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

5

415 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class MemorySection

Attribute Type Mult. Kind Note

alignment AlignmentType 0..1 attr The attribute describes the typical alignment of objects
within this memory section.

executableEntity ExecutableEntity * ref Reference to the ExecutableEntitites located in this
section. This allows to locate different Executable
Entitities in different sections even if the associated Sw
Addrmethod is the same.

This is applicable to code sections only.

memClass
Symbol

CIdentifier 0..1 attr Defines a specific symbol in order to generate the
compiler abstraction "memclass" code for this Memory
Section. The existence of this attribute supersedes the
usage of swAddrmethod.shortName for this purpose.

The complete name of the "memclass" preprocessor
symbol is constructed as <prefix>_<memClassSymbol>
where prefix is defined in the same way as for the
enclosing MemorySection. See also AUTOSAR_SWS_
CompilerAbstraction SWS_COMPILER_00040.

Tags:atp.Status=obsolete

option Identifier * attr This attribute introduces the ability to specify further
intended properties of this MemorySection. The following
two values are standardized (to be used for code sections
only and exclusively to each other):

• INLINE - The code section is declared with the
compiler abstraction macro INLINE.

• LOCAL_INLINE - The code section is declared
with the compiler abstraction macro LOCAL_
INLINE

In both cases (INLINE and LOCAL_INLINE) the inline
expansion depends on the compiler specific
implementation of these macros. Depending on this, the
code section either corresponds to an actual section in
memory or is put into the section of the caller. See
AUTOSAR_SWS_CompilerAbstraction for more details.

prefix SectionNamePrefix 0..1 ref The prefix used to set the memory section’s namespace
in the code. The existence of a prefix element
supersedes rules for a default prefix (such as the Bsw
ModuleDescription’s shortName). This allows the user to
define several name spaces for memory sections within
the scope of one module, cluster or SWC.

size PositiveInteger 0..1 attr The size in bytes of the section.

swAddrmethod SwAddrMethod 0..1 ref This association indicates that this module specific
(abstract) memory section is part of an overall SwAddr
Method, referred by the upstream declarations (e.g.
calibration parameters, data element prototypes, code
entities) which share a common addressing strategy. This
can be evaluated for the ECU configuration of the build
support.

This association shall always be declared by the
Implementation description of the module or component,
which allocates the memory in its code. This means in
case of data prototypes which are allocated by the RTE,
that the software components only declare the grouping
of its data prototypes to SwAddrMethods, and the
generated Implementation Description of the RTE actually
sets up this association.

5

416 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class MemorySection

symbol Identifier 0..1 attr Defines the section name as explained in the main
description. By using this attribute for code generation
(instead of the shortName) it is possible to define several
different MemorySections having the same name - e.g.
symbol = CODE - but using different sectionName
Prefixes.

Table 5.101: MemorySection

[constr_10033] Existence of MemorySection.swAddrmethod dFor each Memory-
Section, attribute swAddrmethod shall exist at the time when the contract
phase generation is executed.c()

[constr_10034] Existence of MemorySection.alignment dFor each MemorySec-
tion, attribute alignment shall exist at the time when the contract phase
generation is executed if the attribute MemorySection.swAddrmethod.mem-
oryAllocationKeywordPolicy is set to MemoryAllocationKeywordPolicy-
Type.addrMethodShortNameAndAlignment.c()

Rationale for the existence of [constr_10033]: If the MemorySection is configured
such that MemorySection.swAddrmethod.memoryAllocationKeywordPolicy
is set to MemoryAllocationKeywordPolicyType.addrMethodShortNameAn-
dAlignment, then the alignment attribute is mandatory because the implemen-
tation of the memory mapping shall be able to formally consider the alignment for the
choice of memory sections.

Class SwAddrMethod
Package M2::MSR::DataDictionary::AuxillaryObjects

Note Used to assign a common addressing method, e.g. common memory section, to data or code objects.
These objects could actually live in different modules or components.

Tags:atp.recommendedPackage=SwAddrMethods

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

memory
Allocation
KeywordPolicy

MemoryAllocation
KeywordPolicyType

0..1 attr Enumeration to specify the name pattern of the Memory
Allocation Keyword.

option Identifier * attr This attribute introduces the ability to specify further
intended properties of the MemorySection in with the
related objects shall be placed.

These properties are handled as to be selected. The
intended options are mentioned in the list.

In the Memory Mapping configuration, this option list is
used to determine an appropriate MemMapAddressing
ModeSet.

5

417 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwAddrMethod
section
Initialization
Policy

SectionInitialization
PolicyType

0..1 attr Specifies the expected initialization of the variables
(inclusive those which are implementing VariableData
Prototypes). Therefore this is an implementation
constraint for initialization code of BSW modules
(especially RTE) as well as the start-up code which
initializes the memory segment to which the AutosarData
Prototypes referring to the SwAddrMethod’s are later on
mapped.

If the attribute is not defined it has the identical semantic
as the attribute value "INIT"

sectionType MemorySectionType 0..1 attr Defines the type of memory sections which can be
associated with this addresssing method.

Table 5.102: SwAddrMethod

[TPS_SWCT_01456] Predefined values for MemorySection.option and SwAd-
drMethod.option dThe following values of MemorySection.option and SwAd-
drMethod.option are predefined by AUTOSAR:

resetSafe This corresponds to variables of ECU-functions which values shall endure
a ECU reset.

protected This corresponds to variables, constants, and code which shall not be
accessible and modifiable from the outside without a security mechanism.

offline This corresponds to calibration parameters which shall not be modifiable
during ECU operation.

coreGlobal This corresponds to variables, constants, and code which have to be
accessible by any core in case of multi-core ECUs.

coreLocal This corresponds to variables, constants, and code which have to be ac-
cessible by one core in case of multi-core ECUs.

nvData This corresponds to variables of ECU-functions which shall be stored in non-
volatile data. This option is applicable for memory used as a RAM Block man-
aged by the NvM.

safetyQM This corresponds to variables, constants, and code without any safety in-
tegrity level and therefore having a QM rating.

safetyAsilA This corresponds to variables, constants, and code with the safety in-
tegrity level A.

safetyAsilB This corresponds to variables, constants, and code with the safety in-
tegrity level B.

safetyAsilC This corresponds to variables, constants, and code with the safety in-
tegrity level C.

safetyAsilD This corresponds to variables, constants, and code with the safety in-
tegrity level D.

418 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

configClassPreBuild This corresponds to config data which is assigned at pre-
compile or link time.

configClassPostBuild This corresponds to config data which is assigned at post-
build time.

c()

Obviously, the multiplicity of both the attribute MemorySection.option and SwAd-
drMethod.option allows for the appearance of more than one value. For example,
a combination of the values resetSafe, protected, and safetyAsilC makes per-
fect sense on a particular list and can be used to express a meaning that combines the
semantics of both values with each other.

However, this combination of values is not arbitrarily possible. It is therefore necessary
to formulate a constraint that regulates the appearance of the safety-related values
mentioned in [TPS_SWCT_01456].

In other words, it would not make any sense to attribute a given memory object with
two different ASIL [29] values appearing on the same list.

If these values were combined on a particular list, the intended semantics would be
ambiguous and could not clearly be determined. Therefore, [constr_1311] applies.

[constr_1311] Appearance of safety-related possible values of MemorySec-
tion.option or SwAddrMethod.option dAny given collection of values stored
in the attributes MemorySection.option or SwAddrMethod.option according to
[TPS_SWCT_01456] shall at most include a single value out of the following list at
the time when the RTE is generated:

• safetyQM

• safetyAsilA

• safetyAsilB

• safetyAsilC

• safetyAsilD

c()

[constr_1381] Appearance of core-related possible values of MemorySec-
tion.option or SwAddrMethod.option dAny given collection of values stored
in the attributes MemorySection.option or SwAddrMethod.option according to
[TPS_SWCT_01456] shall at most include a single value out of the following list at
the time when the RTE is generated:

• coreGlobal

• coreLocal

c()

419 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01294] Missing SwDataDefProps.swAddrMethod dIf the association
SwDataDefProps.swAddrMethod is missing the object can be placed anywhere
without restriction, e.g. using a default behavior of the RTE generator. Contradict-
ing specifications (e.g. two different component types request different associations for
one particular SwAddrMethod) shall be flagged as an error.c()

Figure 5.59 illustrates the usage of SwAddrMethod in the context of a DataProto-
type.

[TPS_SWCT_01292] Usage of SwAddrMethod in the context of a DataPrototype
dThe software component which defines the DataPrototype will in general not be
the same to which the Implementation that actually contains the description of the
MemorySection belongs.

The reason for this is that the resources for data allocated by the RTE will be described
in the Implementation of the RTE. The indirection via SwAddrMethod makes this
possible.c()

[TPS_SWCT_01293] RTE Generator has to derive the Memory Allocation Key-
word dPlease note that the RTE Generator has to derive the Memory Allocation Key-
word used for RunnableEntitys and BswSchedulableEntitys from the short-
Name of the SwAddrMethod only because the alignment defined in MemorySection
is not known at contract phase.c()

[constr_2034] SwAddrMethod referenced by RunnableEntitys, BswCalledEn-
titys, or BswSchedulableEntitys dRunnableEntitys, BswCalledEntitys,
and BswSchedulableEntitys shall not reference a SwAddrMethod which at-
tribute memoryAllocationKeywordPolicy is set to addrMethodShortNameAn-
dAlignment at the time when the RTE is generated.c()

ARElement
AtpBlueprint

AtpBlueprintable

SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
+ option: Identifier [0..*]
+ sectionInitializationPolicy: SectionInitial izationPolicyType [0..1]
+ sectionType: MemorySectionType [0..1]

Identifiable

MemorySection

+ alignment: AlignmentType [0..1]
+ memClassSymbol: CIdentifier [0..1]
+ option: Identifier [0..*]
+ size: PositiveInteger [0..1]
+ symbol: Identifier [0..1]

Identifiable

ExecutableEntity

+ minimumStartInterval:
TimeValue [0..1]

+ reentrancyLevel:
ReentrancyLevelEnum [0..1]

«atpVariation»
SwDataDefProps

AtpStructureElement

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

+swAddrMethod

0..1

+swAddrmethod 0..1

+executableEntity

0..*

+swAddrMethod 0..1

Figure 5.58: SwAddrMethod

420 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1402] Applicability of core-related possible values of MemorySection.
option or SwAddrMethod.option related to SwAddrMethod.sectionInitial-
izationPolicy dIf the attribute SwAddrMethod.option or MemorySection.op-
tion is set to coreLocal then the attribute SwAddrMethod.sectionInitializa-
tionPolicy of the same SwAddrMethod respectively the MemorySection.swAd-
drmethod shall be either set to INIT or CLEARED at the time when the RTE
is generated.c()

The purpose of [constr_1402] is a reduction of the complexity of memory layouts and
reduce the amount of memory gaps due to allocation restrictions.

Primitive SectionInitializationPolicyType

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note SectionInitializationPolicyType describes the intended initialization of MemorySections. The following
values are standardized in AUTOSAR Methodology:

• INIT: To be used for (explicitly or not explicitly) initialized variables.

• CLEARED: To be used for not explicitly initialized variables.

• POWER-ON-CLEARED: To be used for variables that are not explicitly initialized (cleared)
during normal start-up. Instead these are cleared only after power on reset.

Please note that the values are defined similar to the representation of enumeration types in the XML
schema to ensure backward compatibility.

Tags:
xml.xsd.customType=SECTION-INITIALIZATION-POLICY-TYPE
xml.xsd.type=NMTOKEN

Table 5.103: SectionInitializationPolicyType

[constr_10068] Standardized values for SectionInitializationPolicyType
dThe following values for SectionInitializationPolicyType are reserved by
the AUTOSAR standard:

INIT To be used for (explicitly or not explicitly) initialized variables.

CLEARED To be used for (explicitly or not explicitly) initialized variables.

POWER-ON-CLEARED To be used for variables that are not explicitly initialized
(cleared) during normal start-up. Instead these are cleared only after power on
reset.

This rule shall be imposed at the time when the RTE is generated.c()

Please note that custom values of SectionInitializationPolicyType are cur-
rently not supported.

Enumeration MemorySectionType

Package M2::MSR::DataDictionary::AuxillaryObjects

Note Enumeration to specify the essential nature of the data which can be allocated in a common memory
class by the means of the AUTOSAR Memory Mapping.

Literal Description

5

421 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration MemorySectionType

calibrationVariables This memory section is reserved for "virtual variables" that are computed by an MCD system during a
measurement session but do not exist in the ECU memory.

Tags:atp.EnumerationLiteralIndex=2

calprm To be used for calibratable constants of ECU-functions.

Tags:atp.EnumerationLiteralIndex=3

code To be used for mapping code to application block, boot block, external flash etc.

Tags:atp.EnumerationLiteralIndex=4

configData Constants with attributes that show that they reside in one segment for module configuration.

Tags:atp.EnumerationLiteralIndex=5

const To be used for global or static constants.

Tags:atp.EnumerationLiteralIndex=6

excludeFromFlash This memory section is reserved for "virtual parameters" that are taken for computing the values of
so-called dependent parameter of an MCD system. Dependent Parameters that are not at the same
time "virtual parameters" are allocated in the ECU memory.

Virtual parameters, on the other hand, are not allocated in the ECU memory. Virtual parameters exist
in the ECU Hex file for the purpose of being considered (for computing the values of dependent
parameters) during an offline-calibration session.

Tags:atp.EnumerationLiteralIndex=7

var To be used for global or static variables. The expected initialization is specified with the attribute
sectionInitializationPolicy.

Tags:atp.EnumerationLiteralIndex=9

Table 5.104: MemorySectionType

Enumeration MemoryAllocationKeywordPolicyType

Package M2::MSR::DataDictionary::AuxillaryObjects

Note Enumeration to specify the name pattern of the Memory Allocation Keyword.

Literal Description

addrMethodShort
Name

The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
Allocation Keywords in the code are build with the shortName of the SwAddrMethod. This is the
default value if the attribute does not exist.

Tags:atp.EnumerationLiteralIndex=0

addrMethodShort
NameAndAlignment

The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
Allocation Keywords in the code are build with the shortName of the SwAddrMethod and a variable
alignment postfix.

Thereby the alignment postfix needs to be consistent with the alignment attribute of the related
MemorySection.

Tags:atp.EnumerationLiteralIndex=1

Table 5.105: MemoryAllocationKeywordPolicyType

Primitive AlignmentType

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

5

422 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Primitive AlignmentType

Note This primitive represents the alignment of objects within a memory section. The value is in number of bits
or UNKNOWN (deprecated), 8 , 16, 32 UNSPECIFIED, BOOLEAN, or PTR. Typical values for numbers
are 8, 16, 32.

Tags:
xml.xsd.customType=ALIGNMENT-TYPE
xml.xsd.pattern=[1-9][0-9]*|0[xX][0-9a-fA-F]*|0[bB]
[0-1]+|0[0-7]*|UNSPECIFIED|UNKNOWN|BOOLEAN|PTR
xml.xsd.type=string

Table 5.106: AlignmentType

For more information on the specification of a MemorySection refer to [6].

Identifiable

MemorySection

+ alignment: AlignmentType [0..1]
+ memClassSymbol: CIdentifier [0..1]
+ option: Identifier [0..*]
+ size: PositiveInteger [0..1]
+ symbol: Identifier [0..1]

Identifiable

ResourceConsumption

ARElement

Implementation

ARElement
AtpBlueprint

AtpBlueprintable

SwAddrMethod

+ memoryAllocationKeywordPolicy:
MemoryAllocationKeywordPolicyType [0..1]

+ option: Identifier [0..*]
+ sectionInitializationPolicy:

SectionInitial izationPolicyType [0..1]
+ sectionType: MemorySectionType [0..1]

«atpVariation»
SwDataDefProps

AtpPrototype

DataPrototype

������������	
 ����

�����������	��	���� �

��������������

�����������������	����

� � ��

«enumeration»
MemorySectionType

 var
 code
 const
 calprm
 configData
 excludeFromFlash
 calibrationVariables

«enumeration»
MemoryAllocationKeywordPolicyType

 addrMethodShortName
 addrMethodShortNameAndAlignment

+swAddrmethod

0..1

+swAddrMethod 0..1

«atpSplitable»

+resourceConsumption 0..1

«atpVariation,atpSplitable»

+memorySection 0..*

+/swDataDefProps 0..1

Figure 5.59: Assigning an address method to a memory section

5.5.5 Record Layouts

[TPS_SWCT_01295] SwRecordLayout dThe SwRecordLayout describes how data
is serialized in the memory of an ECU. This information is important with respect to the
following aspects:

• to inform a measurement and calibration system how the data is serialized in the
memory of an ECU

• to make sure that the software development results in the intended data struc-
tures

• to identify the proper interpolation routines

Via the SwDataDefProps, a record-layout can be associated to a data entity. If the
very same serialization approach is used for multiple ApplicationDataTypes all of

423 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

these may refer to the same SwRecordLayout even if the size of the data is different.c
(RS_SWCT_03215)

5.5.5.1 Specifying Record Layouts

As mentioned above, the purpose of record layout is to specify how an object (e.g. a
calibration parameter) is serialized in memory of an ECU. The canonical approach for
this is to define nested groups (SwRecordLayoutGroup).

These groups indicate the structure of the corresponding Implementation-
DataType. The serialization is then executed by iterating over the axes of a curve,
a map, or iterating along a string. The contents of such a record layout group (
SwRecordLayoutGroupContent) is a mixture of (thus nested) groups and values
(SwRecordLayoutV).

These values refer to particular properties of the object (e.g. value, count, . . .). By
application of this pattern, the serialization of any complex object can be specified.

«atpMixed»
SwRecordLayoutGroupContent

Identifiable

SwGenericAxisParamType

SwRecordLayoutGroup

+ category: AsamRecordLayoutSemantics [0..1]
+ shortLabel: Identifier [0..1]
+ swRecordLayoutComponent: Identifier [0..1]
+ swRecordLayoutGroupAxis: AxisIndexType [0..1]
+ swRecordLayoutGroupFrom:

RecordLayoutIteratorPoint [0..1]
+ swRecordLayoutGroupIndex: NameToken [0..1]
+ swRecordLayoutGroupStep: Integer [0..1]
+ swRecordLayoutGroupTo:

RecordLayoutIteratorPoint [0..1]

SwRecordLayoutV

+ category: AsamRecordLayoutSemantics [0..1]
+ shortLabel: Identifier [0..1]
+ swRecordLayoutVAxis: AxisIndexType [0..1]
+ swRecordLayoutVFixValue: Integer [0..1]
+ swRecordLayoutVIndex: NameTokens [0..1]
+ swRecordLayoutVProp: NameToken [0..1]

ARElement

SwRecordLayout

«primitive»
AsamRecordLayoutSemantics

tags
xml.xsd.customType = ASAM-RECORD-LAYOUT-SEMANTICS
xml.xsd.type = NMTOKEN

«primitive»
RecordLayoutIteratorPoint

tags
xml.xsd.customType = RECORD-LAYOUT-ITERATOR-POINT
xml.xsd.pattern = -?([0-9]+|MAX-TEXT-SIZE|ARRAY-SIZE)
xml.xsd.type = string

«primitive»
AxisIndexType

tags
xml.xsd.customType = AXIS-INDEX-TYPE
xml.xsd.pattern = [0-9]+|STRING|ARRAY
xml.xsd.type = string

AtpBlueprint
AtpBlueprintable

BaseType

SwBaseType

MultiLanguageOverviewParagraph

+swRecordLayoutV 0..1

+desc 0..1

+swRecordLayoutGroup

0..1

+swRecordLayoutGroupContentType0..1

+desc 0..1

+swRecordLayout

0..1

+baseType 0..1 +swGenericAxisParamType 0..1

+swRecordLayoutGroup 0..1

Figure 5.60: Specification of a record layout

424 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SwRecordLayout

Package M2::MSR::DataDictionary::RecordLayout

Note Defines how the data objects (variables, calibration parameters etc.) are to be stored in the ECU
memory. As an example, this definition specifies the sequence of axis points in the ECU memory.
Iterations through axis values are stored within the sub-elements swRecordLayoutGroup.

Tags:atp.recommendedPackage=SwRecordLayouts

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

swRecord
LayoutGroup

SwRecordLayoutGroup 0..1 aggr This is the top level record layout group.

Tags:
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.107: SwRecordLayout

Class SwRecordLayoutV

Package M2::MSR::DataDictionary::RecordLayout

Note This element specifies which values are stored for the current SwRecordLayoutGroup. If no baseType is
present, the SwBaseType referenced initially in the parent SwRecordLayoutGroup is valid. The
specification of swRecordLayoutVAxis gives the axis of the values which shall be stored in accordance
with the current record layout SwRecordLayoutGroup. In swRecordLayoutVProp one can specify the
information which shall be stored.

Base ARObject

Attribute Type Mult. Kind Note

baseType SwBaseType 0..1 ref This association allows to refer to a base type in case a
specific encoding is intended. If no base type is referred,
the base type referenced initially in the corresponding
DataPrototype is to be used.

Tags:xml.sequenceOffset=30

category AsamRecordLayout
Semantics

0..1 attr This attribute denotes the semantics in particular in terms
of the corresponding A2L-Keyword. This is to support the
mapping of the more general record layouts in AUTOSAR/
MSR to the specific A2l keywords. It is possible to
express the specific semantics of A2l RecordLayout
keywords in swRecordlayoutGroup but not always vice
versa. Therefore the mapping is provided in this optional
attribute.

Tags:xml.sequenceOffset=5

desc MultiLanguageOverview
Paragraph

0..1 aggr This aggregation allows for a brief description about the
particular record layout value which can help to identify
the entry. In-depth documentation should be added to the
introduction of the surrounding record layout.

Tags:xml.sequenceOffset=20

shortLabel Identifier 0..1 attr This attribute specifies a name which can be used e.g.
when ECU code is generated from the record layout
value.

Tags:xml.sequenceOffset=3

5

425 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwRecordLayoutV

swGenericAxis
ParamType

SwGenericAxisParam
Type

0..1 ref This association supports the case that a value from a
generic axis definition shall be stored. This value is
denoted by a particular generic axis parameter type.

Tags:xml.sequenceOffset=70

swRecord
LayoutVAxis

AxisIndexType 0..1 attr This attribute gives the index of the axis of which values
that are stored in the record. swRecordVIndex refers to
the symbolic names of the iterators for which the axis
value shall be stored in the record.

In case of nested iterators (mainly for multidimensional
objects) the iterator names are specified as
whitespace-separated names.

These symbolic names relate to swRecordLayoutGroup
Index. The iterators are processed from left to right in
such a manner that they symbolize the loop index from
the outside to the inside.

It is considered an error if more components are specified
than axes exist in the related ApplicationDataType.

Tags:xml.sequenceOffset=40

swRecord
LayoutVFix
Value

Integer 0..1 attr This attribute specifies the filler character for the current
record layout, in the form of hex digits. It is also used to
specify the fix value for e.g. FIXRIGHTDIFF.

Tags:xml.sequenceOffset=80

swRecord
LayoutVIndex

NameTokens 0..1 attr The symbolic value for iteration, or the symbolic values
separated by whitespaces, refer to the symbolic values
given in swRecordLayoutGroupIndex .

The iterators are processed from left to right, in such a
manner that they symbolize the loop index from the
outside to the inside.

It is considered an error if the record layout is referenced
by an entity which has less number of axes than index
names referenced here.

Tags:xml.sequenceOffset=60

swRecord
LayoutVProp

NameToken 0..1 attr This attribute describes the kind of values to be stored.
More details see below. The standardized values
foreseen for this attribute are defined in
[TPS_SWCT_01489].

Tags:xml.sequenceOffset=50

Table 5.108: SwRecordLayoutV

Class SwRecordLayoutGroup

Package M2::MSR::DataDictionary::RecordLayout

Note Specifies how a record layout is set up. Using SwRecordLayoutGroup it recursively models iterations
through axis values. The subelement swRecordLayoutGroupContentType may reference other Sw
RecordLayouts, SwRecordLayoutVs and SwRecordLayoutGroups for the modeled record layout.

Base ARObject

Attribute Type Mult. Kind Note

5

426 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwRecordLayoutGroup

category AsamRecordLayout
Semantics

0..1 attr This attribute denotes the semantics in particular in terms
of the corresponding A2L-Keyword. This is to support the
mapping of the more general record layouts in AUTOSAR/
MSR to the specific A2l keywords.

It is possible to express the specific semantics of A2l
recordlayout keywords in swRecordlayoutGroup but not
always vice versa. Therefore the mapping is provided in
this optional attribute.

Tags:xml.sequenceOffset=5

desc MultiLanguageOverview
Paragraph

0..1 aggr This aggregation allows a brief description about the
particular record layout group which can help to identify
the entry. In-depth documentation should be added to the
introduction of the surrounding record layout.

Tags:xml.sequenceOffset=20

shortLabel Identifier 0..1 attr This attribute specifies a name which can be used e.g.
when ECU code is generated from the record layout
group.

Tags:xml.sequenceOffset=3

swGenericAxis
ParamType

SwGenericAxisParam
Type

0..1 ref This association allows to specify record layout groups to
iterate over generic axis parameters. For example, if the
generic axis parameter is an array, the record layout
group will iterate over this array.

Obviously, the axis referred to by swRecordLayoutGroup
Axis shall be a generic axis in which the referenced Sw
GenericAxisType is aggregated.

Tags:xml.sequenceOffset=50

swRecord
Layout
Component

Identifier 0..1 attr This attribute is used to denote the component to which
the group in question applies. Thus, the record layout
supports structured objects.

This secures independence from the sequence of
components, because they can be referred to via name.

Tags:xml.sequenceOffset=90

swRecord
LayoutGroup
Axis

AxisIndexType 0..1 attr This attribute specifies the iteration axis number for a Sw
RecordLayoutGroup. The current record layout group
then refers exactly to the axis with this number. This
means that the values are taken by iterating along the
thus referenced axis.

Tags:xml.sequenceOffset=30

swRecord
LayoutGroup
ContentType

SwRecordLayoutGroup
Content

0..1 aggr This is the contents of the recordLayout which is
produced for every step of iteration.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=100
xml.typeElement=false
xml.typeWrapperElement=false

swRecord
LayoutGroup
From

RecordLayoutIterator
Point

0..1 attr This attribute specifies the iterator index for the point in
the axis from which a record layout group is commenced.

Negative values are also possible, i.e. the value -4 counts
from the fourth value from the end. If this property is
missing, the iteration starts with ’1’.

Tags:xml.sequenceOffset=60

5

427 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwRecordLayoutGroup

swRecord
LayoutGroup
Index

NameToken 0..1 attr This attribute attributes a symbolic name to the iterator of
the superimposed record layout group. This can be
referenced as a loop index in contained SwRecordLayout
V elements.

Tags:xml.sequenceOffset=40

swRecord
LayoutGroup
Step

Integer 0..1 attr This attribute specifies the step width for the iterator index
that is used for the current record layout group.

Note that negative values are also possible, in case of the
starting point is higher than the endpoint. If the property
is missing, the step width is "1".

Tags:xml.sequenceOffset=80

swRecord
LayoutGroupTo

RecordLayoutIterator
Point

0..1 attr This attribute specifies the end point for the iteration.
Negative values are also possible, i.e. the value -4 counts
up to the fourth value from the end. If this property is not
there, the iteration ends at "-1" which is the last element.

Note that depending on the arraySizeSemantics of Sw
TextProps the iteration ends at the value specified in sw
MaxTextSize.

Tags:xml.sequenceOffset=70

Table 5.109: SwRecordLayoutGroup

Class <<atpMixed>> SwRecordLayoutGroupContent

Package M2::MSR::DataDictionary::RecordLayout

Note This is the contents of a RecordLayout which is inserted for every iteration. Note that since this is atp
Mixed, multiple properties can be inserted for each iteration.

Base ARObject

Attribute Type Mult. Kind Note

swRecord
Layout

SwRecordLayout 0..1 ref This association allows to support reusable "sub"-record
layouts. In particular, the contents of the referenced
record layout shall be used as if the record layout group in
the referenced record layout was aggregated in the
current record layout group.

So, semantically it would be equivalent to replace the
particular association with an aggregation of the sw
RecordLayoutGroup of the referenced SwRecordLayout.

Tags:xml.sequenceOffset=110

swRecord
LayoutGroup

SwRecordLayoutGroup 0..1 aggr This aggregation provides support for nested iterations.
For example, if a map is to be handled, then we might
have two nested SwRecordLayoutGroups, one for the
x-axis and one for the y-axis. The inner iteration runs
faster.

Tags:xml.sequenceOffset=130

swRecord
LayoutV

SwRecordLayoutV 0..1 aggr Particular Value specification for this record layout group.

Tags:xml.sequenceOffset=120

Table 5.110: SwRecordLayoutGroupContent

[constr_1264] Iteration along output axis is only supported for VALUE and VAL_-
BLK dswRecordLayoutVIndex in SwRecordLayoutV cannot be 0 for any value of
SwRecordLayoutV.category other than VALUE and VAL_BLK.

428 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

For CURVE, MAP, etc. the iteration shall be performed along the input axis.

Primitive AxisIndexType

Package M2::MSR::DataDictionary::RecordLayout

Note This meta-class specifies an axis in a curve/map data object. The index satisfies the following convention:

• 0 output "axis"

• 1 input axis 1 (X input axis e.g. of a CURVE)

• 2 input axis 2 (Y input axis e.g. of a MAP)

• 3 input axis 3 (Z input axis e.g. of a CUBOID)

• 4 input axis 3 (Z4 input axis e.g. of a CUBE_4)

• 5 input axis 3 (Z5 input axis e.g. of a CUBE_5)

• 6..9 etc.

The output "axis" provides access to the output value of the parameter. Note that this access is usually
performed via an index according to the input axis.

In addition to this, the Values STRING and ARRAY support specific iterations.

Tags:
xml.xsd.customType=AXIS-INDEX-TYPE
xml.xsd.pattern=[0-9]+|STRING|ARRAY
xml.xsd.type=string

Table 5.111: AxisIndexType

Primitive RecordLayoutIteratorPoint

Package M2::MSR::DataDictionary::RecordLayout

Note This meta-class denotes a start / endpoint for the iteration of a SwRecordLayoutGroup. It can be an
integer or one of the keywords MAX-TEXT-SIZE|ARRAY-SIZE. Note that negative numbers are counted
backwards. Therefore e.g. -1 refers to the last value.

Tags:
xml.xsd.customType=RECORD-LAYOUT-ITERATOR-POINT
xml.xsd.pattern=-?([0-9]+|MAX-TEXT-SIZE|ARRAY-SIZE)
xml.xsd.type=string

Table 5.112: RecordLayoutIteratorPoint

[TPS_SWCT_01489] Standardized values of SwRecordLayoutV.swRecordLay-
outVProp dSwRecordLayoutV.swRecordLayoutVProp describes the type of val-
ues to be stored. The standardized values for SwRecordLayoutV.swRecordLay-
outVProp are listed in Table 5.113.c(RS_SWCT_03215)

Property Description

VALUE
The value of the axis for the current iterator point. This is e.g. the particular point on an input-axis, but
also the particular character in a string.

COUNT The amount of values of the axis.

LEFTDIFF The difference to the previous axis point.

RIGHTDIFF The difference to the next axis point.

DIST The distance value of this axis in case of a fixed axis with distance specification.

5

429 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
SHIFT The shift value of this axis in case of a fixed axis with shift/offset.

OFFSET The offset value of this axis in case of a fixed axis with shift/offset.

SOURCE-ADR The address of the source of this axis (Note that this does not apply to the value axis).

RESULT-ADR The address of the result for this axis (note that this does not apply to input axis).

ADDRESS The address of the axis point.

FILL Fill with the hex value specified as contents of swRecordLayoutVFixValue.

FIXLEFTDIFF Difference between this and a fixed left-hand value specified in swRecordLayoutVFixValue.

FIXRIGHTDIFF Difference between this and a fixed right-hand value specified in swRecordLayoutVFixValue.

Table 5.113: swRecordLayoutVProp

Figure 5.61 and Figure 5.62 illustrate most of these properties.

1 2 3 4

COUNT = 4

1 2 3 41 2 3 4

COUNT = 4

RIGHTDIFFLEFTDIFF

FIXLEFTDIFF FIXRIGHTDIFF

RIGHTDIFFLEFTDIFF

FIXLEFTDIFF FIXRIGHTDIFF

0

VALUE

Current point

Figure 5.61: Values for swRecordLayoutVProp for individual axis

OFFSET DIST DIST

2^SHIFT

0
Value = OFFSET + n * 2^SHIFT

Value = OFFSET + n * DIST

OFFSET DIST DIST

2^SHIFT

0
Value = OFFSET + n * 2^SHIFT

Value = OFFSET + n * DIST

Figure 5.62: Values for swRecordLayoutVProp for fixed axis

430 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01296] Different approaches of ASAM MCD-2MC and AUTOSAR
with respect to SwRecordLayout dASAM MCD-2D specification (also known as
A2L, or ASAP) uses keywords in record layouts where MSR/AUTOSAR uses the more
generic approach specified here.

It may happen that this generic approach cannot always be safely mapped to the A2L
keywords. Therefore, SwRecordLayoutV.category as well as SwRecordLayout-
Group.category can assist the conversion to the current A2L format.c(RS_SWCT_-
03215)

Primitive AsamRecordLayoutSemantics

Package M2::MSR::DataDictionary::RecordLayout

Note This meta-class is used to denote the semantics in particular in terms of the corresponding
A2L-Keyword. This is to support the mapping of the more general record layouts in AUTOSAR/MSR to
the specific A2L keywords.

It is possible to express the specific semantics of A2l RecordLayout keywords in SwRecordlayoutGroup
but not always vice versa. Therefore the mapping is provided in this optional attribute.

It is specified as NMTOKEN to reduce the direct dependency of ASAM an AUTOSAR standards.

Tags:
xml.xsd.customType=ASAM-RECORD-LAYOUT-SEMANTICS
xml.xsd.type=NMTOKEN

Table 5.114: AsamRecordLayoutSemantics

The values of SwRecordLayoutV.category or SwRecordLayoutGroup.category
can, for example, be taken from the ASAM MCD 2D specification provided in [26].
Examples are:

• INDEX_INCR

• INDEX_DECR

• COLUMN_DIR

• ROW_DIR

• ALTERNATE_WITH_X

• ALTERNATE_WITH_Y

• ALTERNATE_CURVES

The consistency of these values of SwRecordLayoutV.category or SwRecordLay-
outGroup.category with the structure of the SwRecordLayout shall be ensured by
the author of the SwRecordLayout.

Note that there are keywords in A2L bound to a calibration parameter which in
MSR/AUTOSAR are represented by the SwRecordLayout (DEPOSIT etc.).

The following XML fragment provides an example for a SwRecordLayout for a curve.
Note that in this case recognizing the patterns represented by the A2L-Keywords
(shown in XML-Comment) is pretty straight forward, even if the keywords were not
provided in the SwRecordLayoutV.category as well as SwRecordLayoutGroup.
category.

431 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Listing 5.19: Example for RecordLayout of a curve
<SW-RECORD-LAYOUT>

<SHORT-NAME>RecordLayoutCurve</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>

<SW-RECORD-LAYOUT-V><!-- SRC_ADDR_X -->
<SHORT-LABEL>srcAdr</SHORT-LABEL>
<SW-RECORD-LAYOUT-V-PROP>SOURCE-ADR</SW-RECORD-LAYOUT-V-PROP>

</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V><!-- NO_AXIS_PTS_X -->

<SHORT-LABEL>noOfAxisPts</SHORT-LABEL>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>1</SW-RECORD-LAYOUT-V-INDEX>

</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP><!-- AXIS_PTS_X -->

<SHORT-LABEL>xPts</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>

<SHORT-LABEL>xPt</SHORT-LABEL>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS> <!--

AXIS_PTS_X -->
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>

</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>

<SHORT-LABEL>values</SHORT-LABEL><!-- FNC_VALUES -->
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>0</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>

<SHORT-LABEL>value</SHORT-LABEL>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS><!-- FNC_VALUES

-->
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>

</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>

</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

5.5.5.2 RecordLayouts and DataTypes

[TPS_SWCT_01837] Types for record layouts dBecause ParameterDataProto-
types have a�isOfType�-relation to ApplicationDataTypes or Implementa-
tionDataTypes, the related data types shall properly match to the details as specified
in swDataDefProps.c(RS_SWCT_03215)

This is exemplified in figure 5.63.

432 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

:ApplicationDataType

:SwDataDefProps :SwRecordLayout

:ImplementationDatatypeelement: DataTypeMap

:SwBaseType

category = FIXED_LENGTH

Figure 5.63: Dependency of AutosarDataTypes and SwRecordLayouts

[TPS_SWCT_01297] Compliance of ApplicationDataTypes or Implementa-
tionDataTypes to swDataDefProps dIn order to maintain this compliance the fol-
lowing options exist:

• Manually create ImplementationDataTypes from corresponding Applica-
tionDataTypes and the referenced SwRecordLayouts

• Automatically create ImplementationDataTypes according to the existing
definition of SwRecordLayouts. This could be performed by a model trans-
formation according to the algorithm shown below.

c()

[TPS_SWCT_01298] Computing SwRecordLayout from Implementation-
DataTypes is not possible dNote that computing SwRecordLayouts from Imple-
mentationDataTypes is not really possible because the particular semantics of the
components is not available (swRecordLayoutVProp).c(RS_SWCT_03215)

Figures 5.64, 5.65, 5.66, 5.67, and 5.69 illustrate how data types can be derived from
SwRecordLayouts. Please note that the figures simplify some aspects of the actual
modeling. In particular, aggregations of SwDataDefProps are left out for the sake of
visual clarity.

Note that in each of these diagrams, the “blue” data types are derived from the record
layout.

These diagrams illustrate in particular the fact that on the level of Application-
DataType even complex entities such as curves and maps appear primitive data
types. The inner details of such entities are handled e.g. by service libraries.

433 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

:SwDataDefProps

element: SwRecordLayout

shortName = IntCur_u16_u8

:SwAxisIndividual

swMaxAxisPoints = 16

element: ImplementationDataType

category = STRUCTURE
shortName = Curve1Impl

subElement: ImplementationDataTypeElement

category = TYPE_REFERENCE
shortName = noOfAxisPts

subElement: ImplementationDataTypeElement

category = ARRAY
shortName = outputValues
shortLabel = Val

subElement: ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = swMaxAxisPoints
shortName = value

element: DataTypeMap

subElement: ImplementationDataTypeElement

category = ARRAY
shortName = inputValues

subElement: ImplementationDataTypeElement

category = TYPE_REEFRENCE
arraySize = swMaxAxisPoints
shortName = value

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 1
shortLabel = X
category = INDEX_INCR
swRecordLayoutGroupIndex = X
swRecordLayoutGroupFrom = 1
swRecordLayoutGroupTo = -1

:SwRecordLayoutV

swRecordLayoutVAxis = 1
shortLabel = value
swRecordLayoutVProp = VALUE

:SwRecordLayoutV

swRecordLayoutVAxis = 1
shortLabel = N
swRecordLayoutVProp = COUNT

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 0
shortLabel = Val
category = COLUMN_DIR
swRecordLayoutGroupFrom = 1
swRecordLayoutGroupTo = -1

:SwRecordLayoutV

swRecordLayoutVAxis = 0
shortLabel = value
swRecordLayoutVProp = VALUE
swRecordLayoutVIndex = X

element: SwBaseType

category = FIXED_LENGTH
shortName = uint8

:
ImplementationDataType

shortName = uint8
category = VALUE

element: SwBaseType

category = FIXED_LENGTH
shortName = uint16

:
ImplementationDataType

shortName = uint16
category = VALUE

:ApplicationPrimitiveDataType

shortName = Curve1
category = CURVE

+baseType

+
im

p
le

m
e

n
ta

tio
n

D
a

ta
T

yp
e

+
im

p
le

m
e

n
ta

tio
n

D
a

ta
T

yp
e

+baseType

+implementationDataType

+baseType

+baseType

+swRecordLayout

+baseType

+implementationDataType

+applicationDataType

+baseType

Figure 5.64: Curve implemented as two consecutive arrays

434 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

:SwDataDefProps

:SwAxisIndividual

swMaxAxisPoints = 16

element: DataTypeMap

element: ImplementationDataType

category = STRUCTURE
shortName = Curve1Impl

subElement: ImplementationDataTypeElement

category = TYPE_REFERENCE
shortName = COUNT

subElement: ImplementationDataTypeElement

category = ARRAY
shortName = values

subElement: ImplementationDataTypeElement

category = TYPE_REEFRENCE
shortName = Xvalue

subElement: ImplementationDataTypeElement

category = TYPE_REFERENCE
shortName = Yvalue

subElement: ImplementationDataTypeElement

category = STRUCTURE
arraySize = swMaxAxisPoints
shortName = values

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 1

:SwRecordLayoutV

swRecordLayoutVAxis = 1

:SwRecordLayoutV

swRecordLayoutVProp = COUNT

:SwRecordLayoutGroup

:SwRecordLayoutV

swRecordLayoutVAxis = 0

element: SwBaseType

category = FIXED_LENGTH
shortName = uint16

element: SwBaseType

category = FIXED_LENGTH
shortName = uint8

:ApplicationPrimitiveDataType

shortName = Curve1
category = CURVE

:
ImplementationDataType

shortName = uint16
category = VALUE

:
ImplementationDataType

shortName = uint8
category = VALUE

element: SwRecordLayout

shortName = IntCurPair_u16_u8

+baseType

+baseType

+swRecordLayout

+applicationDataType

+baseType

+
im

p
le

m
e

n
ta

tio
n

D
a

ta
T

yp
e

+implementationDataType

+baseType

+
im

p
le

m
e

n
ta

tio
n

D
a

ta
T

yp
e

+baseType

+baseType

+implementationDataType

Figure 5.65: Curve implemented as array of value pairs

435 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

:SwDataDefProps

element: SwRecordLayout

shortName = IntMap_u8u8_u16

:SwAxisIndividual

swMaxAxisPoints = 16

element: ImplementationDataType

category = STRUCTURE
shortName = Map1Impl

subElement: ImplementationDataTypeElement

category = TYPE_REEFRENCE
shortName = noOfAxisPointsY

subElement: ImplementationDataTypeElement

category = ARRAY
shortName = pointsAxis_2

subElement: ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = 16 (swMaxAxisPoints[axis_1])
shortName = Xvalue

element: DataTypeMap

subElement: ImplementationDataTypeElement

category = ARRAY
shortName = pointsAxis_1

subElement: ImplementationDataTypeElement

category = TYPE_REEFRENCE
arraySize = 10 (swMaxAxisPoints[axis_2])
shortName = Yvalue

:SwAxisIndividual

swMaxAxisPoints = 10

subElement: ImplementationDataTypeElement

category = TYPE_REEFRENCE
shortName = noOfAxisPointsX

subElement: ImplementationDataTypeElement

category = ARRAY
shortName = values

subElement: ImplementationDataTypeElement

category = ARRAY
shortName = lines
arraySize = 16 (swMaxAxisPoints[axis_1])

subElement: ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = 10 (swMaxAxisPoints[axis_2])
shortName = value

element: SwBaseType

category = FIXED_LENGTH
shortName = uint16

element: SwBaseType

category = FIXED_LENGTH
shortName = uint8

:
ImplementationDataType

shortName = uint8
category = VALUE

:
ImplementationDataType

shortName = uint16
category = VALUE

:ApplicationPrimitiveDataType

category = MAP
shortName = Map1

+baseType

+
im

p
le

m
e

n
ta

tio
n

D
a

ta
T

yp
e

+applicationDataType

+baseType

+swRecordLayout

+
im

p
le

m
e

n
ta

tio
n

D
a

ta
T

yp
e

+implementationDataType

+baseType

+
im

p
le

m
e

n
ta

tio
n

D
a

ta
T

yp
e

+
im

p
le

m
e

n
ta

tio
n

D
a

ta
T

yp
e

+implementationDataType

+baseType

+baseType

Figure 5.66: Record layout and data type for a map

436 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

:ApplicationPrimitiveDataType

shortName = ComAxis1
category = COM_AXIS

:DataTypeMap

element: ImplementationDataType

shortName = uint8_noOfAxisPts_Distr_u8
category = ARRAY

subElement: ImplementationDataTypeElement

shortName = uint8_noOfAxisPts_Distr_u8
category = TYPE_REEFRENCE
arraySize = noOfAxisPts+1

:
ImplementationDataType

shortName = uint8
category = VALUE

:SwBaseType

category = FIXED_LENGTH
shortName = uint8

:SwDataDefProps :SwRecordLayout

shortName = Distr_u8

:SwCalprmAxisSet

:SwAxisIndividual

category = COM_AXIS
swAxisIndex = 1
swMaxAxisPoints = noOfAxisPts
swMinAxisPoints = noOfAxisPts

:SwRecordLayoutV

swRecordLayoutVAxis = 1
shortLabel = N
swRecordLayoutVProp = COUNT

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 1
shortLabel = X
category = INDEX_INCR
swRecordLayoutGroupFrom = 1
swRecordLayoutGroupTo = -1

:SwRecordLayoutV

swRecordLayoutVAxis = 1
swRecordLayoutVProp = VALUE

����� ����� 	
	�	��

�
�� �	 ����	� ��

����
	��

+0 element

+baseType

+implementationDataType
+1..n element

+baseType

+implementationDataType

+baseType

+swRecordLayout

+applicationDataType

Figure 5.67: Record layout for the definition of a group axis

The algorithm to generate the desired data types is illustrated in the following two
diagrams.

We create an ImplementationDataType for each ApplicationDataType. Fig-
ure 5.68 illustrates how to map the details.

for all ApplicationDataTypes«iterative»

ApplicationDataType

TypeContentFromRecordLayout

create subElementCreateType

ImplementationDataTypeElement

Figure 5.68: algorithm to map the details of an application data type to the corresponding
implementation data type according to the record layout

[TPS_SWCT_01299] Relation of swRecordLayoutGroup to subElement dFor
each swRecordLayoutGroup an appropriate subElement shall be created.

The algorithm shall be recursively applied to the newly created Implementation-
DataTypeElements. As the record layout groups are nested, this recursion yields
the complete structure in the ImplementationDataType.c(RS_SWCT_03215)

437 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

:ApplicationPrimitiveDataType

shortName = Map2
category = MAP

:DataTypeMap

:SwDataDefProps

:SwCalprmAxisSet

:SwAxisGrouped

swAxisIndex = 1

:SwAxisGrouped

swAxisIndex = 2

:ApplicationPrimitiveDataType

category = COM_AXIS
shortName = ComAxis1

:ApplicationPrimitiveDataType

category = COM_AXIS
shortName = ComAxis2

:SwRecordLayout

shortName = Map_u16

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 1
shortLabel = Val
category = COLUMN_DIR
swRecordLayoutGroupIndex = X
swRecordLayoutGroupFrom = 1
swRecordLayoutGroupTo = -1

:SwRecordLayoutGroup

swRecordLayoutGroupAxis = 2
swRecordLayoutGroupIndex = Y
swRecordLayoutGroupFrom = 1
swRecordLayoutGroupTo = -1

:SwRecordLayoutV

swRecordLayoutVAxis = 0
swRecordLayoutVProp = VALUE
swRecordLayoutVIndex = X Y

element: SwBaseType

category = FIXED_LENGTH
shortName = uint16

:ImplementationDataType

shortName = uint16_noOfAxisPtsX_noOfAxisPtsY_Map_u16
category = ARRAY

:ImplementationDataTypeElement

shortName = DimX
category = ARRAY
arraySize = noOfAxisPtsX

:ImplementationDataTypeElement

shortName = DimY
category = TYPE_REFERENCE
arraySize = noOfAxisPtsY

:
ImplementationDataType

shortName = uint16
category = VALUE

+sharedAxisType +sharedAxisType

+applicationDataType

+baseType

+implementationDataType

+baseType

+swRecordLayout

+implementationDataType

Figure 5.69: Record layout for the definition of a map implemented by an array data type

Please note that the refinement of the sub element happens according to the approach
sketched in figure 5.70.

process subElements of RecordLayoutGroup«iterative»

RecordElement

subElement

set category to
STRUCTURE

set category to ARRAY

set
MaxNumberOfElements

get RecordLayoutGroup or
RecordLayoutV

ImplementationDataTypeElement

set category to VALUE and set
dataDefProperties

create subElement

origin

ImplementationDataType Or
ImplementationDataTypeElement

create subElement ImplementationDataTypeElement

ActivityFinal

[RecordLayoutValue]

[RecordLayoutGroup]

[has no iterator]

[has SwRecordLayoutFrom]

[has exactly one value]

Figure 5.70: refining subElements

438 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.5.5.3 Record Layouts and Interpolation Routines

[TPS_SWCT_01300] Relationship between record layouts and interpolation rou-
tines dThe relationship between record layouts and interpolation routines can be spec-
ified in InterpolationRoutineMappingSet.

The interpolation routine is represented as BswModuleEntry and implements a par-
ticular interpolation method which is denoted in the value of InterpolationRou-
tine.shortLabel.

The intended interpolation method is denoted in the value of attribute SwDataDef-
Props.swInterpolationMethod.c(RS_SWCT_03215)

ARElement

InterpolationRoutineMappingSet

ARElement

SwRecordLayout
InterpolationRoutine

+ isDefault: Boolean [0..1]
+ shortLabel: Identifier [0..1]

ARElement
AtpBlueprint

AtpBlueprintable

BswModuleEntry

+ bswEntryKind: BswEntryKindEnum [0..1]
+ callType: BswCallType
+ executionContext: BswExecutionContext
+ functionPrototypeEmitter: NameToken [0..1]
+ isReentrant: Boolean
+ isSynchronous: Boolean
+ role: Identifier [0..1]
+ serviceId: PositiveInteger [0..1]
+ swServiceImplPolicy: SwServiceImplPolicyEnum

InterpolationRoutineMapping

+interpolationRoutine

0..1

+interpolationRoutine 0..*+swRecordLayout 0..1

+interpolationRoutineMapping 0..*

Figure 5.71: Mapping of Record Layouts and Interpolation Routines

Class InterpolationRoutineMappingSet

Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::InterpolationRoutine
MappingSet

Note This meta-class specifies a set of interpolation routine mappings.

Tags:atp.recommendedPackage=InterpolationRoutineMappingSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

interpolation
Routine
Mapping

InterpolationRoutine
Mapping

* aggr This specifies one particular mapping of recordlayout and
its matching interpolationRoutines.

Table 5.115: InterpolationRoutineMappingSet

Class InterpolationRoutineMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::InterpolationRoutine
MappingSet

Note This meta-class provides a mapping between one record layout and its matching interpolation routines.
This allows to formally specify the semantics of the interpolation routines.

The use case is such that the curves/Maps define an interpolation method. This mapping table specifies
which interpolation routine implements methods for a particular record layout. Using this information, the
implementer of a software-component can select the appropriate interpolation routine.

5

439 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class InterpolationRoutineMapping

Base ARObject

Attribute Type Mult. Kind Note

interpolation
Routine

InterpolationRoutine * aggr This is one particular interpolation routine which is
mapped to the record layout.

swRecord
Layout

SwRecordLayout 0..1 ref This refers to the record layout which is mapped to
interpolation routines.

Table 5.116: InterpolationRoutineMapping

Class InterpolationRoutine

Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::InterpolationRoutine
MappingSet

Note This represents an interpolation routine taken to evaluate the contents of a curve or map against a
specific input value.

Base ARObject

Attribute Type Mult. Kind Note

interpolation
Routine

BswModuleEntry 0..1 ref This specifies a BswModuleEntry which implements the
current interpolation method for the given record layout.

Tags:xml.sequenceOffset=30

isDefault Boolean 0..1 attr This attribute specifies whether the enclosing
InterpolationRoutine is considered the default in the
context (defined by the System Template) of a given
collection InterpolationRoutineMapping that owns the
enclosing InterpolationRoutine.

Tags:xml.sequenceOffset=20

shortLabel Identifier 0..1 attr This is the name of the interpolation method which is
implemented by the referenced bswModuleEntry. It
corresponds to swInterpolationMethod in SwDataDef
Props.

Tags:xml.sequenceOffset=10

Table 5.117: InterpolationRoutine

5.5.6 Display Presentation

[TPS_SWCT_01756] Semantics of SwDataDefProps.displayPresentation
dThe attribute SwDataDefProps.displayPresentation is used to control the pre-
sentation of data within measurement and calibration tools.

When such a tool displays a series of measurement values its useful to indicate to the
displaying tool whether the series of measurement values can be seen as a continuous
graph or as a set of discrete values, i.e. step-wise.

For instance, a continuous graph is appropriate for the case that the values do not
bounce arbitrarily within one measurement cycle, e.g. a temperature variable.c()

On the other hand, a discrete handling is correct if each value of the measured variable
has a distinct meaning and therefore may arbitrarily change within one measurement
cycle, e.g. a state variable.

440 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Another use case is the indication of how an ECU utilizes a DataPrototype of cate-
gory CURVE, MAP, or CUBOID to determine a single value out of one or several working
points in axis.

This can be either done via interpolation between the sampling points on each axis or
without interpolation by taking the nearest sampling point.

The first option requires the continuous representation for the determined value in the
displaying tool whereas the second option expects a discrete handling of the deter-
mined value.

[constr_1592] Definition of SwDataDefProps.displayPresentation depend-
ing on the capabilities of the data type dThe definition of a SwDataDefProps.dis-
playPresentation according to [constr_1288] and [constr_1289] shall only be ap-
plied for a DataPrototype of category ARRAY if the corresponding Application-
ArrayDataType or ImplementationDataType of category ARRAY supports the
specification of a SwDataDefProps.displayPresentation.

This rule shall be imposed at any time in the workflow.c()

[constr_1602] Definition of SwDataDefProps.displayPresentation depend-
ing on the capabilities of the element dThe definition of a SwDataDefProps.
displayPresentation according to [constr_1007] and [constr_1009] is only sup-
ported for an ApplicationArrayDataType or an ImplementationDataType of
category ARRAY if the aggregated ApplicationArrayDataType.element or
ImplementationDataType.subElement also supports the specification of a Sw-
DataDefProps.displayPresentation.

This rule shall be imposed at any time in the workflow.c()

[TPS_SWCT_01757] Not-applicable scenario for presentationContinuous dIf
the semantics of the DataPrototype is described by means of a CompuMethod of
category TEXTTABLE, BITFIELD_TEXTTABLE or TAB_NOINTP the option to set
attribute displayPresentation is meaningless because the step-wise change of
data is an intrinsic property of the data object.c()

[TPS_SWCT_01758] Applicable value range of SwDataDefProps.displayPre-
sentation dIf the semantics of a DataPrototype is described by means of a Com-
puMethod of category IDENTICAL, LINEAR, RAT_FUNC the attribute SwDataDef-
Props.displayPresentation describes the presentation of data for the complete
value range.

If the semantics of a DataPrototype is described by means of a CompuMethod of cat-
egory SCALE_LINEAR_AND_TEXTTABLE or SCALE_RATIONAL_AND_TEXTTABLE
the attribute SwDataDefProps.displayPresentation describes the presentation
of data only for the value range outside the TEXTTABLE values.c()

441 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Enumeration DisplayPresentationEnum

Package M2::MSR::DataDictionary::DataDefProperties

Note This meta-class represents the ability to provide values for controlling the presentation of data within
measurement and calibration tools.

Literal Description

presentation
Continuous

The presentation of data shall form a continuous graph between data points.

Tags:atp.EnumerationLiteralIndex=0

presentation
Discrete

The presentation of data shall be step-shaped between data points.

Tags:atp.EnumerationLiteralIndex=1

Table 5.118: DisplayPresentationEnum

5.6 Specification of Constant Values

5.6.1 Overview

[TPS_SWCT_01177] Assignment of constant values dConstant values can be as-
signed to a meta-class by aggregating the meta-class ValueSpecification. This
aggregation can be used in two ways:

1. by referencing to a reusable ConstantSpecification which contains another
ValueSpecification

2. or through an inline aggregation of a value specification of various kind.

c(RS_SWCT_03175)

Class ConstantSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note Specification of a constant that can be part of a package, i.e. it can be defined stand-alone.

Tags:atp.recommendedPackage=ConstantSpecifications

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

valueSpec ValueSpecification 0..1 aggr Specification of an expression leading to a value for this
constant.

Table 5.119: ConstantSpecification

[constr_1917] Existence of ConstantSpecification.valueSpec dFor each
ConstantSpecification, the aggregation of ValueSpecification in the role
valueSpec shall exist at the time when the contract phase generation
is executed.c()

442 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ValueSpecification (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note Base class for expressions leading to a value which can be used to initialize a data object.

Base ARObject

Subclasses AbstractRuleBasedValueSpecification, ApplicationValueSpecification, CompositeValueSpecification,
ConstantReference, NotAvailableValueSpecification, NumericalValueSpecification, ReferenceValue
Specification, TextValueSpecification

Attribute Type Mult. Kind Note

shortLabel Identifier 0..1 attr This can be used to identify particular value specifications
for human readers, for example elements of a record type.

Table 5.120: ValueSpecification

Class CompositeValueSpecification (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This abstract meta-class acts a base class for ValueSpecifications that have a composite form.

Base ARObject , ValueSpecification

Subclasses ArrayValueSpecification, RecordValueSpecification

Attribute Type Mult. Kind Note

– – – – –

Table 5.121: CompositeValueSpecification

Class ArrayValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note Specifies the values for an array.

Base ARObject , CompositeValueSpecification, ValueSpecification

Attribute Type Mult. Kind Note

element
(ordered)

ValueSpecification * aggr The value for a single array element. All Value
Specifications aggregated by ArrayValueSpecification
shall have the same structure.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

intendedPartial
Initialization
Count

PositiveInteger 0..1 attr This attribute shall only have a meaning for dynamic
arrays and shall be taken as a sanity check: the number
filled in the attribute shall be identical to the number of
ArrayValueSpecification.element.

If the attribute does not exist it means that no partial
initialization is intended.

Table 5.122: ArrayValueSpecification

Class RecordValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note Specifies the values for a record.

Base ARObject , CompositeValueSpecification, ValueSpecification

Attribute Type Mult. Kind Note

5

443 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RecordValueSpecification

field (ordered) ValueSpecification * aggr The value for a single record field. This could also be
mapped explicitly to a record element of the data type
using the shortName of the ValueSpecification. But this
would introduce a relationship to the data type that is too
strong. As of now, it is only important that the structure of
the data type matches the structure of the Value
Specification independently of the shortNames.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 5.123: RecordValueSpecification

[constr_1918] Existence of RecordValueSpecification.field dFor each
RecordValueSpecification, the aggregation of ValueSpecification in the
role field shall exist at the time when the contract phase generation
is executed.c()

Class TextValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note The purpose of TextValueSpecification is to define the labels that correspond to enumeration values.

Base ARObject , ValueSpecification

Attribute Type Mult. Kind Note

value VerbatimString 0..1 attr This is the value itself.

Note that vt uses the | operator to separate the values for
the different bitfield masks in case that the semantics of
the related DataPrototype is described by means of a
BITFIELD_TEXTTABLE in the associated CompuMethod.

Table 5.124: TextValueSpecification

[constr_1919] Existence of TextValueSpecification.value dFor each
TextValueSpecification, attribute value shall exist at the time when the
contract phase generation is executed.c()

Class NumericalValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note A numerical ValueSpecification which is intended to be assigned to a Primitive data element. Note that
the numerical value is a variant, it can be computed by a formula.

Base ARObject , ValueSpecification

Attribute Type Mult. Kind Note

value Numerical 0..1 attr This is the value itself.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 5.125: NumericalValueSpecification

[constr_1920] Existence of NumericalValueSpecification.value dFor each
NumericalValueSpecification, attribute value shall exist at the time when
the contract phase generation is executed.c()

444 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ReferenceValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note Specifies a reference to a data prototype to be used as an initial value for a pointer in the software.

Base ARObject , ValueSpecification

Attribute Type Mult. Kind Note

referenceValue DataPrototype 0..1 ref The referenced data prototype.

Table 5.126: ReferenceValueSpecification

[constr_1921] Existence of ReferenceValueSpecification.referenceValue
dFor each ReferenceValueSpecification, attribute referenceValue shall exist
at the time when the contract phase generation is executed.c()

Figure 5.72 shows the specialized subclasses of ValueSpecification which allow
defining values for different use cases.

[TPS_SWCT_01178] Specialized subclasses of ValueSpecification dThe use
case for specialized subclasses of ValueSpecification are:

• Reference to a constant (which is actually a reusable value specification) by
means of a ConstantReference.

• TextValueSpecification

• NumericalValueSpecification

• ArrayValueSpecification

• RecordValueSpecification

• ApplicationValueSpecification: this can be used to specify the value
of Compound Primitive Data Types (see [TPS_SWCT_01179]) such as
curves and maps. It is also possible to use this in general (e.g. for a primitive
calibration value) for the specification of a value of a DataPrototype typed by
an ApplicationDataType.

Note that ApplicationValueSpecification is modeled along the example
of ASAM CDF (for more information please refer to [30]).

• reference to a DataPrototype: this can be used to describe initial values for
pointer variables in the basic software. One use case is the exchange of data de-
scriptions used to access calibration data for software emulation methods (see [6]
for details).

• ApplicationRuleBasedValueSpecification, inside an ArrayValue-
Specification, see [constr_1779].

• NumericalRuleBasedValueSpecification, inside an ArrayValueSpec-
ification, see [constr_1779].

• CompositeRuleBasedValueSpecification, inside an ArrayValueSpec-
ification, see [constr_1779].

445 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_03175)

It’s important to understand that although the name of the meta-class TextValue-
Specification suggests that it is the preferred way for the definition of an in-
validValue or initValue of a VariableDataPrototype/ParameterDataPro-
totype typed by an ApplicationPrimitiveDataType of category STRING the
TextValueSpecification actually has a different purpose (as defined by [con-
str_1284]).

ValueSpecification

+ shortLabel: Identifier [0..1]

TextValueSpecification

+ value: VerbatimString [0..1]

RecordValueSpecification

ArrayValueSpecification

+ intendedPartialInitializationCount: PositiveInteger [0..1]

ConstantReference

ARElement

ConstantSpecification

NumericalValueSpecification

«atpVariation»
+ value: Numerical [0..1]

ReferenceValueSpecification

AtpPrototype

DataPrototype

CompositeRuleBasedValueArgument

ApplicationValueSpecification

+ category: Identifier [0..1]

������������	
 ����

�����������	��	���� �

��������������

NumericalRuleBasedValueSpecification
CompositeRuleBasedValueArgument

ApplicationRuleBasedValueSpecification

+ category: Identifier [0..1]

AbstractRuleBasedValueSpecification

CompositeRuleBasedValueSpecification

+ maxSizeToFill : PositiveInteger [0..1]
+ rule: Identifier [0..1]

CompositeValueSpecification

«atpVariation»

+element 0..* {ordered}

«atpVariation»

+field 0..*
{ordered}

+constant 0..1

+argument

0..* {ordered}

+referenceValue0..1

+valueSpec

0..1

Figure 5.72: Summary of ValueSpecification

[constr_1284] Limitation of the use of TextValueSpecification dTextValue-
Specification shall only be used in the context of an AutosarDataType that
references a CompuMethod in the role ImplementationDataType.swDataDef-
Props.compuMethod of category TEXTTABLE and BITFIELD_TEXTTABLE.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

In other words, the purpose of TextValueSpecification is to define the labels that
correspond to enumeration values.

The constraints [constr_1225] and [constr_1284] correspond to each other such that
[constr_1225] demands the usage of TextValueSpecification for the definition of
labels for enumeration values while [constr_1284] says that the definition of labels for
enumeration values is the only use case for TextValueSpecification.

446 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Note that ValueSpecification does not inherit from any data type. This would
cause a redundancy19 in the meta-model since the intended data type of a given
ValueSpecification is already determined by the context in which it is aggregated.

Nonetheless, the intended data type imposes a certain constraint on the content of a
ValueSpecification:

[TPS_SWCT_01838] ValueSpecification shall fit into data type dAn instance of
ValueSpecification which is used to assign a value to a software object typed by
an AutosarDataType shall fit into this AutosarDataType without losing informa-
tion.c()

For example, it is not allowed to assign the numerical value “1.5” as initial value to a
data prototype typed by an ImplementationDataType which has an integer base
type.

[constr_1271] RecordValueSpecification.fields shall be identical to the
number of ApplicationRecordDataType.elements dThe initialization of an Dat-
aPrototype typed by an ApplicationRecordDataType by means of a Record-
ValueSpecification shall exactly match the structure of the Application-
RecordDataType.

For this means, it is required that the number of RecordValueSpecification.
fields shall be identical to the number of ApplicationRecordDataType.ele-
ments.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1272] RecordValueSpecification.fields shall be identical to the
number of subElements of ImplementationDataType of category STRUCTURE
dThe initialization of an DataPrototype typed by an ImplementationDataType of
category STRUCTURE by means of a RecordValueSpecification shall exactly
match the structure of the ImplementationDataType of category STRUCTURE.

For this means, it is required that the number of RecordValueSpecification.
fields shall be identical to the number of ImplementationDataType.subEle-
ments.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

If the corresponding ApplicationRecordElement is typed by an Application-
RecordDataType then the comparison of structural compliance between Applica-
tionRecordDataType and ValueSpecification shall continue beyond the en-
countered NotAvailableValueSpecification.

19For example, “1” can be taken as a constant value for many data types. If the ValueSpecifica-
tion were instead referring to a specific AutosarDataType it would be necessary to define a “1” for
every single AutosarDataType this value is supposed to be used in combination with.

447 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class NotAvailableValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class provides the ability to specify a ValueSpecification to state that the respective element is
not available. This ability is needed to support the existence of ApplicationRecordElements where
attribute isOptional ist set to the value True.

Tags:atp.Status=draft

Base ARObject , ValueSpecification

Attribute Type Mult. Kind Note

defaultPattern PositiveInteger 0..1 attr The content of this attribute shall be used to initialize gaps
in the memory occupied by a structured data type in the
case that an NotAvailableValueSpecification is used. Note
that this pattern is only applied during initialization!

Table 5.127: NotAvailableValueSpecification

For deeply nested composite data types (including ImplementationDataTypes cre-
ated in response to the existence of a Compound Primitive Data Type) [con-
str_1271], [constr_1272], and [constr_1273] shall be applied recursively according to
the nature of the given nesting levels. For the “leaf” elements [TPS_SWCT_01838]
applies.

Please find more information about the creation of rule-based ValueSpecifica-
tions in section 5.6.6.

5.6.2 Reference to Constant

Note the specific meaning of ConstantReference: it passes the definition of the
value on to a ConstantSpecification that is defined as part of an AUTOSAR
ARPackage.

Class ConstantReference
Package M2::AUTOSARTemplates::CommonStructure::Constants

Note Instead of defining this value inline, a constant is referenced.

Base ARObject , ValueSpecification

Attribute Type Mult. Kind Note

constant ConstantSpecification 0..1 ref The referenced constant.

Table 5.128: ConstantReference

[constr_1930] Existence of ConstantReference.constant dFor each Con-
stantReference, attribute constant shall exist at the time when the con-
tract phase generation is executed.c()

448 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.6.3 Values for Variable-Size Array

Variable-size data types have the ability to change the number of valid elements at
run-time. However, in many situations it is necessary to define an ArrayValueSpec-
ification for such a data type.

An ArrayValueSpecification that can be used for a variable-size array data type
needs to be able to handle the following cases:

• Full initialization of the entire array-data type. This case is identical to the creation
of a ArrayValueSpecification for a fixed-size array data type.

• Provision of values for the first n elements of the variable-size array. This case
is also known as partial initialization.

• Creation of an empty ArrayValueSpecification, i.e. an ArrayValueSpec-
ification carries the semantics of intentionally initializing 0 elements of a
variable-size array. Note the semantical difference between not initializing at all
and intentionally initializing 0 elements of the variable-size array.

All the described cases shall be supported by AUTOSAR. As already described, the
existence of an ArrayValueSpecificationwith the full number of elements is iden-
tical to the fixed size case. The "empty" case could be seen as a subset of the partial
initialization.

The partial initialization of variable-size arrays has two facets:

[TPS_SWCT_01793] Initialization of a variable-size array typed by an Implemen-
tationDataType dA variable-size array that is modeled by means of an Implemen-
tationDataType is actually existing as a structure consisting of a size indicator and
an array that carries the payload.

Therefore, the partial initialization shall be implemented by explicitly initializing the size
indicator to a value between 0 and the applicable ImplementationDataTypeEle-
ment.arraySize and provide the corresponding number of ValueSpecifications
for the payload.c(RS_SWCT_03175, RS_SWCT_03181)

[TPS_SWCT_01794] Initialization of a variable-size array typed by an Applica-
tionArrayDataType dA variable-size array that is modeled by means of an Ap-
plicationArrayDataType where attribute arraySizeSemantics is set to vari-
ableSize does not contain any size-indicator element and therefore requires a differ-
ent approach for partial initialization.

For this purpose, ArrayValueSpecification.intendedPartialInitializa-
tionCount shall be used for the specification of the number of elements that shall be
initialized.c(RS_SWCT_03175, RS_SWCT_03181)

The applicability of attribute ArrayValueSpecification.intendedPartialIni-
tializationCount is limited to the use case of initializing a variable-size array typed
by an ApplicationArrayDataType. AUTOSAR does not foresee any other use
case for this attribute.

449 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1712] Existence of attribute ArrayValueSpecification.intended-
PartialInitializationCount dAn ArrayValueSpecification where at-
tribute intendedPartialInitializationCount exists shall only be applied for
the initialization of an ApplicationArrayDataType where attribute arraySize-
Semantics is set to variableSize.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1273] Rules for the initialization of ApplicationArrayDataType by
means of ArrayValueSpecification dThe following rules apply for the initializa-
tion of a DataPrototype typed by an ApplicationArrayDataType by means of
an ArrayValueSpecification:

• If the attribute ApplicationArrayDataType.element.arraySizeSeman-
tics is set to fixedSize then the ArrayValueSpecification shall exactly
match the structure of the ApplicationArrayDataType.

This means that the number of ArrayValueSpecification.elements shall
be identical to the value of ApplicationArrayDataType.element.maxNum-
berOfElements.

• If the attribute ApplicationArrayDataType.element.arraySizeSeman-
tics is set to variableSize and the ArrayValueSpecification does not
define attribute intendedPartialInitializationCount then ArrayVal-
ueSpecification shall exactly match the structure of the ApplicationAr-
rayDataType.

This means that the number of ArrayValueSpecification.elements shall
be identical to the value of ApplicationArrayDataType.element.maxNum-
berOfElements.

• If the attribute ApplicationArrayDataType.element.arraySizeSeman-
tics is set to variableSize and the ArrayValueSpecification spec-
ifies a value for attribute intendedPartialInitializationCount then
ArrayValueSpecification shall contain exactly intendedPartialIni-
tializationCount elements.

This includes the case that the value of intendedPartialInitialization-
Count is set to 0 (i.e. "empty" initialization) and the case that the intended-
PartialInitializationCount is set to the value of the respective Appli-
cationArrayElement.maxNumberOfElements (i.e. "full" initialization).

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1274] Rules for the initialization of array-shaped Implementation-
DataType with a fixed size by means of ArrayValueSpecification dThe follow-
ing rule applies for the initialization of a DataPrototype typed by an Implementa-
tionDataType of category ARRAY where attribute ImplementationDataType.

450 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

subElement.arraySizeSemantics is set to fixedSize by means of an Array-
ValueSpecification: the ArrayValueSpecification shall exactly match the
structure of the ImplementationDataType.

This means that the number of ArrayValueSpecification.elements shall be
identical to the value of ImplementationDataType.subElement.arraySize.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that the initialization of an ImplementationDataType that represents a
variable-size array is clarified in [TPS_SWCT_01793].

More details can be found in section 5.6.6.

5.6.4 Values for Compound Primitive Data Types

[TPS_SWCT_01180] Maximum possible size of Compound Primitive Data
Type dNote that if the size of the Compound Primitive Data Type (see
[TPS_SWCT_01179]) (curve/map) is defined using an AttributeValueVaria-
tionPoint (in other words swMaxAxisPoints, swValueBlockSize, swValue-
BlockSizeMult dependent on the value of SwSystemconst) the initValue shall
provide the maximum possible amount of values.c(RS_SWCT_03216)

In this case it is the responsibility of model author to ensure that the size of the specified
init values matches the range of the involved system constants.

Class SwSystemconst

Package M2::MSR::DataDictionary::SystemConstant

Note This element defines a system constant which serves an input to select a particular variation point. In
particular a system constant serves as an operand of the binding function (swSyscond) in a Variation
point.

Note that the binding process can only happen if a value was assigned to to the referenced system
constants.

Tags:atp.recommendedPackage=SwSystemconsts

Base ARElement , ARObject , AtpDefinition, CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr This denotes the data definition properties of the system
constant. This supports to express the limits and
optionally a conversion within the internal to physical
values by a compu method.

Tags:xml.sequenceOffset=40

Table 5.129: SwSystemconst

[TPS_SWCT_01839] Size of Compound Primitive Data Type is variant dFor
Compound Primitive Data Types (see [TPS_SWCT_01179]) where the size is
subject to variation the size of the specified initValues shall match the range of the
involved SwSystemconst.c(RS_SWCT_03216, RS_SWCT_03148)

451 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01181] Bound model specifies a primitive which is smaller than the
maximum defined by the range of the involved SwSystemconst dThe processing
tools shall take the lower part of the initValues in case the bound model specifies
a primitive which is smaller than the maximum defined by the range of the involved
SwSystemconst.c(RS_SWCT_03216, RS_SWCT_03148)

The consequences of [TPS_SWCT_01181] are exemplified by Figure 5.73.

Figure 5.73: Explanation of swMaxAxisPoints

[constr_2050] Mandatory information of a SwAxisCont dIf the attribute swAxis-
Cont is defined for an ApplicationValueSpecification the SwAxisCont shall
define one swAxisIndex value and one swArraysize value per dimension, even
in the case when the owning ApplicationValueSpecification defines only the
content of a single dimensional object like a CURVE.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2051] Mandatory information of a SwValueCont dIf the attribute swVal-
ueCont is defined for an ApplicationValueSpecification the SwValueCont

452 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

shall always define the attribute swArraysize if the ApplicationValueSpecifi-
cation is of category CURVE, MAP, CUBOID, CUBE_4, CUBE_5, COM_AXIS, RES_-
AXIS, or VAL_BLK.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that for multidimensional Compound Primitive Data Types (e.g.
MAP) it is necessary to know the dimensions in order to be able to process the SwVal-
ues. [constr_2050] and [constr_2051] shall support a consistent handling of single and
multidimensional Compound Primitive Data Types.

ValueGroup

«atpMixed»
SwValues

+ v: Numerical [0..1]
+ vt: VerbatimString [0..1]

«atpVariation»
+ vf: Numerical [0..1]

«atpMixed»
ValueList

+ v: Numerical [0..1]

«atpVariation»
+ vf: Numerical [0..*] {ordered}

SwAxisCont

+ category: CalprmAxisCategoryEnum [0..1]
+ swAxisIndex: AxisIndexType [0..1]

SwValueCont

CompositeRuleBasedValueArgument
ValueSpecification

ApplicationValueSpecification

+ category: Identifier [0..1]

Multi languageLongName

ARElement

Unit

+ factorSiToUnit: Float [0..1]
+ offsetSiToUnit: Float [0..1]

«enumeration»
CalprmAxisCategoryEnum

 stdAxis
 fixAXIS
 comAxis
 resAxis

������������	
 ����

�����������	��	���� � ��������������

NumericalOrText

+ vt: String [0..1]

«atpVariation»
+ vf: Numerical [0..1]

+label 0..1

+swAxisCont 0..* {ordered}

+swValuesPhys 0..1

«atpVariation»
+vtf 0..1

+vgContents 0..1

+swValuesPhys 0..1

+unit

0..1

+unit

0..1

+swValueCont 0..1

+vg 0..1

+swArraysize

0..1

+swArraysize

0..1

Figure 5.74: Definition of an ApplicationValueSpecification

[constr_2052] Values of swArraysize and the number of values provided by
swValuesPhys shall be consistent. dswValuesPhys shall define as many values
as the attribute swArraysize (if this attribute exists) defines.

In other words, in the bound model the number of descendants (v, or vf, or vt, or vtf)
shall be identical to the number of elements of the related DataPrototype typed by
an ApplicationPrimitiveDataType.

If several swArraysize values are provided, the values have to be multiplied in order
to get the total number of swValuesPhys values.

453 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that case of Compound Primitive Data Types typically the attribute
swValuesPhys defines more than one value. [constr_2051] and [constr_2052] shall
enable a consistent handling of the swValuesPhys values regardless how many di-
mensions the related Compound Primitive Data Type defines.

If the ApplicationValueSpecification defines values for a Compound Prim-
itive Data Type with more than one input axis the swArraysize gets mandatory
to ensure the correct processing of the swValuesPhys values independent of the ex-
istence of SwValues.vg.

[TPS_SWCT_02001] Values of SwAxisCont with the category COM_AXIS, RES_-
AXIS are for display only dIn case of ApplicationValueSpecifications of
category MAP, CUBOID, CUBE_4, CUBE_5, and CURVE it is possible that the SwAx-
isCont of axes can be omitted if the axis is of category COM_AXIS or RES_AXIS.

If SwAxisCont values exists in such cases for the axes these are for display purpose
only because the related DataPrototype of the MAP, CUBOID, CUBE_4, CUBE_-
5, or CURVE does not hold the values of such axes. These are properties of the
DataPrototype of the COM_AXIS or RES_AXIS.c()

Hence, values of the COM_AXIS itself are described by SwValueCont.

[constr_1243] NumericalOrText shall either define vf or vt dWithin the context
of one NumericalOrText, either the attribute vf or the attribute vt shall be defined.
The existence of both attributes at the same time is not permitted.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Attribute Existence per Category

Attribute of ApplicationValueSpecification V
A
L
U
E

S
T
R
I
N
G

B
O
O
L
E
A
N

C
O
M
_
A
X
I
S

R
E
S
_
A
X
I
S

C
U
R
V
E

M
A
P

C
U
B
O
I
D

C
U
B
E
_
4

C
U
B
E
_
5

swValueCont D D D D D D D D D D
swValueCont.unit O O O O O O O O O O
swValueCont.swValuesPhys D D D D D D D D D D

swValueCont.swArraysize N/A N/A N/A D D D D D D D

swAxisCont N/A N/A N/A N/A D D D D D D

swAxisCont.unit N/A N/A N/A N/A O O O O O O
swAxisCont.category N/A N/A N/A N/A D D D D D D

swAxisCont.swAxisIndex N/A N/A N/A N/A D D D D D D

swAxisCont.swArraysize N/A N/A N/A N/A D D D D D D

swAxisCont.swValuesPhys N/A N/A N/A N/A D O(1) O(1) O(1) O(1) O(1)

Table 5.130: Allowed Attributes vs. category for ApplicationValueSpecification

The following legend applies to the cells in table 5.130:

454 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

D Define the attribute.

N/A Attribute is not applicable for usage in the scope of this element.

O Optionally define the attribute.

In addition to the primary cell legend the following annotations apply to the cells in
table 5.81:

(1) Optional if COM_AXIS or RES_AXIS is used, otherwise attribute shall exist.

[constr_1519] Existence of attributes vs. category of ApplicationValue-
Specification dThe existence of attributes of meta-class ApplicationValue-
Specification vs. the value of category is regulated by Table 5.130.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Class ApplicationValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class represents values for DataPrototypes typed by ApplicationDataTypes (this includes in
particular compound primitives).

For further details refer to ASAM CDF 2.0. This meta-class corresponds to some extent with
SW-INSTANCE in ASAM CDF 2.0.

Base ARObject , CompositeRuleBasedValueArgument , ValueSpecification

Attribute Type Mult. Kind Note

category Identifier 0..1 attr Specifies to which category of ApplicationDataType this
ApplicationValueSpecification can be applied (e.g. as an
initial value), thus imposing constraints on the structure
and semantics of the contained values, see [constr_1006]
and [constr_2051].

swAxisCont
(ordered)

SwAxisCont * aggr This represents the axis values of a Compound Primitive
Data Type (curve or map).

The first swAxisCont describes the x-axis, the second sw
AxisCont describes the y-axis, the third swAxisCont
describes the z-axis. In addition to this, the axis can be
denoted in swAxisIndex.

swValueCont SwValueCont 0..1 aggr This represents the values of a Compound Primitive Data
Type.

Table 5.131: ApplicationValueSpecification

Class SwAxisCont
Package M2::MSR::CalibrationData::CalibrationValue

Note This represents the values for the axis of a compound primitive (curve, map).

For standard and fix axes, SwAxisCont contains the values of the axis directly.

The axis values of SwAxisCont with the category COM_AXIS, RES_AXIS are for display only. For editing
and processing, only the values in the related GroupAxis are binding.

Base ARObject

Attribute Type Mult. Kind Note

5

455 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwAxisCont
category CalprmAxisCategory

Enum
0..1 attr This category specifies the particular axis types:

• STD_AXIS

• COM_AXIS

• RES_AXIS (swArraysize necessary)

Tags:xml.sequenceOffset=20

swArraysize ValueList 0..1 aggr For multidimensional compound primitivies (curve, map
...) it is necessary to know the dimensions.They are
specified using swArraySize.

• RES_AXIS

Tags:xml.sequenceOffset=70

swAxisIndex AxisIndexType 0..1 attr This property allows to explicitly assign the axis contents
to a particular axis. It is specified by numbers where 1
corresponds to the x-axis. It is also possible to derive the
axis association from the sequence of the parent.

Tags:xml.sequenceOffset=50

swValuesPhys SwValues 0..1 aggr swValuesPhys represents the values in the physical
domain.

Tags:xml.sequenceOffset=80

unit Unit 0..1 ref This represents the physical unit of the provided values.

Tags:xml.sequenceOffset=30

unitDisplay
Name

SingleLanguageUnit
Names

0..1 aggr This represents the display name which is used for the
physical unit of the axis.

Tags:xml.sequenceOffset=40

Table 5.132: SwAxisCont

[constr_10017] Existence of attribute SwAxisCont.category dFor each SwAxis-
Cont, attribute category shall exist at the time when the contract phase
generation is executed.c()

[constr_10040] Value of ApplicationValueSpecification.swAxisCont.cat-
egory dThe value of attribute ApplicationValueSpecification.swAxisCont.
category shall not be set to fixAXIS at the time when the contract
phase generation is executed.c()

Rationale for the existence of [constr_10040]: the value fixAXIS for category indi-
cates that the respective axis that is calculated out of the value of calibration parame-
ters. Obviously, it does not make sense to initialize an axis of this kind and therefore it
is excluded from the usage inside an ApplicationValueSpecification.

[constr_10018] Existence of attribute SwAxisCont.swAxisIndex dFor each
SwAxisCont, attribute swAxisIndex shall exist at the time when the con-
tract phase generation is executed.c()

[constr_10019] Existence of attribute SwAxisCont.swValuesPhys dFor each
SwAxisCont, attribute swValuesPhys shall exist at the time when the con-
tract phase generation is executed.c()

456 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SwValueCont
Package M2::MSR::CalibrationData::CalibrationValue

Note This metaclass represents the content of one particular SwInstance.

Base ARObject

Attribute Type Mult. Kind Note

swArraysize ValueList 0..1 aggr This attribute defines the size of each dimension for
compound primitives CURVE, MAP, CUBOID, CUBE_4,
CUBE_5, COM_AXIS, RES_AXIS, VAL_BLK.

For each dimension one value has to be defined, e.g. one
in case of COM_AXIS and two or more in case of MAP.

Tags:xml.sequenceOffset=40

swValuesPhys SwValues 0..1 aggr swValuesPhys represents the values in the physical
domain.

Tags:xml.sequenceOffset=50

unit Unit 0..1 ref This represents the physical unit of the provided values.

Tags:xml.sequenceOffset=20

unitDisplay
Name

SingleLanguageUnit
Names

0..1 aggr This specifies how the physical units of the current value
set shall be displayed in documents or in user interfaces
of tools.

Tags:xml.sequenceOffset=30

Table 5.133: SwValueCont

Class <<atpMixed>> SwValues

Package M2::MSR::CalibrationData::CalibrationValue

Note This meta-class represents a list of values. These values can either be the input values of a curve
(abscissa values) or the associated values (ordinate values).

In case of multidimensional structures, the values are ordered such that the lowest index runs the fastest.
In particular for maps and cuboids etc. the resulting long value list can be subsectioned using Value
Group. But the processing needs to be done as if vg is not there.

Note that numerical values and textual values should not be mixed.
Base ARObject

Attribute Type Mult. Kind Note

v Numerical 0..1 attr This is a non variant Value. It is provided for sake of
Compatibility to ASAM CDF.

Tags:xml.sequenceOffset=40

vf Numerical 0..1 attr This allows to specify the value as VariationPoint. It is
distinguished to non variant for sake of compatibility to
ASAM CDF 2.0.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

vg ValueGroup 0..1 aggr This allows to have intersections in the values in order to
support specific rendering (eg. using stylesheets). For
tools it is important that the v values are always
processed in the same (flattened) order and the tool is
able to interpret it without respecting vg.

Tags:xml.sequenceOffset=50

5

457 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class <<atpMixed>> SwValues

vt VerbatimString 0..1 attr This represents the values of textual data elements
(Strings). Note that vt uses the | to separate the values for
the different bitfield masks in case that the semantics of
the related DataPrototype is described by means of a
BITFIELD_TEXTTABLE in the associated CompuMethod.

Tags:xml.sequenceOffset=30

vtf NumericalOrText 0..1 aggr This aggregation represents the ability to provide a value
that is either numerical or text which existence is subject
to variability.

From the formal point of view, the aggregation needs to
have the multiplicity 1 because SwValues is modelled with
stereotype <<atpMixed>>. Nevertheless, the existence of
vtf is optional and subject to constraints.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 5.134: SwValues

Class ValueGroup

Package M2::MSR::CalibrationData::CalibrationValue

Note This element enables values to be grouped. It can be used to perform row and column-orientated
groupings, so that these can be rendered properly e.g. as a table.

Base ARObject

Attribute Type Mult. Kind Note

label MultilanguageLong
Name

0..1 aggr This label allows to give the valueGroup a particular
name. It can be used if the Values are rendered as a
table.

Tags:xml.sequenceOffset=20

vgContents SwValues 0..1 aggr This represents the contents of the value group.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.135: ValueGroup

Class <<atpMixed>> ValueList

Package M2::MSR::DataDictionary::DataDefProperties

Note This is a generic list of numerical values.

Base ARObject

Attribute Type Mult. Kind Note

v Numerical 0..1 attr This is a particular numerical value without variation.

Tags:xml.sequenceOffset=30

5

458 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class <<atpMixed>> ValueList

vf (ordered) Numerical * attr This is one entry in the list of numerical values

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.roleElement=true
xml.roleWrapperElement=false
xml.typeElement=false
xml.typeWrapperElement=false

Table 5.136: ValueList

Class NumericalOrText
Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class represents the ability to yield either a numerical or a string. A typical use case is that two
or more instances of this meta-class are aggregated with a VariationPoint where some instances yield
strings while other instances yield numerical depending on the resolution of the binding expression.

Base ARObject

Attribute Type Mult. Kind Note

vf Numerical 0..1 attr This attribute represents the ability to provide a numerical
value. The latest binding time of the VariationPoint shall
be preCompileTime.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=10

vt String 0..1 attr This attribute represents the ability to provide a textual
value.

Tags:xml.sequenceOffset=20

Table 5.137: NumericalOrText

5.6.5 Values for BITFIELD_TEXTTABLE

A CompuMethod of category BITFIELD_TEXTTABLE effectively defines a data type
where single bits or a set of single bits have an individual meaning.

In other words, the definition of a ValueSpecification according to a Com-
puMethod of category BITFIELD_TEXTTABLE translates into the statement: “each
unique value of attribute CompuScale.mask (because this is how the single bits or
sets of single bits are identified) in the context of the enclosing CompuMethod delivers
one contribution to the definition of the ValueSpecification”.

[TPS_SWCT_01792] Initialization of a DataPrototype associated with a Com-
puMethod of category BITFIELD_TEXTTABLE dThe initialization of a DataPro-
totype associated with a CompuMethod of category BITFIELD_TEXTTABLE re-
quires the simultaneous initialization of all single bits or sets of bits represented by the
respective definition of bitmask.

459 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Access to the elements is possible by using bit-operations, therefore the initialization
needs to be defined in a way that bit-operations can be used to apply the provided
value.

In other words, the overall value shall be created out of bitwise or-ing (represented by
the usage of the “|” symbol) contributions from the individual subsets.c()

Listing 5.20 shows the definition of an ApplicationValueSpecification that can
be taken e.g. for the initialization of a DataPrototype typed by an Application-
DataType that refers to a CompuMethod of category BITFIELD_TEXTTABLE.

Listing 5.20: Example for the definition of an ApplicationValueSpecification for
BITFIELD_TEXTTABLE

<APPLICATION-VALUE-SPECIFICATION>
<SHORT-LABEL>tirePressureInit</SHORT-LABEL>
<CATEGORY>VALUE</CATEGORY>
<SW-VALUE-CONT>

<SW-VALUES-PHYS>
<VT>problem_low_Pressure|rearRight_yes|rearLeft_yes|frontRight_no|

frontLeft_no</VT>
</SW-VALUES-PHYS>

</SW-VALUE-CONT>
</APPLICATION-VALUE-SPECIFICATION>

Listing 5.21 shows the definition of an TextValueSpecification that can be
taken e.g. for the initialization of a DataPrototype typed by an Implementation-
DataType that refers to a CompuMethod of category BITFIELD_TEXTTABLE.

Listing 5.21: Example for the definition of a TextValueSpecification for BITFIELD_-
TEXTTABLE

<TEXT-VALUE-SPECIFICATION>
<SHORT-LABEL>tirePressureInit</SHORT-LABEL>
<VALUE>problem_low_Pressure|rearRight_yes|rearLeft_yes|frontRight_no|

frontLeft_no</VALUE>
</TEXT-VALUE-SPECIFICATION>

Listing 5.22 shows the definition of an NumericalValueSpecification that can be
taken e.g. for the initialization of a DataPrototype typed by an Implementation-
DataType that refers to a CompuMethod of category BITFIELD_TEXTTABLE.

Listing 5.22: Example for the definition of a NumericalValueSpecification for BIT-
FIELD_TEXTTABLE

<NUMERICAL-VALUE-SPECIFICATION>
<SHORT-LABEL>tirePressureInit</SHORT-LABEL>
<VALUE>42</VALUE>

</NUMERICAL-VALUE-SPECIFICATION>

Please note that areas of the initialized DataPrototype that are not covered by the
bit-masks may contain arbitrary values. If this needs to be avoided, it is necessary
to add “dummy” bit-masks to the semantically not relevant parts of the value of the
DataPrototype.

460 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.6.6 Specification of Values based on Rules

5.6.6.1 Support for primitive Data Types

[TPS_SWCT_01484] Meaning of ApplicationRuleBasedValueSpecification
dThe purpose of the ApplicationRuleBasedValueSpecification is to provide
means for a compact provision of values for DataPrototypes that otherwise would
require a high volume (in terms of serialized ARXML) of e.g. initialization data.

ApplicationRuleBasedValueSpecification may be used for Application-
ArrayDataType, and also (if applicable) to the so-called Compound Primitive
Data Types.c(RS_SWCT_03260)

For example, an ApplicationArrayDataType that has 100 elements would need
to be initialized such that for each element a dedicated initial value is provided.

In the most prominent cases the majority of these elements are initialized with an iden-
tical value (e.g. 0) and only the first few elements differ in terms of initialization values.

Please note that ApplicationRuleBasedValueSpecification applies for arrays
typed by a primitive data type. Rule-based value specification of arrays of a composite
data type is done by means of the CompositeRuleBasedValueSpecification.

Class AbstractRuleBasedValueSpecification (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This represents an abstract base class for all rule-based value specifications.

Base ARObject , ValueSpecification

Subclasses ApplicationRuleBasedValueSpecification, CompositeRuleBasedValueSpecification, NumericalRuleBased
ValueSpecification

Attribute Type Mult. Kind Note

– – – – –

Table 5.138: AbstractRuleBasedValueSpecification

[constr_1779] Scope of the definition of an AbstractRuleBasedValueSpeci-
fication dAn AbstractRuleBasedValueSpecification shall only be defined
in the context of an ArrayValueSpecification or a ConstantSpecification.
If the AbstractRuleBasedValueSpecification is defined in the context of a
ConstantSpecification then a reference to this ConstantSpecification shall
only be created in the context of an ArrayValueSpecification.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Class ApplicationRuleBasedValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

5

461 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ApplicationRuleBasedValueSpecification

Note This meta-class represents rule based values for DataPrototypes typed by ApplicationDataTypes
(ApplicationArrayDataType or a compound ApplicationPrimitiveDataType which also boils down to an
array-nature).

Base ARObject , AbstractRuleBasedValueSpecification, CompositeRuleBasedValueArgument , Value
Specification

Attribute Type Mult. Kind Note

category Identifier 0..1 attr This represents the category of the RuleBasedValue
Specification

Tags:xml.sequenceOffset=-20

swAxisCont
(ordered)

RuleBasedAxisCont * aggr This represents the axis values of a Compound Primitive
Data Type (curve or map).

The first swAxisCont describes the x-axis, the second sw
AxisCont describes the y-axis, the third swAxisCont
describes the z-axis. In addition to this, the axis can be
denoted in swAxisIndex.

swValueCont RuleBasedValueCont 0..1 aggr This represents the values of an array or Compound
Primitive Data Type.

Table 5.139: ApplicationRuleBasedValueSpecification

[constr_1922] Existence of ApplicationRuleBasedValueSpecification.
category dFor each ApplicationRuleBasedValueSpecification, attribute
category shall exist at the time when the RTE is generated.c()

Please note that attribute ApplicationRuleBasedValueSpecification.cate-
gory is mentioned in [constr_2058], which would fail if the attribute does not exist.

[constr_10041] Value of ApplicationRuleBasedValueSpecification.swAx-
isCont.category dThe value of ApplicationValueSpecification.swAxis-
Cont.category shall not be set to fixAXISc()

Rationale for the existence of [constr_10041]: the value fixAXIS of attribute cate-
gory indicates that the respective axis that is calculated out of the value of calibration
parameters. Obviously, it does not make sense to initialize an axis of this kind and
therefore it is excluded from the usage inside an ApplicationRuleBasedValue-
Specification.

Class RuleBasedAxisCont
Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This represents the values for the axis of a compound primitive (curve, map).

For standard and fix axes, SwAxisCont contains the values of the axis directly.

The axis values of SwAxisCont with the category COM_AXIS, RES_AXIS are for display only. For editing
and processing, only the values in the related GroupAxis are binding.

Base ARObject

Attribute Type Mult. Kind Note

5

462 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RuleBasedAxisCont
category CalprmAxisCategory

Enum
0..1 attr This category specifies the particular axis types:

• STD_AXIS

• COM_AXIS

• RES_AXIS (swArraysize necessary)

Tags:xml.sequenceOffset=20

ruleBased
Values

RuleBasedValue
Specification

0..1 aggr This represents the rule based value specification for the
axis of a compound primitive (curve, map).

Tags:
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=80
xml.typeWrapperElement=false

swArraysize ValueList 0..1 aggr For multidimensional compound primitives (curve, map ...)
it is necessary to know the dimensions.They are specified
using swArraySize.

Tags:xml.sequenceOffset=40

swAxisIndex AxisIndexType 0..1 attr This property allows to explicitly assign the axis contents
to a particular axis. It is specified by numbers where 1
corresponds to the x-axis. It is also possible to derive the
axis association from the sequence of the parent.

Tags:xml.sequenceOffset=50

unit Unit 0..1 ref This represents the physical unit of the provided values.

Tags:xml.sequenceOffset=30

Table 5.140: RuleBasedAxisCont

[constr_1923] Existence of RuleBasedAxisCont.ruleBasedValues dFor each
RuleBasedAxisCont, attribute ruleBasedValues shall exist at the time when
the contract phase generation is executed.c()

Class RuleBasedValueCont
Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This represents the values of a compound primitive (CURVE, MAP, CUBOID, CUBE_4, CUBE_5, VAL_
BLK) or an array.

Base ARObject

Attribute Type Mult. Kind Note

ruleBased
Values

RuleBasedValue
Specification

0..1 aggr This represents the rule based value specification for the
array or compound primitive (CURVE, MAP, CUBOID,
CUBE_4, CUBE_5, VAL_BLK).

Tags:
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=80
xml.typeWrapperElement=false

swArraysize ValueList 0..1 aggr This attribute defines the size of each dimension for
compound primitives CURVE, MAP, CUBOID, CUBE_4,
CUBE_5, COM_AXIS, RES_AXIS, VAL_BLK.

For each dimension one value has to be defined, e.g. one
in case of COM_AXIS and two or more in case of MAP.

Tags:xml.sequenceOffset=40

5

463 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RuleBasedValueCont
unit Unit 0..1 ref This represents the physical unit of the provided values.

Tags:xml.sequenceOffset=30

Table 5.141: RuleBasedValueCont

[constr_1924] Existence of RuleBasedValueCont.ruleBasedValues dFor each
RuleBasedValueCont, attribute ruleBasedValues shall exist at the time
when the contract phase generation is executed.c()

In case the ApplicationRuleBasedValueSpecification is applied to Com-
pound Primitive Data Types basically the same rules apply for Application-
RuleBasedValueSpecification as defined for ApplicationValueSpecifi-
cation.

[constr_2057] Mandatory information of a RuleBasedAxisCont dIf the attribute
swAxisCont is defined for an ApplicationRuleBasedValueSpecification the
RuleBasedAxisCont shall define one swAxisIndex value and one swArraysize
value per dimension, even in the case when the owning ApplicationRuleBased-
ValueSpecification defines only the content of a single dimensional object like a
CURVE.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2058] Mandatory information of a RuleBasedValueCont dIf the attribute
swValueCont is defined for an ApplicationRuleBasedValueSpecification
the RuleBasedValueCont shall always define the attribute swArraysize if the
ApplicationRuleBasedValueSpecification is of category CURVE, MAP,
CUBOID, CUBE_4, CUBE_5, COM_AXIS, RES_AXIS, or VAL_BLK.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that the definition of attribute swArraysize is not required for an Appli-
cationRuleBasedValueSpecification of category ARRAY because the appli-
cable size can typically be derived from the context.

Please note further that for multidimensional Compound Primitive Data Types
(e.g. MAP) it is necessary to know the dimensions in order to be able to process the
SwValues. [constr_2057] and [constr_2058] shall support a consistent handling of
single and multidimensional Compound Primitive Data Types.

If the ApplicationRuleBasedValueSpecification defines values for a Com-
pound Primitive Data Type with more than one input axis the swArraysize
gets mandatory to ensure the correct processing of the values calculated by rule.

464 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

«atpMixed»
RuleArguments

+ v: Numerical [0..1]
+ vt: VerbatimString [0..1]

«atpVariation»
+ vf: Numerical [0..1]

AbstractRuleBasedValueSpecification
CompositeRuleBasedValueArgument

ApplicationRuleBasedValueSpecification

+ category: Identifier [0..1]

RuleBasedAxisCont

+ category: CalprmAxisCategoryEnum [0..1]
+ swAxisIndex: AxisIndexType [0..1]

RuleBasedValueCont

«atpMixed»
ValueList

+ v: Numerical [0..1]

«atpVariation»
+ vf: Numerical [0..*] {ordered}

ARElement

Unit

+ factorSiToUnit: Float [0..1]
+ offsetSiToUnit: Float [0..1]

NumericalOrText

+ vt: String [0..1]

«atpVariation»
+ vf: Numerical [0..1]

RuleBasedValueSpecification

+ maxSizeToFil l : Integer [0..1]
+ rule: Identifier [0..1]

������������	
 ����

�����������	��	���� �

��������������

+swArraysize

0..1

«atpVariation»

+arguments 0..1

+ruleBasedValues 0..1 +ruleBasedValues 0..1

+swAxisCont 0..* {ordered} +swValueCont 0..1
+unit

0..1

+unit

0..1

«atpVariation»

+vtf

0..1

+swArraysize

0..1

Figure 5.75: Definition of an ApplicationRuleBasedValueSpecification

[TPS_SWCT_02053] Values of RuleBasedAxisCont with the category COM_-
AXIS, RES_AXIS are for display only dIn case of ApplicationRuleBasedValue-
Specifications of category MAP, CUBOID, CUBE_4, CUBE_5 or CURVE it is pos-
sible that the RuleBasedAxisCont of axes can be omitted if the axis is of category
COM_AXIS or RES_AXIS.

If RuleBasedAxisCont values exists in such cases for the axes these are for display
purpose only because the related DataPrototype of the MAP or CURVE does not
hold the values of such axes. These are properties of the DataPrototype of the
COM_AXIS or RES_AXIS.c()

Hence, values of the COM_AXIS itself are described by RuleBasedValueCont.

[TPS_SWCT_01528] Meaning of NumericalRuleBasedValueSpecification
dThe purpose of the NumericalRuleBasedValueSpecification is to provide
means for a compact provision of values for DataPrototypes that otherwise would
require a high volume (in terms of serialized ARXML) of e.g. initialization data. Numer-
icalRuleBasedValueSpecification may used for DataPrototypes typed by
ImplementationDataTypes of category ARRAY or Compound Primitive Data
Types mapped to ImplementationDataTypes of category ARRAY.c(RS_SWCT_-
03260)

Concerning initValues for Compound Primitive Data Types please note as
well [TPS_SWCT_01185].

465 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class NumericalRuleBasedValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class is used to support a rule-based initialization approach for data types with an array-nature
(ImplementationDataType of category ARRAY).

Base ARObject , AbstractRuleBasedValueSpecification, ValueSpecification

Attribute Type Mult. Kind Note

ruleBased
Values

RuleBasedValue
Specification

0..1 aggr This represents the rule based value specification for the
array.

Tags:
xml.roleElement=true
xml.roleWrapperElement=false
xml.typeWrapperElement=false

Table 5.142: NumericalRuleBasedValueSpecification

[constr_1925] Existence of NumericalRuleBasedValueSpecification.rule-
BasedValues dFor each NumericalRuleBasedValueSpecification, attribute
ruleBasedValues shall exist at the time when the contract phase gen-
eration is executed.c()

[TPS_SWCT_01495] Standardized value of RuleBasedValueSpecification.
rule dAUTOSAR reserves a dedicated value of RuleBasedValueSpecification.
rule and CompositeRuleBasedValueSpecification.rule in a standardized
semantics:

• FILL_UNTIL_END

• FILL_UNTIL_MAX_SIZE

The meaning of this value of rule is explained in [TPS_SWCT_01494] and
[TPS_SWCT_01609].c(RS_SWCT_03260, RS_SWCT_03181)

[TPS_SWCT_01485] The order of RuleArguments arguments shall be respected
dThe order of arguments in RuleArguments corresponds to the order of elements in
the array, i.e. the first argument corresponds to the first element of the array, the second
argument corresponds to the second element of the array, and so on.c(RS_SWCT_-
03260)

AbstractRuleBasedValueSpecification

NumericalRuleBasedValueSpecification

«atpMixed»
RuleArguments

+ v: Numerical [0..1]
+ vt: VerbatimString [0..1]

«atpVariation»
+ vf: Numerical [0..1]

RuleBasedValueSpecification

+ maxSizeToFil l : Integer [0..1]
+ rule: Identifier [0..1]

NumericalOrText

+ vt: String [0..1]

«atpVariation»
+ vf: Numerical [0..1]

������������	
 ����

�����������	��	���� �

��������������«atpVariation»

+arguments 0..1

«atpVariation»

+vtf

0..1

+ruleBasedValues

0..1

Figure 5.76: Definition of an NumericalRuleBasedValueSpecification

466 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Please note that a single argument can be defined by the attributes

• RuleArguments.v

• RuleArguments.vf

• RuleArguments.vt

• RuleArguments.vtf.vf

• RuleArguments.vtf.vt

[TPS_SWCT_01493] The number of RuleBasedValueSpecification.argu-
ments shall not exceed the array size dIf the number of RuleBasedValueSpeci-
fication.arguments exceeds the number of elements of an array that it is applied
to then the RuleBasedValueSpecification.arguments that go beyond the last
element of the array shall be ignored.c(RS_SWCT_03260)

[TPS_SWCT_01494] A RuleBasedValueSpecification of rule FILL_UNTIL_
END shall fill the value of the last RuleBasedValueSpecification.arguments
until the last element of the array dThe following rule applies to RuleBasedValue-
Specifications of rule FILL_UNTIL_END:

If the number of RuleBasedValueSpecification.arguments is smaller than the
number of elements of the array it is applied to then the value of the last RuleBased-
ValueSpecification.arguments shall be applied to any following element of the
array until the last element of the array.c(RS_SWCT_03260)

[TPS_SWCT_01609] A RuleBasedValueSpecification of rule FILL_UNTIL_
MAX_SIZE shall fill the value of the last RuleBasedValueSpecification.argu-
ments until the number of elements specified in maxSizeToFill dThe following
rule applies to RuleBasedValueSpecifications of rule FILL_UNTIL_MAX_-
SIZE:

If the number of RuleBasedValueSpecification.arguments is smaller than the
number of elements of the array it is applied to and smaller than maxSizeToFill, then
the value of the last RuleBasedValueSpecification.arguments shall be applied
to so many of the following elements that the first maxSizeToFill elements of the
array are filled.c(RS_SWCT_03260)

Class RuleBasedValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class is used to support a rule-based initialization approach for data types with an array-nature
(ApplicationArrayDataType and ImplementationDataType of category ARRAY) or a compound Application
PrimitiveDataType (which also boils down to an array-nature).

Base ARObject

Attribute Type Mult. Kind Note

5

467 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RuleBasedValueSpecification

arguments RuleArguments 0..1 aggr This represents the arguments for the RuleBasedValue
Specification.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

maxSizeToFill Integer 0..1 attr If a rule is chosen which does not fill until the end, this
determines until which size the rule shall fill the values.

Tags:xml.sequenceOffset=40

rule Identifier 0..1 attr This denotes the name of the rule of the RuleBasedValue
Specification. The rule determines the calculation
specification according which the arguments are used to
calculated the values.

Tags:xml.sequenceOffset=20

Table 5.143: RuleBasedValueSpecification

[constr_1926] Existence of RuleBasedValueSpecification.rule dFor each
RuleBasedValueSpecification, attribute rule shall exist at the time when
the contract phase generation is executed.c()

[constr_1927] Existence of RuleBasedValueSpecification.arguments dFor
each RuleBasedValueSpecification, the aggregation of RuleArguments in the
role arguments shall exist at the time when the contract phase genera-
tion is executed.c()

Class <<atpMixed>> RuleArguments

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This represents the arguments for a rule-based value specification.

Base ARObject

Attribute Type Mult. Kind Note

v Numerical 0..1 attr This represents a numerical value for the RuleBased
ValueSpecification.

vf Numerical 0..1 attr This represents a numerical value for the RuleBased
ValueSpecification which may subject to variability. The
latest binding time of the VariationPoint shall be pre
CompileTime.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

vt VerbatimString 0..1 attr This represents a textual value for the RuleBasedValue
Specification.

vtf NumericalOrText 0..1 aggr This aggregation represents the ability to provide a value
that is either numerical or text which existence is subject
to variability.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 5.144: RuleArguments

As an example for the application of a RuleBasedValueSpecification, consider
the following scenario:

468 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

array

1 0 0

Figure 5.77: Value specification for a simple array

The sketched array depicted in Figure 5.77 corresponds to the modeling exemplified in
Listing 5.23.

Listing 5.23: Value specification for a simple array
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>

<SW-VALUE-CONT>
<RULE-BASED-VALUES>

<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>1</V>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>

Please note that it is not foreseen that an ArrayValueSpecification consist of a
collection of ApplicationRuleBasedValueSpecifications or even a mixture of
ApplicationRuleBasedValueSpecification with another kind of ValueSpec-
ification.

[constr_10009] Aggregation of ApplicationRuleBasedValueSpecification
dEach ArrayValueSpecification shall only aggregate at most one Applica-
tionRuleBasedValueSpecification in the role element.

If one ApplicationRuleBasedValueSpecification is aggregated then it shall
be the only aggregated element, i.e. no further ValueSpecification shall exist in
the same aggregation where an ApplicationRuleBasedValueSpecification is
aggregated.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that it is not foreseen that an ArrayValueSpecification consist of
a collection of NumericalRuleBasedValueSpecification or even a mixture of

469 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

NumericalRuleBasedValueSpecification with another kind of ValueSpeci-
fication.

[constr_1754] Aggregation of NumericalRuleBasedValueSpecification
dEach ArrayValueSpecification shall only aggregate at most one Numerical-
RuleBasedValueSpecification in the role element.

If one NumericalRuleBasedValueSpecification is aggregated then it shall be
the only aggregated element, i.e. no further ValueSpecification shall exist in the
same aggregation where an NumericalRuleBasedValueSpecification is ag-
gregated.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

5.6.6.2 Support for composite Data Types

[TPS_SWCT_01692] Meaning of CompositeRuleBasedValueSpecification
dThe rule-based initialization of arrays of a composite data type is modeled by means
of the CompositeRuleBasedValueSpecification.c(RS_SWCT_03260)

Class CompositeRuleBasedValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class represents rule-based values for DataPrototypes typed by composite AutosarDataTypes.

Base ARObject , AbstractRuleBasedValueSpecification, ValueSpecification

Attribute Type Mult. Kind Note

argument
(ordered)

CompositeValue
Specification

* aggr This represents the collection of aggregated Value
Specifications. The last ValueSpecification in the
collection shall be taken to execute the filling rule.

Tags:xml.sequenceOffset=30

compound
Primitive
Argument
(ordered)

CompositeRuleBased
ValueArgument

* aggr This represents the collection of aggregated Value
Specifications for compound primitive data type. The last
ValueSpecification in the collection shall be taken to
execute the filling rule.

Tags:xml.sequenceOffset=35

maxSizeToFill PositiveInteger 0..1 attr If a rule is chosen which does not fill until the end, this
determines until which size the rule shall fill the values.

Tags:xml.sequenceOffset=40

rule Identifier 0..1 attr This denotes the name of the rule of the RuleBasedValue
Specification. The rule determines the calculation
specification according which the arguments are used to
calculated the values.

Tags:xml.sequenceOffset=20

Table 5.145: CompositeRuleBasedValueSpecification

[constr_1928] Existence of CompositeRuleBasedValueSpecification.rule
dFor each CompositeRuleBasedValueSpecification, attribute rule shall exist
at the time when the contract phase generation is executed.c()

470 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1929] Existence of CompositeRuleBasedValueSpecification.argu-
ment dFor each CompositeRuleBasedValueSpecification, the aggregation of
CompositeValueSpecification in the role argument shall exist at the time
when the contract phase generation is executed.c()

AbstractRuleBasedValueSpecification

CompositeRuleBasedValueSpecification

+ maxSizeToFil l : PositiveInteger [0..1]
+ rule: Identifier [0..1]

ValueSpecification

+ shortLabel: Identifier [0..1]

CompositeValueSpecification

ArrayValueSpecification

+ intendedPartialInitializationCount: PositiveInteger [0..1]

RecordValueSpecification

������������	
 ����

�����������	��	���� �

��������������

+argument 0..* {ordered}

«atpVariation»

+element 0..* {ordered}

«atpVariation»

+field 0..* {ordered}

Figure 5.78: Rule-based value specification of arrays of a composite data type

As an example of how the rule-based initialization of composite data structures works,
please consider the composite structure sketched in Figure 5.79. In simple terms, it
describes an array consisting of elements that themselves are typed by a structure of
two primitive elements.

Figure 5.79: Example for the explanation of rule-based composite value-specification

In this example, the element “a” of the first structure shall be initialized with the value 1,
the corresponding “b” element shall be assigned a 10. All other values in all following
elements shall be set to 0. This is also indicated by the numbers in ellipses in Figure
5.79.

The implementation of the example in ARXML is illustrated in Listing 5.24. As already
explained before, the last (in the order of appearance) ValueSpecification in the
context of an AbstractRuleBasedValueSpecification is taken to execute the
rule (as described above).

471 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Listing 5.24: Example for composite rule-based value specification
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>

<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTS>

<RECORD-VALUE-SPECIFICATION>
<FIELDS>

<APPLICATION-VALUE-SPECIFICATION>
<SW-VALUE-CONT>

<SW-VALUES-PHYS>
<V>1</V>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
<APPLICATION-VALUE-SPECIFICATION>

<SW-VALUE-CONT>
<SW-VALUES-PHYS>

<V>10</V>
</SW-VALUES-PHYS>

</SW-VALUE-CONT>
</APPLICATION-VALUE-SPECIFICATION>

</FIELDS>
</RECORD-VALUE-SPECIFICATION>
<RECORD-VALUE-SPECIFICATION>

<FIELDS>
<APPLICATION-VALUE-SPECIFICATION>

<SW-VALUE-CONT>
<SW-VALUES-PHYS>

<V>0</V>
</SW-VALUES-PHYS>

</SW-VALUE-CONT>
</APPLICATION-VALUE-SPECIFICATION>
<APPLICATION-VALUE-SPECIFICATION>

<SW-VALUE-CONT>
<SW-VALUES-PHYS>

<V>0</V>
</SW-VALUES-PHYS>

</SW-VALUE-CONT>
</APPLICATION-VALUE-SPECIFICATION>

</FIELDS>
</RECORD-VALUE-SPECIFICATION>

</ARGUMENTS>
</COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>

</ELEMENTS>
</ARRAY-VALUE-SPECIFICATION>

A more complicated example is sketched in Figure 5.80. Here, a deeply nested com-
posite data structure is described: an array of structures that in turn contain an array.

To keep the ARXML listing as simple as possible, the example assumes that all (as
opposed to the initialization of the first, and then of all other elements) “struct” elements
shall be initialized with the same value.

472 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Figure 5.80: Value specification for a deeply nested array

The deeply nested “array” is initialized by means of an ApplicationRuleBased-
ValueSpecification.

Listing 5.25: Value specification for a deeply nested array
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>

<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTS>

<RECORD-VALUE-SPECIFICATION>
<FIELDS>

<APPLICATION-VALUE-SPECIFICATION>
<SW-VALUE-CONT>

<SW-VALUES-PHYS>
<V>1</V>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>

<SW-VALUE-CONT>
<RULE-BASED-VALUES>

<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>1</V>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>

473 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

</FIELDS>
</RECORD-VALUE-SPECIFICATION>

</ARGUMENTS>
</COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>

</ELEMENTS>
</ARRAY-VALUE-SPECIFICATION>

Please note that it is not foreseen that an ArrayValueSpecification consist of
a collection of CompositeRuleBasedValueSpecification or even a mixture of
CompositeRuleBasedValueSpecification with another kind of ValueSpeci-
fication.

[constr_1755] Aggregation of CompositeRuleBasedValueSpecification
dEach ArrayValueSpecification shall only aggregate at most one Compos-
iteRuleBasedValueSpecification in the role element.

If one CompositeRuleBasedValueSpecification is aggregated then it shall be
the only aggregated element, i.e. no further ValueSpecification shall exist in the
same aggregation where an CompositeRuleBasedValueSpecification is ag-
gregated.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

xDim (1
st
 dim)

yDim (2
nd

dim)

a11

a12

a13

1

2

yDim (2
nd

dim)

a21

a22

a23

0

1

yDim (2
nd

dim)

a31

a32

a33

0

1

a14

0

0

a24

0

a34

0

0 0

Figure 5.81: Rule-based Value specification for a 2-dimensional array

As another variation of the theme, the rule-based initialization of multi-dimensional
arrays shall be discussed.

Consequently, the following example extends the one-dimensional rule-based Value-
Specification (see Figure 5.77) to a second dimension. The general layout is sketched
in the following figure:

474 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For the sake of clarity, the picture has been drawn to align the first dimension (the x-
axis) of the two-dimensional array with the horizontal direction an the second dimension
(the y-axis) with the vertical direction.

The direction index values of each array element are visible as subscript on the bottom
right of the element, i.e. a12 indicates that the element is part of the first element on the
x-axis and represents the second element of the y-axis. The initial value of element a12
shall be 1.

As indicated by the sketch in Figure 5.81, the second element (i.e. the “vertical” array,
i.e. everything from a21 to a24) and all following (i.e. everything from a31 to a34) shall
have the identical initial values. The first element deviates from the second in terms of
initial values.

The creation of the ArrayValueSpecification for this example is based on the
definition of a CompositeRuleBasedValueSpecification with two arguments:

• an ArrayValueSpecification that carries an ApplicationRuleBased-
ValueSpecification for the first element (that itself is an array) on the x-
dimension and

• an ArrayValueSpecification that carries an ApplicationRuleBased-
ValueSpecification for each of the remaining elements (that itself are ar-
rays) on the x-dimension.

Listing 5.26: Value specification for a 2-dimensional array
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>

<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTS>

<ARRAY-VALUE-SPECIFICATION>
<ELEMENTS>

<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
<CATEGORY>ARRAY</CATEGORY>
<SW-VALUE-CONT>

<RULE-BASED-VALUES>
<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>2</V>
<V>1</V>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>

<CATEGORY>ARRAY</CATEGORY>

475 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<SW-VALUE-CONT>
<RULE-BASED-VALUES>

<RULE>FILL_UNITL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>1</V>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>
</ARGUMENTS>

</COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>

The next example adds one dimension to the array structure, i.e. it describes a three-
dimensional array, as sketched in Figure 5.82.

In this case the x-axis has again been aligned in the horizontal direction, why the y-axis
is drawn vertically. The z-axis, finally, goes horizontal again.

xDim (1
st
 dim)

yDim (2
nd

dim)

a141 a142

0

a131 a132

0

a121 a122

2

a111 a112

3

a143

0 0

a133

0

a123

0

a113

0

0

0

0

yDim (2
nd

dim)

a241 a242

0

a231 a232

0

a221 a222

2

a211 a212

1

a243

0 0

a233

0

a223

0

a213

0

0

0

0

yDim (2
nd

dim)

a341 a342

0

a331 a332

0

a321 a322

2

a311 a312

1

a343

0 0

a333

0

a323

0

a313

0

0

0

0

zDim (3
rd

 dim)

zDim (3
rd

 dim)

zDim (3
rd

 dim)

zDim (3
rd

 dim)

zDim (3
rd

 dim)

zDim (3
rd

 dim)

zDim (3
rd

 dim)

zDim (3
rd

 dim)

zDim (3
rd

 dim)

zDim (3
rd

 dim)

zDim (3
rd

 dim)

zDim (3
rd

 dim)

Figure 5.82: Rule-based Value specification for a 3-dimensional array

The principal structure of this example is similar to the previous example.

The first array element in the x-dimension (which includes everything from a111 to a143)
defines a different initial value than the other elements.

476 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Please note that the initial values of the second and third element in x-direction are
identical.

Listing 5.27: Value specification for a 3-dimensional array
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>

<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTS>

<ARRAY-VALUE-SPECIFICATION>
<ELEMENTS>

<COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>
<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTS>

<ARRAY-VALUE-SPECIFICATION>
<ELEMENTS>

<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
<CATEGORY>ARRAY</CATEGORY>
<SW-VALUE-CONT>

<RULE-BASED-VALUES>
<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>3</V>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>

<CATEGORY>ARRAY</CATEGORY>
<SW-VALUE-CONT>

<RULE-BASED-VALUES>
<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>2</V>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>

<CATEGORY>ARRAY</CATEGORY>
<SW-VALUE-CONT>

477 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<RULE-BASED-VALUES>
<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>
</ARGUMENTS>

</COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>

<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTS>

<ARRAY-VALUE-SPECIFICATION>
<ELEMENTS>

<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
<CATEGORY>ARRAY</CATEGORY>
<SW-VALUE-CONT>

<RULE-BASED-VALUES>
<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>1</V>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>

<CATEGORY>ARRAY</CATEGORY>
<SW-VALUE-CONT>

<RULE-BASED-VALUES>
<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>2</V>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

478 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

</ARRAY-VALUE-SPECIFICATION>
<ARRAY-VALUE-SPECIFICATION>

<ELEMENTS>
<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>

<CATEGORY>ARRAY</CATEGORY>
<SW-VALUE-CONT>

<RULE-BASED-VALUES>
<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>
</ARGUMENTS>

</COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>
</ARGUMENTS>

</COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>

5.6.6.3 Support for compound primitive Data Types

Please note that the CompositeRuleBasedValueSpecification also supports
the rule-based initialization of arrays20 that are typed by a Compound Primitive
Data Type, e.g. of category CURVE.

[TPS_SWCT_01836] Attributes of CompositeRuleBasedValueSpecification
dMeta-class CompositeRuleBasedValueSpecification can be used to fulfill two
distinct use cases:

• Definition of a rule-based value specification for an array of composite data type
based on the aggregation of CompositeValueSpecification in the role ar-
gument.

• Definition of a rule-based value specification for an array of Compound Prim-
itive Data Type based on the aggregation of CompositeRuleBasedVal-
ueArgument in the role compoundPrimitiveArgument.

c()

20Of course, this capability is restricted to ApplicationArrayDataType. On the level of Imple-
mentationDataType, ValueSpecifications that reflect the structure of the respective Imple-
mentationDataType are used.

479 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_10075] Existence of CompositeRuleBasedValueSpecification.ar-
gument vs. compoundPrimitiveArgument dFor every CompositeRuleBased-
ValueSpecification, at most one of the aggregations

• argument

• compoundPrimitiveArgument

shall exist at the time when the contract phase generation is exe-
cuted.c()

AbstractRuleBasedValueSpecification

CompositeRuleBasedValueSpecification

+ maxSizeToFil l: PositiveInteger [0..1]
+ rule: Identifier [0..1]

CompositeRuleBasedValueArgument

AbstractRuleBasedValueSpecification

ApplicationRuleBasedValueSpecification

+ category: Identifier [0..1]

ValueSpecification

ApplicationValueSpecification

+ category: Identifier [0..1]

ValueSpecification

CompositeValueSpecification

ArrayValueSpecification

+ intendedPartialInitializationCount:
PositiveInteger [0..1]

RecordValueSpecification

+argument

0..* {ordered}

+compoundPrimitiveArgument

0..* {ordered}

Figure 5.83: Rule-based value specification for compound primitive data objects

Class CompositeRuleBasedValueArgument (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class has the ability to serve as the abstract base class for ValueSpecifications that can be
used for compound primitive data types.

Base ARObject

Subclasses ApplicationRuleBasedValueSpecification, ApplicationValueSpecification

Attribute Type Mult. Kind Note

– – – – –

Table 5.146: CompositeRuleBasedValueArgument

Please find a simplified example for the rule-based initialization of an array of an
ApplicationPrimitiveDataType of category CURVE with an integrated axis in
section 5.6.7.5.

5.6.7 Examples

5.6.7.1 Example for Constant Specification for CURVE

The following example illustrates how a ConstantSpecification is specified for a
CURVE. Please note, that in this example the vf attribute is used for the swArraysize
as well as for the swValuesPhys.

The basic intention of vf is the usage for variant rich models but it is valid as well if vf
contains invariant values.

Listing 5.28: Example for Constant Specification for CURVE

480 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<CONSTANT-SPECIFICATION>
<SHORT-NAME>PhysInitValuesOfCurve</SHORT-NAME>
<DESC>
<L-2 L="EN">This example shows a ConstantSpecification for a CURVE where

the axis is a STD_AXIS</L-2>
</DESC>
<VALUE-SPEC>
<APPLICATION-VALUE-SPECIFICATION>

<CATEGORY>CURVE</CATEGORY>
<SW-AXIS-CONTS>
<SW-AXIS-CONT>

<CATEGORY>STD_AXIS</CATEGORY>
<SW-AXIS-INDEX>1</SW-AXIS-INDEX>
<SW-ARRAYSIZE>
<VF>4</VF>
</SW-ARRAYSIZE>
<SW-VALUES-PHYS>
<VF>0</VF>
<VF>1</VF>
<VF>2</VF>
<VF>3</VF>
</SW-VALUES-PHYS>

</SW-AXIS-CONT>
</SW-AXIS-CONTS>
<SW-VALUE-CONT>
<UNIT-REF DEST="UNIT">/Units/NwtMtr</UNIT-REF>
<SW-ARRAYSIZE>

<VF>4</VF>
</SW-ARRAYSIZE>
<SW-VALUES-PHYS>

<VF>00.000</VF>
<VF>10.000</VF>
<VF>20.000</VF>
<VF>30.000</VF>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
</VALUE-SPEC>

</CONSTANT-SPECIFICATION>

5.6.7.2 Example for Constant Specification for MAP

The following example illustrates how an ConstantSpecification is specified for
a MAP. In this case one axis of the MAP is a STD_AXIS and the second one is a
COM_AXIS.

Please note that in this example the v attribute is used for the swArraysize as well
as for the swValuesPhys.

This is possible because the example contains only invariant values.

Listing 5.29: Example for Constant Specification for MAP
<CONSTANT-SPECIFICATION>

481 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<SHORT-NAME>PhysInitValuesOfMap</SHORT-NAME>
<DESC>
<L-2 L="EN">This example shows a ConstantSpecification for a MAP where

the first axis is a STD_AXIS and the second axis is a COM_AXIS</L-2>
</DESC>
<VALUE-SPEC>
<APPLICATION-VALUE-SPECIFICATION>

<CATEGORY>MAP</CATEGORY>
<SW-AXIS-CONTS>
<SW-AXIS-CONT>

<CATEGORY>STD_AXIS</CATEGORY>
<SW-AXIS-INDEX>1</SW-AXIS-INDEX>
<SW-ARRAYSIZE>
<V>4</V>
</SW-ARRAYSIZE>
<SW-VALUES-PHYS>
<V>0</V>
<V>1</V>
<V>2</V>
<V>3</V>
</SW-VALUES-PHYS>

</SW-AXIS-CONT>
</SW-AXIS-CONTS>
<SW-VALUE-CONT>
<UNIT-REF DEST="UNIT">/Units/NwtMtr</UNIT-REF>
<SW-ARRAYSIZE>

<V>4</V>
<V>2</V>

</SW-ARRAYSIZE>
<SW-VALUES-PHYS>

<VG>
<LABEL>

<L-4 L="EN">Values for axis index 2 equals 0</L-4>
</LABEL>
<V>00</V>
<V>10</V>
<V>20</V>
<V>30</V>
</VG>
<VG>
<LABEL>

<L-4 L="EN">Values for axis index 2 equals 1</L-4>
</LABEL>
<V>01</V>
<V>11</V>
<V>21</V>
<V>31</V>
</VG>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
</VALUE-SPEC>

</CONSTANT-SPECIFICATION>

482 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.6.7.3 Example for Constant Specification for MAP with two STD_AXIS

The example contained in this sub-chapter illustrates the creation of the Con-
stantSpecification for a MAP that (in contrast to the previous example sketched
in Listing 5.29) consists of two STD_AXIS.

Like in the previous example, the v attribute is used for the swArraysize as well as
for the swValuesPhys.

Listing 5.30: Example for Constant Specification for STD_AXIS
<CONSTANT-SPECIFICATION>

<SHORT-NAME>MapExample</SHORT-NAME>
<VALUE-SPEC>
<APPLICATION-VALUE-SPECIFICATION>

<CATEGORY>MAP</CATEGORY>
<SW-AXIS-CONTS>
<SW-AXIS-CONT>

<SW-AXIS-INDEX>1</SW-AXIS-INDEX>
<SW-ARRAYSIZE>
<V>4</V>
</SW-ARRAYSIZE>
<SW-VALUES-PHYS>
<V>1</V>
<V>2</V>
<V>3</V>
<V>4</V>
</SW-VALUES-PHYS>

</SW-AXIS-CONT>
<SW-AXIS-CONT>

<SW-AXIS-INDEX>2</SW-AXIS-INDEX>
<SW-ARRAYSIZE>
<V>2</V>
</SW-ARRAYSIZE>
<SW-VALUES-PHYS>
<V>10</V>
<V>11</V>
</SW-VALUES-PHYS>

</SW-AXIS-CONT>
</SW-AXIS-CONTS>
<SW-VALUE-CONT>
<SW-ARRAYSIZE>

<V>4</V>
<V>2</V>

</SW-ARRAYSIZE>
<SW-VALUES-PHYS>

<VG>
<LABEL>

<L-4 L="EN">Values for 10</L-4>
</LABEL>
<V>110</V>
<V>210</V>
<V>310</V>
<V>410</V>
</VG>
<VG>

483 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<LABEL>
<L-4 L="EN">Values for 11</L-4>

</LABEL>
<V>111</V>
<V>211</V>
<V>311</V>
<V>411</V>
</VG>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
</VALUE-SPEC>

</CONSTANT-SPECIFICATION>

5.6.7.4 Example for Constant Specification for COM_AXIS

The following example illustrates how an ConstantSpecification is specified for
a COM_AXIS.

Listing 5.31: Example for Constant Specification for COM_AXIS
<CONSTANT-SPECIFICATION>

<SHORT-NAME>PhysInitValuesOfComAxis</SHORT-NAME>
<DESC>
<L-2 L="EN">This example shows a ConstantSpecification for a COM_AXIS</L

-2>
</DESC>
<VALUE-SPEC>
<APPLICATION-VALUE-SPECIFICATION>

<CATEGORY>COM_AXIS</CATEGORY>
<SW-VALUE-CONT>
<UNIT-REF DEST="UNIT">/Units/Rpm</UNIT-REF>
<SW-ARRAYSIZE>

<V>6</V>
</SW-ARRAYSIZE>
<SW-VALUES-PHYS>

<V>0</V>
<V>500</V>
<V>1000</V>
<V>1500</V>
<V>3000</V>
<V>5000</V>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
</VALUE-SPEC>

</CONSTANT-SPECIFICATION>

484 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5.6.7.5 Example for Constant Specification for an Array of compound primitive
Objects

The example starts with the definition of the data type for the input value for the curve
see Listing 5.32. This data type is used for the definition of the actual curve data type
in Listing 5.34.

Listing 5.32: Definition of curve input value data type
<APPLICATION-PRIMITIVE-DATA-TYPE>

<SHORT-NAME>axisInputType</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</APPLICATION-PRIMITIVE-DATA-TYPE>

The next step is the definition of the data type for the result of the interpolation. This
part is sketched in Listing 5.33. This data type is used for the definition of the actual
curve data type in Listing 5.34.

Listing 5.33: Definition of data type for the result of the interpolation
<APPLICATION-PRIMITIVE-DATA-TYPE>

<SHORT-NAME>curveType</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</APPLICATION-PRIMITIVE-DATA-TYPE>

Finally, the data type for the actual curve is defined, see Listing 5.34.

Listing 5.34: Definition of curve data type
<APPLICATION-PRIMITIVE-DATA-TYPE>

<SHORT-NAME>MyTable</SHORT-NAME>
<CATEGORY>CURVE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
<SW-CALPRM-AXIS-SET>

<SW-CALPRM-AXIS>
<SW-AXIS-INDEX>1</SW-AXIS-INDEX>
<CATEGORY>STD_AXIS</CATEGORY>
<SW-AXIS-INDIVIDUAL>

485 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<INPUT-VARIABLE-TYPE-REF DEST="APPLICATION-PRIMITIVE-DATA-
TYPE">/ApplicationDataTypes/axisInputType</INPUT-VARIABLE-
TYPE-REF>

<SW-MAX-AXIS-POINTS>10</SW-MAX-AXIS-POINTS>
<SW-MIN-AXIS-POINTS>0</SW-MIN-AXIS-POINTS>

</SW-AXIS-INDIVIDUAL>
<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>

</SW-CALPRM-AXIS>
</SW-CALPRM-AXIS-SET>
<VALUE-AXIS-DATA-TYPE-REF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">/

ApplicationDataTypes/curveType</VALUE-AXIS-DATA-TYPE-REF>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

</APPLICATION-PRIMITIVE-DATA-TYPE>

The ApplicationPrimitiveDataType of category CURVE defined in the listing
above may be used as the element type (ApplicationArrayElement.type) of an
ApplicationArrayDataType. The definition of this array data type is not part of the
example.

The initialization of a DataPrototype typed by such an ApplicationArray-
DataType is sketched in the listing below:

Listing 5.35: Definition of constant to initialize an array of curve data type
<CONSTANT-SPECIFICATION>

<SHORT-NAME>MyConst</SHORT-NAME>
<VALUE-SPEC>

<ARRAY-VALUE-SPECIFICATION>
<ELEMENTS>

<COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>
<RULE>FILL_UNTIL_END</RULE>
<COMPOUND-PRIMITIVE-ARGUMENTS>

<APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
<SW-AXIS-CONTS>

<RULE-BASED-AXIS-CONT>
<SW-ARRAYSIZE>

<V>10</V>
</SW-ARRAYSIZE>
<SW-AXIS-INDEX>1</SW-AXIS-INDEX>
<RULE-BASED-VALUES>

<ARGUMENTSS>
<RULE-ARGUMENTS>

<V>1</V>
<V>2</V>
<V>3</V>
<V>4</V>
<V>5</V>
<V>6</V>
<V>7</V>
<V>8</V>
<V>9</V>
<V>10</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

486 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

</RULE-BASED-VALUES>
</RULE-BASED-AXIS-CONT>

</SW-AXIS-CONTS>
<SW-VALUE-CONT>

<SW-ARRAYSIZE>
<V>10</V>

</SW-ARRAYSIZE>
<RULE-BASED-VALUES>

<RULE>FILL_UNTIL_END</RULE>
<ARGUMENTSS>

<RULE-ARGUMENTS>
<V>0</V>

</RULE-ARGUMENTS>
</ARGUMENTSS>

</RULE-BASED-VALUES>
</SW-VALUE-CONT>

</APPLICATION-RULE-BASED-VALUE-SPECIFICATION>
</COMPOUND-PRIMITIVE-ARGUMENTS>

</COMPOSITE-RULE-BASED-VALUE-SPECIFICATION>
</ELEMENTS>

</ARRAY-VALUE-SPECIFICATION>
</VALUE-SPEC>

</CONSTANT-SPECIFICATION>

5.7 Initial Values

5.7.1 Overview

[TPS_SWCT_01301] Importance of initial values dIf the value of a VariableDat-
aPrototype/ParameterDataPrototype has not properly been set by a piece of
software, it can still happen that another piece of software tries to access the value of
the VariableDataPrototype/ParameterDataPrototype.

For various reasons it is therefore advised to be able to specify an initial value for a
VariableDataPrototype/ParameterDataPrototype in case the value has not
been assigned in a controlled manner. However, the definition of an initial value in
many cases depends on a context in which the value is accessed.c()

Therefore, the AUTOSAR standard foresees means for defining initial values for Vari-
ableDataPrototypes/ParameterDataPrototypes on different conceptual levels.

That is, although defined for the same VariableDataPrototype/ParameterDat-
aPrototype, an initial value defined on one conceptual level can “supersede” the
definition of another initial value on a different conceptual level provided that the prior-
ity of the first is higher than the priority of the latter.

The meaning of “supersede” in this context is that the definition of an initial value on a
specific conceptual level is the only relevant definition of an initial value on that level.

487 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01518] Priority of initial value definition with respect to conceptual
levels dAny initial value defined in the context of a conceptual level of lower priority is
ignored!c()

[constr_1706] Definition of initial value for data transmission dInitial values for
data transmission shall only be defined by means of NonqueuedSenderComSpec.
initValue resp. NonqueuedReceiverComSpec.initValue. Any definition of an
initValue defined in the context of VariableDataPrototype shall be ignored.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_01182] Conceptual levels for the definition of initial values dThe fol-
lowing conceptual levels for the definition of initial values exist:

1. It is possible to aggregate an initValue directly at the definition of any
VariableDataPrototype/ParameterDataPrototype. A restriction ap-
plies, please consult with [constr_1706].

2. It is possible to aggregate an initValue at the level of a ComSpec, namely:

• NonqueuedSenderComSpec

• NonqueuedReceiverComSpec

• ParameterProvideComSpec

• ParameterRequireComSpec

• NvRequireComSpec

• NvProvideComSpec

3. It is possible to aggregate a implInitValue and an applInitValue at the
definition of a CalibrationParameterValue.

The priority of one definition of an initial value over another is reflected by the numerical
order of the above enumeration, e.g. a definition on level 3 supersedes a definition on
level 2.c()

5.7.2 Initial Value Representation

[TPS_SWCT_01183] Actual value of an initValue shall be interpreted according
to the AutosarDataType dA DataPrototype can be typed by either an Applica-
tionDataType or else an ImplementationDataType. Therefore, the actual value
of an initValue shall be interpreted according to the AutosarDataType that types
the DataPrototype.

That is, if the DataPrototype is typed by an ApplicationDataType, the value
shall be interpreted as a physical value while, if the DataPrototype is typed by an

488 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ImplementationDataType, the value is to be interpreted as the direct numerical
representation.c(RS_SWCT_03216, RS_SWCT_03217)

[TPS_SWCT_01184] ApplicationPrimitiveDataTypes with category VALUE
dIn case of ApplicationPrimitiveDataTypes with category VALUE it is suffi-
cient if the initValues are provided as physical values only because the RTE Gener-
ator should be able to evaluate the related CompuMethod appropriately.c(RS_SWCT_-
03216, RS_SWCT_03217)

Please note that DataPrototypes that refer to CompuMethods of category SCALE_-
LINEAR_AND_TEXTTABLE (or similar) shall be initialized by means of the definition of
several ApplicationValueSpecification.swValueCont.swValuesPhys.vtf.

Depending on the evaluation of the binding expression either a numerical value or a
string is taken to initialize the DataPrototype.

[TPS_SWCT_01185] initValues for Compound Primitive Data Types dThe
definition of initValues in the numerical representation for Compound Primitive
Data Type is done such that the initValues have to be provided as a Record-
ValueSpecification respectively an ArrayValueSpecification or Numeri-
calRuleBasedValueSpecification matching to the related Implementation-
DataType. The additional representation can be provided and associated by means
of a ConstantSpecificationMapping.c(RS_SWCT_03216)

Please note that the definition of Compound Primitive Data Type can be found
in section 5.6.

[constr_1221] DataPrototype is typed by an ApplicationPrimitive-
DataType dIf a DataPrototype is typed by an ApplicationPrimitive-
DataType, its initValue shall be provided by an ApplicationValueSpecifi-
cation.

If the underlying ApplicationPrimitiveDataType represents an enumeration, the
value provided shall match to one of the applicable text values (vt, shortLabel,
symbol) defined by the applicable CompuScales.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that several attributes of meta-class CompuScale can be taken to describe
the actual value. It is therefore necessary to clarify what happens if several of these
attributes exist within the context of one CompuScale. This clarification can be found
in [TPS_SWCT_01696].

[constr_1385] DataPrototype is typed by an ImplementationDataType dIf a
DataPrototype is typed by an ImplementationDataType, its initValue shall
not be provided by an ApplicationValueSpecification.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

489 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1222] category of an AutosarDataType used to type a DataProto-
type is set to STRING dIf the category of an AutosarDataType used to type a
DataPrototype is set to STRING, the ApplicationValueSpecification used
to initialize the DataPrototype shall be of category STRING.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1223] DataPrototype is typed by an ApplicationRecordDataType dIf
a DataPrototype is typed by an ApplicationRecordDataType, the correspond-
ing initValue shall be provided by a RecordValueSpecification.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1224] DataPrototype is typed by an ApplicationArrayDataType dIf a
DataPrototype is typed by an ApplicationArrayDataType, the corresponding
initValue shall be provided by an ArrayValueSpecification (that may contain
an ApplicationRuleBasedValueSpecification).

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

5.7.3 Constant Specification Mapping

[TPS_SWCT_01186] ConstantSpecificationMapping dThe ConstantSpeci-
ficationMapping is used to associate ValueSpecifications defined in the im-
plementation domain with corresponding ValueSpecifications defined in the ap-
plication domain.

To make this possible the ValueSpecification actually needs to be a Con-
stantReference.

The ConstantSpecification referenced by the ConstantReference is also the
target of the references owned by ConstantSpecificationMapping.c()

[constr_1029] ConstantSpecificationMapping and ConstantSpecifica-
tion dIt is required that one ConstantSpecification referenced from a Con-
stantSpecificationMapping needs to be defined in the application domain (ap-
plConstant) and the other referenced ConstantSpecification needs to be de-
fined in the implementation domain (implConstant).

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

490 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01187] ConstantSpecificationMappingSet referenced by the
InternalBehavior dIn most cases the meta-class ConstantSpecification-
MappingSet will be referenced by the InternalBehavior. This ConstantSpec-
ificationMappingSet contains the applicable ConstantSpecificationMap-
pings.c()

However, in some specializations the software-components will not have an Inter-
nalBehavior:

• [TPS_SWCT_01840] A ParameterSwComponentType references a Con-
stantSpecificationMappingSet dParameterSwComponentType: here,
the ConstantSpecificationMappingSet is directly associated by the Pa-
rameterSwComponentType.c()

• [TPS_SWCT_01841] A NvBlockSwComponentType references a Con-
stantSpecificationMappingSet dNvBlockSwComponentType: in this
case, the ConstantSpecificationMappingSet is associated with the ag-
gregated NvBlockDescriptor.c()

ARElement

ConstantSpecification
ConstantSpecificationMapping

ARElement

ConstantSpecificationMappingSet
+implConstant

0..1
+mapping

0..*+applConstant

0..1

Figure 5.84: Constant Mapping

Class ConstantSpecificationMapping

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class is used to create an association of two ConstantSpecifications. One Constant
Specification is supposed to be defined in the application domain while the other should be defined in the
implementation domain.

Hence the ConstantSpecificationMapping needs to be used where a ConstantSpecification defined in
one domain needs to be associated to a ConstantSpecification in the other domain.

This information is crucial for the RTE generator.

Base ARObject

Attribute Type Mult. Kind Note

applConstant ConstantSpecification 0..1 ref A ConstantSpecification defined in the application
domain.

implConstant ConstantSpecification 0..1 ref A ConstantSpecification defined in the implementation
domain.

Table 5.147: ConstantSpecificationMapping

[constr_1931] Existence of ConstantSpecificationMapping.applConstant
dFor each ConstantSpecificationMapping, the reference to meta-class Con-
stantSpecification in the role applConstant shall exist at the time when
the contract phase generation is executed.c()

[constr_1932] Existence of ConstantSpecificationMapping.implConstant
dFor each ConstantSpecificationMapping, the reference to meta-class Con-
stantSpecification in the role implConstant shall exist at the time when
the contract phase generation is executed.c()

491 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpStructureElement

InternalBehavior

ARElement

ConstantSpecificationMappingSet

ARElement
AtpBlueprint

AtpBlueprintable

DataTypeMappingSet

SwComponentType

ParameterSwComponentType

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

«atpSplitable»

+dataTypeMapping 0..*
«atpSplitable»

+constantValueMapping 0..*

«atpSplitable»

+dataTypeMapping

0..*

«atpSplitable»

+dataTypeMapping 0..*

«atpSplitable»

+constantMapping

0..*

«atpSplitable» +constantValueMapping

0..*

Figure 5.85: Relation between data type mapping and constant mapping

Class ConstantSpecificationMappingSet

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class represents the ability to map two ConstantSpecifications to each others. One Constant
Specification is supposed to be described in the application domain and the other should be described in
the implementation domain.

Tags:atp.recommendedPackage=ConstantSpecificationMappingSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

mapping ConstantSpecification
Mapping

* aggr ConstantSpecificationMappings owned by the Constant
SpecificationMappingSet.

Table 5.148: ConstantSpecificationMappingSet

5.7.4 Initial Values For CalibrationParameters

[TPS_SWCT_01188] Definition of calibration data sets through RTE-generator
and compiler dIt is possible to provide sets of initial values for calibration parameters
which are instance specific, thus overriding any initial values predefined by a Param-
eterDataPrototype, ParameterRequireComSpec or a ParameterProvide-
ComSpec.

This allows to create the calibration data sets through RTE-generator and compiler.
These initial values are specified in CalibrationParameterValueSet and Cali-
brationParameterValue. The latter aggregates a ValueSpecification in two
different roles:

• applInitValue for data structured according to ApplicationDataType. In
this case the values are defined in the physical domain.

• implInitValue for data structured according to ImplementationDataType.
In this case the values are defined in the numerical domain.

c(RS_SWCT_03175)

Anyhow, these initial values can be imported from e.g. an ASAM CDF file.

492 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class CalibrationParameterValueSet
Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::CalibrationParameter

Values
Note Specification of a constant that can be part of a package, i.e. it can be defined stand-alone.

Tags:atp.recommendedPackage=CalibrationParameterValueSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

calibration
ParameterValue

CalibrationParameter
Value

* aggr This represents single CalibrationParameterValues in the
CalibrationParameterValueSet.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 5.149: CalibrationParameterValueSet

Identifiable

FlatInstanceDescriptor

+ role: Identifier [0..1]

AtpPrototype
Identifiable

RootSwCompositionPrototype

ValueSpecification

+ shortLabel: Identifier [0..1]

ARElement

CalibrationParameterValueSet

CalibrationParameterValue

������������	
 ����

�����������	��	���� �

��������������

+implInitValue

0..1

+initial izedParameter

0..1

«atpVariation»

+calibrationParameterValue 0..*

+applInitValue

0..1

«atpSplitable»

+calibrationParameterValueSet

0..*

Figure 5.86: Calibration Parameter Values

Class CalibrationParameterValue
Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::CalibrationParameter

Values
Note Specifies instance specific calibration parameter values used to initialize the memory objects

implementing calibration parameters in the generated RTE code.

RTE generator will use the implInitValue to override the initial values specified for the DataPrototypes of a
component type.

The applInitValue is used to exchange init values with the component vendor not publishing the
transformation algorithm between ApplicationDataTypes and ImplementationDataTypes or defining an
instance specific initialization of components which are only defined with ApplicationDataTypes.

Note: If both representations of init values are available these need to represent the same content.

Note further that in this case an explicit mapping of ValueSpecification is not implemented because
calibration parameters are delivered back after the calibration phase.

Base ARObject

Attribute Type Mult. Kind Note

applInitValue ValueSpecification 0..1 aggr This is the initial value specification structured according
to the ApplicationDataType

implInitValue ValueSpecification 0..1 aggr This is the initial value specification structured according
to the ImplementationDataType

initialized
Parameter

FlatInstanceDescriptor 0..1 ref This represents the parameter that is initialized by the
CalibrationParameterValue.

Table 5.150: CalibrationParameterValue

[constr_1933] Existence of CalibrationParameterValue.initializedPa-
rameter dFor each CalibrationParameterValue, the reference to meta-class

493 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ConstantSpecification in the role initializedParameter shall exist at the
time when the contract phase generation is executed.c()

5.7.5 Initial Value for optional Element

The existence of optional elements in a given AutosarDataType needs to be properly
considered for the definition of an initial value.

5.7.5.1 Initial Value for optional ApplicationRecordElement

The initial value for a given DataPrototype typed by an ApplicationRecord-
DataType is defined by means of a RecordValueSpecification.

[TPS_SWCT_01823] Definition of ValueSpecification for an Application-
RecordDataType with unavailable optional elements dIf an Application-
RecordDataType contains ApplicationRecordElements where attribute isOp-
tional is set to True, it is still necessary the corresponding RecordValueSpec-
ifications fulfill [constr_1271], i.e. a ValueSpecification shall be provided for
optional elements that are unavailable as far as the ValueSpecification is con-
cerned.

The canonical approach to fulfill [constr_1271] is to fill the place in the structure that
represents a non-available optional element of the structure with a special kind of
ValueSpecification (the NotAvailableValueSpecification) in order to un-
ambiguously convey the information that this element is not available for the specific
DataPrototype, as far as the initial value is concerned.c(RS_SWCT_03320)

[TPS_SWCT_01821] Semantics of attribute NotAvailableValueSpecifica-
tion.defaultPattern dThe usage of NotAvailableValueSpecification ex-
plicitly defines that no specific initialization value shall be defined for an optional ele-
ment.

The memory area occupied by the NotAvailableValueSpecification shall how-
ever be filled with a deterministic pattern during initialization.

The content of defaultPattern shall be used to fill the gap in the memory occu-
pied by an optional element with NotAvailableValueSpecification initializa-
tion.c(RS_SWCT_03320)

[TPS_SWCT_01822] Application of attribute NotAvailableValueSpecifica-
tion.defaultPattern happens only during initialization dThe value of No-
tAvailableValueSpecification.defaultPattern is applied only during the
initialization of the respective DataPrototype.

494 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Therefore, if the optional element is not received during a specific reception, the mem-
ory area is untouched. It is the duty of the application to check whether that optional
element has actually been received.c(RS_SWCT_03320)

[constr_10005] Existence of attribute NotAvailableValueSpecification.de-
faultPattern dFor each NotAvailableValueSpecification, attribute de-
faultPattern shall exist at the time when the contract phase genera-
tion is executed.c()

[constr_10006] Valid interval of attribute NotAvailableValueSpecification.
defaultPattern dThe valid interval for attribute NotAvailableValueSpecifi-
cation.defaultPattern at the time when the contract phase gener-
ation is executed is 0..255.c()

5.7.5.2 Initial Value for optional ImplementationDataTypeElement

[TPS_SWCT_01785] Initial value for ImplementationDataType of category
STRUCTURE where attribute isStructWithOptionalElement set to the value
True dIf an initial value is to be provided for an ImplementationDataType of
category STRUCTURE where attribute isStructWithOptionalElement set to
the value True then an initial value shall be defined for all Implementation-
DataTypeElements including the first ImplementationDataTypeElement where
the shortName is set to the value availabilityBitfield.c(RS_SWCT_03320)

[TPS_SWCT_01786] Initial value for the ImplementationDataTypeElement
where the shortName is set to the value availabilityBitfield dThe initial
value for the ImplementationDataTypeElement where the shortName is set to
the value availabilityBitfield shall be defined in a way that the bit that repre-
sents the existence of a given element is set to True if the element shall initially be
available.

If the corresponding element shall not be initially available then the respective bit shall
be set to False.c(RS_SWCT_03320)

[TPS_SWCT_01787] Initialization of not-available ImplementationDataType-
Element dIf a given ImplementationDataTypeElement is not available in the con-
text of the definition of an initial value then a “dummy” initial value shall be defined
anyway for the element in order to not break [constr_1272].

The provided ValueSpecification shall be considered as “don’t care”.c()

Form the perspective of performance, it is recommended to use the value 0 for an
initialization according to [TPS_SWCT_01787] of non-available Implementation-
DataTypeElement.

495 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6 Compatibility

6.1 Introduction

In order to connect PortPrototypes of SwComponentTypes, the compatibility of
PortPrototypes needs to be verified. This section defines the basic rules for formal
compatibility of PortPrototypes.

Compatibility will be defined bottom-up, i.e. first the rules for compatible Autosar-
DataTypes are set up, then the rules for the different types of PortInterfaces are
derived.

Another aspect of compatibility is whether two model-elements (e.g. Application-
DataType vs. ImplementationDataType) can be mapped to each other.

For the compatibility of PortInterfaces basically two options apply:

1. finding of matching pairs of elements of PortInterfaces is based on matching
shortName plus the application of compatibility rules for their attributes.

2. a PortInterfaceMapping can be taken to declare two elements of PortPro-
totypes as compatible without applying further formal checks.

6.2 Compatibility of Data Types

The AUTOSAR meta-model defines a number of meta-classes (e.g. Application-
PrimitiveDataType) that eventually refer to a set of attributes (e.g. a lower bound-
ary for its values) relevant for compatibility checking.

Instantiating a data-type related meta-class defines a data type on M1 level (e.g. tem-
peratureType). In other words: ApplicationPrimitiveDataType is an M2 artifact;
it is taken as the template for creating a corresponding M1 artifact temperatureType.

In this context, the issue of compatibility refers to the M1 objects, i.e. the instances
of sub-classes of AutosarDataType need to be considered. For this purpose the
relevant part of the AUTOSAR meta-model need to be fully explored with respect to
compatibility.

6.2.1 ApplicationDataType

6.2.1.1 ApplicationPrimitiveDataType

[constr_1047] Compatibility of ApplicationPrimitiveDataTypes dInstances
of ApplicationPrimitiveDataType are compatible at the time when the
RTE is generated if and only if one of the following conditions applies:

1. All the following sub conditions apply:

496 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

(a) They have the same category.

(b) The swDataDefProps attached to the M1 data types are compatible.

2. In the context of using the ApplicationPrimitiveDataType, a DataPro-
totypeMapping exists that refers to a DataPrototype typed by one of the
ApplicationPrimitiveDataTypes in the role firstDataPrototype and
to another DataPrototype typed by the other ApplicationPrimitive-
DataType in the role secondDataPrototype.

3. In the context of using the ApplicationPrimitiveDataType, a DataPro-
totypeMapping exists that refers to a DataPrototype typed by the Appli-
cationPrimitiveDataType in the role secondDataPrototype and to an-
other DataPrototype typed by an ApplicationCompositeDataType in the
role firstDataPrototype and additionally for the side of the Application-
CompositeDataType a corresponding ApplicationCompositeDataType-
SubElementRef exists in the role firstElement that in turn references an
ApplicationCompositeElementDataPrototype.

c()

Please note that the meaning of “swDataDefProps attached to the M1 data types are
compatible” is explained in section 6.2.4.

Please note further that it is not required that the shortNames of two data types shall
be identical in order to consider the two data types as compatible.

6.2.1.2 ApplicationCompositeDataType

An instance of an ApplicationRecordDataType is never compatible to an instance
of an ApplicationArrayDataType unless a PortInterfaceMapping exists that
details the terms of compatibility (see [TPS_SWCT_01543]).

[constr_1048] Compatibility of ApplicationRecordDataTypes dInstances of
ApplicationRecordDataTypes are compatible at the time when the RTE
is generated if and only if one of the following conditions applies:

1. All elements at the same record position are of compatible Autosar-
DataTypes (either ApplicationCompositeDataTypes or Application-
PrimitiveDataTypes).

2. For each ApplicationRecordDataType.element, the attribute isOptional
shall either

• not exist on both sides or

• be set to the value False if it only exists on one side or

• have the identical value on both sides.

497 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

3. In the context of a DataPrototypeMapping, for each Application-
RecordElement of the required ApplicationRecordDataType a SubEle-
mentMapping exists such that a ApplicationCompositeDataType-
SubElementRef in the role firstElement or secondElement exists that
references the required ApplicationRecordElement and a corresponding
ApplicationCompositeDataTypeSubElementRef exists in the other role
(i.e. secondElement or firstElement) that in turn references an Applica-
tionRecordElement of the provided ApplicationRecordDataType.

c()

[constr_1049] Compatibility of ApplicationArrayDataTypes dInstances of
ApplicationArrayDataType are compatible at the time when the RTE is
generated if and only if one of the following conditions applies:

1. All the following sub conditions apply:

(a) Their elements are of a compatible AutosarDataTypes (either
ApplicationCompositeDataTypes or ApplicationPrimitive-
DataTypes).

(b) The attributes maxNumberOfElements and arraySizeSemantics
(given the existence) have identical values.

2. In the context of a DataPrototypeMapping, for the ApplicationArrayEle-
ment of the required ApplicationArrayDataType a SubElementMapping
exists such that a ApplicationCompositeDataTypeSubElementRef in the
role firstElement or secondElement exists that references the required Ap-
plicationArrayElement and a corresponding ApplicationComposite-
DataTypeSubElementRef exists in the other role (i.e. secondElement or
firstElement) that in turn references an ApplicationArrayElement of the
provided ApplicationArrayDataType.

c()

6.2.2 ImplementationDataType

[constr_1050] Compatibility of ImplementationDataTypes dInstances of
ImplementationDataType are compatible at the time when the RTE is
generated if and only if after all type-references are resolved one of the following
rules apply:

1. All the following sub conditions apply:

(a) They have the same category.

(b) They have the identical structure (this refers to Implementation-
DataTypeElement and their subElements).

498 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

(c) The attributes arraySize and arraySizeSemantics have (given the ex-
istence) identical values.

(d) For each ImplementationDataType.subElement, the attribute isOp-
tional shall either

• not exist on both sides or

• be set to the value False if it only exists on one side or

• have the identical value on both sides.

(e) The swDataDefProps attached to the M1 data types are compatible.

2. In the context of using the ImplementationDataType, a DataProto-
typeMapping exists that refers to a DataPrototype typed by one of the Im-
plementationDataTypes in the role firstDataPrototype and to another
DataPrototype typed by the other ImplementationDataType in the role
secondDataPrototype.

3. In the context of using the ImplementationDataType, a DataProto-
typeMapping exists that refers to a DataPrototype typed by the Implemen-
tationDataTypes in the role secondDataPrototype and to another Dat-
aPrototype typed by an ImplementationDataType with a subElement in
the role firstDataPrototype and additionally for the side of the Implemen-
tationDataType with a subElement a corresponding Implementation-
DataTypeSubElementRef exists in the role firstElement that in turn ref-
erences an ImplementationDataTypeElement.

c()

Please note that the meaning of “swDataDefProps attached to the M1 data types are
compatible” is explained in section 6.2.4.

Please note that it is not required that the shortNames of two data types shall be
identical in order to consider the two data types as compatible.

The following constraint applies for the case that mode manager and mode user are
using different ImplementationDataTypes. From the point of view of the RTE there
is only the necessity that all possible numbers used to represent ModeDeclarations
of the mode manager has to fit into the range of the data type used for the mode user.

[constr_1168] Compatibility of ImplementationDataTypes used in the Mod-
eRequestTypeMap dBoth ImplementationDataTypes shall fulfill [constr_1167].

In addition to that, the possible numbers used for representing ModeDeclarations
on the side of the mode manager shall match the supported range of the Imple-
mentationDataType used for representing ModeDeclarations on the side of the
mode user (see [constr_1075]).

This rule shall be imposed at the time when the RTE is generated.c()

499 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6.2.3 Compatibility of SwBaseType

[constr_1220] Compatibility of SwBaseType dTwo SwBaseTypes are compatible at
the time when the RTE is generated if and only if attributes

• baseTypeSize respectively

• byteOrder,

• memAlignment,

• baseTypeEncoding, and

• nativeDeclaration

have identical values at the time when the RTE is generated.c()

6.2.4 Compatibility of SwDataDefProps

[constr_1051] Compatibility of SwDataDefProps dSwDataDefProps are compati-
ble at the time when the RTE is generated if and only if:

1. They refer to compatible Unit definitions, or neither of them has an associated
Unit.

2. They refer to compatible conversion methods or neither of them associates such
a method.

3. They both aggregate a ValueSpecification in the role invalidValue or
neither of them aggregates a ValueSpecification in the role invalid-
Value.

4. If existent (see previous condition), one of the following conditions apply to
ValueSpecifications aggregated in the role invalidValue for being con-
sidered compatible (after following and resolving indirections created by Con-
stantReference):

(a) both are ApplicationValueSpecifications and the values are com-
patible according to [TPS_GST_02501].

(b) both are NumericalValueSpecifications and the values are compati-
ble according to [TPS_GST_02501].

(c) both are TextValueSpecifications and the values are identical.

(d) both are ArrayValueSpecifications and the values are effectively
identical, e.g. if one ArrayValueSpecification specifies all values ex-
plicitly and the other ArrayValueSpecification specifies values based
on a rule then the yield of both ArrayValueSpecifications (i.e. element
for element) shall be identical.

(e) both are RecordValueSpecifications and the values are identical.

500 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

(f) if one is a NumericalValueSpecification and the other one is an
ApplicationValueSpecification then the check for compatibility shall
apply the CompuMethod on the physical value such that a comparison on
the implementation level becomes possible. [TPS_GST_02501] applies1.

5. They refer to compatible data constraints dataConstr.

6. They refer to compatible swRecordLayouts

All other attributes (e.g. swCalibrationAccess do not affect compatibility).c()

Please note that compatible conversion methods are described in chapter 6.2.4.5.

6.2.4.1 Compatibility of Units

[constr_1052] Compatibility of Units dTwo Unit definitions are compatible at the
time when the RTE is generated if and only if:

1. They have compatible (see [TPS_GST_02501]) values of attributes factorSi-
ToUnit and offsetSiToUnit.

2. They either refer to identical definitions of PhysicalDimension or neither of
them associates a PhysicalDimension.

c()

Please note that it is not required that the shortNames of two Units shall be identical
in order to consider the two units as compatible.

[TPS_SWCT_01492] Default values for factorSiToUnit and offsetSiToUnit
dThe default value of attribute Unit.factorSiToUnit is 1.

The default value of attribute Unit.offsetSiToUnit is 0.c()

Further constraints apply specifically for the handling of Units in the context of assign-
ing a ValueSpecification to a given AutosarDataPrototype:

[constr_1391] Compatibility of Units in the context of assignment using an Ap-
plicationValueSpecification dIf an ApplicationValueSpecification is
used in the context of an assignment to an AutosarDataPrototype, then the Ap-
plicationValueSpecification.swValueCont.unit shall be compatible to the
Unit used in the definition of the given AutosarDataPrototype, i.e. Autosar-
DataType.swDataDefProps.unit.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

1if one is a NumericalValueSpecification and the other one is an ApplicationValueSpec-
ification and the application of the CompuMethod on the side of the ApplicationValueSpeci-
fication does not yield a valid number a comparison is not possible.

501 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1392] Compatibility of Units in the context of assignment using an Ap-
plicationRuleBasedValueSpecification dIf an ApplicationRuleBased-
ValueSpecification is used in the context of an assignment to an AutosarDat-
aPrototype then the ApplicationRuleBasedValueSpecification.swValue-
Cont.unit shall be compatible to the Unit used in the definition of the given Au-
tosarDataPrototype, i.e. AutosarDataType.swDataDefProps.unit.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1393] Existence of RuleBasedValueCont.unit dFor every RuleBased-
ValueCont, the reference unit shall exist at the time when the contract
phase generation is executed .c()

[constr_1771] Existence of SwValueCont.unit dFor every SwValueCont, the
reference unit shall exist at the time when the contract phase genera-
tion is executed .c()

6.2.4.2 Compatibility of PhysicalDimensions

[constr_1053] Compatibility of PhysicalDimensions dTwo PhysicalDimen-
sion definitions are compatible if and only if the values of

• lengthExp

• massExp

• timeExp

• currentExp

• temperatureExp

• molarAmountExp

• luminousIntensityExp

are identical and either the shortNames are identical or a PhysicalDimension-
Mapping exists that maps one of the PhysicalDimensions in the role first-
PhysicalDimension and the other PhysicalDimension in the role secondPhys-
icalDimension.

The imposition time of this constraint depends on the context:

• If the compatibility of PhysicalDimensions is evaluated in the context of the
creation of a SwConnector, then the rule shall be imposed at the time
when the RTE is generated.

• If the context is the creation of an ApplicationValueSpecification, then
the rule shall be imposed at the time when the contract phase gen-
eration is executed.

502 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c()

For clarification, there are some physical dimensions around that share the identical
values for the exponents but still have a completely different meaning and shall there-
fore not be considered compatible. For precisely this reason [constr_1053] requires
the shortNames of two PhysicalDimensions to be identical as a prerequisite for
compatibility.

For example, there are at least two physical dimensions that share the values of

• lengthExp = 2

• massExp = 1

• timeExp = -2

• currentExp = 0

• temperatureExp = 0

• molarAmountExp = 0

• luminousIntensityExp = 0

The unit described by this set of exponents is usually referred to as “Nm” for newton-
meter and it can be used for torque just as well as for energy. Obviously, two Units
shall never be considered compatible if one refers to torque and the other one refers
to energy.

6.2.4.3 Compatibility of Data Constraints

The compatibility of two DataConstrs depends on the context in which the owning
data elements are connected:

[constr_1126] Compatibility of DataConstrs dThe DataConstr (e.g. the limits)
defined by the type of the providing data element shall be within the constraints defined
by the type of the requiring data element.

For client-server communication, the following rules apply:

• For arguments with attribute direction set to the value in, the client shall
take the role of the provider and the server shall take the role of the requiring
side.

• For arguments with attribute direction set to the value inoutthe DataCon-
str shall be equal on both sides.

• For arguments with attribute direction set to the value out, the server shall
take the role of the provider and the client shall take the role of the requiring side.

This rule shall be applied at the time when the RTE is generated.c()

In addition, it is always allowed that the requiring element defines no constraints.

503 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1278] PhysConstrs references a Unit dDataConstrs are only com-
patible if the DataConstr.dataConstrRule.physConstrs.unit are compatible
or neither DataConstr.dataConstrRule.physConstrs.unit exist at the time
when the RTE is generated.c()

[constr_1054] No DataConstr available at the provider dIf the provider defines no
constraints, it is only compatible with a receiver which also defines no constraints at all
at the time when the RTE is generated.c()

In other words, this is not a compatibility rule for the types but for the data prototypes.

