
Specification of Memory Mapping
AUTOSAR CP R21-11

Document Title Specification of Memory Mapping
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 128

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R21-11

Document Change History
Date Release Changed by Description

2021-11-25 R21-11
AUTOSAR
Release
Management

• POWER_ON_INIT behaviour does
not match
ComputerRuntimeInitialization
• Deprecate compiler abstraction
• Description regarding alignment is

too strict for some targets

2020-11-30 R20-11
AUTOSAR
Release
Management

• No content changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Clarify NO-INIT policy
• Clarify caseness of VendorApiInfix
• Clarify usage of core scope
• Update of referenced pictures
• Changed Document Status from

Final to published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Support splitting of modules in
allocatable memory parts
• Clarify handling of configuration data
• Additional minor corrections /

clarifications / editorial changes; For
details please refer to the Change
Documentation

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Amend explanatory text
• Editorial changes

1 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Support dedicated allocation of
pointer variables
• Remove obsolete specification

content
• Amend examples
• Editorial changes

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Support core scope specific memory
allocation
• Clean up requirement tracing
• editorial changes

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Support partitioning of BSW for
safety systems
• Remove obsolete memory sections

in Recommendation A
• Clarifications about the handling of

SIZE and ALIGNMENT
• editorial changes

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Clarify usage of <X> in recovery and
saved data zone
• editorial changes

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Clarify usage of default section

2013-03-15 4.1.1 AUTOSAR
Administration

• Consistent naming pattern for
memory allocation keywords
• pre-define M1 values for the option

attribute of MemorySection and
SwAddrMethod
• added configuration for Compiler

Abstraction
• support BSW module specific

MemMap header files
• recommended memory allocation

keywords are reworked

2011-12-22 4.0.3 AUTOSAR
Administration

• Consistent naming pattern for
memory allocation keywords is
introduced
• Refine definition the <PREFIX> part

in memory allocation keywords

2 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

2009-12-18 4.0.1 AUTOSAR
Administration

• ECU Configuration Parameters for
MemMap defined
• Define generation of MemMap

header files
• New standardised Memory

Allocation Keywords for new
initialisation policy CLEARED added
• Refinement of <SIZE> suffix of

Memory Allocation Keywords to
<ALIGNMENT> suffix,
• Clarify link MetaModel attribute

values,
– Define MemorySectionType and

SectionInitializationPolicy for the
standardised Memory Allocation
Keywords

– Define that <NAME> used for
Memory Allocation Keywords is
the MemorySection shortName

• Application hint for usage of INLINE
and LOCAL_INLINE added
• Handling structs, arrays and unions

redefined

2010-02-02 3.1.4 AUTOSAR
Administration

• Typo errors are corrected throughout
the document
• Memory Mapping section has been

extended for application SWC
• Common Published information has

been updated
• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration

Legal disclaimer revised

3 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

2006-11-28 2.1 AUTOSAR
Administration

• In MEMMAP004,all size postfixes for
memory segment names were listed,
the keyword ’BOOLEAN was added,
taking into account the particular
cases where boolean data need to
be mapped in a particular segment.
• In MEMMAP004 and

SWS_MemMap_00021,tables are
defining the mapping segments
associated to #pragmas instructions,
adding some new segments to take
into account some implementation
cases
• Document meta information

extended
• Small layout adaptations made

2006-05-16 2.0 AUTOSAR
Administration Initial Release

4 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

5 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Table of Contents

1 Introduction and functional overview 8

2 Acronyms and Abbreviations 9

3 Related documentation 10

3.1 Input documents . 10
3.2 Related standards and norms . 11
3.3 Related specification . 11

4 Constraints and assumptions 12

4.1 Limitations . 12
4.2 Applicability to car domains . 12

5 Dependencies to other modules 13

5.1 File structure . 13
5.1.1 Code file structure . 13
5.1.2 Header file structure . 13

6 Requirements traceability 15

7 Functional specification 23

7.1 General issues . 23
7.2 Mapping of variables and code . 24

7.2.1 Requirements on implementations using memory mapping
header files for BSW Modules and Software Components . . 24

7.2.1.1 Splitting of modules in allocatable memory parts . . 30
7.2.1.2 config constants versus non-config constants 31
7.2.1.3 Data Sections . 31
7.2.1.4 Code Sections . 36

7.2.2 Requirements on memory mapping header files 42
7.3 Examples . 46

7.3.1 Code Section . 46
7.3.2 Fast Variable Section . 49
7.3.3 Code Section in ICC2 cluster 55
7.3.4 Callout sections . 57
7.3.5 Allocatable Memory Parts . 59

8 API specification 62

9 Sequence diagrams 63

10 Configuration specification 64

10.1 How to read this chapter . 64
10.2 Containers and configuration parameters 64

10.2.1 MemMap . 64

6 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

10.2.2 MemMapAddressingModeSet 65
10.2.3 MemMapAddressingMode 71
10.2.4 MemMapAllocation . 72
10.2.5 MemMapGenericMapping . 74
10.2.6 MemMapSectionSpecificMapping 76
10.2.7 MemMapMappingSelector 77
10.2.8 MemMapGenericCompilerMemClass 78

10.3 Published Information . 78

11 Analysis 79

11.1 Memory allocation of variables . 79
11.2 Memory allocation of constant variables 80
11.3 Memory allocation of code . 82

A Referenced Meta Classes 83

B Not applicable requirements 110

7 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

1 Introduction and functional overview

This document specifies mechanisms for the mapping of code and data to specific
memory sections via memory mapping files. For many ECUs and microcontroller plat-
forms it is of utmost necessity to be able to map code, variables and constants module
wise to specific memory sections. Selection of important use cases:

Avoidance of waste of RAM
If different variables (8, 16 and 32 bit) are used within different modules on a 32 bit
platform, the linker will leave gaps in RAM when allocating the variables in the RAM.
This is because the microcontroller platform requires a specific alignment of variables
and some linkers do not allow an optimization of variable allocation.
This wastage of memory can be circumvented if the variables are mapped to specific
memory sections depending on their size. This minimizes unused space in RAM.

Usage of specific RAM properties
Some variables (e.g. the RAM mirrors of the NVRAM Manager) must not be initialized
after a power-on reset. It shall be possible to map them to a RAM section that is not
initialized after a reset.
For some variables (e.g. variables that are accessed via bit masks) it improves both
performance and code size if they are located within a RAM section that allows for bit
manipulation instructions of the compiler. Those RAM sections are usually known as
’Near Page’ or ’Zero Page’.

Usage of specific ROM properties
In large ECUs with external flash memory there is the requirement to map modules
with functions that are called very often to the internal flash memory that allows for fast
access and thus higher performance. Modules with functions that are called rarely or
that have lower performance requirements are mapped to external flash memory that
has slower access.

Usage of the same source code of a module for boot loader and application
If a module shall be used both in boot loader and application, it is necessary to allow
the mapping of code and data to different memory sections.
A mechanism for mapping of code and data to memory sections that is supported by all
compilers listed in chapter 3.1 is the usage of pragmas. As pragmas are very compiler
specific, a mechanism that makes use of those pragmas in a standardized way has to
be specified.

Support of Memory Protection
The usage of hardware memory protection requires a separation of the modules vari-
ables into different memory areas. Internal variables are mapped into protected mem-
ory, buffers for data exchange are mapped into unprotected memory.

Support of partitioning
In some cases it is necessary to separate partition assigned memory. Therefore an
additional separation of the module variables into different memory (partition-)areas is
needed if the BSW Module shall support a split over several Partitions.

8 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Memory Map-
ping specification that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
BSW Basic Software
ISR Interrupt Service Routine

NVRAM Non-Volatile RAM

Table 2.1: Abbreviations and Acronyms

9 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

3 Related documentation

3.1 Input documents

References

[1] Glossary
AUTOSAR_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral

[4] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[5] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[6] Methodology for Classic Platform
AUTOSAR_TR_Methodology

[7] Specification of RTE Software
AUTOSAR_SWS_RTE

[8] Cosmic C Cross Compiler User’s Guide for Motorola MC68HC12, V4.5

[9] ARM ADS compiler manual

[10] GreenHills MULTI for V850 V4.0.5
Building Applications for Embedded V800, V4.0, 30.1.2004

[11] TASKING for ST10 V8.5
C166/ST10 v8.5 C Cross-Compiler User’s Manual, V5.16

[12] TASKING for ST10 V8.5
C166/ST10 v8.5 C Cross-Assembler, Linker/Locator, Utilities User’s Manual,
V5.16

10 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

3.2 Related standards and norms

Not applicable.

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for SWS Memory Mapping.

11 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4 Constraints and assumptions

4.1 Limitations

During specification of abstraction and validation of concept the compilers listed in
chapter 3.1 have been considered. If any other compiler requires keywords that cannot
be mapped to the mechanisms described in this specification this compiler will not be
supported by AUTOSAR. In this case, the compiler vendor has to adapt its compiler.

A dedicated pack-control of structures is not supported. Hence global set-up passed
via compiler / linker parameters has to be used.

A dedicated alignment control of code, variables and constants is not supported.
Hence affected objects shall be assigned to different sections or a global setting
passed via compiler / linker parameters has to be used.

4.2 Applicability to car domains

No restrictions.

12 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

5 Dependencies to other modules

[SWS_MemMap_00020] dThe SWS Memory Mapping is applicable for each
AUTOSAR basic software module and software component. Therefore the imple-
mentation of memory mapping files shall fulfill the implementation and configura-
tion specific needs of each software module in a specific build scenario. See
also [SWS_MemMap_00038], [SWS_MemMap_00003], [SWS_MemMap_00018] and
[SWS_MemMap_00001].c(SRS_BSW_00384, SRS_BSW_00351)

5.1 File structure

5.1.1 Code file structure

Not applicable.

5.1.2 Header file structure

[SWS_MemMap_00028] dThe Memory Mapping shall provide a BSW memory map-
ping header file if any of the BSW Module Descriptions is describing a Depen-
dencyOnArtifact as requiredArtifact.DependencyOnArtifact.category
= MEMMAP In this case the file name of the BSW memory mapping header file name
is defined by the attribute value requiredArtifact.DependencyOnArtifact.ar-
tifactDescriptor.shortLabel in the BSW Module Description.c(SRS_BSW_-
00465, SRS_BSW_00415, SRS_BSW_00351, SRS_BSW_00464)

Please note that [SWS_MemMap_00028] does support that either several BSW Mod-
ule Descriptions contributing to the same file (e.g MemMap.h for legacy code) or that
the same BSW Module Description specifies a set of memory mapping header files
with differnt names for example in case of a BSW Module Description of an ICC2 clus-
ter.

For instance:
<REQUIRED-ARTIFACTS>

<DEPENDENCY-ON-ARTIFACT>
<SHORT-NAME>MemMap</SHORT-NAME>
<CATEGORY>MEMMAP</CATEGORY>
<ARTIFACT-DESCRIPTOR>

<SHORT-LABEL>MemMap.h</SHORT-LABEL>
<CATEGORY>SWHDR</CATEGORY>

</ARTIFACT-DESCRIPTOR>
</DEPENDENCY-ON-ARTIFACT>

</REQUIRED-ARTIFACTS>

Results in the generation of the requested Memory Allocation Key Words in the file
MemMap.h

13 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

[SWS_MemMap_00032] dFor each basic software module description which is part
of the input configuration a basic software module specific memory mapping header
file {Mip}_MemMap.h shall be provided by the Memory Mapping if the BSW Module
Descriptions is NOT describing a DependencyOnArtifact as requiredArtifact.
DependencyOnArtifact.category = MEMMAP. Hereby {Mip} is composed accord-
ing <Msn>[_<vi>_<ai>] for basic software modules where

• <Msn> is the shortName (case sensitive) of the BswModuleDescription

• <vi> is the vendorId of the BSW module

• <ai> is the vendorApiInfix of the BSW module

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module which indicates that it does not use multiple in-
stantiation.c(SRS_BSW_00465, SRS_BSW_00415, SRS_BSW_00351, SRS_BSW_-
00464)

«header»
{Mip}_MemMap.h

BSW module

«includes»

Figure 5.1: Basic Software Module specific memory mapping header file

Please note:
The approach of basic software module specific memory mapping header files imple-
ments the pattern of a user specific file split as specified in [SRS_BSW_00415]. The
concrete name pattern defined in [SWS_MemMap_00032] is deviating from the naming
scheme of [SRS_BSW_00415] since the module and user relationship is interpreted
from the opposite way around.

