
Specification of Platform Types
AUTOSAR CP R21-11

Document Title Specification of Platform Types
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 48

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R21-11

Document Change History
Date Release Changed by Description

2021-11-25 R21-11
AUTOSAR
Release
Management

• Editorial changes and clarifications.
• Requirements tracing improved.

2020-11-30 R20-11
AUTOSAR
Release
Management

• Chapter 7.6 "Error classification
added"
• "VoidPtr" and "ConstVoidPtr" added
• Document converted from Word to

LaTeX

2019-11-28 R19-11
AUTOSAR
Release
Management

• Editorial changes.
• Wrong "Available via" references

fixed.
• Changed Document Status from

Final to published.

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes.
• Clarifications.

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes.

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Support for 64 bit MCU’s added.
• Editorial changes.

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Float types shall follow the
appropriate binary interchange
format of IEEE 754-2008.
• Editorial changes.

1 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Removed SWS_Platform_00063 as
the influence of Post-build time
configuration parameters on header
files is already specified in
SWS_BSWGeneral.

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Editorial changes.

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Types uint64 and sint64 added.
• Editorial changes.
• Removed chapter(s) on change

documentation.

2013-03-15 4.1.1 AUTOSAR
Administration • Editorial changes.

2011-12-22 4.0.3 AUTOSAR
Administration

• Clarified use of operators for
boolean variables.
• Implemented new traceability

mechanism.

2010-09-30 3.1.5 AUTOSAR
Administration

• Detailed published parameter names
(module names) in chapter 10. The
previous definition was ambigous
across several releases.
• Changed "Module Short Name"

(MSN) to "Module Abbreviation"
(MAB) for the use of API service
prefixes such as "CanIf".

2010-02-02 3.1.4 AUTOSAR
Administration

• Restored PLATFORM012.
• Clarified endian support.
• Clarified support for variable register

width architectures.
• Legal disclaimer revised.

2008-08-13 3.1.1 AUTOSAR
Administration • Legal disclaimer revised.

2 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

2007-12-21 3.0.1 AUTOSAR
Administration

• Chapter 8.2: "AUTOSAR supports for
compiler and target implementation
only 2 complement arithmetic".
• Chapter 12.10: Changed the basic

type for *_least types (optimized
types) from int to long for SHx
processors.
• Removal the explicit cast to
boolean in the precompile definition
(#define) for macros TRUE and
FALSE ("#define TRUE (
(boolean) 1)" has become
"#define TRUE 1").
• Document meta information

extended.
• Small layout adaptations made.

2007-01-24 2.1.15 AUTOSAR
Administration

• boolean type has been defined as
an eight bit long unsigned
integer.
• Legal disclaimer revised.
• Release Notes added.
• "Advice for users" revised.
• "Revision Information" added.

2006-05-16 2.0 AUTOSAR
Administration • Second release.

2005-05-31 1.0 AUTOSAR
Administration • First release.

3 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

Table of Contents

1 Introduction and functional overview 7

2 Acronyms and Abbreviations 8

3 Related documentation 9

3.1 Input documents & related standards and norms 9
3.2 Related specification . 9

4 Constraints and assumptions 10

4.1 Limitations . 10
4.2 Applicability to car domains . 10
4.3 Applicability to safety related environments 10

5 Dependencies to other modules 11

5.1 File structure . 11
5.1.1 Code file structure . 11
5.1.2 Header file structure . 11

6 Requirements Tracing 12

7 Functional specification 16

7.1 General issues . 16
7.2 CPU Type . 16
7.3 Endianess . 16

7.3.1 Bit Ordering (Register) . 16
7.3.2 Byte Ordering (Memory) . 17

7.4 Optimized integer data types . 19
7.5 Boolean data type . 19
7.6 Error classification . 20

7.6.1 Development Errors . 20
7.6.2 Runtime Errors . 20
7.6.3 Transient Faults . 20
7.6.4 Production Errors . 20
7.6.5 Extended Production Errors 20

8 API specification 21

8.1 Imported types . 21
8.2 Type definitions . 21

8.2.1 boolean . 21
8.2.2 uint8 . 21
8.2.3 uint16 . 22
8.2.4 uint32 . 22
8.2.5 uint64 . 22
8.2.6 sint8 . 23
8.2.7 sint16 . 23

5 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

8.2.8 sint32 . 23
8.2.9 sint64 . 24
8.2.10 uint8_least . 24
8.2.11 uint16_least . 24
8.2.12 uint32_least . 25
8.2.13 sint8_least . 25
8.2.14 sint16_least . 25
8.2.15 sint32_least . 26
8.2.16 float32 . 26
8.2.17 float64 . 27
8.2.18 VoidPtr . 27
8.2.19 ConstVoidPtr . 27

8.3 Symbol definitions . 28
8.3.1 CPU_TYPE . 28
8.3.2 CPU_BIT_ORDER . 28
8.3.3 CPU_BYTE_ORDER . 28
8.3.4 TRUE, FALSE . 29

8.4 Function definitions . 29
8.5 Call-back notifications . 29
8.6 Scheduled functions . 29
8.7 Expected Interfaces . 30

9 Sequence diagrams 31

10 Configuration specification 32

10.1 Published parameters . 32

A Annex 33

A.1 Type definitions - general . 33
A.2 Type definitions - S12X . 33
A.3 Type definitions - ST10 . 33
A.4 Type definitions - ST30 . 34
A.5 Type definitions - V850 . 35
A.6 Type definitions - MPC5554 . 35
A.7 Type definitions - TC1796/TC1766 . 36
A.8 Type definitions - MB91F . 36
A.9 Type definitions - M16C/M32C . 37
A.10 Type definitions - SHx . 38
A.11 Type definitions - ARM Cortex A53 . 38

B Not applicable requirements 40

6 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

1 Introduction and functional overview

This document specifies the AUTOSAR platform types header file. It contains all plat-
form dependent types and symbols. Those types must be abstracted in order to be-
come platform and compiler independent.