6.2.4.4 Compatibility in case of ImplementationDataType

If the SwDataDefProps are owned by an ImplementationDataType, further con-
ditions shall be met to ensure compatibility.

Note that depending on the category of the ImplementationDataType, at most
one of these four constraints is actually relevant:

1. category VALUE: [constr_1055] ImplementationDataType has cate-
gory VALUE dThe attributes baseType shall refer to a compatible SwBase-
Type at the time when the contract phase generation is exe-
cuted.c() (see explanation in the following rule). The rules regarding the com-
patibility of SwBaseTypes are covered by [constr_1220].

2. category TYPE_REFERENCE: [constr_1056] ImplementationDataType
has category TYPE_REFERENCE dThe ImplementationDataTypes ref-
erenced by the attributes SwDataDefProps.implementationDataType
shall be compatible at the time when the contract phase genera-
tion is executed.c()

3. category DATA_REFERENCE: [constr_1057] ImplementationDataType
has category DATA_REFERENCE dThe attributes SwDataDefProps.sw-
PointerTargetProps shall have identical targetCategory and shall refer to
SwDataDefProps where all attributes are identical at the time when the
contract phase generation is executed.c() (in other words, the target
types of the pointers shall be identical, not only compatible).

4. category FUNCTION_REFERENCE: [constr_1058] Implementation-
DataType has category FUNCTION_REFERENCE dThe attributes Sw-
DataDefProps.swPointerTargetProps.functionPointerSignature
shall refer to BswModuleEntrys which each resolve to the same function
signature at the time when the contract phase generation is
executed.c()

Please note that the term “same signature” refers to the following predicates:

• same number of arguments

504 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• return values and arguments shall have identical - not only compatible -
data types

Two SwBaseTypes are compatible (in the sense of allowing a connection of ports via
the RTE) if a simple conversion rule exists between the two types in the underlying
programming language.

Admittedly, this is a rather weak condition. But because the definition of SwBase-
Types can contain a nativeDeclaration it is not possible to state this rule more
specifically.

However, conversion between base types is considered as a less common use case
than the simple case that the connected types just contain two identical SwBaseTypes
(which is of course included in the rule).

Please note that, in addition, the existence of ApplicationDataTypes also con-
straints the possible SwBaseTypes via the compatibility rules for the mapping between
ApplicationDataTypes and ImplementationDataType as will be explained in
more detail in chapter 6.2.5.

6.2.4.5 Compatibility of CompuMethods

[constr_1163] Compatibility of CompuMethods dTwo CompuMethod definitions are
compatible at the time when the RTE is generated if and only if all at-
tributes except

• shortName

• desc

• introduction

• longName

• adminData

• annotation

• displayFormat

are identical and the compuScales and units are compatible.c()

[constr_1153] Applicability of compatibility requirements for CompuScales
dCompatibility requirements for CompuScales shall only apply for CompuScales
where the category of the enclosing CompuMethod is one of the following:

• TEXTTABLE

• SCALE_LINEAR_AND_TEXTTABLE

• SCALE_RATIONAL_AND_TEXTTABLE

• TAB_NOINTP

505 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• BITFIELD_TEXTTABLE

• LINEAR

• RAT_FUNC

• IDENTICAL

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1154] Compatibility of CompuScales for sender-receiver communication
and similar use cases dFor sender-receiver communication and similar use cases, it
is required that the set of CompuScales defined in the CompuMethod of the provider
of the communication (i.e. on the side of the PPortPrototype) shall be a subset of
the set of CompuScales defined in the CompuMethod on the required side (i.e. on the
side of the RPortPrototype) at the time when the RTE is generated.c()

[constr_1155] Compatibility of CompuScales for client-server communication
dFor client-server communication, the following rules apply at the time when the
RTE is generated:

For arguments of direction IN the CompuScales defined in the CompuMethod of
the client (i.e. on the side of the RPortPrototype) shall be a subset of the set of
CompuScales defined in the CompuMethod supported at the server (i.e. on the side
of the PPortPrototype).

For arguments of the direction OUT the set of CompuScales defined in the Com-
puMethod of the server (i.e. on the side of the PPortPrototype) shall be a subset
of the set of CompuScales defined in the CompuMethod supported at the client (i.e.
on the side of the RPortPrototype).

For arguments of direction INOUT the set of CompuScales defined in the Com-
puMethod of server and client shall be identical.c()

[constr_1156] Relevance of “names” of CompuScales dCompuScales which con-
tribute to tabular conversion by having a compuConst are compatible if and only if
the “names” of the compuScales, (namely shortLabel, vt and symbol, according
to the priority rules communicated in [TPS_SWCT_01431]) are equal.

If the scale has no compuConst, “names” of CompuScales are not relevant for com-
patibility.

This rule shall be imposed at the time when the RTE is generated.c()

[TPS_SWCT_01842] Applicability of constraints of CompuScales dThe constraints
[constr_1154], [constr_1155], and [constr_1156] shall only apply in the absence of
a TextTableMapping which shall take precedence regarding the compatibility if it
exists.c()

506 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1176] Compatibility of CompuScales of category LINEAR and RAT_-
FUNC dCompuScales of category LINEAR and RAT_FUNC are considered compat-
ible at the time when the RTE is generated if they yield the same conver-
sion.c()

For example, n0+n1∗phys
d0+d1∗phys is compatible to N0+N1∗phys

D0
if n0 ∼ N0 && n1 ∼ N1 && d0 ∼ D0

&& d1 ∼ 0.

Note that ∼ indicates compatibility of numerical values according to [TPS_GST_-
02501].

[constr_1192] Compatibility of “IDENTICAL” to “RAT_FUNC” or “LINEAR” dSimilar
to [constr_1176], a CompuScale where the category of the enclosing CompuMethod
is set to IDENTICAL is – at the time when the RTE is generated – con-
sidered compatible to a CompuScale where the category of the enclosing Com-
puMethod is set to RAT_FUNC or LINEAR if the following rule applies:

int = N0+N1∗phys+Ni∗physi
D0+D1∗phys+Di∗physi = phys

c()

For example, this is the case for

N0 ∼ 0 && D0 ∼ 1 && N1 ∼ 1 && D1 ∼ 0 && Ni ∼ Di ∼ 0 ∀i > 1.

Please note that the compatibility does not depend on the direction (compuInternal-
ToPhys vs. compuPhysToInternal) of CompuMethods of category LINEAR.

6.2.4.6 Compatibility of Record Layouts

[constr_1162] Compatibility of SwRecordLayouts dTwo SwRecordLayout defini-
tions are compatible at the time when the RTE is generated if and only if all
attributes except

• shortName

• desc

• introduction

• longName

• adminData

• annotation

are identical.c()

507 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6.2.5 Compatibility of ApplicationDataType and ImplementationDataType

The usage of ApplicationDataTypes implies that also a corresponding Imple-
mentationDataType exists at a certain point in time. The Implementation-
DataType is required as the basis for configuring and generating the RTE and/or
contract phase header files.

[TPS_SWCT_01461] Existence of ImplementationDataType dThe existence of
ImplementationDataTypes is not required until the methodology step of generat-
ing an RTE or executing the RTE contract phase. Before arriving at this step in the
methodology, it is perfectly feasible to use only ApplicationDataTypes for describ-
ing the semantics of software-components.c()

As a consequence, it is necessary to define compatibility rules that unambiguously
clarify the conformance of an ApplicationDataType with an Implementation-
DataType and vice versa.

Please note that this kind of compatibility also supports situations where e.g.
a dataElement typed by an ApplicationDataType without a corresponding
ImplementationDataType in a PPortPrototype should be connected to a
dataElement typed by an ImplementationDataType in an RPortPrototype.

In general, the compatibility rules for allowing a data type mapping are the same as the
rules for connections. Exceptions are explicitly stated in the rules below.

Several rules depend on the category of the data types:

1. As a general rule, if an ImplementationDataType of category TYPE_REF-
ERENCE is targeted by a type mapping or port connection, all the rules given be-
low apply to the ImplementationDataType which is finally valid after resolving
all such references.

This is not repeated in all rules. As an example, if we say that something can
be mapped/connected to an ImplementationDataType of category VALUE,
then this shall include the possibility of mapping/connecting to an Implementa-
tionDataType of category TYPE_REFERENCE which refers to another Im-
plementationDataType of category VALUE.

2. [constr_1059] Compatibility of data types with category VALUE dAn Appli-
cationDataType of category VALUE shall (after all indirections created by
ImplementationDataTypes of category TYPE_REFERENCE are resolved)
only be mapped/connected to an ImplementationDataType which also has
category VALUE.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

In this case, the ImplementationDataType.baseType shall be able to ex-
press all the numerical values required by the ApplicationDataType, see
Figure 5.6.

508 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This condition is fulfilled if the numerical range which can be expressed by the
SwBaseType at least covers the range defined by the limits in Application-
DataType.swDataDefProps.dataConstr (which are either internal limits or
physical limits to be converted via the CompuMethod which also has to be pro-
vided by the ApplicationDataType).

Note that for sender-receiver communication of a data element via a network
there is the possibility to reduce the numerical range against what has been de-
fined via the corresponding data type. However, this is not achieved via mapping
to another ImplementationDataType at the data element itself but via the
networkRepresentation of the ComSpec (for further explanation of this as-
pect see section 4.5.1).

3. [constr_1060] Compatibility of data types with category ARRAY, VAL_BLK
dAn ApplicationDataType of category ARRAY, VAL_BLK shall (after all in-
directions created by ImplementationDataTypes of category TYPE_REF-
ERENCE are resolved) only be mapped/connected to

• an ImplementationDataType of category ARRAY or

• an ImplementationDataType that represents a Variable-Size Ar-
ray Data Type (see [TPS_SWCT_01610]).

The specific rules are documented in Table 6.1. This constraint shall be im-
posed at the time when the contract phase generation is exe-
cuted.c()

In this case, the array size, the arraySizeSemantics (given that it exists) and
the type of the array elements of the ImplementationDataType shall be such
that they can be mapped/transferred 1:1 by order to the corresponding application
data and vice versa.

Note that in case of mapping between arrays it is not required that a
DataTypeMap exists between the data types of the array elements or that the
respective shortNames are identical.

4. [constr_1061] Compatibility of data types with category STRUCTURE dAn
ApplicationDataType of category STRUCTURE shall (after all indirections
created by ImplementationDataTypes of category TYPE_REFERENCE are
resolved) only be mapped/connected to an ImplementationDataType of
category STRUCTURE.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

This means, that the corresponding pairs of elements shall also have compatible
types. Note that it is not required that the data types of the single elements
have identical shortNames or that a DataTypeMap exists for each pair of single
element.

509 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

5. [constr_1662] Compatibility of ApplicationRecordDataType and Imple-
mentationDataType that both represent an Optional Element Struc-
ture dAn ApplicationRecordDataType that represents an Optional El-
ement Structure shall (after all indirections created by Implementation-
DataTypes of category TYPE_REFERENCE are resolved) only be mapped/-
connected to an ImplementationDataType of category STRUCTURE that
represents an Optional Element Structure if corresponding pairs of ele-
ments have the same value of the attribute isOptional.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

6. [constr_1063] Compatibility of data types with category BOOLEAN dAn Ap-
plicationDataType of category BOOLEAN shall (after all indirections cre-
ated by ImplementationDataTypes of category TYPE_REFERENCE are re-
solved) only be mapped/connected to an ImplementationDataType of cat-
egory VALUE.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

7. [constr_1064] Compatibility of data types with category COM_AXIS, RES_-
AXIS, CURVE, MAP, CUBOID, CUBE_4, or CUBE_5 dAn ApplicationDataType
of category

• COM_AXIS,

• RES_AXIS,

• CURVE,

• MAP,

• CUBOID,

• CUBE_4, or

• CUBE_5

shall (after all indirections created by ImplementationDataTypes of cate-
gory TYPE_REFERENCE are resolved) only be mapped/connected to an Im-
plementationDataType of category

• STRUCTURE or

• ARRAY.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

There are several possibilities how to express these types via plain or nested
arrays and/or structures on implementation level.

510 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Some examples are given in 5.4.4. In any case, the primitive elements of the
implementation type shall fit (by their order in memory) to the corresponding
SwRecordLayout.

It is not required, to define DataTypeMaps for the sub-elements or both repre-
sentations.

8. [constr_1066] Forbidden mappings to ImplementationDataType dAn Ap-
plicationDataType shall never be mapped to

• an ImplementationDataType of category

– UNION,

– DATA_REFERENCE, or

– FUNCTION_REFERENCE,

• or to an ImplementationDataType that contains subElements of cat-
egory

– UNION,

– DATA_REFERENCE, or

– FUNCTION_REFERENCE.

This rule shall be imposed at the time when the contract phase
generation is executed.c()

Array of uint8 Array of other

ApplicationArrayDataType,
arraySizeSemantics =
fixedSize

ImplementationDataType of
category ARRAY, with Implemen-
tationDataTypeElement with
arraySizeSemantics =
fixedSize

ImplementationDataType of
category ARRAY, with Implemen-
tationDataTypeElement with
arraySizeSemantics =
fixedSize

ApplicationArrayDataType,
arraySizeSemantics =
variableSize

ImplementationDataType of
category ARRAY, with Implemen-
tationDataTypeElement with
arraySizeSemantics =
variableSize or Variable-Size
Array Data Type

Variable-Size Array Data
Type

Table 6.1: Rules for compatibility of old and new world variable-size arrays

Concerning the SwDataDefProps of an ApplicationDataType instance or an
ImplementationDataType instance which shall be mapped/connected on M1, we
refer to the table shown in figure 5.43. The following rules apply:

1. The cases where the ImplementationDataType is not allowed to set a prop-
erty but only “inherits” it from the ApplicationDataType are not relevant for
compatibility. These attributes are simply not allowed in the Implementation-
DataType.

511 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2. In case that only the ImplementationDataType may “define” the property this
definition shall fit into the semantical requirements given by the Application-
DataType in order to make the two types compatible.

This is namely important for the attribute baseType and is explained above in
the rule for types of category VALUE.

3. In case the ImplementationDataType may “add” a property it may only add
but not change a property defined by the ApplicationDataType (namely
note, displayFormat, and swImplPolicy) in order to be compatible.

This means that the respective computation methods can be defined in only one
of the types in order to be compatible. In all other cases, only the Applica-
tionDataType may define the computation method.

4. For the compatibility with respect to connectors there are some additional rules
for the values of the attribute swImplPolicy which are considered general rules
on the level of DataPrototypes and PortInterfaces.

Therefore, these additional rules are explained in chapter 6.3 and chapter 6.4.4.

5. The case that an ImplementationDataType may “redefine” a property which
is already set by the ApplicationDataType is not considered as relevant for
the compatibility with respect to mapping of the types in general but of course
there may be project specific rules as to which redefinition is allowed (e.g. for
swAddrMethod or dataConstr). See also 5.5.3 about data constraints.

6. For the compatibility with respect to connectors the attribute dataConstr shall
be treated in the same way as for compatibility of data types in general, for more
details please refer to 6.2.4.

6.3 Compatibility of Variable Data Prototypes and Parameter Data
Prototypes

[constr_1068] Compatibility of VariableDataPrototypes or ParameterDat-
aPrototypes typed by primitive data types dTwo VariableDataPrototypes or
ParameterDataPrototypes of ApplicationPrimitiveDataTypes or Imple-
mentationDataTypes of category VALUE, BOOLEAN, or STRING are compatible
at the time when the RTE is generated if and only if one of the following
conditions applies:

1. All the following subconditions apply:

(a) They are typed by (read “refer to”) compatible AutosarDataTypes

(b) The two VariableDataPrototypes or ParameterDataPrototypes
have identical shortNames. This is required to map VariableDataPro-
totypes in unordered SenderReceiverInterfaces, NvDataInter-
faces and ParameterInterfaces.

512 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

(c) The attribute swImplPolicy is either set to queued for both or none of the
VariableDataPrototypes.

2. In the context of a DataPrototypeMapping, one of the applicable Variable-
DataPrototypes or ParameterDataPrototypes is referenced by the Dat-
aPrototypeMapping in the role firstDataPrototype and the other Vari-
ableDataPrototypes or ParameterDataPrototypes is referenced by the
same DataPrototypeMapping in the role secondDataPrototype.

c()

[constr_1187] Compatibility of VariableDataPrototypes or ParameterDat-
aPrototypes typed by composite data types d

DataPrototypes of ApplicationCompositeDataTypes or Implementation-
DataTypes of category STRUCTURE or ARRAY are compatible at the time when
the RTE is generated if one of the following conditions evaluates to true:

1. The underlying ApplicationCompositeDataTypes or Implementation-
DataTypes of category STRUCTURE or ARRAY are identical

2. The underlying ApplicationCompositeDataTypes or Implementation-
DataTypes of category STRUCTURE or ARRAY fulfill the following condition:

• They consist of the same number of elements and

• They are composed of compatible AutosarDataTypes (either Applica-
tionCompositeDataTypes or ImplementationDataTypes of cate-
gory STRUCTURE or ARRAY OR ApplicationPrimitiveDataTypes or
ImplementationDataTypes of category VALUE, BOOLEAN, or STRING)
in the same order and

• All attributes match exactly, except for the shortName of the M1 Autosar-
DataType.

3. In the context of a DataPrototypeMapping, for each ApplicationCom-
positeElementDataPrototype of the required DataPrototype a SubEle-
mentMapping exists such that a ApplicationCompositeDataType-
SubElementRef in the role firstElement or secondElement exists that ref-
erences the required ApplicationCompositeElementDataPrototype and
a corresponding ApplicationCompositeDataTypeSubElementRef exists
in the other role (i.e. secondElement or firstElement) that in turn refer-
ences an ApplicationCompositeElementDataPrototype of the provided
ApplicationCompositeDataType.

4. If and only if the DataPrototype is not typed by an ApplicationDataType
but by an ImplementationDataType: in the context of a DataProto-
typeMapping, for each ImplementationDataTypeElement of the required
DataPrototype a SubElementMapping exists such that a Implementa-
tionDataTypeSubElementRef in the role firstElement or secondEle-
ment exists that references the required ImplementationDataTypeElement

513 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

and a corresponding ImplementationDataTypeSubElementRef exists in
the other role (i.e. secondElement or firstElement) that in turn references
an ImplementationDataTypeElement of the provided Implementation-
DataType.

c()

6.4 Compatibility of Sender Receiver Interfaces, Parameter Inter-
faces and Non Volatile Data Interfaces

Please note that this compatibility requirement only satisfies static correctness which
means that logical consistency is not assured (e.g. that a receiver shall process a
certain data value to correctly interpret the following values).

6.4.1 Connection of Required and Provided Port via AssemblySwConnector

The compatibility of SenderReceiverInterfaces, NvDataInterfaces and Pa-
rameterInterfaces are considered for connecting of PortPrototypes with an
AssemblySwConnector.

[constr_1069] Compatibility of PortPrototypes of different DataInterfaces in
the context of AssemblySwConnectors dPortPrototypes of different DataIn-
terfaces are compatible at the time when the RTE is generated if and
only if

1. One of the following conditions applies:

(a) For each VariableDataPrototype or ParameterDataPrototype de-
fined in the context of the DataInterface of the required PortProto-
type a compatible (see [constr_1068]) VariableDataPrototype or Pa-
rameterDataPrototype exists in the DataInterface of the provided
PortPrototype.

The shortNames of VariableDataPrototypes and ParameterDat-
aPrototypes are used to identify the pair.

(b) A VariableAndParameterInterfaceMapping.dataMapping exists
for which the following conditions apply:

i. It is referenced by the corresponding SwConnector.

ii. It references one of the two VariableDataPrototypes or Param-
eterDataPrototypes in the role firstDataPrototype and the
other in the role secondDataPrototype.

2. For each such pair, the values of their isService attributes are identical.

c()

514 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The table 6.2 defines which PortInterface elements are compatible depending on
the PortInterface type and the swImplPolicy attributes of the PortInterface
elements.

6.4.2 Connection of Inner and Outer Port via DelegationSwConnector

The compatibility of SenderReceiverInterfaces, NvDataInterfaces and Pa-
rameterInterfaces is considered for connecting of PortPrototypes with a Del-
egationSwConnector.

[constr_1070] Compatibility of PortPrototypes of different DataInterfaces
in the context of DelegationSwConnectors dPortPrototypes of different
DataInterfaces are compatible at the time when the RTE is generated
if and only if

1. One of the following conditions applies:

(a) For each VariableDataPrototype or ParameterDataPrototype de-
fined in the context of the DataInterface of the required inner Port-
Prototype a compatible VariableDataPrototype or ParameterDat-
aPrototype exists in the DataInterface of the required outer Port-
Prototype.

The shortName of VariableDataPrototypes and ParameterDat-
aPrototypes are used to identify the pair.

[constr_1071] defines which PortInterface elements are compatible de-
pending on the PortInterface type and the swImplPolicy attributes of
the PortInterface elements.

(b) A VariableAndParameterInterfaceMapping.dataMapping exists
for which the following conditions apply:

i. It is referenced by the corresponding SwConnector.

ii. It references one of the two VariableDataPrototypes or Param-
eterDataPrototypes in the role firstDataPrototype and the
other in the role secondDataPrototype.

2. One of the following conditions applies:

(a) For at least one VariableDataPrototype or ParameterDataProto-
type defined in the context of the SenderReceiverInterface, Nv-
DataInterface or ParameterInterface of the provided inner Port-
Prototype a compatible VariableDataPrototype or ParameterDat-
aPrototype exists in the SenderReceiverInterface, NvDataInter-
face or ParameterInterface of the provided outer PortPrototype.

The shortNames of VariableDataPrototypes and ParameterDat-
aPrototypes are used to identify the pair.

515 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1071] defines which PortInterface elements are compatible de-
pending on the PortInterface type and the swImplPolicy attributes of
the PortInterface elements.

(b) A VariableAndParameterInterfaceMapping.dataMapping exists
for which the following conditions apply:

i. It is (if a corresponding SwConnector already exists) referenced by the
corresponding SwConnector.

ii. It references one of the two VariableDataPrototypes or Param-
eterDataPrototypes in the role firstDataPrototype and the
other in the role secondDataPrototype.

3. For each such pair, the values of their isService attributes are identical.

c()

6.4.3 Connection of Required and Provided Port via PassThroughSwConnector

[constr_1248] Compatibility of PortPrototypes of different DataInterfaces
in the context of a PassThroughSwConnector dPortPrototypes of different
DataInterfaces are considered compatible at the time when the RTE is
generated if and only if

1. For at least one VariableDataPrototype or ParameterDataPrototype
defined in the context of the DataInterface of the required outer PortPro-
totype a compatible VariableDataPrototype or ParameterDataProto-
type exists in the DataInterface of the provided outer PortPrototype.

Either the shortName of VariableDataPrototypes and ParameterDat-
aPrototypes are used to identify the pair or a PortInterfaceMapping ex-
ists that defines which differently named elements of PortInterfaces correlate
with each other.

2. For each such pair, the values of the PortInterface.isService attributes are
identical.

c()

The table 6.2 defines which elements of PortInterface are considered compatible
depending on the type of PortInterface as well as the attribute swImplPolicy of
the elements of PortInterfaces.

516 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6.4.4 Compatibility of ParameterDataPrototype and VariableDataPrototype de-
pending on PortInterface Type

Table 6.2 contains a comprehensive description of which combinations of Parameter-
DataPrototype and VariableDataPrototype used in PortPrototypes typed
by various kinds of PortInterfaces are considered compatible.

[constr_1071] compatibility of ParameterDataPrototype and VariableDat-
aPrototype dCombinations of ParameterDataPrototype and VariableDat-
aPrototype used in PortPrototypes typed by various kinds of PortInterfaces
shall only be allowed at the time when the RTE is generated where Table
6.2 contains the value “yes”.c()

The following legend applies for the abbreviations used in table 6.2:

Interface Element i.e. elements of PortInterface

PDP ParameterDataPrototype

VDP VariableDataPrototype

Port Interface i.e. kind of PortInterface

Prm ParameterInterface

S/R SenderReceiverInterface

NvD NvDataInterface

Provided Port
Required Outer Port
Provided Inner Port

Required Outer Port

Required Port / Required Inner Port / Provided Outer Port / Provided Outer Port

PortInterface Prm S/R NvD

Interface Element PDP VDP VDP

SwImplPolicyEnum fixed const standard standard queued standard

fixed yes yes yes yes no yes

const no yes yes yes no yesPrm PDP

standard no no yes yes no yes

standard no no no yes no yes
S/R VDP

queued no no no no yes no

NvD VDP standard no no no yes no yes

Table 6.2: Overview of compatibility of ParameterDataPrototype and VariableDat-
aPrototype

[constr_1071] defines which PortInterface elements are compatible depending on
the kind of PortInterface and the swImplPolicy attributes of the PortInter-
face elements.

[constr_1287] Compatibility of SenderReceiverInterfaces with respect to
invalidationPolicy dVariableDataPrototypes defined in the context of the

517 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

SenderReceiverInterface are only compatible if the invalidationPolicys
have the same value.

This rule shall be imposed at the time when the RTE is generated.c()

[TPS_SWCT_01567] Default behavior for invalidationPolicy dFor Variable-
DataPrototypes and ParameterDataPrototypes in the context of NvDataIn-
terface respectively ParameterInterface, the invalidationPolicy is treated
like “Invalidation is switched off” (dontInvalidate).c(RS_SWCT_00200)

6.5 Compatibility of Mode Switch Interfaces

Please note that this compatibility requirement only satisfies static correctness which
means that logical consistency is not assured (e.g. that a receiver shall process a
certain data value to correctly interpret the following values).

Note that concerning the compatibility of ModeSwitchInterfaces it is necessary
to distinguish between the context of an AssemblySwConnector, the context of an
DelegationSwConnector, and the context of a PassThroughSwConnector.

6.5.1 Connection of Required and Provided Port via AssemblySwConnector

Here, the compatibility of ModeSwitchInterfaces is considered for the context of
an AssemblySwConnector.

[constr_1072] Compatibility of ModeSwitchInterfaces in the context of an As-
semblySwConnector dPortPrototypes of different ModeSwitchInterfaces are
compatible at the time when the RTE is generated if and only if

1. One of the following conditions applies:

(a) For the ModeDeclarationGroupPrototype defined in the context of the
ModeSwitchInterface of the required PortPrototype a compatible
ModeDeclarationGroupPrototype exists in the ModeSwitchInter-
face of the provided PortPrototype.

(b) A ModeInterfaceMapping.modeMapping exists for which the following
conditions apply:

i. It is referenced by the corresponding SwConnector.

ii. It references one of the two ModeDeclarationGroupPrototypes
in the role firstModeGroup and the other in the role secondMod-
eGroup.

2. For each such pair, the values of their isService attributes are identical.

c()

518 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6.5.2 Connection of Inner and Outer Port via DelegationSwConnector

Here, the compatibility of ModeSwitchInterfaces is considered for the context of a
DelegationSwConnector.

[constr_1073] Compatibility of ModeSwitchInterfaces in the context of an
DelegationSwConnector dPortPrototypes of different ModeSwitchInter-
faces are compatible at the time when the RTE is generated if and only
if

1. One of the following conditions applies:

(a) For the ModeDeclarationGroupPrototype defined in the context of the
ModeSwitchInterface of the inner PortPrototype a compatible Mod-
eDeclarationGroupPrototype exists in the ModeSwitchInterface
of the outer PortPrototype.

(b) A ModeInterfaceMapping.modeMapping exists for which the following
conditions apply:

i. It is referenced by the corresponding SwConnector.

ii. It references one of the two ModeDeclarationGroupPrototypes
in the role firstModeGroup and the other in the role secondMod-
eGroup.

2. For each such pair, the values of their isService attributes are identical.

c()

6.5.3 Connection of Outer and Outer Port via PassThroughSwConnector

[constr_1249] Compatibility of ModeSwitchInterfaces in the context of a
PassThroughSwConnector dPortPrototypes of different ModeSwitchInter-
faces are considered compatible at the time when the RTE is generated
if and only if

1. For the ModeDeclarationGroupPrototype defined in the context of the Mod-
eSwitchInterface of the required outer PortPrototype a compatible Mod-
eDeclarationGroupPrototype exists in the ModeSwitchInterface of the
provided outer PortPrototype.

Either the shortNames of the ModeDeclarationGroupPrototypes are used
to identify the pair or a ModeInterfaceMapping exists that maps the corre-
sponding ModeDeclarationGroupPrototypes.

2. For each such pair, the values of the PortInterface.isService attributes are
identical.

c()

519 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6.6 Compatibility of Mode Declaration Group Prototypes

[constr_1074] Compatibility of ModeDeclarationGroupPrototypes d

ModeDeclarationGroupPrototypes are compatible at the time when the
RTE is generated if and only if one of the following conditions applies:

1. They are typed by (read “refer to”) compatible ModeDeclarationGroups.

2. A ModeDeclarationGroupPrototypeMapping exists that identifies the dif-
ferently named ModeDeclarationGroupPrototypes that correlate with each
other. [constr_1210] applies.

c()

6.7 Compatibility of Mode Declaration Groups

[constr_1075] Compatibility of ModeDeclarationGroups dModeDeclara-
tionGroups are compatible at the time when the RTE is generated if and
only if one of the following conditions applies:

1. All the following subconditions apply:

(a) They define an identical number of ModeDeclarations.

(b) Each ModeDeclaration on the required side corresponds to a ModeDec-
laration on the provided side with an identical shortName.

(c) The initialModes on both sides refer to ModeDeclarations with iden-
tical shortNames.

(d) The attribute ModeDeclarationGroup.modeUserErrorBehavior.er-
rorReactionPolicy has identical values on both sides.

(e) The attribute ModeDeclarationGroup.modeManagerErrorBehavior.
errorReactionPolicy has identical values on both sides.

(f) The attribute ModeDeclarationGroup.modeUserErrorBehavior.de-
faultMode either does not exist on both sides or refers on both sides to
ModeDeclarations with identical shortNames.

(g) The attribute ModeDeclarationGroup.modeManagerErrorBehavior.
defaultMode either does not exist on both sides or refers on both sides
to ModeDeclarations with identical shortNames.

(h) one of the following subconditions applies:

• the attribute category has the value ALPHABETIC_ORDER on both
sides.

520 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• the attribute category has the value EXPLICIT_ORDER on both sides
and the matching ModeDeclarations according to 1(b) have the iden-
tical values of the attributes ModeDeclaration.value and also the
value of ModeDeclarationGroup.onTransitionValue matches on
both sides.

2. A ModeDeclarationMapping is applied which identifies the corresponding
ModeDeclarations.

In addition, the compatibility of corresponding ModeTransitions shall be checked,
i.e. [constr_1194] and [constr_1245] apply.c()

[constr_1245] Consideration of ModeTransitions for the compatibility of Mod-
eDeclarationGroups dOne of the following conditions for the consideration of
ModeTransitions for the compatibility of ModeDeclarationGroups shall apply
at the time when the RTE is generated:

• Either the mode provider or the mode user define ModeTransitions.

• The ModeTransitions defined in the context of the mode provider are iden-
tical to the ModeTransitions defined in the context of the mode user or a
ModeDeclarationMapping mapping is applied.

c()

[constr_1194] Identical ModeTransitions dTwo ModeDeclarationGroups con-
tain identical modeTransitions at the time when the RTE is generated if
and only if

1. For each ModeTransition defined in the context of the mode provider one
ModeTransition with the same shortName is defined in the context of the
mode user.

2. Each pair of ModeTransitions in both ModeDeclarationGroups identified
by their respective shortName have identical targets (in terms of the shortName
of the referenced ModeDeclaration) of the references enteredMode and
exitedMode.

c()

6.8 Compatibility of Argument Prototypes

[constr_1076] Compatibility of ArgumentDataPrototypes dTwo ArgumentDat-
aPrototypes are compatible at the time when the RTE is generated if
and only if

1. They are typed by compatible AutosarDataTypes or a ClientServerOper-
ationMapping.argumentMapping exists that references one ArgumentDat-
aPrototype in the role firstDataPrototype and the other ArgumentDat-
aPrototype in the role secondDataPrototype.

521 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2. They have the same value of the argument direction (in, out or inout), i.e.
[constr_1268] applies.

c()

6.9 Compatibility of Application Errors

[constr_1077] Compatibility of ApplicationErrors dTwo ApplicationErrors
are compatible at the time when the RTE is generated if and only if one of
the following conditions applies:

1. All the following subconditions apply:

(a) They have the same shortName.

(b) They have the same attributes. Especially the errorCode shall be identical
in both ApplicationErrors.

2. A ClientServerInterfaceMapping.errorMapping exists that references
one of the ApplicationErrors in the role firstApplicationError and
the other ApplicationErrors in the role secondApplicationError.

c()

6.10 Compatibility of Client/Server Operations

[constr_1078] Compatibility of ClientServerOperations dTwo
ClientServerOperations are considered compatible at the time when
the RTE is generated if their signatures match. In particular, they are compatible
if and only if

1. They have the same number of ArgumentDataPrototypes.

2. The n-th arguments of both ClientServerOperations are compatible. This
implies ordering of ArgumentDataPrototypes.

3. They have identical values of attribute diagArgIntegrity or the attribute di-
agArgIntegrity does not exist on both sides.

4. They have the same shortName (again allows for mapping in PortInter-
faces).

5. The required ClientServerOperation specifies a compatible Applica-
tionError for each ApplicationError that is possibly raised by the pro-
vided ClientServerOperation, maybe more. Thereby, ClientServerOp-
erations that refer to a possibleError that represents the value E_OK are
compatible to ClientServerOperations that do refer to possibleErrors
where none of them represents the value E_OK.

522 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c()

6.11 Compatibility of Client Server Interfaces

Please note that this compatibility requirement only satisfies static correctness which
means that logical consistency is not assured (e.g. that a client shall call a certain
operation to allow the server to work correctly).

6.11.1 Connection of Required and Provided Port via AssemblySwConnector

[constr_1079] Compatibility of ClientServerInterfaces in the context of
an AssemblySwConnector dClientServerInterfaces are compatible at the
time when the RTE is generated if and only if

1. One of the following conditions applies:

(a) For each ClientServerOperation defined in the context of the
ClientServerInterface of the required PortPrototype a compati-
ble ClientServerOperation exists in the ClientServerInterface
of the provided PortPrototype. The shortNames of ClientServer-
Operations are used to identify the pair.

(b) A ClientServerInterfaceMapping.operationMapping exists for
which the following conditions apply:

i. It is referenced by the corresponding SwConnector.

ii. It references one of the two ClientServerOperations in the role
firstOperation and the other in the role secondOperation.

2. For each such pair, the values of their isService attributes are identical.

c()

6.11.2 Connection of Inner and Outer Port via DelegationSwConnector

[constr_1080] Compatibility of ClientServerInterfaces in the context of an
DelegationSwConnector dClientServerInterfaces are compatible at the
time when the RTE is generated if and only if

1. One of the following conditions applies:

523 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

(a) For each ClientServerOperation defined in the context of the
ClientServerInterface of the required inner PortPrototype a com-
patible ClientServerOperation exists in the ClientServerInter-
face of the required outer PortPrototype. The shortNames of
ClientServerOperations are used to identify the pair.

(b) A ClientServerInterfaceMapping.operationMapping exists for
which the following conditions apply:

i. It is referenced by the corresponding SwConnector.

ii. It references one of the two ClientServerOperations in the role
firstOperation and the other in the role secondOperation.

2. One of the following conditions applies:

(a) For at least one ClientServerOperation defined in the context of
the ClientServerInterface of the provided inner PortPrototype a
compatible ClientServerOperation exists in the ClientServerIn-
terface of the provided outer PortPrototype. The shortNames of
ClientServerOperations are used to identify the pair.

(b) A ClientServerInterfaceMapping.operationMapping exists for
which the following conditions apply:

i. It is referenced by the corresponding SwConnector.

ii. It references one of the two ClientServerOperations in the role
firstOperation and the other in the role secondOperation.

3. For each such pair, the values of their isService attributes are identical.

c()

6.11.3 Connection of Outer and Outer Port via PassThroughSwConnector

[constr_1250] Compatibility of ClientServerInterfaces in the context of
a PassThroughSwConnector dPortPrototypes of different ClientServerIn-
terfaces are considered compatible at the time when the RTE is gener-
ated if and only if

1. For at least one ClientServerOperation defined in the context of the
ClientServerInterface of the provided outer PortPrototype a compat-
ible ClientServerOperation exists in the ClientServerInterface of the
required outer PortPrototype.

Either the shortNames of the ClientServerOperations are used to identify
the pair or a ClientServerInterfaceMapping exists that maps the corre-
sponding ClientServerOperations.

524 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

2. For each such pair, the values of the PortInterface.isService attributes are
identical.

c()

6.12 Compatibility of Trigger Interfaces

Please note that this compatibility requirement only satisfies static correctness which
means that logical consistency is not assured (e.g. that a client shall call a certain
operation to allow the server to work correctly).

6.12.1 Connection of Required and Provided Port via AssemblySwConnector

[constr_1081] Compatibility of TriggerInterfaces in the context of an As-
semblySwConnector dTriggerInterfaces are compatible at the time when
the RTE is generated if and only if

1. One of the following conditions applies:

(a) For each Trigger defined in the context of the TriggerInterface of
the required PortPrototype a compatible Trigger exists in the Trig-
gerInterface of the provided PortPrototype. The shortNames of
Trigger are used to identify the pair.

(b) A TriggerInterfaceMapping.triggerMapping exists for which the
following conditions apply:

i. It is referenced by the corresponding SwConnector.

ii. It references one of the two Triggers in the role firstTrigger and
the other in the role secondTrigger.

2. For each such pair, the values of their isService attributes are identical.

c()

6.12.2 Connection of Inner and Outer Port via DelegationSwConnector

[constr_1082] Compatibility of TriggerInterfaces in the context of an Dele-
gationSwConnector dTriggerInterfaces are compatible at the time when
the RTE is generated if and only if all the following conditions apply:

1. One of the following subconditions applies:

525 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

(a) For each Trigger defined in the context of the TriggerInterface of the
required inner PortPrototype a compatible Trigger exists in the Trig-
gerInterface of the required outer PortPrototype. The shortNames
of Trigger are used to identify the pair.

(b) For at least one Trigger defined in the context of the TriggerInterface
of the provided outer PortPrototype a compatible Trigger exists in
the TriggerInterface of the provided inner PortPrototype. The
shortNames of Trigger are used to identify the pair.

(c) A TriggerInterfaceMapping.triggerMapping exists for which all the
following conditions apply:

i. It is referenced by the corresponding SwConnector.

ii. It references one of the two Triggers in the role firstTrigger and
the other in the role secondTrigger.

2. For each such pair, the values of their isService attributes are identical.

c()

6.12.3 Connection of Outer and Outer Port via PassThroughSwConnector

[constr_1251] Compatibility of PortPrototypes of TriggerInterfaces in the
context of a PassThroughSwConnector dPortPrototypes of different Trigger-
Interfaces are considered compatible at the time when the RTE is gen-
erated if and only if

1. For at least one Trigger defined in the context of the TriggerInterface of
the required outer PortPrototype a compatible Trigger exists in the Trig-
gerInterface of the provided outer PortPrototype.

Either the shortName of Triggers are used to identify the pair or a Trig-
gerInterfaceMapping exists that refers to one of the Triggers in the role
firstTrigger and to the other in the role secondTrigger.

2. For each such pair, the values of the PortInterface.isService attributes are
identical.

c()

6.13 Compatibility of Trigger

[constr_1083] Compatibility of Triggers dTriggers are compatible at the
time when the RTE is generated if they have an identical shortName.c()

526 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6.14 Entire Delegation of a Provided Port Prototype

[constr_1084] delegation of a provided outer PortPrototype dThe delegation of a
provided outer PortPrototype is properly defined if the following criteria are fulfilled:

1. For each VariableDataPrototype or ParameterDataPrototype present
in the SenderReceiverInterface, NvDataInterface, or Parameter-
Interface of the provided outer PortPrototype at least one connec-
tion via DelegationSwConnector to a provided inner PortPrototype or
PassThroughSwConnector to a required outer PortPrototype with a com-
patible VariableDataPrototype or ParameterDataPrototype in the
SenderReceiverInterface NvDataInterface or ParameterInterface
of the provided inner PortPrototype or required outer PortPrototype ex-
ists.

Either the shortNames of VariableDataPrototypes or ParameterDat-
aPrototypes are used to identify the pair or a PortInterfaceMapping de-
fines which differently named PortInterface elements correlate with each
other.

2. For each VariableDataPrototype provided by a PRPortPrototype that is
typed by a SenderReceiverInterface or NvDataInterface and that is ref-
erenced in the role outerPort by a DelegationSwConnector a correspond-
ing VariableDataPrototype owned by an innerPort shall be provided by
either a PPortPrototype or a PRPortPrototype.

Either the shortNames of VariableDataPrototypes are used to identify the
pair or a PortInterfaceMapping defines which differently named PortIn-
terface elements correlate with each other.

3. For the ModeDeclarationGroupPrototype present in the ModeSwitch-
Interface of the provided outer PortPrototype exactly one connection
via DelegationSwConnector to a provided inner PortPrototype or
PassThroughSwConnector to a required outer PortPrototype with a com-
patible ModeDeclarationGroupPrototype in the ModeSwitchInterface
of the provided inner PortPrototype or required outer PortPrototype ex-
ists.

Either the shortNames of ModeDeclarationGroupPrototypes are used to
identify the pair or a PortInterfaceMapping defines which differently named
PortInterface elements correlate with each other.

4. For each ClientServerOperation present in the ClientServerInter-
face of the provided outer PortPrototype exactly one connection via Dele-
gationSwConnector to a provided inner PortPrototype or PassThrough-
SwConnector to a required outer PortPrototype with a compatible
ClientServerOperation in the ClientServerInterface of the provided
inner PortPrototype or required outer PortPrototype exists.

527 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Either the shortNames of ClientServerOperations are used to identify the
pair or a PortInterfaceMapping defines which differently named PortIn-
terface elements correlate with each other.

5. For each Trigger present in the TriggerInterface of the provided outer
PortPrototype exactly one connection via DelegationSwConnector to a
provided inner PortPrototype or PassThroughSwConnector to a required
outer PortPrototype with a compatible Trigger in the TriggerInterface
of the provided inner PortPrototype or required outer PortPrototype ex-
ists.

Either the shortNames of Triggers are used to identify the pair or a PortIn-
terfaceMapping defines which differently named PortInterface elements
correlate with each other.

This constraint is associated with two possible imposition times:

• at the time when the RTE is generated

• at the time when the creation of the CompositionSwCompo-
nentType is finished

c()

Table 6.2 defines which PortInterface elements are compatible depending on the
kind of PortInterface and the swImplPolicy attributes of the PortInterface
elements.

6.14.1 Split and Merge of PortInterface Elements

With the definition of compatibility rules in chapter 6.4, 6.11, and 6.12, it is possible
to split and distribute elements of a PortPrototype typed by a PortInterface
containing a superset of PortInterface elements to PortPrototypes of type of
PortInterfaces containing subsets of PortInterface elements.

Please find examples that explain the usage of splitting and merging in section 6.16.2.

6.15 Compatibility in Case of a Flat ECU Extract

Please note that in the case of a flat ECU extract of software-components specific com-
patibility rules apply. To some extent, these rules contradict the rules existing for the
pure VFB approach (see chapter 6). That is, if the split-and-merge pattern has been
applied on the creation of DelegationSwConnectors it might happen that compati-
bility rules defined in chapter 6 are violated.

However, given that the flattened ECU extract has been created out of a valid Compo-
sitionSwComponentType the flattened ECU extract does not become invalid in this

528 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

case. In other words, the transformation does not create an invalid model out of a valid
model.

However, to support this statement it is necessary to define additional compatibility
rules that properly cover this case and allow for a successful validation of the flattened
ECU extract.

For the flat ECU extract the compatibility of SenderReceiverInterfaces, Nv-
DataInterfaces, and ParameterInterfaces is considered for connecting of
PortPrototypes with a DelegationSwConnector.

[constr_1085] Compatibility in the case of a flat ECU extract dPortPrototypes
of different SenderReceiverInterfaces, NvDataInterfaces, and Parameter-
Interfaces are compatible if and only if for at least one VariableDataPrototype
or ParameterDataPrototype defined in the context of the SenderReceiverIn-
terface, NvDataInterface, or ParameterInterface of the RPortPrototype
a compatible VariableDataPrototype or ParameterDataPrototype exists in
the SenderReceiverInterface, NvDataInterface, or ParameterInterface
of the provided PortPrototype.

The compatibility of PortInterface elements depends on the kind of PortInter-
face and the swImplPolicy attributes of the PortInterface elements.

Either the shortNames of VariableDataPrototypes and ParameterDataPro-
totypes are used to identify the pair or a PortInterfaceMapping defines which
differently named PortInterface elements correlate with each other.c()

For clarification, table 6.2 defines which PortInterface elements are compatible
depending on the kind of PortInterface and the swImplPolicy attributes of the
PortInterface elements.

Please note that in case of the flat ECU extract it might happen that AssemblySwCon-
nectors that connect to a specific RPortPrototype also connect to PPortProto-
types that do not fulfill the compatibility rule specified in 6.4.1.

In particular, the dataElements might correspond to dataElements defined in the
scope of different PPortPrototypes. In other words, in the flat ECU extract it is
possible to merge dataElements from different providers.

6.16 Compatibility Examples

This section provides some examples that may explain the compatibility of PortPro-
totypes.

529 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6.16.1 Compatibility on Assembly Level

The rules for compatibility with respect to the connection of dataElements by means
of AssemblySwConnectors are perhaps easier to digest than the delegation case
but nonetheless it seems appropriate to provide a set of examples that illustrate the
compatibility issue.

6.16.1.1 Legal Use

One of the less trivial examples of this kind is the case of sender/receiver n:1 commu-
nication. Figure 6.1 sketches a case where both sender software-components provide
the full set of dataElements that are required by the RPortPrototype of the receiv-
ing software-component.

{A,B}

{A,B}

{A,B}

Figure 6.1: legal n:1 communication

The next case (exemplified by Figure 6.2) implements a situation where one sender
provides two dataElements {A, B} while the other sender provides only as subset of
these, i.e. {B}.

As the RPortPrototype of the receiving software-component requires only the
dataElement {B} compatibility issues will not occur because for every required
dataElement a compatible dataElement is provided.

{A,B}

{B}

{B}

Figure 6.2: legal n:1 communication

530 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

6.16.1.2 Illegal Use

On possible example for an illegal configuration of a sender/receiver communication is
the scenario sketched in Figure 6.3. Although the sender software-components in total
provide the set of required dataElements the individual AssemblySwConnectors
create incompatible connections between sender and receiver.

{B}
{A,B}

{A}

Figure 6.3: illegal n:1 communication

6.16.2 Compatibility on Delegation Level

The rules for compatibility with respect to the delegation of dataElements perhaps
require some explanation in terms of examples. The first example 6.4 describes a legal
situation where two DelegationSwConnectors split the dataElements contained
in the RPortPrototype owned by a CompositionSwComponentType.

6.16.2.1 Legal Use

The examples explain the usage of DelegationSwConnectors in different configu-
rations and different values of DelegatedPortAnnotation. Please note that the
DelegatedPortAnnotation is usually defined before the internal structure of a
CompositionSwComponentType is fully clarified.

At a later point in time it has to be consistent or can be removed. Decorating the
example with applicable values of DelegatedPortAnnotation should facilitate the
understanding of the meaning of the DelegatedPortAnnotation.

{A,B}

{B,C}

{A,B,C,D}

[nfold]

Figure 6.4: Legal split of delegation connector

531 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

All required dataElements are provided by the DelegationSwConnectors at-
tached to the delegation RPortPrototype. The fact that dataElement D is not
conveyed to any of the RPortPrototypes owned by the SwComponentPrototypes
does not have any impact on the compatibility.

In other words: the RPortPrototype at the CompositionSwComponentType ac-
tually contains the superset of dataElements {A, B, C, D}. The two required inner
PortPrototypes of the SwComponentPrototypes contain the subsets of Vari-
ableDataPrototypes {A, B} and {B, C}. In this case the resulting communication
pattern on the VFB for B would be 1:n.

This requires the value of the attribute signalFan of DelegatedPortAnnotation
to be set to the value nfold.

In the next example, the RPortPrototype of the CompositionSwComponentType
contains the superset of dataElements {A, B}. The two RPortPrototypes of the
SwComponentPrototypes contain different subsets, i.e. {A} and {B}.

{A}

{B}

{A,B}

[single]

Figure 6.5: Legal split of delegation connector

In this case, the resulting communication pattern on the VFB would be n:1. In this case
the value of the attribute signalFan of DelegatedPortAnnotation should be set
to single.

The next example is about the merge of DelegationSwConnectors. The PPort-
Prototype owned by the CompositionSwComponentType contains a superset of
dataElements {A, B}. The two PPortPrototypes of the SwComponentProto-
types contain a disjoint subset each, i.e. {A} and {B}.

{A}
{A,B}

[single]

{B}

{A,B}

Figure 6.6: Legal merge of delegation connector

In this case, the resulting communication pattern on the VFB would be 1:x, with x taking
values between 0 and n. In this case the value of the attribute signalFan of Dele-
gatedPortAnnotation should be set to single. All VariableDataPrototypes

532 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

of the provided outer PortPrototypes are provided by exactly one provided inner
PortPrototype.

As a variation of this theme, the next example features a PPortPrototype owned by
a CompositionSwComponentType that contains the superset of dataElements {A,
B, C}.

The PPortPrototypes of the SwComponentPrototypes in turn contain subsets of
dataElements, i.e. {A, B} and {B, C}. In this case the resulting communication pattern
on the VFB for {B} would be n:1.

{A,B} {A,B,C}

[nfold]

{B,C}

{A,B,C}

Figure 6.7: Legal merge of delegation connector

This would require the value of the attribute signalFan of DelegatedPortAnno-
tation to be set to nfold. All dataElements of the delegation PPortPrototype
are provided by at least one PPortPrototype of the SwComponentPrototypes.
Therefore, the criteria of entire delegation defined in chapter 6.14 are fulfilled.

The next example looks very similar. However, the subtle difference is that the second
SwComponentPrototype provides dataElements {C, D} rather than {B, C}.

{A,B} {A,B,C}

[single]

{C,D}

{A,B,C}

Figure 6.8: Legal merge of delegation connector

Although dataElement {D} does not appear in the delegation PPortPrototype, the
compatibility rules are fully satisfied with this scenario.

The next example shows a valid delegation of SwConnectors that goes end-to-end
via CompositionSwComponentTypes to included SwComponentPrototypes.

533 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

{A,B}

{A,B}

{B,C}

{A,B}

{A}

{B}

Figure 6.9: Valid delegation of SwConnectors that goes end-to-end

6.16.2.2 Illegal Use

The first example for an illegal use of splitting of dataElements suffers from the fact
that not all dataElements owned by the RPortPrototypes of the SwComponent-
Prototypes are available from the connected RPortPrototypes owned by the
CompositionSwComponentType.

Although dataElements the connections in total match ({A} and {B} are connected
to a PortPrototype requiring {A, B}) the compatibility rules are not fulfilled because
they apply separately for each SwConnector

{A,B}

{B,C}

{A}

{B}

{C}

Figure 6.10: Illegal split of delegation connector

In the next example compatibility is also not fulfilled because the required dataEle-
ment {E} is not provided by the delegation RPortPrototype.

{A,B}

{B,C,E}

{A,B,C,D}

Figure 6.11: Illegal split of delegation connector

534 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

An incompatible merge of DelegationSwConnectors is sketched in Figure 6.12.
In this case the dataElement {E} is not provided by one of the PPortPrototypes
owned by the SwComponentPrototypes inside the CompositionSwComponent-
Type.

{A,B} {A,C,E}

{B,C}

{A,C,E}

Figure 6.12: Illegal merge of delegation connector

The next example shows an invalid delegation of SwConnectors that goes end-to-end
via CompositionSwComponentTypes to included SwComponentPrototypes.

Similar to the example sketched in Figure 6.12, the dataElement {E} is not provided
by one of the PPortPrototypes owned by the SwComponentPrototypes inside
the CompositionSwComponentType.

{A,B}

{A,C,E}

{B,C}
{A,C,E}

{A}

{C,E}

Figure 6.13: Invalid delegation of SwConnectors that goes end-to-end

535 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

7 Internal Behavior

7.1 Introduction

[TPS_SWCT_01075] SwcInternalBehavior dSwcInternalBehavior provides
means for formally defining the behavior of an AtomicSwComponentType.c(RS_-
SWCT_03040)

This chapter focuses on the description of the SwcInternalBehavior meta-class
and the various meta-classes it aggregates. An overview of the meta-class is sketched
in Figure 7.2. Please note that SwcInternalBehavior inherits from InternalBe-
havior.

The role of SwcInternalBehavior in the context of an AUTOSAR software-
component is depicted in Figure 7.1. As mentioned in section 3.2, the reason to
make the aggregation of SwcInternalBehavior to AtomicSwComponentType
�atpSplitable� is to allow for the development of SwcInternalBehavior in
a later process step (e.g. after the VFB view has been completed).

InternalBehavior

SwcInternalBehavior

SwComponentType

AtomicSwComponentType

Implementation

SwcImplementation

������������	
 ����

�����������	��	���� �

��������������

+behavior

0..1«atpVariation,atpSplitable»

+internalBehavior

0..1

Figure 7.1: The “big picture” of SwcInternalBehavior

Class InternalBehavior (abstract)

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note Common base class (abstract) for the internal behavior of both software components and basic software
modules/clusters.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Subclasses BswInternalBehavior, SwcInternalBehavior

Attribute Type Mult. Kind Note

constant
Memory

ParameterData
Prototype

* aggr Describes a read only memory object containing
characteristic value(s) implemented by this Internal
Behavior.

The shortName of ParameterDataPrototype has to be
equal to the ”C’ identifier of the described constant.

The characteristic value(s) might be shared between Sw
ComponentPrototypes of the same SwComponentType.

The aggregation of constantMemory is subject to
variability with the purpose to support variability in the
software component or module implementations.
Typically different algorithms in the implementation are
requiring different number of memory objects.

5

5

536 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class InternalBehavior (abstract)

4
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=constantMemory.shortName, constant
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstantSpecificationMapping to be
applied for the particular InternalBehavior

Stereotypes: atpSplitable
Tags:atp.Splitkey=constantValueMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
particular InternalBehavior

Stereotypes: atpSplitable
Tags:atp.Splitkey=dataTypeMapping

exclusiveArea ExclusiveArea * aggr This specifies an ExclusiveArea for this InternalBehavior.
The exclusiveArea is local to the component resp.
module. The aggregation of ExclusiveAreas is subject to
variability. Note: the number of ExclusiveAreas might vary
due to the conditional existence of RunnableEntities or
BswModuleEntities.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveArea.shortName, exclusive
Area.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

exclusiveArea
NestingOrder

ExclusiveAreaNesting
Order

* aggr This represents the set of ExclusiveAreaNestingOrder
owned by the InternalBehavior.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveAreaNestingOrder.shortName,
exclusiveAreaNestingOrder.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

staticMemory VariableDataPrototype * aggr Describes a read and writeable static memory object
representing measurerment variables implemented by
this software component. The term "static" is used in the
meaning of "non-temporary" and does not necessarily
specify a linker encapsulation. This kind of memory is
only supported if supportsMultipleInstantiation is FALSE.

The shortName of the VariableDataPrototype has to be
equal with the ”C’ identifier of the described variable.

The aggregation of staticMemory is subject to variability
with the purpose to support variability in the software
component’s implementations.

Typically different algorithms in the implementation are
requiring different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=staticMemory.shortName, static
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table 7.1: InternalBehavior

537 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SwcInternalBehavior
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior

Note The SwcInternalBehavior of an AtomicSwComponentType describes the relevant aspects of the
software-component with respect to the RTE, i.e. the RunnableEntities and the RTEEvents they respond
to.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, InternalBehavior , Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

arTypedPer
Instance
Memory

VariableDataPrototype * aggr Defines an AUTOSAR typed memory-block that needs to
be available for each instance of the SW-component.

This is typically only useful if supportsMultipleInstantiation
is set to "true" or if the component defines NVRAM
access via permanent blocks.

The aggregation of arTypedPerInstanceMemory is subject
to variability with the purpose to support variability in the
software component’s implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arTypedPerInstanceMemory.shortName, ar
TypedPerInstanceMemory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

event RTEEvent * aggr This is a RTEEvent specified for the particular Swc
InternalBehavior.

The aggregation of RTEEvent is subject to variability with
the purpose to support the conditional existence of RTE
events. Note: the number of RTE events might vary due
to the conditional existence of PortPrototypes using Data
ReceivedEvents or due to different scheduling needs of
algorithms.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=event.shortName, event.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

exclusiveArea
Policy

SwcExclusiveArea
Policy

* aggr Options how to generate the ExclusiveArea related APIs.
When no SwcExclusiveAreaPolicy is specified for an
ExclusiveArea the default values apply.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveAreaPolicy, exclusiveArea
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

explicitInter
Runnable
Variable

VariableDataPrototype * aggr Implement state message semantics for establishing
communication among runnables of the same
component. The aggregation of explicitInterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=explicitInterRunnableVariable.shortName,
explicitInterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

538 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwcInternalBehavior
handle
TerminationAnd
Restart

HandleTerminationAnd
RestartEnum

0..1 attr This attribute controls the behavior with respect to
stopping and restarting. The corresponding AtomicSw
ComponentType may either not support stop and restart,
or support only stop, or support both stop and restart.

implicitInter
Runnable
Variable

VariableDataPrototype * aggr Implement state message semantics for establishing
communication among runnables of the same
component. The aggregation of implicitInterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=implicitInterRunnableVariable.shortName,
implicitInterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

includedData
TypeSet

IncludedDataTypeSet * aggr The includedDataTypeSet is used by a software
component for its implementation.

Stereotypes: atpSplitable
Tags:atp.Splitkey=includedDataTypeSet

includedMode
Declaration
GroupSet

IncludedMode
DeclarationGroupSet

* aggr This aggregation represents the included Mode
DeclarationGroups

Stereotypes: atpSplitable
Tags:atp.Splitkey=includedModeDeclarationGroupSet

instantiation
DataDefProps

InstantiationDataDef
Props

* aggr The purpose of this is that within the context of a given
SwComponentType some data def properties of individual
instantiations can be modified. The aggregation of
InstantiationDataDefProps is subject to variability with the
purpose to support the conditional existence of Port
Prototypes and component local memories like "per
InstanceParameter" or "arTypedPerInstanceMemory".

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instantiationDataDefProps, instantiationData
DefProps.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perInstance
Memory

PerInstanceMemory * aggr Defines a per-instance memory object needed by this
software component. The aggregation of PerInstance
Memory is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perInstanceMemory.shortName, perInstance
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

539 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwcInternalBehavior
perInstance
Parameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s) that needs
to be available for each instance of the
software-component. This is typically only useful if
supportsMultipleInstantiation is set to "true". The
aggregation of perInstanceParameter is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perInstanceParameter.shortName, per
InstanceParameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

portAPIOption PortAPIOption * aggr Options for generating the signature of port-related calls
from a runnable to the RTE and vice versa. The
aggregation of PortPrototypes is subject to variability with
the purpose to support the conditional existence of ports.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portAPIOption, portAPIOption.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

runnable RunnableEntity * aggr This is a RunnableEntity specified for the particular Swc
InternalBehavior.

The aggregation of RunnableEntity is subject to variability
with the purpose to support the conditional existence of
RunnableEntities. Note: the number of RunnableEntities
might vary due to the conditional existence of Port
Prototypes using DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=runnable.shortName, runnable.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

service
Dependency

SwcService
Dependency

* aggr Defines the requirements on AUTOSAR Services for a
particular item.

The aggregation of SwcServiceDependency is subject to
variability with the purpose to support the conditional
existence of ports as well as the conditional existence of
ServiceNeeds.

The SwcServiceDependency owned by an SwcInternal
Behavior can be located in a different physical file in order
to support that SwcServiceDependency might be
provided in later development steps or even by different
expert domain (e.g OBD expert for Obd related Service
Needs) tools. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=serviceDependency.shortName, service
Dependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

540 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwcInternalBehavior
shared
Parameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s) shared
between SwComponentPrototypes of the same Sw
ComponentType The aggregation of sharedParameter is
subject to variability with the purpose to support variability
in the software components implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=sharedParameter.shortName, shared
Parameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

supports
Multiple
Instantiation

Boolean 0..1 attr Indicate whether the corresponding software-component
can be multiply instantiated on one ECU. In this case the
attribute will result in an appropriate component API on
programming language level (with or without instance
handle).

variationPoint
Proxy

VariationPointProxy * aggr Proxy of a variation points in the C/C++ implementation.

Stereotypes: atpSplitable
Tags:atp.Splitkey=variationPointProxy.shortName

Table 7.2: SwcInternalBehavior

[constr_1934] Existence of attribute SwcInternalBehavior.handleTermina-
tionAndRestart dFor each SwcInternalBehavior, attribute handleTermina-
tionAndRestart shall exist at the time when the RTE is generated.c()

[constr_1935] Existence of attribute SwcInternalBehavior.supportsMulti-
pleInstantiation dFor each SwcInternalBehavior, attribute supportsMul-
tipleInstantiation shall exist at the time when the contract phase
generation is executed.c()

Enumeration HandleTerminationAndRestartEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior

Note Controls the behavior of an AtomicSwComponentType with respect to stop and restart.

Literal Description

canBeTerminated Supports termination.

Tags:atp.EnumerationLiteralIndex=0

canBeTerminated
AndRestarted

Supports termination and restarting.

Tags:atp.EnumerationLiteralIndex=1

noSupport Stop and restart is not supported at all.

Tags:atp.EnumerationLiteralIndex=2

Table 7.3: HandleTerminationAndRestartEnum

541 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

AbstractEvent
AtpStructureElement

RTEEvent

Identifiable

ExclusiveArea

AtpStructureElement
Identifiable

PerInstanceMemory

PortAPIOption

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

AtpStructureElement

InternalBehavior

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������������	����

� � �����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+arTypedPerInstanceMemory

0..*

«atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»

+staticMemory

0..*

«atpVariation,atpSplitable»

+constantMemory

0..*

«atpVariation,atpSplitable»
+event 0..*

«atpVariation,atpSplitable»

+exclusiveArea

0..*

«atpVariation,atpSplitable»

+explicitInterRunnableVariable

0..*

«atpVariation,atpSplitable»

+perInstanceParameter 0..*

«atpVariation,atpSplitable»

+implicitInterRunnableVariable

0..*

«atpVariation,atpSplitable»
+portAPIOption 0..*

«atpVariation,atpSplitable»

+sharedParameter 0..*

«atpVariation,atpSplitable»

+perInstanceMemory 0..*

Figure 7.2: SwcInternalBehavior

7.2 Runnable Entity

The concept of RunnableEntity (more details can be found in Figure 7.3) is defined
in the specification of the Virtual Function Bus [3].

[TPS_SWCT_01030] RunnableEntity dRunnableEntitys are the smallest code-
fragments that are provided by a software-component and are (at least indirectly) a
subject for scheduling by the underlying operating system or else (in rare cases) for
execution in ISR context.c(RS_SWCT_03040, RS_SWCT_00070, RS_SWCT_00090,
RS_SWCT_03050)

[TPS_SWCT_01097] CompositionSwComponentType cannot have
RunnableEntitys dIt is intentionally not possible for CompositionSwComponent-
Type to define a SwcInternalBehavior. Consequently, CompositionSwCom-
ponentTypes don’t have RunnableEntitys by themselves.c(RS_SWCT_00070,
RS_SWCT_00090, RS_SWCT_03050)

[TPS_SWCT_01098] Only AtomicSwComponentType can have RunnableEn-
titys dOnly the AtomicSwComponentType that are populating a Composition-
SwComponentType as SwComponentPrototypes may have RunnableEntitys.c
(RS_SWCT_03040, RS_SWCT_00070, RS_SWCT_00090, RS_SWCT_03050)

This correlation is depicted in Figure 7.4.

542 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

AbstractAccessPoint
AtpStructureElement

Identifiable

ServerCallPoint

+ timeout: TimeValue [0..1]

Identifiable

WaitPoint

+ timeout: TimeValue [0..1]

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

AbstractAccessPoint
AtpStructureElement

Identifiable

VariableAccess

+ scope: VariableAccessScopeEnum [0..1]

AbstractAccessPoint
AtpStructureElement

Identifiable

ParameterAccess

AbstractAccessPoint
AtpStructureElement

Identifiable

AsynchronousServerCallResultPoint

AutosarParameterRef

������������	
 ����

�����������	��	���� � ��������������

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������������	����� �

��

�����������	��	���� �

��������������

«enumeration»
VariableAccessScopeEnum

 communicationInterEcu
 communicationIntraPartition
 interPartitionIntraEcu

ExternalTriggeringPoint

AbstractAccessPoint
AtpStructureElement

Identifiable

InternalTriggeringPoint

+ swImplPolicy: SwImplPolicyEnum [0..1]

«atpVariation,atpSplitable»

+serverCallPoint

0..*

«atpVariation,atpSplitable»

+dataReceivePointByValue

0..*

«atpVariation,atpSplitable»

+internalTriggeringPoint

0..*

«atpVariation,atpSplitable»

+dataSendPoint

0..*

«atpVariation,atpSplitable»

+writtenLocalVariable

0..*

+accessedParameter 0..1

«atpVariation,atpSplitable»

+readLocalVariable

0..*

«atpVariation,atpSplitable»

+externalTriggeringPoint

0..*

«atpVariation,atpSplitable»

+dataWriteAccess

0..*

«atpVariation,atpSplitable»

+dataReceivePointByArgument

0..*

«atpVariation,atpSplitable»

+asynchronousServerCallResultPoint

0..*

«atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»

+parameterAccess

0..*

«atpVariation,atpSplitable»

+dataReadAccess

0..*

+waitPoint

0..*

Figure 7.3: Details of RunnableEntity

Please note that RunnableEntitys exist in several categories that have different
properties. Please find more explanation about categories of RunnableEntitys in
section 7.2.4.4.

543 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

CompositionSwComponentType AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

������������	
 ����

�����������	��	���� � ��������������

AtpPrototype

SwComponentPrototype

������������	
 ����

�����������	��	���� �

���������

«atpVariation,atpSplitable»

+runnable

0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

«isOfType» +type

0..1
{redefines atpType}

«atpVariation,atpSplitable»

+component 0..*

Figure 7.4: Only AtomicSwComponentTypes may have RunnableEntitys

Class RunnableEntity

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior

Note A RunnableEntity represents the smallest code-fragment that is provided by an AtomicSwComponent
Type and are executed under control of the RTE. RunnableEntities are for instance set up to respond to
data reception or operation invocation on a server.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , ExecutableEntity , Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

argument
(ordered)

RunnableEntity
Argument

* aggr This represents the formal definition of a an argument to
a RunnableEntity.

asynchronous
ServerCall
ResultPoint

AsynchronousServer
CallResultPoint

* aggr The server call result point admits a runnable to fetch the
result of an asynchronous server call.

The aggregation of AsynchronousServerCallResultPoint
is subject to variability with the purpose to support the
conditional existence of client server PortPrototypes and
the variant existence of server call result points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=asynchronousServerCallResultPoint.short
Name, asynchronousServerCallResultPoint.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

canBeInvoked
Concurrently

Boolean 0..1 attr If the value of this attribute is set to "true" the enclosing
RunnableEntity can be invoked concurrently (even for one
instance of the corresponding AtomicSwComponent
Type). This implies that it is the responsibility of the
implementation of the RunnableEntity to take care of this
form of concurrency.

5

544 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RunnableEntity

dataRead
Access

VariableAccess * aggr RunnableEntity has implicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataReadAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataReadAccess in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReadAccess.shortName, dataRead
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointBy
Argument

VariableAccess * aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype. The result is passed back to the
application by means of an argument in the function
signature.

The aggregation of dataReceivePointByArgument is
subject to variability with the purpose to support the
conditional existence of sender receiver PortPrototype or
the variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReceivePointByArgument.shortName,
dataReceivePointByArgument.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointByValue

VariableAccess * aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The result is passed back to the application by means of
the return value. The aggregation of dataReceivePointBy
Value is subject to variability with the purpose to support
the conditional existence of sender receiver ports or the
variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReceivePointByValue.shortName, data
ReceivePointByValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataSendPoint VariableAccess * aggr RunnableEntity has explicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataSendPoint is subject to variability
with the purpose to support the conditional existence of
sender receiver PortPrototype or the variant existence of
data send points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataSendPoint.shortName, dataSend
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

545 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RunnableEntity

dataWrite
Access

VariableAccess * aggr RunnableEntity has implicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataWriteAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataWriteAccess in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataWriteAccess.shortName, dataWrite
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

external
TriggeringPoint

ExternalTriggeringPoint * aggr The aggregation of ExternalTriggeringPoint is subject to
variability with the purpose to support the conditional
existence of trigger ports or the variant existence of
external triggering points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=externalTriggeringPoint.ident.shortName,
externalTriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

internal
TriggeringPoint

InternalTriggeringPoint * aggr The aggregation of InternalTriggeringPoint is subject to
variability with the purpose to support the variant
existence of internal triggering points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeAccess
Point

ModeAccessPoint * aggr The runnable has a mode access point. The aggregation
of ModeAccessPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode access points in
the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeAccessPoint.ident.shortName, mode
AccessPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeSwitch
Point

ModeSwitchPoint * aggr The runnable has a mode switch point. The aggregation
of ModeSwitchPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode switch points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeSwitchPoint.shortName, modeSwitch
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

546 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RunnableEntity

parameter
Access

ParameterAccess * aggr The presence of a ParameterAccess implies that a
RunnableEntity needs read only access to a Parameter
DataPrototype which may either be local or within a Port
Prototype.

The aggregation of ParameterAccess is subject to
variability with the purpose to support the conditional
existence of parameter ports and component local
parameters as well as the variant existence of Parameter
Access (points) in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=parameterAccess.shortName, parameter
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

readLocal
Variable

VariableAccess * aggr The presence of a readLocalVariable implies that a
RunnableEntity needs read access to a VariableData
Prototype in the role of implicitInterRunnableVariable or
explicitInterRunnableVariable.

The aggregation of readLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitInterRunnableVariable and explicit
InterRunnableVariable or the variant existence of read
LocalVariable (points) in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=readLocalVariable.shortName, readLocal
Variable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

serverCallPoint ServerCallPoint * aggr The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to variability with
the purpose to support the conditional existence of client
server PortPrototypes or the variant existence of server
call points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=serverCallPoint.shortName, serverCall
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbol CIdentifier 0..1 attr The symbol describing this RunnableEntity’s entry point.
This is considered the API of the RunnableEntity and is
required during the RTE contract phase.

waitPoint WaitPoint * aggr The WaitPoint associated with the RunnableEntity.

writtenLocal
Variable

VariableAccess * aggr The presence of a writtenLocalVariable implies that a
RunnableEntity needs write access to a VariableData
Prototype in the role of implicitInterRunnableVariable or
explicitInterRunnableVariable.

The aggregation of writtenLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitInterRunnableVariable and explicit
InterRunnableVariable or the variant existence of written
LocalVariable (points) in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=writtenLocalVariable.shortName, written
LocalVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table 7.4: RunnableEntity

547 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01302] Semantics of minimumStartInterval dThe attribute Exe-
cutableEntity.minimumStartInterval defines the time interval that the RTE
will guarantee to not go below between scheduling two consecutive executions of the
corresponding RunnableEntity.c(RS_SWCT_03040)

[constr_1936] Existence of attribute RunnableEntity.symbol dFor each
RunnableEntity, attribute symbol shall exist at the time when the con-
tract phase generation is executed.c()

[TPS_SWCT_01303] symbol attribute describes the RunnableEntity’s entry
point dThe RunnableEntity.symbol attribute is describing the RunnableEntity’s
entry point.c(RS_SWCT_03040)

The implication RunnableEntity.symbol on the uniqueness of symbols in the scope
of one EcuInstance is described in [constr_2025] [10].

A RunnableEntity inherits several attributes from its base class ExecutableEn-
tity due to the fact that these are also used in the Basic Software Module Description
Template [6]. Here the following constraint applies:

[constr_4082] RunnableEntity.reentrancyLevel shall not be set. dThe op-
tional attribute reentrancyLevel shall not be set for a RunnableEntity. This
attribute would define more specific reentrancy features than the mandatory attribute
canBeInvokedConcurrently. These features are currently only supported for Ba-
sic Software.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note that the formal definition of the semantics of a RunnableEntity has
strong relations to the specification of the AUTOSAR RTE [2]. The definition of the
RTE semantics, however, is not in the scope of this document.

However, the formal definition requires some background discussion that can’t be com-
pletely left out of this document. Otherwise, the meaning of specific model elements
could not be understood properly.

Please note further that there are legitimate use cases for software-components with-
out any RunnableEntitys, e.g. in following situations:

• An NvBlockSwComponentType does not require any RunnableEntity if
there is no need to proxy any PortPrototype typed by either of the
ClientServerInterfaces NvMService or NvMAdmin.

• A ServiceSwComponentType runs in a reduced configuration and does not
have to offer any PortPrototype to any service-using application software-
component.

• A software-component is configured in a reduced configuration where none of
the functionality is selected. In this case, it’s simpler to keep the empty software-
component instead of adding further VariationPoints at many other ele-
ments, e.g. SwComponentPrototype.

548 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

On top of that, a variation-based approach would require the conditional existence
of other ARElements which are not yet supported, e.g. a SwcImplementation
that references the AtomicSwComponentType.

7.2.1 Concurrency and Reentrancy of a RunnableEntity that cannot be Invoked
Concurrently

This section applies to the case that the value of the attribute canBeInvokedCon-
currently is false. During runtime, each RunnableEntity of each instance of
an AtomicSwComponentType is in a specific run-time state.

The details of the definition and semantics of run-time states can be found in [2]. Nev-
ertheless, this chapter contains a brief description of the fundamental concepts in order
to properly being able to discuss the formal modeling of RunnableEntitys.

[TPS_SWCT_01313] Conditions for a transition from suspended to to be
started dThe SwcInternalBehavior describes for each RunnableEntity the
conditions for a transition from suspended to to be started should occur. This is
done using the concept of an RTEEvent.c(RS_SWCT_03040)

When a RunnableEntity is in state to be started, the RTE can decide to
start running the RunnableEntity. The delay between entering the state to be
started (e.g. a message has been received in response to which the RunnableEn-
tity should run) and moving into the state running (the first instruction of the
RunnableEntity has been executed) depends on the scheduling strategy of the
RTE, i.e. the mapping of RunnableEntitys on AUTOSAR OS tasks.

The transition from the state running into the state suspended is in the hands of the
RunnableEntity: the transition occurs when the RunnableEntity returns (thereby
handing over control to the AUTOSAR OS [31]). Some RunnableEntitys (like cat. 2
RunnableEntitys) might never return to the suspended state once they entered the
running state.

They might enter the preempted state when being preempted. The same applies if a
RunnableEntity needs to wait for a WaitPoint to be unblocked.

[TPS_SWCT_01304] Cat. 1A and 1B RunnableEntitys will eventually terminate
dCat. 1A and 1B RunnableEntitys will eventually return after having executed a
specific finite algorithm (the execution time of which might be provided).c(RS_SWCT_-
03040)

[TPS_SWCT_01305] RunnableEntity as one that cannot be invoked concur-
rently dIn case the SwcInternalBehavior defines a RunnableEntity as one
that cannot be invoked concurrently it is the responsibility of the RTE to make sure
that the RunnableEntity is never started concurrently (for example, in two different
AUTOSAR OS tasks). This implies that the implementation of the AtomicSwCompo-
nentType does not need to worry about concurrency issues.c(RS_SWCT_03040)

549 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For example: The internal behavior of an AtomicSwComponentType MyComponent-
Type describes a RunnableEntity R1 which should be enabled when an opera-
tion on a client-server PPortPrototype of the AtomicSwComponentType is in-
voked. The AtomicSwComponentType specifies that the RunnableEntity R1 can-
not be invoked concurrently.

The AtomicSwComponentType MyComponentType is instantiated on an ECU. When
a call of the operation is received, the corresponding instance of the RunnableEn-
tity R1 is enabled and the RTE will start executing the RunnableEntity (the
RunnableEntity is in state running) in a task eventually managed by the
AUTOSAR OS.

If another call of the operation is received while the RunnableEntity is in state
running, it is not allowed that the RTE runs the RunnableEntity again in a second
task. Rather, the RTE has to wait (and maybe queue the second incoming request)
until the RunnableEntity has returned and has moved to the suspended state.

7.2.2 Concurrency and Reentrancy of a RunnableEntity that can be Invoked
Concurrently

This section applies to the case that the value of the attribute canBeInvokedCon-
currently is set to true.

In this case, it is allowed that the same RunnableEntity is running several times
concurrently in different AUTOSAR OS tasks. This implies that the state machine de-
fined in [2] is not the state of the RunnableEntity anymore, but can be cloned an
arbitrary number of times.

[TPS_SWCT_01306] Software-component description itself does not put any
bounds on the number of concurrent invocations of a RunnableEntity dThe
software-component description itself does not put any bounds on the number of con-
current invocations of the RunnableEntity that are allowed.

The software-component description only specifies whether the RunnableEntity
can be invoked concurrently or not.

Allowing concurrent invocation of a RunnableEntity implies that the implementa-
tion of the AtomicSwComponentType needs to take care of this additional form of
concurrency.c(RS_SWCT_03040)

For example: The SwcInternalBehavior of a component-type MyComponentType
describes a RunnableEntity R1 which should be enabled when a ClientServer-
Operation on a PPortPrototype typed by a ClientServerInterface of the
AtomicSwComponentType is invoked.

The AtomicSwComponentType specifies that the RunnableEntity R1 can be in-
voked concurrently. The AtomicSwComponentType MyComponentType is instanti-
ated on an ECU.

550 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

When a call of the ClientServerOperation is received the corresponding in-
stance of the RunnableEntity R1 is enabled and the RTE will start executing the
RunnableEntity (the RunnableEntity is in state running) in a task eventually
managed by the AUTOSAR OS.

If another call of the ClientServerOperation is received, it is allowed that the same
RunnableEntity is started again in a different task.

A typical use-case of concurrent RunnableEntitys is the implementation of
AUTOSAR services. The AUTOSAR services will typically take care of concurrency
internally: several software-components can directly use the services in parallel.

The ECU-integrator could then decide that the RunnableEntity implementing the
AUTOSAR service runs directly in the context (in the task) of the AtomicSwCompo-
nentType invoking the service.

This is a very efficient and direct coupling between the client and the server: the con-
nector between the client and the server is reduced to a local function-call.

7.2.3 Timed Activation of Runnable Entities

In many cases, RunnableEntitys need to be activated in response to timing events
rather than related to communication (e.g. the reception of a response to an asyn-
chronous operation invocation). Many RunnableEntitys will need to run cyclically
with a fixed rate.

The approach taken in the software-component description is to define so-called
TimingEvents (please find more details in Figure 7.5) as special kinds of RTEEvents.
So far, only one kind of timing-related RTEEvent has been defined: a simple periodic
TimingEvent.

AbstractEvent
AtpStructureElement

RTEEvent

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

TimingEvent

+ offset: TimeValue [0..1]
+ period: TimeValue [0..1]

+startOnEvent

0..1

Figure 7.5: Periodic activation of RunnableEntities

[TPS_SWCT_01519] RTE executes certain RunnableEntity periodically dIf the
SwcInternalBehavior of an AtomicSwComponentType requires that the RTE
executes certain RunnableEntitys periodically, the description needs to define a
TimingEvent with the desired period.

This TimingEvent then contains a reference to the RunnableEntity that needs to
be executed with this period.c(RS_SWCT_03040)

[constr_2031] Period of TimingEvent shall be greater than 0 dThe value of the
attribute period of TimingEvent shall be greater than 0 at the time when the
RTE is generated.c()

551 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Note that it is possible to override the attribute period on the level of instantiation.
See [TPS_SWCT_02507] for more details.

Class TimingEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is used to start RunnableEntities that shall be executed periodically.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

offset TimeValue 0..1 attr The value makes an assumption about the time offset of
the first activation of the RunnableEntity triggered by the
mapped TimingEvent relative to the periodic activation of
the time base of this TimingEvent. Unit: second.

period TimeValue 0..1 attr Period of timing event in seconds. The value of this
attribute shall be greater than zero.

Table 7.5: TimingEvent

[constr_1937] Existence of attribute TimingEvent.period dFor each
TimingEvent, attribute period shall exist at the time when the RTE is
generated.c()

[constr_1622] Value of TimingEvent.offset vs. TimingEvent.period dIf a
value is defined for attribute TimingEvent.offset then this value shall be greater
than 0 and less or equal than the value of attribute TimingEvent.period of the re-
spective TimingEvent at the time when the RTE is generated.c()

The motivation for the existence of [constr_1622] is that the mapped TimingEvent
could not be implemented with the given period if the activation offset is greater
than the period of the TimingEvent.

7.2.4 Additional Remarks and Clarifications

7.2.4.1 Reentrancy and Multiple Instantiation

This chapter is emphasizing on the specific meanings of combinations of the attributes
SwcInternalBehavior.supportsMultipleInstantiation and RunnableEn-
tity.canBeInvokedConcurrently.

[TPS_SWCT_01307] supportsMultipleInstantiation vs. canBeInvoked-
Concurrently dThe semantics of combining the attributes supportsMultiple-
Instantiation and canBeInvokedConcurrently is summarized in Table 7.6.c
(RS_SWCT_03040)

In case the implementation of a AtomicSwComponentType decides to map several
RunnableEntitys to the same symbol there are reentrancy problems to be sorted
out. However, this scenario is not supported by RTE [2] anyway and shall therefore be
avoided.

552 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

supportsMultipleIn-
stantiation

canBeInvokedCon-
currently

Implication for an implementation of a RunnableEntity

false false

This implies that the implementation of the RunnableEntity will never be
invoked concurrently from several tasks. The implementation does not need
to care about reentrancy issues and can typically use static variables
to store state.

true false

In case there are several instances of the same AtomicSwComponentType
on the local ECU, the implementation of the RunnableEntity can still be
invoked concurrently from several tasks.

However, there will be no concurrent invocations of the implementation with
the same instance handle. To ensure that this is safe, the implementation
will typically use per-instance memory.

true true
In this case the RunnableEntity can be invoked concurrently from several
tasks, even with the same instance handle.

Table 7.6: supportsMultipleInstantiation vs. canBeInvokedConcurrently

7.2.4.2 Reentrancy and “Library Functions”

Note that all code that is called by different RunnableEntitys (like e.g. library rou-
tines, etc.) shall obviously be reentrant. A filter algorithm implemented in C, for exam-
ple, is not allowed to store values from previous runs by means of static variables or
variables with external binding.

7.2.4.3 Compatibility of ClientServerOperations triggering the same
RunnableEntity

[TPS_SWCT_01309] signature of a RunnableEntity depends on the connected
RTEEvent dThe signature of a RunnableEntity depends on the connected
RTEEvent.

Multiple OperationInvokedEvents that trigger the same RunnableEntity are
only supported if all referenced ClientServerOperations would result in the same
RunnableEntity signature for the server RunnableEntity.c(RS_SWCT_03040)

[constr_2000] Compatibility of ClientServerOperations triggering the same
RunnableEntity dThe ClientServerOperations are considered compatible at
the time when the contract phase generation is executed if

• the number of arguments (which can be ArgumentDataPrototypes or related
PortDefinedArgumentValues) is equal and

• the corresponding arguments (i.e. first argument on both sides, second ar-
gument on both sides, etc.) are compatible or both are typed by "new-world"
Variable-Size Array Data Types where the data types of the array ele-
ments are compatible (but the array sizes may differ).

• and the respective values of PortAPIOption.errorHandling are identical.

553 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In particular, this means that:

• for combinations of ArgumentDataPrototypes and ArgumentDataProto-
types where the serverArgumentImplPolicy is set to useArgumentType
the referred ImplementationDataTypes shall be compatible.

In case of data types of category STRUCTURE all by order matching Imple-
mentationDataTypeElements shall be named equally.

• for combinations of PortDefinedArgumentValues and ArgumentDataPro-
totypes where the serverArgumentImplPolicy is set to useArgument-
Type the referred ImplementationDataTypes shall be compatible.

In case of ImplementationDataTypeElements of category STRUCTURE all
by order matching ImplementationDataTypeElements of the structure shall
be named equally.

• for ArgumentDataPrototypes where the serverArgumentImplPolicy is
set to useVoid an arbitrary ImplementationDataType is referred to.

In addition, it is required that the return value defined on both sides shall match (in
terms of Std_ReturnType vs. void) and also the possibleErrors are compati-
ble.c()

[TPS_SWCT_01520] Implication of the existence of possibleError on com-
patibility of ClientServerOperations dAn implication of [constr_2000] is that a
ClientServerOperation that defines any possibleError is not compatible with
a ClientServerOperation that defines no possibleError at all because this
configuration leads to different data type of the return value of the C function that im-
plements the applicable RunnableEntity.c(RS_SWCT_03040)

7.2.4.4 Categories of Runnable Entities

[TPS_SWCT_01310] Categories of RunnableEntitys dRunnableEntitys are
subdivided into the following categories:

Category 1 RunnableEntitys of Category 1 do not have WaitPoints and are re-
quired to terminate in a finite amount of time. Category 1 is divided into two
subcategories: Category 1A and Category 1B.

Category 1A RunnableEntitys are only allowed to use implicit APIs.

Category 1B RunnableEntitys are additionally allowed to invoke a server, to
use explicit APIs, to issue triggers, to switch modes and to use Exclu-
siveAreas.

Category 2 In contrast to Category 1, RunnableEntitys, RunnableEntitys of
Category 2 always aggregate at least one WaitPoint1. Typically, such a

1Category 2 RunnableEntitys usually have to be mapped to Extended Tasks, because only ex-
tended tasks provide the task state WAITING.

554 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RunnableEntity implements an internal loop where one iteration through the
loop is triggered whenever a WaitPoint is resolved.

c(RS_SWCT_03040)

For more details regarding details of the modeling of meta-class RunnableEntity,
please refer to Figure 7.3.

The resource need of a RunnableEntity in its later integration usually depends on
the used features of the Runtime Environment.

In the AUTOSAR Methodology, the ECU integrator is required to map various
RunnableEntitys to a limited amount of OS Tasks in a specific order.

The RunnableEntity categories are useful to indicate the later integration effort and
resource need on the basis of the RunnableEntity’s design.

Thereby Category 1A RunnableEntitys do not utilize RTE features which are block-
ing or delaying the execution of the RunnableEntity. As long as the RunnableEn-
tity implementation guaranties stable execution times it’s rather simple and reliable
to integrate them in a calculation chain.

As opposed to Category 1A, the scheduling behavior of Category 2 RunnableEn-
titys at runtime depends on the interaction with the interfaces of the enclosing soft-
ware component.

For instance, the suspend-times of the OS Task, where the RunnableEntity is
mapped to, may depend on actual data reception and/or occurrence of timeouts.

Moreover, it’s usually not possible to map more than one RunnableEntity to an
OS Task when the RunnableEntity implements an infinite internal loop, triggered
whenever a WaitPoint is resolved.

In case of Category 1B, additional side conditions impact the schedule behavior and
required OS features. For instance, a server call might be simply implemented as direct
function call in case of intra partition communication or might require a more complex
implementation in case of inter-ECU communication.

7.2.4.5 Arguments of a Runnable Entity

In many cases an RTE generator will be able to figure out not only the number and
data type of arguments to a RunnableEntity but also the name of the arguments.
In some cases, however, formal support from the upstream templates is required to
facilitate this task.

[TPS_SWCT_01311] Name of an operation argument dThis support is available by
means of the meta-class RunnableEntityArgument that contributes the name of
the argument by means of the value of the attribute symbol.

555 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

As a RunnableEntity might need to define many arguments the aggregation of
RunnableEntityArgument at RunnableEntity in the role argument has the mul-
tiplicity 0..* and as the order of these arguments is significant the meta-model defines
the aggregation as ordered2.c()

[constr_1164] Number of arguments owned by a RunnableEntity dIf a given
RunnableEntity owns RunnableEntityArguments in the role argument, then
the number of these RunnableEntityArguments shall be identical to the number
of applicable portArgValues of the PortAPIOption that references the Port-
Prototype that in turn is referenced by the OperationInvokedEvent that ref-
erences the RunnableEntity plus the number of ArgumentDataPrototypes
aggregated in the role argument by the ClientServerOperation referenced
by said OperationInvokedEvent at the time when the contract phase
generation is executed.c()

[constr_1165] Applicability of RunnableEntityArgument dThe existence of
a RunnableEntityArgument is limited to RunnableEntitys triggered by a
ClientServerOperation.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_01312] RunnableEntity has a mapping to BswModuleEntry dThe
existence of RunnableEntityArguments in the role argument owned by a
RunnableEntity shall be ignored by an RTE generator if a mapping to a BswMod-
uleEntry exists.

In this case the name of arguments to the RunnableEntity shall be derived from the
applicable SwServiceArgs owned by the mapped BswModuleEntry.c(RS_SWCT_-
03040)

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

RunnableEntityArgument

+ symbol: CIdentifier [0..1]
+argument

0..*
{ordered}

Figure 7.6: Arguments of a RunnableEntity

Class RunnableEntityArgument

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RunnableEntity

Note This meta-class represents the ability to provide specific information regarding the arguments to a
RunnableEntity.

Base ARObject

Attribute Type Mult. Kind Note

5

2as the arguments are ordered they do not need to be Referrable in order to be able to identify
individual arguments

556 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RunnableEntityArgument

symbol CIdentifier 0..1 attr This represents the symbol to be generated into the
actual signature on the level of the C programming
language.

Table 7.7: RunnableEntityArgument

[constr_1938] Existence of attribute RunnableEntityArgument.symbol dFor
each RunnableEntityArgument, attribute symbol shall exist at the time when
the contract phase generation is executed.c()

7.2.5 Activation Reason of a Runnable Entity

It is feasible to activate a given RunnableEntity by means of several RTEEvents.
In many cases, it is therefore necessary to retrieve the information about the activating
RTEEvent from within the implementation of the RunnableEntity.

As a typical use case, consider a RunnableEntity that is cyclically activated (by
means of a TimingEvent) and in addition it shall also be executed sporadically, e.g.
in response to the reception (DataReceivedEvent) of a dataElement.

AtpStructureElement

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

Identifiable

ExecutableEntity

+ minimumStartInterval: TimeValue [0..1]
+ reentrancyLevel: ReentrancyLevelEnum [0..1]

AtpStructureElement

RTEEvent

ImplementationProps

ExecutableEntityActivationReason

+ bitPosition: PositiveInteger [0..1]

Identifiable

AbstractEvent

+activationReason

0..*

+startOnEvent

0..1

+activationReasonRepresentation0..1

Figure 7.7: ExecutableEntityActivationReason and RunnableEntity

[TPS_SWCT_01469] RTE API for retrieving the current activation reason dThe
aggregation of a ExecutableEntityActivationReason allows for the RTE gen-
erator to create an RTE API for retrieving the current activation reason.c(RS_SWCT_-
03040, RS_SWCT_03045)

For details about the implementation of this feature, please refer to the specification of
the RTE [2]

[constr_1226] Applicable range for ExecutableEntityActivationReason.
bitPosition dThe value of attribute ExecutableEntityActivationReason.
bitPosition shall be in the range of 0 .. 31 at the time when the contract
phase generation is executed.c()

557 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1227] Value of attribute ExecutableEntityActivationReason.bit-
Position shall be unique dThe value of attributes ExecutableEntityActiva-
tionReason.bitPosition and ExecutableEntityActivationReason.sym-
bol shall be unique in the context of the enclosing RunnableEntity at the time
when the contract phase generation is executed.c()

[constr_1228] RTEEvent that is referenced by a WaitPoint in the role trig-
ger shall not reference ExecutableEntityActivationReason dAn RTEEvent
that is referenced by a WaitPoint in the role trigger shall not reference Exe-
cutableEntityActivationReason in the role activationReasonRepresen-
tation at the time when the RTE is generated.c()

The rationale for the existence of [constr_1228] is obviously that in the described
situation the RunnableEntity is already activated and therefore the mentioned
RTEEvent does not deliver any information related to the activation reason of said
RunnableEntity.

Class ExecutableEntity (abstract)

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note Abstraction of executable code.
Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses BswModuleEntity , RunnableEntity

Attribute Type Mult. Kind Note

activation
Reason

ExecutableEntity
ActivationReason

* aggr If the ExecutableEntity provides at least one activation
Reason element the RTE resp. BSW Scheduler shall
provide means to read the activation vector of this
executable entity execution.

If no activationReason element is provided the feature of
being able to determine the activating RTEEvent is
disabled for this ExecutableEntity.

canEnter ExclusiveArea * ref This means that the executable entity can enter/leave the
referenced exclusive area through explicit API calls.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

canEnter
ExclusiveArea

ExclusiveArea * ref This means that the executable entity can enter/leave the
referenced exclusive area through explicit API calls.

Tags:atp.Status=obsolete

exclusiveArea
NestingOrder

ExclusiveAreaNesting
Order

* ref This represents the set of ExclusiveAreaNestingOrders
recognized by this ExecutableEntity.

minimumStart
Interval

TimeValue 0..1 attr Specifies the time in seconds by which two consecutive
starts of an ExecutableEntity are guaranteed to be
separated.

reentrancyLevel ReentrancyLevelEnum 0..1 attr The reentrancy level of this ExecutableEntity. See the
documentation of the enumeration type ReentrancyLevel
Enum for details.

Please note that nonReentrant interfaces can have also
reentrant or multicoreReentrant implementations, and
reentrant interfaces can also have multicoreReentrant
implementations.

5

558 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ExecutableEntity (abstract)

runsInside ExclusiveArea * ref The executable entity runs completely inside the
referenced exclusive area.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

runsInside
ExclusiveArea

ExclusiveArea * ref The executable entity runs completely inside the
referenced exclusive area.

Tags:atp.Status=obsolete

swAddrMethod SwAddrMethod 0..1 ref Addressing method related to this code entity. Via an
association to the same SwAddrMethod, it can be
specified that several code entities (even of different
modules or components) shall be located in the same
memory without already specifying the memory section
itself.

Table 7.8: ExecutableEntity

Class ExecutableEntityActivationReason

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note This meta-class represents the ability to define the reason for the activation of the enclosing Executable
Entity.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mult. Kind Note

bitPosition PositiveInteger 0..1 attr This attribute allows for defining the position of the
enclosing ExecutableEntityActivationReason in the
activation vector.

Table 7.9: ExecutableEntityActivationReason

[constr_1939] Existence of attribute ExecutableEntityActivationReason.
bitPosition dFor each ExecutableEntityActivationReason, attribute bit-
Position shall exist at the time when the contract phase generation
is executed.c()

Please note that the attribute ExecutableEntityActivationReason.symbol is
needed for the generation of a unique identifier that represents the specific activation
reason in the RTE code.

7.2.6 Runnable Entity for Initialization Purpose

One way to make sure that certain initializations are applied before a software-
component enters its state of normal operation is to use the AUTOSAR mode-
management, in particular by defining a ModeDeclarationGroup that contains a
specific ModeDeclaration with the semantics of representing a mode that is exclu-
sively used for setting up and initializing a software-component.

However, this approach comes with a certain amount of footprint that may be accept-
able in some cases but there may also be cases where a simpler approach comes in
handy. The simple approach to initialization consists of a RunnableEntity that is
triggered by a special kind of RTEEvent, i.e. the so-called InitEvent.

559 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01525] InitEvent references a RunnableEntity in the role star-
tOnEvent dIn addition to using a mode-based approach for executing initialization
RunnableEntitys it is also possible to let an InitEvent reference a RunnableEn-
tity in the role startOnEvent.

This approach to the initialization of software-components is orthogonal to the mode-
based approach. Especially, the RunnableEntitys triggered by an InitEvent are
expected to be executed after the RTE has been fully initialized. This means restrictions
regarding the availability of RTE APIs during the ECU initialization are not relevant for
RunnableEntitys triggered by an InitEvent.c(RS_SWCT_03290)

[constr_1257] No WaitPoints allowed dA RunnableEntity referenced by an
InitEvent in the role startOnEvent shall not aggregate a WaitPoint at the
time when the RTE is generated.c()

Rationale: a WaitPoint may indefinitely defer the completion of the RunnableEn-
titys triggered by an InitEvent and therefore contradict the semantics of the
RunnableEntity.

[constr_1258] Value of minimumStartInterval for RunnableEntitys trig-
gered by an InitEvent dThe value of the attribute ExecutableEntity.minimum-
StartInterval for a RunnableEntitys that is triggered by an InitEvent shall
always be set to 0 at the time when the RTE is generated.c()

Rationale: it does not make sense to talk about intervals of activating RunnableEn-
titys triggered by an InitEvent as these are not supposed to be executed repeat-
edly.

[constr_1259] Aggregation of AsynchronousServerCallPoint and Asyn-
chronousServerCallResultPoint dA RunnableEntity referenced by an
InitEvent in the role startOnEvent may aggregate an AsynchronousServer-
CallPoint but it shall not aggregate an AsynchronousServerCallResultPoint
at the time when the RTE is generated.c()

Rationale: as mentioned before WaitPoints shall not be aggregated by a
RunnableEntitys triggered by an InitEvent in the role startOnEvent. It is al-
lowed (although considered unlikely to happen) to have an AsynchronousServer-
CallPoint but it is not allowed to fetch the result of the call within the same
RunnableEntity.

A RunnableEntity triggered by an InitEvent in the role startOnEvent may ag-
gregate a SynchronousServerCallPoint but the usage of this configuration is dis-
couraged.

[constr_1260] No mode disabling for InitEvents dAn InitEvent shall not have
a reference to a ModeDeclaration in the role disabledMode at the time when
the RTE is generated.c()

Rationale: the concept of RunnableEntity triggered by an InitEvent is (as men-
tioned before) orthogonal to the mode concept and therefore shall be implemented
independent of modes.

560 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

7.3 RTEEvent

During execution, several RTEEvents will occur, such as the reception of a remote
invocation of a ClientServerOperation on a PPortPrototype or a timeout on
an RPortPrototype that is not receiving the VariableDataPrototypes it expects
to receive.

[TPS_SWCT_01314] RTEEvent dAn RTEEvent defines:

• what the trigger for the occurrence of that RTEEvent is

• whether specific ModeDeclarations disable the processing of this RTEEvent

• which RunnableEntity shall be started when this RTEEvent occurs.

c(RS_SWCT_03040)

Class AbstractEvent (abstract)

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note This meta-class represents the abstract ability to model an event that can be taken to implement
application software or basic software in AUTOSAR.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses BswEvent , RTEEvent

Attribute Type Mult. Kind Note

activation
Reason
Representation

ExecutableEntity
ActivationReason

0..1 ref If the activationReasonRepresentation is referenced from
the enclosing AbstractEvent this shall be taken as an
indication that the latter contributes to the activating
vector of this ExecutableEntity that owns the referenced
ExecutableEntityActivationReason.

Table 7.10: AbstractEvent

Class RTEEvent (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note Abstract base class for all RTE-related events
Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage

Referrable, Referrable

Subclasses AsynchronousServerCallReturnsEvent, BackgroundEvent, DataReceiveErrorEvent, DataReceivedEvent,
DataSendCompletedEvent, DataWriteCompletedEvent, ExternalTriggerOccurredEvent, InitEvent,
InternalTriggerOccurredEvent, ModeSwitchedAckEvent, OperationInvokedEvent, OsTaskExecutionEvent,
SwcModeManagerErrorEvent, SwcModeSwitchEvent, TimingEvent, TransformerHardErrorEvent

Attribute Type Mult. Kind Note

disabledMode ModeDeclaration * iref Reference to the Modes that disable the Event.

Stereotypes: atpSplitable
Tags:atp.Splitkey=disabledMode.contextPort, disabled
Mode.contextModeDeclarationGroupPrototype, disabled
Mode.targetModeDeclaration
InstanceRef implemented by:RModeInAtomicSwc
InstanceRef

startOnEvent RunnableEntity 0..1 ref The referenced RunnableEntity starts when the
corresponding RTEEvent is raised.

Table 7.11: RTEEvent

561 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class AsynchronousServerCallReturnsEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when an asynchronous server call is finished.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

eventSource AsynchronousServer
CallResultPoint

0..1 ref The referenced AsynchronousServerCallResultPoint
raises this AsynchronousServerCallReturnsEvent when
the asynchronous server call returns.

Table 7.12: AsynchronousServerCallReturnsEvent

[constr_1940] Existence of attribute AsynchronousServerCallReturnsEvent.
eventSource dFor each AsynchronousServerCallReturnsEvent, attribute
eventSource shall exist at the time when the contract phase genera-
tion is executed .c()

Class DataSendCompletedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when the referenced explicit data element has been sent or an error occurred.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

eventSource VariableAccess 0..1 ref The referenced VariableAccess raises this DataSend
CompletedEvent when the explicit write access was
successful or an error occurred.

Table 7.13: DataSendCompletedEvent

[constr_1941] Existence of attribute DataSendCompletedEvent.eventSource
dFor each DataSendCompletedEvent, attribute eventSource shall exist at the
time when the contract phase generation is executed .c()

Class DataWriteCompletedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when an implicit write access was successful or an error occurred.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

eventSource VariableAccess 0..1 ref The referenced VariableAccess raises this DataWrite
CompletedEvent when the implicit write access was
successful or an error occurred.

Table 7.14: DataWriteCompletedEvent

[constr_1942] Existence of attribute DataWriteCompletedEvent.eventSource
dFor each DataWriteCompletedEvent, attribute eventSource shall exist at the
time when the contract phase generation is executed .c()

562 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class DataReceivedEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when the referenced data element is received.
Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage

Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

data VariableDataPrototype 0..1 iref The referenced VariableDataPrototype raises this Data
ReceivedEvent when the data has been received.

InstanceRef implemented by:RVariableInAtomicSwc
InstanceRef

Table 7.15: DataReceivedEvent

[constr_1943] Existence of attribute DataReceivedEvent.data dFor each
DataReceivedEvent, attribute data shall exist at the time when the con-
tract phase generation is executed .c()

Class DataReceiveErrorEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when the Com layer detects and notifies an error concerning the reception of the
referenced ValiableDataPrototype.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

data VariableDataPrototype 0..1 iref The referenced VariableDataPrototype raises this Data
ReceiveErrorEvent when there was an error during the
reception.

InstanceRef implemented by:RVariableInAtomicSwc
InstanceRef

Table 7.16: DataReceiveErrorEvent

[constr_1944] Existence of attribute DataReceiveErrorEvent.data dFor each
DataReceiveErrorEvent, attribute data shall exist at the time when the
contract phase generation is executed .c()

Class OperationInvokedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when the ClientServerOperation referenced in OperationInvokedEvent.operation
shall be invoked.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

operation ClientServerOperation 0..1 iref This represents the ClientServerOperation which shall be
invoked.

InstanceRef implemented by:POperationInAtomicSwc
InstanceRef

Table 7.17: OperationInvokedEvent

563 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1945] Existence of attribute OperationInvokedEvent.operation dFor
each OperationInvokedEvent, attribute operation shall exist at the time
when the contract phase generation is executed .c()

[constr_1523] No mode disabling for OperationInvokedEvents dAn Opera-
tionInvokedEvent shall not have a reference to a ModeDeclaration in the role
disabledMode at the time when the RTE is generated.c()

Rationale for the existence of [constr_1523]:

The RTE does not support the disabling of server RunnableEntitys by modes. In-
stead, the server shall respond with an explicit error code if the execution of the server
operation is not possible in specific side conditions.

For more explanation about the semantics of meta-class TimingEvent, please refer
to section 7.2.3.

Class BackgroundEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is used to start RunnableEntities that are supposed to be executed in the background.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 7.18: BackgroundEvent

Class SwcModeSwitchEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when the specified mode change occurs.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

activation ModeActivationKind 0..1 attr Specifies if the event is raised on entering or exiting a
specific mode or is raised on the transition between two
modes.

mode (ordered) ModeDeclaration 0..2 iref The referenced mode or the transition between two
modes raises this SwcModeSwitchEvent.

InstanceRef implemented by:RModeInAtomicSwc
InstanceRef

Table 7.19: SwcModeSwitchEvent

[constr_1946] Existence of attribute SwcModeSwitchEvent.activation dFor
each SwcModeSwitchEvent, attribute activation shall exist at the time when
the RTE is generated.c()

[constr_1947] Existence of reference SwcModeSwitchEvent.mode dFor each
SwcModeSwitchEvent, the reference to ModeDeclaration in the role mode shall
exist at the time when the RTE is generated.c()

564 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Enumeration ModeActivationKind
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Kind of mode switch condition used for activation of an event, as further described for each
enumeration field.

Literal Description

onEntry On entering the referred mode.

Tags:atp.EnumerationLiteralIndex=0

onExit On exiting the referred mode.

Tags:atp.EnumerationLiteralIndex=1

onTransition On transition of the 1st referred mode to the 2nd referred mode.

Tags:atp.EnumerationLiteralIndex=2

Table 7.20: ModeActivationKind

Class ModeSwitchedAckEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when the referenced ModeSwitchPoint has been processed or an error occurred.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

eventSource ModeSwitchPoint 0..1 ref The referenced ModeSwitchPoint raises this Mode
SwitchedAckEvent when the ModeSwitchPoint has been
processed.

Table 7.21: ModeSwitchedAckEvent

[constr_1948] Existence of attribute ModeSwitchedAckEvent.eventSource
dFor each ModeSwitchedAckEvent, attribute eventSource shall exist at the
time when the RTE is generated.c()

Class ExternalTriggerOccurredEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when the referenced Trigger has occurred.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

trigger Trigger 0..1 iref The referenced Trigger raises this ExternalTrigger
OccurredEvent.

InstanceRef implemented by:RTriggerInAtomicSwc
InstanceRef

Table 7.22: ExternalTriggerOccurredEvent

[constr_1949] Existence of attribute ExternalTriggerOccurredEvent.trig-
ger dFor each ExternalTriggerOccurredEvent, attribute trigger shall exist
at the time when the RTE is generated.c()

565 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class InternalTriggerOccurredEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when the referenced InternalTriggeringPoint has occurred.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

eventSource InternalTriggeringPoint 0..1 ref The referenced InternalTriggeringPoint raises this Internal
TriggerOccurredEvent.

Table 7.23: InternalTriggerOccurredEvent

[constr_1950] Existence of attribute InternalTriggerOccurredEvent.
eventSource dFor each InternalTriggerOccurredEvent, the attribute
eventSource shall exist at the time when the RTE is generated.c()

Class InitEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This RTEEvent is supposed to be used for initialization purposes, i.e. for starting and restarting a
partition. It is not guaranteed that all RunnableEntities referenced by this InitEvent are executed before
the ’regular’ RunnableEntities are executed for the first time. The execution order depends on the task
mapping.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 7.24: InitEvent

Class TransformerHardErrorEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when data are received which should trigger a Client/Server operation or an external
Trigger but during transformation of the data a hard transformer error occurred.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

operation ClientServerOperation 0..1 iref This represents the ClientServerOperation for which the
transformer can raise this TransformerHardErrorEvent.

InstanceRef implemented by:POperationInAtomicSwc
InstanceRef

requiredTrigger Trigger 0..1 iref This represents the Trigger for which the transformer can
raise this TransformerHardErrorEvent.

InstanceRef implemented by:RTriggerInAtomicSwc
InstanceRef

Table 7.25: TransformerHardErrorEvent

[constr_1397] Existence of attributes of TransformerHardErrorEvent dFor
any given TransformerHardErrorEvent, either the attribute TransformerHard-
ErrorEvent.operation or TransformerHardErrorEvent.requiredTrigger
shall exist at the time when the contract phase generation is exe-
cuted.c()

566 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In other words, the attributes operation and requiredTrigger of meta-class
TransformerHardErrorEvent shall be used mutually exclusive.

[TPS_SWCT_01315] Interaction of RunnableEntity with RTEEvent dAs de-
scribed in the Virtual Functional Bus specification [3], the RunnableEntitys of an
AtomicSwComponentType can interact with the occurrence of such RTEEvents in
two ways:

• the RTE can be instructed to enable a specific RunnableEntity when the
RTEEvent occurs

• the RTE can provide WaitPoints, that allow a RunnableEntity to block until
an RTEEvent in a set of RTEEvents occurs.

c(RS_SWCT_03040)

Class OsTaskExecutionEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This RTEEvent is supposed to execute RunnableEntities which have to react on the execution of specific
OsTasks. Therefore, this event is unconditionally raised whenever the OsTask on which it is mapped is
executed. The main use case for this event is scheduling of Runnables of Complex Drivers which have to
react on task executions.

Tags:atp.Status=draft

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 7.26: OsTaskExecutionEvent

[constr_10016] Applicability of OsTaskExecutionEvent dAn OsTaskExecu-
tionEvent is only applicable for a SwcInternalBehavior in the context of a Com-
plexDeviceDriverSwComponentType, EcuAbstractionSwComponentType, or
ServiceSwComponentType at any time in the workflow.c()

7.3.1 Defining an Event

The description of the SwcInternalBehavior includes a description of all
RTEEvents that the SwcInternalBehavior of the AtomicSwComponentType re-
lies on.

[TPS_SWCT_01316] Abstract base class RTEEvent dThe meta-class RTEEvent
shows up as an “abstract” base-class in the meta-model: the exact attributes of the
RTEEvent depend on the specific sub-class of RTEEvent that is used for the pur-
pose.c()

567 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AbstractEvent
AtpStructureElement

RTEEvent

DataSendCompletedEvent DataReceivedEvent DataReceiveErrorEvent

AutosarDataPrototype

VariableDataPrototype

AbstractAccessPoint
AtpStructureElement

Identifiable

VariableAccess

+ scope: VariableAccessScopeEnum [0..1]

DataWriteCompletedEvent

+eventSource 0..1

«instanceRef»

+data 0..1

«instanceRef»

+data 0..1+eventSource 0..1

Figure 7.8: RTEEvents used in the context of sender/receiver communication

AbstractEvent
AtpStructureElement

RTEEvent

AsynchronousServerCallReturnsEvent OperationInvokedEvent

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity:
Boolean [0..1]

AbstractAccessPoint
AtpStructureElement

Identifiable

AsynchronousServerCallResultPoint +eventSource

0..1 «instanceRef»

+operation

0..1

Figure 7.9: RTEEvents used in the context of client/server communication

568 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AbstractEvent
AtpStructureElement

RTEEvent

SwcModeSwitchEvent

+ activation: ModeActivationKind [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

ModeSwitchedAckEvent

AbstractAccessPoint
AtpStructureElement

Identifiable

ModeSwitchPoint

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

SwcModeManagerErrorEvent

«enumeration»
ModeErrorReactionPolicyEnum

 lastMode
 defaultMode

ModeErrorBehavior

+ errorReactionPolicy: ModeErrorReactionPolicyEnum [0..1]

������������	
 ����

�����������	��	���� �

�������	����������	����

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

+defaultMode 0..1

+eventSource 0..1

+startOnEvent

0..1

«instanceRef»

+modeGroup 0..1
«atpVariation»

+modeDeclaration0..*

«isOfType»+type

0..1
{redefines
atpType}

«atpVariation,atpSplitable»

+modeSwitchPoint *

«instanceRef»

+disabledMode
0..*

+initialMode 0..1

+modeManagerErrorBehavior 0..1

«instanceRef»

+modeGroup 0..1

+modeUserErrorBehavior 0..1

«instanceRef»

+mode 0..2 {ordered}

Figure 7.10: RTEEvents used in the context of mode communication

Please note that more explanation about the semantics of the meta-classes SwcMode-
ManagerErrorEvent and ModeErrorBehavior can be found in section 9.4.

AbstractEvent
AtpStructureElement

RTEEvent

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

TransformerHardErrorEvent

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

«instanceRef»

+operation 0..1

«instanceRef»

+requiredTrigger 0..1

Figure 7.11: RTEEvent used in the context of data transformation

569 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AbstractEvent
AtpStructureElement

RTEEvent

TimingEvent

+ offset: TimeValue [0..1]
+ period: TimeValue [0..1]

ExternalTriggerOccurredEvent

OsTaskExecutionEvent

InternalTriggerOccurredEvent

AbstractAccessPoint
AtpStructureElement

Identifiable

InternalTriggeringPoint

+ swImplPolicy: SwImplPolicyEnum [0..1]

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

BackgroundEventInitEvent

«instanceRef»

+trigger 0..1 +eventSource 0..1

Figure 7.12: RTEEvents for purposes other than communication

The details of the various kinds of concrete RTEEvents (such as the TimingEvent,
DataSendCompletedEvent, etc.), is described in chapters 7.5.1, 7.5.2 and 7.2.3.

7.3.2 Defining how to Respond to an Event

[TPS_SWCT_01317] RTE triggers RunnableEntity in response to occurring
RTEEvent dIf the software-component description contains a reference from an
RTEEvent to a RunnableEntity in the role startOnEvent, it is the responsibil-
ity of the RTE to trigger the execution of the corresponding RunnableEntity when
the RTEEvent occurs.c(RS_SWCT_03040)

[TPS_SWCT_01318] RunnableEntity and WaitPoint dIn case the RunnableEn-
tity wants to block and wait for RTEEvents (which makes the RunnableEntity into
a cat. 2 RunnableEntity), the description of the RunnableEntity may include the
definition of a WaitPoint.

Such a WaitPoint contains a reference to an RTEEvent that can unblock the spe-
cific WaitPoint. In other words: the WaitPoint will block until the referenced
RTEEvents occurs or the period specified in the attribute timeout expires.c(RS_-
SWCT_03040)

Figure 7.13 gives an overview of the modeling of WaitPoint.

570 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AbstractEvent
AtpStructureElement

RTEEvent

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

Identifiable

WaitPoint

+ timeout: TimeValue [0..1]

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

������������	
 ����

�����������	��	���� � ��������������«atpVariation,atpSplitable»

+runnable 0..*

+startOnEvent

0..1

+trigger 0..1

+waitPoint 0..*

«atpVariation,atpSplitable»

+event 0..*

Figure 7.13: Description of the interaction between an RTEEvent and RunnableEntitys

[constr_1090] WaitPoint and RunnableEntity dA single RunnableEntity can
actually wait only at a single WaitPoint provided that the RunnableEntity can only
be scheduled a single time3.c()

[constr_1091] RTEEvents that can unblock a WaitPoint dThe only RTEEvents
that are qualified for unblocking a WaitPoint are:

• DataReceivedEvent

• DataSendCompletedEvent

• ModeSwitchedAckEvent

• AsynchronousServerCallReturnsEvent

c()

[TPS_SWCT_01319] RTEEvent can be used to trigger WaitPoints in different
RunnableEntitys dIt is in general possible that a single RTEEvent can be used to
trigger WaitPoints in different RunnableEntitys.c()

Concerning DataReceivedEvents consider as well [constr_2021].

Class WaitPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This defines a wait-point for which the RunnableEntity can wait.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

5

3This constraint is valid at least in the ISO 17356-3 [32] standard where an extended task (that can
have wait points) can only exist a single time in the context of the scheduler.

571 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class WaitPoint
timeout TimeValue 0..1 attr Time in seconds before the WaitPoint times out and the

blocking wait call returns with an error indicating the
timeout.

trigger RTEEvent 0..1 ref This is the RTEEvent this WaitPoint is waiting for.

Table 7.27: WaitPoint

[constr_1951] Existence of attribute WaitPoint.timeout dFor each WaitPoint,
attribute timeout shall exist at the time when the RTE is generated.c()

[constr_1952] Existence of reference WaitPoint.trigger dFor each WaitPoint,
the reference to RTEEvent in the role trigger shall exist at the time when the
contract phase generation is executed.c()

[constr_1096] SwcModeSwitchEvent and WaitPoint dA RunnableEntity that
has a WaitPoint shall not be referenced by a SwcModeSwitchEvent at the
time when the contract phase generation is executed.c()

[TPS_SWCT_01320] RunnableEntitys of category 2 dRunnableEntitys that
aggregate a WaitPoint are by definition of category 2 and therefore are not required
to terminate ever. It is therefore difficult to let a RunnableEntity of category 2 im-
plement a mode switch.c(RS_SWCT_03040)

[constr_1097] RunnableEntity that has a WaitPoint dA RunnableEntity that
has a WaitPoint shall not be referenced by an RTEEvent that has a reference in the
role disabledMode at the time when the RTE is generated.c()

[TPS_SWCT_01324] Mode switches need to be completed in finite time dMode
switches need to be completed in finite time and a RunnableEntity that has a
WaitPoint can never guarantee that the WaitPoint is resolved within finite time.c
(RS_SWCT_03040)

In addition to this, the RunnableEntity with a WaitPoint that would be affected by
a mode disabling would typically already run when the mode disabling applies. It could
not be terminated at this point in time.

7.4 Communication among Runnable Entities

It is taken for granted that particular RunnableEntitys within a specific Atomic-
SwComponentType will need to communicate among each other.

[TPS_SWCT_01321] Communication among RunnableEntitys dThe RTE needs
to provide synchronization mechanisms to the RunnableEntitys such that safe (in
the multi-threading sense) exchange of data is possible.

In this case, the use of PortPrototypes is (although technically feasible) not required
for the purpose.c(RS_SWCT_00120)

572 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01592] Communication among RunnableEntitys of different in-
stances of the same AtomicSwComponentType dThe communication among
RunnableEntitys of different instances of the same AtomicSwComponentType is
only supported via PortPrototypes.c(RS_SWCT_00120)

Several concepts for implementing communication among RunnableEntitys can be
identified.

As an introduction, the section 2.3.1 describes the various techniques that the RTE
might use to provide efficient interaction between RunnableEntitys within one
AtomicSwComponentType.

Two possible approaches for formal specification of this kind of communication are
described:

• Specifying that several RunnableEntitys belong in a specific Exclu-
siveArea

• Specifying the data exchanged between the RunnableEntitys

7.4.1 Description Possibility 1: Exclusive Area

This section describes how the concept of ExclusiveAreas can be used in the de-
scription of the SwcInternalBehavior of an AtomicSwComponentType.

Please note that ExclusiveAreas are actually owned by the base class of SwcIn-
ternalBehavior, i.e. InternalBehavior. These ExclusiveAreas do not imply
a specific implementation (e.g. with mutual-exclusion semaphores).

Class ExclusiveArea
Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note Prevents an executable entity running in the area from being preempted.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 7.28: ExclusiveArea

[TPS_SWCT_01031] ExclusiveArea dAn ExclusiveArea merely specifies a con-
straint on the scheduling policy and configuration of the RTE:

If two or more RunnableEntitys refer to the same ExclusiveArea only one of
these RunnableEntitys is allowed to be executed while being inside that Exclu-
siveArea.c(RS_SWCT_00120, RS_SWCT_02090)

In other words: these RunnableEntitys shall not run concurrently (preempt each
other) while executing inside the ExclusiveArea.

Please find more details about the formal definition of meta-class ExclusiveArea in
Figure 7.14.

573 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Identifiable

ExclusiveArea

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

AtpStructureElement

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

AtpStructureElement

InternalBehavior

Identifiable

ExecutableEntity

+ minimumStartInterval: TimeValue [0..1]
+ reentrancyLevel: ReentrancyLevelEnum [0..1]

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

SwcExclusiveAreaPolicy

+ apiPrinciple: ApiPrincipleEnum [0..1]

«atpVariation,atpSplitable»

+exclusiveAreaPolicy 0..*

+exclusiveArea

0..1

«atpVariation,atpSplitable»

+exclusiveArea 0..*

«atpVariation»

+canEnter 0..*

«atpVariation»

+runsInside 0..*

«atpVariation,atpSplitable»

+runnable 0..*

Figure 7.14: Description of logical exclusive areas

[TPS_SWCT_01049] Two ways to use the ExclusiveAreas dThere are in general
two ways to use the ExclusiveAreas. During its execution, a RunnableEntity can
enter and exit an ExclusiveArea (in which case ExecutableEntity.canEnter
shall exist).

As an alternative, it can be specified that the entire execution of a given RunnableEn-
tity shall be guarded by an ExclusiveArea (this requires the existence of Exe-
cutableEntity.runsInside).c(RS_SWCT_00120, RS_SWCT_02090)

Please note that the options for entering an ExclusiveArea are documented in sec-
tion 7.4.1.1 and section 7.4.1.2

Identifiable

ExclusiveArea

Referrable

ExclusiveAreaNestingOrder

AtpStructureElement

InternalBehavior

Identifiable

ExecutableEntity

+ minimumStartInterval: TimeValue [0..1]
+ reentrancyLevel: ReentrancyLevelEnum [0..1]

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������«atpVariation»

+runsInside 0..* +exclusiveAreaNestingOrder0..*

«atpVariation»

+canEnter 0..*

+exclusiveArea

0..*
{ordered}

«atpVariation,atpSplitable»

+exclusiveArea 0..*

«atpVariation,atpSplitable»

+exclusiveAreaNestingOrder 0..*

Figure 7.15: Description of nested usage of ExclusiveArea

574 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01457] ExclusiveAreaNestingOrder dThe optional Exclu-
siveAreaNestingOrders shall (if used at all) describe possible nesting orders
(including single ExclusiveAreas) which can occur in the RunnableEntity.
Each possible locking situation requires its own ExclusiveAreaNestingOrder.c
(RS_SWCT_03055)

[TPS_SWCT_01458] Indicate that the locking behavior is fully described for
RunnableEntity dAll ExclusiveAreas which are configured in the InternalBe-
havior should be referenced by an ExclusiveAreaNestingOrder to indicate that
the locking behavior is fully described for this RunnableEntity.c(RS_SWCT_03055)

[TPS_SWCT_01459] Locking behavior is not described for this RunnableEntity
dIf ExclusiveAreas are not referenced by any ExclusiveAreaNestingOrder
(this is the default scenario), this means that the locking behavior is not described for
this RunnableEntity and the provided information might be incomplete and cannot
be used for a global offline analysis of locking behavior.c(RS_SWCT_03055)

An ExclusiveAreaNestingOrder is aggregated by the InternalBehavior that
in turn also owns RunnableEntity.

Referrable

ExclusiveAreaNestingOrder
SynchronousServerCallPoint

AbstractAccessPoint
AtpStructureElement

Identifiable

ServerCallPoint

+ timeout: TimeValue [0..1]

AtpStructureElement

RunnableEntity

+ canBeInvokedConcurrently:
Boolean [0..1]

+ symbol: CIdentifier [0..1]

Identifiable

ExecutableEntity

+ minimumStartInterval: TimeValue [0..1]
+ reentrancyLevel: ReentrancyLevelEnum [0..1]

SwcInternalBehavior

+ handleTerminationAndRestart:
HandleTerminationAndRestartEnum [0..1]

+ supportsMultipleInstantiation: Boolean [0..1]

AtpStructureElement

InternalBehavior

������������	
 ����

�����������	��	���� � ��������������

������������	
 ����

�����������������	����

� � ��

�����������	��	���� �

��������������
«atpVariation,atpSplitable»

+serverCallPoint 0..* +exclusiveAreaNestingOrder

0..*

«atpVariation,atpSplitable»

+exclusiveAreaNestingOrder 0..*

«atpVariation,atpSplitable»

+runnable

0..*

+calledFromWithinExclusiveArea

0..1

Figure 7.16: Nested usage of ExclusiveArea and the impact on SynchronousServer-
CallPoint

Class ExclusiveAreaNestingOrder

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note This meta-class represents the ability to define a nesting order of ExclusiveAreas. A nesting order (that
may occur in the executable code) is formally defined to be able to analyze the resource locking behavior.

Base ARObject , Referrable

Attribute Type Mult. Kind Note

exclusiveArea
(ordered)

ExclusiveArea * ref This represents a specific scenario of how Exclusive
Areas can be used in terms of the nesting order.

Table 7.29: ExclusiveAreaNestingOrder

[TPS_SWCT_01460] Relation of SynchronousServerCallPoint to Exclu-
siveAreaNestingOrder dIn case other RunnableEntitys are invoked syn-
chronously from within the RunnableEntity the ExclusiveAreaNestingOrder

575 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

can then be referenced by one or several SynchronousServerCallPoints to spec-
ify the calling environment of the invoked server with regard to ExclusiveAreas.c
(RS_SWCT_03055)

The purpose of this configuration is to analyze the resource locking behavior for com-
plete call trees.

7.4.1.1 Entire Runnable Runs in the Exclusive Area

[TPS_SWCT_01050] RunnableEntity always runs inside an ExclusiveArea dIn
the first approach, the formal description specifies that certain RunnableEntitys
always run inside an ExclusiveArea.c(RS_SWCT_00120, RS_SWCT_02090)

For example, if the formal description specifies that both RunnableEntity ’r1’ and
RunnableEntity ’r2’ run within ExclusiveArea ’s1’, the RTE shall make sure that
RunnableEntitys ’r1’ and ’r2’ never run concurrently; the scheduler should never
preempt ’r1’ to run ’r2’.

Note that this pattern does not force the RTE to implement this by using semaphores
or mutexes that are taken before the RunnableEntity starts and given when
the RunnableEntity returns. It only obliges the RTE to make sure that both
RunnableEntitys are never running concurrently.

This requirement could be implemented by several of the implementation strategies
described above. For example:

1. Scheduling strategy: if, for example, RunnableEntitys ’r1’ and ’r2’ are mapped
to the same task, the criterion is automatically satisfied. For this purpose it is
necessary to make sure that the OS can only execute a single instance of the
task into which the RunnableEntitys are put.

2. Mutual exclusion semaphores: in case ’r1’ and ’r2’ are mapped to different tasks
(’T1’, respectively ’T2’), the OS shall make sure that while ’T1’ is executing ’r1’,
’T2’ running ’r2’ can never preempt it and vice-versa. This could be implemented
by taking a mutual-exclusion semaphore before executing ’r1’ (or ’r2’) in the con-
text of ’t1’ (or ’t2’) and returning the semaphore on exiting the RunnableEntity.

7.4.1.2 Runnable would Dynamically Enter and Leave the Exclusive Area

[TPS_SWCT_01051] RunnableEntity explicitly enters and leaves a specific Ex-
clusiveArea dIn the second approach, the RunnableEntity would explicitly make
API-calls to the RTE within the implementation of the RunnableEntity to enter and
leave a specific ExclusiveArea.c(RS_SWCT_00120, RS_SWCT_02090)

This could, for example, be implemented by means of the priority ceiling concept de-
scribed in chapter 2.3.1.3.

576 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Additionally, it is possible to define the execution time the RunnableEntity will spend
in this ExclusiveArea segment. Please note that although this aspect is described
in [6] the concept can be applied to software-components as well.

7.4.1.3 Configuration of API Generation

For certain usage scenarios of ExclusiveAreas it is considered advantageous if
each RunnableEntity uses a distinct set of enter and exit APIs.

This distinct set of APIs support ExclusiveArea implementations where for the
RunnableEntity(s) with the highest priority the lock is omitted.

This is possible when the RunnableEntity(s) with the highest priority can’t be inter-
rupted by RunnableEntitys scheduled with lower priority.

To support this kind of implementation, the software-component description has
to state (by means of attribute SwcInternalBehavior.exclusiveAreaPolicy.
apiPrinciple) that it requests APIs individually for each RunnableEntity refer-
encing an ExclusiveArea in the role canEnter.

Class SwcExclusiveAreaPolicy

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior

Note Options how to generate the ExclusiveArea related APIs. If no SwcExclusiveAreaPolicy is specified for
an ExclusiveArea the default values apply.

Base ARObject

Attribute Type Mult. Kind Note

apiPrinciple ApiPrincipleEnum 0..1 attr Specifies for this ExclusiveArea if either one common set
of Enter and Exit APIs for the whole software component
is requested from the Rte or if the set of Enter and Exit
APIs is expected per RunnableEntity. The default value is
"common".

exclusiveArea ExclusiveArea 0..1 ref This reference represents the ExclusiveArea for which the
policy applies.

Table 7.30: SwcExclusiveAreaPolicy

[constr_1953] Existence of attribute SwcExclusiveAreaPolicy.apiPrinciple
dFor each SwcExclusiveAreaPolicy that refers to an exclusiveArea, attribute
apiPrinciple shall exist at the time when the RTE is generated.c()

Enumeration ApiPrincipleEnum

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note This enumeration represents the ability to control the granularity of API generation.

Literal Description

common The Rte or SchM API is provided for the whole software component / BSW Module

Tags:atp.EnumerationLiteralIndex=0

5

577 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration ApiPrincipleEnum

perExecutable The Rte or SchM API is provided for a specific ExecutableEntity of a software component / BSW
Module

Tags:atp.EnumerationLiteralIndex=1

Table 7.31: ApiPrincipleEnum

[TPS_SWCT_01713] ExclusiveArea is entered and exited by a common set of
APIs dIf the value of attribute SwcExclusiveAreaPolicy.apiPrinciple is set to
ApiPrincipleEnum.common then the RTE provides one set of enter and exit APIs
to be shared among all RunnableEntitys of the whole software-component.c(RS_-
SWCT_00120, RS_SWCT_02090)

In this case, the same enter and exit code is executed by all affected RunnableEn-
titys and there is no way to have a special treatment for the RunnableEntity(s)
executed in the context with the highest priority.

[TPS_SWCT_01714] ExclusiveArea is entered and exited by an individual set
of APIs dIf the value of attribute SwcExclusiveAreaPolicy.apiPrinciple is set
to ApiPrincipleEnum.perExecutable then the RTE provides individual sets of
APIs for entering and exiting ExclusiveAreas for each affected RunnableEntity.c
(RS_SWCT_00120, RS_SWCT_02090)

In this case, the implementation of enter and exit code for the RunnableEntity executed
in the execution context with the highest priority can be left empty.

In order to avoid the existence of contradicting settings of SwcExclusiveAreaPol-
icys for one ExclusiveArea [constr_1468] applies.

[constr_1468] Limitation on the number of SwcExclusiveAreaPolicys dAn Ex-
clusiveArea shall only be referenced by at most one SwcExclusiveAreaPolicy
at the time when the contract phase generation is executed.c()

7.4.2 Description Possibility 2: Inter-Runnable Variable

For certain cases the ExclusiveArea concept does not provide enough information
to configure the RTE correctly. In these cases it may be advised to opt for a different
approach that is based on the guarded access to variables protected by the RTE.

For the purpose of identifying pieces of data that shall be accessed concurrently from
different RunnableEntitys formal support is required. In AUTOSAR, this aspect is
summarized under the term "inter-runnable variable".

[TPS_SWCT_01052] Inter-runnable variable dThese so-called "inter-runnable vari-
ables" are described with the element VariableDataPrototype aggregated in
the role explicitInterRunnableVariable or implicitInterRunnableVari-
able.c(RS_SWCT_00120, RS_SWCT_02090)

578 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01053] Relationship of interchanged data with RunnableEntitys
dFurthermore, the relationship of these data with RunnableEntitys shall be speci-
fied.

For this specific purpose, RunnableEntity aggregates VariableAccess in the
roles readLocalVariable and writtenLocalVariable.

Also, SwcInternalBehavior aggregates VariableDataPrototype in the roles
explicitInterRunnableVariable and implicitInterRunnableVariable.

The connection between RunnableEntity and the explicitInterRunnable-
Variable and implicitInterRunnableVariable is created if the reference Au-
tosarVariableRef.localVariable to the respective VariableDataPrototype
exists.c(RS_SWCT_00120, RS_SWCT_02090)

[TPS_SWCT_01521] Use AutosarVariableRef.localVariable for referencing
inter-runnable variables dA RunnableEntity that defines a VariableAccess in
role writtenLocalVariable and readLocalVariable shall make use of Au-
tosarVariableRef.localVariable.c(RS_SWCT_03040)

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently:
Boolean [0..1]

+ symbol: CIdentifier [0..1]

AbstractAccessPoint
AtpStructureElement

Identifiable

VariableAccess

+ scope:
VariableAccessScopeEnum
[0..1]

������������	
 ����

�����������	��	���� �

��������������

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

AutosarDataPrototype

VariableDataPrototype

AutosarVariableRef

ValueSpecification

+ shortLabel: Identifier [0..1]

+initValue

0..1

«atpVariation,atpSplitable»

+writtenLocalVariable

0..*

«atpVariation,atpSplitable»

+readLocalVariable

0..*

+localVariable 0..1

«atpVariation,atpSplitable»

+implicitInterRunnableVariable 0..*

+accessedVariable

0..1

«atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»

+explicitInterRunnableVariable 0..*

Figure 7.17: implicitInterRunnableVariable vs. explicitInterRunnableVari-
able

[constr_2026] Referenced VariableDataPrototype from AutosarVari-
ableRef of VariableAccess in role writtenLocalVariable and readLocal-
Variable dA VariableDataPrototype in the localVariable reference needs
to be owned by the same SwcInternalBehavior as this RunnableEntity belongs
to, and the referenced VariableDataPrototype has to be defined in the role im-
plicitInterRunnableVariable or explicitInterRunnableVariable.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

579 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Obviously, the data-type of an implicitInterRunnableVariable or explicit-
InterRunnableVariable is described by the data type of the VariableDataPro-
totype (which is derived from DataPrototype).

[TPS_SWCT_01637] Initial value for a specific implicitInterRunnableVari-
able or explicitInterRunnableVariable dIt is possible (but not mandatory) to
define an initial value for a specific implicitInterRunnableVariable or explic-
itInterRunnableVariable.

For this purpose the VariableDataPrototype in the role of explicitInter-
RunnableVariable or implicitInterRunnableVariable is able to aggregate
a ValueSpecification in the role initValue.c(RS_SWCT_02090)

The statement made by [TPS_SWCT_01637] is reflected by Figure 7.17

[TPS_SWCT_01522] No initial value is specified for implicitInterRunnable-
Variable or explicitInterRunnableVariable dPlease note that the behavior
is undefined if no initial value is specified and a RunnableEntity reads an implic-
itInterRunnableVariable or explicitInterRunnableVariable before it is
actually written to by another RunnableEntity.c(RS_SWCT_03040)

As already mentioned before, the concept of an "inter-runnable variable" can be used
in two different flavors This is indicated by the two different roles explicitInter-
RunnableVariable or implicitInterRunnableVariable in which the Vari-
ableDataPrototype serving as the "inter-runnable variable" is aggregated.

These resemble the communication principles applied for the communication on the
level of SwComponentTypes.

Please note that the two different kinds of inter-runnable variables are accessed via
different RTE [2] API calls.

[TPS_SWCT_01054] Semantics of the explicitInterRunnableVariable dThe
semantics of the explicitInterRunnableVariable is that explicit implies the di-
rect access to the value of a VariableDataPrototype used in the role explicit-
InterRunnableVariable.

By this means it is possible to get different values for a specific VariableDataPro-
totype each time the corresponding API call is executed.c(RS_SWCT_00120, RS_-
SWCT_02090)

[TPS_SWCT_01055] Semantics of implicitInterRunnableVariable dThe
implicitInterRunnableVariable corresponds to an execution model where
the value of an VariableDataPrototype does not change (for the reading
RunnableEntity, obviously) during the runtime of a RunnableEntity.c(RS_-
SWCT_00120, RS_SWCT_02090)

This approach is in detail described in chapter 2.3.1.4.

580 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1296] DataPrototypes used as explicitInterRunnableVariable or
implicitInterRunnableVariable and category DATA_REFERENCE dA Vari-
ableDataPrototype shall not be aggregated by SwcInternalBehavior in either
the role:

• explicitInterRunnableVariable, or

• implicitInterRunnableVariable

if the VariableDataPrototype (after potential indirections via TYPE_REFERENCE
are resolved) is either typed by, or mapped to, an:

• ImplementationDataType of category DATA_REFERENCE, or

• ImplementationDataType that contains subElements that (after potential
indirections via TYPE_REFERENCE are resolved) are of category DATA_REF-
ERENCE.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

7.4.3 Inter Runnable Triggering

The concept of inter-runnable triggering allows one RunnableEntity to trigger an-
other RunnableEntity within an AtomicSwComponentType. This approach con-
ceptually supports the decoupling of calculation and processing sequences inside a
software-component.

By mappings of the InternalTriggerOccurredEvents to OS Tasks running at
different priorities the triggered RunnableEntitys are in turn executed with a different
priority as the triggering RunnableEntity.

InternalBehavior

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

AbstractAccessPoint
AtpStructureElement

Identifiable

InternalTriggeringPoint

InternalTriggerOccurredEvent

AbstractEvent
AtpStructureElement

RTEEvent

������������	
 ����

�����������	��	���� �

��������������

+eventSource

0..1

+startOnEvent

0..1

«atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»

+event 0..*

«atpVariation,atpSplitable»
+internalTriggeringPoint 0..*

Figure 7.18: Model of software-component Inter Runnable Triggering

For example, a cyclically triggered RunnableEntity which shall not exceed a cer-
tain worst case execution time (WCET) activates a second RunnableEntity if an

581 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

error occurred in order to be able to execute a (potentially) time-consuming exception-
handling on a lower level of priority.

As illustrated in Figure 7.18, the triggering RunnableEntity needs an Internal-
TriggeringPoint.

The activation of RunnableEntitys in the same software-component instance is af-
fected through the generic event-handling mechanism.

[TPS_SWCT_01523] Internal trigger event dA RunnableEntity that shall be ac-
tivated at the occurrence of an internal trigger event is defined by means of an In-
ternalTriggerOccurredEvent which references the particular InternalTrig-
geringPoint and additionally the to-be-activated RunnableEntity.c(RS_SWCT_-
03040)

[TPS_SWCT_01022] Queued processing of internal trigger dThe attribute In-
ternalTriggeringPoint.swImplPolicy can be used to specify a requirement
whether the internal triggering of the enclosing RunnableEntity using the given
InternalTriggeringPoint shall be queued.c(RS_SWCT_03040)

[constr_1182] Allowed values for InternalTriggeringPoint.swImplPolicy
dThe only allowed values for the attribute swImplPolicy of meta-class Internal-
TriggeringPoint are either STANDARD (in which case the processing of the internal
triggering does not use a queue) or QUEUED (in which case the processing of internal
triggering positively uses a queue).

This rule shall be imposed at the time when the RTE is generated.c()

Class InternalTriggeringPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Trigger

Note If a RunnableEntity owns an InternalTriggeringPoint it is entitled to trigger the execution of Runnable
Entities of the corresponding software-component.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

swImplPolicy SwImplPolicyEnum 0..1 attr This attribute, when set to value queued, allows for a
queued processing of Triggers.

Table 7.32: InternalTriggeringPoint

The description of the corresponding external trigger communication is contained in
chapter 7.5.3.

7.5 Data Access of RunnableEntities

This section describes the communication properties of an AtomicSwComponent-
Type. This is done mainly from the point of view of a RunnableEntity (the concept
of a RunnableEntity is introduced in chapter 7.2).

582 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

However, the usage of a PortPrototype in a specific role within an AtomicSwCom-
ponentType also has an impact on communication behavior.

AtpStructureElement

AbstractAccessPoint

+ returnValueProvision: RteApiReturnValueProvisionEnum [0..1]

AtpStructureElement
Identifiable

VariableAccess

+ scope: VariableAccessScopeEnum [0..1]

AtpStructureElement
Identifiable

ParameterAccess

AtpStructureElement
Identifiable

ServerCallPoint

+ timeout: TimeValue [0..1]

AtpStructureElement
Identifiable

AsynchronousServerCallResultPoint

AtpStructureElement
Identifiable

InternalTriggeringPoint

+ swImplPolicy: SwImplPolicyEnum [0..1]

AtpStructureElement
Identifiable

ModeSwitchPoint

IdentCaption

ModeAccessPointIdent

IdentCaption

ExternalTriggeringPointIdent

«enumeration»
RteApiReturnValueProvisionEnum

 returnValueProvided
 noReturnValueProvided

Figure 7.19: Modeling of the AbstractAccessPoint

Access of RunnableEntitys to the different elements in PortInterfaces or the
InternalBehavior are modeled by a set of meta-classes specific to the communi-
cation pattern and the kind of access.

Nevertheless, all of those meta-classes inherit from AbstractAccessPoint in order
to enable the ability to be referenced in a harmonized way to by additional descriptions.

Class AbstractAccessPoint (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::AccessCount

Note Abstract class indicating an access point from an ExecutableEntity.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Subclasses AsynchronousServerCallResultPoint, ExternalTriggeringPointIdent, InternalTriggeringPoint, ModeAccess
PointIdent, ModeSwitchPoint, ParameterAccess, ServerCallPoint , VariableAccess

Attribute Type Mult. Kind Note

returnValue
Provision

RteApiReturnValue
ProvisionEnum

0..1 attr This attribute controls the provision of return values for
RTE APIs that correspond to the enclosing access point.

Table 7.33: AbstractAccessPoint

Enumeration RteApiReturnValueProvisionEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::AccessCount

Note This meta-class provides values to control how return values from RTE APIs are provided.

Literal Description

noReturnValue
Provided

The RTE API shall not provide a return value.

Tags:atp.EnumerationLiteralIndex=1

returnValue
Provided

The RTE API shall provide a return value.

Tags:atp.EnumerationLiteralIndex=0

Table 7.34: RteApiReturnValueProvisionEnum

583 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RunnableEntity that access DataPrototypes in the context of PortPrototypes
are not allowed to extend the data access to sub-elements of the respective Dat-
aPrototypes.

For example, assume a DataPrototype that effectively implements a structure of two
elements A and B. It is not supported to only send or receive only element A or B of
the structure.

This assertion leads to the existence of [constr_1429] and, by extension, [constr_1430].

[constr_1429] Access to data within PortPrototypes from within RunnableEn-
titys dFor a VariableAccess that is aggregated in the roles

• RunnableEntity.dataWriteAccess

• RunnableEntity.dataReadAccess

• RunnableEntity.dataSendPoint

• RunnableEntity.dataReceivePointByArgument

• RunnableEntity.dataReceivePointByValue

the existence of the following attributes is not allowed:

• VariableAccess.accessedVariable.autosarVariable.contextDat-
aPrototype

• VariableAccess.accessedVariable.autosarVariable.rootVari-
ableDataPrototype

• VariableAccess.accessedVariable.autosarVariableInImpl-
Datatype

• VariableAccess.accessedVariable.localVariable

In other words: in this case, only the references

• VariableAccess.accessedVariable.autosarVariable.portProto-
type and

• VariableAccess.accessedVariable.autosarVariable.targetDat-
aPrototype

shall exist and the latter shall exclusively refer to a VariableDataPrototype that
is aggregated as either

• SenderReceiverInterface.dataElement or

• NvDataInterface.nvData.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1430] Access to local data from within RunnableEntitys dFor Vari-
ableAccess that is aggregated in the roles

584 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• RunnableEntity.writtenLocalVariable

• RunnableEntity.readLocalVariable

the existence of the following attributes is not allowed:

• VariableAccess.accessedVariable.autosarVariableInImpl-
Datatype

• VariableAccess.accessedVariable.autosarVariable

In other words, only the reference VariableAccess.accessedVariable.local-
Variable shall be used in this case.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1431] Access to parameters from within RunnableEntitys dFor a Pa-
rameterAccess that is aggregated in the role RunnableEntity.parameterAc-
cess the existence of the following attributes is not allowed:

• ParameterAccess.accessedParameter.autosarParameter.context-
DataPrototype

• ParameterAccess.accessedParameter.autosarParameter.rootPa-
rameterDataPrototype

In other words: in this case, one of the following alternatives is allowed to exist:

• a combination of

– ParameterAccess.accessedParameter.autosarParameter.port-
Prototype and

– ParameterAccess.accessedParameter.autosarParameter.tar-
getDataPrototype that exclusively refers to a ParameterDataPro-
totype aggregated by a ParameterInterface in the role parameter.

• ParameterAccess.accessedParameter.localParameter that refers to a
ParameterDataPrototype that is either aggregated as

– InternalBehavior.constantMemory or

– SwcInternalBehavior.perInstanceParameter or

– SwcInternalBehavior.sharedParameter.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

585 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

7.5.1 RunnableEntities and Sender Receiver Communication

This section describes aspects relevant for the sender-receiver communication of a
software-component. These mainly influence the behavior and API of the AUTOSAR
RTE.

[TPS_SWCT_01322] Interaction patterns for the application of the sender-
receiver paradigm dThe possible interaction patterns for the application of the sender-
receiver paradigm are explained, namely:

1. Data-access in a cat. 1 RunnableEntity,

2. explicit sending,

3. the DataSendCompletedEvent: dealing with the success/failure of an explicit
send, and

4. the DataReceivedEvent: responding to the reception of data

5. the DataReceiveErrorEvent: notifying an error concerning the reception of
data.

c(RS_SWCT_00200)

7.5.1.1 Terminology

The AUTOSAR meta-model foresees two different approaches for sender-receiver
communication. These are described in detail in chapters 7.5.1.2 and 7.5.1.3. How-
ever, it turned out that it is rather cumbersome to discuss issues of communication
approaches directly on the basis of meta-classes and their attributes.

Therefore, it seems appropriate to introduce a dedicated terminology for this purpose.
The approach eventually selected was originally introduced by the contributors to the
RTE specification.

This terminology proposes to use the term “implicit” for communication based on data-
access (for more information about details of this approach please consult chapter
7.5.1.2) and “explicit” for communication based on so-called data-points (please refer
to chapter 7.5.1.3).

The motivation for the differentiation between “implicit” and “explicit” was originally the
characteristics of the RTE specification that foresaw an API for handling a dataSend-
Point or dataReceivePointByValue in contrast to the data-access that was sup-
posed to be part of the function signature (therefore, no API was required) of a specific
RunnableEntity.

Although the specification of the RTE changed in the meantime (and the original mo-
tivation no longer applies) it turned out that the terminology based on “implicit” and
“explicit” communication was already widely used within AUTOSAR.

586 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

As no consensus could be reached over alternative proposals this terminology ap-
proach is taken over by this document as well.

7.5.1.2 Data Access

[TPS_SWCT_01323] Read and write access to a dataElement dThe SwcInter-
nalBehavior may specify that a RunnableEntity needs read-access (respectively
write-access) to the VariableDataPrototypes in the role dataElement of an
RPortPrototype (respectively PPortPrototype, or PRPortPrototype).c(RS_-
SWCT_00200)

AtpStructureElement
ExecutableEntity

RunnableEntity

SwComponentType

AtomicSwComponentType
«atpVariation»

SwDataDefProps

InternalBehavior

SwcInternalBehavior

AbstractAccessPoint
AtpStructureElement

Identifiable

ParameterAccess

AutosarParameterRef

AbstractAccessPoint
AtpStructureElement

Identifiable

VariableAccess

+ scope: VariableAccessScopeEnum [0..1]

AutosarVariableRef������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

«enumeration»
VariableAccessScopeEnum

 communicationInterEcu
 communicationIntraPartition
 interPartitionIntraEcu

«atpVariation,atpSplitable»

+dataReceivePointByArgument

0..*

«atpVariation,atpSplitable»

+dataReadAccess

0..*

«atpVariation,atpSplitable»

+readLocalVariable

0..*

«atpVariation,atpSplitable»

+dataWriteAccess

0..*

«atpVariation,atpSplitable»

+dataReceivePointByValue

0..*

«atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»

+dataSendPoint

0..*

«atpVariation,atpSplitable»

+internalBehavior

0..1

«atpVariation,atpSplitable»

+writtenLocalVariable

0..*

+accessedVariable 0..1

«atpVariation,atpSplitable»

+parameterAccess

0..*

+swDataDefProps 0..1

+accessedParameter 0..1

Figure 7.20: DataReadAccess and DataWriteAccess

587 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01325] Read and write access is only applicable for RunnableEn-
titys of category 1 dThe usage of the data-access mechanism to the Variable-
DataPrototypes is appropriate for cat. 1 RunnableEntitys only because it by
concept guarantees finite response time (as opposed to e.g. unlimited blocking wait
for some data).c(RS_SWCT_00200)

For more explanation, let’s suppose a cat. 2 RunnableEntity would have a
dataReadAccess and a dataWriteAccess. The received dataElement would
be updated before the RunnableEntity actually starts being executed and even if
the RunnableEntity runs for a very long time the value of the dataElement would
remain as is and never change.

On the other hand, the RunnableEntity might use its dataWriteAccess to per-
form a write access on the dataElement but the actual value might never make it
beyond the RunnableEntity because

1. the latter is not required to terminate ever and

2. the actual write access is executed after the RunnableEntity terminates.

Class VariableAccess
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements

Note The presence of a VariableAccess implies that a RunnableEntity needs access to a VariableData
Prototype.

The kind of access is specified by the role in which the class is used.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

accessed
Variable

AutosarVariableRef 0..1 aggr This denotes the accessed variable.

scope VariableAccessScope
Enum

0..1 attr This attribute allows for constraining the scope of the
corresponding communication. For example, it possible to
express whether the communication is intended to cross
the boundary of an ECU or whether it is intended not to
cross the boundary of a single partition.

Table 7.35: VariableAccess

[constr_1954] Existence of attribute VariableAccess.accessedVariable dFor
each VariableAccess, attribute accessedVariable shall exist at the time
when the contract phase generation is executed.c()

Enumeration VariableAccessScopeEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements

Note This enumeration defines scopes for communication.

Literal Description

communicationInter
Ecu

This case is foreseen to express that the corresponding communication shall be considered
inter-ECU, i.e. it will cross the ECU boundary. This is considered the default case.

Tags:atp.EnumerationLiteralIndex=0

5

588 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration VariableAccessScopeEnum

communicationIntra
Partition

This case is foreseen to express that the corresponding communication shall not cross the boundary
of a partition.

Tags:atp.EnumerationLiteralIndex=1

interPartitionIntra
Ecu

In this case the communication shall cross the boundaries of partitions within one ECU but it shall not
cross the boundaries of the ECU itself.

Tags:atp.EnumerationLiteralIndex=2

Table 7.36: VariableAccessScopeEnum

[TPS_SWCT_01326] Constrain the scope of a specific communication dThe pur-
pose of the attribute scope of meta-class VariableAccess is to constrain the scope
of the corresponding communication.

The main use-case for this ability is the development of a software-component where
certain end-points of communication from or to the software-component are known to
fulfill a certain constraint, e.g. execute within the same partition.c(RS_SWCT_00200)

[TPS_SWCT_01328] Default value of attribute scope dThe default value of attribute
scope is set to communicationInterEcu.c(RS_SWCT_00200)

[constr_1141] Applicability of the scope attribute d

The attribute scope of meta-class VariableAccess shall only be applied with re-
spect to the aggregation of VariableAccess in the following roles:

• dataReadAccess

• dataWriteAccess

• dataSendPoint

• dataReceivePointByValue

• dataReceivePointByArgument

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

This aspect is depicted in Figure 7.20.

7.5.1.3 Explicit Sending and Receiving

[TPS_SWCT_01330] RunnableEntity can also have dataSendPoints dA
RunnableEntity can also have dataSendPoints (i.e. aggregate VariableAc-
cess in the role dataSendPoint).

Using an instanceRef association, these eventually reference a VariableDat-
aPrototype in the context of an AbstractProvidedPortPrototype, owned by
the AtomicSwComponentType that is associated with the RunnableEntity that in
turn owns the dataSendPoint.c(RS_SWCT_00200)

589 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_2004] Referenced VariableDataPrototype from AutosarVari-
ableRef of VariableAccess in role dataSendPoint dA VariableAccess in the
role dataSendPoint shall refer to a PPortPrototype or PRPortPrototype that
is typed by either a SenderReceiverInterface or a NvDataInterface at the
time when the contract phase generation is executed.c()

[TPS_SWCT_01331] dataWriteAccess vs. dataSendPoint dAs opposed to the
dataWriteAccess:

• Using the dataSendPoint, the RunnableEntity needs to explicitly “send”
through an API; when using a dataWriteAccess, the RunnableEntity only
needs to modify the value of certain variables.

• Using dataSendPoint, the Runnable can decide to “send” an arbitrary number
of times; when using dataWriteAccess the new value of the VariableDat-
aPrototype is only made available after the RunnableEntity terminates.

• The presence of a dataSendPoint per definition lets the corresponding
RunnableEntity attain cat. 1B.

c(RS_SWCT_00200)

[constr_1773] Value of attribute dataSendPoint.returnValueProvision dAll
RunnableEntity.dataSendPoint that refer to the same accessedVariable
shall define the identical value for attribute returnValueProvision at the time
when the contract phase generation is executed.c()

Rationale for the existence of [constr_1773]: different RunnableEntitys could ag-
gregate VariableAccess in the role dataSendPoint with a different configuration
of attribute returnValueProvision.

However, in such a case it would not be possible to generate the corresponding RTE
API because the API exists once per software-component and it is therefore indispens-
able to have all affected VariableAccess aggregated in the role dataSendPoint
agree on the configuration of attribute returnValueProvision.

This relation is sketched in Figure 7.21.

590 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ApplicationSwComponentType

PPortPrototype

dataElement

RunnableEntity A

RunnableEntity B

dataSendPoint dspA

dataSendPoint dspB

returnValueProvision = noReturnValueProvided

returnValueProvision = noReturnValueProvided

Figure 7.21: Modeling of attribute dataSendPoint.returnValueProvision

[TPS_SWCT_01663] dataReadAccess vs. dataReceivePointByValue or
dataReceivePointByArgument dAs opposed to the dataReadAccess:

• Using the dataReceivePointByValue or dataReceivePointByArgument,
the RunnableEntity always “receives” the latest value of the dataElement
fore each call to the respective API during the execution of the RunnableEn-
tity.

• When using a dataReadAccess, the value of the respective dataElement is
received before the RunnableEntity starts and does not change during the
execution of the RunnableEntity independently of the number of API calls for
implicit reception.

• The presence of a dataReceivePointByValue or dataReceivePointB-
yArgument per definition lets the corresponding RunnableEntity attain cat.
1B.

c(RS_SWCT_00200)

For more details, please refer to section 4.9.

591 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AbstractEvent
AtpStructureElement

RTEEvent

AtpStructureElement
ExecutableEntity

RunnableEntity

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior
DataSendCompletedEvent

AbstractAccessPoint
AtpStructureElement

Identifiable

VariableAccess

AutosarVariableRef

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� � ��������������

�������������� ����� ��

����� ��

��	����������� 	���!����

�����!���" ���

#������������ �� �

��������#�������������

AtpPrototype

DataPrototype

������������	
 ����

�����������	��	���� �

��������������

AbstractProvidedPortPrototype

«instanceRef»

+autosarVariable 0..1

«atpVariation,atpSplitable»

+port

0..*

+accessedVariable 0..1

+eventSource 0..1

+startOnEvent 0..1

«atpVariation,atpSplitable»

+event

0..*

«atpVariation,atpSplitable»

+runnable 0..*
«atpVariation,atpSplitable»

+dataSendPoint 0..*

«atpVariation,atpSplitable»

+internalBehavior0..1

Figure 7.22: DataSendPoint

[TPS_SWCT_01332] dataReceivePointByValue vs. dataReceivePointB-
yArgument dIn analogy to explicitly sending data it is also possible to define explicit
polling for new available data through a dataReceivePointByValue or dataRe-
ceivePointByArgument.c()

This aspect is visualized in Figure 7.23.

[constr_1277] SwDataDefProps.swImplPolicy of a VariableDataPrototype
referenced by a VariableAccess aggregated in the role dataReceivePoint-
ByValue dThe SwDataDefProps.swImplPolicy of a VariableDataPrototype
referenced by a VariableAccess aggregated in the role dataReceivePoint-
ByValue shall not be set to queued at the time when the contract phase
generation is executed .c()

Rationale for [constr_1277]: when using the return value of the applicable RTE API
function to return the value of a VariableDataPrototype there is no way4 to provide
an indication that the queue is empty. Therefore, the only safe approach is to not permit
this scenario at all, hence the constraint.

4That is, other than to use a function argument to return the status of the queue but that would
obviously beat the purpose of the API function.

592 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpStructureElement
ExecutableEntity

RunnableEntity

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior
AbstractAccessPoint
AtpStructureElement

Identifiable

VariableAccess

AutosarVariableRef

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

������������	
 ����

�����������	��	���� �

��������������

���������������� ��� �����

!�� ����� �� �!��� �!

"�	�����������#	���$����

�����$���% ���

&��� �����!�� ����� �� �

��������&��� �����!���

AtpPrototype

DataPrototype

AbstractRequiredPortPrototype

«atpVariation,atpSplitable»

+dataReceivePointByArgument 0..*

«atpVariation,atpSplitable»

+port

0..*

«instanceRef»

+autosarVariable 0..1

«atpVariation,atpSplitable»

+internalBehavior 0..1

«atpVariation,atpSplitable»

+runnable 0..*

+accessedVariable 0..1

«atpVariation,atpSplitable»

+dataReceivePointByValue 0..*

Figure 7.23: Definition of an explicit request to receive data

[TPS_SWCT_01333] dataReceivePointByValue/dataReceivePointByArgu-
ment vs. dataReadAccess dBy using a dataReceivePointByValue or dataRe-
ceivePointByArgument instead of dataReadAccess the constraining access
to the referenced VariableDataPrototype (other RunnableEntitys shall not
change the VariableDataPrototype during the read execution) is limited to a short,
well-defined amount of time.c(RS_SWCT_00200)

[TPS_SWCT_01334] RunnableEntitys of category 1 may have dataRe-
ceivePointByValues/dataReceivePointByArguments dTherefore, category 1
RunnableEntitys may also have dataReceivePointByValues/dataReceive-
PointByArguments and consequently become RunnableEntitys of category 1Bc
(RS_SWCT_00200)

Please note that the categories of RunnableEntity are explained in section 7.2.4.4.

Similar to the dataReadAccess, constraints apply to the reference target of the Au-
tosarVariableRef of VariableAccess in role dataReceivePointByValue or
dataReceivePointByArgument.

[constr_1774] Value of attribute dataReceivePointByArgument.returnVal-
ueProvision dAll RunnableEntity.dataReceivePointByArgument that refer
to the same accessedVariable shall define the identical value for attribute
returnValueProvision at the time when the contract phase gener-
ation is executed.c()

Rationale for the existence of [constr_1774]: different RunnableEntitys could aggre-
gate VariableAccess in the role dataReceivePointByArgument with a different
configuration of attribute returnValueProvision.

593 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

However, in such a case it would not be possible to generate the corresponding RTE
API because the API exists once per software-component and it is therefore indis-
pensable to have all affected VariableAccess aggregated in the role dataRe-
ceivePointByArgument agree on the configuration of attribute returnValuePro-
vision.

This relation is exemplarily (for the case of dataSendPoint.returnValueProvi-
sion) sketched in Figure 7.21.

[constr_2005] Referenced VariableDataPrototype from AutosarVari-
ableRef of VariableAccess in role dataReceivePointByValue or dataRe-
ceivePointByArgument dA VariableAccess in the role dataReceivePoint-
ByValue or dataReceivePointByArgument shall refer to an RPortProto-
type or PRPortPrototype that is typed by either a SenderReceiverInterface
or an NvDataInterface at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_01335] Combine dataReceivePointByValue or dataReceive-
PointByArgument with a WaitPoint dIn general, it is possible to combine a
dataReceivePointByValue or dataReceivePointByArgument with a Wait-
Point in the scope of a particular RunnableEntity.

This allows for a call to a blocking receive routine implemented by the RTE. The time-
out attribute of meta-class WaitPoint can be used to specify the time until the block-
ing call expires.

But in case of non-queued communication it is not supported that a DataRe-
ceivedEvent is used in combination with a WaitPoint (see [constr_2021]). This
contradicts the approach of the last-is-best semantics.c(RS_SWCT_00200)

[constr_2021] WaitPoint referencing a DataReceivedEvent can not be used
for non-queued communication dA WaitPoint referencing a DataReceivedE-
vent is permitted if and only if the swImplPolicy of the VariableDataProto-
type referenced by this DataReceivedEvent is set to queued.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

Please note however, that in this case (in response to the presence of a WaitPoint)
the RunnableEntity becomes category 2.

7.5.1.4 Implicit Sending and Receiving

Implicit sending and receiving aims at the optimization of computation effort for sender-
receiver communication.

Instead of executing the full amount of functionality for each call to a send-API or
receive-API the implicit communication only receives implicitly received values latest

594 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

before the start of the execution of a RunnableEntity and sends implicitly sent values
earliest after termination of the RunnableEntity.

[TPS_SWCT_01329] Access to specific data is implemented by means of aggre-
gating the meta-class VariableAccess in specific roles dPlease note that from the
formal point of view access to specific data is implemented by means of aggregating
the meta-class VariableAccess in specific roles.

This means that dataReadAccess for a read-access while the write-access is defined
by means of aggregating VariableAccess in the role dataWriteAccess.c(RS_-
SWCT_00200)

This aspect is depicted in Figure 7.19.

The following constraints apply to the reference target of the AutosarVariableRef
of VariableAccess in role dataReadAccess or dataWriteAccess.

[constr_2002] Referenced VariableDataPrototype from AutosarVari-
ableRef of VariableAccess in role dataReadAccess dA VariableAccess in
the role dataReadAccess shall refer to an RPortPrototype or PRPortPrototype
that is typed by either a SenderReceiverInterface or a NvDataInterface.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_2003] Referenced VariableDataPrototype from AutosarVari-
ableRef of VariableAccess in role dataWriteAccess dA VariableAccess in
the role dataWriteAccess shall refer to a PPortPrototype or PRPortPrototype
that is typed by either a SenderReceiverInterface or a NvDataInterface.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

By access with VariableAccess in the dataReadAccess role always the last value
of the VariableDataPrototype buffered before the RunnableEntity starts will
be read during the execution of the RunnableEntity.

It would therefore not make any sense to provide a queue of values for the purpose of
accessing a dataElement in the role dataReadAccess.

[constr_2020] dataReadAccess can not be used for queued communication
dThe swImplPolicy of the VariableDataPrototype referenced by a Vari-
ableAccess in role dataReadAccess shall not be set to queued at the time
when the contract phase generation is executed.c()

[constr_1256] Acknowledgement feedback in n:1 writer case dWithin the scope
of one SwcInternalBehavior, it is not allowed that two or more aggregated
RunnableEntitys own either dataSendPoints or dataWriteAccesss that in turn
point to the identical accessedVariable.autosarVariable.targetDataProto-
type if the attribute transmissionAcknowledge exists in the context of the

595 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

SenderComSpec owned by the dataSendPoint.accessedVariable.autosar-
Variable.portPrototype (or the respective construct for dataWriteAccess) that
also refers to said dataElement.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

The background of [constr_1256] is that if two or more RunnableEntitys exist
that can write to the identical dataElement it may happen that more than one
RunnableEntity actually write to the respective dataElement before the “first” ac-
knowledgement is received. In this case it will never be possible to determine exactly
which transmission has been acknowledged.

The difference between implicit and explicit sender/receiver communication is ex-
plained in [TPS_SWCT_01331] and [TPS_SWCT_01663].

7.5.1.5 DataSendCompletedEvent

[TPS_SWCT_01336] dataSendPoint also allows for the definition of a
DataSendCompletedEvent dThe dataSendPoint also allows for the definition of
a DataSendCompletedEvent. This RTEEvent occurs when the data has been suc-
cessfully sent or when an error has occurred during sending.c(RS_SWCT_00200)

Please note that this feature can only be used if the AtomicSwComponentType de-
scribes the meaning of success or failure of the send-operation.

In particular, via a SenderComSpec class different acknowledgement requests (in this
case: successful transmission) can be attached to a PPortPrototype or PRPort-
Prototype, as is shown in Figure 4.36.

This will configure the RTE such that when data is sent the RTE will try to obtain the
specified acknowledgement; possibly by waiting a certain timeout period.

[constr_2033] Timeout of DataSendCompletedEvent dThe timeout value of a
WaitPoint associated with a DataSendCompletedEvent shall have the same
value as the corresponding value of TransmissionAcknowledgementRequest.
timeout at the time when the RTE is generated.c()

7.5.1.6 DataWriteCompletedEvent

[TPS_SWCT_01557] dataWriteAccess also allows for the definition of a
DataWriteCompletedEvent dThe dataWriteAccess also allows for the definition
of a DataWriteCompletedEvent. This RTEEvent occurs when the data has been
successfully sent or when an error has occurred during sending.c(RS_SWCT_00200)

Please note that this feature can only be used if the AtomicSwComponentType de-
scribes the meaning of success or failure of the send-operation.

596 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In particular, via a SenderComSpec class different acknowledgement requests (in this
case: successful transmission) can be attached to a PPortPrototype or PRPort-
Prototype, as is shown in Figure 4.36.

[TPS_SWCT_01558] DataWriteCompletedEvent cannot be combined with a
WaitPoint dPlease note that a DataWriteCompletedEvent cannot be associated
with a WaitPoint, see [constr_1091].c(RS_SWCT_00200)

However, it is possible to configure the RTE such that when data is sent, the RTE will
try to obtain the specified acknowledgement; possibly by waiting a certain timeout
period.