[SWS_MemMap_00029] dFor each software component type which is part of the input
configuration a software component type specific memory mapping header file {com-
ponentTypeName}_MemMap.h shall be provided by the Memory Mapping.c(SRS_-
BSW_00465, SRS_BSW_00415, SRS_BSW_00351, SRS_BSW_00464)

SWC«header»
{componentTypeName}_MemMap.h

«includes»

Figure 5.2: Software Component type specific memory mapping header file

14 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

6 Requirements traceability

The following tables references the requirements specified in [3] and links to the fulfill-
ment of these. Please note that if column ’Satisfied by’ is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[SRS_BSW_00003] All software modules shall provide version and

identification information
[SWS_MemMap_00999]

[SRS_BSW_00004] All Basic SW Modules shall perform a
pre-processor check of the versions of all
imported include files

[SWS_MemMap_00999]

[SRS_BSW_00005] Modules of the µC Abstraction Layer (MCAL)
may not have hard coded horizontal interfaces

[SWS_MemMap_00999]

[SRS_BSW_00006] The source code of software modules above
the µC Abstraction Layer (MCAL) shall not be
processor and compiler dependent.

[SWS_MemMap_00003]
[SWS_MemMap_00005]
[SWS_MemMap_00006]
[SWS_MemMap_00010]
[SWS_MemMap_00036]

[SRS_BSW_00007] All Basic SW Modules written in C language
shall conform to the MISRA C 2012 Standard.

[SWS_MemMap_00999]

[SRS_BSW_00009] All Basic SW Modules shall be documented
according to a common standard.

[SWS_MemMap_00999]

[SRS_BSW_00010] The memory consumption of all Basic SW
Modules shall be documented for a defined
configuration for all supported platforms.

[SWS_MemMap_00999]

[SRS_BSW_00101] The Basic Software Module shall be able to
initialize variables and hardware in a separate
initialization function

[SWS_MemMap_00999]

[SRS_BSW_00159] All modules of the AUTOSAR Basic Software
shall support a tool based configuration

[SWS_MemMap_00999]

[SRS_BSW_00160] Configuration files of AUTOSAR Basic SW
module shall be readable for human beings

[SWS_MemMap_00999]

[SRS_BSW_00161] The AUTOSAR Basic Software shall provide a
microcontroller abstraction layer which
provides a standardized interface to higher
software layers

[SWS_MemMap_00999]

[SRS_BSW_00162] The AUTOSAR Basic Software shall provide a
hardware abstraction layer

[SWS_MemMap_00999]

[SRS_BSW_00164] The Implementation of interrupt service
routines shall be done by the Operating
System, complex drivers or modules

[SWS_MemMap_00999]

[SRS_BSW_00167] All AUTOSAR Basic Software Modules shall
provide configuration rules and constraints to
enable plausibility checks

[SWS_MemMap_00999]

[SRS_BSW_00168] SW components shall be tested by a function
defined in a common API in the Basis-SW

[SWS_MemMap_00999]

[SRS_BSW_00170] The AUTOSAR SW Components shall provide
information about their dependency from
faults, signal qualities, driver demands

[SWS_MemMap_00999]

15 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00171] Optional functionality of a Basic-SW

component that is not required in the ECU
shall be configurable at pre-compile-time

[SWS_MemMap_00999]

[SRS_BSW_00172] The scheduling strategy that is built inside the
Basic Software Modules shall be compatible
with the strategy used in the system

[SWS_MemMap_00999]

[SRS_BSW_00300] All AUTOSAR Basic Software Modules shall
be identified by an unambiguous name

[SWS_MemMap_00999]

[SRS_BSW_00301] All AUTOSAR Basic Software Modules shall
only import the necessary information

[SWS_MemMap_00999]

[SRS_BSW_00302] All AUTOSAR Basic Software Modules shall
only export information needed by other
modules

[SWS_MemMap_00999]

[SRS_BSW_00304] All AUTOSAR Basic Software Modules shall
use only AUTOSAR data types instead of
native C data types

[SWS_MemMap_00999]

[SRS_BSW_00305] Data types naming convention [SWS_MemMap_00999]
[SRS_BSW_00306] AUTOSAR Basic Software Modules shall be

compiler and platform independent
[SWS_MemMap_00003]
[SWS_MemMap_00005]
[SWS_MemMap_00006]
[SWS_MemMap_00010]
[SWS_MemMap_00015]
[SWS_MemMap_00016]
[SWS_MemMap_00018]
[SWS_MemMap_00023]
[SWS_MemMap_00036]

[SRS_BSW_00307] Global variables naming convention [SWS_MemMap_00999]
[SRS_BSW_00308] AUTOSAR Basic Software Modules shall not

define global data in their header files, but in
the C file

[SWS_MemMap_00999]

[SRS_BSW_00309] All AUTOSAR Basic Software Modules shall
indicate all global data with read-only
purposes by explicitly assigning the const
keyword

[SWS_MemMap_00999]

[SRS_BSW_00310] API naming convention [SWS_MemMap_00999]
[SRS_BSW_00312] Shared code shall be reentrant [SWS_MemMap_00999]
[SRS_BSW_00314] All internal driver modules shall separate the

interrupt frame definition from the service
routine

[SWS_MemMap_00999]

[SRS_BSW_00318] Each AUTOSAR Basic Software Module file
shall provide version numbers in the header
file

[SWS_MemMap_00999]

[SRS_BSW_00321] The version numbers of AUTOSAR Basic
Software Modules shall be enumerated
according specific rules

[SWS_MemMap_00999]

[SRS_BSW_00323] All AUTOSAR Basic Software Modules shall
check passed API parameters for validity

[SWS_MemMap_00999]

[SRS_BSW_00325] The runtime of interrupt service routines and
functions that are running in interrupt context
shall be kept short

[SWS_MemMap_00999]

[SRS_BSW_00327] Error values naming convention [SWS_MemMap_00999]

16 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00328] All AUTOSAR Basic Software Modules shall

avoid the duplication of code
[SWS_MemMap_00001]
[SWS_MemMap_00005]

[SRS_BSW_00330] It shall be allowed to use macros instead of
functions where source code is used and
runtime is critical

[SWS_MemMap_00999]

[SRS_BSW_00331] All Basic Software Modules shall strictly
separate error and status information

[SWS_MemMap_00999]

[SRS_BSW_00333] For each callback function it shall be specified
if it is called from interrupt context or not

[SWS_MemMap_00999]

[SRS_BSW_00334] All Basic Software Modules shall provide an
XML file that contains the meta data

[SWS_MemMap_00999]

[SRS_BSW_00335] Status values naming convention [SWS_MemMap_00999]
[SRS_BSW_00336] Basic SW module shall be able to shutdown [SWS_MemMap_00999]
[SRS_BSW_00337] Classification of development errors [SWS_MemMap_00999]
[SRS_BSW_00339] Reporting of production relevant error status [SWS_MemMap_00999]
[SRS_BSW_00341] Module documentation shall contains all

needed informations
[SWS_MemMap_00999]

[SRS_BSW_00342] It shall be possible to create an AUTOSAR
ECU out of modules provided as source code
and modules provided as object code, even
mixed

[SWS_MemMap_00999]

[SRS_BSW_00343] The unit of time for specification and
configuration of Basic SW modules shall be
preferably in physical time unit

[SWS_MemMap_00999]

[SRS_BSW_00344] BSW Modules shall support link-time
configuration

[SWS_MemMap_00999]

[SRS_BSW_00346] All AUTOSAR Basic Software Modules shall
provide at least a basic set of module files

[SWS_MemMap_00999]

[SRS_BSW_00347] A Naming seperation of different instances of
BSW drivers shall be in place

[SWS_MemMap_00999]

[SRS_BSW_00348] All AUTOSAR standard types and constants
shall be placed and organized in a standard
type header file

[SWS_MemMap_00999]

[SRS_BSW_00350] All AUTOSAR Basic Software Modules shall
allow the enabling/disabling of detection and
reporting of development errors.

[SWS_MemMap_00999]

17 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00351] Encapsulation of compiler specific methods to

map objects
[SWS_MemMap_00002]
[SWS_MemMap_00003]
[SWS_MemMap_00005]
[SWS_MemMap_00006]
[SWS_MemMap_00007]
[SWS_MemMap_00010]
[SWS_MemMap_00011]
[SWS_MemMap_00013]
[SWS_MemMap_00015]
[SWS_MemMap_00016]
[SWS_MemMap_00018]
[SWS_MemMap_00020]
[SWS_MemMap_00022]
[SWS_MemMap_00023]
[SWS_MemMap_00026]
[SWS_MemMap_00027]
[SWS_MemMap_00028]
[SWS_MemMap_00029]
[SWS_MemMap_00032]
[SWS_MemMap_00033]
[SWS_MemMap_00034]
[SWS_MemMap_00035]
[SWS_MemMap_00036]
[SWS_MemMap_00037]
[SWS_MemMap_00038]
[SWS_MemMap_00039]
[SWS_MemMap_00040]
[SWS_MemMap_00041]
[SWS_MemMap_00042]

[SRS_BSW_00353] All integer type definitions of target and
compiler specific scope shall be placed and
organized in a single type header

[SWS_MemMap_00999]

[SRS_BSW_00357] For success/failure of an API call a standard
return type shall be defined

[SWS_MemMap_00999]

[SRS_BSW_00358] The return type of init() functions implemented
by AUTOSAR Basic Software Modules shall
be void

[SWS_MemMap_00999]

[SRS_BSW_00359] All AUTOSAR Basic Software Modules
callback functions shall avoid return types
other than void if possible

[SWS_MemMap_00999]

[SRS_BSW_00360] AUTOSAR Basic Software Modules callback
functions are allowed to have parameters

[SWS_MemMap_00999]

[SRS_BSW_00361] All mappings of not standardized keywords of
compiler specific scope shall be placed and
organized in a compiler specific type and
keyword header

[SWS_MemMap_00002]

[SRS_BSW_00369] All AUTOSAR Basic Software Modules shall
not return specific development error codes
via the API

[SWS_MemMap_00999]

[SRS_BSW_00373] The main processing function of each
AUTOSAR Basic Software Module shall be
named according the defined convention

[SWS_MemMap_00999]

18 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00374] All Basic Software Modules shall provide a

readable module vendor identification
[SWS_MemMap_00999]

[SRS_BSW_00375] Basic Software Modules shall report wake-up
reasons

[SWS_MemMap_00999]

[SRS_BSW_00377] A Basic Software Module can return a module
specific types

[SWS_MemMap_00999]

[SRS_BSW_00378] AUTOSAR shall provide a boolean type [SWS_MemMap_00999]
[SRS_BSW_00379] All software modules shall provide a module

identifier in the header file and in the module
XML description file.

[SWS_MemMap_00999]

[SRS_BSW_00380] Configuration parameters being stored in
memory shall be placed into separate c-files

[SWS_MemMap_00999]

[SRS_BSW_00383] The Basic Software Module specifications
shall specify which other configuration files
from other modules they use at least in the
description

[SWS_MemMap_00999]

[SRS_BSW_00384] The Basic Software Module specifications
shall specify at least in the description which
other modules they require

[SWS_MemMap_00020]

[SRS_BSW_00385] List possible error notifications [SWS_MemMap_00999]
[SRS_BSW_00386] The BSW shall specify the configuration for

detecting an error
[SWS_MemMap_00999]

[SRS_BSW_00388] Containers shall be used to group
configuration parameters that are defined for
the same object

[SWS_MemMap_00999]

[SRS_BSW_00389] Containers shall have names [SWS_MemMap_00999]
[SRS_BSW_00390] Parameter content shall be unique within the

module
[SWS_MemMap_00999]

[SRS_BSW_00392] Parameters shall have a type [SWS_MemMap_00999]
[SRS_BSW_00393] Parameters shall have a range [SWS_MemMap_00999]
[SRS_BSW_00394] The Basic Software Module specifications

shall specify the scope of the configuration
parameters

[SWS_MemMap_00999]

[SRS_BSW_00395] The Basic Software Module specifications
shall list all configuration parameter
dependencies

[SWS_MemMap_00999]

[SRS_BSW_00396] The Basic Software Module specifications
shall specify the supported configuration
classes for changing values and multiplicities
for each parameter/container

[SWS_MemMap_00999]

[SRS_BSW_00397] The configuration parameters in pre-compile
time are fixed before compilation starts

[SWS_MemMap_00999]

[SRS_BSW_00398] The link-time configuration is achieved on
object code basis in the stage after compiling
and before linking

[SWS_MemMap_00999]

[SRS_BSW_00399] Parameter-sets shall be located in a separate
segment and shall be loaded after the code

[SWS_MemMap_00999]

[SRS_BSW_00400] Parameter shall be selected from multiple sets
of parameters after code has been loaded and
started

[SWS_MemMap_00999]

[SRS_BSW_00401] Documentation of multiple instances of
configuration parameters shall be available

[SWS_MemMap_00999]

19 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00402] Each module shall provide version information [SWS_MemMap_00999]
[SRS_BSW_00404] BSW Modules shall support post-build

configuration
[SWS_MemMap_00999]

[SRS_BSW_00405] BSW Modules shall support multiple
configuration sets

[SWS_MemMap_00999]

[SRS_BSW_00406] A static status variable denoting if a BSW
module is initialized shall be initialized with
value 0 before any APIs of the BSW module is
called

[SWS_MemMap_00999]

[SRS_BSW_00407] Each BSW module shall provide a function to
read out the version information of a
dedicated module implementation

[SWS_MemMap_00999]

[SRS_BSW_00408] All AUTOSAR Basic Software Modules
configuration parameters shall be named
according to a specific naming rule

[SWS_MemMap_00999]

[SRS_BSW_00409] All production code error ID symbols are
defined by the Dem module and shall be
retrieved by the other BSW modules from
Dem configuration

[SWS_MemMap_00999]

[SRS_BSW_00410] Compiler switches shall have defined values [SWS_MemMap_00999]
[SRS_BSW_00411] All AUTOSAR Basic Software Modules shall

apply a naming rule for enabling/disabling the
existence of the API

[SWS_MemMap_00999]

[SRS_BSW_00413] An index-based accessing of the instances of
BSW modules shall be done

[SWS_MemMap_00999]

[SRS_BSW_00414] Init functions shall have a pointer to a
configuration structure as single parameter

[SWS_MemMap_00999]

[SRS_BSW_00415] Interfaces which are provided exclusively for
one module shall be separated into a
dedicated header file

[SWS_MemMap_00028]
[SWS_MemMap_00029]
[SWS_MemMap_00032]

[SRS_BSW_00416] The sequence of modules to be initialized
shall be configurable

[SWS_MemMap_00999]

[SRS_BSW_00417] Software which is not part of the SW-C shall
report error events only after the DEM is fully
operational.