It is required that all platform types files are unique within the AUTOSAR community
to guarantee unique types per platform and to avoid type changes when moving a
software module from platform A to B.

7 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

2 Acronyms and Abbreviations

Acronyms and abbreviations that have a local scope are not contained in the AUTOSAR
glossary. These must appear in a local glossary.

Acronym Description
Rollover mechanism The following example sequence is called ’rollover’:

• An unsigned char has the value of 255.

• It is incremented by 1.

• The result is 0.
SDU Service Data Unit (payload)

Abbreviation Description
int Integer

8 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral

[2] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral

[3] Cosmic C Cross Compiler User’s Guide for Motorola MC68HC12, V4.5

[4] Metrowerks CodeWarrior 4.0 for Freescale HC9S12X/XGATE (V5.0.25)
Motorola HC12 Assembler, 2.6.2004

[5] Metrowerks CodeWarrior 4.0 for Freescale HC9S12X/XGATE (V5.0.25)
Motorola HC12 Compiler, 2.6.2004

[6] Metrowerks CodeWarrior 4.0 for Freescale HC9S12X/XGATE (V5.0.25)
Smart Linker, 2.4.2004

[7] TASKING for ST10 V8.5
C166/ST10 v8.5 C Cross-Compiler User’s Manual, V5.16

[8] TASKING for ST10 V8.5
C166/ST10 v8.5 C Cross-Assembler, Linker/Locator, Utilities User’s Manual,
V5.16

[9] GreenHills MULTI for V850 V4.0.5
Building Applications for Embedded V800, V4.0, 30.1.2004

[10] Wind River (Diab Data) for PowerPC Version 5.2.1
Wind River Compiler for Power PC - Getting Started, Edition 2, 8.5.2004

[11] Wind River (Diab Data) for PowerPC Version 5.2.1
Wind River Compiler for Power PC - User’s Guide,Edition 2, 11.5.2004

[12] TASKING for TriCore TC1796 V2.1R1
TriCore v2.0 C Cross-Compiler, Assembler, Linker User’s Guide V1.2

[13] ARM ADS compiler manual

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules (see [1]),
which is also valid for Platform Types. Thus, the specification "General Specification
on Basic Software modules" [1] shall be considered as additional and required specifi-
cation for Platform Types.

9 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

4.3 Applicability to safety related environments

The AUTOSAR boolean type may be used if the correct usage (see
[SWS_Platform_00027]) is proven by a formal code review or a static analysis by a
validated static analysis tool.

The optimized AUTOSAR integer data types (*_least) may be used if the correct
usage (see chapter 7.4) is proven by a formal code review or a static analysis by a
validated static analysis tool.

10 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

5 Dependencies to other modules

None.

5.1 File structure

5.1.1 Code file structure

None

5.1.2 Header file structure

Two header file structures are applicable. One is depending on communication related
basic software modules and the second is depending on non-communication related
basic software modules.

11 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

6 Requirements Tracing

The following tables reference the requirements specified in General Requirements on
Basic Software Modules [2] and links to the fulfillment of these. Please note that if col-
umn “Satisfied by” is empty for a specific requirement this means that this requirement
is not fulfilled by this document.

Requirement Description Satisfied by
[SRS_BSW_00003] All software modules shall

provide version and identification
information

[SWS_Platform_00063]

[SRS_BSW_00004] All Basic SW Modules shall
perform a pre-processor check
of the versions of all imported
include files

[SWS_Platform_00063]

[SRS_BSW_00006] The source code of software
modules above the µC
Abstraction Layer (MCAL) shall
not be processor and compiler
dependent.

[SWS_Platform_00063]

[SRS_BSW_00304] All AUTOSAR Basic Software
Modules shall use only
AUTOSAR data types instead of
native C data types

[SWS_Platform_00013]
[SWS_Platform_00014]
[SWS_Platform_00015]
[SWS_Platform_00016]
[SWS_Platform_00017]
[SWS_Platform_00018]
[SWS_Platform_00020]
[SWS_Platform_00021]
[SWS_Platform_00022]
[SWS_Platform_00023]
[SWS_Platform_00024]
[SWS_Platform_00025]

[SRS_BSW_00318] Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

[SWS_Platform_00063]

[SRS_BSW_00351] Encapsulation of compiler
specific methods to map objects

[SWS_Platform_00063]

[SRS_BSW_00353] All integer type definitions of
target and compiler specific
scope shall be placed and
organized in a single type
header

[SWS_Platform_00063]

[SRS_BSW_00378] AUTOSAR shall provide a
boolean type

[SWS_Platform_00026]
[SWS_Platform_00027]
[SWS_Platform_00034]

[SRS_BSW_00380] Configuration parameters being
stored in memory shall be
placed into separate c-files

[SWS_Platform_00063]

[SRS_BSW_00402] Each module shall provide
version information

[SWS_Platform_00063]

12 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00403] The Basic Software Module

specifications shall specify for
each parameter/container
whether it supports different
values or multiplicity in different
configuration sets

[SWS_Platform_00063]

[SRS_BSW_00424] BSW module main processing
functions shall not be allowed to
enter a wait state

[SWS_Platform_00063]

[SRS_BSW_00425] The BSW module description
template shall provide means to
model the defined trigger
conditions of schedulable
objects

[SWS_Platform_00063]

[SRS_BSW_00426] BSW Modules shall ensure data
consistency of data which is
shared between BSW modules

[SWS_Platform_00063]

[SRS_BSW_00427] ISR functions shall be defined
and documented in the BSW
module description template

[SWS_Platform_00063]