AbstractEvent
AtpStructureElement

RTEEvent

AtpStructureElement
ExecutableEntity

RunnableEntity

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

AbstractAccessPoint
AtpStructureElement

Identifiable

VariableAccess

AutosarVariableRef

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

������������	
 ����

�����������	��	���� �

��������������

�������������� ����� ��

����� ��

��	����������� 	���!����

�����!���" ���

#������������ �� �

��������#�������������

AtpPrototype

DataPrototype

������������	
 ����

�����������	��	���� �

��������������

AbstractProvidedPortPrototype

DataWriteCompletedEvent

������������	
 ����

�����������	��	���� �

��������������

+startOnEvent 0..1

«instanceRef»

+autosarVariable 0..1

+eventSource

0..1

+accessedVariable 0..1

«atpVariation,atpSplitable»

+port

0..*

«atpVariation,atpSplitable»

+dataWriteAccess 0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

«atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»

+event

0..*

Figure 7.24: DataWriteAccess

7.5.1.7 DataReceivedEvent

[TPS_SWCT_01337] DataReceivedEvent dA receiver is notified through the same
event mechanism when a VariableDataPrototype is received. The DataRe-
ceivedEvent is directly associated with the corresponding VariableDataProto-
type.c(RS_SWCT_00200)

597 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

DataReceivedEvent

AbstractEvent
AtpStructureElement

RTEEvent

AtpStructureElement
ExecutableEntity

RunnableEntity

AutosarDataPrototype

VariableDataPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

������������	
 ����

�����������	��	���� �

��������������

���������������� ��� �����

!�� ����� �� �!��� �! �

"�	�����������#	���$����

AbstractRequiredPortPrototype

«atpVariation,atpSplitable»

+event

0..*

«atpVariation,atpSplitable»

+port

0..*

«instanceRef»

+data 0..1

«atpVariation,atpSplitable»

+internalBehavior 0..1

«atpVariation,atpSplitable»

+runnable 0..*

+startOnEvent

0..1

Figure 7.25: Receiver is notified by an event when new data has arrived

7.5.1.8 DataReceiveErrorEvent

[TPS_SWCT_01338] DataReceiveErrorEvent dA receiver is notified of DataRe-
ceiveErrorEvent through the activation of its RunnableEntity which is refer-
enced by this RTEEvent.

A DataReceiveErrorEvent includes a reference to a VariableDataPrototype
and is raised by the RTE when an error concerning the reception of the referenced
data is detected by the COM 5 layer.

The following cases present some situations which will cause the RTE to raise a
DataReceiveErrorEvent:

• the RTE receives a signal-outdated notification from the COM layer when a mon-
itored periodic signal is not received in time. The COM layer monitors the validity
of the signal’s value based on the value of the aliveTimeout attribute of Re-
ceiverComSpec referencing the VariableDataPrototype associated with
the signal. If the time elapsed since the last update of a signal’s value exceeds its
aliveTimeout then the COM layer notifies the RTE of a signal outdated error.

• The RTE receives a signal invalid notification from the COM layer when the COM
layer detects that an incoming signal has the predefined “invalid” value.

c(RS_SWCT_00200)

5In case of internal communication the RTE is not enforced to use the COM layer. It is also possible
to implement the required behavior directly in the RTE.

598 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_10073] Existence of DataReceiveErrorEvent dA DataReceiveEr-
rorEvent shall only exist if it latest at the time when the contract phase
generation is executed refers to a given VariableDataPrototype in the role
data where either

• the VariableDataPrototype is referenced from a NonqueuedReceiver-
ComSpec in the role dataElement and the attribute aliveTimeout of the
NonqueuedReceiverComSpec exists and is set to a value > 0 or

• the VariableDataPrototype is aggregated by a SenderReceiverInter-
face where attribute invalidationPolicy.handleInvalid exists and is set
to the value keep.

c()

[TPS_SWCT_01339] RTE activates RunnableEntity in response to DataRe-
ceiveErrorEvent dA DataReceiveErrorEvent is used by the RTE to activate
a RunnableEntity that is supposed to handle the above-mentioned errors.

The error code will be made available to the activated RunnableEntity through the
appropriate RTE API function.c(RS_SWCT_00200)

[TPS_SWCT_01340] DataReceiveErrorEvent cannot be combined with a
WaitPoint dPlease note that a DataReceiveErrorEvent cannot be associated
with a WaitPoint, see [constr_1091].

It can only be used for the receiver software-component in a sender-receiver commu-
nication and its data reference is restricted to VariableDataPrototypes with their
swImplPolicy attribute not set to queued.c(RS_SWCT_00200)

DataReceiveErrorEvent

AbstractEvent
AtpStructureElement

RTEEvent

AtpStructureElement
ExecutableEntity

RunnableEntity

AutosarDataPrototype

VariableDataPrototype

DataInterface

SenderReceiverInterface

InternalBehavior

SwcInternalBehavior

������������	
 ����

�����������	��	���� �

��������������

«instanceRef»

+data

0..1

+dataElement

0..*

«atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»

+event

0..*

+startOnEvent

0..1

Figure 7.26: DataReceiveErrorEvent references a Runnable and a VariableDataPrototype

[TPS_SWCT_01341] DataReceiveErrorEvent is directly associated with the
corresponding VariableDataPrototype dThe DataReceiveErrorEvent is di-
rectly associated with the corresponding VariableDataPrototype and references
the RunnableEntity that is activated due to the occurrence of this RTEEvent.c(RS_-
SWCT_00200)

This aspect is depicted in Figure 7.26.

599 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

7.5.2 RunnableEntities and Client Server Communication

7.5.2.1 Invoking an Operation

[TPS_SWCT_01342] Invocation of a server operation dA RunnableEntity in-
vokes a server operation formally defined as a ClientServerOperation via an
RPortPrototype of the enclosing SwComponentPrototype typed by a particular
AtomicSwComponentType.c(RS_SWCT_00200)

[TPS_SWCT_01343] Synchronous vs. asynchronous invocation dA
ClientServerOperation itself can be invoked either “synchronously” or “asyn-
chronously”.c(RS_SWCT_00200)

In the majority of cases the ClientServerOperation will be invoked at a dif-
ferent SwComponentPrototype but in general it would be possible to invoke a
ClientServerOperation on the same SwComponentPrototype as well.

The decision whether a specific ClientServerOperation is called synchronously
or asynchronously needs to be specified in the formal description of the corresponding
AtomicSwComponentType, namely in the context of an SwcInternalBehavior
(see Figure 7.27 for more details).

But it is not supported to invoke the same instance of a ClientServerOperation
synchronously and asynchronously together.

[constr_2022] Mutually exclusive use of SynchronousServerCallPoints and
AsynchronousServerCallPoints dA ClientServerOperation of a particu-
lar RPortPrototype shall be mutually exclusive referenced by either a Syn-
chronousServerCallPoints or an AsynchronousServerCallPoints at the
time when the contract phase generation is executed.c()

[constr_1775] Value of attribute serverCallPoint.returnValueProvision dAll
RunnableEntity.serverCallPoint that refer to the same operation shall de-
fine the identical value of attribute returnValueProvision at the time when
the contract phase generation is executed.c()

Rationale for the existence of [constr_1775]: different RunnableEntitys could ag-
gregate ServerCallPoint with a different configuration of attribute returnValue-
Provision.

However, in such a case it would not be possible to generate the corresponding RTE
API because the API exists once per software-component and it is therefore indispens-
able to have all affected ServerCallPoints agree on the configuration of attribute
returnValueProvision.

This relation is exemplarily (for the case of dataSendPoint.returnValueProvi-
sion) sketched in Figure 7.21.

[constr_2023] Consistency of timeout values dThe timeout values of all
ServerCallPoints referencing the same instance of ClientServerOperation

600 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

in a RPortPrototype shall be identical at the time when the RTE is gen-
erated.c()

[TPS_SWCT_01345] Synchronous operation invocation dIn case of a syn-
chronous operation invocation the particular RunnableEntity merely needs a Syn-
chronousServerCallPoint.c(RS_SWCT_00200)

More information can be found in Figure 7.27.

AbstractAccessPoint
AtpStructureElement

Identifiable

ServerCallPoint

+ timeout: TimeValue [0..1]

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

SynchronousServerCallPoint AsynchronousServerCallPoint
AbstractEvent

AtpStructureElement

RTEEvent

AsynchronousServerCallReturnsEvent

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart:
HandleTerminationAndRestartEnum [0..1]

+ supportsMultipleInstantiation: Boolean [0..1]

SwComponentType

AtomicSwComponentType

AbstractAccessPoint
AtpStructureElement

Identifiable

AsynchronousServerCallResultPoint

������������	
 ����

�����������������	����

� � ��

�����������	��	���� �

��������������

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������������	����

� � ��

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+internalBehavior

0..1

+eventSource

0..1

«atpVariation,atpSplitable»

+serverCallPoint

0..*

«atpVariation,atpSplitable»

+asynchronousServerCallResultPoint 0..*

«atpVariation,atpSplitable»

+event 0..*

+asynchronousServerCallPoint 0..1

+startOnEvent 0..1

«instanceRef»

+operation 0..1

«atpVariation,atpSplitable»

+runnable 0..*

Figure 7.27: Model of a server call point.

[TPS_SWCT_01346] Asynchronous operation invocation dAsynchronous invoca-
tion is a bit more complex because it is necessary to specify how to respond to a
notification about the completion of the corresponding operation.

This is done using the generic RTEEvent mechanism: the notification about an
asynchronously executed operation having completed is implemented as an Asyn-
chronousServerCallReturnsEvent.

Therefore, if an AsynchronousServerCallReturnsEvent is raised the RTE can
either trigger the execution of a specific RunnableEntity or the AtomicSwCom-
ponentType can implement a WaitPoint that blocks the execution of the calling
RunnableEntity until the AsynchronousServerCallReturnsEvent is recog-
nized.c(RS_SWCT_00200)

For example, let’s consider the case of an asynchronous call to a remote operation
where the RTE is supposed to trigger a specific RunnableEntity when the opera-
tion completes. The description of the corresponding AtomicSwComponentType would
typically contain the following elements:

601 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

1. The AtomicSwComponentType contains an RPortPrototype ‘myPort’ typed
by a PortInterface that in turn contains the definition of an ClientServer-
Operation ‘remoteOperation’.

2. The AtomicSwComponentType’s SwcInternalBehavior contains at least
two RunnableEntitys: the RunnableEntity ‘main’ is supposed to invoke
the operation; the RunnableEntity ‘callback’ is the one that should be called
when the operation completes.

3. The description of the RunnableEntity ‘main’ contains an Asyn-
chronousServerCallPoint ‘invokeMyOperation’ referencing the respective
ClientServerOperation in the PortInterface used to type the PortPro-
totype ‘myPort’. This implies that the RunnableEntity is allowed to invoke
this operation asynchronously.

4. The description of the RunnableEntity ‘callback’ contains an Asyn-
chronousServerCallResultPoint ‘fetchMyOperationResults’ referencing
the respective AsynchronousServerCallPoint ‘invokeMyOperation’. This
implies that the RunnableEntity is allowed to fetch the results of the asyn-
chronously invoked operation.

5. The description of the SwcInternalBehavior includes an Asyn-
chronousServerCallReturnsEvent ‘myOperationReturns’ which refer-
ences the previously defined AsynchronousServerCallResultPoint
‘fetchMyOperationResults’

6. The description of the AsynchronousServerCallReturnsEvent ‘myOper-
ationReturns’ references the RunnableEntity ‘callback’, indicating that the
RTE should trigger the execution of this Runnable when ‘myOperationReturns’
is raised.

[constr_1776] Value of attribute asynchronousServerCallResultPoint.re-
turnValueProvision dAll RunnableEntity.asynchronousServerCallRe-
sultPoint that refer to the same AsynchronousServerCallPoint.operation
shall define the identical value of attribute returnValueProvision at the time
when the contract phase generation is executed.c()

Rationale for the existence of [constr_1776]: different RunnableEntitys could ag-
gregate AsynchronousServerCallResultPoint with a different configuration of
attribute returnValueProvision.

However, in such a case it would not be possible to generate the corresponding RTE
API because the API exists once per software-component and it is therefore indis-
pensable to have all affected AsynchronousServerCallResultPoints agree on
the configuration of attribute returnValueProvision.

This relation is exemplarily (for the case of dataSendPoint.returnValueProvi-
sion) sketched in Figure 7.21.

602 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ServerCallPoint (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall

Note If a RunnableEntity owns a ServerCallPoint it is entitled to invoke a particular ClientServerOperation of a
specific RPortPrototype of the corresponding AtomicSwComponentType

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Subclasses AsynchronousServerCallPoint, SynchronousServerCallPoint

Attribute Type Mult. Kind Note

operation ClientServerOperation 0..1 iref The operation that is called by this runnable.

InstanceRef implemented by:ROperationInAtomicSwc
InstanceRef

timeout TimeValue 0..1 attr Time in seconds before the server call times out and
returns with an error message. It depends on the call type
(synchronous or asynchronous) how this is reported.

Table 7.37: ServerCallPoint

[constr_1955] Existence of attribute ServerCallPoint.operation dFor each
ServerCallPoint, attribute operation shall exist at the time when the
contract phase generation is executed.c()

[constr_1956] Existence of attribute ServerCallPoint.timeout dFor each
ServerCallPoint, attribute timeout shall exist at the time when the RTE
is generated.c()

Class SynchronousServerCallPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall

Note This means that the RunnableEntity is supposed to perform a blocking wait for a response from the
server.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable, ServerCallPoint

Attribute Type Mult. Kind Note

calledFrom
WithinExclusive
Area

ExclusiveAreaNesting
Order

0..1 ref This indicates that the call point is located at the deepest
level inside one or more ExclusiveAreas that are nested
in the given order.

Table 7.38: SynchronousServerCallPoint

[constr_1957] Existence of attribute AsynchronousServerCallResultPoint.
asynchronousServerCallPoint dFor each AsynchronousServerCallRe-
sultPoint, the reference to AsynchronousServerCallPoint in the role asyn-
chronousServerCallPoint shall exist at the time when the contract
phase generation is executed.c()

Class AsynchronousServerCallPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall

5

603 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class AsynchronousServerCallPoint

Note An AsynchronousServerCallPoint is used for asynchronous invocation of a ClientServerOperation.

IMPORTANT: a ServerCallPoint cannot be used concurrently. Once the client RunnableEntity has made
the invocation, the ServerCallPoint cannot be used until the call returns (or an error occurs!) at which
point the ServerCallPoint becomes available again.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable, ServerCallPoint

Attribute Type Mult. Kind Note

– – – – –

Table 7.39: AsynchronousServerCallPoint

Class AsynchronousServerCallResultPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall

Note If a RunnableEntity owns a AsynchronousServerCallResultPoint it is entitled to get the result of the
referenced AsynchronousServerCallPoint. If it is associated with AsynchronousServerCallReturnsEvent,
this RTEEvent notifies the completion of the required ClientServerOperation or a timeout. The
occurrence of this event can either unblock a WaitPoint or can lead to the invocation of a RunnableEntity.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

asynchronous
ServerCallPoint

AsynchronousServer
CallPoint

0..1 ref The referenced Asynchronous Server Call Point defines
the asynchronous server call from which the results are
returned.

Table 7.40: AsynchronousServerCallResultPoint

[constr_2006] Number of AsynchronousServerCallResultPoint referenc-
ing to one AsynchronousServerCallPoint dThe AsynchronousServer-
CallPoint may be referenced by at most one AsynchronousServerCallRe-
sultPoint at the time when the contract phase generation is ex-
ecuted.

If the reference exists, this means that only the RunnableEntity with this Asyn-
chronousServerCallResultPoint can fetch the result of the asynchronous
server invocation of this particular AsynchronousServerCallPoint.c()

Please note that if an AsynchronousServerCallPoint is not referenced by an
AsynchronousServerCallResultPoint this means that there is no operation re-
sult to fetch or the caller is not interested in the result.

This information might be used by the RTE generator to optimize the data consistency
mechanisms.

[TPS_SWCT_01347] Blocking access to operation result in an asynchronous
operation invocation dIf the call of the RTE fetching the operations results
shall block until the server returns, the RunnableEntity with the Asyn-
chronousServerCallResultPoint needs additional a WaitPoint referencing
the AsynchronousServerCallReturnsEvent which is associated with the Asyn-
chronousServerCallResultPoint representing the operations results access.

604 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In this case the AsynchronousServerCallReturnsEvent shall not define a star-
tOnEvent reference to a RunnableEntity.c(RS_SWCT_00200)

[constr_2030] AsynchronousServerCallResultPoint combined with Wait-
Point shall belong to the same RunnableEntity dA WaitPoint referencing a
AsynchronousServerCallReturnsEvent as well as a AsynchronousServer-
CallResultPoint referenced by said AsynchronousServerCallReturnsEv-
ent shall be aggregated by the same RunnableEntity at the time when the
contract phase generation is executed.c()

[constr_1521] Reference from AsynchronousServerCallReturnsEvent to
AsynchronousServerCallResultPoint dIn the context of a RunnableEntity,
a given AsynchronousServerCallResultPoint shall only be referenced by
one AsynchronousServerCallReturnsEvent in the role eventSource at the
time when the contract phase generation is executed.c()

7.5.2.2 Providing an Implementation of an Operation

A software-component can define an OperationInvokedEvent for each opera-
tion inside one of the server AbstractProvidedPortPrototypes. This way a
RunnableEntity may respond to such an invocation through the generic event han-
dling mechanisms described above (as formally expressed in Figure 7.28).

OperationInvokedEvent

AbstractEvent
AtpStructureElement

RTEEvent

AtpStructureElement
ExecutableEntity

RunnableEntity

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

PPortPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior ClientServerInterface
AtpStructureElement

Identifiable

ClientServerOperation

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������������	����� � ��

�����������	��	���� � �������	� ��������	����

AbstractProvidedPortPrototype

«atpVariation,atpSplitable»

+event 0..*

+startOnEvent

0..1

«atpVariation,atpSplitable»

+internalBehavior 0..1

«instanceRef»

+operation 0..1

«atpVariation,atpSplitable»

+port

0..*

«atpVariation»

+operation

0..*

«isOfType»
+providedInterface

0..1
{redefines atpType}

«atpVariation,atpSplitable»

+runnable 0..*

Figure 7.28: The OperationInvokedEvent references the operation that was called by
a client.

605 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

7.5.2.3 Reacting on Data Transformation Errors

[TPS_SWCT_01624] Hard error occurs during the execution of a transformer
chain dIf a hard error occurs during the execution of a transformer chain which is
executed

• on the server side of a client/server communication and re-transforms the data
which trigger a server RunnableEntity or

• on the trigger sink side of an inter-ECU external trigger communication,

this server RunnableEntity or trigger sink RunnableEntity cannot be started be-
cause the re-transformed data are not available.c(RS_SWCT_03222)

This might be a problem for the software-component if the software-component wants
to react on transformer errors.

[TPS_SWCT_01616] Semantics of TransformerHardErrorEvent dA software-
component can define a TransformerHardErrorEvent

• for each ClientServerOperation inside one of the server PPortProto-
types (i.e. typed by a ClientServerInterface) or

• for each Trigger in trigger sink RPortPrototypes (i.e. typed by a Trigger-
Interface).

This way, a given RunnableEntity may define its response to a transformer error.c
(RS_SWCT_03222)

7.5.3 RunnableEntities and External Trigger Event Communication

7.5.3.1 Trigger Source

[TPS_SWCT_01348] Trigger source dA RunnableEntity of the triggering software-
component raises an external trigger event via an AbstractProvidedPortPro-
totype of the enclosing SwComponentPrototype typed by a particular Atomic-
SwComponentType.

For this purpose the particular RunnableEntity needs an ExternalTriggering-
Point that references the particular instance of the trigger in a PPortPrototype.c
(RS_SWCT_00200)

[constr_1777] Value of attribute externalTriggeringPoint.returnValue-
Provision dAll RunnableEntity.externalTriggeringPoint that refer to the
same trigger shall define the identical value of attribute returnValueProvision
at the time when the contract phase generation is executed.c()

Rationale for the existence of [constr_1777]: different RunnableEntitys could ag-
gregate ExternalTriggeringPoints with a different configuration of attribute re-
turnValueProvision.

606 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

However, in such a case it would not be possible to generate the corresponding RTE
API because the API exists once per software-component and it is therefore indispens-
able to have all affected ExternalTriggeringPoints agree on the configuration of
attribute returnValueProvision.

This relation is exemplarily (for the case of dataSendPoint.returnValueProvi-
sion) sketched in Figure 7.21.

ExternalTriggeringPoint
AtpStructureElement

ExecutableEntity

RunnableEntity

AtpBlueprintable
AtpPrototype

PortPrototype

AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

InternalBehavior

SwcInternalBehavior

AtpStructureElement
Identifiable

Trigger

TriggerInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

������������	
 ����

�����������	��	���� �

��������������

PPortPrototype

AbstractProvidedPortPrototype

«instanceRef»

+trigger 0..1

«atpVariation,atpSplitable»

+runnable

0..*
«atpVariation,atpSplitable»

+externalTriggeringPoint

0..*

«atpVariation,atpSplitable»

+port

0..*

«atpVariation,atpSplitable»

+internalBehavior0..1

+trigger

0..*

«isOfType»

+providedInterface

0..1
{redefines atpType}

Figure 7.29: Model structure of a trigger source.

Class ExternalTriggeringPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Trigger

Note If a RunnableEntity owns an ExternalTriggeringPoint it is entitled to raise an ExternalTriggerOccurred
Event.

Base ARObject

Attribute Type Mult. Kind Note

ident ExternalTriggeringPoint
Ident

0..1 aggr The aggregation in the role ident provides the ability to
make the ExternalTriggeringPoint identifiable.

From the semantical point of view, the ExternalTriggering
Point is considered a first-class Identifiable and therefore
the aggregation in the role ident shall always exist (until it
may be possible to let ModeAccessPoint directly inherit
from Identifiable).

Stereotypes: atpIdentityContributor
Tags:xml.sequenceOffset=-100

trigger Trigger 0..1 iref The trigger taken for the ExternalTriggeringPoint.

Tags:
xml.namePlural=TRIGGER-IREF
xml.roleElement=false
xml.roleWrapperElement=true
xml.typeElement=true
xml.typeWrapperElement=false
InstanceRef implemented by:PTriggerInAtomicSwcType
InstanceRef

Table 7.41: ExternalTriggeringPoint

607 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

7.5.3.2 Trigger Sink

The activation of RunnableEntitys in the trigger sink is effected through the generic
event handling mechanism.

ExternalTriggerOccurredEvent
AtpStructureElement

ExecutableEntity

RunnableEntity

AbstractEvent
AtpStructureElement

RTEEvent

AtpBlueprintable
AtpPrototype

PortPrototype

RPortPrototype

AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

InternalBehavior

SwcInternalBehavior

AtpStructureElement
Identifiable

Trigger

TriggerInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface
������������	
 ����

�����������	��	���� �

��������������

AbstractRequiredPortPrototype

«atpVariation,atpSplitable»

+event

0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

«isOfType»

+requiredInterface

0..1
{redefines
atpType}

+startOnEvent 0..1

«atpVariation,atpSplitable»

+runnable

0..*

+trigger 0..*

«atpVariation,atpSplitable»

+port

0..*

«instanceRef»
+trigger 0..1

Figure 7.30: Model structure of a trigger sink

[TPS_SWCT_01349] Trigger sink dThe fact that a RunnableEntity shall be ac-
tivated on occurrence of an external trigger event is formally defined by means of
ExternalTriggerOccurredEvent that references a particular instance of the trig-
ger in a RPortPrototype and additionally the RunnableEntity to be executed in
response to the event.c(RS_SWCT_00200)

7.5.4 RunnableEntities and Parameter Access

There are several ways a Calibration Parameter is provided within a software compo-
nent.

[TPS_SWCT_01350] Calibration Parameters shared among several SwCompo-
nentTypes dAs mentioned above, if Calibration Parameters are shared among sev-
eral SwComponentTypes a dedicated PortInterface in a PortPrototype will be
used.c(RS_SWCT_00200)

The designer of a software-component can use this access mechanism when design-
ing a RunnableEntity using, as input value, a DataPrototype

• from an arbitrary RPortPrototype associated with a ClientServerInter-
face, SenderReceiverInterface or a NvDataInterface,

• VariableDataPrototype in the context of an SwcInternalBehavior

This input value will be fed to an interpolation routine whose result can be used in-
ternally or transferred to an adjacent SwComponentPrototype via dedicated Port-
Prototypes.

608 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpStructureElement
ExecutableEntity

RunnableEntity

AtomicSwComponentType

«atpVariation»
SwDataDefProps

InternalBehavior

SwcInternalBehavior

AbstractAccessPoint
AtpStructureElement

Identifiable

ParameterAccess

AutosarParameterRef

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AbstractRequiredPortPrototype

RPortPrototype

SwVariableRefProxy

AutosarVariableRef

������������	
 ����

�����������	��	���� � ��������������

SwCalprmAxisSet

SwCalprmAxis

SwCalprmAxisTypeProps

SwAxisIndividual

AtpPrototype

DataPrototype

�������������� ����� �� ����� �� �

����������	����� �� ��� ��� ���

!������������ �� ��������� � �"���� �

���������!�������������

������������	
 ����

�����������	��	���� �

��������������

+localParameter 0..1

+swComparisonVariable 0..*

«atpVariation,atpSplitable»

+parameterAccess 0..*

+autosarVariable 0..1

+swCalprmAxisSet 0..1

«atpVariation,atpSplitable»

+runnable 0..*

+swDataDefProps

0..1

«atpVariation,atpSplitable»

+internalBehavior 0..1

+swCalprmAxis 0..*

«instanceRef»

+autosarParameter 0..1

+accessedParameter 0..1

+swVariableRef

0..*
{ordered}

+swCalprmAxisTypeProps 0..1

Figure 7.31: Runnable Access to a Calibration Port

Typically, there will be a dedicated RunnableEntity (with “ReceiveMode” set to “acti-
vation_of_runnable_entity”) that itself calls the interpolation routine with the appropriate
input value and the appropriate ParameterDataPrototype.

Note that the ParameterAccess also allows to set input values or shared axis through
SwDataDefProps which are specific to the access point.

The result of this interpolation routine call is provided as an ArgumentDataProto-
type with direction being either set to out or inout in a ClientServerInter-
face.

Class ParameterAccess
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements

Note The presence of a ParameterAccess implies that a RunnableEntity needs access to a ParameterData
Prototype.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

accessed
Parameter

AutosarParameterRef 0..1 aggr Reference to the accessed calibration parameter.

swDataDef
Props

SwDataDefProps 0..1 aggr This allows denote instance and access specific
properties, mainly input values and common axis.

Table 7.42: ParameterAccess

609 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1958] Existence of attribute ParameterAccess.accessedParameter
dFor each ParameterAccess, attribute accessedParameter shall exist at the
time when the contract phase generation is executed.c()

[TPS_SWCT_01351] Access to a ParameterDataPrototype dThe access to a
ParameterDataPrototype will be indicated

• by the ParameterAccess entity if the RunnableEntity wants to access it
from a RPortPrototype.

• by defining the ParameterAccess association from a RunnableEntity to the
ParameterDataPrototype in the roles sharedParameter or perInstan-
ceParameter.

c(RS_SWCT_00200)

Please find more information about the topic of [TPS_SWCT_01351] in Figure 7.31 as
well as in Figure 2.3 in the lower association from RunnableEntity to Parameter-
DataPrototype

Note: A ParameterDataPrototype in the roles constantMemory is not provided
by the RTE and therefore the ParameterAccess association is not required to control
the RTE API generation.

7.5.4.1 InstantiationDataDefProps

Typically, the accessibility and further information like alias names for a particular piece
of data is modeled on the level of DataPrototypes (especially VariableDataPro-
totypes, ParameterDataPrototypes).

But due to the recursive structure of the meta-model concerning data types (an Appli-
cationCompositeDataType consists of DataPrototypes), a part of the relevant
MCD information is described directly in the data type (in case of a Application-
CompositeDataType).

This is a strong restriction in the re-use of data types because the ApplicationCom-
positeDataType should be re-used for different VariableDataPrototypes and
ParameterDataPrototypes to guarantee type compatibility on C-implementation
level (e.g. data of a PortPrototype is stored in a PIM or a ParameterDataPro-
totype used as ROM Block and shall be typed by the same data type as NVRAM
Block).

This restriction is overcome by InstantiationDataDefProps as shown in figure
7.32

610 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

InstantiationDataDefProps

«atpVariation»
SwDataDefProps

+ additionalNativeTypeQualifier: NativeDeclarationString [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ displayPresentation: DisplayPresentationEnum [0..1]
+ stepSize: Float [0..1]
+ swAlignment: AlignmentType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: Numerical [0..1]
+ swInterpolationMethod: Identifier [0..1]
+ swIsVirtual: Boolean [0..1]

«atpVariation»
+ swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..*] {ordered}

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

������������	
 ����

�����������	��	���� �

��������������

AutosarVariableRef

AutosarParameterRef
AtpPrototype

DataPrototype���

«atpVariation,atpSplitable»

+instantiationDataDefProps0..*

+swDataDefProps

0..1

+variableInstance0..1

«instanceRef»

+autosarVariable

0..1

+localParameter

0..1

«instanceRef»

+autosarParameter

0..1

+parameterInstance 0..1

Figure 7.32: applying instantiation specific data definition properties

.

Class InstantiationDataDefProps

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::InstantiationDataDefProps

Note This is a general class allowing to apply additional SwDataDefProps to particular instantiations of a Data
Prototype.

Typically the accessibility and further information like alias names for a particular data is modeled on the
level of DataPrototypes (especially VariableDataPrototypes, ParameterDataPrototypes). But due to the
recursive structure of the meta-model concerning data types (a composite (data) type consists out of
data prototypes) a part of the MCD information is described in the data type (in case of Application
CompositeDataType).

This is a strong restriction in the reuse of data typed because the data type should be re-used for
different VariableDataPrototypes and ParameterDataPrototypes to guarantee type compatibility on
C-implementation level (e.g. data of a Port is stored in PIM or a ParameterDataPrototype used as ROM
Block and shall be typed by the same data type as NVRAM Block).

This class overcomes such a restriction if applied properly.

Base ARObject

Attribute Type Mult. Kind Note

parameter
Instance

AutosarParameterRef 0..1 aggr This is the particular ParameterDataPrototypes on which
the swDataDefProps shall be applied.

swDataDef
Props

SwDataDefProps 0..1 aggr These are the particular data definition properties which
shall be applied

variableInstance AutosarVariableRef 0..1 aggr This is the particular VariableDataPrototypes on which
the swDataDefProps shall be applied.

Table 7.43: InstantiationDataDefProps

[constr_1959] Existence of attribute InstantiationDataDefProps.sw-
DataDefProps dFor each InstantiationDataDefProps, attribute swDataDef-
Props shall exist at the time when the contract phase generation is
executed.c()

611 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

7.5.5 RunnableEntities and Mode Communication

For the communication of modes between RunnableEntitys we have to distinguish
between two use cases.

[TPS_SWCT_01352] Requested mode is just sent and received as an ordinary
data value dIn the first case, a requested mode is just sent and received as an ordinary
data value without specifying the details of mode switching in the corresponding port
interface.

This mechanism is used if the receiving RunnableEntity is not directly implementing
a mode switch but does further processing of the mode request. This is especially
needed to transfer mode requests between ECUs.

In this case, the mode is transferred via sender-receiver communication so that the
involved RunnableEntitys just need the same type of APIs against the RTE as for
sender-receiver communication.

This is possible, because ModeDeclarationGroupPrototypes can be mapped to
an ImplementationDataTypes.c(RS_SWCT_00200)

This concept and the meta-classes needed for the mapping are further explained in
chapter 4.2.5.

[TPS_SWCT_01353] RunnableEntitys react on a mode request via a corre-
sponding RTEEvent dIn the second case, one RunnableEntity “sends” a mode
request and one or more other RunnableEntitys react on the request via a corre-
sponding RTEEvent or by being suppressed from being triggered any longer by other
RTEEvents.

In this case, special APIs against the RTE are required and the RTE has to implement
the actual mode switch. This kind of communication is only possible between software-
components on the same ECU.c(RS_SWCT_00200, RS_SWCT_03202)

For further explanation of the general concept refer to chapter 4.2.5 and for the details
of the meta-model for mode switches refer to chapter 9.

7.6 Port API Options

[TPS_SWCT_01354] PortAPIOption dThe RTE Generator needs additional options
per PortPrototype to choose the proper generation schema. These are subsumed
in the PortAPIOption element.c(RS_SWCT_03040)

Please note that meta-class PortAPIOption is depicted in Figure 7.33.

612 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class PortAPIOption

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note Options how to generate the signatures of calls for an AtomicSwComponentType in order to
communicate over a PortPrototype (for calls into a RunnableEntity as well as for calls from a Runnable
Entity to the PortPrototype).

Base ARObject

Attribute Type Mult. Kind Note

enableTake
Address

Boolean 0..1 attr If set to true, the software-component is able to use the
API reference for deriving a pointer to an object.

errorHandling DataTransformation
ErrorHandlingEnum

0..1 attr This specifies whether a RunnableEntity accessing a Port
Prototype that is referenced by this PortAPIOption shall
specifically handle transformer errors or not.

indirectAPI Boolean 0..1 attr If set to true this attribute specifies an "indirect API" to be
generated for the associated port which means that the
software-component is able to access the actions on a
port via a pointer to an object representing a port. This
allows e.g. iterating over ports in a loop. This option has
no effect for PPortPrototypes of client/server interfaces.

port PortPrototype 0..1 ref The option is valid for generated functions related to
communication over this port

portArgValue
(ordered)

PortDefinedArgument
Value

* aggr An argument value defined by this port.

supported
Feature

SwcSupportedFeature * aggr This collection specifies which features are supported by
the RunnableEntitys which access a PortPrototype that it
referenced by this PortAPIOption.

transformer
Status
Forwarding

DataTransformation
StatusForwardingEnum

0..1 attr This specifies whether a RunnableEntity accessing a Port
Prototype that is referenced by this PortAPIOption shall
be able to forward a status to the transformer chain.

Table 7.44: PortAPIOption

InternalBehavior

SwcInternalBehavior

PortAPIOption

+ enableTakeAddress: Boolean [0..1]
+ errorHandling: DataTransformationErrorHandlingEnum [0..1]
+ indirectAPI: Boolean [0..1]
+ transformerStatusForwarding: DataTransformationStatusForwardingEnum [0..1]

AtpBlueprintable
AtpPrototype

PortPrototype

PortDefinedArgumentValue

ValueSpecification

+ shortLabel: Identifier [0..1]

������������	
 ����

�����������	��	���� �

��������������

AbstractImplementationDataType

ImplementationDataType

+ dynamicArraySizeProfi le: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

«enumeration»
DataTransformationErrorHandlingEnum

 noTransformerErrorHandling
 transformerErrorHandling

SwcSupportedFeature

CommunicationBufferLocking

+ supportBufferLocking: SupportBufferLockingEnum [0..1]

«enumeration»
SupportBufferLockingEnum

 supportsBufferLocking
 doesNotSupportBufferLocking

«enumeration»
DataTransformationStatusForwardingEnum

 noTransformerStatusForwarding
 transformerStatusForwarding

+value 0..1

+port

0..1

+portArgValue 0..* {ordered}+supportedFeature0..*

«atpVariation,atpSplitable»

+portAPIOption 0..*

«isOfType»

+valueType

0..1

Figure 7.33: Port API Options.

[constr_1960] Existence of attribute PortAPIOption.port dFor each PortA-
PIOption, attribute port shall exist at the time when the contract phase
generation is executed.c()

613 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01626] Error notification of data transformer errors dIf the attribute
PortAPIOption.errorHandling is set to transformerErrorHandling then all
RunnableEntitys accessing the PortPrototype referenced by port shall handle
the extended transformer error notification.c(RS_SWCT_03222, RS_SWCT_03221)

[TPS_SWCT_03500] Status forwarding to data transformer dIf the attribute PortA-
PIOption.transformerStatusForwarding is set to transformerStatusFor-
warding then all RunnableEntitys accessing the PortPrototype referenced by
port shall provide the to be forwarded transformer status.c(RS_SWCT_03040, RS_-
SWCT_03221)

Enumeration DataTransformationErrorHandlingEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note This enumeration defines different ways how a RunnableEntity shall handle transformer errors.

Literal Description

noTransformerError
Handling

A runnable does not handle transformer errors.

Tags:atp.EnumerationLiteralIndex=0

transformerError
Handling

The runnable implements the handling of transformer errors.

Tags:atp.EnumerationLiteralIndex=1

Table 7.45: DataTransformationErrorHandlingEnum

[TPS_SWCT_03501] Applicability of status forwarding to data transformer dThe
attribute PortAPIOption.transformerStatusForwarding shall only be set to
transformerStatusForwarding if the transported data is originating from a trans-
formed source and is not altered.c(RS_SWCT_03040, RS_SWCT_03221)

The restriction of [TPS_SWCT_03501] is especially necessary in case of E2E pro-
tected data routing where the source of the data is received with a transformer error
using PortAPIOption.errorHandling = transformerErrorHandling.

Enumeration DataTransformationStatusForwardingEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note This enumeration defines different ways how a RunnableEntity shall be able to forward status into the
transformer chain.

Literal Description

noTransformer
StatusForwarding

The runnable is not able to forward a transformer status.

Tags:atp.EnumerationLiteralIndex=0

transformerStatus
Forwarding

The runnable is able to forward a transformer status.

Tags:atp.EnumerationLiteralIndex=1

Table 7.46: DataTransformationStatusForwardingEnum

7.6.1 Enable to Take Address

[TPS_SWCT_01355] enableTakeAddress = true dIf the attribute enableTakeAd-
dress = true the generated API functions related to this PortPrototype shall be

614 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

implemented by means of true/native C functions (as opposed to function-like prepro-
cessor macros) so that it is possible to access the API functions via their address (by
means of function-pointers).c(RS_SWCT_03040)

The main focus of the feature is support for configuration of AUTOSAR Services which
are limited to single instances.

[constr_2024] enableTakeAddress is restricted to single instantiation dThe def-
inition of a PortAPIOption with enableTakeAddress set to true is only permit-
ted for software-components where the attribute SwcInternalBehavior.support-
sMultipleInstantiation is set to false at the time when the contract
phase generation is executed.c()

7.6.2 Indirect API Generation

[TPS_SWCT_01356] indirectAPI option switches the generation of the RTE’s
indirect API functionality dThe indirectAPI option switches the generation of the
RTE’s indirect API functionality for a certain PortPrototype. The generated indirect
API does allow iterating over ports within the SW-Component.c(RS_SWCT_03040)

7.6.3 Port Defined Argument Value

[TPS_SWCT_01357] Definition of implicit values that are passed by the RTE to
the server’s entry point dIn addition to the formal parameters of a client/server invo-
cation that are defined as part of the server’s PortInterface, it is possible to specify
a number of implicit values that are passed by the RTE to the server’s entry point.c
(RS_SWCT_03040)

The initial need for this feature arises in the context of basic software services - al-
though it is not limited to those.

For a service like the NVRAM manager, every accessing port is in addition to its logical
identity - as a sequence of shortNames - uniquely identified through a NVRAM specific
memory block id. This block id shall be defined in the context of ECU integration and
not by the client components.

Instead of exposing this mechanism on the logical ClientServerInterface level
in form of a formal argument, one or more PortDefinedArgumentValues can be
specified.

[TPS_SWCT_01358] Values are hidden from the client components dBecause
these values are specified in the context of the provide-port only they are hidden from
the client components keeping their design and code independent of the server com-
ponent details.c(RS_SWCT_03040)

In the example of the NVRAM manager, this allows to define the block id in the context
of ECU integration and not by the client components.

615 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Figure 7.33 shows the meta-model of Port API Options and the portArgValue.

[constr_1150] Usage of valueType for PortDefinedArgumentValue dThe val-
ueType (typically this boils down to integer values used to specify an “id”) associated
with PortDefinedArgumentValue shall be of category VALUE or TYPE_REFER-
ENCE. The latter case is only supported if the value of category of the target data
type is set to VALUE.

This rule shall be imposed at the time when the RTE is generated.c()

In case of a PPortPrototype of the NVRAM example this list would have just one
value of type int8 or int16 holding the memory block id.

[constr_1386] PortDefinedArgumentValue shall only be defined for Ab-
stractProvidedPortPrototype dA PortAPIOption which aggregates at least
one PortDefinedArgumentValue in the role portArgValue shall reference an
AbstractProvidedPortPrototype typed by a ClientServerInterface in the
role port at the time when the RTE is generated.c()

To be clear, this means that PortDefinedArgumentValues may not be used to-
gether with RPortPrototypes.

Class PortDefinedArgumentValue

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note A PortDefinedArgumentValue is passed to a RunnableEntity dealing with the ClientServerOperations
provided by a given PortPrototype. Note that this is restricted to PPortPrototypes of a ClientServer
Interface.

Base ARObject

Attribute Type Mult. Kind Note

value ValueSpecification 0..1 aggr Specifies the actual value.

valueType ImplementationData
Type

0..1 tref The implementation type of this argument value. It should
not be composite type or a pointer.

Stereotypes: isOfType

Table 7.47: PortDefinedArgumentValue

[constr_1961] Existence of attribute PortDefinedArgumentValue.value dFor
each PortDefinedArgumentValue, attribute value shall exist at the time
when the RTE is generated.c()

[constr_1962] Existence of attribute PortDefinedArgumentValue.valueType
dFor each PortDefinedArgumentValue, attribute valueType shall exist at the
time when the RTE is generated.c()

7.6.4 Supported Features

Historically, the PortAPIOption has undergone a number of extensions that usually
ended up in additional primitive or composite attributes.

616 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

As further requests for extensions keep coming in, focus was put on limiting the com-
plexity of the overall modeling of PortAPIOption. In response to this, a new exten-
sion approach has been defined to keep the surroundings of PortAPIOption man-
ageable.

In particular, PortAPIOption aggregates the abstract meta-class SwcSupported-
Feature in the role supportedFeature (see Figure 7.33).

The actual aggregation of supportedFeature will consist of concrete sub-classes of
SwcSupportedFeature.

It will be possible to add further sub-classes of SwcSupportedFeature to add further
functionality without increasing the modeling complexity of PortAPIOption, at the
expense of having to formulate additional constraints.

Class SwcSupportedFeature (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note This meta-class represents a abstract base class for features that can be supported by a RunnableEntity.

Base ARObject

Subclasses CommunicationBufferLocking

Attribute Type Mult. Kind Note

– – – – –

Table 7.48: SwcSupportedFeature

7.6.4.1 Buffer Locking

[TPS_SWCT_01687] Support of locked communication buffers dIf a Communi-
cationBufferLocking where attribute supportBufferLocking is set to value
supportsBufferLocking is aggregated in the role PortAPIOption.supported-
Feature then all RunnableEntitys accessing the enclosing PortPrototype shall
be able to support the return value RTE_E_COM_BUSY.c(RS_SWCT_03040)

[constr_1432] Multiplicity of CommunicationBufferLocking dIn a concrete ag-
gregated set of PortAPIOption.supportedFeature, CommunicationBuffer-
Locking shall exist at most once at the time when the RTE is gener-
ated.c()

Class CommunicationBufferLocking

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note The aggregation of this meta-class specifies that a RunnableEntity supports locked communication
buffers supplied by the RTE. It is able to cope with the error RTE_E_COM_BUSY.

Base ARObject , SwcSupportedFeature

Attribute Type Mult. Kind Note

supportBuffer
Locking

SupportBufferLocking
Enum

0..1 attr This attribute is used to indicate the intended buffer
locking behavior.

Table 7.49: CommunicationBufferLocking

617 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1963] Existence of attribute CommunicationBufferLocking.support-
BufferLocking dFor each CommunicationBufferLocking, attribute support-
BufferLocking shall exist at the time when the RTE is generated.c()

Enumeration SupportBufferLockingEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note This enumeration represents the ability to define the buffer locking behavior.

Literal Description

doesNotSupport
BufferLocking

Buffer locking is not supported.

Tags:atp.EnumerationLiteralIndex=0

supportsBuffer
Locking

Buffer locking is supported.

Tags:atp.EnumerationLiteralIndex=1

Table 7.50: SupportBufferLockingEnum

7.7 PerInstanceMemory

[TPS_SWCT_01359] Private memory per instance dAtomicSwComponentTypes
that support multiple instantiation (attribute supportsMultipleInstantiation ==
true) will typically need a given amount of private memory per instance. It is the re-
sponsibility of the RTE to provide a mechanism with which each instance of an Atom-
icSwComponentType can access its own instance-specific memory.c(RS_SWCT_-
03040)

AtpStructureElement
Identifiable

PerInstanceMemory

+ initValue: String [0..1]
+ type: CIdentifier [0..1]
+ typeDefinition: String [0..1]

PerInstanceMemorySize

+ alignment: PositiveInteger [0..1]

«atpVariation»
+ size: PositiveInteger [0..1]

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

VariableDataPrototype

ValueSpecification

+ shortLabel: Identifier [0..1]

������������	
 ����

�����������	��	���� � ��������������

«atpVariation»
SwDataDefProps

DataPrototype

AutosarDataPrototype

ARElement
AtpType

AutosarDataType

������������	
 ����

�����������������	����

� � �����

�����������	��	���� �

��������������

«isOfType»

+type
0..1

{redefines atpType}

«atpVariation,atpSplitable»

+perInstanceMemory 0..*

+swDataDefProps

0..1

+invalidValue 0..1

«atpVariation,atpSplitable»

+arTypedPerInstanceMemory 0..*

+perInstanceMemory0..1

+swDataDefProps 0..1

+initValue 0..1

Figure 7.34: PerInstanceMemory

[TPS_SWCT_01360] Arbitrary number of per-instance memory blocks dAn
AtomicSwComponentType can define an arbitrary number of per-instance memory
blocks.c(RS_SWCT_03040)

618 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01361] attribute supportsMultipleInstantiation == false d
AtomicSwComponentTypes that do not support multiple instantiation (attribute sup-
portsMultipleInstantiation == false) do not necessarily need to use the
PerInstanceMemory: because there will only be a single instance of the Atomic-
SwComponentType on an ECU, the AtomicSwComponentType can use static vari-
ables to store the AtomicSwComponentType’s internal state.

However, the usage of PerInstanceMemory is also allowed in this case.c(RS_-
SWCT_03040)

[TPS_SWCT_01362] Initialization of PerInstanceMemory dNote that the PerIn-
stanceMemory is not initialized by the RTE if no initValue is defined. In this case, it
is the responsibility of the AtomicSwComponentType to initialize the PerInstance-
Memory.c()

7.7.1 PerInstanceMemory typed by “C” Data Types

[TPS_SWCT_01363] PerInstanceMemory typed by “C” Data Types dFor each
such memory block, the software-component description shall provide the name of
the data type (the “C”-type) it needs to store in the memory block in the attribute type.

This attribute allows for the RTE to generate an API function that provides a convenient
and type-safe access to the data item.

In addition, the software-component description shall define the data type in the at-
tribute typeDefinition. This attribute is supposed to contain a C typedef of the
data type in valid C-syntax.c(RS_SWCT_03040)

In other words, this typeDefinition shall be formulated such that it can be included
verbatim in a C header file.

[constr_2007] Consistency of typeDefinition attribute dAll PerInstanceMem-
orys of the same SwcInternalBehavior with identical type attribute shall define
an identical typeDefinition attribute as well.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_01364] Initial value of a PerInstanceMemory typed by “C” Data
Types dThe initValue is a comma separated list which can be used verbatim by the
RTE generator as constant initializer.c()

[TPS_SWCT_01574] PerInstanceMemory.typeDefinition shall not contain a
function pointer dThe attribute PerInstanceMemory.typeDefinition is not al-
lowed to contain a function pointer.c()

Please note that, although [TPS_SWCT_01574] is formulated like a constraint and
the statement that it makes certainly has a constraint-ish nature, there is hardly a

619 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

way to actually enforce the regulation because the content of PerInstanceMemory.
typeDefinition is non-formal (modeled by the non-specific i.e. String).

Therefore, a specification item has been used for the description of the respective
semantics rather than a constraint.

More details on the use of these attributes in the generation of software-component
header-files can be found in the RTE specification [2].

Class PerInstanceMemory

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PerInstanceMemory

Note Defines a ’C’ typed memory-block that needs to be available for each instance of the SW-component.
This is typically only useful if supportsMultipleInstantiation is set to "true" or if the software-component
defines NVRAM access via permanent blocks.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

initValue String 0..1 attr Specifies initial value(s) of the PerInstanceMemory

swDataDef
Props

SwDataDefProps 0..1 aggr This represents the ability to to allocate RAM at specific
memory sections, for example, to support the RAM Block
recovery strategy by mapping to uninitialized RAM.

type CIdentifier 0..1 attr The name of the "C"-type

typeDefinition String 0..1 attr A definition of the type with the syntax of a ’C’ typedef.

Table 7.51: PerInstanceMemory

[constr_1964] Existence of attribute PerInstanceMemory.type dFor each
PerInstanceMemory, attribute type shall exist at the time when the con-
tract phase generation is executed.c()

[constr_1965] Existence of attribute PerInstanceMemory.typeDefinition
dFor each PerInstanceMemory, attribute typeDefinition shall exist at the
time when the contract phase generation is executed.c()

7.7.2 PerInstanceMemory typed by AUTOSAR Data Types

[TPS_SWCT_01365] PerInstanceMemory typed by AUTOSAR Data Types dA
PerInstanceMemory typed with AUTOSAR data types is defined by a Variable-
DataPrototype in the role arTypedPerInstanceMemory.

VariableDataPrototype is derived from DataPrototype which has an associa-
tion to an AutosarDataType.c()

This defines the data type of the AUTOSAR-typed PerInstanceMemory.

[TPS_SWCT_01366] Initial value of a PerInstanceMemory typed by AUTOSAR
Data Types dThe initValue is described with a ValueSpecificationc(RS_-
SWCT_03040)

620 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01367] Typed by AUTOSAR data type vs. typed by C data type
dIn difference to the “C” typed PerInstanceMemory the AUTOSAR-typed PerIn-
stanceMemory is able to define information controlling the visibility in an MCD system
via a SwDataDefProps for the purpose of measurement or defining an input value of
an axis.c(RS_SWCT_03040)

For more information about the relevance for measurement please refer to chapter
5.4.3. The aspect of defining an input value of an axis is explained in chapter 5.4.5.

Note: Due to the use of AutosarDataType the AUTOSAR-typed PerInstanceMem-
ory can not support C++ specific types or pointer types directly.

7.8 Static Memory and Constant Memory

[TPS_SWCT_01368] Describe static and constant memory dStatic memory (formal-
ized by means of InternalBehavior.staticMemory) and constant memory (for-
malized by means of InternalBehavior.constantMemory) can be used whenever
AutosarDataTypes should be used in the implementation of an AtomicSwCompo-
nentType but no involvement of the RTE (for memory allocation and management) is
required.c(RS_SWCT_03040)

This includes special cases of measurement and calibration but also debugging.

[TPS_SWCT_01483] Use static and constant memory to support Measurement
and Calibration dThe information about these characteristic values and variables is
given with the purpose to support Measurement and Calibration and has to be taken
into account for the generation of A2L files.

A proprietary generator shall take care of these data for the purpose of generating
A2L.c(RS_SWCT_03040)

Please note that the topic “measurement and calibration” is discussed in chapter 2.2.

SwcInternalBehavior

AtpStructureElement

InternalBehavior

AutosarDataPrototype

VariableDataPrototype

AutosarDataPrototype

ParameterDataPrototype

������������	
 ����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+constantMemory 0..*

«atpVariation,atpSplitable»

+staticMemory 0..*

Figure 7.35: Static Memory and Constant Memory

[TPS_SWCT_01369] Static and constant memory is not instantiated by the RTE
dIn contrast to the other kinds of memory like implicitInterRunnableVariable,
implicitInterRunnableVariable, PerInstanceMemory, sharedParameter

621 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

or perInstanceParameter the staticMemory and constantMemory are not in-
stantiated by the RTE.c(RS_SWCT_03040)

This allows for more efficient implementations (especially for software-components
provided as object code) by avoidance of the additional indirection caused by the RTE’s
component data structure.

Further on, this kind of memory reduces the dependencies of the software-component
implementation to generated RTE code which is appreciated for safety related func-
tionalities.

Due to the instantiation of the memory by the software-component’s implementation
the constantMemory behaves like a sharedParameter (see chapter 2.2.3.2)

[constr_2028] staticMemory is restricted to single instantiation dThe stat-
icMemory is only supported if the attribute supportsMultipleInstantiation of
the owning SwcInternalBehavior is set to false at the time when the RTE
is generatedc()

This constraint prevents hidden communication between SwComponentPrototypes
of the same SwComponentType.

[constr_2029] shortName of constantMemory and staticMemory dThe short-
Name of a VariableDataPrototype in role staticMemory or a ParameterDat-
aPrototype in role constantMemory has to be equal with the ’C’ identifier of the
described variable or constant.c()

7.9 Included AUTOSAR Data Types

[TPS_SWCT_01155] IncludedDataTypeSet dAn IncludedDataTypeSet de-
clares that a set of AutosarDataTypes are used for the C / C++ implementation
of the software component. The AutosarDataTypes become part of the contract.c
(RS_SWCT_03040)

[TPS_SWCT_01156] Required if the AutosarDataType is not used for any Dat-
aPrototype dThis information is required if the AutosarDataType is not used for
any DataPrototype owned by this software component or if a prefix for C language
identifiers belonging to AutosarDataTypes shall be defined.c(RS_SWCT_03040)

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart:
HandleTerminationAndRestartEnum [0..1]

+ supportsMultipleInstantiation: Boolean [0..1]

ARElement
AtpType

AutosarDataType

IncludedDataTypeSet

+ l iteralPrefix: Identifier [0..1]

«atpSplitable»

+includedDataTypeSet

0..*

+dataType

0..*

Figure 7.36: Included AUTOSAR Data Types

This supports the common usage of the AUTOSAR data type system for RTE provided
memory objects and memory objects declared by the software component implemen-
tation.

622 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Further on, this enables the generation of the RTE Application Types Header File for
AUTOSAR services containing the required data types for the C-API before the data
type usage in dedicated ports for an ECU is known.

Class IncludedDataTypeSet

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::IncludedDataTypes

Note An includedDataTypeSet declares that a set of AutosarDataType is used by a basic software module or a
software component for its implementation and the AutosarDataType becomes part of the contract.

This information is required if the AutosarDataType is not used for any DataPrototype owned by this
software component or if the enumeration literals, lowerLimit and upperLimit constants shall be
generated with a literalPrefix.

The optional literalPrefix is used to add a common prefix on enumeration literals, lowerLimit and upper
Limit constants created by the RTE.

Base ARObject

Attribute Type Mult. Kind Note

dataType AutosarDataType * ref AutosarDataType belonging to the includedDataTypeSet

literalPrefix Identifier 0..1 attr LiteralPrefix defines a common prefix for all AutosarData
Types of the includedDataTypeSet to be added on
enumeration literals, lowerLimit and upperLimit constants
created by the RTE.

Table 7.52: IncludedDataTypeSet

[TPS_SWCT_01157] Attribute literalPrefix of IncludedDataTypeSet dIn ad-
dition, the literalPrefix might be used to separate the namespace of C language
identifiers belonging to equally named AutosarDataTypes used for the same soft-
ware component C implementation.c(RS_SWCT_03040)

7.10 Included Mode Declaration Groups

[TPS_SWCT_01153] IncludedModeDeclarationGroupSet dSimilar to the con-
sideration of data types using IncludedDataTypeSet, SwcInternalBehavior ag-
gregates IncludedModeDeclarationGroupSet that in turn allows for referencing
ModeDeclarationGroups with the intent to express that the referenced ModeDec-
larationGroups are used in the context of the enclosing AtomicSwComponent-
Type.c(RS_SWCT_03040, RS_SWCT_03110)

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart:
HandleTerminationAndRestartEnum [0..1]

+ supportsMultipleInstantiation: Boolean [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

IncludedModeDeclarationGroupSet

+ prefix: Identifier [0..1]

+modeDeclarationGroup 0..*

«atpSplitable»

+includedModeDeclarationGroupSet

0..*

Figure 7.37: Included ModeDeclarationGroups

623 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class IncludedModeDeclarationGroupSet

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ModeDeclarationGroup

Note An IncludedModeDeclarationGroupSet declares that a set of ModeDeclarationGroups used by the
software component for its implementation and consequently these ModeDeclarationGroups become
part of the contract.

Base ARObject

Attribute Type Mult. Kind Note

mode
Declaration
Group

ModeDeclarationGroup * ref This represents the referenced ModeDeclarationGroup.

prefix Identifier 0..1 attr The prefix shall be used by the RTE generator as a prefix
for the creation of symbols related to the referenced
ModeDeclarationGroups, e.g RTE_TRANSITION_<Mode
DeclarationGroup>.

Table 7.53: IncludedModeDeclarationGroupSet

[TPS_SWCT_01154] Attribute prefix of IncludedModeDeclarationGroupSet
dThe optional attribute prefix of IncludedModeDeclarationGroupSet can be
used to define a prefix that the RTE generator shall use to define symbols related to the
included ModeDeclarationGroups with the intent to avoid potential name clashes.c
(RS_SWCT_03040, RS_SWCT_03110)

Rationale: If the attribute prefix is required, changes to software-component source
code may be necessary.

7.11 Service Needs

7.11.1 Overview

[TPS_SWCT_01043] ApplicationSwComponentTypes are independent from ac-
tual ECU Hardware dApplicationSwComponentTypes are designed to be inde-
pendent of their mapping to actual ECU Hardware.c(RS_SWCT_02060)

However, each software-component might need services which are provided by the
ECU Basic Software through AUTOSAR Services.

[TPS_SWCT_01044] ServiceNeeds dThe ServiceNeeds are used to provide de-
tailed information what the software-component expects from the AUTOSAR Services
when integrated on an actual ECU.

Note that only AtomicSwComponentTypes and NvBlockSwComponentTypes can
be connected to AUTOSAR Services.c(RS_SWCT_02060)

Please note that some ServiceNeeds are on display in Figures 7.38, 13.9, 13.6, and
13.11.

[TPS_SWCT_01045] Actual values of ECU configuration parameters fulfill the re-
quirements given by the ServiceNeeds dWhen integrating application software-
components on an ECU, the actual values of ECU configuration parameters shall be

624 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

chosen so that they fulfill the requirements given by the ServiceNeeds of all the inte-
grated AtomicSwComponentTypes.c(RS_SWCT_02060)

Note that the actual values of configuration parameters will in addition depend on the
properties of the basic software and the hardware of that specific ECU, see also chap-
ter 11.

For further information about the relation between the ServiceNeeds and the ECU
configuration parameters see [33].

The meta-class ServiceNeeds and the sub-classes for several Services are located
in the CommonStructure package of the meta-model because they are also used in
the Basic Software Module Description Template [6].

Identifiable

ServiceNeeds

SupervisedEntityNeeds

+ activateAtStart: Boolean [0..1]
+ enableDeactivation: Boolean [0..1]
+ expectedAliveCycle: TimeValue [0..1]
+ maxAliveCycle: TimeValue [0..1]
+ minAliveCycle: TimeValue [0..1]
+ toleratedFailedCycles: PositiveInteger [0..1]

ComMgrUserNeeds

+ maxCommMode: MaxCommModeEnum [0..1]

«enumeration»
MaxCommModeEnum

 none
 silent
 ful l

EcuStateMgrUserNeeds

CryptoServiceNeeds

+ algorithmFamily: String [0..1]
+ algorithmMode: String [0..1]
+ cryptoKeyDescription: String [0..1]
+ maximumKeyLength: PositiveInteger [0..1]

DltUserNeeds

SyncTimeBaseMgrUserNeeds

BswMgrNeeds

DoIpServiceNeeds

VendorSpecificServiceNeeds

GlobalSupervisionNeeds

SecureOnBoardCommunicationNeeds

+ verificationStatusIndicationMode:
VerificationStatusIndicationModeEnum [0..1]

CryptoServiceJobNeeds

«enumeration»
VerificationStatusIndicationModeEnum

 failureOnly
 fai lureAndSuccess

Figure 7.38: Meta-class ServiceNeeds and some of its specializations

The semantics of sub-classes of ServiceNeeds is explained in the respective sub-
chapters of chapter 13.

Class ServiceNeeds (abstract)

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This expresses the abstract needs that a Software Component or Basic Software Module has on the
configuration of an AUTOSAR Service to which it will be connected. "Abstract needs" means that the
model abstracts from the Configuration Parameters of the underlying Basic Software.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

5

625 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ServiceNeeds (abstract)

Subclasses BswMgrNeeds, ComMgrUserNeeds, CryptoKeyManagementNeeds, CryptoServiceJobNeeds, Crypto
ServiceNeeds, DiagnosticCapabilityElement , DltUserNeeds, DoIpServiceNeeds, EcuStateMgrUser
Needs, ErrorTracerNeeds, FunctionInhibitionAvailabilityNeeds, FunctionInhibitionNeeds, Global
SupervisionNeeds, HardwareTestNeeds, IdsMgrCustomTimestampNeeds, IdsMgrNeeds, IndicatorStatus
Needs, J1939DcmDm19Support, J1939RmIncomingRequestServiceNeeds, J1939RmOutgoingRequest
ServiceNeeds, NvBlockNeeds, SecureOnBoardCommunicationNeeds, SupervisedEntityCheckpoint
Needs, SupervisedEntityNeeds, SyncTimeBaseMgrUserNeeds, V2xFacUserNeeds, V2xMUserNeeds,
VendorSpecificServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 7.54: ServiceNeeds

Please note that the vast majority of the subclasses of meta-class ServiceNeeds
are associated with standardized behavior of AUTOSAR services. However, there are
cases where a user-specific behavior is required and for this purpose a specific flavor
of ServiceNeeds is available.

[TPS_SWCT_01693] Usage of VendorSpecificServiceNeeds dIt is possible to
define VendorSpecificServiceNeeds for the purpose of implementing a vendor-
specific, i.e. non-standardized, service. VendorSpecificServiceNeeds does not
provide any attributes and its meaning shall be described by means of the category
attribute.c(RS_SWCT_02060)

Class VendorSpecificServiceNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This represents the ability to define vendor-specific service needs.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 7.55: VendorSpecificServiceNeeds

7.11.2 Assignment of Service Needs to Ports and Data

[TPS_SWCT_01046] ServiceNeeds are defined in the scope of the SwcInter-
nalBehavior dServiceNeeds specified by AtomicSwComponentTypes are de-
fined in the scope of the SwcInternalBehavior because in several cases they need
associations to other parts of the SwcInternalBehavior.

In most cases they are related to certain PortPrototypes belonging to the Atom-
icSwComponentTypes because AtomicSwComponentTypes communicate with
AUTOSAR Services via these PortPrototypes.c(RS_SWCT_02060)

In addition, a ServiceNeeds element can also have relations to some data declared
within the same SwcInternalBehavior, namely some use cases of the NVRAM
Service, require a Permanent RAM Block and/or ROM Block declared in the con-
text of the single software component.

626 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

A further use case requires that a ServiceNeeds element is linked to a PortGroup.
Especially, a ServiceNeeds can represent a group of PortPrototypes as input to
configure the communication manager in order to handle the communication state of
those PortPrototypes.

These relationships to PortPrototypes, data and PortGroups are required as in-
put for tools in order to generate the XML descriptions and configurations of the basic
software which implements the Service according to the needs of several Atomic-
SwComponentTypes are integrated on an ECU, see chapter 11.

The relationship to PortPrototypes is defined via the meta-class RoleBasedPor-
tAssignment and the relationship to data is defined via the meta-class RoleBased-
DataAssignment.

Class RoleBasedPortAssignment

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServiceMapping

Note This class specifies an assignment of a role to a particular service port (RPortPrototype or PPort
Prototype) of an AtomicSwComponentType. With this assignment, the role of the service port can be
mapped to a specific ServiceNeeds element, so that a tool is able to create the correct connector.

Base ARObject

Attribute Type Mult. Kind Note

portPrototype PortPrototype 0..1 ref Service PortPrototype used in the assigned role. This
PortPrototype shall either belong to the same AtomicSw
ComponentType as the SwcInternalBehavior which owns
the ServiceDependency or to the same NvBlockSw
ComponentType as the NvBlockDescriptor.

role Identifier 0..1 attr This is the role of the assigned Port in the given context.

The value shall be a shortName of the Blueprint of a Port
Interface as standardized in the Software Specification of
the related AUTOSAR Service.

Table 7.56: RoleBasedPortAssignment

Both are aggregating an attribute role which allows to define the role of the Port-
Prototypes or data in the specific context.

[constr_2027] SwcServiceDependency shall be defined for service ports only dA
PortPrototype that is referenced by a SwcServiceDependency via assigned-
Port or via assignedData shall be typed by a PortInterface that has isSer-
vice set to true at the time when the RTE is generated.

This rule does not apply to PortPrototypes referenced by a RoleBasedPortAs-
signment where the attribute role is set to any of the following values:

• NvMService

• NvMNotifyJobFinished

• NvMNotifyInitBlock

• NvMAdmin

• NvMMirror

• NvDataPort

627 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Furthermore, the rule does not apply to the case described in [TPS_SWCT_01579],
[TPS_SWCT_01831], [TPS_SWCT_01580], and [TPS_SWCT_01572].c()

AtpStructureElement
Identifiable

SwcServiceDependency

RoleBasedPortAssignment

+ role: Identifier [0..1]

BswServiceDependency

RoleBasedDataAssignment

+ role: Identifier [0..1]

RoleBasedBswModuleEntryAssignment

+ role: Identifier

ServiceDependency

+ diagnosticRelevance: ServiceDiagnosticRelevanceEnum [0..1]

Identifiable

ServiceNeeds

AtpStructureElement
Identifiable

PortGroup

ImplementationProps

SymbolicNameProps

Identifiable

Code

«atpVariation,atpSplitable»

+assignedPort 0..*

«atpVariation»

+assignedData 0..*

+serviceNeeds 1

+symbolicNameProps

0..1

«atpVariation»

+assignedData0..*

+callbackHeader

0..*

+representedPortGroup 0..1 +serviceNeeds0..1

«atpVariation,atpSplitable»

+assignedEntryRole 0..*

Figure 7.39: ServiceDependency is the abstract base class of SwcServiceDependency

The actual mapping between the ServiceNeeds element and its various relationships
is provided by the meta-class SwcServiceDependency as shown in figure 7.40.

Identifiable

ServiceNeeds

RoleBasedPortAssignment

+ role: Identifier [0..1]

AtpBlueprintable
AtpPrototype

PortPrototype

RoleBasedDataAssignment

+ role: Identifier [0..1]

AtpStructureElement
Identifiable

SwcServiceDependency

AtpStructureElement
Identifiable

PortGroup

InternalBehavior

SwcInternalBehavior

AtomicSwComponentType
ARElement

AtpBlueprint
AtpBlueprintable

AtpType

SwComponentType

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� � ��������������

RoleBasedDataTypeAssignment

+ role: Identifier [0..1]

ServiceDependency

+ diagnosticRelevance:
ServiceDiagnosticRelevanceEnum [0..1]

«enumeration»
ServiceDiagnosticRelevanceEnum

 isRelevant
 isNotRelevant

+serviceNeeds0..1
«atpVariation,atpSplitable»

+internalBehavior0..1

+representedPortGroup 0..1

«atpVariation»

+portGroup 0..*

«atpVariation»

+outerPort

0..*

+portPrototype 0..1

«atpVariation,atpSplitable»

+serviceDependency

0..*

«atpVariation»

+assignedData

0..*

«atpVariation,atpSplitable»

+port 0..*

«atpVariation,atpSplitable»

+assignedPort

0..*

«atpVariation»

+assignedDataType

0..1

Figure 7.40: SwcServiceDependency in the SwcInternalBehavior

628 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Note the difference between the associations to PortPrototypes and to Port-
Groups: While the RoleBasedPortAssignment is part of the SwcInternalBe-
havior a PortGroup is defined for the SwComponentType (thus belongs to the VFB
level) and it is linked to the PortGroups of other SwComponentTypes.

This means a PortGroup represents a system feature, whereas the RoleBasedPor-
tAssignment is a local feature for the purpose of communication with the AUTOSAR
Service.

InternalBehavior

SwcInternalBehavior

AtpStructureElement
Identifiable

PerInstanceMemory

+ initValue: String [0..1]
+ type: CIdentifier [0..1]
+ typeDefinition: String [0..1]

RoleBasedDataAssignment

+ role: Identifier [0..1]

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

ParameterDataPrototype

VariableDataPrototype

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������������	����� � �����

�����������	��	���� � ��������������

AutosarParameterRef

AutosarVariableRef

AtpPrototype

DataPrototype

AutosarDataPrototype

������������	
 ����

�����������	��	���� �

��������������

«instanceRef»

+autosarParameter

0..1

«atpVariation,atpSplitable»

+serviceDependency

0..*

+localParameter

0..1

«atpVariation»

+assignedData

0..*

«atpVariation,atpSplitable»

+perInstanceParameter

0..*

+usedDataElement 0..1

+usedPim

0..1

+localVariable

0..1«atpVariation,atpSplitable»

+arTypedPerInstanceMemory

0..*

«atpVariation,atpSplitable»

+perInstanceMemory

0..*

«atpVariation,atpSplitable»

+sharedParameter

0..*

+usedParameterElement 0..1

Figure 7.41: Details of RoleBasedDataAssignment for local data

Class RoleBasedDataAssignment

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This class specifies an assignment of a role to a particular data object in either

• the SwcInternalBehavior of a software component (or in the BswInternalBehavior of a BSW
module or BSW cluster) in the context of an AUTOSAR Service or

• an NvBlockDescriptor to sort out the assignment of event-based writing strategies to data
elements in a PortPrototype.

With this assignment, the role of the data can be mapped to a DataPrototype that is used in the context
of the definition of a specific ServiceNeeds or NvBlockDescriptor, so that a tool is able to create the
correct access or writing strategy.

Base ARObject

Attribute Type Mult. Kind Note

role Identifier 0..1 attr This is the role of the assigned data in the given context,
for example for an NVRAM Block it is used to distinguish
between an mirror block and a ROM default block.
Possible values need to be specified on M1 level.

5

5

629 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RoleBasedDataAssignment

4
This also is intended to support the so called "Signal
based Approach" of the DCM. In this use case the name
of the involved data element is required. This name shall
be taken from the DataElement referenced by the
property usedDataElement.

The following values are standardized:

• ramBlock indicates data to be used as a mirror
for an NVRAM Block.

• defaultValue indicates constant data to be used
as default in the context of this ServiceNeeds,
e.g. for an NVRAM Block.

• signalBasedDiagnostics indicates the Role
BasedDataAssignment shall be used for signal
based diagnostics.

usedData
Element

AutosarVariableRef 0..1 aggr The VariableDataPrototype used in this role, e.g.

• Permanent RAM Block of an NVRAM Block
which shall belong to the same SwcInternal
Behavior or BswInternalBehavior.

• In the role signalBasedDiagnostics it has to refer
to a VariableDataPrototype in a SenderReceiver
Interface or a NvDataInterface.

usedParameter
Element

AutosarParameterRef 0..1 aggr The ParameterDataPrototype used in this role, e.g.

• ROM Block of an NVRAM Block. It shall belong
to the same SwcInternalBehavior or Bsw
Internalbehavior.

• In the role signalBasedDiagnostics it has to refer
to a ParameterDataPrototype in a Parameter
Interface.

usedPim PerInstanceMemory 0..1 ref The (untyped) PerInstanceMemory used in this role (e.g.
as a Permanent RAM Block for an NVRAM Block).

Table 7.57: RoleBasedDataAssignment

[TPS_SWCT_01556] Rule for setting RoleBasedPortAssignment.role dThe
value of RoleBasedPortAssignment.role cannot arbitrarily set but shall to equal
to the shortName of the applicable PortInterface taken from the standardized
AUTOSAR Service Interface model (this implies that the category of the
ARPackage that owns the PortInterface is set to BLUEPRINT6 and the top-most
ARPackage.shortName is set to AUTOSAR, see also [28]).c(RS_SWCT_02060)

[TPS_SWCT_01660] Values of SwcServiceDependency.category reserved by
the standard dThe following values of SwcServiceDependency.category are re-
served by the AUTOSAR standard:

SERVICE : this applies for all the cases where SwcServiceDependency is intended
to be used for the design of ServiceSwComponentTypes.

NV_BLOCK_COMPONENT : this applies if the SwcServiceDependency is intended to
be used for the design of an NvBlockSwComponentType.

c(RS_SWCT_02060)

6see [TPS_STDT_00033]

630 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment AutosarVariableRef
AtpPrototype

DataPrototype

«instanceRef»

+autosarVariable

0..1

+usedDataElement

0..1

Figure 7.42: Details of RoleBasedDataAssignment for accessing DataPrototypes in
PortPrototypes

Class SwcServiceDependency

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServiceMapping

Note Specialization of ServiceDependency in the context of an SwcInternalBehavior. It allows to associate
ports, port groups and (in special cases) data defined for an atomic software component to a given
ServiceNeeds element.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable, ServiceDependency

Attribute Type Mult. Kind Note

assignedData RoleBasedData
Assignment

* aggr Defines the role of an associated data object of the same
component.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

assignedPort RoleBasedPort
Assignment

* aggr Defines the role of an associated port of the same
component.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=assignedPort, assignedPort.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

representedPort
Group

PortGroup 0..1 ref This reference specifies an association between the
ServiceNeeeds and a PortGroup, for example to request
a communication mode which applies for communication
via these ports. The referred PortGroup shall be local to
this atomic SWC, but via the links between the Port
Groups, a tool can evaluate this information such that all
the ports linked via this port group on the same ECU can
be found.

serviceNeeds ServiceNeeds 0..1 aggr The associated ServiceNeeds.

Table 7.58: SwcServiceDependency

Class ServiceDependency (abstract)

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Collects all dependencies of a software module or component on an AUTOSAR Service related to a
specific item (e.g. an NVRAM Block, a diagnostic event etc.). It defines the quality of service (Service
Needs) of this item as well as (optionally) references to additional elements.

This information is required for tools in order to generate the related basic software configuration and
ServiceSwComponentTypes.

Base ARObject

Subclasses BswServiceDependency, SwcServiceDependency

Attribute Type Mult. Kind Note

assignedData
Type

RoleBasedDataType
Assignment

0..1 aggr This is the role of the assignment data type in the given
context.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

5

631 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ServiceDependency (abstract)

diagnostic
Relevance

ServiceDiagnostic
RelevanceEnum

0..1 attr If this attribute indicates a relevance for diagnostics then
the integrator has a much easier time identifying the
candidates for the configuration of the diagnostic stack.

Example: identification of mode conditions (e.g.
communication between application and BswM) relevant
for the Dcm.

symbolicName
Props

SymbolicNameProps 0..1 aggr This attribute can be taken to contribute to the creation of
symbolic name values.

Table 7.59: ServiceDependency

Enumeration ServiceDiagnosticRelevanceEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This enumeration provides values to describe the diagnostic relevance of a SwcServiceDependency
(specifically if the aggregated ServiceNeeds itself does not indicate a relevance for diagnostics).

Literal Description

isNotRelevant This value indicates that a relevance for diagnostics does not exist.

Tags:atp.EnumerationLiteralIndex=0

isRelevant This value indicates a relevance for diagnostics.

Tags:atp.EnumerationLiteralIndex=1

Table 7.60: ServiceDiagnosticRelevanceEnum

Class SymbolicNameProps

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class can be taken to contribute to the creation of symbolic name values.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 7.61: SymbolicNameProps

[TPS_SWCT_01661] Default value of SwcServiceDependency.category dIf the
attribute SwcServiceDependency.category does not exist then the value SERVICE
shall be assumed for SwcServiceDependency.category.c(RS_SWCT_02060)

AtpStructureElement
Identifiable

SwcServiceDependency

RoleBasedDataTypeAssignment

+ role: Identifier [0..1]

AbstractImplementationDataType

ImplementationDataType

+ dynamicArraySizeProfile: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

ServiceDependency

+ diagnosticRelevance: ServiceDiagnosticRelevanceEnum [0..1]

������������	
 ����

�����������	��	���� � ��������������

«atpVariation»

+assignedDataType 0..1

+usedImplementationDataType

0..1

Figure 7.43: Details of RoleBasedDataTypeAssignment for local data

632 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class RoleBasedDataTypeAssignment

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServiceMapping

Note This class specifies an assignment of a role to a particular data type of a software component (or in the
BswModuleBehavior of a module or cluster) in the context of an AUTOSAR Service.

With this assignment, the role of the data type can be mapped to a specific ServiceNeeds element, so
that a tool is able to create the correct access.

Base ARObject

Attribute Type Mult. Kind Note

role Identifier 0..1 attr This is the role of the associated data type in the given
context.

used
Implementation
DataType

ImplementationData
Type

0..1 ref This represents the associated ImplementationDataType.

Table 7.62: RoleBasedDataTypeAssignment

[constr_10020] Existence of attribute RoleBasedDataTypeAssignment.used-
ImplementationDataType dFor each RoleBasedDataTypeAssignment, at-
tribute usedImplementationDataType shall exist at the time when the RTE
is generated.c()

Please note that there are cases where the granularity of existing ServiceInterfaces
does not match the granularity of existing SwcServiceDependency.serviceNeeds.

In other words, there are Service Interfaces that cover the semantics of different
kinds of ServiceNeeds. One example is the ClientServerInterface DataSer-
vices_{Data} which basically supports the access to diagnostic values as well as
I/O control of the same value.

Figure 7.44 provides a graphical sketch of how the modeling for this case is foreseen.

[TPS_SWCT_01689] Relation between SwcServiceDependencys and PortPro-
totypes dIt is positively possible to create a model where two or more SwcSer-
viceDependencys, by way of the RoleBasedPortAssignment or RoleBased-
DataAssignment, refer to a single PortPrototype.c(RS_SWCT_02060)

As indicated by Figure 7.44, there are two potentially competing SwcServiceDepen-
dencys that could be taken to contribute their shortName for filling in the suffix of the
DataServices_{Data}.

In this case, it is actually necessary to settle the “over-supply of shortNames” by
regulation of the AUTOSAR standard. [TPS_SWCT_01691] has been created for this
purpose.

Another realistic example where [TPS_SWCT_01689] applies is an AtomicSwCompo-
nentType that exposes a PPortPrototype typed by a SenderReceiverInter-
face and the dataElement(s) within the PPortPrototype are both accessed as
diagnostic values (see chapter 13.8.4.3) and are used to send mode requests to the
BswM (see chapter 13.6.4).

633 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Note that in this case a regulation regarding the shortNames of the affected SwcSer-
viceDependencys is not required because the applicable SenderReceiverInter-
face is not standardized and does not require the assignment of a name suffix from
the existing model.

SwcServiceDependency

„Y“

DiagnosticValueNeeds

„DataServicesX“

SwComponentPrototype typed by ApplicationSwComponentType

ClientServerInterface

„DataServices_X“

«isOfType»

RoleBasedPortAssignment

role: „DataServices“

SwcServiceDependency

„X“
DiagnosticIOControlNeeds

„DataServicesX“

RoleBasedPortAssignment

role: „DataServices“

Figure 7.44: Two SwcServiceDependencys referencing one PortPrototype

[TPS_SWCT_01005] Usage of SwcServiceDependencys for vendor-specific ser-
vices dSwcServiceDependencys can also be used for vendor-specific services. In
this case the SwcServiceDependency shall not contain any of the standardized
ServiceNeeds. For this purpose the VendorSpecificServiceNeeds is avail-
able.c(RS_SWCT_02060)

[TPS_SWCT_01833] Semantics of ServiceDependency.diagnosticRelevance
dThe attribute ServiceDependency.diagnosticRelevance can be used to indi-
cate a diagnostic relevance of the ServiceDependency, especially for ServiceDe-
pendencys that are not related to diagnostics, but which are still required for the inte-
gration of the diagnostic stack.c(RS_SWCT_02060)

One example for the usage of ServiceDependency.diagnosticRelevance would
be the communication between the application software and the BswM, i.e. in the con-
text of a SwcServiceDependency that aggregates a BswMgrNeeds. This communi-
cation may be relevant for the configuration of so-called "mode conditions" in the Dcm.

Please note that the modeling of attribute is very general and can be applied to every
foreseeable service configuration. However, the only know use case that is actually
relevant is the mentioned communication between application software and the BswM.

In order to not open the door for the uncontrolled usage of uncharted territory (that
may nevertheless later be explored, use case by use case), restrictions apply for the
usage of ServiceDependency.diagnosticRelevance, as documented in [con-
str_10032].

634 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_10032] Restrictions for the usage of ServiceDependency.diagnos-
ticRelevance dThe attribute ServiceDependency.diagnosticRelevance shall
only be used for a SwcServiceDependency that aggregates a BswMgrNeeds at
the time when the RTE is generated.c()

7.12 Variation Point Proxy

[TPS_SWCT_01370] VariationPointProxy dVariability inside a software-
component may exist in two different levels of abstraction:

• A structural variation point affects the existence or non-existence of structural
model elements. A structural variation point is modeled by means of the meta-
class VariationPoint.

• A functional variation point affects solely the functionality in the implementation
(read: source code) of the software-component. A functional variation point is
modeled by means of the meta-class VariationPointProxy.

In other words, this enables the developer of a software-component to implement vari-
ability that is limited to the software-component’s functionality. This kind of variability is
resolved

• by a code generator (bindingTime = codeGenerationTime)

• by the preprocessor (bindingTime = preCompileTime).

• as a post-build value evaluation (in this case postBuildValueAccess and
postBuildVariantCondition shall exist).

c(RS_SWCT_03100)

Please note that in the first two cases of the second bullet list in [TPS_SWCT_01370]
the evaluation of conditionAccess shall replace the formula by the result.

The name VariationPointProxy was motivated by the fact that it represents a
model element that is not directly related to the structure but to the code and from this
point of view acts as a proxy to the functional variation existing in the code.

The consequence of the two levels of abstraction is that (from a model processing point
of view) it would be possible to bind all structural variation points entirely while keeping
some or all of the functional variation points unbound. This is an explanation for the
existence of [TPS_SWCT_01371].

[TPS_SWCT_01371] VariationPointProxy vs. VariationPoint dThe differ-
ence between a VariationPoint and a VariationPointProxy is that if during
the process of binding the formula evaluates to 0 the VariationPointProxy re-
mains in the model while the VariationPoint as well as its owner is removed from
the model.c(RS_SWCT_03100)

635 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Nevertheless, the binding of the variability is described by the means of SwSystem-
constantValueSets and PostBuildVariantCriterionValueSets.

[TPS_SWCT_01448] Pre-defined values for the category of VariationPoint-
Proxy dAUTOSAR pre-defines two possible values for the category of Variation-
PointProxy. The meaning of the values, however, depends on the particular model-
ing of individual VariationPointProxys, see [TPS_SWCT_01370].

VALUE In the “pre-build” case this means that valueAccess shall yield an integer
literal. In the “post-build” case, on the other hand, this means that postBuild-
ValueAccess shall yield an integer value conform with the implementation-
DataType.

In this context, [constr_1388] applies.

CONDITION In this case it is possible (though not mandatory) to define a Varia-
tionPointProxy that actually works in a combination of the “pre-build” and
“post-build” scenario.

In other words, in the “pre-build” case conditionAccess shall yield a boolean
value and in the “post-build” case postBuildVariantCondition shall also
yield a boolean value.

An and operator shall be applied to all boolean values returned by condi-
tionAccess and the collection of postBuildVariantCondition in order to
yield the actual result of the condition. [TPS_GST_00259] and [SWS_Rte_08069]
apply.

For the postBuildVariantCondition an implicit reference to the Platform
Data Type boolean shall be assumed.

In contrast to the value VALUE it is possible to define a VariationPointProxy
that uses both conditionAccess and postBuildVariantCondition.

c(RS_SWCT_03100)

[constr_1388] VariationPointProxy of category VALUE shall not mix “pre-
build” and “post-build” use-cases dIf the value of category of the Variation-
PointProxy is set to VALUE then there can only be one value yield from the evalu-
ation of a VariationPointProxy. In other words, a VariationPointProxy of
category VALUE shall not mix the “pre-build” and “post-build” use-cases.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1389] Restriction regarding the value of category of VariationPoint-
Proxy.implementationDataType dVariationPointProxy.implementation-
DataType shall not be of category STRUCTURE, ARRAY, UNION, FUNCTION_REF-
ERENCE, and DATA_REFERENCE.

636 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The VariationPointProxy.implementationDataType shall be of category
VALUE or TYPE_REFERENCE that, after all references are resolved, yields an Imple-
mentationDataType of category VALUE.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[TPS_SWCT_01372] bindingTime = preCompileTime dIn case of bindingTime
= preCompileTime the RTE provides macro definitions that can be used for pre-
processor directives to implement preCompileTime variability in C/C++ code.c(RS_-
SWCT_03100)

[TPS_SWCT_01373] RTE generator shall evaluate the SwSystemconstDepen-
dentFormula dIt is in the scope of the RTE generator to evaluate the SwSystem-
constDependentFormula which has a higher precedence than the standard C Pre-
processor and to provide the resulting values to the software-component’s implemen-
tation.c(RS_SWCT_03100)

InternalBehavior

SwcInternalBehavior

Identifiable

VariationPointProxy

AttributeValueVariationPoint

+ bindingTime: BindingTimeEnum [0..1]
+ blueprintValue: String [0..1]
+ sd: String [0..1]
+ shortLabel: PrimitiveIdentifier [0..1]

ConditionByFormula

+ bindingTime: BindingTimeEnum

FormulaExpression

SwSystemconstDependentFormula

ARElement
AtpDefinition

SwSystemconst

ARElement
AtpDefinition

PostBuildVariantCriterion

PostBuildVariantCondition

«atpVariation»
+ value: Integer

AtpBlueprint
AtpBlueprintable
AutosarDataType

AbstractImplementationDataType

+valueAccess 0..1

+postBuildVariantCondition 0..*

+sysc

0..1
{subsets atpReference}

+syscString

0..1
{subsets atpStringReference}

+matchingCriterion

1

+postBuildValueAccess0..1

«atpSplitable»

+variationPointProxy0..*

+implementationDataType0..1

+conditionAccess 0..1

Figure 7.45: VariationPointProxy

For further details (beyond the statements made in [TPS_SWCT_01372] and
[TPS_SWCT_01373]) about the impact of the existence of a VariationPointProxy
on the RTE please refer to [2].

Please note that the usage of attributes of meta-class VariationPointProxy is not
arbitrarily possible but subject to conditions. In particular, there are certain use-cases
that dictate how and with which multiplicity attributes of VariationPointProxy shall
be used.

637 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In particular, the applicable use-cases are defined by a combination of the binding
time, i.e. PreBuild (all pre-build binding times are summarized as PreBuild) vs. Post-
Build, and the value of VariationPointProxy.category (the details are explained
in table 7.64 or [constr_1253], respectively).

Class VariationPointProxy

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::VariantHandling

Note The VariationPointProxy represents variation points of the C/C++ implementation. In case of bindingTime
= compileTime the RTE provides defines which can be used for Pre Processor directives to implement
compileTime variability.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

conditionAccess ConditionByFormula 0..1 aggr This condition acts as Binding Function for the Variation
Point.

implementation
DataType

AbstractImplementation
DataType

0..1 ref This association to ImplementationDataType shall be
taken as an implementation hint by the RTE generator.

postBuildValue
Access

PostBuildVariant
Criterion

0..1 ref This represents the applicable PostBuildVariantCriterion
in the context of a VariationPointProxy.

Note that the technical details how to access the
particular postBuildValueAccess are still considered
internal to the RTE and are consequently not
standardized.

postBuildVariant
Condition

PostBuildVariant
Condition

* aggr This represents that applicable PostBuoldVariant
Condition in the context of aVariationPointProxy.

valueAccess AttributeValueVariation
Point

0..1 aggr This value acts as Binding Function for the VariationPoint.

Table 7.63: VariationPointProxy

[constr_1253] Supported usage of VariationPointProxy dThe allowed multiplic-
ities for attributes of VariationPointProxy depending on the applicable binding
time and the value of VariationPointProxy.category are documented in Table
7.64.

For clarification, the multiplicities of attributes of meta-class VariationPointProxy
that are not explicitly mentioned in a given row of table 7.64 shall be interpreted as [0].

This rule shall be applied at the time when the contract phase genera-
tion is executed.c()

BindingTime category Allowed Attribute Multiplicity

VALUE valueAccess [1]
PreBuild

CONDITION conditionAccess [1]

VALUE postBuildValueAccess [1], implementationDataType [1]
PostBuild

CONDITION postBuildVariantCondition [1..*], conditionAccess [0..1]

Table 7.64: Supported usage of VariationPointProxy

638 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class <<atpMixedString>> ConditionByFormula

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This class represents a condition which is computed based on system constants according to the
specified expression. The expected result is considered as boolean value.

The result of the expression is interpreted as a condition.

• "0" represents "false";

• a value other than zero is considered "true"
Base ARObject , FormulaExpression, SwSystemconstDependentFormula

Attribute Type Mult. Kind Note

bindingTime BindingTimeEnum 1 attr This attribute specifies the point in time when condition
may be evaluated at earliest. At this point in time all
referenced system constants shall have a value.

Tags:xml.attribute=true

Table 7.65: ConditionByFormula

Class <<atpMixedString>> AttributeValueVariationPoint (abstract)

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling::AttributeValueVariationPoints

Note This class represents the ability to derive the value of the Attribute from a system constant (by Sw
SystemconstDependentFormula). It also provides a bindingTime.

Base ARObject , FormulaExpression, SwSystemconstDependentFormula

Subclasses AbstractEnumerationValueVariationPoint , AbstractNumericalVariationPoint , BooleanValueVariationPoint,
FloatValueVariationPoint, IntegerValueVariationPoint, PositiveIntegerValueVariationPoint, TimeValue
ValueVariationPoint, UnlimitedIntegerValueVariationPoint

Attribute Type Mult. Kind Note

bindingTime BindingTimeEnum 0..1 attr This is the binding time in which the attribute value needs
to be bound.

If this attribute is missing, the attribute is not a variation
point. In particular this means that It needs to be a single
value according to the type specified in the pure model. It
is an error if it is still a formula.

Tags:xml.attribute=true

blueprintValue String 0..1 attr This represents a description that documents how the
value shall be defined when deriving objects from the
blueprint.

Tags:xml.attribute=true

sd String 0..1 attr This special data is provided to allow synchronization of
Attribute value variation points with variant management
systems. The usage is subject of agreement between the
involved parties.

Tags:xml.attribute=true

shortLabel PrimitiveIdentifier 0..1 attr This allows to identify the variation point. It is also
intended to allow RTE support for CompileTime Variation
points.

Tags:xml.attribute=true

Table 7.66: AttributeValueVariationPoint

639 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class PostBuildVariantCriterion
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This class specifies one particular PostBuildVariantSelector.

Tags:atp.recommendedPackage=PostBuildVariantCriterions

Base ARElement , ARObject , AtpDefinition, CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

compuMethod CompuMethod 1 ref The compuMethod specifies the possible values for the
variant criterion serving as an enumerator.

Table 7.67: PostBuildVariantCriterion

Class PostBuildVariantCondition
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This class specifies the value which shall be assigned to a particular variant criterion in order to bind the
variation point. If multiple criterion/value pairs are specified, they shall all match to bind the variation
point.

In other words binding can be represented by

(criterion1 == value1) && (condition2 == value2) ...

Base ARObject

Attribute Type Mult. Kind Note

matching
Criterion

PostBuildVariant
Criterion

1 ref This is the criterion which needs to match the value in
order to make the PostbuildVariantCondition to be true.

value Integer 1 attr This is the particular value of the post-build variant
criterion.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 7.68: PostBuildVariantCondition

640 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

8 Implementation

Previous versions of this document contained a comprehensive description of the
meta-class Implementation. This meta-class still exists but the description of most
of its content has been moved to another document, in particular the specification of
the Basic Software Module Description Template [6].

ARElement

Implementation

+ programmingLanguage:
ProgramminglanguageEnum [0..1]

+ swVersion: RevisionLabelString [0..1]
+ usedCodeGenerator: String [0..1]
+ vendorId: PositiveInteger [0..1]

SwcImplementation

+ requiredRTEVendor: String [0..1]

InternalBehavior

SwcInternalBehavior
PerInstanceMemorySize

+ alignment: PositiveInteger [0..1]

«atpVariation»
+ size: PositiveInteger [0..1]

Identifiable

Code

Identifiable

DependencyOnArtifact

Identifiable

Compiler

+ name: String [0..1]
+ options: String [0..1]
+ vendor: String [0..1]
+ version: String [0..1]

Identifiable

ResourceConsumption

����������	 ����

�����������������	����� � ��

�����������	��	����� � ��������������

������������	� ����

�����������	��	����� � ��������������

�����������������	����� � ��

���� ! ����

�����������	��	����� �

��������������

EngineeringObject

AutosarEngineeringObject

+behavior

0..1

«atpVariation» +generatedArtifact

0..*

«atpVariation» +requiredArtifact

0..*

+codeDescriptor

0..*

+artifactDescriptor

0..1

+compiler

0..*

+artifactDescriptor

0..*

«atpVariation» +requiredGeneratorTool

0..*

«atpSplitable»

+resourceConsumption

0..1

«atpVariation»

+perInstanceMemorySize

*

Figure 8.1: Implementation part specific to the Software Component Template

Please note that the Software Component Template and the Basic Software
Module Description Template share the content of Implementation. How-
ever, the semantics of Implementation is closer to the Basic Software Module
Description Template.

Nevertheless, there is still content strictly related to the Software Component Tem-
plate. This part of Implementation consisting of SwcImplementation (see Fig-
ure 8.1) remains in this document.

Class Implementation (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Description of an implementation a single software component or module.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses BswImplementation, SwcImplementation

Attribute Type Mult. Kind Note

5

641 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class Implementation (abstract)

buildAction
Manifest

BuildActionManifest 0..1 ref A manifest specifying the intended build actions for the
software delivered with this implementation.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=codeGenerationTime

codeDescriptor Code * aggr Specifies the provided implementation code.

compiler Compiler * aggr Specifies the compiler for which this implementation has
been released

generated
Artifact

DependencyOnArtifact * aggr Relates to an artifact that will be generated during the
integration of this Implementation by an associated
generator tool. Note that this is an optional information
since it might not always be in the scope of a single
module or component to provide this information.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

hwElement HwElement * ref The hardware elements (e.g. the processor) required for
this implementation.

linker Linker * aggr Specifies the linker for which this implementation has
been released.

mcSupport McSupportData 0..1 aggr The measurement & calibration support data belonging to
this implementation. The aggregtion is <<atpSplitable>>
because in case of an already exisiting BSW
Implementation model, this description will be added later
in the process, namely at code generation time.

Stereotypes: atpSplitable
Tags:atp.Splitkey=mcSupport

programming
Language

Programminglanguage
Enum

0..1 attr Programming language the implementation was created
in.

requiredArtifact DependencyOnArtifact * aggr Specifies that this Implementation depends on the
existance of another artifact (e.g. a library). This
aggregation of DependencyOnArtifact is subject to
variability with the purpose to support variability in the
implementations. Different algorithms in the
implementation might cause different dependencies, e.g.
the number of used libraries.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

required
GeneratorTool

DependencyOnArtifact * aggr Relates this Implementation to a generator tool in order to
generate additional artifacts during integration.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

resource
Consumption

ResourceConsumption 0..1 aggr All static and dynamic resources for each implementation
are described within the ResourceConsumption class.

Stereotypes: atpSplitable
Tags:atp.Splitkey=resourceConsumption.shortName

swcBsw
Mapping

SwcBswMapping 0..1 ref This allows a mapping between an SWC and a BSW
behavior to be attached to an implementation description
(for AUTOSAR Service, ECU Abstraction and Complex
Driver Components). It is up to the methodology to define
whether this reference has to be set for the Swc- or Bsw
Implementtion or for both.

swVersion RevisionLabelString 0..1 attr Software version of this implementation. The numbering
contains three levels (like major, minor, patch), its values
are vendor specific.

usedCode
Generator

String 0..1 attr Optional: code generator used.

5

642 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class Implementation (abstract)

vendorId PositiveInteger 0..1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list

Table 8.1: Implementation

[constr_1966] Existence of attribute Implementation.swVersion dFor each Im-
plementation, attribute swVersion shall exist at the time when the RTE is
generated.c()

[constr_1967] Existence of attribute Implementation.vendorId dFor each Im-
plementation, attribute vendorId shall exist at the time when the RTE is
generated.c()

[constr_1968] Existence of attribute Implementation.codeDescriptor dFor
each Implementation, at least one aggregation of Code in the role codeDescrip-
tor shall exist at the time when the RTE is generated.c()

Class Code
Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note A generic code descriptor. The type of the code (source or object) is defined via the category attribute of
the associated engineering object.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

artifact
Descriptor

AutosarEngineering
Object

* aggr Refers to the artifact belonging to this code descriptor.

callbackHeader ServiceNeeds * ref The association callbackHeader describes in which
header files the function declarations of callback functions
are provided to a service module. With this information
the service module can include the appropriate header
files in its configuration files.

Table 8.2: Code

Class SwcImplementation

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcImplementation

Note This meta-class represents a specialization of the general Implementation meta-class with respect to the
usage in application software.

Tags:atp.recommendedPackage=SwcImplementations

Base ARElement , ARObject , CollectableElement , Identifiable, Implementation, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

behavior SwcInternalBehavior 0..1 ref The internal behavior implemented by this
Implementation.

5

643 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwcImplementation

perInstance
MemorySize

PerInstanceMemory
Size

* aggr Allows a definition of the size of the per-instance memory
for this implementation. The aggregation of PerInstance
MemorySize is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects, in this case PerInstanceMemory.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

required
RTEVendor

String 0..1 attr Identify a specific RTE vendor. This information is
potentially important at the time of integrating (in
particular: linking) the application code with the RTE. The
semantics is that (if the association exists) the
corresponding code has been created to fit to the
vendor-mode RTE provided by this specific vendor.
Attempting to integrate the code with another RTE
generated in vendor mode is in general not possible.

Table 8.3: SwcImplementation

[constr_1969] Existence of attribute SwcImplementation.behavior dFor each
SwcImplementation, attribute behavior shall exist at the time when the
RTE is generated.c()

Class PerInstanceMemorySize

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcImplementation

Note Resources needed by the allocation of PerInstanceMemory for each SWC instance. Note that these
resources are not covered by an ObjectFileSection, because they are supposed to be allocated by the
RTE.

Base ARObject

Attribute Type Mult. Kind Note

alignment PositiveInteger 0..1 attr Required alignment (1,2,4,...) of the referenced Per
InstanceMemory. Unit: byte.

perInstance
Memory

PerInstanceMemory 0..1 ref This represents the referenced PerInstanceMemory.

size PositiveInteger 0..1 attr Size (in bytes) of the reference perInstanceMemory. The
aggregation of PerInstanceMemorySize is subject to
variability with the purpose to support variability in the
software components implementations. Different
algorithms in the implementation might require a different
PerInstanceMemorySize.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 8.4: PerInstanceMemorySize

[constr_1970] Existence of attribute PerInstanceMemorySize.alignment dFor
each PerInstanceMemorySize, attribute alignment shall exist at the time
when the RTE is generated.c()

[constr_1971] Existence of attribute PerInstanceMemorySize.perInstance-
Memory dFor each PerInstanceMemorySize, the reference to PerInstanceMem-
ory in the role perInstanceMemory shall exist at the time when the RTE is
generated.c()

644 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1972] Existence of attribute PerInstanceMemorySize.size dFor each
PerInstanceMemorySize, attribute size shall exist at the time when the
RTE is generated.c()

645 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

9 Mode Management

In general, the Software Component Template doesn’t define the kind of modes
that shall be supported by State Managers or software-components explicitly. How-
ever the Software Component Template provides generic mechanisms for describing
modes.

In this section the general relationship between modes, interfaces, and software-
components is discussed.

The assumption from the software-component point of view is that State Managers are
using a Standardized AUTOSAR PortInterface1 to influence the SwComponent-
Type and also provide a PortInterface to get requests and confirmations from the
SwComponentType.

They will be implemented as AUTOSAR services and be part of the Basic Software
on each ECU. The actual modes a State Manager provides will have to be standardized
as well to allow compatibility between software-components.

It is also possible to define a mode manager in the Application Software and the same
functionality is supported as for mode managers implemented in the Basic Software.

[TPS_SWCT_01581] Communication patterns for mode-related communication
dMode-related communication shall implement a 1:1 or 1:n scenario but the creation
of an n:1 configuration shall be considered invalid.c(RS_SWCT_03200, RS_SWCT_-
03110)

As a consequence of [TPS_SWCT_01581], [constr_1101] is formulated.

[constr_1101] Mode-related communication dAn RPortPrototype typed by Mod-
eSwitchInterface shall not be referenced by more than one SwConnector at
the time when the RTE is generated.c()

9.1 Declaration of Modes

The SW-Component Template provides some simple means to define collections of
modes.

[TPS_SWCT_01071] ModeDeclaration dThe name of the mode is the most impor-
tant attribute that has to be provided for each ModeDeclaration. The ModeDecla-
rations are grouped together within the ModeDeclarationGroup.c(RS_SWCT_-
03200, RS_SWCT_03110)

[TPS_SWCT_01067] Initial mode dThe initialMode is active before any mode
switches occurred.c(RS_SWCT_03200)

This is shown in Figure 9.1

1See also AUTOSAR Glossary for “Standardized AUTOSAR Interface”.

646 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

«enumeration»
SwCalibrationAccessEnum

 readOnly
 notAccessible
 readWrite

������������	
 ����

�����������	��	���� �

�������	����������	����

«enumeration»
ModeErrorReactionPolicyEnum

 lastMode
 defaultMode

«atpVariation»

+modeDeclaration

0..*

«isOfType»

+type 0..1
{redefines atpType}

+initialMode

0..1

Figure 9.1: ModeDeclaration

The class ModeDeclarationGroup has been introduced to support the grouping of
modes and (on M1 level) to provide predefined sets of modes that could be standard-
ized and re-used. The set of modes eventually defines a flat (i.e. no hierarchical states)
state-machine where only one mode can be active at a given point in time.

Again, please note that the actual definition of modes and their relationship is not in
the responsibility of this document. In other words: the definition of modes represents
M1 artifacts whereas this document is limited to describing M2 model elements.

Both ModeDeclaration and ModeDeclarationGroup own attributes that facilitate
the generation of C source code from the formal definition.

[TPS_SWCT_01008] Definition of positive integer values that are directly taken
over by the RTE generator for creating the programmatic representations of the
ModeDeclaration dThe attributes ModeDeclaration.value and ModeDeclara-
tionGroup.onTransitionValue allow for the definition of positive integer values
that are directly taken over by the RTE generator for creating the programmatic rep-
resentations of the ModeDeclaration and ModeDeclarationGroup in the source
code.c(RS_SWCT_03200)

[constr_1399] Standardized values of ModeDeclarationGroup.category dThe
AUTOSAR standard defines the following values of the attribute ModeDeclara-
tionGroup.category with a standardized meaning:

• EXPLICIT_ORDER

• ALPHABETIC_ORDER

[TPS_SWCT_01010] defines the meaning of these values.

It is not allowed to define any custom or project-specific value of the attribute Mod-
eDeclarationGroup.category.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

647 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

As the attributes ModeDeclaration.value and ModeDeclarationGroup.on-
TransitionValue are optional the following rule applies:

[constr_1298] Existence of attributes if category of a ModeDeclarationGroup
is set to EXPLICIT_ORDER dThe attributes ModeDeclarationGroup.onTransi-
tionValue and ModeDeclaration.value (for each ModeDeclaration) shall be
set if the category of a ModeDeclarationGroup is set to EXPLICIT_ORDER.

This rule shall be imposed at the time when the contract phase genera-
tion is executed.c()

[constr_1299] Existence of attributes if category of a ModeDeclarationGroup
is set to other than EXPLICIT_ORDER dThe attributes ModeDeclarationGroup.
onTransitionValue or ModeDeclaration.value (for any ModeDeclaration)
shall not be set if the category of a ModeDeclarationGroup is set to any value
other than EXPLICIT_ORDER at the time when the contract phase gen-
eration is executed.c()

[constr_1181] Numerical values used in ModeDeclaration.value and Mod-
eDeclarationGroup.onTransitionValue dThe numerical values used to define
the value attributes and the onTransitionValue attribute of a ModeDeclara-
tionGroup shall not overlap at the time when the contract phase gen-
eration is executed.c()

In other words, it is not allowed that the values of two value attributes within one
ModeDeclarationGroup have the same numerical value. Neither is it allowed that
the numerical value of the ModeDeclarationGroup.onTransitionValue attribute
and the numerical value of one of the corresponding value attributes are identical.

[TPS_SWCT_01009] The numerical values used to define the values of ModeDec-
laration.value and ModeDeclarationGroup.onTransitionValue can be ar-
bitrarily defined dAs long as the constraints [constr_1181], [constr_1298], and [con-
str_1299] are fulfilled, the numerical values used to define the values of ModeDec-
laration.value and ModeDeclarationGroup.onTransitionValue can be ar-
bitrarily defined. The numerical values are not required to be consecutive. Gaps are
positively allowed.c(RS_SWCT_03200)

Example: the following example of a set of numerical values fulfills all requirements on
the definition of ModeDeclaration.value and ModeDeclarationGroup.onTran-
sitionValue: {1,2, 5, 100}.

Please note that the ability to define ModeDeclaration.value and ModeDeclara-
tionGroup.onTransitionValue introduces second heuristics for “ordering” Mod-
eDeclarations. If ModeDeclaration.value and ModeDeclarationGroup.on-
TransitionValue are not defined the assignment of numerical values to the repre-
sentations of individual ModeDeclarations it is up to the RTE generator to come up
with the applicable numerical values.

[TPS_SWCT_01010] categorys for the definition of a ModeDeclarationGroup
dIn order to support a clear separation between the two possible ways to influence the

648 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

definition of the programmatic representation of ModeDeclarations two categorys
shall be defined for the definition of a ModeDeclarationGroup.

• The value of category of a ModeDeclarationGroup shall be set to EX-
PLICIT_ORDER if it is intended to control the source code generation by means
of the values of the attributes ModeDeclaration.value and ModeDeclara-
tionGroup.onTransitionValue.

• The value of category of a ModeDeclarationGroup shall be set to ALPHA-
BETIC_ORDER if it is intended to let the RTE generator control the source code
generation according to the alphabetical sorting.

c(RS_SWCT_03200)

More information regarding this aspect can be found in [SWS_Rte_02568].

[TPS_SWCT_01011] Default category of a ModeDeclarationGroup dFor rea-
sons of backwards-compatibility with previous releases of AUTOSAR the default value
of the category of a ModeDeclarationGroup shall be ALPHABETIC_ORDER.c
(RS_SWCT_03200)

Class ModeDeclaration
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

value PositiveInteger 0..1 attr The RTE shall take the value of this attribute for
generating the source code representation of this Mode
Declaration.

Table 9.1: ModeDeclaration

Class ModeDeclarationGroup

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note A collection of Mode Declarations. Also, the initial mode is explicitly identified.

Tags:atp.recommendedPackage=ModeDeclarationGroups

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

initialMode ModeDeclaration 0..1 ref The initial mode of the ModeDeclarationGroup. This
mode is active before any mode switches occurred.

mode
Declaration

ModeDeclaration * aggr The ModeDeclarations collected in this ModeDeclaration
Group.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=blueprintDerivationTime

modeManager
ErrorBehavior

ModeErrorBehavior 0..1 aggr This represents the ability to define the error behavior
expected by the mode manager in case of errors on the
mode user side (e.g. terminated mode user).

modeTransition ModeTransition * aggr This represents the avaliable ModeTransitions of the
ModeDeclarationGroup

5

649 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ModeDeclarationGroup

modeUserError
Behavior

ModeErrorBehavior 0..1 aggr This represents the definition of the error behavior
expected by the mode user in case of errors on the mode
manager side (e.g. terminated mode manager).

onTransition
Value

PositiveInteger 0..1 attr The value of this attribute shall be taken into account by
the RTE generator for programmatically representing a
value used for the transition between two statuses.

Table 9.2: ModeDeclarationGroup

[constr_1973] Existence of attribute ModeDeclarationGroup.initialMode
dFor each ModeDeclarationGroup, the reference to ModeDeclaration in the
role initialMode shall exist at the time when the contract phase gen-
eration is executed.c()

[constr_1974] Existence of attribute ModeDeclarationGroup.modeDeclara-
tion dFor each ModeDeclarationGroup, at least one ModeDeclaration shall
be aggregated in the role modeDeclaration at the time when the contract
phase generation is executed.c()

[TPS_SWCT_01450] Semantics of a ModeTransition dIn addition to the ability to
specify ModeDeclarations within a ModeDeclarationGroup it is also feasible to
define possible transitions between ModeDeclarations within the given ModeDec-
larationGroup. This can be done by means of aggregation ModeTransition at
ModeDeclarationGroup in the role modeTransition.c(RS_SWCT_03200)

More details are explained in Figure 9.2.

[TPS_SWCT_01451] Relations between ModeTransition and ModeDeclara-
tion dModeTransition has two associations with the multiplicity 1 to ModeDec-
laration:

• The reference enteredMode denotes a ModeDeclaration that can be entered
as part of the enclosing ModeTransition.

• The reference exitedMode denotes a ModeDeclaration that can be exited
as part of the enclosing ModeTransition.

c(RS_SWCT_03200)

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

AtpStructureElement
Referrable

ModeTransition

������������	
 ����

�����������	��	���� �

�������	����������	����

«atpVariation»

+modeDeclaration

0..*

+exitedMode

0..1

+initialMode

0..1

+modeTransition 0..*

+enteredMode

0..1

Figure 9.2: ModeTransition

650 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1193] ModeDeclaration shall be referenced by at least one ModeTran-
sition in the role enteredMode dFor each ModeDeclaration at least one Mod-
eTransition shall reference the ModeDeclaration in the role enteredMode.

This constraint shall apply at the time when the RTE is generated only if
there is at least one ModeTransition defined in the context of the enclosing Mod-
eDeclarationGroup and it shall not apply to the initialMode.c()

For clarification, the ModeDeclarationGroup.initialMode does not need to be
referenced by an enteredMode because by identifying this ModeDeclaration in
the role initialMode it is clear that the ModeDeclaration will be entered at least
once.

Class ModeTransition
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note This meta-class represents the ability to describe possible ModeTransitions in the context of a Mode
DeclarationGroup.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

enteredMode ModeDeclaration 0..1 ref This represents the entered model of the ModeTransition.

exitedMode ModeDeclaration 0..1 ref This represents the exited mode of the ModeTransition

Table 9.3: ModeTransition

[constr_1975] Existence of attribute ModeTransition.enteredMode dFor each
ModeTransition, the reference to ModeDeclaration in the role enteredMode
shall exist at the time when the RTE is generated.c()

[constr_1976] Existence of attribute ModeTransition.exitedMode dFor each
ModeTransition, the reference to ModeDeclaration in the role exitedMode
shall exist at the time when the RTE is generated.c()

9.2 Modes and Events

[TPS_SWCT_01376] Software-components need to be capable of reacting to
state changes dSoftware-components need to be capable of reacting to state changes
issued by some Mode Manager and adopt their behavior to the new situation.c(RS_-
SWCT_03110)

Such a mode dependent software-component is shown in Figure 9.3.

[TPS_SWCT_01077] Configure the response to mode changes dSince the behav-
ior of AtomicSwComponentTypes is mainly determined by the RunnableEntitys
contained in the SwcInternalBehavior, it is necessary to configure the response
to mode changes on the level of RunnableEntitys.c(RS_SWCT_03120)

651 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Software-Component 1

Runnable Entity 1a

Runnable Entity 1b

Runnable Entity 1c

Runnable Entity 1c

Mode Manager

Figure 9.3: State Managers and software-components

Figure 9.4 shows an excerpt of the meta-model illustrating how the relationship be-
tween the current mode and the SwcInternalBehavior of the AtomicSwCompo-
nentType can be described.

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

AbstractEvent
AtpStructureElement

RTEEvent

SwcModeSwitchEvent

+ activation: ModeActivationKind [0..1]

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

«enumeration»
ModeActivationKind

 onEntry
 onExit
 onTransition

«instanceRef»

+disabledMode

0..*

«instanceRef»

+mode 0..2 {ordered}

+startOnEvent

0..1

Figure 9.4: Modes and events

[TPS_SWCT_01377] Two mechanisms to define how SwcInternalBehavior
should interact with the mode management dA AtomicSwComponentType can
use two mechanisms to define how its SwcInternalBehavior should interact with
the mode management.c(RS_SWCT_03110)

Both mechanisms are visible in Figure 9.4.

[TPS_SWCT_01378] AtomicSwComponentType can define an SwcMod-
eSwitchEvent to execute RunnableEntity dUsing the first mechanism, an
AtomicSwComponentType can define an SwcModeSwitchEvent to specify that a
particular RunnableEntity shall be started whenever a mode is entered, exited, or
a transition between two specified modes occurs.c(RS_SWCT_03110)

[constr_4003] Semantics of SwcModeSwitchEvent dIf the value of SwcMod-
eSwitchEvent.activation is onTransition, then SwcModeSwitchEvent shall
refer to two different ModeDeclarations belonging to the same instance of Mod-
eDeclarationGroup.

Their order defines the direction of the transition from one mode into another. In all
other cases SwcModeSwitchEvent shall refer to exactly one ModeDeclaration.

652 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1195] SwcModeSwitchEvent and the definition of ModeTransition dFor
each pair of ModeDeclarations referenced by a SwcModeSwitchEvent with at-
tribute activation set to onTransition a ModeTransition shall be defined in
the corresponding direction (i.e. from exitedMode to enteredMode). This constraint
shall only apply at the time when the RTE is generated if the respective
ModeDeclarationGroup defines at least one modeTransition.c()

[TPS_SWCT_01379] AtomicSwComponentType can indicate whether an
RTEEvent that starts an associated RunnableEntity is disabled in a certain
mode dUsing the second mechanism, the AtomicSwComponentType can indicate
whether an RTEEvent that starts an associated RunnableEntity is disabled in a
certain mode.

That is, RTEEvents without an association in the role disabledMode are processed
regularly according to their definition.

RTEEvents with the optional association disabledMode have the additional limitation
that the associated RunnableEntity is not started when the ModeDeclaration
referenced as disabledMode is active.c(RS_SWCT_03110)

The mechanisms discussed so far have to be applied for the SwcInternalBehav-
ior on the receiver side of mode switches. Since mode switches are received via
PortPrototypes the following constraints apply:

[TPS_SWCT_01380] Mode management behavior on the sender side dOn the
sender side, a RunnableEntity shall have ModeSwitchPoints that eventually as-
sociate a RunnableEntity with the specific ModeDeclarationGroups which it
manages.c(RS_SWCT_03110)

For more information, please refer to Figure 9.5.

AtpStructureElement
ExecutableEntity

RunnableEntity

AbstractAccessPoint
AtpStructureElement

Identifiable

ModeSwitchPoint

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

RTEEvent

ModeSwitchedAckEvent

������������	
 ����

�����������	��	���� � ��������������

«instanceRef»

+modeGroup 0..1

«atpVariation,atpSplitable»

+modeSwitchPoint

*

+eventSource

0..1

Figure 9.5: ModeSwitchPoint

[constr_1778] Value of attribute modeSwitchPoint.returnValueProvision dAll
RunnableEntity.modeSwitchPoint that refer to the same modeGroup shall de-
fine the identical value of attribute returnValueProvision at the time when
the contract phase generation is executed.c()

653 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Rationale for the existence of [constr_1778]: different RunnableEntitys could ag-
gregate ModeSwitchPoints with a different configuration of attribute returnVal-
ueProvision.

However, in such a case it would not be possible to generate the corresponding RTE
API because the API exists once per software-component and it is therefore indispens-
able to have all affected ModeSwitchPoints agree on the configuration of attribute
returnValueProvision.

This relation is exemplarily (for the case of dataSendPoint.returnValueProvi-
sion) sketched in Figure 7.21.

Class ModeSwitchPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ModeDeclarationGroup

Note A ModeSwitchPoint is required by a RunnableEntity owned a Mode Manager. Its semantics implies the
ability to initiate a mode switch.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

modeGroup ModeDeclarationGroup
Prototype

0..1 iref The mode declaration group that is switched by this
runnable.

InstanceRef implemented by:PModeGroupInAtomic
SwcInstanceRef

Table 9.4: ModeSwitchPoint

[TPS_SWCT_01383] ModeSwitchPoint dThe ModeSwitchPoint also allows for
the definition of a ModeSwitchedAckEvent if this is requested by the definition of the
PPortPrototype. This RTEEvent is eventually owned by a mode manager to allow
for getting confirmation of a mode change.c(RS_SWCT_03110)

[TPS_SWCT_01555] ModeSwitchedAckEvent is triggered by the RTE regardless
dThe ModeSwitchedAckEvent is triggered by the RTE (for more details please refer
to [2]) regardless which RunnableEntity has requested the mode switch notifica-
tion, even if the Meta-Model implies a reference from ModeSwitchedAckEvent to a
specific ModeSwitchPoint in the role eventSource.c(RS_SWCT_03110)

AtpStructureElement
ExecutableEntity

RunnableEntity

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

ModeAccessPoint

������������	
 ����

�����������	��	���� �

��������������

AbstractAccessPoint

ModeAccessPointIdent

AtpStructureElement
Identifiable

IdentCaption

«atpVariation,atpSplitable»

+modeAccessPoint

* «atpIdentityContributor»

+ident

0..1

«instanceRef»

+modeGroup 0..1

Figure 9.6: ModeAccessPoint

[constr_4012] Timeout of ModeSwitchedAckEvent dThe timeout value of a
WaitPoint associated with a ModeSwitchedAckEvent shall be equal to the cor-
responding ModeSwitchedAckRequest.timeout at the time when the RTE
is generated.c()

654 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01381] Read the currently active mode dFor Mode Manager and
Mode User it might additionally be required to read the currently active mode. For
that purpose, a RunnableEntity that requires read-access to the ModeDeclara-
tionGroupPrototype’s current mode has to define a ModeAccessPoint.c(RS_-
SWCT_03110)

Class ModeAccessPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ModeDeclarationGroup

Note A ModeAccessPoint is required by a RunnableEntity owned by a Mode Manager or Mode User. Its
semantics implies the ability to access the current mode (provided by the RTE) of a ModeDeclaration
GroupPrototype’s ModeDeclarationGroup.

Base ARObject

Attribute Type Mult. Kind Note

ident ModeAccessPointIdent 0..1 aggr The aggregation in the role ident provides the ability to
make the ModeAccessPoint identifiable.

From the semantical point of view, the ModeAccessPoint
is considered a first-class Identifiable and therefore the
aggregation in the role ident shall always exist (until it
may be possible to let ModeAccessPoint directly inherit
from Identifiable).

Stereotypes: atpIdentityContributor
Tags:xml.sequenceOffset=-100

modeGroup ModeDeclarationGroup
Prototype

0..1 iref The mode declaration group that is accessed by this
runnable.

Tags:xml.typeElement=true
InstanceRef implemented by:ModeGroupInAtomicSwc
InstanceRef

Table 9.5: ModeAccessPoint

[TPS_SWCT_01382] Mode switch requests are handled asynchronously by the
RTE dMode switch requests are handled asynchronously by the RTE. Therefore, Mode
Managers implementation might require reading back the current active mode to syn-
chronize internally to the RTE. A ModeSwitchPoint does not automatically pro-
vide read access to the ModeDeclarationGroupPrototype’s current mode.c(RS_-
SWCT_03110)

[constr_1098] Mode switch and mode disabling dA SwcModeSwitchEvent shall
not simultaneously reference to the same ModeDeclaration in both the roles mode
and disabledMode at the time when the RTE is generated.c()

If [constr_1098] would not apply, it might happen that a RunnableEntity would be
triggered by a SwcModeSwitchEvent and, at the same time, it would be suppressed
by the mode disabling.

9.3 Initialization / Finalization

The AUTOSAR standard shall support the execution of initialization code for every
AtomicSwComponentType.

655 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01384] Execution of initialization code for software-components
dMost AtomicSwComponentTypes will need to initialize by executing specific code;
this code shall complete before any other code in the component is executed. Data will
be initializing to specific values before the "normal" application software is running.c
(RS_SWCT_03110)

[TPS_SWCT_01385] Execution of finalization code for software-components
dMost AtomicSwComponentTypes will need to finalize by calling specific code; this
code shall complete before the functionality of the application software shut down (e.g.
a motor drive in a start or end position).c(RS_SWCT_03110)

[TPS_SWCT_01388] Initial modes of AtomicSwComponentTypes are defined by
the initialMode dThe initial modes of AtomicSwComponentTypes are defined
by the initialMode references of the required ModeDeclarationGroups. These
modes are activated before any other mode activation has occurred. It is the responsi-
bility of the RTE to activate all initial modes on a certain ECU.c(RS_SWCT_03110)

For more details please refer to the specification of the SWS RTE [2].

9.4 Mode Error Behavior

With the advent of partitions in the AUTOSAR standard, it is important to consider the
behavior of mode management with respect to the following scenarios:

• The partition of the mode manager is terminated.

• The partition of the mode user is terminated.

Whenever one of the two scenarios becomes reality, it is important to implement a
stable reaction of both mode manager and mode user to the event. In addition, mode
manager and mode user should be able to synchronize in terms of which mode shall
apply as fast and seamless as possible.

For this purpose, additional modeling support has been defined such that the applica-
ble ModeDeclarationGroup (which is part of the contract between mode manager
and mode user) becomes the place where the policy towards a reaction to e.g. a parti-
tion restart is defined.

[TPS_SWCT_01530] Error behavior of mode manager and mode user dThe be-
havior in response to a mode manager getting out of sync with a mode user (because
the partition of the mode user has been terminated) or vice versa (because the par-
tition of the mode manager has been terminated) can be defined for the mode man-
ager by means of the attribute ModeDeclarationGroup.modeManagerErrorBe-
havior and for the mode user by means of the attribute ModeDeclarationGroup.
modeUserErrorBehavior.c(RS_SWCT_03110)

[TPS_SWCT_01531] The semantics of ModeErrorReactionPolicyEnum dThe at-
tribute ModeErrorBehavior.errorReactionPolicy shall be used to specify the
behavior in the event of a mode error:

656 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

lastMode The last mode applicable before the event shall be assumed.

defaultMode This represents the ability to specify a dedicated mode that shall be
made applicable. The identified ModeDeclaration could be identical to the
ModeDeclarationGroup.initialMode but it can just as well be any other
ModeDeclaration defined in the context of the enclosing ModeDeclara-
tionGroup.

c(RS_SWCT_03110)

[TPS_SWCT_01532] The role of ModeErrorBehavior.defaultMode dThe at-
tribute ModeErrorBehavior.defaultMode shall be used to identify the particular
ModeDeclaration if ModeErrorBehavior.errorReactionPolicy is set to de-
faultMode.c(RS_SWCT_03110)

[constr_1263] Existence of ModeErrorBehavior.defaultMode dThe optional at-
tribute ModeErrorBehavior.defaultMode shall exist if the value of the attribute
ModeErrorBehavior.errorReactionPolicy is set to defaultMode.

This rule shall be imposed at the time when the RTE is generated.c()

Please note that the modeling of the ModeErrorBehavior is depicted in Figure 7.10.

[TPS_SWCT_01533] ModeDeclarationGroup.initialMode shall be assumed
in the absence of ModeDeclarationGroup.modeManagerErrorBehavior dIf the
attribute ModeDeclarationGroup.modeManagerErrorBehavior is not defined it
shall be assumed that the ModeDeclarationGroup.initialMode becomes appli-
cable in case of the mode manager getting out of sync with a mode user (because the
partition of the mode user has been terminated).c(RS_SWCT_03110)

[TPS_SWCT_01534] ModeDeclarationGroup.initialMode shall be assumed
in the absence of ModeDeclarationGroup.modeUserErrorBehavior dIf the at-
tribute ModeDeclarationGroup.modeUserErrorBehavior is not defined it shall
be assumed that the ModeDeclarationGroup.initialMode becomes applicable
in case of the mode user getting out of sync with a mode manager (because the parti-
tion of the mode manager has been terminated).c(RS_SWCT_03110)

Class ModeErrorBehavior
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note This represents the ability to define the error behavior in the context of mode handling.

Base ARObject

Attribute Type Mult. Kind Note

defaultMode ModeDeclaration 0..1 ref This represents the ModeDeclaration that is considered
the error mode in the context of the enclosing Mode
DeclarationGroup.

errorReaction
Policy

ModeErrorReaction
PolicyEnum

0..1 attr This represents the ability to define the policy in terms of
which default model shall apply in case an error occurs.

Table 9.6: ModeErrorBehavior

657 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1977] Existence of attribute ModeErrorBehavior.errorReactionPol-
icy dFor each ModeErrorBehavior, the attribute errorReactionPolicy shall
exist at the time when the RTE is generated.c()

Enumeration ModeErrorReactionPolicyEnum

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note This represents the ability to specify the reaction on a mode error.

Literal Description

defaultMode This represents the ability to switch to the defaultMode in case of a mode error.

Tags:atp.EnumerationLiteralIndex=0

lastMode This represents the ability to keep the last mode in case of a mode error.

Tags:atp.EnumerationLiteralIndex=1

Table 9.7: ModeErrorReactionPolicyEnum

[TPS_SWCT_01535] Mode manager reacts on mode error dIf the mode manager
is getting out of sync with a mode user (because the partition of the mode user has
been terminated) or vice versa (because the partition of the mode manager has been
terminated) it shall be possible for the mode manager to react on such an event.

For this purpose the formal SwcModeManagerErrorEvent is defined that can be
taken to e.g. trigger the execution of a RunnableEntity in response to an error with
respect to mode switch communication.c(RS_SWCT_03110)

Class SwcModeManagerErrorEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when an error occurred during the handling of the referenced ModeDeclarationGroup
Prototype.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mult. Kind Note

modeGroup ModeDeclarationGroup
Prototype

0..1 iref This represents the ModeDeclarationGroupPrototype for
which this SwcModeManagerErrorEvent is raised in case
of an error.

InstanceRef implemented by:PModeGroupInAtomic
SwcInstanceRef

Table 9.8: SwcModeManagerErrorEvent

[constr_1978] Existence of attribute SwcModeManagerErrorEvent.modeGroup
dFor each SwcModeManagerErrorEvent, the instance reference to ModeDeclara-
tion in the role modeGroup shall exist at the time when the RTE is gener-
ated.c()

As mentioned in [constr_1075], it is possible to overrule the default compatibility rules
by the definition of a PortInterfaceMapping.

In this case the demand for having identical definitions of ModeDeclarationGroup.
modeUserErrorBehavior and ModeDeclarationGroup.modeManagerError-
Behavior is no longer valid.

658 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

However, there is one additional caveat to observe in this case. This affects the imple-
mentation of error behavior in case that several mode users are connected to a mode
manager.

[TPS_SWCT_01536] Coherent behavior of all mode users in case of errors in the
mode switch communication dThe behavior in case of errors with the communication
of mode switches needs to be coherent for all connected mode users especially if the
individual SwConnectors are legitimized by the existence of a PortInterfaceMap-
ping.c(RS_SWCT_03110)

[TPS_SWCT_01541] Preferential selection of modeUserErrorBehavior dThe
definition of mode error behavior on the provided side of shall be considered domi-
nant over the definition of mode error behavior on the required side.

This means that a ModeSwitchInterface.modeGroup.type.modeUserErrorBe-
havior used to type an AbstractProvidedPortPrototype shall be considered
dominant over the definition of a corresponding modeUserErrorBehavior and de-
fined in the context of an AbstractRequiredPortPrototype.c(RS_SWCT_03110)

[TPS_SWCT_01542] Preferential selection of modeManagerErrorBehavior dThe
definition of mode error behavior on the provided side of shall be considered dominant
over the definition of mode error behavior on the required side.

This means that a ModeSwitchInterface.modeGroup.type.modeManager-
ErrorBehavior used to type an AbstractProvidedPortPrototype shall be
considered dominant over the definition of a corresponding modeManagerError-
Behavior defined in the context of an AbstractRequiredPortPrototype.c(RS_-
SWCT_03110)

The consequence of [TPS_SWCT_01541] and [TPS_SWCT_01542] is that the mode
manager shall be considered the master of the definition of mode error behavior.

Please note that the statements made in [TPS_SWCT_01541] is further underlined by
[SWS_Rte_06795] and the statement made by [TPS_SWCT_01542] is further under-
lined by [SWS_Rte_06795].

The details of how the run-time behavior of mode manager and mode user shall look
like in the event of the mode manager getting out of sync with a mode user (because the
partition of the mode user has been terminated) or vice versa (because the partition
of the mode manager has been terminated) as well as the applicable RTE APIs are
explained in [2].

9.5 Summary Meta-Model Excerpt Related to Modes

Figure 9.7 provides an overview of all meta-model elements that have a direct relation-
ship to the meta-classes involved in the modeling of mode switches.

659 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

To get the complete picture, it should be noted that also the concepts of PortGroups
(see 4.6) and ServiceProxySwComponentType (see 11.4) have a semantical rela-
tionship to mode management, though this is not expressed via relations in the meta-
model.

Interface

ModeDeclaration

InternalBehavior and Runnables

Component and Port

AtpStructureElement
Identifiable

ModeDeclaration

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

AtpPrototype

ModeDeclarationGroupPrototype

AtpStructureElement
ExecutableEntity

RunnableEntity

PPortPrototype RPortPrototype AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

AbstractEvent
AtpStructureElement

RTEEvent

SwcModeSwitchEvent

ModeSwitchInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

AtpStructureElement
Referrable

ModeTransition

AbstractProvidedPortPrototype AbstractRequiredPortPrototype

PRPortPrototype

ModeSwitchedAckEvent

«isOfType»

+
p

ro
vi

d
e

d
In

te
rf

a
ce

0..1
{redefines
atpType}

«atpVariation»

+modeDeclaration

0..*

+exitedMode 0..1

«atpVariation,atpSplitable»

+internalBehavior 0..1

«isOfType»

+
re

q
u

ire
d

In
te

rf
a

ce

0..1
{redefines
atpType}

«atpVariation,atpSplitable»

+port

0..*

«isOfType»

+
p

ro
vi

d
e

d
R

e
q

u
ire

d
In

te
rf

a
ce

0..1
{redefines
atpType}

«isOfType»

+type
0..1
{redefines atpType}

«instanceRef»

+disabledMode 0..*

+modeGroup 0..1

«instanceRef»

+mode 0..2 {ordered}

+initialMode

0..1

+enteredMode 0..1

«atpVariation,atpSplitable»
+event 0..*

+startOnEvent

0..1

+modeTransition 0..*

«atpVariation,atpSplitable»
+runnable 0..*

Figure 9.7: Summary meta-model excerpt related to modes

660 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

10 ECU Abstraction and Complex Drivers

10.1 Introduction

During the design of embedded systems there is one crucial point where the hard-
ware and software have to be related. In AUTOSAR the ECU Resource Template
describes the provided hardware resources.

On the other hand, the Software Component Template describes software gen-
erally without specific hardware in mind. But there are some places where both have
to meet and fit.

One interface between hardware and software is discussed in the memory and execu-
tion time section of [6]. In this chapter the overall system view of the interface between
sensors/actuators and software is described and the consequences for the Software
Component Template are derived.

10.2 High Level Hardware and Software Architecture

The AUTOSAR concept defines a software architecture (see Figure 10.1) and within
this layered architecture the interfaces between the hardware and the software are
explicitly modeled.

Figure 10.1: AUTOSAR ECU Software Architecture

661 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The signal1 flow from a hardware to software and vice versa will be described in the
following sections.

A sensor2 is converting a physical value (1) in Figure 10.2 (e.g. temperature, force, light
intensity) into an electrical signal (2) which can be either a current or a voltage.

Inside the ECU generally there will be some electronics to enhance the electrical signal
provided by the sensor. In AUTOSAR this is called ECU Electronics. This electron-
ics device is also responsible for the conversion of the electrical signal into a micro-
controller compatible form (3), usually a voltage.

After the electrical signal has been enhanced and converted it will be captured by the
micro-controller. This can either be done by a simple digital input, an analogue to digital
converter or maybe a pulse-width demodulation module. Now the electrical signal is
available as a software data value (4).

This signal flow is sketched in the top part of Figure 10.2.

Sensor
ECU

Electronics

µC

Peripherals

Physical Interface:

car velocity

Electrical Interface:

Isensor [0..200mA]

Electrical Interface:

UECU [0..5V]

Sensor

SW-C

Application

SW-C

get_v() get_I_sensor() DIO_set()

Car

environment
1 2 3

ECU

Abstraction
MCAL5 46

ADC_get()

Figure 10.2: Interfaces between hardware and software

The interaction shown in Figure 10.2 shows an exemplary scenario. The usage of
ClientServerInterface is just an example for the interaction pattern.

This signal chain is represented one-to-one in the AUTOSAR software architecture and
depicted in the lower part of Figure 10.2.

In an implementation of AUTOSAR, only the micro-controller Abstraction (MCAL) has
direct access to the peripheral hardware. This layer is going to be standardized and all
hardware access should go through this layer. The idea of the AUTOSAR signal flow
is to map the hardware to the corresponding software modules.

1The term “signal” is not going to be used here at its own but more specific terms will be used for the
different abstractions of signals at the different stages of the signal flow.

2For the sake of simplicity this discussion is limited to the sensor aspects. Nevertheless, the same
applies also for actuators.

662 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

So if an electrical current is the input to the micro-controller peripheral, the MCAL will
deliver a data value that represents this current. As the ECU Electronics has enhanced
and converted the electrical signal prior to the micro-controller, the corresponding soft-
ware entity is reversing this conversion. This is performed in the ECU Abstraction layer.

So if the input to the ECU is an electrical current and the ECU Electronics has con-
verted this current into a voltage (from 2 to 3), the ECU Abstraction will convert the
data value voltage into an AUTOSAR signal representing a current (from 4 to 5). This
AUTOSAR signal represents the actual current that was provided by the sensor (2).

Now the first step in the conversion has to be reversed: the sensor has converted a
physical value into an electrical signal. And so the Sensor Software Component has
to reverse this again. The Sensor Software Component will read the AUTOSAR signal
representing the electrical value and transform it into an AUTOSAR signal representa-
tion of the physical value (from 5 to 6).

Now this physical value is available on the RTE and can be consumed or read by other
SW-Components. Although the interface between the ECU Abstraction and the Sen-
sor Software Component is also an AUTOSAR interface and could be routed through
some communication-bus, it will not be practical to separate the ECU Abstraction and
the corresponding SensorActuatorSwComponentType due to potentially high com-
munication effort.

In Figure 10.3 a complete signal flow from a sensor input to an actuator output is
shown.

Sensor
ECU

Electronics
µC

Peripherals

Physical Interface Electrical Interface
Isensor [0..200mA]

Electrical Interface
UECU [0..5V]

Sensor
SW-C

ECU
Abstraction

µCAL

(MCAL
Driver)

Application
SW-C 1

get_v() get_I_ECU(velocity_sensor) DIO_get()

e.g.
Car velocity

Actuator
SW-C

Application
SW-C 2

set_lamp() set_I_ECU(light_actuator) DIO_set()

Actuator
ECU

Electronics
µC

Peripherals
e.g.

Car light

IECU [0..2A] UµC [0..5V]

Hardware

Software

Hardware

Figure 10.3: Sensor and Actuator Signal Flow

The interaction shown in Figure 10.3 shows an exemplary scenario. The usage of
ClientServerInterface is just an example for the interaction pattern.

663 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In the next section the interfaces between the involved software modules are dis-
cussed.

10.3 Interfaces and APIs

Two fundamentally different interfaces are involved when converting from sensors/ac-
tuators to software components, see markers “4” and “5” in Figure 10.2.

The interface between the micro-controller Abstraction and the ECU Abstraction is a
Standardized Interface (see AUTOSAR Glossary [34]). This interface is not visible on
the Virtual Function Bus and therefore the MCAL and ECU Abstraction have to be
present on the same ECU.

For further description of this interface please refer to the ECU Resource Template
documentation.

The interface to the SensorActuatorSwComponentTypes is visible on the Virtual
Function Bus. In general the SensorActuatorSwComponentType should be on
the same ECU as the ECU hardware abstraction.

Also, the interface between the SensorActuatorSwComponentTypes and the actual
AtomicSwComponentTypes representing the application is visible on the VFB. To de-
scribe the data that is going to be exchanged via this interface the standard AUTOSAR
Interface description mechanisms are used (see chapter 3.4).

10.3.1 ECU Abstraction and its AUTOSAR Interfaces

Since the AUTOSAR standard is designed with the focus on the integration of software-
components coming from different contractors, the interfaces between the different
software-components obviously have to be compatible.

In the case of the sensors and actuators the interface is gathered in the ECU Abstrac-
tion. For each sensor and actuator there is one AUTOSAR PortPrototype that rep-
resents the AUTOSAR Signal that is delivered by the sensor or the AUTOSAR Signal
that is consumed by the actuator. This relationship is depicted in Figure 10.4.

The interaction shown in Figure 10.4 shows an exemplary scenario. The usage of
ClientServerInterface is just an example for the interaction pattern.

Each sensor and actuator has an AUTOSAR PortPrototype at the ECU Abstraction.
Connected to this port is the SensorActuatorSwComponentType.

The SensorActuatorSwComponentType has one PortPrototype (i.e. IF_2) to
the ECU Abstraction (which provides the values via IF_1) where it gets the AUTOSAR
signals from the hardware, and one PortPrototype (i.e. IF_3) to AtomicSwCompo-
nentTypes where it provides the actual physical value to the rest of AUTOSAR on the
RTE.

664 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Figure 10.4: Interfaces of signals in software

In addition, the Interfaces between the ECU Abstraction and the SensorActuator-
SwComponentType have to be compatible like defined in chapter 6.

10.4 Sensors/Actuators

In the layered software architecture described in [5] each hardware sensor/actuator is
coupled to a SensorActuatorSwComponentType (see Figure 10.5).

[TPS_SWCT_01047] Reference from the software representation of a sensor/ac-
tuator to the actual hardware element dSince the Software Component Tem-
plate is going to be used to describe the SensorActuatorSwComponentType as
well, there is also a reference needed from the software representation of a sensor/ac-
tuator to the actual hardware element described in the ECU Resource description.c
(RS_SWCT_02080, RS_SWCT_03090)

Figure 10.5: Shipment of a sensor

So each time a sensor/actuator is selected to be connected to an ECU also the corre-
sponding SensorActuatorSwComponentType is available.

665 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1144] SensorActuatorSwComponentType, EcuAbstractionSwCompo-
nentType, and ComplexDeviceDriverSwComponentType may only reference a
HwType dThe attribute sensorActuator of SensorActuatorSwComponentType,
the attribute hardwareElement of EcuAbstractionSwComponentType, and the
attribute hardwareElement of ComplexDeviceDriverSwComponentType may
only reference a HwType. References to other subclasses of HwDescriptionEn-
tity are not allowed at the time when the RTE is generated.c()

Figure 10.6 depicts the reference of SensorActuatorSwComponentType designed
as a specialization of an AtomicSwComponentType with an additional reference to a
HwType.

AtomicSwComponentType

SensorActuatorSwComponentType

Referrable

HwDescriptionEntity

ARElement

HwType
+sensorActuator

0..1

+hwType

0..1

Figure 10.6: Sensor/actuator to Hardware Relationship

[constr_1109] Mapping of SwComponentPrototypes typed by a SensorActu-
atorSwComponentType dA SwComponentPrototype typed by a SensorActua-
torSwComponentType needs to be mapped and run on exactly that ECU that con-
tains the HwElement corresponding to the HwType that its SensorActuatorSwCom-
ponentType refers to in case it accesses the hardware via the I/O hardware abstrac-
tion layer.

This rule shall be imposed at the time when the RTE is generated.c()

[TPS_SWCT_01048] SensorActuatorSwComponentType may use the I/O hard-
ware abstraction directly dIn contrast to an ApplicationSwComponentType, a
SensorActuatorSwComponentType may use the I/O hardware abstraction directly
(via ports/connectors).c(RS_SWCT_02080, RS_SWCT_03090)

In case the sensor/actuator hardware is accessed via bus communication, e.g. is lo-
cated on a LIN slave, no such mapping constraints apply (note that this is not handled
via the IO hardware abstraction layer).

Class SensorActuatorSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The SensorActuatorSwComponentType introduces the possibility to link from the software representation
of a sensor/actuator to its hardware description provided by the ECU Resource Template.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mult. Kind Note

sensorActuator HwDescriptionEntity 0..1 ref Reference from the Sensor Actuator Software Component
Type to the description of the actual hardware.

Table 10.1: SensorActuatorSwComponentType

666 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

10.5 I/O Hardware Abstraction

[TPS_SWCT_01389] I/O Hardware Abstraction interfaces MCAL drivers
dThe I/O Hardware Abstraction interfaces on one side the MCAL drivers via
Standardized Interfaces and on the other side the Sensor Actuator Software
Component via AUTOSAR Interfaces. On the VFB[3] the I/O Hardware Ab-
straction is represented by the EcuAbstractionSwComponentType.c()

EcuAbstractionSwComponentType

ARElement
AtpStructureElement

SwcBswMapping

SwComponentType

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

InternalBehavior

BswInternalBehavior

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger [0..1]

������������	
 ����

�����������	��	���� �

��������������

Referrable

HwDescriptionEntity

ARElement

HwType

«atpSplitable»
+internalBehavior0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

+bswBehavior 0..1

+hwType 0..1

+hardwareElement0..*

+swcBehavior 0..1

Figure 10.7: EcuAbstractionSwComponentType

[TPS_SWCT_01390] I/O Hardware Abstraction might have sub-structures
dDepending on the complexity of an ECU, the I/O Hardware Abstraction might
have sub-structures. In this case the I/O Hardware Abstraction Layer is de-
scribed by several EcuAbstractionSwComponentTypes on M1.c()

Class EcuAbstractionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ECUAbstraction is a special AtomicSwComponentType that resides between a software-component
that wants to access ECU periphery and the Microcontroller Abstraction. The EcuAbstractionSw
ComponentType introduces the possibility to link from the software representation to its hardware
description provided by the ECU Resource Template.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mult. Kind Note

hardware
Element

HwDescriptionEntity * ref Reference from the EcuAbstractionComponentType to the
description of the used HwElements.

Table 10.2: EcuAbstractionSwComponentType

[TPS_SWCT_01391] I/O Hardware Abstraction abstracts from the location
of peripheral I/O devices dThe I/O Hardware Abstraction abstracts from the
location of peripheral I/O devices (on-chip or on- board) and the ECU hardware layout
and has therefore dependencies to ECU Hardware described by HwElements. In ad-
dition, the EcuAbstractionSwComponentType is a hybrid concept sharing features
of both software-components and basic software modules.c()

667 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01392] Mapping between the EcuAbstractionSwComponentType
and the corresponding BswModuleDescription dThe BSW part is described by
the means of the Basic Software Module Template. The mapping between the
EcuAbstractionSwComponentType and the corresponding BswModuleDescrip-
tion is provided by the class SwcBswMapping which in addition also maps the two
corresponding InternalBehaviors. This mechanism is further explained in [6].c()

10.6 Complex Driver

[TPS_SWCT_01393] Complex Driver dA Complex Driver implements complex
sensor evaluation and actuator control with direct access to the micro-controller us-
ing specific interrupts and/or complex micro-controller peripherals to fulfill the special
functional and timing requirements.

In addition, it might be used to implement enhanced services / protocols or encapsu-
lates legacy functionality of a non-AUTOSAR system.c()

See also document [3].

[TPS_SWCT_01394] Complex Driver is represented by the ComplexDe-
viceDriverSwComponentType dOn the VFB the Complex Driver is represented
by the ComplexDeviceDriverSwComponentType. An ECU might have zero to
many ComplexDeviceDriverSwComponentTypes.c()

Class ComplexDeviceDriverSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ComplexDeviceDriverSwComponentType is a special AtomicSwComponentType that has direct
access to hardware on an ECU and which is therefore linked to a specific ECU or specific hardware. The
ComplexDeviceDriverSwComponentType introduces the possibility to link from the software
representation to its hardware description provided by the ECU Resource Template.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mult. Kind Note

hardware
Element

HwDescriptionEntity * ref Reference from the ComplexDeviceDriverSwComponent
Type to the description of the used HwElements.

Table 10.3: ComplexDeviceDriverSwComponentType

[TPS_SWCT_01395] ComplexDeviceDriverSwComponentType has dependen-
cies to ECU Hardware dSimilar to EcuAbstractionSwComponentType the Com-
plexDeviceDriverSwComponentType has dependencies to ECU Hardware de-
scribed by HwElements and is a hybrid between Software Component and Basic
Software Module.c()

[TPS_SWCT_01396] Mapping between the ComplexDeviceDriverSwCompo-
nentType and the corresponding BswModuleDescription dThe BSW part is de-
scribed by the means of the Basic Software Module Template.

668 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The mapping between the ComplexDeviceDriverSwComponentType and the cor-
responding BswModuleDescription is provided by the class SwcBswMapping
which in addition also maps the two corresponding InternalBehaviors.

This mechanism is further explained in [6].c()

ComplexDeviceDriverSwComponentType

ARElement
AtpStructureElement

SwcBswMapping

SwComponentType

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

InternalBehavior

BswInternalBehavior

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger [0..1]

������������	
 ����

�����������	��	���� �

��������������Referrable

HwDescriptionEntity

ARElement

HwType

+hardwareElement 0..*

+bswBehavior 0..1

«atpSplitable»

+internalBehavior0..*

«atpVariation,atpSplitable»
+internalBehavior 0..1

+hwType 0..1

+swcBehavior 0..1

Figure 10.8: ComplexDeviceDriverSwComponentType

[constr_1979] Existence of the reference SwcBswMapping.bswBehavior dFor
each SwcBswMapping, the reference to BswInternalBehavior in the role bswBe-
havior shall exist at the time when the RTE is generated.c()

[constr_1980] Existence of the reference SwcBswMapping.swcBehavior dFor
each SwcBswMapping, the reference to BswInternalBehavior in the role swcBe-
havior shall exist at the time when the RTE is generated.c()

Class BswInternalBehavior
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Specifies the behavior of a BSW module or a BSW cluster w.r.t. the code entities visible by the BSW
Scheduler. It is possible to have several different BswInternalBehaviors referring to the same BswModule
Description.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, InternalBehavior , Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

arTypedPer
Instance
Memory

VariableDataPrototype * aggr Defines an AUTOSAR typed memory-block that needs to
be available for each instance of the Basic Software
Module. The aggregation of arTypedPerInstanceMemory
is subject to variability with the purpose to support
variability in the Basic Software Module’s
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arTypedPerInstanceMemory.shortName, ar
TypedPerInstanceMemory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

669 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BswInternalBehavior
bswPerInstance
MemoryPolicy

BswPerInstance
MemoryPolicy

* aggr Policy for a arTypedPerInstanceMemory The policy
selects the options of the Schedule Manager API
generation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswPerInstanceMemoryPolicy, bswPer
InstanceMemoryPolicy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

clientPolicy BswClientPolicy * aggr Policy for a requiredClientServerEntry. The policy selects
the options of the Schedule Manager API generation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=clientPolicy, clientPolicy.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

distinguished
Partition

BswDistinguished
Partition

* aggr Indicates an abstract partition context in which the
enclosing BswModuleEntity can be executed.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=distinguishedPartition.shortName,
distinguishedPartition.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

entity BswModuleEntity * aggr A code entity for which the behavior is described

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=entity.shortName, entity.variationPoint.short
Label
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=5

event BswEvent * aggr An event required by this module behavior.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=event.shortName, event.variationPoint.short
Label
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=10

exclusiveArea
Policy

BswExclusiveArea
Policy

* aggr Policy for an ExclusiveArea in this BswInternalBehavior.
The policy selects the options of the Schedule Manager
API generation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveAreaPolicy, exclusiveArea
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

includedData
TypeSet

IncludedDataTypeSet * aggr The includedDataTypeSet is used by a basic software
module for its implementation.

Stereotypes: atpSplitable
Tags:atp.Splitkey=includedDataTypeSet

includedMode
Declaration
GroupSet

IncludedMode
DeclarationGroupSet

* aggr This aggregation represents the included Mode
DeclarationGroups

Stereotypes: atpSplitable
Tags:atp.Splitkey=includedModeDeclarationGroupSet

5

670 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BswInternalBehavior
internal
TriggeringPoint

BswInternalTriggering
Point

* aggr An internal triggering point.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=2

internal
TriggeringPoint
Policy

BswInternalTriggering
PointPolicy

* aggr Policy for an internalTriggeringPoint in this BswInternal
Behavior.. The policy selects the options of the Schedule
Manager API generation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalTriggeringPointPolicy, internal
TriggeringPointPolicy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeReceiver
Policy

BswModeReceiver
Policy

* aggr Implementation policy for the reception of mode switches.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeReceiverPolicy, modeReceiver
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

modeSender
Policy

BswModeSenderPolicy * aggr Implementation policy for providing a mode group.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeSenderPolicy, modeSender
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

parameterPolicy BswParameterPolicy * aggr Policy for a perInstanceParameter in this BswInternal
Behavior. The policy selects the options of the Schedule
Manager API generation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=parameterPolicy, parameterPolicy.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

perInstance
Parameter

ParameterData
Prototype

* aggr Describes a read only memory object containing
characteristic value(s) needed by this BswInternal
Behavior. The role name perInstanceParameter is chosen
in analogy to the similar role in the context of SwcInternal
Behavior.

In contrast to constantMemory, this object is not allocated
locally by the module’s code, but by the BSW Scheduler
and it is accessed from the BSW module via the BSW
Scheduler API. The main use case is the support of
software emulation of calibration data.

The aggregation is subject to variability with the purpose
to support implementation variants.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perInstanceParameter.shortName, per
InstanceParameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

5

671 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BswInternalBehavior
receptionPolicy BswDataReception

Policy
* aggr Data reception policy for inter-partition and/or inter-core

communication.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=receptionPolicy, receptionPolicy.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

releasedTrigger
Policy

BswReleasedTrigger
Policy

* aggr Policy for a releasedTrigger. The policy selects the
options of the Schedule Manager API generation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=releasedTriggerPolicy, releasedTrigger
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

schedulerName
Prefix

BswSchedulerName
Prefix

* aggr Optional definition of one or more prefixes to be used for
the BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=schedulerNamePrefix.shortName, scheduler
NamePrefix.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

sendPolicy BswDataSendPolicy * aggr Policy for a providedData. The policy selects the options
of the Schedule Manager API generation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=sendPolicy, sendPolicy.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

service
Dependency

BswService
Dependency

* aggr Defines the requirements on AUTOSAR Services for a
particular item.

The aggregation is subject to variability with the purpose
to support the conditional existence of ServiceNeeds.

The aggregation is splitable in order to support that
ServiceNeeds might be provided in later development
steps.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=serviceDependency.ident.shortName,
serviceDependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

triggerDirect
Implementation

BswTriggerDirect
Implementation

* aggr Specifies a trigger to be directly implemented via OS
calls.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=triggerDirectImplementation, triggerDirect
Implementation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=15

variationPoint
Proxy

VariationPointProxy * aggr Proxy of a variation points in the C/C++ implementation.

Stereotypes: atpSplitable
Tags:atp.Splitkey=variationPointProxy.shortName

Table 10.4: BswInternalBehavior

672 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

11 Services

11.1 Overview: Generation of Service-related Model Elements

This chapter covers the description and handling of AUTOSAR Service configuration.

[TPS_SWCT_01397] Hybrid concept between Basic Software Modules and a
SwComponentType dAUTOSAR Services can be seen as a hybrid concept between
Basic Software Modules and a SwComponentType. AUTOSAR Services ac-
tually provide access to low-level and ECU-wide “standard functionalities” commonly
referred to as “service”.

AtomicSwComponentTypes that require AUTOSAR Services use Standardized
AUTOSAR Interfaces to communicate with these. The connection of PortProto-
types of the ServiceSwComponentTypes and PortPrototypes of the Atomic-
SwComponentTypes implement several communication patterns.c()

I II III IV

A 1..n PPort:RPort Distribution of data or modes to n software-components, e.g. used for ECU mode.

A* 1..n RPort:PPort Currently not used, not supported for client-server communication.

A** 1..n PRPort:RPort Distribution of data or modes to n software-components, e.g. used for ECU mode.

B 1..1 PPort:RPort Software-component acts as Server, used for so called “call-backs”.

B 1..1 RPort:PPort Service acts as Server, typical Service usage.

C* n..1 PPort:RPort Conceptually not used to support index abstraction via PortDefinedArgumentValues.

C n..1 RPort:PPort Software-component acts as Server, used for so called “call-backs” invoked by more than
one Service.

D 1..1 PR-
Port:PRPort I/O control data.

Table 11.1: ServiceConnectorPattern

Legend for Table 11.1:

I Pattern name

II Communication pattern (client/server, sender/receiver)

III Kind of PortPrototype at service : software-component

IV Description, use case

[TPS_SWCT_01398] Communication patterns for AUTOSAR services dThe com-
munication patterns for AUTOSAR services are summarized in Table 11.1.c()

[TPS_SWCT_01403] Impact of AUTOSAR services on the methodology dDue to
this special nature, such AUTOSAR Services need to be handled with particular at-
tention in the methodology [4]. That is, a number of elements need to be generated
during ECU integration.c()

The following list of paragraphs presents a short overview over the steps required for
the configuration of AUTOSAR Services.

673 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Note that most of these steps are performed by tools and the model elements being
created in these steps are rather specific to Service configuration and are not to be
modeled manually within AUTOSAR authoring tools.

In particular, the following requirements apply:

• [TPS_SWCT_01399] Dependency is modeled by aggregating required and
provided PortPrototypes dThe dependency of an AtomicSwComponent-
Type (or more precisely, one of its non-abstract derived meta-classes) from an
AUTOSAR Service is modeled by aggregating required and provided Port-
Prototypes.c()

[TPS_SWCT_01400] PortInterface selected from the set of standard-
ized Service Interfaces dThe PortInterface being implemented by the
PortPrototypes needs to be one of a number of standardized Service In-
terfaces which is indicated by having its isService attribute set to true and
is (via several levels of indirection) finally referenced by ServiceNeeds.c()

Additionally, the software components and Basic Software Modules shall
specify ServiceNeeds containing further input information for the later Ser-
vice configuration step.

• [TPS_SWCT_01401] Form a top-level RootSwCompositionPrototype
dWhen defining a software system, the AtomicSwComponentType is used in
the form of SwComponentPrototypes within a CompositionSwComponent-
Type. In this step, the non-service ports of all required interfaces are being con-
nected using AssemblySwConnectors and DelegationSwConnectors in or-
der to eventually form a top-level RootSwCompositionPrototype which can
be referenced in an AUTOSAR System.c()

• [TPS_SWCT_01402] Mapping of all AtomicSwComponentType instances
to EcuInstances dIn System Configuration Phase, the mapping of all
AtomicSwComponentType instances to EcuInstances is done (for the speci-
fication of EcuInstance see [10]). The ServiceNeeds may be used by tools
to check for available resources on the targeted ECUs.c()

• [TPS_SWCT_01404] Creation of the Ecu Extract dThe ECU Extract is ex-
tracted from the System Configuration for each ECU. As explained in the
AUTOSAR System Template [10], this contains an ECU-centric view onto the
system description.

This includes a reduced version of the system’s RootSwCompositionProto-
type where SwComponentPrototypes not being mapped to the ECU are being
left out and all Compositions are stripped off, so that in the ECU Extract only
one instance of CompositionSwComponentType remains which aggregates all
SwComponentPrototypes on the ECU in a flat manner.c()

674 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• [TPS_SWCT_01405] Creation of the ServiceSwComponentTypes dIn ECU
Configuration, for each Service required on the ECU exactly one Ser-
viceSwComponentType is created based on the needs from the Atomic-
SwComponentTypes: An adequate number of PortPrototypes are created on
this ServiceSwComponentType for each needed port at the AtomicSwCom-
ponentType.

Thereby the specified communication pattern A, B, C or D for a specific kind of
ServicePort has to be considered.c()

See also chapter 11.3 and table 11.1.

• [TPS_SWCT_01406] Creation of SwComponentPrototype typed by a Ser-
viceSwComponentType dPer Service exactly one SwComponentProto-
type typed by a ServiceSwComponentType is created based on the Ser-
viceSwComponentType. Additionally, the connectors are constructed that con-
nect the pairs of PortPrototypes belonging to the SwComponentPrototypes
requiring services and those belonging to the actual services.c()

• [TPS_SWCT_01407] Creation of InternalBehavior typed by a Ser-
viceSwComponentType dFor each ServiceSwComponentType an SwcIn-
ternalBehavior is created or extended providing the information about Port-
DefinedArgumentValues, RunnableEntitys and RTEEvents necessary for
RTE generation.c()

Further, detailing of the service ports by filling in these PortDefinedArgu-
mentValues is also done in ECU Configuration phase. See also chapter 7.6.3.

• [TPS_SWCT_01408] Creation of SwcBswMapping dFor the RTE module con-
figuration an implementation of the AUTOSAR Service described by a Basic
Software Module Description needs to be selected. The SwcBswMap-
ping to the corresponding SwComponentPrototype needs to be created ac-
cordingly.

For each SwcInternalBehavior one SwcImplementation is being created.
The information for SwcImplementation should be generated based on the
available information of BswImplementation1.c()

• [TPS_SWCT_01409] Update of PortDefinedArgumentValues dDepending
on the configuration of the Service BSW it might be necessary to update the Val-
ueSpecifications belonging to the PortDefinedArgumentValues gener-
ated in a previous step.c()

1This step does in general not require copying any attributes or elements aggregated in BswImple-
mentation into the generated instance of SwcImplementation since the only mandatory information
for the RTE configuration is the reference from SwcImplementation to the selected SwcInternal-
Behavior.

675 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SwcBswMapping

Package M2::AUTOSARTemplates::CommonStructure::SwcBswMapping

Note Maps an SwcInternalBehavior to an BswInternalBehavior. This is required to coordinate the API
generation and the scheduling for AUTOSAR Service Components, ECU Abstraction Components and
Complex Driver Components by the RTE and the BSW scheduling mechanisms.

Tags:atp.recommendedPackage=SwcBswMappings

Base ARElement , ARObject , AtpClassifier , AtpFeature, AtpStructureElement , CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

bswBehavior BswInternalBehavior 0..1 ref The mapped BswInternalBehavior

runnable
Mapping

SwcBswRunnable
Mapping

* aggr A mapping between a pair of SWC and BSW runnables.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

swcBehavior SwcInternalBehavior 0..1 ref The mapped SwcInternalBehavior.

synchronized
ModeGroup

SwcBswSynchronized
ModeGroupPrototype

* aggr A pair of SWC and BSW mode group prototypes to be
synchronized by the scheduler.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

synchronized
Trigger

SwcBswSynchronized
Trigger

* aggr A pair of SWC and BSW Triggers to be synchronized by
the scheduler.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 11.2: SwcBswMapping

11.2 Extending the ECU Software Composition

As explained in chapter 11.1, Service Configuration takes place in ECU Config-
uration phase. In the ECU extract of the System, the Software Components and their
ECU-internal connectors are represented as a flat set aggregated by RootSwCompo-
sitionPrototype as indicated in Figure 11.1.

ECU Configuration extends this aggregation by adding SwComponentPrototypes
(each typed by a specific ServiceSwComponentType) and the required Assem-
blySwConnectors to the RootSwCompositionPrototype. This is possible with-
out changing the initial artifacts of the ECU extract, because these aggregations are
stereotyped as�atpSplitable� in the meta-model.

After this step, the RootSwCompositionPrototype (denoted by EcucValueCol-
lection.ecuExtract.rootSoftwareComposition) represents the whole Soft-
ware Composition on the given ECU. This collection includes both the software compo-
nents mapped to the ECU and the necessary service components represented as one
SwComponentPrototype for each AUTOSAR Service utilized on the given ECU.

676 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

CompositionSwComponentType

AtpPrototype
Identifiable

RootSwCompositionPrototype

ARElement
AtpStructureElement

System

ServiceSwComponentType

AtomicSwComponentType

AtpPrototype

SwComponentPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

AtpStructureElement

SwConnector

ARElement

EcucValueCollection

������������	
 ����

�����������	��	���� � ����������	����

������������	
 ����

�����������	��	���� �

���������

������������	
 ����

�����������	��	���� �

��������������

AssemblySwConnector

AbstractProvidedPortPrototype

AbstractRequiredPortPrototype

+ecuExtract

0..1

«atpVariation,atpSplitable»

+port 0..*

«instanceRef»

+provider

0..1

+rootSoftwareComposition

0..1
«atpVariation,atpSplitable»

«instanceRef»

+requester

0..1

«atpVariation,atpSplitable»

+connector 0..*

«isOfType»

+softwareComposition
1
{redefines atpType}

«isOfType» +type

0..1
{redefines atpType}

«atpVariation,atpSplitable»

+component

0..*

Figure 11.1: Usage of RootSwCompositionPrototype on an ECU

11.3 Service Software Component Type

As mentioned in [TPS_SWCT_01405], AUTOSAR Services are represented by a
meta-model class of their own, the ServiceSwComponentType. As can be seen
in Figure 11.2, ServiceSwComponentType is a specialization of AtomicSwCompo-
nentType.

Like any other SwComponentType they can aggregate PortPrototypes.

[constr_2019] ServiceSwComponentType shall have service ports only dIn the
case of ServiceSwComponentType, all aggregated PortPrototypes need to have
an �isOfType� relationship to a PortInterface which has its isService at-
tribute set to true at the time when the RTE is generated.

The exceptions described in

• [TPS_SWCT_01572],

• [TPS_SWCT_01579],

• [TPS_SWCT_01831] and

• [TPS_SWCT_01580]

apply.c()

[TPS_SWCT_01579] Dcm can directly access SenderReceiverInterface.
dataElements, NvDataInterface.nvDatas, or ParameterInterface.param-
eters in AbstractProvidedPortPrototype dAn exception to the rule described
in [constr_2019] applies: the Dcm can directly access SenderReceiverInterface.

677 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

dataElements, NvDataInterface.nvDatas, or ParameterInterface.parame-
ters in AbstractProvidedPortPrototypes (PPortPrototype in case of Pa-
rameterInterface.parameter) as long as [constr_1071] is fulfilled.

For this purpose, the ServiceSwComponentType that represents the Dcm functional-
ity can have AbstractRequiredPortPrototypes typed by a compatible Sender-
ReceiverInterface that may set attribute isService to FALSE.c()

Please note that the inclusion of ParameterInterface.parameters in
[TPS_SWCT_01579] is done under the assumption that the ServiceSwCompo-
nentType that represents the Dcm would connect to a PPortPrototype owned by
a ParameterSwComponentType.

[TPS_SWCT_01831] Dcm can directly access SenderReceiverInterface.
dataElements or NvDataInterface.nvDatas in AbstractRequiredPortPro-
totypes dAn exception to the rule described in [constr_2019] applies: the Dcm can di-
rectly access SenderReceiverInterface.dataElements or NvDataInterface.
nvDatas in AbstractRequiredPortPrototypes as long as [constr_1071] is ful-
filled.

For this purpose, the ServiceSwComponentType that represents the Dcm functional-
ity can have AbstractProvidedPortPrototypes typed by a compatible Sender-
ReceiverInterface that may set attribute isService to FALSE.c()

Please note that the exclusion of ParameterInterface.parameters from
[TPS_SWCT_01831] is a direct consequence of [constr_1137], i.e. the Ser-
viceSwComponentType that represents the Dcm is not allowed to expose a PPort-
Prototype typed by a ParameterInterface.

[TPS_SWCT_01580] Dem can directly access SenderReceiverInterface.
dataElements, NvDataInterface.nvDatas, or ParameterInterface.param-
eters in PPortPrototypes dAn exception to the rule described in [constr_2019]
applies: the Dem can directly access SenderReceiverInterface.dataEle-
ments, NvDataInterface.nvDatas, or ParameterInterface.parameters in
AbstractProvidedPortPrototypes (PPortPrototype in case of Parameter-
Interface.parameter) as long as [constr_1071] is fulfilled.

For this purpose, the ServiceSwComponentType that represents the Dem function-
ality can have RPortPrototypes typed by a compatible SenderReceiverInter-
face that may set attribute isService to FALSE.c()

Please note that the inclusion of ParameterInterface.parameters in
[TPS_SWCT_01580] is done under the assumption that the ServiceSwCompo-
nentType that represents the Dem would connect to a PPortPrototype owned by
a ParameterSwComponentType.