[SWS_MemMap_00999]

[SRS_BSW_00419] If a pre-compile time configuration parameter
is implemented as "const" it should be placed
into a separate c-file

[SWS_MemMap_00999]

[SRS_BSW_00422] Pre-de-bouncing of error status information is
done within the DEM

[SWS_MemMap_00999]

[SRS_BSW_00423] BSW modules with AUTOSAR interfaces shall
be describable with the means of the SW-C
Template

[SWS_MemMap_00999]

[SRS_BSW_00424] BSW module main processing functions shall
not be allowed to enter a wait state

[SWS_MemMap_00999]

[SRS_BSW_00425] The BSW module description template shall
provide means to model the defined trigger
conditions of schedulable objects

[SWS_MemMap_00999]

[SRS_BSW_00426] BSW Modules shall ensure data consistency
of data which is shared between BSW
modules

[SWS_MemMap_00999]

20 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00427] ISR functions shall be defined and

documented in the BSW module description
template

[SWS_MemMap_00999]

[SRS_BSW_00428] A BSW module shall state if its main
processing function(s) has to be executed in a
specific order or sequence

[SWS_MemMap_00999]

[SRS_BSW_00429] Access to OS is restricted [SWS_MemMap_00999]
[SRS_BSW_00432] Modules should have separate main

processing functions for read/receive and
write/transmit data path

[SWS_MemMap_00999]

[SRS_BSW_00433] Main processing functions are only allowed to
be called from task bodies provided by the
BSW Scheduler

[SWS_MemMap_00999]

[SRS_BSW_00437] Memory mapping shall provide the possibility
to define RAM segments which are not to be
initialized during startup

[SWS_MemMap_00006]
[SWS_MemMap_00038]

[SRS_BSW_00438] Configuration data shall be defined in a
structure

[SWS_MemMap_00999]

[SRS_BSW_00439] Enable BSW modules to handle interrupts [SWS_MemMap_00999]
[SRS_BSW_00440] The callback function invocation by the BSW

module shall follow the signature provided by
RTE to invoke servers via Rte_Call API

[SWS_MemMap_00999]

[SRS_BSW_00441] Naming convention for type, macro and
function

[SWS_MemMap_00022]

[SRS_BSW_00447] Standardizing Include file structure of BSW
Modules Implementing Autosar Service

[SWS_MemMap_00999]

[SRS_BSW_00448] Module SWS shall not contain requirements
from Other Modules

[SWS_MemMap_00999]

[SRS_BSW_00449] BSW Service APIs used by Autosar
Application Software shall return a Std_
ReturnType

[SWS_MemMap_00999]

[SRS_BSW_00450] A Main function of a un-initialized module shall
return immediately

[SWS_MemMap_00999]

[SRS_BSW_00451] Hardware registers shall be protected if
concurrent access to these registers occur

[SWS_MemMap_00999]

[SRS_BSW_00452] Classification of runtime errors [SWS_MemMap_00999]
[SRS_BSW_00453] BSW Modules shall be harmonized [SWS_MemMap_00999]
[SRS_BSW_00454] An alternative interface without a parameter of

category DATA_REFERENCE shall be
available.

[SWS_MemMap_00999]

[SRS_BSW_00456] A Header file shall be defined in order to
harmonize BSW Modules

[SWS_MemMap_00999]

[SRS_BSW_00457] Callback functions of Application software
components shall be invoked by the Basis SW

[SWS_MemMap_00999]

[SRS_BSW_00458] Classification of production errors [SWS_MemMap_00999]
[SRS_BSW_00459] It shall be possible to concurrently execute a

service offered by a BSW module in different
partitions

[SWS_MemMap_00999]

[SRS_BSW_00460] Reentrancy Levels [SWS_MemMap_00999]
[SRS_BSW_00461] Modules called by generic modules shall

satisfy all interfaces requested by the generic
module

[SWS_MemMap_00999]

21 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Requirement Description Satisfied by
[SRS_BSW_00462] All Standardized Autosar Interfaces shall have

unique requirement Id / number
[SWS_MemMap_00999]

[SRS_BSW_00463] Naming convention of callout prototypes [SWS_MemMap_00999]
[SRS_BSW_00464] File names shall be considered case sensitive

regardless of the filesystem in which they are
used

[SWS_MemMap_00028]
[SWS_MemMap_00029]
[SWS_MemMap_00032]

[SRS_BSW_00465] It shall not be allowed to name any two files so
that they only differ by the cases of their letters

[SWS_MemMap_00028]
[SWS_MemMap_00029]
[SWS_MemMap_00032]

[SRS_BSW_00466] Classification of extended production errors [SWS_MemMap_00999]
[SRS_BSW_00467] The init / deinit services shall only be called by

BswM or EcuM
[SWS_MemMap_00999]

[SRS_BSW_00469] Fault detection and healing of production
errors and extended production errors

[SWS_MemMap_00999]

[SRS_BSW_00470] Execution frequency of production error
detection

[SWS_MemMap_00999]

[SRS_BSW_00471] Do not cause dead-locks on detection of
production errors - the ability to heal from
previously detected production errors

[SWS_MemMap_00999]

[SRS_BSW_00472] Avoid detection of two production errors with
the same root cause.

[SWS_MemMap_00999]

[SRS_BSW_00473] Classification of transient faults [SWS_MemMap_00999]
[SRS_BSW_00477] The functional interfaces of AUTOSAR BSW

modules shall be specified in C99
[SWS_MemMap_00003]
[SWS_MemMap_00018]
[SWS_MemMap_00023]

[SRS_BSW_00478] Timing limits of main functions [SWS_MemMap_00999]
[SRS_BSW_00479] Interfaces for handling request from external

devices
[SWS_MemMap_00999]

[SRS_BSW_00480] NullPointer Errors shall follow a naming rule [SWS_MemMap_00999]
[SRS_BSW_00481] Invalid configuration set selection errors shall

follow a naming rule
[SWS_MemMap_00999]

[SRS_BSW_00482] Get Version Informationfunction shall follow a
naming rule

[SWS_MemMap_00999]

22 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

7 Functional specification

7.1 General issues

The memory mapping files include the compiler and linker specific keywords for mem-
ory allocation into header and source files. These keywords control the assignment of
variables and functions to specific sections. Thereby implementations are independent
from compiler and microcontroller specific properties. The assignment of the sections
to dedicated memory areas / address ranges is not the scope of the memory mapping
file and is typically done via linker control files.

[SWS_MemMap_00001] dFor each build scenario (e.g. Boot loader, ECU Application)
an own set of memory mapping files has to be provided.c(SRS_BSW_00328)

[SWS_MemMap_00002] dThe memory mapping file name shall be {Mip}_MemMap.h
for basic software modules and {componentTypeName}_MemMap.h for software
components where {Mip} is the Module implementation prefix and {component-
TypeName} is the name of the software component type.c(SRS_BSW_00361, SRS_-
BSW_00351)

Please note that the information of {Mip} is taken from the Basic Software Module
Description of the related BSW module as described in [SWS_MemMap_00028] and
[SWS_MemMap_00032].

[SWS_MemMap_00010] dIf a compiler/linker does not require specific commands to
implement the functionality of SWS Memory Mapping, the Memory Allocation Keyword
defines might be undefined without further effect.c(SRS_BSW_00006, SRS_BSW_-
00306, SRS_BSW_00351)

[SWS_MemMap_00036] dIf a compiler/linker does not support mandatory functionality
for the kind of MemorySection used by the BSW module or software component the
Memory Allocation Keyword shall be defined to raise an error.c(SRS_BSW_00006,
SRS_BSW_00306, SRS_BSW_00351)

Example 7.1

1 #ifdef EEP_START_SEC_VAR_CLEARED_16
2 #undef EEP_START_SEC_VAR_CLEARED_16
3 #endif

As described in [SWS_MemMap_00029] the number of files depends on the number
of SwComponentTypes in the input configuration. To determine the number of Mem-
orySections the applicable SwcImplementations have to be known. These are
described in an AUTOSAR environment with the SwcToImplMapping in the Sys-
temMapping and / or via ECU Configuration values RteImplementationRef in a
RteSwComponentType container.
Knowing the SwcImplementations provides as well the number of MemorySec-

23 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

tions which have to be identified for [SWS_MemMap_00027]. For more details about
the content of a SwcImplementation see document [4] and [5].

Further on the total number of used MemorySections depends as well on the num-
ber of used BSW modules. These can be determined by the M1 instance of the
EcucValueCollection which refers to the MemMap’s EcucModuleConfigura-
tionValues. This EcucValueCollection refers as well to EcucModuleCon-
figurationValues of other Bsw Modules which refer again to BswImplementa-
tions via moduleDescription references. Knowing the BswImplementations
provides as well the number of MemorySections which have to be identified for
[SWS_MemMap_00026]. For more details about the content of a BswImplementa-
tion see document [5].

In [6] further information is provided how Memory Mapping is used in the AUTOSAR
Methodology.

7.2 Mapping of variables and code

7.2.1 Requirements on implementations using memory mapping header files
for BSW Modules and Software Components

[SWS_MemMap_00038] gives a recommendation to the granularity in which the differ-
ent types of variables and code should be allocated in a C implementation. The refer-
enced subsection 7.2.1.3 and subsection 7.2.1.4 defines the recommended names for
those memory allocation keywords. Nevertheless a implementation may deviate from
this recommendations, e.g. to implement supplementary requirements.

[SWS_MemMap_00038] d

Each AUTOSAR basic software module and software component should support the
configuration of at least the following different memory types as described in

• Table 7.2: Section Type VAR

• Table 7.3: Section Type VAR_FAST

• Table 7.4: Section Type VAR_SLOW

• Table 7.5: Section Type INTERNAL_VAR

• Table 7.6: Section Type VAR_SAVED_ZONE

• Table 7.7: Section Type CONST_SAVED_RECOVERY_ZONE

• Table 7.8: Section Type CONST

• Table 7.9: Section Type CALIB

• Table 7.10: Section Type CONFIG_DATA

24 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

• Table 7.11: Section Type CODE

• Table 7.12: Section Type CALLOUT_CODE

• Table 7.13: Section Type CODE_FAST

• Table 7.14: Section Type CODE_SLOW

It is allowed to add module specific sections as they are mapped and thus are config-
urable within the module’s configuration file.

The shortcut {ALIGNMENT} means the typical variable alignment. In order to avoid
memory gaps variables are allocated separately according their size for the kind of
memory sections where a high amount of variables is expected, e.g. VAR. Hereby
it is the task of the implementer to ensure the proper granularity by defining memory
sections with different {ALIGNMENT} postfixes for variables of different element sizes
as described below.

It is the integrator’s job to ensure via appropriate memory mapping configuration (i.e.
using the proper alignment #pragmas or omitting them at all to let the compiler decide)
that the platform specific alignment requirements of objects of the respective size are
honored. Thereby the effective alignment can deviate from the {ALIGNMENT} post-fix.

BOOLEAN, used for variables and constants of size 1 bit

8, used for variables and constants which typically have to be aligned to 8 bit. For
instance used for variables and constants of size 8 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 8 bits.

16, used for variables and constants which typically have to be aligned to 16 bit. For
instance used for variables and constants of size 16 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 16 bits.

32, used for variables and constants which typically have to be aligned to 32 bit. For
instance used for variables and constants of size 32 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 32 bits.

PTR, used for variables and constants whose value is the address of another variable,
so called pointers.

UNSPECIFIED, used for variables, constants, structure, array and unions when size
(alignment) does not fit the criteria of 8,16, 32 bit or PTR. For instance used for vari-
ables and constants of unknown size

In case structures and unions, it shall be allowed to use an alignment larger than the
bit size of the elements. For instance to facilitate copy instruction a structure may have
minimum 2 byte alignment, even if members are byte aligned. In this case, it should be
possible to use alignment 16 bit instead of 8 bit for this structure.