[SRS_BSW_00428] A BSW module shall state if its
main processing function(s) has
to be executed in a specific
order or sequence

[SWS_Platform_00063]

[SRS_BSW_00433] Main processing functions are
only allowed to be called from
task bodies provided by the
BSW Scheduler

[SWS_Platform_00063]

[SRS_BSW_00437] Memory mapping shall provide
the possibility to define RAM
segments which are not to be
initialized during startup

[SWS_Platform_00063]

[SRS_BSW_00438] Configuration data shall be
defined in a structure

[SWS_Platform_00063]

[SRS_BSW_00439] Enable BSW modules to handle
interrupts

[SWS_Platform_00063]

[SRS_BSW_00440] The callback function invocation
by the BSW module shall follow
the signature provided by RTE to
invoke servers via Rte_Call API

[SWS_Platform_00063]

[SRS_BSW_00441] Naming convention for type,
macro and function

[SWS_Platform_00063]

[SRS_BSW_00447] Standardizing Include file
structure of BSW Modules
Implementing Autosar Service

[SWS_Platform_00063]

[SRS_BSW_00448] Module SWS shall not contain
requirements from Other
Modules

[SWS_Platform_00063]

[SRS_BSW_00449] BSW Service APIs used by
Autosar Application Software
shall return a Std_ReturnType

[SWS_Platform_00063]

[SRS_BSW_00450] A Main function of a
un-initialized module shall return
immediately

[SWS_Platform_00063]

13 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00451] Hardware registers shall be

protected if concurrent access to
these registers occur

[SWS_Platform_00063]

[SRS_BSW_00452] Classification of runtime errors [SWS_Platform_00063]
[SRS_BSW_00453] BSW Modules shall be

harmonized
[SWS_Platform_00063]

[SRS_BSW_00454] An alternative interface without a
parameter of category DATA_
REFERENCE shall be available.

[SWS_Platform_00063]

[SRS_BSW_00456] A Header file shall be defined in
order to harmonize BSW
Modules

[SWS_Platform_00063]

[SRS_BSW_00457] Callback functions of Application
software components shall be
invoked by the Basis SW

[SWS_Platform_00063]

[SRS_BSW_00458] Classification of production
errors

[SWS_Platform_00063]

[SRS_BSW_00459] It shall be possible to
concurrently execute a service
offered by a BSW module in
different partitions

[SWS_Platform_00063]

[SRS_BSW_00460] Reentrancy Levels [SWS_Platform_00063]
[SRS_BSW_00461] Modules called by generic

modules shall satisfy all
interfaces requested by the
generic module

[SWS_Platform_00063]

[SRS_BSW_00462] All Standardized Autosar
Interfaces shall have unique
requirement Id / number

[SWS_Platform_00063]

[SRS_BSW_00463] Naming convention of callout
prototypes

[SWS_Platform_00063]

[SRS_BSW_00464] File names shall be considered
case sensitive regardless of the
filesystem in which they are
used

[SWS_Platform_00063]

[SRS_BSW_00465] It shall not be allowed to name
any two files so that they only
differ by the cases of their letters

[SWS_Platform_00063]

[SRS_BSW_00466] Classification of extended
production errors

[SWS_Platform_00063]

[SRS_BSW_00467] The init / deinit services shall
only be called by BswM or EcuM

[SWS_Platform_00063]

[SRS_BSW_00469] Fault detection and healing of
production errors and extended
production errors

[SWS_Platform_00063]

[SRS_BSW_00470] Execution frequency of
production error detection

[SWS_Platform_00063]

[SRS_BSW_00471] Do not cause dead-locks on
detection of production errors -
the ability to heal from previously
detected production errors

[SWS_Platform_00063]

[SRS_BSW_00472] Avoid detection of two
production errors with the same
root cause.

[SWS_Platform_00063]

14 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00473] Classification of transient faults [SWS_Platform_00063]
[SRS_BSW_00477] The functional interfaces of

AUTOSAR BSW modules shall
be specified in C99

[SWS_Platform_00063]

[SRS_BSW_00478] Timing limits of main functions [SWS_Platform_00063]
[SRS_BSW_00479] Interfaces for handling request

from external devices
[SWS_Platform_00063]

[SRS_BSW_00480] NullPointer Errors shall follow a
naming rule

[SWS_Platform_00063]

[SRS_BSW_00481] Invalid configuration set
selection errors shall follow a
naming rule

[SWS_Platform_00063]

[SRS_BSW_00482] Get Version Informationfunction
shall follow a naming rule

[SWS_Platform_00063]

[SRS_BSW_00483] BSW Modules shall handle
buffer alignments internally

[SWS_Platform_00063]

[SRS_BSW_00484] Input parameters of scalar and
enum types shall be passed as a
value.

[SWS_Platform_00063]

[SRS_BSW_00485] Input parameters of structure
type shall be passed as a
reference to a constant structure

[SWS_Platform_00063]

[SRS_BSW_00486] Input parameters of array type
shall be passed as a reference
to the constant array base type

[SWS_Platform_00063]

[SRS_BSW_00487] Errors for module initialization
shall follow a naming rule

[SWS_Platform_00063]

[SRS_BSW_00488] Classification of security events [SWS_Platform_00063]
[SRS_BSW_00489] Reporting of security events [SWS_Platform_00063]
[SRS_BSW_00490] List possible security events [SWS_Platform_00063]
[SRS_BSW_00491] Specification of trigger

conditions and context data
[SWS_Platform_00063]

[SRS_BSW_00492] Reporting of security events
during startup

[SWS_Platform_00063]

[SRS_BSW_00493] Definition of security event ID
symbols

[SWS_Platform_00063]

[SRS_BSW_00494] ServiceInterface argument with
a pointer datatype

[SWS_Platform_00063]

15 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

7 Functional specification

7.1 General issues

[SWS_Platform_00002] dAll platform specific abstracted AUTOSAR data types and
symbols shall be defined in the Platform_Types.h header file. It is not allowed to
add any extension to this file. Any extension invalidates the AUTOSAR conformity.c()

7.2 CPU Type

[SWS_Platform_00044] dFor each platform the register width of the CPU used shall
be indicated by defining CPU_TYPE.c()

[SWS_Platform_00045] dAccording to the register width of the CPU used, CPU_TYPE
shall be assigned to one of the symbols CPU_TYPE_8, CPU_TYPE_16, CPU_TYPE_32
or CPU_TYPE_64.c()

7.3 Endianess

The pattern for bit, byte and word ordering in native types, such as integers, is called
endianess.