[TPS_SWCT_01411] Use cases for a ServiceSwComponentType to express
ServiceNeeds dThere are valid use cases for a ServiceSwComponentType to

678 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

express ServiceNeeds2. This leads to a situation where ServiceSwComponent-
Types are iteratively created in response to ServiceNeeds expressed by other Ser-
viceSwComponentTypes. Please refer to the AUTOSAR methodology [4] for more
details about how this shall be implemented into the workflow.c()

Similar to an EcuAbstractionSwComponentType and a ComplexDeviceDriver-
SwComponentType, the ServiceSwComponentType represents a hybrid concept
between Software Component and Basic Software Module. The BSW part is
described by the means of the BSW Module Description Template [6].

The mapping between the ServiceSwComponentType and the corresponding
BswModuleDescription is provided by the class SwcBswMapping which in addition
also maps the two corresponding InternalBehaviors (see [TPS_SWCT_01408]).
This mechanism is further explained in [6].

[TPS_SWCT_01412] ServiceSwComponentType shall be added in ECU Config-
uration phase dServiceSwComponentType shall not be used when modeling ap-
plication software using CompositionSwComponentType; they are only added in
ECU Configuration phase where exactly one SwComponentPrototype per Ser-
viceSwComponentType per ECU is added to the ECU Description model.

The Base ECU Config Generator tool needs to take care that for all service ports
of SwComponentPrototypes mapped to the ECU service ports at the appropriate
ServiceSwComponentTypes are created.

In case of pattern A for each different type of service port one port on the Ser-
viceSwComponentType is created.

In case of pattern B and C for each service port of a SwComponentPrototype one
port on the ServiceSwComponentType is created.

More explicitly, all instances of AtomicSwComponentType need to be checked for
PortPrototypes of PortInterfaces with isService attribute set to true and
referenced by ServiceNeeds and for each of these PortInterface instances be-
longing to the AUTOSAR Service to be configured one PortPrototype implement-
ing the same or a compatible PortInterface needs to be created on the Ser-
viceSwComponentType.c()

ServiceSwComponentType

ARElement
AtpStructureElement

SwcBswMapping

SwComponentType

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

InternalBehavior

BswInternalBehavior

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger [0..1]

������������	
 ����

�����������	��	���� �

��������������

+swcBehavior

0..1

+bswBehavior

0..1

«atpSplitable»
+internalBehavior 0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

Figure 11.2: ServiceSwComponentType

2Thereby the previously existing constraint 1127 becomes invalid.

679 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ServiceSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note ServiceSwComponentType is used for configuring services for a given ECU. Instances of this class are
only to be created in ECU Configuration phase for the specific purpose of the service configuration.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mult. Kind Note

– – – – –

Table 11.3: ServiceSwComponentType

In the process of creating PortPrototypes the specified communication pattern A,
B, or C for a specific kind of service port has to be considered, see table 11.1.

[TPS_SWCT_02500] Roles on Application/Service Components need to Match
dThe roles of the PortPrototypes (required/provided) on the Application Compo-
nent and the Service Component side obviously need to match. For example an
RPortPrototype attached to an application AtomicSwComponentType matches a
PPortPrototype attached to a ServiceSwComponentType.c()

11.4 Service Proxy Component Type

[TPS_SWCT_01413] Local communication with services dApplication software
components may communicate with an instance of a ServiceSwComponentType
only locally on an ECU.c()

[TPS_SWCT_01414] Mode manager needs to communicate with application soft-
ware components located on other ECUs dThere are however use cases for the
application and vehicle mode management, where a mode manager (namely the Ba-
sic Software Mode Manager, see [21]) is part of the basic software but conceptu-
ally still needs to communicate with application software components located on other
ECUs.

In order to make this communication possible, the ServiceProxySwComponentType
is used.

For the application software and the RTE it behaves like a “normal” AtomicSwCompo-
nentType, but it is actually a proxy for an AUTOSAR Service.c()

The concept of mode requests across ECU boundaries is exemplified in Figure 11.3.

[TPS_SWCT_01415] Interfaces of ServiceProxySwComponentType dThis means
that on the one side it has to communicate over service ports with the ECU-local
ServiceSwComponentType it represents. On the other side it has to offer the corre-
sponding PortPrototypes to the ApplicationSwComponentTypes.c()

680 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

VFB

RTE1

BSW1

ECU1

VCC:
VehicleClampControl

VCP:
VehicleClampProxy

VCC:
VehicleClampControl

VCP:
VehicleClampProxy

BswM Service

RTE2

BSW2

ECU2

VCP:
VehicleClampProxy

BswM Service

App1:
Application1

App2:
Application2

App1:
Application1

App2:
Application2

Figure 11.3: Mode request over the network [3]

In the meta-model, the ServiceProxySwComponentType does not differ from an
ApplicationSwComponentType except by its class. It is up to the implementer to
meet the restrictions imposed by the semantics as a proxy.

[TPS_SWCT_01416] Difference between a ServiceProxySwComponentType and
an ApplicationSwComponentType dThe main difference between a Service-
ProxySwComponentType and an ApplicationSwComponentType is on system
level:

A prototype of a ServiceProxySwComponentType can be mapped to several ECUs
even if it appears only once in the VFB system, because such a prototype is required
on each ECU, where it has to address a local ServiceSwComponentType.

As a result of this, a ServiceProxySwComponentType can only receive but not send
signals over the network. More details are explained in the class table below.c()

[constr_2016] Connections between SwComponentPrototypes of type Servi-
ceProxySwComponentType dA connection between PortPrototypes belonging to
SwComponentPrototypes where both are typed by ServiceProxySwComponent-
Type is not permitted at the time when the RTE is generated.c()

681 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ServiceProxySwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This class provides the ability to express a software-component which provides access to an internal
service for remote ECUs. It acts as a proxy for the service providing access to the service.

An important use case is the request of vehicle mode switches: Such requests can be communicated via
sender-receiver interfaces across ECU boundaries, but the mode manager being responsible to perform
the mode switches is an AUTOSAR Service which is located in the Basic Software and is not visible in
the VFB view. To handle this situation, a ServiceProxySwComponentType will act as proxy for the mode
manager. It will have R-Ports to be connected with the mode requestors on VFB level and Service-Ports
to be connected with the local mode manager at ECU integration time.

Apart from the semantics, a ServiceProxySwComponentType has these specific properties:

• A prototype of it can be mapped to more than one ECUs in the system description.

• Exactly one additional instance of it will be created in the ECU-Extract per ECU to which the
prototype has been mapped.

• For remote communication, it can have only R-Ports with sender-receiver interfaces and 1:n
semantics.

• There shall be no connectors between two prototypes of any ServiceProxySwComponentType.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mult. Kind Note

– – – – –

Table 11.4: ServiceProxySwComponentType

[constr_2017] Ports of ServiceProxySwComponentTypes dServiceProx-
ySwComponentType is only permitted to define

• RPortPrototypes that are typed by SenderReceiverInterface or

• PortPrototypes that are typed by a PortInterface where the isService
attribute is set to true.

This rule shall be imposed at the time when the RTE is generated.c()

[constr_2018] Supported remote communication of a ServiceProxySwCom-
ponentType dFor remote communication, ServiceProxySwComponentType can
have only RPortPrototypes typed by SenderReceiverInterfaces in a 1:n com-
munication scenario.

This rule shall be imposed at the time when the RTE is generated.c()

11.5 Non Volatile Memory

11.5.1 Introduction

The AUTOSAR Architecture defines two alternatives how a software component can
access non-volatile memory.

682 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• The first option is that the software component defines in its InternalBehavior
a PerInstanceMemory and a NvBlockNeeds referring to the PerInstance-
Memory via a RoleBasedDataAssignment.

In this case the NVRAM Block is exclusively accessed by this software compo-
nent and the NvM [35]. Therefore, the nv data is encapsulated inside the software
component and can not be accessed directly by other software components.

The PerInstanceMemory can be typed with AutosarDataTypes in the case
of arTypedPerInstanceMemory or with C data types in the case of perIn-
stanceMemory. For further information see section 7.7 and 13.

• The second option is that the software component uses communication based
on PortPrototypes to access nv data provided by a NvBlockSwComponent-
Type.

In this case it is possible that nv data used by different AtomicSwComponent-
Types is packed in one larger NVRAM Block to reduce the NVRAM Block man-
agement overhead or that the same nv data used by several software compo-
nents with a reduced RAM overhead. The nv data of a NvBlockSwComponent-
Type is typed with AutosarDataTypes.

More details regarding particular scenarios of interacting with the NvM [35] can be
found in section 13.2.

11.5.2 NvBlockComponent

[TPS_SWCT_01142] non-volatile data are provided by a specialized Atomic-
SwComponentType dOn the VFB [3], the non-volatile data are provided by a spe-
cialized AtomicSwComponentType, the NvBlockSwComponentType.

An NvBlockSwComponentType can represent one or more NVRAM Blocks man-
aged by the NVRAM Manager. The nv data PortPrototypes of the NvBlock-
SwComponentType are exclusively typed by NvDataInterfaces.c(RS_SWCT_-
03225)

[TPS_SWCT_01143] Non-volatile data represented by an NvBlockSwComponent-
Type can be read and written dThe non-volatile data represented by an NvBlock-
SwComponentType can be read and written. For this purpose the NvBlockSwCom-
ponentType is allowed to have PPortPrototypes and RPortPrototypes.c(RS_-
SWCT_03225)

Additionally, the NvBlockSwComponentType might have client server PortProto-
types to offer the block-related services, administrative services or notifications.

[constr_2009] Supported kinds of PortPrototypes of a NvBlockSwComponent-
Type dWith respect to external communication, NvBlockSwComponentType is lim-
ited to the definition of the following kinds of PortPrototype:

683 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• PortPrototypes typed by either NvDataInterfaces or ClientServerIn-
terfaces

• RPortPrototypes typed by ModeSwitchInterfaces

This rule shall be imposed at the time when the RTE is generated.c()

VariableDataPrototype

DataPrototype

AutosarDataPrototype

NvDataInterface

PortInterface

DataInterface

+nvData

0..*

Figure 11.4: NvDataInterface

[constr_2010] Connections between SwComponentPrototypes of type
NvBlockSwComponentType dThe existence of SwConnectors that refer to Port-
Prototypes belonging to SwComponentPrototypes where both are typed by
NvBlockSwComponentType is not permitted at the time when the RTE is
generated.c()

Class NvBlockSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The NvBlockSwComponentType defines non volatile data which data can be shared between Sw
ComponentPrototypes. The non volatile data of the NvBlockSwComponentType are accessible via
provided and required ports.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mult. Kind Note

bulkNvData
Descriptor

BulkNvDataDescriptor * aggr This aggregation formally defines the bulk Nv Blocks that
are provided to the application software by the enclosing
NvBlockSwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bulkNvDataDescriptor.shortName, bulkNv
DataDescriptor.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

nvBlock
Descriptor

NvBlockDescriptor * aggr Specification of the properties of exactly one NVRAM
Block.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=nvBlockDescriptor.shortName, nvBlock
Descriptor.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table 11.5: NvBlockSwComponentType

Class NvDataInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

5

684 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class NvDataInterface
Note A non volatile data interface declares a number of VariableDataPrototypes to be exchanged between non

volatile block components and atomic software components.

Tags:atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
DataInterface, Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mult. Kind Note

nvData VariableDataPrototype * aggr The VariableDataPrototype of this nv data interface.

Table 11.6: NvDataInterface

11.5.3 Software-Components using NVRAM data of NvBlockComponents

[TPS_SWCT_01141] AtomicSwComponentType may have AbstractRequired-
PortPrototypes typed by an NvDataInterface dAn AtomicSwComponentType
may have AbstractRequiredPortPrototypes typed by an NvDataInterface.

If such an AbstractRequiredPortPrototype remains unconnected the nvData
still need to have reasonable value3.c(RS_SWCT_03225)

[constr_2011] Connections between SwComponentPrototypes typed by
NvBlockSwComponentType and SwComponentPrototypes typed by other
AtomicSwComponentTypes dThe nv data PortPrototypes of the SwComponent-
Prototype typed by an NvBlockSwComponentType are either connected with
PortPrototypes typed by NvDataInterfaces or SenderReceiverInterfaces
of other AtomicSwComponentType.c()

[constr_1148] PortInterfaces of PortPrototypes used to connect to
NvBlockSwComponentTypes dPortInterfaces of PortPrototypes used to con-
nect to NvBlockSwComponentTypes as well as the PortInterfaces used in the
context of NvBlockSwComponentTypes shall always set the value of the attribute
isService to false at the time when the RTE is generated.c()

[constr_1149] PortPrototypes used for NV data management dA PortProto-
type typed by a ClientServerInterface used for NV data management, i.e.
the interaction of ApplicationSwComponentTypes with NvBlockSwComponent-
Types, shall be typed by ClientServerInterfaces that are compatible to the par-
ticular ClientServerInterfaces derived from MOD_GeneralBlueprints [28]. [con-
str_1148] applies.

This rule shall be imposed at the time when the RTE is generated.c()

For details see chapter 6.4.4.

3Note that it is assumed that only a subset of meta-classes that inherit from AtomicSwComponent-
Type will actually apply for the definition of initial values for nvData. Most likely the Application-
SwComponentType and the SensorActuatorSwComponentType will be candidates for using this
feature but it will obviously not be reasonable for e.g. NvBlockSwComponentType.

685 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Note: In case of nv data which is read and written and shared between several SwCom-
ponentPrototypes the NvBlockSwComponentType establishes a not directly ob-
vious kind of communication.

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

DataInterface

NvDataInterface

InternalBehavior

SwcInternalBehavior

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

Identifiable

ServiceNeeds
NvBlockNeeds

AtomicSwComponentType RoleBasedPortAssignment
������������	
 ����

�����������	��	���� �

��������������

����� �� ����� �� �������	��� �!� � ��� ����

�� �������� �� �	

�����!"�#�����	�	������

�	 � �� ���	� !�	��$� ��� %���%�������� �����

�� ����� �� � ����	��������	��� �!� � ��� ����

�� �������� �� ��&'((�	����
+portPrototype

0..1

+serviceNeeds

0..1«atpVariation,atpSplitable»

+serviceDependency

0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

«atpVariation,atpSplitable»

+assignedPort 0..*

«atpVariation,atpSplitable»

+port

0..*

Figure 11.5: NvBlockNeeds for nv data PortPrototypes

Nevertheless, this is intentionally supported and it is under responsibility of the VFB
designer to take care that only nv data is shared where the functionality of the software
components is not impaired.

To determine for an VFB designer which nv data can be potentially by mapped into the
same NVRAM Block a software-component can specify further attributes for its nv data
PortPrototypes by the definition of SwcServiceDependency(s) with NvBlock-
Needs.

In this case the role attribute of the assignedPort has to be set to the value NvDat-
aPort. This aspect is also explained in section 13.2.4.

In contrast to the NvBlockNeeds that describe the expected configuration of a whole
NVRAM Block, the NvBlockNeeds for nv data PortPrototypes defines only the
attributes which are required from the point of view of a software-component to ensure
its functionality.

This means an empty attribute has the semantic of “don’t care”.

Further on the VFB designer has got the freedom to specify how the requested NVRAM
Block attributes are fulfilled by the created NvBlockDescriptor.

For instance, nv data with different writingFrequency might be mapped to one
NVRAM Block. In this case the NvBlockNeeds of the NvBlockDescriptor has to
indicate the worst case which is the higher frequency.

[TPS_SWCT_01675] Recommendations for attributes of NvBlockNeeds or for
NvBlockDescriptor dThe formal modeling of a NvBlockDescriptor should fol-
low the recommendations given in table 11.7.c(RS_SWCT_03225)

But please note that table 11.7 does not represent a binding constraint.

686 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Attribute of NvBlockNeeds NvBlockNeeds of different nv data Port-
Prototypes of software-components

NvBlockNeeds of NvBlockDescriptor

readonly
Recommended to match for all connected nv
data PortPrototypes if specified.

Recommended to be identical as requested
by nv data PortPrototypes.

reliability Can be different.
Recommended to be set to the highest relia-
bility class request by any mapped nv data
PortPrototypes.

resistantToChangedSw
Recommended to match for all connected nv
data PortPrototypes if specified.

Recommended to be identical as requested
by nv data PortPrototypes.

restoreAtStart
Recommended to match for all connected nv
data PortPrototypes if specified.

Recommended to be identical as requested
by nv data PortPrototypes.

storeAtShutdown
Recommended to match for all connected nv
data PortPrototypes if specified.

Recommended to be identical as requested
by nv data PortPrototypes.

writeOnlyOnce
Recommended to match for all connected nv
data PortPrototypes if specified.

Recommended to be identical as requested
by nv data PortPrototypes.

writingFrequency Can be different.
Recommended to be set to the highest re-
quested frequency of the mapped nv data
PortPrototypes.

writingPriority Can be different.
Recommended to be set to the highest re-
quested priority of the mapped nv data Port-
Prototypes.

writeVerification Can be different.
Recommended to set to true if any of the nv
data PortPrototypes requests a write ver-
ification.

calcRamBlockCrc Can be different.
Recommended to set to true if any of the nv
data PortPrototypes requests a CRC cal-
culation.

checkStaticBlockId Can be different.
Recommended to set to true if any of the nv
data PortPrototypes requests a check of
the static block ID.

ramBlockStatusControl Can be different.

Recommended to set to RamBlockStatus-
ControlEnum.api if any of the nv data
PortPrototypes requests a use of the API
for accessing the block.

storeCyclic Can be different.
Recommended to set to true if any of the nv
data PortPrototypes requests cyclic writ-
ing.

storeEmergency Can be different.
Recommended to set to true if any of the nv
data PortPrototypes requests emergency
writing.

storeImmediate Can be different.
Recommended to set to true if any of the nv
data PortPrototypes requests immediate
writing.

storeOnChange Can be different.
Recommended to set to true if any of the nv
data PortPrototypes requests on-change
writing.

selectBlockForFirs-
tInitAll

Recommended to match for all connected nv
data PortPrototypes if specified.

Recommended to be identical as requested
by nv data PortPrototypes.

Table 11.7: NvBlockNeeds dependencies

With respect to the completeness of table 11.7 (which intentionally doesn’t contain
a remark regarding the value of cyclicWritingPeriod), it should be noted that
(according to [TPS_SWCT_01585]) the value of NvBlockDescriptor.nvBlock-
Needs.cyclicWritingPeriod shall be ignored in favor of NvBlockDescriptor.
timingEvent.period.

687 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Therefore, the missing statement for cyclicWritingPeriod in the spirit of table
11.7 is that the values of SwcServiceDependency.serviceNeeds.cyclicWrit-
ingPeriod can be different from the value of NvBlockDescriptor.timingEvent.
period.

It is recommended that the value of NvBlockDescriptor.timingEvent.period
shall be set to the lowest requested time value of the mapped nv data PortProto-
types (implemented by SwcServiceDependency.serviceNeeds.cyclicWrit-
ingPeriod).

11.5.4 Software-Components connected to NvBlockComponents

Please note that restrictions apply on the creation of AssemblySwConnectors be-
tween NvBlockSwComponentType and other AtomicSwComponentTypes.

In particular ApplicationSwComponentTypes communicating with each other used
buffers generated and controlled by the RTE to exchange data. An NvBlockSwCom-
ponentType, however, maintains its own buffer in form of the ramBlock.

Thus, an ApplicationSwComponentType that reads a dataElement that may be
provided by either another ApplicationSwComponentType or an NvBlockSwCom-
ponentType could not actually access the dataElement because it cannot decide
whether it needs to access the buffer provided by the RTE or the ramBlock.

Therefore, scenarios like this are considered invalid by regulation of the AUTOSAR
standard.

NvBlockSwComponentType

ramBlock

Mapping

B

NvBlockSwComponentType

ramBlock

Mapping

B

ApplicationSwComponentType

RunnableEntity

Read Access

A

ApplicationSwComponentType

RunnableEntity

Read Access

A
ApplicationSwComponentType

RunnableEntity

Write Access

C

ApplicationSwComponentType

RunnableEntity

Write Access

C

Figure 11.6: Example invalid connection between software-components (a)

[constr_1417] Invalid connection between NvBlockSwComponentType and other
AtomicSwComponentType (I) dA configuration where an RPortPrototype owned

688 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

by an AtomicSwComponentType is simultaneously and directly connected to Ab-
stractProvidedPortPrototypes of a collection of AtomicSwComponentTypes
where at least one in the collection is an NvBlockSwComponentType for a matching
set of dataElements in all these PortPrototypes shall be considered invalid at
the time when the RTE is generated.c()

The scenario covered by [constr_1417] is depicted in Figures 11.6 and 11.7.

ApplicationSwComponentType

RunnableEntity

Write Access

C

ApplicationSwComponentType

RunnableEntity

Write Access

C

NvBlockSwComponentType

ramBlock

Mapping

B

NvBlockSwComponentType

ramBlock

Mapping

B

ApplicationSwComponentType

RunnableEntity

Read Access

A

ApplicationSwComponentType

RunnableEntity

Read Access

A

Figure 11.7: Example invalid connection between software-components (b)

NvBlockSwComponentType

ramBlock

Mapping

B

NvBlockSwComponentType

ramBlock

Mapping

B

ApplicationSwComponentType

RunnableEntity

Write Access

A

Read Access

C
o
n

n
e

c
to

r

Figure 11.8: Example invalid connection between software-components (c)

[constr_1418] Invalid connection between NvBlockSwComponentType and other
AtomicSwComponentType (II) dA configuration where a PRPortPrototype owned
by an AtomicSwComponentType is connected to a PPortPrototype owned by an

689 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

NvBlockSwComponentType for a matching set of dataElements in all these Port-
Prototypes shall be considered invalid at the time when the RTE is gen-
erated.c()

The scenario covered by [constr_1418] is depicted in Figure 11.8.

11.5.5 NvBlockDescriptor

[TPS_SWCT_01144] NvBlockDescriptor specifies the properties of exactly
one NVRAM Block dA NvBlockDescriptor specifies the properties of exactly one
NVRAM Block of a NvBlockSwComponentType.

It contains information about the requested NVRAM Block configuration of the NVRAM
Manager, ramBlock and romBlock, the mapping between the PortPrototypes of
the NvBlockSwComponentType and the data inside a ramBlock as well as the role
of the clientServerPorts expressed in terms of RoleBasedPortAssignment.c
()

Class NvBlockDescriptor

Package M2::AUTOSARTemplates::SWComponentTemplate::NvBlockComponent

Note Specifies the properties of exactly on NVRAM Block.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

clientServerPort RoleBasedPort
Assignment

* aggr The RoleBasedPortAssignement defines which client
server port of the NvBlockSwComponentType serves for
which kind of service or notification. In case of
notifications one common callback function is provided by
the RTE for each individual kind of notification defined by
the "role".

The aggregation of RoleBasedPortAssignment is subject
to variability with the purpose to support the conditional
existence of ports.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstantSpecificationMapping to be
applied for the particular NVRAM Block

Stereotypes: atpSplitable
Tags:atp.Splitkey=constantValueMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
particular NVRAM Block.

Stereotypes: atpSplitable
Tags:atp.Splitkey=dataTypeMapping

5

690 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class NvBlockDescriptor

instantiation
DataDefProps

InstantiationDataDef
Props

* aggr The purpose of InstantiationDataDefProps are the
refinement of some data def properties of individual
instantiations within the context of a NvBlockSw
ComponentType.

The aggregation of InstantiationDataDefProps is subject
to variability with the purpose to support the conditional
existence of ports, component internal memory objects
and those attributes.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

modeSwitch
EventTriggered
Activity

ModeSwitchEvent
TriggeredActivity

* aggr This represents the collection of ModeSwitchEvent
TriggeredActivities related to the enclosing NvBlock
Descriptor.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeSwitchEventTriggeredActivity, mode
SwitchEventTriggeredActivity.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

nvBlockData
Mapping

NvBlockDataMapping * aggr Defines the mapping between the VariableData
Prototypes in the NvBlockComponents ports and the
VariableDataPrototypes of the RAM Block.

The aggregation of NvBlockDataMapping is subject to
variability with the purpose to support the conditional
existence of nv data ports.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

nvBlockNeeds NvBlockNeeds 0..1 aggr Specifies the abstract needs on the configuration of the
NVRAM Manager for the single NVRAM Block described
by this NvBlockDescriptor.

In addition, it may define requirements for writing
strategies in an implementation of an NvBlockSw
ComponentType by the RTE.

Please note that the attributes nDataSets and nRom
Blocks are not relevant for this aggregation because the
RTE will allocate just one block anyway. In a different
context, however, they do make sense.

ramBlock VariableDataPrototype 0..1 aggr Defines the RAM Block of the NVRAM Block provided by
NvBlockSwComponentType.

romBlock ParameterData
Prototype

0..1 aggr Defines the ROM Block of the NVRAM Block provided by
NvBlockSwComponentType.

supportDirty
Flag

Boolean 0..1 attr Specifies whether calling of NvM functions for writing and/
or status control of potentially modified RAM Blocks to NV
memory shall be controlled by the RTE.

timingEvent TimingEvent 0..1 ref this reference can be taken to identify the TimingEvent to
be used by the RTE for implementing a cyclic writing
strategy for this block

writingStrategy RoleBasedData
Assignment

* aggr This attribute allows for assigning a specific writing
strategy for an incoming AutosarDataPrototype.

Table 11.8: NvBlockDescriptor

[constr_1981] Existence of attribute NvBlockDescriptor.nvBlockNeeds dFor
each NvBlockDescriptor, attribute nvBlockNeeds shall exist at the time
when the RTE is generated.c()

691 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For more explanation about the semantics of the attribute NvBlockDescriptor.sup-
portDirtyFlag please refer to the SWS RTE [2].

AtomicSwComponentType

NvBlockSwComponentType

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

ServiceNeeds

NvBlockNeeds

+ calcRamBlockCrc: Boolean [0..1]
+ checkStaticBlockId: Boolean [0..1]
+ cyclicWritingPeriod: TimeValue [0..1]
+ nDataSets: PositiveInteger [0..1]
+ nRomBlocks: PositiveInteger [0..1]
+ ramBlockStatusControl: RamBlockStatusControlEnum [0..1]
+ readonly: Boolean [0..1]
+ reliabili ty: NvBlockNeedsReliabil i tyEnum [0..1]
+ resistantToChangedSw: Boolean [0..1]
+ restoreAtStart: Boolean [0..1]
+ selectBlockForFirstInitAll: Boolean [0..1]
+ storeAtShutdown: Boolean [0..1]
+ storeCyclic: Boolean [0..1]
+ storeEmergency: Boolean [0..1]
+ storeImmediate: Boolean [0..1]
+ storeOnChange: Boolean [0..1]
+ useAutoValidationAtShutDown: Boolean [0..1]
+ useCRCCompMechanism: Boolean [0..1]
+ writeOnlyOnce: Boolean [0..1]
+ writeVerification: Boolean [0..1]
+ writingFrequency: PositiveInteger [0..1]
+ writingPriority: NvBlockNeedsWritingPriorityEnum [0..1]

«enumeration»
NvBlockNeedsReliabil ityEnum

 noProtection
 errorDetection
 errorCorrection

ValueSpecification

+ shortLabel: Identifier [0..1]

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

������������	
 ����

�����������	��	���� �

��������������

�����������������	����

� � ��

«enumeration»
RamBlockStatusControlEnum

 api
 nvRamManager

«enumeration»
NvBlockNeedsWritingPriorityEnum

 low
 medium
 high

RTEEvent

TimingEvent

+ offset: TimeValue [0..1]
+ period: TimeValue [0..1]

+ramBlock 0..1

+initValue 0..1

+romBlock 0..1

+initValue 0..1

+timingEvent 0..1+nvBlockNeeds 0..1

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

Figure 11.9: NvBlockSwComponentType and NvBlockDescriptor

[constr_1095] Values of nDataSets vs. reliability dIf the value of nDataSets
is greater than 0, the value of reliability shall not be set to errorCorrection
at the time when the RTE is generated.c()

The reason for the existence of [constr_1095] is that the AUTOSAR NvM [35] does not
support error correction for NV data sets.

If the value of nDataSets is equal to 0, the value of reliability can take any value
out of NvBlockNeedsReliabilityEnum.

11.5.5.1 Writing Strategies

[TPS_SWCT_01586] Writing strategies for nv data dBy setting certain attributes in
the meta-class NvBlockDescriptor it is possible to configure different writing strate-
gies for the values of an RAM Block to the NVRAM storage. [constr_1310] applies.

The following use cases are supported:

692 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• Write data cyclically. This use case requires the existence of attribute NvBlock-
Descriptor.nvBlockNeeds.storeCyclic with the value true and also at-
tribute NvBlockDescriptor.nvBlockNeeds.cyclicWritingPeriod needs
to exist and have a reasonable value.

In the context of using the attribute NvBlockDescriptor.nvBlockNeeds.
cyclicWritingPeriod the constraints [constr_1308] and [constr_1309] apply.

• Write data immediately. This means that data send to the NvBlockSwCompo-
nentType will be written immediately to NVRAM storage.

This use case corresponds to setting the value of attribute NvBlockDescrip-
tor.nvBlockNeeds.storeImmediate to the value true.

• Write on emergency. With this setting, data shall be written to NVRAM storage
if the ECU fails in some way.

This use case corresponds to setting the value of attribute NvBlockDescrip-
tor.nvBlockNeeds.storeEmergency to true.

As explained in [TPS_SWCT_01589], setting the value of this attribute is not
sufficient to achieve the intended semantics.

• Write at shutdown. Here, the data is written to NVRAM storage when the ECU
shuts down.

This use case corresponds to setting the value of attribute NvBlockDescrip-
tor.nvBlockNeeds.storeAtShutdown to true.

• Write on mode switch. Here, the data is written to NVRAM in response to a
mode switch configured to trigger the writing.

This use case corresponds to the existence of attribute NvBlockDescriptor.
modeSwitchEventTriggeredActivity.

• Write on change. Here, the data is written to NVRAM if the value is different than
the respective value in the ramMirror.

This use case corresponds to setting the value of attribute NvBlockDescrip-
tor.nvBlockNeeds.storeOnChange to true.

c(RS_SWCT_03225)

Please refer to [TPS_SWCT_01587] and Figure 11.10 for more information about how
the use case to write data cyclically can be configured.

Please refer to [TPS_SWCT_01588] and Figure 11.11 for more information about how
the use case to write data immediately can be configured.

Of course, the actual implementation of the different writing strategies goes beyond
setting the value of attributes and requires the existence of dedicated RunnableEn-
titys in the SwcInternalBehavior of the enclosing NvBlockSwComponentType
that are triggered in response to RTEEvents applicable for the particular use case.

693 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01587] The cyclic writing of nv data requires the existence of a
TimingEvent dThe implementation of cyclic writing of nv data requires the existence
of a TimingEvent that can be taken to trigger a corresponding RunnableEntity
that in turn takes care of calling the respective APIs for writing the data.c(RS_SWCT_-
03225)

This aspect is depicted in Figure 11.10.

NvBlockSwComponentType
AtpStructureElement

Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

TimingEvent

+ offset: TimeValue [0..1]
+ period: TimeValue [0..1]

SwComponentType

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

AbstractEvent
AtpStructureElement

RTEEvent

������������	
 ����

�����������	��	���� �

��������������

�����������������	����

� � ��

������������	
 ����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+event

0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

«atpVariation,atpSplitable»

+runnable 0..*

+timingEvent 0..1

«atpVariation,atpSplitable»

+nvBlockDescriptor

0..*

+startOnEvent

0..1

Figure 11.10: How to model a cyclic writing strategy for nv data

[TPS_SWCT_01588] DataReceivedEvent for storing nv data immediately dThe
approach to store data immediately after reception by an NvBlockSwComponent-
Type requires the activation of a RunnableEntity by a DataReceivedEvent.c
(RS_SWCT_03225)

This approach is depicted in Figure 11.11.

[TPS_SWCT_01589] Implementation of emergency storing of nv data dThe use
case for storeEmergency can only be implemented by means of a Complex
Driver.

In particular, the Complex Driver is responsible for the detection of an ECU failure. If
a relevant error occurs the Complex Driver should call the NvM write block operation
for the emergency blocks directly.c(RS_SWCT_03225)

This consequently means that the NvM shall react to write operations coming from the
Complex Driver by giving them the highest priority (re-queuing of NvM write block
requests).

Please note that the behavior described in [TPS_SWCT_01587] in general is sup-
ported by AUTOSAR by requiring that NVRAM Blocks shall have to be configured
with “immediate priority”. The technical implications are explained in the respective
SWS [35], e.g. in [SWS_NvM_00182] and [SWS_NvM_00300].

694 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

NvBlockSwComponentType

SwComponentType

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently:
Boolean [0..1]

+ symbol: CIdentifier [0..1]

AbstractEvent
AtpStructureElement

RTEEvent
DataReceivedEvent

AutosarDataPrototype

VariableDataPrototype

SenderReceiverInterfaceDataInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean [0..1]
+ serviceKind: ServiceProviderEnum [0..1]

AbstractRequiredPortPrototype

RPortPrototype

+ mayBeUnconnected: Boolean [0..1]

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� � ��������������

«atpVariation,atpSplitable»

+event 0..*

«atpVariation,atpSplitable»

+internalBehavior0..1

«isOfType»

+requiredInterface
0..1
{redefines atpType}

+startOnEvent

0..1

+dataElement 0..*

«atpVariation,atpSplitable»

+runnable 0..*

«instanceRef»

+data

0..1

Figure 11.11: How to model an immediate writing strategy for nv data

[TPS_SWCT_01590] Combination of writing strategies for nv data is possible
dAUTOSAR positively supports the configuration of a combination of writing strategies
for nv data.c(RS_SWCT_03225)

In other words, in consequence of [TPS_SWCT_01590] it is possible that (for exam-
ple) both NvBlockDescriptor.nvBlockNeeds.storeImmediate and NvBlock-
Descriptor.nvBlockNeeds.storeCyclic may exist and set to true in the context
of the same NvBlockNeeds.

[TPS_SWCT_01665] Usage of SwcModeSwitchEvent for triggering a write proce-
dure of nv data dThe approach to manage data of an NvBlockSwComponentType
in response to a mode switch notification received from a mode manager requires the
activation of a RunnableEntity by a SwcModeSwitchEvent.c(RS_SWCT_03225)

[TPS_SWCT_01666] Semantics of ModeSwitchEventTriggeredActivity.role
dIf the role ModeSwitchEventTriggeredActivity.role is set to the value
WriteBlock then NvM gets requested to write the nv data block after the correspond-
ing SwcModeSwitchEvents occurs.c(RS_SWCT_03225)

ModeSwitchEventTriggeredActivity

+ role: Identifier [0..1]

RTEEvent

SwcModeSwitchEvent

+ activation: ModeActivationKind [0..1]

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]
������������	
 ����

�����������	��	���� �

��������������

�����������������	����

� � ��

+swcModeSwitchEvent

0..1

«atpVariation,atpSplitable»

+modeSwitchEventTriggeredActivity 0..*

Figure 11.12: Usage of mode switch notification for the activation of a write-procedure
of nv data

695 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1415] Supported values of ModeSwitchEventTriggeredActivity.
role dThe only supported value of ModeSwitchEventTriggeredActivity.role
at the time when the RTE is generated is WriteBlock.c()

Class ModeSwitchEventTriggeredActivity

Package M2::AUTOSARTemplates::SWComponentTemplate::NvBlockComponent

Note This meta-class defines an activity of the NvBlockSwComponentType for a specific NvBlock which is
triggered by a ModeSwitchEvent.

Base ARObject

Attribute Type Mult. Kind Note

role Identifier 0..1 attr This attribute indicates which service of the NvM for the
NvBlock shall be requested.

swcModeSwitch
Event

SwcModeSwitchEvent 0..1 ref This reference identifies the SwcModeSwitchEvent that
triggers the activity.

Table 11.9: ModeSwitchEventTriggeredActivity

[constr_1982] Existence of attribute ModeSwitchEventTriggeredActivity.
role dFor each ModeSwitchEventTriggeredActivity, attribute role shall ex-
ist at the time when the RTE is generated.c()

[constr_1983] Existence of attribute ModeSwitchEventTriggeredActivity.
swcModeSwitchEvent dFor each ModeSwitchEventTriggeredActivity, at-
tribute swcModeSwitchEvent shall exist at the time when the RTE is gen-
erated.c()

11.5.5.1.1 Existence of multiple event-driven Writing Strategies

A use case might exist where (potentially in addition to a cyclic writing strategy) multiple
event-based writing strategies to NvRam exist at the same time.

Writing strategies are typically implemented by means of different RunnableEntitys
that need to be triggered by the arrival of data at the NvBlockSwComponentType. In
this case, however, it is necessary to be able to assign the relation between incoming
data and the RunnableEntity that applies the fitting writing strategy.

In the example scenario depicted in Figure 11.13, two dataElements are received
by the NvBlockSwComponentType. One dataElement shall be associated with the
writing strategy to store at shutdown and the other dataElement shall be associated
with an immediate storage.

Two DataReceivedEvents exist that can be taken to trigger RunnableEntitys. But
without further formal specification, it is up to speculation which DataReceivedEvent
shall be associated with which RunnableEntity.

To remove this degree of uncertainty, it is possible to use standardized values for the
attribute RoleBasedDataAssignment.role and let the RoleBasedDataAssign-
ment itself refer to the respective dataElement.

696 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

NvBlockSwComponentType

NvBlockDescriptor

"nvBlock"

NvBlockNeeds

"nvBlock"

storeAtShutdown=True
storeImmediately=True

DataReceivedEvent

"X"

DataReceivedEvent

"Y"

RunnableEntity

"Immediate"

RunnableEntity

"Shutdown"

NvBlockDataMapping

"X"

NvBlockDataMapping

"Y"

? ?

??

DE1

DE1

Figure 11.13: Existence of several event-based writing strategies for the same NvBlock-
Descriptor

The approach is sketched in Figure 11.14 and its application to the depicted scenario
is sketched in Figure 11.15.

RoleBasedDataAssignment

+ role: Identifier [0..1]

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

AutosarVariableRef
+usedDataElement

0..1

+writingStrategy

0..*

Figure 11.14: Modeling of RoleBasedDataAssignment in the context of NvBlockDe-
scriptor

[TPS_SWCT_01795] Further specification to facilitate the association of writing
strategies to the corresponding RunnableEntity dNvBlockDescriptor may
aggregate RoleBasedDataAssignment in the role writingStrategy and the at-
tribute NvBlockDescriptor.writingStrategy.role can be used to assign a writ-
ing strategy to an AutosarDataPrototype (referenced by means of NvBlockDe-
scriptor.writingStrategy.usedDataElement) in the context of a PortProto-
type.c(RS_SWCT_03225)

[constr_1713] NvBlockDescriptor.writingStrategy.usedDataElement
shall refer to AutosarDataPrototype dThe reference NvBlockDescriptor.
writingStrategy.usedDataElement shall only refer to an AutosarDataPro-
totype at the time when the RTE is generated.c()

Rationale: the activation of a RunnableEntity that implements the respective writing
strategy is triggered by the reception of an entire AutosarDataPrototype. The
ability to refer to a DataPrototype inside the AutosarDataPrototype might give
a false impression.

697 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1714] AutosarDataPrototype shall only be referenced by a single
NvBlockDescriptor.writingStrategy dIf an AutosarDataPrototype in the
context of a PortPrototype is referenced from a NvBlockDescriptor.writ-
ingStrategy then this AutosarDataPrototype shall not be referenced from any
other NvBlockDescriptor.writingStrategy.

This rule shall be imposed at the time when the RTE is generated.c()

NvBlockSwComponentType

NvBlockDescriptor

"nvBlock"

DataReceivedEvent

"X"

DataReceivedEvent

"Y"
RunnableEntity

"Immediate"

RunnableEntity

"Shutdown"

NvBlockDataMapping

"X"

NvBlockDataMapping

"Y"

DE1

DE1

RoleBasedDataAssignment

role="storeAtShutdown"

RoleBasedDataAssignment

role="storeAtShutdown"

RoleBasedDataAssignment

role="storeImmediately"

RoleBasedDataAssignment

role="storeImmediately"

NvBlockNeeds

"nvBlock"

storeAtShutdown=True

storeImmediately=True

Figure 11.15: Solution for the existence of several event-based writing strategies for the
same NvBlockDescriptor

[constr_1715] Possible values of attribute NvBlockDescriptor.writingStrat-
egy.role dThe attribute NvBlockDescriptor.writingStrategy.role shall only
have one of the following values at the time when the RTE is generated
(see [TPS_SWCT_01586]):

• storeAtShutdown

• storeImmediate

• storeOnChange

c()

[constr_1716] Consistency of attribute NvBlockDescriptor.writingStrat-
egy.role set to storeAtShutdown dThe existence of NvBlockDescriptor.
writingStrategy where attribute role is set to storeAtShutdown is only sup-
ported if NvBlockDescriptor.nvBlockNeeds.storeAtShutdown exists and is set
to True at the time when the RTE is generated.c()

698 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1717] Consistency of attribute NvBlockDescriptor.writingStrat-
egy.role set to storeImmediate dThe existence of NvBlockDescriptor.writ-
ingStrategy where attribute role is set to storeImmediate is only supported if
NvBlockDescriptor.nvBlockNeeds.storeImmediate exists and is set to True
at the time when the RTE is generated.c()

[constr_10074] Consistency of attribute NvBlockDescriptor.writingStrat-
egy.role set to storeOnChange dThe existence of NvBlockDescriptor.writ-
ingStrategy where attribute role is set to storeOnChange is only supported if
NvBlockDescriptor.nvBlockNeeds.storeOnChange exists and is set to True
at the time when the RTE is generated.c()

11.5.5.2 NvBlockNeeds

The requested NVRAM Block configuration of the NVRAM Manager is described by
the NvBlockNeeds of the NvBlockDescriptor.

This information can be evaluated during ECU configuration similar to the NvBlock-
Needs of an atomic software component or a BSW module. For further details see
section 13.

Identifiable

ServiceNeeds

NvBlockNeeds

+ calcRamBlockCrc: Boolean [0..1]
+ checkStaticBlockId: Boolean [0..1]
+ cyclicWritingPeriod: TimeValue [0..1]
+ nDataSets: PositiveInteger [0..1]
+ nRomBlocks: PositiveInteger [0..1]
+ ramBlockStatusControl: RamBlockStatusControlEnum [0..1]
+ readonly: Boolean [0..1]
+ reliabil ity: NvBlockNeedsReliabil i tyEnum [0..1]
+ resistantToChangedSw: Boolean [0..1]
+ restoreAtStart: Boolean [0..1]
+ selectBlockForFirstInitAll: Boolean [0..1]
+ storeAtShutdown: Boolean [0..1]
+ storeCyclic: Boolean [0..1]
+ storeEmergency: Boolean [0..1]
+ storeImmediate: Boolean [0..1]
+ storeOnChange: Boolean [0..1]
+ useAutoValidationAtShutDown: Boolean [0..1]
+ useCRCCompMechanism: Boolean [0..1]
+ writeOnlyOnce: Boolean [0..1]
+ writeVerification: Boolean [0..1]
+ writingFrequency: PositiveInteger [0..1]
+ writingPriority: NvBlockNeedsWritingPriorityEnum [0..1]

«enumeration»
NvBlockNeedsReliabili tyEnum

 noProtection
 errorDetection
 errorCorrection

«enumeration»
NvBlockNeedsWritingPriorityEnum

 low
 medium
 high

«enumeration»
NvBlockComponent::

RamBlockStatusControlEnum

 api
 nvRamManager

Figure 11.16: NvBlockNeeds

[constr_1308] Existence of NvBlockNeeds.cyclicWritingPeriod dThe attribute
NvBlockNeeds.cyclicWritingPeriod shall exist if and only if the attribute
NvBlockNeeds.storeCyclic exists and its value is set to true.

This rule shall be imposed at the time when the RTE is generatedc()

699 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class NvBlockNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of a single NVRAM Block.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

calcRamBlock
Crc

Boolean 0..1 attr Defines if CRC (re)calculation for the permanent RAM
Block is required.

checkStatic
BlockId

Boolean 0..1 attr Defines if the Static Block Id check shall be enabled.

cyclicWriting
Period

TimeValue 0..1 attr This represents the period for cyclic writing of NvData to
store the associated RAM Block.

nDataSets PositiveInteger 0..1 attr Number of data sets to be provided by the NVRAM
manager for this block. This is the total number of ROM
Blocks and RAM Blocks.

nRomBlocks PositiveInteger 0..1 attr Number of ROM Blocks to be provided by the NVRAM
manager for this block. Please note that these multiple
ROM Blocks are given in a contiguous area.

ramBlockStatus
Control

RamBlockStatusControl
Enum

0..1 attr This attribute defines how the management of the RAM
Block status is controlled.

readonly Boolean 0..1 attr True: data of this NVRAM Block are write protected for
normal operation (but protection can be disabled)

false: no restriction
reliability NvBlockNeeds

ReliabilityEnum
0..1 attr Reliability against data loss on the non-volatile medium.

resistantTo
ChangedSw

Boolean 0..1 attr Defines whether an NVRAM Block shall be treated
resistant to configuration changes (true) or not (false). For
details how to handle initialization in the latter case,
please refer to the NVRAM specification.

restoreAtStart Boolean 0..1 attr Defines whether the associated RAM Block shall be
implicitly restored during startup by the basic software.

selectBlockFor
FirstInitAll

Boolean 0..1 attr If this attribute is set to true the NvM shall process this
block in the NvM_FirstInitAll() function.

storeAt
Shutdown

Boolean 0..1 attr Defines whether or not the associated RAM Block shall be
implicitly stored during shutdown by the basic software.

storeCyclic Boolean 0..1 attr Defines whether or not the associated RAM Block shall
be implicitly stored periodically by the basic software.

store
Emergency

Boolean 0..1 attr Defines whether or not the associated RAM Block shall
be implicitly stored in case of ECU failure (e.g. loss of
power) by the basic software. If the attribute store
Emergency is set to true the associated RAM Block shall
be configured to have immediate priority.

storeImmediate Boolean 0..1 attr Defines whether or not the associated RAM Block shall
be implicitly stored immediately during or after execution
of the according SW-C RunnableEntity by the basic
software.

storeOnChange Boolean 0..1 attr This attribute defines whether the associated RAM Block
shall be stored immediately if the written value is different
to the value stored in the associated RAM Block(s) during
or after execution of the according SW-C RunnableEntity.

useAuto
ValidationAt
ShutDown

Boolean 0..1 attr If set to true the RAM Block shall be auto validated during
shutdown phase.

useCRCComp
Mechanism

Boolean 0..1 attr If set to true the CRC of the RAM Block shall be
compared during a write job with the CRC which was
calculated during the last successful read or write job in
order to skip unnecessary NVRAM writings.

5

700 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class NvBlockNeeds

writeOnlyOnce Boolean 0..1 attr Defines write protection after first write:

true: This block is prevented from being changed/erased
or being replaced with the default ROM data after first
initialization by the software-component.

false: No such restriction.

writeVerification Boolean 0..1 attr Defines if Write Verification shall be enabled for this
NVRAM Block.

writing
Frequency

PositiveInteger 0..1 attr Provides the amount of updates to this block from the
application point of view. It has to be provided in "number
of write access per year".

writingPriority NvBlockNeedsWriting
PriorityEnum

0..1 attr Requires the priority of writing this block in case of
concurrent requests to write other blocks.

Table 11.10: NvBlockNeeds

Enumeration NvBlockNeedsReliabilityEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Reliability against data loss on the non-volatile medium. These requirements give only a relative
indication, for example on the required degree of redundancy for storage.

They do, however, not specify by which means (e.g. software or hardware) the reliability is actually
achieved.

Literal Description

errorCorrection Errors shall be corrected

Tags:atp.EnumerationLiteralIndex=0

errorDetection Errors shall be detected

Tags:atp.EnumerationLiteralIndex=1

noProtection Data need not to be handled with protection

Tags:atp.EnumerationLiteralIndex=2

Table 11.11: NvBlockNeedsReliabilityEnum

[constr_1310] Existence of attributes of meta-class NvBlockNeeds dIf in the con-
text of an ApplicationSwComponentType the attribute SwcServiceDependency.
serviceNeeds is implemented by an NvBlockNeeds then the following attributes

• NvBlockNeeds.storeCyclic

• NvBlockNeeds.cyclicWritingPeriod

• NvBlockNeeds.storeEmergency

• NvBlockNeeds.storeImmediate

• NvBlockNeeds.storeOnChange

shall only exist if in the context of the same SwcServiceDependency a SwcSer-
viceDependency.assignedPort exists that has the attribute role set to the value
NvDataPort.

This rule shall be imposed at the time when the RTE is generated.c()

701 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

11.5.5.3 RAM Block and ROM Block

[TPS_SWCT_01145] ramBlock and the romBlock are described by a Vari-
ableDataPrototype and a ParameterDataPrototype dThe ramBlock and the
romBlock are described by a VariableDataPrototype and a ParameterDat-
aPrototype which are typed by an AutosarDataType.c()

[TPS_SWCT_01146] romBlock is optional dThe romBlock is optional. If a
romBlock is configured, the RTE copies the romBlock constants into the RAM Block
in case of a block initialization notification (NvMNotifyInitBlock).c()

[TPS_SWCT_01147] No romBlock is configured dIf there is no romBlock config-
ured the connected software components are either required to offer this functionality
by a proper implementation of block initialization notification or the NVRAM Block has
to be configured, that no ROM Block is needed.c()

As a mitigation against a failed read operation from NV memory, it is recommended to
always define a romBlock with suitable initial values to ensure the proper initialization
of the corresponding ramBlock.

In particular, for software-components that don’t define a PortPrototype typed
by the ClientServerInterface with the standardized shortName NotifyInit-
Block [35] it may happen that the ramBlock might not be properly initialized in case
of failure.

[constr_2012] Compatibility of ImplementationDataTypes used for ramBlock
and romBlock dThe ramBlock and the romBlock shall have compatible Imple-
mentationDataTypes to ensure at the time when the RTE is generated,
that the NVRAM Block default values in the ROM Block can be copied into the RAM
Block.c()

Additionally, it is possible that RAM Block and ROM Block are defined to be able
to calibrate or measurable. Preceding SwDataDefProps might be defined with the
means of an InstantiationDataDefProps.

11.5.5.4 NvBlockDataMapping

[TPS_SWCT_01148] NvBlockDataMapping dThe meta-class NvBlockDataMap-
ping specifies the mapping of (bits of) DataPrototypes of the NvBlockSwCompo-
nentType’s PPortPrototypes resp. RPortPrototypes to (bits of) DataProto-
types inside the RAM Block.c()

This ensures a flexible but deterministic NVRAM Block memory structure given by the
ImplementationDataType of the ramBlock and romBlock and its association to
the PortPrototypes of the NvBlockSwComponentType.

[constr_2013] Compatibility of ImplementationDataTypes for NvBlock-
DataMapping dUnless both the attribute bitfieldTextTableMaskNvBlockDe-
scriptor and attribute bitfieldTextTableMaskPortPrototype is defined in

702 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

the context of a given NvBlockDataMapping, the NvBlockDataMapping is only
valid if the ImplementationDataType of the referenced VariableDataProto-
type or ImplementationDataTypeElement in the role nvRamBlockElement is
compatible to the ImplementationDataType used to type the DataPrototype ag-
gregated by NvBlockDataMapping in the role writtenNvData, writtenReadNv-
Data, or readNvData.

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1285] Applicability of roles vs. PortPrototypes dThe aggregation of
AutosarVariableRef aggregated by NvBlockDataMapping in the roles writ-
tenNvData, writtenReadNvData, or readNvData is subject to limitation at the
time when the RTE is generated, depending on the applicable subclass of
PortPrototype:

• The role writtenNvData shall only be used if the corresponding PortProto-
type is a RPortPrototype

• The role writtenReadNvData shall only be used if the corresponding Port-
Prototype is a PRPortPrototype

• The role readNvData shall only be used if the corresponding PortPrototype
is a PPortPrototype

c()

But nevertheless it is valid, that not all ImplementationDataTypeElements within
the VariableDataPrototype aggregated by NvBlockDescriptor in the role
ramBlock are mapped to a VariableDataPrototype located in a PortProto-
type.

This enables to have fill elements or logistic data in the NVRAM Block which are not
accessed by software components. This is exemplified by the element x in Figure
11.17.

Please note that the VariableDataPrototype located in the PortPrototype, in
the vast majority of cases, will be typed by an ApplicationDataType which in turn
(at least before the actual code generation starts) finally shall have a mapping to an
ImplementationDataType. This aspect is explained in chapter 5.2.2.

[TPS_SWCT_01659] Mapping of VariableDataPrototype to a NvBlockDe-
scriptor dThere are three ways to map a VariableDataPrototype (i.e. Nv-
DataInterface.nvData in the context of a specific PortPrototype) to either an
NvBlockDescriptor.ramBlock or a sub-element thereof:

• NvDataInterface.nvData is directly and completely mapped, i.e. Autosar-
VariableRef.autosarVariable shall exist and autosarVariable.tar-
getDataPrototype shall refer to the NvDataInterface.nvData.

• Every leaf element of NvDataInterface.nvData is mapped individually. This
means that either

703 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

– AutosarVariableRef.autosarVariableInImplDatatype shall exist
and autosarVariableInImplDatatype.targetDataPrototype shall
refer to the respective leaf element of NvDataInterface.nvData.

– AutosarVariableRef.autosarVariable shall exist and autosar-
Variable.targetDataPrototype shall refer to the respective leaf ele-
ment of NvDataInterface.nvData.

In other words: the mapping shall be defined either via the used Implementa-
tionDataType or else via the used ApplicationDataType.

• A sub-element of NvDataInterface.nvData - which is not a leaf element -
may be directly mapped and consequently all the leaf elements of the respec-
tive sub-element of NvDataInterface.nvData are indirectly mapped as well.
This means that

– AutosarVariableRef.autosarVariableInImplDatatype shall exist
and autosarVariableInImplDatatype.targetDataPrototype shall
refer to the sub-element element of NvDataInterface.nvData.

– AutosarVariableRef.autosarVariable shall exist and autosar-
Variable.targetDataPrototype shall refer to the sub-element element
of NvDataInterface.nvData.

In other words: the mapping shall be defined either via the used Implementa-
tionDataType or else via the used ApplicationDataType.

c()

Please note that a mixing of mutually exclusive mappings for entire sub-elements
or leaf elements as described by [TPS_SWCT_01659] is positively supported (see
Figure 11.17).

[constr_1395] NvBlockDataMapping shall be complete dIf an NvBlockDataMap-
ping refers to sub-elements or leaf elements of the NvDataInterface.nvData in
the context of a particular PortPrototype, then all remaining sub-elements or leaf
elements shall effectively be mapped according to [TPS_SWCT_01659] by means of
a collection of NvBlockDataMappings at the time when the RTE is gen-
erated.c()

[constr_1403] NvBlockDataMappings to a given nvData shall be unambiguous
dIf an NvBlockDataMapping exists that directly and completely maps a specific
NvDataInterface.nvData in the context of a particular PortPrototype, then no
other NvBlockDataMapping which maps sub-elements of the NvDataInterface.
nvData shall exist at the time when the RTE is generated.c()

The interaction with AUTOSAR services is centrally defined in the context of the Swc-
ServiceDependency. The latter gathers a collection of PortPrototypes by means
of RoleBasedPortAssignments that implement a closely related service functional-
ity.

704 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

NvBlockSwComponent <<NvDataInterface>>

nvData:

a : uint8
b : uint32
g : {
 - h : uint16
 - j : uint8
 - s : {
 - u : uint32
 - w : uint8
 }

nvData root element:
- a, b, g

leaf element:
- a, b, h, j, u, w

sub-element which is
not a leaf element:
- s

NvBlockDescriptor
ramBlock:
{
b : uint32
s : {
 - u : uint32
 - w : uint8
 }
x : uint8
h : uint16
a : uint8
j : uint8
}

Example NvDataMapping

nvData ramBlock mapping kind

a a nvData root

b b nvData root

h h leaf element

j j leaf element

s s sub-element

Figure 11.17: Example NvBlockDataMapping to explain the three ways to map a Vari-
ableDataPrototype to either an NvBlockDescriptor.ramBlock or a sub-element
thereof

NvBlockDataMapping

SwcServiceDependency

„DataX“

NvBlockNeeds

„DataX“

RoleBasedPortAssignment

role: „NvDataPort“

RoleBasedPortAssignment

role: „NvDataPort“

«isOfType»

SwComponentPrototype typed by

NvBlockSwComponenType

«isOfType»

SwComponentPrototype typed by ApplicationSwComponentType

«isOfType»

NvBlockDescriptor

„BlockY“

NvBlockDataMapping

NvBlockDataMapping

VariableDataPrototype

„ramBlockY“

ramBlock

«isOfType»

NvDataInterface

„DataX1“

NvDataInterface

„DataX1“

NvDataDataInterface

„DataX2“

NvDataDataInterface

„DataX2“

NvDataInterface

„DataY2“

NvDataInterface

„DataY2“

ClientServerInterface

„NvMNotifyJobFinished“

«isOfType»

«isOfType»

RoleBasedPortAssignment

role: „NvMNotifyJobFinished“

Figure 11.18: Visualization of the statement made by [constr_1404]

705 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In the specific case of interaction between AtomicSwComponentType and NvBlock-
SwComponentType (as described by [TPS_SWCT_02503]), there are PortProto-
types referenced by a RoleBasedPortAssignment with attribute RoleBasedPor-
tAssignment.role set to NvDataPort. These PortPrototypes contain the col-
lected Nv Data of the service use case.

Furthermore, there is the possibility to receive notifications when the writing of the
mapped NV Block to the NvRam is finished.

AtomicSwComponentType

NvBlockSwComponentType

DataInterface

NvDataInterface

AtpStructureElement
Identifiable

NvBlockDescriptor

NvBlockDataMapping

InstantiationDataDefProps

VariableDataPrototype

AutosarVariableRef

ArVariableInImplementationDataInstanceRef

ImplementationDataTypeElement

ImplementationDataType

ARElement
AtpType

AutosarDataType

DataPrototype

AutosarDataPrototype

AtpInstanceRef

VariableInAtomicSWCTypeInstanceRef

AtpBlueprint
AtpBlueprintable

AbstractImplementationDataType

AtpStructureElement
Identifiable

AbstractImplementationDataTypeElement«atpVariation»

+nvBlockDataMapping0..*

+nvRamBlockElement

0..1

+variableInstance0..1

«atpVariation»

+subElement 0..* {ordered}

«atpVariation»

+instantiationDataDefProps 0..*

+rootVariableDataPrototype 0..1

+autosarVariableInImplDatatype0..1

+readNvData

0..1

+contextDataPrototype 0..*
{ordered}

+writtenNvData

0..1

+writtenReadNvData

0..1

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

«isOfType»

+type 0..1
{redefines atpType}

+autosarVariable 0..1

+ramBlock

0..1

+nvData 0..*

+rootVariableDataPrototype 0
..

1
{s

u
b

se
ts

a
tp

C
o

n
te

xt
E

le
m

e
n

t}

+targetDataPrototype 0..1

Figure 11.19: NvBlockDataMapping and InstantiationDataDefProps

In order to be able to properly assign such a notification to the content of the related
Nv Data PortPrototypes in the scope of the same SwcServiceDependency it is
necessary that the Nv Data of all these PortPrototypes is mapped to the same Nv
Block (because the notifications are created per block).

This aspect represents one motivation for the existence of [constr_1404]:

[constr_1404] All NvDataInterface.nvData of PortPrototypes in the context
of a specific SwcServiceDependency shall be mapped to the same NvBlock-
Descriptor dIn the context of a given SwcServiceDependency (which, in turn, is

706 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

owned by an AtomicSwComponentType), all NvDataInterface.nvData of Port-
Prototypes referenced by a RoleBasedPortAssignment with attribute Role-
BasedPortAssignment.role set to NvDataPort shall be connected (either di-
rectly or via the definition of suitable PortInterfaceMappings) to NvDataInter-
face.nvData (on the side of the NvBlockSwComponentType) that are completely
mapped (via NvBlockDataMappings) to the identical NvBlockDescriptor.ram-
Block.

This rule shall be imposed at the time when the RTE is generated.c()

The statement made by [constr_1404] is visualized in Figure 11.18. The context-
defining model elements, i.e. SwcServiceDependency owned by the Atomic-
SwComponentType as well as NvBlockDescriptor owned by the NvBlockSwCom-
ponentType, are colored in light orange.

The diagram is focused on the NvBlockDescriptor.ramBlock. As stressed by
[constr_1404], all Nv Data provided by the PortPrototypes referenced by the spe-
cific SwcServiceDependency finally ends up in the one depicted ramBlock (colored
in blue).

Please note that the graphical representation of the NvBlockDataMapping in Figure
11.18 has been simplified for the sake of clarity.

In summary, there is in fact a whole list of motivations that lead to the creation of
[constr_1404]:

• The handling of the dirty-flag within the RTE is done in the context of a Port-
Prototype.

• The currently implemented approach allows for an easy understanding of the
relation of data in the application to data in NV-RAM.

• All data in the context of one SwcServiceDependency have the identical stor-
age life cycle.

• Jobs triggered in the NvM via operations in the NvMService (see [SWS_NvM_-
00734]) interface belong to exactly one NvBlockDescriptor.

• As already mentioned, notifications of the NvM towards software components
(e.g. NvMNotifyJobFinished as described in [SWS_NvM_00735] or NvMNo-
tifyInitBlock, see [SWS_NvM_00736]) belong to exactly one NvBlockDe-
scriptor.

[constr_1984] Existence of instance reference NvBlockDataMapping.nvRam-
BlockElement dFor each NvBlockDataMapping, the instance reference to Mod-
eDeclaration in the role nvRamBlockElement shall exist at the time when
the RTE is generated.c()

Please note that are use cases for numerous fine-grained (e.g. single bits) data in non-
volatile RAM. For this purpose, it would be very inefficient to copy the value of a whole
DataPrototype that is at least 8 bits long into the non-volatile RAM.

707 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

A much better approach is to allow for the mapping of single bits or bit-fields inside a
DataPrototype in a PortPrototype to the ramBlock of an NvBlockDescrip-
tor directly.

For this purpose the NvBlockDataMapping provides the attributes bitfield-
TextTableMaskNvBlockDescriptor and bitfieldTextTableMaskPortPro-
totype4

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

NvBlockDataMapping

+ bitfieldTextTableMaskNvBlockDescriptor: PositiveInteger [0..1]
+ bitfieldTextTableMaskPortPrototype: PositiveInteger [0..1]

InstantiationDataDefProps AutosarVariableRef

AtomicSwComponentType

NvBlockSwComponentType

������������	
 ����

�����������������	����� � ��

�����������	��	���� � ��������������

+writtenNvData

0..1

+readNvData

0..1

+variableInstance

0..1

«atpVariation,atpSplitable»

+nvBlockDescriptor

0..*

«atpVariation»

+nvBlockDataMapping 0..*

«atpVariation»
+instantiationDataDefProps 0..*

+nvRamBlockElement

0..1

+writtenReadNvData

0..1

Figure 11.20: Attributes of NvBlockDataMapping

NvBlockDescriptor

RPortPrototype

Boolean

Boolean

RPortPrototype

Boolean

Boolean

NvBlockDataMapping

bitfieldTextTableMaskNvBlockDescriptor = 0x10
bitfieldTextTableMaskPortPrototype = 0x01

NvBlockDataMapping

bitfieldTextTableMaskNvBlockDescriptor = 0x10
bitfieldTextTableMaskPortPrototype = 0x01

NvBlockDataMapping

bitfieldTextTableMaskNvBlockDescriptor = 0x02
bitfieldTextTableMaskPortPrototype = 0x01

NvBlockDataMapping

bitfieldTextTableMaskNvBlockDescriptor = 0x02
bitfieldTextTableMaskPortPrototype = 0x01

NvBlockDescriptor.ramBlock

BooleanBoolean

Figure 11.21: Visualization of the approach to map bit-fields inside an NvBlockSwCom-
ponentType

[TPS_SWCT_01799] Mapping of bit-fields between NvBlockDescriptor and
PortPrototype dIt is possible to map a bitfield contained in the DataPrototype
representing the ramBlock to a bitfield contained in a DataPrototype defined in

4The alternative to this approach would have been to shift this "distillation process" into the connec-
tion between e.g. an ApplicationSwComponentType and an NvBlockSwComponentType.

Such an approach comes with considerably heavier side effects and complexity (usage in Dele-
gationSwConnectors or as part of a network connection) and is therefore not supported.

708 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

the context of a PortPrototype on the surface of the enclosing NvBlockSwCom-
ponentType by means of the definition of attributes NvBlockDataMapping.bit-
fieldTextTableMaskNvBlockDescriptor and NvBlockDataMapping.bit-
fieldTextTableMaskPortPrototype.

In this case [constr_2013] is not applicable.c()

The general approach for mapping bit-fields onto each other in the context of an
NvBlockSwComponentType is sketched in Figure 11.21.

Class NvBlockDataMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::NvBlockComponent

Note Defines the mapping between the VariableDataPrototypes in the NvBlockComponents ports and the
VariableDataPrototypes of the RAM Block.

The data types of the referenced VariableDataPrototypes in the ports and the referenced sub-element
(inside a CompositeDataType) of the VariableDataPrototype representing the RAM Block shall be
compatible.

Base ARObject

Attribute Type Mult. Kind Note

bitfieldTextTable
MaskNvBlock
Descriptor

PositiveInteger 0..1 attr This attribute identifies the applicable bit mask on the side
of the Nv Block.

bitfieldTextTable
MaskPort
Prototype

PositiveInteger 0..1 attr This attribute identifies the applicable bit mask on the side
of the PortPrototype.

nvRamBlock
Element

AutosarVariableRef 0..1 aggr Reference to a VariableDataPrototype of a RAM Block.

readNvData AutosarVariableRef 0..1 aggr Reference to a VariableDataPrototype of a pPort of the
NvBlockComponent providing read access to the RAM
Block.If there is no PortPrototype providing read access
(write-only) the reference can be omitted.

writtenNvData AutosarVariableRef 0..1 aggr Reference to a VariableDataPrototype of a rPort of the Nv
BlockComponent providing write access to the RAM
Block. If there is no port providing write access
(read-only) the reference can be omitted.

writtenReadNv
Data

AutosarVariableRef 0..1 aggr Reference to a VariableDataPrototype of a PRPort
Prototype of the NvBlockSwComponentType providing
write and read access to the RAM Block.

Table 11.12: NvBlockDataMapping

11.5.5.5 Client Server Ports

[TPS_SWCT_01149] RoleBasedPortAssignment of NvBlockDescriptor dThe
clientServerPort of the NvBlockDescriptor describes which client/server
PortPrototype of the NvBlockSwComponentType serves for which purpose. The
role specifies if the port serves for block-related services, administrative services or
notification.c()

[constr_2014] Limitation of RoleBasedPortAssignment.role in NvBlockDe-
scriptors dThe role has to be set to a valid name of the Standardized AUTOSAR
Interface used for the NVRAM Manager e.g. NvMNotifyJobFinished or NvMNotifyInit-
Block.c()

709 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In case of notifications one common callback function is provided by the RTE for each
individual kind of notification defined by the attribute role.

The PPortPrototypes related to a given NvBlockDescriptor need to be provided
with the same value for a PortDefinedArgumentValue in order to make the soft-
ware work correctly. The provision of the PortDefinedArgumentValue is heuristic,
but with a further “trick” the reliability of this operation can be much improved.

For all NvBlockDescriptor.clientServerPort of a given NvBlockDescriptor
where attribute role is set to the value NvMService or NvMAdmin collect the Port-
Prototype if it is a PPortPrototype. The resulting collection of PortPrototypes
need to be provided with the same value (of PortDefinedArgumentValue).

In this case it is no longer necessary to explicitly model the existence of PortDe-
finedArgumentValues for these PortPrototypes since the applicable id value of
the NvM can be derived by RTE configuration.

To make this approach work the role value needs to be standardized, see [con-
str_2014].

NvBlockSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

PPortPrototype RPortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean [0..1]
+ serviceKind: ServiceProviderEnum [0..1]

RoleBasedPortAssignment

+ role: Identifier [0..1]

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

ClientServerInterface
AtpStructureElement

Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

������������	
 ����

�����������������	����

� � ��

�����������	��	���� �

��������������

AtomicSwComponentType

������������	
 ����

�����������	��	���� �

��������������

�����������������	����

� � ��

AbstractProvidedPortPrototype AbstractRequiredPortPrototype

PRPortPrototype

������������	
 ����

�����������������	����� � ��

�����������	��	���� � �������	� ��������	����

������������	
 ����

�����������	��	���� �

��������������

«atpVariation»

+clientServerPort 0..*

«isOfType»

+
re

q
u

ire
d

In
te

rf
a

ce

0
..

1
{r

e
d

e
fin

e
s

a
tp

T
yp

e
}

«isOfType»

+
p

ro
vi

d
e

d
R

e
q

u
ire

d
In

te
rf

a
ce

0
..

1
{r

e
d

e
fin

e
s

a
tp

T
yp

e
}

«isOfType»

+
p

ro
vi

d
e

d
In

te
rf

a
ce

0
..

1
{r

e
d

e
fin

e
s

a
tp

T
yp

e
}

+portPrototype

0..1

«atpVariation»

+operation

0..*

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

«atpVariation,atpSplitable»

+port

0..*

Figure 11.22: NvBlockNotification

710 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

11.5.6 BulkNvDataDescriptor

There is a strong use case where application software gets read-only access to data of
significant size located in non-volatile memory. The actual data is created or updated
e.g. at the end of the production line or maybe during maintenance in a garage.

NvBlockDataMapping

+ bitfieldTextTableMaskNvBlockDescriptor:
PositiveInteger [0..1]

+ bitfieldTextTableMaskPortPrototype:
PositiveInteger [0..1]

AutosarVariableRef

AtomicSwComponentType

NvBlockSwComponentType

AtpStructureElement

BulkNvDataDescriptor

AutosarDataPrototype

VariableDataPrototype
ValueSpecification

+ shortLabel: Identifier [0..1]

AtpInstanceRef

VariableInAtomicSWCTypeInstanceRef

AtpBlueprintable
AtpPrototype

PortPrototype

AbstractProvidedPortPrototype

PPortPrototype

������������	
 ����

�����������	��	���� � ��������������

�����������������	����� � ��

+rootVariableDataPrototype 0..1
{subsets atpContextElement}

+autosarVariable 0..1

+writtenNvData 0..1+bulkNvBlock 0..1

+initValue

0..1

«atpVariation,atpSplitable»

+bulkNvDataDescriptor

0..*

+portPrototype

0..1
{subsets
atpContextElement}

+nvRamBlockElement
0..1

«atpVariation»

+nvBlockDataMapping

0..*

+readNvData 0..1

Figure 11.23: NvBlockSwComponentType and BulkNvDataDescriptor

If such a scenario were to be implemented using an NvBlockDescriptor then the
creation of a RAM mirror of the data in the non-volatile memory would be obligatory.
But as described before, the existence of a RAM mirror would not be necessary at
all in this use case and would only waste a significant amount of precious resources.

It is therefore necessary to be clearly separate the use case for utilizing an NvBlock-
Descriptor from the direct read-only access to non-volatile memory in the meta-
model.

For this purpose, model support is provided by the existence of meta-class BulkNv-
DataDescriptor, aggregated at NvBlockSwComponentType in the role bulkNv-
DataDescriptor. This modeling is depicted in Figure 11.23.

[TPS_SWCT_01805] Semantics of the aggregation NvBlockSwComponentType.
bulkNvDataDescriptor dThe existence of an aggregation at meta-class NvBlock-
SwComponentType in the role bulkNvDataDescriptor indicates that read-only ac-
cess to a block of data in non-volatile memory shall be provided.

Access to this block of data is provided directly from non-volatile memory as op-
posed to via a RAM mirror.c(RS_SWCT_03225)

[TPS_SWCT_01806] Simultaneous aggregation of NvBlockSwComponentType.
bulkNvDataDescriptor and NvBlockSwComponentType.nvBlockDescriptor
dThe simultaneous existence of aggregations in the roles bulkNvDataDescriptor
and nvBlockDescriptor in the context of the same NvBlockSwComponentType
is positively supported.c(RS_SWCT_03225)

711 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01807] Application of NvBlockDataMapping on BulkNvDataDe-
scriptor dVia the aggregation of NvBlockDataMapping in the role nvBlock-
DataMapping it is possible to make the content of the BulkNvDataDescriptor
available to a PPortPrototype on the surface of the enclosing NvBlockSwCompo-
nentType.

It is also supported to make only a subset of the content of the BulkNvDataDescrip-
tor available at the PPortPrototype.c(RS_SWCT_03225)

[constr_1735] Limitation of the aggregation of AutosarVariableRef in the con-
text of an NvBlockDataMapping owned by a BulkNvDataDescriptor dAny
NvBlockDataMapping owned by a BulkNvDataDescriptor shall only aggregate
an AutosarVariableRef in the role readNvData and nvRamBlockElement (that
in turn refers to the BulkNvDataDescriptor.bulkNvBlock) at the time when
the RTE is generated.c()

Of course, [constr_1285] also applies for the usage of BulkNvDataDescriptor.

Class BulkNvDataDescriptor

Package M2::AUTOSARTemplates::SWComponentTemplate::NvBlockComponent

Note This meta-class represents one bulk NV Data Block that is read-only for the application software. The
purpose of a bulk NV Data Block is to provide access to information uploaded to the vehicle at e.g. the
end of the production line.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

bulkNvBlock VariableDataPrototype 0..1 aggr This aggregation represents the actual bulk NVBlock.

nvBlockData
Mapping

NvBlockDataMapping * aggr Defines the mapping between the VariableData
Prototypes in the NvBlockComponents ports and the
VariableDataPrototypes of the non-volatile memory.

The aggregation of NvBlockDataMapping is subject to
variability with the purpose to support the conditional
existence of nv data ports.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 11.13: BulkNvDataDescriptor

11.5.7 SwcInternalBehavior of an NvBlockSwComponentType

[TPS_SWCT_01150] InternalBehavior of a NvBlockSwComponentType to en-
able access to the NVRAM Block management API dIn general, the InternalBe-
havior of a NvBlockSwComponentType is only used for a limited scope.

The main use case is that the NvBlockSwComponentType defines PPortProto-
types typed by a ClientServerInterface to enable access to the NVRAM Block
management API.

To enable the configuration of the server invocation in the RTE’s ECU configuration,
the NvBlockSwComponentType needs to provide the following model elements:

712 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• OperationInvokedEvents

• server RunnableEntity

• PortDefinedArgumentValues to define the NVRAM Block ID which has to
be passed to the NvM

In addition to the above list further model elements may qualify; the details are ex-
plained in [TPS_SWCT_01584].c()

NvBlockSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean [0..1]
+ serviceKind: ServiceProviderEnum [0..1]

RoleBasedPortAssignment

+ role: Identifier [0..1]

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

InternalBehavior

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

OperationInvokedEvent

AbstractEvent
AtpStructureElement

RTEEvent

AtomicSwComponentType

PortDefinedArgumentValue

PortAPIOption

������������	
 ����

�����������	��	���� �

��������������

�����������������	����

� � ��

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������������	����

� � ��

�����������	��	���� �

��������������

�������	 �� ������������� ��

���� 	������� �� ���!��	���

����"�����

������������	
 ����

�����������������	����

� � ��

�����������	��	���� �

#�!����	�$��������	����

������������	
 ����

�����������	��	���� �

��������������

«instanceRef»

+operation 0..1

+portPrototype

0..1

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

«atpVariation»
+operation 0..*

«atpVariation,atpSplitable»

+portAPIOption

0..*

+port 0..1

«atpVariation,atpSplitable»

+port

0..*

«
a

tp
V

a
ria

tio
n

,a
tp

S
p

lit
a

b
le

»

+internalBehavior0..1

«atpVariation,atpSplitable»

+event

0..*

«atpVariation,atpSplitable»

+runnable 0..* +portArgValue 0..* {ordered}

«atpVariation»

+clientServerPort 0..*

+startOnEvent0..1

Figure 11.24: NvBlockSwComponentType and SwcInternalBehavior

[TPS_SWCT_01152] InternalBehavior does not have further attributes dIt is
not expected, that such InternalBehavior do have further attributes like Exclu-
siveAreas, per-instance memory or inter-runnable variables, etc.c()

713 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01584] InternalBehavior of a NvBlockSwComponentType for im-
plementing a writing strategy dFor the use case that NvBlockDescriptors ex-
ists that aggregate NvBlockNeeds which, in turn, define particular NV data writ-
ing strategies (by defining any of the attributes storeAtShutdown, storeImmedi-
ate, storeEmergency, or storeCyclic) the InternalBehavior of a NvBlock-
SwComponentType needs to support further model elements.

Particularly, In addition to the model elements listed in [TPS_SWCT_01150], the fol-
lowing list of model elements can be used in the InternalBehavior of a NvBlock-
SwComponentType for implementing writing strategies:

• TimingEvents (which may include references to ModeDeclarations in the
role disabledMode)

• DataReceivedEvents (which may include references to ModeDeclarations
in the role disabledMode)

• SwcModeSwitchEvents

• RunnableEntitys

c(RS_SWCT_03225)

[TPS_SWCT_01151] RunnableEntitys do not have further attributes dThe same
condition exists for the RunnableEntitys of such InternalBehavior which shall
not define further attributes, e.g. data access points (implemented by means of
references from SwcInternalBehavior to VariableAccess) or ServerCall-
Points.c()

[constr_1234] Value of RunnableEntity.symbol dThe value of a RunnableEn-
tity.symbol owned by an NvBlockSwComponentType that is triggered by an Op-
erationInvokedEvent shall only be taken from the set of API names associated
with the NvM.

This rule shall be imposed at the time when the RTE is generated.c()

For example, RunnableEntity.symbol owned by an NvBlockSwComponentType
could rightfully be set to NvM_ReadBlock [35] but an arbitrary value like ReadThis-
Block is not permitted.

The rationale for [constr_1234] is that the RunnableEntitys that are triggered by an
OperationInvokedEvent are not existing as such but are mapped to the respective
function calls of the NvM. For more details of how this mapping can be achieved please
refer to [6].

Please note that no restriction applies for the value of attribute RunnableEntity.
symbol of any RunnableEntity owned by an NvBlockSwComponentType that is
triggered by an RTEEvent other than OperationInvokedEvent.

[constr_2015] Limitation of SwcInternalBehavior of a NvBlockSwComponent-
Type dThe SwcInternalBehavior of a NvBlockSwComponentType is only per-
mitted to define

714 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• OperationInvokedEvents

• RunnableEntitys triggered by OperationInvokedEvents (server
RunnableEntitys)

• RunnableEntitys which defines only the mandatory attributes symbol and
canBeInvokedConcurrently

• PortAPIOptions defining PortDefinedArgumentValues

• TimingEvents (which may include references to ModeDeclarations in the
role disabledMode)

• DataReceivedEvents (which may include references to ModeDeclarations
in the role disabledMode)

• SwcModeSwitchEvents

• RunnableEntitys triggered by TimingEvents

• RunnableEntitys triggered by DataReceivedEvents

• RunnableEntitys triggered by SwcModeSwitchEvents

• DataTypeMappingSet

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1309] Existence of NvBlockDescriptor.timingEvent dThe attribute
NvBlockDescriptor.timingEvent shall exist at the time when the RTE
is generated if and only if the NvBlockDescriptor.nvBlockNeeds.store-
Cyclic exists and is set to the value true.c()

Note that there is a conceptual connection between the values of the two attributes
NvBlockDescriptor.timingEvent.period and SwcServiceDependency.ser-
viceNeeds.cyclicWritingPeriod.

Specifically, the SwcServiceDependency.serviceNeeds.cyclicWritingPe-
riod represents a requirement and the NvBlockDescriptor.timingEvent.pe-
riod is supposed to fulfill the requirement.

[TPS_SWCT_01585] Relevance of NvBlockDescriptor.timingEvent.period
dFor any given NvBlockDescriptor, the value of the attribute NvBlockDescrip-
tor.nvBlockNeeds.cyclicWritingPeriod shall be ignored and the value of
NvBlockDescriptor.timingEvent.period shall be taken to specify the effective
writing frequency for cyclic storage.c(RS_SWCT_03225)

[TPS_SWCT_01662] Applicability of DataTypeMappingSets inside an NvBlock-
SwComponentType dThe DataTypeMappingSets to be applied for a given
NvBlockDescriptor is the superset of NvBlockDescriptor.dataTypeMapping
and InternalBehavior.dataTypeMapping.c(RS_SWCT_03225)

715 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

12 Software Component Documentation

AUTOSAR supports documentation of software component types by adopting the prin-
ciples of ASAM-FSX [36] Standard to AUTOSAR.

With AUTOSAR Release 4.0, the AUTOSAR XML schema provides support for inte-
grated and well-structured documentation.

More details about the AUTOSAR Documentation Support Concept can be found in
the AUTOSAR Generic Structure Template [11].

[TPS_SWCT_01062] Documentation of software-components dThe documentation
of a SwComponentType is composed of several Chapters.

Some Chapters are predefined, describing the component from the perspective of
different activities performed on the component, like:

• testing it (swTestDesc)

• maintaining it (swMaintenanceNotes)

• calibrating it (swCalibrationNotes)

• performing diagnostic (swDiagnosticsNotes)

c(RS_SWCT_02110, RS_SWCT_03230)

The documentation of a SwComponentType is shown in figure 12.1.

Two other predefined Chapters describe the component (swFeatureDesc) and de-
fine its physical functionality (swFeatureDef).

In order to describe additional aspects of a software component, an arbitrary number
of free Chapters can be defined.

SwComponentDocumentation

A

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

Identifiable
Paginateable

Chapter

+ helpEntry: String [0..1]

������������	
 ����

������	�����������	 �

��	������	���	

�������������
 ����

������	�����������	 �

���������

+swCalibrationNotes

0..1

+swFeatureDesc

0..1

+swMaintenanceNotes

0..1

+swDiagnosticsNotes

0..1

+swCarbDoc

0..1

«atpVariation»

+chapter

0..*

+swFeatureDef

0..1

«atpSplitable,atpVariation»

+swComponentDocumentation

0..1

+swTestDesc

0..1

Figure 12.1: Software component documentation

The predefined Chapters typically provide informal guideline (e.g. recommendation)
or documentation.

716 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Formal information can be captured using special data groups [11] or annotating doc-
umentation construct with semantic information. This could be used to extend the
predefined Chapters or in separate free Chapters.

Note that the documentation of a software component can be stored in a different file
than the component itself (i.e., it is�atpSplitable� from the component).

Each of the predefined and free Chapters follows the�atpVariation� stereotype
to support variant handling (see [11]) on the documentation at the Chapter level.

These VariationPoints set the latest binding time to the value AdditionalBind-
ingTimeEnum.postBuild because the decision to include or exclude a Chapter as
well as the decision which variant of this Chapter should be included can be made
when the component has been built.

Class SwComponentDocumentation

Package M2::AUTOSARTemplates::SWComponentTemplate::SoftwareComponentDocumentation

Note This class specifies the ability to write dedicated documentation to a component type according to ASAM
FSX.

Base ARObject

Attribute Type Mult. Kind Note

chapter Chapter * aggr These chapters provide additional information about the
software component that do not fit in the other chapters.

Note that this is subject to variation because Chapter
aggregations in the role chapter are variant within the
documentation in general.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=100
xml.typeElement=false

swCalibration
Notes

Chapter 0..1 aggr This element contains calibration instructions and hints
for a calibration engineer.

Tags:
xml.roleElement=true
xml.sequenceOffset=60
xml.typeElement=false

swCarbDoc Chapter 0..1 aggr This element records the documentation requested by
CARB.

Tags:
xml.roleElement=true
xml.sequenceOffset=80
xml.typeElement=false

swDiagnostics
Notes

Chapter 0..1 aggr This element contains general information about
diagnostics issues within the component.

Tags:
xml.roleElement=true
xml.sequenceOffset=75
xml.typeElement=false

5

717 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SwComponentDocumentation

swFeatureDef Chapter 0..1 aggr This element contains the definition of the physical
functionality of this software component. This definition is
more or less formal and is intended to be delivered from
modeling tools.

Tags:
xml.roleElement=true
xml.sequenceOffset=20
xml.typeElement=false

swFeatureDesc Chapter 0..1 aggr This element contains the textual description of the
software functionality of this software component. Expert
should write this description.

Tags:
xml.roleElement=true
xml.sequenceOffset=30
xml.typeElement=false

swMaintenance
Notes

Chapter 0..1 aggr This element contains information regarding the software
maintenance of the component.

Tags:
xml.roleElement=true
xml.sequenceOffset=70
xml.typeElement=false

swTestDesc Chapter 0..1 aggr This element contains suggestions and hints for the test
of the software functionality of this software component.

Tags:
xml.roleElement=true
xml.sequenceOffset=50
xml.typeElement=false

Table 12.1: SwComponentDocumentation

Class Chapter

Package M2::MSR::Documentation::Chapters

Note This meta-class represents a chapter of a document. Chapters are the primary structuring element in
documentation.

Base ARObject , DocumentViewSelectable, Identifiable, MultilanguageReferrable, Paginateable, Referrable

Attribute Type Mult. Kind Note

chapterModel ChapterModel 1 aggr This represents the overall contents of the chapter.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.typeElement=false
xml.typeWrapperElement=false

helpEntry String 0..1 attr This specifies an entry point in an online help system to
be linked with the parent class. The syntax shall be
defined by the applied help system respectively help
system generator.

Maybe it is a concatenated Identifier, but as of now we
leave it as an arbitrary string.

Tags:xml.attribute=true

Table 12.2: Chapter

718 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Enumeration AdditionalBindingTimeEnum

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This enumeration specifies the additional binding times applicable for vh.latestBindingTime of
variation points.

Literal Description

blueprintDerivation
Time

The point in time when an object is created from a blueprint.

Tags:atp.EnumerationLiteralIndex=0

postBuild After the executable has been built.

Tags:atp.EnumerationLiteralIndex=1

Table 12.3: AdditionalBindingTimeEnum

719 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13 Service Dependencies and Service Use Cases

13.1 Overview

Meta-class SwcServiceDependency represents a powerful concept to describe the
service-related capabilities of an AtomicSwComponentType.

It is still required to understand how to configure SwcServiceDependency and re-
lated meta-classes for specific service use cases.

This chapter contains a detailed description of the meta-classes related to SwcSer-
viceDependency in the context of specific service use cases, as well as modeling
hints for the configuration of the respective service use cases.

13.2 NvM Service Dependencies

The meta-class NvBlockNeeds is used to define requirements to configure the
NVRAM Manager Service. In addition, it may define requirements how the RTE shall
implement writing strategies of an NvBlockSwComponentType.

An SwcInternalBehavior may provide several SwcServiceDependencys that
in turn aggregate an NvBlockNeeds element where each defines the requirements
from one NVRAM Block (for more information on the AUTOSAR NVRAM Manager
see [35]).

A diagram that explains the modeling of ServiceNeeds for the NVRAM Manager
Service can be found in Figure 11.16.

There are several use cases how a software-component can interact with the NVRAM
Manager service. Each use case is discussed in a separate sub-chapter.

Enumeration RamBlockStatusControlEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::NvBlockComponent

Note This enumeration type defines options for how the management of the ramBlock status is controlled.

Literal Description

api The ramBlock status is controlled via service interface by usage of the SetRamBlockStatus operation.

Tags:atp.EnumerationLiteralIndex=0

nvRamManager The ramBlock status is controlled exclusively by the Nv Ram Manager.

Tags:atp.EnumerationLiteralIndex=1

Table 13.1: RamBlockStatusControlEnum

720 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.2.1 Nvm Use Case: Permanent RAM Block

Scenario: a AtomicSwComponentType is using an NVRAM Block with a Perma-
nent RAM Block implemented by a PerInstanceMemory section or a Variable-
DataPrototype in the role arTypedPerInstanceMemory. In either case, the re-
quired memory for the Permanent RAM Block is allocated by the RTE during ECU
Configuration.

In this case the following rules apply:

[TPS_SWCT_02501] Setup for Nvm Use Case: Permanent RAM Block d

RoleBasedPortAssignment
For every used ClientServerInterface provided by the NvM it is necessary
to create a RoleBasedPortAssignment and set the value of the attribute role
of the RoleBasedPortAssignment to the name of the used standardized
ClientServerInterface. The following ClientServerInterfaces shall
(i.e. lower multiplicity > 0) or can (lower multiplicity = 0) be used in this context:

• NvmService [0 .. 1]

• NvMNotifyJobFinished [0 .. 1]

• NvMNotifyInitBlock [0 .. 1]

• NvMAdmin [0 .. 1]

RoleBasedDataAssignment
RoleBasedDataAssignment shall be created that refers to either the PerIn-
stanceMemory in the role usedPim or to the VariableDataPrototype in
the role usedDataElement. The value of the attribute role of the Role-
BasedDataAssignment shall be set to ramBlock.

Optionally, it is possible to create an additional RoleBasedDataAssign-
ment to a ParameterDataPrototype in the role usedParameterElement.
The value of the ParameterDataPrototype is then taken as the initial or
default value for the NVRAM Block. In this case the value of the attribute role
of the RoleBasedDataAssignment shall be set to defaultValue.
Therefore, the following roles are applicable:

• ramBlock [1]

• defaultValue [0 .. 1]

RepresentedPortGroup
N/A

c(RS_SWCT_03225)

For more information please refer to [SWS_NvM_00734], [SWS_NvM_00735], [SWS_-
NvM_00736], and [SWS_NvM_00737].

721 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The same mechanism (see description of scenario) applies also for an NvBlock-
SwComponentType. For each NVRAM Block the NVRAM Manager can be config-
ured (with the help of SwcServiceDependency.assignedData) to use the same
Permanent RAM Block.

It is the responsibility of the NVRAM Manager to provide the content of the NVRAM
Block in this Permanent RAM Block during startup or on explicit request and to
write back the content to the storage medium during shut-down or on explicit request.

13.2.2 Nvm Use Case: Temporary RAM Block

Scenario: an AtomicSwComponentType is using some NVRAM Block with a Tem-
porary RAM Block.

In this case the AtomicSwComponentType is responsible for allocating the allocation
of sufficient memory. In other words, the AtomicSwComponentType shall provide a
memory area that is available to the API call to the NVRAM Manager for storage of the
NV data.

[TPS_SWCT_02502] Setup for Nvm Use Case: Temporary RAM Block d

RoleBasedPortAssignment
This is mandatory for the described scenario. For every used ClientServer-
Interface provided by the Nvm it is necessary to create a RoleBasedPortAs-
signment and set the value of the attribute role of the RoleBasedPortAs-
signment to the name of the used ClientServerInterface. The following
ClientServerInterfaces shall (i.e. lower multiplicity > 0) or can (lower mul-
tiplicity = 0) be used in this context:

• NvmService [1]

• NvMNotifyJobFinished [0 .. 1]

• NvMNotifyInitBlock [0 .. 1]

• NvMAdmin [0 .. 1]

RoleBasedDataAssignment
The usage of a RoleBasedDataAssignment with attribute role set to de-
faultValue is optional and depends on whether an initial value is required.

• defaultValue [0..1]

RoleBasedDataTypeAssignment
By this means it is possible to define the data-type of a Temporary RAM Block.
The data type information can be used to calculate the NVRAM Block size. [con-
str_1301] applies.

• temporaryRamBlock [0..1]

722 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RepresentedPortGroup
N/A

c(RS_SWCT_03225)

[constr_1301] Existence of RoleBasedDataTypeAssignment.role vs. Role-
BasedDataAssignment.role dThe usage of a RoleBasedDataTypeAssignment
with attribute role set to the value temporaryRamBlock is only allowed if no Role-
BasedDataAssignment defined with attribute role set to value defaultValue ex-
ists in the owning SwcServiceDependency.

This rule shall be imposed at the time when the RTE is generated.c()

The rationale for [constr_1301] is that the existence of a RoleBasedDataAssign-
ment would already provide sufficient information for the intended purpose. The paral-
lel existence of a RoleBasedDataTypeAssignment is therefore fully redundant and
could only lead to potential inconsistencies.

For more information please refer to [SWS_NvM_00734], [SWS_NvM_00735], [SWS_-
NvM_00736], and [SWS_NvM_00737].

13.2.3 Nvm Use Case: RAM Block with explicit synchronization using Mirror
Interfaces

Scenario: an AtomicSwComponentType is using an NVRAM Block where the RAM
Block uses explicit synchronization by means of mirror interfaces. In this case the
RAM Block does not necessarily have to be formally described by means of a
PerInstanceMemory or a VariableDataPrototype in the role arTypedPerIn-
stanceMemory.

Consequently, the software-component itself is responsible for the allocation of mem-
ory. On the other hand, this can also mean that the software-component can use
several RAM Blocks instead of just one RAM Block.

[TPS_SWCT_02504] Setup for Nvm Use Case: RAM Block with explicit synchro-
nization using Mirror Interfaces d

RoleBasedPortAssignment
This is mandatory for the described scenario. For every used ClientServer-
Interface provided by the Nvm it is necessary to create a RoleBasedPortAs-
signment and set the value of the attribute role of the RoleBasedPortAs-
signment to the name of the used ClientServerInterface. The following
ClientServerInterfaces shall (i.e. lower multiplicity > 0) or can (lower mul-
tiplicity = 0) be used in this context:

• NvMService [0..1]

• NvMNotifyJobFinished [0..1]

• NvMNotifyInitBlock [0..1]

723 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• NvMAdmin [0..1]

• NvMMirror [1]

RoleBasedDataAssignment
In this scenario the existence of a RoleBasedDataAssignment is optional. The
RoleBasedDataAssignment needs to reference a ParameterDataProto-
type aggregated by the enclosing SwcInternalBehavior in the role perIn-
stanceParameter or sharedParameter.

• defaultValue [0..1]

RoleBasedDataTypeAssignment
By this means it is possible to define the data-type of a temporary RAM Block
and used internal data structure in case of explicit synchronization with NvMMirror
interface respectively. The data type information can be used to calculate the
NVRAM Block size and minimum Permanent RAM Block size. [constr_1301]
applies.

• temporaryRamBlock [0..1]

RepresentedPortGroup
N/A

c(RS_SWCT_03225)

For more information please refer to [SWS_NvM_00734], [SWS_NvM_00735], [SWS_-
NvM_00736], [SWS_NvM_00737], and [SWS_NvM_00738].

13.2.4 NVM Use Case: Software-Components using Nv Data provided by
NvBlockSwComponentType (not ServiceSwComponent of NvM)

Scenario: an AtomicSwComponentType is using an NVRAM Block managed by
an NvBlockSwComponentType (see section 11.5.2, as opposed to an NVRAM
Block provided by a ServiceSwComponentType). Constraints [constr_1148], [con-
str_1149], and [constr_2011] apply.

[TPS_SWCT_02503] Setup for NVM Use Case: Software-Components using Nv
Data provided by NvBlockSwComponentType d

RoleBasedPortAssignment
This is mandatory for the described scenario. For every used ClientServer-
Interface provided by the NvM it is necessary to create a RoleBasedPor-
tAssignment and set the value of the attribute role of the RoleBasedPor-
tAssignment to the name of the used ClientServerInterface. The follow-
ing ClientServerInterfaces shall (i.e. lower multiplicity > 0) or can (lower
multiplicity = 0) be used in this context:

• NvMService [0..1]

724 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• NvMNotifyJobFinished [0..1]

• NvMNotifyInitBlock [0..1]

• NvMAdmin [0..1]

For every PortPrototype of a software-component typed by an NvDataIn-
terface defining a SwcServiceDependency it is necessary to create a Role-
BasedPortAssignment and set the value of the attribute role of the attribute
assignedPort to the value NvDataPort:

• NvDataPort [1..*]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
N/A

For supporting this use case the value of attribute SwcServiceDependency.cate-
gory shall be set to NV_BLOCK_COMPONENT.c(RS_SWCT_03225)

For more information please refer to [SWS_NvM_00734], [SWS_NvM_00735], [SWS_-
NvM_00736], and [SWS_NvM_00737]. Note that NvBlockNeeds (described in Chap-
ter 11.5.5) is not in the scope of this use case.

13.3 Watchdog Service Dependencies

The meta-class SupervisedEntityNeeds is used to define requirements to config-
ure the Watchdog Service. For the terms related to the AUTOSAR Watchdog Manager
see [37].

13.3.1 Watchdog Service use Case: Local Supervision

The service interaction with the Watchdog Manager consists of two aspects:

• supervised entity

• checkpoint

For each of the two aspects a separated ServiceNeeds is defined. However, the
SwcServiceDependencys that own these ServiceNeeds are semantically bound
and cannot be used independently of each other.

In other words, the usage of two kinds of SwcServiceDependency in concert creates
a higher-level semantics. Of course, in order to express this higher-level semantics a
reference between the SwcServiceDependencys has to be available.

725 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

However, since the SwcServiceDependency represents a generic concept the ac-
tual reference needs to be implemented on the level of specific subclass of Service-
Needs, in this case the SupervisedEntityNeeds and the SupervisedEntity-
CheckpointNeeds.

Identifiable

ServiceNeeds

SupervisedEntityNeeds

+ activateAtStart: Boolean [0..1]
+ enableDeactivation: Boolean [0..1]
+ expectedAliveCycle: TimeValue [0..1]
+ maxAliveCycle: TimeValue [0..1]
+ minAliveCycle: TimeValue [0..1]
+ toleratedFailedCycles: PositiveInteger [0..1]

SupervisedEntityCheckpointNeeds

«atpVariation»

+checkpoints

0..*

Figure 13.1: Modeling of ServiceNeeds for the watchdog

The former refers to the latter in order to express the relation of a supervised entity to
its checkpoints.

Class SupervisedEntityNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of the Watchdog Manager for one specific Supervised
Entity.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

activateAtStart Boolean 0..1 attr True/false: supervision activation status of Supervised
Entity shall be enabled/disabled at start.

checkpoints SupervisedEntity
CheckpointNeeds

* ref This reference indicates the checkpoints belonging to the
Supervised Entity.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

enable
Deactivation

Boolean 0..1 attr True: software-component shall be allowed to deactivate
supervision of this SupervisedEntity

false: software-component shall be not allowed to
deactivate supervision of this SupervisedEntity

expectedAlive
Cycle

TimeValue 0..1 attr Expected cycle time of alive trigger of this Supervised
Entity (in seconds).

maxAliveCycle TimeValue 0..1 attr Maximum cycle time of alive trigger of this Supervised
Entity (in seconds).

minAliveCycle TimeValue 0..1 attr Minimum cycle time of alive trigger of this Supervised
Entity (in seconds).

toleratedFailed
Cycles

PositiveInteger 0..1 attr Number of consecutive failed alive cycles for this
SupervisedEntity which shall be tolerated until the
supervision status of the SupervisedEntity is set to
WDGM_ALIVE_EXPIRED (see SWS WdgM for more
details).

Note that this value has to be recalculated with respect to
the WdgM’s own cycle time for ECU configuration.

Table 13.2: SupervisedEntityNeeds

726 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1985] Existence of the reference SupervisedEntityNeeds.tolerat-
edFailedCycles dFor each SupervisedEntityNeeds, the reference to BswIn-
ternalBehavior in the role toleratedFailedCycles shall exist at the time
when the RTE is generated.c()

Class SupervisedEntityCheckpointNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of the Watchdog Manager to support a Checkpoint for a
Supervised Entity.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.3: SupervisedEntityCheckpointNeeds

13.3.2 Watchdog Service use Case: Global Supervision Status notification

Scenario: an AtomicSwComponentType requires to receive the Global Supervision
Status that is combined from all individual Supervised Entities. In this case the follow-
ing setup applies:

[TPS_SWCT_02019] Setup for AtomicSwComponentType which requires Global
Supervision Status notification d

RoleBasedPortAssignment valid roles:

• WdgM_GlobalMode [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

For more information please refer to [SWS_WdgM_00336].

13.3.3 Watchdog Service use Case: Control global supervision or get global
supervision status

Scenario: an AtomicSwComponentType either controls the global operation of the
watchdog manager or gets information about the current operation status, requiring at
least one of the following use cases:

• Set the current mode of Watchdog Manager

• Get the current mode of the Watchdog Manager

727 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• Get the global supervision status of the Watchdog Manager

• Identifier of the supervised entity that first reached the expired state

• Instruct the Watchdog Manager to cause a watchdog reset

For instance, the software-component sets the current mode of the Watchdog Manager
according to the operational state of the ECU or polls the global supervision status.

In this case the following setup applies:

[TPS_SWCT_01703] Setup for AtomicSwComponentType which sets or gets the
Global Supervision Status d

ServiceNeeds kind GlobalSupervisionNeeds

RoleBasedPortAssignment valid roles:

• WdgM_GlobalSupervision [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Class GlobalSupervisionNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of the Watchdog Manager to get access on the Global
Supervision control and status interface.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.4: GlobalSupervisionNeeds

13.3.4 Watchdog Service use Case: Software-component wants to obtain the
status of a local supervision

Scenario: a software-component wants to obtain the status of a local supervision. For
this purpose, it exposes an RPortPrototype typed by ClientServerInterface
WdgM_LocalSupervisionStatus towards the WdgM.

[TPS_SWCT_01704] Definition of supervised entity d

ServiceNeeds kind : SupervisedEntityNeeds

RoleBasedPortAssignment valid roles:

• WdgM_LocalSupervisionStatus [1]

728 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that an SwcInternalBehavior may provide several SupervisedEn-
tityNeeds elements where each defines the requirements in relation to one super-
vised entity.

Note that in this situation an AtomicSwComponentType contains several Checkpoints
that refer to a Supervised Entity.

In this case it is required that the Supervised Entity indicates to the Watchdog Man-
ager the existence this Checkpoint for configuration and at runtime that the Supervised
Entity has reached the Checkpoint.

For more information please refer to [SWS_WdgM_91004]

13.3.5 Watchdog Service use Case: Software-component wants to report a
checkpoint

Scenario: A software-component want to report a checkpoint to the WdgM. For this
purpose the software-component exposes an RPortPrototype to the WdgM.

[TPS_SWCT_01705] Definition of Checkpoints d

ServiceNeeds kind : SupervisedEntityCheckpointNeeds

RoleBasedPortAssignment valid roles:

• WdgM_LocalSupervision [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that this scenario covers the reporting of a single checkpoint. In many
cases, several checkpoints are reported in the context of a given supervised entity.

For more information please refer to [SWS_WdgM_00333].

729 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.4 COM Manager Service Needs

The meta-class ComMgrUserNeeds is used to define requirements to configure the
ComM Service.

An SwcInternalBehavior may provide several ComMgrUserNeeds elements
where each defines the requirements from one “user” of the ComM Service. Espe-
cially, it defines which PortGroup is associated with this “user”.

Class ComMgrUserNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of the Communication Manager for one "user".

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

maxComm
Mode

MaxCommModeEnum 0..1 attr Maximum communication mode requested by this ComM
user.

Table 13.5: ComMgrUserNeeds

13.4.1 ComM Use Case: read current ComM Mode

Scenario: a AtomicSwComponentType reads the current ComM mode.

In this case the following rules apply:

[TPS_SWCT_01019] AtomicSwComponentType reads the current ComM mode d

RoleBasedPortAssignment valid roles:

• ComM_CurrentMode [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
N/A

c(RS_SWCT_03200)

For more information please refer to [SWS_ComM_00847].

13.4.2 ComM Use Case: request ComM Mode

Scenario: a AtomicSwComponentType requests a ComM mode. It may also check
later whether the requested ComM mode has become effective.

In this case the following rules apply:

730 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01020] AtomicSwComponentType requests a ComM mode. It may
also check later whether the requested ComM mode has become effective d

RoleBasedPortAssignment valid roles:

• ComM_CurrentMode [1]

• ComM_UserRequest [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
Reference to the applicable PortGroup [0..1]

c(RS_SWCT_03200)

For more information please refer to [SWS_ComM_00848].

13.4.3 ComM Use Case: Software-Component acts as a Mode Manager that
influences the ECU State

Scenario: a AtomicSwComponentType acts as a mode manager that influences the
ECU state.

In this case the following rules apply:

[TPS_SWCT_01021] AtomicSwComponentType acts as a mode manager that in-
fluences the ECU state d

RoleBasedPortAssignment valid roles:

• ComM_CurrentMode [0..1]

• ComM_UserRequest [0..1]

• ComM_ECUModeLimitation [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
N/A

c(RS_SWCT_03200)

For more information please refer to [SWS_ComM_00741].

13.4.4 Read PNC ComM Mode

Scenario: an AtomicSwComponentType reads the current PNC ComM mode.

731 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01811] AtomicSwComponentType reads the current PNC ComM
mode d

ServiceNeeds kind : ComMgrUserNeeds

RoleBasedPortAssignment valid roles:

• ComM_UserRequest [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
Reference to the applicable PortGroup associated with the particular partial
network.

c(RS_SWCT_03200)

For clarification, the difference between the two service use case descriptions
[TPS_SWCT_01019] and [TPS_SWCT_01811] is that the latter reads the ComM mode
in the context of a PNC definition while the former does not consider partial network-
ing.

13.5 ECU State Manager Service Needs

The meta-class EcuStateMgrUserNeeds is used to define the requirements to con-
figure the ECU State Manager Service.

An SwcInternalBehavior may provide several EcuStateMgrUserNeeds ele-
ments where each defines the requirements from one “user” of the EcuM Service (for
the terms related to the AUTOSAR ECU State Manager see [38]).

Class EcuStateMgrUserNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of the ECU State Manager for one "user". This class
currently contains no attributes. Its name can be regarded as a symbol identifying the user from the
viewpoint of the component or module which owns this class.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.6: EcuStateMgrUserNeeds

13.5.1 EcuM Use Case: select Shutdown Target

Scenario: a AtomicSwComponentType wants to select a shutdown target. This cor-
responds to the “select shutdown target” use case of the fix EcuM.

In this case the following rules apply:

732 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01016] AtomicSwComponentType wants to select a shutdown tar-
get d

RoleBasedPortAssignment valid roles:

• EcuM_ShutdownTarget [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
N/A

c(RS_SWCT_03200)

13.5.2 EcuM Use Case: select Boot Target

Scenario: a AtomicSwComponentType wants to select a boot target.

In this case the following rules apply:

[TPS_SWCT_01017] AtomicSwComponentType wants to select a boot target d

RoleBasedPortAssignment valid roles:

• EcuM_BootTarget [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
N/A

c(RS_SWCT_03200)

13.5.3 EcuM Use Case: use Alarm Clock

Scenario: a AtomicSwComponentType wants to use an alarm clock.

In this case the following rules apply:

[TPS_SWCT_01018] AtomicSwComponentType wants to use an alarm clock d

RoleBasedPortAssignment valid roles:

• EcuM_AlarmClock [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
N/A

733 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_03200)

13.6 BswM

All use cases for interaction of an application software-component with the BswM re-
quire the aggregation in the role serviceNeeds of BswMgrNeeds, a subclass of
ServiceNeeds, at SwcServiceDependency.

Class BswMgrNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of the Basic Software Manager for one "user".

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.7: BswMgrNeeds

13.6.1 Partial Networking

One specific use case for the existence of a SwcServiceDependency with respect
to the interaction with the BswM is the support for partial networking, in particular the
association of a PortGroup and the associated PortPrototypes that act as VFC
control ports and VFC status ports.

For more details please refer to section 4.8.

In this case the following rules apply:

[TPS_SWCT_01126] Access to partial networking via BswM d

RoleBasedPortAssignment valid roles:

• control [0 .. 1]

• status [0 .. 1]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
Reference to the applicable PortGroup associated with the particular partial
network.

c(RS_SWCT_03200, RS_SWCT_03201)

The multiplicities of the RoleBasedPortAssignments for this case have been de-
fined under the assumption that a given software-component may or may not have a

734 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

VFC control port. Also, it may have a VFC status port. Technically, there could be sev-
eral VFC status ports per software-component but most likely there is only one VFC
status port.

13.6.2 Mode Manager

A software-component that acts as a mode manager exposes a PPortPrototype
typed by a ModeSwitchInterface. By this means the mode manager communi-
cates changes of the particular mode to the connected mode users.

On the side of the BswM, an RPortPrototype typed by an ModeSwitchInterface
used to receive notifications of mode switches will have to be established (for more
details, please refer to [SWS_BswM_00200]).

In this case the following rules apply:

[TPS_SWCT_01552] Software-component acts as a mode manager d

ServiceNeeds kind BswMgrNeeds

RoleBasedPortAssignment valid roles:

• AppModeInterface [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
none

c(RS_SWCT_03110, RS_SWCT_03200, RS_SWCT_03203)

A slight variation of this use case exists if the Application Mode Manager serves mode
users that consist of both the BswM and other ApplicationSwComponentTypes.

[TPS_SWCT_01572] Application Mode Manager interacts with both BswM and
other ApplicationSwComponentTypes dIf an Application Mode Manager interacts
with both BswM and other ApplicationSwComponentTypes the following require-
ments on the modeling of this scenario shall be taken into account:

Mode Request For the configuration of mode requests two separate AbstractRe-
quiredPortPrototypes shall exist:

• One AbstractRequiredPortPrototype shall be typed by a Sender-
ReceiverInterface with attribute isService set to true. This Ab-
stractRequiredPortPrototype shall be connected to the SwCompo-
nentPrototype typed by a ServiceSwComponentType representing the
BswM.

735 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• One AbstractRequiredPortPrototype shall be typed by a Sender-
ReceiverInterface with attribute isService set to false. This Ab-
stractRequiredPortPrototype shall be connected to SwComponent-
Prototypes typed by ApplicationSwComponentTypes that request
model changes.

Mode Switch Notification An Application Mode Manager that sends mode switch
notifications to both BswM and other ApplicationSwComponentTypes shall
expose a single AbstractProvidedPortPrototype for sending the mode
switch notification to both the BswM and ApplicationSwComponentTypes.

The value of the attribute ModeSwitchInterface.isService shall be set to
false).

c(RS_SWCT_03200, RS_SWCT_03202)

Rationale for [TPS_SWCT_01572]: technically, the existence of two separate Ab-
stractProvidedPortPrototype for sending the mode switch notification to both
the BswM and ApplicationSwComponentTypes would end up in two separate mode
machines in the RTE and it would be a tough challenge to keep both mode machines
perfectly synchronized.

Therefore, the exception regarding the usage of the attribute isService is justified to
mitigate this effect.

On the mode request side, however, the situation is entirely different because the mode
requests need arbitration by the Application Mode Manager anyway. This is completely
in the scope of the implementation of the Application Mode Manager and AUTOSAR
has no stakes in further standardizing this aspect.

Therefore, there is no motivation for a further exception with respect to the value of
isService.

[TPS_SWCT_01664] BswM acts as a mode requester towards an application
mode manager dThe SwcServiceDependency that covers this use case shall re-
fer to an RPortPrototype for the reception of the mode request and optionally to a
PPortPrototype for the sending of the mode switch notification.

ServiceNeeds kind BswMgrNeeds

RoleBasedPortAssignment valid roles:

• AppModeInterface [0..1]

RoleBasedDataAssignment valid roles:

• AppModeRequestInterface [1]

RepresentedPortGroup
none

c(RS_SWCT_03110, RS_SWCT_03200, RS_SWCT_03203)

736 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1680] Existence of attribute RoleBasedDataAssignment.used-
DataElement.localVariable for RoleBasedDataAssignment.role = App-
ModeRequestInterface dIf the attribute RoleBasedDataAssignment.role is
set to the value AppModeRequestInterface then the reference RoleBased-
DataAssignment.usedDataElement.localVariable shall not exist at the
time when the RTE is generated.c()

For explanation of the existence of [constr_1680], it is not intended to provide access
to local variables inside the SwcInternalBehavior.

13.6.3 Mode User

A software-component that acts as a mode user exposes an RPortPrototype typed
by a ModeSwitchInterface. By this means the software-component can be notified
by mode switches executed at the mode manager (in this case the BswM).

On the side of the BswM, an PPortPrototype typed by an ModeSwitchInterface
used to send out notifications of mode switches will have to be established (for more
details, please refer to [SWS_BswM_00202]).

In this case the following rules apply:

[TPS_SWCT_01553] Software-component acts as a mode user d

ServiceNeeds kind BswMgrNeeds

RoleBasedPortAssignment valid roles:

• AppModeInterface [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroup
none

c(RS_SWCT_03110, RS_SWCT_03200, RS_SWCT_03203)

13.6.4 Mode Requester

A software-component that acts as a mode requester exposes an PPortPrototype
typed by a SenderReceiverInterface. By this means the software-component
can send mode requests towards the mode manager (in this case the BswM).

On the side of the BswM, an RPortPrototype typed by an SenderReceiverIn-
terface used to requests for mode switches will have to be established (for more
details, please refer to [SWS_BswM_00201]).

In this case the following rules apply:

737 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01554] Software-component acts as a mode requester d

ServiceNeeds kind BswMgrNeeds

RoleBasedPortAssignment
N/A

RoleBasedDataAssignment valid roles:

• AppModeRequestInterface [1]

RepresentedPortGroup
none

c(RS_SWCT_03110, RS_SWCT_03200, RS_SWCT_03202)

Please note that [constr_1680] applies for this service use case.

13.7 Crypto Service Dependencies

13.7.1 Overview

The meta-classes CryptoServiceNeeds and CryptoServiceJobNeeds are used
to define requirements for the configuration of the CryptoServiceManager respectively
the crypto stack.

The usage of meta-class CryptoKeyManagementNeeds is described in section
13.7.4.

Identifiable

ServiceNeeds

CryptoServiceNeeds

+ algorithmFamily: String [0..1]
+ algorithmMode: String [0..1]
+ cryptoKeyDescription: String [0..1]
+ maximumKeyLength: PositiveInteger [0..1]

CryptoServiceJobNeedsCryptoKeyManagementNeeds

Figure 13.2: Modeling of subclasses of ServiceNeeds for cryptographic use cases

Please note that there are cryptographic APIs that build upon the creation of jobs that
run asynchronously. The reason for this policy is that cryptographic operations - in
many cases by design - tend to run for comparatively long time for each call. This
behavior is visualized in Figure 13.3.

738 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Task Activation n Task Activation n+1 Task Activation n+2

KeyDerive()

Time

Synchronous Execution of KeyDerive()
breaks n+1 activation of Task

Figure 13.3: Cryptographic operation that requires a too-long execution time

Execution of these operations synchronously in the main function would block the re-
spective module intolerably and therefore the job API is an important measure to keep
the execution of software manageable. This behavior is visualized in Figure 13.4.

JobKeyDerive()

Task Activation n Task Activation n+1 Task Activation n+2

Asynchronous Execution of Key Derive runs in Background Task
and signals completion by calling CallbackNotification()

CallbackNotification()

Time

Figure 13.4: Execution of cryptographic operation using the job API

It is important to note that the asynchronous character of the execution is implemented
on the server side and has nothing to do with asynchronous calling behavior on the
client side (for more explanation about client-side calling behavior, please refer to sec-
tion 7.5.2.1).

Class CryptoServiceNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the needs on the configuration of the CryptoServiceManager for one ConfigID (see
Specification AUTOSAR_SWS_CSM.doc). An instance of this class is used to find out which ports of a
software-component belong to this ConfigID.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

algorithmFamily String 0..1 attr This attribute represents a description of the family (e.g.
AES) of crypto algorithm implemented by the crypto
service use case.

algorithmMode String 0..1 attr This meta-class has the ability to represent a crypto
service use case.

cryptoKey
Description

String 0..1 attr This attribute allows for a verbal description of the
applicable cryptographic key. The goal is to pass a hint for
the integrator about how to treat the corresponding
service use case.

maximumKey
Length

PositiveInteger 0..1 attr The maximum length of a cryptographic key, that is used
by the software-component or module for this
configuration. Unit: bit.

Table 13.8: CryptoServiceNeeds

739 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class CryptoServiceJobNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class shall be taken to indicate that the service use case modeled with this kind of Service
Needs assumes the usage of the crypto job API.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.9: CryptoServiceJobNeeds

[TPS_SWCT_01727] Suffix used for the resulting name of the PortInterface
for crypto PortInterfaces dThe _{Config} or (where applicable)_{Primitive} suffix
used for the resulting name of the PortInterface for the respective crypto service
shall be taken from the shortName of the applicable SwcServiceDependency.c()

13.7.2 Crypto Service Use Cases

13.7.2.1 Crypto Service Use Case: Hash calculation

Scenario: a AtomicSwComponentType uses the hash calculation of the Crypto Ser-
vice. In this case the following setup applies:

[TPS_SWCT_02020] AtomicSwComponentType uses the hash calculation of the
Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmHash [0..1]

• CsmHash_{Config} [0..1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears in the
shortName of the ClientServerInterface CsmHash_{Config} is regulated by
[TPS_SWCT_01727].

740 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.7.2.2 Crypto Service Use Case: MAC calculation

Scenario: a AtomicSwComponentType uses the message authentication code
(MAC) calculation of the Crypto Service. In this case the following setup applies:

[TPS_SWCT_02021] AtomicSwComponentType uses the message authentica-
tion code (MAC) calculation of the Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmMacGenerate [0..1]

• CsmMacGenerate_{Config} [0..1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears in the
shortName of the ClientServerInterface CsmMacGenerate_{Config} is reg-
ulated by [TPS_SWCT_01727].

13.7.2.3 Crypto Service Use Case: MAC verification

Scenario: a AtomicSwComponentType uses the message authentication code
(MAC) verification of the Crypto Service. In this case the following setup applies:

[TPS_SWCT_02022] AtomicSwComponentType uses the message authentica-
tion code (MAC) verification of the Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmMacVerify [0..1]

• CsmMacVerify_{Config} [0..1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

741 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears in the
shortName of the ClientServerInterface CsmMacVerify_{Config} is regu-
lated by [TPS_SWCT_01727].

13.7.2.4 Crypto Service Use Case: generation of random numbers

Scenario: a AtomicSwComponentType uses the generation of random numbers of
the Crypto Service. In this case the following setup applies:

[TPS_SWCT_02024] AtomicSwComponentType uses the generation of random
numbers of the Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmRandomGenerate [0..1]

• CsmRandomGenerate_{Config} [0..1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears in the
shortName of the ClientServerInterface CsmRandomGenerate_{Config} is
regulated by [TPS_SWCT_01727].

13.7.2.5 Crypto Service Use Case: Encryption with Authenticated Encryption
with Associated Data (AEAD)

Scenario: a AtomicSwComponentType uses the Authenticated Encryption with As-
sociated Data (AEAD) of the Crypto Service. In this case the following setup applies:

[TPS_SWCT_02025] AtomicSwComponentType uses the Authenticated Encryp-
tion with Associated Data (AEAD) of the Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmAEADEncrypt [0..1]

742 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• CsmAEADEncrypt_{Config} [0..1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears in the
shortName of the ClientServerInterface CsmAEADEncrypt_{Config} shall
be resolved according to [TPS_SWCT_01727].

13.7.2.6 Crypto Service Use Case: Decryption with Authenticated Encryption
with Associated Data (AEAD)

Scenario: a AtomicSwComponentType uses the Authenticated Encryption with As-
sociated Data (AEAD) of the Crypto Service. In this case the following setup applies:

[TPS_SWCT_02026] AtomicSwComponentType uses the Authenticated Encryp-
tion with Associated Data (AEAD) of the Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmAEADDecrypt [0..1]

• CsmAEADDecrypt_{Config} [0..1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears in the
shortName of the ClientServerInterface CsmAEADDecrypt_{Config} is reg-
ulated by [TPS_SWCT_01727].

13.7.2.7 Crypto Service Use Case: encryption

Scenario: a AtomicSwComponentType uses the encryption of the Crypto Service. In
this case the following setup applies:

743 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_02027] AtomicSwComponentType uses the encryption of the
Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmEncrypt [0..1]

• CsmEncrypt_{Config} [0..1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears in the
shortName of the ClientServerInterface CsmEncrypt_{Config} is regulated
by [TPS_SWCT_01727].

13.7.2.8 Crypto Service Use Case: decryption

Scenario: a AtomicSwComponentType uses the decryption of the Crypto Service. In
this case the following setup applies:

[TPS_SWCT_02028] AtomicSwComponentType uses the decryption of the
Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmDecrypt [0..1]

• CsmDecrypt_{Config} [0..1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears in the
shortName of the ClientServerInterface CsmDecrypt_{Config} is regulated
by [TPS_SWCT_01727].

744 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.7.2.9 Crypto Service Use Case: signature generation

Scenario: a AtomicSwComponentType uses the signature generation of the Crypto
Service. In this case the following setup applies:

[TPS_SWCT_02031] AtomicSwComponentType uses the signature generation of
the Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmSignatureGenerate [0..1]

• CsmSignatureGenerate_{Config} [0..1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears
in the shortName of the ClientServerInterface CsmSignatureGener-
ate_{Config} is regulated by [TPS_SWCT_01727].

13.7.2.10 Crypto Service Use Case: signature verification

Scenario: a AtomicSwComponentType uses the signature verification of the Crypto
Service. In this case the following setup applies:

[TPS_SWCT_02032] AtomicSwComponentType uses the signature verification of
the Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmSignatureVerify [0..1]

• CsmSignatureVerify_{Config} [0..1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

745 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears in the
shortName of the ClientServerInterface CsmSignatureVerify_{Config}
is regulated by [TPS_SWCT_01727].

13.7.2.11 Crypto Service Use Case: usage of key management

Scenario: a AtomicSwComponentType uses the key management of the Crypto Ser-
vice. In this case the following setup applies:

[TPS_SWCT_01726] AtomicSwComponentType uses the key management of the
Crypto Service d

ServiceNeeds kind : CryptoServiceNeeds

RoleBasedPortAssignment valid roles:

• CsmKeyManagement_{Config} [1]

• CallbackNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Config} that appears in the
shortName of the ClientServerInterface CsmKeyManagement_{Config} is
regulated by [TPS_SWCT_01727].

13.7.3 Crypto Service Job Use Cases

13.7.3.1 Crypto Service Use Case: usage of job API to set key valid

Scenario: a AtomicSwComponentType uses the job API of the Crypto Service to set
a key valid. In this case the following setup applies:

[TPS_SWCT_01776] AtomicSwComponentType uses the API of the Crypto Ser-
vice to set a key valid d

ServiceNeeds kind : CryptoServiceJobNeeds

RoleBasedPortAssignment valid roles:

• CsmJobKeySetValid_{Primitive} [1]

• CallbackNotification [1]

746 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Primitive} that ap-
pears in the shortName of the ClientServerInterface CsmJobKeySet-
Valid_{Primitive} is regulated by [TPS_SWCT_01727].

13.7.3.2 Crypto Service Use Case: usage of job API to create a random seed

Scenario: a AtomicSwComponentType uses the job API of the Crypto Service to
create a random seed. In this case the following setup applies:

[TPS_SWCT_01777] AtomicSwComponentType uses the API of the Crypto Ser-
vice to create a random seed d

ServiceNeeds kind : CryptoServiceJobNeeds

RoleBasedPortAssignment valid roles:

• CsmJobRandomSeed_{Primitive} [1]

• CallbackNotification [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Primitive} that appears in the
shortName of the ClientServerInterface CsmJobRandomSeed_{Primitive}
is regulated by [TPS_SWCT_01727].

13.7.3.3 Crypto Service Use Case: usage of job API to generate a key

Scenario: a AtomicSwComponentType uses the job API of the Crypto Service to
generate a key. In this case the following setup applies:

[TPS_SWCT_01778] AtomicSwComponentType uses the API of the Crypto Ser-
vice to generate a key d

ServiceNeeds kind : CryptoServiceJobNeeds

RoleBasedPortAssignment valid roles:

747 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• CsmJobKeyGenerate_{Primitive} [1]

• CallbackNotification [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Primitive} that ap-
pears in the shortName of the ClientServerInterface CsmJobKeyGener-
ate_{Primitive} is regulated by [TPS_SWCT_01727].

13.7.3.4 Crypto Service Use Case: usage of job API to derive a key

Scenario: a AtomicSwComponentType uses the job API of the Crypto Service to
derive a key. In this case the following setup applies:

[TPS_SWCT_01779] AtomicSwComponentType uses the API of the Crypto Ser-
vice to derive a key d

ServiceNeeds kind : CryptoServiceJobNeeds

RoleBasedPortAssignment valid roles:

• CsmJobKeyDerive_{Primitive} [1]

• CallbackNotification [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Primitive} that appears in the
shortName of the ClientServerInterface CsmJobKeyDerive_{Primitive}
is regulated by [TPS_SWCT_01727].

13.7.3.5 Crypto Service Use Case: usage of job API to execute calculation of
the public value for key exchange

Scenario: a AtomicSwComponentType uses the job API of the Crypto Service to
execute calculation of the public value for key exchange. In this case the following
setup applies:

748 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01780] AtomicSwComponentType uses the API of the Crypto Ser-
vice to execute calculation of the public value for key exchange d

ServiceNeeds kind : CryptoServiceJobNeeds

RoleBasedPortAssignment valid roles:

• CsmJobKeyExchangeCalcPubVal_{Primitive} [1]

• CallbackNotification [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Primitive} that appears in
the shortName of the ClientServerInterface CsmJobKeyExchangeCalcPub-
Val_{Primitive} is regulated by [TPS_SWCT_01727].

13.7.3.6 Crypto Service Use Case: usage of job API to execute calculation of
shared secret for key exchange

Scenario: a AtomicSwComponentType uses the job API of the Crypto Service to
execute calculation of shared secret for key exchange. In this case the following setup
applies:

[TPS_SWCT_01781] AtomicSwComponentType uses the API of the Crypto Ser-
vice to execute calculation of shared secret for key exchange d

ServiceNeeds kind : CryptoServiceJobNeeds

RoleBasedPortAssignment valid roles:

• CsmJobKeyExchangeCalcSecret_{Primitive} [1]

• CallbackNotification [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Primitive} that appears in
the shortName of the ClientServerInterface CsmJobKeyExchangeCalcSe-
cret_{Primitive} is regulated by [TPS_SWCT_01727].

749 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.7.3.7 Crypto Service Use Case: usage of job API to execute certificate pars-
ing

Scenario: a AtomicSwComponentType uses the job API of the Crypto Service to
execute certificate parsing. In this case the following setup applies:

[TPS_SWCT_01782] AtomicSwComponentType uses the API of the Crypto Ser-
vice to execute certificate parsing d

ServiceNeeds kind : CryptoServiceJobNeeds

RoleBasedPortAssignment valid roles:

• CsmJobCertificateParse_{Primitive} [1]

• CallbackNotification [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Please note that the resolution of the name fragment {Primitive} that ap-
pears in the shortName of the ClientServerInterface CsmJobCertifi-
cateParse_{Primitive} is regulated by [TPS_SWCT_01727].

13.7.3.8 Crypto Service Use Case: usage of job API to execute certificate veri-
fication

Scenario: a AtomicSwComponentType uses the job API of the Crypto Service to
execute certificate verification. In this case the following setup applies:

[TPS_SWCT_01783] AtomicSwComponentType uses the API of the Crypto Ser-
vice to execute certificate verification d

ServiceNeeds kind : CryptoServiceJobNeeds

RoleBasedPortAssignment valid roles:

• CsmJobCertificateVerify_{Primitive} [1]

• CallbackNotification [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

750 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Please note that the resolution of the name fragment {Primitive} that appears
in the shortName of the ClientServerInterface CsmJobCertificateVer-
ify_{Primitive} is regulated by [TPS_SWCT_01727].

13.7.4 Crypto Key Management Use Cases

The service use cases for cryptographic key management are indicated by the pres-
ence of a CryptoKeyManagementNeeds aggregated at SwcServiceDependency
in the role serviceNeeds.

Class CryptoKeyManagementNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class can be used to indicate a service use case for key management.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.10: CryptoKeyManagementNeeds

13.7.4.1 KeyM Service Use Case: Software-Component wants check a certifi-
cate on KeyM

Scenario: A software-component wants check a certificate on KeyM. The software-
component sends the certificate to KeyM (SetCertificate) and then initiates a ver-
ification of the certificate (VerifyCertificate).

While the verification is still running it is possible to obtain the status of the verification
(GetStatus).

[TPS_SWCT_01813] Software-Component wants check a certificate on KeyM d

ServiceNeeds kind : CryptoKeyManagementNeeds

RoleBasedPortAssignment valid roles:

• KeyM_Certificate [1]

• KeyMCertificateNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

751 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.7.4.2 KeyM Service Use Case: Software-Component wants to retrieve a cer-
tificate from KeyM

Scenario: A software-component wants to retrieve a certificate on KeyM. The software-
component request the certificate by using GetCertificate. This step represents a syn-
chronous operation.

[TPS_SWCT_01814] AtomicSwComponentType wants to retrieve a certificate
from KeyM d

ServiceNeeds kind : CryptoKeyManagementNeeds

RoleBasedPortAssignment valid roles:

• KeyM_Certificate [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

13.7.4.3 KeyM Service Use Case: Software-Component wants to retrieve ele-
ments of a certificate from KeyM

Scenario: A software-component wants to retrieve elements of a certificate on KeyM
(CertificateElementGet, CertificateElementGetByIndex, Certifica-
teElementGetCount). This step represents a synchronous operation.

[TPS_SWCT_01815] AtomicSwComponentType wants to retrieve elements of a
certificate from KeyM d

ServiceNeeds kind : CryptoKeyManagementNeeds

RoleBasedPortAssignment valid roles:

• KeyMCertificateElement [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

752 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.7.4.4 KeyM Service Use Case: Software-Component wants to check the ex-
istence of a certificate from KeyM

Scenario: A software-component wants to check the existence of a certificate from
KeyM (GetStatus).

[TPS_SWCT_01816] AtomicSwComponentType wants to check the existence of
a certificate from KeyM d

ServiceNeeds kind : CryptoKeyManagementNeeds

RoleBasedPortAssignment valid roles:

• KeyM_Certificate [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

13.7.4.5 KeyM Service Use Case: Software-Component wants to store a (de-
rived) key in KeyM

Scenario: A software-component wants to store a (derived) key in KeyM.

[TPS_SWCT_01817] AtomicSwComponentType wants to store a (derived) key in
KeyM d

ServiceNeeds kind : CryptoKeyManagementNeeds

RoleBasedPortAssignment valid roles:

• KeyMCryptoKey [1]

• KeyMCryptoKeyNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

753 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.7.4.6 KeyM Service Use Case: Software-Component wants to store a con-
tainer with (encrypted) keys in KeyM

Scenario: A software-component wants to store a container with (encrypted) keys in
KeyM. The processing of the container is done in the context of a session that enables
the usage of the Start and Finish operations.

By calling the Prepare operation the software-component passes the container to
the KeyM, which reads the content of the container and extracts the contained cryp-
tographic keys. The next step is that the KeyM updates every key extracted from the
container.

[TPS_SWCT_01818] AtomicSwComponentType wants to store a container with
encrypted keys (e.g. She-keys) in KeyM d

ServiceNeeds kind : CryptoKeyManagementNeeds

RoleBasedPortAssignment valid roles:

• KeyMCryptoKey [1]

• KeyMCryptoKeyNotification [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

13.7.4.7 KeyM Service Use Case: Software-Component wants to verify if cryp-
tographic operation was executed using a specific key

Scenario: A software-component wants to verify if cryptographic operation was exe-
cuted using a specific key (Verify).

[TPS_SWCT_01819] AtomicSwComponentType wants to verify if cryptographic
operation was executed using a specific key d

ServiceNeeds kind : CryptoKeyManagementNeeds

RoleBasedPortAssignment valid roles:

• KeyMCryptoKey [1]

• KeyMCryptoKeyNotification [0..1]

RoleBasedDataAssignment
N/A

754 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

13.8 Diagnostic Service Dependency

This chapter describes the usage of the specific diagnostic meta-classes derived from
ServiceNeeds within an atomic software-component. An overview of common diag-
nostic service needs has already been introduced in figure 7.38 and can be divided
into four main parts:

• Function Inhibition Needs in chapter 13.8.2

• Diagnostic Event Needs in chapter 13.8.3

• Diagnostic Communication Needs in chapter 13.8.4

• Service Needs to fulfill the OBD related requirements in chapter 13.8.5

Please note that for the described use cases of the Diagnostic Services the following
rule applies:

[TPS_SWCT_01129] Express diagnostic capabilities dFor every used
ClientServerInterface it is necessary to create a RoleBasedPortAssign-
ment. Thereby the value of the attribute role of the RoleBasedPortAssignment
has to be set to the name of the used standardized ClientServerInterface.

The possible role attribute values and the multiplicity of the related PortPrototypes
are listed at the use case descriptions in the paragraph RoleBasedPortAssignment.c
(RS_SWCT_00170, RS_SWCT_03190)

[constr_1640] No use of Optional Element Structure for interaction with the
diagnostic stack dAn SwcServiceDependency that aggregates a diagnostic-related
subclass of ServiceNeeds shall not refer to any PortPrototype by means of either
a RoleBasedPortAssignment or RoleBasedDataAssignment where the respec-
tive PortInterface contains any DataPrototype typed by an Optional Ele-
ment Structure.

This rule shall be imposed at the time when the RTE is generated.c()

13.8.1 Development Approach

AUTOSAR supports in many cases the implementation of a bottom-up or top-down
configuration for various aspects of the development workflow.

Before the advent of the Diagnostic Extract [39], AUTOSAR officially supported a
modeling approach where the configuration of an ApplicationSwComponentType

755 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

might contain contributions to the external configuration of the diagnostic stack. This
was considered an approach to implement a top-down configuration approach for di-
agnostics.

However, the development approach introduced with the Diagnostic Extract
turned out to be superior and less prone to mistakes and limitations in comparison
to the configuration that each developer contributed without necessarily having the
knowledge about the greater scope of diagnostic configuration.

Therefore, the usage of the Diagnostic Extract has become the canonical ap-
proach to the configuration of the external behavior of the AUTOSAR diagnostic stack
and the respective configuration attributes available in the scope of SwcServiceDe-
pendency have been removed from the AUTOSAR methodology in order to reduce
potential confusion in the audience.

In particular, a top-down approach using a Diagnostic Extract can be imple-
mented if the Diagnostic Extract also provides the mappings between diagnostic
elements and elements of the application model. If the mappings are not wanted or not
available, it is also possible to use the Diagnostic Extract to derive a bottom-up
configuration of the diagnostic stack without the relations to application software.

13.8.2 Function Inhibition Needs

The meta-class FunctionInhibitionNeeds is used to define requirements in order
to configure the Diagnostic Event Manager Service.

An SwcInternalBehavior may provide FunctionInhibitionNeeds as well as
FunctionInhibitionAvailabilityNeeds elements in the context of an Swc-
ServiceDependency. Each FunctionInhibitionNeeds and FunctionInhi-
bitionAvailabilityNeeds defines the requirements related to one function inhibi-
tion ID (for the terms related to the AUTOSAR Function Inhibition Manager, see [40]).

Class FunctionInhibitionNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of the Function Inhibition Manager for one Function
Identifier (FID). This class currently contains no attributes. Its name can be regarded as a symbol
identifying the FID from the viewpoint of the component or module which owns this class.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.11: FunctionInhibitionNeeds

Class FunctionInhibitionAvailabilityNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of the Function Inhibition Manager to provide the
control function for one Function Identifier (FID).

5

756 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class FunctionInhibitionAvailabilityNeeds

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

controlledFid FunctionInhibitionNeeds 0..1 ref This reference represents the controlled FID

Table 13.12: FunctionInhibitionAvailabilityNeeds

DiagnosticCapabil ityElement

+ audience: DiagnosticAudienceEnum [0..*]
+ diagRequirement: DiagRequirementIdString [0..1]
+ securityAccessLevel: PositiveInteger [0..1]

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

FunctionInhibitionNeeds

DiagnosticEventNeeds

+ prestoredFreezeframeStoredInNvm: Boolean [0..1]
+ usesMonitorData: Boolean [0..1]

Identifiable

ServiceNeeds

FunctionInhibitionAvailabili tyNeeds

+deferringFid

0..*

+controlledFid

0..1

+serviceNeeds

0..1

Figure 13.5: Modeling of FunctionInhibitionNeeds and FunctionInhibition-
AvailabilityNeeds

13.8.2.1 Function Inhibition Manager Service use Case: read function permis-
sion

[TPS_SWCT_02505] Setup for Function Inhibition Manager Service use Case:
read function permission dScenario: a AtomicSwComponentType read the function
permission from FiM in order to enable or disable a functionality. In this case the
following setup apply:

ServiceNeeds kind FunctionInhibitionNeeds

RoleBasedPortAssignment valid roles:

• FunctionInhibition [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

757 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Fim_00090].

13.8.2.2 Function Inhibition Manager Use Case: react on suppressed or un-
available events

[TPS_SWCT_01739] Function Inhibition Manager Use Case: react on suppressed
or unavailable events dScenario: an AtomicSwComponentType wants to react on
suppressed or unavailable events and disable the permission to run for a FID. In this
case, the following setup applies:

ServiceNeeds kind FunctionInhibitionAvailabilityNeeds

RoleBasedPortAssignment valid roles:

• ControlFunctionAvailable [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

Note: for variant coding ClientServerInterface ControlFunctionAvailable
is used to deactivate a certain functionality (e.g. to set the FID to not available).

For more information, please refer to [SWS_Fim_00107].

13.8.3 Diagnostic Event Needs

The meta-classes DiagnosticEventManagerNeeds is used to define requirements
in order to configure the Diagnostic Event Manager Service.

An SwcInternalBehavior may provide several DiagnosticEventMan-
agerNeeds elements that define the mappings for the general diagnostic event
manager behavior (for the terms related to the AUTOSAR Diagnostic Event Manager
see [41]).

Class DiagnosticEventManagerNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the general needs on the configuration of the Diagnostic Event Manager (Dem) which are not
related to a particular item.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

5

758 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class DiagnosticEventManagerNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.13: DiagnosticEventManagerNeeds

The meta-class DiagnosticCapabilityElement is used to provide generic infor-
mation about diagnostic capabilities. Further on, the usage of DiagnosticCapabil-
ityElement indicates that all ServiceNeeds which inherit from DiagnosticCa-
pabilityElement express the following intentions:

• Need to interact with AUTOSAR Service Dem or Dcm.

• Provide services for the on-board diagnostics.

DiagnosticCapabil i tyElement

+ audience:
DiagnosticAudienceEnum [0..*]

+ diagRequirement:
DiagRequirementIdString [0..1]

+ securityAccessLevel: PositiveInteger
[0..1]

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

FunctionInhibitionNeeds

DiagnosticEventNeeds

+ prestoredFreezeframeStoredInNvm: Boolean [0..1]
+ usesMonitorData: Boolean [0..1]

Identifiable

ServiceNeeds

DiagnosticEventManagerNeeds

DiagnosticEventInfoNeeds

+ obdDtcNumber: PositiveInteger [0..1]
+ udsDtcNumber: PositiveInteger [0..1]

DiagnosticEnableConditionNeeds

+ initialStatus: EventAcceptanceStatusEnum [0..1]

«enumeration»
EventAcceptanceStatusEnum

 eventAcceptanceEnabled
 eventAcceptanceDisabled

DiagnosticStorageConditionNeeds

+ initialStatus: StorageConditionStatusEnum [0..1]

«enumeration»
StorageConditionStatusEnum

 eventStorageEnabled
 eventStorageDisabled

DtcStatusChangeNotificationNeeds

WarningIndicatorRequestedBitNeeds

DiagnosticOperationCycleNeeds

+ operationCycle: OperationCycleTypeEnum [0..1]

«enumeration»
OperationCycleTypeEnum

 ignition
 obdDcy
 warmup
 power
 time
 other

+serviceNeeds

0..1

+deferringFid 0..*

Figure 13.6: General diagnostic event-handling related ServiceNeeds

Class DiagnosticCapabilityElement (abstract)

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This class identifies the capability to provide generic information about diagnostic capabilities

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

5

759 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class DiagnosticCapabilityElement (abstract)

Subclasses DiagnosticCommunicationManagerNeeds, DiagnosticComponentNeeds, DiagnosticControlNeeds,
DiagnosticEnableConditionNeeds, DiagnosticEventInfoNeeds, DiagnosticEventManagerNeeds,
DiagnosticEventNeeds, DiagnosticIoControlNeeds, DiagnosticOperationCycleNeeds, DiagnosticRequest
FileTransferNeeds, DiagnosticResponseOnEventNeeds, DiagnosticRoutineNeeds, DiagnosticStorage
ConditionNeeds, DiagnosticUploadDownloadNeeds, DiagnosticValueNeeds, DiagnosticsCommunication
SecurityNeeds, DtcStatusChangeNotificationNeeds, ObdControlServiceNeeds, ObdInfoServiceNeeds,
ObdMonitorServiceNeeds, ObdPidServiceNeeds, ObdRatioDenominatorNeeds, ObdRatioServiceNeeds,
WarningIndicatorRequestedBitNeeds

Attribute Type Mult. Kind Note

audience DiagnosticAudience
Enum

* attr This specifies the intended audience for the diagnostic
object. Note that this is not only for the documentation but
also subsequent audience specific implementation.

diag
Requirement

DiagRequirementId
String

0..1 attr This denotes the requirement identifier to which the object
can be linked to.

Note that with the implementation of a generic tracing
concept in AUTOSAR this attribute might become
obsolete.

securityAccess
Level

PositiveInteger 0..1 attr This attribute denotes the level of security which is
touched by the diagnostic object. The higher the level the
more relevance for the security exists.

This level shall be mapped to the security level in the
ECU.

Table 13.14: DiagnosticCapabilityElement

Enumeration DiagnosticAudienceEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note The possible values of the intended audience for a diagnostic object.

Literal Description

aftermarket The object is for free aftermarket service organizations.

Tags:atp.EnumerationLiteralIndex=1

afterSales The object is relevant for the OEM after-sales organization.

Tags:atp.EnumerationLiteralIndex=2

development The object is relevant for engineering only.

Tags:atp.EnumerationLiteralIndex=3

manufacturing The object is relevant for manufacturing.

Tags:atp.EnumerationLiteralIndex=4

supplier The object is relevant for the ECU-supplier aftermarket organization.

Tags:atp.EnumerationLiteralIndex=5

Table 13.15: DiagnosticAudienceEnum

The meta-classes DiagnosticEventNeeds is used to define requirements to config-
ure the Diagnostic Event Manager Service.

An SwcInternalBehavior may provide several DiagnosticEventNeeds ele-
ments where each defines all the requirements related to one diagnostic event (for
the terms related to the AUTOSAR Diagnostic Event Manager see [41]).

In addition, ObdPidServiceNeeds and ObdRatioServiceNeeds are required in
order to specify the needs for OBD diagnostic service calls.

760 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

The diagEventDebounceAlgorithm attribute defines the kind of expected de-
bouncing by the Diagnostic Event Manager or defines that the debouncing is imple-
mented by the software component.

The class DiagEventDebounceAlgorithm inherits from Identifiable in order
to allow further documentation of the debouncing algorithm as well as non formalized
description or non standardized description by the means of Sdg on expected configu-
ration of the DiagEventDebounceAlgorithm in the Diagnostic Event Manager.

[constr_1138] assignedPort and DiagEventDebounceMonitorInternal dThe
existence of an assignedPort in combination with a DiagEventDebounceAlgo-
rithm shall only be respected for the concrete subclass DiagEventDebounceMon-
itorInternal.

This rule shall be imposed at the time when the RTE is generated.c()

[constr_1139] assignedPort of DiagEventDebounceMonitorInternal shall
refer to an RPortPrototype dConcerning the debouncing, the software-component
acts as a client and thus the assignedPort defined with respect to a DiagEventDe-
bounceMonitorInternal may only refer to an RPortPrototype. The standard-
ized value of the role identifier of the assignedPort shall be CallbackGetFault-
DetectCounter.

This rule shall be imposed at the time when the RTE is generated.c()

Class DiagnosticEventNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of the Diagnostic Event Manager for one diagnostic
event. Its shortName can be regarded as a symbol identifying the diagnostic event from the viewpoint of
the component or module which owns this element.

In case the diagnostic event specifies a production error, the shortName shall be the name of the
production error.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

deferringFid FunctionInhibitionNeeds * ref This reference contains the link to a function identifier
within the FiM which is used by the monitor before
delivering a result.

diagEvent
Debounce
Algorithm

DiagEventDebounce
Algorithm

0..1 aggr Specifies the abstract need on the Debounce Algorithm
applied by the Diagnostic Event Manager.

prestored
Freezeframe
StoredInNvm

Boolean 0..1 attr If the Event uses a prestored freeze-frame (using the
operations PrestoreFreezeFrame and ClearPrestored
FreezeFrame of the service interface DiagnosticMonitor)
this attribute indicates if the Event requires the data to be
stored in non-volatile memory. TRUE = Dem shall store
the prestored data in non-volatile memory, FALSE = Data
can be lost at shutdown (not stored in Nvm).

usesMonitor
Data

Boolean 0..1 attr This attribute defines whether additional monitor data
shall be added to the reporting of events.

Table 13.16: DiagnosticEventNeeds

761 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class DiagEventDebounceAlgorithm (abstract)

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This class represents the ability to specify the pre-debounce algorithm which is selected and/or required
by the particular monitor.

This class inherits from Identifiable in order to allow further documentation of the expected or
implemented debouncing and to use the category for the identification of the expected / implemented
debouncing.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses DiagEventDebounceCounterBased, DiagEventDebounceMonitorInternal, DiagEventDebounceTime
Based

Attribute Type Mult. Kind Note

– – – – –

Table 13.17: DiagEventDebounceAlgorithm

Class DiagEventDebounceCounterBased

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the ability to indicate that the counter-based debounce algorithm shall be
used by the DEM for this diagnostic monitor.

This is related to set the ECUC choice container DemDebounceAlgorithmClass to DemDebounce
CounterBased.

Base ARObject , DiagEventDebounceAlgorithm, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

counterBased
FdcThreshold
StorageValue

Integer 0..1 attr Threshold to allocate an event memory entry and to
capture the Freeze Frame.

counter
DecrementStep
Size

Integer 0..1 attr This value shall be taken to decrement the internal
debounce counter.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

counterFailed
Threshold

Integer 0..1 attr This value defines the event-specific limit that indicates
the "failed" counter status.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

counter
IncrementStep
Size

Integer 0..1 attr This value shall be taken to increment the internal
debounce counter.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

counterJump
Down

Boolean 0..1 attr This value activates or deactivates the counter
jump-down behavior.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

counterJump
DownValue

Integer 0..1 attr This value represents the initial value of the internal
debounce counter if the counting direction changes from
incrementing to decrementing.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

counterJumpUp Boolean 0..1 attr This value activates or deactivates the counter jump-up
behavior.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

5

762 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class DiagEventDebounceCounterBased

counterJumpUp
Value

Integer 0..1 attr This value represents the initial value of the internal
debounce counter if the counting direction changes from
decrementing to incrementing.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

counterPassed
Threshold

Integer 0..1 attr This value defines the event-specific limit that indicates
the "passed" counter status.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 13.18: DiagEventDebounceCounterBased

Class DiagEventDebounceTimeBased

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the ability to indicate that the time-based pre-debounce algorithm shall be
used by the Dem for this diagnostic monitor.

This is related to set the EcuC choice container DemDebounceAlgorithmClass to DemDebounceTime
Base.

Base ARObject , DiagEventDebounceAlgorithm, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

timeBasedFdc
Threshold
StorageValue

TimeValue 0..1 attr Threshold to allocate an event memory entry and to
capture the Freeze Frame.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

timeFailed
Threshold

TimeValue 0..1 attr This value represents the event-specific delay indicating
the "failed" status.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

timePassed
Threshold

TimeValue 0..1 attr This value represents the event-specific delay indicating
the "passed" status.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 13.19: DiagEventDebounceTimeBased

Class DiagEventDebounceMonitorInternal

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note "This meta-class represents the ability to indicate that no Dem pre-debounce algorithm shall be used for
this diagnostic monitor. The SWC might implement an internal debouncing algorithm and report qualified
(debounced) results to the Dem/DM.

Base ARObject , DiagEventDebounceAlgorithm, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 13.20: DiagEventDebounceMonitorInternal

763 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

DiagnosticEventNeeds

+ prestoredFreezeframeStoredInNvm:
Boolean [0..1]

+ usesMonitorData: Boolean [0..1]

Identifiable

ServiceNeeds
FunctionInhibitionNeeds

ObdRatioServiceNeeds

+ connectionType: ObdRatioConnectionKindEnum [0..1]

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

RoleBasedPortAssignment

+ role: Identifier [0..1]

AtpBlueprintable
AtpPrototype

PortPrototype

Identifiable

DiagEventDebounceAlgorithm

DiagnosticCapabil i tyElement

+ audience:
DiagnosticAudienceEnum [0..*]

+ diagRequirement:
DiagRequirementIdString [0..1]

+ securityAccessLevel:
PositiveInteger [0..1]

«enumeration»
ObdRatioConnectionKindEnum

 apiUse
 observer

DiagEventDebounceCounterBased

+ counterBasedFdcThresholdStorageValue: Integer [0..1]

«atpVariation»
+ counterDecrementStepSize: Integer [0..1]
+ counterFailedThreshold: Integer [0..1]
+ counterIncrementStepSize: Integer [0..1]
+ counterJumpDown: Boolean [0..1]
+ counterJumpDownValue: Integer [0..1]
+ counterJumpUp: Boolean [0..1]
+ counterJumpUpValue: Integer [0..1]
+ counterPassedThreshold: Integer [0..1]

DiagEventDebounceTimeBased

«atpVariation»
+ timeBasedFdcThresholdStorageValue:

TimeValue [0..1]
+ timeFailedThreshold: TimeValue [0..1]
+ timePassedThreshold: TimeValue [0..1]

DiagEventDebounceMonitorInternal

������������	
 ����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+assignedPort

0..*

+portPrototype 0..1

+serviceNeeds 0..1

+rateBasedMonitoredEvent 0..1

+diagEventDebounceAlgorithm

0..1

+usedFid 0..1 +deferringFid 0..*

Figure 13.7: Relationship of DiagnosticEventNeeds and FunctionInhibitionNeeds

The figure 13.7 shows the relationship of the class DiagnosticEventNeeds. The
given M2 structure support to express following properties of a diagnostic monitor in
addition to the basic set of attributes provided by DiagnosticCapabilityElement:

The used PortPrototype which has to be connected to the Function Inhibition Man-
agers is determined by the RoleBasedPortAssignment of the related Function-
InhibitionNeeds instance on M1.

The reference from a M1 instance of an ObdRatioServiceNeeds to an M1 instance
of a DiagnosticEventNeeds specifies that the related Diagnostic Monitor supports
Rate Based Monitoring. For further details see 13.8.5

[TPS_SWCT_01582] Semantics of DiagnosticEventNeeds.deferringFid
dDiagnostic monitor implementations use Function Identifiers (FID) to acquire
permission from FiM before executing the fault detection.

764 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Typically, the permission is not granted by FiM if other Events have already been re-
ported as FAILED, which would lead to a double-detection of the same failure.

In some cases (see [40]), diagnostic monitor implementations do not only shut down
completely in case of “no permission”, but fully compute their result and do just not
deliver it to Dem before further conditions are fulfilled.

Typically, such diagnostics can detect a coarse failure quickly. But it avoids reporting
FAIL early to give other Events a chance to deliver a more precise FAIL.

In such cases, the delivery of the result is only allowed when FiM grants a permis-
sion, with inhibitions on NOT_TESTED of other Events. These Function Inhibitions are
specified by means of the attribute DiagnosticEventNeeds.deferringFid.

c(RS_SWCT_00170, RS_SWCT_03190)

As a corresponding concept to DiagnosticEventNeeds, the Diagnos-
ticEventInfoNeeds represents the needs to a given software-component that is
interested to get information about specific DTCs.

Class DiagnosticEventInfoNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the needs of a software-component interested to get information regarding
specific DTCs.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

obdDtcNumber PositiveInteger 0..1 attr This represents a reasonable Diagnostic Trouble Code.

This allows to predefine the Diagnostic Trouble Code, e.g.
if the function developer has received a particular
requirement from the OEM or from a standardization
body.

This attribute applies for the OBD diagnostics use case.

udsDtcNumber PositiveInteger 0..1 attr This represents a reasonable Diagnostic Trouble Code.

This allows to predefine the Diagnostic Trouble Code, e.g.
if the function developer has received a particular
requirement from the OEM or from a standardization
body.

This attribute applies for the UDS diagnostics use case.

Table 13.21: DiagnosticEventInfoNeeds

Class DiagnosticOperationCycleNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the needs of a software-component to provide information regarding the
operation cycle management to the Dem module.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

operationCycle OperationCycleType
Enum

0..1 attr Operation cycles types for the Dem to be supported by
cycle-state APIs.

Table 13.22: DiagnosticOperationCycleNeeds

765 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Enumeration OperationCycleTypeEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note The possible values of the operation cycles types for the Dem.

Literal Description

ignition Ignition ON / OFF cycle.

Tags:atp.EnumerationLiteralIndex=0

obdDcy OBD Driving cycle.

Tags:atp.EnumerationLiteralIndex=1

other Further operation cycle.

Tags:atp.EnumerationLiteralIndex=2

power Power ON / OFF cycle.

Tags:atp.EnumerationLiteralIndex=3

time Time based operation cycle.

Tags:atp.EnumerationLiteralIndex=4

warmup OBD Warm up cycle.

Tags:atp.EnumerationLiteralIndex=5

Table 13.23: OperationCycleTypeEnum

Class DiagnosticEnableConditionNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the needs of a software-component to provide the capability to set an enable
condition.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

initialStatus EventAcceptanceStatus
Enum

0..1 attr Defines the initial status for enable or disable of
acceptance of event reports of a diagnostic event.

Table 13.24: DiagnosticEnableConditionNeeds

Enumeration EventAcceptanceStatusEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This enumerator specifies the initial status for enable or disable of acceptance of event reports of a
diagnostic event.

Literal Description

eventAcceptance
Disabled

Acceptance of a diagnostic event is disabled.

Tags:atp.EnumerationLiteralIndex=0

eventAcceptance
Enabled

Acceptance of a diagnostic event is enabled.

Tags:atp.EnumerationLiteralIndex=1

Table 13.25: EventAcceptanceStatusEnum

Class DiagnosticStorageConditionNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

5

766 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class DiagnosticStorageConditionNeeds

Note This meta-class represents the needs of a software-component to provide the capability to set a storage
condition.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

initialStatus StorageConditionStatus
Enum

0..1 attr Defines the initial status for enable or disable of storage
of a diagnostic event.

Table 13.26: DiagnosticStorageConditionNeeds

Enumeration StorageConditionStatusEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This enumeration specifies the initial status for enable or disable of storage of a diagnostic event.

Literal Description

eventStorage
Disabled

Storage of a diagnostic event is disabled.

Tags:atp.EnumerationLiteralIndex=0

eventStorage
Enabled

Storage of a diagnostic event is enabled.

Tags:atp.EnumerationLiteralIndex=1

Table 13.27: StorageConditionStatusEnum

Class DtcStatusChangeNotificationNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the needs of a software-component interested to get information regarding
any DTC status change.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

– – – – –

Table 13.28: DtcStatusChangeNotificationNeeds

13.8.3.1 Dem Service Use Case: diagnostic monitor, debouncing by Dem

Scenario: an AtomicSwComponentType implements a Diagnostic Monitor. The de-
bouncing of the failure condition shall be configured and processed by the Dem. In this
case the following setup apply:

[TPS_SWCT_01028] AtomicSwComponentType implements a Diagnostic Moni-
tor d

ServiceNeeds kind DiagnosticEventNeeds

RoleBasedPortAssignment valid roles:

• DiagnosticMonitor [1]

• DiagnosticInfo [0..1]

767 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• CallbackInitMonitorForEvent [0..1]

• CallbackEventUdsStatusChanged [0..1]

• CallbackClearEventAllowed [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

Please note that for the implementation of this scenario DiagEventDebounceCoun-
terBased or DiagEventDebounceTimeBased algorithm should be used as di-
agEventDebounceAlgorithm.

13.8.3.2 Dem Service Use Case: diagnostic monitor, debouncing by SWC

Scenario: an AtomicSwComponentType implements a Diagnostic Monitor. The de-
bouncing of the failure condition shall be processed by the software component. In this
case the following setup applies:

[TPS_SWCT_01029] AtomicSwComponentType implements a Diagnostic Moni-
tor d

ServiceNeeds kind DiagnosticEventNeeds

RoleBasedPortAssignment valid roles:

• DiagnosticMonitor [1]

• DiagnosticInfo [0..1]

• CallbackInitMonitorForEvent [0..1]

• CallbackEventUdsStatusChanged [0..1]

• CallbackClearEventAllowed [0..1]

• CallbackGetFaultDetectCounter [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

Please note that for the implementation of this scenario DiagEventDebounceMoni-
torInternal algorithm should be used as diagEventDebounceAlgorithm.

768 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.3.3 Dem Service Use Case: software-component provides information
about operation cycles

Scenario: an AtomicSwComponentType provides information about operating cy-
cles, e.g. ignition cycle or driving cycle.

[TPS_SWCT_01132] AtomicSwComponentType provides information about op-
erating cycles d

ServiceNeeds kind DiagnosticOperationCycleNeeds

RoleBasedPortAssignment valid roles:

• OperationCycle [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00601].

13.8.3.4 Dem Service Use Case: software-component enables reporting of
DTCs in general

Scenario: a AtomicSwComponentType enables the reporting of DTCs in general.

[TPS_SWCT_01134] AtomicSwComponentType enables reporting of DTCs in
general d

ServiceNeeds kind DiagnosticEnableConditionNeeds

RoleBasedPortAssignment valid roles:

• EnableCondition [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00604] and [ECUC_Dem_00656].

769 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.3.5 Dem Service Use Case: software-component enables storage of sub-
sequent DTCs

Scenario: an AtomicSwComponentType enables the storage of subsequent DTCs.

[TPS_SWCT_01135] AtomicSwComponentType enables storage of subsequent
DTCs d

ServiceNeeds kind DiagnosticStorageConditionNeeds

RoleBasedPortAssignment valid roles:

• StorageCondition [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00605].

The relevant DTCs shall be configured in ECUC because at the time the Atomic-
SwComponentType is designed the information about which DTCs are relevant is not
fully available.

13.8.3.6 Dem Service Use Case: retrieve information of the lamp status

Scenario: an AtomicSwComponentType retrieves information of the lamp status.

Identifiable

ServiceNeeds

IndicatorStatusNeeds

+ type: DiagnosticIndicatorTypeEnum [0..1]

Figure 13.8: Modeling of IndicatorStatusNeeds

[TPS_SWCT_01136] AtomicSwComponentType retrieves information of the lamp
status d

ServiceNeedsKind IndicatorStatusNeeds

RoleBasedPortAssignment valid roles:

• IndicatorStatus [1]

770 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00606].

Class IndicatorStatusNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class shall be taken to signal a service use case that affects the indicator status.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

type DiagnosticIndicatorType
Enum

0..1 attr Defines the type of the indicator.

Table 13.29: IndicatorStatusNeeds

Enumeration DiagnosticIndicatorTypeEnum

Package M2::AUTOSARTemplates::DiagnosticExtract::Dem::DiagnosticIndicator

Note Type of an indicator.

Literal Description

amberWarning Amber Warning Lamp

Tags:atp.EnumerationLiteralIndex=0

malfunction Malfunction Indicator Lamp

Tags:atp.EnumerationLiteralIndex=1

protectLamp Protect Lamp

Tags:atp.EnumerationLiteralIndex=2

redStopLamp Red Stop Lamp

Tags:atp.EnumerationLiteralIndex=3

warning Warning

Tags:atp.EnumerationLiteralIndex=4

Table 13.30: DiagnosticIndicatorTypeEnum

13.8.3.7 Dem Service Use Case: DEM provides information that the fault stor-
age overflows

Please note that for this specific use case the application of a concrete ServiceNeeds
is not yet clarified.

Scenario: the Dem provides information that the fault storage overflows.

[TPS_SWCT_01137] Dem provides information that the fault storage overflows d

RoleBasedPortAssignment valid roles:

• EvMemOverflowIndication [1]

771 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00607].

13.8.3.8 Dem Service Use Case: software-component suppresses the storage
of DTCs

Scenario: an AtomicSwComponentType suppresses the storage of DTCs within the
Dem.

[TPS_SWCT_01138] AtomicSwComponentType suppresses the storage of DTCs
within the Dem d

ServiceNeeds kind DiagnosticEventManagerNeeds

RoleBasedPortAssignment valid roles:

• DTCSuppression [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00608].

13.8.3.9 Dem Service Use Case: software-component informs that the PTO is
active

Scenario: an AtomicSwComponentType informs the Dem that the PTO is active.

[TPS_SWCT_01139] AtomicSwComponentType informs the Dem that the PTO is
active d

ServiceNeeds kind DiagnosticEventManagerNeeds

RoleBasedPortAssignment
The following roles are applicable:

• PowerTakeOff [1]

772 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00612].

13.8.3.10 Dem Service Use Case: software-component needs information
about any DTC status change

Scenario: an AtomicSwComponentType needs information about any DTC status
change. There is no limitation on the number of software-components requesting the
information.

[TPS_SWCT_01140] AtomicSwComponentType needs information about spe-
cific DTC without being a diagnostic monitor d

ServiceNeeds kind DtcStatusChangeNotificationNeeds

RoleBasedPortAssignment valid roles:

• CallbackDTCStatusChange [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00617].

In the case the software-component needs notifications about different kinds of the
DTC status change, it is advised to create a SwcServiceDependency for each kind
of status change.

13.8.3.11 Dem Service Use Case: call operation if the data of a given diagnostic
event changes (I)

Scenario: an AtomicSwComponentType provides a PPortPrototype typed by the
ClientServerInterface CallbackEventDataChanged. The service compo-
nent calls the ClientServerOperation EventDataChanged if the corresponding
diagnostic event changes in terms of the underlying data.

For each diagnostic events to which the AtomicSwComponentType is conceptually
connected it needs to provide one PPortPrototype towards the service component.

773 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01425] AtomicSwComponentType provides one callback per event
if diagnostic event data change d

ServiceNeeds kind DiagnosticEventInfoNeeds

RoleBasedPortAssignment valid roles:

• CallbackEventDataChanged [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00618].

13.8.3.12 Dem Service Use Case: call operation if the data or status of any
diagnostic event changes (II)

Scenario: an AtomicSwComponentType shall react on any diagnostic event status
change and/or any diagnostic event data change. For instance this may be used to
write a time stamp when any event status changes regardless of the event id.

In contrast to the scenario described in chapter 13.8.3.11 or 13.8.3.10 this case fore-
sees the existence of a single PPortPrototype that covers all relevant diagnostic
events.

[TPS_SWCT_01426] AtomicSwComponentType provides callback if any diagnos-
tic event data and/or status changed d

ServiceNeeds kind DiagnosticEventManagerNeeds

RoleBasedPortAssignment valid roles:

• GeneralCallbackEventDataChanged [0..1]

• GeneralCallbackEventUdsStatusChange [0..1]

• GeneralDiagnosticInfo [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

For more information please refer to [SWS_Dem_00616], [SWS_Dem_00619], and
[SWS_Dem_00600].

774 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

In order to react on diagnostic event status changes the software component shall
provide a single PPortPrototype typed as a client server interface compatible to
GeneralCallbackEventDataChanged.

In order to react on diagnostic event data changes the software component shall pro-
vide a single PPortPrototype typed as a client server interface compatible to Gen-
eralCallbackEventDataChanged.

If the software-component additionally has to read further information of the specific
diagnostic event from Dem it shall provide a RPortPrototype typed as a client server
interface compatible to GeneralDiagnosticInfo. It shall also specify Diagnos-
ticEventInfoNeeds.c(RS_SWCT_00170, RS_SWCT_03190)

13.8.3.13 Dem Service Use Case: software-component provides data for diag-
nostic purposes

Please note that for this specific use case the application of a concrete ServiceNeeds
is not yet clarified.

Scenario: an AtomicSwComponentType provides data to be used for diagnostic pur-
poses. The provision of data can be done by means of PPortPrototypes typed by
either ClientServerInterfaces or SenderReceiverInterfaces. The usage of
the latter, however, is not further detailed in the applicable SWS [41] and therefore no
more details are to be provided in this document.

[TPS_SWCT_01427] AtomicSwComponentType provides data for diagnostic pur-
poses via ClientServerInterface d

RoleBasedPortAssignment valid roles:

• DataServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01634] Suffix used for the resulting name of the PortInterface
for the Data Services dThe suffix used for the resulting name of the PortInterface
for the Data Services (DataServices_{Data}) shall be taken from the shortName of
the applicable SwcServiceDependency.c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00621].