Note: The (embedded) application binary interface ((E)ABI) of some target architec-
tures (e.g., TriCore) imposes additional alignment requirements on aggregate types
type (e.g., structs) depending on the size of the structure. Those additional constraints

25 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

do not need to be taken in consideration when selecting the {ALIGNMENT} post-fix of
the Memory Allocation Keyword for variables and constants of those aggregate types.

The shortcut {INIT_POLICY} means the initialization policy of variables. Possible
INIT_POLICY postfixes are:

• CLEARED, used for not explicitly initialized variables.

• INIT, used for initialized variables. This are typically explicitly initialized vari-
ables, but it can be also used for not explicitly initialized variables to be able to
mix up both types to deal with legacy code.

• POWER_ON_CLEARED, used for variables that are not explicitly initialized (cleared)
during normal start-up. Instead these are cleared only after power on reset of the
microcontroller or in case of battery backup memory the memory itself.

For more details and examples please refer to the table below.

Note: The postfixes NO_INIT and POWER_ON_INIT are still supported but deprecated
and will be removed in one of the next releases.

Use INIT or CLEARED also for those variables which might be initialized at a later time
in the program flow, e.g. by an initialization routine. POWER_ON_CLEARED shall be
used for variables which shall survive resets only.

For optimizing the initialization at start-up, it is possible for any software vendor to apply
an initialization policy refinement inside the SwAddrMethod name, e.g.:

• <PREFIX>_SEC_VAR_POWER_ON_CLEARED_RSTSAFE_QM_8, used to express
reset safe variables.

• <PREFIX>_SEC_VAR_POWER_ON_CLEARED_NVRAM_QM_8, used to express
that the section contains NVRAM buffers.

• <PREFIX>_SEC_VAR_POWER_ON_CLEARED_BATTERY_BACKUP_QM_8, used
to express that the memory is a special battery backup device.

• <PREFIX>_SEC_VAR_INIT_INDETERMINATE_QM_8, used to express that the
section contains NVRAM buffers.

• <PREFIX>_SEC_VAR_INIT_SELFINIT_QM_8, used to express that the mem-
ory is a special battery backup device.

Depending on the used SwAddrMethod one can derive options to map to individual
ModeSets and so to different memory devices in the target project.

Note 1: For microcontrollers / processors which are equipped with Error Correction
Codes (ECC), the hardware needs to initialize the according memory in case of under
voltage due to lost ECC. This includes:

• Any ’normal’ system RAM without external supply, which needs to be initialized
when the microcontroller voltage drops below a threshold as the ECC codes be-
come invalid. This usually happens in case of a cold power on reset.

26 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

• Any ’standby’ supplied RAM, which needs to be initialized when the standby volt-
age drops below a threshold and the ECC codes become invalid.

As a consequence POWER_ON_CLEARED symbols cannot be stored inside of those
memory areas.

Note 2: Please consider that microcontrollers / processors with embedded LBIST (Log-
ical Build In Self Test), MBIST (Memory Build In Self Test) will initialize a specified
amount of memory when those tests are executed. So these memory devices shall not
be used for POWER_ON_CLEARED.c(SRS_BSW_00437, SRS_BSW_00351)

Init Policy Allowed for Type Example Initializa-
tion
Time

Behavior Note

CLEARED Not explicitly
initialized
variables

BSS uint8 my_bss; /* =0 */ any reset All objects are initialized to
0 or null pointer as per C
standard (6.7.8
Initialization clause 10).

This is typically used for
not explicitly initialized
objects with a static
storage duration.

DATA uint8 my_data=5; All objects are initialized
according to their
initializer.

INIT Initialized
variables

BSS uint8 my_bss; /* =0 */

any reset,
copytable
execution

All objects are initialized to
0 or null pointer as per C
standard (6.7.8
Initialization clause 10).

This is typically used for
either initialized or not
explicitly initialized objects
with a static storage
duration.

Note: Depending on the
used compiler it might not
be possible to combine
DATA and BSS
initialization due to limited
#pragmas.

POWER_ON_
CLEARED

Power-on
cleared
variables

BSS uint8 my_bss; Cold
PowerOn
reset

All objects are initialized to
0 or null pointer, but only
on Cold PowerOn reset or
brownout reset. They are
not overwritten on a
regular warm reset (e.g.
software reset, watchdog
reset, external reset).

This deviates from the C
standard as all objects
with a static storage
duration shall be initialized
before program startup
(5.1.2 Execution
environments).

Table 7.1: Summary of Init Behavior

27 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

[SWS_MemMap_00022] dThe keywords to be used before inclusion of the mem-
ory mapping header file shall use the templates <PREFIX>_START_SEC_<NAME> or
<PREFIX>_STOP_SEC_<NAME>

Where:

• <PREFIX> is composed according <snp>[_<vi>_<ai>] for basic software
modules where

– <snp> is the Section Name Prefix which shall be the Module Abbreviation
from the BSW Module list (e.g. "EEP" or "CAN") in upper case letters of the
BSW module. For the generation of the MemMap.h file following rules apply:

∗ <snp> shall be the BswModuleDescription’s shortName converted
in upper case letters if no SectionNamePrefix is defined for the Mem-
orySection.

∗ <snp> shall be the symbol of the SectionNamePrefix associated to
the MemorySection if a SectionNamePrefix is defined for the Mem-
orySection.

– <vi> is the vendorId of the BSW module, which shall be in upper case.

– <ai> is the vendorApiInfix of the BSW module, which shall be in upper
case.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApi-
Infix is defined for the Basic Software Module which indicates that it does not
use multiple instantiation.

OR

• <PREFIX> is the shortName of the software component type for software com-
ponents (case sensitive) if no SectionNamePrefix is defined for the Memory-
Section.

OR

• <PREFIX> is the symbol of the SectionNamePrefix if a SectionNamePre-
fix is defined for the MemorySection.

AND

• <NAME> is the shortName of the MemorySection described in Basic Software
Module Description or a Software Component Description (case sensitive) if the
MemorySection has no symbol attribute defined.

OR

• <NAME> is the symbol of the MemorySection described in Basic Software Mod-
ule Description or a Software Component Description (case sensitive) if the Mem-
orySection has a symbol attribute defined.

c(SRS_BSW_00441, SRS_BSW_00351)

28 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Please note if the Memory Allocation Keywords shall appear in capital letters in the
code the related MemorySections in the Basic Software Module Description or Soft-
ware Component Description have to be named with capital letters.

[SWS_MemMap_00037] dThe part <NAME> from [SWS_MemMap_00022] may con-
tain the following ASIL keywords to indicate the restriction/qualifications: {safety} =
QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D

The {safety} tag is optional and indicates the maximum possible safety level. Down-
scaling in the project is possible inside memory mapping header files. If no {safety}
keyword is added the default shall be treated as QM (without any ASIL qualification).c
(SRS_BSW_00351)

[SWS_MemMap_00039] dThe part <NAME> from [SWS_MemMap_00022] shall con-
tain the following core scope keywords to indicate the restriction/qualifications:
{coreScope} =

• GLOBAL is code/data which can be executed/accessed by any core in case of
multi-core ECUs.

• LOCAL code/data must be mapped by the integrator to a specific core (Core 0,
Core 1, ...) in case of multi-core ECUs.

The {coreScope} tag can be considered optional in case it is GLOBAL. Means in case
no {coreScope} keyword is added the default shall be treated as GLOBAL. Instead
the {coreScope} tag LOCAL shall be considered as mandatory.

Background: Scope of LOCAL SwAddrMethod is visible and can not be mixed up with
GLOBAL SwAddrMethods.

c(SRS_BSW_00351)

[SWS_MemMap_00042] dFor variable section types, the part <NAME> from
[SWS_MemMap_00022] may contain an optional vendor specific {refinement} tag.
It shall be used to refine the variable allocation or initialization behavior. The used
values are vendor specific and free of choice.c(SRS_BSW_00351)

The usage of {coreScope} LOCAL is limited to the section types it is specified for.
In addition for section types VAR, VAR_FAST, VAR_SLOW, INTERNAL_VAR the usage
of {coreScope} is only perrmitted for {INIT_POLICY} equal to CLEARED or INIT.
This restriction shall reduce the complexity of memory layouts and reduce the amount
of memory holes due to typical allocation restrictions non initialized memory sections.

In this regard the [constr_1402] in the document [4] is defined.

Application hint: It’s an integrator decision to map memory section with the GLOBAL
property to a core specific memory section. For instance this can be utilized to opti-
mize the performance if the majority of memory accesses occur from a specific core.
Nevertheless such a mapping prerequisites, that the core specific memory is also ac-
cessible by the other cores.

29 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Please note that the name part <NAME> according [SWS_MemMap_00022] is pro-
vided either by MemorySection.shortName or MemorySection.symbol. In order
to provide the safety information the name part according [SWS_MemMap_00037]
needs to be part of the MemorySection.shortName or MemorySection.sym-
bol respectively. To provide the core scope qualification the name part according
[SWS_MemMap_00039] needs to be part of the MemorySection.shortName or
MemorySection.symbol.

Therefore the usual patterns for Memory Allocation Keywords are
{PREFIX}_START_SEC_CODE[_{codePeriode}][_{safety}][_{coreScope}]

{PREFIX}_STOP_SEC_CODE[_{codePeriode}][_{safety}][_{coreScope}]

{PREFIX}_START_SEC_VAR_{INIT_POLICY}[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}

{PREFIX}_STOP_SEC_VAR_{INIT_POLICY}[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}

{PREFIX}_START_SEC_CONST[_{accessPeriod}][_{safety}][_{coreScope}]

{PREFIX}_STOP_SEC_CONST[_{accessPeriod}][_{safety}][_{coreScope}]

Those are applied in the recommendations provided in subsection 7.2.1.3 and subsec-
tion 7.2.1.4.

7.2.1.1 Splitting of modules in allocatable memory parts

To increase the performance some multi core architectures work with core local mem-
ory areas. As a consequence the access speed to specific memory areas depends
on the core where the code is executed. For instance a BSW module which is multi
core capable by implementation of the Master/Satellite-approach is usually beneficial
to split the interface of the BSW module from the "Master" functionality implemen-
tation. Another use case is to split a BSW module with several distinct features in
different memory parts. Those memory parts are typically composed out of a set of
sections (CODE, CONST, VAR) used or the implementation of the feature. This sup-
port that those memory parts can be assigned to set of physical controller memories
being close to the main user of the feature.

[SWS_MemMap_00040] dWhen a BSW module or Software Component is split into
allocatable memory parts the <PREFIX> as described in [SWS_MemMap_00022] shall
be sub-structured in the following way:

<PREFIX> = <snp>[_<vi>_<ai>]_<feature>c(SRS_BSW_00351)

[SWS_MemMap_00041] dWhen a BSW module or Software Component is
split into allocatable memory parts the resulting <PREFIX> as specified in
[SWS_MemMap_00040] (inclusive [_<vi>_<ai>]) shall be described as a Section-
NamePrefix and all belonging MemorySections.prefix needs to reference the
SectionNamePrefix.c(SRS_BSW_00351)

Please note the example given in 7.3.5.

30 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

7.2.1.2 config constants versus non-config constants

There are basically two different kinds of constants in the implementation of an
AUTOSAR BSW Module.

1. Constants which are used to implement a configurable behavior. For the different
config classes of config data (i.e. everything that is placed in <Mip>_Lcfg.c
and <Mip>_PBcfg.c) the syntax of Memory Allocation Keywords are:
{PREFIX}_START_SEC_CONFIG_DATA_{configClass}[_{safety}]_{ALIGNMENT}

{PREFIX}_STOP_SEC_CONFIG_DATA_{configClass}[_{safety}]_{ALIGNMENT}

Note: {configClass} may only be PREBUILD or POSTBUILD. Thereby PRE-
BUILD represents both Pre-Compile time and Link time configuration
data.

See table 7.10.

2. Constants which are used to implement a fixed value which is not related to
the configuration methodology of AUTOSAR. For non-config constants (i.e. ev-
erything that is placed in <Mip>.[ch] or <Mip>_<Implementation Exten-
sion>.[ch]) the Syntax of Memory Allocation Keywords are:
{PREFIX}_START_SEC_CONST[_{accessPeriod}][_{safety}][_{coreScope}]

{PREFIX}_STOP_SEC_CONST[_{accessPeriod}][_{safety}][_{coreScope}]

See table 7.8.

7.2.1.3 Data Sections

The table below defines recommended keywords for variable and constant sections:

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_VAR_{INIT_POLICY}[_{safety}][_{core
Scope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_VAR_{INIT_POLICY}[_{safety}][_{core
Scope}]_{ALIGNMENT}

Description To be used for all global or static variables.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at
most one of the strings GLOBAL, LOCAL. In case of GLOBAL the name part
may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core
scope qualification with at most one of the possible values {coreGlobal, core
Local}. In case of coreGlobal the attribute may be omitted.