[SWS_Platform_00043] dFor each platform the appropriate bit order on register level
shall be indicated in the platform types header file using the symbol CPU_BIT_ORDER.c
()

[SWS_Platform_00046] dFor each platform the appropriate byte order on memory
level shall be indicated in the platform types header file using the symbol CPU_BYTE_-
ORDER.c()

7.3.1 Bit Ordering (Register)

[SWS_Platform_00048] dIn case of Big Endian bit ordering CPU_BIT_ORDER shall be
assigned to MSB_FIRST in the platform types header file.c()

[SWS_Platform_00049] dIn case of Little Endian bit ordering CPU_BIT_ORDER shall
be assigned to LSB_FIRST in the platform types header file.c()

16 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

Figure 7.1: Big Endian bit ordering versus Little Endian bit ordering

Important Note:

The naming convention Bit0, Bit1, etc. and the bit’s significance within a byte, word, etc.
are different topics and shall not be mixed. The counting scheme of bits in Motorola[3]
µC-architecture’s (Big Endian Bit Order) starts with Bit0 indicating the Most Significant
Bit, whereas all other µC using Little Endian Bit Order assign Bit0 to be the Least
Significant Bit!

The MSB in an accumulator is always stored as the left-most bit regardless of the CPU
type. Hence, Big and Little Endianess bit orders imply different bit-naming conventions.

7.3.2 Byte Ordering (Memory)

[SWS_Platform_00050] dIn case of Big Endian byte ordering CPU_BYTE_ORDER shall
be assigned to HIGH_BYTE_FIRST in the platform types header file.c()

17 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

Figure 7.2: Big Endian (HIGH_BYTE_FIRST) byte ordering

Address Data Order
n Byte1 Most Significant Byte (

HIGH_BYTE_FIRST)
n+1 Byte0 Least Significant Byte

[SWS_Platform_00051] dIn case of Little Endian byte ordering CPU_BYTE_ORDER
shall be assigned to LOW_BYTE_FIRST in the platform types header file.c()

Figure 7.3: Little Endian (LOW_BYTE_FIRST) byte ordering

18 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

Address Data Order
n Byte0 Least Significant Byte (

LOW_BYTE_FIRST)
n+1 Byte1 Most Significant Byte

Naming convention for illustration: The Most Significant Byte within a 16 bit wide
data is named Byte1. The Least Significant Byte within a 16 bit wide data is named
Byte0.

Important Note: The naming convention Byte0 and Byte1 is not unique and may be
different in the manufacturer’s reference documentation for a particular µC.

7.4 Optimized integer data types

For details refer to the chapter "AUTOSAR Integer Data Types" of the document "Gen-
eral Requirements on Basic Software Modules" [1].

Examples of usage:

• Loop counters (e.g. maximum loop count = 124⇒ use uint8_least

• Switch case arguments (e.g. maximum number of states = 17 ⇒ use uint8_-
least

7.5 Boolean data type

[SWS_Platform_00027] dThe standard AUTOSAR type boolean shall be imple-
mented as an unsigned integer with a bit length that is the shortest one natively
supported by the platform (in general 8 bits).c(SRS_BSW_00378)

[SWS_Platform_00034] dThe standard AUTOSAR type boolean shall only be used
in conjunction with the standard symbols TRUE and FALSE. For value assignments of
variables of type boolean no arithmetic or logical operators (+, ++, -, --, *, /, %, <<,
>>, ~, &) must be used. The only allowed forms of assignment are:

1 boolean var = TRUE;
2 ...
3 var = TRUE;
4 var = FALSE;
5 var = (a < b) /* same for ">", "<=", ">=" */
6 var = (c && d) /* same for "!", "||" */
7 var = (e != f) /* same for "==" */

The only allowed forms of comparison are:
1 boolean var = FALSE;
2 ...

19 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

3 if (var == TRUE) ...
4 if (var == FALSE) ...
5 if (var != TRUE) ...
6 if (var != FALSE) ...
7 if (var) ...
8 if (!var) ...

c(SRS_BSW_00378)

7.6 Error classification

Section 7.2 "Error Handling" of the document "General Specification of Basic Software
Modules" [1] describes the error handling of the Basic Software in detail. Above all,
it constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.6.1 Development Errors

There are no development errors.

7.6.2 Runtime Errors

There are no runtime errors.

7.6.3 Transient Faults

There are no transient faults.

7.6.4 Production Errors

There are no production errors.

7.6.5 Extended Production Errors

There are no extended production errors.

20 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

8 API specification

8.1 Imported types

Not applicable.

8.2 Type definitions

[SWS_Platform_00061] dConcerning the signed integer types, AUTOSAR supports
for compiler and target implementation only 2 complement arithmetic. This directly
impacts the chosen ranges for these types.c()

8.2.1 boolean

[SWS_Platform_00026] d

Name boolean

Kind Type

FALSE 0 –Range
TRUE 1 –

Description This standard AUTOSAR type shall only be used together with the definitions TRUE and FALSE.