775 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.3.14 Dem Service Use Case: software-component gets information about
a specific DTC

Scenario: an AtomicSwComponentType specifies DiagnosticEventInfoNeeds
in order to be able to get information about specific DTCs. This use case to some
extent is similar to [TPS_SWCT_01426] but does not replace that use case.

[TPS_SWCT_01453] Software-component gets information about a specific DTC
d

ServiceNeeds kind DiagnosticEventInfoNeeds

RoleBasedPortAssignment valid roles:

• DiagnosticInfo [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00609].

13.8.3.15 Dem Service Use Case: Software-Component wants to be triggered
on Monitor Status Changes

Scenario: a software-component wants to be triggered on monitor status changes if
this is supported for the specific monitor status. Events reported from basic-software
modules cannot be considered in this service use case.

The Dem will not provide corresponding PortPrototypes for events reported by
basic-software modules.

This way, the service use case cannot be used for events reported by the basic-
software.

However, for the creator of the service use case there is no way to find out whether the
event will be reported by basic software of application software-component.

[TPS_SWCT_01715] Software-Component wants to be triggered on Monitor Sta-
tus Changes d

ServiceNeeds kind DiagnosticEventManagerNeeds

RoleBasedPortAssignment valid roles:

• CallbackMonitorStatusChange [1]

776 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

13.8.3.16 Dem Service Use Case: write parameter identifier by software-
component

Scenario: A software-component computes the PIDs, and pushes them to Dem for
storage and reporting to Dcm.

[TPS_SWCT_01766] Software-component computes the PIDs, and pushes them
to Dem for storage and reporting to Dcm d

ServiceNeeds kind ObdPidServiceNeeds

RoleBasedPortAssignment valid roles:

• SetDataOfPID21 [1]

• SetDataOfPID4D [1]

• SetDataOfPID4E [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

13.8.3.17 Dem Service Use Case: read parameter identifier by software-
component

Scenario: A software-component located on an OBD master ECU reads the PID
21, and sends the value around via “regular” sender-receiver communication to other
software-components located on OBD primary ECUs with the obligation to push the
PID value to their local Dems.

[TPS_SWCT_01767] Software-component located on an OBD master ECU reads
the PID 21, and sends the value around via “regular” sender-receiver communi-
cation d

ServiceNeeds kind ObdPidServiceNeeds

RoleBasedPortAssignment valid roles:

777 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• GetDataOfPID21 [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

13.8.3.18 Dem Service Use Case: diagnostic monitor provides monitor data,
debouncing by Dem

Scenario: an AtomicSwComponentType implements a Diagnostic Monitor that is able
to provide monitor data. The debouncing of the failure condition shall be configured and
processed by the Dem. In this case the following setup applies:

[TPS_SWCT_01789] AtomicSwComponentType implements a Diagnostic Moni-
tor that provides monitor data, debouncing by Dem d

ServiceNeeds kind DiagnosticEventNeeds (with attribute usesMonitorData
set to TRUE)

RoleBasedPortAssignment valid roles:

• DiagnosticMonitor [0..1]

• DiagnosticMonitor_MonitorData [1]

• DiagnosticInfo [0..1]

• CallbackInitMonitorForEvent [0..1]

• CallbackEventStatusChange [0..1]

• CallbackClearEventAllowed [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

Please note that for the implementation of this scenario the sub-class DiagEvent-
DebounceCounterBased or DiagEventDebounceTimeBased algorithm should be
used as the value for attribute DiagnosticEventNeeds.diagEventDebounceAl-
gorithm.

778 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.3.19 Dem Service Use Case: diagnostic monitor provides monitor data,
debouncing by software-component

Scenario: an AtomicSwComponentType implements a Diagnostic Monitor that is able
to provide monitor data. The debouncing of the failure condition shall be configured
and processed by the software-component that implements the monitor. In this case
the following setup applies:

[TPS_SWCT_01790] AtomicSwComponentType implements a Diagnostic Moni-
tor that provides monitor data, debouncing by software-component d

ServiceNeeds kind DiagnosticEventNeeds (with attribute usesMonitorData
set to TRUE)

RoleBasedPortAssignment valid roles:

• DiagnosticMonitor [0..1]

• DiagnosticMonitor_MonitorData [1]

• DiagnosticInfo [0..1]

• CallbackInitMonitorForEvent [0..1]

• CallbackEventStatusChange [0..1]

• CallbackClearEventAllowed [0..1]

• CallbackGetFaultDetectCounter [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

Please note that for the implementation of this scenario the sub-class DiagEvent-
DebounceMonitorInternal should be used as the value for attribute Diagnos-
ticEventNeeds.diagEventDebounceAlgorithm.

13.8.3.20 Dem Service Use Case: software-component checks whether an
event is suppressed

Scenario: a software-component representing a monitor of a given event needs to
check for the availability of the event in order to decide whether reporting of that event
is cleared by the Dem.

A typical use case for this ability is a scenario where actuators are moved to their limits
for testing purposes. During this phase the monitoring shall cease.

779 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For this purpose the software component needs to expose an RPortPrototype to-
wards the Dem.

[TPS_SWCT_01808] Dem Service Use Case: software-component checks
whether an event is suppressed d

ServiceNeeds kind DiagnosticEventInfoNeeds

RoleBasedPortAssignment valid roles:

• DiagnosticInfo [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

13.8.4 Diagnostic Communication Needs

The meta-class DiagnosticCommunicationManagerNeeds is used to define re-
quirements in order to configure the Diagnostic Communication Manager Service.

An SwcInternalBehavior may provide a DiagnosticCommunicationMan-
agerNeeds element which defines the mappings for the general diagnostic commu-
nication (for the terms related to the AUTOSAR Diagnostic Communication Manager
see [42]).

The meta-class DiagnosticRoutineNeeds is used to define requirements to config-
ure the Diagnostic Communication Manager Service. A PPortPrototype typed by a
ClientServerInterface1 may provide ClientServerOperations (for example,
“start”, “stop”, and “RequestResults”).

The PPortPrototype corresponds to the diagnostic service RoutineControl.
Within the SwcInternalBehavior up to three RunnableEntitys are defined for
implementing the ClientServerOperations mentioned before.

The enumeration parameter DiagnosticRoutineTypeEnum is used to define
whether the diagnostic server or client is responsible for stopping the routine.

Please note that [constr_1340] and [constr_1341] apply for the application of Diag-
nosticRoutineNeeds. These constraints are part of the specification of the Diag-
nostic Extract.

1where isService shall be set to true

780 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class DiagnosticCommunicationManagerNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the general needs on the configuration of the Diagnostic Communication Manager (Dcm) which
are not related to a particular item (e.g. a PID or DiagnosticRoutineNeeds). The main use case is the
mapping of service ports to the Dcm which are not related to a particular item.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

serviceRequest
CallbackType

DiagnosticService
RequestCallbackType
Enum

0..1 attr This represents the ability to define whether the usage of
PortInterface ServiceRequestNotification has the
characteristics of being initiated by a manufacturer or by a
supplier.

Table 13.31: DiagnosticCommunicationManagerNeeds

«enumeration»
DiagnosticAudienceEnum

 development
 manufacturing
 afterSales
 supplier
 aftermarket

«enumeration»
DiagnosticRoutineTypeEnum

 synchronous
 asynchronous

«enumeration»
DiagnosticValueAccessEnum

 readOnly
 readWrite
 writeOnly

DiagnosticCapabil ityElement

+ audience:
DiagnosticAudienceEnum [0..*]

+ diagRequirement:
DiagRequirementIdString [0..1]

+ securityAccessLevel:
PositiveInteger [0..1]

DiagnosticValueNeeds

+ dataLength: PositiveInteger [0..1]
+ diagnosticValueAccess: DiagnosticValueAccessEnum [0..1]
+ fixedLength: Boolean [0..1]
+ processingStyle: DiagnosticProcessingStyleEnum [0..1]

DiagnosticIoControlNeeds

+ freezeCurrentStateSupported: Boolean [0..1]
+ resetToDefaultSupported: Boolean [0..1]
+ shortTermAdjustmentSupported: Boolean [0..1]

DiagnosticRoutineNeeds

+ diagRoutineType:
DiagnosticRoutineTypeEnum [0..1]

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

«enumeration»
ObdRatioConnectionKindEnum

 apiUse
 observer

DiagnosticCommunicationManagerNeeds

+ serviceRequestCallbackType:
DiagnosticServiceRequestCallbackTypeEnum [0..1]

Identifiable

ServiceNeeds

DiagnosticsCommunicationSecurityNeeds

«enumeration»
DiagnosticProcessingStyleEnum

 processingStyleSynchronous
 processingStyleAsynchronous
 processingStyleAsynchronousWithError

«enumeration»
DiagnosticServiceRequestCallbackTypeEnum

 requestCallbackTypeManufacturer
 requestCallbackTypeSupplier

DiagnosticComponentNeeds

DiagnosticResponseOnEventNeeds

DiagnosticControlNeeds

DiagnosticRequestFileTransferNeeds

+serviceNeeds

0..1

+currentValue
0..1

Figure 13.9: General diagnostic service-related ServiceNeeds

Enumeration DiagnosticServiceRequestCallbackTypeEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This represents the ability to define whether a Service Request Notification was used in the role of a
manufacturer or a supplier.

Literal Description

requestCallback
TypeManufacturer

This represents the case that the usage of PortInterface ServiceRequestNotification has the
characteristics of being used by a manufacturer.

Tags:atp.EnumerationLiteralIndex=0

5

781 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration DiagnosticServiceRequestCallbackTypeEnum

requestCallback
TypeSupplier

This represents the case that the usage of PortInterface ServiceRequestNotification has the
characteristics of being used by a supplier.

Tags:atp.EnumerationLiteralIndex=1

Table 13.32: DiagnosticServiceRequestCallbackTypeEnum

Class DiagnosticRoutineNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the general needs on the configuration of the Diagnostic Communication Manager (Dcm) which
are not related to a particular item (e.g. a PID). The main use case is the mapping of service ports to the
Dcm which are not related to a particular item.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

diagRoutine
Type

DiagnosticRoutineType
Enum

0..1 attr This denotes the type of diagnostic routine which is
implemented by the referenced server port.

Table 13.33: DiagnosticRoutineNeeds

[constr_1986] Existence of the reference DiagnosticRoutineNeeds.diagRou-
tineType dFor each DiagnosticRoutineNeeds, the reference to BswInternal-
Behavior in the role diagRoutineType shall exist at the time when the RTE
is generated.c()

Enumeration DiagnosticRoutineTypeEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This enumerator specifies the different types of diagnostic routines.

Literal Description

asynchronous This indicates that the diagnostic server is not blocked while the diagnostic routine is running.

Tags:atp.EnumerationLiteralIndex=0

synchronous This indicates that the diagnostic routine blocks the diagnostic server in the ECU while the routine is
running.

Tags:atp.EnumerationLiteralIndex=1

Table 13.34: DiagnosticRoutineTypeEnum

The meta-class DiagnosticIoControlNeeds is used to define requirements to con-
figure the Diagnostic Communication Manager Service. The PPortPrototype corre-
sponds to the diagnostic service InputOutputControlByIdentifier. Within the
SwcInternalBehavior up to three RunnableEntitys are defined for implement-
ing the ClientServerOperations mentioned before.

Class DiagnosticIoControlNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

5

782 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class DiagnosticIoControlNeeds

Note Specifies the general needs on the configuration of the Diagnostic Communication Manager (DCM)
which are not related to a particular item (e.g. a PID). The main use case is the mapping of service ports
to the Dcm which are not related to a particular item.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

currentValue DiagnosticValueNeeds 0..1 ref Reference to the DiagnosticValueNeeds indicating the
access to the current value via signalBasedDiagnostics.

freezeCurrent
StateSupported

Boolean 0..1 attr This attribute determines, if the referenced port supports
temporary freezing of I/O value.

resetToDefault
Supported

Boolean 0..1 attr This represents a flag for the existence of the ResetTo
Default operation in the service interface.

shortTerm
Adjustment
Supported

Boolean 0..1 attr This attribute determines, if the referenced port supports
temporarily setting of I/O value to a specific value
provided by the diagnostic tester.

Table 13.35: DiagnosticIoControlNeeds

The meta-class DiagnosticValueNeeds is used to define requirements in order to
configure the Diagnostic Communication Manager Service as well as the Diagnostic
Event Manager Service.

The DCM can access either local values via a ClientServerInterface or it may
access dataElements in a PPortPrototype typed by a SenderReceiverInter-
face. For this purpose, the DiagnosticValueNeeds require associations to local
values (i.e. inside InternalBehavior) or respectively dataElements.

The attribute DiagnosticValueNeeds.diagnosticValueAccess of type Diag-
nosticValueAccessEnum allows for distinguishing between current values to read
diagnostic information (readOnly) and data elements which are additionally classified
as configurable (readWrite).

[constr_1363] Existence of attributes of DiagnosticValueNeeds dif Diagnos-
ticValueNeeds is aggregated by a SwcServiceDependency in the role service-
Needs then the attributes

• DiagnosticValueNeeds.diagnosticValueAccess

• DiagnosticValueNeeds.dataLength

shall not exist at any time in the workflow.c()

[constr_1364] Existence of attributes of DiagnosticIoControlNeeds dif Diag-
nosticIoControlNeeds is aggregated by a SwcServiceDependency in the role
serviceNeeds then the attributes

• DiagnosticIoControlNeeds.freezeCurrentStateSupported

• DiagnosticIoControlNeeds.shortTermAdjustmentSupported

shall not exist at any time in the workflow.c()

783 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For all intents and purposes, the statement made by [constr_1363] and [constr_1364]
boils down to the fact that these attributes can only be reasonably used in the context
of a BswServiceDependency.

Class DiagnosticValueNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the general needs on the configuration of the Diagnostic Communication Manager (DCM)
which are not related to a particular item (e.g. a PID). The main use case is the mapping of service ports
to the DCM which are not related to a particular item.

In the case of using a sender receiver communicated value, the related value shall be taken via assigned
Data in the role "signalBasedDiagnostics".

In case of using a client/server communicated value, the related value shall be communicated via the
port referenced by asssignedPort. The details of this communication (e.g. appropriate naming
conventions) are specified in the related software specifications (SWS).

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

dataLength PositiveInteger 0..1 attr This attribute is applicable only if the DiagnosticValue
Needs is aggregated within a BswModuleDependency.

This attribute represents the length of data (in bytes)
provided for this particular PID signal.

diagnosticValue
Access

DiagnosticValueAccess
Enum

0..1 attr This attribute is applicable only if the DiagnosticValue
Needs is aggregated within a BswModuleDependency.

This attribute controls whether the data can be read and
written or whether it is to be handled read-only.

fixedLength Boolean 0..1 attr This attribute is applicable only if the DiagnosticValue
Needs is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data
is fixed.

processingStyle DiagnosticProcessing
StyleEnum

0..1 attr This attribute controls whether interaction requires the
software-component to react synchronously on a request
or whether it processes the request in background but still
the DCM has to issue the call again to eventually obtain
the result of the request.

Table 13.36: DiagnosticValueNeeds

Enumeration DiagnosticValueAccessEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Defines the access of the configured diagnostic current values which will be used by the Dem or Dcm
module.

Literal Description

readOnly The access to the data element is limited to read-only. This is typically used to read-out diagnostic
information (e.g. current values).

Tags:atp.EnumerationLiteralIndex=0

readWrite The value of the diagnostic data element is classified as configurable (read and write access is
possible).

Tags:atp.EnumerationLiteralIndex=1

writeOnly The access to the data element is limited to write-only. This supports the use case where the Dcm
just writes data to the application software without the intention to read it back,

Tags:atp.EnumerationLiteralIndex=2

Table 13.37: DiagnosticValueAccessEnum

784 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Enumeration DiagnosticProcessingStyleEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the ability to define the processing style of diagnostic requests.

Literal Description

processingStyle
Asynchronous

The software-component processes the request in background but still the Dcm has to issue the call
again to eventually obtain the result of the request.

Tags:atp.EnumerationLiteralIndex=0

processingStyle
AsynchronousWith
Error

The software-component processes the request in background but still the Dcm has to issue the call
again to eventually obtain the result of the request or handle error code.

Tags:atp.EnumerationLiteralIndex=1

processingStyle
Synchronous

The software-component is supposed to react synchronously on the request.

Tags:atp.EnumerationLiteralIndex=2

Table 13.38: DiagnosticProcessingStyleEnum

Class DiagnosticsCommunicationSecurityNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the needs of a software-component to verify the access to security level via
diagnostic services.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

– – – – –

Table 13.39: DiagnosticsCommunicationSecurityNeeds

13.8.4.1 Dcm Service Use Case: read/write current values by Client Server In-
terface

Scenario: an AtomicSwComponentType offers a PPortPrototype typed by
ClientServerInterface to read/write current value via diagnostic services (e.g.
measurements, variant coding)

[TPS_SWCT_02002] AtomicSwComponentType offers a PPortPrototype typed
by ClientServerInterface to read/write current value via diagnostic services
d

ServiceNeeds kind DiagnosticValueNeeds

RoleBasedPortAssignment valid roles:

• DataServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

785 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01628] Suffix used for the resulting name of the PortInterface
for the Data Services dThe suffix used for the resulting name of the PortInterface
for the Data Services (DataServices_{Data}) shall be taken from the shortName of
the applicable SwcServiceDependency.c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dcm_00686].

13.8.4.2 Dcm Service Use Case: read/write current values of specific DID by
Client Server Interface

Scenario: an AtomicSwComponentType offers a PPortPrototype typed by
ClientServerInterface to read/write current values via diagnostic services (e.g.
measurements, variant coding) where the applicable DID is passed as an argument to
the access functions. This use case applies mostly if the software-component provides
the information related to more than one DID.

[TPS_SWCT_01639] AtomicSwComponentType offers a PPortPrototype typed
by ClientServerInterface to read/write current value via diagnostic services
where the applicable DID is passed as an argument to the access functions d

ServiceNeeds kind DiagnosticValueNeeds

RoleBasedPortAssignment valid roles:

• DataServices_DIDRange [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01640] Suffix used for the resulting name of the PortInterface
for the Data Services dThe suffix used for the resulting name of the PortInterface
for the Data Services (DataServices_DIDRange_{Range}) shall be taken from the
shortName of the applicable SwcServiceDependency.c(RS_SWCT_00170, RS_-
SWCT_03190)

For more information please refer to [SWS_Dcm_00769].

13.8.4.3 Dcm Service Use Case: read/write current values by Sender Receiver
Interface or Nv Data Interface

Scenario: an AtomicSwComponentType offers PortPrototypes typed by
SenderReceiverInterfaces or NvDataInterfaces to read/write current values

786 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

via diagnostic services (e.g. measurements, variant coding) This is mainly used for
data which are available at ports anyhow used for other communication purpose.

Note: this scenario can be implemented as a regular sender/receiver communication
without the necessity to use a SwcServiceDependency. The description of a Swc-
ServiceDependency (even if it is technically not required) may help to advertise the
special role of the corresponding dataElement with respect to diagnostics.

[TPS_SWCT_02003] AtomicSwComponentType offers PortPrototypes typed
by SenderReceiverInterfaces or NvDataInterfaces to read/write current
values via diagnostic services d

ServiceNeeds kind DiagnosticValueNeeds

RoleBasedPortAssignment
N/A

RoleBasedDataAssignment valid roles:

• signalBasedDiagnostics [1..2]

RepresentedPortGroups
N/A

To read the signal the AtomicSwComponentType shall offer an AbstractProvid-
edPortPrototype, to write the signal the AtomicSwComponentType shall offer an
AbstractRequiredPortPrototype.c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [TPS_SWCT_01579], [TPS_SWCT_01831] and
[SWS_Dcm_00687].

[constr_1679] Existence of attribute RoleBasedDataAssignment.used-
DataElement.localVariable for RoleBasedDataAssignment.role = sig-
nalBasedDiagnostics dIf the attribute RoleBasedDataAssignment.role is
set to the value signalBasedDiagnostics then the reference RoleBased-
DataAssignment.usedDataElement.localVariable shall not exist at the
time when the RTE is generated.c()

For explanation of the existence of [constr_1679], it is not intended to provide diagnos-
tic access to local variables inside the SwcInternalBehavior.

13.8.4.4 Dcm Service Use Case: start/stop or request routine results

Scenario: an AtomicSwComponentType offers a PortPrototype typed by a
ClientServerInterface to start/stop or request routine results of diagnostic rou-
tines.

[TPS_SWCT_02004] AtomicSwComponentType offers a PortPrototype typed
by a ClientServerInterface to start/stop or request routine results of diag-
nostic routines d

787 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ServiceNeeds kind DiagnosticRoutineNeeds

RoleBasedPortAssignment valid roles:

• RoutineServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01632] Suffix used for the resulting name of the PortInterface for
the Routine Services dThe suffix used for the resulting name of the PortInterface
for the Routine Services (RoutineServices_{RoutineName}) shall be taken from the
shortName of the applicable SwcServiceDependency.c(RS_SWCT_00170, RS_-
SWCT_03190)

For more information please refer to [SWS_Dcm_00690].

[constr_1724] Usage of attribute ClientServerOperation.diagArgIntegrity
dWith the exception of the context of a ServiceSwComponentType, the attribute
ClientServerOperation.diagArgIntegrity shall only have the value True if
the ClientServerInterface containing the respective ClientServerOpera-
tion is used to type a PPortPrototype that is referenced by a RoleBasedPor-
tAssignment aggregated by a SwcServiceDependency that in turn aggregates
DiagnosticRoutineNeeds.

This rule shall be imposed at the time when the RTE is generated.c()

In other words, on the level of application software the attribute diagArgIntegrity
shall only exist in the context of a PPortPrototype.

Obviously, the ServiceSwComponentType that is used to represent the Dcm will use
an RPortPrototype for the other end of the AssemblySwConnector that connects
to said PortPrototype in the application software.

13.8.4.5 Dcm Service Use Case: IO control by Client Server Interface

Scenario: an AtomicSwComponentType offers a PortPrototype typed by a
ClientServerInterface to adjust the IO signal via diagnostic services.

[TPS_SWCT_02005] AtomicSwComponentType offers PortPrototypes typed
by ClientServerInterfaces to adjust the IO signal via diagnostic services
d

ServiceNeeds kind DiagnosticIoControlNeeds

RoleBasedPortAssignment valid roles:

788 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• DataServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01629] Suffix used for the resulting name of the PortInterface
for the Data Services dThe suffix used for the resulting name of the PortInterface
for the Data Services (DataServices_{Data}) shall be taken from the shortName of
the applicable SwcServiceDependency.c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dcm_00686].

13.8.4.6 Dcm Service Use Case: IO control by Sender Receiver Interface

This use case represents an alternative to the use case described in chapter 13.8.4.5,
i.e. for the same purpose it is also possible to utilize a SenderReceiverInterface.

The essential idea behind the existence of I/O PortPrototypes typed by Sender-
ReceiverInterface is the possibility to have quick access to the dataElements
currently under control.

Especially cases where access to dataElements is required from different partitions
(for example in multi core systems) can benefit from this approach.

Scenario: an AtomicSwComponentType offers an RPortPrototype typed by a
SenderReceiverInterface (in particular: IOControlRequest) to adjust the I/O
signal via diagnostic services and offers a PPortPrototype typed by a Sender-
ReceiverInterface (in particular: IOControlResponse) to provide the IO “oper-
ation response”.

In case of using IOControlRequest (which owns three dataElements) and IO-
ControlResponse the whole PortPrototype is related to exactly one IO control
and needs to be consistent.

Therefore, the usage of RoleBasedPortAssignment (instead of the RoleBased-
DataAssignment, which would otherwise typically be used for a sender/receiver-
based scenario) is required for avoiding modeling overhead.

[TPS_SWCT_01654] AtomicSwComponentType offers PortPrototypes typed
by SenderReceiverInterfaces to adjust the IO signal via diagnostic services
d

ServiceNeeds kind DiagnosticIoControlNeeds

RoleBasedPortAssignment valid roles:

789 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• IOControlRequest [1]

• IOControlResponse [1]

• DataServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

The IOControl service requires in its diagnostic response the current value of the IO-
DID, which is identical to the current value represented by DiagnosticValueNeeds
of the ReadDataByIdentifer response.

[TPS_SWCT_01655] Reference from DiagnosticIoControlNeeds to Diagnos-
ticValueNeeds dIn the scenario described by [TPS_SWCT_01654], the Diagnos-
ticIoControlNeeds shall reference the DiagnosticValueNeeds which relates
to the access of the current value via diagnostic services (see [TPS_SWCT_02003]).c
(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01656] Suffix used for the resulting name of the PortInterface for
DataServices, IOControlRequest, and IOControlResponse dThe suffix used
for the resulting name of the PortInterface for the DataServices_{Data}, IO-
ControlRequest_{Data}, and IOControlResponse_{Data} shall be taken from the
shortName of the applicable SwcServiceDependency.c(RS_SWCT_00170, RS_-
SWCT_03190)

The service use case is visualized in Figure 13.10. The SwComponentPrototype
contains two SwcServiceDependencys, one for the I/O Control, and one for the
access of the dataElement with the shortName “IOx” by the Dcm.

Please note that, in this example, the SenderReceiverInterface used on the
PPortPrototype of the ApplicationSwComponentType has several dataEle-
ments (where the dataElement with the shortName “IOx” is one of them). This is a
perfectly valid configuration.

On the other hand, the SenderReceiverInterface used on the RPortProto-
type of the ServiceSwComponentType representing the Dcm can only have one
dataElement. This single dataElement shall (as far as the example is concerned)
be given the shortName “IOx”.

Note the reference from the DiagnosticIoControlNeeds to the DiagnosticVal-
ueNeeds. this reference explicitly expresses that access to a DID is combined with the
usage of I/O control.

790 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

SwcServiceDependency

„IOx“

DiagnosticIoControlNeeds

„IOx“

RoleBasedPortAssignment

role: „IOControlRequest“

RoleBasedPortAssignment

role: „IOControlResponse“

SwcServiceDependency

„Data_IOx“

DiagnosticValueNeeds

„Data_IOx“

currentValue

RoleBasedDataAssignment

role: „signalBasedDiagnostics“

«isOfType»

«isOfType»

Connector

«isOfType»

SwComponentPrototype

typed by Dcm

ServiceSwComponentType

SenderReceiverInterface

„DataXY_IO“

„IOx“

„IOy“

SenderReceiverInterface

„IOControlResponse_IOx“

«isOfType»

Connector

SenderReceiverInterface

„IOControlRequest_IOx“

Connector

«isOfType»

«isOfType»

SwComponentPrototype typed by ApplicationSwComponentType

SenderReceiverInterface

„DataServices_Data_IOx“

„IOx“

„IOControlRequest_IOx“

„IOControlResponse_IOx“

Figure 13.10: Visualization of the service use case

[TPS_SWCT_01657] NamingRule for RPortPrototype referenced by a Role-
BasedPortAssignment with attribute role set to “IOControlRequest” dThe
shortName of a RPortPrototype referenced by a RoleBasedPortAssignment
with attribute role set to “IOControlRequest” shall be created by concatenating the
prefix “IOControlRequest” and the SwcServiceDependency.shortName, separated
by a single underscore character (i.e. “_”).c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dcm_01308] and [SWS_Dcm_01309].

[constr_1741] Restriction to explicit sending semantics for the usage of
DataServices in the context of a SwcServiceDependency that aggregates Di-
agnosticValueNeeds that in turn is referenced by a DiagnosticIoControl-
Needs dA dataElement

• that is referenced by a RoleBasedDataAssignment (where the attribute role
is set to signalBasedDiagnostics) owned by a SwcServiceDependency
that aggregates DiagnosticValueNeeds that in turn is referenced by a Diag-
nosticIoControlNeeds

• shall also be referenced by a VariableAccess aggregated in the role
dataSendPoint by a given RunnableEntity that in turn belongs to the en-
closing SwcInternalBehavior.

791 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• shall not be referenced by a VariableAccess aggregated in the role
dataWriteAccess by a given RunnableEntity that in turn belongs to the
enclosing SwcInternalBehavior.

This rule shall be imposed at the time when the RTE is generated.c()

In other words, the data handled by the diagnostics transformer shall only be sent
explicitly. The usage of implicit sending of these data is not supported.

13.8.4.7 Dcm Service Use Case: Access to protocol, session and security in-
formation

Scenario: an AtomicSwComponentType offers a server port to get protocol, session
and security information or to request a Reset to Default Session.

[TPS_SWCT_02013] AtomicSwComponentType offers a server port to get proto-
col, session and security information or to request a Reset to Default Session
d

ServiceNeeds kind DiagnosticCommunicationManagerNeeds

RoleBasedPortAssignment valid roles:

• DCMServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dcm_00698]

13.8.4.8 Dcm Service Use Case: Verify the access to security level

Scenario: an AtomicSwComponentType provides a server port to verify the access
to security level via diagnostic services.

[TPS_SWCT_02015] AtomicSwComponentType verifies the access to security
level via diagnostic services d

ServiceNeeds kind DiagnosticsCommunicationSecurityNeeds

RoleBasedPortAssignment valid roles:

• SecurityAccess [1]

RoleBasedDataAssignment
N/A

792 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01627] Suffix used for the resulting name of the PortInterface
for the Security Access dThe suffix used for the resulting name of the PortInter-
face for the Security Access (SecurityAccess_{SecurityLevel}) shall be taken from the
shortName of the applicable SwcServiceDependency.c(RS_SWCT_00170, RS_-
SWCT_03190)

For more information please refer to [SWS_Dcm_00685]

13.8.4.9 Dcm Service Use Case: multiple testers access one ECU

Scenario: an AtomicSwComponentType provides a server port to get information on
the status of the protocol communication. Further on the AtomicSwComponentType
may disallow a protocol.

[TPS_SWCT_02016] AtomicSwComponentType requires information on the sta-
tus of the protocol communication and may disallow a protocol d

ServiceNeeds kind DiagnosticCommunicationManagerNeeds

RoleBasedPortAssignment valid roles:

• CallbackDCMRequestServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dcm_00692]

13.8.4.10 Dcm Service Use Case: Service Request Notification

Scenario: an AtomicSwComponentType provides a server port to get notified about
a Service Request via diagnostic services. This indicates the successful reception of
a new request to application.

Within this Service Request Notification this function application can examine the per-
mission of the diagnostic service / environment.

Please note that the Service Request Notification can be used in two char-
acteristics, i.e. as manufacturer ([TPS_SWCT_01577] applies) or as a supplier
([TPS_SWCT_01578] applies).

793 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01577] AtomicSwComponentType requires the notification about a
Service Request via diagnostic services with manufacturer characteristics d

The attribute DiagnosticCommunicationManagerNeeds.serviceRequest-
CallbackType shall be set to the value requestCallbackTypeManufacturer.

ServiceNeeds kind DiagnosticCommunicationManagerNeeds

RoleBasedPortAssignment valid roles:

• ServiceRequestNotification [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_03190)

[TPS_SWCT_01578] AtomicSwComponentType requires the notification about a
Service Request via diagnostic services with supplier characteristics d

The attribute DiagnosticCommunicationManagerNeeds.serviceRequest-
CallbackType shall be set to the value requestCallbackTypeSupplier.

ServiceNeeds kind DiagnosticCommunicationManagerNeeds

RoleBasedPortAssignment valid roles:

• ServiceRequestNotification [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_03190)

For more information please refer to [SWS_Dcm_00694]

13.8.4.11 Dcm Service Use Case: read/write and IOCtrl current values by Client
Server Interface

Scenario: an AtomicSwComponentType offers a PPortPrototype typed by
ClientServerInterface to read/write and IOCtrl current value via diagnostic ser-
vices (e.g. measurements, variant coding)

[TPS_SWCT_01690] AtomicSwComponentType offers a PPortPrototype typed
by ClientServerInterface to read/write and IOCtrl current value via diagnos-
tic services d

794 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ServiceNeeds kind DiagnosticValueNeeds, DiagnosticIoControlNeeds

RoleBasedPortAssignment valid roles:

• DataServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01691] Suffix used for the resulting name of the PortInterface for
the Data Services dThe suffix used for the resulting name of the PortInterface for
the Data Services (DataServices_{Data}) shall be taken from the shortName of
the SwcServiceDependency that aggregates the DiagnosticIoControlNeeds.c
(RS_SWCT_00170, RS_SWCT_03190)

13.8.4.12 Dcm Service Use Case: A software-component acts as a "file server"
to a diagnostic tester

Scenario: an AtomicSwComponentType acts as a "file server" to a diagnostic tester.

[TPS_SWCT_01791] AtomicSwComponentType acts as a "file server" to a diag-
nostic tester d

ServiceNeeds kind DiagnosticRequestFileTransferNeeds

RoleBasedPortAssignment valid roles:

• RequestFileTransfer [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

Class DiagnosticRequestFileTransferNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class indicates the existence of a service use case that involves UDS service 0x38, Request
File Transfer.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

– – – – –

Table 13.40: DiagnosticRequestFileTransferNeeds

795 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.5 OBD related Needs

The ObdRatioServiceNeeds describes further properties of the implementation of
the Rate Based Monitoring (e.g. connectionType) as well as the logical dependen-
cies relevant for the ECU configuration.

Class ObdRatioServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs of a component or module on the configuration of OBD Services in relation
to a particular "ratio monitoring" which is supported by this component or module.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

connectionType ObdRatioConnection
KindEnum

0..1 attr Defines how the DEM is connected to the component or
module to perform the IUMPR (In use monitor
performance ratio) service.

rateBased
MonitoredEvent

DiagnosticEventNeeds 0..1 ref The rate based monitored Diagnostic Event.

usedFid FunctionInhibitionNeeds 0..1 ref This represents the primary Function Inhibition Identifier
used for the rate based monitor. This is an optional
attribute.

Table 13.41: ObdRatioServiceNeeds

Class ObdControlServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs of a component or module on the configuration of OBD Service 08 (request
control of on-board system) in relation to a particular test-Identifier (TID) supported by this component or
module.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

– – – – –

Table 13.42: ObdControlServiceNeeds

Enumeration ObdRatioConnectionKindEnum
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Defines the way how the IUMPR service connection between the Dem and the client component or
module is handled (for details see the DEM Specification).

Literal Description

apiUse The IUMPR service (of the DEM) uses an explicit API to connect to the component or module.

Tags:atp.EnumerationLiteralIndex=0

observer The IUMPR service (of the Dem) uses no API but "observes" the associated diagnostic event.

Tags:atp.EnumerationLiteralIndex=1

Table 13.43: ObdRatioConnectionKindEnum

In addition, ObdPidServiceNeeds, ObdInfoServiceNeeds, ObdMonitorSer-
viceNeeds and ObdControlServiceNeeds are required in order to specify the
specific needs for OBD diagnostic service calls. Note that ObdPidServiceNeeds
is used for the Diagnostic Event Manager as well.

796 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1520] Semantics of ObdRatioServiceNeeds.rateBasedMonitoredE-
vent dIn the context of an SwcServiceDependency, each DiagnosticEvent-
Needs referenced in the role rateBasedMonitoredEvent shall only be referenced
by at most a single ObdRatioServiceNeeds at the time when the RTE is
generated.c()

Identifiable

ServiceNeeds

DiagnosticEventNeeds

+ prestoredFreezeframeStoredInNvm: Boolean [0..1]
+ usesMonitorData: Boolean [0..1]

FunctionInhibitionNeeds

ObdPidServiceNeeds

ObdRatioServiceNeeds

+ connectionType: ObdRatioConnectionKindEnum [0..1]

ObdInfoServiceNeeds

ObdMonitorServiceNeeds

+ unitAndScalingId: PositiveInteger [0..1]

ObdControlServiceNeeds

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

DiagnosticCapabili tyElement

+ audience: DiagnosticAudienceEnum [0..*]
+ diagRequirement: DiagRequirementIdString [0..1]
+ securityAccessLevel: PositiveInteger [0..1]

ObdRatioDenominatorNeeds

+ denominatorCondition: DiagnosticDenominatorConditionEnum [0..1]

«enumeration»
DiagnosticDenominatorConditionEnum

 coldstart
 evap
 500miles
 individual
 obd

+
u

se
d

F
id 0..1+deferringFid 0..*

+serviceNeeds

0..1

+rateBasedMonitoredEvent 0..1+eventNeeds 0..1

Figure 13.11: ServiceNeeds: Diagnostic-related ServiceNeeds with emphasis on OBD

Class ObdPidServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs of a component or module on the configuration of OBD Services in relation
to a particular PID (parameter identifier) which is supported by this component or module.

In case of using a client/server communicated value, the related value shall be communicated via the
port referenced by asssignedPort. The details of this communication (e.g. appropriate naming
conventions) are specified in the related software specifications (SWS).

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

5

797 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ObdPidServiceNeeds
Attribute Type Mult. Kind Note

– – – – –

Table 13.44: ObdPidServiceNeeds

Class ObdInfoServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs of a component or module on the configuration of OBD Services in relation
to a given InfoType (OBD Service 09) which is supported by this component or module.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

– – – – –

Table 13.45: ObdInfoServiceNeeds

Class ObdMonitorServiceNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs of a component or module on the configuration of OBD Services in relation
to a particular on-board monitoring test supported by this component or module. (OBD Service 06).

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

applicationData
Type

ApplicationDataType 0..1 ref reference to an ApplicationDataType that describes the
scaling of the data reported by the software-component to
the Dem.

eventNeeds DiagnosticEventNeeds 0..1 ref This reference identifies the corresponding diagnostic
event.

unitAndScaling
Id

PositiveInteger 0..1 attr Unit and scaling ID according to ISO 15031-5.

Table 13.46: ObdMonitorServiceNeeds

13.8.5.1 Dem Service Use Case: In-Use-Monitor Performance Ratio calculation

Scenario: an AtomicSwComponentType implements a OBD system monitor with In-
Use-Monitor Performance Ratio (IUMPR) and offers client ports to provide the capabil-
ity to define the number of times a fault could have been found.

[TPS_SWCT_02007] AtomicSwComponentType implements a OBD system mon-
itor with In-Use-Monitor Performance Ratio d

ServiceNeeds kind ObdRatioServiceNeeds

RoleBasedPortAssignment valid roles:

• IUMPRNumerator [0..1]

• IUMPRDenominator [0..1]

798 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00610] and [SWS_Dem_00611].

[constr_2053] Consistency between role IUMPRNumerator and ObdRatioSer-
viceNeeds.connectionType dIf a SwcServiceDependency with a ObdRa-
tioServiceNeeds is defined and the attribute connectionType of the contained
ObdRatioServiceNeeds is set to ObdRatioConnectionKindEnum.apiUse, a
RoleBasedPortAssignment with the role value IUMPRNumerator shall be de-
fined.

If the attribute connectionType of the contained ObdRatioServiceNeeds is set to
ObdRatioConnectionKindEnum.observer, the role value IUMPRNumerator is
not applicable.

This rule shall be imposed at the time when the RTE is generated.c()

13.8.5.2 Dcm Service Use Case: read parameter identifier via diagnostic ser-
vices by Client Server Interface

Scenario: an AtomicSwComponentType offers a server port to read/write current
value via OBD services.

[TPS_SWCT_02008] AtomicSwComponentType offers a server port to read/write
current value via OBD services d

ServiceNeeds kind ObdPidServiceNeeds

RoleBasedPortAssignment
The following roles are applicable:

• DataServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01630] Suffix used for the resulting name of the PortInterface
for the Data Services dThe suffix used for the resulting name of the PortInterface
for the Data Services (DataServices_{Data}) shall be taken from the shortName of
the applicable SwcServiceDependency.c(RS_SWCT_00170, RS_SWCT_03190)

799 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For more information please refer to [SWS_Dcm_00686].

13.8.5.3 Dcm Service Use Case: read parameter identifier via diagnostic ser-
vices by Sender Receiver Interface

Scenario: an AtomicSwComponentType offers sender receiver ports to read/write
current values via OBD services.

[TPS_SWCT_02009] AtomicSwComponentType offers sender receiver ports to
read/write current values via OBD services d

ServiceNeeds kind ObdPidServiceNeeds

RoleBasedPortAssignment
N/A

RoleBasedDataAssignment
The following roles are applicable:

• signalBasedDiagnostics [1..2]

RepresentedPortGroups
N/A

To read the signal the AtomicSwComponentType shall offer an AbstractProvid-
edPortPrototype, to write the signal the AtomicSwComponentType shall offer an
AbstractRequiredPortPrototype.c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dcm_00687].

Please note that [constr_1679] applies for this service use case.

13.8.5.4 Dcm Service Use Case: Request vehicle information

Scenario: an AtomicSwComponentType offers a server port to read vehicle informa-
tion values via OBD services.

[TPS_SWCT_02010] AtomicSwComponentType offers a server port to read vehi-
cle information values via OBD services d

ServiceNeeds kind ObdInfoServiceNeeds

RoleBasedPortAssignment valid roles:

• InfotypeServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

800 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01631] Suffix used for the resulting name of the PortInterface for
the Infotype Services dThe suffix used for the resulting name of the PortInterface
for the Infotype Services (InfotypeServices_{VehInfoData}) shall be taken from the
shortName of the applicable SwcServiceDependency.c(RS_SWCT_00170, RS_-
SWCT_03190)

For more information please refer to [SWS_Dcm_00688].

13.8.5.5 Dem Service Use Case: Read DTR data from SW-C for OBD Service
$06

Scenario: an AtomicSwComponentType exposes a client port to read DTR value.

[TPS_SWCT_02011] AtomicSwComponentType offers a client port to read DTR
value d

ServiceNeeds kind ObdMonitorServiceNeeds

RoleBasedPortAssignment valid roles:

• DTRCentralReport [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

ObdMonitorServiceNeeds

+ unitAndScalingId: PositiveInteger [0..1]

ServiceNeeds

DiagnosticCapabil i tyElement

+ audience: DiagnosticAudienceEnum [0..*]
+ diagRequirement: DiagRequirementIdString [0..1]
+ securityAccessLevel: PositiveInteger [0..1]

DiagnosticEventNeeds

+ prestoredFreezeframeStoredInNvm: Boolean [0..1]
+ usesMonitorData: Boolean [0..1]

AtpBlueprint
AtpBlueprintable
AutosarDataType

ApplicationDataType

+applicationDataType 0..1

+eventNeeds

0..1

Figure 13.12: Modeling of ObdMonitorServiceNeeds

801 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.5.6 Dcm Service Use Case: request control of on-board system, test or
component

Scenario: an AtomicSwComponentType offers a server port for request control of
on-board system, test or component via OBD services.

[TPS_SWCT_02012] AtomicSwComponentType offers a server port for request
control of on-board system, test or component via OBD services d

ServiceNeeds kind ObdControlServiceNeeds

RoleBasedPortAssignment
The following roles are applicable:

• RequestControlServices [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

[TPS_SWCT_01633] Suffix used for the resulting name of the PortInterface
for the Request Control Services dThe suffix used for the resulting name of the
PortInterface for the Request Control Services (RequestControlServices_{Tid})
shall be taken from the shortName of the applicable SwcServiceDependency.c
(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dcm_00691].

13.8.5.7 Dem Service Use Case: In-Use-Monitoring Performance Ratio Denom-
inator interface

Scenario: an AtomicSwComponentType implements a denominator (or accesses a
ratio for transmission to other control units).

[TPS_SWCT_01765] Dem Service Use Case: In-Use-Monitoring Performance Ra-
tio Denominator interface d

ServiceNeeds kind ObdRatioDenominatorNeeds

RoleBasedPortAssignment
The following roles are applicable:

• IUMPRDenominatorCondition [1]

RoleBasedDataAssignment
N/A

802 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RepresentedPortGroups
N/A

c(RS_SWCT_00170, RS_SWCT_03190)

For more information please refer to [SWS_Dem_00742].

Class ObdRatioDenominatorNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class shall be used to indicate that a software-component wants to access the
in-use-monitoring performance ration denominator.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

denominator
Condition

DiagnosticDenominator
ConditionEnum

0..1 attr This attribute indicates the applicable denominator
condition.

Table 13.47: ObdRatioDenominatorNeeds

Enumeration DiagnosticDenominatorConditionEnum

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This enumeration contains valid denominator types.

Literal Description

_500miles Condition based on definition of 500miles conditions as defined for OBD2.

Tags:atp.EnumerationLiteralIndex=2

coldstart Condition based on definition of "cold start" as defined for EU5+

Tags:atp.EnumerationLiteralIndex=0

evap Condition based on definition of "EVAP" conditions as defined for OBD2.

Tags:atp.EnumerationLiteralIndex=1

individual condition based on definition of individual requirements.

Tags:atp.EnumerationLiteralIndex=3

obd Condition based on definition of OBD requirements.

Tags:atp.EnumerationLiteralIndex=4

Table 13.48: DiagnosticDenominatorConditionEnum

13.8.6 Diagnostics over IP

This chapter describes the usage of specific meta-classes to support the specification
of diagnostics over IP. For more details, please refer to ISO 13400 [43].

803 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Identifiable

ServiceNeeds

DoIpPowerModeStatusNeeds DoIpGidSynchronizationNeeds DoIpGidNeeds

DoIpRoutingActivationAuthenticationNeeds

+ dataLengthRequest: PositiveInteger [0..1]
+ dataLengthResponse: PositiveInteger [0..1]
+ routingActivationType: NameToken [0..1]

DoIpRoutingActivationConfirmationNeeds

+ dataLengthRequest: PositiveInteger [0..1]
+ dataLengthResponse: PositiveInteger [0..1]
+ routingActivationType: NameToken [0..1]

DoIpServiceNeeds

DoIpActivationLineNeeds

FurtherActionByteNeeds

Figure 13.13: Subclasses of ServiceNeeds for implementing diagnostics over IP

Class DoIpServiceNeeds (abstract)

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This represents an abstract base class for ServiceNeeds related to DoIP.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Subclasses DoIpActivationLineNeeds, DoIpGidNeeds, DoIpGidSynchronizationNeeds, DoIpPowerModeStatus
Needs, DoIpRoutingActivationAuthenticationNeeds, DoIpRoutingActivationConfirmationNeeds, Further
ActionByteNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.49: DoIpServiceNeeds

Class DoIpGidNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note The DoIpGidNeeds indicates that the software-component owning this ServiceNeeds is providing the
GID number either after a GID Synchronisation or by other means like e.g. flashed EEPROM parameter.
This need can be used independent from DoIpGidSynchronizationNeeds and is necessary if the GID can
not be provided out of the DoIP configuration options.

Base ARObject , DoIpServiceNeeds, Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.50: DoIpGidNeeds

Class DoIpGidSynchronizationNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note The DoIpGidSynchronizationNeeds indicates that the software-component owning this ServiceNeeds is
triggered by the DoIP entity to start a synchronization of the GID (Group Identification) on the DoIP
service 0x0001, 0x0002, 0x0003 or before announcement via service 0x0004 according to ISO
13400-2:2012 if necessary. Note that this need is only relevant for DoIP synchronization masters.

Base ARObject , DoIpServiceNeeds, Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

5

804 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class DoIpGidSynchronizationNeeds

– – – – –

Table 13.51: DoIpGidSynchronizationNeeds

Class DoIpPowerModeStatusNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note The DoIpPowerModeStatusNeeds indicates that the software-component owning this ServiceNeeds is
providing the PowerModeStatus for the DoIP service 0x4003 according to ISO 13400-2:2012.

Base ARObject , DoIpServiceNeeds, Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.52: DoIpPowerModeStatusNeeds

Class DoIpRoutingActivationAuthenticationNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note DoIPRoutingActivationAuthenticationNeeds indicates that the software-component owning this Service
Needs will have an authentication required for a DoIP routing activation service (0x0005) according to
ISO 13400-2:2012.

Base ARObject , DoIpServiceNeeds, Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

dataLength
Request

PositiveInteger 0..1 attr Describes the length in byte of the additional information
for RA authentication that is needed by the software
entity. If the software entity is a software-component the
attribute does not need to exist as the information is
available via the length of the uint8 Array type. Otherwise
(i.e the software entity is a Complex Driver) this attribute
needs to be filled out if additional information is needed.

dataLength
Response

PositiveInteger 0..1 attr Describes the length in byte of the additional information
for RA authentication that is provided by the software
entity. If the software entity is a software-component the
attribute does not need to exist as the information is
available via the length of the uint8 Array type. Otherwise
(i.e the software entity is a Complex Driver) this attribute
needs to be filled in if additional information is provided.

routing
ActivationType

NameToken 0..1 attr Describes the ISO 13400-2:2012 "routing activation
request activation type" which is received via DoIP
service 0x0005. 0x00 is DEFAULT, 0x01 is WWH-OBD. If
neither of the specified values (0x00 or 0x01) is needed
the token shall contain RA_ + hex value representation of
the integer value shall be used (i.e: RA_0xE1).

Table 13.53: DoIpRoutingActivationAuthenticationNeeds

Class DoIpRoutingActivationConfirmationNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note DoIpRoutingActivationConfirmationNeeds indicates that the software-component that owns this Service
Needs will have a confirmation required for a DoIP routing activation service (0x0005) according to ISO
13400-2:2012.

Base ARObject , DoIpServiceNeeds, Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

5

805 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class DoIpRoutingActivationConfirmationNeeds

dataLength
Request

PositiveInteger 0..1 attr Describes the length in byte of the additional information
for RA confirmation that is needed by the software entity.
If the software entity is a software-component the
attribute does not need to exist as the information is
available via the length of the uint8 Array type. Otherwise
(i.e the software entity is a Complex Driver) this attribute
needs to be filled out if additional information is needed.

dataLength
Response

PositiveInteger 0..1 attr Describes the length in byte of the additional information
for RA confirmation that is provided by the software entity.
If the software entity is a software-component the
attribute does not need to exist as the information is
available via the length of the uint8 Array type. Otherwise
(i.e the software entity is a Complex Driver) this attribute
needs to be filled out if additional information is provided.

routing
ActivationType

NameToken 0..1 attr Describes the ISO 13400-2:2012 "routing activation
request activation type" which is received via DoIP
service 0x0005. 0x00 is DEFAULT, 0x01 is WWH-OBD. If
neither of the specified values (0x00 or 0x01) is needed
the token shall contain RA_ + hex value representation of
the integer value shall be used (i.e: RA_0xE1).

Table 13.54: DoIpRoutingActivationConfirmationNeeds

Class DoIpActivationLineNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note A DoIP entity needs to be informed when an external tester is attached or activated. The DoIpActivation
ServiceNeeds specifies the trigger for such an event. Examples would be a Pdu via a regular
communication bus, a PWM signal, or an I/O. For details please refer to the ISO 13400.

Base ARObject , DoIpServiceNeeds, Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.55: DoIpActivationLineNeeds

13.8.6.1 DoIP Service Use Case: GID synchronization can be necessary if the
ECU is DoIP Gid synchronization master

Scenario: on the event of connecting a tester to an ECU a GID synchronization can be
necessary if the ECU is DoIP Gid synchronization master. In this case, it is necessary
to define a DoIpGidSynchronizationNeeds.

[TPS_SWCT_01537] GID synchronization can be necessary if the ECU is DoIP
Gid synchronization master d

ServiceNeeds kind DoIpGidSynchronizationNeeds

RoleBasedPortAssignment valid roles:

• CallbackTriggerGIDSynchronization [1]

RoleBasedDataAssignment
N/A

806 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RepresentedPortGroups
N/A

c(RS_SWCT_03310, RS_SWCT_03190)

13.8.6.2 DoIP Service Use Case: Vehicle information is broadcast or can be
requested by the tester

Scenario: vehicle information is broadcast or can be requested by the tester. In this
case, it is necessary to define a DoIpGidNeeds.

[TPS_SWCT_01538] Vehicle information is broadcast or can be requested by the
tester d

ServiceNeeds kind DoIpGidNeeds

RoleBasedPortAssignment valid roles:

• CallbackGetGID [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_03310, RS_SWCT_03190)

13.8.6.3 DoIP Service Use Case: Tester could also request the power status
with respect to diagnostics

Scenario: before starting the diagnostics processing for the DoIP entity or sub-
networks connected via DoIP, the tester could also request the power status with re-
spect to diagnostics. To support this option it will be necessary to define a DoIpPow-
erModeStatusNeeds.

[TPS_SWCT_01539] Tester can also request before starting diagnostic process-
ing for the DoIP entity or sub-networks connected via DoIP the power status with
respect to diagnostics d

ServiceNeeds kind DoIpPowerModeStatusNeeds

RoleBasedPortAssignment valid roles:

• CallbackGetPowerMode [1]

RoleBasedDataAssignment
N/A

807 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RepresentedPortGroups
N/A

c(RS_SWCT_03310, RS_SWCT_03190)

13.8.6.4 DoIP Service Use Case: Routing activation mechanism is used which
can lead to additional impact regarding authentication or confirmation

Scenario: to enable diagnostics of the tester to a different target address, the routing
activation mechanism is used which can lead to additional impact regarding authentica-
tion or confirmation. Here, the definition of DoIpRoutingActivationAuthentica-
tionNeeds and/or DoIpRoutingActivationConfirmationNeeds would be ap-
plicable.

[TPS_SWCT_01544] prefix used for the actual name of the used PortInterface
for the routing activation dThe prefix used for the actual name of the used PortIn-
terface for the routing activation shall be taken from the shortName of the enclosing
SwcServiceDependency.c(RS_SWCT_03310, RS_SWCT_03190)

[TPS_SWCT_01540] Routing activation mechanism is used which can lead to
additional impact regarding authentication or confirmation d

ServiceNeeds kind

• DoIpRoutingActivationAuthenticationNeeds [0..1]

• DoIpRoutingActivationConfirmationNeeds [0..1]

RoleBasedPortAssignment valid roles:

• RoutingActivation [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_03190)

13.8.6.5 DoIP Service Use Case: a DoIP entity needs to be informed when an
external tester is attached or activated.

Scenario: to enable diagnostics by connecting a tester to an ECU it is necessary that
the application software becomes aware of the tester’s presence.

808 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

For this purpose, the applicable ServiceSwComponentType is supposed to provide
a PPortPrototype typed by the ModeSwitchInterface named DoIPActiva-
tionLineStatus towards the application.

To trigger the existence of the PPortPrototype, DoIpActivationLineNeeds
shall be defined.

[TPS_SWCT_01546] Notification when an external tester is attached or activated
d

ServiceNeeds kind DoIpActivationLineNeeds

RoleBasedPortAssignment valid roles:

• DoIPActivationLineStatus [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_03310, RS_SWCT_03190)

13.8.6.6 Service Use Case: Set and reset Warning Indicator Request bit

Scenario: In some cases (e.g. controlling a failsafe reaction in application) the “Warning
Indicator Request”-bit of a corresponding event in Dem shall be set/reset by a special
“failsafe software-component”.

The failsafe software-component has to ensure a proper status of the “Warning Indica-
tor Request”-bit (e.g. regarding ISO14229-1 or manufacture specific requirements).

Therefore, the failsafe SW-C can use existing Dem mechanism to get the information
about status changes of events in Dem (e.g. Callback EventStatusChanged).

For this purpose, the applicable ServiceSwComponentType is supposed to provide
a PPortPrototype typed by the ClientServerInterface named EventStatus
towards the application.

To trigger the existence of the PPortPrototype, WarningIndicatorRequested-
BitNeeds shall be defined.

[TPS_SWCT_01547] Ability to set and reset the Warning Indicator Request bit d

ServiceNeeds kind WarningIndicatorRequestedBitNeeds

RoleBasedPortAssignment valid roles:

• EventStatus [1]

RoleBasedDataAssignment
N/A

809 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RepresentedPortGroups
N/A

c(RS_SWCT_03310, RS_SWCT_03190)

Class WarningIndicatorRequestedBitNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the ability to explicitly request the existence of the WarningIndicator
RequestedBit.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

– – – – –

Table 13.56: WarningIndicatorRequestedBitNeeds

13.8.6.7 DoIP Service Use Case: Atomic Software-Component provides the fur-
ther action byte to the DoIP Service Component

Scenario: An AtomicSwComponentType provides the "further action byte" used in
vehicle identification/announcement message.

[TPS_SWCT_01746] Atomic Software-Component provides the further action
byte to the DoIP Service Component d

ServiceNeeds kind FurtherActionByteNeeds

RoleBasedPortAssignment valid roles:

• CallbackGetFurtherActionByte [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_03310, RS_SWCT_03190)

Class FurtherActionByteNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note The FurtherActionByteNeeds indicates that the software-component is able to provide the "further action
byte" to the DoIp Service Component.

Base ARObject , DoIpServiceNeeds, Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.57: FurtherActionByteNeeds

810 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.7 Miscellaneous Diagnostic Service Use-Cases

13.8.7.1 Dcm Service Use Case: DiagnosticSessionControl

Scenario: an AtomicSwComponentType offers an RPortPrototype typed by a
ModeSwitchInterface to get informed about the diagnostic session.

[TPS_SWCT_01706] AtomicSwComponentType supports DiagnosticSession-
Control to get informed about the diagnostic session d

ServiceNeeds kind DiagnosticControlNeeds

RoleBasedPortAssignment valid roles:

• Dcm_DiagnosticSessionControlModeSwitchInterface [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

The role Dcm_DiagnosticSessionControlModeSwitchInterface is applicable
for an RPortPrototype typed by a ModeSwitchInterface.c(RS_SWCT_00170,
RS_SWCT_03190)

Class DiagnosticControlNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class indicates a service use-case for reporting the controlled status by diagnostic services.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

– – – – –

Table 13.58: DiagnosticControlNeeds

13.8.7.2 Dcm Service Use Case: EcuReset

Scenario: an AtomicSwComponentType offers an RPortPrototype typed by a
ModeSwitchInterface to get informed about the current status of EcuReset ser-
vice.

[TPS_SWCT_01707] AtomicSwComponentType supports EcuReset service via
diagnostic services d

ServiceNeeds kind DiagnosticControlNeeds

RoleBasedPortAssignment valid roles:

• Dcm_EcuResetModeSwitchInterface [1]

811 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

The role Dcm_EcuResetModeSwitchInterface is applicable for an RPortProto-
type typed by a ModeSwitchInterface.c(RS_SWCT_00170, RS_SWCT_03190)

13.8.7.3 Dcm Service Use Case: EcuReset ModeRapidPowerShutDown

Scenario: an AtomicSwComponentType offers an RPortPrototype typed by a
ModeSwitchInterface to get informed about the current status of the EcuReset
ModeRapidPowerShutDown service.

[TPS_SWCT_01708] AtomicSwComponentType supports EcuReset ModeRapid-
PowerShutDown service via diagnostic services d

ServiceNeeds kind DiagnosticControlNeeds

RoleBasedPortAssignment valid roles:

• Dcm_ModeRapidPowerShutDownModeSwitchInterface [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

The role Dcm_ModeRapidPowerShutDownModeSwitchInterface is applicable for
an RPortPrototype typed by a ModeSwitchInterface.c(RS_SWCT_00170,
RS_SWCT_03190)

13.8.7.4 Dcm Service Use Case: CommunicationControl

Scenario: an AtomicSwComponentType offers an RPortPrototype typed by a
ModeSwitchInterface to get informed about the current status of the Communica-
tionControl service per ComM Channel.

[TPS_SWCT_01709] AtomicSwComponentType supports CommunicationCon-
trol service via diagnostic services d

ServiceNeeds kind DiagnosticControlNeeds

RoleBasedPortAssignment valid roles:

• Dcm_CommunicationControlModeSwitchInterface [1]

812 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

The role Dcm_CommunicationControl is applicable for an RPortPrototype typed
by a ModeSwitchInterface.c(RS_SWCT_00170, RS_SWCT_03190)

13.8.7.5 Dcm Service Use Case: ControlDTCSetting

Scenario: an AtomicSwComponentType offers an RPortPrototype typed by a
ModeSwitchInterface to get informed about the current status of the ControlDTC-
Setting service.

[TPS_SWCT_01711] AtomicSwComponentType supports ControlDTCSetting
service via diagnostic services d

ServiceNeeds kind DiagnosticControlNeeds

RoleBasedPortAssignment valid roles:

• Dcm_ControlDTCSettingModeSwitchInterface [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

The role Dcm_ControlDTCSettingModeSwitchInterface is applicable for an
RPortPrototype typed by a ModeSwitchInterface.c(RS_SWCT_00170, RS_-
SWCT_03190)

13.8.7.6 Dcm Service Use Case: Response On Event via diagnostic services

Scenario: an AtomicSwComponentType offers a PPortPrototype typed by a
ClientServerInterface as well as an RPortPrototype typed by a Mod-
eSwitchInterface to support onChangeOfDataIdentifier Response On Event
(ROE) via diagnostic services.

[TPS_SWCT_02014] AtomicSwComponentType supports Response On Event
(ROE) via diagnostic services d

ServiceNeeds kind DiagnosticResponseOnEventNeeds

RoleBasedPortAssignment valid roles:

• Dcm_Roe [1]

813 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• Dcm_ResponseOnEventModeSwitchInterface [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

The role Dcm_ResponseOnEventModeSwitchInterface is applicable for an
RPortPrototype typed by a ModeSwitchInterface and the role Dcm_Roe is
applicable for an PPortPrototype typed by a ClientServerInterface.c(RS_-
SWCT_00170, RS_SWCT_03190)

Class DiagnosticResponseOnEventNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class indicates a service use-case for the diagnostic service ResponseOnEvent.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

– – – – –

Table 13.59: DiagnosticResponseOnEventNeeds

13.8.7.7 Dcm Service Use Case: SecurityAccess

Scenario: an AtomicSwComponentType offers an RPortPrototype typed by a
ModeSwitchInterface to get informed about the current diagnostic security level.

[TPS_SWCT_01712] AtomicSwComponentType supports SecurityAccess to get
informed about the security level d

ServiceNeeds kind DiagnosticControlNeeds

RoleBasedPortAssignment valid roles:

• Dcm_SecurityAccessModeSwitchInterface [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

The role Dcm_SecurityAccessModeSwitchInterface is applicable for an
RPortPrototype typed by a ModeSwitchInterface.c(RS_SWCT_00170, RS_-
SWCT_03190)

814 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.8.7.8 Service Use Case: Atomic Software-Component implements a Hard-
ware Shutdown

Scenario: if a hardware component is detected as being defective, the Dem shall in-
form the SwComponentPrototype typed by an AtomicSwComponentType which is
responsible for executing a hardware-shutdown.

[TPS_SWCT_01680] Dem Use Case: Atomic Software-Component implements a
Hardware Shutdown d

ServiceNeeds kind DiagnosticComponentNeeds

RoleBasedPortAssignment valid roles:

• CallbackComponentStatusChanged [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_03190)

Class DiagnosticComponentNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the ability to specify the service needs for the configuration of component
events.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

– – – – –

Table 13.60: DiagnosticComponentNeeds

13.8.7.9 Service Use Case: Upload and download of data

Scenario: a software-component implements the ability to accept data for upload
and/or provide data for download. For this purpose the software-component provides
a PPortPrototype that is supposed to be connected to the Dcm service component.

[TPS_SWCT_01769] Dcm Use Case: Upload and download of data d

ServiceNeeds kind DiagnosticUploadDownloadNeeds

RoleBasedPortAssignment valid roles:

• UploadDownloadServices [1]

RoleBasedDataAssignment
N/A

815 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RepresentedPortGroups
N/A

c(RS_SWCT_03190)

Class DiagnosticUploadDownloadNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the ability to specify needs regarding upload and download by means of
diagnostic services.

Base ARObject , DiagnosticCapabilityElement , Identifiable, MultilanguageReferrable, Referrable, Service
Needs

Attribute Type Mult. Kind Note

– – – – –

Table 13.61: DiagnosticUploadDownloadNeeds

13.9 Diagnostic Log and Trace Dependency

The meta-class DltUserNeeds is used together with the SwcServiceDependency
to define requirements in order to configure the Diagnostic Log and Trace module (for
the terms related to the AUTOSAR Specification of Module DLT see [44]).

Class DltUserNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class specifies the needs on the configuration of the Diagnostic Log and Trace module for one
SessionId.

This class currently contains no attributes.

An instance of this class is used to find out which PortPrototypes of an AtomicSwComponentType belong
to this SessionId in order to group the request and response PortPrototypes of the same SessionId.

The actual SessionId value is stored in the PortDefinedArgumentValue of the respective PortPrototype
specification.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.62: DltUserNeeds

Please note that for the described use case of the Dlt Service the following rule applies:
For every used ClientServerInterface it is necessary to create a RoleBased-
PortAssignment.

Thereby the value of the attribute role of the RoleBasedPortAssignment has to
be set to the name of the used standardized ClientServerInterface.

The possible role attribute values and the multiplicity of the related PortPrototypes
are listed at the use case descriptions in the paragraph RoleBasedPortAssignment.

816 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.9.1 Dlt use Case:Application software component transmits debug informa-
tion

Scenario: AtomicSwComponentType sends log messages. In this case the following
setup applies:

[TPS_SWCT_02506] Setup for Dlt use Case: Application software component
accesses the Dlt module d

ServiceNeeds kind : DltUserNeeds

RoleBasedPortAssignment valid roles:

• DltControlService [1]

• LogTraceSessionControl [1]

• InjectionCallback [0..1]

• DltSwcMessageService [0..1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

For more information please refer to [SWS_Dlt_00495], [SWS_Dlt_00496], and
[SWS_Dlt_00498].

In this case the software-component has to provide one Client Port (DLTService) in
order to register and de-register the context and to send log or trace messages.

13.10 Synchronized Time-Base Manager Dependency

The meta-class SyncTimeBaseMgrUserNeeds is used together with the SwcSer-
viceDependency to define requirements in order to configure the Synchronized
Time-Base Manager module (for the terms related to the AUTOSAR Specification of
Module StbM see [45]).

Class SyncTimeBaseMgrUserNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the needs on the configuration of the Synchronized Time-base Manager for one time-base.
This class currently contains no attributes. An instance of this class is used to find out which ports of a
software-component belong to this time-base in order to group the request and response ports of the
same time-base. The actual time-base value is stored in the PortDefinedArgumentValue of the respective
port specification.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

5

817 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class SyncTimeBaseMgrUserNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.63: SyncTimeBaseMgrUserNeeds

Please note that for the described use cases of the StbM Service following rule ap-
plies:
For every used ClientServerInterface it is necessary to create a RoleBased-
PortAssignment.

Thereby the value of the attribute role of the RoleBasedPortAssignment has to
be set to the name of the used standardized ClientServerInterface.

The possible role attribute values and the multiplicity of the related PortPrototypes
are listed at the use case descriptions in the paragraph RoleBasedPortAssignment.

The general idea behind the time synchronization concept is that the role of global time
master and global time slave are partly implemented in the application software.

For this purpose, the application software provides PortPrototypes typed by the
standardized PortInterfaces GlobalTime_Master and GlobalTime_Slave.

In many cases both PortInterfaces GlobalTime_Master and Global-
Time_Slave will be used by the application software of one ECU. This means that
the ECU is a global time slave on one domain and a global time master on another
domain.

In terms of modeling, a given global time domain is represented by a SwcServiceDe-
pendency.

If one software-component has to deal with different global time domains (e.g. because
it represents a slave in one domain and a master in another) then the corresponding
SwcInternalBehavior needs to define one SwcServiceDependency per global
time domain.

13.10.1 StbM Use Case: start timer and potentially get notified about its expira-
tion

Scenario: a software-component wants to wind up a timer in the StbM with a given
expiration time. The software-component may want to receive a notification when the
timer expires. In this case the following setup applies:

[TPS_SWCT_01678] StbM use Case: start timer and potentially get notified about
its expiration d

ServiceNeeds Kind : SyncTimeBaseMgrUserNeeds

RoleBasedPortAssignment valid roles:

818 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• StartTimer [1]

• TimeNotification [0..1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

In this case the software-component needs to have an RPortPrototype typed by
the ClientServerInterface StartTimer and (if applicable) a PPortPrototype
typed by the ClientServerInterface TimeNotification.

13.10.2 StbM Use Case: Software-Components wants to get notifications of
status changes

Scenario: a software-component wants to receive events whenever the status of the
StbM changes. For this purpose, the software-component sports a sender/receiver
RPortPrototype. In this case the following setup applies:

[TPS_SWCT_01679] StbM use Case: Software-Components wants to get notifi-
cations of status changes d

ServiceNeeds Kind : SyncTimeBaseMgrUserNeeds

RoleBasedPortAssignment valid roles:

• StatusNotification [1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

The events received from the StbM have a fixed structure. For more details, please
refer to [SWS_StbM_00284].

819 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.10.3 StbM Use Case: Process time snapshot obtained from global time slave
for diagnostics purposes

Scenario: a software-component provides a PPortPrototype onto which the global
time slave pushes snapshots of time synchronization records. This data is typically
used for diagnostic purposes.

[TPS_SWCT_01740] StbM use Case: Process time snapshot obtained from
global time slave for diagnostics purposes d

ServiceNeeds Kind : SyncTimeBaseMgrUserNeeds

RoleBasedPortAssignment valid roles:

• MeasurementNotification [1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

Note that in this case the software-components acts as a server, the StbM implements
a client role!

[TPS_SWCT_01741] Suffix used for the resulting name of the PortInter-
face for measurement notification dThe suffix used for the resulting name of
the PortInterface for the measurement notification MeasurementNotifica-
tion_{TB_Name} shall be taken from the shortName of the applicable SwcSer-
viceDependency.c(RS_SWCT_00030)

13.10.4 StbM Use Case: Software-component represents a global time master

Scenario: a software-component implements the application-software part of the global
time master role. For this purpose the software-component exposes an RPortPro-
totype that is supposed to be connected to the StbM service component.

[TPS_SWCT_01742] StbM use Case: Software-component represents a global
time master d

ServiceNeeds Kind : SyncTimeBaseMgrUserNeeds

RoleBasedPortAssignment valid roles:

• GlobalTime_Master [1]

• StatusNotification [0..1]

820 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• MeasurementNotification [0..1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

[TPS_SWCT_01743] Suffix used for the resulting name of the PortInterface
for the global time master role dThe suffix used for the resulting name of the
PortInterface for the global time master role GlobalTime_Master_{Name} shall
be taken from the shortName of the applicable SwcServiceDependency.c(RS_-
SWCT_00030)

13.10.5 StbM Use Case: Software-component represents a global time slave

Scenario: a software-component implements the application-software part of the global
time slave role. For this purpose the software-component exposes an RPortProto-
type that is supposed to be connected to the StbM service component.

[TPS_SWCT_01744] StbM use Case: Software-component represents a global
time slave d

ServiceNeeds Kind : SyncTimeBaseMgrUserNeeds

RoleBasedPortAssignment valid roles:

• GlobalTime_Slave [1]

• StatusNotification [0..1]

• MeasurementNotification [0..1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c()

821 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01745] Suffix used for the resulting name of the PortInterface for
the global time slave role dThe suffix used for the resulting name of the PortInter-
face for the global time slave role GlobalTime_Slave_{Name} shall be taken from
the shortName of the applicable SwcServiceDependency.c(RS_SWCT_00030)

13.10.6 StbM Use Case: Software-component analyzes predictions about the
time synchronization process

Scenario: A Time Slave collects information on the time synchronization process, to
predict e.g. the sync ingress based on its local instance of the global time and check
whether master and slave agree upon the current time. The software-component ana-
lyzes the predictions to detect any impairments.

[TPS_SWCT_01810] Software-component analyzes predictions about the time
synchronization process d

ServiceNeeds Kind : SyncTimeBaseMgrUserNeeds

RoleBasedPortAssignment valid roles:

• TimeBaseProviderNotification [1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

For this purpose, the analyzer software-component exposes a PPortProto-
type typed by the ClientServerInterface TimeBaseProviderNotifica-
tion_{bus}_{TimeBase} to the StbM service component.

13.11 Secure On-Board Communication

The meta-class SecureOnBoardCommunicationNeeds is used together with the
SwcServiceDependency to define requirements in order to configure the Secure On-
Board Communication module (for the terms related to the AUTOSAR Specification of
Module SecOc, see [46]).

822 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SecureOnBoardCommunicationNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the need for the existence of the SecOc module on the respective ECU. This class currently
contains no attributes. An instance of this class is used to find out which ports of a software-component
deal with the administration of secure communication in order to group the request and response ports.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

verification
StatusIndication
Mode

VerificationStatus
IndicationModeEnum

0..1 attr This attribute provides the ability to control the mode in
which the application software is notified about the result
of authentication attempts.

Table 13.64: SecureOnBoardCommunicationNeeds

Enumeration VerificationStatusIndicationModeEnum
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This enumeration provides options for setting the mode of a verification status indication.

Literal Description

failureAndSuccess Verification attempts that came out "false" or "true" shall be forwarded to the application software.

Tags:atp.EnumerationLiteralIndex=1

failureOnly Only verification attempts that came out "false" shall be forwarded to the application software.

Tags:atp.EnumerationLiteralIndex=0

Table 13.65: VerificationStatusIndicationModeEnum

13.11.1 SecOc Use Case: obtain the verification status of secure communica-
tion

In this scenario, the ApplicationSwComponentType wants to obtain the status of
secure communication.

It is not interested in the details (and would not be able to help anyway even if the
details were available).

The SwcServiceDependency shall aggregate a SecureOnBoardCommunica-
tionNeeds.

[TPS_SWCT_01668] SecOc Use Case: obtain the verification status of secure
communication d

RoleBasedPortAssignment valid roles:
n/a

RoleBasedDataAssignment valid roles:

• VerificationStatus [1]

RepresentedPortGroups
n/a

c(RS_SWCT_00030)

823 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1681] Existence of attribute RoleBasedDataAssignment.used-
DataElement.localVariable for RoleBasedDataAssignment.role = Veri-
ficationStatus dIf the attribute RoleBasedDataAssignment.role is set to
the value VerificationStatus then the reference RoleBasedDataAssignment.
usedDataElement.localVariable shall not exist at the time when the RTE
is generated.c()

For explanation of the existence of [constr_1681], it is not intended to provide access
to local variables inside the SwcInternalBehavior.

13.11.2 SecOc Use Case: software component retires from secure communica-
tion for a given period

In this scenario, the ApplicationSwComponentType undergoes a reconfiguration
period in which it is not able to process any security-related data. During this period,
the verification status shall always be set to “failed”.

The SwcServiceDependency shall aggregate a SecureOnBoardCommunica-
tionNeeds.

[TPS_SWCT_01672] SecOc Use Case: software component retires from secure
communication for a given period d

RoleBasedPortAssignment valid roles:

• VerifyStatusConfiguration [1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_00030)

13.11.3 SecOc Use Case: deliver freshness to SecOC I

Scenario: a dedicated software-component computes and delivers the freshness to
SecOc. The freshness can optionally be truncated by the software-component.

For this purpose, the software-component exposes a PPortPrototype to SecOc.
This is used for sending a secured message by using the ClientServerOperation
GetTxFreshness or GetTxFreshnessTruncData.

[TPS_SWCT_01716] SecOc Use Case: deliver freshness to SecOC I d

ServiceNeeds kind SecureOnBoardCommunicationNeeds

RoleBasedPortAssignment valid roles:

824 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• FreshnessManagement [1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_00030)

13.11.4 SecOc Use Case: deliver freshness to SecOC II

Scenario: SecOc invokes transmit notification (SPduTxConfirmation) at freshness
manager. This information can be vital for the computation of the freshness.

[TPS_SWCT_01717] SecOc Use Case: deliver freshness to SecOC II d

ServiceNeeds kind SecureOnBoardCommunicationNeeds

RoleBasedPortAssignment valid roles:

• FreshnessManagement [1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_00030)

13.11.5 SecOc Use Case: deliver freshness to SecOC III

Scenario: caused by out-of-sync freshness, SecOC cannot verify a MAC, and contacts
the freshness manager (software-component) again to obtain a recalculated freshness
value.

Each recalculation of the freshness inside the freshness manager is counted. After a
given threshold of retries, SecOC has to drop the received message. For this purpose,
the ClientServerOperation GetRxFreshness or GetRxFreshnessAuthData
is used.

[TPS_SWCT_01718] SecOc Use Case: deliver freshness to SecOC III d

ServiceNeeds kind SecureOnBoardCommunicationNeeds

RoleBasedPortAssignment valid roles:

• FreshnessManagement [1]

825 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_00030)

13.11.6 SecOc Use Case: enable the sending of Pdus even if computation of
the MAC is not possible

Scenario: there are cases where the ability to send authenticated messages associ-
ated with a given freshness id using a default-MAC is required, e.g. if an ECU has been
replaced but was not yet provided with cryptographic keys.

Receivers can distinguish this case from the regular authenticated data exchange by
looking at the MAC, i.e. a (configurable) default MAC is used in the described case.

[TPS_SWCT_01784] SecOc Use Case: enable the sending of Pdus even if com-
putation of the MAC is not possible d

ServiceNeeds kind SecureOnBoardCommunicationNeeds

RoleBasedPortAssignment valid roles:

• SendDefaultAuthenticationInformation [1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_00030)

13.11.7 SecOc Use Case: Receive notification about an authentication attempt

Scenario: a software-component wants to receive a notification about the status of an
authentication attempt.

Such a notification can be used to continuously monitor the number of failed verification
attempts with the goal to set up a security management system/intrusion detection
system that is able to detect an attack that consists of a flood of authentication requests
and react with adequate dynamic counter-measures.

For this purpose, the software-component exposes a PPortPrototype that imple-
ments the notification handler. The handler may be interested in only failed attempts
or failed and passed attempts.

826 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This aspect can be configured by means of attribute SecureOnBoardCommunica-
tionNeeds.verificationStatusIndicationMode.

[TPS_SWCT_01832] SecOc Use Case: Receive notification about an authentica-
tion attempt d

ServiceNeeds kind SecureOnBoardCommunicationNeeds

RoleBasedPortAssignment valid roles:

• VerificationStatusIndication [1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_00030)

13.12 J1939 Communication

The J1939-specific meta-classes J1939RmOutgoingRequestServiceNeeds and
J1939RmIncomingRequestServiceNeeds are used together with the SwcSer-
viceDependency to define requirements in order to configure the J1939 request
manager (for the terms related to the AUTOSAR Specification of Module J1939RM,
see [47]).

Identifiable

ServiceNeeds

J1939RmOutgoingRequestServiceNeeds J1939RmIncomingRequestServiceNeedsJ1939DcmDm19Support

Figure 13.14: ServiceNeeds: J1939-related ServiceNeeds

Class J1939RmOutgoingRequestServiceNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class shall be used to specify needs with respect to the configuration of the J1939Rm, in
particular for the case where an ApplicationSwComponentType needs to send a request to another
J1939 node.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.66: J1939RmOutgoingRequestServiceNeeds

827 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class J1939RmIncomingRequestServiceNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note "This meta-class shall be used to specify needs with respect to the configuration of the J1939Rm, in
particular for the case where an ApplicationSwComponentType needs to accept a request from another
J1939 node.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.67: J1939RmIncomingRequestServiceNeeds

13.12.1 J1939RM Use Case: AtomicSwComponentType sends requests to the
bus

Scenario: An AtomicSwComponentType sends requests to the bus. In this case the
following setup applies:

To indicate the scenario described in this use case the SwcServiceDependency shall
aggregate a J1939RmOutgoingRequestServiceNeeds.

[TPS_SWCT_01673] Application Software Component sends requests using the
J1939Rm d

ServiceNeeds kind J1939RmOutgoingRequestServiceNeeds

RoleBasedPortAssignment valid roles:

• AppSendRequest [1]

• AppAckIndication [1]

• AppRequestTimeoutIndication [0..1]

• AppCancelRequestTimeout [0..1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_03180)

For more information please refer to the following specification items: [SWS_-
J1939Rm_00104], [SWS_J1939Rm_00106], [SWS_J1939Rm_00108], and [SWS_-
J1939Rm_00105].

828 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.12.2 J1939RM Use Case: AtomicSwComponentType accepts requests from
the bus

Scenario: An AtomicSwComponentType accepts requests from the bus. In this case
the following setup applies:

To indicate the scenario described in this use case the SwcServiceDependency shall
aggregate a J1939RmIncomingRequestServiceNeeds.

[TPS_SWCT_01674] Application Software Component accepts requests using
the J1939Rm d

ServiceNeeds kind J1939RmIncomingRequestServiceNeeds

RoleBasedPortAssignment valid roles:

• AppRequestIndication [1]

• AppSendAck [1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_03180)

For more information please refer to the following specification items: [SWS_-
J1939Rm_00103] and [SWS_J1939Rm_00107].

13.12.3 J1939Dcm wants to retrieve calibration verification numbers from an
application software-component

Scenario: J1939Dcm wants to retrieve calibration verification numbers from an ap-
plication software-component. For this purpose, the software-component exposes a
PPortPrototype to the J1939Dcm

[TPS_SWCT_01809] J1939Dcm wants to retrieve calibration verification numbers
from an application software-component d

ServiceNeeds kind J1939DcmDm19Support

RoleBasedPortAssignment valid roles:

• J1939Dcm_CalibrationInformation [1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

829 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_03180)

Class J1939DcmDm19Support

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note The software-component provides information about calibration verification numbers for inclusion in
DM19

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.68: J1939DcmDm19Support

13.13 Error Tracer

The meta-class ErrorTracerNeeds is used to define requirements in order to con-
figure the Default Error Tracer.

Identifiable

TracedFailure

+ id: PositiveInteger [0..1]

DevelopmentError RuntimeError

ServiceNeeds

ErrorTracerNeeds

������������	
 ����

�����������	��	���� � ��������������

«atpVariation»

+tracedFailure

0..*

Figure 13.15: Modeling of ErrorTracerNeeds

In particular, ErrorTracerNeeds provides the exhaustive list of all tracedFailure
implemented in the enclosing software-component and reported via the PortProto-
type referenced via RoleBasedPortAssignment.

Each tracedFailure relates to one ID, represented by attribute TracedFailure.
id.

For more explanation, please consult with the specification of Default Error Tracer [48].

Class ErrorTracerNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the need to report failures to the error tracer.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

tracedFailure TracedFailure * aggr list of traced failures

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table 13.69: ErrorTracerNeeds

830 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class TracedFailure (abstract)

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the ability to report a specific failure to the error tracer. The short name specifies the literal
applicable for the Default Error Tracer.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses DevelopmentError, RuntimeError, TransientFault

Attribute Type Mult. Kind Note

id PositiveInteger 0..1 attr ID of detected failure used in reporting API as error or
fault id.

Table 13.70: TracedFailure

Class DevelopmentError

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note The reported failure is classified as development error.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, TracedFailure

Attribute Type Mult. Kind Note

– – – – –

Table 13.71: DevelopmentError

Class RuntimeError
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note The reported failure is classified as runtime error.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, TracedFailure

Attribute Type Mult. Kind Note

– – – – –

Table 13.72: RuntimeError

13.13.1 Error Tracer Use Case: Default Error Tracer Service use Case: report
failure

[TPS_SWCT_01694] Setup for Default Error Tracer Service use Case: develop-
ment errors or runtime error d

Scenario: a software-component reports development errors or runtime error to the
Default Error Tracer. In this case the following setup applies

ServiceNeeds kind ErrorTracerNeeds

RoleBasedPortAssignment valid roles:

• DETService[1]

RoleBasedDataAssignment valid roles:
n/a

831 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedDataTypeAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_00030)

[constr_1433] Transient faults are not applicable to software-components dAn
ErrorTracerNeeds aggregated in the context of a SwcInternalBehavior is - at
the time when the RTE is generated - not allowed to own a Transient-
Fault in the role ErrorTracerNeeds.tracedFailure.c()

13.14 Vehicle-2-X Facilities

The meta-class V2xFacUserNeeds is used together with the SwcServiceDepen-
dency to define requirements in order to configure the V2xFac module (for the terms
related to the AUTOSAR Specification of Module V2xFac see [49]).

Identifiable

ServiceNeeds

V2xMUserNeeds V2xFacUserNeeds

Figure 13.16: Modeling of V2xFacUserNeeds

Class V2xFacUserNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the ability to define service needs for V2x facilities.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.73: V2xFacUserNeeds

Please note that for the described use cases of the V2xFac Service following rule ap-
plies:
For every used SenderReceiverInterface it is necessary to create a Role-
BasedDataAssignment.

832 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.14.1 V2xFac Use Case: Application software component provides Vehicle
specific data to the V2X-Stack for CAM transmission

Scenario: an AtomicSwComponentType autonomously calls the V2xFac, providing
vehicle data collected via the in-vehicle networks in the module. In this case the follow-
ing setup applies:

[TPS_SWCT_01728] V2xFac Use Case: Application software component pro-
vides Vehicle specific data to the V2X-Stack for CAM transmission d

RoleBasedPortAssignment
N/A

RoleBasedDataAssignment valid roles:

• V2xFacVdp [1]

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

In this case the software component has to provide one Sender Port (V2xFacVdp) to

• provide the Vehicle Data

[constr_1682] Existence of attribute RoleBasedDataAssignment.used-
DataElement.localVariable for RoleBasedDataAssignment.role =
V2xFacVdp dIf the attribute RoleBasedDataAssignment.role is set to the value
V2xFacVdp then the reference RoleBasedDataAssignment.usedDataElement.
localVariable shall not exist at the time when the RTE is generated.c()

For explanation of the existence of [constr_1682], it is not intended to provide access
to local variables inside the SwcInternalBehavior.

13.14.2 V2xFac Use Case: V2xFac notifies application software component
about received messages

Scenario: an AtomicSwComponentType shall be informed by the V2xFac about re-
ceived CAM or DENM messages. In this case the following setup applies:

[TPS_SWCT_01729] V2xFac Use Case: V2xFac notifies application software
component about received messages d

RoleBasedPortAssignment
N/A

RoleBasedDataAssignment valid roles:

833 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• V2xApplRxIndicationCam [0..1]

• V2xApplRxIndicationDenm [0..1]

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

In this case the software-component has to provide one Receiver Port
(V2xApplRxIndicationCam) to receive the current value of the CAM message and
/ or one Receiver Port (V2xApplRxIndicationDenm) to receive the current DENM
message.

Please note that at least one of the two possible RoleBasedDataAssignments shall
exist for this use case.

[constr_1683] Existence of attribute RoleBasedDataAssignment.used-
DataElement.localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationCam dIf the attribute RoleBasedDataAssignment.
role is set to the value V2xApplRxIndicationCam then the reference Role-
BasedDataAssignment.usedDataElement.localVariable shall not exist at
the time when the RTE is generated.c()

For explanation of the existence of [constr_1683], it is not intended to provide access
to local variables inside the SwcInternalBehavior.

13.14.3 V2xFac Use Case: Application software component triggers transmis-
sion of DENM message

Scenario: an AtomicSwComponentType shall be able to trigger the transmission of
different DENM types. In this case the following setup applies:

[TPS_SWCT_01730] V2xFac Use Case: Application software component triggers
transmission of DENM message d

RoleBasedPortAssignment valid roles:

• V2xFacDenBs [1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

834 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_00030)

In this case the software component has to provide one Client PortPrototype (typed
by the standardized ClientServerInterface V2xFacDenBs) to

• trigger new DENM message

• trigger updated DENM message

• trigger a cancellation of a DENM message

13.14.4 V2xFac Use Case: Application software component processes the MAP
(topology) Extended Message

Scenario: an AtomicSwComponentType shall be able to process the MAP (topology)
Extended Message. In this case the following setup applies:

[TPS_SWCT_01764] V2xFac Use Case: Application software component shall be
able to process the MAP (topology) Extended Message d

RoleBasedPortAssignment
N/A

RoleBasedDataAssignment valid roles:

• V2xApplRxIndicationMapem [1]

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

In this case the software component has to provide one RPortPrototype (typed by
the standardized SenderReceiverInterface V2xApplRxIndicationMapem) to
process the MAP (topology) Extended Message (MAPEM).

[constr_1684] Existence of attribute RoleBasedDataAssignment.used-
DataElement.localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationMapem dIf the attribute RoleBasedDataAssignment.
role is set to the value V2xApplRxIndicationMapem then the reference Role-
BasedDataAssignment.usedDataElement.localVariable shall not exist at
the time when the RTE is generated.c()

For explanation of the existence of [constr_1684], it is not intended to provide access
to local variables inside the SwcInternalBehavior.

835 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.14.5 V2xFac Use Case: Application software component processes Infras-
tructure to Vehicle Information Message

Scenario: an AtomicSwComponentType shall be able to process the Infrastructure
to Vehicle Information Message (IVIM). In this case the following setup applies:

[TPS_SWCT_01770] V2xFac Use Case: Application software component pro-
cesses Infrastructure to Vehicle Information Message d

RoleBasedPortAssignment
N/A

RoleBasedDataAssignment valid roles:

• V2xApplRxIndicationIvim [1]

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

In this case the software component has to provide one RPortPrototype (typed
by the standardized SenderReceiverInterface V2xApplRxIndicationIvim)
to process the Infrastructure to Vehicle Information Message (IVIM).

[constr_1685] Existence of attribute RoleBasedDataAssignment.used-
DataElement.localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationIvim dIf the attribute RoleBasedDataAssignment.
role is set to the value V2xApplRxIndicationIvim then the reference Role-
BasedDataAssignment.usedDataElement.localVariable shall not exist at
the time when the RTE is generated.c()

For explanation of the existence of [constr_1685], it is not intended to provide access
to local variables inside the SwcInternalBehavior.

13.14.6 V2xFac Use Case: Application software component processes Signal
Phase And Timing Extended Message

Scenario: an AtomicSwComponentType shall be able to process the Signal Phase
And Timing Extended Message (SPATEM). In this case the following setup applies:

[TPS_SWCT_01788] V2xFac Use Case: Application software component pro-
cesses Signal Phase And Timing Extended Message d

RoleBasedPortAssignment
N/A

RoleBasedDataAssignment valid roles:

836 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• V2xApplRxIndicationSpatem [1]

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

In this case the software component has to provide one RPortPrototype (typed by
the standardized SenderReceiverInterface V2xApplRxIndicationSpatem) to
process the Signal Phase And Timing Extended Message (SPATEM).

[constr_1686] Existence of attribute RoleBasedDataAssignment.used-
DataElement.localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationSpatem dIf the attribute RoleBasedDataAssignment.
role is set to the value V2xApplRxIndicationSpatem then the reference Role-
BasedDataAssignment.usedDataElement.localVariable shall not exist at
the time when the RTE is generated.c()

For explanation of the existence of [constr_1686], it is not intended to provide access
to local variables inside the SwcInternalBehavior.

13.15 Vehicle-2-X Management

The meta-class V2xMUserNeeds is used together with the SwcServiceDependency
to define requirements in order to configure the V2X Manager module (for the terms
related to the AUTOSAR Specification of Module V2xM see [50]).

Class V2xMUserNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the ability to express service needs for the V2x management.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.74: V2xMUserNeeds

Please note that for the described use cases of the V2xFac Service following rule ap-
plies:
For every used ClientServerInterface it is necessary to create a RoleBased-
PortAssignment.

Thereby the value of the attribute role of the RoleBasedPortAssignment has to
be set to the name of the used standardized ClientServerInterface.

The possible role attribute values and the multiplicity of the related PortPrototypes
are listed at the use case descriptions in the paragraph RoleBasedPortAssignment.

837 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.15.1 V2xM Use Case: Application software component provides Vehicle spe-
cific data to the V2X-Stack for Position and Time information

Scenario: an AtomicSwComponentType autonomously calls the V2X Manager, pro-
viding vehicle data collected via the in-vehicle networks in the module. In this case the
following setup applies:

[TPS_SWCT_01731] V2xM Use Case: Application software component provides
Vehicle specific data to the V2X-Stack for Position and Time information d

RoleBasedPortAssignment valid roles:

• V2xM_Vdp [1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

In this case the software component has to provide one Client PortPrototype (typed
by the standardized ClientServerInterface V2xM_Vdp) to

• set the current time and position

13.15.2 V2xM Use Case: Application software component needs V2X specific
data from the V2X Manager

Scenario: an AtomicSwComponentType autonomously calls the V2X Manager, get-
ting information of V2X specific data in the module. In this case the following setup
applies:

[TPS_SWCT_01732] V2xM Use Case: Application software component needs
V2X specific data from the V2X Manager d

RoleBasedPortAssignment valid roles:

• V2xM_Vdp [1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

838 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

c(RS_SWCT_00030)

In this case the software component has to provide one Client PortPrototype (typed
by the standardized ClientServerInterface V2xM_Vdp) to

• access the current time of the V2X-Stack, based on the system clock

• access the earliest date of expiration of a Long Term Certificate

• access the earliest date of expiration of a Pseudonym Certificate

13.15.3 V2xM Use Case: Application software component has soft-control over
Pseudonym-Change within V2X Manager

Scenario: an AtomicSwComponentType autonomously calls the V2X Manager, set-
ting the locked or unlocked state for pseudonym change. In this case the following
setup applies:

[TPS_SWCT_01733] V2xM Use Case: Application software component has soft-
control over Pseudonym-Change within V2X Manager d

RoleBasedPortAssignment valid roles:

• V2xM_PseudonymChange [1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

In this case the software component has to provide one Client PortPrototype (typed
by the standardized ClientServerInterface V2xM_PseudonymChange) to

• set the state of the pseudonym change to locked

• set the state of the pseudonym change to unlocked

13.15.4 V2xM Use Case: Application software component has the ability to do
Verification-on-Demand

Scenario: an AtomicSwComponentType autonomously calls the V2X Manager, au-
thenticating a previously received message. In this case the following setup applies:

[TPS_SWCT_01734] V2xM Use Case: Application software component has the
ability to do Verification-on-Demand d

839 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RoleBasedPortAssignment valid roles:

• V2xM_Sec [1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

In this case the software component has to provide one Client PortPrototype (typed
by the standardized ClientServerInterface V2xM_Sec) to

• verify a previously received message

13.15.5 V2xM Use Case: Application software component do location based
calculations

Scenario: an AtomicSwComponentType autonomously calls the V2X Manager, get-
ting results for geographical calculations. In this case the following setup applies:

[TPS_SWCT_01735] V2xM Use Case: Application software component do loca-
tion based calculations d

RoleBasedPortAssignment valid roles:

• V2xM_GeoMath [1]

RoleBasedDataAssignment
N/A

RoleBasedDataTypeAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

In this case the software component has to provide one Client PortPrototype (typed
by the standardized ClientServerInterface V2xM_GeoMath) to

• calculate the distance between two location tuples (latitude, longitude)

• calculate an allowed tolerance value between two heading values

840 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.16 Hardware Test Manager

The service use cases for the Hardware Test Manager are indicated by the usage of
meta-class HardwareTestNeeds in the role SwcServiceDependency.service-
Needs.

HardwareTestNeeds

Identifiable

ServiceNeeds

Figure 13.17: Modeling of HardwareTestNeeds

Class HardwareTestNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class represents the ability to indicate that a software-component is interested in the results of
the hardware test and will establish a PortPrototype to query the hardware test manager.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.75: HardwareTestNeeds

13.16.1 HtssM Service Use Case: Query results of hardware tests

Scenario: A software-component wants to query the results of hardware tests con-
ducted by the HtssM. For this purpose, the software-component exposes an RPort-
Prototype that shall be connected to the HtssM.

[TPS_SWCT_01763] HtssM Service Use Case: Query results of hardware tests d

ServiceNeeds kind : HardwareTestNeeds

RoleBasedPortAssignment valid roles:

• GetTestStatus [1]

RoleBasedDataAssignment
N/A

RepresentedPortGroups
N/A

c(RS_SWCT_00030)

841 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

13.17 Intrusion Detection System Manager

The interaction with the Intrusion Detection System Manager consists of the ability to
report security events.

For this purpose, two different kinds of ServiceNeeds are provided: IdsMgrNeeds
for the actual reporting of security events, and IdsMgrCustomTimestampNeeds for
the retrieval of a timestamp by the IdsM.

Identifiable

ServiceNeeds

IdsMgrNeeds

+ useSmartSensorApi: Boolean [0..1]

IdsMgrCustomTimestampNeeds

Figure 13.18: Modeling of ServiceNeeds for intrusion detection system management

Class IdsMgrNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class is used to indicate that the enclosing SwcServiceDependency represents a service use
case for the Intrusion Detection System Manager.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

useSmart
SensorApi

Boolean 0..1 attr This attribute controls whether the reporting of the
security event shall be done by means of the smart
sensor API.

Table 13.76: IdsMgrNeeds

Class IdsMgrCustomTimestampNeeds

Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note This meta-class is used to indicate that the enclosing SwcServiceDependency represents a service use
case for the retrieval of a custom timestamp by the Intrusion Detection System Manager.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mult. Kind Note

– – – – –

Table 13.77: IdsMgrCustomTimestampNeeds

13.17.1 IdsM Service Use Case: AtomicSwComponentType reports security
event

Scenario: An AtomicSwComponentType reports a security event. It does not use the
so-called Smart Sensor API.

842 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

To indicate the scenario described in this use case the SwcServiceDependency shall
aggregate a IdsMgrNeeds.

[TPS_SWCT_01826]{DRAFT} Application Software Component reports security
event d

ServiceNeeds kind IdsMgrNeeds

RoleBasedPortAssignment valid roles:

• IdsMService [1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_00030)

[TPS_SWCT_01827]{DRAFT} Suffix used for the resulting name of the PortIn-
terface for the IdsM Services dThe suffix used for the resulting name of the Port-
Interface for the Data Services (IdsMService_{EventName}) shall be taken from the
shortName of the applicable SwcServiceDependency.c(RS_SWCT_00030)

13.17.2 IdsM Service Use Case: AtomicSwComponentType reports security
event using Smart Sensor API

Scenario: An AtomicSwComponentType reports a security event. For this purpose,
the so-called Smart Sensor API is used.

To indicate the scenario described in this use case the SwcServiceDependency shall
aggregate a IdsMgrNeeds.

[TPS_SWCT_01828]{DRAFT} Application Software Component reports security
event using Smart Sensor API d

ServiceNeeds kind IdsMgrNeeds

RoleBasedPortAssignment valid roles:

• IdsMSmartSensorService [1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c()

[TPS_SWCT_01829]{DRAFT} Suffix used for the resulting name of the Port-
Interface for the IdsM Services dThe suffix used for the resulting name of

843 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

the PortInterface for the Data Services (IdsMSmartSensorService_{EventName})
shall be taken from the shortName of the applicable SwcServiceDependency.c
(RS_SWCT_00030)

13.17.3 IdsM Service Use Case: AtomicSwComponentType provides time
stamp to IdsM

Scenario: An AtomicSwComponentType exposes a PPortPrototype for providing
a time stamp to the IdsM.

To indicate the scenario described in this use case the SwcServiceDependency shall
aggregate a IdsMgrCustomTimestampNeeds.

[TPS_SWCT_01830]{DRAFT} Application Software Component provides time
stamp to IdsM d

ServiceNeeds kind IdsMgrCustomTimestampNeeds

RoleBasedPortAssignment valid roles:

• IdsMCustomTimestamp [1]

RoleBasedDataAssignment valid roles:
n/a

RepresentedPortGroups
n/a

c(RS_SWCT_00030)

844 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

14 Rapid Prototyping Scenarios

14.1 Definition of Rapid Prototyping Scenario

A Rapid Prototyping Scenario consist out of two main aspects: The description of the
byPassPoints (see Figure 14.1) and the relation to a rptHook (see Figure 14.2).

ARElement
AtpStructureElement

System

+ containerIPduHeaderByteOrder: ByteOrderEnum [0..1]
+ ecuExtractVersion: RevisionLabelString [0..1]
+ pncVectorLength: PositiveInteger [0..1]
+ pncVectorOffset: PositiveInteger [0..1]
+ systemVersion: RevisionLabelString

ARElement

RapidPrototypingScenario

Identifiable

RptContainer

������������	
 ����

�����������	��	���� � ��������������

������������	
 ����

�����������	��	���� �

��������������

Identifiable

RptProfi le

+ maxServicePointId: PositiveInteger [0..1]
+ minServicePointId: PositiveInteger [0..1]
+ servicePointSymbolPost: CIdentifier [0..1]
+ servicePointSymbolPre: CIdentifier [0..1]
+ stimEnabler: RptEnablerImplTypeEnum [0..1]

RptSwPrototypingAccess

+ rptHookAccess: RptAccessEnum [0..1]
+ rptReadAccess: RptAccessEnum [0..1]
+ rptWriteAccess: RptAccessEnum [0..1]

«enumeration»
RptAccessEnum

 none
 protected
 enabled

«enumeration»
RptPreparationEnum

 none
 rptLevel1
 rptLevel2
 rptLevel3

«enumeration»
RptEnablerImplTypeEnum

 none
 rptEnablerRam
 rptEnablerRom
 rptEnablerRamAndRom

RptExecutableEntityProperties

+ maxRptEventId: PositiveInteger [0..1]
+ minRptEventId: PositiveInteger [0..1]
+ rptExecutionControl: RptExecutionControlEnum [0..1]
+ rptServicePoint: RptServicePointEnum [0..1]

«enumeration»
RptExecutionControlEnum

 none
 conditional

RptImplPolicy

+ rptEnablerImplType: RptEnablerImplTypeEnum [0..1]
+ rptPreparationLevel: RptPreparationEnum [0..1]

«enumeration»
RptServicePointEnum

 none
 enabled

«enumeration»
ByteOrderEnum

Attributes
+ mostSignificantByteFirst
+ mostSignificantByteLast
+ opaque

+hostSystem 0..1

«atpVariation,atpSplitable»

+rptContainer 0..*

«atpVariation,atpSplitable»

+rptContainer 0..*

+rptSwPrototypingAccess

0..1

+rptExecutableEntityProperties

0..1

«atpSplitable»

+rptProfi le

0..*

+rptImplPolicy

0..1

«atpSplitable»

+rptSystem 0..1

«atpSplitable»

+explicitRptProfi leSelection

0..*

Figure 14.1: Rapid Prototyping Scenario

A Rapid Prototyping Scenario is structured by means of RptContainers. The correct
usage of RptContainer structure is described in 14.2.

845 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ARElement
AtpStructureElement

System

+ containerIPduHeaderByteOrder: ByteOrderEnum [0..1]
+ ecuExtractVersion: RevisionLabelString [0..1]
+ pncVectorLength: PositiveInteger [0..1]
+ pncVectorOffset: PositiveInteger [0..1]
+ systemVersion: RevisionLabelString

ARElement

RapidPrototypingScenario

Identifiable

RptContainer

AtpInstanceRef

AnyInstanceRef

RptHook

+ codeLabel: CIdentifier [0..1]
+ mcdIdentifier: NameToken [0..1]

Sdg

+ gid: NameToken

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� � ��������������

+hostSystem

0..1

+sdg

0..*

«atpVariation,atpSplitable»

+rptContainer 0..*

«atpSplitable»

+rptSystem

0..1

«atpVariation,atpSplitable»

+byPassPoint

0..*

«atpVariation,atpSplitable»

+rptHook

0..1

«atpVariation,atpSplitable»

+rptContainer 0..*

+rptArHook 0..1

Figure 14.2: Rapid Prototyping Hooks

Class RapidPrototypingScenario

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note This meta-class provides the ability to describe a Rapid Prototyping Scenario. Such a Rapid Prototyping
Scenario consist out of two main aspects, the description of the byPassPoints and the relation to an rpt
Hook.

Tags:atp.recommendedPackage=RapidPrototypingScenarios

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

hostSystem System 0..1 ref System which describes the software components of the
host ECU.

rptContainer RptContainer * aggr Top-level rptContainer definitions of this specific rapid
prototyping scenario.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=rptContainer.shortName, rpt
Container.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

rptProfile RptProfile * aggr Defiens the applicable Rapid Prototyping profils which are
especially defining the smbol of the service functions and
the valid id range. The order of the RptProfiles determines
the order of the service function invocation by RTE.

Stereotypes: atpSplitable
Tags:atp.Splitkey=rptProfile.shortName

rptSystem System 0..1 ref System which describes the rapid prototyping algorithm in
the format of AUTOSAR Software Components.

Stereotypes: atpSplitable
Tags:atp.Splitkey=rptSystem

Table 14.1: RapidPrototypingScenario

[constr_1987] Existence of instance reference RapidPrototypingScenario.
hostSystem dFor each RapidPrototypingScenario, the instance reference to

846 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ModeDeclaration in the role hostSystem shall exist at the time when the
RTE is generated.c()

Class RptContainer

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note This meta-class defines a byPassPoint and the relation to a rptHook.

Additionally it may contain further rptContainers if the byPassPoint is not atomic. For example a byPass
Point referencing to a RunnableEntity may contain rptContainers referring to the data access points of
the RunnableEntity.

The RptContainer structure on M1 shall follow the M1 structure of the Software Component Descriptions.
The category attribute denotes which level of the Software Component Description is annotated.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

byPassPoint AtpFeature * iref byPassPoint describes the required preparation of the
host ECU. At a byPassPoint the host ECU shall be
capable to communicate with a RPT System in order to
support the execution of the rapid prototyping algorithms
with the original data calculated by the host system and to
replace dedicated results of the host system by the
results of the rapid prototyping algorithm.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=byPassPoint.contextElement, byPass
Point.target, byPassPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
InstanceRef implemented by:AnyInstanceRef

explicitRpt
ProfileSelection

RptProfile * ref This attribute defines the applicable RptProfiles for the
specific RptContainer. If not any references to a specific
RptProfile is defined, all RptProfiles defined in the Rapid
PrototypingScenario are applicable.

Stereotypes: atpSplitable
Tags:atp.Splitkey=explicitRptProfileSelection

rptContainer RptContainer * aggr Sub-level rptContainer definitions of this specific rapid
prototyping scenario.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=rptContainer.shortName, rpt
Container.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

rptExecutable
EntityProperties

RptExecutableEntity
Properties

0..1 aggr Describes the required code preparation for rapid
prototyping at ExecutableEntity invocation.

rptHook RptHook 0..1 aggr The rptHook describes the link between a byPassPoint
and the rapid prototyping algorithm.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=rptHook, rptHook.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

rptImplPolicy RptImplPolicy 0..1 aggr Describes the required code preparation for rapid
prototyping at data accesses.

rptSw
Prototyping
Access

RptSwPrototyping
Access

0..1 aggr Describes the required accessibility of data and modes by
the rapid prototyping tooling.

Table 14.2: RptContainer

847 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class RptHook

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note This meta-class provide the ability to describe a rapid prototyping hook. This can either be described by
an other AUTOSAR system with the category RPT_SYSTEM or as a non AUTOSAR software.

Base ARObject

Attribute Type Mult. Kind Note

codeLabel CIdentifier 0..1 attr This attribute provides a code label which is used in the
implementation of the hook. For example this can be an C
function name or the name of data definition.

mcdIdentifier NameToken 0..1 attr This attribute provides an identifier which shall be used in
a MCD System to display the Rpt Hook.

rptArHook AtpFeature 0..1 iref This describes the hook with the means of another
AUTOSAR system.

InstanceRef implemented by:AnyInstanceRef

sdg Sdg * aggr This property allows to keep special data which is not
represented by the standard model. It can be utilized to
keep e.g. tool specific data.

Table 14.3: RptHook

[TPS_SWCT_02046] byPassPoint specifies the rapid prototyping capability
dThe byPassPoints are used to describe the preparation of the host ECU. At the
byPassPoints the host ECU shall be capable to communicate with an RPT System in
order to support the execution of the rapid prototyping algorithms with the original data
calculated by the host system and to replace dedicated results of the host system by
the results of the rapid prototyping algorithm.c(RS_SWCT_03280, RS_SWCT_03282)

[TPS_SWCT_02047] RptHook specifies the link to rapid prototyping algorithm
dThe rptHook describes the link between the byPassPoint and the rapid prototyping
algorithm. If the rapid prototyping algorithm is described as an AUTOSAR Software
Component the rptArHook reference is applicable. Otherwise, the definition of a
codeLabel and optionally mcdIdentifier shall be used.c(RS_SWCT_03280, RS_-
SWCT_03281, RS_SWCT_03282)

In order to describe an RPT system as AUTOSAR software component a System with
the category RPT_SYSTEM shall be defined.

[constr_2054] Valid targets of rptSystem dThe System referenced in the role rpt-
System shall be of category RPT_SYSTEM.

This rule shall be imposed at the time when the RTE is generated.c()

14.2 Usage of RptContainers on M1

The RptContainer structure on M1 shall follow the M1 structure of the Software
Component Descriptions. The category attribute denotes which level of the Software
Component Description is annotated.

The following values of the attribute category are predefined by the AUTOSAR stan-
dard:

848 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Category Meaning Specific properties

SW_COMPONENT
_PROTOTYPE

Adds one SwComponentPrototype to an
Rapid Prototyping Scenario.

The byPassPoint and rptArHook shall refer-
ence a SwComponentPrototypes.

DATA_PROTOTYPE
Adds one instance of a DataPrototype to an
Rapid Prototyping Scenario.

The byPassPoint and rptArHook shall ref-
erence a DataPrototype instances in Port-
Prototypes.

RUNNABLE_ENTITY
Adds one RunnableEntity to an Rapid Proto-
typing Scenario.

The byPassPoint and rptArHook shall refer-
ence a RunnableEntity instances.

ACCESS_POINTS

Adds one VariableAccess, Parame-
terAccess, ServerCallPoint, Asyn-
chronousServerCallResultPoint, In-
ternalTriggeringPoint, ModeSwitch-
Point, ModeAccessPoint or External-
TriggeringPoint to a Rapid Prototyping
Scenario.

The byPassPoint and rptArHook shall refer-
ence a VariableAccess, ParameterAccess,
ServerCallPoint, AsynchronousServer-
CallResultPoint, InternalTriggering-
Point, ModeSwitchPoint, ModeAccess-
Point or ExternalTriggeringPoint in-
stances.

Table 14.4: Category of RptContainers

[constr_2055] Valid targets of byPassPoint and rptHook reference dDepending
on the category value, the targets of byPassPoint and rptHook references are
restricted according table 14.4.

This rule shall be imposed at the time when the RTE is generated.c()

Hereby, the following semantic applies:

[TPS_SWCT_02048] Implicit SwComponentPrototype selection for Rapid Proto-
typing Scenario dIf a SwComponentPrototype is referenced in the role byPass-
Point by a RptContainer without further “Sub” rptContainer, all RTE Inter-
faces of the AtomicSwComponentType shall be able to support a connection to a
rptHook.c(RS_SWCT_03280)

[TPS_SWCT_02049] Implicit RunnableEntity selection for Rapid Prototyping
Scenario dIf a RunnableEntity is referenced in the role byPassPoint by a
RptContainer without further “Sub” rptContainer, all RTE Interfaces of the
RunnableEntity shall be able to support a connection to a rptHook.c(RS_SWCT_-
03280)

[TPS_SWCT_02050] Explicit selection of access points for Rapid Prototyp-
ing Scenario dIf a VariableAccess, ParameterAccess, ServerCallPoint,
AsynchronousServerCallResultPoint, InternalTriggeringPoint, Mod-
eSwitchPoint, ModeAccessPoint or ExternalTriggeringPoint is referenced
in the role byPassPoint by a RptContainer, only RTE Interfaces related to the
specific access point are required be able to support a connection to a rptHook.c
(RS_SWCT_03280)

[TPS_SWCT_02051] Explicit DataPrototype selection for Rapid Prototyping
Scenario dIf a DataPrototype instances in a PortPrototypes is referenced in
the role byPassPoint by a RptContainer, only RTE Interfaces related to the spe-
cific DataPrototype are required be able to support a connection to a rptHook.c
(RS_SWCT_03280)

849 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_2056] Consistency of RapidPrototypingScenario with respect to
rptSystem and rptArHook references dWithin one RapidPrototypingSce-
nario all rptSystem references shall point to instances in one and only one System,
and if existent, all rptArHook shall point to instances in one other and only one other
System.

This rule shall be imposed at the time when the RTE is generated.c()

14.3 Usage of atpSplitable for RptContainers on M1

In order to support the later definition of the RptHooks, which may require as well
the detailed specification byPassPoints, the aggregation of RptContainer and
RptHook is�atpSplitable�.

[TPS_SWCT_02052] Definition of Rapid Prototyping Scenario is splittable dThe
aggregations in the roles rptContainer, byPassPoint, explicitRptPro-
fileSelection, and rptHook at RptContainer are decorated by stereotype
�atpSplitable�. By this means, it is possible to specify aspects of RptCon-
tainers in a later process step.c(RS_SWCT_03280)

Please note that the later specification of RptHooks may require additional byPass-
Points as well to show their relationship to lower level elements in a component de-
scription, such as VariableAccess, where in contrast the byPassPoints may only
be specified on higher level elements such as SwComponentPrototypes in a first
step.

14.4 Modifications of the Meta-Model for supporting the RPT sce-
nario

The implementation of the rapid-prototyping scenario implies the definition of access
points (see table 14.4). To be able to fulfill this role, the access points shall be repre-
sented by meta-classes derived from Referrable.

Most candidates for becoming access points are already inheriting from Referrable
and therefore do not require further treatment (see Figure 14.3). Two meta-classes in
this collection, however, are not derived from Referrable:

• ExternalTriggeringPoint

• ModeAccessPoint

It is not feasible to fix this issue by simply letting the two meta-classes inherit from
Referrable because this would break the backwards compatibility of the AUTOSAR
XML Schema1.

1Because in this case the shortName becomes mandatory.

850 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Therefore, a different approach (as sketched in Figure 14.3) has been implemented.

AtpStructureElement
ExecutableEntity

RunnableEntity

AbstractAccessPoint
AtpStructureElement

Identifiable

ParameterAccess

AbstractAccessPoint
AtpStructureElement

Identifiable

VariableAccess

ExternalTriggeringPoint

AbstractAccessPoint
AtpStructureElement

Identifiable

InternalTriggeringPoint

AbstractAccessPoint
AtpStructureElement

Identifiable

ServerCallPoint

AbstractAccessPoint
AtpStructureElement

Identifiable

AsynchronousServerCallResultPoint

ModeAccessPoint

AbstractAccessPoint
AtpStructureElement

Identifiable

ModeSwitchPoint

AtpStructureElement
Identifiable

IdentCaption

AbstractAccessPoint

ModeAccessPointIdent

AbstractAccessPoint

ExternalTriggeringPointIdent

«atpIdentityContributor»

+ident 0..1

«atpVariation,atpSplitable»

+modeSwitchPoint

*

«atpIdentityContributor»
+ident 0..1

«atpVariation,atpSplitable»

+writtenLocalVariable

0..*

«atpVariation,atpSplitable»

+parameterAccess

0..*

«atpVariation,atpSplitable»

+dataReadAccess

0..*

«atpVariation,atpSplitable»

+modeAccessPoint

*

«atpVariation,atpSplitable»

+internalTriggeringPoint

0..*

«atpVariation,atpSplitable»

+asynchronousServerCallResultPoint

0..*

«atpVariation,atpSplitable»

+dataSendPoint

0..*

«atpVariation,atpSplitable»

+readLocalVariable

0..*

«atpVariation,atpSplitable»

+dataReceivePointByValue

0..*

«atpVariation,atpSplitable»

+serverCallPoint

0..*

«atpVariation,atpSplitable»

+dataReceivePointByArgument

0..*

«atpVariation,atpSplitable»

+externalTriggeringPoint

0..*

«atpVariation,atpSplitable»

+dataWriteAccess

0..*

Figure 14.3: Access Points used in the context of the Rapid Prototyping Scenario

A new meta-class IdentCaption is created that introduces the capabilities of the
meta-class Identifiable (that, in turn, inherits from Referrable) to its subclasses,
ModeAccessPointIdent and ExternalTriggeringPointIdent.

These, in turn, are optionally2 aggregated in the role ident by ModeAccessPoint,
or in the role ident by meta-class ExternalTriggeringPoint.

Class IdentCaption (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note This meta-class represents the caption. This allows having some meta-classes optionally identifiable.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Subclasses BswServiceDependencyIdent, ExternalTriggeringPointIdent, ModeAccessPointIdent

Attribute Type Mult. Kind Note

– – – – –

Table 14.5: IdentCaption

2Again, the optional aggregation is a necessary prerequisite to not break the backwards compatibility
of the AUTOSAR XML schema.

851 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class ModeAccessPointIdent
Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note This meta-class has been created to introduce the ability to become referenced into the meta-class Mode
AccessPoint without breaking backwards compatibility.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , IdentCaption,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 14.6: ModeAccessPointIdent

Class ExternalTriggeringPointIdent

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note This meta-class has been created to introduce the ability to become referenced into the meta-class
ExternalTriggeringPoint without breaking backwards compatibility.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , IdentCaption,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

– – – – –

Table 14.7: ExternalTriggeringPointIdent

The following (simplified) listing 14.1 sketches the usage of the meta-class Ident-
Caption for the purpose of effectively allowing references to a ModeAccessPoint.

Listing 14.1: Example for the definition of an RPT scenario
<AR-PACKAGE>

<SHORT-NAME>IC_Example</SHORT-NAME>
<ELEMENTS>

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>ASCT</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>IB</SHORT-NAME>
<RUNNABLES>

<RUNNABLE-ENTITY>
<SHORT-NAME>RE</SHORT-NAME>
<MODE-ACCESS-POINTS>

<MODE-ACCESS-POINT>
<IDENT>

<SHORT-NAME>ident</SHORT-NAME>
</IDENT>

</MODE-ACCESS-POINT>
</MODE-ACCESS-POINTS>

</RUNNABLE-ENTITY>
</RUNNABLES>

</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</APPLICATION-SW-COMPONENT-TYPE>
<COMPOSITION-SW-COMPONENT-TYPE>

<SHORT-NAME>CSCT</SHORT-NAME>
<COMPONENTS>

<SW-COMPONENT-PROTOTYPE>

852 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

<SHORT-NAME>SCP</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/IC_Example/

ASCT</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>

</COMPONENTS>
</COMPOSITION-SW-COMPONENT-TYPE>
<RAPID-PROTOTYPING-SCENARIO>

<SHORT-NAME>rptScenario</SHORT-NAME>
<RPT-CONTAINERS>

<RPT-CONTAINER>
<SHORT-NAME>rptContainer</SHORT-NAME>

<BY-PASS-POINT-IREFS>
<BY-PASS-POINT-IREF>

<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">/
IC_Example/CSCT/SCP</CONTEXT-ELEMENT-REF>

<TARGET-REF DEST="MODE-ACCESS-POINT-IDENT">/IC_Example/ASCT
/IB/RE/ident</TARGET-REF>

</BY-PASS-POINT-IREF>
</BY-PASS-POINT-IREFS>

</RPT-CONTAINER>
</RPT-CONTAINERS>

</RAPID-PROTOTYPING-SCENARIO>
</ELEMENTS>

</AR-PACKAGE>

14.5 Extended Buffer Access Method

The Extended Buffer Access method enhances the support for rapid prototyping (RP)
to support the bypass use case where the RTE cannot be regenerated by the bypass
user.

The goal is to ensure that all VariableDataPrototypes that are communicated
via RTE APIs are written to and read back from an RP global buffer that can be
modified by rapid prototyping tools (RPT).

The method applies to all RTE APIs and not just those for implicit access and hence is
termed the extended buffer access method.

Within the Extended buffer access method, a VariableDataPrototype can be
flagged for rapid prototyping at one of three levels depending on whether post-build
hooking is used. “Level 1” is intended for use by post-build hooking tools and “Level 2”
and “Level 3” by non post-build hooking.

Additional RP buffers and RP flags are created when using “Level 2” and “Level 3” and
the Extended Buffer Access method includes mechanisms for describing their creation
and use to RP tooling.

• RP global buffer – A buffer read/written by RP. The RP global buffer is con-
ceptually separated from the RTE managed buffer holding the variable data pro-
totype value.

853 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

• RP global measurement buffer – A buffer used by RP to store the original variable
data prototype value for subsequent measurement purposes before replacement
by the RP generated value.

• RP enabler flag – A Boolean flag to permit run-time enabling/disabling bypass.

14.5.1 RP Preparation

The Extended Buffer Access method of Rapid Prototyping requires the definition of
preparation level (see table 14.4) to enable RPT-related code generation.

The RptProfile of category EXTENDED_BUFFER_ACCESS provides the common at-
tributes to implement the RPT support in the code.

An ECU may have to support multiple RptProfiles in parallel – for example, to sup-
port in one ECU the RPT tools of different suppliers.

Nevertheless, not all components might need to support all possible methods, for in-
stance an XCP based RPT method might not be applicable for hard real-time critical
functions, and therefore the RptProfile can be selected.

[TPS_SWCT_01719] Selection of applicable RptProfiles dThe reference Rpt-
Container.explicitRptProfileSelection provides a list of RptProfiles
which needs to be applied when the RPT support is implemented.

If the explicitRptProfileSelection is not defined, all RptProfiles defined in
the owing RapidPrototypingScenario are applicable.c(RS_SWCT_03280)

Class RptProfile

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note The RptProfile describes the common properties of a Rapid Prototyping method.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

maxService
PointId

PositiveInteger 0..1 attr Highest service point id useable for RTE generated
service points.

minServicePoint
Id

PositiveInteger 0..1 attr Lowest service point id useable for RTE generated
service points.

servicePoint
SymbolPost

CIdentifier 0..1 attr Complete symbol of the function implementing the post
service point. This symbol is used for post-build hooking
purposes.

servicePoint
SymbolPre

CIdentifier 0..1 attr Complete symbol of the function implementing the pre
service point. This symbol is used for post-build hooking
purposes.

stimEnabler RptEnablerImplType
Enum

0..1 attr Defines if the service points support the stimulation
enabler. If RptProfile.stimEnabler is "none" then no
stimulation enabler is passed to the service function.
Otherwise the stimulation enabler will be passed as a
parameter.

Table 14.8: RptProfile

854 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1988] Existence of attribute RptProfile.maxServicePointId dFor each
RptProfile, attribute maxServicePointId shall exist at the time when the
RTE is generated.c()

[constr_1989] Existence of attribute RptProfile.minServicePointId dFor each
RptProfile, attribute minServicePointId shall exist at the time when the
RTE is generated.c()

[constr_1990] Existence of attribute RptProfile.servicePointSymbolPost
dFor each RptProfile, attribute servicePointSymbolPost shall exist at the
time when the RTE is generated.c()

[constr_1991] Existence of attribute RptProfile.servicePointSymbolPre
dFor each RptProfile, attribute servicePointSymbolPre shall exist at the
time when the RTE is generated.c()

[constr_1992] Existence of attribute RptProfile.stimEnabler dFor each Rpt-
Profile, attribute stimEnabler shall exist at the time when the RTE is
generated.c()

Class RptImplPolicy

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note Describes the code preparation for rapid prototyping at data accesses.

Base ARObject

Attribute Type Mult. Kind Note

rptEnablerImpl
Type

RptEnablerImplType
Enum

0..1 attr For Level 2 or Level3 this property determines how the
RTE implements the additional "RP enabler" flag.

rptPreparation
Level

RptPreparationEnum 0..1 attr Mandates RP preparation level for access to VariableData
Prototype within generated RTE implementation.

Table 14.9: RptImplPolicy

[constr_1993] Existence of attribute RptImplPolicy.rptEnablerImplType
dFor each RptImplPolicy, attribute rptEnablerImplType shall exist at the
time when the RTE is generated.c()

[constr_1994] Existence of attribute RptImplPolicy.rptPreparationLevel
dFor each RptImplPolicy, attribute rptPreparationLevel shall exist at the
time when the RTE is generated.c()

Enumeration RptEnablerImplTypeEnum

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Describes the required / implemented usage of enabler flags for data access in the code.

Literal Description

none No "RP enabler" is implemented.

Tags:atp.EnumerationLiteralIndex=0

rptEnablerRam "RP enabler" is implemented as a RAM variable

Tags:atp.EnumerationLiteralIndex=1

5

855 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration RptEnablerImplTypeEnum

rptEnablerRamAnd
Rom

The RTE generator implements both the RAM and ROM "RP enabler".

Tags:atp.EnumerationLiteralIndex=3

rptEnablerRom "RP enabler" is implemented as a calibrateable ROM variable.

Tags:atp.EnumerationLiteralIndex=2

Table 14.10: RptEnablerImplTypeEnum

Enumeration RptPreparationEnum

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Determines the RP preparation level for access to VariableDataPrototypes within the generated RTE
implementation.

Literal Description

none No RP preparation for VariableDataPrototype.

Tags:atp.EnumerationLiteralIndex=0

rptLevel1 The RTE implementation uses an "RP global buffer" for measurement and post-build hooking
purposes.

Tags:atp.EnumerationLiteralIndex=1

rptLevel2 As rpLevel1 but the RTE implementation also uses both "RP enabler flag" to permit RP overwrite at
run-time.

Tags:atp.EnumerationLiteralIndex=2

rptLevel3 As rpLevel2 but the RTE implementation also uses "RP global measurement buffer" to record the
original ECU-generated value in addition to the RP value.

Tags:atp.EnumerationLiteralIndex=3

Table 14.11: RptPreparationEnum

[TPS_SWCT_01720] Preparation Levels dRptImplPolicy.rptPrepara-
tionLevel supports three preparation levels:

• Level 1 – If RptImplPolicy.rptPreparationLevel is set to rptLevel1
then the generated RTE uses a specific memory access pattern (a write-read
cycle within accessing code created by the RTE generator) suitable for access by
post-build hooking tools patch writes to buffers.

• Level 2 – If RptImplPolicy.rptPreparationLevel is set to rptLevel2
then in addition to the use of an RP global buffer (as for rptLevel1) the gen-
erated code also includes an RP enabler flag that is used to make update of the
RP global buffer conditional.

The RP enabler flag can be in either (calibratable) ROM or RAM based on Rpt-
Container.rptEnablerImplType.

• Level 3 – If RptImplPolicy.rptPreparationLevel is set to rptLevel3
then in addition to the requirements of rptLevel2, the generated code also
records the original ECU-generated value as well as the RP replacement value.

c(RS_SWCT_03280)

856 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01721] References from RptContainer dIf rptImplPolicy of a
RptContainer is used the RptContainer can reference:

• VariableDataPrototype – the preparation level applies to a single data item.

• ArgumentDataPrototype – the preparation level applies to a single operation
argument.

• ModeDeclarationGroupPrototype – the preparation level applies to a single
mode.

• operation – the preparation level applies to all operation ArgumentDataPro-
totype.

• RunnableEntity – the preparation level applies to all data items / arguments
accessed by the RunnableEntity.

• SwComponentPrototype – the preparation level applies to all RunnableEn-
titys (and hence all accessed data items and arguments) in the software com-
ponent.

c(RS_SWCT_03280)

The generated RTE includes appropriate descriptions to enable RP tools to access the
generated RP buffers and RP enabler flags.

Class RptSwPrototypingAccess

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Describes the accessibility of data and modes by the rapid prototyping tooling.

Base ARObject

Attribute Type Mult. Kind Note

rptHookAccess RptAccessEnum 0..1 attr The related data element can be modified using a
post-build hooking tool. An ENABLED VariableData
Prototype is implicitly READABLE/WRITABLE.

rptReadAccess RptAccessEnum 0..1 attr The related data element can be used as input for bypass
functionality by RP tool. If rptImplPolicy is not specified
then RTE generation shall ensure at least suitable MC
read points are created.

rptWriteAccess RptAccessEnum 0..1 attr The related data element can be used as output for
bypass functionality by RP tool. The data element shall
be prepared to rptLevel2 and related write service points
are present.

Table 14.12: RptSwPrototypingAccess

[constr_1995] Existence of attribute RptSwPrototypingAccess.rptHookAc-
cess dFor each RptSwPrototypingAccess, attribute rptHookAccess shall exist
at the time when the RTE is generated.c()

[constr_1996] Existence of attribute RptSwPrototypingAccess.rptReadAc-
cess dFor each RptSwPrototypingAccess, attribute rptReadAccess shall exist
at the time when the RTE is generated.c()

857 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[constr_1997] Existence of attribute RptSwPrototypingAccess.rptWriteAc-
cess dFor each RptSwPrototypingAccess, attribute rptWriteAccess shall exist
at the time when the RTE is generated.c()

Enumeration RptAccessEnum

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Determines the access rights to a data object with respect to rapid prototyping.

Literal Description

enabled The related data element is accessible by RP tool.

Tags:atp.EnumerationLiteralIndex=0

none The related data element is not accessible by RP tool.

Tags:atp.EnumerationLiteralIndex=1

protected The data element is known to the RP tool however its usage for RP can be restricted. Use case:
limitation based on access rights

Tags:atp.EnumerationLiteralIndex=2

Table 14.13: RptAccessEnum

14.5.2 Service Points

Access to the RP global buffers and RP global measurement buffers can
be implemented by using a service based ECU interface in which an additional RP
Service Component, such as an “XCP on CAN” or “XCP on Ethernet” service, is
added to the ECU application.

An RP Service Component is an AUTOSAR or vendor specific BSW module pro-
viding an RP service, e.g. “XCP on CAN” or “XCP on Ethernet”.

It provides one or more RP Service Function where data is sampled and/or stim-
ulated at an RP Service Point. Each RP Service Function call is passed an
RP Service Point ID to identify the service point and enable different invocations
to be distinguished.

The integration of the service can be performed pre-build by means of source code
based integration, for example, by adding an XCP or custom BSW component, or
post-build by patching the binary code of an already compiled ECU image.

In a service based scenario data is sampled and/or stimulated at RP Service
Points. During either sampling or stimulation the data is read and/or written from the
memory associated with the VariableDataPrototype to/from a local buffer during
the execution of the RP Service Point and hence transferred to/from the RP tool.

Within the context of the RTE the data stimulated by the RP Service Points are the
RP global buffers and RP global measurement buffers however any data
that is measurable is potentially subject to reading.

858 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

[TPS_SWCT_01722] Semantics of RP Service Point dAn RP Service Point
is simply a call of an RP Service Function that is provided by the RP Service
Component.c(RS_SWCT_03280)

[TPS_SWCT_01723] Semantics of RP Service Function dThe RP Service
Function is responsible for sampling (reading) and stimulating (writing) the bypass
data. The action of sampling may then trigger the RP system to perform the bypass
(this may involve the communication of the sampled data to an external system for
computation) ready for reading when the stimulation occurs.c(RS_SWCT_03280)

Service points can be either “SWC Internal” (i.e. inserted by the SWC developer) or
“RTE assigned”. SWC Internal service points are included in the SWC description (us-
ing RapidPrototypingScenario, see below) whereas RTE assigned are created
by the RTE generator based on the specification of the SWC.

14.5.2.1 Service Functions

The RP Service Function is responsible for sampling the required data. The sam-
pled data is not passed as parameters – the invocation of the RP Service Func-
tion passes an RP Service Point ID as the first parameter of the RP Service
Point which is used by the RP Service Component to identify the service point.

[TPS_SWCT_01724] Semantics of RapidPrototypingScenario dA RapidPro-
totypingScenario aggregates one or more RptContainers and one or more
RptProfiles:

• Each RptContainer instance specifies, by reference, one or more element(s)
applicable to the service-based access.

• Each RptProfile instance specifies both the name of the RP Service
Function (attributes servicePointSymbolPre and servicePointSym-
bolPost) and the applicable RP Service Point IDs (attributes minServi-
cePointId and maxServicePointId).

c(RS_SWCT_03280)

The cross-product of the information from the RptContainer and RptProfilewithin
a rapid prototyping scenario is used to construct the service function invocations.

Example: An RapidPrototypingScenario contains a single RptContainer that
references an RTEEvent instance, and a single RptProfile with service point sym-
bol attribute MyServiceFunction. As a result, the RTE generator then wraps in-
vocations of the RunnableEntity started by the event with calls to service function
MyServiceFunction.

859 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class RptExecutableEntityProperties

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note Describes the code preparation for rapid prototyping at ExecutableEntity invocation.

Base ARObject

Attribute Type Mult. Kind Note

maxRptEventId PositiveInteger 0..1 attr Highest RPT event id usable for RTE generated service
points. This attribute is relevant, if dedicated id range
shall be applied to the ExecutableEntitys of a software
component or specific ExecutableEntitys.

minRptEventId PositiveInteger 0..1 attr Lowest RPT event id usable for RTE generated service
points. This attribute is relevant, if dedicated id range
shall be applied to the ExecutableEntitys of a software
component or specific ExecutableEntitys.

rptExecution
Control

RptExecutionControl
Enum

0..1 attr This attribute specifies the rapid prototyping control of the
executable

rptServicePoint RptServicePointEnum 0..1 attr Enables generation of service points by the RTE
generator.

Table 14.14: RptExecutableEntityProperties

[constr_1998] Existence of attribute RptExecutableEntityProperties.
maxRptEventId dFor each RptExecutableEntityProperties, attribute
maxRptEventId shall exist at the time when the RTE is generated.c()

[constr_1999] Existence of attribute RptExecutableEntityProperties.min-
RptEventId dFor each RptExecutableEntityProperties, attribute min-
RptEventId shall exist at the time when the RTE is generated.c()

[constr_10000] Existence of attribute RptExecutableEntityProperties.rp-
tExecutionControl dFor each RptExecutableEntityProperties, attribute
rptExecutionControl shall exist at the time when the RTE is gener-
ated.c()

[constr_10001] Existence of attribute RptExecutableEntityProperties.rpt-
ServicePoint dFor each RptExecutableEntityProperties, attribute rptSer-
vicePoint shall exist at the time when the RTE is generated.c()

Enumeration RptExecutionControlEnum

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Determines rapid prototyping preparation of an ExecutableEntity.

Literal Description

conditional The ExecutableEntity is only executed when the rapid prototyping disable flag is NOT set.

Tags:atp.EnumerationLiteralIndex=0

none The ExecutableEntity is executed without specific rapid prototyping condition.

Tags:atp.EnumerationLiteralIndex=1

Table 14.15: RptExecutionControlEnum

860 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Enumeration RptServicePointEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note Specifies whether the invocation of ExecutableEntitys due to activation of specific RteEvents/Bsw
Events requires the insertion of Service Points.

Literal Description

enabled Enables generation of service points by the RTE generator.

Tags:atp.EnumerationLiteralIndex=0

none No Service Points are requested.

Tags:atp.EnumerationLiteralIndex=1

Table 14.16: RptServicePointEnum

861 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

A Glossary

Artifact This is a Work Product Definition that provides a description and definition for
tangible work product types. Artifacts may be composed of other artifacts ([51]).

At a high level, an artifact is represented as a single conceptual file.

AUTOSAR Tool This is a software tool which supports one or more tasks defined as
AUTOSAR tasks in the methodology. Depending on the supported tasks, an
AUTOSAR tool can act as an authoring tool, a converter tool, a processor tool or
as a combination of those (see separate definitions).

AUTOSAR Authoring Tool An AUTOSAR Tool used to create and modify AUTOSAR
XML Descriptions. Example: System Description Editor.

AUTOSAR Converter Tool An AUTOSAR Tool used to create AUTOSAR XML files by
converting information from other AUTOSAR XML files. Example: ECU Flattener

AUTOSAR Definition This is the definition of parameters which can have values. One
could say that the parameter values are Instances of the definitions. But in the
meta model hierarchy of AUTOSAR, definitions are also instances of the meta
model and therefore considered as a description. Examples for AUTOSAR def-
initions are: EcucParameterDef, PostBuildVariantCriterion, SwSys-
temconst.

AUTOSAR XML Description In AUTOSAR this means "filled Template". In fact an
AUTOSAR XML description is the XML representation of an AUTOSAR model.

The AUTOSAR XML description can consist of several files. Each individual file
represents an AUTOSAR partial model and shall validate successfully against the
AUTOSAR XML schema.

AUTOSAR Meta-Model This is an UML2.0 model that defines the language for de-
scribing AUTOSAR systems. The AUTOSAR meta-model is an UML represen-
tation of the AUTOSAR templates. UML2.0 class diagrams are used to describe
the attributes and their interrelationships. Stereotypes, UML tags and OCL ex-
pressions (object constraint language) are used for defining specific semantics
and constraints.

AUTOSAR Meta-Model Tool The AUTOSAR Meta-Model Tool is the tool that gener-
ates different views (class tables, list of constraints, diagrams, XML Schema etc.)
on the AUTOSAR meta-model.

AUTOSAR Model This is a representation of an AUTOSAR product. The AUTOSAR
model represents aspects suitable to the intended use according to the
AUTOSAR methodology.

Strictly speaking, this is an instance of the AUTOSAR meta-model. The infor-
mation contained in the AUTOSAR model can be anything that is representable
according to the AUTOSAR meta-model.

862 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AUTOSAR Partial Model In AUTOSAR, the possible partitioning of models is marked
in the meta-model by �atpSplitable�. One partial model is represented in
an AUTOSAR XML description by one file. The partial model does not need to
fulfill all semantic constraints applicable to an AUTOSAR model.

AUTOSAR Processor Tool An AUTOSAR Tool used to create non-AUTOSAR files by
processing information from AUTOSAR XML files. Example: RTE Generator

AUTOSAR Specification Element An AUTOSAR Specification Element is a named
element that is part of an AUTOSAR specification. Examples: requirement, con-
straint, specification item, class or attribute in the meta model, methodology, de-
liverable, methodology activity, model element, bsw module etc.

AUTOSAR Template The term "Template" is used in AUTOSAR to describe the for-
mat different kinds of descriptions. The term template comes from the idea, that
AUTOSAR defines a kind of form which shall be filled out in order to describe a
model. The filled form is then called the description.

In fact the AUTOSAR templates are now defined as a meta-model.

AUTOSAR Validation Tool A specialized AUTOSAR Tool which is able to check an
AUTOSAR model against the rules defined by a profile.

AUTOSAR XML Schema This is a W3C XML schema that defines the language for
exchanging AUTOSAR models. This Schema is derived from the AUTOSAR
meta-model. The AUTOSAR XML Schema defines the AUTOSAR data exchange
format.

Blueprint This is a model from which other models can be derived by copy and re-
finement. Note that in contrast to meta model resp. types, this process is not an
instantiation.

Instance Generally this is a particular exemplar of a model or of a type.

Life Cycle Life Cycle is the course of development/evolutionary stages of a model
element during its life time.

Meta-Model This defines the building blocks of a model. In that sense, a Meta-Model
represents the language for building models.

Meta-Data This includes pertinent information about data, including information about
the authorship, versioning, access-rights, timestamps etc.

Model A Model is an simplified representation of reality. The model represents the
aspects suitable for an intended purpose.

Partial Model This is a part of a model which is intended to be persisted in one par-
ticular artifact.

Pattern in GST This is an approach to simplify the definition of the meta model by ap-
plying a model transformation. This transformation creates an enhanced model
out of an annotated model.

863 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Profile Authoring Support Data Data that is used for efficient authoring of a profile.
E.g. list of referable constraints, meta-classes, meta-attributes or other reusable
model assets (blueprints)

Profile Authoring Tool A specialized AUTOSAR Tool which focuses on the authoring
of profiles for data exchange points. It e.g. provides support for the creation of
profiles from scratch, modification of existing profiles or composition of existing
profiles.

Profile Compatibility Checker Tool A specialized AUTOSAR Tool which focuses on
checking the compatibility of profiles for data exchange. Note that this compat-
ibility check includes manual compatibility checks by engineers and automated
assistance using more formal algorithms.

Profile Consistency Checker Tool A specialized AUTOSAR Tool which focuses on
checking the consistency of profiles.

Property A property is a structural feature of an object. As an example a “connector”
has the properties “receive port” and “send port”

Properties are made variant by the�atpVariation�.

Prototype This is the implementation of a role of a type within the definition of another
type. In other words a type may contain Prototypes that in turn are typed by
"Types". Each one of these prototypes becomes an instance when this type is
instantiated.

Type A type provides features that can appear in various roles of this type.

Value This is a particular value assigned to a “Definition”.

Variability Variability of a system is its quality to describe a set of variants. These
variants are characterized by variant specific property settings and / or selections.
As an example, such a system property selection manifests itself in a particular
“receive port” for a connection.

This is implemented using the�atpVariation�.

Variant A system variant is a concrete realization of a system, so that all its proper-
ties have been set respectively selected. The software system has no variability
anymore with respect to the binding time.

This is implemented using EvaluatedVariantSet.

Variation Binding A variant is the result of a variation binding process that resolves
the variability of the system by assigning particular values/selections to all the
system’s properties.

This is implemented by VariationPoint.

Variation Binding Time The variation binding time determines the step in the method-
ology at which the variability given by a set of variable properties is resolved.

864 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

This is implemented by vh.LatestBindingtime at the related properties.

Variation Definition Time The variation definition time determines the step in the
methodology at which the variation points are defined.

Variation Point A variation point indicates that a property is subject to variation. Fur-
thermore, it is associated with a condition and a binding time which define the
system context for the selection / setting of a concrete variant.

This is implemented by VariationPoint.

865 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

B Supported Special Use Cases

B.1 Asymmetric Data Transformation between a Software-
Component and a Complex Driver

B.1.1 Overview

In this scenario, a SwComponentPrototype typed by an ApplicationSwCompo-
nentType needs to communicate with a SwComponentPrototype typed by a Com-
plexDeviceDriverSwComponentType.

The communication itself is special insofar as it ends in an arbitrary structured data
type on the side of the ApplicationSwComponentType and in a flat byte array on
the side of the ComplexDeviceDriverSwComponentType.

The communication itself has a client-server nature, where the ApplicationSwCom-
ponentType mostly acts as the client and the ComplexDeviceDriverSwCompo-
nentType acts as the server.

As a consequence of this set-up, the structured data type somehow has to be serialized
into a flat byte array for the call and from flat byte array to structure data type for the
returning of the out and inout arguments as well as the return value.

For a justification of the use case, let’s assume that the ComplexDeviceDriver-
SwComponentType implements an endpoint of a custom communication protocol that
needs to interact with the "AUTOSAR world".

This is also the reason why the server implements ClientServerOperations
with a flat byte array as the argument. The server (in this case, the ComplexDe-
viceDriverSwComponentType) itself is completely agnostic of the data, it just rep-
resents the endpoint that has to be able to deal with any given data structure.

This means that the ComplexDeviceDriverSwComponentType does not have to
be updated and redeployed if the data structures on the side of the Application-
SwComponentType undergo any changes.

For the ApplicationSwComponentType, on the other hand, there is little motivation
to also model the respective data structures as a flat byte array. Usually, the respec-
tive data comes from a mixture of internal processing and communication with other
software-components.

In other words, using a flat byte array on the side of the ApplicationSwComponent-
Type would mean that the serialization has to be done anyway, potentially inside the
implementation of the ApplicationSwComponentType itself.

Specifically, the conversion from the (structured) data type to a flat byte array and back
needs to be implemented by a piece of software that is typically generated according
to the structure of the data type. This software, however, is very specific and only fits
to the corresponding data types.

866 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

One approach for data serialization in AUTOSAR is the generic concept of data trans-
formation, in the specific case of this scenario a data transformer is needed that does
a depth-first serialization over a complex data structure.

This approach is already supported in AUTOSAR by means of the so-called SOME/IP
Transformer [52].

This existing concept can be taken over for the implementation of the scenario de-
scribed in this chapter, albeit with some customizations. For example, the SOME/IP-
specific protocol header generated by the SOME/IP Transformer is obviously not rele-
vant for the scenario.

B.1.2 Modeling Aspects

The modeling of this use case shall be explained along a simple example sketched in
Figure B.1:

• It is necessary to define two individual ClientServerOperationMappings.

– One of these (in this example: CSOM1) shall reference a DataTransfor-
mation where attribute dataTransformationKind is set to the value
DataTransformationKindEnum.asymmetricToByteArray.

– The other (in this example: CSOM2) shall reference a DataTransfor-
mation where attribute dataTransformationKind is set to the value
DataTransformationKindEnum.asymmetricFromByteArray.

• CSOM1 shall reference the ClientServerOperation Op1 (on the end of the
ApplicationSwComponentType) in the role firstOperation.

• CSOM1 shall reference the ClientServerOperation Op2 (on the end of the
ComplexDeviceDriverSwComponentType) in the role secondOperation.

• CSOM2 shall reference the ClientServerOperation Op1 (on the end of the
ApplicationSwComponentType) in the role secondOperation.

• CSOM2 shall reference the ClientServerOperation Op2 (on the end of the
ComplexDeviceDriverSwComponentType) in the role firstOperation.

• CSOM1 shall aggregate two DataPrototypeMappings in the role argu-
mentMapping

– The first DataPrototypeMapping shall reference (in the role first-
DataPrototype) the ArgumentDataPrototype named In1 of
ClientServerOperation OP1 and (in the role secondDataPrototype)
the ArgumentDataPrototype named In of ClientServerOperation
OP2.

– The second DataPrototypeMapping shall reference (in the role
firstDataPrototype) the ArgumentDataPrototype named In2 of

867 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ClientServerOperation OP1 and (in the role secondDataPrototype)
the ArgumentDataPrototype named In of ClientServerOperation
OP2.

• CSOM2 shall aggregate two DataPrototypeMappings in the role argu-
mentMapping

– The first DataPrototypeMapping shall reference (in the role first-
DataPrototype) the ArgumentDataPrototype named Out1 of
ClientServerOperation OP1 and (in the role secondDataPrototype)
the ArgumentDataPrototype named Out of ClientServerOpera-
tion OP2.

– The second DataPrototypeMapping shall reference (in the role
firstDataPrototype) the ArgumentDataPrototype named Out2 of
ClientServerOperation OP1 and (in the role secondDataPrototype)
the ArgumentDataPrototype named Out of ClientServerOpera-
tion OP2.

ClientServerOperationMapping

„CSOM2"

SwComponentPrototype typed by

ComplexDeviceDriverSwComponentType

«isOfType»

SwComponentPrototype typed by

ApplicationSwComponentType

ClientServerInterface

„CS2“

ClientServerOperation „Op2"

ArgumentDataPrototype „In"

«isOfType»

ArgumentDataPrototype „Out"
ClientServerInterface

„CS1“

ClientServerOperation „Op1"

ArgumentDataPrototype „In1"

ArgumentDataPrototype „In2"

ArgumentDataPrototype „Out1"

ArgumentDataPrototype „Out2"

ClientServerOperationMapping

„CSOM1"

DataTransformation „BA2DT“

dataTransformationKind =

asymmetricFromByteArray

DataTransformation „DT2BA“

dataTransformationKind =

asymmetricToByteArray

DataTransformation „DT2BA“

dataTransformationKind =

asymmetricToByteArray

DataPrototypeMapping

DataPrototypeMapping

DataPrototypeMapping

DataPrototypeMapping

firstOperation

Figure B.1: Modeling of the data transformation use case

Please note that in Figure B.1 the role names of references from DataProto-
typeMapping have been left out of the picture for reasons of simplicity.

868 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C History of Constraints and Specification Items

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

C.1 Constraint History of this Document according to AUTOSAR
R4.0.1

C.1.1 Changed Constraints in R4.0.1

N/A

C.1.2 Added Constraints in R4.0.1

Number Heading

[constr_1000] End-to-end protection is limited to sender/receive communication

[constr_1001] Value of dataId shall be unique

[constr_1002] End-to-end protection does not support n:1 communication

[constr_1004] Mapping of ApplicationDataTypes

[constr_1005] Compatibility of ImplementationDataTypes mapped to the same Application-
DataType

[constr_1006] applicable data categorys

[constr_1007] Allowed attributes of SwDataDefProps for ApplicationDataTypes

[constr_1008] Applicability of categorys STRUCTURE and ARRAY

[constr_1009] SwDataDefProps applicable to ImplementationDataTypes

[constr_1010] If nativeDeclaration does not exist
[constr_1011] category of SwBaseType
[constr_1012] Value of category is FIXED_LENGTH
[constr_1013] Value of category is VARIABLE_LENGTH

[constr_1014] Supported value encodings for SwBaseType

[constr_1015] Prioritization of SwDataDefProps
[constr_1016] invalidValue is restricted
[constr_1017] Supported combinations of swImplPolicy and swCalibrationAccess

[constr_1018] measurementPoint shall not be referenced by a VariableAccess aggregated by
RunnableEntity in the role dataReadAccess

[constr_1019] Compatibility of input value and axis

[constr_1020] ParameterDataPrototype needs to be of compatible data type as referenced in
sharedAxisType

5

869 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1021] A CompuMethod shall specify instructions for both directions

[constr_1022] Limits shall be defined for each direction of CompuMethod

[constr_1023] Specification of Units in CompuMethods

[constr_1024] Stepwise definition of CompuMethods

[constr_1025] Avoid division by zero in rational formula

[constr_1026] Compatibility of Units

[constr_1027] Types for record layouts

[constr_1029] ConstantSpecificationMapping and ConstantSpecification

[constr_1030] ParameterSwComponentType references ConstantSpecificationMap-
pingSet

[constr_1031] NvBlockSwComponentType references ConstantSpecificationMappingSet

[constr_1032] DelegationSwConnector can only connect PortPrototypes of the same kind

[constr_1033] Communication scenarios for sender/receiver communication
[constr_1035] Recursive definition of CompositionSwComponentType
[constr_1036] Connect kinds of PortInterfaces
[constr_1037] Client may not connect to multiple servers

[constr_1038] Reference to ApplicationError

[constr_1039] Relevance of swImplPolicy
[constr_1040] Conversion of SenderReceiverInterfaces
[constr_1041] Conversion of ClientServerInterfaces
[constr_1042] Definition of a linear data scaling

[constr_1043] PortInterface vs. ComSpec

[constr_1044] Applicability of DataFilter

[constr_1045] Supported value encodings for SwBaseType in the context of PortInterfaces

[constr_1046] Applicability of [constr_1045]

[constr_1047] Compatibility of ApplicationPrimitiveDataTypes

[constr_1048] Compatibility of ApplicationRecordDataTypes

[constr_1049] Compatibility of ApplicationArrayDataTypes

[constr_1050] Compatibility of ImplementationDataTypes

[constr_1051] Compatibility of SwDataDefProps

[constr_1052] Compatibility of Units

[constr_1053] Compatibility of PhysicalDimensions

[constr_1054] No DataConstr available at the provider

[constr_1055] ImplementationDataType has category VALUE
[constr_1056] ImplementationDataType has category TYPE_REFERENCE
[constr_1057] ImplementationDataType has category DATA_REFERENCE
[constr_1058] ImplementationDataType has category FUNCTION_REFERENCE

[constr_1059] Compatibility of data types with category VALUE

[constr_1060] Compatibility of data types with category ARRAY, VAL_BLK, or STRING
5

870 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1061] Compatibility of data types with category STRUCTURE

[constr_1062] Compatibility of data types with category BIT

[constr_1063] Compatibility of data types with category BOOLEAN

[constr_1064] Compatibility of data types with category COM_AXIS, RES_AXIS, CURVE or MAP

[constr_1066] ApplicationDataType is or is not compatible to specific Implementation-
DataType

[constr_1067] ApplicationDataType is or is not compatible to specific Implementation-
DataType

[constr_1068] Compatibility of VariableDataPrototypes or ParameterDataPrototypes
typed by primitive data types

[constr_1069] Compatibility of PortPrototypes of different DataInterfaces in the context of
AssemblySwConnectors

[constr_1070] Compatibility of PortPrototypes of different DataInterfaces in the context of
DelegationSwConnectors

[constr_1071] compatibility of compatibility of ParameterDataPrototype and VariableDat-
aPrototype

[constr_1072] Compatibility of ModeSwitchInterfaces in the context of an AssemblySwCon-
nector

[constr_1073] Compatibility of ModeSwitchInterfaces in the context of an DelegationSwCon-
nector

[constr_1074] Compatibility of ModeDeclarationGroupPrototypes

[constr_1075] Compatibility of ModeDeclarationGroups

[constr_1076] Compatibility of ArgumentDataPrototypes

[constr_1077] Compatibility of ApplicationErrors

[constr_1078] Compatibility of ClientServerOperations

[constr_1079] Compatibility of ClientServerInterfaces in the context of an AssemblySwCon-
nector

[constr_1080] Compatibility of ClientServerInterfaces in the context of an Delegation-
SwConnector

[constr_1081] Compatibility of TriggerInterfaces in the context of an AssemblySwConnector

[constr_1082] Compatibility of TriggerInterfaces in the context of an DelegationSwConnec-
tor

[constr_1083] Compatibility of Triggers

[constr_1084] delegation of an provided outer PortPrototype

[constr_1085] Compatibility in the case of a flat ECU extract

[constr_1086] SwConnector between two specific PortPrototypes

[constr_1087] AssemblySwConnector inside CompositionSwComponentType

[constr_1088] DelegationSwConnector inside CompositionSwComponentType

[constr_1090] WaitPoint and RunnableEntity

[constr_1091] RTEEvents that can unblock a WaitPoint

[constr_1092] ParameterSwComponentType

[constr_1093] Definition of textual strings
5

871 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1094] Usage of symbol of RunnableEntity

[constr_1095] Values of nDataSets vs. reliability
[constr_1096] SwcModeSwitchEvent and WaitPoint

[constr_1097] RunnableEntity that has a WaitPoint

[constr_1098] Mode switch and mode disabling

[constr_1099] Data type of inter-runnable variables

[constr_1100] Unconnected RPortPrototype typed by a DataInterface

[constr_1101] Mode-related communication
[constr_1102] ApplicationError in the scope of one SwComponentType

[constr_1103] NonqueuedReceiverComSpec and enableUpdate

[constr_1104] Trigger sink and trigger source

[constr_1105] Value of arraySize
[constr_1106] Structure shall have at least one element
[constr_1107] Union shall have at least one element
[constr_1108] Value of ApplicationError.errorCode

[constr_1109] Mapping of SwComponentPrototypes typed by a SensorActuatorSwCompo-
nentType

[constr_1110] Value of category in EndToEndDescription

[constr_1111] Constraints of dataId in PROFILE_01
[constr_1112] Constraints of dataIdMode in PROFILE_01
[constr_1113] Existence of attributes in PROFILE_01
[constr_1114] Constraints of crcOffset in PROFILE_01
[constr_1115] Constraints of counterOffset in PROFILE_01
[constr_1116] Constraints of dataLength in PROFILE_01
[constr_1117] Constraints of maxDeltaCounterInit in PROFILE_01
[constr_1118] Existence of attributes in PROFILE_02
[constr_1119] Constraints of dataLength in PROFILE_02
[constr_1120] Constraints of dataId in PROFILE_02
[constr_1121] Constraints of maxDeltaCounterInit in PROFILE_02
[constr_1122] Existence of attributes in PROFILE_03
[constr_1123] Constraints of dataLength in PROFILE_03
[constr_1124] Constraints of dataId in PROFILE_03
[constr_1125] Constraints of maxDeltaCounterInit in PROFILE_03
[constr_1126] Compatibility of DataConstrs

[constr_2000] Compatibility of ClientServerOperations triggering the same RunnableEntity

[constr_2001] Initial value for a specific implicitInterRunnableVariable or explicitIn-
terRunnableVariable

[constr_2002] Referenced VariableDataPrototype from AutosarVariableRef of Vari-
ableAccess in role dataReadAccess

[constr_2003] Referenced VariableDataPrototype from AutosarVariableRef of Vari-
ableAccess in role dataWriteAccess

5

872 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_2004] Referenced VariableDataPrototype from AutosarVariableRef of Vari-
ableAccess in role dataSendPoint

[constr_2005]
Referenced VariableDataPrototype from AutosarVariableRef of Vari-
ableAccess in role dataReceivePointByValue or dataReceivePointB-
yArgument

[constr_2006] Number of AsynchronousServerCallResultPoint referencing to one Asyn-
chronousServerCallPoint

[constr_2007] Consistency of typeDefinition attribute

[constr_2009] Supported kinds of ports of a NvBlockSwComponentType

[constr_2010] Connections between SwComponentPrototypes of type NvBlockSwComponent-
Type

[constr_2011]
Connections between SwComponentPrototypes typed by NvBlockSwCompo-
nentType and SwComponentPrototypes typed by other AtomicSwComponent-
Types

[constr_2012] Compatibility of ImplementationDataTypes used for ramBlock and romBlock

[constr_2013] Compatibility of ImplementationDataTypes for NvBlockDataMapping

[constr_2014] Limitation of RoleBasedPortAssignment.role in NvBlockDescriptors
[constr_2015] Limitation of SwcInternalBehavior of a NvBlockSwComponentType

[constr_2016] Connections between SwComponentPrototypes of type ServiceProxySwCom-
ponentType

[constr_2017] Ports of ServiceProxySwComponentTypes

[constr_2018] Supported remote communication of a ServiceProxySwComponentType

[constr_2019] ServiceSwComponentType shall have service ports only

[constr_2020] dataReadAccess can not be used for queued communication

[constr_2021] WaitPoint referencing a DataReceivedEvent can not be used for non-queued
communication

[constr_2022] Mutually exclusive use of SynchronousServerCallPoints and Asyn-
chronousServerCallPoints

[constr_2023] Consistency of timeout values

[constr_2024] enableTakeAddress is restricted to single instantiation

[constr_2025] Uniqueness of symbol attributes

[constr_2026] Referenced VariableDataPrototype from AutosarVariableRef of Vari-
ableAccess in role writtenLocalVariable and readLocalVariable

[constr_2027] SwcServiceDependency shall be defined for service ports only

[constr_2028] staticMemory is restricted to single instantiation

[constr_2029] shortName of constantMemory and staticMemory

[constr_2030] AsynchronousServerCallResultPoint combined with WaitPoint shall belong
to the same RunnableEntity

[constr_2031] Period of TimingEvent shall be greater than 0

[constr_2032] transmissionAcknowledge requires a DataSendCompletedEvent

[constr_2033] Timeout of DataSendCompletedEvent
[constr_2500] PortInterfaces shall be of same kind

5

873 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_2526] PortInterfaces need to be compatible to the blueprints

[constr_2527] Blueprints shall live in package of a proper category

[constr_2528] PortPrototypes shall not refer to blueprints of PortInterfaces

[constr_2529] Blueprints of ports and interfaces shall be compatible

[constr_2533] Iteration along output axis is only supported for VALUE and VAL_BLK

[constr_4000] Local communication of mode switches
[constr_4001] Content of ModeRequestTypeMap

[constr_4002] Unambiguous mapping of modes to data types

[constr_4003] Semantics of SwcModeSwitchEvent
[constr_4004] Context of SenderReceiverAnnotation
[constr_4005] Context of ClientServerAnnotation
[constr_4006] Context of ParameterPortAnnotation
[constr_4007] Context of ModePortAnnotation
[constr_4008] Context of TriggerPortAnnotation
[constr_4009] Context of NvDataPortAnnotation
[constr_4010] Context of DelegatedPortAnnotation
[constr_4011] ComSpec and ModeSwitchedAckEvent

[constr_4012] Timeout of ModeSwitchedAckEvent
[constr_4035] ValueSpecification shall fit into data type

Table C.1: Added Constraints in R4.0.1

C.1.3 Deleted Constraints in R4.0.1

N/A

C.2 Constraint History of this Document according to AUTOSAR
R4.0.2

C.2.1 Changed Constraints in R4.0.2

Number Heading

[constr_1007] Allowed attributes of SwDataDefProps for ApplicationDataTypes

[constr_1061] Compatibility of data types with category STRUCTURE

[constr_2001] Initial value for a specific implicitInterRunnableVariable or explicitIn-
terRunnableVariable

Table C.2: Changed Constraints in R4.0.2

874 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.2.2 Added Constraints in R4.0.2

Number Heading

[constr_1127] ServiceSwComponentType shall not have ServiceNeeds

[constr_1128] Queue length of ClientServerOperations associated with the same
RunnableEntity

[constr_1129] swImplPolicy and NonqueuedReceiverComSpec

[constr_1130] swImplPolicy and NonqueuedReceiverComSpec

[constr_1131] swImplPolicy and NonqueuedSenderComSpec

[constr_1132] swImplPolicy and NonqueuedSenderComSpec

[constr_1133] Identical CompuScale Symbolic Names shall have the same range

[constr_1134] Allowed structure of TEXTTABLE
[constr_1135] Limit of vt in BITFIELD_TEXTTABLE

[constr_1136] Compatibility of introduction of blueprint and blueprinted element

[constr_1137] Applicability of ParameterInterface

[constr_1138] assignedPort and DiagEventDebounceMonitorInternal

[constr_1139] assignedPort of DiagEventDebounceMonitorInternal shall refer to an
RPortPrototype

[constr_2034] SwAddrMethod referenced by RunnableEntitys or BswSchedulableEntitys

[constr_2035] swImplPolicy for VariableDataPrototype in SenderReceiverInterface

[constr_2036] swImplPolicy for VariableDataPrototype in NvDataInterface

[constr_2037] swImplPolicy for VariableDataPrototype in the role ramBlock

[constr_2038] swImplPolicy for VariableDataPrototype in the role implicitInter-
RunnableVariable

[constr_2039] swImplPolicy for VariableDataPrototype in the role explicitInter-
RunnableVariable

[constr_2040] swImplPolicy for VariableDataPrototype in the role arTypedPerInstance-
Memory

[constr_2041] swImplPolicy for VariableDataPrototype in the role staticMemory

[constr_2042] swImplPolicy for ParameterDataPrototype in ParameterInterface

[constr_2043] swImplPolicy for ParameterDataPrototype in the role staticMemory

[constr_2044] swImplPolicy for ParameterDataPrototype in the role sharedParameter

[constr_2045] swImplPolicy for ParameterDataPrototype in the role perInstanceParam-
eter

[constr_2046] swImplPolicy for ParameterDataPrototype in the role constantMemory

[constr_2047] swImplPolicy for ArgumentDataPrototype
[constr_2048] swImplPolicy for SwServiceArg

[constr_2535] Target of an autosarParameter in AutosarParameterRef shall refer to a param-
eter

[constr_2536] Target of an autosarVariable in AutosarVariableRef shall refer to a variable

Table C.3: Added Constraints in R4.0.2

875 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.2.3 Deleted Constraints in R4.0.2

Number Heading

[constr_1099] Data type of inter-runnable variables

Table C.4: Deleted Constraints in R4.0.2

C.3 Constraint History of this Document according to AUTOSAR
R4.0.3

C.3.1 Changed Constraints in R4.0.3

Number Heading

[constr_1006] applicable data categorys

[constr_1009] SwDataDefProps applicable to ImplementationDataTypes

[constr_1014] Supported value encodings for SwBaseType

[constr_1015] Prioritization of SwDataDefProps
[constr_1043] PortInterface vs. ComSpec

[constr_1051] Compatibility of SwDataDefProps

[constr_1053] Compatibility of PhysicalDimensions

[constr_1063] Compatibility of data types with category BOOLEAN

[constr_1110] Value of category in EndToEndDescription

[constr_1113] Existence of attributes in PROFILE_01
[constr_1118] Existence of attributes in PROFILE_02
[constr_1134] Allowed structure of TEXTTABLE
[constr_2000] Compatibility of ClientServerOperations triggering the same RunnableEntity

[constr_2027] SwcServiceDependency shall be defined for service ports only

Table C.5: Changed Constraints in R4.0.3

C.3.2 Added Constraints in R4.0.3

Number Heading

[constr_1140] Combination of invalidValue with the attribute handleInvalid

[constr_1141] Applicability of the scope attribute

[constr_1142] category of CompuMethod shall not be extended
[constr_1143] category of AutosarDataType shall not be extended

[constr_1144] SensorActuatorSwComponentType, EcuAbstractionSwComponentType, and
ComplexDeviceDriverSwComponentType may only reference a HwType

5

876 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1145] Finding the symbol for the representation of a CompuScale in C code

[constr_1146] Applicability of a symbol for a CompuScale in C code

[constr_1147] Standardized values for the attribute category of meta-class PortGroup

[constr_1148] PortInterfaces of PortPrototypes used to connect to NvBlockSwCompo-
nentTypes

[constr_1149] PortPrototypes used for NV data management

[constr_1150] Usage of valueType for PortDefinedArgumentValue

[constr_1151] Applicability of PortInterfaceMapping

[constr_1151] category of ApplicationArrayElement and AutosarDataType referenced in
the role type shall be kept in sync

[constr_1153] Applicability of compatibility requirements for CompuScales

[constr_1154] Compatibility of CompuScales for sender-receiver communication and similar use
cases

[constr_1155] Compatibility of CompuScales for client-server communication

[constr_1156] Relevance of “names” of CompuScales

[constr_1157] Applicability of constraints of CompuScales

[constr_1158] Applicable categorys for attribute compuMethod

[constr_1159] Consistency of VariableAndParameterInterfaceMapping with respect to the
referenced DataInterfaces

[constr_1160] Size of Compound Primitive Data Type is variant

[constr_1161] Applicability of the index attribute of Ref

[constr_1162] Compatibility of SwRecordLayouts

[constr_1163] Compatibility of CompuMethods

[constr_1164] Number of arguments owned by a RunnableEntity

[constr_1165] Applicability of RunnableEntityArgument

[constr_1166] Restrictions of ModeRequestTypeMap

[constr_1167] ImplementationDataTypes used as ModeRequestTypeMap.implementa-
tionDataType

[constr_1168] Compatibility of ImplementationDataTypes used used in the ModeRequest-
TypeMap

[constr_1169] Allowed values for Trigger.swImplPolicy

[constr_1170] Interpretation of attribute maxDeltaCounterInit owned by EndToEndDescrip-
tion

[constr_1171] Interpretation of attribute maxDeltaCounterInit of EndToEndDescription

[constr_1172] Allowed values of SwCalibrationAccessEnum for ModeDeclarationGroup-
Prototype

[constr_1173] Applicability of AutosarParameterRef referencing a VariableDataPrototype

[constr_1174] PortInterfaces used in the context of CompositionSwComponentTypes cannot
refer to AUTOSAR services

[constr_1175] Depending on its category, CompuMethod shall refer to a unit

[constr_1176] Compatibility of CompuScales of category LINEAR and RAT_FUNC

5

877 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1177] Allowed category for SwPointerTargetProps

[constr_1178] Existence of attributes of SwDataDefProps in the context of Implementation-
DataType

[constr_1179] Existence of ModeDeclaration.value within a ModeDeclarationGroup

[constr_1180] Existence of ModeDeclarationGroup.onTransitionValue

[constr_1181] Numerical values used in ModeDeclaration.value and ModeDeclara-
tionGroup.onTransitionValue

[constr_1182] Allowed values for InternalTriggeringPoint.swImplPolicy

[constr_1183] EndToEndProtectionVariablePrototypes aggregated by EndToEndProtec-
tion

[constr_1184] Consistency of rootDataPrototype and base in the context of Application-
CompositeElementInPortInterfaceInstanceRef

[constr_1185] Consistency of data types in the context of ApplicationCompositeElementIn-
PortInterfaceInstanceRef

[constr_1186] Consistency of data types in the context of ArVariableInImplementation-
DataInstanceRef

[constr_1187] Compatibility of VariableDataPrototypes or ParameterDataPrototypes
typed by composite data types

[constr_1188] Existence of ReceiverComSpec.replaceWith

[constr_1189] Allowed targets of externalReplacement

[constr_1190] Only one mapping for composite to primitive use case

[constr_2049] Different ModeDeclarationGroups shall have different shortNames.