Memory Section Type VAR
Section Initialization
Policy

{INIT_POLICY}

31 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Status –

Table 7.2: Section Type VAR

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_VAR_FAST_{INIT_POLICY}[_{safety}]
[_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_VAR_FAST_{INIT_POLICY}[_{safety}]
[_{coreScope}]_{ALIGNMENT}

Description To be used for all global or static variables.
To be used for all global or static variables that have at least one of the follow-
ing properties:

• accessed bitwise

• frequently used

• high number of accesses in source code

Some platforms allow the use of bit instructions for variables located in this
specific RAM area as well as shorter addressing instructions. This saves code
and runtime.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at
most one of the strings GLOBAL, LOCAL. In case of GLOBAL the name part
may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core
scope qualification with at most one of the possible values {coreGlobal, core
Local}. In case of coreGlobal the attribute may be omitted.

Memory Section Type VAR
Section Initialization
Policy

{INIT_POLICY}

Status –

Table 7.3: Section Type VAR_FAST

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_VAR_SLOW_{INIT_POLICY}[_{safety}]
[_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_VAR_SLOW_{INIT_POLICY}[_{safety}]
[_{coreScope}]_{ALIGNMENT}

32 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Description To be used for all infrequently accessed global or static variables.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at
most one of the strings GLOBAL, LOCAL. In case of GLOBAL the name part
may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core
scope qualification with at most one of the possible values {coreGlobal, core
Local}. In case of coreGlobal the attribute may be omitted.

Memory Section Type VAR
Section Initialization
Policy

{INIT_POLICY}

Status –

Table 7.4: Section Type VAR_SLOW

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_INTERNAL_VAR_{INIT_POLICY}[_{safety}]
[_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_INTERNAL_VAR_{INIT_POLICY}[_{safety}]
[_{coreScope}]_{ALIGNMENT}

Description To be used for global or static variables those are accessible from a calibration
tool.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at
most one of the strings GLOBAL, LOCAL. In case of GLOBAL the name part
may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core
scope qualification with at most one of the possible values {coreGlobal, core
Local}. In case of coreGlobal the attribute may be omitted.

Memory Section Type VAR
Section Initialization
Policy

{INIT_POLICY}

Status –

Table 7.5: Section Type INTERNAL_VAR

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_VAR_SAVED_ZONE{anyName
Part}[_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_VAR_SAVED_ZONE{anyName
Part}[_{safety}]_{ALIGNMENT}

33 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Description To be used for RAM buffers of variables saved in non volatile memory.
{anyNamePart} denotes the specific content of the saved zone.
In the related SwAddrMethod the sectionInitializationPolicy attribute shall be
set to POWER-ON-CLEARED.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.

Memory Section Type VAR
Section Initialization
Policy

POWER-ON-CLEARED

Status –

Table 7.6: Section Type VAR_SAVED_ZONE

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_CONST_SAVED_RECOVERY_ZONE{anyName
Part}[_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONST_SAVED_RECOVERY_ZONE{anyName
Part}[_{safety}]_{ALIGNMENT}

Description To be used for ROM buffers of variables saved in non volatile memory.
{anyNamePart} denotes the specific content of the recovery zone.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.

Memory Section Type CONST
Section Initialization
Policy

-

Status –

Table 7.7: Section Type CONST_SAVED_RECOVERY_ZONE

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_CONST[_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONST[_{safety}]_{ALIGNMENT}

34 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Description To be used for global or static constants.
{accessPeriod} is the typical period time value and unit of the ExecutableEnti-
tys in this MemorySection. The name part _{accessPeriod} is optional. Units
are:

• US microseconds

• MS milli second

• S second

For example: 100US, 400US, 1MS, 5MS, 10MS, 20MS, 100MS, 1S
Please note that deviations from this typical period time are possible due to
integration decisions (e.g. RTEEvent To Task Mapping). Further on in special
modes of the ECU the code may be scheduled with a higher or lower period.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.

Memory Section Type CONST
Section Initialization
Policy

-

Status –

Table 7.8: Section Type CONST

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_CALIB[_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CALIB[_{safety}]_{ALIGNMENT}

Description To be used for calibration constants.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.

Memory Section Type CALPRM
Section Initialization
Policy

-

Status –

Table 7.9: Section Type CALIB

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_CONFIG_DATA[_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONFIG_DATA[_{safety}]_{ALIGNMENT}

35 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Description Constants with attributes that show that they reside in one segment for module
configuration.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
The name part {configClass} shall contain the configClass with one of the
strings PREBUILD or POSTBUILD.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the config
Class with the possible values {configClassPreBuild, configClassPostBuild}.

Memory Section Type CONFIG-DATA
Section Initialization
Policy

-

Status –

Table 7.10: Section Type CONFIG_DATA

7.2.1.4 Code Sections

There are different kinds of execution code sections. This code sections shall be iden-
tified with dedicated keywords. If a section is not supported by the integrator and micro
controller then be aware that the keyword is ignored. The table below defines recom-
mended keywords for code sections:

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_CODE[_{codePeriod}][_{safety}][_{core
Scope}]
{PREFIX}_STOP_SEC_CODE[_{codePeriod}][_{safety}][_{core
Scope}]

36 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Description To be used for mapping code to application block, boot block, external flash
etc.
{codePeriod} is the typical period time value and unit of the ExecutableEntitys
in this MemorySection. The name part _{codePeriod} is optional. Units are:

• US microseconds

• MS milli second

• S second

For example: 100US, 400US, 1MS, 5MS, 10MS, 20MS, 100MS, 1S
Please note that deviations from this typical period time are possible due to
integration decisions (e.g. RTEEvent To Task Mapping). Further on in special
modes of the ECU the code may be scheduled with a higher or lower period.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at
most one of the strings GLOBAL, LOCAL. In case of GLOBAL the name part
may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core
scope qualification with at most one of the possible values {coreGlobal, core
Local}. In case of coreGlobal the attribute may be omitted.

Memory Section Type CODE
Section Initialization
Policy

-

Status –

Table 7.11: Section Type CODE

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_CALLOUT_CODE[_{safety}][_{coreScope}]
{PREFIX}_STOP_SEC_CALLOUT_CODE[_{safety}][_{coreScope}]

Description To be used for mapping callouts of the BSW Modules which shall typically use
the global linker settings for callouts.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at
most one of the strings GLOBAL, LOCAL. In case of GLOBAL the name part
may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core
scope qualification with at most one of the possible values {coreGlobal, core
Local}. In case of coreGlobal the attribute may be omitted.

Memory Section Type CODE
Section Initialization
Policy

-

37 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Status –

Table 7.12: Section Type CALLOUT_CODE

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_CODE_FAST[_{safety}][_{coreScope}]
{PREFIX}_STOP_SEC_CODE_FAST[_{safety}][_{coreScope}]

Description To be used for code that shall go into fast code memory segments.
The FAST sections should be used when the execution does not happen in a
well defined period times but with the knowledge of high frequent access and
/or high execution time. For example, a callback for a frequent notification.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at
most one of the strings GLOBAL, LOCAL. In case of GLOBAL the name part
may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core
scope qualification with at most one of the possible values {coreGlobal, core
Local}. In case of coreGlobal the attribute may be omitted.

Memory Section Type CODE
Section Initialization
Policy

-

Status –

Table 7.13: Section Type CODE_FAST

Syntax of Memory Allo-
cation Keyword

{PREFIX}_START_SEC_CODE_SLOW[_{safety}][_{coreScope}]
{PREFIX}_STOP_SEC_CODE_SLOW[_{safety}][_{coreScope}]

Description To be used for code that shall go into slow code memory segments.
The SLOW sections should be used when the execution does not happen in a
well defined period times but with the knowledge of low frequent access. For
example, a callback in case of seldom error.
The name part _{safety} shall contain the safety integrity level with at most
one of the strings QM, ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the
name part may be omitted.
The name part _{coreScope} shall contain the core scope qualification with at
most one of the strings GLOBAL, LOCAL. In case of GLOBAL the name part
may be omitted.
In the related SwAddrMethod one option attribute shall describe the safety
integrity level with the possible values {safetyQM, safetyAsilA, safetyAsilB,
safetyAsilC, safetyAsilD}. In case of safetyQM the attribute may be omitted.
In the related SwAddrMethod one option attribute shall describe the core
scope qualification with at most one of the possible values {coreGlobal, core
Local}. In case of coreGlobal the attribute may be omitted.

Memory Section Type CODE
Section Initialization
Policy

-

38 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Status –

Table 7.14: Section Type CODE_SLOW

39 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

[SWS_MemMap_00003] dEach AUTOSAR basic software module and software com-
ponent shall wrap declaration and definition of code, variables and constants using the
following mechanism:

1. Definition of start symbol for module memory section

2. Inclusion of the memory mapping header file

3. Declaration/definition of code, variables or constants belonging to the specified
section

4. Definition of stop symbol for module memory section

5. Inclusion of the memory mapping header file

For code which is invariably implemented as inline function the wrapping with Memory
Allocation Keywords is not required.c(SRS_BSW_00006, SRS_BSW_00306, SRS_-
BSW_00351, SRS_BSW_00477)

Application hint:
The implementations of AUTOSAR basic software modules or AUTOSAR software
components are not allowed to rely on an implicit assignment of objects to default sec-
tions because properties of default sections are platform and tool dependent. There-
fore this style of code implementation is not platform independent.

Application hint:
For code which is implemented with the LOCAL_INLINE macro of the "Compiler.h"

the wrapping with Memory Allocation Keywords is required. In the case that the
LOCAL_INLINE is set to the inline keyword of the compiler the related Memory Alloca-
tion Keywords shall not define any linker section assignments or change the addressing
behavior because this is already set by the environment of the calling function where
the code is inlined. In the case that the LOCAL_INLINE is set to empty the related Mem-
ory Allocation Keywords shall be configured like for regular code. For code which his
implemented with the INLINE macro of the "Compiler.h" the wrapping with Memory
Allocation Keywords is required at least for the code which is remaining if INLINE is set
to empty.

Please note as well that in the Basic Software Module Description the MemorySec-
tion related to the used Memory Allocation Keywords has to document the usage of
INLINE and LOCAL_INLINE in the option attribute. For further information see [5].

Additional option attribute values are predefined in document [4], [TPS_SWCT_-
01456].

The inclusion of the memory mapping header files within the code is a MISRA violation.
As neither executable code nor symbols are included (only pragmas) this violation is
an approved exception without side effects.

40 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

The start and stop symbols for section control are configured with section identifiers
defined in the inclusion of memory mapping header file. For details on configuring
sections see " Configuration specification".

Example 7.2

For example (BSW Module):
1 #define EEP_START_SEC_VAR_INIT_16
2 #include "Eep_MemMap.h"
3 static uint16 EepTimer = 100;
4 static uint16 EepRemainingBytes = 16;
5 #define EEP_STOP_SEC_VAR_INIT_16
6 #include "Eep_MemMap.h"

Example 7.3

For example (SWC):
1 #define Abc_START_SEC_CODE
2 #include "Abc_MemMap.h"
3 /* --- Write a Code here */
4 #define Abc_STOP_SEC_CODE
5 #include "Abc_MemMap.h"

[SWS_MemMap_00018] dEach AUTOSAR basic software module and software com-
ponent shall support, for all C-objects, the configuration of the assignation to one of
the memory types (code, variables and constants).c(SRS_BSW_00306, SRS_BSW_-
00351, SRS_BSW_00477)

[SWS_MemMap_00023] dMemory mapping header files shall not be included inside
the body of a function.c(SRS_BSW_00306, SRS_BSW_00351, SRS_BSW_00477)

The goal of this requirement is to support compiler which do not support #pragma
inside the body of a function. To force a special memory mapping of a function’s static
variable, this variable must be moved to file static scope.