Variation –

Available via Platform_Types.h

c(SRS_BSW_00378)

See [SWS_Platform_00027] for implementation and usage.

[SWS_Platform_00060] dThe boolean type shall always be mapped to a platform
specific type where pointers can be applied to in order to enable a passing of parame-
ters via API.There are specific BIT types of some HW platforms which are very efficient
but where no pointers can point to.c()

8.2.2 uint8

[SWS_Platform_00013] d

Name uint8

Kind Type

Range 0..255 – 0x00..0xFF

Description This standard AUTOSAR type shall be of 8 bit unsigned.

5

21 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

4
Variation –

Available via Platform_Types.h

c(SRS_BSW_00304)

8.2.3 uint16

[SWS_Platform_00014] d

Name uint16

Kind Type

Range 0..65535 – 0x0000..0xFFFF

Description This standard AUTOSAR type shall be of 16 bit unsigned.

Variation –

Available via Platform_Types.h

c(SRS_BSW_00304)

8.2.4 uint32

[SWS_Platform_00015] d

Name uint32

Kind Type

Range 0..4294967295 – 0x00000000..0xFFFFFFFF

Description This standard AUTOSAR type shall be 32 bit unsigned.

Variation –

Available via Platform_Types.h

c(SRS_BSW_00304)

8.2.5 uint64

[SWS_Platform_00066] d

Name uint64

Kind Type

Range 0..18446744073709551615 – 0x0000000000000000..0x
FFFFFFFFFFFFFFFF

Description This standard AUTOSAR type shall be 64 bit unsigned.

5

22 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

4
Variation –

Available via Platform_Types.h

c()

8.2.6 sint8

[SWS_Platform_00016] d

Name sint8

Kind Type

Range -128..+127 – 0x80..0x7F

Description This standard AUTOSAR type shall be of 8 bit signed.

Variation –

Available via Platform_Types.h

c(SRS_BSW_00304)

8.2.7 sint16

[SWS_Platform_00017] d

Name sint16

Kind Type

Range -32768..+32767 – 0x8000..0x7FFF

Description This standard AUTOSAR type shall be of 16 bit signed.

Variation –

Available via Platform_Types.h

c(SRS_BSW_00304)

8.2.8 sint32

[SWS_Platform_00018] d

Name sint32

Kind Type

Range -2147483648..+2147483647 – 0x80000000..0x7FFFFFFF

Description This standard AUTOSAR type shall be 32 bit signed.

5

23 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

4
Variation –

Available via Platform_Types.h

c(SRS_BSW_00304)

8.2.9 sint64

[SWS_Platform_00067] d

Name sint64

Kind Type

Range -9223372036854775808 ..
9223372036854775807

– 0x8000000000000000 ..
0x7FFFFFFFFFFFFFFF

Description This standard AUTOSAR type shall be 64 bit signed.

Variation –

Available via Platform_Types.h

c()

8.2.10 uint8_least

[SWS_Platform_00020] d

Name uint8_least

Kind Type

Derived from uint

Range At least 0..255 – 0x00..0xFF

Description This optimized AUTOSAR type shall be at least 8 bit unsigned.

Available via Platform_Types.h

c(SRS_BSW_00304)

See chapter 7.4 for implementation and usage.

8.2.11 uint16_least

[SWS_Platform_00021] d

Name uint16_least

Kind Type

5

24 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

4
Derived from uint

Range At least 0..65535 – 0x0000..0xFFFF

Description This optimized AUTOSAR type shall be at least 16 bit unsigned.

Available via Platform_Types.h

c(SRS_BSW_00304)

See chapter 7.4 for implementation and usage.

8.2.12 uint32_least

[SWS_Platform_00022] d

Name uint32_least

Kind Type

Derived from uint

Range At least 0..4294967295 – 0x00000000..0xFFFFFFFF

Description This optimized AUTOSAR type shall be at least 32 bit unsigned.

Available via Platform_Types.h

c(SRS_BSW_00304)

See chapter 7.4 for implementation and usage.

8.2.13 sint8_least

[SWS_Platform_00023] d

Name sint8_least

Kind Type

Derived from sint

Range At least -128..+127 – 0x80..0x7F

Description This optimized AUTOSAR type shall be at least 8 bit signed.

Available via Platform_Types.h

c(SRS_BSW_00304)

See chapter 7.4 for implementation and usage.

8.2.14 sint16_least

[SWS_Platform_00024] d

25 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

Name sint16_least

Kind Type

Derived from sint

Range At least -32768..+32767 – 0x8000..0x7FFF

Description This optimized AUTOSAR type shall be at least 16 bit signed.

Available via Platform_Types.h

c(SRS_BSW_00304)

See chapter 7.4 for implementation and usage.

8.2.15 sint32_least

[SWS_Platform_00025] d

Name sint32_least

Kind Type

Derived from sint

Range At least
-2147483648..+2147483647

– 0x80000000..0x7FFFFFFF

Description This optimized AUTOSAR type shall be at least 32 bit signed.

Available via Platform_Types.h

c(SRS_BSW_00304)

See chapter 7.4 for implementation and usage.

8.2.16 float32

[SWS_Platform_00041] d

Name float32

Kind Type

Range -3.4028235e+38 ..
+3.4028235e+38

– –

Description This standard AUTOSAR type shall follow the 32-bit binary interchange format according to IEEE
754-2008 with encoding parameters specified in chapter 3.6, table 3.5, column "binary32".

Variation –

Available via Platform_Types.h

c()

26 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

8.2.17 float64

[SWS_Platform_00042] d

Name float64

Kind Type

Range -1.7976931348623157e+308 ..
+1.7976931348623157e+308

– –

Description This standard AUTOSAR type shall follow the 64-bit binary interchange format according to IEEE
754-2008 with encoding parameters specified in chapter 3.6, table 3.5, column "binary64".