[constr_2050] Mandatory information of a SwAxisCont

[constr_2051] Mandatory information of a SwValueCont

[constr_2052] Values of swArraysize and the number of values provided by swValuesPhys shall
be consistent.

[constr_2053] Consistency between role IUMPRNumerator and ObdRatioServiceNeeds.con-
nectionType

[constr_2544] Limits need to be consistent
[constr_2545] invalidValue shall fit in the specified ranges

[constr_2548] Data constraint of value axis shall match
[constr_2549] Units of input axis shall be consistent

[constr_2550] Units of value axis shall be consistent
[constr_2551] SwCalprmAxis.baseType shall be ignored

[constr_2561] Application of DataConstrRule.constrLevel

Table C.6: Added Constraints in R4.0.3

878 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.3.3 Added Specification Items in R4.0.3

Number Heading

[TPS_SWCT_01000] Usage of attribute symbol of the symbolProps

[TPS_SWCT_01001] Prefix symbols generated for the RunnableEntity

[TPS_SWCT_01002] SwComponentTypes may only interact by means of their PortPrototypes

[TPS_SWCT_01003] Inconsistencies regarding the value of serviceKind and the actual imple-
mentation of the PortInterface

[TPS_SWCT_01004] Default value if serviceKind is not defined
[TPS_SWCT_01005] Usage of SwcServiceDependencys for vendor-specific services

[TPS_SWCT_01006] arraySize of ImplementationDataType shall be used to define the size
of the array

[TPS_SWCT_01007] Semantics of array index

[TPS_SWCT_01008]
Definition of positive integer values that are directly taken over by the RTE
generator for creating the programmatic representations of the ModeDecla-
ration

[TPS_SWCT_01009]
The numerical values used to define the values of ModeDeclaration.value
and ModeDeclarationGroup.onTransitionValue can be arbitrarily de-
fined

[TPS_SWCT_01010] categorys for the definition of a ModeDeclarationGroup

[TPS_SWCT_01011] Default category of a ModeDeclarationGroup

[TPS_SWCT_01012] AtomicSwComponentType reads the current ECU mode (fixed variant)

[TPS_SWCT_01013] AtomicSwComponentType shall keep the ECU alive (fixed variant)

[TPS_SWCT_01014] AtomicSwComponentType wants to select a shutdown target (fixed variant)

[TPS_SWCT_01015] AtomicSwComponentType wants to select a boot target (fixed variant)

[TPS_SWCT_01016] AtomicSwComponentType wants to select a shutdown target (flexible vari-
ant)

[TPS_SWCT_01017] AtomicSwComponentType wants to select a boot target (flexible variant)

[TPS_SWCT_01018] AtomicSwComponentType wants to use an alarm clock (flexible variant)

[TPS_SWCT_01019] AtomicSwComponentType reads the current ComM mode

[TPS_SWCT_01020] AtomicSwComponentType requests a ComM mode. It may also check later
whether the requested ComM mode has become effective

[TPS_SWCT_01021] AtomicSwComponentType acts as a mode manager that influences the ECU
state

[TPS_SWCT_01022] Queued processing of internal trigger

[TPS_SWCT_01023] Mapping of elements of composite data types

[TPS_SWCT_01024] Combination of ApplicationCompositeDataType and nested Implemen-
tationDataType

[TPS_SWCT_01025] The role of PortPrototypes in the AUTOSAR architecture

[TPS_SWCT_01026] The role of PortInterfaces in the AUTOSAR architecture
[TPS_SWCT_01027] Different flavors of PortInterfaces
[TPS_SWCT_01028] AtomicSwComponentType implements a Diagnostic Monitor

5

879 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01029] AtomicSwComponentType implements a Diagnostic Monitor

[TPS_SWCT_01030] RunnableEntity

[TPS_SWCT_01031] ExclusiveArea

[TPS_SWCT_01032] CompositionSwComponentType

[TPS_SWCT_01033] Nested definition of CompositionSwComponentTypes

[TPS_SWCT_01034] CompositionSwComponentTypes do not have any binary footprint

[TPS_SWCT_01035] CompositionSwComponentType aggregates SwComponentPrototypes

[TPS_SWCT_01036] SwComponentPrototype implements a specific role

[TPS_SWCT_01037] arbitrary numbers of SwComponentPrototypes can be created

[TPS_SWCT_01038] Support for Variant Handling in the in Software Component Tem-
plate

[TPS_SWCT_01039] Purpose of variant handling

[TPS_SWCT_01040] SwConnector exists depending on a PostBuild condition

[TPS_SWCT_01041] API functions of not existing SwConnector are still part of the software-
component’s implementation

[TPS_SWCT_01042] Four types of locations in the meta-model which may exhibit variability

[TPS_SWCT_01043] ApplicationSwComponentTypes are independent from actual ECU Hard-
ware

[TPS_SWCT_01044] ServiceNeeds

[TPS_SWCT_01045] Actual values of ECU configuration parameters fulfill the requirements given by
the ServiceNeeds

[TPS_SWCT_01046] ServiceNeeds are defined in the scope of the SwcInternalBehavior

[TPS_SWCT_01047] Reference from the software representation of a sensor/actuator to the actual
hardware element

[TPS_SWCT_01048] SensorActuatorSwComponentType may use the I/O hardware abstraction
directly

[TPS_SWCT_01049] Two ways to use the ExclusiveAreas

[TPS_SWCT_01050] RunnableEntity always runs inside an ExclusiveArea

[TPS_SWCT_01051] RunnableEntity explicitly enters and leaves a specific ExclusiveArea

[TPS_SWCT_01052] Inter-runnable variable
[TPS_SWCT_01053] Relationship of interchanged data with RunnableEntitys

[TPS_SWCT_01054] Semantics of the explicitInterRunnableVariable

[TPS_SWCT_01055] Semantics of implicitInterRunnableVariable

[TPS_SWCT_01056] Physical dimension

[TPS_SWCT_01057] Unit references one physical dimension

[TPS_SWCT_01058] UnitGroup

[TPS_SWCT_01059] Exponent for each of the seven fundamental dimensions

[TPS_SWCT_01060] Negative exponents

[TPS_SWCT_01061] Conversion of units
[TPS_SWCT_01062] Documentation of software-components

5

880 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01063] PortGroup

[TPS_SWCT_01064] PortGroups have to be defined on the VFB level

[TPS_SWCT_01065] PortPrototype may belong to more than one PortGroups

[TPS_SWCT_01066] PortGroups can be associated with certain ServiceNeeds

[TPS_SWCT_01067] Initial mode
[TPS_SWCT_01068] Units can be grouped with the help of UnitGroup

[TPS_SWCT_01069] DataInterface is defined as abstract base class
[TPS_SWCT_01070] PortInterface acts as a type for a PortPrototype

[TPS_SWCT_01071] ModeDeclaration

[TPS_SWCT_01072] ApplicationDataType and ImplementationDataType

[TPS_SWCT_01073] Composite ApplicationDataType

[TPS_SWCT_01074] Composite ImplementationDataType

[TPS_SWCT_01075] SwcInternalBehavior

[TPS_SWCT_01076] Number of elements of a specific ApplicationArrayDataType might vary
at run-time

[TPS_SWCT_01077] Configure the response to mode changes

[TPS_SWCT_01078] Configurable array size

[TPS_SWCT_01079] SwConnector

[TPS_SWCT_01080] Delegation ports

[TPS_SWCT_01081] Implications of being a delegation port

[TPS_SWCT_01082] AssemblySwConnector

[TPS_SWCT_01083] DelegationSwConnector

[TPS_SWCT_01084] Outer PortPrototype is referenced by multiple DelegationSwConnec-
tors

[TPS_SWCT_01085] Variation on the behavior level
[TPS_SWCT_01086] Request mode change

[TPS_SWCT_01087] Propagation of mode information

[TPS_SWCT_01088] ComSpecs defined by CompositionSwComponentTypes

[TPS_SWCT_01089] end-to-end communication protection

[TPS_SWCT_01090] EndToEndProtection

[TPS_SWCT_01091] Two cases for end-to-end protection

[TPS_SWCT_01092] EndToEndProtectionSet

[TPS_SWCT_01093] Definition of end-to-end protection is splitable

[TPS_SWCT_01094] category of EndToEndDescription

[TPS_SWCT_01095] category set to NONE

[TPS_SWCT_01096] PortGroup

[TPS_SWCT_01097] CompositionSwComponentType cannot have RunnableEntitys

[TPS_SWCT_01098] Only AtomicSwComponentType can have RunnableEntitys

[TPS_SWCT_01099] PortInterfaceMapping

5

881 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01100] Precedence of PortInterfaceMapping

[TPS_SWCT_01101] Unmapped elements of PortInterfaces

[TPS_SWCT_01102] VariableAndParameterInterfaceMapping

[TPS_SWCT_01103] Mapping between different kinds of PortInterfaces

[TPS_SWCT_01104] Possible mappings are restricted by the swImplPolicy

[TPS_SWCT_01105] ClientServerInterfaceMapping

[TPS_SWCT_01106] ClientServerOperation

[TPS_SWCT_01107] swMinAxisPoints and swMaxAxisPoints represent variation points

[TPS_SWCT_01108] Added value of an AtomicSwComponentType

[TPS_SWCT_01109] Adding the SwcInternalBehavior in a later process step

[TPS_SWCT_01110] Symbolic name of a software-component

[TPS_SWCT_01111] PortPrototypes need an additional model artifact, the PortInterface

[TPS_SWCT_01112] PortPrototypes are either require- or provide-ports.

[TPS_SWCT_01113] Connecting two PortPrototypes

[TPS_SWCT_01114] SenderReceiverInterface

[TPS_SWCT_01115] invalidationPolicy

[TPS_SWCT_01116] swImplPolicy

[TPS_SWCT_01117] Communication patterns for sender-receiver communication

[TPS_SWCT_01118] ClientServerInterface

[TPS_SWCT_01119] Direction of ArgumentDataPrototypes

[TPS_SWCT_01120] Client needs to provide ArgumentDataPrototypes

[TPS_SWCT_01121] Pass correct data type

[TPS_SWCT_01122] Synchronous call of ClientServerOperation

[TPS_SWCT_01123] No default values for ArgumentDataPrototypes

[TPS_SWCT_01124] Definition of ArgumentDataPrototypes within the context of a
ClientServerOperation is ordered

[TPS_SWCT_01125] serverArgumentImplPolicy

[TPS_SWCT_01126] Access to partial networking via BswM

[TPS_SWCT_01127] Byte arrary with variable size

[TPS_SWCT_01128] SwRecordLayout needed

[TPS_SWCT_01129] Express diagnostic capabilities

[TPS_SWCT_01130] Measurement and calibration access to model elements is defined by swCal-
ibrationAccess

[TPS_SWCT_01131] AtomicSwComponentType accepts a request to restart an entire function

[TPS_SWCT_01132] AtomicSwComponentType provides information about operating cycles

[TPS_SWCT_01133] AtomicSwComponentType provides information about aging cycles

[TPS_SWCT_01134] AtomicSwComponentType enables storage of DTCs in general

[TPS_SWCT_01135] AtomicSwComponentType enables storage of subsequent DTCs

[TPS_SWCT_01136] AtomicSwComponentType retrieves information from the fault storage
5

882 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01137] Dem provides information that the fault storage overflows

[TPS_SWCT_01138] AtomicSwComponentType suppresses the storage of DTCs within the Dem

[TPS_SWCT_01139] AtomicSwComponentType informs the Dem that the PTO is active

[TPS_SWCT_01140] AtomicSwComponentType needs information about specific DTC without be-
ing a diagnostic monitor

[TPS_SWCT_01141] AtomicSwComponentType may have RPortPrototypes typed by an Nv-
DataInterface

[TPS_SWCT_01142] non-volatile data are provided by a specialized AtomicSwComponentType

[TPS_SWCT_01143] Non-volatile data represented by an NvBlockComponent can be read and writ-
ten

[TPS_SWCT_01144] NvBlockDescriptor specifies the properties of exactly one NvBlock

[TPS_SWCT_01145] ramBlock and the romBlock are described by a VariableDataPrototype
and a ParameterDataPrototype

[TPS_SWCT_01146] romBlock is optional

[TPS_SWCT_01147] No romBlock is configured

[TPS_SWCT_01148] NvBlockDataMapping

[TPS_SWCT_01149] RoleBasedPortAssignment of NvBlockDescriptor

[TPS_SWCT_01150] InternalBehavior of a NvBlockSwComponentType

[TPS_SWCT_01151] RunnableEntitys do not have further attributes

[TPS_SWCT_01152] InternalBehavior does not have further attributes
[TPS_SWCT_01153] IncludedModeDeclarationGroupSet

[TPS_SWCT_01154] Attribute prefix of IncludedModeDeclarationGroupSet

[TPS_SWCT_01155] IncludedDataTypeSet

[TPS_SWCT_01156] Required if the AutosarDataType is not used for any DataPrototype

[TPS_SWCT_01157] Attribute literalPrefix of IncludedDataTypeSet

[TPS_SWCT_01158] Three cases for PortInterfaceMapping

[TPS_SWCT_01159] Mapping is described separately from the SwConnector as reusable AREle-
ment

[TPS_SWCT_01160] ModeInterfaceMapping

[TPS_SWCT_01161] TriggerInterfaceMapping

[TPS_SWCT_01162] Conditional existence of TextTableMapping

[TPS_SWCT_01163] Conversion from firstValue to secondValue

[TPS_SWCT_01164] Conversion from secondValue to firstValue

[TPS_SWCT_01165] Invertible mapping

[TPS_SWCT_01166] Non-invertible mapping

[TPS_SWCT_01167] Validity of ModeInterfaceMapping

[TPS_SWCT_01168] Linear conversion factor can be calculated
[TPS_SWCT_01169] Support for partial networking

[TPS_SWCT_01170] Purpose of Virtual Function Cluster

[TPS_SWCT_01171] Purpose of a control port
5

883 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01172] Requesting and releasing partial networks

[TPS_SWCT_01173] Control port shall not become a part of the PortGroup

[TPS_SWCT_01174] Status port shall not become a member of the PortGroup

[TPS_SWCT_01175] Actively query the status of a partial network

[TPS_SWCT_01176] last-is-best semantics for sender-receiver communication
[TPS_SWCT_01177] Assignment of constant values

[TPS_SWCT_01178] Specialized subclasses of ValueSpecification

[TPS_SWCT_01179] Compound Primitive Data Type

[TPS_SWCT_01180] Maximum possible size of Compound Primitive Data Type

[TPS_SWCT_01181] Bound model specifies a primitive which is smaller than the maximum defined
by the range of the involved SwSystemconst

[TPS_SWCT_01182] Conceptual levels for the definition of initial values

[TPS_SWCT_01183] Actual value of an initValue shall be interpreted according to the Autosar-
DataType

[TPS_SWCT_01184] ApplicationPrimitiveDataTypes with category VALUE

[TPS_SWCT_01185] initValues for Compound Primitive Data Types

[TPS_SWCT_01186] ConstantSpecificationMapping

[TPS_SWCT_01187] ConstantSpecificationMappingSet referenced by the InternalBe-
havior

[TPS_SWCT_01188] Definition of calibration data sets through RTE-generator and compiler

[TPS_SWCT_01189] DataTypeMap

[TPS_SWCT_01190] ModeRequestTypeMap

[TPS_SWCT_01191] mapped ApplicationDataType and ImplementationDataType shall be
compatible

[TPS_SWCT_01192] Meta-classes that have an association to a DataTypeMappingSet

[TPS_SWCT_01193] Mappings between application and implementation types do not necessarily
have to form a 1:1 relation

[TPS_SWCT_01194] Symbolic name of an ImplementationDataType

[TPS_SWCT_01195] Mapping of composite element to primitive DataPrototype

[TPS_SWCT_01196] Semantics of an external trigger event communication

[TPS_SWCT_01197] TriggerInterface

[TPS_SWCT_01198] Period for periodic triggering

[TPS_SWCT_01199] Queued processing of Triggers

[TPS_SWCT_01200] ModeDeclarationGroupPrototype per ModeSwitchInterface

[TPS_SWCT_01201] CompositionSwComponentType requires and provides the modes that are
required or provided by its contained SwComponentPrototypes

[TPS_SWCT_01202] ApplicationDataType defines a subset of the values used in the Mod-
eDeclarationGroup

[TPS_SWCT_01203] PortPrototype may own port annotations

[TPS_SWCT_01204] GeneralAnnotation

[TPS_SWCT_01205] Typical annotations for sender/receiver communication
5

884 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01206] Min and Max annotations are valid for a certain amount of time

[TPS_SWCT_01207] VariableDataPrototypes use the same application-level Sender-
ReceiverAnnotation

[TPS_SWCT_01208] Grouping for SenderReceiverAnnotation

[TPS_SWCT_01209] ClientServerAnnotation

[TPS_SWCT_01210] IoHwAbstractionServerAnnotation

[TPS_SWCT_01211] Assign several annotations to ArgumentDataPrototype

[TPS_SWCT_01212] ParameterPortAnnotation

[TPS_SWCT_01213] ModePortAnnotation

[TPS_SWCT_01214] TriggerPortAnnotation

[TPS_SWCT_01215] NvDataPortAnnotation

[TPS_SWCT_01216] DelegatedPortAnnotation

[TPS_SWCT_01217] Semantics of DelegatedPortAnnotation.signalFan

[TPS_SWCT_01218] Big picture of ComSpec

[TPS_SWCT_01219] ComSpec for queued and non-queued sender-receiver communication

[TPS_SWCT_01220] initValue defines an initial value that shall be taken if the corresponding
dataElement has not yet been received

[TPS_SWCT_01221] DataFilter

[TPS_SWCT_01222] Applicability of DataFilter

[TPS_SWCT_01223] networkRepresentation defines how a specific dataElement is repre-
sented on a communication bus

[TPS_SWCT_01224] CompuMethods of dataElement and the networkRepresentation are
used for conversion purposes

[TPS_SWCT_01225] RunnableEntity implements the functionality of two or more
ClientServerOperations

[TPS_SWCT_01226] initValue on the level of a ComSpec is relevant for connections to the cor-
responding PortPrototype

[TPS_SWCT_01227] Unconnected RPortPrototype typed by NvDataInterface

[TPS_SWCT_01228] NvProvideComSpec

[TPS_SWCT_01229] Three different levels of abstraction regarding the definition of data types

[TPS_SWCT_01230] Application Data Level

[TPS_SWCT_01231] Application level may impose strong requirements on the design of the corre-
sponding implementation level

[TPS_SWCT_01232] Implementation Data Level

[TPS_SWCT_01233] Use case for the Implementation Data Level

[TPS_SWCT_01234] Base Level

[TPS_SWCT_01235] Mapping of data defined on the Application level to the Implementation and
Base Type level

[TPS_SWCT_01236] Big picture of data types

[TPS_SWCT_01237] SwDataDefProps

[TPS_SWCT_01238] Attribute category used in the context of AutosarDataType
5

885 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01239] default value for attribute category used in the context of AutosarDataType

[TPS_SWCT_01240] Subclasses of ApplicationDataType

[TPS_SWCT_01241] Applicable categorys for subclasses ApplicationDataType

[TPS_SWCT_01242] category characterizes the nature of a data type on application level

[TPS_SWCT_01243] Definition of enumeration types

[TPS_SWCT_01244] Data types for calibration parameters are also described as primitive types

[TPS_SWCT_01245] SwDataDefProps control the structure of calibration parameters

[TPS_SWCT_01246] SwRecordLayout may be required for A2L generation

[TPS_SWCT_01247] ApplicationArrayDataType and ApplicationRecordDataType

[TPS_SWCT_01248] Nested definition of ImplementationDataType

[TPS_SWCT_01249] ApplicationRecordDataType

[TPS_SWCT_01250] ImplementationDataType has been introduced to optimize the formal sup-
port for data type handling on the implementation level

[TPS_SWCT_01251] Limited set of values for category are applicable for Implementation-
DataType

[TPS_SWCT_01252] ImplementationDataType can express concepts not available on applica-
tion level

[TPS_SWCT_01253] Rules apply for the usage of the attribute ImplementationDataType.type-
Emitter

[TPS_SWCT_01254] ImplementationDataType with array semantics

[TPS_SWCT_01255] Indicate whether the array is supposed to have a fixed size or whether the
actual size might change during run-time

[TPS_SWCT_01256] Definition of multi-dimensional array data types

[TPS_SWCT_01257] ImplementationDataType or the aggregated Implementation-
DataTypeElements do not form closed sets

[TPS_SWCT_01258] Definition of a pointer to data

[TPS_SWCT_01259] Definition of a pointer to a function

[TPS_SWCT_01260] SwBaseType

[TPS_SWCT_01261] Use case for SwBaseType

[TPS_SWCT_01262] memAlignment and byteOrder are platform specific

[TPS_SWCT_01263] Further use cases for SwBaseType

[TPS_SWCT_01264] Data prototypes implement a role of a data type

[TPS_SWCT_01265] DataPrototype aggregates an own set of SwDataDefProps

[TPS_SWCT_01266] Three non-abstract classes derived from AutosarDataPrototype

[TPS_SWCT_01267] DataPrototype can be aggregated in different roles

[TPS_SWCT_01268] Definition of initValue for a VariableDataPrototype or a Parameter-
DataPrototype

[TPS_SWCT_01269] In PortInterfaces, initial values defined for DataPrototypes are ignored

[TPS_SWCT_01270] AutosarVariableRef

[TPS_SWCT_01271] AutosarParameterRef

[TPS_SWCT_01272] Semantics of swComparisonVariable
5

886 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01273] Precedence rules for the application of SwDataDefProps

[TPS_SWCT_01274] SwDataDefProps used to support calibration and measurement

[TPS_SWCT_01275] values of the attribute swImplPolicy are restricted depending on the context

[TPS_SWCT_01276] Computation methods

[TPS_SWCT_01277] Computation methods are used for the conversion of internal values into their
physical representation and vice versa

[TPS_SWCT_01278] CompuMethods can also be used to assign symbolic names to internal values

[TPS_SWCT_01279] Preferred conversion direction depends on the use case

[TPS_SWCT_01280] CompuMethod applied to values outside of its limits

[TPS_SWCT_01281] Unit associated with a PhysicalDimension

[TPS_SWCT_01283] Rational function
[TPS_SWCT_01284] CompuScale might require a representation in the generated RTE C code

[TPS_SWCT_01285] Physical dimension

[TPS_SWCT_01286] DataConstr

[TPS_SWCT_01287] Standard limits and extended limits in the ASAM-MCD2 (ASAP2) specification

[TPS_SWCT_01288] Interpretation of PhysConstrs and InternalConstrs by tools

[TPS_SWCT_01289] Semantics of Limit
[TPS_SWCT_01290] SwAddrMethod

[TPS_SWCT_01291] Association of MemorySection with SwAddrMethod

[TPS_SWCT_01292] Usage of SwAddrMethod in the context of a DataPrototype

[TPS_SWCT_01293] RTE Generator has to derive the Memory Allocation Keyword

[TPS_SWCT_01294] Missing SwDataDefProps.swAddrMethod

[TPS_SWCT_01295] SwRecordLayout

[TPS_SWCT_01296] Different approaches of ASAM MCD-2MC and AUTOSAR with respect to
SwRecordLayout

[TPS_SWCT_01297] Compliance of ApplicationDataTypes or ImplementationDataTypes
to swDataDefProps

[TPS_SWCT_01298] Computing SwRecordLayout from ImplementationDataTypes is not pos-
sible

[TPS_SWCT_01299] Relation of swRecordLayoutGroup to subElement

[TPS_SWCT_01300] Relationship between record layouts and interpolation routines

[TPS_SWCT_01301] Importance of initial values

[TPS_SWCT_01302] Semantics of minimumStartInterval
[TPS_SWCT_01303] symbol attribute describes the RunnableEntity’s entry point

[TPS_SWCT_01304] Cat. 1A and 1B RunnableEntitys will eventually terminate

[TPS_SWCT_01305] RunnableEntity as one that cannot be invoked concurrently

[TPS_SWCT_01306] Software-component description itself does not put any bounds on the number
of concurrent invocations of a RunnableEntity

[TPS_SWCT_01307] supportsMultipleInstantiation vs. canBeInvokedConcurrently
5

887 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01308] Combination of supportsMultipleInstantiation=false and can-
BeInvokedConcurrently=false

[TPS_SWCT_01309] signature of a RunnableEntity depends on the connected RTEEvent

[TPS_SWCT_01310] Categories of RunnableEntitys

[TPS_SWCT_01311] Name of an operation argument

[TPS_SWCT_01312] RunnableEntity has a mapping to BswModuleEntry

[TPS_SWCT_01313] Conditions for a transition from suspended to to be started

[TPS_SWCT_01314] RTEEvent

[TPS_SWCT_01315] Interaction of RunnableEntity with RTEEvent

[TPS_SWCT_01316] Abstract base class RTEEvent
[TPS_SWCT_01317] RTE triggers RunnableEntity in response to occurring RTEEvent

[TPS_SWCT_01318] RunnableEntity and WaitPoint

[TPS_SWCT_01319] RTEEvent can be used to trigger WaitPoints in different RunnableEn-
titys

[TPS_SWCT_01320] RunnableEntitys of category 2

[TPS_SWCT_01321] Communication among RunnableEntitys

[TPS_SWCT_01322] Interaction patterns for the application of the sender-receiver paradigm

[TPS_SWCT_01323] Read and write access to a dataElement

[TPS_SWCT_01324] Mode switches need to be completed in finite time

[TPS_SWCT_01325] Read and write access is only applicable for RunnableEntitys of category
1

[TPS_SWCT_01326] Constrain the scope of a specific communication

[TPS_SWCT_01327] RTE generator can omit the creation of checks at run-time

[TPS_SWCT_01328] Default value of attribute scope

[TPS_SWCT_01329] Access to specific data is implemented by means of aggregating the meta-
class VariableAccess in specific roles

[TPS_SWCT_01330] RunnableEntity can also have dataSendPoints

[TPS_SWCT_01331] dataWriteAccess vs. dataSendPoint
[TPS_SWCT_01332] dataReceivePointByValue vs. dataReceivePointByArgument

[TPS_SWCT_01333] dataReceivePointByValue/dataReceivePointByArgument vs.
dataReadAccess

[TPS_SWCT_01334] RunnableEntitys of category 1 may have dataReceivePointByValues/
dataReceivePointByArguments

[TPS_SWCT_01335] Combine dataReceivePointByValue or dataReceivePointByArgu-
ment with a WaitPoint

[TPS_SWCT_01336] dataSendPoint also allows for the definition of a DataSendCompletedE-
vent

[TPS_SWCT_01337] DataReceivedEvent

[TPS_SWCT_01338] DataReceiveErrorEvent

[TPS_SWCT_01339] RTE activates RunnableEntity in response to DataReceiveErrorEvent

[TPS_SWCT_01340] DataReceiveErrorEvent cannot be combined with a WaitPoint
5

888 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01341] DataReceiveErrorEvent is directly associated with the corresponding
VariableDataPrototype

[TPS_SWCT_01342] Invocation of a server operation

[TPS_SWCT_01343] Synchronous vs. asynchronous invocation

[TPS_SWCT_01344] Consistency of values of timeout

[TPS_SWCT_01345] Synchronous operation invocation

[TPS_SWCT_01346] Asynchronous operation invocation

[TPS_SWCT_01347] Blocking access to operation result in an asynchronous operation invocation

[TPS_SWCT_01348] Trigger source

[TPS_SWCT_01349] Trigger sink

[TPS_SWCT_01350] Calibration Parameters shared among several SwComponentTypes

[TPS_SWCT_01351] Access to a ParameterDataPrototype

[TPS_SWCT_01352] Requested mode is just sent and received as an ordinary data value

[TPS_SWCT_01353] RunnableEntitys react on a mode request via a corresponding RTEEvent

[TPS_SWCT_01354] PortAPIOption

[TPS_SWCT_01355] enableTakeAddress = true

[TPS_SWCT_01356] indirectAPI option switches the generation of the RTE’s indirect API func-
tionality

[TPS_SWCT_01357] Definition of implicit values that are passed by the RTE to the server’s entry
point

[TPS_SWCT_01358] Values are hidden from the client components

[TPS_SWCT_01359] Private memory per instance

[TPS_SWCT_01360] Arbitrary number of per-instance memory blocks

[TPS_SWCT_01361] attribute supportsMultipleInstantiation == false

[TPS_SWCT_01362] Initialization of PerInstanceMemory

[TPS_SWCT_01363] PerInstanceMemory typed by ’C’ Data Types

[TPS_SWCT_01364] Initial value of a PerInstanceMemory typed by ’C’ Data Types

[TPS_SWCT_01365] PerInstanceMemory typed by AUTOSAR Data Types

[TPS_SWCT_01366] Initial value of a PerInstanceMemory typed by AUTOSAR Data Types

[TPS_SWCT_01367] Typed by AUTOSAR data type vs. typed by C data type

[TPS_SWCT_01368] Describe static and constant memory

[TPS_SWCT_01369] Static and constant memory is not instantiated by the RTE

[TPS_SWCT_01370] VariationPointProxy

[TPS_SWCT_01371] VariationPointProxy vs. VariationPoint

[TPS_SWCT_01372] bindingTime = preCompileTime

[TPS_SWCT_01373] RTE generator shall evaluate the SwSystemconstDependentFormula

[TPS_SWCT_01374] Implementation of AutosarParameterRef

[TPS_SWCT_01375] Implementation of AutosarVariableRef

[TPS_SWCT_01376] Software-components need to be capable of reacting to state changes
5

889 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01377] Two mechanisms to define how SwcInternalBehavior should interact with
the mode management

[TPS_SWCT_01378] AtomicSwComponentType can define an SwcModeSwitchEvent to execute
RunnableEntity

[TPS_SWCT_01379] AtomicSwComponentType can indicate whether an RTEEvent that starts an
associated RunnableEntity is disabled in a certain mode

[TPS_SWCT_01380] Mode management behavior on the sender side

[TPS_SWCT_01381] Read the currently active mode

[TPS_SWCT_01382] Mode switch requests are handled asynchronously by the RTE

[TPS_SWCT_01383] ModeSwitchPoint

[TPS_SWCT_01384] Execution of initialization code for software-components

[TPS_SWCT_01385] Execution of initialization code for software-components

[TPS_SWCT_01386] Initialization by mode management

[TPS_SWCT_01387] Finalization by mode management

[TPS_SWCT_01388] Initial modes of AtomicSwComponentTypes are defined by the ini-
tialMode

[TPS_SWCT_01389] I/O Hardware Abstraction interfaces MCAL drivers
[TPS_SWCT_01390] I/O Hardware Abstraction might have sub-structures

[TPS_SWCT_01391] I/O Hardware Abstraction abstracts from the location of peripheral I/O
devices

[TPS_SWCT_01392]
Mapping between the EcuAbstractionSwComponentType and the corre-
sponding BswModuleDescription

[TPS_SWCT_01393] Complex Driver

[TPS_SWCT_01394] Complex Driver is represented by the ComplexDeviceDriverSwCompo-
nentType

[TPS_SWCT_01395] ComplexDeviceDriverSwComponentType has dependencies to ECU
Hardware

[TPS_SWCT_01396]
Mapping between the ComplexDeviceDriverSwComponentType and the
corresponding BswModuleDescription

[TPS_SWCT_01397] Hybrid concept between Basic Software Modules and a SwComponent-
Type

[TPS_SWCT_01398] Communication patterns for AUTOSAR services

[TPS_SWCT_01399] Dependency is modeled by aggregating required and provided PortProto-
types

[TPS_SWCT_01400] PortInterface selected from the set of standardized Service Inter-
faces

[TPS_SWCT_01401] Form a top-level RootSwCompositionPrototype

[TPS_SWCT_01402] Mapping of all AtomicSwComponentType instances to EcuInstances

[TPS_SWCT_01403] Impact of AUTOSAR services on the methodology

[TPS_SWCT_01404] Creation of the EcuExtract

[TPS_SWCT_01405] Creation of the ServiceSwComponentTypes

[TPS_SWCT_01406] Creation of SwComponentPrototype typed by a ServiceSwComponent-
Type

5

890 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01407] Creation of InternalBehavior typed by a ServiceSwComponentType

[TPS_SWCT_01408] Creation of SwcBswMapping

[TPS_SWCT_01409] Update of PortDefinedArgumentValues

[TPS_SWCT_01410] Dcm and Dem can directly access dataElements in PPortPrototypes typed
by a SenderReceiverInterface

[TPS_SWCT_01411] Use cases for a ServiceSwComponentType to express ServiceNeeds

[TPS_SWCT_01412] ServiceSwComponentType shall be added in ECU Configuration phase

[TPS_SWCT_01413] Local communication with services

[TPS_SWCT_01414] Mode manager needs to communicate with application software components
located on other ECUs

[TPS_SWCT_01415] Interfaces of ServiceProxySwComponentType

[TPS_SWCT_01416] Difference between a ServiceProxySwComponentType and an Applica-
tionSwComponentType

[TPS_SWCT_01417] Define calibration parameters common to all SwComponentPrototypes of
the same SwComponentType

[TPS_SWCT_01418] Ways to define a calibration parameter

[TPS_SWCT_01419] ParameterSwComponentType shall never aggregate a SwcInternalBe-
havior

[TPS_SWCT_01420] SwComponentType requiring access to shared calibration parameters needs
RPortPrototype typed by a ParameterInterface

[TPS_SWCT_01421] ParameterInterface is not restricted to parameters which can actually can
be calibrated

[TPS_SWCT_01422] Delegation of PortPrototypes typed by a ParameterInterface

[TPS_SWCT_01423] ParameterDataPrototype aggregated in the role constantMemory

[TPS_SWCT_01424] ParameterDataPrototype aggregated in the role perInstanceParame-
ter

[TPS_SWCT_01425] AtomicSwComponentType provides one callback per event if diagnostic
event data change

[TPS_SWCT_01426] AtomicSwComponentType provides callback if any diagnostic event data
and/or status changed

[TPS_SWCT_01427] AtomicSwComponentType provides data for diagnostic purposes via
ClientServerInterface

[TPS_SWCT_01428] ServiceSwComponentType representing the Dem provides a PPortProto-
type for the Dcm

[TPS_SWCT_01429] [constr_1135] only applies for BITFIELD_TEXTTABLE

[TPS_SWCT_01430] Conversion specification from internal to physical values as well as the reverse
conversion

[TPS_SWCT_01431] Finding the symbol for the representation of a CompuScale in C code

[TPS_SWCT_01432] Keep the invalidValue transparent to the sending and receiving software
components

[TPS_SWCT_01433] Invalid values outside the range limits

[TPS_SWCT_01434] Sender and receiver have knowledge of invalid value

[TPS_SWCT_01435] Invalid values outside the range limits
5

891 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01436] Different receivers require different handling of data invalidation

[TPS_SWCT_01437] invalidValue can also be specified without setting a compuMethod

[TPS_SWCT_01438] Handling of invalidation in the sending RTE

[TPS_SWCT_01439] Handling of invalidation in the receiving RTE

[TPS_SWCT_01440] Measurement is not limited to primitive objects

[TPS_SWCT_01441] Nature of a TYPE_REFERENCE

[TPS_SWCT_01442] ImplementationDataType of category TYPE_REFERENCE does not de-
fine own properties

[TPS_SWCT_01443] ImplementationDataType of category TYPE_REFERENCE overwrites
properties of refined ImplementationDataType

[TPS_SWCT_01444] Size of SwBaseType is specified in bits

[TPS_SWCT_01445] Applicability of SwDataDefProps for DataPrototypes

[TPS_SWCT_01446] References to a DataPrototype may or may not imply the necessity for using
an instanceRef

[TPS_SWCT_01447] Applicable binding times for model elements in the scope of the Software
Component Template

[TPS_SWCT_01448] Pre-defined values for the category of VariationPointProxy

[TPS_SWCT_02000] Default value for attribute swImplPolicy

[TPS_SWCT_02001] Values of SwAxisCont with the category COM_AXIS, RES_AXIS are for dis-
play only

[TPS_SWCT_02002]
AtomicSwComponentType offers a PPortPrototypes typed by
ClientServerInterface to read/write current value via diagnostic ser-
vices

[TPS_SWCT_02003] AtomicSwComponentType offers PortPrototypes typed by Sender-
ReceiverInterfaces to read/write current values via diagnostic services

[TPS_SWCT_02004]
AtomicSwComponentType offers a PortPrototype typed by a
ClientServerInterface to start/stop or request routine results of diag-
nostic routines

[TPS_SWCT_02005] AtomicSwComponentType offers PortPrototypes typed by
ClientServerInterfaces to adjust the IO signal via diagnostic services

[TPS_SWCT_02006] AtomicSwComponentType offers sender receiver ports to adjust the IO signal
via diagnostic services

[TPS_SWCT_02007] AtomicSwComponentType implements a OBD system monitor with In-Use-
Monitor Performance Ratio

[TPS_SWCT_02008] AtomicSwComponentType offers a server port to read/write current value via
OBD services

[TPS_SWCT_02009] AtomicSwComponentType offers sender receiver ports to read/write current
values via OBD services

[TPS_SWCT_02010] AtomicSwComponentType offers a server port to read vehicle information
values via OBD services

[TPS_SWCT_02011] AtomicSwComponentType offers a server port to read DTR value via OBD
services

[TPS_SWCT_02012] AtomicSwComponentType offers a server port for request control of on-
board system, test or component via OBD services

5

892 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_02013] AtomicSwComponentType offers a server port to get protocol, session and
security information or to request a Reset to Default Session

[TPS_SWCT_02014] AtomicSwComponentType supports Response On Event (ROE) via diagnos-
tic services

[TPS_SWCT_02015] AtomicSwComponentType verifies the access to security level via diagnostic
services

[TPS_SWCT_02016] AtomicSwComponentType requires information on the status of the protocol
communication and may disallow a protocol

[TPS_SWCT_02017] AtomicSwComponentType requires the notification about a Service Request
via diagnostic services

[TPS_SWCT_02018] Setup for AtomicSwComponentType which contains a Supervised Entity

[TPS_SWCT_02019] Setup for AtomicSwComponentType which requires Global Supervision Sta-
tus notification

[TPS_SWCT_02020] AtomicSwComponentType uses the hash calculation of the Crypto Service

[TPS_SWCT_02021] AtomicSwComponentType uses the message authentication code (MAC)
calculation of the Crypto Service

[TPS_SWCT_02022] AtomicSwComponentType uses the message authentication code (MAC)
verification of the Crypto Service

[TPS_SWCT_02023] AtomicSwComponentType uses the generation of random seed of the Crypto
Service

[TPS_SWCT_02024] AtomicSwComponentType uses the generation of random numbers of the
Crypto Service

[TPS_SWCT_02025] AtomicSwComponentType uses the symmetrical block encryption of the
Crypto Service

[TPS_SWCT_02026] AtomicSwComponentType uses the symmetrical block decryption of the
Crypto Service

[TPS_SWCT_02027] AtomicSwComponentType uses the symmetrical encryption of the Crypto
Service

[TPS_SWCT_02028] AtomicSwComponentType uses the symmetrical decryption of the Crypto
Service

[TPS_SWCT_02029] AtomicSwComponentType uses the asymmetrical encryption of the Crypto
Service

[TPS_SWCT_02030] AtomicSwComponentType uses the asymmetrical decryption of the Crypto
Service

[TPS_SWCT_02031] AtomicSwComponentType uses the signature generation of the Crypto Ser-
vice

[TPS_SWCT_02032] AtomicSwComponentType uses the signature verification of the Crypto Ser-
vice

[TPS_SWCT_02033] AtomicSwComponentType uses the checksum calculation of the Crypto Ser-
vice

[TPS_SWCT_02034] AtomicSwComponentType uses the key derivation of the Crypto Service

[TPS_SWCT_02035] AtomicSwComponentType uses the symmetric key derivation of the Crypto
Service

[TPS_SWCT_02036] AtomicSwComponentType uses the key exchange interface for public value
calculation of the Crypto Service

5

893 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_02037] AtomicSwComponentType uses the key exchange interface for secret value
calculation of the Crypto Service

[TPS_SWCT_02038] AtomicSwComponentType uses the key exchange interface to calculate sym-
metric key with the Crypto Service

[TPS_SWCT_02039] AtomicSwComponentType uses the symmetrical key extraction of the Crypto
Service

[TPS_SWCT_02040] AtomicSwComponentType uses the symmetrical key wrapping of the Crypto
Service to export a symmetrical key structure with a symmetric key

[TPS_SWCT_02041] AtomicSwComponentType uses the asymmetrical key wrapping of the
Crypto Service to export a symmetrical key structure with a asymmetric key

[TPS_SWCT_02042] AtomicSwComponentType uses the asymmetrical public key extraction of the
Crypto Service

[TPS_SWCT_02043] AtomicSwComponentType uses the asymmetrical private key extraction of
the Crypto Service

[TPS_SWCT_02044]
AtomicSwComponentType uses the asymmetrical key wrapping of the
Crypto Service to export a (asymmetric) private key structure with a symmetri-
cal wrapping key

[TPS_SWCT_02045]
AtomicSwComponentType uses the asymmetrical key wrapping of the
Crypto Service to export a (asymmetric) private key structure with a asym-
metrical wrapping key

Table C.7: Added Specification Items in 4.0.3

C.3.4 Deleted Constraints in R4.0.3

Number Heading

[constr_1023] Specification of Units in CompuMethods (the text is still there but it does no longer
represent a constraint)

[constr_1062] Compatibility of data types with category BIT

[constr_1122] Existence of attributes in PROFILE_03
[constr_1123] Constraints of dataLength in PROFILE_03
[constr_1124] Constraints of dataId in PROFILE_03
[constr_1125] Constraints of maxDeltaCounterInit in PROFILE_03
[constr_1127] ServiceSwComponentType shall not have ServiceNeeds

[constr_1136] Compatibility of introduction of blueprint and blueprinted element

The following constraints are moved to [1]

[constr_2500] PortInterfaces shall be of same kind
[constr_2526] PortInterfaces need to be compatible to the blueprints

[constr_2527] Blueprints shall live in package of a proper category

[constr_2528] PortPrototypes shall not refer to blueprints of PortInterfaces

[constr_2529] Blueprints of ports and interfaces shall be compatible
5

894 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_4001] Content of ModeRequestTypeMap

Table C.8: Deleted Constraints in R4.0.3

C.3.5 Deleted Specification Items in R4.0.3

N/A

C.4 Constraint History of this Document according to AUTOSAR
R4.1.1

C.4.1 Changed Constraints in R4.1.1

Number Heading

[constr_1012] Value of category is FIXED_LENGTH
[constr_1013] Value of category is VARIABLE_LENGTH

[constr_1016] Restriction of invalidValue for ImplementationDataType and Implementa-
tionDataTypeElement

[constr_1026] Compatibility of Units

[constr_1047] Compatibility of ApplicationPrimitiveDataTypes

[constr_1048] Compatibility of ApplicationRecordDataTypes

[constr_1049] Compatibility of ApplicationArrayDataTypes

[constr_1050] Compatibility of ImplementationDataTypes

[constr_1060] Compatibility of data types with category ARRAY, VAL_BLK

[constr_1072] Compatibility of ModeSwitchInterfaces in the context of an AssemblySwCon-
nector

[constr_1073] Compatibility of ModeSwitchInterfaces in the context of an DelegationSwCon-
nector

[constr_1074] Compatibility of ModeDeclarationGroupPrototypes

[constr_1075] Compatibility of ModeDeclarationGroups

[constr_1079] Compatibility of ClientServerInterfaces in the context of an AssemblySwCon-
nector

[constr_1080] Compatibility of ClientServerInterfaces in the context of an Delegation-
SwConnector

[constr_1081] Compatibility of TriggerInterfaces in the context of an AssemblySwConnector

[constr_1082] Compatibility of TriggerInterfaces in the context of an DelegationSwConnec-
tor

[constr_1068] Compatibility of VariableDataPrototypes or ParameterDataPrototypes
typed by primitive data types

5

895 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1069] Compatibility of PortPrototypes of different DataInterfaces in the context of
AssemblySwConnectors

[constr_1070] Compatibility of PortPrototypes of different DataInterfaces in the context of
DelegationSwConnectors

[constr_1072] Compatibility of ModeSwitchInterfaces in the context of an AssemblySwCon-
nector

[constr_1073] Compatibility of ModeSwitchInterfaces in the context of an DelegationSwCon-
nector

[constr_1074] Compatibility of ModeDeclarationGroupPrototypes

[constr_1079] Compatibility of ClientServerInterfaces in the context of an AssemblySwCon-
nector

[constr_1080] Compatibility of ClientServerInterfaces in the context of an Delegation-
SwConnector

[constr_1081] Compatibility of TriggerInterfaces in the context of an AssemblySwConnector

[constr_1082] Compatibility of TriggerInterfaces in the context of an DelegationSwConnec-
tor

[constr_1108] Value of ApplicationError.errorCode
[constr_1177] Allowed targetCategory for SwPointerTargetProps

[constr_1187] Compatibility of VariableDataPrototypes or ParameterDataPrototypes
typed by composite data types

Table C.9: Changed Constraints in R4.1.1

C.4.2 Added Constraints in R4.1.1

Number Heading

[constr_1191] Value of Limit shall yield a numerical value

[constr_1192] Compatibility of “IDENTICAL” to “RAT_FUNC” or “LINEAR”

[constr_1193] ModeDeclaration shall be referenced by at least one ModeTransition in the role
enteredMode

[constr_1194] Identical ModeTransitions
[constr_1195] SwcModeSwitchEvent and the definition of ModeTransition

[constr_1196] Existence of networkRepresentation vs. compositeNetworkRepresenta-
tion

[constr_1197] Existence of compositeNetworkRepresentation shall be comprehensive

[constr_1200] Queued communication is not applicable for dataElements owned by PRPortPro-
totype

[constr_1201] initValue shall exist in an RPortPrototype

[constr_1202] Supported connections by AssemblySwConnector for PortPrototypes typed by
a SenderReceiverInterface or NvDataInterface

[constr_1203] Supported connections by DelegationSwConnector for PortPrototypes typed
by a SenderReceiverInterface or NvDataInterface

5

896 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1204] Supported connections by AssemblySwConnector for PortPrototypes typed by
a ClientServerInterface, ModeSwitchInterface, or TriggerInterface

[constr_1205]
Supported connections by DelegationSwConnector for PortPrototypes typed
by a ClientServerInterface, ModeSwitchInterface, or TriggerInter-
face

[constr_1209] Mapping of ModeDeclarations of mode user to ModeDeclaration of mode man-
ager

[constr_1210] Mapping of ModeDeclarations of mode user to all ModeDeclarations of mode
manager

[constr_1211] Constraints of maxNoNewOrRepeatedData in PROFILE_01
[constr_1212] Constraints of syncCounterInit in PROFILE_01
[constr_1213] Constraints of maxNoNewOrRepeatedData in PROFILE_02
[constr_1214] Constraints of syncCounterInit in PROFILE_02

[constr_1215] Interpretation of attribute maxNoNewOrRepeatedData owned by EndToEndDe-
scription in PROFILE_01

[constr_1216] Interpretation of attribute syncCounterInit owned by EndToEndDescription in
PROFILE_01

[constr_1217] Interpretation of attribute maxNoNewOrRepeatedData owned by EndToEndDe-
scription in PROFILE_02

[constr_1218] Interpretation of attribute syncCounterInit owned by EndToEndDescription in
PROFILE_02

[constr_1219] Invalidation depends on the value of swImplPolicy

[constr_1220] Compatibility of SwBaseType

[constr_1221] DataPrototype is typed by an ApplicationPrimitiveDataType

[constr_1222] category of an AutosarDataType used to type a DataPrototype is set to
STRING

[constr_1223] DataPrototype is typed by an ApplicationRecordDataType

[constr_1224] DataPrototype is typed by an ApplicationArrayDataType

[constr_1225] DataPrototype is typed by an ImplementationDataType that references a
CompuMethod of category TEXTTABLE or BITFIELD_TEXTTABLE

[constr_1226] Applicable range for ExecutableEntityActivationReason.bitPosition

[constr_1227] Value of attribute ExecutableEntityActivationReason.bitPosition shall be
unique

[constr_1228] RTEEvent that is referenced by a WaitPoint in the role trigger shall not reference
ExecutableEntityActivationReason

[constr_1229] category of ImplementationDataType boils down to VALUE

[constr_1230] ApplicationDataType that qualifies for Integral Primitive Type

[constr_1231] ConsistencyNeeds aggregated by CompositionSwComponentType

[constr_1232] ConsistencyNeeds aggregated by AtomicSwComponentType

[constr_1233] InstantiationTimingEventProps shall only reference TimingEvent

[constr_1234] Value of RunnableEntity.symbol

[constr_1237] Scope of mapped ClientServerOperations in the context of a ClientServer-
OperationMapping

5

897 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1238] Scope of mapped ApplicationErrors in the context of a ClientServerOpera-
tionMapping

[constr_1239] RuleBasedValueSpecification shall not exceed the number of values required

[constr_1240] Consistency of ArgumentDataPrototypes within the context of a ClientServer-
OperationMapping

[constr_1241] Compound Primitive Data Types and invalidValue

[constr_1242] Restriction of invalidValue for ApplicationPrimitiveDataType
[constr_1243] NumericalOrText shall either define vf or vt
[constr_1244] DataPrototypes used in application software shall not be typed by C enums

[constr_1245] Consideration of ModeTransitions for the compatibility of ModeDeclara-
tionGroups

[constr_1246] Consistency of firstMode and secondMode in the scope of one ModeDeclara-
tionMappingSet

[constr_1247] Consistency of ModeDeclarationMappingSet with respect to the referenced
firstModeGroup and secondModeGroup

[constr_1248] Compatibility of PortPrototypes of different DataInterfaces in the context of a
PassThroughSwConnector

[constr_1249] Compatibility of ModeSwitchInterfaces in the context of a PassThroughSwCon-
nector

[constr_1250] Compatibility of ClientServerInterfaces in the context of a PassThrough-
SwConnector

[constr_1251] Compatibility of PortPrototypes of TriggerInterfaces in the context of a
PassThroughSwConnector

[constr_1252] Creation of a loop involving a PassThroughSwConnector is not allowed

[constr_1253] Supported usage of VariationPointProxy

[constr_1254] Definition of a pointer to a pointer

[constr_1255] ApplicationPrimitiveDataTypes of category BOOLEAN and STRING

[constr_1256] Acknowledgement feedback in n:1 writer case

[constr_1257] No WaitPoints allowed

[constr_1258] Value of minimumStartInterval for RunnableEntitys triggered by an
InitEvent

[constr_1259] Aggregation of AsynchronousServerCallPoint and AsynchronousServer-
CallResultPoint

[constr_1260] No mode disabling for InitEvents

[constr_1261] Applicability for EndToEndDescription.dataIdNibbleOffset

[constr_1263] Existence of ModeErrorBehavior.defaultMode
[constr_1264] Iteration along output axis is only supported for VALUE and VAL_BLK

[constr_1268] ArgumentDataPrototype.direction shall be preserved in a ClientServer-
OperationMapping

[constr_1269] Number of arguments shall be preserved in a ClientServerOperationMapping

[constr_1270] ArgumentDataPrototype shall be mapped only once in a ClientServerOper-
ationMapping

5

898 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1271] ArrayValueSpecification.elements shall be identical to the number of Appli-
cationRecordDataType.element

[constr_1272] ArrayValueSpecification.elements shall be identical to the number of
subElements of ImplementationDataType of category STRUCTURE

[constr_1273] ArrayValueSpecification.elements shall be identical to the value of Appli-
cationArrayDataType.element.maxNumberOfElements

[constr_1274] ArrayValueSpecification.elements shall be identical to the value of Imple-
mentationDataType.subElement.arraySize of category ARRAY

[constr_2054] Valid targets of rptSystem

[constr_2055] Valid targets of byPassPoint and rptHook reference

[constr_2056] Consistency of RapidPrototypingScenario with respect to rptSystem and rp-
tArHook references

[constr_2057] Mandatory information of a RuleBasedAxisCont

[constr_2058] Mandatory information of a RuleBasedValueCont

[constr_4082] RunnableEntity.reentrancyLevel shall not be set.

Table C.10: Added Constraints in R4.1.1

Please note that [constr_2533] has been retagged to [constr_1264] to fix a duplicate
constraint ID.

C.4.3 Changed Specification Items in R4.1.1

Number Heading

[TPS_SWCT_01000] Usage of attribute symbol of the symbolProps

[TPS_SWCT_01001] Prefix symbols generated for the RunnableEntity

[TPS_SWCT_01085] Variation on the behavior level
[TPS_SWCT_01112] Semantics of PortPrototypes

[TPS_SWCT_01113] Connecting two PortPrototypes

[TPS_SWCT_01128] SwRecordLayout needed for ApplicationPrimitiveDataType of cat-
egory STRING

[TPS_SWCT_01179] Compound Primitive Data Type

[TPS_SWCT_01368] Describe static and constant memory

Table C.11: Changed Specification Items in R4.1.1

899 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.4.4 Added Specification Items in R4.1.1

Number Heading

[TPS_SWCT_01448] Pre-defined values for the category of VariationPointProxy

[TPS_SWCT_01449] Semantics of a ModeDeclarationGroupPrototypeMapping

[TPS_SWCT_01450] Semantics of a ModeTransition

[TPS_SWCT_01451] Relations between ModeTransition and ModeDeclaration

[TPS_SWCT_01452] Applicability of networkRepresentation for ApplicationComposite-
DataType

[TPS_SWCT_01454] PRPortPrototype can own both RPortComSpecs and PPortComSpecs

[TPS_SWCT_01455] Duplicate existence of initValue in the context of a PRPortPrototype

[TPS_SWCT_01456] Predefined values for MemorySection.option and SwAddrMethod.option

[TPS_SWCT_01457] ExclusiveAreaNestingOrder

[TPS_SWCT_01458] Indicate that the locking behavior is fully described for RunnableEntity

[TPS_SWCT_01459] Locking behavior is not described for this RunnableEntity

[TPS_SWCT_01460] Relation of SynchronousServerCallPoint to ExclusiveAreaNestin-
gOrder

[TPS_SWCT_01461] Existence of ImplementationDataType

[TPS_SWCT_01462] ModeDeclarationMapping defines the explicit correlation of ModeDecla-
rations

[TPS_SWCT_01463] ModeDeclarationGroupPrototypeMapping.modeDeclarationMap-
pingSet defines the applicable set of ModeDeclarationMappings

[TPS_SWCT_01464] ModeDeclaration of a mode user is mapped to exactly one ModeDeclara-
tion of a mode manager

[TPS_SWCT_01465] ModeDeclaration of a mode user is mapped to several ModeDeclara-
tions of a mode manager

[TPS_SWCT_01466] ConsistencyNeeds applied on RunnableEntitys that do not use implicit
communication

[TPS_SWCT_01467] ImplementationDataType references an SwBaseType with a string encod-
ing

[TPS_SWCT_01469] RTE API for retrieving the current activation reason

[TPS_SWCT_01470] RunnableEntityGroup

[TPS_SWCT_01471] DataPrototypeGroup

[TPS_SWCT_01472] Receiving SwComponentType owns a DataPrototypeGroup in the role
regRequiresStability

[TPS_SWCT_01473] Receiving SwComponentType owns a RunnableEntityGroup in the role
regRequiresStability

[TPS_SWCT_01474]
Receiving SwComponentType owns a RunnableEntityGroup in the role
regRequiresStability and also owns one or several DataPrototype-
Groups in the role regRequiresStability

[TPS_SWCT_01475] Sending SwComponentType owns a DataPrototypeGroup in the role re-
gRequiresStability

[TPS_SWCT_01476] Sender and receiver of the same implicitly communicated VariableDat-
aPrototypes are associated with the same RunnableEntityGroup

5

900 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01477] Integral Primitive Types

[TPS_SWCT_01478] Array size is defined as an attribute of the ImplementationDataTypeEle-
ment

[TPS_SWCT_01479] Applicability of ConsistencyNeeds

[TPS_SWCT_01480] Stability and/or coherence is not required

[TPS_SWCT_01481] The meaning of the term stability with respect to ConsistencyNeeds

[TPS_SWCT_01482] The meaning of the term coherence with respect to ConsistencyNeeds

[TPS_SWCT_01483] Use static and constant memory to support Measurement and Calibration

[TPS_SWCT_01484] Meaning of ApplicationRuleBasedValueSpecification

[TPS_SWCT_01485] RuleBasedValueSpecification shall initialize first elements in an array

[TPS_SWCT_01486] ApplicationPrimitiveDataType of category STRING may have in-
validValue

[TPS_SWCT_01487] Correspondence of invalidValue for ApplicationPrimitiveDataType
and ImplementationDataType

[TPS_SWCT_01488] ApplicationPrimitiveDataType shall be interpreted as a string of a par-
ticular encoding

[TPS_SWCT_01489] Standardized values of SwRecordLayoutV.swRecordLayoutVProp

[TPS_SWCT_01490] AUTOSAR supports ApplicationErrors only for ClientServerInter-
faces

[TPS_SWCT_01491] AUTOSAR system does not need to explicitly describe infrastructure errors

[TPS_SWCT_01492] Default values for factorSiToUnit and offsetSiToUnit

[TPS_SWCT_01493] The number of RuleArguments.arguments shall not exceed the array size

[TPS_SWCT_01494]
A RuleBasedValueSpecification of rule FILL_UNITIL_END shall fill
the value of the last RuleArguments.argument until the last element of the
array

[TPS_SWCT_01495] Standardized value of RuleBasedValueSpecification.category

[TPS_SWCT_01496] General precedence rule for attributes of SwDataDefProps

[TPS_SWCT_01497] Precedence of the unit of value axis
[TPS_SWCT_01498] Precedence of the DataConstr of value axis
[TPS_SWCT_01499] Precedence of the CompuMethod of value axis

[TPS_SWCT_01500] Precedence of the display format of value axis

[TPS_SWCT_01501] Precedence of the calibration access of value axis
[TPS_SWCT_01502] Precedence of the Unit of the input axis

[TPS_SWCT_01503] Precedence of the DataConstr of the input axis

[TPS_SWCT_01504] Precedence of the display format of the input axis

[TPS_SWCT_01505] Precedence of calibration access along structure hierarchies in complex types

[TPS_SWCT_01506] Precedence of the calibration access of input axis

[TPS_SWCT_01507] The role of PassThroughSwConnector

[TPS_SWCT_01508] Scope of end-to-end protection

[TPS_SWCT_01509] Implicit communication behavior

[TPS_SWCT_01510] The role of pretended networking
5

901 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01511] Configuration option is encoded into ModeDeclaration

[TPS_SWCT_01512] Request change of Pretended Networking mode

[TPS_SWCT_01513] React on the change of Pretended Networking mode

[TPS_SWCT_01514] Duplicate existence of initValue in the context of a PRPortPrototype

[TPS_SWCT_01515] PPortInCompositionInstanceRef shall be used for attaching Delega-
tionSwConnector to an inner PRPortPrototype

[TPS_SWCT_01516] PortInterface describes the static structure of information interchange

[TPS_SWCT_01517] ClientServerOperation cannot be passed as a reference

[TPS_SWCT_01518] Priority of initial value definition with respect to conceptual levels

[TPS_SWCT_01519] RTE executes certain RunnableEntity periodically

[TPS_SWCT_01520] Implication of the existence of possibleError on compatibility of
ClientServerOperations

[TPS_SWCT_01521] Use AutosarVariableRef.localVariable for referencing inter-runnable
variables

[TPS_SWCT_01522] No initial value is specified for implicitInterRunnableVariable or ex-
plicitInterRunnableVariable

[TPS_SWCT_01523] Internal trigger event

[TPS_SWCT_01524] Usage of IoHwAbstractionServerAnnotation

[TPS_SWCT_01525] InitEvent references a RunnableEntity in the role startOnEvent

[TPS_SWCT_01528] Meaning of NumericalRuleBasedValueSpecification

[TPS_SWCT_01529] Default value for EndToEndDescription.dataIdNibbleOffset

[TPS_SWCT_01530] Error behavior of mode manager and mode user

[TPS_SWCT_01531] The semantics of ModeErrorReactionPolicyEnum

[TPS_SWCT_01532] The role of ModeErrorBehavior.defaultMode

[TPS_SWCT_01533] ModeDeclarationGroup.initialMode shall be assumed in the absence
of ModeDeclarationGroup.modeManagerErrorBehavior

[TPS_SWCT_01534] ModeDeclarationGroup.initialMode shall be assumed in the absence
of ModeDeclarationGroup.modeUserErrorBehavior

[TPS_SWCT_01535] Mode manager reacts on mode error

[TPS_SWCT_01536] Coherent behavior of all mode users in case of errors in the mode switch com-
munication

[TPS_SWCT_01541] Preferential selection of modeUserErrorBehavior
[TPS_SWCT_01542] Preferential selection of modeManagerErrorBehavior

[TPS_SWCT_01543] PortInterfaceMapping overrides all other compatibility rules

[TPS_SWCT_01544] prefix used for the actual name of the used PortInterface for the routing
activation

[TPS_SWCT_01545] ModeDeclaration of a mode user that is not mapped to a ModeDeclara-
tion of a mode manager

[TPS_SWCT_01546] Notification when an external tester is attached or activated
[TPS_SWCT_01547] Ability to set and reset the Warning Indicator Status bit

[TPS_SWCT_02046] byPassPoint specifies the rapid prototyping capability
5

902 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_02047] RptHook specifies the link to rapid prototyping algorithm

[TPS_SWCT_02048] Implicit SwComponentPrototype selection for Rapid Prototyping Scenario

[TPS_SWCT_02049] Implicit RunnableEntity selection for Rapid Prototyping Scenario

[TPS_SWCT_02050] Explicit access point selection for Rapid Prototyping Scenario

[TPS_SWCT_02051] Explicit DataPrototype selection for Rapid Prototyping Scenario

[TPS_SWCT_02052] Definition of Rapid Prototyping Scenario is splittable

[TPS_SWCT_02053] Values of RuleBasedAxisCont with the category COM_AXIS, RES_AXIS
are for display only

[TPS_SWCT_02507] Instantiation-specific RTEEvents

Table C.12: Added Specification Items in 4.1.1

C.4.5 Deleted Constraints in R4.1.1

Number Heading

[constr_1239] RuleBasedValueSpecification shall not exceed the number of values required

[constr_1145] Finding the symbol for the representation of a CompuScale in C code

[constr_2533] Iteration along output axis is only supported for VALUE and VAL_BLK

Table C.13: Deleted Constraints in R4.1.1

Please note that [constr_2533] has been retagged to [constr_1264] to fix a duplicate
constraint ID.

C.4.6 Deleted Specification Items in R4.1.1

Number Heading

[TPS_SWCT_01210] IoHwAbstractionServerAnnotation

Table C.14: Deleted Specification Items in R4.1.1

903 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.5 Constraint History of this Document according to AUTOSAR
R4.1.2

C.5.1 Changed Constraints in R4.1.2

Number Heading

[constr_1006] applicable data categories

[constr_1007] Allowed attributes of SwDataDefProps for ApplicationDataTypes
[constr_1009] SwDataDefProps applicable to ImplementationDataTypes

[constr_1015] Prioritization of SwDataDefProps
[constr_1043] PortInterface vs. ComSpec
[constr_1058] ImplementationDataType has category FUNCTION_REFERENCE

[constr_1102] ApplicationError in the scope of one SwComponentType

[constr_1146] Applicability of a symbol for a CompuScale in C code

[constr_1163] Compatibility of CompuMethods

[constr_1133] Identical CompuScale Symbolic Names shall have the same range

[constr_1158] Applicable categorys for attribute ImplementationDataType.swDataDef-
Props.compuMethod

[constr_1225] DataPrototype is typed by an ImplementationDataType that references a
CompuMethod of category TEXTTABLE or BITFIELD_TEXTTABLE

[constr_2013] Compatibility of ImplementationDataTypes for NvBlockDataMapping

[constr_2051] Mandatory information of a SwValueCont

Table C.15: Changed Constraints in R4.1.2

C.5.2 Added Constraints in R4.1.2

Number Heading

[constr_1277] SwDataDefProps.swImplPolicy of a VariableDataPrototype referenced by
a VariableAccess aggregated in the role dataReceivePointByValue

[constr_1278] PhysConstrs references a Unit

[constr_1279] Unmapped elements of ApplicationCompositeDataTypes or Implementa-
tionDataTypes and the attribute swImplPolicy

[constr_1280] Unmapped dataElement on the receiver side shall have an initValue

[constr_1281] invalidValue shall be inside the scope of the compuMethod

[constr_1282] Restriction concerning the usage of RuleBasedValueSpecification or a Ref-
erenceValueSpecification for the specification of an invalidValue

[constr_1283] invalidValue is outside the scope of the compuMethod

[constr_1284] Limitation of the use of TextValueSpecification

[constr_1285] Applicability of roles vs. PortPrototypes
5

904 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1286] serverArgumentImplPolicy and ArgumentDataPrototype typed by primitive
data types

[constr_1287] Compatibility of SenderReceiverInterfaces with respect to invalidation-
Policy

[constr_1288] Allowed Attributes vs. category for DataPrototypes typed by Implementation-
DataTypes

[constr_1289] Allowed Attributes vs. category for DataPrototypes typed by Application-
DataTypes

[constr_1290] Limitation on the number of PPortComSpecs in the context of one PPortPrototype
[constr_1291] Limitation on the number of RPortComSpecs in the context of one PPortPrototype

[constr_1292] Limitation on the number of RPortComSpecs/PPortComSpecs in the context of one
PRPortPrototype

[constr_1293] Existence of DiagnosticEventNeeds.dtcNumber
[constr_1294] Existence of DiagnosticEventInfoNeeds.dtcNumber
[constr_1295] PortInterfaces and category DATA_REFERENCE

[constr_1296] DataPrototypes used as explicitInterRunnableVariable or implicitIn-
terRunnableVariable and category DATA_REFERENCE

Table C.16: Added Constraints in R4.1.2

C.5.3 Changed Specification Items in R4.1.2

Number Heading

[TPS_SWCT_01006] ImplementationDataType.subElement.arraySize shall be used to de-
fine the size of the array

[TPS_SWCT_01175] Actively query the status of a partial network

[TPS_SWCT_01219] ComSpec for queued and non-queued sender-receiver communication

[TPS_SWCT_01154] Attribute prefix of IncludedModeDeclarationGroupSet

[TPS_SWCT_02011] AtomicSwComponentType offers a server port to read DTR value via OBD
services

Table C.17: Changed Specification Items in R4.1.2

C.5.4 Added Specification Items in R4.1.2

Number Heading

[TPS_SWCT_01549] Definition of linear data scaling

[TPS_SWCT_01550] Definition of reciprocal linear data scaling

[TPS_SWCT_01551] Mapping of elements on the sender side to elements on the receiver side
5

905 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01552] Software-component acts as a mode manager

[TPS_SWCT_01553] Software-component acts as a mode user

[TPS_SWCT_01554] Software-component acts as a mode requester

[TPS_SWCT_01555] ModeSwitchedAckEvent is triggered by the RTE regardless

[TPS_SWCT_01556] Rule for setting RoleBasedPortAssignment.role

[TPS_SWCT_01557] dataWriteAccess also allows for the definition of a DataWriteComplet-
edEvent

[TPS_SWCT_01558] DataWriteCompletedEvent cannot be combined with a WaitPoint

[TPS_SWCT_01559] Default value for attribute SwDataDefProps.swCalibrationAccess

[TPS_SWCT_01560] Supported categorys of CompuMethods for data conversion

[TPS_SWCT_01561] Application of data conversion to composite AutosarDataTypes

[TPS_SWCT_01562] Specification of values of an enumeration

[TPS_SWCT_01563] Applicable values for nativeDeclaration

[TPS_SWCT_01564] Non-recursive definition of a primitive data type

[TPS_SWCT_01565] Recursive definition of a primitive data type

[TPS_SWCT_01566] Define literals for an MCD system in the context of a FlatIn-
stanceDescriptor

[TPS_SWCT_01567] Default behavior for invalidationPolicy

[TPS_SWCT_01568] Consideration of RPortComSpec or PPortComSpec depending on the own-
ership

[TPS_SWCT_01569] Definition of CompuScale Symbolic Name

[TPS_SWCT_01570] DataTypeMap is mandatory in the presence of ApplicationPrimitive-
DataType.swDataDefProps.swRecordLayout

Table C.18: Added Specification Items in 4.1.2

C.5.5 Deleted Constraints in R4.1.2

Number Heading

[constr_1042] Definition of a linear data scaling

[constr_1094] Usage of symbol of RunnableEntity

[constr_2025] Uniqueness of symbol attributes (This constraint has been relocated to [10])

[constr_2032] transmissionAcknowledge requires a DataSendCompletedEvent

[constr_4011] ComSpec and ModeSwitchedAckEvent

Table C.19: Deleted Constraints in R4.1.2

906 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.5.6 Deleted Specification Items in R4.1.2

Number Heading

[TPS_SWCT_01327] RTE generator can omit the creation of checks at run-time

Table C.20: Deleted Specification Items in R4.1.2

C.6 Constraint History of this Document according to AUTOSAR
R4.1.3

C.6.1 Added Traceables in R4.1.3

Number Heading

[TPS_SWCT_01573] A PRPortPrototype is never considered unconnected

[TPS_SWCT_01574] PerInstanceMemory.typeDefinition shall not contain a function pointer

Table C.21: Added Traceabless in 4.1.3

C.6.2 Changed Traceables in R4.1.3

Number Heading

[TPS_SWCT_01009]
The numerical values used to define the values of ModeDeclaration.value
and ModeDeclarationGroup.onTransitionValue can be arbitrarily de-
fined

[TPS_SWCT_01049] Two ways to use the ExclusiveAreas

Table C.22: Changed Traceables in R4.1.3

C.6.3 Deleted Traceables in R4.1.3

Number Heading

[TPS_SWCT_01417] Define calibration parameters common to all SwComponentPrototypes of
the same SwComponentType

[TPS_SWCT_01419] ParameterSwComponentType shall never aggregate a SwcInternalBe-
havior

[TPS_SWCT_02006] AtomicSwComponentType offers sender receiver ports to adjust the IO signal
via diagnostic services

Table C.23: Deleted Traceables in R4.1.3

907 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.6.4 Added Constraints in R4.1.3

Number Heading

[constr_1297] Applicability of serverArgumentImplPolicy set to [useArrayBaseType]

[constr_1298] Existence of attributes if category of a ModeDeclarationGroup is set to EX-
PLICIT_ORDER

[constr_1299] Existence of attributes if category of a ModeDeclarationGroup is set to other
than EXPLICIT_ORDER

Table C.24: Added Constraints in R4.1.3

C.6.5 Changed Constraints in R4.1.3

Number Heading

[constr_1006] applicable data categories

[constr_1007] Allowed attributes of SwDataDefProps for ApplicationDataTypes

[constr_1230] ApplicationDataType that qualifies for Integral Primitive Type

Table C.25: Changed Constraints in R4.1.3

C.6.6 Deleted Constraints in R4.1.3

Number Heading

[constr_1179] Existence of ModeDeclaration.value within a ModeDeclarationGroup

[constr_1180] Existence of ModeDeclarationGroup.onTransitionValue

Table C.26: Deleted Constraints in R4.1.3

C.7 Constraint History of this Document according to AUTOSAR
R4.2.1

C.7.1 Added Traceables in R4.2.1

Number Heading

[TPS_SWCT_01572] Application Mode Manager interacts with both BswM and other Application-
SwComponentTypes

[TPS_SWCT_01577] AtomicSwComponentType requires the notification about a Service Request
via diagnostic services with manufacturer characteristics

5

908 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01578] AtomicSwComponentType requires the notification about a Service Request
via diagnostic services with supplier characteristics

[TPS_SWCT_01579] Dcm can directly access dataElements in PPortPrototypes typed by a
SenderReceiverInterface

[TPS_SWCT_01580] Dem can directly access dataElements in PPortPrototypes typed by a
SenderReceiverInterface

[TPS_SWCT_01581] Communication patterns for mode-related communication

[TPS_SWCT_01582] Semantics of DiagnosticEventNeeds.deferringFid

[TPS_SWCT_01583] Completeness of TextTableMapping is not a requirement

[TPS_SWCT_01584] InternalBehavior of a NvBlockSwComponentType for implementing a
writing strategy

[TPS_SWCT_01585] Relevance of NvBlockDescriptor.timingEvent.period

[TPS_SWCT_01586] Writing strategies for nv data

[TPS_SWCT_01587] The cyclic writing of nv data requires the existence of a TimingEvent

[TPS_SWCT_01588] DataReceivedEvent for storing nv data immediately

[TPS_SWCT_01589] Implementation of emergency storing of nv data

[TPS_SWCT_01590] Combination of writing strategies for nv data is possible

[TPS_SWCT_01591] Existence of attribute DiagnosticEventNeeds.reportBehavior

[TPS_SWCT_01592] Communication among RunnableEntitys of different instances of the same
AtomicSwComponentType

[TPS_SWCT_01593] Semantics of attribute ReceiverComSpec.transformationCom-
SpecProps

[TPS_SWCT_01594] Semantics of TransformationComSpecProps

[TPS_SWCT_01595] Semantics of attribute ClientComSpec.transformationComSpecProps

[TPS_SWCT_01596] Semantics of attribute ServerComSpec.transformationComSpecProps

[TPS_SWCT_01597] PortPrototype-specific data transformation configuration

[TPS_SWCT_01598] More than one user-defined transformer is used within one transformer chain
[TPS_SWCT_01599] PortPrototype-specific configuration for custom transformers

[TPS_SWCT_01600] PortPrototype-specific configuration for data transformers related to end-
to-end protection

[TPS_SWCT_01601] Size Indicator shall be updated by software-component

[TPS_SWCT_01602] Size Indicator shall be read by the software-component

[TPS_SWCT_01603] Variable size array with Size Indicator

[TPS_SWCT_01604] Enable Size Indicator

[TPS_SWCT_01605] Semantics of ApplicationArrayElement.arraySizeHandling

[TPS_SWCT_01606] Internal structure of mapped ImplementationDataType

[TPS_SWCT_01607] Profiles for internal structure of mapped ImplementationDataType

[TPS_SWCT_01608] Custom profiles for internal structure of mapped ImplementationDataType

[TPS_SWCT_01609]
A RuleBasedValueSpecification of rule FILL_UNTIL_MAX_SIZE
shall fill the value of the last RuleArguments.argument until the number of
elements specified in maxSizeToFill

5

909 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01610] Modeling of a Variable-Size Array Data Type with Size Indicator
enabled

[TPS_SWCT_01611] Enable Size Indicator

[TPS_SWCT_01612] arraySizeHandling specifies how the size is determined

[TPS_SWCT_01613] Internal structure of mapped ImplementationDataType

[TPS_SWCT_01614] Profiles for internal structure of mapped ImplementationDataType

[TPS_SWCT_01615] Custom profiles for internal structure of mapped ImplementationDataType

[TPS_SWCT_01616] Semantics of TransformerHardErrorEvent

[TPS_SWCT_01617] Structure of an ImplementationDataType that represents a variable-sized
array data type

[TPS_SWCT_01618] Size Indicator for dynamicArraySizeProfile set to VSA_LINEAR,
VSA_SQUARE, or VSA_FULLY_FLEXIBLE

[TPS_SWCT_01619] Size Indicator for dynamicArraySizeProfile set to VSA_RECTANGU-
LAR

[TPS_SWCT_01620] Size Indicator for dynamicArraySizeProfile set to VSA_RECTANGU-
LAR

[TPS_SWCT_01621] Payload for dynamicArraySizeProfile

[TPS_SWCT_01622] Modeling of a Variable-Size Array Data Type only with Implementa-
tionDataType

[TPS_SWCT_01623]
Justification for the existence of attributes ApplicationArrayDataType.
dynamicArraySizeProfile and ApplicationArrayElement.array-
SizeHandling

[TPS_SWCT_01624] Hard error occurs during the execution of a transformer chain

[TPS_SWCT_01625] Sending SwComponentType owns a DataPrototypeGroup in the role dp-
gRequiresCoherency and also RunnableEntityGroups

[TPS_SWCT_01626] Error notification of data transformer errors

[TPS_SWCT_01627] Suffix used for the resulting name of the PortInterface for the Security
Access

[TPS_SWCT_01628] Suffix used for the resulting name of the PortInterface for the Data Ser-
vices

[TPS_SWCT_01629] Suffix used for the resulting name of the PortInterface for the Data Ser-
vices

[TPS_SWCT_01630] Suffix used for the resulting name of the PortInterface for the Data Ser-
vices

[TPS_SWCT_01631] Suffix used for the resulting name of the PortInterface for the Infotype
Services

[TPS_SWCT_01632] Suffix used for the resulting name of the PortInterface for the Routine
Services

[TPS_SWCT_01633] Suffix used for the resulting name of the PortInterface for the Request
Control Services

[TPS_SWCT_01634] Suffix used for the resulting name of the PortInterface for the Data Ser-
vices

[TPS_SWCT_01635] Naming conventions may support the effectiveness of SymbolProps
5

910 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01636] Definition of profiles for the definition of Variable-Size Array Data
Types

Table C.27: Added Traceabless in 4.2.1

C.7.2 Changed Traceables in R4.2.1

Number Heading

[TPS_SWCT_01044] ServiceNeeds

[TPS_SWCT_01053] Relationship of interchanged data with RunnableEntitys

[TPS_SWCT_01141] AtomicSwComponentType may have AbstractRequiredPortProto-
types typed by an NvDataInterface

[TPS_SWCT_01150] InternalBehavior of a NvBlockSwComponentType to enable access to
the NVRAM Block management API

[TPS_SWCT_01162] Existence of TextTableMapping

[TPS_SWCT_01180] Maximum possible size of Compound Primitive Data Type

[TPS_SWCT_01227] Unconnected AbstractRequiredPortPrototype typed by NvDataIn-
terface

[TPS_SWCT_01228] NvProvideComSpec

[TPS_SWCT_01239] default value for attribute category used in the context of SwSystemconst

[TPS_SWCT_01274] SwDataDefProps used to support calibration and measurement

[TPS_SWCT_01321] Communication among RunnableEntitys

[TPS_SWCT_01330] RunnableEntity can also have dataSendPoints

[TPS_SWCT_01335] Combine dataReceivePointByValue or dataReceivePointByArgu-
ment with a WaitPoint

[TPS_SWCT_01348] Trigger source

[TPS_SWCT_01385] Execution of finalization code for software-components

[TPS_SWCT_01456] Predefined values for MemorySection.option and SwAddrMethod.option

[TPS_SWCT_01475] Sending SwComponentType owns a DataPrototypeGroup in the role dp-
gRequiresCoherency

[TPS_SWCT_01494] A RuleBasedValueSpecification of rule FILL_UNTIL_END shall fill the
value of the last RuleArguments.argument until the last element of the array

[TPS_SWCT_01495] Standardized value of RuleBasedValueSpecification.rule

[TPS_SWCT_01549] Definition of linear data scaling

[TPS_SWCT_01560] Supported categorys of CompuMethods for data conversion

[TPS_SWCT_02501] Setup for Nvm Use Case: Permanent RAM Block

[TPS_SWCT_02502] Setup for Nvm Use Case: Temporary RAM Block

[TPS_SWCT_02503] Setup for NVM Use Case: Software-Components using Nv Data provided by
NvBlockSwComponentType

5

911 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_02504] Setup for Nvm Use Case: RAM Block with explicit synchronization using Mirror
Interfaces

Table C.28: Changed Traceables in R4.2.1

C.7.3 Deleted Traceables in R4.2.1

Number Heading

Id Heading

[TPS_SWCT_01131] AtomicSwComponentType accepts a request to restart an entire function

[TPS_SWCT_01386] Initialization by mode management

[TPS_SWCT_01387] Finalization by mode management

[TPS_SWCT_01410] Dcm and Dem can directly access dataElements in PPortPrototypes typed
by a SenderReceiverInterface

[TPS_SWCT_01438] Handling of invalidation in the sending RTE

[TPS_SWCT_01439] Handling of invalidation in the receiving RTE

[TPS_SWCT_02017] AtomicSwComponentType requires the notification about a Service Request
via diagnostic services

Table C.29: Deleted Traceables in R4.2.1

C.7.4 Added Constraints in R4.2.1

Number Heading

[constr_1300] Primitive DataPrototype on the provider side shall not be mapped to element of a
composite data type on the requester side

[constr_1301] Existence of RoleBasedDataTypeAssignment.role vs. RoleBasedDataAs-
signment.role

[constr_1302] Restriction of data invalidation

[constr_1303] Applicability of TextTableMapping depending on the value of CompuMethod.cat-
egory

[constr_1304] Existence of attribute bitfieldTextTableMaskFirst

[constr_1305] Existence of attribute bitfieldTextTableMaskSecond

[constr_1306] Limitation of TextTableMapping for CompuMethods that have the value of cate-
gory set to BITFIELD_TEXTTABLE

[constr_1307] Consistency of values and masks in TextTableMapping

[constr_1308] Existence of NvBlockNeeds.cyclicWritingPeriod
[constr_1309] Existence of NvBlockDescriptor.timingEvent
[constr_1310] Existence of attributes of meta-class NvBlockNeeds

5

912 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1311] Appearance of safety-related possible values of MemorySection.option or SwAd-
drMethod.option according to [TPS_SWCT_01456]

[constr_1312] PortPrototypes typed by a ParameterInterface

[constr_1313] Completeness of TextTableMapping for the values of a given bit mask on the
sender side

[constr_1314] Profile VSA_LINEAR for ApplicationArrayDataType
[constr_1315] Profile VSA_SQUARE for ApplicationArrayDataType
[constr_1316] Profile VSA_RECTANGULAR for ApplicationArrayDataType
[constr_1317] Profile VSA_FULLY_FLEXIBLE for ApplicationArrayDataType
[constr_1318] Profile VSA_LINEAR for ImplementationDataType
[constr_1319] Profile VSA_SQUARE for ImplementationDataType
[constr_1320] Profile VSA_RECTANGULAR for ImplementationDataType
[constr_1321] Profile VSA_FULLY_FLEXIBLE for ImplementationDataType
[constr_1322] Size Indicator for undefined dynamicArraySizeProfile

[constr_1323] Applicability of attribute ReceiverComSpec.usesEndToEndProtection

[constr_1363] Existence of attributes of DiagnosticValueNeeds
[constr_1364] Existence of attributes of DiagnosticIoControlNeeds
[constr_1375] Existence of attributes of CompuMethod and related meta-classes

Table C.30: Added Constraints in R4.2.1

C.7.5 Changed Constraints in R4.2.1

Number Heading

[constr_1006] applicable data categories

[constr_1007] Allowed attributes of SwDataDefProps for ApplicationDataTypes
[constr_1009] SwDataDefProps applicable to ImplementationDataTypes

[constr_1014] Supported value encodings for SwBaseType

[constr_1015] Prioritization of SwDataDefProps

[constr_1037] Client shall not be connected to multiple servers

[constr_1072] Compatibility of ModeSwitchInterfaces in the context of an AssemblySwCon-
nector

[constr_1073] Compatibility of ModeSwitchInterfaces in the context of an DelegationSwCon-
nector

[constr_1074] Compatibility of ModeDeclarationGroupPrototypes

[constr_1101] Mode-related communication
[constr_1112] Constraints of dataIdMode in PROFILE_01
[constr_1149] PortPrototypes used for NV data management

[constr_1188] Existence of ReceiverComSpec.replaceWith
5

913 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1288] Allowed Attributes vs. category for DataPrototypes typed by Implementation-
DataTypes

[constr_1289] Allowed Attributes vs. category for DataPrototypes typed by Application-
DataTypes

[constr_2009] Supported kinds of PortPrototypes of a NvBlockSwComponentType

[constr_2015] Limitation of SwcInternalBehavior of a NvBlockSwComponentType

[constr_2019] ServiceSwComponentType shall have service ports only

[constr_2022] Mutually exclusive use of SynchronousServerCallPoints and Asyn-
chronousServerCallPoints

[constr_2051] Mandatory information of a SwValueCont

Table C.31: Changed Constraints in R4.2.1

C.7.6 Deleted Constraints in R4.2.1

Number Heading

[constr_1189] Allowed targets of externalReplacement

[constr_1293] Existence of DiagnosticEventNeeds.dtcNumber
[constr_1294] Existence of DiagnosticEventInfoNeeds.dtcNumber

[constr_2551] SwCalprmAxis.baseType shall be ignored

Table C.32: Deleted Constraints in R4.2.1

C.8 Constraint History of this Document according to AUTOSAR
R4.2.2

C.8.1 Added Traceables in R4.2.2

Number Heading

[TPS_SWCT_01637] Initial value for a specific implicitInterRunnableVariable or explic-
itInterRunnableVariable

[TPS_SWCT_01638] Existence of SwConnector between two PRPortPrototypes

[TPS_SWCT_01639]

AtomicSwComponentType offers a PPortPrototype typed by
ClientServerInterface to read/write current value via diagnostic ser-
vices where the applicable DID is passed as an argument to the access
functions

[TPS_SWCT_01640] Suffix used for the resulting name of the PortInterface for the Data Ser-
vices

[TPS_SWCT_01641] Definition of an “old-world” dynamic-size array data type by means of an Ap-
plicationArrayDataType

5

914 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01642] Definition of an “old-world” dynamic-size array data type by means of an Im-
plementationDataType

[TPS_SWCT_01644] Definition of a “new-world” variable-size array data type by means of an Ap-
plicationArrayDataType

[TPS_SWCT_01645] Definition of a “new-world” variable-size array data type by means of an Im-
plementationDataType

[TPS_SWCT_01646] Sending invalidValue without invalidation applied by RTE/Com

[TPS_SWCT_01647]
Size Indicator for dynamicArraySizeProfile set to VSA_LIN-
EAR, VSA_SQUARE, or VSA_FULLY_FLEXIBLE if only Implementation-
DataType is present

[TPS_SWCT_01648] Size Indicator for dynamicArraySizeProfile set to VSA_RECTANGU-
LAR if only ImplementationDataType is present

[TPS_SWCT_01649] Payload for dynamicArraySizeProfile if only Implementation-
DataType is present

[TPS_SWCT_01650] Structure of the VSA ImplementationDataType

[TPS_SWCT_01651] UTF-16BE

[TPS_SWCT_01652] UTF-16LE

[TPS_SWCT_01653] UTF-16-encoded strings are not allowed to start with a BOM

[TPS_SWCT_01654] AtomicSwComponentType offers PortPrototypes typed by Sender-
ReceiverInterfaces to adjust the IO signal via diagnostic services

[TPS_SWCT_01655] Reference from DiagnosticIoControlNeeds to DiagnosticValue-
Needs

[TPS_SWCT_01656] Suffix used for the resulting name of the PortInterface for IOControlRe-
quest and IOControlResponse

[TPS_SWCT_01657] NamingRule for RPortPrototype referenced by a RoleBasedPortAs-
signment with attribute role set to “IOControlRequest”

[TPS_SWCT_01658] NamingRule for PPortPrototype referenced by a RoleBasedPortAs-
signment with attribute role set to “IOControlResponse”

[TPS_SWCT_01659] Mapping of VariableDataPrototype to a NvBlockDescriptor

Table C.33: Added Traceabless in 4.2.2

C.8.2 Changed Traceables in R4.2.2

Number Heading

[TPS_SWCT_01133] AtomicSwComponentType provides information about aging cycles

[TPS_SWCT_01158] Three cases for PortInterfaceMapping

[TPS_SWCT_01179] Compound Primitive Data Type

[TPS_SWCT_01244] Data types for calibration parameters are also described as primitive types

[TPS_SWCT_01370] VariationPointProxy

5

915 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01431] Finding the symbol for the representation of a CompuScale with a point-range
in C code

[TPS_SWCT_01432] Keep the invalidValue transparent to the sending and receiving software
components

[TPS_SWCT_01434] Sender and receiver have knowledge of invalid value

[TPS_SWCT_01610] Modeling of a Variable-Size Array Data Type with Size Indicator
enabled

[TPS_SWCT_01616] Semantics of TransformerHardErrorEvent

[TPS_SWCT_01617] Structure of an ImplementationDataType that represents a variable-sized
array data type

[TPS_SWCT_01624] Hard error occurs during the execution of a transformer chain

[TPS_SWCT_02001] Values of SwAxisCont with the category, COM_AXIS, RES_AXIS are for
display only

[TPS_SWCT_02053] Values of RuleBasedAxisCont with the category COM_AXIS, RES_AXIS
are for display only

Table C.34: Changed Traceables in R4.2.2

C.8.3 Deleted Traceables in R4.2.2

Number Heading

[TPS_SWCT_01308] Combination of supportsMultipleInstantiation=false and can-
BeInvokedConcurrently=false

[TPS_SWCT_01433] Invalid values outside the range limits

[TPS_SWCT_01435] Invalid values outside the range limits

[TPS_SWCT_01603] Variable size array with Size Indicator

[TPS_SWCT_01611] Enable Size Indicator

Table C.35: Deleted Traceables in R4.2.2

C.8.4 Added Constraints in R4.2.2

Number Heading

[constr_1381] Appearance of core-related possible values of MemorySection.option or SwAd-
drMethod.option according to [TPS_SWCT_01456]

[constr_1382] Mutually exclusive existence of attributes SwVariableRefProxy.autosarVari-
able vs. SwVariableRefProxy.mcDataInstanceVar

[constr_1383] Existence of CompuMethod and DataConstr for ImplementationDataTypes of
category TYPE_REFERENCE

5

916 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1384]
Definition of invalidValue for DataPrototype typed by ApplicationPrimi-
tiveDataType of category CURVE, MAP, CUBOID, CUBE_4, CUBE_5, COM_AXIS,
RES_AXIS, and VAL_BLK

[constr_1385] DataPrototype is typed by an ImplementationDataType

[constr_1386] PortDefinedArgumentValue shall only be defined for AbstractProvided-
PortPrototype

[constr_1388] VariationPointProxy of category VALUE shall not mix “pre-build” and “post-
build” use-cases

[constr_1389] Restriction regarding the value of category of VariationPointProxy.imple-
mentationDataType

[constr_1390] Restriction to the value of SenderReceiverInterface.invalidationPolicy.
handleInvalid

[constr_1391] Compatibility of Units in the context of assignment using an ApplicationValue-
Specification

[constr_1392] Compatibility of Units in the context of assignment using an ApplicationRule-
BasedValueSpecification

[constr_1393] Existence of RuleBasedValueCont.unit
[constr_1395] NvBlockDataMapping shall be complete

[constr_1396] Restriction for the value of attribute category for non-terminating Implementa-
tionDataTypeElements taken to model a Variable-Size Array Data Type

[constr_1397] Existence of attributes of TransformerHardErrorEvent
[constr_1398] Existence of attributes of BaseTypeDirectDefinition
[constr_1399] Standardized values of ModeDeclarationGroup.category

[constr_1400] Reference to a specific DataTransformation

[constr_1401] Restrictions on the relation between DataPrototypeMapping and DataTrans-
formation

[constr_1402] Applicability of core-related possible values of MemorySection.option or SwAd-
drMethod.option related to SwAddrMethod.sectionInitializationPolicy

[constr_1403] NvBlockDataMappings to a given nvData shall be unambiguous

[constr_1404] All NvDataInterface.nvData of PortPrototypes in the context of a specific
SwcServiceDependency shall be mapped to the same NvBlockDescriptor

Table C.36: Added Constraints in R4.2.2

C.8.5 Changed Constraints in R4.2.2

Number Heading

[constr_1006] applicable data categories

[constr_1007] Allowed attributes of SwDataDefProps for ApplicationDataTypes
[constr_1040] Conversion of SenderReceiverInterfaces
[constr_1045] Supported value encodings for SwBaseType in the context of PortInterfaces

5

917 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1060] Compatibility of data types with category ARRAY, VAL_BLK

[constr_1064] Compatibility of data types with category COM_AXIS, RES_AXIS, CURVE, MAP,
CUBOID, CUBE_4, or CUBE_5

[constr_1066] Forbidden mappings to ImplementationDataType

[constr_1075] Compatibility of ModeDeclarationGroups

[constr_1164] Number of arguments owned by a RunnableEntity

[constr_1234] Value of RunnableEntity.symbol
[constr_1318] Profile VSA_LINEAR for ImplementationDataType
[constr_1319] Profile VSA_SQUARE for ImplementationDataType
[constr_1320] Profile VSA_RECTANGULAR for ImplementationDataType
[constr_1321] Profile VSA_FULLY_FLEXIBLE for ImplementationDataType
[constr_1322] Size Indicator for undefined dynamicArraySizeProfile

[constr_2051] Mandatory information of a SwValueCont

[constr_2058] Mandatory information of a RuleBasedValueCont

Table C.37: Changed Constraints in R4.2.2

C.8.6 Deleted Constraints in R4.2.2

Number Heading

[constr_1002] End-to-end protection does not support n:1 communication

[constr_1067] ApplicationDataType is or is not compatible to specific Implementation-
DataType

[constr_2001] Initial value for a specific implicitInterRunnableVariable or explicitIn-
terRunnableVariable

Table C.38: Deleted Constraints in R4.2.2

C.9 Constraint History of this Document according to AUTOSAR
R4.3.0

C.9.1 Added Traceables in R4.3.0

Number Heading

[TPS_SWCT_01660] Values of SwcServiceDependency.category reserved by the standard

[TPS_SWCT_01661] Default value of SwcServiceDependency.category

[TPS_SWCT_01662] Applicability of DataTypeMappingSets inside an NvBlockSwComponent-
Type

5

918 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01663] dataReadAccess vs. dataReceivePointByValue or dataReceive-
PointByArgument

[TPS_SWCT_01664] BswM acts as a mode requester towards an application mode manager

[TPS_SWCT_01665] Usage of SwcModeSwitchEvent for triggering a write procedure of nv data

[TPS_SWCT_01666] Semantics of ModeSwitchEventTriggeredActivity.role

[TPS_SWCT_01667] Avoidance of overlapping of directly adjacent intervals within CompuMethods

[TPS_SWCT_01668] SecOc Use Case: obtain the verification status of secure communication

[TPS_SWCT_01672] SecOc Use Case: software component retires from secure communication for
a given period

[TPS_SWCT_01673] Application Software Component sends requests using the J1939Rm

[TPS_SWCT_01674] Application Software Component accepts requests using the J1939Rm

[TPS_SWCT_01675] Recommendations for attributes of NvBlockNeeds or for NvBlockDescrip-
tor

[TPS_SWCT_01676] Preferred approach to checking the compatibility of input value and axis

[TPS_SWCT_01677] Fall-back approach to checking the compatibility of input value and axis

[TPS_SWCT_01678] StbM use Case: Application software component accesses the Synchronized
Time-Base Manager

[TPS_SWCT_01679] StbM use Case: Synchronized Time-Base Manager notifies application soft-
ware component

[TPS_SWCT_01680] Dem Use Case: Atomic Software-Component implements a Hardware Shut-
down

[TPS_SWCT_01681] Context path in ArVariableInImplementationDataInstanceRef

[TPS_SWCT_01682]
The meaning of E2E-related attributes in a ReceiverComSpec if a
TransformationComSpecProps of type EndToEndTransformation-
ComSpecProps is defined.

[TPS_SWCT_01683] Specification of an array of input variable for an array of axes

[TPS_SWCT_01684] Specification of a single input variable for an array of axes

[TPS_SWCT_01685] Specification of an array of group axes for an array of category CURVE, MAP,
CUBOID, CUBE_4, or CUBE_5

[TPS_SWCT_01686] Specification of a single group axis for an array of elements of category
CURVE, MAP, CUBOID, CUBE_4, or CUBE_5

[TPS_SWCT_01687] Support of locked communication buffers

[TPS_SWCT_01688] initValue should exist in an RPortPrototype

[TPS_SWCT_01689] Relation between SwcServiceDependencys and PortPrototypes

[TPS_SWCT_01690]
AtomicSwComponentType offers a PPortPrototype typed by
ClientServerInterface to read/write and IOCtrl current value via di-
agnostic services

[TPS_SWCT_01691] Suffix used for the resulting name of the PortInterface for the Data Ser-
vices

[TPS_SWCT_01692] Meaning of CompositeRuleBasedValueSpecification

[TPS_SWCT_01693] Usage of VendorSpecificServiceNeeds
5

919 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01694] Setup for Default Error Tracer Service use Case: development errors or run-
time error

[TPS_SWCT_01695] Relation between ValueSpecification and the definition of CompuScales

[TPS_SWCT_01696] CompuScale Value Symbolic Name

[TPS_SWCT_01697] Supported development approach for software-components that interact with
AUTOSAR services

[TPS_SWCT_01698] Attributes that are subject to development approach

[TPS_SWCT_01699] Usage of ApplicationArrayElement.indexDataType

[TPS_SWCT_01700] Definition of unions that can be transmitted over a communication network
[TPS_SWCT_01701] Wrapped Union Data Type

[TPS_SWCT_01702] Initialization of the “payload” of a Wrapped Union Data Type

[TPS_SWCT_01703] Setup for AtomicSwComponentType which sets or gets the Global Supervi-
sion Status

[TPS_SWCT_01704] Definition of supervised entity

[TPS_SWCT_01705] Definition of Checkpoints

[TPS_SWCT_01706] AtomicSwComponentType supports DiagnosticSessionControl to get in-
formed about the diagnostic session

[TPS_SWCT_01707] AtomicSwComponentType supports EcuReset service via diagnostic ser-
vices

[TPS_SWCT_01708] AtomicSwComponentType supports EcuReset ModeRapidPowerShutDown
service via diagnostic services

[TPS_SWCT_01709] AtomicSwComponentType supports CommunicationControl service via di-
agnostic services

[TPS_SWCT_01710] Suffix used for the resulting name of the PortInterface for the Communi-
cation Control

[TPS_SWCT_01711] AtomicSwComponentType supports ControlDTCSetting service via diagnos-
tic services

[TPS_SWCT_01712] AtomicSwComponentType supports SecurityAccess to get informed about
the security level

[TPS_SWCT_01713] ExclusiveArea is entered and exited by a common set of APIs

[TPS_SWCT_01714] ExclusiveArea is entered and exited by an individual set of APIs

[TPS_SWCT_01715] Software-Component wants to be triggered on Monitor Status Changes

[TPS_SWCT_01716] SecOc Use Case: deliver freshness to SecOC I
[TPS_SWCT_01717] SecOc Use Case: deliver freshness to SecOC II
[TPS_SWCT_01718] SecOc Use Case: deliver freshness to SecOC III
[TPS_SWCT_01719] Selection of applicable RptProfiles

[TPS_SWCT_01720] Preparation Levels

[TPS_SWCT_01721] References from RptContainer

[TPS_SWCT_01722] Semantics of RP Service Point

[TPS_SWCT_01723] Semantics of RP Service Function

[TPS_SWCT_01724] Semantics of RapidPrototypingScenario

[TPS_SWCT_01725] AtomicSwComponentType uses the secure counter of the Crypto Service
5

920 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01726] AtomicSwComponentType uses the key management of the Crypto Service

[TPS_SWCT_01727] Suffix used for the resulting name of the PortInterface for crypto PortIn-
terfaces

[TPS_SWCT_01728] V2xFac Use Case: Application software component provides Vehicle specific
data to the V2X-Stack for CAM transmission

[TPS_SWCT_01729] V2xFac Use Case: V2xFac notifies application software component about re-
ceived messages

[TPS_SWCT_01730] V2xFac Use Case: Application software component triggers transmission of
DENM message

[TPS_SWCT_01731] V2xM Use Case: Application software component provides Vehicle specific
data to the V2X-Stack for Position and Time information

[TPS_SWCT_01732] V2xM Use Case: Application software component needs V2X specific data
from the V2X Manager

[TPS_SWCT_01733] V2xM Use Case: Application software component has soft-control over
Pseudonym-Change within V2X Manager

[TPS_SWCT_01734] V2xM Use Case: Application software component has the ability to do
Verification-on-Demand

[TPS_SWCT_01735] V2xM Use Case: Application software component do location based calcula-
tions

Table C.39: Added Traceabless in 4.3.0

C.9.2 Changed Traceables in R4.3.0

Number Heading

[TPS_SWCT_01005] Usage of SwcServiceDependencys for vendor-specific services

[TPS_SWCT_01054] Semantics of the explicitInterRunnableVariable

[TPS_SWCT_01134] AtomicSwComponentType enables reporting of DTCs in general

[TPS_SWCT_01158] Cases for PortInterfaceMapping

[TPS_SWCT_01173] Control port shall not become a part of the PortGroup

[TPS_SWCT_01174] Status port shall not become a member of the PortGroup

[TPS_SWCT_01182] Conceptual levels for the definition of initial values

[TPS_SWCT_01275] values of the attribute swImplPolicy are restricted depending on the context

[TPS_SWCT_01331] dataWriteAccess vs. dataSendPoint
[TPS_SWCT_01355] enableTakeAddress = true

[TPS_SWCT_01463] ModeDeclarationGroupPrototypeMapping.modeDeclarationMap-
pingSet defines the applicable set of ModeDeclarationMappings

[TPS_SWCT_01493] The number of RuleBasedValueSpecification.arguments shall not ex-
ceed the array size

[TPS_SWCT_01494]
A RuleBasedValueSpecification of rule FILL_UNTIL_END shall fill the
value of the last RuleBasedValueSpecification.arguments until the last
element of the array

5

921 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01552] Software-component acts as a mode manager

[TPS_SWCT_01553] Software-component acts as a mode user

[TPS_SWCT_01554] Software-component acts as a mode requester

[TPS_SWCT_01569] Definition of CompuScale Code Symbolic Name

[TPS_SWCT_01586] Writing strategies for nv data

[TPS_SWCT_01609]
A RuleBasedValueSpecification of rule FILL_UNTIL_MAX_SIZE
shall fill the value of the last RuleBasedValueSpecification.arguments
until the number of elements specified in maxSizeToFill

[TPS_SWCT_01635] Naming conventions may support the effectiveness of SymbolProps

[TPS_SWCT_02001] Values of SwAxisCont with the category COM_AXIS, RES_AXIS are for dis-
play only

[TPS_SWCT_02014] AtomicSwComponentType supports Response On Event (ROE) via diagnos-
tic services

[TPS_SWCT_02020] AtomicSwComponentType uses the hash calculation of the Crypto Service

[TPS_SWCT_02021] AtomicSwComponentType uses the message authentication code (MAC)
calculation of the Crypto Service

[TPS_SWCT_02022] AtomicSwComponentType uses the message authentication code (MAC)
verification of the Crypto Service

[TPS_SWCT_02024] AtomicSwComponentType uses the generation of random numbers of the
Crypto Service

[TPS_SWCT_02025] AtomicSwComponentType uses the Authenticated Encryption with Associ-
ated Data (AEAD) of the Crypto Service

[TPS_SWCT_02026] AtomicSwComponentType uses the Authenticated Encryption with Associ-
ated Data (AEAD) of the Crypto Service

[TPS_SWCT_02027] AtomicSwComponentType uses the encryption of the Crypto Service

[TPS_SWCT_02028] AtomicSwComponentType uses the decryption of the Crypto Service

[TPS_SWCT_02031] AtomicSwComponentType uses the signature generation of the Crypto Ser-
vice

[TPS_SWCT_02032] AtomicSwComponentType uses the signature verification of the Crypto Ser-
vice

[TPS_SWCT_02053] Values of RuleBasedAxisCont with the category COM_AXIS, RES_AXIS
are for display only

[TPS_SWCT_02503] Setup for NVM Use Case: Software-Components using Nv Data provided by
NvBlockSwComponentType

[TPS_SWCT_02506] Setup for Dlt use Case: Application software component accesses the Dlt mod-
ule

Table C.40: Changed Traceables in R4.3.0

922 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.9.3 Deleted Traceables in R4.3.0

Number Heading

[TPS_SWCT_01279] Preferred conversion direction depends on the use case

[TPS_SWCT_01428] ServiceSwComponentType representing the Dem provides a PPortProto-
type for the Dcm

[TPS_SWCT_02018] Setup for AtomicSwComponentType which contains a Supervised Entity

[TPS_SWCT_02023] AtomicSwComponentType uses the generation of random seed of the Crypto
Service

[TPS_SWCT_02029] AtomicSwComponentType uses the asymmetrical encryption of the Crypto
Service

[TPS_SWCT_02030] AtomicSwComponentType uses the asymmetrical decryption of the Crypto
Service

[TPS_SWCT_02033] AtomicSwComponentType uses the checksum calculation of the Crypto Ser-
vice

[TPS_SWCT_02034] AtomicSwComponentType uses the key derivation of the Crypto Service

[TPS_SWCT_02035] AtomicSwComponentType uses the symmetric key derivation of the Crypto
Service

[TPS_SWCT_02036] AtomicSwComponentType uses the key exchange interface for public value
calculation of the Crypto Service

[TPS_SWCT_02037] AtomicSwComponentType uses the key exchange interface for secret value
calculation of the Crypto Service

[TPS_SWCT_02038] AtomicSwComponentType uses the key exchange interface to calculate sym-
metric key with the Crypto Service

[TPS_SWCT_02039] AtomicSwComponentType uses the symmetrical key extraction of the Crypto
Service

[TPS_SWCT_02040] AtomicSwComponentType uses the symmetrical key wrapping of the Crypto
Service to export a symmetrical key structure with a symmetric key

[TPS_SWCT_02041] AtomicSwComponentType uses the asymmetrical key wrapping of the
Crypto Service to export a symmetrical key structure with a asymmetric key

[TPS_SWCT_02042] AtomicSwComponentType uses the asymmetrical public key extraction of the
Crypto Service

[TPS_SWCT_02043] AtomicSwComponentType uses the asymmetrical private key extraction of
the Crypto Service

[TPS_SWCT_02044]
AtomicSwComponentType uses the asymmetrical key wrapping of the
Crypto Service to export a (asymmetric) private key structure with a symmetri-
cal wrapping key

[TPS_SWCT_02045]
AtomicSwComponentType uses the asymmetrical key wrapping of the
Crypto Service to export a (asymmetric) private key structure with a asym-
metrical wrapping key

Table C.41: Deleted Traceables in R4.3.0

923 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.9.4 Added Constraints in R4.3.0

Number Heading

[constr_1407] Definition of SwDataDefProps.dataConstr depending on the capabilities of the
data type

[constr_1408] Definition of SwDataDefProps.displayFormat depending on the capabilities of the
data type

[constr_1409] Definition of SwDataDefProps.dataConstr depending on the capabilities of the
element data type

[constr_1410] Definition of SwDataDefProps.displayFormat depending on the capabilities of the
element data type

[constr_1413] Definition of SwDataDefProps.stepSize depending on the capabilities of the data
type

[constr_1414] Definition of SwDataDefProps.stepSize depending on the capabilities of the ele-
ment data type

[constr_1415] Supported values of ModeSwitchEventTriggeredActivity.role

[constr_1416] Existence of ApplicationArrayElement.maxNumberOfElements

[constr_1417] Invalid connection between NvBlockSwComponentType and other AtomicSwCom-
ponentType (I)

[constr_1418] Invalid connection between NvBlockSwComponentType and other AtomicSwCom-
ponentType (II)

[constr_1420] Existence of SwAxisIndividual.inputVariableType
[constr_1422] Value of category is VOID

[constr_1423] Completeness of references ArVariableInImplementationDataInstanceRef.
contextDataPrototype

[constr_1424] Existence of ArVariableInImplementationDataInstanceRef.contextDat-
aPrototype

[constr_1425] Definition of swCalprmAxisSet.swCalprmAxis/ SwAxisIndividual.swVari-
ableRef depending on the capabilities of the data type

[constr_1426] Consistency of array sizes for axes and input variable array

[constr_1427] Definition of swCalprmAxisSet.swCalprmAxis/ SwAxisGrouped.swCalprmRef
depending on the capabilities of the data type

[constr_1428] Consistency of array sizes for arrays of elements of category CURVE, MAP, CUBOID,
CUBE_4, or CUBE_5 arrays and used group axes arrays

[constr_1429] Access to data within PortPrototypes from within RunnableEntitys
[constr_1430] Access to local data from within RunnableEntitys

[constr_1431] Access to parameters from within RunnableEntitys

[constr_1432] Multiplicity of CommunicationBufferLocking

[constr_1433] Transient faults are not applicable to software-components

[constr_1434] CompuScales shall not have identical CompuScale Value Symbolic Names

[constr_1436] DiagnosticCommunicationManagerNeeds.serviceRequestCallbackType
is set to requestCallbackTypeSupplier

[constr_1437] DiagnosticCommunicationManagerNeeds.serviceRequestCallbackType
is set to requestCallbackTypeManufacturer

5

924 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1438] ApplicationArrayElement.indexDataType needs to refer to a CompuMethod
of category TEXTTABLE

[constr_1439] Requirements on ApplicationArrayElement if attribute indexDataType exists

[constr_1440] Size of the CompuMethod of category TEXTTABLE referenced by Application-
ArrayElement.indexDataType

[constr_1442] category TYPE_REFERENCE shall not be used for modeling the “payload” of a
Wrapped Union Data Type

[constr_1443] category UNION shall not be used for ImplementationDataType

[constr_1444] Limited applicability of Wrapped Union Data Type

[constr_1445] Initialization of the Member Selector of a Wrapped Union Data Type

[constr_1446] No definition of invalidValue for a Wrapped Union Data Type

[constr_1468] Limitation on the number of SwcExclusiveAreaPolicys

[constr_1469] Applicability of constraints depending on the existence of a data transformation

Table C.42: Added Constraints in R4.3.0

C.9.5 Changed Constraints in R4.3.0

Number Heading

[constr_1006] applicable data categories

[constr_1007] Allowed attributes of SwDataDefProps for ApplicationDataTypes
[constr_1009] SwDataDefProps applicable to ImplementationDataTypes

[constr_1011] category of SwBaseType

[constr_1014] Supported value encodings for SwBaseType

[constr_1015] Prioritization of SwDataDefProps

[constr_1024] Stepwise definition of CompuMethods

[constr_1045] Supported value encodings for SwBaseType in the context of PortInterfaces

[constr_1105] Value of arraySize

[constr_1240] Consistency of ArgumentDataPrototypes within the context of a ClientServer-
OperationMapping

[constr_1271] RecordValueSpecification.fields shall be identical to the number of Appli-
cationRecordDataType.elements

[constr_1272] RecordValueSpecification.fields shall be identical to the number of subEle-
ments of ImplementationDataType of category STRUCTURE

[constr_1284] Limitation of the use of TextValueSpecification

[constr_1288] Allowed Attributes vs. category for DataPrototypes typed by Implementation-
DataTypes

[constr_1289] Allowed Attributes vs. category for DataPrototypes typed by Application-
DataTypes

[constr_1302] Restriction of data invalidation
5

925 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1375] Existence of attributes of CompuMethod and related meta-classes

[constr_1400] Reference to a specific DataTransformation

[constr_2006] Number of AsynchronousServerCallResultPoint referencing to one Asyn-
chronousServerCallPoint

[constr_2015] Limitation of SwcInternalBehavior of a NvBlockSwComponentType

[constr_2041] swImplPolicy for VariableDataPrototype in the role staticMemory

[constr_2051] Mandatory information of a SwValueCont

[constr_2058] Mandatory information of a RuleBasedValueCont

Table C.43: Changed Constraints in R4.3.0

C.9.6 Deleted Constraints in R4.3.0

Number Heading

[constr_1019] Compatibility of input value and axis

[constr_1021] A CompuMethod shall specify instructions for both directions

[constr_1133] Identical CompuScale Symbolic Names shall have the same range

[constr_1201] initValue shall exist in an RPortPrototype

[constr_1323] Applicability of attribute ReceiverComSpec.usesEndToEndProtection

Table C.44: Deleted Constraints in R4.3.0

C.10 Constraint History of this Document according to AUTOSAR
R4.3.1

C.10.1 Added Traceables in R4.3.1

Number Heading

[TPS_SWCT_01736] Default values for Unit.physicalDimension

[TPS_SWCT_01737] Default values for physical exponents

[TPS_SWCT_01738] Context path in ArParameterInImplementationDataInstanceRef

[TPS_SWCT_01739] Function Inhibition Manager Use Case: react on suppressed or unavailable
events

[TPS_SWCT_01740] StbM use Case: Process time snapshot obtained from global time slave for
diagnostics purposes

[TPS_SWCT_01741] Suffix used for the resulting name of the PortInterface for measurement
notification

[TPS_SWCT_01742] StbM use Case: Software-component represents a global time master
5

926 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01743] Suffix used for the resulting name of the PortInterface for the global time
master role

[TPS_SWCT_01744] StbM use Case: Software-component represents a global time slave

[TPS_SWCT_01745] Suffix used for the resulting name of the PortInterface for the global time
slave role

[TPS_SWCT_01746] Atomic Software-Component provides the further action byte to the DoIP Ser-
vice Component

[TPS_SWCT_01747] Value of category for fix axis

[TPS_SWCT_01748] Sub-categories of fix axes

[TPS_SWCT_01749] Semantics of SwAxisGeneric.swAxisType in the definition of a fix axis

[TPS_SWCT_01750] Semantics of SwAxisGeneric.swGenericAxisParam in the definition of a
fix axis

Table C.45: Added Traceables in R4.3.1

C.10.2 Changed Traceables in R4.3.1

Number Heading

[TPS_SWCT_01193] Mappings between application and implementation types do not necessarily
have to form a 1:1 relation

[TPS_SWCT_01222] Applicability of DataFilter

[TPS_SWCT_01225] RunnableEntity implements the functionality of more than one
ClientServerOperations

[TPS_SWCT_01288] Interpretation of PhysConstrs and InternalConstrs by tools

[TPS_SWCT_01444] Size of SwBaseType is specified in bits

[TPS_SWCT_01560] Supported categorys of CompuMethods for data conversion

[TPS_SWCT_01675] Recommendations for attributes of NvBlockNeeds or for NvBlockDe-
scriptor

[TPS_SWCT_01678] StbM use Case: start timer and potentially get notified about its expiration

[TPS_SWCT_01679] StbM use Case: Software-Components wants to get notifications of status
changes

[TPS_SWCT_01714] ExclusiveArea is entered and exited by an individual set of APIs

[TPS_SWCT_02506] Setup for Dlt use Case: Application software component accesses the Dlt
module

Table C.46: Changed Traceables in R4.3.1

927 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.10.3 Deleted Traceables in R4.3.1

Number Heading

[TPS_SWCT_01490] AUTOSAR supports ApplicationErrors only for ClientServerInter-
faces

Table C.47: Deleted Traceables in R4.3.1

C.10.4 Added Constraints in R4.3.1

Number Heading

[constr_1515]
Existence of ImplementationDataTypeSubElementRef.implementation-
DataTypeElement as opposed to ImplementationDataTypeSubElementRef.
parameterImplementationDataTypeElement

[constr_1516] Completeness of references ArParameterInImplementationDataIn-
stanceRef.contextDataPrototype

[constr_1517] Existence of ArParameterInImplementationDataInstanceRef.context-
DataPrototype

[constr_1518] Consistency of data types in the context of ArParameterInImplementation-
DataInstanceRef

[constr_1519] Existence of attributes vs. category of ApplicationValueSpecification
[constr_1520] Semantics of ObdRatioServiceNeeds.rateBasedMonitoredEvent

[constr_1521] Reference from AsynchronousServerCallReturnsEvent to Asyn-
chronousServerCallResultPoint

[constr_1523] No mode disabling for OperationInvokedEvents

[constr_1538] Restriction for ReceiverComSpec.dataElement
[constr_1539] Restriction for SenderComSpec.dataElement
[constr_1540] Existence of ClientComSpec.operation
[constr_1541] Existence of ServerComSpec.operation

[constr_1544] Modeling of SwAxisGeneric for the definition of a fix axis

[constr_1545] No initialization for fix axis

Table C.48: Added Constraints in R4.3.1

C.10.5 Changed Constraints in R4.3.1

Number Heading

[constr_1004] Mapping of ApplicationDataTypes in the scope of single AtomicSwCompo-
nentTypes

[constr_1007] Allowed attributes of SwDataDefProps for ApplicationDataTypes
[constr_1009] SwDataDefProps applicable to ImplementationDataTypes

5

928 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1011] category of SwBaseType
[constr_1012] Value of category is FIXED_LENGTH
[constr_1015] Prioritization of SwDataDefProps
[constr_1038] Reference to ApplicationError

[constr_1044] Applicability of DataFilter

[constr_1090] WaitPoint and RunnableEntity

[constr_1102] ApplicationError in the scope of one SwComponentType

[constr_1126] Compatibility of DataConstrs

[constr_1220] Compatibility of SwBaseType

[constr_1229] category of ImplementationDataType boils down to VALUE

[constr_1288] Allowed Attributes vs. category for DataPrototypes typed by Implementa-
tionDataTypes

[constr_1289] Allowed Attributes vs. category for DataPrototypes typed by Application-
DataTypes

[constr_1422] Value of category is VOID

[constr_2027] SwcServiceDependency shall be defined for service ports only

[constr_2043] swImplPolicy for ParameterDataPrototype in the role romBlock

[constr_2044] swImplPolicy for ParameterDataPrototype in the role sharedParameter

[constr_2045] swImplPolicy for ParameterDataPrototype in the role perInstanceParam-
eter

[constr_2046] swImplPolicy for ParameterDataPrototype in the role constantMemory

Table C.49: Changed Constraints in R4.3.1

C.10.6 Deleted Constraints in R4.3.1

Number Heading

[constr_1013] Value of category is VARIABLE_LENGTH

[constr_1436] DiagnosticCommunicationManagerNeeds.serviceRequestCallbackType
is set to requestCallbackTypeSupplier

[constr_1437] DiagnosticCommunicationManagerNeeds.serviceRequestCallbackType
is set to requestCallbackTypeManufacturer

Table C.50: Deleted Constraints in R4.3.1

929 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.11 Constraint History of this Document according to AUTOSAR
R4.4.0

C.11.1 Added Traceables in R4.4.0

Number Heading

[TPS_SWCT_01751]
The meaning of E2E-related attributes in a SenderComSpec if a
TransformationComSpecProps of type EndToEndTransformation-
ComSpecProps is defined

[TPS_SWCT_01752] Initialization of a variable-size array

[TPS_SWCT_01753] Application of compatibility rules for ReceiverComSpec.replaceWith

[TPS_SWCT_01754] initValue defined in the context of a ComSpec

[TPS_SWCT_01755] Duplicate existence of initValue in the context of a PRPortPrototype
typed by an NvDataInterface

[TPS_SWCT_01756] Semantics of SwDataDefProps.displayPresentation

[TPS_SWCT_01757] Not-applicable scenario for presentationContinuous

[TPS_SWCT_01758] Applicable value range of SwDataDefProps.displayPresentation

[TPS_SWCT_01759] Use cases for unions

[TPS_SWCT_01760] Defining the dimension of an ApplicationPrimitiveDataType of cat-
egory VAL_BLK

[TPS_SWCT_01761] Physical limits of pure textual conversions

[TPS_SWCT_01762] Physical limits of mixed textual conversions

[TPS_SWCT_01763] HtssM Service Use Case: Query results of hardware tests

[TPS_SWCT_01764] V2xFac Use Case: Application software component shall be able to process
the MAP (topology) Extended Message

[TPS_SWCT_01765] Dem Service Use Case: In-Use-Monitoring Performance Ratio Denominator
interface

[TPS_SWCT_01766] Software-component computes the PIDs, and pushes them to Dem for stor-
age and reporting to Dcm

[TPS_SWCT_01767] Software-component located on an OBD master ECU reads the PID 21, and
and sends the value around via “regular” sender-receiver communication

[TPS_SWCT_01768] Semantics of DataPrototypeMapping.secondToFirstDataTransfor-
mation

[TPS_SWCT_01769] Dcm Use Case: Upload and download of data

[TPS_SWCT_01770] V2xFac Use Case: Application software component processes Infrastructure
to Vehicle Information Message

[TPS_SWCT_01771] Definition of optional elements on the level of ApplicationDataType

[TPS_SWCT_01772] Semantics of attribute ImplementationDataType.isStructWithOp-
tionalElement

[TPS_SWCT_01773] Definition of Optional Element Structure on the level of Implemen-
tationDataType

[TPS_SWCT_01774] Modeling of ImplementationDataType with optional elements

[TPS_SWCT_01775] Structured data types with optional elements
5

930 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01776] AtomicSwComponentType uses the API of the Crypto Service to set a key
valid

[TPS_SWCT_01777] AtomicSwComponentType uses the API of the Crypto Service to create a
random seed

[TPS_SWCT_01778] AtomicSwComponentType uses the API of the Crypto Service to generate
a key

[TPS_SWCT_01779] AtomicSwComponentType uses the API of the Crypto Service to derive a
key

[TPS_SWCT_01780] AtomicSwComponentType uses the API of the Crypto Service to execute
calculation of the public value for key exchange

[TPS_SWCT_01781] AtomicSwComponentType uses the API of the Crypto Service to execute
calculation of shared secret for key exchange

[TPS_SWCT_01782] AtomicSwComponentType uses the API of the Crypto Service to execute
certificate parsing

[TPS_SWCT_01783] AtomicSwComponentType uses the API of the Crypto Service to execute
certificate verification

[TPS_SWCT_01784] SecOc Use Case: enable the sending of Pdus even if computation of the
MAC is not possible

[TPS_SWCT_01785] Initial value for ImplementationDataType of category STRUCTURE
where attribute isStructWithOptionalElement set to the value True

[TPS_SWCT_01786] Initial value for the ImplementationDataTypeElementwhere the short-
Name is set to the value availabilityBitfield

[TPS_SWCT_01787] Initialization of not-available ImplementationDataTypeElement

[TPS_SWCT_01788] V2xFac Use Case: Application software component processes Signal Phase
And Timing Extended Message

[TPS_SWCT_01789]
AtomicSwComponentType implements a Diagnostic Monitor that provides
monitor data, debouncing by Dem

[TPS_SWCT_01790]
AtomicSwComponentType implements a Diagnostic Monitor that provides
monitor data, debouncing by software-component

[TPS_SWCT_01791] AtomicSwComponentType acts as a "file server" to a diagnostic tester

Table C.51: Added Traceables in R4.4.0

C.11.2 Changed Traceables in R4.4.0

Number Heading

[TPS_SWCT_01016] AtomicSwComponentType wants to select a shutdown target

[TPS_SWCT_01017] AtomicSwComponentType wants to select a boot target

[TPS_SWCT_01018] AtomicSwComponentType wants to use an alarm clock

[TPS_SWCT_01028] AtomicSwComponentType implements a Diagnostic Monitor

[TPS_SWCT_01029] AtomicSwComponentType implements a Diagnostic Monitor
5

931 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01132] AtomicSwComponentType provides information about operating cycles

[TPS_SWCT_01136] AtomicSwComponentType retrieves information of the lamp status

[TPS_SWCT_01180] Maximum possible size of Compound Primitive Data Type

[TPS_SWCT_01275] values of the attribute swImplPolicy are restricted depending on the con-
text

[TPS_SWCT_01374] Implementation of AutosarParameterRef

[TPS_SWCT_01375] Implementation of AutosarVariableRef

[TPS_SWCT_01398] Communication patterns for AUTOSAR services

[TPS_SWCT_01405] Creation of the ServiceSwComponentTypes

[TPS_SWCT_01426] AtomicSwComponentType provides callback if any diagnostic event data
and/or status changed

[TPS_SWCT_01456] Predefined values for MemorySection.option and SwAddrMethod.op-
tion

[TPS_SWCT_01678] StbM use Case: start timer and potentially get notified about its expiration

[TPS_SWCT_01698] Attributes that are subject to development approach

[TPS_SWCT_01706] AtomicSwComponentType supports DiagnosticSessionControl to get in-
formed about the diagnostic session

[TPS_SWCT_01707] AtomicSwComponentType supports EcuReset service via diagnostic ser-
vices

[TPS_SWCT_01708] AtomicSwComponentType supports EcuReset ModeRapidPowerShut-
Down service via diagnostic services

[TPS_SWCT_01709] AtomicSwComponentType supports CommunicationControl service via di-
agnostic services

[TPS_SWCT_01711] AtomicSwComponentType supports ControlDTCSetting service via diag-
nostic services

[TPS_SWCT_01712] AtomicSwComponentType supports SecurityAccess to get informed about
the security level

[TPS_SWCT_01715] Software-Component wants to be triggered on Monitor Status Changes

[TPS_SWCT_01727] Suffix used for the resulting name of the PortInterface for crypto Port-
Interfaces

[TPS_SWCT_01728] V2xFac Use Case: Application software component provides Vehicle specific
data to the V2X-Stack for CAM transmission

[TPS_SWCT_01729] V2xFac Use Case: V2xFac notifies application software component about
received messages

[TPS_SWCT_01730] V2xFac Use Case: Application software component triggers transmission of
DENM message

[TPS_SWCT_02000] Default value for attribute swImplPolicy

[TPS_SWCT_02014] AtomicSwComponentType supports Response On Event (ROE) via diag-
nostic services

[TPS_SWCT_02020] AtomicSwComponentType uses the hash calculation of the Crypto Service

[TPS_SWCT_02021] AtomicSwComponentType uses the message authentication code (MAC)
calculation of the Crypto Service

5

932 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_02022] AtomicSwComponentType uses the message authentication code (MAC)
verification of the Crypto Service

[TPS_SWCT_02024] AtomicSwComponentType uses the generation of random numbers of the
Crypto Service

[TPS_SWCT_02025] AtomicSwComponentType uses the Authenticated Encryption with Associ-
ated Data (AEAD) of the Crypto Service

[TPS_SWCT_02026] AtomicSwComponentType uses the Authenticated Encryption with Associ-
ated Data (AEAD) of the Crypto Service

[TPS_SWCT_02027] AtomicSwComponentType uses the encryption of the Crypto Service

[TPS_SWCT_02028] AtomicSwComponentType uses the decryption of the Crypto Service

[TPS_SWCT_02031] AtomicSwComponentType uses the signature generation of the Crypto Ser-
vice

[TPS_SWCT_02032] AtomicSwComponentType uses the signature verification of the Crypto Ser-
vice

[TPS_SWCT_02506] Setup for Dlt use Case: Application software component accesses the Dlt
module

Table C.52: Changed Traceables in R4.4.0

C.11.3 Deleted Traceables in R4.4.0

Number Heading

[TPS_SWCT_01012] AtomicSwComponentType reads the current ECU mode (fixed variant)

[TPS_SWCT_01013] AtomicSwComponentType shall keep the ECU alive (fixed variant)

[TPS_SWCT_01014] AtomicSwComponentType wants to select a shutdown target (fixed variant)

[TPS_SWCT_01015] AtomicSwComponentType wants to select a boot target (fixed variant)

[TPS_SWCT_01125] serverArgumentImplPolicy

[TPS_SWCT_01133] AtomicSwComponentType provides information about aging cycles

[TPS_SWCT_01658] NamingRule for PPortPrototype referenced by a RoleBasedPortAs-
signment with attribute role set to “IOControlResponse”

[TPS_SWCT_01710] Suffix used for the resulting name of the PortInterface for the Communi-
cation Control

[TPS_SWCT_01725] AtomicSwComponentType uses the secure counter of the Crypto Service

Table C.53: Deleted Traceables in R4.4.0

933 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.11.4 Added Constraints in R4.4.0

Number Heading

[constr_1583] PortInterfaceMapping for DataPrototype typed by Compound Primitive
Data Type

[constr_1592] Definition of SwDataDefProps.displayPresentation depending on the capa-
bilities of the data type

[constr_1602] Definition of SwDataDefProps.displayPresentation depending on the capa-
bilities of the element

[constr_1607] Only Wrapped Union Data Types in PortInterface

[constr_1608] Existence of rootParameterDataPrototype
[constr_1609] Existence of rootVariableDataPrototype

[constr_1610] Existence of SwDataDefProps.swValueBlockSize and SwDataDefProps.
swValueBlockSizeMult

[constr_1611]
Existence of ImplementationDataTypeSubElementRef.implementation-
DataTypeElement as opposed to ImplementationDataTypeSubElementRef.
parameterImplementationDataTypeElement

[constr_1622] Value of TimingEvent.offset vs. TimingEvent.period

[constr_1631] Applicability of DataPrototypeMapping.secondToFirstDataTransforma-
tion

[constr_1632] Restriction for firstToSecondDataTransformation and secondToFirst-
DataTransformation

[constr_1634] Allowed combinations of ApplicationDataType.category vs. CompuMethod.
category

[constr_1635] Relevance of attribute isOptional

[constr_1636] Mapping of data types that represent an Optional Element Structure

[constr_1637] Existence of ImplementationDataTypeElement.isOptional vs. Implemen-
tationDataType.isStructWithOptionalElement

[constr_1638] First ImplementationDataTypeElement of ImplementationDataType that
represents an Optional Element Structure

[constr_1639] ImplementationDataTypeElement with attribute isOptional set to True

[constr_1640] No use of Optional Element Structure for interaction with the diagnostic stack

[constr_1662] Compatibility of ApplicationRecordDataType and Implementation-
DataType that both represent an Optional Element Structure

Table C.54: Added Constraints in R4.4.0

C.11.5 Changed Constraints in R4.4.0

Number Heading

[constr_1006] applicable data categories

[constr_1007] Allowed attributes of SwDataDefProps for ApplicationDataTypes
5

934 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1009] SwDataDefProps applicable to ImplementationDataTypes

[constr_1015] Prioritization of SwDataDefProps

[constr_1024] Stepwise definition of CompuMethods

[constr_1048] Compatibility of ApplicationRecordDataTypes

[constr_1050] Compatibility of ImplementationDataTypes

[constr_1273] Rules for the initialization of ApplicationArrayDataType by means of Array-
ValueSpecification

[constr_1274] Rules for the initialization of array-shaped ImplementationDataType by means
of ArrayValueSpecification

[constr_1288] Allowed Attributes vs. category for DataPrototypes typed by Implementa-
tionDataTypes

[constr_1289] Allowed Attributes vs. category for DataPrototypes typed by Application-
DataTypes

[constr_1400] Reference to a specific DataTransformation

[constr_1444] Limited applicability of Wrapped Union Data Type

[constr_1519] Existence of attributes vs. category of ApplicationValueSpecification

[constr_2000] Compatibility of ClientServerOperations triggering the same RunnableEn-
tity

Table C.55: Changed Constraints in R4.4.0

C.11.6 Deleted Constraints in R4.4.0

Number Heading

[constr_1032] DelegationSwConnector can only connect PortPrototypes of the same kind

[constr_1297] Applicability of serverArgumentImplPolicy set to useArrayBaseType

[constr_1443] category UNION shall not be used for ImplementationDataType

[constr_1515]
Existence of ImplementationDataTypeSubElementRef.implementation-
DataTypeElement as opposed to ImplementationDataTypeSubElementRef.
parameterImplementationDataTypeElement

Table C.56: Deleted Constraints in R4.4.0

935 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.12 Constraint History of this Document according to AUTOSAR
R19-11

C.12.1 Added Traceables in R19-11

Number Heading

[TPS_SWCT_01792] Initialization of a DataPrototype associated with a CompuMethod of cat-
egory BITFIELD_TEXTTABLE

[TPS_SWCT_01793] Initialization of a variable-size array typed by an Implementation-
DataType

[TPS_SWCT_01794] Initialization of a variable-size array typed by an ApplicationArray-
DataType

[TPS_SWCT_01795] Further specification to facilitate the association of writing strategies to the
corresponding RunnableEntity

[TPS_SWCT_01796] Prioritization of SwDataDefProps.dataConstr for a DataPrototype of
category ARRAY

[TPS_SWCT_01797] Prioritization of SwDataDefProps.displayFormat for a DataPrototype
of category ARRAY

[TPS_SWCT_01798] Prioritization of SwDataDefProps.stepSize for a DataPrototype of
category ARRAY

[TPS_SWCT_01799] Mapping of bitfields between NvBlockDescriptor and PortPrototype

[TPS_SWCT_01801] Support for Meta-Data

[TPS_SWCT_01802] Definition of meta-data in the context of a SenderReceiverInterface

[TPS_SWCT_01803] MetaDataItems define the same value of attribute length

[TPS_SWCT_01804] Standardized values of attribute MetaDataItem.metaDataItemType.
value

[TPS_SWCT_01805] Semantics of the aggregation NvBlockSwComponentType.bulkNv-
DataDescriptor

[TPS_SWCT_01806]
Simultaneous aggregation of NvBlockSwComponentType.bulkNv-
DataDescriptor and NvBlockSwComponentType.nvBlockDescrip-
tor

[TPS_SWCT_01807] Application of NvBlockDataMapping on BulkNvDataDescriptor

[TPS_SWCT_03500] Status forwarding to data transformer

[TPS_SWCT_03501] Applicability of status forwarding to data transformer

Table C.57: Added Traceables in R19-11

936 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.12.2 Changed Traceables in R19-11

Number Heading

[TPS_SWCT_01029] AtomicSwComponentType implements a Diagnostic Monitor

[TPS_SWCT_01030] RunnableEntity

[TPS_SWCT_01132] AtomicSwComponentType provides information about operating cycles

[TPS_SWCT_01148] NvBlockDataMapping

[TPS_SWCT_01182] Conceptual levels for the definition of initial values

[TPS_SWCT_01220] initValue defines an initial value that shall be taken if the corresponding
dataElement has not yet been received

[TPS_SWCT_01243] Definition of enumeration types

[TPS_SWCT_01309] signature of a RunnableEntity depends on the connected RTEEvent

[TPS_SWCT_01310] Categories of RunnableEntitys

[TPS_SWCT_01654] AtomicSwComponentType offers PortPrototypes typed by Sender-
ReceiverInterfaces to adjust the IO signal via diagnostic services

[TPS_SWCT_01656] Suffix used for the resulting name of the PortInterface for DataSer-
vices, IOControlRequest, and IOControlResponse

[TPS_SWCT_01789]
AtomicSwComponentType implements a Diagnostic Monitor that provides
monitor data, debouncing by Dem

[TPS_SWCT_01790]
AtomicSwComponentType implements a Diagnostic Monitor that provides
monitor data, debouncing by software-component

Table C.58: Changed Traceables in R19-11

C.12.3 Deleted Traceables in R19-11

Number Heading

[TPS_SWCT_01344] Consistency of values of timeout

[TPS_SWCT_01429] [constr_1135] only applies for BITFIELD_TEXTTABLE

[TPS_SWCT_01752] Initialization of a variable-size array

Table C.59: Deleted Traceables in R19-11

C.12.4 Added Constraints in R19-11

Number Heading

[constr_1679]
Existence of attribute RoleBasedDataAssignment.usedDataElement.local-
Variable for RoleBasedDataAssignment.role = signalBasedDiagnos-
tics

5

937 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1680]
Existence of attribute RoleBasedDataAssignment.usedDataElement.local-
Variable for RoleBasedDataAssignment.role = AppModeRequestInter-
face

[constr_1681] Existence of attribute RoleBasedDataAssignment.usedDataElement.local-
Variable for RoleBasedDataAssignment.role = VerificationStatus

[constr_1682] Existence of attribute RoleBasedDataAssignment.usedDataElement.local-
Variable for RoleBasedDataAssignment.role = V2xFacVdp

[constr_1683]
Existence of attribute RoleBasedDataAssignment.usedDataEle-
ment.localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationCam

[constr_1684]
Existence of attribute RoleBasedDataAssignment.usedDataEle-
ment.localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationMapem

[constr_1685]
Existence of attribute RoleBasedDataAssignment.usedDataEle-
ment.localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationIvim

[constr_1686]
Existence of attribute RoleBasedDataAssignment.usedDataEle-
ment.localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationSpatem

[constr_1694] Allowed target of SwDataDefProps.implementationDataType

[constr_1706] Definition of initial value for data transmission

[constr_1712] Existence of attribute ArrayValueSpecification.intendedPartialIni-
tializationCount

[constr_1713] NvBlockDescriptor.writingStrategyRole.usedDataElement shall refer to
AutosarDataPrototype

[constr_1714] AutosarDataPrototype shall only be referenced by a single NvBlockDescrip-
tor.writingStrategyRole

[constr_1715] Possible values of attribute NvBlockDescriptor.writingStrategyRole.role

[constr_1716] Consistency of attribute NvBlockDescriptor.writingStrategyRole.role set
to storeAtShutdown

[constr_1717] Consistency of attribute NvBlockDescriptor.writingStrategyRole.role set
to storeImmediate

[constr_1718] Inheritance of SwDataDefProps.dataConstr from an array data type to the array
elements

[constr_1719] Inheritance of SwDataDefProps.displayFormat from an array data type to the
array elements

[constr_1720] Inheritance of SwDataDefProps.stepSize from an array data type to the array
elements

[constr_1724] Usage of attribute ClientServerOperation.diagArgIntegrity

[constr_1726] Ordering of MetaDataItemSet.metaDataItem

[constr_1735] Limitation of the aggregation of AutosarVariableRef in the context of an
NvBlockDataMapping owned by a BulkNvDataDescriptor

[constr_1741]
Restriction to explicit sending semantics for the usage of DataServices in the
context of a SwcServiceDependency that aggregates DiagnosticValueNeeds
that in turn is referenced by a DiagnosticIoControlNeeds

Table C.60: Added Constraints in R19-11

938 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.12.5 Changed Constraints in R19-11

Number Heading

[constr_1051] Compatibility of SwDataDefProps

[constr_1059] Compatibility of data types with category VALUE

[constr_1060] Compatibility of data types with category ARRAY, VAL_BLK

[constr_1061] Compatibility of data types with category STRUCTURE

[constr_1063] Compatibility of data types with category BOOLEAN

[constr_1064] Compatibility of data types with category COM_AXIS, RES_AXIS, CURVE, MAP,
CUBOID, CUBE_4, or CUBE_5

[constr_1078] Compatibility of ClientServerOperations

[constr_1137] Applicability of ParameterInterface

[constr_1273] Rules for the initialization of ApplicationArrayDataType by means of Array-
ValueSpecification

[constr_1274] Rules for the initialization of array-shaped ImplementationDataType by means
of ArrayValueSpecification

[constr_1607] Only Wrapped Union Data Types in PortInterface

[constr_1662] Compatibility of ApplicationRecordDataType and Implementation-
DataType that both represent an Optional Element Structure

[constr_2000] Compatibility of ClientServerOperations triggering the same RunnableEn-
tity

[constr_2013] Compatibility of ImplementationDataTypes for NvBlockDataMapping

Table C.61: Changed Constraints in R19-11

C.12.6 Deleted Constraints in R19-11

none

C.13 Constraint History of this Document according to AUTOSAR
R20-11

C.13.1 Added Traceables in R20-11

Number Heading

[TPS_SWCT_01808] Dem Service Use Case: software-component checks whether an event is
suppressed

[TPS_SWCT_01809] J1939Dcm wants to retrieve calibration verification numbers from an applica-
tion software-component

5

939 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01810] Software-component analyzes predictions about the time synchronization
process

[TPS_SWCT_01811] AtomicSwComponentType reads the current PNC ComM mode

[TPS_SWCT_01812] Conditional relevance of attribute EndToEndTransformationCom-
SpecProps.disableEndToEndStateMachine

[TPS_SWCT_01813] Software-Component wants check a certificate on KeyM

[TPS_SWCT_01814] AtomicSwComponentType wants to retrieve a certificate from KeyM

[TPS_SWCT_01815] AtomicSwComponentType wants to retrieve elements of a certificate from
KeyM

[TPS_SWCT_01816] AtomicSwComponentTypewants to check the existence of a certificate from
KeyM

[TPS_SWCT_01817] AtomicSwComponentType wants to store a (derived) key in KeyM

[TPS_SWCT_01818]
AtomicSwComponentType wants to store a container with encrypted keys
(e.g. She-keys) in KeyM

[TPS_SWCT_01819] AtomicSwComponentType wants to verify if cryptographic operation was ex-
ecuted using a specific key

[TPS_SWCT_01820] Existence of attribute SenderComSpec.handleOutOfRange

[TPS_SWCT_01821] Semantics of attribute NotAvailableValueSpecification.default-
Pattern

[TPS_SWCT_01822] Application of attribute NotAvailableValueSpecification.default-
Pattern happens only during initialization

[TPS_SWCT_01823] Definition of ValueSpecification for an ApplicationRecord-
DataType with unavailable optional elements

[TPS_SWCT_01826] Application Software Component reports security event

[TPS_SWCT_01827] Suffix used for the resulting name of the PortInterface for the IdsM Ser-
vices

[TPS_SWCT_01828] Application Software Component reports security event using Smart Sensor
API

[TPS_SWCT_01829] Suffix used for the resulting name of the PortInterface for the IdsM Ser-
vices

[TPS_SWCT_01830] Application Software Component provides time stamp to IdsM

Table C.62: Added Traceables in R20-11

C.13.2 Changed Traceables in R20-11

Number Heading

[TPS_SWCT_01004] Specific default value if serviceKind is not defined

[TPS_SWCT_01078] Configurable array size

[TPS_SWCT_01178] Specialized subclasses of ValueSpecification

[TPS_SWCT_01221] DataFilter
5

940 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01495] Standardized value of RuleBasedValueSpecification.rule

[TPS_SWCT_01642] Definition of an “old-world” dynamic-size array data type by means of an
ImplementationDataType

[TPS_SWCT_01673] Application Software Component sends requests using the J1939Rm

[TPS_SWCT_01674] Application Software Component accepts requests using the J1939Rm

[TPS_SWCT_02003]
AtomicSwComponentType offers PortPrototypes typed by Sender-
ReceiverInterfaces or NvDataInterfaces to read/write current values
via diagnostic services

[TPS_SWCT_02052] Definition of Rapid Prototyping Scenario is splittable

Table C.63: Changed Traceables in R20-11

C.13.3 Deleted Traceables in R20-11

Number Heading

[TPS_SWCT_01039] Purpose of variant handling

[TPS_SWCT_01510] The role of pretended networking

[TPS_SWCT_01511] Configuration option is encoded into ModeDeclaration

[TPS_SWCT_01512] Request change of Pretended Networking mode

[TPS_SWCT_01513] React on the change of Pretended Networking mode

Table C.64: Deleted Traceables in R20-11

C.13.4 Added Constraints in R20-11

Number Heading

[constr_1754] Aggregation of NumericalRuleBasedValueSpecification

[constr_1755] Aggregation of CompositeRuleBasedValueSpecification

[constr_1771] Existence of SwValueCont.unit
[constr_1773] Value of attribute dataSendPoint.returnValueProvision
[constr_1774] Value of attribute dataReceivePointByArgument.returnValueProvision
[constr_1775] Value of attribute serverCallPoint.returnValueProvision

[constr_1776] Value of attribute asynchronousServerCallResultPoint.returnValuePro-
vision

[constr_1777] Value of attribute externalTriggeringPoint.returnValueProvision
[constr_1778] Value of attribute modeSwitchPoint.returnValueProvision
[constr_1779] Scope of the definition of an AbstractRuleBasedValueSpecification

[constr_1783] Existence of attribute ImplementationDataTypeElement.arrayImplPolicy
5

941 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1860] Multiplicity of DelegationSwConnector.innerPort

[constr_1861] Multiplicity of DelegationSwConnector.outerPort

[constr_1862] Multiplicity of PassThroughSwConnector.requiredOuterPort

[constr_1863] Multiplicity of PassThroughSwConnector.providedOuterPort

[constr_1864] Multiplicity of InstantiationRTEEventProps.refinedEvent

[constr_1865] Existence of InvalidationPolicy.dataElement
[constr_1866] Existence of MetaDataItem.length
[constr_1867] Existence of MetaDataItem.metaDataItemType
[constr_1868] Existence of MetaDataItemSet.dataElement
[constr_1869] Existence of attribute ArgumentDataPrototype.direction
[constr_1870] Existence of attribute ApplicationError.errorCode
[constr_1871] Existence of attribute ModeRequestTypeMap.implementationDataType
[constr_1872] Existence of attribute ModeRequestTypeMap.modeGroup
[constr_1873] Existence of DataPrototypeMapping.firstDataPrototype
[constr_1874] Existence of DataPrototypeMapping.secondDataPrototype
[constr_1875] Existence of reference ClientServerOperationMapping.firstOperation
[constr_1876] Existence of reference ClientServerOperationMapping.secondOperation

[constr_1877] Existence of reference ModeDeclarationGroupPrototypeMapping.first-
ModeGroup

[constr_1878] Existence of reference ModeDeclarationGroupPrototypeMapping.second-
ModeGroup

[constr_1879] Existence of reference ModeDeclarationMapping.firstMode
[constr_1880] Existence of reference ModeDeclarationMapping.secondMode
[constr_1881] Existence of reference TriggerMapping.firstTrigger
[constr_1882] Existence of reference TriggerMapping.secondTrigger

[constr_1883] Existence of ApplicationCompositeDataTypeSubElementRef.applica-
tionCompositeElement

[constr_1884] Existence of attribute TextTableMapping.identicalMapping
[constr_1885] Existence of attribute TextTableMapping.mappingDirection
[constr_1886] Existence of attribute TextTableValuePair.firstValue
[constr_1887] Existence of attribute TextTableValuePair.secondValue

[constr_1888] Existence of attribute DataTransformation.executeDespiteDataUnavail-
ability

[constr_1889] Existence of attribute QueuedReceiverComSpec.queueLength
[constr_1890] Existence of attribute DataFilter.dataFilterType
[constr_1891] Existence of attribute NonqueuedReceiverComSpec.initValue
[constr_1892] Existence of attribute TransmissionAcknowledgementRequest.timeout
[constr_1893] Existence of attribute ServerComSpec.queueLength
[constr_1894] Existence of attribute ModeSwitchSenderComSpec.queueLength
[constr_1895] Existence of attribute ModeSwitchSenderComSpec.modeGroup

5

942 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1896] Existence of attribute ModeSwitchReceiverComSpec.modeGroup
[constr_1897] Existence of reference ParameterProvideComSpec.parameter
[constr_1898] Existence of reference ParameterRequireComSpec.parameter
[constr_1899] Existence of reference NvRequireComSpec.variable
[constr_1900] Existence of reference NvProvideComSpec.variable
[constr_1901] Existence of attribute EndToEndDescription.category
[constr_1902] Existence of attribute EndToEndProtection.endToEndProfile
[constr_1903] Existence of reference DataTypeMap.applicationDataType
[constr_1904] Existence of reference DataTypeMap.implementationDataType
[constr_1905] Existence of attribute SwTextProps.arraySizeSemantics
[constr_1906] Existence of attribute SwTextProps.swMaxTextSize
[constr_1907] Existence of attribute ApplicationArrayDataType.element
[constr_1908] Existence of attribute ApplicationRecordDataType.element
[constr_1909] Existence of attribute ImplementationProps.symbol
[constr_1910] Existence of attribute BaseType.baseTypeDefinition

[constr_1911] Existence of ArVariableInImplementationDataInstanceRef.targetDat-
aPrototype

[constr_1912] Existence of reference ArParameterInImplementationDataInstanceRef.
targetDataPrototype

[constr_1913] Existence of attribute CompuRationalCoeffs.compuDenominator
[constr_1914] Existence of attribute CompuRationalCoeffs.compuNumerator

[constr_1915] Existence of attribute PhysicalDimensionMapping.firstPhysicalDimen-
sion

[constr_1916] Existence of attribute PhysicalDimensionMapping.secondPhysicalDimen-
sion

[constr_1917] Existence of ConstantSpecification.valueSpec
[constr_1918] Existence of RecordValueSpecification.field
[constr_1919] Existence of TextValueSpecification.value
[constr_1920] Existence of NumericalValueSpecification.value
[constr_1921] Existence of ReferenceValueSpecification.referenceValue
[constr_1922] Existence of ApplicationRuleBasedValueSpecification.category
[constr_1923] Existence of RuleBasedAxisCont.ruleBasedValues
[constr_1924] Existence of RuleBasedValueCont.ruleBasedValues
[constr_1925] Existence of NumericalRuleBasedValueSpecification.ruleBasedValues
[constr_1926] Existence of RuleBasedValueSpecification.rule
[constr_1927] Existence of RuleBasedValueSpecification.arguments
[constr_1928] Existence of CompositeRuleBasedValueSpecification.rule
[constr_1929] Existence of CompositeRuleBasedValueSpecification.argument
[constr_1930] Existence of ConstantReference.constant
[constr_1931] Existence of ConstantSpecificationMapping.applConstant

5

943 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1932] Existence of ConstantSpecificationMapping.implConstant
[constr_1933] Existence of CalibrationParameterValue.initializedParameter

[constr_1934] Existence of attribute SwcInternalBehavior.handleTerminationAn-
dRestart

[constr_1935] Existence of attribute SwcInternalBehavior.supportsMultipleInstantia-
tion

[constr_1936] Existence of attribute RunnableEntity.symbol
[constr_1937] Existence of attribute TimingEvent.period
[constr_1938] Existence of attribute RunnableEntityArgument.symbol
[constr_1939] Existence of attribute ExecutableEntityActivationReason.bitPosition
[constr_1940] Existence of attribute AsynchronousServerCallReturnsEvent.eventSource
[constr_1941] Existence of attribute DataSendCompletedEvent.eventSource
[constr_1942] Existence of attribute DataWriteCompletedEvent.eventSource
[constr_1943] Existence of attribute DataReceivedEvent.data
[constr_1944] Existence of attribute DataReceiveErrorEvent.data
[constr_1945] Existence of attribute OperationInvokedEvent.operation
[constr_1946] Existence of attribute SwcModeSwitchEvent.activation
[constr_1947] Existence of reference SwcModeSwitchEvent.mode
[constr_1948] Existence of attribute ModeSwitchedAckEvent.eventSource
[constr_1949] Existence of attribute ExternalTriggerOccurredEvent.trigger
[constr_1950] Existence of attribute InternalTriggerOccurredEvent.eventSource
[constr_1951] Existence of attribute WaitPoint.timeout
[constr_1952] Existence of reference WaitPoint.trigger
[constr_1953] Existence of attribute SwcExclusiveAreaPolicy.apiPrinciple
[constr_1954] Existence of attribute VariableAccess.accessedVariable
[constr_1955] Existence of attribute ServerCallPoint.operation
[constr_1956] Existence of attribute ServerCallPoint.timeout

[constr_1957] Existence of attribute AsynchronousServerCallResultPoint.asyn-
chronousServerCallPoint

[constr_1958] Existence of attribute ParameterAccess.accessedParameter
[constr_1959] Existence of attribute InstantiationDataDefProps.swDataDefProps
[constr_1960] Existence of attribute PortAPIOption.port
[constr_1961] Existence of attribute PortDefinedArgumentValue.value
[constr_1962] Existence of attribute PortDefinedArgumentValue.valueType

[constr_1963] Existence of attribute CommunicationBufferLocking.supportBufferLock-
ing

[constr_1964] Existence of attribute PerInstanceMemory.type
[constr_1965] Existence of attribute PerInstanceMemory.typeDefinition
[constr_1966] Existence of attribute Implementation.swVersion
[constr_1967] Existence of attribute Implementation.vendorId
[constr_1968] Existence of attribute Implementation.codeDescriptor

5

944 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1969] Existence of attribute SwcImplementation.behavior
[constr_1970] Existence of attribute PerInstanceMemorySize.alignment
[constr_1971] Existence of attribute PerInstanceMemorySize.perInstanceMemory
[constr_1972] Existence of attribute PerInstanceMemorySize.size
[constr_1973] Existence of attribute ModeDeclarationGroup.initialMode
[constr_1974] Existence of attribute ModeDeclarationGroup.modeDeclaration
[constr_1975] Existence of attribute ModeTransition.enteredMode
[constr_1976] Existence of attribute ModeTransition.exitedMode
[constr_1977] Existence of attribute ModeErrorBehavior.errorReactionPolicy
[constr_1978] Existence of attribute SwcModeManagerErrorEvent.modeGroup
[constr_1979] Existence of the reference SwcBswMapping.bswBehavior
[constr_1980] Existence of the reference SwcBswMapping.swcBehavior
[constr_1981] Existence of attribute NvBlockDescriptor.nvBlockNeeds
[constr_1982] Existence of attribute ModeSwitchEventTriggeredActivity.role

[constr_1983] Existence of attribute ModeSwitchEventTriggeredActivity.swcMod-
eSwitchEvent

[constr_1984] Existence of instance reference NvBlockDataMapping.nvRamBlockElement

[constr_1985] Existence of the reference SupervisedEntityNeeds.toleratedFailedCy-
cles

[constr_1986] Existence of the reference DiagnosticRoutineNeeds.diagRoutineType
[constr_1987] Existence of instance reference RapidPrototypingScenario.hostSystem
[constr_1988] Existence of attribute RptProfile.maxServicePointId
[constr_1989] Existence of attribute RptProfile.minServicePointId
[constr_1990] Existence of attribute RptProfile.servicePointSymbolPost
[constr_1991] Existence of attribute RptProfile.servicePointSymbolPre
[constr_1992] Existence of attribute RptProfile.stimEnabler
[constr_1993] Existence of attribute RptImplPolicy.rptEnablerImplType
[constr_1994] Existence of attribute RptImplPolicy.rptPreparationLevel
[constr_1995] Existence of attribute RptSwPrototypingAccess.rptHookAccess
[constr_1996] Existence of attribute RptSwPrototypingAccess.rptReadAccess
[constr_1997] Existence of attribute RptSwPrototypingAccess.rptWriteAccess
[constr_1998] Existence of attribute RptExecutableEntityProperties.maxRptEventId
[constr_1999] Existence of attribute RptExecutableEntityProperties.minRptEventId

[constr_5234]
Existence of attribute E2EProfileCompatibilityProps.transitToIn-
validExtended is mandatory for each EndToEndTransformationCom-
SpecProps

[constr_10000] Existence of attribute RptExecutableEntityProperties.rptExecutionCon-
trol

[constr_10001] Existence of attribute RptExecutableEntityProperties.rptServicePoint
[constr_10005] Existence of attribute NotAvailableValueSpecification.defaultPattern

5

945 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_10006] Valid interval of attribute NotAvailableValueSpecification.defaultPat-
tern

[constr_10009] Aggregation of ApplicationRuleBasedValueSpecification

[constr_10016] Applicability of OsTaskExecutionEvent

[constr_10017] Existence of attribute SwAxisCont.category
[constr_10018] Existence of attribute SwAxisCont.swAxisIndex
[constr_10019] Existence of attribute SwAxisCont.swValuesPhys

[constr_10020] Existence of attribute RoleBasedDataTypeAssignment.usedImplementa-
tionDataType

[constr_10028] Existence of reference stereotyped�isOfType�

Table C.65: Added Constraints in R20-11

C.13.5 Changed Constraints in R20-11

Number Heading

[constr_1051] Compatibility of SwDataDefProps

[constr_1060] Compatibility of data types with category ARRAY, VAL_BLK

[constr_1066] Forbidden mappings to ImplementationDataType

[constr_1197] Existence of compositeNetworkRepresentation shall be comprehensive

[constr_1224] DataPrototype is typed by an ApplicationArrayDataType

[constr_1289] Allowed Attributes vs. category for DataPrototypes typed by Application-
DataTypes

[constr_1296] DataPrototypes used as explicitInterRunnableVariable or implicit-
InterRunnableVariable and category DATA_REFERENCE

[constr_1393] Existence of RuleBasedValueCont.unit
[constr_1397] Existence of attributes of TransformerHardErrorEvent
[constr_1422] Value of category is VOID

[constr_1741]
Restriction to explicit sending semantics for the usage of DataServices in the
context of a SwcServiceDependency that aggregates DiagnosticValueNeeds
that in turn is referenced by a DiagnosticIoControlNeeds

[constr_2000] Compatibility of ClientServerOperations triggering the same RunnableEn-
tity

[constr_2034] SwAddrMethod referenced by RunnableEntitys, BswCalledEntitys, or
BswSchedulableEntitys

[constr_2052] Values of swArraysize and the number of values provided by swValuesPhys
shall be consistent.