Application hint concerning callout sections:

According [SWS_BSW_00135] an individual set of memory allocation keywords per
callout function shall be used. This provides on one hand a high flexibility for the
configuration of memory allocation. On the other hand this bears the risk of high con-
figuration effort for the MemMap module because all individual memory sections have to
be configured for the MemMap header file generation. To ease the integration of such
callout sections it is recommended that in the Basic Software Module Description all
MemorySections which are describing callouts and which typically are treated with
the same linker properties should refer to the identical SwAddrMethod. According the
recommended memory sections in section 7.2.1.4 "code sections" the SwAddrMethod
defined by AUTOSAR would have the reference path:

/AUTOSAR_MemMap/SwAddrMethods/CALLOUT_CODE

41 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

For instance:
<MEMORY-SECTION>

<SHORT-NAME>COM_SOMECALLOUT_CODE</SHORT-NAME>
<SW-ADDRMETHOD-REF DEST="SW-ADDR-METHOD">/

AUTOSAR_MemMap/SwAddrMethods/CALLOUT_CODE</SW-
ADDRMETHOD-REF>

</MEMORY-SECTION>

This enables the integrater either to configer all of the memory sections identical with
the means of the MemMapGenericMapping and additionally to handle the special
cases individually with the means of the MemMapSectionSpecificMapping. See
as well the example 7.3.4 Callout sections

7.2.2 Requirements on memory mapping header files

[SWS_MemMap_00005] dThe memory mapping header files shall provide a mech-
anism to select different code, variable or constant sections by checking the defini-
tion of the module specific Memory Allocation Key Words for starting a section (see
[SWS_MemMap_00038]). Code, variables or constants declared after this selection
shall be mapped to this section.c(SRS_BSW_00328, SRS_BSW_00006, SRS_BSW_-
00306, SRS_BSW_00351)

[SWS_MemMap_00026] dEach BSW memory mapping header file shall support the
Memory Allocation Keywords to start and to stop a section for each belonging Memory-
Section defined in a BswImplementation which is part of the input configuration.c
(SRS_BSW_00351)

[SWS_MemMap_00033] dAll MemorySections defined in a BswImplementation
belong to the {Mip}_MemMap.h memory mapping header file if the BswImplementa-
tion does NOT contain a DependencyOnArtifact as requiredArtifact.De-
pendencyOnArtifact.category = MEMMAPc(SRS_BSW_00351)

Please note also [SWS_MemMap_00032].

[SWS_MemMap_00034] dAll MemorySection defined in a BswImplementation
belong to the memory mapping header file defined by the attribute requiredArti-
fact.artifactDescriptor.shortLabel if the BswImplementation does con-
tain exactly one DependencyOnArtifact as requiredArtifact.Dependency-
OnArtifact.category = MEMMAPc(SRS_BSW_00351)

Please note also [SWS_MemMap_00028].

[SWS_MemMap_00035] dAll MemorySection defined in a BswImplementation
and associated with the identical SectionNamePrefix belong to the memory map-
ping header file defined by the attribute requiredArtifact.artifactDescrip-
tor.shortLabel of the DependencyOnArtifact which is referenced by the Sec-
tionNamePrefix with a implementedIn reference.c(SRS_BSW_00351)

42 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

In this case the if the BswImplementation may contain several DependencyOnArti-
fact as with requiredArtifact. DependencyOnArtifact.category = MEMMAP
This will be used to describe an ICC2 cluster with one BswModuleDescription.
Please note also [SWS_MemMap_00028].

[SWS_MemMap_00027] dThe software component type specific memory mapping
header file {componentTypeName}_MemMap.h shall support the Memory Allocation
Keywords to start and to stop a section for each MemorySection defined in a SwcIm-
plementation associated of this software component type.c(SRS_BSW_00351)

[SWS_MemMap_00015] dThe selected section shall be activated, if the section macro
is defined before include of the memory mapping header file.c(SRS_BSW_00306,
SRS_BSW_00351)

[SWS_MemMap_00016] dThe selection of a section shall only influence the linker’s
behavior for one of the three different object types code, variables or constants con-
currently.c(SRS_BSW_00306, SRS_BSW_00351)

Application hint:
On one side the creation of combined sections (for instance code and constants) is not
allowed. For the other side the set-up of the compiler / linker must be done in a way,
that only the settings of the selected section type is changed. For instance the set-up
of the code section shall not influence the configuration of the constant section and
other way around.

Example 7.4

1 #ifdef EEP_START_SEC_VAR_INIT_16
2 #undef EEP_START_SEC_VAR_INIT_16
3 #define START_SECTION_DATA_INIT_16
4 #elif
5 /*
6 additional mappings of modules sections into project
7 sections
8 */
9 ...

10 #endif
11

12

13 #ifdef START_SECTION_DATA_INIT_16
14 #pragma section data "sect_data16"
15 #undef START_SECTION_DATA_INIT_16
16 #undef MEMMAP_ERROR
17 #elif
18 /*
19 additional statements for switching the project sections
20 */
21 ...
22 #endif

Application hint:
Those code or variables sections can be used for the allocation of objects from more

43 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

than one module.
Those code or variables sections can be used for the allocation of objects from different
module specific code or variable sections of one module.

[SWS_MemMap_00006] dThe memory mapping header files shall provide a mech-
anism to deselect different code and variable sections by checking the definition
of the module specific Memory Allocation Key Words for stopping a section (see
[SWS_MemMap_00038]).

The selected section shall be deactivated if the section macro is defined before in-
clude of the memory mapping header file. Code or variables declared after this se-
lection shall be mapped to an section collecting those inaccurate non-handled ob-
jects from BSW Module or software component implementation.1c(SRS_BSW_00006,
SRS_BSW_00306, SRS_BSW_00437, SRS_BSW_00351)

Example 7.5

1 #ifdef EEP_STOP_SEC_CODE
2 #undef EEP_STOP_SEC_CODE
3 #define STOP_SECTION_COMMON_CODE
4 #elif
5 /*
6 additional mappings of modules sections into project
7 sections
8 */
9 ...

10 #endif
11

12

13 /* additional module specific mappings */
14 ...
15

16 #ifdef STOP_SECTION_COMMON_CODE
17 #pragma section code restore
18 #undef STOP_SECTION_COMMON_CODE
19 #undef MEMMAP_ERROR
20 #elif
21 /*
22 additional statements for switching the project sections
23 */
24 #endif

[SWS_MemMap_00007] dThe memory mapping header files shall check if they have
been included with a valid memory mapping symbol and in a valid sequence (no START
preceded by a START, no STOP without the corresponding START). This shall be done
by a preprocessor check.c(SRS_BSW_00351)

Example 7.6

1Since its error prone to determined expected properties for memory which is not explicitly handled
by Memory Allocation Key Words usually those objects are treated in away to cause linker errors. The
default sections might be used to catch those non-handled objects.

44 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

1 #define MEMMAP_ERROR
2

3 /*
4 mappings of modules sections into project sections and
5 statements for switching the project sections
6 */
7

8 ...
9 #elif STOP_SECTION_COMMON_CODE

10 #pragma section code restore
11 #undef STOP_SECTION_COMMON_CODE
12 #undef MEMMAP_ERROR
13 #endif
14

15 #ifdef MEMMAP_ERROR
16 #error "Eep_MemMap.h, wrong pragma command"
17 #endif

[SWS_MemMap_00011] dThe memory mapping header files shall undefine the mod-
ule or software component specific Memory Allocation Key Words for starting or stop-
ping a section.c(SRS_BSW_00351)

Example 7.7

1 #ifdef EEP_STOP_SEC_CODE
2 #undef EEP_STOP_SEC_CODE

[SWS_MemMap_00013] dThe memory mapping header files shall use if-else struc-
tures to reduce the compilation effort.c(SRS_BSW_00351)

Example 7.8

For instance:
1 #define MEMMAP_ERROR
2 ...
3 /* module and ECU specific section mappings */
4 #if defined START_SECTION_COMMON_CODE
5 #pragma section ftext
6 #undef START_SECTION_COMMON_CODE
7 #undef MEMMAP_ERROR
8 #elif defined START_SECTION_UNBANKED_CODE
9 #pragma section code text

10 #undef START_SECTION_UNBANKED_CODE
11 #undef MEMMAP_ERROR
12 #elif defined ...
13 ...
14

15 #endif

45 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

7.3 Examples

The examples in this section shall illustrate the relationship between the Basic Software
Module Descriptions, Software Component Descriptions, the ECU configuration of the
Memory Mapping and the Memory Mapping header files.

7.3.1 Code Section

The following example shows ApplicationSwComponentType "MySwc" which con-
tains in its SwcInternalBehavior a RunnableEntity "Run1". The RunnableEn-
tity "Run1" references the SwAddrMethod "CODE" which sectionType attribute
is set to code. This expresses the request to allocate the RunnableEntity code into
a code section with the name "CODE".

MemMap relevant

RTE contract relevant

IB_MySwc:
SwcInternalBehavior

MySwc:
ApplicationSwComponentType

Impl_MySwc:
SwcImplementation

CODE: SwAddrMethod

sectionType = code

Run1:
RunnableEntity

symbol = Run1

MySwcResources:
ResourceConsumption

CODE:
MemorySection

+memorySection+resourceConsumption

+swAddrmethod+swAddrmethod

+runnable

+internalBehavior

+behavior

Figure 7.1: Example of ApplicationSwComponentType with code section

According the SWS RTE [7] the Runnable Entity prototype in the Application Header
File of the software component is emitted as:

Example 7.9

Runnable Entity prototype in Application Header File Rte_MySwc.h according
SWS_Rte_7194

1 #define MySwc_START_SEC_CODE

46 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

2 #include "MySwc_MemMap.h"
3

4 FUNC(void, MySwc_CODE) Run1 (void);
5

6 #define MySwc_STOP_SEC_CODE
7 #include "MySwc_MemMap.h"

Please note that the same Memory Allocation Keywords have to be used for the func-
tion definition of "Run1" and all other functions of the Software Component which shall
be located to same MemorySection.

The SwcImplementation "Impl_MySwc" associated with the ApplicationSwCom-
ponentType "MySwc" defines that it uses a MemorySection named CODE. The
MemorySection "CODE" refers to SwAddrMethod "CODE". This indicates that the
module specific (abstract) memory section CODE share a common addressing strat-
egy defined by SwAddrMethod "CODE".

47 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

SWC / BSWM Description

MemMap Ecuc Parameter Value Description

CODE_INTERNAL: EcucContainerValue

definition = MemMapAddressingModeSet

CODE_INTERNAL: EcucContainerValue

definition = MemMapAddressingMode

:EcucTextualParamValue

value = #pragma section code "fls_code" CR LF #pragma
definition = MemMapAddressingModeStart

CNF_SEC_CODE: EcucContainerValue

definition = MemMapGenericMapping

A

CNF_DEFAULT: EcucContainerValue

definition = MemMapAllocation

A

:EcucReferenceValue

definition = MemMapAddressingModeSelection

:EcucReferenceValue

definition = EcucMemoryMappingSwAddrMethodRef

:EcucTextualParamValue

value = #pragma section code "i l legal" CR LF #pragma
definition = MemMapAddressingModeStop

MemMap: EcucModuleDef

lowerMultipl icity = 0
upperMultiplicity = 1

(from MemMap)

MemMap: EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

CODE: SwAddrMethod

sectionType = code

+referenceValue

+container

+referenceValue

+value

+parameterValue

+subContainer

+definition

+container

+parameterValue

+value

+subContainer

Figure 7.2: Example of MemMap configuration for a code section

48 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

With the means of the MemMapGenericMapping "CNF_SEC_CODE" Memory
Mapping is configured that all module specific (abstract) memory sections re-
ferring to SwAddrMethod "CODE" are using the MemMapAddressingModeSet
"CODE_INTERNAL". MemMapAddressingModeSet "CODE_INTERNAL" defines the
proper statements to start and to stop the mapping of code to the specific linker sec-
tions by the usage of the related Memory Allocation Keywords.

With this information of the Memory Allocation Header for the Software Component
can be generated like:

Example 7.10

Header file MySwc_MemMap.h according [SWS_MemMap_00022]
1

2 #ifdef MySwc_START_SEC_CODE
3 #pragma section_code "fls_code"
4 #pragma ...
5 #undef MySwc_START_SEC_CODE
6

7 #ifdef MySwc_STOP_SEC_CODE
8 #pragma section_code "illegal"
9 #undef MySwc_STOP_SEC_CODE

7.3.2 Fast Variable Section

The following example shows ApplicationSwComponentType "MySwc" which
contains in its SwcInternalBehavior two VariableDataPrototypes "FooBar"
and "EngSpd"’.
The VariableDataPrototype "FooBar" references a ImplementationDataType
which is associated to a SwBaseType defining baseTypeSize = 8. This denotes a
variable size of 8 bit for the data implementing "FooBar".
The VariableDataPrototype "EngSpd" references a Implementation-
DataType which is associated to a SwBaseType defining baseTypeSize = 16. This
denotes a variable size of 16 bit for the data implementing "EngSpd".

Both VariableDataPrototypes references the SwAddrMethod "VAR_FAST_INIT"
which sectionType attribute is set to "var" and the memoryAllocationKeyword-
Policy is set to addrMethodShortNameAndAlignment.

This denotes that the variables implementing the associated VariableDataProto-
types have to be sorted according their size into different MemorySections.