Available via Platform_Types.h

c()

8.2.18 VoidPtr

[SWS_Platform_91001] d

Name VoidPtr

Kind Pointer

Type void*

Description This standard AUTOSAR type shall be a void pointer

Note: This type shall be used for buffers that contain data returned to the caller.

Variation –

Available via Platform_Types.h

c()

8.2.19 ConstVoidPtr

[SWS_Platform_91002] d

Name ConstVoidPtr

Kind Const Pointer
Type const void*

Description This standard AUTOSAR type shall be a void pointer to const.

Note: This type shall be used for buffers that are passed to the callee.

Variation –

Available via Platform_Types.h

c()

27 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

8.3 Symbol definitions

8.3.1 CPU_TYPE

[SWS_Platform_00064] d

Name CPU_TYPE

Kind Enumeration

CPU_TYPE_8 – Indicating a 8 bit processor

CPU_TYPE_16 – Indicating a 16 bit processor

CPU_TYPE_32 – Indicating a 32 bit processor

Range

CPU_TYPE_64 – Indicating a 64 bit processor

Description This symbol shall be defined as #define having one of the values CPU_TYPE_8, CPU_TYPE_16,
CPU_TYPE_32 or CPU_TYPE_64 according to the platform.

Available via Platform_Types.h

c()

8.3.2 CPU_BIT_ORDER

[SWS_Platform_00038] d

Name CPU_BIT_ORDER

Kind Enumeration

MSB_FIRST – The most significant bit is the first bit of the bit
sequence.

Range

LSB_FIRST – The least significant bit is the first bit of the bit
sequence.

Description This symbol shall be defined as #define having one of the values MSB_FIRST or LSB_FIRST
according to the platform.

Available via Platform_Types.h

c()

8.3.3 CPU_BYTE_ORDER

[SWS_Platform_00039] d

Name CPU_BYTE_ORDER

Kind Enumeration

HIGH_BYTE_FIRST – Within uint16, the high byte is located before
the low byte.

Range

LOW_BYTE_FIRST – Within uint16, the low byte is located before
the high byte.

5

28 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

4
Description This symbol shall be defined as #define having one of the values HIGH_BYTE_FIRST or LOW_

BYTE_FIRST according to the platform.

Available via Platform_Types.h

c()

8.3.4 TRUE, FALSE

[SWS_Platform_00056] d

Name TRUE_FALSE

Kind Enumeration

FALSE 0x00 –Range
TRUE 0x01 –

Description The symbols TRUE and FALSE shall be defined as follows:

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

Available via Platform_Types.h

c()

[SWS_Platform_00054] dIn case of in-built compiler support of the symbols, redefini-
tions shall be avoided using a conditional check.c()

[SWS_Platform_00055] dThese symbols shall only be used in conjunction with the
boolean type defined in Platform_Types.h.c()

8.4 Function definitions

Not applicable.

8.5 Call-back notifications

Not applicable.

8.6 Scheduled functions

Not applicable.

29 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

8.7 Expected Interfaces

Not applicable.

30 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

9 Sequence diagrams

Not applicable.

31 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

10 Configuration specification

10.1 Published parameters

For details refer to the chapter 10.3 "Published Information" in [1].

32 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

A Annex

A.1 Type definitions - general

The platform type files for all platforms could contain the following symbols:
1 #define CPU_TYPE_8 8
2 #define CPU_TYPE_16 16
3 #define CPU_TYPE_32 32
4 #define CPU_TYPE_64 64
5 #define MSB_FIRST 0
6 #define LSB_FIRST 1
7 #define HIGH_BYTE_FIRST 0
8 #define LOW_BYTE_FIRST 1

A.2 Type definitions - S12X

The platform types for Freescale S12X[4][5][6] could have the following mapping to the
ANSI C types:

Symbols:
1 #define CPU_TYPE CPU_TYPE_16
2 #define CPU_BIT_ORDER LSB_FIRST
3 #define CPU_BYTE_ORDER HIGH_BYTE_FIRST

Types:
1 typedef unsigned char boolean;
2 typedef signed char sint8;
3 typedef unsigned char uint8;
4 typedef signed short sint16;
5 typedef unsigned short uint16;
6 typedef signed long sint32;
7 typedef signed long long sint64;
8 typedef unsigned long uint32;
9 typedef unsigned long long uint64;

10 typedef signed char sint8_least;
11 typedef unsigned char uint8_least;
12 typedef signed short sint16_least;
13 typedef unsigned short uint16_least;
14 typedef signed long sint32_least;
15 typedef unsigned long uint32_least;
16 typedef float float32;
17 typedef double float64;

A.3 Type definitions - ST10

The platform types for ST Microelectronics ST10[7][8] could have the following map-
ping to the ANSI C types:

33 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

Symbols:
1 #define CPU_TYPE CPU_TYPE_16
2 #define CPU_BIT_ORDER LSB_FIRST
3 #define CPU_BYTE_ORDER LOW_BYTE_FIRST

Types:
1 typedef unsigned char boolean;
2 typedef signed char sint8;
3 typedef unsigned char uint8;
4 typedef signed short sint16;
5 typedef unsigned short uint16;
6 typedef signed long sint32;
7 typedef signed long long sint64;
8 typedef unsigned long uint32;
9 typedef unsigned long long uint64;

10 typedef unsigned short uint8_least;
11 typedef unsigned short uint16_least;
12 typedef unsigned long uint32_least;
13 typedef signed short sint8_least;
14 typedef signed short sint16_least;
15 typedef signed long sint32_least;
16 typedef float float32;
17 typedef double float64;

A.4 Type definitions - ST30

The platform types for STMicroelectronics ST30 could have the following mapping to
the ANSI C types:

Symbols:
1 #define CPU_TYPE CPU_TYPE_32
2 #define CPU_BIT_ORDER LSB_FIRST
3 #define CPU_BYTE_ORDER LOW_BYTE_FIRST

Types:
1 typedef unsigned char boolean;
2 typedef signed char sint8;
3 typedef unsigned char uint8;
4 typedef signed short sint16;
5 typedef unsigned short uint16;
6 typedef signed long sint32;
7 typedef signed long long sint64;
8 typedef unsigned long uint32;
9 typedef unsigned long long uint64;

10 typedef unsigned long uint8_least;
11 typedef unsigned long uint16_least;
12 typedef unsigned long uint32_least;
13 typedef signed long sint8_least;
14 typedef signed long sint16_least;
15 typedef signed long sint32_least;

34 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

16 typedef float float32;
17 typedef double float64;

A.5 Type definitions - V850

The platform types for NEC V850[9] could have the following mapping to the ANSI C
types:

Symbols:
1 #define CPU_TYPE CPU_TYPE_32
2 #define CPU_BIT_ORDER LSB_FIRST
3 #define CPU_BYTE_ORDER LOW_BYTE_FIRST

Types:
1 typedef unsigned char boolean;
2 typedef signed char sint8;
3 typedef unsigned char uint8;
4 typedef signed short sint16;
5 typedef unsigned short uint16;
6 typedef signed long sint32;
7 typedef signed long long sint64;
8 typedef unsigned long uint32;
9 typedef unsigned long long uint64;

10 typedef unsigned long uint8_least;
11 typedef unsigned long uint16_least;
12 typedef unsigned long uint32_least;
13 typedef signed long sint8_least;
14 typedef signed long sint16_least;
15 typedef signed long sint32_least;
16 typedef float float32;
17 typedef double float64;

A.6 Type definitions - MPC5554

The platform types for Freescale MPC5554[10][11] could have the following mapping
to the ANSI C types:

Symbols:
1 #define CPU_TYPE CPU_TYPE_32
2 #define CPU_BIT_ORDER MSB_FIRST
3 #define CPU_BYTE_ORDER HIGH_BYTE_FIRST

Types:
1 typedef unsigned char boolean;
2 typedef signed char sint8;
3 typedef unsigned char uint8;
4 typedef signed short sint16;

35 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

5 typedef unsigned short uint16;
6 typedef signed long sint32;
7 typedef signed long long sint64;
8 typedef unsigned long uint32;
9 typedef unsigned long long uint64;

10 typedef unsigned long uint8_least;
11 typedef unsigned long uint16_least;
12 typedef unsigned long uint32_least;
13 typedef signed long sint8_least;
14 typedef signed long sint16_least;
15 typedef signed long sint32_least;
16 typedef float float32;
17 typedef double float64;

A.7 Type definitions - TC1796/TC1766

The platform types for Infineon TC1796/TC1766[12] could have the following mapping
to the ANSI C types:

Symbols:
1 #define CPU_TYPE CPU_TYPE_32
2 #define CPU_BIT_ORDER LSB_FIRST
3 #define CPU_BYTE_ORDER LOW_BYTE_FIRST

Types:
1 typedef unsigned char boolean;
2 typedef signed char sint8;
3 typedef unsigned char uint8;
4 typedef signed short sint16;
5 typedef unsigned short uint16;
6 typedef signed long sint32;
7 typedef signed long long sint64;
8 typedef unsigned long uint32;
9 typedef unsigned long long uint64;

10 typedef unsigned long uint8_least;
11 typedef unsigned long uint16_least;
12 typedef unsigned long uint32_least;
13 typedef signed long sint8_least;
14 typedef signed long sint16_least;
15 typedef signed long sint32_least;
16 typedef float float32;
17 typedef double float64;

A.8 Type definitions - MB91F

The platform types for Fujitsu MB91F could have the following mapping to the ANSI C
types:

Symbols:

36 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

1 #define CPU_TYPE CPU_TYPE_32
2 #define CPU_BIT_ORDER LSB_FIRST
3 #define CPU_BYTE_ORDER HIGH_BYTE_FIRST

Types:
1 typedef unsigned char boolean;
2 typedef signed char sint8;
3 typedef unsigned char uint8;
4 typedef signed short sint16;
5 typedef unsigned short uint16;
6 typedef signed long sint32;
7 typedef signed long long sint64;
8 typedef unsigned long uint32;
9 typedef unsigned long long uint64;

10 typedef unsigned long uint8_least;
11 typedef unsigned long uint16_least;
12 typedef unsigned long uint32_least;
13 typedef signed long sint8_least;
14 typedef signed long sint16_least;
15 typedef signed long sint32_least;
16 typedef float float32;
17 typedef double float64;

A.9 Type definitions - M16C/M32C

The platform types for Renesas M16C and M32C could have the following mapping to
the ANSI C types:

Symbols:
1 #define CPU_TYPE CPU_TYPE_16
2 #define CPU_BIT_ORDER LSB_FIRST
3 #define CPU_BYTE_ORDER LOW_BYTE_FIRST

Types:
1 typedef unsigned char boolean;
2 typedef signed char sint8;
3 typedef unsigned char uint8;
4 typedef signed short sint16;
5 typedef unsigned short uint16;
6 typedef signed long sint32;
7 typedef signed long long sint64;
8 typedef unsigned long uint32;
9 typedef unsigned long long uint64;

10 typedef unsigned short uint8_least;
11 typedef unsigned short uint16_least;
12 typedef unsigned long uint32_least;
13 typedef signed short sint8_least;
14 typedef signed short sint16_least;
15 typedef signed long sint32_least;
16 typedef float float32;
17 typedef double float64;