[constr_2058] Mandatory information of a RuleBasedValueCont

Table C.66: Changed Constraints in R20-11

946 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

C.13.6 Deleted Constraints in R20-11

none

C.14 Constraint History of this Document according to AUTOSAR
R21-11

C.14.1 Added Traceables in R21-11

Number Heading

[TPS_SWCT_01831] Dcm can directly access SenderReceiverInterface.dataElements or
NvDataInterface.nvDatas in AbstractRequiredPortPrototypes

[TPS_SWCT_01832] SecOc Use Case: Receive notification about an authentication attempt

[TPS_SWCT_01833] Semantics of ServiceDependency.diagnosticRelevance

[TPS_SWCT_01834] invalidValue is inside the scope of the compuMethod

[TPS_SWCT_01835] invalidValue is outside the scope of the compuMethod

[TPS_SWCT_01836] Attributes of CompositeRuleBasedValueSpecification

[TPS_SWCT_01837] Types for record layouts

[TPS_SWCT_01838] ValueSpecification shall fit into data type

[TPS_SWCT_01839] Size of Compound Primitive Data Type is variant

[TPS_SWCT_01840] A ParameterSwComponentType references a
ConstantSpecificationMappingSet

[TPS_SWCT_01841] A NvBlockSwComponentType references a
ConstantSpecificationMappingSet

[TPS_SWCT_01842] Applicability of constraints of CompuScales

[TPS_SWCT_01843] Value of PassThroughSwConnector.category

[TPS_SWCT_01844] Optional method arguments

Table C.67: Added Traceables in R21-11

C.14.2 Changed Traceables in R21-11

Number Heading

[TPS_SWCT_01049] Two ways to use the ExclusiveAreas

[TPS_SWCT_01195] Mapping of composite element to primitive DataPrototype

[TPS_SWCT_01253] Rules apply for the usage of the attribute ImplementationDataType.
typeEmitter

[TPS_SWCT_01314] RTEEvent

[TPS_SWCT_01551] Mapping of elements on the “source” end to elements on the “target” end
5

947 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[TPS_SWCT_01579]
Dcm can directly access SenderReceiverInterface.dataElements,
NvDataInterface.nvDatas, or ParameterInterface.parameters in
AbstractProvidedPortPrototype

[TPS_SWCT_01580]
Dem can directly access SenderReceiverInterface.dataElements,
NvDataInterface.nvDatas, or ParameterInterface.parameters in
PPortPrototypes

[TPS_SWCT_01586] Writing strategies for nv data

[TPS_SWCT_01795] Further specification to facilitate the association of writing strategies to the
corresponding RunnableEntity

[TPS_SWCT_02011] AtomicSwComponentType offers a client port to read DTR value

Table C.68: Changed Traceables in R21-11

C.14.3 Deleted Traceables in R21-11

Number Heading

[TPS_SWCT_01591] Existence of attribute DiagnosticEventNeeds.reportBehavior

[TPS_SWCT_01697] Supported development approach for software-components that interact with
AUTOSAR services

[TPS_SWCT_01698] Attributes that are subject to development approach

Table C.69: Deleted Traceables in R21-11

C.14.4 Added Constraints in R21-11

Number Heading

[constr_10032] Restrictions for the usage of ServiceDependency.diagnosticRelevance

[constr_10033] Existence of MemorySection.swAddrmethod
[constr_10034] Existence of MemorySection.alignment
[constr_10040] Value of ApplicationValueSpecification.swAxisCont.category

[constr_10041] Value of ApplicationRuleBasedValueSpecification.swAxisCont.
category

[constr_10067] Creation of AssemblySwConnector for service communication
[constr_10068] Standardized values for SectionInitializationPolicyType

[constr_10071] Allowed multiplicities of SenderComSpec attributes for communication between
ApplicationSwComponentType and NvBlockSwComponentType

[constr_10072] Allowed multiplicities of SenderComSpec attributes for communication between
NvBlockSwComponentType and ApplicationSwComponentType

[constr_10073] Existence of DataReceiveErrorEvent
5

948 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_10074] Consistency of attribute NvBlockDescriptor.writingStrategy.role set to
storeOnChange

[constr_10075] Existence of CompositeRuleBasedValueSpecification.argument vs.
compoundPrimitiveArgument

[constr_10087] Restriction for the existence of a SubElementMapping

Table C.70: Added Constraints in R21-11

C.14.5 Changed Constraints in R21-11

Number Heading

[constr_1004] Mapping of ApplicationDataTypes in the scope of single
AtomicSwComponentTypes

[constr_1005] Compatibility of ImplementationDataTypes mapped to the same
ApplicationDataType

[constr_1006] applicable data categories

[constr_1007] Allowed attributes of SwDataDefProps for ApplicationDataTypes
[constr_1009] SwDataDefProps applicable to ImplementationDataTypes

[constr_1010] If nativeDeclaration does not exist
[constr_1011] category of SwBaseType
[constr_1012] Value of category is FIXED_LENGTH

[constr_1014] Supported value encodings for SwBaseType

[constr_1015] Prioritization of SwDataDefProps

[constr_1016] Restriction of invalidValue for ImplementationDataType and
ImplementationDataTypeElement

[constr_1017] Supported combinations of swImplPolicy and swCalibrationAccess

[constr_1018] measurementPoint shall not be referenced by a VariableAccess aggregated
by RunnableEntity in the role dataReadAccess

[constr_1020] ParameterDataPrototype needs to be of compatible data type as referenced in
sharedAxisType

[constr_1022] Limits shall be defined for each direction of CompuMethod

[constr_1024] Stepwise definition of CompuMethods

[constr_1025] Avoid division by zero in rational formula

[constr_1026] Compatibility of Units

[constr_1029] ConstantSpecificationMapping and ConstantSpecification

[constr_1033] Communication scenarios for sender/receiver communication
[constr_1035] Recursive definition of CompositionSwComponentType
[constr_1036] Connect kinds of PortInterfaces
[constr_1037] Client shall not be connected to multiple servers

[constr_1038] Reference to ApplicationError

5

949 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1039] Relevance of swImplPolicy
[constr_1040] Conversion of SenderReceiverInterfaces
[constr_1041] Conversion of ClientServerInterfaces
[constr_1043] PortInterface vs. ComSpec

[constr_1044] Applicability of DataFilter

[constr_1045] Supported value encodings for SwBaseType in the context of PortInterfaces

[constr_1046] Applicability of [constr_1045]

[constr_1047] Compatibility of ApplicationPrimitiveDataTypes

[constr_1048] Compatibility of ApplicationRecordDataTypes

[constr_1049] Compatibility of ApplicationArrayDataTypes

[constr_1050] Compatibility of ImplementationDataTypes

[constr_1051] Compatibility of SwDataDefProps

[constr_1052] Compatibility of Units

[constr_1053] Compatibility of PhysicalDimensions

[constr_1054] No DataConstr available at the provider

[constr_1055] ImplementationDataType has category VALUE
[constr_1056] ImplementationDataType has category TYPE_REFERENCE
[constr_1057] ImplementationDataType has category DATA_REFERENCE

[constr_1058] ImplementationDataType has category FUNCTION_REFERENCE

[constr_1059] Compatibility of data types with category VALUE

[constr_1060] Compatibility of data types with category ARRAY, VAL_BLK

[constr_1061] Compatibility of data types with category STRUCTURE

[constr_1063] Compatibility of data types with category BOOLEAN

[constr_1064] Compatibility of data types with category COM_AXIS, RES_AXIS, CURVE, MAP,
CUBOID, CUBE_4, or CUBE_5

[constr_1066] Forbidden mappings to ImplementationDataType

[constr_1068] Compatibility of VariableDataPrototypes or ParameterDataPrototypes
typed by primitive data types

[constr_1069] Compatibility of PortPrototypes of different DataInterfaces in the context of
AssemblySwConnectors

[constr_1070] Compatibility of PortPrototypes of different DataInterfaces in the context of
DelegationSwConnectors

[constr_1071] compatibility of ParameterDataPrototype and VariableDataPrototype

[constr_1072] Compatibility of ModeSwitchInterfaces in the context of an
AssemblySwConnector

[constr_1073] Compatibility of ModeSwitchInterfaces in the context of an
DelegationSwConnector

[constr_1074] Compatibility of ModeDeclarationGroupPrototypes

[constr_1075] Compatibility of ModeDeclarationGroups

[constr_1076] Compatibility of ArgumentDataPrototypes
5

950 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1077] Compatibility of ApplicationErrors

[constr_1078] Compatibility of ClientServerOperations

[constr_1079] Compatibility of ClientServerInterfaces in the context of an
AssemblySwConnector

[constr_1080] Compatibility of ClientServerInterfaces in the context of an
DelegationSwConnector

[constr_1081] Compatibility of TriggerInterfaces in the context of an
AssemblySwConnector

[constr_1082] Compatibility of TriggerInterfaces in the context of an
DelegationSwConnector

[constr_1083] Compatibility of Triggers

[constr_1084] delegation of a provided outer PortPrototype

[constr_1086] SwConnector between two specific PortPrototypes

[constr_1087] AssemblySwConnector inside CompositionSwComponentType

[constr_1088] DelegationSwConnector inside CompositionSwComponentType

[constr_1092] ParameterSwComponentType

[constr_1093] Definition of textual strings

[constr_1095] Values of nDataSets vs. reliability
[constr_1096] SwcModeSwitchEvent and WaitPoint

[constr_1097] RunnableEntity that has a WaitPoint

[constr_1098] Mode switch and mode disabling

[constr_1100] Unconnected RPortPrototype typed by a DataInterface

[constr_1101] Mode-related communication
[constr_1102] ApplicationError in the scope of one SwComponentType

[constr_1103] NonqueuedReceiverComSpec and enableUpdate

[constr_1104] Trigger sink and trigger source

[constr_1105] Value of arraySize
[constr_1106] Structure shall have at least one element
[constr_1107] Union shall have at least one element
[constr_1108] Value of ApplicationError.errorCode

[constr_1109] Mapping of SwComponentPrototypes typed by a
SensorActuatorSwComponentType

[constr_1111] Constraints of dataId in PROFILE_01

[constr_1112] Constraints of dataIdMode in PROFILE_01

[constr_1113] Existence of attributes in PROFILE_01

[constr_1114] Constraints of crcOffset in PROFILE_01

[constr_1115] Constraints of counterOffset in PROFILE_01

[constr_1116] Constraints of dataLength in PROFILE_01

[constr_1117] Constraints of maxDeltaCounterInit in PROFILE_01

[constr_1118] Existence of attributes in PROFILE_02

5

951 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1119] Constraints of dataLength in PROFILE_02

[constr_1120] Constraints of dataId in PROFILE_02

[constr_1121] Constraints of maxDeltaCounterInit in PROFILE_02

[constr_1126] Compatibility of DataConstrs

[constr_1128] Queue length of ClientServerOperations associated with the same
RunnableEntity

[constr_1129] swImplPolicy and NonqueuedReceiverComSpec

[constr_1130] swImplPolicy and QueuedReceiverComSpec

[constr_1131] swImplPolicy and NonqueuedSenderComSpec

[constr_1132] swImplPolicy and QueuedSenderComSpec

[constr_1134] Allowed structure of TEXTTABLE
[constr_1135] Limit of vt in BITFIELD_TEXTTABLE

[constr_1137] Applicability of ParameterInterface

[constr_1138] assignedPort and DiagEventDebounceMonitorInternal

[constr_1139] assignedPort of DiagEventDebounceMonitorInternal shall refer to an
RPortPrototype

[constr_1140] Combination of invalidValue with the attribute handleInvalid

[constr_1141] Applicability of the scope attribute

[constr_1142] category of CompuMethod shall not be extended

[constr_1144] SensorActuatorSwComponentType, EcuAbstractionSwComponentType,
and ComplexDeviceDriverSwComponentType may only reference a HwType

[constr_1146] Applicability of a symbol for a CompuScale in C code

[constr_1147] Standardized values for the attribute category of meta-class PortGroup

[constr_1148] PortInterfaces of PortPrototypes used to connect to
NvBlockSwComponentTypes

[constr_1149] PortPrototypes used for NV data management

[constr_1150] Usage of valueType for PortDefinedArgumentValue

[constr_1151] Applicability of PortInterfaceMapping

[constr_1153] Applicability of compatibility requirements for CompuScales

[constr_1154] Compatibility of CompuScales for sender-receiver communication and similar use
cases

[constr_1155] Compatibility of CompuScales for client-server communication

[constr_1156] Relevance of “names” of CompuScales

[constr_1158] Applicable categorys for attribute ImplementationDataType.
swDataDefProps.compuMethod

[constr_1159] Consistency of VariableAndParameterInterfaceMapping with respect to the
referenced DataInterfaces

[constr_1161] Applicability of the attribute Ref.index

[constr_1162] Compatibility of SwRecordLayouts

[constr_1163] Compatibility of CompuMethods

[constr_1164] Number of arguments owned by a RunnableEntity

5

952 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1165] Applicability of RunnableEntityArgument

[constr_1166] Restrictions of ModeRequestTypeMap

[constr_1167] ImplementationDataTypes used as ModeRequestTypeMap.
implementationDataType

[constr_1168] Compatibility of ImplementationDataTypes used in the ModeRequestTypeMap

[constr_1169] Allowed values for Trigger.swImplPolicy

[constr_1172] Allowed values of SwCalibrationAccessEnum for
ModeDeclarationGroupPrototype

[constr_1173] Applicability of AutosarParameterRef referencing a VariableDataPrototype

[constr_1174] PortInterfaces used in the context of CompositionSwComponentTypes
cannot refer to AUTOSAR services

[constr_1175] Depending on its category, CompuMethod shall refer to a unit

[constr_1176] Compatibility of CompuScales of category LINEAR and RAT_FUNC

[constr_1177] Allowed targetCategory for SwPointerTargetProps

[constr_1178] Existence of attributes of SwDataDefProps in the context of
ImplementationDataType

[constr_1181] Numerical values used in ModeDeclaration.value and
ModeDeclarationGroup.onTransitionValue

[constr_1182] Allowed values for InternalTriggeringPoint.swImplPolicy

[constr_1183] EndToEndProtectionVariablePrototypes aggregated by
EndToEndProtection

[constr_1184] Consistency of rootDataPrototype and base in the context of
ApplicationCompositeElementInPortInterfaceInstanceRef

[constr_1185] Consistency of data types in the context of
ApplicationCompositeElementInPortInterfaceInstanceRef

[constr_1186] Consistency of data types in the context of
ArVariableInImplementationDataInstanceRef

[constr_1187] Compatibility of VariableDataPrototypes or ParameterDataPrototypes
typed by composite data types

[constr_1188] Existence of ReceiverComSpec.replaceWith

[constr_1191] Value of Limit shall yield a numerical value

[constr_1192] Compatibility of “IDENTICAL” to “RAT_FUNC” or “LINEAR”

[constr_1193] ModeDeclaration shall be referenced by at least one ModeTransition in the
role enteredMode

[constr_1194] Identical ModeTransitions
[constr_1195] SwcModeSwitchEvent and the definition of ModeTransition

[constr_1196] Existence of networkRepresentation vs.
compositeNetworkRepresentation

[constr_1197] Existence of compositeNetworkRepresentation shall be comprehensive

[constr_1200] Queued communication is not applicable for dataElements owned by
PRPortPrototype

[constr_1202] Supported connections by AssemblySwConnector for PortPrototypes typed
by a SenderReceiverInterface or NvDataInterface

5

953 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1203] Supported connections by DelegationSwConnector for PortPrototypes
typed by a SenderReceiverInterface or NvDataInterface

[constr_1204]
Supported connections by AssemblySwConnector for PortPrototypes typed
by a ClientServerInterface, ModeSwitchInterface, or
TriggerInterface

[constr_1205]
Supported connections by DelegationSwConnector for PortPrototypes
typed by a ClientServerInterface, ModeSwitchInterface, or
TriggerInterface

[constr_1209] Mapping of ModeDeclarations of mode user to ModeDeclaration of mode
manager

[constr_1210] Mapping of ModeDeclarations of mode user to all ModeDeclarations of mode
manager

[constr_1211] Constraints of maxNoNewOrRepeatedData in PROFILE_01

[constr_1212] Constraints of syncCounterInit in PROFILE_01

[constr_1213] Constraints of maxNoNewOrRepeatedData in PROFILE_02

[constr_1214] Constraints of syncCounterInit in PROFILE_02

[constr_1219] Invalidation depends on the value of swImplPolicy

[constr_1220] Compatibility of SwBaseType

[constr_1221] DataPrototype is typed by an ApplicationPrimitiveDataType

[constr_1222] category of an AutosarDataType used to type a DataPrototype is set to
STRING

[constr_1223] DataPrototype is typed by an ApplicationRecordDataType

[constr_1224] DataPrototype is typed by an ApplicationArrayDataType

[constr_1225] DataPrototype is typed by an ImplementationDataType that references a
CompuMethod of category TEXTTABLE or BITFIELD_TEXTTABLE

[constr_1226] Applicable range for ExecutableEntityActivationReason.bitPosition

[constr_1227] Value of attribute ExecutableEntityActivationReason.bitPosition shall
be unique

[constr_1228] RTEEvent that is referenced by a WaitPoint in the role trigger shall not
reference ExecutableEntityActivationReason

[constr_1229] category of ImplementationDataType boils down to VALUE

[constr_1230] ApplicationDataType that qualifies for Integral Primitive Type

[constr_1231] ConsistencyNeeds aggregated by CompositionSwComponentType

[constr_1232] ConsistencyNeeds aggregated by AtomicSwComponentType

[constr_1233] InstantiationTimingEventProps shall only reference TimingEvent

[constr_1234] Value of RunnableEntity.symbol

[constr_1237] Scope of mapped ClientServerOperations in the context of a
ClientServerOperationMapping

[constr_1238] Scope of mapped ApplicationErrors in the context of a
ClientServerOperationMapping

[constr_1240] Consistency of ArgumentDataPrototypes within the context of a
ClientServerOperationMapping

5

954 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1241] Compound Primitive Data Types and invalidValue

[constr_1242] Restriction of invalidValue for ApplicationPrimitiveDataType of
category STRING

[constr_1243] NumericalOrText shall either define vf or vt
[constr_1244] DataPrototypes used in application software shall not be typed by C enums

[constr_1245] Consideration of ModeTransitions for the compatibility of
ModeDeclarationGroups

[constr_1246] Consistency of firstMode and secondMode in the scope of one
ModeDeclarationMappingSet

[constr_1247] Consistency of ModeDeclarationMappingSet with respect to the referenced
firstModeGroup and secondModeGroup

[constr_1248] Compatibility of PortPrototypes of different DataInterfaces in the context of
a PassThroughSwConnector

[constr_1249] Compatibility of ModeSwitchInterfaces in the context of a
PassThroughSwConnector

[constr_1250] Compatibility of ClientServerInterfaces in the context of a
PassThroughSwConnector

[constr_1251] Compatibility of PortPrototypes of TriggerInterfaces in the context of a
PassThroughSwConnector

[constr_1252] Creation of a loop involving a PassThroughSwConnector is not allowed

[constr_1253] Supported usage of VariationPointProxy

[constr_1254] Definition of a pointer to a pointer

[constr_1255] ApplicationPrimitiveDataTypes of category BOOLEAN and STRING

[constr_1256] Acknowledgement feedback in n:1 writer case

[constr_1257] No WaitPoints allowed

[constr_1258] Value of minimumStartInterval for RunnableEntitys triggered by an
InitEvent

[constr_1259] Aggregation of AsynchronousServerCallPoint and
AsynchronousServerCallResultPoint

[constr_1260] No mode disabling for InitEvents

[constr_1261] Applicability for EndToEndDescription.dataIdNibbleOffset

[constr_1263] Existence of ModeErrorBehavior.defaultMode
[constr_1264] Iteration along output axis is only supported for VALUE and VAL_BLK

[constr_1268] ArgumentDataPrototype.direction shall be preserved in a
ClientServerOperationMapping

[constr_1269] Number of arguments shall be preserved in a
ClientServerOperationMapping

[constr_1270] ArgumentDataPrototype shall be mapped only once in a
ClientServerOperationMapping

[constr_1271] RecordValueSpecification.fields shall be identical to the number of
ApplicationRecordDataType.elements

[constr_1272] RecordValueSpecification.fields shall be identical to the number of
subElements of ImplementationDataType of category STRUCTURE

5

955 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1273] Rules for the initialization of ApplicationArrayDataType by means of
ArrayValueSpecification

[constr_1274] Rules for the initialization of array-shaped ImplementationDataType with a
fixed size by means of ArrayValueSpecification

[constr_1277] SwDataDefProps.swImplPolicy of a VariableDataPrototype referenced
by a VariableAccess aggregated in the role dataReceivePointByValue

[constr_1278] PhysConstrs references a Unit

[constr_1279] Unmapped elements of ApplicationCompositeDataTypes or
ImplementationDataTypes and the attribute swImplPolicy

[constr_1280] Unmapped dataElement on the “target” end shall have an initValue

[constr_1282] Restriction concerning the usage of RuleBasedValueSpecification or a
ReferenceValueSpecification for the specification of an invalidValue

[constr_1284] Limitation of the use of TextValueSpecification

[constr_1285] Applicability of roles vs. PortPrototypes

[constr_1286] serverArgumentImplPolicy and ArgumentDataPrototype typed by
primitive data types

[constr_1287] Compatibility of SenderReceiverInterfaces with respect to
invalidationPolicy

[constr_1288] Allowed Attributes vs. category for DataPrototypes typed by
ImplementationDataTypes

[constr_1289] Allowed Attributes vs. category for DataPrototypes typed by
ApplicationDataTypes

[constr_1290] Limitation on the number of PPortComSpecs in the context of one
PPortPrototype

[constr_1291] Limitation on the number of RPortComSpecs in the context of one
PPortPrototype

[constr_1292] Limitation on the number of RPortComSpecs/PPortComSpecs in the context of
one PRPortPrototype

[constr_1295] PortInterfaces and category DATA_REFERENCE

[constr_1296] DataPrototypes used as explicitInterRunnableVariable or
implicitInterRunnableVariable and category DATA_REFERENCE

[constr_1298] Existence of attributes if category of a ModeDeclarationGroup is set to
EXPLICIT_ORDER

[constr_1299] Existence of attributes if category of a ModeDeclarationGroup is set to other
than EXPLICIT_ORDER

[constr_1300] Primitive DataPrototype on the “source” end shall not be mapped to element of a
composite data type on the “target” end of the SwConnector

[constr_1301] Existence of RoleBasedDataTypeAssignment.role vs.
RoleBasedDataAssignment.role

[constr_1302] Restriction of data invalidation

[constr_1303] Applicability of TextTableMapping depending on the value of CompuMethod.
category

[constr_1304] Existence of attribute bitfieldTextTableMaskFirst
5

956 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1305] Existence of attribute bitfieldTextTableMaskSecond

[constr_1306] Limitation of TextTableMapping for CompuMethods that have the value of
category set to BITFIELD_TEXTTABLE

[constr_1307] Consistency of values and masks in TextTableMapping

[constr_1308] Existence of NvBlockNeeds.cyclicWritingPeriod
[constr_1309] Existence of NvBlockDescriptor.timingEvent
[constr_1310] Existence of attributes of meta-class NvBlockNeeds

[constr_1311] Appearance of safety-related possible values of MemorySection.option or
SwAddrMethod.option

[constr_1312] PortPrototypes typed by a ParameterInterface

[constr_1313] Completeness of TextTableMapping for the values of a given bit mask on the
sender side

[constr_1314] Profile VSA_LINEAR for ApplicationArrayDataType
[constr_1315] Profile VSA_SQUARE for ApplicationArrayDataType
[constr_1316] Profile VSA_RECTANGULAR for ApplicationArrayDataType
[constr_1317] Profile VSA_FULLY_FLEXIBLE for ApplicationArrayDataType
[constr_1318] Profile VSA_LINEAR for ImplementationDataType
[constr_1319] Profile VSA_SQUARE for ImplementationDataType
[constr_1320] Profile VSA_RECTANGULAR for ImplementationDataType
[constr_1321] Profile VSA_FULLY_FLEXIBLE for ImplementationDataType
[constr_1322] Size Indicator for undefined dynamicArraySizeProfile

[constr_1363] Existence of attributes of DiagnosticValueNeeds
[constr_1364] Existence of attributes of DiagnosticIoControlNeeds
[constr_1375] Existence of attributes of CompuMethod and related meta-classes

[constr_1381] Appearance of core-related possible values of MemorySection.option or
SwAddrMethod.option

[constr_1382] Mutually exclusive existence of attributes SwVariableRefProxy.
autosarVariable vs. SwVariableRefProxy.mcDataInstanceVar

[constr_1383] Existence of CompuMethod and DataConstr for ImplementationDataTypes
of category TYPE_REFERENCE

[constr_1384]
Definition of invalidValue for DataPrototype typed by
ApplicationPrimitiveDataType of category CURVE, MAP, CUBOID,
CUBE_4, CUBE_5, COM_AXIS, RES_AXIS, and VAL_BLK

[constr_1385] DataPrototype is typed by an ImplementationDataType

[constr_1386] PortDefinedArgumentValue shall only be defined for
AbstractProvidedPortPrototype

[constr_1388] VariationPointProxy of category VALUE shall not mix “pre-build” and
“post-build” use-cases

[constr_1389] Restriction regarding the value of category of VariationPointProxy.
implementationDataType

[constr_1390] Restriction to the value of SenderReceiverInterface.invalidationPolicy.
handleInvalid

5

957 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1391] Compatibility of Units in the context of assignment using an
ApplicationValueSpecification

[constr_1392] Compatibility of Units in the context of assignment using an
ApplicationRuleBasedValueSpecification

[constr_1393] Existence of RuleBasedValueCont.unit
[constr_1395] NvBlockDataMapping shall be complete

[constr_1396]
Restriction for the value of attribute category for non-terminating
ImplementationDataTypeElements taken to model a Variable-Size
Array Data Type

[constr_1397] Existence of attributes of TransformerHardErrorEvent
[constr_1398] Existence of attributes of BaseTypeDirectDefinition
[constr_1399] Standardized values of ModeDeclarationGroup.category

[constr_1400] Reference to a specific DataTransformation

[constr_1401] Restrictions on the relation between DataPrototypeMapping and
DataTransformation

[constr_1402]
Applicability of core-related possible values of MemorySection.option or
SwAddrMethod.option related to SwAddrMethod.
sectionInitializationPolicy

[constr_1403] NvBlockDataMappings to a given nvData shall be unambiguous

[constr_1404] All NvDataInterface.nvData of PortPrototypes in the context of a specific
SwcServiceDependency shall be mapped to the same NvBlockDescriptor

[constr_1407] Definition of SwDataDefProps.dataConstr depending on the capabilities of the
data type

[constr_1408] Definition of SwDataDefProps.displayFormat depending on the capabilities of
the data type

[constr_1409] Definition of SwDataDefProps.dataConstr depending on the capabilities of the
element data type

[constr_1410] Definition of SwDataDefProps.displayFormat depending on the capabilities of
the element data type

[constr_1413] Definition of SwDataDefProps.stepSize depending on the capabilities of the
data type

[constr_1414] Definition of SwDataDefProps.stepSize depending on the capabilities of the
element data type

[constr_1415] Supported values of ModeSwitchEventTriggeredActivity.role

[constr_1416] Existence of ApplicationArrayElement.maxNumberOfElements

[constr_1417] Invalid connection between NvBlockSwComponentType and other
AtomicSwComponentType (I)

[constr_1418] Invalid connection between NvBlockSwComponentType and other
AtomicSwComponentType (II)

[constr_1420] Existence of SwAxisIndividual.inputVariableType
[constr_1422] Value of category is VOID

[constr_1423] Completeness of references
ArVariableInImplementationDataInstanceRef.contextDataPrototype

5

958 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1424] Existence of ArVariableInImplementationDataInstanceRef.
contextDataPrototype

[constr_1425] Definition of swCalprmAxisSet.swCalprmAxis / SwAxisIndividual.
swVariableRef depending on the capabilities of the data type

[constr_1426] Consistency of array sizes for axes and input variable array

[constr_1427] Definition of swCalprmAxisSet.swCalprmAxis / SwAxisGrouped.
swCalprmRef depending on the capabilities of the data type

[constr_1428] Consistency of array sizes for arrays of elements of category CURVE, MAP,
CUBOID, CUBE_4, or CUBE_5 arrays and used group axes arrays

[constr_1429] Access to data within PortPrototypes from within RunnableEntitys
[constr_1430] Access to local data from within RunnableEntitys

[constr_1431] Access to parameters from within RunnableEntitys

[constr_1432] Multiplicity of CommunicationBufferLocking

[constr_1433] Transient faults are not applicable to software-components

[constr_1434] CompuScales shall not have identical CompuScale Value Symbolic Names

[constr_1438] ApplicationArrayElement.indexDataType needs to refer to a
CompuMethod of category TEXTTABLE

[constr_1439] Requirements on ApplicationArrayElement if attribute indexDataType
exists

[constr_1440] Size of the CompuMethod of category TEXTTABLE referenced by
ApplicationArrayElement.indexDataType

[constr_1442] category TYPE_REFERENCE shall not be used for modeling the “payload” of a
Wrapped Union Data Type

[constr_1444] Limited applicability of Wrapped Union Data Type

[constr_1445] Initialization of the Member Selector of a Wrapped Union Data Type

[constr_1446] No definition of invalidValue for a Wrapped Union Data Type

[constr_1468] Limitation on the number of SwcExclusiveAreaPolicys

[constr_1469] Applicability of constraints depending on the existence of a data transformation

[constr_1516]
Completeness of references
ArParameterInImplementationDataInstanceRef.
contextDataPrototype

[constr_1517] Existence of ArParameterInImplementationDataInstanceRef.
contextDataPrototype

[constr_1518] Consistency of data types in the context of
ArParameterInImplementationDataInstanceRef

[constr_1519] Existence of attributes vs. category of ApplicationValueSpecification
[constr_1520] Semantics of ObdRatioServiceNeeds.rateBasedMonitoredEvent

[constr_1521] Reference from AsynchronousServerCallReturnsEvent to
AsynchronousServerCallResultPoint

[constr_1523] No mode disabling for OperationInvokedEvents

[constr_1538] Restriction for ReceiverComSpec.dataElement
[constr_1539] Restriction for SenderComSpec.dataElement

5

959 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1540] Existence of ClientComSpec.operation
[constr_1541] Existence of ServerComSpec.operation

[constr_1544] Modeling of SwAxisGeneric for the definition of a fix axis

[constr_1545] No initialization for fix axis

[constr_1583] PortInterfaceMapping for DataPrototype typed by Compound Primitive
Data Type

[constr_1592] Definition of SwDataDefProps.displayPresentation depending on the
capabilities of the data type

[constr_1602] Definition of SwDataDefProps.displayPresentation depending on the
capabilities of the element

[constr_1607] Only Wrapped Union Data Types in PortInterface

[constr_1608] Existence of rootParameterDataPrototype
[constr_1609] Existence of rootVariableDataPrototype

[constr_1610] Existence of SwDataDefProps.swValueBlockSize and SwDataDefProps.
swValueBlockSizeMult

[constr_1622] Value of TimingEvent.offset vs. TimingEvent.period

[constr_1631] Applicability of DataPrototypeMapping.
secondToFirstDataTransformation

[constr_1632] Restriction for firstToSecondDataTransformation and
secondToFirstDataTransformation

[constr_1634] Allowed combinations of ApplicationDataType.category vs. CompuMethod.
category

[constr_1635] Relevance of attribute isOptional

[constr_1636] Mapping of data types that represent an Optional Element Structure

[constr_1637] Existence of ImplementationDataTypeElement.isOptional vs.
ImplementationDataType.isStructWithOptionalElement

[constr_1638] First ImplementationDataTypeElement of ImplementationDataType that
represents an Optional Element Structure

[constr_1639] ImplementationDataTypeElement with attribute isOptional set to True

[constr_1640] No use of Optional Element Structure for interaction with the diagnostic
stack

[constr_1662]
Compatibility of ApplicationRecordDataType and
ImplementationDataType that both represent an Optional Element
Structure

[constr_1679]
Existence of attribute RoleBasedDataAssignment.usedDataElement.
localVariable for RoleBasedDataAssignment.role =
signalBasedDiagnostics

[constr_1680]
Existence of attribute RoleBasedDataAssignment.usedDataElement.
localVariable for RoleBasedDataAssignment.role =
AppModeRequestInterface

[constr_1681]
Existence of attribute RoleBasedDataAssignment.usedDataElement.
localVariable for RoleBasedDataAssignment.role =
VerificationStatus

5

960 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1682] Existence of attribute RoleBasedDataAssignment.usedDataElement.
localVariable for RoleBasedDataAssignment.role = V2xFacVdp

[constr_1683]
Existence of attribute RoleBasedDataAssignment.usedDataElement.
localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationCam

[constr_1684]
Existence of attribute RoleBasedDataAssignment.usedDataElement.
localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationMapem

[constr_1685]
Existence of attribute RoleBasedDataAssignment.usedDataElement.
localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationIvim

[constr_1686]
Existence of attribute RoleBasedDataAssignment.usedDataElement.
localVariable for RoleBasedDataAssignment.role =
V2xApplRxIndicationSpatem

[constr_1694] Allowed target of SwDataDefProps.implementationDataType

[constr_1706] Definition of initial value for data transmission

[constr_1712] Existence of attribute ArrayValueSpecification.
intendedPartialInitializationCount

[constr_1713] NvBlockDescriptor.writingStrategy.usedDataElement shall refer to
AutosarDataPrototype

[constr_1714] AutosarDataPrototype shall only be referenced by a single
NvBlockDescriptor.writingStrategy

[constr_1715] Possible values of attribute NvBlockDescriptor.writingStrategy.role

[constr_1716] Consistency of attribute NvBlockDescriptor.writingStrategy.role set to
storeAtShutdown

[constr_1717] Consistency of attribute NvBlockDescriptor.writingStrategy.role set to
storeImmediate

[constr_1718] Inheritance of SwDataDefProps.dataConstr from an array data type to the array
elements

[constr_1719] Inheritance of SwDataDefProps.displayFormat from an array data type to the
array elements

[constr_1720] Inheritance of SwDataDefProps.stepSize from an array data type to the array
elements

[constr_1724] Usage of attribute ClientServerOperation.diagArgIntegrity

[constr_1726] Ordering of MetaDataItemSet.metaDataItem

[constr_1735] Limitation of the aggregation of AutosarVariableRef in the context of an
NvBlockDataMapping owned by a BulkNvDataDescriptor

[constr_1741]
Restriction to explicit sending semantics for the usage of DataServices in the
context of a SwcServiceDependency that aggregates DiagnosticValueNeeds
that in turn is referenced by a DiagnosticIoControlNeeds

[constr_1754] Aggregation of NumericalRuleBasedValueSpecification

[constr_1755] Aggregation of CompositeRuleBasedValueSpecification

[constr_1771] Existence of SwValueCont.unit
[constr_1773] Value of attribute dataSendPoint.returnValueProvision

5

961 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1774] Value of attribute dataReceivePointByArgument.returnValueProvision
[constr_1775] Value of attribute serverCallPoint.returnValueProvision

[constr_1776] Value of attribute asynchronousServerCallResultPoint.
returnValueProvision

[constr_1777] Value of attribute externalTriggeringPoint.returnValueProvision
[constr_1778] Value of attribute modeSwitchPoint.returnValueProvision
[constr_1779] Scope of the definition of an AbstractRuleBasedValueSpecification

[constr_1783] Existence of attribute ImplementationDataTypeElement.arrayImplPolicy

[constr_1860] Multiplicity of DelegationSwConnector.innerPort

[constr_1861] Multiplicity of DelegationSwConnector.outerPort

[constr_1862] Multiplicity of PassThroughSwConnector.requiredOuterPort

[constr_1863] Multiplicity of PassThroughSwConnector.providedOuterPort

[constr_1864] Multiplicity of InstantiationRTEEventProps.refinedEvent

[constr_1865] Existence of InvalidationPolicy.dataElement
[constr_1866] Existence of MetaDataItem.length
[constr_1867] Existence of MetaDataItem.metaDataItemType
[constr_1868] Existence of MetaDataItemSet.dataElement
[constr_1869] Existence of attribute ArgumentDataPrototype.direction
[constr_1870] Existence of attribute ApplicationError.errorCode
[constr_1871] Existence of attribute ModeRequestTypeMap.implementationDataType
[constr_1872] Existence of attribute ModeRequestTypeMap.modeGroup

[constr_1888] Existence of attribute DataTransformation.
executeDespiteDataUnavailability

[constr_1889] Existence of attribute QueuedReceiverComSpec.queueLength
[constr_1891] Existence of attribute NonqueuedReceiverComSpec.initValue
[constr_1892] Existence of attribute TransmissionAcknowledgementRequest.timeout
[constr_1895] Existence of attribute ModeSwitchSenderComSpec.modeGroup
[constr_1896] Existence of attribute ModeSwitchReceiverComSpec.modeGroup
[constr_1897] Existence of reference ParameterProvideComSpec.parameter
[constr_1898] Existence of reference ParameterRequireComSpec.parameter
[constr_1899] Existence of reference NvRequireComSpec.variable
[constr_1900] Existence of reference NvProvideComSpec.variable
[constr_1901] Existence of attribute EndToEndDescription.category
[constr_1902] Existence of attribute EndToEndProtection.endToEndProfile
[constr_1903] Existence of reference DataTypeMap.applicationDataType
[constr_1904] Existence of reference DataTypeMap.implementationDataType
[constr_1905] Existence of attribute SwTextProps.arraySizeSemantics
[constr_1906] Existence of attribute SwTextProps.swMaxTextSize
[constr_1909] Existence of attribute ImplementationProps.symbol
[constr_1910] Existence of attribute BaseType.baseTypeDefinition

5

962 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1911] Existence of ArVariableInImplementationDataInstanceRef.
targetDataPrototype

[constr_1912] Existence of reference ArParameterInImplementationDataInstanceRef.
targetDataPrototype

[constr_1913] Existence of attribute CompuRationalCoeffs.compuDenominator
[constr_1914] Existence of attribute CompuRationalCoeffs.compuNumerator

[constr_1915] Existence of attribute PhysicalDimensionMapping.
firstPhysicalDimension

[constr_1916] Existence of attribute PhysicalDimensionMapping.
secondPhysicalDimension

[constr_1917] Existence of ConstantSpecification.valueSpec
[constr_1918] Existence of RecordValueSpecification.field
[constr_1919] Existence of TextValueSpecification.value
[constr_1920] Existence of NumericalValueSpecification.value
[constr_1921] Existence of ReferenceValueSpecification.referenceValue
[constr_1923] Existence of RuleBasedAxisCont.ruleBasedValues
[constr_1924] Existence of RuleBasedValueCont.ruleBasedValues
[constr_1925] Existence of NumericalRuleBasedValueSpecification.ruleBasedValues
[constr_1926] Existence of RuleBasedValueSpecification.rule
[constr_1927] Existence of RuleBasedValueSpecification.arguments
[constr_1928] Existence of CompositeRuleBasedValueSpecification.rule
[constr_1929] Existence of CompositeRuleBasedValueSpecification.argument
[constr_1930] Existence of ConstantReference.constant
[constr_1931] Existence of ConstantSpecificationMapping.applConstant
[constr_1932] Existence of ConstantSpecificationMapping.implConstant
[constr_1933] Existence of CalibrationParameterValue.initializedParameter

[constr_1935] Existence of attribute SwcInternalBehavior.
supportsMultipleInstantiation

[constr_1936] Existence of attribute RunnableEntity.symbol
[constr_1938] Existence of attribute RunnableEntityArgument.symbol
[constr_1939] Existence of attribute ExecutableEntityActivationReason.bitPosition
[constr_1940] Existence of attribute AsynchronousServerCallReturnsEvent.eventSource
[constr_1941] Existence of attribute DataSendCompletedEvent.eventSource
[constr_1942] Existence of attribute DataWriteCompletedEvent.eventSource
[constr_1943] Existence of attribute DataReceivedEvent.data
[constr_1944] Existence of attribute DataReceiveErrorEvent.data
[constr_1945] Existence of attribute OperationInvokedEvent.operation
[constr_1952] Existence of reference WaitPoint.trigger
[constr_1954] Existence of attribute VariableAccess.accessedVariable
[constr_1955] Existence of attribute ServerCallPoint.operation
[constr_1956] Existence of attribute ServerCallPoint.timeout

5

963 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1957] Existence of attribute AsynchronousServerCallResultPoint.
asynchronousServerCallPoint

[constr_1958] Existence of attribute ParameterAccess.accessedParameter
[constr_1959] Existence of attribute InstantiationDataDefProps.swDataDefProps
[constr_1960] Existence of attribute PortAPIOption.port
[constr_1964] Existence of attribute PerInstanceMemory.type
[constr_1965] Existence of attribute PerInstanceMemory.typeDefinition
[constr_1973] Existence of attribute ModeDeclarationGroup.initialMode
[constr_1974] Existence of attribute ModeDeclarationGroup.modeDeclaration

[constr_2000] Compatibility of ClientServerOperations triggering the same
RunnableEntity

[constr_2002] Referenced VariableDataPrototype from AutosarVariableRef of
VariableAccess in role dataReadAccess

[constr_2003] Referenced VariableDataPrototype from AutosarVariableRef of
VariableAccess in role dataWriteAccess

[constr_2004] Referenced VariableDataPrototype from AutosarVariableRef of
VariableAccess in role dataSendPoint

[constr_2005]
Referenced VariableDataPrototype from AutosarVariableRef of
VariableAccess in role dataReceivePointByValue or
dataReceivePointByArgument

[constr_2006] Number of AsynchronousServerCallResultPoint referencing to one
AsynchronousServerCallPoint

[constr_2007] Consistency of typeDefinition attribute

[constr_2009] Supported kinds of PortPrototypes of a NvBlockSwComponentType

[constr_2010] Connections between SwComponentPrototypes of type
NvBlockSwComponentType

[constr_2012] Compatibility of ImplementationDataTypes used for ramBlock and romBlock

[constr_2013] Compatibility of ImplementationDataTypes for NvBlockDataMapping

[constr_2015] Limitation of SwcInternalBehavior of a NvBlockSwComponentType

[constr_2016] Connections between SwComponentPrototypes of type
ServiceProxySwComponentType

[constr_2017] Ports of ServiceProxySwComponentTypes

[constr_2018] Supported remote communication of a ServiceProxySwComponentType

[constr_2019] ServiceSwComponentType shall have service ports only

[constr_2020] dataReadAccess can not be used for queued communication

[constr_2021] WaitPoint referencing a DataReceivedEvent can not be used for non-queued
communication

[constr_2022] Mutually exclusive use of SynchronousServerCallPoints and
AsynchronousServerCallPoints

[constr_2023] Consistency of timeout values

[constr_2024] enableTakeAddress is restricted to single instantiation

[constr_2026] Referenced VariableDataPrototype from AutosarVariableRef of
VariableAccess in role writtenLocalVariable and readLocalVariable

5

964 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_2027] SwcServiceDependency shall be defined for service ports only

[constr_2028] staticMemory is restricted to single instantiation

[constr_2030] AsynchronousServerCallResultPoint combined with WaitPoint shall
belong to the same RunnableEntity

[constr_2031] Period of TimingEvent shall be greater than 0

[constr_2033] Timeout of DataSendCompletedEvent

[constr_2034] SwAddrMethod referenced by RunnableEntitys, BswCalledEntitys, or
BswSchedulableEntitys

[constr_2035] swImplPolicy for VariableDataPrototype in SenderReceiverInterface

[constr_2036] swImplPolicy for VariableDataPrototype in NvDataInterface

[constr_2037] swImplPolicy for VariableDataPrototype in the role ramBlock

[constr_2038] swImplPolicy for VariableDataPrototype in the role
implicitInterRunnableVariable

[constr_2039] swImplPolicy for VariableDataPrototype in the role
explicitInterRunnableVariable

[constr_2040] swImplPolicy for VariableDataPrototype in the role
arTypedPerInstanceMemory

[constr_2041] swImplPolicy for VariableDataPrototype in the role staticMemory

[constr_2042] swImplPolicy for ParameterDataPrototype in ParameterInterface

[constr_2043] swImplPolicy for ParameterDataPrototype in the role romBlock

[constr_2044] swImplPolicy for ParameterDataPrototype in the role sharedParameter

[constr_2045] swImplPolicy for ParameterDataPrototype in the role
perInstanceParameter

[constr_2046] swImplPolicy for ParameterDataPrototype in the role constantMemory

[constr_2047] swImplPolicy for ArgumentDataPrototype
[constr_2048] swImplPolicy for SwServiceArg
[constr_2049] Different ModeDeclarationGroups shall have different shortNames.

[constr_2050] Mandatory information of a SwAxisCont

[constr_2051] Mandatory information of a SwValueCont

[constr_2052] Values of swArraysize and the number of values provided by swValuesPhys
shall be consistent.

[constr_2053] Consistency between role IUMPRNumerator and ObdRatioServiceNeeds.
connectionType

[constr_2054] Valid targets of rptSystem

[constr_2055] Valid targets of byPassPoint and rptHook reference

[constr_2056] Consistency of RapidPrototypingScenario with respect to rptSystem and
rptArHook references

[constr_2057] Mandatory information of a RuleBasedAxisCont

[constr_2058] Mandatory information of a RuleBasedValueCont

[constr_2535] Target of an autosarParameter in AutosarParameterRef shall refer to a
parameter

5

965 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_2536] Target of an autosarVariable in AutosarVariableRef shall refer to a variable

[constr_2544] Limits need to be consistent
[constr_2545] invalidValue shall fit in the specified ranges

[constr_2548] Data constraint of value axis shall match
[constr_2549] Units of input axis shall be consistent

[constr_2550] Units of value axis shall be consistent
[constr_2561] Application of DataConstrRule.constrLevel

[constr_4002] Unambiguous mapping of modes to data types

[constr_4003] Semantics of SwcModeSwitchEvent
[constr_4004] Context of SenderReceiverAnnotation
[constr_4005] Context of ClientServerAnnotation
[constr_4006] Context of ParameterPortAnnotation
[constr_4007] Context of ModePortAnnotation
[constr_4008] Context of TriggerPortAnnotation
[constr_4009] Context of NvDataPortAnnotation
[constr_4012] Timeout of ModeSwitchedAckEvent
[constr_4082] RunnableEntity.reentrancyLevel shall not be set.
[constr_10005] Existence of attribute NotAvailableValueSpecification.defaultPattern

[constr_10006] Valid interval of attribute NotAvailableValueSpecification.
defaultPattern

[constr_10009] Aggregation of ApplicationRuleBasedValueSpecification

[constr_10016] Applicability of OsTaskExecutionEvent

[constr_10017] Existence of attribute SwAxisCont.category
[constr_10018] Existence of attribute SwAxisCont.swAxisIndex
[constr_10019] Existence of attribute SwAxisCont.swValuesPhys

[constr_10028] Existence of reference stereotyped�isOfType�

Table C.71: Changed Constraints in R21-11

C.14.6 Deleted Constraints in R21-11

Number Heading

[constr_1001] Value of dataId shall be unique

[constr_1008] Applicability of categorys STRUCTURE and ARRAY

[constr_1027] Types for record layouts

[constr_1030] ParameterSwComponentType references
ConstantSpecificationMappingSet

[constr_1031] NvBlockSwComponentType references
ConstantSpecificationMappingSet

5

966 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Number Heading

[constr_1143] category of AutosarDataType shall not be extended

[constr_1157] Applicability of constraints of CompuScales

[constr_1160] Size of Compound Primitive Data Type is variant

[constr_1281] invalidValue is inside the scope of the compuMethod

[constr_1283] invalidValue is outside the scope of the compuMethod

[constr_4000] Local communication of mode switches
[constr_4035] ValueSpecification shall fit into data type

Table C.72: Deleted Constraints in R21-11

967 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

D Modeling of InstanceRef

D.1 Introduction

The existence of so-called InstanceRefs is a direct consequence of the usage of the
type-prototype pattern for modeling within AUTOSAR. When referencing a pro-
totype, it is also necessary to include a reference to the prototypes typed by their
corresponding types that in turn aggregate further prototypes to set up the context.

In other words, InstanceRefs are representing structured references that, on the
one hand, consist of references to context prototypes (indicated by a subsetting or
redefinition of atpContextElement) and finally a reference to the applicable target
prototype (indicated by a redefinition of atpTarget).

Note that it is not uncommon to have more than a single context in the modeling of
particular InstanceRefs.

For the reader of specifications, the modeling of InstanceRefs manifests as a UML
dependency stereotyped �instanceRef� drawn from one meta-class to another.
This is a simplified indication that the source of the dependency implements an In-
stanceRef to the meta-class at the target of the dependency.

Again, in most cases this is everything a reader needs to understand in order to fig-
ure out the modeling. The formal modeling of InstanceRefs is done by creating
subclasses of the abstract meta-class AtpInstanceRef.

Wherever a more detailed understanding of the modeling is advised in the context of
the specific chapter of this document, the modeling of a specific subclass of AtpIn-
stanceRef is explained directly in the context of the corresponding chapter.

In all other cases, a deeper understanding of the modeling of particular subclasses of
AtpInstanceRefs can be obtained from reading this chapter.

Class tables included in this chapter are not fully filled out in the sense that most of the
notes inside the class tables are missing. The primary purpose of these class tables
is to provide information about the intended order in which InstanceRefs are
serialized in M1 AUTOSAR models.

In particular, the information about the order in serialized M1 models can be obtained
from the value of the tag xml.sequenceOffset of each attribute of an InstanceRef
meta-class.

For more information about the general concept of modeling AtpInstanceRef (e.g.
the conceptual background of redefining or subsetting an association from a subclass
of AtpInstanceRef to other meta-classes) please refer to [11].

968 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

D.2 Modeling

D.2.1 Components and Compositions

AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

«instance...
AtpInstanceRef

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean [0..1]
+ serviceKind: ServiceProviderEnum [0..1]

RPortPrototype

+ mayBeUnconnected: Boolean [0..1]

PPortPrototype

VariableInAtomicSwcInstanceRef

AutosarDataPrototype

VariableDataPrototype

SenderReceiverInterface

���������	 �� ����

��	�� �� ��	��������

DataInterface

PRPortPrototype

AbstractProvidedPortPrototypeAbstractRequiredPortPrototype

«atpDerived»

+/base 0..1
{redefines
atpBase}

«atpVariation,atpSplitable»

+port 0..*

«isOfType»

+requiredInterface

0..1
{redefines
atpType}

«isOfType»

+providedRequiredInterface
0..1
{redefines atpType}

«atpAbstract»

+contextPort0..1
{subsets

atpContextElement}

«atpAbstract»

+abstractTargetDataElement
0..1
{redefines atpTarget}

«isOfType»

+providedInterface

0..1
{redefines
atpType}

+dataElement 0..*

Figure D.1: Abstract modeling of references to VariableDataPrototype in the context
of a AtomicSwComponentType

Class VariableInAtomicSwcInstanceRef (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef

Subclasses RVariableInAtomicSwcInstanceRef

Attribute Type Mult. Kind Note

abstractTarget
DataElement

VariableDataPrototype 0..1 ref Stereotypes: atpAbstract
Tags:xml.sequenceOffset=30

base AtomicSwComponent
Type

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

5

969 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class VariableInAtomicSwcInstanceRef (abstract)

contextPort PortPrototype 0..1 ref Stereotypes: atpAbstract
Tags:xml.sequenceOffset=20

Table D.1: VariableInAtomicSwcInstanceRef

Please note the example of how the redefinition of the context association works, i.e.
the association from VariableInAtomicSwcInstanceRef to PortPrototype in
the role contextPort is redefined by the subclass RVariableInAtomicSwcIn-
stanceRef by means of an association to RPortPrototype in the role contextR-
Port.

AtpBlueprintable
AtpPrototype

PortPrototype

AtpInstanceRef

VariableInAtomicSwcInstanceRef

RVariableInAtomicSwcInstanceRef

AutosarDataPrototype

VariableDataPrototype

RTEEvent

DataReceivedEvent
RTEEvent

DataReceiveErrorEvent

AbstractRequiredPortPrototype

+data 0..1«atpAbstract»

+
a

b
st

ra
ct

T
a

rg
e

tD
a

ta
E

le
m

e
n

t

0
..

1
{r

e
d

e
fin

e
s

a
tp

T
a

rg
e

t}

+
ta

rg
e

tD
a

ta
E

le
m

e
n

t

0
..

1
{r

e
d

e
fin

e
s

a
b

st
ra

ct
T

a
rg

e
tD

a
ta

E
le

m
e

n
t}

«instanceRef»

+data0..1

+data 0..1

«instanceRef»

+data 0..1

+contextRPort

0..1
{redefines contextPort}

«atpAbstract»

+contextPort

0..1
{subsets

atpContextElement}

Figure D.2: Concrete modeling of references to VariableDataPrototype in the context
of an RPortPrototype

The effect of this modeling is that the general relationship to PortPrototype is al-
ready established by VariableInAtomicSwcInstanceRef on an abstract level but
actually it never makes the generated XML Schema because it is redefined by a sub-
class. In other words, the redefinition replaces the original association as far as the
generation algorithm for the XML Schema is concerned.

For clarification, the interpretation of the values of xml.sequenceOffset in this par-
ticular case is that in the generated XML Schema the contextRPort comes first, fol-
lowed by targetDataElement which concludes the definition of the InstanceRef
in the XML Schema.

970 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

RModeInAtomicSwcInstanceRef

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

AtomicSwComponentType
ARElement

AtpBlueprint
AtpBlueprintable

AtpType

SwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

AtpBlueprintable
AtpPrototype

PortPrototype

«instanceRef»
AtpInstanceRef

���������	 �� ����

��	�� �� ��	��������

AbstractEvent
AtpStructureElement

RTEEvent

AbstractRequiredPortPrototype

«atpVariation,atpSplitable»

+port

0..*

«atpVariation»

+modeDeclaration

0..*

+targetModeDeclaration

0..1
{redefines

atpTarget}

«atpDerived»

+/base 0..1
{redefines
atpBase}

+contextModeDeclarationGroupPrototype

0..1
{subsets

atpContextElement}

+contextPort

0..1
{subsets

atpContextElement}

+initialMode

0..1

«isOfType»

+type
0..1
{redefines atpType}

«atpSplitable»

+disabledMode *

«instanceRef»

+disabledMode 0..*

Figure D.3: Modeling of references to ModeDeclarationGroupPrototype in the con-
text of an RPortPrototype

Class RVariableInAtomicSwcInstanceRef
Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef , VariableInAtomicSwcInstanceRef

Attribute Type Mult. Kind Note

contextRPort AbstractRequiredPort
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetData
Element

VariableDataPrototype 0..1 ref Tags:xml.sequenceOffset=30

Table D.2: RVariableInAtomicSwcInstanceRef

Class RModeInAtomicSwcInstanceRef
Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base AtomicSwComponent
Type

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextMode
Declaration
GroupPrototype

ModeDeclarationGroup
Prototype

0..1 ref Tags:xml.sequenceOffset=30

5

971 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RModeInAtomicSwcInstanceRef
contextPort AbstractRequiredPort

Prototype
0..1 ref Tags:xml.sequenceOffset=20

targetMode
Declaration

ModeDeclaration 0..1 ref Tags:xml.sequenceOffset=40

Table D.3: RModeInAtomicSwcInstanceRef

Class InnerPortGroupInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base CompositionSw
ComponentType

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

context
(ordered)

SwComponent
Prototype

* ref Tags:xml.sequenceOffset=20

target PortGroup 0..1 ref Links a PortGroup in a composition to another PortGroup,
that is defined in a component which is part of this
CompositionSwComponentType. There shall be at most
one innerGroup per contained SwComponentPrototype.

Tags:xml.sequenceOffset=30

Table D.4: InnerPortGroupInCompositionInstanceRef

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpStructureElement
Identifiable

PortGroup

CompositionSwComponentType

AtpPrototype

SwComponentPrototype

AtpInstanceRef

InnerPortGroupInCompositionInstanceRef

«atpVariation»

+portGroup 0..*

+target

0..1
{redefines atpTarget}

+context 0..*
{ordered,
subsets
atpContextElement}

«atpDerived» +/base

0..1
{redefines atpBase}

«atpVariation,atpSplitable»

+component 0..*

«isOfType» +type

0..1
{redefines
atpType}

+innerGroup

0..*

Figure D.4: Modeling of references to PortGroup in the context of a Composition-
SwComponentType

972 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

RPortPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

«instanceRef»
AtpInstanceRef

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

PPortPrototype

TriggerInAtomicSwcInstanceRef

TriggerInterface

AtpStructureElement
Identifiable

Trigger

���������	 �� ����

��	�� �� ��	��������

ExternalTriggeringPoint PRPortPrototype

AbstractProvidedPortPrototype AbstractRequiredPortPrototype

«atpDerived»

+/base 0..1
{redefines
atpBase}

«isOfType»

+
p

ro
vi

d
e

d
R

e
q

u
ire

d
In

te
rf

a
ce

0
..

1
{r

e
d

e
fin

e
s

a
tp

T
yp

e
}

«atpVariation,atpSplitable»

+port 0..*

+trigger 0..*
«isOfType»

+requiredInterface

0..1
{redefines
atpType}

«isOfType»

+providedInterface

0..1
{redefines
atpType}

«instanceRef»
+trigger

0..1

«atpAbstract»

+contextPort0..1
{subsets

atpContextElement}

«atpAbstract»

+target

0..1
{redefines
atpTarget}

Figure D.5: Abstract modeling of references to Trigger in the context of a Atomic-
SwComponentType

Class TriggerInAtomicSwcInstanceRef (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef

Subclasses PTriggerInAtomicSwcTypeInstanceRef, RTriggerInAtomicSwcInstanceRef

Attribute Type Mult. Kind Note

base AtomicSwComponent
Type

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextPort PortPrototype 0..1 ref Stereotypes: atpAbstract
Tags:xml.sequenceOffset=20

target Trigger 0..1 ref Stereotypes: atpAbstract
Tags:xml.sequenceOffset=30

Table D.5: TriggerInAtomicSwcInstanceRef

973 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpBlueprintable
AtpPrototype

PortPrototype

AtpInstanceRef

TriggerInAtomicSwcInstanceRef

RTriggerInAtomicSwcInstanceRef

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

RTEEvent

ExternalTriggerOccurredEvent

AbstractRequiredPortPrototype

+targetTrigger

0..1
{redefines
target}

+contextRPort

0..1
{subsets contextPort}

+trigger

0..1

«instanceRef»+trigger

0..1

«atpAbstract»

+target

0..1
{redefines

atpTarget}

«atpAbstract»

+contextPort

0..1
{subsets

atpContextElement}

Figure D.6: Concrete modeling of references to Trigger in the context of an RPortPro-
totype

Class RTriggerInAtomicSwcInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef , TriggerInAtomicSwcInstanceRef

Attribute Type Mult. Kind Note

contextRPort AbstractRequiredPort
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetTrigger Trigger 0..1 ref Tags:xml.sequenceOffset=30

Table D.6: RTriggerInAtomicSwcInstanceRef

AtpBlueprintable
AtpPrototype

PortPrototype

AtpInstanceRef

TriggerInAtomicSwcInstanceRef

PTriggerInAtomicSwcTypeInstanceRef

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

ExternalTriggeringPoint

AbstractProvidedPortPrototype

+trigger 0..1

«atpAbstract»

+target

0..1
{redefines
atpTarget} +targetTrigger

0..1
{redefines
target}

«instanceRef»

+trigger

0..1

«atpAbstract»

+contextPort

0..1
{subsets atpContextElement}

+contextPPort

0..1
{subsets contextPort}

Figure D.7: Concrete modeling of references to Trigger in the context of a PPortPro-
totype

974 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class PTriggerInAtomicSwcTypeInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef , TriggerInAtomicSwcInstanceRef

Attribute Type Mult. Kind Note

contextPPort AbstractProvidedPort
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetTrigger Trigger 0..1 ref Tags:xml.sequenceOffset=30

Table D.7: PTriggerInAtomicSwcTypeInstanceRef

AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

«instanceRef»
AtpInstanceRef

OperationInAtomicSwcInstanceRef

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

RPortPrototype PPortPrototype

���������	 �� ����

��	�� �� ��	��������

PRPortPrototype

AbstractProvidedPortPrototype AbstractRequiredPortPrototype

«atpAbstract»

+contextPort

0..1
{subsets atpContextElement}

«atpVariation,atpSplitable»
+port 0..*

«atpDerived»

+/base 0..1
{redefines atpBase}

«atpAbstract»

+targetOperation

0..1
{redefines
atpTarget}

«atpVariation»

+operation 0..*
«isOfType»

+providedRequiredInterface

0..1
{redefines
atpType}

«isOfType»

+providedInterface

0..1
{redefines
atpType}

«isOfType»

+requiredInterface

0..1
{redefines
atpType}

Figure D.8: Abstract modeling of references to ClientServerOperation in the context
of a AtomicSwComponentType

Class OperationInAtomicSwcInstanceRef (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef

Subclasses POperationInAtomicSwcInstanceRef, ROperationInAtomicSwcInstanceRef

Attribute Type Mult. Kind Note

5

975 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class OperationInAtomicSwcInstanceRef (abstract)

base AtomicSwComponent
Type

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextPort PortPrototype 0..1 ref Stereotypes: atpAbstract
Tags:xml.sequenceOffset=20

targetOperation ClientServerOperation 0..1 ref Stereotypes: atpAbstract
Tags:xml.sequenceOffset=30

Table D.8: OperationInAtomicSwcInstanceRef

AtpBlueprintable
AtpPrototype

PortPrototype

AtpInstanceRef

OperationInAtomicSwcInstanceRef

ROperationInAtomicSwcInstanceRef
SwComponentType

AtomicSwComponentType

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

���������	 �� ����

��	�� �� ��	��������

AbstractAccessPoint
AtpStructureElement

Identifiable

ServerCallPoint

+ timeout: TimeValue [0..1]

AbstractRequiredPortPrototype+contextRPort

0..1
{subsets contextPort}

+operation 0..1

+targetRequiredOperation

0..1
{redefines

targetOperation}

«atpAbstract»

+contextPort

0..1
{subsets

atpContextElement}

«atpDerived»

+/base

0..1
{redefines
atpBase}

«atpAbstract»

+targetOperation

0..1
{redefines
atpTarget}

«instanceRef»

+operation 0..1

Figure D.9: Concrete modeling of references to ClientServerOperation in the context
of an RPortPrototype

Class ROperationInAtomicSwcInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef , OperationInAtomicSwcInstanceRef

Attribute Type Mult. Kind Note

contextRPort AbstractRequiredPort
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetRequired
Operation

ClientServerOperation 0..1 ref Tags:xml.sequenceOffset=30

Table D.9: ROperationInAtomicSwcInstanceRef

976 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpBlueprintable
AtpPrototype

PortPrototype

AtpInstanceRef

OperationInAtomicSwcInstanceRef

POperationInAtomicSwcInstanceRef

SwComponentType

AtomicSwComponentType

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

���������	 �� ����

��	�� �� ��	��������

RTEEvent

OperationInvokedEvent
AbstractProvidedPortPrototype

«atpDerived»

+/base 0..1
{redefines atpBase}

«atpAbstract»

+contextPort

0..1
{subsets atpContextElement}

+operation

0..1

«atpAbstract»

+targetOperation

0..1
{redefines
atpTarget} +targetProvidedOperation

0..1
{redefines

targetOperation}

«instanceRef»

+operation0..1

+contextPPort

0..1
{subsets contextPort}

Figure D.10: Concrete modeling of references to ClientServerOperation in the con-
text of a PPortPrototype

Class POperationInAtomicSwcInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef , OperationInAtomicSwcInstanceRef

Attribute Type Mult. Kind Note

contextPPort AbstractProvidedPort
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetProvided
Operation

ClientServerOperation 0..1 ref Tags:xml.sequenceOffset=30

Table D.10: POperationInAtomicSwcInstanceRef

Class RModeGroupInAtomicSWCInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef , ModeGroupInAtomicSwcInstanceRef

Attribute Type Mult. Kind Note

contextRPort AbstractRequiredPort
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetMode
Group

ModeDeclarationGroup
Prototype

0..1 ref Tags:xml.sequenceOffset=30

Table D.11: RModeGroupInAtomicSWCInstanceRef

977 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpBlueprintable
AtpPrototype

PortPrototype

AtpInstanceRef

ModeGroupInAtomicSwcInstanceRef

RModeGroupInAtomicSWCInstanceRef

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

AbstractRequiredPortPrototype

«atpAbstract»

+target

0..1
{redefines
atpTarget}

+contextRPort

0..1
{redefines contextPort}

+targetModeGroup

0..1
{redefines
target}

«atpAbstract»

+contextPort

0..1
{subsets atpContextElement}

Figure D.11: Concrete modeling of references to ModeDeclarationGroupPrototype in
the context of an RPortPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

AtpInstanceRef

ModeGroupInAtomicSwcInstanceRef

PModeGroupInAtomicSwcInstanceRef

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

AbstractAccessPoint
AtpStructureElement

Identifiable

ModeSwitchPoint

AbstractProvidedPortPrototype

«atpAbstract»

+contextPort

0..1
{subsets

atpContextElement}

+contextPPort

0..1
{redefines

contextPort}
+modeGroup 0..1

+targetModeGroup

0..1
{redefines
target}

«instanceRef»

+modeGroup

0..1

«atpAbstract»

+target

0..1
{redefines
atpTarget}

Figure D.12: Concrete modeling of references to ModeDeclarationGroupPrototype in
the context of a PPortPrototype

Class PModeGroupInAtomicSwcInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef , ModeGroupInAtomicSwcInstanceRef

Attribute Type Mult. Kind Note

contextPPort AbstractProvidedPort
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetMode
Group

ModeDeclarationGroup
Prototype

0..1 ref Tags:xml.sequenceOffset=30

Table D.12: PModeGroupInAtomicSwcInstanceRef

978 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpPrototype

SwComponentPrototype
CompositionSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

«instanceRef»
AtpInstanceRef

ComponentInCompositionInstanceRef

«atpVariation,atpSplitable»

+component

0..*

+contextComponent

0..*
{ordered,
subsets
atpContextElement}

«isOfType»

+type
0..1
{redefines atpType}

+targetComponent

0..1
{redefines
atpTarget}

«atpDerived»

+base

0..1
{redefines
atpBase}

Figure D.13: Concrete modeling of references to SwComponentPrototype in the context
of a CompositionSwComponentType

Class ComponentInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition::InstanceRefs

Note The ComponentInCompositionInstanceRef points to a concrete SwComponentPrototype within a
CompositionSwComponentType.

Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base CompositionSw
ComponentType

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

context
Component
(ordered)

SwComponent
Prototype

* ref The context for the scope of this timing event.

Tags:xml.sequenceOffset=20

target
Component

SwComponent
Prototype

0..1 ref Tags:xml.sequenceOffset=30

Table D.13: ComponentInCompositionInstanceRef

979 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

CompositionSwComponentType
AtpPrototype

SwComponentPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

PortInCompositionTypeInstanceRef

«instanceRef»
AtpInstanceRef

���������	 �� ����

��	�� ��

��	���������	�	�

«atpAbstract»

+targetPort 0..1
{redefines
atpTarget}

«isOfType»

+type

0..1
{redefines
atpType}

«atpAbstract»

+abstractContextComponent 0..1
{subsets
atpContextElement}

«atpVariation,atpSplitable»

+port

0..*

«atpVariation,atpSplitable»

+component

0..*

«atpDerived»

+/base 0..1
{redefines
atpBase}

Figure D.14: Abstract modeling of references to PortPrototype in the context of a
CompositionSwComponentType

Class PortInCompositionTypeInstanceRef (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition::InstanceRefs

Note
Base ARObject , AtpInstanceRef

Subclasses PPortInCompositionInstanceRef, RPortInCompositionInstanceRef

Attribute Type Mult. Kind Note

abstractContext
Component

SwComponent
Prototype

0..1 ref Stereotypes: atpAbstract
Tags:xml.sequenceOffset=20

base CompositionSw
ComponentType

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

targetPort PortPrototype 0..1 ref Stereotypes: atpAbstract
Tags:xml.sequenceOffset=30

Table D.14: PortInCompositionTypeInstanceRef

Class PPortInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition::InstanceRefs

Note
Base ARObject , AtpInstanceRef , PortInCompositionTypeInstanceRef

Attribute Type Mult. Kind Note

context
Component

SwComponent
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetPPort AbstractProvidedPort
Prototype

0..1 ref Tags:xml.sequenceOffset=30

Table D.15: PPortInCompositionInstanceRef

980 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpInstanceRef

PortInCompositionTypeInstanceRef

AtpBlueprintable
AtpPrototype

PortPrototype

PPortInCompositionInstanceRef

AtpPrototype

SwComponentPrototype

SwComponentType

CompositionSwComponentType

���������	 �� ����

��	�� ��

��	���������	�	�

SwConnector

AssemblySwConnector

AbstractProvidedPortPrototype +targetPPort

0..1
{redefines
targetPort} «atpAbstract»

+
a

b
st

ra
ct

C
o

n
te

xt
C

o
m

p
o

n
e

n
t

0
..

1
{s

u
b

se
ts

a
tp

C
o

n
te

xt
E

le
m

e
n

t}

+
co

n
te

xt
C

o
m

p
o

n
e

n
t

0
..

1
{r

e
d

e
fin

e
s

a
b

st
ra

ct
C

o
n

te
xt

C
o

m
p

o
n

e
n

t}

«atpDerived»

+/base

0..1
{redefines
atpBase}

«atpAbstract»

+targetPort

0..1
{redefines
atpTarget}

0..1

«atpVariation,atpSplitable»

+component 0..*

«instanceRef»

+provider 0..1

Figure D.15: Concrete modeling of references to PPortPrototype in the context of a
CompositionSwComponentType

AtpInstanceRef

PortInCompositionTypeInstanceRef

AtpBlueprintable
AtpPrototype

PortPrototype

RPortInCompositionInstanceRef

AtpPrototype

SwComponentPrototype

SwComponentType

CompositionSwComponentType

���������	 �� ����

��	�� ��

��	���������	�	�

SwConnector

AssemblySwConnector

AbstractRequiredPortPrototype

«atpDerived»

+/base

0..1
{redefines
atpBase}

«atpVariation,atpSplitable»

+component 0..*+
co

n
te

xt
C

o
m

p
o

n
e

n
t

0..1
{redefines

abstractContextComponent}

«atpAbstract»

+targetPort

0..1
{redefines
atpTarget}

+targetRPort

0..1
{redefines
targetPort}

«instanceRef»

+requester 0..1

«atpAbstract»

+
a

b
st

ra
ct

C
o

n
te

xt
C

o
m

p
o

n
e

n
t

0..1
{subsets
atpContextElement}

+requester 0..1

Figure D.16: Concrete modeling of references to RPortPrototype in the context of a
CompositionSwComponentType

Class RPortInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition::InstanceRefs

5

981 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RPortInCompositionInstanceRef

Note
Base ARObject , AtpInstanceRef , PortInCompositionTypeInstanceRef

Attribute Type Mult. Kind Note

context
Component

SwComponent
Prototype

0..1 ref Tags:xml.sequenceOffset=20

targetRPort AbstractRequiredPort
Prototype

0..1 ref Tags:xml.sequenceOffset=30

Table D.16: RPortInCompositionInstanceRef

CompositeNetworkRepresentation

ApplicationCompositeElementDataPrototype

AtpInstanceRef

ApplicationCompositeElementInPortInterfaceInstanceRef
AutosarDataPrototype

AtpPrototype

DataPrototype

PortInterface

DataInterface

+contextDataPrototype

0..*
{ordered,
subsets atpContextElement}

+targetDataPrototype

0..1
{redefines
atpTarget}

+leafElement 0..1

+rootDataPrototype

0..1
{subsets
atpContextElement}

«atpDerived»

+base 0..1
{redefines atpBase}

«instanceRef»

+leafElement 0..1

Figure D.17: Modeling of references to ApplicationCompositeElementDataProto-
type for the purpose of defining a network representation

982 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

D.2.2 Definition of implicit Communication Behavior

AtpInstanceRef

InnerDataPrototypeGroupInCompositionInstanceRef

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

CompositionSwComponentType

AtpPrototype

SwComponentPrototype

AtpBlueprint
AtpBlueprintable

Identifiable

ConsistencyNeeds

AtpStructureElement
Identifiable

DataPrototypeGroup

������������	
 ����

�����������	��	���� �

��������������

«isOfType» +type

0..1
{redefines atpType}

«atpVariation»

+dataPrototypeGroup

0..*

«instanceRef»

+dataPrototypeGroup
0..*

«atpVariation,atpSplitable»

+dpgRequiresCoherency 0..*

«atpDerived»

+base

0..1
{redefines atpBase}

«atpVariation,atpSplitable»

+component 0..*

«atpVariation,atpSplitable»

+dpgDoesNotRequireCoherency 0..*

«atpVariation,atpSplitable»

+consistencyNeeds 0..*

+targetDataPrototypeGroup

0..1
{redefines atpTarget}

+contextSwComponentPrototype

0..*
{ordered,

subsets atpContextElement}

Figure D.18: Modeling of references to DataPrototypeGroup in the context of a Com-
positionSwComponentType

Class InnerDataPrototypeGroupInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior::InstanceRef

Note This meta-class represents the ability to define an InstanceRef to a nested DataPrototypeGroup

Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base CompositionSw
ComponentType

0..1 ref This represents the base of the instanceRef.

Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextSw
Component
Prototype
(ordered)

SwComponent
Prototype

* ref This represents the nested structure of SwComponent
Prototypes.

Tags:xml.sequenceOffset=20

targetData
PrototypeGroup

DataPrototypeGroup 0..1 ref This represents the target of the InstanceRef

Tags:xml.sequenceOffset=30

Table D.17: InnerDataPrototypeGroupInCompositionInstanceRef

983 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpInstanceRef

InnerRunnableEntityGroupInCompositionInstanceRef

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

CompositionSwComponentType

AtpPrototype

SwComponentPrototype

AtpBlueprint
AtpBlueprintable

Identifiable

ConsistencyNeeds

AtpStructureElement
Identifiable

RunnableEntityGroup

������������	
 ����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+component 0..*

+contextSwComponentPrototype

0..*
{ordered,

subsets atpContextElement}

«atpVariation,atpSplitable»

+regRequiresStabil ity 0..*

«atpVariation,atpSplitable»

+consistencyNeeds 0..*

«atpDerived» +base

0..1
{redefines atpBase}

«isOfType»
+type

0..1
{redefines atpType}

«instanceRef»

+runnableEntityGroup
0..*

+targetRunnableEntityGroup

1
{redefines atpTarget}

«atpVariation»

+runnableEntityGroup

0..*

«atpVariation,atpSplitable»

+regDoesNotRequireStabili ty 0..*

Figure D.19: Modeling of references to RunnableEntityGroup in the context of a Com-
positionSwComponentType

Class InnerRunnableEntityGroupInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior::InstanceRef

Note This meta-class represents the ability to define an InstanceRef to a nested RunnableEntityGroup.

Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base CompositionSw
ComponentType

0..1 ref This represents the base of the InstanceRef.

Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextSw
Component
Prototype
(ordered)

SwComponent
Prototype

* ref This represents the nested structure of SwComponent
Prototypes.

Tags:xml.sequenceOffset=20

targetRunnable
EntityGroup

RunnableEntityGroup 1 ref This represents the target association of the InstanceRef.

Tags:xml.sequenceOffset=30

Table D.18: InnerRunnableEntityGroupInCompositionInstanceRef

Class RunnableEntityInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior::InstanceRef

Note This meta-class represents the ability to define an InstanceRef to a RunnableEntity in the context of a
CompositionSwComponentType.

Base ARObject , AtpInstanceRef

5

984 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class RunnableEntityInCompositionInstanceRef

Attribute Type Mult. Kind Note

base CompositionSw
ComponentType

0..1 ref This represents the base of the InstanceRef.

Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextSw
Component
Prototype
(ordered)

SwComponent
Prototype

* ref This represents the nested structure of SwComponent
Prototypes.

Tags:xml.sequenceOffset=20

targetRunnable
Entity

RunnableEntity 0..1 ref This represents the target RunnableEntity.

Tags:xml.sequenceOffset=30

Table D.19: RunnableEntityInCompositionInstanceRef

AtpInstanceRef

RunnableEntityInCompositionInstanceRef

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

CompositionSwComponentType

AtpPrototype

SwComponentPrototype

InternalBehavior

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

AtomicSwComponentType

AtpStructureElement
Identifiable

RunnableEntityGroup

������������	
 ����

�����������	��	���� �

��������������

«atpDerived»

+base

0..1
{redefines atpBase}

«instanceRef»

+runnableEntityGroup 0..*

«atpVariation,atpSplitable»

+component 0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

«instanceRef»

+runnableEntity 0..*

«isOfType»
+type

0..1
{redefines atpType}

+contextSwComponentPrototype

0..*
{ordered,

subsets atpContextElement}

«atpVariation,atpSplitable»

+runnable 0..*

+targetRunnableEntity

0..1
{redefines atpTarget}

«atpVariation»

+runnableEntity

0..*

Figure D.20: Modeling of references to RunnableEntity in the context of a Composi-
tionSwComponentType from the point of view of a RunnableEntityGroup

985 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

«instanceRef»
AtpInstanceRef

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

CompositionSwComponentType

AtpPrototype

SwComponentPrototype

VariableDataPrototypeInCompositionInstanceRef

AtpBlueprintable
AtpPrototype

PortPrototype

SenderReceiverInterface DataInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

PPortPrototype
AutosarDataPrototype

VariableDataPrototype
RPortPrototype PRPortPrototype

NvDataInterface

AtpStructureElement
Identifiable

DataPrototypeGroup

������������	
 ����

�����������	��	���� �

��������������

AbstractRequiredPortPrototype AbstractProvidedPortPrototype

«instanceRef»

+dataPrototypeGroup 0..*

+dataElement 0..*
«isOfType»

+
re

q
u

ire
d

In
te

rf
a

ce

0
..

1
{r

e
d

e
fin

e
s

a
tp

T
yp

e
}

«atpDerived»

+base

0..1
{redefines atpBase}

«atpVariation,atpSplitable»

+port 0..*

+targetVariableDataPrototype

0..1
{redefines

atpTarget}

«isOfType»

+type

0..1
{redefines
atpType}

«instanceRef»

+implicitDataAccess0..*

«atpVariation,atpSplitable»
+component 0..*

«atpVariation»

+implicitDataAccess0..*

+contextPortPrototype

0..1
{subsets atpContextElement}

«isOfType»

+
p

ro
vi

d
e

d
In

te
rf

a
ce

0
..

1
{r

e
d

e
fin

e
s

a
tp

T
yp

e
}

+contextSwComponentPrototype

0..*
{ordered,

subsets atpContextElement}

+nvData 0..* «isOfType»

+
p

ro
vi

d
e

d
R

e
q

u
ire

d
In

te
rf

a
ce

0
..

1
{r

e
d

e
fin

e
s

a
tp

T
yp

e
}

Figure D.21: Modeling of references to VariableDataPrototype in the context of a
CompositionSwComponentType from the point of view of a RunnableEntityGroup

986 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class VariableDataPrototypeInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior::InstanceRef

Note This meta-class represents the ability to define an InstanceRef to a VariableDataPrototype in the context
of a CompositionSwComponentType.

Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base CompositionSw
ComponentType

0..1 ref This represents the base of the InstanceRef.

Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextPort
Prototype

PortPrototype 0..1 ref This represents a reference to a context PortPrototype.

Tags:xml.sequenceOffset=30

contextSw
Component
Prototype
(ordered)

SwComponent
Prototype

* ref This represents the nested structure of SwComponent
Prototypes.

Tags:xml.sequenceOffset=20

targetVariable
DataPrototype

VariableDataPrototype 0..1 ref This represents the target VariableDataPrototype.

Tags:xml.sequenceOffset=40

Table D.20: VariableDataPrototypeInCompositionInstanceRef

Class InstanceEventInCompositionInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition::InstanceRefs

Note
Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base CompositionSw
ComponentType

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

context
Component
Prototype
(ordered)

SwComponent
Prototype

* ref Tags:xml.sequenceOffset=20

targetEvent RTEEvent 0..1 ref Tags:xml.sequenceOffset=30

Table D.21: InstanceEventInCompositionInstanceRef

987 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

CompositionSwComponentType

AtpPrototype

SwComponentPrototype

AtpInstanceRef

InstanceEventInCompositionInstanceRef

AtomicSwComponentType

AbstractEvent
AtpStructureElement

RTEEvent

InternalBehavior

SwcInternalBehavior

InstantiationRTEEventProps

«atpIdentityContributor»
+ shortLabel: Identifier [0..1]

«instanceRef»

+refinedEvent 0..1

«atpVariation,atpSplitable»

+component 0..*

«isOfType»

+type
0..1

{redefines atpType}

«atpVariation,atpSplitable»

+event 0..*

+refinedEvent

0..1

+contextComponentPrototype

0..*
{ordered,

subsets atpContextElement}

«atpDerived» +/base

0..1
{redefines
atpBase}

+targetEvent

0..1
{redefines

atpTarget}

«atpVariation,atpSplitable»

+instantiationRTEEventProps 0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

Figure D.22: Modeling of references to RTEEvent in the context of a InstantiationR-
TEEventProps from the point of view of a CompositionSwComponentType

988 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

D.2.3 Internal Behavior

AtpStructureElement
ExecutableEntity

RunnableEntity

InternalBehavior

SwcInternalBehavior

PModeGroupInAtomicSwcInstanceRef

AtpBlueprintable
AtpPrototype

PortPrototype

AtpInstanceRef

ModeGroupInAtomicSwcInstanceRef

SwComponentType

AtomicSwComponentType

AtpPrototype

ModeDeclarationGroupPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

AtpStructureElement
Identifiable

ModeDeclaration

AbstractAccessPoint
AtpStructureElement

Identifiable

ModeSwitchPoint

AbstractProvidedPortPrototype

«atpAbstract»

+contextPort
0..1
{subsets atpContextElement}

«atpDerived»

+/base 0..1
{redefines
atpBase}

«atpVariation,atpSplitable»

+runnable 0..*

+targetModeGroup 0..1
{redefines target}

«atpVariation»

+modeDeclaration 0..*

«isOfType»

+type
0..1
{redefines atpType}

«instanceRef»

+modeGroup 0..1

+initialMode 0..1

«atpAbstract»

+target
0..1
{redefines atpTarget}

«atpVariation,atpSplitable»
+modeSwitchPoint *

«atpVariation,atpSplitable»

+internalBehavior

0..1

+modeGroup 0..1

+contextPPort

0..1
{redefines contextPort}

Figure D.23: Modeling of references to provided ModeDeclarationGroupPrototype in
the context of an AtomicSwComponentType

Class ModeGroupInAtomicSwcInstanceRef (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components::InstanceRefs

Note
Base ARObject , AtpInstanceRef

Subclasses PModeGroupInAtomicSwcInstanceRef, RModeGroupInAtomicSWCInstanceRef

Attribute Type Mult. Kind Note

base AtomicSwComponent
Type

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextPort PortPrototype 0..1 ref Stereotypes: atpAbstract
Tags:xml.sequenceOffset=20

5

989 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ModeGroupInAtomicSwcInstanceRef (abstract)

target ModeDeclarationGroup
Prototype

0..1 ref Stereotypes: atpAbstract
Tags:xml.sequenceOffset=30

Table D.22: ModeGroupInAtomicSwcInstanceRef

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

RTEEvent

SwcModeManagerErrorEvent

PModeGroupInAtomicSwcInstanceRef AbstractProvidedPortPrototype

AtpInstanceRef

ModeGroupInAtomicSwcInstanceRef

SwComponentType

AtomicSwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

+modeGroup0..1
«atpAbstract»

+target

0..1
{redefines
atpTarget}

«atpAbstract» +contextPort

0..1
{subsets atpContextElement}

«instanceRef»

+modeGroup0..1

«atpDerived»

+/base 0..1
{redefines
atpBase}

+targetModeGroup

0..1
{redefines target}

+contextPPort

0..1
{redefines contextPort}

Figure D.24: Modeling of references to provided ModeDeclarationGroupPrototype to
be used by SwcModeManagerErrorEvent

990 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpStructureElement
ExecutableEntity

RunnableEntity

InternalBehavior

SwcInternalBehavior

ModeAccessPoint

AtpBlueprintable
AtpPrototype

PortPrototype

AtpInstanceRef

ModeGroupInAtomicSwcInstanceRef

RModeGroupInAtomicSWCInstanceRef

SwComponentType

AtomicSwComponentType

AtpPrototype

ModeDeclarationGroupPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

AtpStructureElement
Identifiable

ModeDeclaration

AbstractRequiredPortPrototype

«atpVariation»

+modeDeclaration

0..*

«instanceRef»

+modeGroup 0..1

«atpAbstract»

+target
0..1
{redefines atpTarget}

«atpVariation,atpSplitable»

+runnable

0..*

+initialMode

0..1

+targetModeGroup 0..1
{redefines target}

+modeGroup 0..1

«isOfType»

+type
0..1
{redefines atpType}

«atpVariation,atpSplitable»

+modeAccessPoint *

«atpDerived»

+/base 0..1
{redefines
atpBase}

«atpAbstract»

+contextPort
0..1
{subsets atpContextElement}

+contextRPort

0..1
{redefines contextPort}

«atpVariation,atpSplitable»

+internalBehavior

0..1

Figure D.25: Modeling of references to required ModeDeclarationGroupPrototype in
the context of an AtomicSwComponentType

AbstractAccessPoint
AtpStructureElement

Identifiable

ServerCallPoint

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpStructureElement
ExecutableEntity

RunnableEntity

InternalBehavior

SwcInternalBehavior
AtomicSwComponentType

OperationInAtomicSwcInstanceRef

ROperationInAtomicSwcInstanceRef

AtpStructureElement
Identifiable

ClientServerOperation

AbstractRequiredPortPrototype

������������	
 ����

�����������������	����� � ��

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+internalBehavior

0..1

+targetRequiredOperation 0..1
{redefines
targetOperation}

«atpVariation,atpSplitable»

+runnable 0..*

+contextRPort

0..1
{subsets contextPort}

«atpVariation,atpSplitable»

+port 0..*

«instanceRef»

+operation

0..1

«atpVariation,atpSplitable»

+serverCallPoint 0..*

+operation 0..1

Figure D.26: Modeling of references to required ClientServerOperation in the context
of a SwComponentType

991 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean [0..1]
+ symbol: CIdentifier [0..1]

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum [0..1]
+ supportsMultipleInstantiation: Boolean [0..1]

SwComponentType

AtomicSwComponentType

ExternalTriggeringPoint

AtpInstanceRef

TriggerInAtomicSwcInstanceRef

PTriggerInAtomicSwcTypeInstanceRef

PortPrototype

AbstractProvidedPortPrototype������������	
 ����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+runnable 0..*
«atpDerived»

+/base 0..1
{redefines atpBase}

«atpVariation,atpSplitable»

+internalBehavior

0..1

+contextPPort 0..1
{subsets contextPort}

+trigger

0..1

«atpVariation,atpSplitable»
+externalTriggeringPoint 0..*

Figure D.27: Modeling of references to a Trigger in the context of a SwComponentType

AbstractEvent
AtpStructureElement

RTEEvent

DataReceivedEvent DataReceiveErrorEvent

VariableInAtomicSwcInstanceRef

RVariableInAtomicSwcInstanceRef

AutosarDataPrototype

VariableDataPrototype

PortPrototype

AbstractRequiredPortPrototype

+targetDataElement

0..1
{redefines
abstractTargetDataElement}

«instanceRef»

+data 0..1

+contextRPort 0..1
{redefines contextPort}

+data 0..1+data 0..1

«instanceRef»

+data 0..1

Figure D.28: Modeling of references to a VariableDataPrototype used in the context
of an RTEEvent

992 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AbstractEvent
AtpStructureElement

RTEEvent

OperationInvokedEvent

OperationInAtomicSwcInstanceRef

POperationInAtomicSwcInstanceRef

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

PortPrototype

AbstractProvidedPortPrototype

+operation 0..1

+contextPPort 0..1
{subsets contextPort}

«instanceRef»

+operation

0..1

+targetProvidedOperation 0..1
{redefines targetOperation}

Figure D.29: Modeling of references to a ClientServerOperation used in the context
of an RTEEvent

AbstractEvent
AtpStructureElement

RTEEvent

SwcModeSwitchEvent

+ activation: ModeActivationKind [0..1]

AtpInstanceRef

RModeInAtomicSwcInstanceRef

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

PortPrototype

AbstractRequiredPortPrototype

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

+mode
0..2
{ordered}

+targetModeDeclaration 0..1
{redefines
atpTarget}

+contextPort
0..1
{subsets atpContextElement} +contextModeDeclarationGroupPrototype

0..1
{subsets atpContextElement}

«atpSplitable»

+disabledMode *

«instanceRef»

+disabledMode 0..*

«instanceRef»+mode

0..2
{ordered}

Figure D.30: Modeling of references to a ModeDeclaration used in the context of an
RTEEvent

993 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

AbstractEvent
AtpStructureElement

RTEEvent

InternalBehavior

SwcInternalBehavior

SwComponentType

AtomicSwComponentType

AtpInstanceRef

RModeInAtomicSwcInstanceRef

AtpPrototype

ModeDeclarationGroupPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

AtpStructureElement
Identifiable

ModeDeclaration

PortPrototype

AbstractRequiredPortPrototype

������������	
 ����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+event

0..*

«instanceRef»

+disabledMode
0..*

+targetModeDeclaration

0..1
{redefines

atpTarget}

«atpDerived»

+/base

0..1
{redefines
atpBase}

«atpSplitable»

+disabledMode *

«atpVariation,atpSplitable»

+internalBehavior

0..1

+contextPort
0..1
{subsets atpContextElement}

«isOfType»

+type

0..1
{redefines atpType}

+initialMode 0..1

«atpVariation»

+modeDeclaration 0..*

+contextModeDeclarationGroupPrototype

0..1
{subsets
atpContextElement}

Figure D.31: Modeling of mode disabling

994 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

TransformerHardErrorEvent

OperationInAtomicSwcInstanceRef

POperationInAtomicSwcInstanceRef

AtpStructureElement
Identifiable

ClientServerOperation

+ diagArgIntegrity: Boolean [0..1]

PortPrototype

AbstractProvidedPortPrototype

AbstractEvent
AtpStructureElement

RTEEvent

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

TriggerInAtomicSwcInstanceRef

RTriggerInAtomicSwcInstanceRef

PortPrototype

AbstractRequiredPortPrototype

+operation 0..1

+targetTrigger 0..1
{redefines target}

+targetProvidedOperation0..1
{redefines targetOperation}

«instanceRef»

+operation 0..1

+contextPPort
0..1
{subsets contextPort} +contextRPort

0..1
{subsets contextPort}

«instanceRef»

+requiredTrigger 0..1

+requiredTrigger 0..1

Figure D.32: Modeling of transformer error response

995 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

E Examples

E.1 Examples for the Definition of variable-size Arrays

This chapter contains some examples for the usage of variable-size arrays and its four
defined use cases: Linear, square, rectangular and fully flexible.

All of these examples can be realized only using ImplementationDataTypes or, as
shown here, starting with the definition of ApplicationDataTypes with correspond-
ing ImplementationDataTypes.

DynamicDataArray_Linear:
ApplicationArrayDataType

dynamicArraySizeProfi le = VSA_LINEAR
category = ARRAY

DynamicDataArrayDim1: ApplicationArrayElement

arraySizeSemantics = variableSize
maxNumberOfElements = 5
arraySizeHandling = AllIndicesSameArraySize
category = VALUE

PrimitiveDataElementType:
ApplicationPrimitiveDataType

category = VALUE

DynamicDataArrayImpl: ImplementationDataType

category = STRUCTURE
dynamicArraySizeProfile = VSA_LINEAR

size:
ImplementationDataTypeElement

category = TYPE_REFERENCE

payloadDim1Element:
ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = 5
arraySizeHandling = AllIndicesSameArraySize
arraySizeSemantics = variableSize

uint8: ImplementationDataType

category = VALUE

DataTypeMapping: DataTypeMap

payloadDim1: ImplementationDataTypeElement

category = ARRAY

swDataDefProps: SwDataDefProps swDataDefProps: SwDataDefProps

uint16: ImplementationDataType

category = VALUE

+applicationDataType +implementationDataType

Figure E.1: Example of a linear variable size array

996 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

DynamicDataArray_Square: ApplicationArrayDataType

dynamicArraySizeProfile = VSA_SQUARE
category = ARRAY

DynamicDataArrayDim2: ApplicationArrayElement

arraySizeSemantics = variableSize
maxNumberOfElements = 5
arraySizeHandling = AllIndicesSameArraySize
category = VALUE

PrimitiveDataElementType: ApplicationPrimitiveDataType

category = VALUE

DynamicDataArrayImpl: ImplementationDataType

category = STRUCTURE
dynamicArraySizeProfi le = VSA_SQUARE

size:
ImplementationDataTypeElement

category = TYPE_REFERENCE

payloadDim1: ImplementationDataTypeElement

category = ARRAY
arraySizeHandling = InheritedFromArrayElementTypeSize
arraySizeSemantics = variableSize

DynamicDataArrayDim1: ApplicationArrayElement

arraySizeSemantics = variableSize
arraySizeHandling = InheritedFromArrayElementTypeSize
category = ARRAY

DynamicDataArrayDim2: ApplicationArrayDataType

category = ARRAY
dynamicArraySizeProfile = VSA_LINEAR

payloadDim2: ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = 5
arraySizeHandling = AllIndicesSameArraySize
arraySizeSemantics = variableSize

uint8: ImplementationDataType

category = VALUE

DataTypeMapping: DataTypeMap

PayloadDim1:
ImplementationDataTypeElement

category = ARRAY

swDataDefProps: SwDataDefProps

uint16: ImplementationDataType

category = VALUE

+applicationDataType
+implementationDataType

Figure E.2: Example of a square variable size array

997 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

DynamicDataArray_Rectangular:
ApplicationArrayDataType

dynamicArraySizeProfi le = VSA_RECTANGULAR
category = ARRAY

DynamicDataArrayDim2: ApplicationArrayElement

arraySizeSemantics = variableSize
maxNumberOfElements = 4
arraySizeHandling = AllIndicesSameArraySize
category = VALUE

PrimitiveDataElementType:
ApplicationPrimitiveDataType

category = VALUE

DynamicDataArrayImpl: ImplementationDataType

category = STRUCTURE
dynamicArraySizeProfi le = VSA_RECTANGULAR

size:
ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = 2
arraySizeSemantics = fixedSize

payloadDim1Element:
ImplementationDataTypeElement

category = ARRAY
arraySize = 3
arraySizeHandling = AllIndicesSameArraySize
arraySizeSemantics = variableSize

DynamicDataArrayDim1: ApplicationArrayElement

arraySizeSemantics = variableSize
arraySizeHandling = AllIndicesSameArraySize
maxNumberOfElements = 3
category = ARRAY

DynamicDataArrayDim2: ApplicationArrayDataType

category = ARRAY
dynamicArraySizeProfi le = VSA_LINEAR

payloadDim2: ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = 4
arraySizeHandling = AllIndicesSameArraySize
arraySizeSemantics = variableSize

sizes:
ImplementationDataTypeElement

category = ARRAY

uint8: ImplementationDataType

category = VALUE

DataTypeMapping: DataTypeMap

uint16: ImplementationDataType

category = VALUE

swDataDefProps: SwDataDefPropsswDataDefProps: SwDataDefProps

payloadDim1: ImplementationDataTypeElement

category = ARRAY

+implementationDataType
+applicationDataType

Figure E.3: Example of a rectangular variable size array

998 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

DynamicDataArray_FullyFlexible: ApplicationArrayDataType

dynamicArraySizeProfi le = VSA_FULLY_FLEXIBLE
category = ARRAY

DynamicDataArrayDim2: ApplicationArrayElement

arraySizeSemantics = variableSize
maxNumberOfElements = 6
arraySizeHandling = AllIndicesSameArraySize
category = VALUE

PrimitiveDataElementType: ApplicationPrimitiveDataType

category = VALUE

DynamicDataArrayImpl: ImplementationDataType

category = STRUCTURE
dynamicArraySizeProfi le = VSA_FULLY_FLEXIBLE

sizeDim1:
ImplementationDataTypeElement

category = TYPE_REFERENCE

DynamicDataArrayDim1: ApplicationArrayElement

arraySizeSemantics = variableSize
arraySizeHandling = AllIndicesDifferentArraySize
maxNumberOfElements = 4
category = ARRAY

DynamicDataArrayDim2: ApplicationArrayDataType

category = ARRAY
dynamicArraySizeProfi le = VSA_LINEAR

uint8:
ImplementationDataType

category = VALUE

DynamicDataArrayDim2Impl:
ImplementationDataTypeElement

category = STRUCTURE
arraySize = 4
arraySizeHandling = AllIndicesDifferentArraySize
arraySizeSemantics = variableSize

sizeDim2:
ImplementationDataTypeElement

category = TYPE_REFERENCE

payloadDim2Element:
ImplementationDataTypeElement

category = TYPE_REEFERENCE
arraySize = 6
arraySizeHandling = AllIndicesSameArraySize
arraySizeSemantics = variableSize

DataTypeMapping: DataTypeMap

payloadDim1:
ImplementationDataTypeElement

category = ARRAY

payloadDim2:
ImplementationDataTypeElement

category = ARRAY

swDataDefProps:
SwDataDefProps

swDataDefProps:
SwDataDefProps

swDataDefProps:
SwDataDefProps

uint16:
ImplementationDataType

category = VALUE

uint32:
ImplementationDataType

category = VALUE

+implementationDataType
+applicationDataType

Figure E.4: Example of a fully flexible variable size array

999 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

F Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ARElement (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ARPackage

Note An element that can be defined stand-alone, i.e. without being part of another element (except for
packages of course).

Base ARObject , CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AclObjectSet, AclOperation, AclPermission, AclRole, AliasNameSet, ApplicationPartition, AutosarData
Type, BaseType, BlueprintMappingSet, BswEntryRelationshipSet, BswModuleDescription, BswModule
Entry, BuildActionManifest, CalibrationParameterValueSet, ClientIdDefinitionSet, ClientServerInterfaceTo
BswModuleEntryBlueprintMapping, Collection, CompuMethod, ConsistencyNeedsBlueprintSet, Constant
Specification, ConstantSpecificationMappingSet, CpSoftwareCluster, CpSoftwareClusterBinaryManifest
Descriptor, CpSoftwareClusterMappingSet, CpSoftwareClusterResourcePool, CryptoEllipticCurveProps,
CryptoServiceCertificate, CryptoServiceKey, CryptoServicePrimitive, CryptoServiceQueue, Crypto
SignatureScheme, DataConstr, DataExchangePoint, DataTransformationSet, DataTypeMappingSet,
DiagnosticCommonElement , DiagnosticConnection, DiagnosticContributionSet, DltContext, DltEcu,
Documentation, E2EProfileCompatibilityProps, EcucDefinitionCollection, EcucDestinationUriDefSet,
EcucModuleConfigurationValues, EcucModuleDef, EcucValueCollection, EndToEndProtectionSet, EthIp
Props, EthTcpIpIcmpProps, EthTcpIpProps, EvaluatedVariantSet, FMFeature, FMFeatureMap, FM
FeatureModel, FMFeatureSelectionSet, FlatMap, GeneralPurposeConnection, HwCategory, HwElement,
HwType, IPSecConfigProps, IPv6ExtHeaderFilterSet, IdsCommonElement , IdsDesign, Implementation,
InterpolationRoutineMappingSet, J1939ControllerApplication, KeywordSet, LifeCycleInfoSet, LifeCycle
StateDefinitionGroup, LogAndTraceMessageCollectionSet, McFunction, McGroup, ModeDeclaration
Group, ModeDeclarationMappingSet, OsTaskProxy, PhysicalDimension, PhysicalDimensionMappingSet,
PortInterface, PortInterfaceMappingSet, PortPrototypeBlueprint, PostBuildVariantCriterion, PostBuild
VariantCriterionValueSet, PredefinedVariant, RapidPrototypingScenario, SdgDef, SignalService
TranslationPropsSet, SomeipSdClientEventGroupTimingConfig, SomeipSdClientServiceInstanceConfig,
SomeipSdServerEventGroupTimingConfig, SomeipSdServerServiceInstanceConfig, SwAddrMethod, Sw
AxisType, SwComponentMappingConstraints, SwComponentType, SwRecordLayout, SwSystemconst,
SwSystemconstantValueSet, SwcBswMapping, System, SystemSignal, SystemSignalGroup, TDCp
SoftwareClusterMappingSet, TcpOptionFilterSet, TimingExtension, TlsConnectionGroup, TlvDataId
DefinitionSet, TransformationPropsSet, Unit, UnitGroup, ViewMapSet

Attribute Type Mult. Kind Note

– – – – –

Table F.1: ARElement

Class ARPackage

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ARPackage

Note AUTOSAR package, allowing to create top level packages to structure the contained ARElements.

ARPackages are open sets. This means that in a file based description system multiple files can be used
to partially describe the contents of a package.

This is an extended version of MSR’s SW-SYSTEM.
Base ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, MultilanguageReferrable,

Referrable

Attribute Type Mult. Kind Note

5

1000 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ARPackage

arPackage ARPackage * aggr This represents a sub package within an ARPackage,
thus allowing for an unlimited package hierarchy.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

element PackageableElement * aggr Elements that are part of this package

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=element.shortName, element.definition,
element.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=20

referenceBase ReferenceBase * aggr This denotes the reference bases for the package. This is
the basis for all relative references within the package.
The base needs to be selected according to the base
attribute within the references.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=referenceBase.shortLabel
xml.sequenceOffset=10

Table F.2: ARPackage

Class AUTOSAR
Package M2::AUTOSARTemplates::AutosarTopLevelStructure

Note Root element of an AUTOSAR description, also the root element in corresponding XML documents.

Tags:xml.globalElement=true

Base ARObject

Attribute Type Mult. Kind Note

adminData AdminData 0..1 aggr This represents the administrative data of an Autosar file.

Tags:xml.sequenceOffset=10

arPackage ARPackage * aggr This is the top level package in an AUTOSAR model.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

fileInfo
Comment

FileInfoComment 0..1 aggr This represents a possibility to provide a structured
comment in an AUTOSAR file.

Stereotypes: atpStructuredComment
Tags:
xml.roleElement=true
xml.sequenceOffset=-10
xml.typeElement=false

introduction DocumentationBlock 0..1 aggr This represents an introduction on the Autosar file. It is
intended for example to represent disclaimers and legal
notes.

Tags:xml.sequenceOffset=20

Table F.3: AUTOSAR

1001 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class <<atpMixedString>> AbstractNumericalVariationPoint (abstract)

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling::AttributeValueVariationPoints

Note This is an abstract NumericalValueVariationPoint. It is introduced to support the case that additional
attributes are required for particular purposes.

Base ARObject , AttributeValueVariationPoint , FormulaExpression, SwSystemconstDependentFormula

Subclasses LimitValueVariationPoint, NumericalValueVariationPoint

Attribute Type Mult. Kind Note

– – – – –

Table F.4: AbstractNumericalVariationPoint

Class AdminData
Package M2::MSR::AsamHdo::AdminData

Note AdminData represents the ability to express administrative information for an element. This
administration information is to be treated as meta-data such as revision id or state of the file. There are
basically four kinds of meta-data

• The language and/or used languages.

• Revision information covering e.g. revision number, state, release date, changes. Note that this
information can be given in general as well as related to a particular company.

• Document meta-data specific for a company

Base ARObject

Attribute Type Mult. Kind Note

docRevision
(ordered)

DocRevision * aggr This allows to denote information about the current
revision of the object.

Note that information about previous revisions can also
be logged here. The entries shall be sorted descendant
by date in order to reflect the history. Therefore the most
recent entry representing the current version is denoted
first.

Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=50
xml.typeElement=false
xml.typeWrapperElement=false

language LEnum 0..1 attr This attribute specifies the master language of the
document or the document fragment. The master
language is the one in which the document is maintained
and from which the other languages are derived from. In
particular in case of inconsistencies, the information in
the master language is priority.

Tags:xml.sequenceOffset=20

sdg Sdg * aggr This property allows to keep special data which is not
represented by the standard model. It can be utilized to
keep e.g. tool specific data.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=sdg, sdg.variationPoint.shortLabel
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=60
xml.typeElement=false
xml.typeWrapperElement=false

5

1002 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class AdminData
usedLanguages MultiLanguagePlainText 0..1 aggr This property specifies the languages which are provided

in the document. Therefore it should only be specified in
the top level admin data. For each language provided in
the document there is one entry in MultilanguagePlain
Text. The content of each entry can be used for
illustration of the language. The used language itself
depends on the language attribute in the entry.

Tags:xml.sequenceOffset=30

Table F.5: AdminData

Class AnyInstanceRef

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::AnyInstanceRef

Note Describes a reference to any instance in an AUTOSAR model. This is the most generic form of an
instance ref. Refer to the superclass notes for more details.

Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base AtpClassifier 1 ref This is the base from which navigation path begins.

Stereotypes: atpDerived

contextElement
(ordered)

AtpFeature * ref This is one step in the navigation path specified by the
instance ref.

target AtpFeature 1 ref This is the target of the instance ref.

Table F.6: AnyInstanceRef

Class ApplicationCompositeElementInPortInterfaceInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface::InstanceRefs

Note
Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base DataInterface 0..1 ref This represents the SenderReceiverInterface that acts as
the base in this InstanceRef definition

Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextData
Prototype
(ordered)

ApplicationComposite
ElementDataPrototype

* ref This represents a context ApplicationCompositeData
Prototype

Tags:xml.sequenceOffset=20

rootData
Prototype

AutosarDataPrototype 0..1 ref This refers to the dataPrototype which is typed by the
ApplicationDatatype in which which the target can be
found.

Tags:xml.sequenceOffset=15

targetData
Prototype

ApplicationComposite
ElementDataPrototype

0..1 ref This represents the referenced ApplicationComposite
DataPrototype.

Tags:xml.sequenceOffset=30

Table F.7: ApplicationCompositeElementInPortInterfaceInstanceRef

1003 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class AtpInstanceRef (abstract)

Package M2::AUTOSARTemplates::GenericStructure::AbstractStructure

Note An M0 instance of a classifier may be represented as a tree rooted at that instance, where under each
node come the sub-trees representing the instances which act as features under that node.

An instance ref specifies a navigation path from any M0 tree-instance of the base (which is a classifier) to
a leaf (which is an instance of the target).

Base ARObject

Subclasses AnyInstanceRef, ApplicationCompositeElementInPortInterfaceInstanceRef, ComponentInComposition
InstanceRef, ComponentInSystemInstanceRef, DataPrototypeInPortInterfaceInstanceRef , Data
PrototypeInSystemInstanceRef, InnerDataPrototypeGroupInCompositionInstanceRef, InnerPortGroupIn
CompositionInstanceRef, InnerRunnableEntityGroupInCompositionInstanceRef, InstanceEventIn
CompositionInstanceRef, ModeDeclarationGroupPrototypeInSystemInstanceRef, ModeGroupInAtomic
SwcInstanceRef , ModeInBswModuleDescriptionInstanceRef, ModeInSwcInstanceRef, Operation
ArgumentInComponentInstanceRef, OperationInAtomicSwcInstanceRef , OperationInSystemInstance
Ref, PModeInSystemInstanceRef, ParameterDataPrototypeInSystemInstanceRef, ParameterInAtomicS
WCTypeInstanceRef, PortGroupInSystemInstanceRef, PortInCompositionTypeInstanceRef , RModeIn
AtomicSwcInstanceRef, RteEventInCompositionInstanceRef, RteEventInEcuInstanceRef, RteEventIn
SystemInstanceRef, RunnableEntityInCompositionInstanceRef, SwcServiceDependencyInSystem
InstanceRef, TriggerInAtomicSwcInstanceRef , TriggerInSystemInstanceRef, VariableAccessInEcu
InstanceRef, VariableDataPrototypeInCompositionInstanceRef, VariableDataPrototypeInSystemInstance
Ref, VariableInAtomicSWCTypeInstanceRef, VariableInAtomicSwcInstanceRef , VariableInComponent
InstanceRef

Attribute Type Mult. Kind Note

atpBase AtpClassifier 1 ref This is the base from which the navigaion path starts.

Stereotypes: atpAbstract; atpDerived

atpContext
Element
(ordered)

AtpPrototype * ref This is one particular step in the navigation path.

Stereotypes: atpAbstract

atpTarget AtpFeature 1 ref This is the target of the instance ref. In other words it is
the terminal of the navigation path.

Stereotypes: atpAbstract

Table F.8: AtpInstanceRef

Enumeration BindingTimeEnum

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This enumerator specifies the applicable binding times for the pre build variation points.

Literal Description

codeGeneration
Time

• Coding by hand, based on requirements document.

• Tool based code generation, e.g. from a model.

• The model may contain variants.

• Only code for the selected variant(s) is actually generated.

Tags:atp.EnumerationLiteralIndex=0

linkTime Configure what is included in object code, and what is omitted Based on which variant(s) are selected

E.g. for modules that are delivered as object code (as opposed to those that are delivered as source
code)

Tags:atp.EnumerationLiteralIndex=1

preCompileTime This is typically the C-Preprocessor. Exclude parts of the code from the compilation process, e.g.,
because they are not required for the selected variant, because they are incompatible with the
selected variant, because they require resources that are not present in the selected variant. Object
code is only generated for the selected variant(s). The code that is excluded at this stage code will
not be available at later stages.

Tags:atp.EnumerationLiteralIndex=2

5

1004 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Enumeration BindingTimeEnum

systemDesignTime • Designing the VFB.

• Software Component types (PortInterfaces).

• SWC Prototypes and the Connections between SWCprototypes.

• Designing the Topology

• ECUs and interconnecting Networks

• Designing the Communication Matrix and Data Mapping

Tags:atp.EnumerationLiteralIndex=3

Table F.9: BindingTimeEnum

Class BswCalledEntity

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note BSW module entity which is designed to be called from another BSW module or cluster.

Base ARObject , BswModuleEntity , ExecutableEntity , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

– – – – –

Table F.10: BswCalledEntity

Class BswImplementation

Package M2::AUTOSARTemplates::BswModuleTemplate::BswImplementation

Note Contains the implementation specific information in addition to the generic specification (BswModule
Description and BswBehavior). It is possible to have several different BswImplementations referring to
the same BswBehavior.

Tags:atp.recommendedPackage=BswImplementations

Base ARElement , ARObject , CollectableElement , Identifiable, Implementation, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

arRelease
Version

RevisionLabelString 1 attr Version of the AUTOSAR Release on which this
implementation is based. The numbering contains three
levels (major, minor, revision) which are defined by
AUTOSAR.

behavior BswInternalBehavior 1 ref The behavior of this implementation.

This relation is made as an association because

• it follows the pattern of the SWCT

• since ARElement cannot be splitted, but we want
supply the implementation later, the Bsw
Implementation is not aggregated in BswBehavior

preconfigured
Configuration

EcucModule
ConfigurationValues

* ref Reference to the set of preconfigured (i.e. fixed)
configuration values for this BswImplementation.

If the BswImplementation represents a cluster of several
modules, more than one EcucModuleConfigurationValues
element can be referred (at most one per module),
otherwise at most one such element can be referred.

Tags:xml.roleWrapperElement=true

recommended
Configuration

EcucModule
ConfigurationValues

* ref Reference to one or more sets of recommended
configuration values for this module or module cluster.

5

1005 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BswImplementation

vendorApiInfix Identifier 0..1 attr In driver modules which can be instantiated several times
on a single ECU, SRS_BSW_00347 requires that the
names of files, APIs, published parameters and memory
allocation keywords are extended by the vendorId and a
vendor specific name. This parameter is used to specify
the vendor specific name. In total, the implementation
specific API name is generated as follows: <Module
Name>_<vendorId>_ <vendorApiInfix>_<API name from
SWS>.

E.g. assuming that the vendorId of the implementer is
123 and the implementer chose a vendorApiInfix of
"v11r456" an API name Can_Write defined in the SWS
will translate to Can_123_v11r456_Write.

This attribute is mandatory for all modules with upper
multiplicity > 1. It shall not be used for modules with
upper multiplicity =1.

See also SWS_BSW_00102.

vendorSpecific
ModuleDef

EcucModuleDef * ref Reference to

• the vendor specific EcucModuleDef used in this
BswImplementation if it represents a single
module

• several EcucModuleDefs used in this Bsw
Implementation if it represents a cluster of
modules

• one or no EcucModuleDefs used in this Bsw
Implementation if it represents a library

Tags:xml.roleWrapperElement=true

Table F.11: BswImplementation

Class BswModuleDescription

Package M2::AUTOSARTemplates::BswModuleTemplate::BswOverview

Note Root element for the description of a single BSW module or BSW cluster. In case it describes a BSW
module, the short name of this element equals the name of the BSW module.

Tags:atp.recommendedPackage=BswModuleDescriptions

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpFeature, AtpStructureElement ,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

bswModule
Dependency

BswModuleDependency * aggr Describes the dependency to another BSW module.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswModuleDependency.shortName, bsw
ModuleDependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

bswModule
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the BSW module.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswModuleDocumentation, bswModule
Documentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=6

5

1006 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BswModuleDescription

expectedEntry BswModuleEntry * ref Indicates an entry which is required by this module.
Replacement of outgoingCallback / requiredEntry.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=expectedEntry.bswModuleEntry, expected
Entry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

implemented
Entry

BswModuleEntry * ref Specifies an entry provided by this module which can be
called by other modules. This includes "main" functions,
interrupt routines, and callbacks. Replacement of
providedEntry / expectedCallback.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=implementedEntry.bswModuleEntry,
implementedEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

internalBehavior BswInternalBehavior * aggr The various BswInternalBehaviors associated with a Bsw
ModuleDescription can be distributed over several
physical files. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=internalBehavior.shortName
xml.sequenceOffset=65

moduleId PositiveInteger 0..1 attr Refers to the BSW Module Identifier defined by the
AUTOSAR standard. For non-standardized modules, a
proprietary identifier can be optionally chosen.

Tags:xml.sequenceOffset=5

providedClient
ServerEntry

BswModuleClientServer
Entry

* aggr Specifies that this module provides a client server entry
which can be called from another partition or core.This
entry is declared locally to this context and will be
connected to the requiredClientServerEntry of another or
the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=providedClientServerEntry.shortName,
providedClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

providedData VariableDataPrototype * aggr Specifies a data prototype provided by this module in
order to be read from another partition or core.The
providedData is declared locally to this context and will be
connected to the requiredData of another or the same
module via the configuration of the BSW Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=providedData.shortName, provided
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

5

1007 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BswModuleDescription

providedMode
Group

ModeDeclarationGroup
Prototype

* aggr A set of modes which is owned and provided by this
module or cluster. It can be connected to the required
ModeGroups of other modules or clusters via the
configuration of the BswScheduler. It can also be
synchronized with modes provided via ports by an
associated ServiceSwComponentType, EcuAbstraction
SwComponentType or ComplexDeviceDriverSw
ComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=providedModeGroup.shortName, provided
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

releasedTrigger Trigger * aggr A Trigger released by this module or cluster. It can be
connected to the requiredTriggers of other modules or
clusters via the configuration of the BswScheduler. It can
also be synchronized with Triggers provided via ports by
an associated ServiceSwComponentType, Ecu
AbstractionSwComponentType or ComplexDeviceDriver
SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=releasedTrigger.shortName, released
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=35

requiredClient
ServerEntry

BswModuleClientServer
Entry

* aggr Specifies that this module requires a client server entry
which can be implemented on another partition or
core.This entry is declared locally to this context and will
be connected to the providedClientServerEntry of another
or the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredClientServerEntry.shortName,
requiredClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

requiredData VariableDataPrototype * aggr Specifies a data prototype required by this module in oder
to be provided from another partition or core.The required
Data is declared locally to this context and will be
connected to the providedData of another or the same
module via the configuration of the BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredData.shortName, required
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

5

1008 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BswModuleDescription

requiredMode
Group

ModeDeclarationGroup
Prototype

* aggr Specifies that this module or cluster depends on a certain
mode group. The requiredModeGroup is local to this
context and will be connected to the providedModeGroup
of another module or cluster via the configuration of the
BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredModeGroup.shortName, required
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

requiredTrigger Trigger * aggr Specifies that this module or cluster reacts upon an
external trigger.This requiredTrigger is declared locally to
this context and will be connected to the providedTrigger
of another module or cluster via the configuration of the
BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredTrigger.shortName, required
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

Table F.12: BswModuleDescription

Class BswModuleEntry

Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces

Note This class represents a single API entry (C-function prototype) into the BSW module or cluster.

The name of the C-function is equal to the short name of this element with one exception: In case of
multiple instances of a module on the same CPU, special rules for "infixes" apply, see description of class
BswImplementation.

Tags:atp.recommendedPackage=BswModuleEntrys

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

argument
(ordered)

SwServiceArg * aggr An argument belonging to this BswModuleEntry.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=45

bswEntryKind BswEntryKindEnum 0..1 attr This describes whether the entry is concrete or abstract.
If the attribute is missing the entry is considered as
concrete.

Tags:xml.sequenceOffset=40

callType BswCallType 1 attr The type of call associated with this service.

Tags:xml.sequenceOffset=25

execution
Context

BswExecutionContext 1 attr Specifies the execution context which is required (in case
of entries into this module) or guaranteed (in case of
entries called from this module) for this service.

Tags:xml.sequenceOffset=30

function
Prototype
Emitter

NameToken 0..1 attr This attribute is used to control the generation of function
prototypes. If set to "RTE", the RTE generates the
function prototypes in the Module Interlink Header File.

5

1009 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BswModuleEntry

isReentrant Boolean 1 attr Reentrancy from the viewpoint of function callers:

• True: Enables the service to be invoked again,
before the service has finished.

• False: It is prohibited to invoke the service again
before is has finished.

Tags:xml.sequenceOffset=15

isSynchronous Boolean 1 attr Synchronicity from the viewpoint of function callers:

• True: This calls a synchronous service, i.e. the
service is completed when the call returns.

• False: The service (on semantical level) may not
be complete when the call returns.

Tags:xml.sequenceOffset=20

returnType SwServiceArg 0..1 aggr The return type belonging to this bswModuleEntry.

Tags:xml.sequenceOffset=40

role Identifier 0..1 attr Specifies the role of the entry in the given context. It shall
be equal to the standardized name of the service call,
especially in cases where no ServiceIdentifier is specified,
e.g. for callbacks. Note that the ShortName is not always
sufficient because it maybe vendor specific (e.g. for
callbacks which can have more than one instance).

Tags:xml.sequenceOffset=10

serviceId PositiveInteger 0..1 attr Refers to the service identifier of the Standardized
Interfaces of AUTOSAR basic software. For
non-standardized interfaces, it can optionally be used for
proprietary identification.

Tags:xml.sequenceOffset=5

swServiceImpl
Policy

SwServiceImplPolicy
Enum

1 attr Denotes the implementation policy as a standard function
call, inline function or macro. This has to be specified on
interface level because it determines the signature of the
call.

Tags:xml.sequenceOffset=35

Table F.13: BswModuleEntry

Class BswSchedulableEntity

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note BSW module entity, which is designed for control by the BSW Scheduler. It may for example implement a
so-called "main" function.

Base ARObject , BswModuleEntity , ExecutableEntity , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

– – – – –

Table F.14: BswSchedulableEntity

Class BswServiceDependency

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Specialization of ServiceDependency in the context of an BswInternalBehavior. It allows to associate
BswModuleEntries and data defined for a BSW module or cluster to a given ServiceNeeds element.

Base ARObject , ServiceDependency

5

1010 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class BswServiceDependency

Attribute Type Mult. Kind Note

assignedData RoleBasedData
Assignment

* aggr Defines the role of an associated data object (owned by
this module or cluster) in the context of the ServiceNeeds
element.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

assignedEntry
Role

RoleBasedBswModule
EntryAssignment

* aggr Defines the role of an associated BswModuleEntry in the
context of the ServiceNeeds element.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=assignedEntryRole, assignedEntry
Role.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

ident BswService
DependencyIdent

0..1 aggr This adds the ability to become referrable to BswService
Dependency.

Stereotypes: atpIdentityContributor
Tags:xml.sequenceOffset=-100

serviceNeeds ServiceNeeds 1 aggr The associated ServiceNeeds.

Table F.15: BswServiceDependency

Class CompuConstFormulaContent

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the fact that the constant value of the computation method is represented by
a variation point. This difference is due to compatibility with ASAM HDO.

Base ARObject , CompuConstContent

Attribute Type Mult. Kind Note

vf Numerical 1 attr Value calculated via a system constant. This element is
included in every case where parameters should be
generated from numerical values during compile time (not
runtime!).

Thus for example, the influence of the cylinder number on
conversion formulae can be introduced in a repeatable
manner.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=codeGenerationTime
xml.sequenceOffset=30

Table F.16: CompuConstFormulaContent

Class DataMapping (abstract)

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note Mapping of port elements (data elements and parameters) to frames and signals.

Base ARObject

Subclasses ClientServerToSignalMapping, SenderReceiverCompositeElementToSignalMapping, SenderReceiverTo
SignalGroupMapping, SenderReceiverToSignalMapping, TriggerToSignalMapping

Attribute Type Mult. Kind Note

introduction DocumentationBlock 0..1 aggr This represents introductory documentation about the
data mapping.

Table F.17: DataMapping

1011 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class Describable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note This meta-class represents the ability to add a descriptive documentation to non identifiable elements.

Base ARObject

Subclasses CyclicTiming, EventControlledTiming, HwElementConnector, HwPinConnector, HwPinGroupConnector, I
PduTiming, Ipv4DhcpServerConfiguration, Ipv6DhcpServerConfiguration, PncMapping, Socket
Connection, TransformationComSpecProps, TransformationDescription, TransformationISignalProps

Attribute Type Mult. Kind Note

adminData AdminData 0..1 aggr This represents the administrative data for the
describable object.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=adminData
xml.sequenceOffset=-20

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Describable. It affects the expected existence of
attributes and the applicability of constraints.

Tags:xml.sequenceOffset=-50

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags:xml.sequenceOffset=-60

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags:xml.sequenceOffset=-30

Table F.18: Describable

Class <<atpMixed>> DocumentationBlock

Package M2::MSR::Documentation::BlockElements

Note This class represents a documentation block. It is made of basic text structure elements which can be
displayed in a table cell.

Base ARObject

Attribute Type Mult. Kind Note

defList DefList 0..1 aggr This represents a definition list in the documentation
block.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=40

figure MlFigure 0..1 aggr This represents a figure in the documentation block.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=70

5

1012 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class <<atpMixed>> DocumentationBlock

formula MlFormula 0..1 aggr This is a formula in the definition block.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=60

labeledList LabeledList 0..1 aggr This represents a labeled list.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=50

list List 0..1 aggr This represents numbered or unnumbered list.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=30

msrQueryP2 MsrQueryP2 0..1 aggr This represents automatically contributed contents
provided by an msrquery in the context of Documentation
Block.

note Note 0..1 aggr This represents a note in the text flow.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=80

p MultiLanguage
Paragraph

0..1 aggr This is one particular paragraph.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=10

structuredReq StructuredReq 0..1 aggr This aggregation supports structured requirements
embedded in a documentation block.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=100

trace TraceableText 0..1 aggr This represents traceable text in the documentation block.
This allows to specify requirements/constraints in any
documentation block.

The kind of the trace is specified in the category.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=90

verbatim MultiLanguageVerbatim 0..1 aggr This represents one particular verbatim text.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=20

Table F.19: DocumentationBlock

Class EcuInstance
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreTopology

5

1013 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class EcuInstance
Note ECUInstances are used to define the ECUs used in the topology. The type of the ECU is defined by a

reference to an ECU specified with the ECU resource description.

Tags:atp.recommendedPackage=EcuInstances

Base ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

associatedCom
IPduGroup

ISignalIPduGroup * ref With this reference it is possible to identify which ISignal
IPduGroups are applicable for which Communication
Connector/ ECU.

Only top level ISignalIPduGroups shall be referenced by
an EcuInstance. If an ISignalIPduGroup contains other
ISignalIPduGroups than these contained ISignalIPdu
Groups shall not be referenced by the EcuInstance.
Contained ISignalIPduGroups are associated to an Ecu
Instance via the top level ISignalIPduGroup.

associated
Consumed
Provided
ServiceInstance
Group

ConsumedProvided
ServiceInstanceGroup

* ref With this reference it is possible to identify which
ConsumedProvidedServiceInstanceGroups are
applicable for which ECUInstance.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

associatedPdur
IPduGroup

PdurIPduGroup * ref With this reference it is possible to identify which PduR
IPdu Groups are applicable for which Communication
Connector/ ECU.

clientIdRange ClientIdRange 0..1 aggr Restriction of the Client Identifier for this Ecu to an
allowed range of numerical values. The Client Identifier of
the transaction handle is generated by the client RTE for
inter-Ecu Client/Server communication.

com
Configuration
GwTimeBase

TimeValue 0..1 attr The period between successive calls to Com_Main
FunctionRouteSignals of the AUTOSAR COM module in
seconds.

com
ConfigurationRx
TimeBase

TimeValue 0..1 attr The period between successive calls to Com_Main
FunctionRx of the AUTOSAR COM module in seconds.

com
ConfigurationTx
TimeBase

TimeValue 0..1 attr The period between successive calls to Com_Main
FunctionTx of the AUTOSAR COM module in seconds.

comEnable
MDTForCyclic
Transmission

Boolean 0..1 attr Enables for the Com module of this EcuInstance the
minimum delay time monitoring for cyclic and repeated
transmissions (TransmissionModeTiming has cyclic
Timing assigned or eventControlledTiming with numberOf
Repetitions > 0).

commController Communication
Controller

1..* aggr CommunicationControllers of the ECU.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

connector Communication
Connector

* aggr All channels controlled by a single controller.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

dltConfig DltConfig 0..1 aggr Describes the Dlt configuration on this EcuInstance.

doIpConfig DoIpConfig 0..1 aggr DoIp configuration on this EcuInstance.

Tags:atp.Status=draft

ecuTaskProxy OsTaskProxy * ref Reference to OsTaskProxies assigned to the Ecu
Instance.

Stereotypes: atpSplitable
Tags:atp.Splitkey=ecuTaskProxy

5

1014 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class EcuInstance

ethSwitchPort
Group
Derivation

Boolean 0..1 attr Defines whether the derivation of SwitchPortGroups
based on VLAN and/or CouplingPort.pncMapping shall be
performed for this EcuInstance. If not defined the
derivation shall not be done.

partition EcuPartition * aggr Optional definition of Partitions within an Ecu.

pncPrepare
SleepTimer

TimeValue 0..1 attr Time in seconds the PNC state machine shall wait in
PNC_PREPARE_SLEEP.

pnc
Synchronous
Wakeup

Boolean 0..1 attr If this parameter is available and set to true then all
available PNCs will be woken up as soon as a channel
wakeup occurs. This is ensured by adding all PNCs to all
channel wakeup sources during upstream mapping.

pnResetTime TimeValue 0..1 attr Specifies the runtime of the reset timer in seconds. This
reset time is valid for the reset of PN requests in the EIRA
and in the ERA.

sleepMode
Supported

Boolean 1 attr Specifies whether the ECU instance may be put to a "low
power mode"

• true: sleep mode is supported

• false: sleep mode is not supported

Note: This flag may only be set to "true" if the feature is
supported by both hardware and basic software.

tcpIpIcmpProps EthTcpIpIcmpProps 0..1 ref EcuInstance specific ICMP (Internet Control Message
Protocol) attributes

tcpIpProps EthTcpIpProps 0..1 ref EcuInstance specific TcpIp Stack attributes.

v2xSupported V2xSupportEnum 0..1 attr This attribute is used to control the existence of the V2X
stack on the given EcuInstance.

wakeUpOver
BusSupported

Boolean 1 attr Driver support for wakeup over Bus.

Table F.20: EcuInstance

Class EcucValueCollection
Package M2::AUTOSARTemplates::ECUCDescriptionTemplate

Note This represents the anchor point of the ECU configuration description.

Tags:atp.recommendedPackage=EcucValueCollections

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

ecucValue EcucModule
ConfigurationValues

* ref References to the configuration of individual software
modules that are present on this ECU.

atpVariation: [RS_ECUC_00079]

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

ecuExtract System 0..1 ref Represents the extract of the System Configuration that is
relevant for the ECU configured with that ECU
Configuration Description.

Table F.21: EcucValueCollection

1015 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class EndToEndProtectionISignalIPdu

Package M2::AUTOSARTemplates::SystemTemplate::EndToEndProtection

Note It is possible to protect the inter-ECU data exchange of safety-related ISignalGroups at the level of COM
IPdus using protection mechanisms provided by E2E Library. For each ISignalGroup to be protected, a
separate EndToEndProtectionISignalIPdu element shall be created within the EndToEndProtectionSet.

The EndToEndProtectionISignalIPdu element refers to the ISignalGroup that is to be protected and to the
ISignalIPdu that transmits the protected ISignalGroup. The information how the referenced ISignalGroup
shall be protected (through which E2E Profile and with which E2E settings) is defined in the EndToEnd
Description element.

Base ARObject

Attribute Type Mult. Kind Note

dataOffset Integer 1 attr This attribute defines the beginning offset (in bits) of the
Array representation of the Signal Group (including CRC,
counter and application signal group) in the IPdu. This
attribute is mandatory and the dataOffset shall always be
defined.

iSignalGroup ISignalGroup 1 ref Reference to the ISignalGroup that is to be protected.

iSignalIPdu ISignalIPdu 1 ref Reference to the ISignalIPdu that transmits the protected
ISignalGroup.

Table F.22: EndToEndProtectionISignalIPdu

Class EndToEndTransformationDescription

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note EndToEndTransformationDescription holds these attributes which are profile specific and have the same
value for all E2E transformers.

Base ARObject , Describable, TransformationDescription

Attribute Type Mult. Kind Note

clearFromValid
ToInvalid

Boolean 0..1 attr Clear monitoring window on transition from state Valid to
state Invalid.

counterOffset PositiveInteger 0..1 attr Offset of the counter in the Data[] array in bits.

crcOffset PositiveInteger 0..1 attr Offset of the CRC in the Data[] array in bits.

dataIdMode DataIdModeEnum 0..1 attr This attribute describes the inclusion mode that is used to
include the implicit two-byte Data ID in the one-byte CRC.

dataIdNibble
Offset

PositiveInteger 0..1 attr Offset of the Data ID nibble in the Data[] array in bits.

e2eProfile
Compatibility
Props

E2EProfileCompatibility
Props

0..1 ref Reference to additional settings for the E2E state
machine.

maxDelta
Counter

PositiveInteger 0..1 attr Maximum allowed difference between two counter values
of two consecutively received valid messages. For
example, if the receiver gets data with counter 1 and Max
DeltaCounter is 3, then at the next reception the receiver
can accept Counters with values 2, 3 or 4.

maxErrorState
Init

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INIT.

maxErrorState
Invalid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INVALID.

maxErrorState
Valid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_VALID.

maxNoNewOr
RepeatedData

PositiveInteger 0..1 attr The maximum allowed amount of consecutive failed
counter checks.

5

1016 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class EndToEndTransformationDescription

minOkStateInit PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INIT.

minOkState
Invalid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INVALID.

minOkState
Valid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_VALID.

offset PositiveInteger 0..1 attr Offset of the E2E header in the Data[] array in bits.

profileBehavior EndToEndProfile
BehaviorEnum

0..1 attr Behavior of the check functionality

profileName NameToken 1 attr Definition of the E2E profile.

syncCounterInit PositiveInteger 0..1 attr Number of checks required for validating the consistency
of the counter that shall be received with a valid counter
(i.e. counter within the allowed lock-in range) after the
detection of an unexpected behavior of a received
counter.

upperHeader
BitsToShift

PositiveInteger 0..1 attr This attribute describes the number of upper-header bits
to be shifted.

value = 0 or not present: shift of upper header is NOT
performed.

value > 0: the E2E Transformer on the protect-side, takes
the first upperHeaderBitsToShift bits from the upper buffer
(e.g. SOME/IP header part generated by SOME/IP
transformer) and shifts them towards the lower bytes and
bits within the Data[] for the length of the E2E header
(e.g. 12 bytes in case of E2E Profile 4). This means the
shift distance is fixed - it depends on the E2E header size
- what is configured here is the number of bits that are to
be shifted. This option is defined because the Some/IP
header generated by SOME/IP transformer shall be, due
to compatibility between non-protected and
E2E-protected communication, at the same position,
which is before E2E header.

windowSizeInit PositiveInteger 0..1 attr Size of the monitoring window of state Init for the E2E
state machine.

windowSize
Invalid

PositiveInteger 0..1 attr Size of the monitoring window of state Invalid for the E2E
state machine.

windowSize
Valid

PositiveInteger 0..1 attr Size of the monitoring window of state Valid for the E2E
state machine.

Table F.23: EndToEndTransformationDescription

Class FlatInstanceDescriptor

Package M2::AUTOSARTemplates::CommonStructure::FlatMap

5

1017 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class FlatInstanceDescriptor

Note Represents exactly one node (e.g. a component instance or data element) of the instance tree of a
software system. The purpose of this element is to map the various nested representations of this
instance to a flat representation and assign a unique name (shortName) to it.

Use cases:

• Specify unique names of measurable data to be used by MCD tools

• Specify unique names of calibration data to be used by MCD tool

• Specify a unique name for an instance of a component prototype in the ECU extract of the
system description

Note that in addition it is possible to assign alias names via AliasNameAssignment.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

ecuExtract
Reference

AtpFeature 0..1 iref Refers to the instance in the ECU extract. This is valid
only, if the FlatMap is used in the context of an ECU
extract.

The reference shall be such that it uniquely defines the
object instance. For example, if a data prototype is
declared as a role within an SwcInternalBehavior, it is not
enough to state the SwcInternalBehavior as context and
the aggregated data prototype as target. In addition, the
reference shall also include the complete path identifying
instance of the component prototype and the Atomic
SoftwareComponentType, which is refered by the
particular SwcInternalBehavior.

Tags:xml.sequenceOffset=40
InstanceRef implemented by:AnyInstanceRef

role Identifier 0..1 attr The role denotes the particular role of the downstream
memory location described by this FlatInstanceDescriptor.

It applies to use case where one upstream object results
in multiple downstream objects, e.g. ModeDeclaration
GroupPrototypes which are measurable. In this case the
RTE will provide locations for current mode, previous
mode and next mode.

rtePluginProps RtePluginProps 0..1 aggr The properties of a communication graph with respect to
the utilization of RTE Implementation Plug-in.

Stereotypes: atpSplitable
Tags:atp.Splitkey=rtePluginProps

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this FlatInstanceDescriptor.

upstream
Reference

AtpFeature 0..1 iref Refers to the instance in the context of an "upstream"
descriptions, wich could be the system or system extract
description, the basic software module description or (if a
flat map is used in preliminary context) a description of an
atomic component or composition. This reference is
optional in case the flat map is used in ECU context.

The reference shall be such that it uniquely defines the
object instance in the given context. For example, if a
data prototype is declared as a role within an SwcInternal
Behavior, it is not enough to state the SwcInternal
Behavior as context and the aggregated data prototype
as target. In addition, the reference shall also include the
complete path identifying the instance of the component
prototype that contains the particular instance of Swc
InternalBehavior.

Tags:xml.sequenceOffset=20
InstanceRef implemented by:AnyInstanceRef

Table F.24: FlatInstanceDescriptor

1018 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class HwDescriptionEntity (abstract)

Package M2::AUTOSARTemplates::EcuResourceTemplate

Note This meta-class represents the ability to describe a hardware entity.

Base ARObject , Referrable

Subclasses HwElement, HwPin, HwPinGroup, HwType

Attribute Type Mult. Kind Note

hwAttribute
Value

HwAttributeValue * aggr This aggregation represents a particular hardware
attribute value.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=50

hwCategory HwCategory * ref One of the associations representing one particular
category of the hardware entity.

Tags:xml.sequenceOffset=30

hwType HwType 0..1 ref This association is used to assign an optional HwType
which contains the common attribute values for all
occurences of this HwDescriptionEntity. Note that Hw
Types can not be redefined and therefore shall not have a
hwType reference.

Table F.25: HwDescriptionEntity

Class HwElement
Package M2::AUTOSARTemplates::EcuResourceTemplate

Note This represents the ability to describe Hardware Elements on an instance level. The particular types of
hardware are distinguished by the category. This category determines the applicable attributes. The
possible categories and attributes are defined in HwCategory.

Tags:atp.recommendedPackage=HwElements

Base ARElement , ARObject , CollectableElement , HwDescriptionEntity , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

hwElement
Connection

HwElementConnector * aggr This represents one particular connection between two
hardware elements.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=110

hwPinGroup HwPinGroup * aggr This aggregation is used to describe the connection
facilities of a hardware element. Note that hardware
element has no pins but only pingroups.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=90

5

1019 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class HwElement
nestedElement HwElement * ref This association is used to establish hierarchies of hw

elements. Note that one particular HwElement can be
target of this association only once. I.e. multiple
instantiation of the same HwElement is not supported (at
any hierarchy level).

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=70

Table F.26: HwElement

Class HwType

Package M2::AUTOSARTemplates::EcuResourceTemplate::HwElementCategory

Note This represents the ability to describe Hardware types on an abstract level. The particular types of
hardware are distinguished by the category. This category determines the applicable attributes. The
possible categories and attributes are defined in HwCategory.

Tags:atp.recommendedPackage=HwTypes

Base ARElement , ARObject , CollectableElement , HwDescriptionEntity , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

– – – – –

Table F.27: HwType

Class ISignal

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note Signal of the Interaction Layer. The RTE supports a "signal fan-out" where the same System Signal is
sent in different SignalIPdus to multiple receivers.

To support the RTE "signal fan-out" each SignalIPdu contains ISignals. If the same System Signal is to
be mapped into several SignalIPdus there is one ISignal needed for each ISignalToIPduMapping.

ISignals describe the Interface between the Precompile configured RTE and the potentially Postbuild
configured Com Stack (see ECUC Parameter Mapping).

In case of the SystemSignalGroup an ISignal shall be created for each SystemSignal contained in the
SystemSignalGroup.

Tags:atp.recommendedPackage=ISignals

Base ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

data
Transformation

DataTransformation 0..1 ref Optional reference to a DataTransformation which
represents the transformer chain that is used to transform
the data that shall be placed inside this ISignal.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataTransformation.dataTransformation,
dataTransformation.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

dataTypePolicy DataTypePolicyEnum 1 attr With the aggregation of SwDataDefProps an ISignal
specifies how it is represented on the network. This
representation follows a particular policy. Note that this
causes some redundancy which is intended and can be

5

5

1020 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ISignal

4
used to support flexible development methodology as well
as subsequent integrity checks.

If the policy "networkRepresentationFromComSpec" is
chosen the network representation from the ComSpec
that is aggregated by the PortPrototype shall be used. If
the "override" policy is chosen the requirements specified
in the PortInterface and in the ComSpec are not fulfilled
by the networkRepresentationProps. In case the System
Description doesn’t use a complete Software Component
Description (VFB View) the "legacy" policy can be
chosen.

initValue ValueSpecification 0..1 aggr Optional definition of a ISignal’s initValue in case the
System Description doesn’t use a complete Software
Component Description (VFB View). This supports the
inclusion of legacy system signals.

This value can be used to configure the Signal’s "Init
Value".

If a full DataMapping exist for the SystemSignal this
information may be available from a configured Sender
ComSpec and ReceiverComSpec. In this case the
initvalues in SenderComSpec and/or ReceiverComSpec
override this optional value specification. Further
restrictions apply from the RTE specification.

iSignalProps ISignalProps 0..1 aggr Additional optional ISignal properties that may be stored
in different files.

Stereotypes: atpSplitable
Tags:atp.Splitkey=iSignalProps

iSignalType ISignalTypeEnum 0..1 attr This attribute defines whether this iSignal is an array that
results in a UINT8_N / UINT8_DYN ComSignalType in the
COM configuration or a primitive type.

length UnlimitedInteger 1 attr Size of the signal in bits. The size needs to be derived
from the mapped VariableDataPrototype according to the
mapping of primitive DataTypes to BaseTypes as used in
the RTE. Indicates maximum size for dynamic length
signals.

The ISignal length of zero bits is allowed.

network
Representation
Props

SwDataDefProps 0..1 aggr Specification of the actual network representation. The
usage of SwDataDefProps for this purpose is restricted to
the attributes compuMethod and baseType. The optional
baseType attributes "memAllignment" and "byteOrder"
shall not be used.

The attribute "dataTypePolicy" in the SystemTemplate
element defines whether this network representation shall
be ignored and the information shall be taken over from
the network representation of the ComSpec.

If "override" is chosen by the system integrator the
network representation can violate against the
requirements defined in the PortInterface and in the
network representation of the ComSpec.

In case that the System Description doesn’t use a
complete Software Component Description (VFB View)
this element is used to configure "ComSignalDataInvalid
Value" and the Data Semantics.

systemSignal SystemSignal 1 ref Reference to the System Signal that is supposed to be
transmitted in the ISignal.

5

1021 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ISignal

timeout
Substitution
Value

ValueSpecification 0..1 aggr Defines and enables the ComTimeoutSubstituition for this
ISignal.

transformation
ISignalProps

TransformationISignal
Props

* aggr A transformer chain consists of an ordered list of
transformers. The ISignal specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignals
are described in the TransformationTechnology class.

Table F.28: ISignal

Class ISignalGroup

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note SignalGroup of the Interaction Layer. The RTE supports a "signal fan-out" where the same System
Signal Group is sent in different SignalIPdus to multiple receivers.

An ISignalGroup refers to a set of ISignals that shall always be kept together. A ISignalGroup represents
a COM Signal Group.

Therefore it is recommended to put the ISignalGroup in the same Package as ISignals (see
atp.recommendedPackage)

Tags:atp.recommendedPackage=ISignalGroup

Base ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

comBased
SignalGroup
Transformation

DataTransformation 0..1 ref Optional reference to a DataTransformation which
represents the transformer chain that is used to transform
the data that shall be placed inside this ISignalGroup
based on the COMBasedTransformer approach.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=comBasedSignalGroupTransformation.data
Transformation, comBasedSignalGroup
Transformation.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

iSignal ISignal * ref Reference to a set of ISignals that shall always be kept
together.

systemSignal
Group

SystemSignalGroup 1 ref Reference to the SystemSignalGroup that is defined on
VFB level and that is supposed to be transmitted in the
ISignalGroup.

transformation
ISignalProps

TransformationISignal
Props

* aggr A transformer chain consists of an ordered list of
transformers. The ISignalGroup specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignal
Groups are described in the TransformationTechnology
class.

Table F.29: ISignalGroup

Class ISignalIPdu

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

5

1022 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class ISignalIPdu

Note Represents the IPdus handled by Com. The ISignalIPdu assembled and disassembled in AUTOSAR
COM consists of one or more signals. In case no multiplexing is performed this IPdu is routed to/from the
Interface Layer.

A maximum of one dynamic length signal per IPdu is allowed.

Tags:atp.recommendedPackage=Pdus

Base ARObject , CollectableElement , FibexElement , IPdu, Identifiable, MultilanguageReferrable, Packageable
Element , Pdu, Referrable

Attribute Type Mult. Kind Note

iPduTiming
Specification

IPduTiming 0..1 aggr Timing specification for Com IPdus (Transmission
Modes). This information is mandatory for the sender in a
System Extract. This information may be omitted on
receivers in a System Extract.

atpVariation: The timing of a Pdu can vary.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

iSignalToPdu
Mapping

ISignalToIPduMapping * aggr Definition of SignalToIPduMappings included in the Signal
IPdu.

atpVariation: The content of a PDU can be variable.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

unusedBit
Pattern

Integer 1 attr AUTOSAR COM and AUTOSAR IPDUM are filling not
used areas of an IPDU with this bit-pattern. This attribute
is mandatory to avoid undefined behavior. This
byte-pattern will be repeated throughout the IPdu.

Table F.30: ISignalIPdu

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractDoIpLogicAddressProps, AbstractEvent , AbstractImplementationDataTypeElement ,
AbstractSecurityEventFilter , AbstractSecurityIdsmInstanceFilter , AbstractServiceInstance, AppOsTask
ProxyToEcuTaskProxyMapping, ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartition
Mapping, AsynchronousServerCallResultPoint, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Feature, AutosarOperationArgumentInstance, AutosarVariableInstance, BinaryManifestAddressable
Object , BinaryManifestItemDefinition, BinaryManifestResource, BinaryManifestResourceDefinition, Block
State, BswInternalTriggeringPoint, BswModuleDependency, BuildActionEntity , BuildActionEnvironment,
CanTpAddress, CanTpChannel, CanTpNode, Chapter, ClassContentConditional, ClientIdDefinition,
ClientServerOperation, Code, CollectableElement , ComManagementMapping, CommConnectorPort ,
CommunicationConnector , CommunicationController , Compiler, ConsistencyNeeds, ConsumedEvent
Group, CouplingPort, CouplingPortStructuralElement , CpSoftwareClusterResource, CpSoftwareCluster
ResourceToApplicationPartitionMapping, CpSoftwareClusterToEcuInstanceMapping, CpSoftwareCluster
ToResourceMapping, CryptoServiceMapping, DataPrototypeGroup, DataTransformation, Dependency
OnArtifact, DiagEventDebounceAlgorithm, DiagnosticConnectedIndicator, DiagnosticDataElement,
DiagnosticDebounceAlgorithmProps, DiagnosticFunctionInhibitSource, DiagnosticRoutineSubfunction,
DltApplication, DltArgument, DltLogChannel, DltMessage, DoIpInterface, DoIpLogicAddress, DoIp
RoutingActivation, ECUMapping, EOCExecutableEntityRefAbstract , EcuPartition, EcucContainerValue,
EcucDefinitionElement , EcucDestinationUriDef, EcucEnumerationLiteralDef, EcucQuery, EcucValidation
Condition, EndToEndProtection, EthernetWakeupSleepOnDatalineConfig, EventHandler, ExclusiveArea,
ExecutableEntity , ExecutionTime, FMAttributeDef, FMFeatureMapAssertion, FMFeatureMapCondition, F
MFeatureMapElement, FMFeatureRelation, FMFeatureRestriction, FMFeatureSelection, FlatInstance

5

5

1023 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class Identifiable (abstract)

4
Descriptor, FlexrayArTpNode, FlexrayTpConnectionControl, FlexrayTpNode, FlexrayTpPduPool, Frame
Triggering, GeneralParameter, GlobalTimeGateway, GlobalTimeMaster , GlobalTimeSlave, HeapUsage,
HwAttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IPSecRule, IPv6ExtHeaderFilterList, ISignal
ToIPduMapping, ISignalTriggering, IdentCaption, InternalTriggeringPoint, J1939SharedAddressCluster,
J1939TpNode, Keyword, LifeCycleState, LinScheduleTable, LinTpNode, Linker, MacMulticastGroup, Mc
DataInstance, MemorySection, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint, Network
Endpoint, NmCluster , NmEcu, NmNode, NvBlockDescriptor, PackageableElement , ParameterAccess,
PduActivationRoutingGroup, PduToFrameMapping, PduTriggering, PerInstanceMemory, Physical
Channel , PortElementToCommunicationResourceMapping, PortGroup, PortInterfaceMapping, Possible
ErrorReaction, ResourceConsumption, RootSwCompositionPrototype, RptComponent, RptContainer,
RptExecutableEntity, RptExecutableEntityEvent, RptExecutionContext, RptProfile, RptServicePoint, Rte
EventInCompositionSeparation, RteEventInCompositionToOsTaskProxyMapping, RteEventInSystem
Separation, RteEventInSystemToOsTaskProxyMapping, RunnableEntityGroup, SdgAttribute, SdgClass,
SecureCommunicationAuthenticationProps, SecureCommunicationFreshnessProps, SecurityEvent
ContextProps, ServerCallPoint , ServiceNeeds, SignalServiceTranslationElementProps, SignalService
TranslationEventProps, SignalServiceTranslationProps, SocketAddress, SomeipTpChannel, Spec
ElementReference, StackUsage, StaticSocketConnection, StructuredReq, SwGenericAxisParamType,
SwServiceArg, SwcServiceDependency, SwcToApplicationPartitionMapping, SwcToEcuMapping, SwcTo
ImplMapping, SystemMapping, TDCpSoftwareClusterMapping, TDCpSoftwareClusterResourceMapping,
TcpOptionFilterList, TimingCondition, TimingConstraint , TimingDescription, TimingExtensionResource,
TimingModeInstance, TlsCryptoCipherSuite, TlsCryptoCipherSuiteProps, Topic1, TpAddress, Traceable
Table, TraceableText, TracedFailure, TransformationProps, TransformationTechnology, Trigger, Variable
Access, VariationPointProxy, ViewMap, VlanConfig, WaitPoint

Attribute Type Mult. Kind Note

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=adminData
xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags:xml.sequenceOffset=-25

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags:xml.sequenceOffset=-50

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags:xml.sequenceOffset=-60

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags:xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID

5

5

1024 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class Identifiable (abstract)

4
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.

Tags:xml.attribute=true

Table F.31: Identifiable

Class InstantiationTimingEventProps

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note This meta-class represents the ability to refine a timing event for particular instances of a software
component. This approach supports an instance specific timing.

Base ARObject , InstantiationRTEEventProps

Attribute Type Mult. Kind Note

period TimeValue 0..1 attr This attribute represents the value of the refined
activation period.

Table F.32: InstantiationTimingEventProps

Class McDataInstance
Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport

Note Describes the specific properties of one data instance in order to support measurement and/or
calibration of this data instance.

The most important attributes are:

• Its shortName is copied from the ECU Flat map (if applicable) and will be used as identifier and
for display by the MC system.

• The category is copied from the corresponding data type (ApplicationDataType if defined,
otherwise ImplementationDataType) as far as applicable.

• The symbol is the one used in the programming language. It will be used to find out the actual
memory address by the final generation tool with the help of linker generated information.

It is assumed that in the M1 model this part and all the aggregated and referred elements (with the
exception of the Flat Map and the references from ImplementationElementInParameterInstanceRef and
McAccessDetails) are completely generated from "upstream" information. This means, that even if an
element like e.g. a CompuMethod is only used via reference here, it will be copied into the M1 artifact
which holds the complete McSupportData for a given Implementation.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

arraySize PositiveInteger 0..1 attr The existence of this attribute turns the data instance into
an array of data. The attribute determines the size of the
array in terms of number of elements.

5

1025 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class McDataInstance

displayIdentifier McdIdentifier 0..1 attr An optional attribute to be used to set the ASAM ASAP2
DISPLAY_IDENTIFIER attribute.

flatMapEntry FlatInstanceDescriptor 0..1 ref Reference to the corresponding entry in the ECU Flat
Map. This allows to trace back to the original specification
of the generated data instance. This link shall be added
by the RTE generator mainly for documentation purposes.

The reference is optional because

• The McDataInstance may represent an array or
struct in which only the subElements correspond
to FlatMap entries.

• The McDataInstance may represent a task local
buffer for rapid prototyping access which is
different from the "main instance" used for
measurement access.

instanceIn
Memory

ImplementationElement
InParameterInstance
Ref

0..1 aggr Reference to the corresponding data instance in the
description of calibration data structures published by the
RTE generator. This is used to support emulation
methods inside the ECU, it is not required for A2L
generation.

mcDataAccess
Details

McDataAccessDetails 0..1 aggr Refers to "upstream" information on how the RTE uses
this data instance. Use Case: Rapid Prototyping

mcData
Assignment

RoleBasedMcData
Assignment

* aggr An assignment between McDataInstances. This supports
the indication of related McDataElement implementing
the of "RP global buffer", "RP global measurement
buffer", "RP enabler flag".

resulting
Properties

SwDataDefProps 0..1 aggr These are the generated properties resulting from
decisions taken by the RTE generator for the actually
implemented data instance. Only those properties are
relevant here, which are needed for the measurement
and calibration system.

resultingRptSw
Prototyping
Access

RptSwPrototyping
Access

0..1 aggr Describes the implemented accessibility of data and
modes by the rapid prototyping tooling.

role Identifier 0..1 attr An optional attribute to be used for additional information
on the role of this data instance, for example in the
context of rapid prototyping.

rptImplPolicy RptImplPolicy 0..1 aggr Describes the implemented code preparation for rapid
prototyping at data accesses for a hook based bypassing.

subElement
(ordered)

McDataInstance * aggr This relation indicates, that the target element is part of a
"struct" which is given by the source element. This
information will be used by the final generator to set up
the correct addressing scheme.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

symbol SymbolString 0..1 attr This String is used to determine the memory address
during final generation of the MC configuration data (e.g.
"A2L" file) . It shall be the name of the element in the
programming language such that it can be identified in
linker generated information.

In case the McDataInstance is part of composite data in
the programming language, the symbol String may
include parts denoting the element context, unless the
context is given by the symbol attribute of an enclosing
McDataInstance. This means in particular for the C
language that the "." character shall be used as a
separator between the name of a "struct" variable the
name of one of its elements.

5

5

1026 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class McDataInstance

4
The symbol can differ from the shortName in case of
generated C data declarations.

It is an optional attribute since it may be missing in case
the instance represents an element (e.g. a single array
element) which has no name in the linker map.

Stereotypes: atpSplitable
Tags:atp.Splitkey=symbol

Table F.33: McDataInstance

Class McSupportData

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport

Note Root element for all measurement and calibration support data related to one Implementation artifact on
an ECU. There shall be one such element related to the RTE implementation (if it owns MC data) and a
separate one for each module or component, which owns private MC data.

Base ARObject

Attribute Type Mult. Kind Note

emulation
Support

McSwEmulationMethod
Support

* aggr Describes the calibration method used by the RTE. This
information is not needed for A2L generation, but to setup
software emulation in the ECU.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

mcParameter
Instance

McDataInstance * aggr A data instance to be used for calibration.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=mcParameterInstance.shortName, mc
ParameterInstance.variationPoint.shortLabel
vh.latestBindingTime=postBuild

mcVariable
Instance

McDataInstance * aggr A data instance to be used for measurement.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=mcVariableInstance.shortName, mcVariable
Instance.variationPoint.shortLabel
vh.latestBindingTime=postBuild

measurable
System
ConstantValues

SwSystemconstant
ValueSet

* ref Sets of system constant values to be transferred to the
MCD system, because the system constants have been
specified with "swCalibrationAccess" = readonly.

rptSupportData RptSupportData 0..1 aggr The rapid prototyping support data belonging to this
implementation. The aggregtion is <<atpSplitable>>
because in case of an already exisiting BSW
Implementation model, this description will be added later
in the process, namely at code generation time.

Stereotypes: atpSplitable
Tags:atp.Splitkey=rptSupportData

Table F.34: McSupportData

Class MultilanguageReferrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

5

1027 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class MultilanguageReferrable (abstract)

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders). They
also may have a longName. But they are not considered to contribute substantially to the overall
structure of an AUTOSAR description. In particular it does not contain other Referrables.

Base ARObject , Referrable

Subclasses Caption, DefItem, DocumentationContext, Identifiable, SdgCaption, TraceReferrable, Traceable

Attribute Type Mult. Kind Note

longName MultilanguageLong
Name

0..1 aggr This specifies the long name of the object. Long name is
targeted to human readers and acts like a headline.

Table F.35: MultilanguageReferrable

Class ParameterInAtomicSWCTypeInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements::InstanceRefs
Usage

Note This class implements an instance reference which can be applied for variables as well as for parameters.

Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base AtomicSwComponent
Type

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextData
Prototype
(ordered)

ApplicationComposite
ElementDataPrototype

* ref This ist the context in a compositeDataType.

Tags:xml.sequenceOffset=40

portPrototype PortPrototype 0..1 ref This is the port providing the variable or the entry point to
the variable structure.

Tags:xml.sequenceOffset=20

rootParameter
DataPrototype

DataPrototype 0..1 ref This represents the entry point for references into a
CompositeDataType.

Tags:xml.sequenceOffset=30

targetData
Prototype

DataPrototype 0..1 ref This is the target parameter element. Note that this must
be nested in ParameterDataPrototype. The target must
be one of ParameterDataPrototype, Application
CompositeElementDataPrototype.

Tags:xml.sequenceOffset=50

Table F.36: ParameterInAtomicSWCTypeInstanceRef

Class PostBuildVariantCriterionValueSet
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This meta-class represents the ability to denote one set of postBuildVariantCriterionValues.

Tags:atp.recommendedPackage=PostBuildVariantCriterionValueSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

postBuildVariant
CriterionValue

PostBuildVariant
CriterionValue

* aggr This is is one particular postbuild variant criterion/value
pair being part of the PostBuildVariantSet.

Table F.37: PostBuildVariantCriterionValueSet

1028 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement , EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity , ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingIdent, SingleLanguageReferrable, SoConI
PduIdentifier, SocketConnectionBundle, TimeSyncServerConfiguration, TpConnectionIdent

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags:xml.sequenceOffset=-90

Table F.38: Referrable

Class RootSwCompositionPrototype

Package M2::AUTOSARTemplates::SystemTemplate

Note The RootSwCompositionPrototype represents the top-level-composition of software components within a
given System.

According to the use case of the System, this may for example be a more or less complete VFB
description, the software of a System Extract or the software of a flat ECU Extract with only atomic SWCs.

Therefore the RootSwComposition will only occasionally contain all atomic software components that are
used in a complete VFB System. The OEM is primarily interested in the required functionality and the
interfaces defining the integration of the Software Component into the System. The internal structure of
such a component contains often substantial intellectual property of a supplier. Therefore a top-level
software composition will often contain empty compositions which represent subsystems.

The contained SwComponentPrototypes are fully specified by their SwComponentTypes (including Port
Prototypes, PortInterfaces, VariableDataPrototypes, SwcInternalBehavior etc.), and their ports are
interconnected using SwConnectorPrototypes.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

calibration
ParameterValue
Set

CalibrationParameter
ValueSet

* ref Used CalibrationParameterValueSet for instance specific
initialization of calibration parameters.

Stereotypes: atpSplitable
Tags:atp.Splitkey=calibrationParameterValueSet

flatMap FlatMap 0..1 ref The FlatMap used in the scope of this RootSw
CompositionPrototype.

Stereotypes: atpSplitable
Tags:atp.Splitkey=flatMap

software
Composition

CompositionSw
ComponentType

1 tref We assume that there is exactly one top-level composition
that includes all Component instances of the system.

Stereotypes: isOfType

Table F.39: RootSwCompositionPrototype

1029 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class Sdg

Package M2::MSR::AsamHdo::SpecialData

Note Sdg (SpecialDataGroup) is a generic model which can be used to keep arbitrary information which is not
explicitly modeled in the meta-model.

Sdg can have various contents as defined by sdgContentsType. Special Data should only be used
moderately since all elements should be defined in the meta-model.

Thereby SDG should be considered as a temporary solution when no explicit model is available. If an sdg
Caption is available, it is possible to establish a reference to the sdg structure.

Base ARObject

Attribute Type Mult. Kind Note

gid NameToken 1 attr This attributes specifies an identifier. Gid comes from the
SGML/XML-Term "Generic Identifier" which is the
element name in XML. The role of this attribute is the
same as the name of an XML - element.

Tags:xml.attribute=true

sdgCaption SdgCaption 0..1 aggr This aggregation allows to assign the properties of
Identifiable to the sdg. By this, a shortName etc. can be
assigned to the Sdg.

Tags:xml.sequenceOffset=20

sdgContents
Type

SdgContents 0..1 aggr This is the content of the Sdg.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table F.40: Sdg

Class SenderReceiverToSignalMapping

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note Mapping of a sender receiver communication data element to a signal.

Base ARObject , DataMapping

Attribute Type Mult. Kind Note

dataElement VariableDataPrototype 1 iref Reference to the data element.

InstanceRef implemented by:VariableDataPrototypeIn
SystemInstanceRef

senderToSignal
TextTable
Mapping

TextTableMapping 0..1 aggr This mapping allows for the text-table translation between
the sending DataPrototype that is defined in the Port
Prototype and the physicalProps defined for the System
Signal.

signalTo
ReceiverText
TableMapping

TextTableMapping 0..1 aggr This mapping allows for the text-table translation between
the physicalProps defined for the SystemSignal and a
receiving DataPrototype that is defined in the Port
Prototype.

systemSignal SystemSignal 1 ref Reference to the system signal used to carry the data
element.

Table F.41: SenderReceiverToSignalMapping

1030 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Primitive String

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This represents a String in which white-space shall be normalized before processing. For example: in
order to compare two Strings:

• leading and trailing white-space needs to be removed

• consecutive white-space (blank, cr, lf, tab) needs to be replaced by one blank.

Tags:
xml.xsd.customType=STRING
xml.xsd.type=string

Table F.42: String

Class SwServiceArg

Package M2::MSR::DataDictionary::ServiceProcessTask

Note Specifies the properties of a data object exchanged during the call of an SwService, e.g. an argument or
a return value.

The SwServiceArg can also be used in the argument list of a C-macro. For this purpose the category
shall be set to "MACRO". A reference to implementationDataType can optional be added if the actual
argument has an implementationDataType.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

direction ArgumentDirection
Enum

0..1 attr Specifies the direction of the data transfer. The direction
shall indicate the direction of the actual information that is
being consumed by the caller and/or the callee, not the
direction of formal arguments in C.

The attribute is optional for backwards compatibility
reasons. For example, if a pointer is used to pass a
memory address for the expected result, the direction
shall be "out". If a pointer is used to pass a memory
address with content to be read by the callee, its direction
shall be "in".

Tags:xml.sequenceOffset=10

swArraysize ValueList 0..1 aggr This turns the argument of the service to an array.

Tags:xml.sequenceOffset=20

swDataDef
Props

SwDataDefProps 0..1 aggr Data properties of this SwServiceArg.

Tags:xml.sequenceOffset=30

Table F.43: SwServiceArg

Class <<atpMixedString>> SwSystemconstDependentFormula (abstract)

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This class represents an expression depending on system constants.

Base ARObject , FormulaExpression

Subclasses AttributeValueVariationPoint , BlueprintFormula, ConditionByFormula, FMFormulaByFeaturesAndSw
Systemconsts

Attribute Type Mult. Kind Note

sysc SwSystemconst 0..1 ref This refers to a system constant. The internal (coded)
value of the system constant shall be used.

Tags:xml.sequenceOffset=50

5

1031 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class <<atpMixedString>> SwSystemconstDependentFormula (abstract)

syscString SwSystemconst 0..1 ref syscString indicates that the referenced system constant
shall be evaluated as a string according to
[TPS_SWCT_01431].

Table F.44: SwSystemconstDependentFormula

Class SwSystemconstantValueSet

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This meta-class represents the ability to specify a set of system constant values.

Tags:atp.recommendedPackage=SwSystemconstantValueSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

sw
Systemconstant
Value

SwSystemconstValue * aggr This is one particular value of a system constant.

Table F.45: SwSystemconstantValueSet

Class System

Package M2::AUTOSARTemplates::SystemTemplate

Note The top level element of the System Description. The System description defines five major elements:
Topology, Software, Communication, Mapping and Mapping Constraints.

The System element directly aggregates the elements describing the Software, Mapping and Mapping
Constraints; it contains a reference to an ASAM FIBEX description specifying Communication and
Topology.

Tags:atp.recommendedPackage=Systems

Base ARElement , ARObject , AtpClassifier , AtpFeature, AtpStructureElement , CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

clientId
DefinitionSet

ClientIdDefinitionSet * ref Set of Client Identifiers that are used for inter-ECU
client-server communication in the System.

containerIPdu
HeaderByte
Order

ByteOrderEnum 0..1 attr Defines the byteOrder of the header in ContainerIPdus.

ecuExtract
Version

RevisionLabelString 0..1 attr Version number of the Ecu Extract.

fibexElement FibexElement * ref Reference to ASAM FIBEX elements specifying
Communication and Topology.

All Fibex Elements used within a System Description shall
be referenced from the System Element.

atpVariation: In order to describe a product-line, all Fibex
Elements can be optional.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

interpolation
Routine
MappingSet

InterpolationRoutine
MappingSet

* ref This reference identifies the InterpolationRoutineMapping
Sets that are relevant in the context of the enclosing
System.

5

1032 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Class System

j1939Shared
AddressCluster

J1939SharedAddress
Cluster

* aggr Collection of J1939Clusters that share a common
address space for the routing of messages.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=j1939SharedAddressCluster.shortName,
j1939SharedAddressCluster.variationPoint.shortLabel
vh.latestBindingTime=postBuild

mapping SystemMapping * aggr Aggregation of all mapping aspects (mapping of SW
components to ECUs, mapping of data elements to
signals, and mapping constraints).

In order to support OEM / Tier 1 interaction and shared
development for one common System this aggregation is
atpSplitable and atpVariation. The content of System
Mapping can be provided by several parties using
different names for the SystemMapping.

This element is not required when the System description
is used for a network-only use-case.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=mapping.shortName, mapping.variation
Point.shortLabel
vh.latestBindingTime=postBuild

pncVector
Length

PositiveInteger 0..1 attr Length of the partial networking request release
information vector (in bytes).

pncVectorOffset PositiveInteger 0..1 attr Absolute offset (with respect to the NM-PDU) of the
partial networking request release information vector that
is defined in bytes as an index starting with 0.

rootSoftware
Composition

RootSwComposition
Prototype

0..1 aggr Aggregation of the root software composition, containing
all software components in the System in a hierarchical
structure. This element is not required when the System
description is used for a network-only use-case.

atpVariation: The RootSwCompositionPrototype can vary.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=rootSoftwareComposition.shortName, root
SoftwareComposition.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime

swCluster CpSoftwareCluster * ref CP Software Clusters of this System

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swCluster.cpSoftwareCluster, sw
Cluster.variationPoint.shortLabel
atp.Status=draft
vh.latestBindingTime=systemDesignTime

system
Documentation

Chapter * aggr Possibility to provide additional documentation while
defining the System. The System documentation can be
composed of several chapters.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=systemDocumentation.shortName, system
Documentation.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=-10

systemVersion RevisionLabelString 1 attr Version number of the System Description.

Table F.46: System

1033 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class SystemSignal

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note The system signal represents the communication system’s view of data exchanged between SW
components which reside on different ECUs. The system signals allow to represent this communication
in a flattened structure, with exactly one system signal defined for each data element prototype sent and
received by connected SW component instances.

Tags:atp.recommendedPackage=SystemSignals

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

dynamicLength Boolean 1 attr The length of dynamic length signals is variable in
run-time. Only a maximum length of such a signal is
specified in the configuration (attribute length in ISignal
element).

physicalProps SwDataDefProps 0..1 aggr Specification of the physical representation.

Table F.47: SystemSignal

Class TransientFault
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note The reported failure is classified as runtime error.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, TracedFailure

Attribute Type Mult. Kind Note

possibleError
Reaction

PossibleErrorReaction * aggr Describes a possible error reactions for the transient fault
handler.

Table F.48: TransientFault

Class VariableInAtomicSWCTypeInstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements::InstanceRefs
Usage

Note
Base ARObject , AtpInstanceRef

Attribute Type Mult. Kind Note

base AtomicSwComponent
Type

0..1 ref Stereotypes: atpDerived
Tags:xml.sequenceOffset=10

contextData
Prototype
(ordered)

ApplicationComposite
ElementDataPrototype

* ref This is the context in a compositeDataType.

Tags:xml.sequenceOffset=40

portPrototype PortPrototype 0..1 ref This is the port providing the parameter or the entry point
to the parameter structure.

Tags:xml.sequenceOffset=20

rootVariable
DataPrototype

VariableDataPrototype 0..1 ref Tags:xml.sequenceOffset=30

targetData
Prototype

DataPrototype 0..1 ref This is the target of the instance ref. Note that it shall be
one of ApplicationCompositeElementDataPrototype of
VariableDataPrototype.

Tags:xml.sequenceOffset=50

Table F.49: VariableInAtomicSWCTypeInstanceRef

1034 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

Class VariationPoint
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This meta-class represents the ability to express a "structural variation point". The container of the
variation point is part of the selected variant if swSyscond evaluates to true and each postBuildVariant
Criterion is fulfilled.

Base ARObject

Attribute Type Mult. Kind Note

blueprint
Condition

DocumentationBlock 0..1 aggr This represents a description that documents how the
variation point shall be resolved when deriving objects
from the blueprint.

Note that variationPoints are not allowed within a
blueprintCondition.

Tags:xml.sequenceOffset=28

desc MultiLanguageOverview
Paragraph

0..1 aggr This allows to describe shortly the purpose of the
variation point.

Tags:xml.sequenceOffset=20

formalBlueprint
Generator

BlueprintGenerator 0..1 aggr This represents a description that documents how the
variation point shall be resolved when deriving objects
from the blueprint by using ARMQL.

Note that variationPoints are not allowed within a formal
BlueprintGenerator.

Tags:
atp.Status=draft
xml.sequenceOffset=30

postBuildVariant
Condition

PostBuildVariant
Condition

* aggr This is the set of post build variant conditions which all
shall be fulfilled in order to (postbuild) bind the variation
point.

Tags:xml.sequenceOffset=40

sdg Sdg 0..1 aggr An optional special data group is attached to every
variation point. These data can be used by external
software systems to attach application specific data. For
example, a variant management system might add an
identifier, an URL or a specific classifier.

Tags:xml.sequenceOffset=50

shortLabel Identifier 0..1 attr This provides a name to the particular variation point to
support the RTE generator. It is necessary for supporting
splitable aggregations and if binding time is later than
codeGenerationTime, as well as some RTE conditions. It
needs to be unique with in the enclosing Identifiables with
the same ShortName.

Stereotypes: atpIdentityContributor
Tags:xml.sequenceOffset=10

swSyscond ConditionByFormula 0..1 aggr This condition acts as Binding Function for the Variation
Point. Note that the multiplicity is 0..1 in order to support
pure postBuild variants.

Tags:xml.sequenceOffset=30

Table F.50: VariationPoint

1035 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

G Upstream Mapping

G.1 Introduction

This chapter describes the mapping of the ECU Configuration parameters (M1 model)
onto the meta-classes and attributes of the AUTOSAR upstream templates (in this
case: Software Component Template).

The relationships between upstream templates and ECU Configuration are described
in order to answer typical questions like:

• How shall a supplier use the information in a System Description in order to fulfill
the needs defined by the systems engineer?

• How is a tool vendor supposed to generate an ECU Configuration Description out
of ECU Extract of System Description?

Please note that the upstream mapping tables contain the following columns:

Column Name Column Meaning

BSW Module Name of BSW module

BSW Context Reference to parameter container

BSW Parameter Name of the BSW parameter

BSW Type Type of parameter

BSW Description Description from the configuration document

Template Description Class note or attribute note of the M2 model element

M2 Parameter Name of the upstream template model element

Mapping Rule Textual description on how to transform between M2 and BSW domains

Mapping Type One of:

local no mapping needed since parameter local to BSW

partial some data can be automatically mapped but not all

full all data can be automatically mapped

Mapping Status Indication of life-cycle status of the mapping

ECUC Parameter ID ID of the parameter in the respective SWS document (may be empty if the mapping is owned by
an enumeration literal)

Table G.1: Upstream mapping table columns

G.2 NvM

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMBlockJobPriority ECUC-INTEGER-PARAM-DEF

5

1036 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Description

Defines the job priority for a NVRAM block (0 = Immediate priority).

Template Description

NvBlockNeeds.writingPriority:
Requires the priority of writing this block in case of concurrent requests to write other blocks.