49 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

SWC Description

VAR_FAST_INIT: SwAddrMethod

sectionType = var
sectionInitial izationPolicy = init
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

FooBar:
VariableDataPrototype

uint8: ImplementationDataType

uint8: BaseType

baseTypeSize = 8

«atpVariation»
:SwDataDefProps

«atpVariation»
:SwDataDefProps

IB_MySwc:
SwcInternalBehavior

MySwc:
ApplicationSwComponentType

Impl_MySwc:
SwcImplementation

uint16: ImplementationDataType

«atpVariation»
:SwDataDefProps

uint16: BaseType

baseTypeSize = 16

EngSpd:
VariableDataPrototype

«atpVariation»
:SwDataDefProps

+behavior

+swAddrMethod

+swDataDefProps

+swDataDefProps

+swDataDefProps

+implicitInterRunnableVariable

+explicitInterRunnableVariable

+swAddrMethod

+baseType

+type

+internalBehavior

+baseType

+type

+swDataDefProps

Figure 7.3: Example of ApplicationSwComponentType with VariableDataProto-
types

Please note that in this example both VariableDataPrototypes have to be im-
plemented by RTE. The RTE again has to provide a BSW Module description defin-
ing the used MemorySections. Further on the RTE might allocate additional buffer
for instance to implement implicit communication behavior. In this example the RTE
uses four different MemorySections "VAR_FAST_INIT_8", "VAR_FAST_INIT_16"’,
"VAR_FAST_INIT_TASK_BUF_8" and "VAR_FAST_INIT_TASK_BUF_16" to sort vari-
ables according their size and to allocate additional buffers.

50 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

SWC Description

RTE BSWM Description

VAR_FAST_INIT: SwAddrMethod

sectionType = var
sectionInitial izationPolicy = init
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

RTE:
BswModuleDescription

RTE_xyz:
BswInternalBehavior

RTE_xyz:
BswImplementation

VAR_FAST_INIT_8:
MemorySection

alignment = 8

RTE_xyz_resources:
ResourceConsumption

VAR_FAST_INIT_16:
MemorySection

alignment = 16

VAR_FAST_INIT_TASK_BUF_16:
MemorySection

alignment = 16

VAR_FAST_INIT_TASK_BUF_8:
MemorySection

alignment = 8

+internalBehavior

+behavior
+memorySection

+resourceConsumption

+swAddrmethod+swAddrmethod+swAddrmethod

+memorySection

+swAddrmethod

+memorySection

+memorySection

Figure 7.4: Example of Basic Software Module Description of RTE

All of these MemorySections are associated with the SwAddrMethod
"VAR_FAST_INIT" This indicates that the module specific (abstract) memory sections
"VAR_FAST_INIT_8", "VAR_FAST_INIT_16", "VAR_FAST_INIT_TASK_BUF_8" and
"VAR_FAST_INIT_TASK_BUF_16" share a common addressing strategy defined by
SwAddrMethod "VAR_FAST_INIT".

51 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

MemMap Ecuc Parameter Value Description

VAR_NEAR_INIT: EcucContainerValue

definition = MemMapAddressingModeSet

:EcucTextualParamValue

value = #pragma section nearbss "data_near_fast_8" CR LF #pragma section neardata "data_near_fast_8"
definition = MemMapAddressingModeStart

:EcucTextualParamValue

value = #pragma section nearbss "i llegal" CR LF #pragma section neardata "i l legal"
definition = MemMapAddressingModeStop

:EcucTextualParamValue

value = var
definition = MemMapSectionType

:EcucTextualParamValue

value = init
definition = MemMapSupportedSectionInitial izationPolicy

VAR_INIT_NEAR_8: EcucContainerValue

definition = MemMapAddressingMode

:EcucTextualParamValue

value = 8
definition = MemMapAlignmentSelector

VAR_INIT_NEAR_16: EcucContainerValue

definition = MemMapAddressingMode

:EcucTextualParamValue

value = #pragma section nearbss "data_near_fast_16" CR LF #pragma section neardata "data_near_fast_16"
definition = MemMapAddressingModeStart

:EcucTextualParamValue

value = #pragma section nearbss "i llegal" CR LF #pragma section neardata "i l legal"
definition = MemMapAddressingModeStop

:EcucTextualParamValue

value = 16
definition = MemMapAlignmentSelector

MemMap: EcucModuleDef

lowerMultipl icity = 0
upperMultipl icity = 1

(from MemMap)

:EcucTextualParamValue

value = AddrMethodShortNameAndAlignment
definition = MemMapSupportedMemoryAllocationKeywordPolicy

MemMap: EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

+container

+parameterValue

+parameterValue

+parameterValue

+parameterValue

+parameterValue

+parameterValue

+subContainer

+subContainer

+parameterValue

+parameterValue

+definition

+parameterValue

Figure 7.5: Example of MemMap configuration for a data section

52 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

The ECU Configuration of Memory Mapping defines a MemMapAddressingModeSet
"VAR_NEAR_INIT" This supports the sectionType = var, sectionInitializa-
tionPolicy = "INIT" and memoryAllocationKeywordPolicy = addrMethod-
ShortNameAndAlignment. In this example MemMapAddressingModes are shown
for the alignment 8 and 16 (MemMapAlignmentSelector = 8 and MemMapAlign-
mentSelector = 16).

MemMap Ecuc Parameter Value Description

MemMap: EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

VAR_NEAR_INIT: EcucContainerValue

definition = MemMapAddressingModeSet

CNF_VAR_FAST_INIT: EcucContainerValue

definition = MemMapGenericMapping

A

:EcucReferenceValue

definition = MemMapAddressingModeSelection

:EcucReferenceValue

definition = EcucMemoryMappingSwAddrMethodRef

VAR_FAR_INIT: EcucContainerValue

definition = MemMapAddressingModeSet

CNF_DEFAULT: EcucContainerValue

definition = MemMapAllocation A

MemMap: EcucModuleDef

lowerMultipl icity = 0
upperMultiplicity = 1

(from MemMap)

SWC Description

VAR_FAST_INIT: SwAddrMethod

sectionType = var
sectionInitial izationPolicy = init
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

+container

+referenceValue

+container

+definition

+container

+value

+container

+value

+referenceValue

Figure 7.6: Example of MemMap configuration for a MemMapGenericMapping

With the means of the MemMapGenericMapping "CNF_VAR_FAST_INIT" Memory
Mapping is configured that all module specific (abstract) memory sections referring
to SwAddrMethod "VAR_FAST_INIT" are using the MemMapAddressingModeSet
"VAR_NEAR_INIT". MemMapAddressingModeSet "VAR_NEAR_INIT" defines the
proper statements to start and to stop the mapping of variables with different align-
ments (in this example 8 and 16) to the specific linker sections by the usage of the
related Memory Allocation Keywords.

53 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

With this information of the Memory Allocation Header for the BSW can be generated
like:

Example 7.11

MemMap Header file Rte_MemMap.h
1 #ifdef RTE_START_SEC_VAR_FAST_INIT_8
2 #pragma section nearbss "data_near_fast_8"
3 #pragma section neardata "data_near_fast_8"
4
5 #pragma ...
6 #undef RTE_START_SEC_VAR_FAST_INIT_8
7

8 #ifdef RTE_STOP_SEC_VAR_FAST_INIT_8
9 #pragma section_code "illegal"

10 #undef RTE_STOP_SEC_VAR_FAST_INIT_8
11

12 #ifdef RTE_START_SEC_VAR_FAST_INIT_16
13 #pragma section nearbss "data_near_fast_16"
14 #pragma section neardata "data_near_fast_16"
15
16 #pragma ...
17 #undef RTE_START_SEC_VAR_FAST_INIT_16
18

19 #ifdef RTE_STOP_SEC_VAR_FAST_INIT_16
20 #pragma section_code "illegal"
21 #undef RTE_STOP_SEC_VAR_FAST_INIT_16
22

23 #ifdef RTE_START_SEC_VAR_FAST_INIT_TASK_BUF_8
24 #pragma section nearbss "data_near_fast_8"
25 #pragma section neardata "data_near_fast_8"
26
27 #pragma ...
28 #undef RTE_START_SEC_VAR_FAST_INIT_TASK_BUF_8
29

30 #ifdef RTE_STOP_SEC_VAR_FAST_INIT_TASK_BUF_8
31 #pragma section_code "illegal"
32 #undef RTE_STOP_SEC_VAR_FAST_INIT_TASK_BUF_8
33

34 #ifdef RTE_START_SEC_VAR_FAST_INIT_TASK_BUF_16
35 #pragma section nearbss "data_near_fast_16"
36 #pragma section neardata "data_near_fast_16"
37
38 #pragma ...
39 #undef RTE_START_SEC_VAR_FAST_INIT_TASK_BUF_16
40

41 #ifdef RTE_STOP_SEC_VAR_FAST_INIT_TASK_BUF_16
42 #pragma section_code "illegal"
43 #undef RTE_STOP_SEC_VAR_FAST_INIT_TASK_BUF_16

54 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

7.3.3 Code Section in ICC2 cluster

The following Basic Software Module Description would result in the support of the
Memory Allocation Keywords in the MemMap header file:

55 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

MEM: BswModuleDescription

category = BSW_CLUSTER

NvM_MainFunction:
BswSchedulableEntity

MemIf_SetMode:
BswCalledEntity

MEM:
BswInternalBehavior

MemIf:
BswSchedulerNamePrefix

symbol = MemIf

NvM:
BswSchedulerNamePrefix

symbol = NvM

NvM_WriteBlock:
BswCalledEntity

NvM_MainFunction:
BswModuleEntry

NvM_WriteBlock:
BswModuleEntry

MemIf_SetMode:
BswModuleEntry

CODE: SwAddrMethod

sectionType = code

MEM:
BswImplementation

MEM:
ResourceConsumption

CODE_MEMIF:
MemorySection

symbol = CODE

CODE_NVM:
MemorySection

symbol = CODE

MEMIF_PART:
SectionNamePrefix

symbol = MEMIF

NVM_PART:
SectionNamePrefix

symbol = NVM

�����������	
�
��	

���������	
�
��	

�	�����������	
�
��	

�	���������	
�
��	

+schedulerNamePrefix

+schedulerNamePrefix

+implementedEntry

+internalBehavior

+sectionNamePrefix

+prefix

+behavior

+swAddrMethod

+schedulerNamePrefix

+resourceConsumption

+implementedEntry

+implementedEntry

+memorySection

+schedulerNamePrefix

+entity

+implementedEntry

+swAddrmethod

+sectionNamePrefix

+executableEntity

+swAddrMethod

+implementedEntry

+memorySection

+executableEntity

+implementedEntry

+prefix

+entity

+entity

+schedulerNamePrefix

+swAddrMethod

+swAddrmethod

+executableEntity

Figure 7.7: Example of BSW Module Description of an ICC2 cluster

Example 7.12

56 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

MemMap Header file
1 #ifdef NVM_START_SEC_CODE
2 ...
3 #ifdef NVM_STOP_SEC_CODE
4 ...
5 #ifdef MEMIF_START_SEC_CODE
6 ...
7 #ifdef MEMIF_STOP_SEC_CODE

7.3.4 Callout sections

The following Basic Software Module Description would result in the support of the
Memory Allocation Keywords in the MemMap header file:

57 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

COM: BswModuleDescription

category = BSW_MODULE

Com_TxIpduCallout:
BswModuleEntry

Com_RxIpduCallout:
BswModuleEntry

COM: BswInternalBehavior

COM:
BswImplementation

COM:
ResourceConsumption

COM_TXIPDUCALLOUT_CODE:
MemorySection

COM_RXIPDUCALLOUT_CODE:
MemorySection

CALLOUT_CODE:
SwAddrMethod

sectionType = code

CNF_SEC_CALLOUT_CODE:
EcucContainerValue

definition = MemMapGenericMapping

A

:EcucReferenceValue

definition = MemMapAddressingModeSelection

:EcucReferenceValue

definition = EcucMemoryMappingSwAddrMethodRef

CNF_DEFAULT: EcucContainerValue

definition = MemMapAllocation A

CODE_INTERNAL: EcucContainerValue

definition = MemMapAddressingModeSet

CODE_INTERNAL: EcucContainerValue

definition = MemMapAddressingMode

Bsw Module Description

MemMap Ecu Configuration Values

MemMap: EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

+swAddrMethod

+value

+referenceValue

+container

+outgoingCallback

+memorySection

+memorySection

+referenceValue

+value

+outgoingCallback

+behavior

+resourceConsumption

+container

+internalBehavior

+swAddrMethod

+subContainer

+subContainer

Figure 7.8: Example of description and configuration for callout code

Example 7.13

58 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

MemMap Header file
1 #ifdef COM_START_SEC_COM_TXIPDUCALLOUT_CODE
2 ...
3 #ifdef COM_STOP_SEC_COM_TXIPDUCALLOUT_CODE
4 ...
5 #ifdef COM_START_SEC_COM_RXIPDUCALLOUT_CODE
6 ...
7 #ifdef COM_STOP_SEC_COM_RXIPDUCALLOUT_CODE

Nevertheless both memory sections are implemented identical since both are refer-
encing the identical SwAddrMethod and the MemMapGenericMapping is used to
configure the MemMap module.