37 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

A.10 Type definitions - SHx

The platform types for Renesas SHx could have the following mapping to the ANSI C
types:

Symbols:
1 #define CPU_TYPE CPU_TYPE_32
2 #define CPU_BIT_ORDER LSB_FIRST
3 #define CPU_BYTE_ORDER HIGH_BYTE_FIRST

Types:
1 typedef unsigned char boolean;
2 typedef signed char sint8;
3 typedef unsigned char uint8;
4 typedef signed short sint16;
5 typedef unsigned short uint16;
6 typedef signed int sint32;
7 typedef signed long long sint64;
8 typedef unsigned int uint32;
9 typedef unsigned long long uint64;

10 typedef unsigned long uint8_least;
11 typedef unsigned long uint16_least;
12 typedef unsigned long uint32_least;
13 typedef signed long sint8_least;
14 typedef signed long sint16_least;
15 typedef signed long sint32_least;
16 typedef float float32;
17 typedef double float64;

A.11 Type definitions - ARM Cortex A53

The platform types for ARM Cortex A53[13] in Little Endian could have the following
mapping to the ANSI C types:

Symbols:
1 #define CPU_TYPE CPU_TYPE_64
2 #define CPU_BIT_ORDER LSB_FIRST
3 #define CPU_BYTE_ORDER LOW_BYTE_FIRST

Types:
1 typedef unsigned char boolean;
2 typedef unsigned char uint8;
3 typedef unsigned short uint16;
4 typedef unsigned int uint32;
5 typedef unsigned long long uint64;
6 typedef signed char sint8;
7 typedef signed short sint16;
8 typedef signed int sint32;
9 typedef signed long long sint64;

10 typedef unsigned int uint8_least;

38 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

11 typedef unsigned int uint16_least;
12 typedef unsigned int uint32_least;
13 typedef signed int sint8_least;
14 typedef signed int sint16_least;
15 typedef signed int sint32_least;
16 typedef float float32;
17 typedef double float64;

39 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

Specification of Platform Types
AUTOSAR CP R21-11

B Not applicable requirements

[SWS_Platform_00063] dThese requirements are not applicable to this specifica-
tion.c(SRS_BSW_00003, SRS_BSW_00004, SRS_BSW_00006, SRS_BSW_00318,
SRS_BSW_00351, SRS_BSW_00353, SRS_BSW_00380, SRS_BSW_00402, SRS_-
BSW_00403, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00426, SRS_-
BSW_00427, SRS_BSW_00428, SRS_BSW_00433, SRS_BSW_00437, SRS_-
BSW_00438, SRS_BSW_00439, SRS_BSW_00440, SRS_BSW_00441, SRS_-
BSW_00447, SRS_BSW_00448, SRS_BSW_00449, SRS_BSW_00450, SRS_-
BSW_00451, SRS_BSW_00452, SRS_BSW_00453, SRS_BSW_00454, SRS_-
BSW_00456, SRS_BSW_00457, SRS_BSW_00458, SRS_BSW_00459, SRS_-
BSW_00460, SRS_BSW_00461, SRS_BSW_00462, SRS_BSW_00463, SRS_-
BSW_00464, SRS_BSW_00465, SRS_BSW_00466, SRS_BSW_00467, SRS_-
BSW_00469, SRS_BSW_00470, SRS_BSW_00471, SRS_BSW_00472, SRS_-
BSW_00473, SRS_BSW_00477, SRS_BSW_00478, SRS_BSW_00479, SRS_-
BSW_00480, SRS_BSW_00481, SRS_BSW_00482, SRS_BSW_00483, SRS_-
BSW_00484, SRS_BSW_00485, SRS_BSW_00486, SRS_BSW_00487, SRS_-
BSW_00488, SRS_BSW_00489, SRS_BSW_00490, SRS_BSW_00491, SRS_-
BSW_00492, SRS_BSW_00493, SRS_BSW_00494)

40 of 40 Document ID 48: AUTOSAR_SWS_PlatformTypes

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 General issues
	7.2 CPU Type
	7.3 Endianess
	7.3.1 Bit Ordering (Register)
	7.3.2 Byte Ordering (Memory)

	7.4 Optimized integer data types
	7.5 Boolean data type
	7.6 Error classification
	7.6.1 Development Errors
	7.6.2 Runtime Errors
	7.6.3 Transient Faults
	7.6.4 Production Errors
	7.6.5 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 boolean
	8.2.2 uint8
	8.2.3 uint16
	8.2.4 uint32
	8.2.5 uint64
	8.2.6 sint8
	8.2.7 sint16
	8.2.8 sint32
	8.2.9 sint64
	8.2.10 uint8_least
	8.2.11 uint16_least
	8.2.12 uint32_least
	8.2.13 sint8_least
	8.2.14 sint16_least
	8.2.15 sint32_least
	8.2.16 float32
	8.2.17 float64
	8.2.18 VoidPtr
	8.2.19 ConstVoidPtr

	8.3 Symbol definitions
	8.3.1 CPU_TYPE
	8.3.2 CPU_BIT_ORDER
	8.3.3 CPU_BYTE_ORDER
	8.3.4 TRUE, FALSE

	8.4 Function definitions
	8.5 Call-back notifications
	8.6 Scheduled functions
	8.7 Expected Interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 Published parameters

	A Annex
	A.1 Type definitions - general
	A.2 Type definitions - S12X
	A.3 Type definitions - ST10
	A.4 Type definitions - ST30
	A.5 Type definitions - V850
	A.6 Type definitions - MPC5554
	A.7 Type definitions - TC1796/TC1766
	A.8 Type definitions - MB91F
	A.9 Type definitions - M16C/M32C
	A.10 Type definitions - SHx
	A.11 Type definitions - ARM Cortex A53

	B Not applicable requirements