NvBlockNeeds.storeEmergency:
Defines whether or not the associated RAM Block shall be implicitly stored in case of ECU failure (e.g. loss of power) by the
basic software. If the attribute storeEmergency is set to true the associated RAM Block shall be configured to have immediate
priority.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.writingPriority, CommonStructure::ServiceNeeds::NvBlockNeeds.
storeEmergency

Mapping Rule Mapping Type

It is the integrators job to secure the value-monotonic assignment of writingPriority to NvMBlock
JobPriority. This means that the lowest assigned value of writingPriority=MEDIUM shall be greater
than highest assigned value of writingPriority=HIGH etc.If NvBlockNeeds.storeEmergency is set to
True then NvMBlockJobPriority shall be 0 (Immediate priority). If NvBlockNeeds.storeEmergency
is set to False then the value of NvMBlockJobPriority depends on the value of NvBlock
Needs.writingPriority.

full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00477]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMBlockManagementType ECUC-ENUMERATION-PARAM-DEF

BSW Description

Defines the block management type for the NVRAM block.[SWS_NvM_00137]

Template Description

Reliability against data loss on the non-volatile medium.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.reliability

Mapping Rule Mapping Type

if (reliability == errorDetection | noProtection) && nDataSets==0 then NvmBlockManagementType
= NVM_BLOCK_NATIVE. if reliability == errorCorrection then NvmBlockManagementType = NVM_
BLOCK_REDUNDANT. [constr_1095] applies.

full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00062]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMBlockUseAutoValidation ECUC-BOOLEAN-PARAM-DEF

BSW Description

Defines whether the RAM Block shall be auto validated during shutdown phase.

true: if auto validation mechanism is used, false: otherwise

5

1037 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Template Description

If set to true the RAM Block shall be auto validated during shutdown phase.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.useAutoValidationAtShutDown

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00557]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMBlockUseCRCCompMechanism ECUC-BOOLEAN-PARAM-DEF

BSW Description

Defines whether the CRC of the RAM Block shall be compared during a write job with the CRC which was calculated during
the last successful read or write job.

true: if compare mechanism is used, false: otherwise

Template Description

If set to true the CRC of the RAM Block shall be compared during a write job with the CRC which was calculated during the
last successful read or write job in order to skip unnecessary NVRAM writings.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.useCRCCompMechanism

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00556]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMBlockUseCrc ECUC-BOOLEAN-PARAM-DEF

BSW Description

Defines CRC usage for the NVRAM block, i.e. memory space for CRC is reserved in RAM and NV memory.

true: CRC will be used for this NVRAM block. false: CRC will not be used for this NVRAM block.

Template Description

Reliability against data loss on the non-volatile medium.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.reliability

Mapping Rule Mapping Type

reliability == errorCorrection | errorDetection means that NvmBlockUseCrc shall bet set to true,
else NvmBlockUseCrc = false

full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00036]

1038 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMBlockUseSetRamBlockStatus ECUC-BOOLEAN-PARAM-DEF

BSW Description

Defines if NvMSetRamBlockStatusApi shall be used for this block or not.

Note: If NvMSetRamBlockStatusApi is disabled this configuration parameter shall be ignored.

true: calling of NvMSetRamBlockStatus for this RAM block shall set the status of the RAM block.

false: calling of NvMSetRamBlockStatus for this RAM block shall be ignored.

Template Description

This attribute defines how the management of the RAM Block status is controlled.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.ramBlockStatusControl

Mapping Rule Mapping Type

If the value of NvBlockNeeds.ramBlockStatusControl is set to RamBlockStatusControlEnum.api
the parameter shall be set to true. If the value of NvBlockNeeds.ramBlockStatusControl is set to
RamBlockStatusControlEnum.nvRamManager it shall be set to false.

full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00552]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMBlockWriteProt ECUC-BOOLEAN-PARAM-DEF

BSW Description

Defines an initial write protection of the NV block

true: Initial block write protection is enabled. false: Initial block write protection is disabled.

Template Description

True: data of this NVRAM Block are write protected for normal operation (but protection can be disabled)

false: no restriction
M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.readonly

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00033]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMCalcRamBlockCrc ECUC-BOOLEAN-PARAM-DEF

BSW Description

5

1039 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Defines CRC (re)calculation for the permanent RAM block or NVRAM blocks which are configured to use explicit
synchronization mechanism.

true: CRC will be (re)calculated for this permanent RAM block. false: CRC will not be (re)calculated for this permanent RAM
block.

Template Description

Defines if CRC (re)calculation for the permanent RAM Block is required.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.calcRamBlockCrc

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00119]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMNvBlockNum ECUC-INTEGER-PARAM-DEF

BSW Description

Defines the number of multiple NV blocks in a contiguous area according to the given block management type.

1-255 For NVRAM blocks to be configured of block management type NVM_BLOCK_DATASET. The actual range is limited
according to SWS_NvM_00444.

1 For NVRAM blocks to be configured of block management type NVM_BLOCK_NATIVE

2 For NVRAM blocks to be configured of block management type NVM_BLOCK_REDUNDANT

Template Description

NvBlockNeeds.nDataSets:
Number of data sets to be provided by the NVRAM manager for this block. This is the total number of ROM Blocks and RAM
Blocks.

NvBlockNeeds.reliability:
Reliability against data loss on the non-volatile medium.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.nDataSets, CommonStructure::ServiceNeeds::NvBlockNeeds.
reliability

Mapping Rule Mapping Type

if (nDataSets == 0 && reliability ==noProtection | errorDetection) then NvMNvBlockNum = 1. if (n
DataSets >0 && reliability ==noProtection | errorDetection) then NvMNvBlockNum = nDataSets.

full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00480]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMResistantToChangedSw ECUC-BOOLEAN-PARAM-DEF

BSW Description

5

1040 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Defines whether a NVRAM block shall be treated resistant to configuration changes or not. If there is no default data available
at configuration time then the application shall be responsible for providing the default initialization data. In this case the
application has to use NvM_GetErrorStatus()to be able to distinguish between first initialization and corrupted data.

true: NVRAM block is resistant to changed software. false: NVRAM block is not resistant to changed software.

Template Description

Defines whether an NVRAM Block shall be treated resistant to configuration changes (true) or not (false). For details how to
handle initialization in the latter case, please refer to the NVRAM specification.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.resistantToChangedSw

Mapping Rule Mapping Type

1:1 Mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00483]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMRomBlockNum ECUC-INTEGER-PARAM-DEF

BSW Description

Defines the number of multiple ROM blocks in a contiguous area according to the given block management type.

0-254 For NVRAM blocks to be configured of block management type NVM_BLOCK_DATASET. The actual range is limited
according to SWS_NvM_00444.

0-1 For NVRAM blocks to be configured of block management type NVM_BLOCK_NATIVE

0-1 For NVRAM blocks to be configured of block management type NVM_BLOCK_REDUNDANT

Template Description

Number of ROM Blocks to be provided by the NVRAM manager for this block. Please note that these multiple ROM Blocks
are given in a contiguous area.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.nRomBlocks

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00485]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMSelectBlockForFirstInitAll ECUC-BOOLEAN-PARAM-DEF

BSW Description

Defines whether a block will be processed or not by NvM_FirstInitAll. A block can be configured to be processed even if it
doesn’t have permanent RAM and/or explicit synchronization.

TRUE: block will be processed by NvM_FirstInitAll

FALSE: block will not be processed by NvM_FirstInitAll

Template Description

5

1041 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
If this attribute is set to true the NvM shall process this block in the NvM_FirstInitAll() function.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.selectBlockForFirstInitAll

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00558]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMSelectBlockForReadAll ECUC-BOOLEAN-PARAM-DEF

BSW Description

Defines whether a NVRAM block shall be processed during NvM_ReadAll or not. This configuration parameter has only
influence on those NVRAM blocks which are configured to have a permanent RAM block or which are configured to use
explicit synchronization mechanism.

true: NVRAM block shall be processed by NvM_ReadAll false: NVRAM block shall not be processed by NvM_ReadAll

Template Description

Defines whether the associated RAM Block shall be implicitly restored during startup by the basic software.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.restoreAtStart

Mapping Rule Mapping Type

1:1 Mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00117]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMSelectBlockForWriteAll ECUC-BOOLEAN-PARAM-DEF

BSW Description

Defines whether a NVRAM block shall be processed during NvM_WriteAll or not. This configuration parameter has only
influence on those NVRAM blocks which are configured to have a permanent RAM block or which are configured to use
explicit synchronization mechanism.

true: NVRAM block shall be processed by NvM_WriteAll false: NVRAM block shall not be processed by NvM_WriteAll

Template Description

Defines whether or not the associated RAM Block shall be implicitly stored during shutdown by the basic software.

M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.storeAtShutdown

Mapping Rule Mapping Type

1:1 Mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00549]

1042 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMStaticBlockIDCheck ECUC-BOOLEAN-PARAM-DEF

BSW Description

Defines if the Static Block ID check is enabled.

false: Static Block ID check is disabled. true: Static Block ID check is enabled.

Template Description

Defines if the Static Block Id check shall be enabled.
M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.checkStaticBlockId

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00532]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMWriteBlockOnce ECUC-BOOLEAN-PARAM-DEF

BSW Description

Defines write protection after first write. The NVRAM manager sets the write protection bit either after the NV block was
written the first time or if the block was already written and it is detected as valid and consistent during a read for it.

true: Defines write protection after first write is enabled.

false: Defines write protection after first write is disabled.

Template Description

Defines write protection after first write:

true: This block is prevented from being changed/erased or being replaced with the default ROM data after first initialization
by the software-component.

false: No such restriction.
M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.writeOnlyOnce

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00072]

BSW Module BSW Context
NvM NvM/NvMBlockDescriptor

BSW Parameter BSW Type

NvMWriteVerification ECUC-BOOLEAN-PARAM-DEF

BSW Description

5

1043 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Defines if Write Verification is enabled.

false: Write verification is disabled. true: Write Verification is enabled.

Template Description

Defines if Write Verification shall be enabled for this NVRAM Block.
M2 Parameter
CommonStructure::ServiceNeeds::NvBlockNeeds.writeVerification

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_NvM_00534]

G.3 Com

BSW Module BSW Context
Com Com/ComConfig/ComGwMapping/ComGwDestination/ComGwDestinationDescription

BSW Parameter BSW Type

ComFilter ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

This container contains the configuration parameters of the AUTOSAR COM module’s Filters.

Note: On sender side the container is used to specify the transmission mode conditions.

Template Description

Base class for data filters. The type of the filter is specified in attribute dataFilterType. Some of the filter types require
additional arguments which are specified as attributes of this class.

M2 Parameter
CommonStructure::Filter::DataFilter

Mapping Rule Mapping Type

Create container on the receiver side if the NonqueuedReceiverComSpec contains a DataFilter.
Create Container on the sender side if the TransmissionModeCondition element contains a
reference to this signal.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00339]

BSW Module BSW Context
Com Com/ComConfig/ComGwMapping/ComGwDestination/ComGwDestinationDescription/ComFilter

BSW Parameter BSW Type

ComFilterAlgorithm ECUC-ENUMERATION-PARAM-DEF

BSW Description

The range of values is specified in the [17] specification, chapter 2.2.2, Reception Filtering.

Template Description

This attribute specifies the type of the filter.

M2 Parameter
CommonStructure::Filter::DataFilter.dataFilterType

Mapping Rule Mapping Type

5

1044 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Mapping between DataFilterTypeEnum and ComFilterAlgorithm Enum is necessary. full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00146]

BSW Module BSW Context
Com Com/ComConfig/ComGwMapping/ComGwDestination/ComGwDestinationDescription/ComFilter

BSW Parameter BSW Type

ComFilterMask ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Mask for old and new value.
M2 Parameter
CommonStructure::Filter::DataFilter.mask

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00235]

BSW Module BSW Context
Com Com/ComConfig/ComGwMapping/ComGwDestination/ComGwDestinationDescription/ComFilter

BSW Parameter BSW Type

ComFilterMax ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Value to specify the upper boundary

M2 Parameter
CommonStructure::Filter::DataFilter.max

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00317]

BSW Module BSW Context
Com Com/ComConfig/ComGwMapping/ComGwDestination/ComGwDestinationDescription/ComFilter

BSW Parameter BSW Type

ComFilterMin ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

5

1045 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Value to specify the lower boundary

M2 Parameter
CommonStructure::Filter::DataFilter.min

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00318]

BSW Module BSW Context
Com Com/ComConfig/ComGwMapping/ComGwDestination/ComGwDestinationDescription/ComFilter

BSW Parameter BSW Type

ComFilterOffset ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Range = 0..(ComFilterPeriod-1)

Template Description

Specifies the initial number of messages to occur before the first message is passed

M2 Parameter
CommonStructure::Filter::DataFilter.offset

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00313]

BSW Module BSW Context
Com Com/ComConfig/ComGwMapping/ComGwDestination/ComGwDestinationDescription/ComFilter

BSW Parameter BSW Type

ComFilterPeriod ECUC-INTEGER-PARAM-DEF

BSW Description

This parameter defines the period of the ComFilterAlgorithm ONE_EVERY_N.

Template Description

Specifies number of messages to occur before the message is passed again

M2 Parameter
CommonStructure::Filter::DataFilter.period

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00312]

BSW Module BSW Context
Com Com/ComConfig/ComGwMapping/ComGwDestination/ComGwDestinationDescription/ComFilter

5

1046 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Parameter BSW Type

ComFilterX ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Value to compare with

M2 Parameter
CommonStructure::Filter::DataFilter.x

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00147]

BSW Module BSW Context
Com Com/ComConfig/ComGwMapping/ComGwDestination/ComGwDestinationDescription

BSW Parameter BSW Type

ComSignalInitValue ECUC-STRING-PARAM-DEF

BSW Description

Initial value for this signal. In case of UINT8_N the default value is a string of length ComSignalLength with all bytes set to
0x00. In case of UINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64, SINT8, SINT16, SINT32, SINT64 the string shall be
interpreted as defined in the chapter Integer Type in the AUTOSAR EcuC specification. In case the ComSignalType is
FLOAT32, FLOAT64 the string shall be interpreted as defined in the chapter Float Type in the AUTOSAR EcuC specification.
In case the ComSignalType is BOOLEAN the string shall be interpreted as defined in the chapter Boolean Type in the
AUTOSAR EcuC specification. In case the ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted as a decimal
representation of the characters separated by blanks, e.g. "97 98 100" means a string "abd", where the char "a" is in byte
0(lowest address), "b" is in byte 1, and "d" is in byte 2 and (highest address). For the ComSignalType UINT8_DYN the
dynamic length shall be set to the number of configured characters. An empty string "" shall be interpreted as 0-sized
dynamic signal.

Template Description

Initial value to be sent if sender component is not yet fully initialized, but receiver needs data already.

M2 Parameter
SystemTemplate::Fibex::FibexCore::CoreCommunication::ISignal.initValue, SWComponent
Template::Communication::NonqueuedSenderComSpec.initValue

Mapping Rule Mapping Type

It is possible to aggregate an initValue at the level of a ComSpec in the SWC Template. in case the
System Description doesn’t use a complete Software Component Description (VFB View) the init
Value is defined in the System Template.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00170]

BSW Module BSW Context
Com Com/ComConfig/ComSignal

BSW Parameter BSW Type

ComDataInvalidAction ECUC-ENUMERATION-PARAM-DEF

BSW Description

5

1047 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
This parameter defines the action performed upon reception of an invalid signal. Relating to signal groups the action in case
if one of the included signals is an invalid signal. If Replace is used the ComSignalInitValue will be used for the replacement.

Template Description

InvalidationPolicy:
Specifies whether the component can actively invalidate a particular dataElement.

If no invalidationPolicy points to a dataElement this is considered to yield the identical result as if the handleInvalid attribute
was set to dontInvalidate.

ISignalPort.handleInvalid:
This attribute defines how invalidation is applied to the ISignals received in the context of this ISignalPort.

M2 Parameter
SWComponentTemplate::PortInterface::InvalidationPolicy, SystemTemplate::Fibex::FibexCore::Core
Communication::ISignalPort.handleInvalid

Mapping Rule Mapping Type

If strategy HandleInvalidEnum.keep is defined then set ComDataInvalidAction to NOTIFY. If
strategy HandleInvalidEnum.replace is defined then set ComDataInvalidAction to REPLACE. In all
other cases the ComDataInvalidAction shall not be configured.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00314]

BSW Module BSW Context
Com Com/ComConfig/ComSignal

BSW Parameter BSW Type

ComFilter ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

This container contains the configuration parameters of the AUTOSAR COM module’s Filters.

Note: On sender side the container is used to specify the transmission mode conditions.

Template Description

Base class for data filters. The type of the filter is specified in attribute dataFilterType. Some of the filter types require
additional arguments which are specified as attributes of this class.

M2 Parameter
CommonStructure::Filter::DataFilter

Mapping Rule Mapping Type

Create container on the receiver side if the NonqueuedReceiverComSpec contains a DataFilter.
Create Container on the sender side if the TransmissionModeCondition element contains a
reference to this signal.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00339]

BSW Module BSW Context
Com Com/ComConfig/ComSignal/ComFilter

BSW Parameter BSW Type

ComFilterAlgorithm ECUC-ENUMERATION-PARAM-DEF

BSW Description

The range of values is specified in the [17] specification, chapter 2.2.2, Reception Filtering.

Template Description

5

1048 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
This attribute specifies the type of the filter.

M2 Parameter
CommonStructure::Filter::DataFilter.dataFilterType

Mapping Rule Mapping Type

Mapping between DataFilterTypeEnum and ComFilterAlgorithm Enum is necessary. full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00146]

BSW Module BSW Context
Com Com/ComConfig/ComSignal/ComFilter

BSW Parameter BSW Type

ComFilterMask ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Mask for old and new value.
M2 Parameter
CommonStructure::Filter::DataFilter.mask

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00235]

BSW Module BSW Context
Com Com/ComConfig/ComSignal/ComFilter

BSW Parameter BSW Type

ComFilterMax ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Value to specify the upper boundary

M2 Parameter
CommonStructure::Filter::DataFilter.max

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00317]

BSW Module BSW Context
Com Com/ComConfig/ComSignal/ComFilter

BSW Parameter BSW Type

5

1049 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
ComFilterMin ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Value to specify the lower boundary

M2 Parameter
CommonStructure::Filter::DataFilter.min

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00318]

BSW Module BSW Context
Com Com/ComConfig/ComSignal/ComFilter

BSW Parameter BSW Type

ComFilterOffset ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Range = 0..(ComFilterPeriod-1)

Template Description

Specifies the initial number of messages to occur before the first message is passed

M2 Parameter
CommonStructure::Filter::DataFilter.offset

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00313]

BSW Module BSW Context
Com Com/ComConfig/ComSignal/ComFilter

BSW Parameter BSW Type

ComFilterPeriod ECUC-INTEGER-PARAM-DEF

BSW Description

This parameter defines the period of the ComFilterAlgorithm ONE_EVERY_N.

Template Description

Specifies number of messages to occur before the message is passed again

M2 Parameter
CommonStructure::Filter::DataFilter.period

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00312]

1050 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Com Com/ComConfig/ComSignal/ComFilter

BSW Parameter BSW Type

ComFilterX ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Value to compare with

M2 Parameter
CommonStructure::Filter::DataFilter.x

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00147]

BSW Module BSW Context
Com Com/ComConfig/ComSignal

BSW Parameter BSW Type

ComSignalDataInvalidValue ECUC-STRING-PARAM-DEF

BSW Description

Defines the data invalid value of the signal.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64, SINT8, SINT16, SINT32, SINT64 the string shall be
interpreted as defined in the chapter Integer Type in the AUTOSAR EcuC specification. In case the ComSignalType is
FLOAT32, FLOAT64 the string shall be interpreted as defined in the chapter Float Type in the AUTOSAR EcuC specification.
In case the ComSignalType is BOOLEAN the string shall be interpreted as defined in the chapter Boolean Type in the
AUTOSAR EcuC specification. In case the ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted as a decimal
representation of the characters separated by blanks, e.g. "97 98 100" means a string "abd", where the char "a" is in byte
0(lowest address), "b" is in byte 1, and "d" is in byte 2 and (highest address). For the ComSignalType UINT8_DYN the
dynamic length shall be set to the number of configured characters. An empty string "" shall be interpreted as 0-sized
dynamic signal.

Template Description

InvalidationPolicy:
Specifies whether the component can actively invalidate a particular dataElement.

If no invalidationPolicy points to a dataElement this is considered to yield the identical result as if the handleInvalid attribute
was set to dontInvalidate.

SwDataDefProps.invalidValue:
Optional value to express invalidity of the actual data element.

M2 Parameter
SWComponentTemplate::PortInterface::InvalidationPolicy, DataDictionary::DataDefProperties::SwDataDefProps.
invalidValue

Mapping Rule Mapping Type

ComSignalDataInvalidValue is only derived 1:1 from the SwDataDefProps.invalidValue if the
InvalidationPolicy equals keep or replace. In all other cases of InvalidationPolicy the ComSignal
DataInvalidValue shall not be configured.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00391]

1051 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Com Com/ComConfig/ComSignal

BSW Parameter BSW Type

ComSignalInitValue ECUC-STRING-PARAM-DEF

BSW Description

Initial value for this signal. In case of UINT8_N the default value is a string of length ComSignalLength with all bytes set to
0x00. In case of UINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64, SINT8, SINT16, SINT32, SINT64 the string shall be
interpreted as defined in the chapter Integer Type in the AUTOSAR EcuC specification. In case the ComSignalType is
FLOAT32, FLOAT64 the string shall be interpreted as defined in the chapter Float Type in the AUTOSAR EcuC specification.
In case the ComSignalType is BOOLEAN the string shall be interpreted as defined in the chapter Boolean Type in the
AUTOSAR EcuC specification. In case the ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted as a decimal
representation of the characters separated by blanks, e.g. "97 98 100" means a string "abd", where the char "a" is in byte
0(lowest address), "b" is in byte 1, and "d" is in byte 2 and (highest address). For the ComSignalType UINT8_DYN the
dynamic length shall be set to the number of configured characters. An empty string "" shall be interpreted as 0-sized
dynamic signal.

Template Description

Initial value to be sent if sender component is not yet fully initialized, but receiver needs data already.

M2 Parameter
SystemTemplate::Fibex::FibexCore::CoreCommunication::ISignal.initValue, SWComponent
Template::Communication::NonqueuedSenderComSpec.initValue

Mapping Rule Mapping Type

It is possible to aggregate an initValue at the level of a ComSpec in the SWC Template. in case the
System Description doesn’t use a complete Software Component Description (VFB View) the init
Value is defined in the System Template.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00170]

BSW Module BSW Context
Com Com/ComConfig/ComSignal

BSW Parameter BSW Type

ComTimeout ECUC-FLOAT-PARAM-DEF

BSW Description

Defines the length of the deadline monitoring timeout period in seconds. The period for the first timeout period can be
configured separately by ECUC_Com_00183.

Template Description

ISignalPort.timeout:

• ISignalPort with communicationDirection = in:

Optional timeout value in seconds for the reception of the ISignal. The attribute value is used to configure the ComTimeout in
the COM module. The RTE ignores this attribute. The timeout can also be specified with the NonqueuedReceiverCom
Spec.aliveTimeout attribute. If a full DataMapping exists for the SystemSignal and the value is available in the configured
ReceiverComSpec, then the timeout value in the ReceiverComSpec overrides this optional timeout specification during the
creation of the Base Ecu Configuration of the COM module.

• ISignalPort with communicationDirection = out:

Optional timeout value in seconds for the transmission of the ISignal. The attribute value is used to configure the Com
Timeout in the COM module. The RTE ignores this attribute. The timeout can also be specified with the enderCom
Spec.transmissionAcknowledge.timeout attribute. If a full DataMapping exists for the SystemSignal and the value is available

5

5

1052 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
4

in the configured SenderComSpec, then the timeout value in the SenderComSpec overrides this optional timeout
specification during the creation of the Base Ecu Configuration of the COM module.

This attribute can be used in the following cases:

• legacy signal where the System Description doesn’t use a complete Software Component Description (VFB View)
and where the DataMapping is missing.

• bus monitoring use cases in which the DataMapping is ignored.

TransmissionAcknowledgementRequest.timeout:
Number of seconds before an error is reported or in case of allowed redundancy, the value is sent again.

NonqueuedReceiverComSpec.aliveTimeout:
Specify the amount of time (in seconds) after which the software component (via the RTE) needs to be notified if the
corresponding data item have not been received according to the specified timing description.

If the aliveTimeout attribute is 0 no timeout monitoring shall be performed.

M2 Parameter
SystemTemplate::Fibex::FibexCore::CoreCommunication::ISignalPort.timeout, SWComponent
Template::Communication::TransmissionAcknowledgementRequest.timeout, SWComponent
Template::Communication::NonqueuedReceiverComSpec.aliveTimeout

Mapping Rule Mapping Type

TX Signals: If a full DataMapping exist for the SystemSignal this information may be available from
a configured SenderComSpec.transmissionAcknowledge.timeout that specifies the amount of time
(in seconds) after which the software component (via the RTE) needs to be notified if the
corresponding data item have not been transmitted according to the specified timing description. In
this case the timeout value in SenderComSpec overrides the optional timeout specification in the
System Template defined on the ISignalPort. RX Signals: If a full DataMapping exist for the
SystemSignal this information may be available from a configured NonqueuedReceiverCom
Spec.aliveTimeout. In this case the timeout value in ReceiverComSpec overrides the optional
timeout specification in the System Template defined on the ISignalPort. Please note that the
SWS_RTE defines an algorithm to finally set the applicable timeout value.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00263]

BSW Module BSW Context
Com Com/ComConfig/ComSignal

BSW Parameter BSW Type

ComTimeoutSubstitutionValue ECUC-STRING-PARAM-DEF

BSW Description

The signal substitution value will be used in case of a timeout and ComRxDataTimeoutAction is set to SUBSTITUTE. In case
of UINT8_N the default value is a string of length ComSignalLength with all bytes set to 0x00.

In case ofUINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64, SINT8, SINT16, SINT32, SINT64 the string shall be
interpreted as defined in the chapter Integer Type in the AUTOSAR EcuC specification.

In case the ComSignalType is FLOAT32, FLOAT64 the string shall be interpreted as defined in the chapter Float Type in the
AUTOSAR EcuC specification.

In case the ComSignalType is BOOLEAN the string shall be interpreted as defined in the chapter Boolean Type in the
AUTOSAR EcuC specification.

In case the ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted as a decimal representation of the
characters separated by blanks, e.g. "97 98 100" means a string "abd", where the char "a" is in byte 0(lowest address), "b" is
in byte 1, and "d" is in byte 2 and (highest address). For the ComSignalType UINT8_DYN the dynamic length shall be set to
the number of configured characters. An empty string "" shall be interpreted as 0-sized dynamic signal.

Template Description

Defines and enables the ComTimeoutSubstituition for this ISignal.

5

1053 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
M2 Parameter
SystemTemplate::Fibex::FibexCore::CoreCommunication::ISignal.timeoutSubstitutionValue

Mapping Rule Mapping Type

The mapping of ComTimeoutSubstitutionValue depends on the setting in the ISignal.dataType
Policy: - ISignal.dataTypePolicy = override or legacy: SystemTemplate::Fibex::FibexCore::Core
Communication::ISignal.timeoutSubstitutionValue - ISignal.dataTypePolicy = network
RepresentationFromComSpec: SWComponentTemplate::Communication::NonequeuedReceiver
ComSpec.timeoutSubstitutionValue - ISignal.dataTypePolicy = transformingISignal this is not
supported.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_10006]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup

BSW Parameter BSW Type

ComDataInvalidAction ECUC-ENUMERATION-PARAM-DEF

BSW Description

This parameter defines the action performed upon reception of an invalid signal. Relating to signal groups the action in case
if one of the included signals is an invalid signal. If Replace is used the ComSignalInitValue will be used for the replacement.

Template Description

InvalidationPolicy:
Specifies whether the component can actively invalidate a particular dataElement.

If no invalidationPolicy points to a dataElement this is considered to yield the identical result as if the handleInvalid attribute
was set to dontInvalidate.

ISignalPort.handleInvalid:
This attribute defines how invalidation is applied to the ISignals received in the context of this ISignalPort.

M2 Parameter
SWComponentTemplate::PortInterface::InvalidationPolicy, SystemTemplate::Fibex::FibexCore::Core
Communication::ISignalPort.handleInvalid

Mapping Rule Mapping Type

If strategy HandleInvalidEnum.keep is defined then set ComDataInvalidAction to NOTIFY. If
strategy HandleInvalidEnum.replace is defined then set ComDataInvalidAction to REPLACE. In all
other cases the ComDataInvalidAction shall not be configured.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00314]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal

BSW Parameter BSW Type

ComFilter ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

This container contains the configuration parameters of the AUTOSAR COM module’s Filters.

Note: On sender side the container is used to specify the transmission mode conditions.

Template Description

Base class for data filters. The type of the filter is specified in attribute dataFilterType. Some of the filter types require
additional arguments which are specified as attributes of this class.

5

1054 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
M2 Parameter
CommonStructure::Filter::DataFilter

Mapping Rule Mapping Type

Create container on the receiver side if the NonqueuedReceiverComSpec contains a DataFilter.
Create Container on the sender side if the TransmissionModeCondition element contains a
reference to this signal.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00339]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal/ComFilter

BSW Parameter BSW Type

ComFilterAlgorithm ECUC-ENUMERATION-PARAM-DEF

BSW Description

The range of values is specified in the [17] specification, chapter 2.2.2, Reception Filtering.

Template Description

This attribute specifies the type of the filter.

M2 Parameter
CommonStructure::Filter::DataFilter.dataFilterType

Mapping Rule Mapping Type

Mapping between DataFilterTypeEnum and ComFilterAlgorithm Enum is necessary. full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00146]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal/ComFilter

BSW Parameter BSW Type

ComFilterMask ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Mask for old and new value.
M2 Parameter
CommonStructure::Filter::DataFilter.mask

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00235]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal/ComFilter

5

1055 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Parameter BSW Type

ComFilterMax ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Value to specify the upper boundary

M2 Parameter
CommonStructure::Filter::DataFilter.max

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00317]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal/ComFilter

BSW Parameter BSW Type

ComFilterMin ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Value to specify the lower boundary

M2 Parameter
CommonStructure::Filter::DataFilter.min

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00318]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal/ComFilter

BSW Parameter BSW Type

ComFilterOffset ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Range = 0..(ComFilterPeriod-1)

Template Description

Specifies the initial number of messages to occur before the first message is passed

M2 Parameter
CommonStructure::Filter::DataFilter.offset

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00313]

1056 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal/ComFilter

BSW Parameter BSW Type

ComFilterPeriod ECUC-INTEGER-PARAM-DEF

BSW Description

This parameter defines the period of the ComFilterAlgorithm ONE_EVERY_N.

Template Description

Specifies number of messages to occur before the message is passed again

M2 Parameter
CommonStructure::Filter::DataFilter.period

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00312]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal/ComFilter

BSW Parameter BSW Type

ComFilterX ECUC-INTEGER-PARAM-DEF

BSW Description

The name of this attribute corresponds to the parameter name in the [17] specification of Reception Filtering.

Template Description

Value to compare with

M2 Parameter
CommonStructure::Filter::DataFilter.x

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00147]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal

BSW Parameter BSW Type

ComSignalDataInvalidValue ECUC-STRING-PARAM-DEF

BSW Description

5

1057 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Defines the data invalid value of the signal.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64, SINT8, SINT16, SINT32, SINT64 the string shall be
interpreted as defined in the chapter Integer Type in the AUTOSAR EcuC specification. In case the ComSignalType is
FLOAT32, FLOAT64 the string shall be interpreted as defined in the chapter Float Type in the AUTOSAR EcuC specification.
In case the ComSignalType is BOOLEAN the string shall be interpreted as defined in the chapter Boolean Type in the
AUTOSAR EcuC specification. In case the ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted as a decimal
representation of the characters separated by blanks, e.g. "97 98 100" means a string "abd", where the char "a" is in byte
0(lowest address), "b" is in byte 1, and "d" is in byte 2 and (highest address). For the ComSignalType UINT8_DYN the
dynamic length shall be set to the number of configured characters. An empty string "" shall be interpreted as 0-sized
dynamic signal.

Template Description

InvalidationPolicy:
Specifies whether the component can actively invalidate a particular dataElement.

If no invalidationPolicy points to a dataElement this is considered to yield the identical result as if the handleInvalid attribute
was set to dontInvalidate.

SwDataDefProps.invalidValue:
Optional value to express invalidity of the actual data element.

M2 Parameter
SWComponentTemplate::PortInterface::InvalidationPolicy, DataDictionary::DataDefProperties::SwDataDefProps.
invalidValue

Mapping Rule Mapping Type

ComSignalDataInvalidValue is only derived 1:1 from the SwDataDefProps.invalidValue if the
InvalidationPolicy equals keep or replace. In all other cases of InvalidationPolicy the ComSignal
DataInvalidValue shall not be configured.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00391]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal

BSW Parameter BSW Type

ComSignalInitValue ECUC-STRING-PARAM-DEF

BSW Description

Initial value for this signal. In case of UINT8_N the default value is a string of length ComSignalLength with all bytes set to
0x00. In case of UINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64, SINT8, SINT16, SINT32, SINT64 the string shall be
interpreted as defined in the chapter Integer Type in the AUTOSAR EcuC specification. In case the ComSignalType is
FLOAT32, FLOAT64 the string shall be interpreted as defined in the chapter Float Type in the AUTOSAR EcuC specification.
In case the ComSignalType is BOOLEAN the string shall be interpreted as defined in the chapter Boolean Type in the
AUTOSAR EcuC specification. In case the ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted as a decimal
representation of the characters separated by blanks, e.g. "97 98 100" means a string "abd", where the char "a" is in byte
0(lowest address), "b" is in byte 1, and "d" is in byte 2 and (highest address). For the ComSignalType UINT8_DYN the
dynamic length shall be set to the number of configured characters. An empty string "" shall be interpreted as 0-sized
dynamic signal.

Template Description

Initial value to be sent if sender component is not yet fully initialized, but receiver needs data already.

M2 Parameter
SystemTemplate::Fibex::FibexCore::CoreCommunication::ISignal.initValue, SWComponent
Template::Communication::NonqueuedSenderComSpec.initValue

Mapping Rule Mapping Type

It is possible to aggregate an initValue at the level of a ComSpec in the SWC Template. in case the
System Description doesn’t use a complete Software Component Description (VFB View) the init
Value is defined in the System Template.

full

5

1058 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Mapping Status ECUC Parameter ID

valid [ECUC_Com_00170]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup/ComGroupSignal

BSW Parameter BSW Type

ComTimeoutSubstitutionValue ECUC-STRING-PARAM-DEF

BSW Description

The signal substitution value will be used in case of a timeout and ComRxDataTimeoutAction is set to SUBSTITUTE. In case
of UINT8_N the default value is a string of length ComSignalLength with all bytes set to 0x00.

In case ofUINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64, SINT8, SINT16, SINT32, SINT64 the string shall be
interpreted as defined in the chapter Integer Type in the AUTOSAR EcuC specification.

In case the ComSignalType is FLOAT32, FLOAT64 the string shall be interpreted as defined in the chapter Float Type in the
AUTOSAR EcuC specification.

In case the ComSignalType is BOOLEAN the string shall be interpreted as defined in the chapter Boolean Type in the
AUTOSAR EcuC specification.

In case the ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted as a decimal representation of the
characters separated by blanks, e.g. "97 98 100" means a string "abd", where the char "a" is in byte 0(lowest address), "b" is
in byte 1, and "d" is in byte 2 and (highest address). For the ComSignalType UINT8_DYN the dynamic length shall be set to
the number of configured characters. An empty string "" shall be interpreted as 0-sized dynamic signal.

Template Description

Defines and enables the ComTimeoutSubstituition for this ISignal.

M2 Parameter
SystemTemplate::Fibex::FibexCore::CoreCommunication::ISignal.timeoutSubstitutionValue

Mapping Rule Mapping Type

The mapping of ComTimeoutSubstitutionValue depends on the setting in the ISignal.dataType
Policy: - ISignal.dataTypePolicy = override or legacy: SystemTemplate::Fibex::FibexCore::Core
Communication::ISignal.timeoutSubstitutionValue - ISignal.dataTypePolicy = network
RepresentationFromComSpec: SWComponentTemplate::Communication::NonequeuedReceiver
ComSpec.timeoutSubstitutionValue - ISignal.dataTypePolicy = transformingISignal this is not
supported.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_10006]

BSW Module BSW Context
Com Com/ComConfig/ComSignalGroup

BSW Parameter BSW Type

ComTimeout ECUC-FLOAT-PARAM-DEF

BSW Description

Defines the length of the deadline monitoring timeout period in seconds. The period for the first timeout period can be
configured separately by ECUC_Com_00183.

Template Description

5

1059 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
ISignalPort.timeout:

• ISignalPort with communicationDirection = in:

Optional timeout value in seconds for the reception of the ISignal. The attribute value is used to configure the ComTimeout in
the COM module. The RTE ignores this attribute. The timeout can also be specified with the NonqueuedReceiverCom
Spec.aliveTimeout attribute. If a full DataMapping exists for the SystemSignal and the value is available in the configured
ReceiverComSpec, then the timeout value in the ReceiverComSpec overrides this optional timeout specification during the
creation of the Base Ecu Configuration of the COM module.

• ISignalPort with communicationDirection = out:

Optional timeout value in seconds for the transmission of the ISignal. The attribute value is used to configure the Com
Timeout in the COM module. The RTE ignores this attribute. The timeout can also be specified with the enderCom
Spec.transmissionAcknowledge.timeout attribute. If a full DataMapping exists for the SystemSignal and the value is available
in the configured SenderComSpec, then the timeout value in the SenderComSpec overrides this optional timeout
specification during the creation of the Base Ecu Configuration of the COM module.

This attribute can be used in the following cases:

• legacy signal where the System Description doesn’t use a complete Software Component Description (VFB View)
and where the DataMapping is missing.

• bus monitoring use cases in which the DataMapping is ignored.

TransmissionAcknowledgementRequest.timeout:
Number of seconds before an error is reported or in case of allowed redundancy, the value is sent again.

NonqueuedReceiverComSpec.aliveTimeout:
Specify the amount of time (in seconds) after which the software component (via the RTE) needs to be notified if the
corresponding data item have not been received according to the specified timing description.

If the aliveTimeout attribute is 0 no timeout monitoring shall be performed.

M2 Parameter
SystemTemplate::Fibex::FibexCore::CoreCommunication::ISignalPort.timeout, SWComponent
Template::Communication::TransmissionAcknowledgementRequest.timeout, SWComponent
Template::Communication::NonqueuedReceiverComSpec.aliveTimeout

Mapping Rule Mapping Type

TX Signals: If a full DataMapping exist for the SystemSignal this information may be available from
a configured SenderComSpec.transmissionAcknowledge.timeout that specifies the amount of time
(in seconds) after which the software component (via the RTE) needs to be notified if the
corresponding data item have not been transmitted according to the specified timing description. In
this case the timeout value in SenderComSpec overrides the optional timeout specification in the
System Template defined on the ISignalPort. RX Signals: If a full DataMapping exist for the
SystemSignal this information may be available from a configured NonqueuedReceiverCom
Spec.aliveTimeout. In this case the timeout value in ReceiverComSpec overrides the optional
timeout specification in the System Template defined on the ISignalPort. Please note that the
SWS_RTE defines an algorithm to finally set the applicable timeout value.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Com_00263]

G.4 WdgM

BSW Module BSW Context
WdgM WdgM/WdgMConfigSet/WdgMMode/WdgMLocalStatusParams

BSW Parameter BSW Type

WdgMFailedAliveSupervisionRefCycleTol ECUC-INTEGER-PARAM-DEF

BSW Description

This parameter shall contain the acceptable amount of reference cycles with incorrect/failed alive supervisions for this
Supervised Entity.

5

1060 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Template Description

Number of consecutive failed alive cycles for this SupervisedEntity which shall be tolerated until the supervision status of the
SupervisedEntity is set to WDGM_ALIVE_EXPIRED (see SWS WdgM for more details).

Note that this value has to be recalculated with respect to the WdgM’s own cycle time for ECU configuration.

M2 Parameter
CommonStructure::ServiceNeeds::SupervisedEntityNeeds.toleratedFailedCycles

Mapping Rule Mapping Type

1:1 full

Mapping Status ECUC Parameter ID

valid [ECUC_WdgM_-
00327]

G.5 Dcm

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsd

BSW Parameter BSW Type

DcmDsdServiceRequestManufacturerNotification ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

The name of this container is used to define the name of the R-Port through which the DCM accesses the interface Service
RequestNotification. The R-Port is named ServiceRequestManufacturerNotification_{Name} where {Name} is the name of
the container DcmDsdServiceRequestManufacturerNotification.

The lowerMultiplicity is 0: If container DcmDsdServiceRequestManufacturerNotification does not exist the Indication API is
not available.

Template Description

This represents the ability to define whether the usage of PortInterface ServiceRequestNotification has the characteristics of
being initiated by a manufacturer or by a supplier.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticCommunicationManagerNeeds.serviceRequestCallbackType

Mapping Rule Mapping Type

If DiagnosticCommunicationManagerNeeds.serviceRequestCallbackType is set to Diagnostic
ServiceRequestCallbackTypeEnum.requestCallbackTypeManufacturer then DcmDsdService
RequestManufacturerNotification shall exist and the value of DcmDsdServiceRequestManufacturer
Notification.shortName shall be taken from the SwcServiceDependency.shortName that
aggregates the DiagnosticCommunicationManagerNeeds.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00681]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsd

BSW Parameter BSW Type

DcmDsdServiceRequestSupplierNotification ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

5

1061 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
The name of this container is used to define the name of the R-Port through which the DCM accesses the interface Service
RequestNotification. The R-Port is named ServiceRequestSupplierNotification_<SWC> where <SWC> is the name of the
container DcmDsdServiceRequestSupplierNotification.

The lowerMultiplicity is 0: If the container DcmDsdRequestSupplierNotification does not exist the Indication API is not
available.

Template Description

This represents the ability to define whether the usage of PortInterface ServiceRequestNotification has the characteristics of
being initiated by a manufacturer or by a supplier.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticCommunicationManagerNeeds.serviceRequestCallbackType

Mapping Rule Mapping Type

If DiagnosticCommunicationManagerNeeds.serviceRequestCallbackType is set to Diagnostic
ServiceRequestCallbackTypeEnum.requestCallbackTypeSupplier then DcmDsdServiceRequest
SupplierNotification shall exist and the value of DcmDsdServiceRequestSupplierNotification.short
Name shall be taken from the SwcServiceDependency.shortName that aggregates the Diagnostic
CommunicationManagerNeeds.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00816]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData

BSW Parameter BSW Type

DcmDspDataResetToDefaultFnc ECUC-FUNCTION-NAME-DEF

BSW Description

Function name to request to application to reset an IOControl to default value. (ResetToDefault-function). This parameter is
related to the interface Xxx_ResetToDefault.

Template Description

DiagnosticIoControlNeeds.resetToDefaultSupported:
This represents a flag for the existence of the ResetToDefault operation in the service interface.

DiagnosticServiceSwMapping.mappedBswServiceDependency:
This is supposed to represent a reference to a BswServiceDependency. the latter is not derived from Referrable and
therefore this detour needs to be implemented to still let BswServiceDependency become the target of a reference.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticIoControlNeeds.resetToDefaultSupported, DiagnosticExtract::Diagnostic
Mapping::ServiceMapping::DiagnosticServiceSwMapping.mappedBswServiceDependency

Mapping Rule Mapping Type

It could be possible to get the FNC name via BswServiceDependency full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00673]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData

BSW Parameter BSW Type

DcmDspDataShortTermAdjustmentFnc ECUC-FUNCTION-NAME-DEF

BSW Description

5

1062 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Function name to request to application to adjust the IO signal. (ShortTermAdjustment-function).

This parameter is related to the interface Xxx_ShortTermAdjustment.

Template Description

DiagnosticIoControlNeeds.shortTermAdjustmentSupported:
This attribute determines, if the referenced port supports temporarily setting of I/O value to a specific value provided by the
diagnostic tester.

DiagnosticServiceSwMapping.mappedBswServiceDependency:
This is supposed to represent a reference to a BswServiceDependency. the latter is not derived from Referrable and
therefore this detour needs to be implemented to still let BswServiceDependency become the target of a reference.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticIoControlNeeds.shortTermAdjustmentSupported, Diagnostic
Extract::DiagnosticMapping::ServiceMapping::DiagnosticServiceSwMapping.mappedBswServiceDependency

Mapping Rule Mapping Type

It could be possible to get the FNC name via BswServiceDependency full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00675]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

BOOLEAN ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is boolean.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = BOOLEAN baseTypeSize = 1 maxNumberOfElements shall not exist array
SizeSemantics shall not exist Derivation from DiagnosticValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

FLOAT ECUC-ENUMERATION-LITERAL-DEF

BSW Description

5

1063 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Type of the data is float.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

FLOAT_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

5

1064 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
SINT16 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is sint16.

Template Description

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeSize, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeEncoding, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = 2C baseTypeSize = 16 maxNumberOfElements shall not exist arraySize
Semantics shall not exist Derivation from DiagnosticValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

SINT16_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is sint16 array.

Template Description

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

DiagnosticDataElement.arraySizeSemantics:
This attribute controls the meaning of the value of the array size.

DiagnosticDataElement.maxNumberOfElements:
The existence of this attribute turns the data instance into an array of data. The attribute determines the size of the array in
terms of how many elements the array can take.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeSize, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeEncoding, DiagnosticExtract::CommonDiagnostics::DiagnosticDataElement.arraySizeSemantics, Diagnostic
Extract::CommonDiagnostics::DiagnosticDataElement.maxNumberOfElements, CommonStructure::Service
Needs::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = 2C baseTypeSize = 16 maxNumberOfElements exists and value is greater
than 0 (cf. TPS_DEXT_01001) arraySizeSemantics either does not exist or exists and is set to
ArraySizeSemanticsEnum.fixedSize (cf. TPS_DEXT_01001) Derivation from DiagnosticValue
Needs.fixedLength=1 possible.

full

5

1065 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

SINT32 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is sint32.

Template Description

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeSize, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeEncoding, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = 2C baseTypeSize = 32 maxNumberOfElements shall not exist arraySize
Semantics shall not exist Derivation from DiagnosticValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

SINT32_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is sint32 array.

Template Description

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

DiagnosticDataElement.arraySizeSemantics:
This attribute controls the meaning of the value of the array size.

DiagnosticDataElement.maxNumberOfElements:
The existence of this attribute turns the data instance into an array of data. The attribute determines the size of the array in
terms of how many elements the array can take.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

5

1066 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeSize, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeEncoding, DiagnosticExtract::CommonDiagnostics::DiagnosticDataElement.arraySizeSemantics, Diagnostic
Extract::CommonDiagnostics::DiagnosticDataElement.maxNumberOfElements, CommonStructure::Service
Needs::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = 2C baseTypeSize = 32 maxNumberOfElements exists and value is greater
than 0 (cf. TPS_DEXT_01001) arraySizeSemantics either does not exist or exists and is set to
ArraySizeSemanticsEnum.fixedSize (cf. TPS_DEXT_01001) Derivation from DiagnosticValue
Needs.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

SINT8 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is sint8.

Template Description

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeSize, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeEncoding, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = 2C baseTypeSize = 8 maxNumberOfElements shall not exist arraySize
Semantics shall not exist Derivation from DiagnosticValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

SINT8_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is sint8 array.

Template Description

5

1067 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

DiagnosticDataElement.arraySizeSemantics:
This attribute controls the meaning of the value of the array size.

DiagnosticDataElement.maxNumberOfElements:
The existence of this attribute turns the data instance into an array of data. The attribute determines the size of the array in
terms of how many elements the array can take.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeSize, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeEncoding, DiagnosticExtract::CommonDiagnostics::DiagnosticDataElement.arraySizeSemantics, Diagnostic
Extract::CommonDiagnostics::DiagnosticDataElement.maxNumberOfElements, CommonStructure::Service
Needs::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = 2C baseTypeSize = 8 maxNumberOfElements exists and value is greater
than 0 (cf. TPS_DEXT_01001) arraySizeSemantics either does not exist or exists and is set to
ArraySizeSemanticsEnum.fixedSize (cf. TPS_DEXT_01001) Derivation from DiagnosticValue
Needs.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

UINT16 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is uint16.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, UTF-16 baseTypeSize = 16 maxNumberOfElements shall not exist
arraySizeSemantics shall not exist Derivation from DiagnosticValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

1068 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

UINT16_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is uint16 array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticDataElement.arraySizeSemantics:
This attribute controls the meaning of the value of the array size.

DiagnosticDataElement.maxNumberOfElements:
The existence of this attribute turns the data instance into an array of data. The attribute determines the size of the array in
terms of how many elements the array can take.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, DiagnosticExtract::CommonDiagnostics::DiagnosticDataElement.arraySizeSemantics, Diagnostic
Extract::CommonDiagnostics::DiagnosticDataElement.maxNumberOfElements, CommonStructure::Service
Needs::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, UTF-16 baseTypeSize = 16 maxNumberOfElements exists and value
is greater than 0 (cf. TPS_DEXT_01001) arraySizeSemantics either does not exist or exists and is
set to ArraySizeSemanticsEnum.fixedSize (cf. TPS_DEXT_01001) Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

UINT32 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is uint32.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
5

1069 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, UTF-32 baseTypeSize = 32 maxNumberOfElements shall not exist
arraySizeSemantics shall not exist Derivation from DiagnosticValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

UINT32_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is uint32 array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticDataElement.arraySizeSemantics:
This attribute controls the meaning of the value of the array size.

DiagnosticDataElement.maxNumberOfElements:
The existence of this attribute turns the data instance into an array of data. The attribute determines the size of the array in
terms of how many elements the array can take.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, DiagnosticExtract::CommonDiagnostics::DiagnosticDataElement.arraySizeSemantics, Diagnostic
Extract::CommonDiagnostics::DiagnosticDataElement.maxNumberOfElements, CommonStructure::Service
Needs::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, UTF-32 baseTypeSize = 32 maxNumberOfElements exists and value
is greater than 0 (cf. TPS_DEXT_01001) arraySizeSemantics either does not exist or exists and is
set to ArraySizeSemanticsEnum.fixedSize (cf. TPS_DEXT_01001) Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

UINT8 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is uint8.

5

1070 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

UINT8_DYN ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is uint8 array with dynamic length.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticDataElement.arraySizeSemantics:
This attribute controls the meaning of the value of the array size.

DiagnosticDataElement.maxNumberOfElements:
The existence of this attribute turns the data instance into an array of data. The attribute determines the size of the array in
terms of how many elements the array can take.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, DiagnosticExtract::CommonDiagnostics::DiagnosticDataElement.arraySizeSemantics, Diagnostic
Extract::CommonDiagnostics::DiagnosticDataElement.maxNumberOfElements, CommonStructure::Service
Needs::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements exists and value is greater than 0 (cf. TPS_DEXT_01002) arraySizeSemantics
exists and is set to ArraySizeSemanticsEnum.variableSize (cf. TPS_DEXT_01002) Derivation from
DiagnosticValueNeeds.fixedLength=0 possible.

full

Mapping Status ECUC Parameter ID

valid

1071 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataType

BSW Parameter BSW Type

UINT8_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is uint8 array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticDataElement.arraySizeSemantics:
This attribute controls the meaning of the value of the array size.

DiagnosticDataElement.maxNumberOfElements:
The existence of this attribute turns the data instance into an array of data. The attribute determines the size of the array in
terms of how many elements the array can take.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, DiagnosticExtract::CommonDiagnostics::DiagnosticDataElement.arraySizeSemantics, Diagnostic
Extract::CommonDiagnostics::DiagnosticDataElement.maxNumberOfElements, CommonStructure::Service
Needs::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements exists and value is greater than 0 (cf. TPS_DEXT_01001) arraySizeSemantics
either does not exist or exists and is set to ArraySizeSemanticsEnum.fixedSize (cf. TPS_
DEXT_01001) Derivation from DiagnosticValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData

BSW Parameter BSW Type

DcmDspDataUsePort ECUC-ENUMERATION-PARAM-DEF

BSW Description

Defines which interface shall be used to access the data.

Template Description

This attribute controls whether interaction requires the software-component to react synchronously on a request or whether it
processes the request in background but still the DCM has to issue the call again to eventually obtain the result of the request.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticValueNeeds.processingStyle

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00713]

1072 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataUsePort

BSW Parameter BSW Type

USE_DATA_ASYNCH_CLIENT_SERVER ECUC-ENUMERATION-LITERAL-DEF

BSW Description

The DCM will access the Data using an R-Port requiring a asynchronous ClientServertInterface DataServices_{Data}. The
R-Port is named DataServices_{Data} where {Data} is the name of the container DcmDspData.

Template Description

The software-component processes the request in background but still the Dcm has to issue the call again to eventually
obtain the result of the request.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticProcessingStyleEnum.processingStyleAsynchronous

Mapping Rule Mapping Type

DiagnosticServiceSwMapping is having a SwcServiceDependency and ServiceNeeds::Diagnostic
ProcessingStyleEnum is equal to processingStyleAsynchronous

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataUsePort

BSW Parameter BSW Type

USE_DATA_ASYNCH_CLIENT_SERVER_ERROR ECUC-ENUMERATION-LITERAL-DEF

BSW Description

The Dcm will access the Data using an R-Port requiring a asynchronous ClientServertInterface DataServices_{Data}. The
parameter ErrorCode can be returned to allow the application to trigger a negative response during the operation. The R-Port
is named DataServices_{Data} where {Data} is the name of the container DcmDspData.

Template Description

The software-component processes the request in background but still the Dcm has to issue the call again to eventually
obtain the result of the request or handle error code.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticProcessingStyleEnum.processingStyleAsynchronousWithError

Mapping Rule Mapping Type

DiagnosticServiceSwMapping is having a SwcServiceDependency and ServiceNeeds::Diagnostic
ProcessingStyleEnum is equal to processingStyleAsynchronousWithError

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataUsePort

BSW Parameter BSW Type

USE_DATA_SYNCH_CLIENT_SERVER ECUC-ENUMERATION-LITERAL-DEF

BSW Description

5

1073 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
The DCM will access the Data using an R-Port requiring a synchronous ClientServertInterface DataServices_{Data}. The
R-Port is named DataServices_{Data} where {Data} is the name of the container DcmDspData.

Template Description

The software-component is supposed to react synchronously on the request.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticProcessingStyleEnum.processingStyleSynchronous

Mapping Rule Mapping Type

DiagnosticServiceSwMapping is having a SwcServiceDependency and ServiceNeeds::Diagnostic
ProcessingStyleEnum is equal to processingStyleSynchronous

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDiagnosisScaling/DcmDspAlternativeData

Interface

BSW Parameter BSW Type

DcmDataElement ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a VariableDataPrototoype in a DataInterface.

The CompuMethod of the data type of the referenced VariableDataPrototype will be applied to the data type of the Variable
DataPrototype in the interface used by the Dcm.

Template Description

A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a VariableData
Prototype allocates "static" memory on the ECU. In some cases optimization strategies might lead to a situation where the
memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used executes.

M2 Parameter
SWComponentTemplate::Datatype::DataPrototypes::VariableDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00995]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDiagnosisScaling/DcmDspAlternativeData

Interface

BSW Parameter BSW Type

DcmPortInterfaceMapping ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Optional reference to PortInterfaceMapping which defines the mapping rules.

The PortInterfaceMapping is used to get the DataPrototypeMapping that describes a conversion between the data prototype
referenced by DcmDataElement and the data prototype referenced from DcmDspExternalSRDataElementClass.

Template Description

Specifies one PortInterfaceMapping to support the connection of Ports typed by two different PortInterfaces with PortInterface
elements having unequal names and/or unequal semantic (resolution or range).

5

1074 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
M2 Parameter
SWComponentTemplate::PortInterface::PortInterfaceMapping

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00996]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDiagnosisScaling/DcmDspAlternativeData

Type

BSW Parameter BSW Type

DcmApplicationDataType ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ApplicationDataType of category VALUE,
BOOLEAN or ARRAY.

The CompuMethod that applies to the referenced ApplicationDataType in case of category VALUE or BOOLEAN will be
applied to the data type of the VariableDataPrototype in the interface used by the Dcm.

Template Description

A primitive data type defines a set of allowed values.

M2 Parameter
SWComponentTemplate::Datatype::Datatypes::ApplicationPrimitiveDataType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00998]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidControl

BSW Parameter BSW Type

DcmDspDidFreezeCurrentState ECUC-BOOLEAN-PARAM-DEF

BSW Description

This indicates the presence of "FreezeCurrentState".

Template Description

DiagnosticIOControl.freezeCurrentState:
Setting this attribute to true represents the ability of the Dcm to execute a freezeCurrentState.

DiagnosticIoControlNeeds.freezeCurrentStateSupported:
This attribute determines, if the referenced port supports temporary freezing of I/O value.

M2 Parameter
DiagnosticExtract::Dcm::DiagnosticService::IOControl::DiagnosticIOControl.freezeCurrentState, Common
Structure::ServiceNeeds::DiagnosticIoControlNeeds.freezeCurrentStateSupported

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00624]

1075 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidControl

BSW Parameter BSW Type

DcmDspDidResetToDefault ECUC-BOOLEAN-PARAM-DEF

BSW Description

This indicates the presence of "ResetToDefault".

Template Description

DiagnosticIOControl.resetToDefault:
Setting this attribute to true represents the ability of the Dcm to execute a resetToDefault.

DiagnosticIoControlNeeds.resetToDefaultSupported:
This represents a flag for the existence of the ResetToDefault operation in the service interface.

M2 Parameter
DiagnosticExtract::Dcm::DiagnosticService::IOControl::DiagnosticIOControl.resetToDefault, CommonStructure::Service
Needs::DiagnosticIoControlNeeds.resetToDefaultSupported

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00623]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidControl

BSW Parameter BSW Type

DcmDspDidShortTermAdjustment ECUC-BOOLEAN-PARAM-DEF

BSW Description

This indicates the presence of "ShortTermAdjustment".

Template Description

DiagnosticIOControl.shortTermAdjustment:
Setting this attribute to true represents the ability of the Dcm to execute a shortTermAdjustment.

DiagnosticIoControlNeeds.shortTermAdjustmentSupported:
This attribute determines, if the referenced port supports temporarily setting of I/O value to a specific value provided by the
diagnostic tester.

M2 Parameter
DiagnosticExtract::Dcm::DiagnosticService::IOControl::DiagnosticIOControl.shortTermAdjustment, Common
Structure::ServiceNeeds::DiagnosticIoControlNeeds.shortTermAdjustmentSupported

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00625]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspMemoryTransfer

BSW Parameter BSW Type

DcmDspMemoryTransferUsePort ECUC-BOOLEAN-PARAM-DEF

5

1076 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Description

If this parameter is set to true, the Dcm uses a port requiring a PortInterface UploadDownload. If the parameter is false, the
DCM uses the according C-API callouts.

Template Description

This meta-class represents the ability to specify needs regarding upload and download by means of diagnostic services.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticUploadDownloadNeeds

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01133]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspPid/DcmDspPidData

BSW Parameter BSW Type

DcmDspPidDataByteSize ECUC-INTEGER-PARAM-DEF

BSW Description

Defines the array length in bytes or the the maximum array length for variable datalengths.

Template Description

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticDataElement.maxNumberOfElements:
The existence of this attribute turns the data instance into an array of data. The attribute determines the size of the array in
terms of how many elements the array can take.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeSize, DiagnosticExtract::CommonDiagnostics::DiagnosticData
Element.maxNumberOfElements

Mapping Rule Mapping Type

S/R via array: DcmDspPidDataByteSize= maxNumberOfElements * (baseTypeSize / 8) C/S of
FNC callback: DcmDspPidDataByteSize= maxNumberOfElements Note: 8 is the baseTypeSize of
UINT8

full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01108]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspPid/DcmDspPidData/DcmDspPidService01/DcmDsp

DiagnosisScaling/DcmDspAlternativeDataInterface

BSW Parameter BSW Type

DcmDataElement ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a VariableDataPrototoype in a DataInterface.

The CompuMethod of the data type of the referenced VariableDataPrototype will be applied to the data type of the Variable
DataPrototype in the interface used by the Dcm.

Template Description

5

1077 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a VariableData
Prototype allocates "static" memory on the ECU. In some cases optimization strategies might lead to a situation where the
memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used executes.

M2 Parameter
SWComponentTemplate::Datatype::DataPrototypes::VariableDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00995]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspPid/DcmDspPidData/DcmDspPidService01/DcmDsp

DiagnosisScaling/DcmDspAlternativeDataInterface

BSW Parameter BSW Type

DcmPortInterfaceMapping ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Optional reference to PortInterfaceMapping which defines the mapping rules.

The PortInterfaceMapping is used to get the DataPrototypeMapping that describes a conversion between the data prototype
referenced by DcmDataElement and the data prototype referenced from DcmDspExternalSRDataElementClass.

Template Description

Specifies one PortInterfaceMapping to support the connection of Ports typed by two different PortInterfaces with PortInterface
elements having unequal names and/or unequal semantic (resolution or range).

M2 Parameter
SWComponentTemplate::PortInterface::PortInterfaceMapping

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00996]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspPid/DcmDspPidData/DcmDspPidService01/DcmDsp

DiagnosisScaling/DcmDspAlternativeDataType

BSW Parameter BSW Type

DcmApplicationDataType ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ApplicationDataType of category VALUE,
BOOLEAN or ARRAY.

The CompuMethod that applies to the referenced ApplicationDataType in case of category VALUE or BOOLEAN will be
applied to the data type of the VariableDataPrototype in the interface used by the Dcm.

Template Description

A primitive data type defines a set of allowed values.

M2 Parameter
SWComponentTemplate::Datatype::Datatypes::ApplicationPrimitiveDataType

5

1078 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00998]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine

BSW Parameter BSW Type

DcmDspRequestRoutineResults ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

Provides the configuration of RequestResult subservice for RoutineControl service. Existence indicates that the Request
RoutineResults in the RoutineControl is supported.

Template Description

DiagnosticRoutine.requestResult:
This represents the ability to request the result of a running routine.

DiagnosticRoutineNeeds.diagRoutineType:
This denotes the type of diagnostic routine which is implemented by the referenced server port.

M2 Parameter
DiagnosticExtract::CommonDiagnostics::DiagnosticRoutine.requestResult, CommonStructure::ServiceNeeds::Diagnostic
RoutineNeeds.diagRoutineType

Mapping Rule Mapping Type

1:1 mapping for DiagnosticRoutine.requestResult OR DiagnosticRoutineNeeds.diagRoutineTyoe
== asynchronous

full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01023]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspRequestRoutineResults/DcmDspRequest

RoutineResultsIn/DcmDspRequestRoutineResultsInSignal/DcmDspArgumentScaling/DcmDsp
AlternativeArgumentData

BSW Parameter BSW Type

DcmDataElement ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ArgumentDataPrototype.

The CompuMethod of the data type of the referenced ArgumentDataPrototype will be applied to the data type of the
ArgumentDataPrototype in the interface used by the Dcm.

Template Description

An argument of an operation, much like a data element, but also carries direction information and is owned by a particular
ClientServerOperation.

M2 Parameter
SWComponentTemplate::PortInterface::ArgumentDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01056]

1079 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspRequestRoutineResults/DcmDspRequest

RoutineResultsIn/DcmDspRequestRoutineResultsInSignal/DcmDspArgumentScaling/DcmDsp
AlternativeDataType

BSW Parameter BSW Type

DcmApplicationDataType ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ApplicationDataType of category VALUE,
BOOLEAN or ARRAY.

The CompuMethod that applies to the referenced ApplicationDataType in case of category VALUE or BOOLEAN will be
applied to the data type of the VariableDataPrototype in the interface used by the Dcm.

Template Description

A primitive data type defines a set of allowed values.

M2 Parameter
SWComponentTemplate::Datatype::Datatypes::ApplicationPrimitiveDataType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00998]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspRequestRoutineResults/DcmDspRequest

RoutineResultsIn/DcmDspRequestRoutineResultsInSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

1080 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspRequestRoutineResults/DcmDspRequest

RoutineResultsIn/DcmDspRequestRoutineResultsInSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspRequestRoutineResults/DcmDspRequest

RoutineResultsOut/DcmDspRequestRoutineResultsOutSignal/DcmDspArgumentScaling/DcmDsp
AlternativeArgumentData

BSW Parameter BSW Type

DcmDataElement ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ArgumentDataPrototype.

The CompuMethod of the data type of the referenced ArgumentDataPrototype will be applied to the data type of the
ArgumentDataPrototype in the interface used by the Dcm.

Template Description

An argument of an operation, much like a data element, but also carries direction information and is owned by a particular
ClientServerOperation.

M2 Parameter
SWComponentTemplate::PortInterface::ArgumentDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01056]

1081 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspRequestRoutineResults/DcmDspRequest

RoutineResultsOut/DcmDspRequestRoutineResultsOutSignal/DcmDspArgumentScaling/DcmDsp
AlternativeDataType

BSW Parameter BSW Type

DcmApplicationDataType ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ApplicationDataType of category VALUE,
BOOLEAN or ARRAY.

The CompuMethod that applies to the referenced ApplicationDataType in case of category VALUE or BOOLEAN will be
applied to the data type of the VariableDataPrototype in the interface used by the Dcm.

Template Description

A primitive data type defines a set of allowed values.

M2 Parameter
SWComponentTemplate::Datatype::Datatypes::ApplicationPrimitiveDataType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00998]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspRequestRoutineResults/DcmDspRequest

RoutineResultsOut/DcmDspRequestRoutineResultsOutSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

1082 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspRequestRoutineResults/DcmDspRequest

RoutineResultsOut/DcmDspRequestRoutineResultsOutSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine

BSW Parameter BSW Type

DcmDspStartRoutine ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

Provides the configuration of Start subservice for RoutineControl service.

Template Description

DiagnosticRoutine.start:
This represents the ability to start a routine

DiagnosticRoutineNeeds:
Specifies the general needs on the configuration of the Diagnostic Communication Manager (Dcm) which are not related to a
particular item (e.g. a PID). The main use case is the mapping of service ports to the Dcm which are not related to a
particular item.

M2 Parameter
DiagnosticExtract::CommonDiagnostics::DiagnosticRoutine.start, CommonStructure::ServiceNeeds::
DiagnosticRoutineNeeds

Mapping Rule Mapping Type

A routine always comes with a start routine, independently of whether the execution is done
synchronously or asynchronously.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01021]

1083 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStartRoutine/DcmDspStartRoutineIn/Dcm

DspStartRoutineInSignal/DcmDspArgumentScaling/DcmDspAlternativeArgumentData

BSW Parameter BSW Type

DcmDataElement ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ArgumentDataPrototype.

The CompuMethod of the data type of the referenced ArgumentDataPrototype will be applied to the data type of the
ArgumentDataPrototype in the interface used by the Dcm.

Template Description

An argument of an operation, much like a data element, but also carries direction information and is owned by a particular
ClientServerOperation.

M2 Parameter
SWComponentTemplate::PortInterface::ArgumentDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01056]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStartRoutine/DcmDspStartRoutineIn/Dcm

DspStartRoutineInSignal/DcmDspArgumentScaling/DcmDspAlternativeDataType

BSW Parameter BSW Type

DcmApplicationDataType ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ApplicationDataType of category VALUE,
BOOLEAN or ARRAY.

The CompuMethod that applies to the referenced ApplicationDataType in case of category VALUE or BOOLEAN will be
applied to the data type of the VariableDataPrototype in the interface used by the Dcm.

Template Description

A primitive data type defines a set of allowed values.

M2 Parameter
SWComponentTemplate::Datatype::Datatypes::ApplicationPrimitiveDataType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00998]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStartRoutine/DcmDspStartRoutineIn/Dcm

DspStartRoutineInSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT ECUC-ENUMERATION-LITERAL-DEF
5

1084 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Description

Type of the data is float.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStartRoutine/DcmDspStartRoutineIn/Dcm

DspStartRoutineInSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

1085 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStartRoutine/DcmDspStartRoutineOut/

DcmDspStartRoutineOutSignal/DcmDspArgumentScaling/DcmDspAlternativeArgumentData

BSW Parameter BSW Type

DcmDataElement ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ArgumentDataPrototype.

The CompuMethod of the data type of the referenced ArgumentDataPrototype will be applied to the data type of the
ArgumentDataPrototype in the interface used by the Dcm.

Template Description

An argument of an operation, much like a data element, but also carries direction information and is owned by a particular
ClientServerOperation.

M2 Parameter
SWComponentTemplate::PortInterface::ArgumentDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01056]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStartRoutine/DcmDspStartRoutineOut/

DcmDspStartRoutineOutSignal/DcmDspArgumentScaling/DcmDspAlternativeDataType

BSW Parameter BSW Type

DcmApplicationDataType ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ApplicationDataType of category VALUE,
BOOLEAN or ARRAY.

The CompuMethod that applies to the referenced ApplicationDataType in case of category VALUE or BOOLEAN will be
applied to the data type of the VariableDataPrototype in the interface used by the Dcm.

Template Description

A primitive data type defines a set of allowed values.

M2 Parameter
SWComponentTemplate::Datatype::Datatypes::ApplicationPrimitiveDataType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00998]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStartRoutine/DcmDspStartRoutineOut/

DcmDspStartRoutineOutSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT ECUC-ENUMERATION-LITERAL-DEF
5

1086 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Description

Type of the data is float.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStartRoutine/DcmDspStartRoutineOut/

DcmDspStartRoutineOutSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

1087 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine

BSW Parameter BSW Type

DcmDspStopRoutine ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

Provides the configuration of Stop subservice for RoutineControl service. Existence indicates that the StopRoutine in the
RoutineControl is supported.

Template Description

DiagnosticRoutine.stop:
This represents the ability to stop a running routine.

DiagnosticRoutineNeeds.diagRoutineType:
This denotes the type of diagnostic routine which is implemented by the referenced server port.

M2 Parameter
DiagnosticExtract::CommonDiagnostics::DiagnosticRoutine.stop, CommonStructure::ServiceNeeds::DiagnosticRoutine
Needs.diagRoutineType

Mapping Rule Mapping Type

1:1 mapping for DiagnosticRoutine.stop OR DiagnosticRoutineNeeds.diagRoutineType ==
asynchronous

full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01022]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStopRoutine/DcmDspStopRoutineIn/Dcm

DspStopRoutineInSignal/DcmDspArgumentScaling/DcmDspAlternativeArgumentData

BSW Parameter BSW Type

DcmDataElement ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ArgumentDataPrototype.

The CompuMethod of the data type of the referenced ArgumentDataPrototype will be applied to the data type of the
ArgumentDataPrototype in the interface used by the Dcm.

Template Description

An argument of an operation, much like a data element, but also carries direction information and is owned by a particular
ClientServerOperation.

M2 Parameter
SWComponentTemplate::PortInterface::ArgumentDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01056]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStopRoutine/DcmDspStopRoutineIn/Dcm

DspStopRoutineInSignal/DcmDspArgumentScaling/DcmDspAlternativeDataType

5

1088 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Parameter BSW Type

DcmApplicationDataType ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ApplicationDataType of category VALUE,
BOOLEAN or ARRAY.

The CompuMethod that applies to the referenced ApplicationDataType in case of category VALUE or BOOLEAN will be
applied to the data type of the VariableDataPrototype in the interface used by the Dcm.

Template Description

A primitive data type defines a set of allowed values.

M2 Parameter
SWComponentTemplate::Datatype::Datatypes::ApplicationPrimitiveDataType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00998]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStopRoutine/DcmDspStopRoutineIn/Dcm

DspStopRoutineInSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStopRoutine/DcmDspStopRoutineIn/Dcm

DspStopRoutineInSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

5

1089 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
FLOAT_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStopRoutine/DcmDspStopRoutineOut/

DcmDspStopRoutineOutSignal/DcmDspArgumentScaling/DcmDspAlternativeArgumentData

BSW Parameter BSW Type

DcmDataElement ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ArgumentDataPrototype.

The CompuMethod of the data type of the referenced ArgumentDataPrototype will be applied to the data type of the
ArgumentDataPrototype in the interface used by the Dcm.

Template Description

An argument of an operation, much like a data element, but also carries direction information and is owned by a particular
ClientServerOperation.

M2 Parameter
SWComponentTemplate::PortInterface::ArgumentDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_01056]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStopRoutine/DcmDspStopRoutineOut/

DcmDspStopRoutineOutSignal/DcmDspArgumentScaling/DcmDspAlternativeDataType

BSW Parameter BSW Type

DcmApplicationDataType ECUC-FOREIGN-REFERENCE-DEF

5

1090 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Description

Alternative Diagnosis Representation for the data defined by the means of a ApplicationDataType of category VALUE,
BOOLEAN or ARRAY.

The CompuMethod that applies to the referenced ApplicationDataType in case of category VALUE or BOOLEAN will be
applied to the data type of the VariableDataPrototype in the interface used by the Dcm.

Template Description

A primitive data type defines a set of allowed values.

M2 Parameter
SWComponentTemplate::Datatype::Datatypes::ApplicationPrimitiveDataType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00998]

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStopRoutine/DcmDspStopRoutineOut/

DcmDspStopRoutineOutSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspStopRoutine/DcmDspStopRoutineOut/

DcmDspStopRoutineOutSignal/DcmDspRoutineSignalType

BSW Parameter BSW Type

FLOAT_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

5

1091 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Type of the data is float array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dcm Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity

BSW Parameter BSW Type

DcmDspSecurityRow ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

Definition of a single Row of configuration for security level configuration (per security level) The name of this container is
used to define the name of the R-Port through which the DCM accesses the interface SecurityAccess_{SecurityLevel}. The
R-Port is named SecurityAccess_{SecurityLevel} where {SecurityLevel} is the name of the container DcmDspSecurityRow. If
there is no reference, no check of security level shall be done.

Template Description

This meta-class represents the needs of a software-component to verify the access to security level via diagnostic services.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticsCommunicationSecurityNeeds

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dcm_00759]

G.6 Dem

BSW Module BSW Context
Dem Dem/DemConfigSet

BSW Parameter BSW Type

DemDebounceCounterBasedClass ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

5

1092 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
This container contains the configuration of Debounce Counter Based Class

Template Description

This meta-class represents the ability to indicate that the counter-based debounce algorithm shall be used by the DEM for
this diagnostic monitor.

This is related to set the ECUC choice container DemDebounceAlgorithmClass to DemDebounceCounterBased.

M2 Parameter
CommonStructure::ServiceNeeds::DiagEventDebounceCounterBased

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00881]

BSW Module BSW Context
Dem Dem/DemConfigSet/DemDebounceCounterBasedClass

BSW Parameter BSW Type

DemDebounceCounterJumpDown ECUC-BOOLEAN-PARAM-DEF

BSW Description

Switch for the activation of Jump-Down.

true: Jump-Down activated false: Jump-Down deactivated

Template Description

This value activates or deactivates the counter jump-down behavior.

M2 Parameter
CommonStructure::ServiceNeeds::DiagEventDebounceCounterBased.counterJumpDown

Mapping Rule Mapping Type

Shall be taken from DiagnosticExtract::DiagnosticCommonProps.debounceAlgorithm
Props.debounceAlgorithm.counterJumpDown. Applicable if DiagnosticExtract::DiagnosticCommon
Props.debounceAlgorithmProps.debounceAlgorithm is modeled by means of a DiagEvent
DebounceCounterBased.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00685]

BSW Module BSW Context
Dem Dem/DemConfigSet/DemDebounceCounterBasedClass

BSW Parameter BSW Type

DemDebounceCounterPassedThreshold ECUC-INTEGER-PARAM-DEF

BSW Description

Defines the value of the internal debounce counter, which indicates the passed status.

Template Description

This value defines the event-specific limit that indicates the "passed" counter status.

M2 Parameter
CommonStructure::ServiceNeeds::DiagEventDebounceCounterBased.counterPassedThreshold

Mapping Rule Mapping Type

5

1093 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Shall be taken from DiagnosticExtract::DiagnosticCommonProps.debounceAlgorithm
Props.debounceAlgorithm.counterPassedThreshold. Applicable if DiagnosticExtract::Diagnostic
CommonProps.debounceAlgorithmProps.debounceAlgorithm is modeled by means of a DiagEvent
DebounceCounterBased.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00636]

BSW Module BSW Context
Dem Dem/DemConfigSet/DemEventParameter

BSW Parameter BSW Type

DemDebounceAlgorithmClass ECUC-CHOICE-CONTAINER-DEF

BSW Description

Debounce algorithm class: counter based, time based, or monitor internal.

Template Description

This class represents the ability to specify the pre-debounce algorithm which is selected and/or required by the particular
monitor.

This class inherits from Identifiable in order to allow further documentation of the expected or implemented debouncing and to
use the category for the identification of the expected / implemented debouncing.

M2 Parameter
CommonStructure::ServiceNeeds::DiagEventDebounceAlgorithm

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00604]

BSW Module BSW Context
Dem Dem/DemConfigSet/DemEventParameter/DemDebounceAlgorithmClass

BSW Parameter BSW Type

DemDebounceCounterBased ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

This container contains the configuration (parameters) for counter based debouncing.

Template Description

This meta-class represents the ability to indicate that the counter-based debounce algorithm shall be used by the DEM for
this diagnostic monitor.

This is related to set the ECUC choice container DemDebounceAlgorithmClass to DemDebounceCounterBased.

M2 Parameter
CommonStructure::ServiceNeeds::DiagEventDebounceCounterBased

Mapping Rule Mapping Type

There are two ways to derive the existence of DemDebounceCounterBased: 1. DiagEvent
Needs,diagEventDebounceAlgoritm exists and is modeled as a DiagEventDebounceCounter
Based. 2. DiagnosticContributionSet.commonProperties.debounceAlgorithmProps.debounce
Algorithm exists and is modeled as a DiagEventDebounceCounterBased If both alternatives exist
at the same time then the definition ot DiagnosticContributionSet.commonProperties.debounce
AlgorithmProps.debounceAlgorithm shall be handled with priority.

full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00711]

1094 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Dem Dem/DemConfigSet/DemEventParameter/DemDebounceAlgorithmClass

BSW Parameter BSW Type

DemDebounceMonitorInternal ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

This container contains the configuration (parameters) for monitor internal debouncing.

Template Description

"This meta-class represents the ability to indicate that no Dem pre-debounce algorithm shall be used for this diagnostic
monitor. The SWC might implement an internal debouncing algorithm and report qualified (debounced) results to the Dem/
DM.
M2 Parameter
CommonStructure::ServiceNeeds::DiagEventDebounceMonitorInternal

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00712]

BSW Module BSW Context
Dem Dem/DemConfigSet/DemEventParameter/DemDebounceAlgorithmClass

BSW Parameter BSW Type

DemDebounceTimeBase ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

This container contains the configuration (parameters) for time based debouncing.

Template Description

This meta-class represents the ability to indicate that the time-based pre-debounce algorithm shall be used by the Dem for
this diagnostic monitor.

This is related to set the EcuC choice container DemDebounceAlgorithmClass to DemDebounceTimeBase.

M2 Parameter
CommonStructure::ServiceNeeds::DiagEventDebounceTimeBased

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00713]

BSW Module BSW Context
Dem Dem/DemConfigSet/DemEventParameter

BSW Parameter BSW Type

DemFFPrestorageInNvm ECUC-BOOLEAN-PARAM-DEF

BSW Description

If the event uses a pre-stored freeze-frame this attribute indicates if the event requires the pre-stored data to be stored in
non-volatile memory. TRUE = store the pre-stored data in non-volatile memory, FALSE = pre-stored data is not stored in
non-volatile memory.

5

1095 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Template Description

DiagnosticEventNeeds.prestoredFreezeframeStoredInNvm:
If the Event uses a prestored freeze-frame (using the operations PrestoreFreezeFrame and ClearPrestoredFreezeFrame of
the service interface DiagnosticMonitor) this attribute indicates if the Event requires the data to be stored in non-volatile
memory. TRUE = Dem shall store the prestored data in non-volatile memory, FALSE = Data can be lost at shutdown (not
stored in Nvm).

DiagnosticEvent.prestoredFreezeframeStoredInNvm:
If the Event uses a prestored freeze-frame (using the operations PrestoreFreezeFrame and ClearPrestoredFreezeFrame of
the service interface DiagnosticMonitor) this attribute indicates if the Event requires the data to be stored in non-volatile
memory. TRUE = Dem shall store the prestored data in non-volatile memory, FALSE = Data can be lost at shutdown (not
stored in Nvm)

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticEventNeeds.prestoredFreezeframeStoredInNvm, Diagnostic
Extract::Dem::DiagnosticEvent::DiagnosticEvent.prestoredFreezeframeStoredInNvm

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00948]

BSW Module BSW Context
Dem Dem/DemGeneral/DemDataElementClass/DemExternalCSDataElementClass/DemDataElement

DataType

BSW Parameter BSW Type

FLOAT ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dem Dem/DemGeneral/DemDataElementClass/DemExternalCSDataElementClass/DemDataElement

DataType

5

1096 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Parameter BSW Type

FLOAT_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dem Dem/DemGeneral/DemDataElementClass/DemExternalCSDataElementClass

BSW Parameter BSW Type

DemDataElementProvideMonitorData ECUC-BOOLEAN-PARAM-DEF

BSW Description

If the parameter is set to True, the generated function call to retrieve the data element has the monitorData0 as additional first
parameter.

Template Description

This attribute defines whether additional monitor data shall be added to the reporting of events.

M2 Parameter
CommonStructure::ServiceNeeds::DiagnosticEventNeeds.usesMonitorData

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00951]

BSW Module BSW Context
Dem Dem/DemGeneral/DemDataElementClass/DemExternalSRDataElementClass/DemDataElement

DataType

BSW Parameter BSW Type

FLOAT ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float.

5

1097 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dem Dem/DemGeneral/DemDataElementClass/DemExternalSRDataElementClass/DemDataElement

DataType

BSW Parameter BSW Type

FLOAT_N ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Type of the data is float array.

Template Description

BaseTypeDirectDefinition.baseTypeEncoding:
This specifies, how an object of the current BaseType is encoded, e.g. in an ECU within a message sequence.

BaseTypeDirectDefinition.baseTypeSize:
Describes the length of the data type specified in the container in bits.

DiagnosticValueNeeds.fixedLength:
This attribute is applicable only if the DiagnosticValueNeeds is aggregated within a BswModuleDependency.

This attribute controls whether the data length of the data is fixed.

M2 Parameter
AsamHdo::BaseTypes::BaseTypeDirectDefinition.baseTypeEncoding, AsamHdo::BaseTypes::BaseTypeDirectDefinition.
baseTypeSize, CommonStructure::ServiceNeeds::DiagnosticValueNeeds.fixedLength

Mapping Rule Mapping Type

baseTypeEncoding = NONE, WINDOWS-1252, UTF-8, BCD-P, BCD-UP baseTypeSize = 8 max
NumberOfElements shall not exist arraySizeSemantics shall not exist Derivation from Diagnostic
ValueNeeds.fixedLength=1 possible.

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
Dem Dem/DemGeneral/DemDataElementClass/DemExternalSRDataElementClass/DemDiagnosis

Scaling/DemAlternativeDataInterface

5

1098 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Parameter BSW Type

DemDataElement ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Alternative Diagnosis Representation for the data defined by the means of a VariableDataPrototoype in a DataInterface.

The CompuMethod of the data type of the referenced VariableDataPrototype will be applied to the data type of the Variable
DataPrototype in the interface used by the Dem.

Template Description

A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a VariableData
Prototype allocates "static" memory on the ECU. In some cases optimization strategies might lead to a situation where the
memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used executes.

M2 Parameter
SWComponentTemplate::Datatype::DataPrototypes::VariableDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00845]

BSW Module BSW Context
Dem Dem/DemGeneral/DemDataElementClass/DemExternalSRDataElementClass/DemDiagnosis

Scaling/DemAlternativeDataInterface

BSW Parameter BSW Type

DemPortInterfaceMapping ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Optional reference to PortInterfaceMapping which defines the mapping rules.

The PortInterfaceMapping is used to get the DataPrototypeMapping that describes a conversion between the data prototype
referenced by DemDataElement and the data prototype referenced from DcmDspExternalSRDataElementClass.

Template Description

Specifies one PortInterfaceMapping to support the connection of Ports typed by two different PortInterfaces with PortInterface
elements having unequal names and/or unequal semantic (resolution or range).

M2 Parameter
SWComponentTemplate::PortInterface::PortInterfaceMapping

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00846]

BSW Module BSW Context
Dem Dem/DemGeneral/DemDataElementClass/DemExternalSRDataElementClass/DemDiagnosis

Scaling/DemAlternativeDataType

BSW Parameter BSW Type

DemApplicationDataType ECUC-FOREIGN-REFERENCE-DEF

BSW Description

5

1099 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Alternative Diagnosis Representation for the data defined by the means of a ApplicationDataType of category VALUE,
BOOLEAN or ARRAY.

The CompuMethod that applies to the referenced ApplicationDataType in case of category VALUE or BOOLEAN will be
applied to the data type of the VariableDataPrototype in the interface used by the Dem.

Template Description

A primitive data type defines a set of allowed values.

M2 Parameter
SWComponentTemplate::Datatype::Datatypes::ApplicationPrimitiveDataType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Dem_00848]

G.7 BswM

BSW Module BSW Context
BswM BswM/BswMConfig/BswMArbitration/BswMModeCondition/BswMConditionValue/BswMCompu

ScaleModeValue

BSW Parameter BSW Type

BswMCompuMethodRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This is a foreign reference to the CompuMethod used for mode requests.

Template Description

This meta-class represents the ability to express the relationship between a physical value and the mathematical
representation.

Note that this is still independent of the technical implementation in data types. It only specifies the formula how the internal
value corresponds to its physical pendant.

M2 Parameter
AsamHdo::ComputationMethod::CompuMethod

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_01040]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMArbitration/BswMModeCondition/BswMConditionValue/BswMMode

Declaration

BSW Parameter BSW Type

BswMModeValueRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This is a foreign reference to the Mode Declaration used for the mode requests corresponding to this condition.

Template Description

Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.

5

1100 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
M2 Parameter
CommonStructure::ModeDeclaration::ModeDeclaration

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_00864]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMArbitration/BswMModeRequestPort/BswMModeInitValue/BswMCompu

ScaleModeValue

BSW Parameter BSW Type

BswMCompuMethodRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This is a foreign reference to the CompuMethod used for mode requests.

Template Description

This meta-class represents the ability to express the relationship between a physical value and the mathematical
representation.

Note that this is still independent of the technical implementation in data types. It only specifies the formula how the internal
value corresponds to its physical pendant.

M2 Parameter
AsamHdo::ComputationMethod::CompuMethod

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_01040]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMArbitration/BswMModeRequestPort/BswMModeRequestSource/Bsw

MBswModeNotification

BSW Parameter BSW Type

BswMBswModeDeclarationGroupPrototypeRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This is a foreign reference to the Mode Declaration Group Prototype.

Template Description

The ModeDeclarationGroupPrototype specifies a set of Modes (ModeDeclarationGroup) which is provided or required in the
given context.

M2 Parameter
CommonStructure::ModeDeclaration::ModeDeclarationGroupPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_00927]

1101 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
BswM BswM/BswMConfig/BswMArbitration/BswMModeRequestPort/BswMModeRequestSource/Bsw

MSwcModeNotification

BSW Parameter BSW Type

BswMSwcModeNotificationModeDeclarationGroupPrototype
Ref

ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This is a foreign reference to the ModeDeclarationGroupPrototype.

Template Description

The ModeDeclarationGroupPrototype specifies a set of Modes (ModeDeclarationGroup) which is provided or required in the
given context.

M2 Parameter
CommonStructure::ModeDeclaration::ModeDeclarationGroupPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_00893]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMArbitration/BswMModeRequestPort/BswMModeRequestSource/Bsw

MSwcModeRequest

BSW Parameter BSW Type

BswMSwcModeRequestVariableDataPrototypeRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This is a reference to the VariableDataPrototype.

Template Description

A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a VariableData
Prototype allocates "static" memory on the ECU. In some cases optimization strategies might lead to a situation where the
memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used executes.

M2 Parameter
SWComponentTemplate::Datatype::DataPrototypes::VariableDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_01046]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMDataTypeMappingSets

BSW Parameter BSW Type

BswMDataTypeMappingSetRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to DataTypeMappingSet.

5

1102 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Template Description

This class represents a list of mappings between ApplicationDataTypes and ImplementationDataTypes. In addition, it can
contain mappings between ImplementationDataTypes and ModeDeclarationGroups.

M2 Parameter
SWComponentTemplate::Datatype::Datatypes::DataTypeMappingSet

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_00937]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMModeControl/BswMAction/BswMAvailableActions/BswMRteMode

Request

BSW Parameter BSW Type

BswMRequestedModeRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This is a foreign reference to the Mode Declaration used for the mode request

Template Description

Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.

M2 Parameter
CommonStructure::ModeDeclaration::ModeDeclaration

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_01024]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMModeControl/BswMAction/BswMAvailableActions/BswMRteSwitch

BSW Parameter BSW Type

BswMSwitchedMode ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This parameter contains the integer value that corresponds to a certain mode in a Mode Declaration Group.

Template Description

Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.

M2 Parameter
CommonStructure::ModeDeclaration::ModeDeclaration

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_00896]

1103 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
BswM BswM/BswMConfig/BswMModeControl/BswMAction/BswMAvailableActions/BswMSchMSwitch

BSW Parameter BSW Type

BswMSchMSwitchedMode ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This parameter contains the integer value that corresponds to a certain mode in a Mode Declaration Group.

Template Description

Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.

M2 Parameter
CommonStructure::ModeDeclaration::ModeDeclaration

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_00901]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMModeControl/BswMRteModeRequestPort

BSW Parameter BSW Type

BswMRteModeRequestPortInterfaceRef ECUC-INSTANCE-REFERENCE-DEF

BSW Description

This is an instance reference to the variable data prototype used for the mode request.

Template Description

A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a VariableData
Prototype allocates "static" memory on the ECU. In some cases optimization strategies might lead to a situation where the
memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used executes.

M2 Parameter
SWComponentTemplate::Datatype::DataPrototypes::VariableDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_01025]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMModeControl/BswMRteModeRequestPort

BSW Parameter BSW Type

BswMRteModeRequestVariableDataPrototypeSRRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This is a foreign reference to a VariableDataPrototype used for the mode request.

Template Description

5

1104 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a VariableData
Prototype allocates "static" memory on the ECU. In some cases optimization strategies might lead to a situation where the
memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used executes.

M2 Parameter
SWComponentTemplate::Datatype::DataPrototypes::VariableDataPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_01057]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMModeControl/BswMSwitchPort

BSW Parameter BSW Type

BswMModeSwitchInterfaceRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the ModeSwitchInterface from which the BswM will generate a PPortPrototype.

Template Description

A mode switch interface declares a ModeDeclarationGroupPrototype to be sent and received.

M2 Parameter
SWComponentTemplate::PortInterface::ModeSwitchInterface

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_00951]

BSW Module BSW Context
BswM BswM/BswMConfig/BswMModeControl/BswMSwitchPort

BSW Parameter BSW Type

BswMSchMModeDeclarationGroupRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the ModeDeclarationGroup from which the BswM will generate a ModeDeclarationGroupPrototype.

Template Description

A collection of Mode Declarations. Also, the initial mode is explicitly identified.

M2 Parameter
CommonStructure::ModeDeclaration::ModeDeclarationGroup

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_BswM_01031]

1105 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

G.8 MemMap

BSW Module BSW Context
MemMap MemMap/MemMapAllocation/MemMapGenericMapping

BSW Parameter BSW Type

MemMapSwAddressMethodRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the SwAddrMethod which applies to the MemMapGenericMapping.

Template Description

Used to assign a common addressing method, e.g. common memory section, to data or code objects. These objects could
actually live in different modules or components.

M2 Parameter
DataDictionary::AuxillaryObjects::SwAddrMethod

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_MemMap_-
00013]

BSW Module BSW Context
MemMap MemMap/MemMapAllocation/MemMapSectionSpecificMapping

BSW Parameter BSW Type

MemMapMemorySectionRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the MemorySection which applies to the MemMapSectionSpecificMapping.

Template Description

Provides a description of an abstract memory section used in the Implementation for code or data. It shall be declared by the
Implementation Description of the module or component, which actually allocates the memory in its code. This means in case
of data prototypes which are allocated by the RTE, that the generated Implementation Description of the RTE shall contain
the corresponding MemorySections.

The attribute "symbol" (if symbol is missing: "shortName") defines the module or component specific section name used in
the code. For details see the document "Specification of Memory Mapping". Typically the section name is build according the
pattern:

<SwAddrMethod shortName>[_<further specialization nominator>][_<alignment>]

where

• [<SwAddrMethod shortName>] is the shortName of the referenced SwAddrMethod

• [_<further specialization nominator>] is an optional infix to indicate the specialization in the case that several
MemorySections for different purpose of the same Implementation Description referring to the same or equally
named SwAddrMethods.

• [_<alignment>] is the alignment attributes value and is only applicable in the case that the memoryAllocation
KeywordPolicy value of the referenced SwAddrMethod is set to addrMethodShortNameAndAlignment

MemorySection used to Implement the code of RunnableEntitys and BswSchedulableEntitys shall have a symbol (if missing:
shortName) identical to the referred SwAddrMethod to conform to the generated RTE header files.

In addition to the section name described above, a prefix is used in the corresponding macro code in order to define a name
space. This prefix is by default given by the shortName of the BswModuleDescription resp. the SwComponentType. It can be
superseded by the prefix attribute.

M2 Parameter
5

1106 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
CommonStructure::ResourceConsumption::MemorySectionUsage::MemorySection

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_MemMap_-
00016]

G.9 RTE

BSW Module BSW Context
Rte Rte/RteImplicitCommunication

BSW Parameter BSW Type

RteVariableReadAccessRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the VariableAccess in the dataReadAccess role.

Template Description

The presence of a VariableAccess implies that a RunnableEntity needs access to a VariableDataPrototype.

The kind of access is specified by the role in which the class is used.

M2 Parameter
SWComponentTemplate::SwcInternalBehavior::DataElements::VariableAccess

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09035]

BSW Module BSW Context
Rte Rte/RteImplicitCommunication

BSW Parameter BSW Type

RteVariableWriteAccessRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the VariableAccess in the dataWriteAccess role.

Template Description

The presence of a VariableAccess implies that a RunnableEntity needs access to a VariableDataPrototype.

The kind of access is specified by the role in which the class is used.

M2 Parameter
SWComponentTemplate::SwcInternalBehavior::DataElements::VariableAccess

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09036]

1107 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
Rte Rte/RteOsInteraction/RteModeToScheduleTableMapping/RteModeSchtblMapBsw

BSW Parameter BSW Type

RteModeSchtblMapBswProvidedModeGroupRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to an instance of a ModeDeclarationGroupPrototype of a Bsw-Module.

Template Description

The ModeDeclarationGroupPrototype specifies a set of Modes (ModeDeclarationGroup) which is provided or required in the
given context.

M2 Parameter
CommonStructure::ModeDeclaration::ModeDeclarationGroupPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09053]

BSW Module BSW Context
Rte Rte/RteOsInteraction/RteModeToScheduleTableMapping

BSW Parameter BSW Type

RteModeSchtblMapModeDeclarationRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the ModeDeclarations.

Template Description

Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.

M2 Parameter
CommonStructure::ModeDeclaration::ModeDeclaration

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09054]

BSW Module BSW Context
Rte Rte/RteOsInteraction/RteModeToScheduleTableMapping/RteModeSchtblMapSwc

BSW Parameter BSW Type

RteModeSchtblMapSwcPortRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the PPortPrototype of a SwComponentPrototype.

Template Description

Component port providing a certain port interface.

M2 Parameter
SWComponentTemplate::Components::PPortPrototype

5

1108 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09057]

BSW Module BSW Context
Rte Rte/RteSwComponentInstance/RteEventToIsrMapping

BSW Parameter BSW Type

RteIsrEventRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the description of the ExternalTriggerOccurredEvent or TimingEvent which is pointing to the RunnableEntity
being mapped. This allows a fine grained mapping of RunnableEntites based on the activating RTEEvent.

Template Description

Abstract base class for all RTE-related events
M2 Parameter
SWComponentTemplate::SwcInternalBehavior::RTEEvents::RTEEvent

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09153]

BSW Module BSW Context
Rte Rte/RteSwComponentInstance/RteEventToTaskMapping

BSW Parameter BSW Type

RteActivationOffset ECUC-FLOAT-PARAM-DEF

BSW Description

Activation offset in seconds.

Template Description

The value makes an assumption about the time offset of the first activation of the RunnableEntity triggered by the mapped
TimingEvent relative to the periodic activation of the time base of this TimingEvent. Unit: second.

M2 Parameter
SWComponentTemplate::SwcInternalBehavior::RTEEvents::TimingEvent.offset

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09018]

BSW Module BSW Context
Rte Rte/RteSwComponentInstance/RteEventToTaskMapping

BSW Parameter BSW Type

RteEventRef ECUC-FOREIGN-REFERENCE-DEF
5

1109 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Description

Reference to the description of the RTEEvent which is pointing to the RunnableEntity being mapped. This allows a fine
grained mapping of RunnableEntites based on the activating RTEEvent.

Template Description

Abstract base class for all RTE-related events
M2 Parameter
SWComponentTemplate::SwcInternalBehavior::RTEEvents::RTEEvent

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09019]

BSW Module BSW Context
Rte Rte/RteSwComponentInstance/RteExclusiveAreaImplementation

BSW Parameter BSW Type

RteExclusiveAreaRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the ExclusiveArea.

Template Description

Prevents an executable entity running in the area from being preempted.

M2 Parameter
CommonStructure::InternalBehavior::ExclusiveArea

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09032]

BSW Module BSW Context
Rte Rte/RteSwComponentInstance/RteInternalTriggerConfig

BSW Parameter BSW Type

RteSwcTriggerSourceRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to an InternalTriggeringPoint of the related component instance.

The referenced InternalTriggeringPoint has to belong to the same software component instance as the RteSwComponent
Instance owning this parameter configures.

Template Description

If a RunnableEntity owns an InternalTriggeringPoint it is entitled to trigger the execution of RunnableEntities of the
corresponding software-component.

M2 Parameter
SWComponentTemplate::SwcInternalBehavior::Trigger::InternalTriggeringPoint

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

5

1110 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
valid [ECUC_Rte_09097]

BSW Module BSW Context
Rte Rte/RteSwComponentInstance/RteNvRamAllocation

BSW Parameter BSW Type

RteSwNvBlockDescriptorRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the NvBlockDescriptor in case the RTE needs to call the NvM directly (e.g. for the supportDirtyFlag feature,
storeCyclic feature, server invocation for NV data management or mode switch based invocation NvM services).

Template Description

Specifies the properties of exactly on NVRAM Block.

M2 Parameter
SWComponentTemplate::NvBlockComponent::NvBlockDescriptor

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09132]

BSW Module BSW Context
Rte Rte/RteSwComponentInstance/RteNvRamAllocation

BSW Parameter BSW Type

RteSwNvRamMappingRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the SwSeriveDependency which is used to specify the NvBlockNeeds.

Template Description

Specialization of ServiceDependency in the context of an SwcInternalBehavior. It allows to associate ports, port groups and
(in special cases) data defined for an atomic software component to a given ServiceNeeds element.

M2 Parameter
SWComponentTemplate::SwcInternalBehavior::ServiceMapping::SwcServiceDependency

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09044]

BSW Module BSW Context
Rte Rte/RteSwComponentInstance

BSW Parameter BSW Type

RteSoftwareComponentInstanceRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to a SwComponentPrototype.

Template Description

5

1111 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Role of a software component within a composition.

M2 Parameter
SWComponentTemplate::Composition::SwComponentPrototype

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09004]

BSW Module BSW Context
Rte Rte/RteSwComponentType/RteComponentTypeCalibration

BSW Parameter BSW Type

RteCalibrationSwAddrMethodRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the SwAddrMethod for which software calibration support shall be enabled.

Template Description

Used to assign a common addressing method, e.g. common memory section, to data or code objects. These objects could
actually live in different modules or components.

M2 Parameter
DataDictionary::AuxillaryObjects::SwAddrMethod

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09038]

BSW Module BSW Context
Rte Rte/RteSwComponentType

BSW Parameter BSW Type

RteComponentTypeRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to either AtomicSwComponentType or ParameterSwComponentType.

Template Description

Base class for AUTOSAR software components.

M2 Parameter
SWComponentTemplate::Components::SwComponentType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09003]

BSW Module BSW Context
Rte Rte/RteSwComponentType

5

1112 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BSW Parameter BSW Type

RteImplementationRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

The Implementation which shall be assigned to the SwComponentType.

Template Description

This meta-class represents a specialization of the general Implementation meta-class with respect to the usage in application
software.
M2 Parameter
SWComponentTemplate::SwcImplementation::SwcImplementation

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Rte_09028]

G.10 ECUC

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/MetaDataType

BSW Parameter BSW Type

MetaDataItem ECUC-PARAM-CONF-CONTAINER-DEF

BSW Description

The content of meta data in a Pdu consists of an ordered list of meta data items. This container represents a meta data item
that is contained in meta data of a Pdu.

Template Description

This meta-class represents a single meta-data item.

M2 Parameter
SWComponentTemplate::PortInterface::MetaDataItem

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_EcuC_00074]

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/MetaDataType/MetaDataItem

BSW Parameter BSW Type

MetaDataItemLength ECUC-INTEGER-PARAM-DEF

BSW Description

This parameter defines the length of a meta data item in bytes.

Template Description

This attribute determines the length of the MetaDataItem at run-time.

M2 Parameter
SWComponentTemplate::PortInterface::MetaDataItem.length

5

1113 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_EcuC_00075]

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/MetaDataType/MetaDataItem/MetaDataItemType

BSW Parameter BSW Type

ADDRESS_EXTENSION_8 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Address extension field (N_AE) of the mixed addressing modes with 11bit and 29bit CAN ID of ISO 15765-2. Size: 8 bits.

Template Description

This aggregation contributes the specification of the concrete meta-data item type.

M2 Parameter
SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType

Mapping Rule Mapping Type

SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType == ADDRESS_
EXTENSION_16

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/MetaDataType/MetaDataItem/MetaDataItemType

BSW Parameter BSW Type

CAN_ID_32 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

CAN ID according to ISO 11898-2, either 29 bits or 11 bits. Encoding according to Can_IdType. Size: 32 bits.

Template Description

This aggregation contributes the specification of the concrete meta-data item type.

M2 Parameter
SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType

Mapping Rule Mapping Type

SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType == CAN_ID_32 full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/MetaDataType/MetaDataItem/MetaDataItemType

BSW Parameter BSW Type

ETHERNET_MAC_64 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

5

1114 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Ethernet MAC address. Size: 64 bits.

Template Description

This aggregation contributes the specification of the concrete meta-data item type.

M2 Parameter
SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType

Mapping Rule Mapping Type

SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType == ETHERNET_
MAC_64

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/MetaDataType/MetaDataItem/MetaDataItemType

BSW Parameter BSW Type

LIN_NAD_8 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

LIN node address as used in the LIN transport protocol. Size: 8 bits.

Template Description

This aggregation contributes the specification of the concrete meta-data item type.

M2 Parameter
SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType

Mapping Rule Mapping Type

SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType == LIN_NAD_8 full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/MetaDataType/MetaDataItem/MetaDataItemType

BSW Parameter BSW Type

PRIORITY_8 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Priority field of SAE J1939 IDs, or Ethernet QoS parameter. Size: 8 bits.

Template Description

This aggregation contributes the specification of the concrete meta-data item type.

M2 Parameter
SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType

Mapping Rule Mapping Type

SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType == PRIORITY_8 full

Mapping Status ECUC Parameter ID

valid

1115 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/MetaDataType/MetaDataItem/MetaDataItemType

BSW Parameter BSW Type

SOCKET_CONNECTION_ID_16 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

SoAd socket connection ID. Size: 16 bits.

Template Description

This aggregation contributes the specification of the concrete meta-data item type.

M2 Parameter
SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType

Mapping Rule Mapping Type

SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType == SOCKET_
CONNECTION_ID_16

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/MetaDataType/MetaDataItem/MetaDataItemType

BSW Parameter BSW Type

SOURCE_ADDRESS_16 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Source address of CanTp, FrTp, or DoIP transport protocol messages, or of SAE J1939 messages. Size: 16 bits.

Template Description

This aggregation contributes the specification of the concrete meta-data item type.

M2 Parameter
SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType

Mapping Rule Mapping Type

SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType == SOURCE_
ADDRESS_16

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/MetaDataType/MetaDataItem/MetaDataItemType

BSW Parameter BSW Type

TARGET_ADDRESS_16 ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Target address of CanTp, FrTp, or DoIP transport protocol messages, or destination address of SAE J1939 messages. Size:
16 bits.

Template Description

This aggregation contributes the specification of the concrete meta-data item type.

M2 Parameter
5

1116 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType

Mapping Rule Mapping Type

SWComponentTemplate::PortInterface::MetaDataItem.metaDataItemType == TARGET_
ADDRESS_16

full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
EcuC EcuC/EcucConfigSet/EcucPduCollection/Pdu

BSW Parameter BSW Type

MetaDataTypeRef ECUC-REFERENCE-DEF

BSW Description

Reference to meta data that is transported in the Pdu through the AUTOSAR layers.

Template Description

VariableDataPrototype:
A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a VariableData
Prototype allocates "static" memory on the ECU. In some cases optimization strategies might lead to a situation where the
memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used executes.

SenderReceiverToSignalMapping:
Mapping of a sender receiver communication data element to a signal.

SystemSignal:
The system signal represents the communication system’s view of data exchanged between SW components which reside
on different ECUs. The system signals allow to represent this communication in a flattened structure, with exactly one system
signal defined for each data element prototype sent and received by connected SW component instances.

ISignal:
Signal of the Interaction Layer. The RTE supports a "signal fan-out" where the same System Signal is sent in different Signal
IPdus to multiple receivers.

To support the RTE "signal fan-out" each SignalIPdu contains ISignals. If the same System Signal is to be mapped into
several SignalIPdus there is one ISignal needed for each ISignalToIPduMapping.

ISignals describe the Interface between the Precompile configured RTE and the potentially Postbuild configured Com Stack
(see ECUC Parameter Mapping).

In case of the SystemSignalGroup an ISignal shall be created for each SystemSignal contained in the SystemSignalGroup.

ISignalIPdu:
Represents the IPdus handled by Com. The ISignalIPdu assembled and disassembled in AUTOSAR COM consists of one or
more signals. In case no multiplexing is performed this IPdu is routed to/from the Interface Layer.

A maximum of one dynamic length signal per IPdu is allowed.

M2 Parameter
SWComponentTemplate::Datatype::DataPrototypes::VariableDataPrototype, SystemTemplate::DataMapping::
SenderReceiverToSignalMapping, SystemTemplate::Fibex::FibexCore::CoreCommunication::SystemSignal, System
Template::Fibex::FibexCore::CoreCommunication::ISignal, SystemTemplate::Fibex::FibexCore::CoreCommunication::
ISignalIPdu

Mapping Rule Mapping Type

A MetaDataTypeRef shall be derived for a given Pdu if a MetaDataItemSet exists that refers to a
VariablePrototype that is also referenced from a SenderReceiverToSignalMapping that in turn
references a SystemSignal that is referenced by a ISignal that is mapped to an ISignalIPdu that is
derived to the mentioned Pdu in EcuC.

full

Mapping Status ECUC Parameter ID

valid [ECUC_EcuC_00077]

1117 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

BSW Module BSW Context
EcuC EcuC/EcucPartitionCollection/EcucPartition

BSW Parameter BSW Type

EcucPartitionSoftwareComponentInstanceRef ECUC-INSTANCE-REFERENCE-DEF

BSW Description

References the SW Component instances from the Ecu Extract that shall be executed in this partition.

Template Description

M2 Parameter
SystemTemplate::SWmapping::SwcToEcuMapping.partition

Mapping Rule Mapping Type

The EcucPartitionSoftwareComponentInstanceRef is derived from an SwcToEcuMapping which
references an EcuPartition and one or several SwComponentPrototypes. For each SwComponent
Prototype that is referenced by the SwcToEcuMapping in the component role an EcucPartition
SoftwareComponentInstanceRef shall be created that refers to the same SwComponentPrototype
as the the SwcToEcuMapping.

full

Mapping Status ECUC Parameter ID

valid [ECUC_EcuC_00036]

BSW Module BSW Context
EcuC EcuC/EcucUnitGroupAssignment

BSW Parameter BSW Type

EcucUnitGroupRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Optional reference to the UnitGroup to support the generation of ASAM MCD file. These UnitGroups are selecting a set of
units for a specific country.

Template Description

This meta-class represents the ability to specify a logical grouping of units.The category denotes the unit system that the
referenced units are associated to.

In this way, e.g. country-specific unit systems (CATEGORY="COUNTRY") can be defined as well as specific unit systems for
certain application domains.

In the same way a group of equivalent units, can be defined which are used in different countries, by setting
CATEGORY="EQUIV_UNITS". KmPerHour and MilesPerHour could such be combined to one group named "vehicle_speed".
The unit MeterPerSec would not belong to this group because it is normally not used for vehicle speed. But all of the
mentioned units could be combined to one group named "speed".

Note that the UnitGroup does not ensure the physical compliance of the units. This is maintained by the physical dimension.

M2 Parameter
AsamHdo::Units::UnitGroup

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_EcuC_00062]

1118 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

G.11 OS

BSW Module BSW Context
Os Os/OsIoc/OsIocCommunication/OsIocDataProperties

BSW Parameter BSW Type

OsIocDataTypeRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

This is the type of the data to be transferred on the IOC communication channel. This attribute is necessary to generate the
parameter type of the Ioc functions. Additionally this information should be used to compute the data size for necessary data
copy operations within the Ioc module.

If more than one attribute is defined, the IOC generator should generate an IocXxxGroup function (Xxx= CHOICE [Send,
Receive, Write, Read]).

N:1 or N:M communication (Multiplicity of OsIocSenderProperties > 1) is only allowed for multiplicity of OsIocDataTypeRef = 1

Template Description

Describes a reusable data type on the implementation level. This will typically correspond to a typedef in C-code.

M2 Parameter
CommonStructure::ImplementationDataTypes::ImplementationDataType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Os_01005]

BSW Module BSW Context
Os Os/OsIoc/OsIocCommunication/OsIocDataProperties

BSW Parameter BSW Type

OsMemoryMappingCodeLocationRef ECUC-FOREIGN-REFERENCE-DEF

BSW Description

Reference to the memory mapping containing details about the section where the IOC buffer is placed.

Template Description

Describes a reusable data type on the implementation level. This will typically correspond to a typedef in C-code.

M2 Parameter
CommonStructure::ImplementationDataTypes::ImplementationDataType

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid [ECUC_Os_00405]

G.12 SecOC

BSW Module BSW Context
SecOC SecOC/SecOCRxPduProcessing/SecOCClientServerVerificationStatusPropagationMode

BSW Parameter BSW Type

5

1119 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
BOTH ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Both "TRUE" and "FALSE" AuthenticationStatus is propagated to SW-C

Template Description

Verification attempts that came out "false" or "true" shall be forwarded to the application software.

M2 Parameter
CommonStructure::ServiceNeeds::VerificationStatusIndicationModeEnum.failureAndSuccess

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid

BSW Module BSW Context
SecOC SecOC/SecOCRxPduProcessing/SecOCClientServerVerificationStatusPropagationMode

BSW Parameter BSW Type

FAILURE_ONLY ECUC-ENUMERATION-LITERAL-DEF

BSW Description

Only "FALSE" Authentication Status is propagated to SW-C

Template Description

Only verification attempts that came out "false" shall be forwarded to the application software.

M2 Parameter
CommonStructure::ServiceNeeds::VerificationStatusIndicationModeEnum.failureOnly

Mapping Rule Mapping Type

1:1 mapping full

Mapping Status ECUC Parameter ID

valid

1120 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

H Splitable Elements in the Scope of this Document

This chapter contains a table of all model elements stereotyped �atpSplitable�
in the scope of this document.

Each entry in the table consists of the identification of the specific model element itself
and the applicable value of the tagged value atp.Splitkey.

For more information about the concept of splitable model elements and how these
shall be treated please refer to [11].

Name of splitable element Splitkey

AdminData.sdg sdg, sdg.variationPoint.shortLabel

ARPackage.arPackage arPackage.shortName, arPackage.variation
Point.shortLabel

ARPackage.element element.shortName, element.definition,
element.variationPoint.shortLabel

ARPackage.referenceBase referenceBase.shortLabel

AtomicSwComponentType.internalBehavior internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel

AtomicSwComponentType.symbolProps symbolProps.shortName

CompositionSwComponentType.component component.shortName, component.variation
Point.shortLabel

CompositionSwComponentType.connector connector.shortName, connector.variationPoint.short
Label

CompositionSwComponentType.constantValueMapping constantValueMapping

CompositionSwComponentType.dataTypeMapping dataTypeMapping

CompositionSwComponentType.instantiationRTEEventProps instantiationRTEEventProps.shortLabel,
instantiationRTEEventProps.variationPoint.short
Label

ConsistencyNeeds.dpgDoesNotRequireCoherency dpgDoesNotRequireCoherency.shortName, dpg
DoesNotRequireCoherency.variationPoint.short
Label

ConsistencyNeeds.dpgRequiresCoherency dpgRequiresCoherency.shortName, dpgRequires
Coherency.variationPoint.shortLabel

ConsistencyNeeds.regDoesNotRequireStability regDoesNotRequireStability.shortName, regDoes
NotRequireStability.variationPoint.shortLabel

ConsistencyNeeds.regRequiresStability regRequiresStability.shortName, regRequires
Stability.variationPoint.shortLabel

Describable.adminData adminData

EndToEndProtection.endToEndProfile endToEndProfile

EndToEndProtection.endToEndProtectionISignalIPdu endToEndProtectionISignalIPdu, endToEnd
ProtectionISignalIPdu.variationPoint.shortLabel

EndToEndProtection.endToEndProtectionVariablePrototype endToEndProtectionVariablePrototype.shortLabel,
endToEndProtectionVariablePrototype.variation
Point.shortLabel

EndToEndProtectionSet.endToEndProtection endToEndProtection.shortName, endToEnd
Protection.variationPoint.shortLabel

Identifiable.adminData adminData

Implementation.mcSupport mcSupport

Implementation.resourceConsumption resourceConsumption.shortName

ImplementationDataType.symbolProps symbolProps.shortName

InternalBehavior.constantMemory constantMemory.shortName, constant
Memory.variationPoint.shortLabel

5

1121 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Name of splitable element Splitkey

InternalBehavior.constantValueMapping constantValueMapping

InternalBehavior.dataTypeMapping dataTypeMapping

InternalBehavior.exclusiveArea exclusiveArea.shortName, exclusiveArea.variation
Point.shortLabel

InternalBehavior.exclusiveAreaNestingOrder exclusiveAreaNestingOrder.shortName, exclusive
AreaNestingOrder.variationPoint.shortLabel

InternalBehavior.staticMemory staticMemory.shortName, staticMemory.variation
Point.shortLabel

NvBlockDescriptor.constantValueMapping constantValueMapping

NvBlockDescriptor.dataTypeMapping dataTypeMapping

NvBlockDescriptor.modeSwitchEventTriggeredActivity modeSwitchEventTriggeredActivity, modeSwitch
EventTriggeredActivity.variationPoint.shortLabel

NvBlockSwComponentType.bulkNvDataDescriptor bulkNvDataDescriptor.shortName, bulkNvData
Descriptor.variationPoint.shortLabel

NvBlockSwComponentType.nvBlockDescriptor nvBlockDescriptor.shortName, nvBlock
Descriptor.variationPoint.shortLabel

ParameterSwComponentType.constantMapping constantMapping

ParameterSwComponentType.dataTypeMapping dataTypeMapping

RapidPrototypingScenario.rptContainer rptContainer.shortName, rptContainer.variation
Point.shortLabel

RapidPrototypingScenario.rptProfile rptProfile.shortName

RapidPrototypingScenario.rptSystem rptSystem

RptContainer.byPassPoint byPassPoint.contextElement, byPassPoint.target, by
PassPoint.variationPoint.shortLabel

RptContainer.explicitRptProfileSelection explicitRptProfileSelection

RptContainer.rptContainer rptContainer.shortName, rptContainer.variation
Point.shortLabel

RptContainer.rptHook rptHook, rptHook.variationPoint.shortLabel

RTEEvent.disabledMode disabledMode.contextPort, disabledMode.context
ModeDeclarationGroupPrototype, disabled
Mode.targetModeDeclaration

RunnableEntity.asynchronousServerCallResultPoint asynchronousServerCallResultPoint.shortName,
asynchronousServerCallResultPoint.variation
Point.shortLabel

RunnableEntity.dataReadAccess dataReadAccess.shortName, dataRead
Access.variationPoint.shortLabel

RunnableEntity.dataReceivePointByArgument dataReceivePointByArgument.shortName, data
ReceivePointByArgument.variationPoint.shortLabel

RunnableEntity.dataReceivePointByValue dataReceivePointByValue.shortName, dataReceive
PointByValue.variationPoint.shortLabel

RunnableEntity.dataSendPoint dataSendPoint.shortName, dataSendPoint.variation
Point.shortLabel

RunnableEntity.dataWriteAccess dataWriteAccess.shortName, dataWrite
Access.variationPoint.shortLabel

RunnableEntity.externalTriggeringPoint externalTriggeringPoint.ident.shortName, external
TriggeringPoint.variationPoint.shortLabel

RunnableEntity.internalTriggeringPoint internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel

RunnableEntity.modeAccessPoint modeAccessPoint.ident.shortName, modeAccess
Point.variationPoint.shortLabel

RunnableEntity.modeSwitchPoint modeSwitchPoint.shortName, modeSwitch
Point.variationPoint.shortLabel

5

1122 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Name of splitable element Splitkey

RunnableEntity.parameterAccess parameterAccess.shortName, parameter
Access.variationPoint.shortLabel

RunnableEntity.readLocalVariable readLocalVariable.shortName, readLocal
Variable.variationPoint.shortLabel

RunnableEntity.serverCallPoint serverCallPoint.shortName, serverCallPoint.variation
Point.shortLabel

RunnableEntity.writtenLocalVariable writtenLocalVariable.shortName, writtenLocal
Variable.variationPoint.shortLabel

SwcInternalBehavior.arTypedPerInstanceMemory arTypedPerInstanceMemory.shortName, arTypedPer
InstanceMemory.variationPoint.shortLabel

SwcInternalBehavior.event event.shortName, event.variationPoint.shortLabel

SwcInternalBehavior.exclusiveAreaPolicy exclusiveAreaPolicy, exclusiveAreaPolicy.variation
Point.shortLabel

SwcInternalBehavior.explicitInterRunnableVariable explicitInterRunnableVariable.shortName, explicit
InterRunnableVariable.variationPoint.shortLabel

SwcInternalBehavior.implicitInterRunnableVariable implicitInterRunnableVariable.shortName, implicit
InterRunnableVariable.variationPoint.shortLabel

SwcInternalBehavior.includedDataTypeSet includedDataTypeSet

SwcInternalBehavior.includedModeDeclarationGroupSet includedModeDeclarationGroupSet

SwcInternalBehavior.instantiationDataDefProps instantiationDataDefProps, instantiationDataDef
Props.variationPoint.shortLabel

SwcInternalBehavior.perInstanceMemory perInstanceMemory.shortName, perInstance
Memory.variationPoint.shortLabel

SwcInternalBehavior.perInstanceParameter perInstanceParameter.shortName, perInstance
Parameter.variationPoint.shortLabel

SwcInternalBehavior.portAPIOption portAPIOption, portAPIOption.variationPoint.short
Label

SwcInternalBehavior.runnable runnable.shortName, runnable.variationPoint.short
Label

SwcInternalBehavior.serviceDependency serviceDependency.shortName, service
Dependency.variationPoint.shortLabel

SwcInternalBehavior.sharedParameter sharedParameter.shortName, shared
Parameter.variationPoint.shortLabel

SwcInternalBehavior.variationPointProxy variationPointProxy.shortName

SwComponentType.consistencyNeeds consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel

SwComponentType.port port.shortName, port.variationPoint.shortLabel

SwComponentType.swComponentDocumentation swComponentDocumentation, swComponent
Documentation.variationPoint.shortLabel

SwcServiceDependency.assignedPort assignedPort, assignedPort.variationPoint.short
Label

Table H.1: Usage of splitable elements

1123 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

I Variation Points in the Scope of this Document

This chapter contains a table of all model elements stereotyped �atpVariation�
in the scope of this document.

Each entry in the table consists of the identification of the model element itself and the
applicable value of the tagged value vh.latestBindingTime.

For more information about the concept of variation points and how model elements
that contain variation points shall be treated please refer to [11].

Variation Point Latest Binding Time

ApplicationArrayElement.maxNumberOfElements preCompileTime

ApplicationRecordDataType.element preCompileTime

ARPackage.arPackage blueprintDerivationTime

ARPackage.element systemDesignTime

ArrayValueSpecification.element preCompileTime

AtomicSwComponentType.internalBehavior preCompileTime

BulkNvDataDescriptor.nvBlockDataMapping preCompileTime

CalibrationParameterValueSet.calibrationParameterValue preCompileTime

ClientServerInterface.operation blueprintDerivationTime

ClientServerOperation.argument blueprintDerivationTime

CompositionSwComponentType.component postBuild

CompositionSwComponentType.connector postBuild

CompositionSwComponentType.instantiationRTEEventProps codeGenerationTime

CompuConstFormulaContent.vf codeGenerationTime

CompuNominatorDenominator.v preCompileTime

CompuScale.lowerLimit preCompileTime

CompuScale.upperLimit preCompileTime

CompuScales.compuScale blueprintDerivationTime

ConsistencyNeeds.dpgDoesNotRequireCoherency preCompileTime

ConsistencyNeeds.dpgRequiresCoherency preCompileTime

ConsistencyNeeds.regDoesNotRequireStability preCompileTime

ConsistencyNeeds.regRequiresStability preCompileTime

DataPrototypeGroup.dataPrototypeGroup preCompileTime

DataPrototypeGroup.implicitDataAccess preCompileTime

DiagEventDebounceCounterBased.counterDecrementStepSize preCompileTime

DiagEventDebounceCounterBased.counterFailedThreshold preCompileTime

DiagEventDebounceCounterBased.counterIncrementStepSize preCompileTime

DiagEventDebounceCounterBased.counterJumpDown preCompileTime

DiagEventDebounceCounterBased.counterJumpDownValue preCompileTime

DiagEventDebounceCounterBased.counterJumpUp preCompileTime

DiagEventDebounceCounterBased.counterJumpUpValue preCompileTime

DiagEventDebounceCounterBased.counterPassedThreshold preCompileTime

DiagEventDebounceTimeBased.timeBasedFdcThresholdStorageValue preCompileTime

DiagEventDebounceTimeBased.timeFailedThreshold preCompileTime

DiagEventDebounceTimeBased.timePassedThreshold preCompileTime

5

1124 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Variation Point Latest Binding Time

EndToEndProtection.endToEndProtectionISignalIPdu preCompileTime

EndToEndProtection.endToEndProtectionVariablePrototype preCompileTime

EndToEndProtectionSet.endToEndProtection preCompileTime

ErrorTracerNeeds.tracedFailure preCompileTime

ExecutableEntity.canEnter preCompileTime

ExecutableEntity.runsInside preCompileTime

Implementation.buildActionManifest codeGenerationTime

Implementation.generatedArtifact preCompileTime

Implementation.requiredArtifact preCompileTime

Implementation.requiredGeneratorTool preCompileTime

ImplementationDataType.subElement preCompileTime

ImplementationDataTypeElement.arraySize preCompileTime

ImplementationDataTypeElement.subElement preCompileTime

InternalBehavior.constantMemory preCompileTime

InternalBehavior.exclusiveArea preCompileTime

InternalBehavior.exclusiveAreaNestingOrder preCompileTime

InternalBehavior.staticMemory preCompileTime

InternalConstrs.lowerLimit preCompileTime

InternalConstrs.upperLimit preCompileTime

ModeDeclarationGroup.modeDeclaration blueprintDerivationTime

NumericalOrText.vf preCompileTime

NumericalValueSpecification.value preCompileTime

NvBlockDescriptor.clientServerPort preCompileTime

NvBlockDescriptor.instantiationDataDefProps preCompileTime

NvBlockDescriptor.modeSwitchEventTriggeredActivity preCompileTime

NvBlockDescriptor.nvBlockDataMapping preCompileTime

NvBlockSwComponentType.bulkNvDataDescriptor preCompileTime

NvBlockSwComponentType.nvBlockDescriptor preCompileTime

ParameterSwComponentType.instantiationDataDefProps preCompileTime

PerInstanceMemorySize.size preCompileTime

PhysConstrs.lowerLimit preCompileTime

PhysConstrs.upperLimit preCompileTime

PortGroup.outerPort preCompileTime

PortInterfaceMappingSet.portInterfaceMapping blueprintDerivationTime

RapidPrototypingScenario.rptContainer preCompileTime

ReceiverComSpec.maxDeltaCounterInit preCompileTime

ReceiverComSpec.usesEndToEndProtection preCompileTime

RecordValueSpecification.field preCompileTime

RptContainer.byPassPoint preCompileTime

RptContainer.rptContainer preCompileTime

RptContainer.rptHook preCompileTime

RuleArguments.vf preCompileTime

RuleArguments.vtf preCompileTime

RuleBasedValueSpecification.arguments preCompileTime

RunnableEntity.asynchronousServerCallResultPoint preCompileTime

5

1125 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Variation Point Latest Binding Time

RunnableEntity.dataReadAccess preCompileTime

RunnableEntity.dataReceivePointByArgument preCompileTime

RunnableEntity.dataReceivePointByValue preCompileTime

RunnableEntity.dataSendPoint preCompileTime

RunnableEntity.dataWriteAccess preCompileTime

RunnableEntity.externalTriggeringPoint preCompileTime

RunnableEntity.internalTriggeringPoint preCompileTime

RunnableEntity.modeAccessPoint preCompileTime

RunnableEntity.modeSwitchPoint preCompileTime

RunnableEntity.parameterAccess preCompileTime

RunnableEntity.readLocalVariable preCompileTime

RunnableEntity.serverCallPoint preCompileTime

RunnableEntity.writtenLocalVariable preCompileTime

RunnableEntityGroup.runnableEntity preCompileTime

RunnableEntityGroup.runnableEntityGroup preCompileTime

ScaleConstr.lowerLimit preCompileTime

ScaleConstr.upperLimit preCompileTime

SenderComSpec.usesEndToEndProtection preCompileTime

ServiceDependency.assignedDataType preCompileTime

SubElementMapping.firstElement preCompileTime

SubElementMapping.secondElement preCompileTime

SupervisedEntityNeeds.checkpoints preCompileTime

SwAxisIndividual.swMaxAxisPoints preCompileTime

SwAxisIndividual.swMinAxisPoints preCompileTime

SwcBswMapping.runnableMapping preCompileTime

SwcBswMapping.synchronizedModeGroup preCompileTime

SwcBswMapping.synchronizedTrigger preCompileTime

SwcImplementation.perInstanceMemorySize preCompileTime

SwcInternalBehavior.arTypedPerInstanceMemory preCompileTime

SwcInternalBehavior.event preCompileTime

SwcInternalBehavior.exclusiveAreaPolicy preCompileTime

SwcInternalBehavior.explicitInterRunnableVariable preCompileTime

SwcInternalBehavior.implicitInterRunnableVariable preCompileTime

SwcInternalBehavior.instantiationDataDefProps preCompileTime

SwcInternalBehavior.perInstanceMemory preCompileTime

SwcInternalBehavior.perInstanceParameter preCompileTime

SwcInternalBehavior.portAPIOption preCompileTime

SwcInternalBehavior.runnable preCompileTime

SwcInternalBehavior.serviceDependency preCompileTime

SwcInternalBehavior.sharedParameter preCompileTime

SwComponentDocumentation.chapter postBuild

SwComponentType.consistencyNeeds preCompileTime

SwComponentType.port preCompileTime

SwComponentType.portGroup preCompileTime

SwComponentType.swComponentDocumentation preCompileTime

5

1126 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

Software Component Template
AUTOSAR CP R21-11

4
Variation Point Latest Binding Time

SwcServiceDependency.assignedData preCompileTime

SwcServiceDependency.assignedPort preCompileTime

SwDataDefProps codeGenerationTime

SwDataDefProps.swValueBlockSize preCompileTime

SwDataDefProps.swValueBlockSizeMult preCompileTime

SwGenericAxisParam.vf preCompileTime

SwTextProps.swMaxTextSize preCompileTime

SwValues.vf preCompileTime

SwValues.vtf preCompileTime

TextTableMapping.bitfieldTextTableMaskFirst preCompileTime

TextTableMapping.bitfieldTextTableMaskSecond preCompileTime

TextTableValuePair.firstValue preCompileTime

TextTableValuePair.secondValue preCompileTime

ValueList.vf preCompileTime

Table I.1: Usage of variation points

1127 of 1127 Document ID 62: AUTOSAR_TPS_SoftwareComponentTemplate

	1 Introduction
	1.1 Overview
	1.2 Scope
	1.3 Organization of the Meta-Model
	1.4 Structure of the Template
	1.4.1 Description of Software Components on VFB Level
	1.4.2 Description of Software Components on RTE Level
	1.4.3 Descriptions of Software Components on Implementation Level

	1.5 Abbreviations
	1.6 Document Conventions
	1.7 Imposition Times of Constraints
	1.8 Requirements Tracing

	2 Conceptual Aspects
	2.1 Introduction
	2.2 Measurement and Calibration
	2.2.1 Basic Approach of Measurement and Calibration
	2.2.2 Calibration Parameters Overview
	2.2.3 Using Calibration Parameters
	2.2.3.1 Sharing Calibration Parameters within Compositions
	2.2.3.2 Sharing Calibration Parameters between SwComponentPrototypes of the Same SwComponentType
	2.2.3.3 Providing Instance Individual Characteristic Data

	2.3 Runtime and Data Consistency Aspects
	2.3.1 Background: the Issues
	2.3.1.1 Mutual Exclusion with Semaphores
	2.3.1.2 Interrupt Disabling
	2.3.1.3 Priority Ceiling
	2.3.1.4 Implicit Communication by Means of Variable Copies

	2.3.2 Data Consistency at Runtime
	2.3.3 Modeling Aspects of Data Consistency

	2.4 Variant Handling in the Software Component Template
	2.5 Communication Specification of Composition Component Types
	2.5.1 Rationale

	2.6 PRPortPrototype
	2.6.1 Use Case 1
	2.6.2 Use Case 2
	2.6.3 Use Case 3
	2.6.4 Solution

	2.7 Variable-size Array Data Types
	2.7.1 Overview and Use cases
	2.7.1.1 ``Old-world'' dynamic-size Arrays
	2.7.1.2 ``New-world'' variable-size Arrays

	2.7.2 Modeling Aspects regarding Application Data Types
	2.7.3 Modeling Aspects regarding Implementation Data Types

	2.8 Optional Elements in Structures
	2.8.1 Background

	3 Overview: Software Components, Ports, and Interfaces
	3.1 Introduction
	3.2 Software Component
	3.2.1 Overview
	3.2.2 PortPrototype
	3.2.3 AtomicSwComponentType
	3.2.4 ParameterSwComponentType
	3.2.5 Symbolic Name of a Software-Component

	3.3 Composition
	3.3.1 Overview
	3.3.2 SwComponentPrototype
	3.3.3 Connectors
	3.3.4 Instantiation-specific RTEEvents

	3.4 Port Interface

	4 Details: Software Components, Ports, and Interfaces
	4.1 Introduction
	4.2 Port Interface Details
	4.2.1 Introduction
	4.2.2 Sender Receiver Communication
	4.2.2.1 Sender Receiver Interface
	4.2.2.2 Meta-data on the Application Software Level

	4.2.3 Client Server Communication
	4.2.3.1 Client Server Interface
	4.2.3.2 Error Handling in Client/Server Communication

	4.2.4 External Trigger Event Communication
	4.2.5 Communication of Modes
	4.2.6 Parameter Communication

	4.3 PortInterface Mapping and Data Scaling
	4.3.1 PortInterface Mapping
	4.3.1.1 Mapping of Sender Receiver Interface, Parameter Interface and Non Volatile Data Interface Elements
	4.3.1.2 Mapping of Client Server Interface Elements
	4.3.1.3 Mapping of Mode Interface Elements
	4.3.1.4 Mapping of Trigger Interface Elements
	4.3.1.5 Mapping of Elements of a composite Data Type

	4.3.2 Data Conversion
	4.3.2.1 Linear Data Scaling
	4.3.2.2 Table Conversion

	4.3.3 Relevance for Data Transformation

	4.4 Port Annotation
	4.4.1 Introduction
	4.4.2 SenderReceiverAnnotation
	4.4.3 ClientServerAnnotation
	4.4.4 Annotation for the I/O Hardware Abstraction Layer
	4.4.5 Parameter Port Annotation
	4.4.6 Mode Port Annotation
	4.4.7 Trigger Port Annotation
	4.4.8 Non Volatile Data Port Annotation
	4.4.9 Delegated Port Annotations
	4.4.10 General Annotation

	4.5 Communication Specification
	4.5.1 Communication Specification for Sender-Receiver Communication
	4.5.1.1 Receiver ComSpec
	4.5.1.2 Sender ComSpec
	4.5.1.3 Data Filter
	4.5.1.4 Communication between Application and NV Block Software Components
	4.5.1.5 Communication behavior to be implemented by the Software Component

	4.5.2 Communication Specification for Client-Server Communication
	4.5.2.1 Client ComSpec
	4.5.2.2 Server ComSpec

	4.5.3 Communication Specification for Mode Switch Communication
	4.5.3.1 Mode Switch Sender ComSpec
	4.5.3.2 Mode Switch Receiver ComSpec

	4.5.4 Communication Specification for Parameters
	4.5.5 Communication Specification for NV Data
	4.5.5.1 NV Require ComSpec
	4.5.5.2 NV Provide ComSpec

	4.5.6 Configuration of Data Transformation

	4.6 Port Groups within Component Types
	4.7 End to End Protection
	4.8 Partial Networking
	4.8.1 VFC Control Ports
	4.8.2 VFC Status Ports

	4.9 Formal Definition of implicit Communication Behavior
	4.9.1 Consistency Needs on Receiver Side
	4.9.2 Consistency Needs on Sender Side
	4.9.3 Consistency Needs for Senders and receivers of the same Data inside on RunnableEntityGroup

	5 Data Description
	5.1 Introduction
	5.2 Data Types
	5.2.1 Overview
	5.2.2 Data Type Mapping
	5.2.3 Data Categories
	5.2.4 Application Data Type
	5.2.4.1 Application Primitive Data Types
	5.2.4.2 Application Composite Data Types

	5.2.5 Implementation Data Type
	5.2.5.1 Overview
	5.2.5.2 Modeling of Type Reference using Implementation Data Type
	5.2.5.3 Modeling of Structure using Implementation Data Type
	5.2.5.4 Modeling of Union using Implementation Data Type
	5.2.5.5 Modeling of Array using Implementation Data Type
	5.2.5.6 Modeling of Pointer using Implementation Data Type

	5.2.6 Base Type
	5.2.7 Data Type Terminology
	5.2.7.1 Primitive Type
	5.2.7.2 Compound Primitive Data Type
	5.2.7.3 Integral Primitive Type
	5.2.7.4 Variable-Size Array Data Type
	5.2.7.5 Wrapped Union Data Type
	5.2.7.6 Optional Element Structure

	5.3 Data Prototypes
	5.3.1 Overview
	5.3.2 Data Constraints for DataPrototypes typed by Array DataTypes
	5.3.3 Reference to Data Prototypes
	5.3.3.1 AUTOSAR Variable Ref
	5.3.3.2 AUTOSAR Parameter Ref
	5.3.3.3 Modeling Approach
	5.3.3.4 Access into VariableDataPrototype typed by an ImplementationDataType
	5.3.3.5 Access into ParameterDataPrototype typed by an ImplementationDataType

	5.4 Properties of Data Definitions
	5.4.1 Overview
	5.4.2 Invalid Value
	5.4.3 Properties for Measurement
	5.4.4 Properties of Curves and Maps
	5.4.4.1 Specification of grouped Axes
	5.4.4.2 Specification of fix Axes

	5.4.5 Setting an Axis Input Value
	5.4.6 Setting a Group Axis
	5.4.7 Specifying Data Dependencies
	5.4.8 Precedence of data properties with respect to data elements, axis elements, computation methods, units

	5.5 Elements used in Properties of Data Definitions
	5.5.1 Computation Methods
	5.5.1.1 Category Values in the context of a CompuMethod
	5.5.1.2 Applicability of Attributes in the context of a CompuMethod
	5.5.1.3 CompuMethod and AutosarDataType
	5.5.1.4 Example for Enumeration
	5.5.1.5 Example for Linear Conversion
	5.5.1.6 Example for Linear Conversion with texttable
	5.5.1.7 Example for conversion specified by a rational function
	5.5.1.8 Example for BITFIELD_TEXTTABLE

	5.5.2 Physical Units, Physical Dimensions and Unit Groups
	5.5.3 Data Constraints
	5.5.3.1 Physical Limits

	5.5.4 Addressing Methods
	5.5.5 Record Layouts
	5.5.5.1 Specifying Record Layouts
	5.5.5.2 RecordLayouts and DataTypes
	5.5.5.3 Record Layouts and Interpolation Routines

	5.5.6 Display Presentation

	5.6 Specification of Constant Values
	5.6.1 Overview
	5.6.2 Reference to Constant
	5.6.3 Values for Variable-Size Array
	5.6.4 Values for Compound Primitive Data Types
	5.6.5 Values for BITFIELD_TEXTTABLE
	5.6.6 Specification of Values based on Rules
	5.6.6.1 Support for primitive Data Types
	5.6.6.2 Support for composite Data Types
	5.6.6.3 Support for compound primitive Data Types

	5.6.7 Examples
	5.6.7.1 Example for Constant Specification for CURVE
	5.6.7.2 Example for Constant Specification for MAP
	5.6.7.3 Example for Constant Specification for MAP with two STD_AXIS
	5.6.7.4 Example for Constant Specification for COM_AXIS
	5.6.7.5 Example for Constant Specification for an Array of compound primitive Objects

	5.7 Initial Values
	5.7.1 Overview
	5.7.2 Initial Value Representation
	5.7.3 Constant Specification Mapping
	5.7.4 Initial Values For CalibrationParameters
	5.7.5 Initial Value for optional Element
	5.7.5.1 Initial Value for optional ApplicationRecordElement
	5.7.5.2 Initial Value for optional ImplementationDataTypeElement

	6 Compatibility
	6.1 Introduction
	6.2 Compatibility of Data Types
	6.2.1 ApplicationDataType
	6.2.1.1 ApplicationPrimitiveDataType
	6.2.1.2 ApplicationCompositeDataType

	6.2.2 ImplementationDataType
	6.2.3 Compatibility of SwBaseType
	6.2.4 Compatibility of SwDataDefProps
	6.2.4.1 Compatibility of Units
	6.2.4.2 Compatibility of PhysicalDimensions
	6.2.4.3 Compatibility of Data Constraints
	6.2.4.4 Compatibility in case of ImplementationDataType
	6.2.4.5 Compatibility of CompuMethods
	6.2.4.6 Compatibility of Record Layouts

	6.2.5 Compatibility of ApplicationDataType and ImplementationDataType

	6.3 Compatibility of Variable Data Prototypes and Parameter Data Prototypes
	6.4 Compatibility of Sender Receiver Interfaces, Parameter Interfaces and Non Volatile Data Interfaces
	6.4.1 Connection of Required and Provided Port via AssemblySwConnector
	6.4.2 Connection of Inner and Outer Port via DelegationSwConnector
	6.4.3 Connection of Required and Provided Port via PassThroughSwConnector
	6.4.4 Compatibility of ParameterDataPrototype and VariableDataPrototype depending on PortInterface Type

	6.5 Compatibility of Mode Switch Interfaces
	6.5.1 Connection of Required and Provided Port via AssemblySwConnector
	6.5.2 Connection of Inner and Outer Port via DelegationSwConnector
	6.5.3 Connection of Outer and Outer Port via PassThroughSwConnector

	6.6 Compatibility of Mode Declaration Group Prototypes
	6.7 Compatibility of Mode Declaration Groups
	6.8 Compatibility of Argument Prototypes
	6.9 Compatibility of Application Errors
	6.10 Compatibility of Client/Server Operations
	6.11 Compatibility of Client Server Interfaces
	6.11.1 Connection of Required and Provided Port via AssemblySwConnector
	6.11.2 Connection of Inner and Outer Port via DelegationSwConnector
	6.11.3 Connection of Outer and Outer Port via PassThroughSwConnector

	6.12 Compatibility of Trigger Interfaces
	6.12.1 Connection of Required and Provided Port via AssemblySwConnector
	6.12.2 Connection of Inner and Outer Port via DelegationSwConnector
	6.12.3 Connection of Outer and Outer Port via PassThroughSwConnector

	6.13 Compatibility of Trigger
	6.14 Entire Delegation of a Provided Port Prototype
	6.14.1 Split and Merge of PortInterface Elements

	6.15 Compatibility in Case of a Flat ECU Extract
	6.16 Compatibility Examples
	6.16.1 Compatibility on Assembly Level
	6.16.1.1 Legal Use
	6.16.1.2 Illegal Use

	6.16.2 Compatibility on Delegation Level
	6.16.2.1 Legal Use
	6.16.2.2 Illegal Use

	7 Internal Behavior
	7.1 Introduction
	7.2 Runnable Entity
	7.2.1 Concurrency and Reentrancy of a RunnableEntity that cannot be Invoked Concurrently
	7.2.2 Concurrency and Reentrancy of a RunnableEntity that can be Invoked Concurrently
	7.2.3 Timed Activation of Runnable Entities
	7.2.4 Additional Remarks and Clarifications
	7.2.4.1 Reentrancy and Multiple Instantiation
	7.2.4.2 Reentrancy and ``Library Functions''
	7.2.4.3 Compatibility of ClientServerOperations triggering the same RunnableEntity
	7.2.4.4 Categories of Runnable Entities
	7.2.4.5 Arguments of a Runnable Entity

	7.2.5 Activation Reason of a Runnable Entity
	7.2.6 Runnable Entity for Initialization Purpose

	7.3 RTEEvent
	7.3.1 Defining an Event
	7.3.2 Defining how to Respond to an Event

	7.4 Communication among Runnable Entities
	7.4.1 Description Possibility 1: Exclusive Area
	7.4.1.1 Entire Runnable Runs in the Exclusive Area
	7.4.1.2 Runnable would Dynamically Enter and Leave the Exclusive Area
	7.4.1.3 Configuration of API Generation

	7.4.2 Description Possibility 2: Inter-Runnable Variable
	7.4.3 Inter Runnable Triggering

	7.5 Data Access of RunnableEntities
	7.5.1 RunnableEntities and Sender Receiver Communication
	7.5.1.1 Terminology
	7.5.1.2 Data Access
	7.5.1.3 Explicit Sending and Receiving
	7.5.1.4 Implicit Sending and Receiving
	7.5.1.5 DataSendCompletedEvent
	7.5.1.6 DataWriteCompletedEvent
	7.5.1.7 DataReceivedEvent
	7.5.1.8 DataReceiveErrorEvent

	7.5.2 RunnableEntities and Client Server Communication
	7.5.2.1 Invoking an Operation
	7.5.2.2 Providing an Implementation of an Operation
	7.5.2.3 Reacting on Data Transformation Errors

	7.5.3 RunnableEntities and External Trigger Event Communication
	7.5.3.1 Trigger Source
	7.5.3.2 Trigger Sink

	7.5.4 RunnableEntities and Parameter Access
	7.5.4.1 InstantiationDataDefProps

	7.5.5 RunnableEntities and Mode Communication

	7.6 Port API Options
	7.6.1 Enable to Take Address
	7.6.2 Indirect API Generation
	7.6.3 Port Defined Argument Value
	7.6.4 Supported Features
	7.6.4.1 Buffer Locking

	7.7 PerInstanceMemory
	7.7.1 PerInstanceMemory typed by ``C'' Data Types
	7.7.2 PerInstanceMemory typed by AUTOSAR Data Types

	7.8 Static Memory and Constant Memory
	7.9 Included AUTOSAR Data Types
	7.10 Included Mode Declaration Groups
	7.11 Service Needs
	7.11.1 Overview
	7.11.2 Assignment of Service Needs to Ports and Data

	7.12 Variation Point Proxy

	8 Implementation
	9 Mode Management
	9.1 Declaration of Modes
	9.2 Modes and Events
	9.3 Initialization / Finalization
	9.4 Mode Error Behavior
	9.5 Summary Meta-Model Excerpt Related to Modes

	10 ECU Abstraction and Complex Drivers
	10.1 Introduction
	10.2 High Level Hardware and Software Architecture
	10.3 Interfaces and APIs
	10.3.1 ECU Abstraction and its AUTOSAR Interfaces

	10.4 Sensors/Actuators
	10.5 I/O Hardware Abstraction
	10.6 Complex Driver

	11 Services
	11.1 Overview: Generation of Service-related Model Elements
	11.2 Extending the ECU Software Composition
	11.3 Service Software Component Type
	11.4 Service Proxy Component Type
	11.5 Non Volatile Memory
	11.5.1 Introduction
	11.5.2 NvBlockComponent
	11.5.3 Software-Components using NVRAM data of NvBlockComponents
	11.5.4 Software-Components connected to NvBlockComponents
	11.5.5 NvBlockDescriptor
	11.5.5.1 Writing Strategies
	11.5.5.2 NvBlockNeeds
	11.5.5.3 RAM Block and ROM Block
	11.5.5.4 NvBlockDataMapping
	11.5.5.5 Client Server Ports

	11.5.6 BulkNvDataDescriptor
	11.5.7 SwcInternalBehavior of an NvBlockSwComponentType

	12 Software Component Documentation
	13 Service Dependencies and Service Use Cases
	13.1 Overview
	13.2 NvM Service Dependencies
	13.2.1 Nvm Use Case: Permanent RAM Block
	13.2.2 Nvm Use Case: Temporary RAM Block
	13.2.3 Nvm Use Case: RAM Block with explicit synchronization using Mirror Interfaces
	13.2.4 NVM Use Case: Software-Components using Nv Data provided by NvBlockSwComponentType (not ServiceSwComponent of NvM)

	13.3 Watchdog Service Dependencies
	13.3.1 Watchdog Service use Case: Local Supervision
	13.3.2 Watchdog Service use Case: Global Supervision Status notification
	13.3.3 Watchdog Service use Case: Control global supervision or get global supervision status
	13.3.4 Watchdog Service use Case: Software-component wants to obtain the status of a local supervision
	13.3.5 Watchdog Service use Case: Software-component wants to report a checkpoint

	13.4 COM Manager Service Needs
	13.4.1 ComM Use Case: read current ComM Mode
	13.4.2 ComM Use Case: request ComM Mode
	13.4.3 ComM Use Case: Software-Component acts as a Mode Manager that influences the ECU State
	13.4.4 Read PNC ComM Mode

	13.5 ECU State Manager Service Needs
	13.5.1 EcuM Use Case: select Shutdown Target
	13.5.2 EcuM Use Case: select Boot Target
	13.5.3 EcuM Use Case: use Alarm Clock

	13.6 BswM
	13.6.1 Partial Networking
	13.6.2 Mode Manager
	13.6.3 Mode User
	13.6.4 Mode Requester

	13.7 Crypto Service Dependencies
	13.7.1 Overview
	13.7.2 Crypto Service Use Cases
	13.7.2.1 Crypto Service Use Case: Hash calculation
	13.7.2.2 Crypto Service Use Case: MAC calculation
	13.7.2.3 Crypto Service Use Case: MAC verification
	13.7.2.4 Crypto Service Use Case: generation of random numbers
	13.7.2.5 Crypto Service Use Case: Encryption with Authenticated Encryption with Associated Data (AEAD)
	13.7.2.6 Crypto Service Use Case: Decryption with Authenticated Encryption with Associated Data (AEAD)
	13.7.2.7 Crypto Service Use Case: encryption
	13.7.2.8 Crypto Service Use Case: decryption
	13.7.2.9 Crypto Service Use Case: signature generation
	13.7.2.10 Crypto Service Use Case: signature verification
	13.7.2.11 Crypto Service Use Case: usage of key management

	13.7.3 Crypto Service Job Use Cases
	13.7.3.1 Crypto Service Use Case: usage of job API to set key valid
	13.7.3.2 Crypto Service Use Case: usage of job API to create a random seed
	13.7.3.3 Crypto Service Use Case: usage of job API to generate a key
	13.7.3.4 Crypto Service Use Case: usage of job API to derive a key
	13.7.3.5 Crypto Service Use Case: usage of job API to execute calculation of the public value for key exchange
	13.7.3.6 Crypto Service Use Case: usage of job API to execute calculation of shared secret for key exchange
	13.7.3.7 Crypto Service Use Case: usage of job API to execute certificate parsing
	13.7.3.8 Crypto Service Use Case: usage of job API to execute certificate verification

	13.7.4 Crypto Key Management Use Cases
	13.7.4.1 KeyM Service Use Case: Software-Component wants check a certificate on KeyM
	13.7.4.2 KeyM Service Use Case: Software-Component wants to retrieve a certificate from KeyM
	13.7.4.3 KeyM Service Use Case: Software-Component wants to retrieve elements of a certificate from KeyM
	13.7.4.4 KeyM Service Use Case: Software-Component wants to check the existence of a certificate from KeyM
	13.7.4.5 KeyM Service Use Case: Software-Component wants to store a (derived) key in KeyM
	13.7.4.6 KeyM Service Use Case: Software-Component wants to store a container with (encrypted) keys in KeyM
	13.7.4.7 KeyM Service Use Case: Software-Component wants to verify if cryptographic operation was executed using a specific key

	13.8 Diagnostic Service Dependency
	13.8.1 Development Approach
	13.8.2 Function Inhibition Needs
	13.8.2.1 Function Inhibition Manager Service use Case: read function permission
	13.8.2.2 Function Inhibition Manager Use Case: react on suppressed or unavailable events

	13.8.3 Diagnostic Event Needs
	13.8.3.1 Dem Service Use Case: diagnostic monitor, debouncing by Dem
	13.8.3.2 Dem Service Use Case: diagnostic monitor, debouncing by SWC
	13.8.3.3 Dem Service Use Case: software-component provides information about operation cycles
	13.8.3.4 Dem Service Use Case: software-component enables reporting of DTCs in general
	13.8.3.5 Dem Service Use Case: software-component enables storage of subsequent DTCs
	13.8.3.6 Dem Service Use Case: retrieve information of the lamp status
	13.8.3.7 Dem Service Use Case: DEM provides information that the fault storage overflows
	13.8.3.8 Dem Service Use Case: software-component suppresses the storage of DTCs
	13.8.3.9 Dem Service Use Case: software-component informs that the PTO is active
	13.8.3.10 Dem Service Use Case: software-component needs information about any DTC status change
	13.8.3.11 Dem Service Use Case: call operation if the data of a given diagnostic event changes (I)
	13.8.3.12 Dem Service Use Case: call operation if the data or status of any diagnostic event changes (II)
	13.8.3.13 Dem Service Use Case: software-component provides data for diagnostic purposes
	13.8.3.14 Dem Service Use Case: software-component gets information about a specific DTC
	13.8.3.15 Dem Service Use Case: Software-Component wants to be triggered on Monitor Status Changes
	13.8.3.16 Dem Service Use Case: write parameter identifier by software-component
	13.8.3.17 Dem Service Use Case: read parameter identifier by software-component
	13.8.3.18 Dem Service Use Case: diagnostic monitor provides monitor data, debouncing by Dem
	13.8.3.19 Dem Service Use Case: diagnostic monitor provides monitor data, debouncing by software-component
	13.8.3.20 Dem Service Use Case: software-component checks whether an event is suppressed

	13.8.4 Diagnostic Communication Needs
	13.8.4.1 Dcm Service Use Case: read/write current values by Client Server Interface
	13.8.4.2 Dcm Service Use Case: read/write current values of specific DID by Client Server Interface
	13.8.4.3 Dcm Service Use Case: read/write current values by Sender Receiver Interface or Nv Data Interface
	13.8.4.4 Dcm Service Use Case: start/stop or request routine results
	13.8.4.5 Dcm Service Use Case: IO control by Client Server Interface
	13.8.4.6 Dcm Service Use Case: IO control by Sender Receiver Interface
	13.8.4.7 Dcm Service Use Case: Access to protocol, session and security information
	13.8.4.8 Dcm Service Use Case: Verify the access to security level
	13.8.4.9 Dcm Service Use Case: multiple testers access one ECU
	13.8.4.10 Dcm Service Use Case: Service Request Notification
	13.8.4.11 Dcm Service Use Case: read/write and IOCtrl current values by Client Server Interface
	13.8.4.12 Dcm Service Use Case: A software-component acts as a "file server" to a diagnostic tester

	13.8.5 OBD related Needs
	13.8.5.1 Dem Service Use Case: In-Use-Monitor Performance Ratio calculation
	13.8.5.2 Dcm Service Use Case: read parameter identifier via diagnostic services by Client Server Interface
	13.8.5.3 Dcm Service Use Case: read parameter identifier via diagnostic services by Sender Receiver Interface
	13.8.5.4 Dcm Service Use Case: Request vehicle information
	13.8.5.5 Dem Service Use Case: Read DTR data from SW-C for OBD Service $06
	13.8.5.6 Dcm Service Use Case: request control of on-board system, test or component
	13.8.5.7 Dem Service Use Case: In-Use-Monitoring Performance Ratio Denominator interface

	13.8.6 Diagnostics over IP
	13.8.6.1 DoIP Service Use Case: GID synchronization can be necessary if the ECU is DoIP Gid synchronization master
	13.8.6.2 DoIP Service Use Case: Vehicle information is broadcast or can be requested by the tester
	13.8.6.3 DoIP Service Use Case: Tester could also request the power status with respect to diagnostics
	13.8.6.4 DoIP Service Use Case: Routing activation mechanism is used which can lead to additional impact regarding authentication or confirmation
	13.8.6.5 DoIP Service Use Case: a DoIP entity needs to be informed when an external tester is attached or activated.
	13.8.6.6 Service Use Case: Set and reset Warning Indicator Request bit
	13.8.6.7 DoIP Service Use Case: Atomic Software-Component provides the further action byte to the DoIP Service Component

	13.8.7 Miscellaneous Diagnostic Service Use-Cases
	13.8.7.1 Dcm Service Use Case: DiagnosticSessionControl
	13.8.7.2 Dcm Service Use Case: EcuReset
	13.8.7.3 Dcm Service Use Case: EcuReset ModeRapidPowerShutDown
	13.8.7.4 Dcm Service Use Case: CommunicationControl
	13.8.7.5 Dcm Service Use Case: ControlDTCSetting
	13.8.7.6 Dcm Service Use Case: Response On Event via diagnostic services
	13.8.7.7 Dcm Service Use Case: SecurityAccess
	13.8.7.8 Service Use Case: Atomic Software-Component implements a Hardware Shutdown
	13.8.7.9 Service Use Case: Upload and download of data

	13.9 Diagnostic Log and Trace Dependency
	13.9.1 Dlt use Case:Application software component transmits debug information

	13.10 Synchronized Time-Base Manager Dependency
	13.10.1 StbM Use Case: start timer and potentially get notified about its expiration
	13.10.2 StbM Use Case: Software-Components wants to get notifications of status changes
	13.10.3 StbM Use Case: Process time snapshot obtained from global time slave for diagnostics purposes
	13.10.4 StbM Use Case: Software-component represents a global time master
	13.10.5 StbM Use Case: Software-component represents a global time slave
	13.10.6 StbM Use Case: Software-component analyzes predictions about the time synchronization process

	13.11 Secure On-Board Communication
	13.11.1 SecOc Use Case: obtain the verification status of secure communication
	13.11.2 SecOc Use Case: software component retires from secure communication for a given period
	13.11.3 SecOc Use Case: deliver freshness to SecOC I
	13.11.4 SecOc Use Case: deliver freshness to SecOC II
	13.11.5 SecOc Use Case: deliver freshness to SecOC III
	13.11.6 SecOc Use Case: enable the sending of Pdus even if computation of the MAC is not possible
	13.11.7 SecOc Use Case: Receive notification about an authentication attempt

	13.12 J1939 Communication
	13.12.1 J1939RM Use Case: AtomicSwComponentType sends requests to the bus
	13.12.2 J1939RM Use Case: AtomicSwComponentType accepts requests from the bus
	13.12.3 J1939Dcm wants to retrieve calibration verification numbers from an application software-component

	13.13 Error Tracer
	13.13.1 Error Tracer Use Case: Default Error Tracer Service use Case: report failure

	13.14 Vehicle-2-X Facilities
	13.14.1 V2xFac Use Case: Application software component provides Vehicle specific data to the V2X-Stack for CAM transmission
	13.14.2 V2xFac Use Case: V2xFac notifies application software component about received messages
	13.14.3 V2xFac Use Case: Application software component triggers transmission of DENM message
	13.14.4 V2xFac Use Case: Application software component processes the MAP (topology) Extended Message
	13.14.5 V2xFac Use Case: Application software component processes Infrastructure to Vehicle Information Message
	13.14.6 V2xFac Use Case: Application software component processes Signal Phase And Timing Extended Message

	13.15 Vehicle-2-X Management
	13.15.1 V2xM Use Case: Application software component provides Vehicle specific data to the V2X-Stack for Position and Time information
	13.15.2 V2xM Use Case: Application software component needs V2X specific data from the V2X Manager
	13.15.3 V2xM Use Case: Application software component has soft-control over Pseudonym-Change within V2X Manager
	13.15.4 V2xM Use Case: Application software component has the ability to do Verification-on-Demand
	13.15.5 V2xM Use Case: Application software component do location based calculations

	13.16 Hardware Test Manager
	13.16.1 HtssM Service Use Case: Query results of hardware tests

	13.17 Intrusion Detection System Manager
	13.17.1 IdsM Service Use Case: AtomicSwComponentType reports security event
	13.17.2 IdsM Service Use Case: AtomicSwComponentType reports security event using Smart Sensor API
	13.17.3 IdsM Service Use Case: AtomicSwComponentType provides time stamp to IdsM

	14 Rapid Prototyping Scenarios
	14.1 Definition of Rapid Prototyping Scenario
	14.2 Usage of RptContainers on M1
	14.3 Usage of atpSplitable for RptContainers on M1
	14.4 Modifications of the Meta-Model for supporting the RPT scenario
	14.5 Extended Buffer Access Method
	14.5.1 RP Preparation
	14.5.2 Service Points
	14.5.2.1 Service Functions

	A Glossary
	B Supported Special Use Cases
	B.1 Asymmetric Data Transformation between a Software-Component and a Complex Driver
	B.1.1 Overview
	B.1.2 Modeling Aspects

	C History of Constraints and Specification Items
	C.1 Constraint History of this Document according to AUTOSAR R4.0.1
	C.1.1 Changed Constraints in R4.0.1
	C.1.2 Added Constraints in R4.0.1
	C.1.3 Deleted Constraints in R4.0.1

	C.2 Constraint History of this Document according to AUTOSAR R4.0.2
	C.2.1 Changed Constraints in R4.0.2
	C.2.2 Added Constraints in R4.0.2
	C.2.3 Deleted Constraints in R4.0.2

	C.3 Constraint History of this Document according to AUTOSAR R4.0.3
	C.3.1 Changed Constraints in R4.0.3
	C.3.2 Added Constraints in R4.0.3
	C.3.3 Added Specification Items in R4.0.3
	C.3.4 Deleted Constraints in R4.0.3
	C.3.5 Deleted Specification Items in R4.0.3

	C.4 Constraint History of this Document according to AUTOSAR R4.1.1
	C.4.1 Changed Constraints in R4.1.1
	C.4.2 Added Constraints in R4.1.1
	C.4.3 Changed Specification Items in R4.1.1
	C.4.4 Added Specification Items in R4.1.1
	C.4.5 Deleted Constraints in R4.1.1
	C.4.6 Deleted Specification Items in R4.1.1

	C.5 Constraint History of this Document according to AUTOSAR R4.1.2
	C.5.1 Changed Constraints in R4.1.2
	C.5.2 Added Constraints in R4.1.2
	C.5.3 Changed Specification Items in R4.1.2
	C.5.4 Added Specification Items in R4.1.2
	C.5.5 Deleted Constraints in R4.1.2
	C.5.6 Deleted Specification Items in R4.1.2

	C.6 Constraint History of this Document according to AUTOSAR R4.1.3
	C.6.1 Added Traceables in R4.1.3
	C.6.2 Changed Traceables in R4.1.3
	C.6.3 Deleted Traceables in R4.1.3
	C.6.4 Added Constraints in R4.1.3
	C.6.5 Changed Constraints in R4.1.3
	C.6.6 Deleted Constraints in R4.1.3

	C.7 Constraint History of this Document according to AUTOSAR R4.2.1
	C.7.1 Added Traceables in R4.2.1
	C.7.2 Changed Traceables in R4.2.1
	C.7.3 Deleted Traceables in R4.2.1
	C.7.4 Added Constraints in R4.2.1
	C.7.5 Changed Constraints in R4.2.1
	C.7.6 Deleted Constraints in R4.2.1

	C.8 Constraint History of this Document according to AUTOSAR R4.2.2
	C.8.1 Added Traceables in R4.2.2
	C.8.2 Changed Traceables in R4.2.2
	C.8.3 Deleted Traceables in R4.2.2
	C.8.4 Added Constraints in R4.2.2
	C.8.5 Changed Constraints in R4.2.2
	C.8.6 Deleted Constraints in R4.2.2

	C.9 Constraint History of this Document according to AUTOSAR R4.3.0
	C.9.1 Added Traceables in R4.3.0
	C.9.2 Changed Traceables in R4.3.0
	C.9.3 Deleted Traceables in R4.3.0
	C.9.4 Added Constraints in R4.3.0
	C.9.5 Changed Constraints in R4.3.0
	C.9.6 Deleted Constraints in R4.3.0

	C.10 Constraint History of this Document according to AUTOSAR R4.3.1
	C.10.1 Added Traceables in R4.3.1
	C.10.2 Changed Traceables in R4.3.1
	C.10.3 Deleted Traceables in R4.3.1
	C.10.4 Added Constraints in R4.3.1
	C.10.5 Changed Constraints in R4.3.1
	C.10.6 Deleted Constraints in R4.3.1

	C.11 Constraint History of this Document according to AUTOSAR R4.4.0
	C.11.1 Added Traceables in R4.4.0
	C.11.2 Changed Traceables in R4.4.0
	C.11.3 Deleted Traceables in R4.4.0
	C.11.4 Added Constraints in R4.4.0
	C.11.5 Changed Constraints in R4.4.0
	C.11.6 Deleted Constraints in R4.4.0

	C.12 Constraint History of this Document according to AUTOSAR R19-11
	C.12.1 Added Traceables in R19-11
	C.12.2 Changed Traceables in R19-11
	C.12.3 Deleted Traceables in R19-11
	C.12.4 Added Constraints in R19-11
	C.12.5 Changed Constraints in R19-11
	C.12.6 Deleted Constraints in R19-11

	C.13 Constraint History of this Document according to AUTOSAR R20-11
	C.13.1 Added Traceables in R20-11
	C.13.2 Changed Traceables in R20-11
	C.13.3 Deleted Traceables in R20-11
	C.13.4 Added Constraints in R20-11
	C.13.5 Changed Constraints in R20-11
	C.13.6 Deleted Constraints in R20-11

	C.14 Constraint History of this Document according to AUTOSAR R21-11
	C.14.1 Added Traceables in R21-11
	C.14.2 Changed Traceables in R21-11
	C.14.3 Deleted Traceables in R21-11
	C.14.4 Added Constraints in R21-11
	C.14.5 Changed Constraints in R21-11
	C.14.6 Deleted Constraints in R21-11

	D Modeling of InstanceRef
	D.1 Introduction
	D.2 Modeling
	D.2.1 Components and Compositions
	D.2.2 Definition of implicit Communication Behavior
	D.2.3 Internal Behavior

	E Examples
	E.1 Examples for the Definition of variable-size Arrays

	F Mentioned Class Tables
	G Upstream Mapping
	G.1 Introduction
	G.2 NvM
	G.3 Com
	G.4 WdgM
	G.5 Dcm
	G.6 Dem
	G.7 BswM
	G.8 MemMap
	G.9 RTE
	G.10 ECUC
	G.11 OS
	G.12 SecOC

	H Splitable Elements in the Scope of this Document
	I Variation Points in the Scope of this Document