7.3.5 Allocatable Memory Parts

The following example shows an Adc driver which is internally split into an interface part
and a kernel part. Usually the kernel part is allocated to memory with high performance
for the micro controller core handling the interrupts. In opposite the interface part is
usually allocated to memory with a good average performance for all micro controller
cores using the Adc module. The shown configuration would result in the support of
following Memory Allocation Keywords in the Adc_MemMap.h header file:

59 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

VAR_INIT_QM_LOCAL_16: MemorySection

symbol = VAR_INIT_QM_LOCAL_16

Adc: BswModuleDescription

category = BSW_MODULE

Adc_ReadGroup:
BswCalledEntityIbAdc:

BswInternalBehavior

CODE_QM_LOCAL:
SwAddrMethod

sectionType = code
option = safetyQM,coreLocal

Adc:
BswImplementation

rcAdc:
ResourceConsumption

CODE_QM_GLOBAL: MemorySection

symbol = CODE_QM_LOCAL

CODE_QM_LOCAL: MemorySection

symbol = CODE_QM_LOCAL

ADC_USERIF: SectionNamePrefix

symbol = ADC_USERIF

ADC_AUTOSCANKERNEL: SectionNamePrefix

symbol = ADC_AUTOSCANKERNEL

Adc_IsrGroupScanCompleted:
BswInterruptEntity

CODE_QM_GLOBAL:
SwAddrMethod

sectionType = code
option = safetyQM,coreGlobal

VAR_INIT_QM_LOCAL: SwAddrMethod

sectionType = var
option = safetyQM,coreLocal
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

VAR_INIT_QM_GLOBAL_8:
MemorySection

symbol = VAR_INIT_QM_GLOBAL_8

VAR_INIT_QM_GLOBAL: SwAddrMethod

sectionType = var
option = safetyQM,coreGlobal
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

VAR_INIT_QM_LOCAL_8: MemorySection

symbol = VAR_INIT_QM_LOCAL_8

+swAddrmethod

+resourceConsumption

+internalBehavior

+memorySection

+memorySection

+behavior

+prefix

+sectionNamePrefix

+swAddrmethod

+sectionNamePrefix

+entity

+swAddrmethod

+swAddrMethod

+swAddrmethod

+memorySection

+entity

+prefix

+prefix

+prefix

+executableEntity

+swAddrmethod

+prefix

+executableEntity

+memorySection

+memorySection

+swAddrmethod

Figure 7.9: Example of description and configuration for allocatable memory parts

60 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Example 7.14

Adc_MemMap.h header file
1 #ifdef ADC_USERIF_START_SEC_CODE_QM_GLOBAL
2 ...
3 #ifdef ADC_USERIF_STOP_SEC_CODE_QM_GLOBAL
4 ...
5 #ifdef ADC_USERIF_START_SEC_VAR_INIT_QM_GLOBAL_8
6 ...
7 #ifdef ADC_USERIF_STOP_SEC_VAR_INIT_QM_GLOBAL_8
8 ...
9 #ifdef ADC_AUTOSCANKERNEL_START_SEC_CODE_QM_LOCAL

10 ...
11 #ifdef ADC_AUTOSCANKERNEL_STOP_SEC_CODE_QM_LOCAL
12 ...
13 #ifdef ADC_AUTOSCANKERNEL_START_SEC_VAR_INIT_QM_LOCAL_8
14 ...
15 #ifdef ADC_AUTOSCANKERNEL_STOP_SEC_VAR_INIT_QM_LOCAL_8
16 ...
17 #ifdef ADC_AUTOSCANKERNEL_START_SEC_VAR_INIT_QM_LOCAL_16
18 ...
19 #ifdef ADC_AUTOSCANKERNEL_STOP_SEC_VAR_INIT_QM_LOCAL_16

Nevertheless both memory sections are implemented identical since both are refer-
encing the identical SwAddrMethod and the MemMapGenericMapping is used to
configure the MemMap module.

61 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

8 API specification

Not applicable.

62 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

9 Sequence diagrams

Not applicable.

63 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification section 10.1 describes fundamentals. It
also specifies a template (table) you shall use for the parameter specification. We
intend to leave section 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
MemMap.

Chapter 10.3 specifies published information of the module MemMap.

10.1 How to read this chapter

For details refer to the chapter 10.1 "Introduction to configuration specification" in
SWS_BSWGeneral [2].

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe chapter 7 Functional specification.

10.2.1 MemMap

Module SWS Item ECUC_MemMap_00001
Module Name MemMap
Module Description Configuration of the Memory Mapping and Compiler Abstraction

module.
Post-Build Variant
Support

false

Supported Config
Variants

VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Scope / Dependency
MemMapAddressingMode
Set

0..* Defines a set of addressing modes which might apply
to a SwAddrMethod.

64 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Container Name Multiplicity Scope / Dependency
MemMapAllocation 0..* Defines which MemorySection of a BSW Module or a

Software Component is implemented with which
MemMapAddressingModeSet.

This can either be specified for a set of
MemorySections which refer to an identical
SwAddrMethod (MemMapGenericMapping) or for
individual MemorySections
(MemMapSectionSpecificMapping). If both are defined
for the same MemorySection the
MemMapSectionSpecificMapping overrules the
MemMapGenericMapping.

MemMapGenericCompiler
MemClass

0..* The shortName of the container defines the name of
the generic Compiler memclass which is global for all
using modules, e.g. REGSPACE. The configures the
Compiler Abstraction.

Tags:
atp.Status=obsolete

MemMap: EcucModuleDef

lowerMultipl icity = 0
upperMultiplicity = 1

MemMapAddressingModeSet:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

MemMapAllocation:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

MemMapGenericCompilerMemClass:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

MemMapGenericCompilerMemClassSymbolImpl:
EcucStringParamDef

+container

+container

+container

+parameter

Figure 10.1: Overview about MemMap

10.2.2 MemMapAddressingModeSet

SWS Item [ECUC_MemMap_00002]
Container Name MemMapAddressingModeSet
Parent Container MemMap
Description Defines a set of addressing modes which might apply to a

SwAddrMethod.
Configuration Parameters

65 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Name MemMapCompilerMemClassSymbolImpl [ECUC_MemMap_00018]
(Obsolete)

Parent Container MemMapAddressingModeSet
Description Defines the implementation behind a MemClassSymbol and configures

the Compiler Abstraction.

Tags:
atp.Status=obsolete

Multiplicity 1
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name MemMapSupportedAddressingMethodOption
[ECUC_MemMap_00009]

Parent Container MemMapAddressingModeSet
Description This constrains the usage of this addressing mode set for Generic

Mappings to swAddrMethods.

The attribute option of a swAddrMethod mapped via
MemMapGenericMapping to this MemMapAddressingModeSet shall
be equal to one of the configured
MemMapSupportedAddressMethodOption’s

Multiplicity 0..*
Type EcucStringParamDef
Default Value
Regular Expression [a-zA-Z]([a-zA-Z0-9]|_[a-zA-Z0-9])*_?
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

66 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Name MemMapSupportedMemoryAllocationKeywordPolicy
[ECUC_MemMap_00017]

Parent Container MemMapAddressingModeSet
Description This constrains the usage of this addressing mode set for Generic

Mappings to swAddrMethods.

The attribute MemoryAllocationKeywordPolicy of a swAddrMethod
mapped via MemMapGenericMapping to this
MemMapAddressingModeSet shall be equal to one of the configured
MemMapSupportedMemoryAllocationKeywordPolicy’s

Multiplicity 0..*
Type EcucEnumerationParamDef
Range MEMMAP_ALLOCATION_

KEYWORD_POLICY_AD
DR_METHOD_SHORT_N
AME

The Memory Allocation Keyword is
build with the short name of the
SwAddrMethod. This is the default
value if the atttribute does not exist in
the SwAddrMethod.

MEMMAP_ALLOCATION_
KEYWORD_POLICY_AD
DR_METHOD_SHORT_N
AME_AND_ALIGNMENT

The Memory Allocation Keyword is
build with the the short name of the
SwAddrMethod and the alignment
attribute of the MemorySection. This
requests a separation of objects in
memory dependent from the alignment
and is not applicable for
RunnableEntitys and
BswSchedulableEntitys.

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

67 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Name MemMapSupportedSectionInitializationPolicy
[ECUC_MemMap_00008]

Parent Container MemMapAddressingModeSet
Description This constrains the usage of this addressing mode set for Generic

Mappings to swAddrMethods.

The sectionIntializationPolicy attribute value of a swAddrMethod
mapped via MemMapGenericMapping to this
MemMapAddressingModeSet shall be equal to one of the configured
MemMapSupportedSectionIntializationPolicy’s.

Please note that SectionInitializationPolicyType describes the intended
initialization of MemorySections.

The following values are standardized in AUTOSAR Methodology (see
chapter 7.2.1):

• INIT

• CLEARED

• POWER-ON-CLEARED

Note: The values NO-INIT and POWER-ON-INIT are still supported but
deprecated and will be removed in one of the next releases.

Note: The values are defined similar to the representation of
enumeration types in the XML schema to ensure backward
compatibility.

Multiplicity 0..*
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

68 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Name MemMapSupportedSectionType [ECUC_MemMap_00007]
Parent Container MemMapAddressingModeSet
Description This constrains the usage of this addressing mode set for Generic

Mappings to swAddrMethods.

The attribute sectionType of a swAddrMethod mapped via
MemMapGenericMapping or MemMapSectionSpecificMapping to this
MemMapAddressingModeSet shall be equal to one of the configured
MemMapSupportedSectionType’s.

Multiplicity 0..*
Type EcucEnumerationParamDef
Range MEMMAP_SECTION_TY

PE_CAL_PRM
To be used for calibratable constants of
ECU-functions.

MEMMAP_SECTION_TY
PE_CODE

To be used for mapping code to
application block, boot block, external
flash etc.

MEMMAP_SECTION_TY
PE_CONFIG_DATA

Constants with attributes that show
that they reside in one segment for
module configuration.

MEMMAP_SECTION_TY
PE_CONST

To be used for global or static
constants.

MEMMAP_SECTION_TY
PE_EXCLUDE_FROM_FL
ASH

Values existing in the ECU but not
dropped down in the binary file. No
upload should be needed to obtain
access to the ECU data. The ECU will
never be touched by the
instrumentation tool, with the exception
of upload. These are memory areas
which are not overwritten by
downloading the executable.

MEMMAP_SECTION_TY
PE_VAR

To be used for global or static
variables. The expected initialization is
specified with the attribute
sectionInitializationPolicy.

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Included Containers
Container Name Multiplicity Scope / Dependency
MemMapAddressing
Mode

1..* Defines a addressing mode with a set of #pragma
statements implementing the start and the stop of a
section.

69 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

MemMapAddressingModeSet:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

MemMapAddressingMode:
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = *

MemMapAddressingModeStart: EcucMulti l ineStringParamDef

upperMultiplicity = 1
lowerMultipl icity = 1

MemMapAddressingModeStop: EcucMulti l ineStringParamDef

upperMultiplicity = 1
lowerMultipl icity = 1

MemMapAlignmentSelector: EcucStringParamDef

upperMultiplicity = *
lowerMultipl icity = 1
regularExpression = [1-9][0-9]*|0x[0-9a-f]*|0[0-7]*|0b[0-1]*|UNSPECIFIED|UNKNOWN|BOOLEAN|PTR

MemMapSupportedSectionType: EcucEnumerationParamDef

upperMultiplicity = *
lowerMultipl icity = 0

MemMapSupportedSectionInitializationPolicy:
EcucStringParamDef

upperMultiplicity = *
lowerMultipl icity = 0

MemMapSupportedAddressingMethodOption:
EcucStringParamDef

upperMultiplicity = *
lowerMultipl icity = 0
regularExpression = [a-zA-Z]([a-zA-Z0-9]|_[a-zA-Z0-9])*_?

MemMapSupportedMemoryAllocationKeywordPolicy:
EcucEnumerationParamDef

upperMultiplicity = *
lowerMultipl icity = 0

Software Component Template, BSW Module
Description Template, Generic Structure Template

Software Component Template, BSW Module
Description Template, Generic Structure Template

Generic Structure Template

«enumeration»
MemorySectionType

 var
 code
 const
 calprm
 configData
 excludeFromFlash
 calibrationVariables
 varFast
 varNoInit
 varPowerOnInit
 calibrationOffl ine
 calibrationOnline
 userDefined

«primitive»
SectionInitial izationPolicyType

«primitive»
Identifier

+ blueprintValue: String [0..1]
+ namePattern: String [0..1]

«enumeration»
MemoryAllocationKeywordPolicyType

 addrMethodShortName
 addrMethodShortNameAndAlignment

«primitive»
AlignmentType

tags
xml.xsd.customType = ALIGNMENT-TYPE
xml.xsd.pattern = [1-9][0-9]*|0[xX][0-9a-fA-F]*|0[bB][0-1]+|0[0-7]*|UNSPECIFIED|UNKNOWN|BOOLEAN|PTR
xml.xsd.type = string

MemMapCompilerMemClassSymbolImpl:
EcucStringParamDef

upperMultiplicity = 1
lowerMultipl icity = 1

SWS Compiler Abstraction

+parameter

+parameter

+parameter

+parameter

+parameter

+subContainer

+parameter

+parameter

+parameter

Figure 10.2: Overview about MemMapAddressingModeSet

70 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

10.2.3 MemMapAddressingMode

SWS Item [ECUC_MemMap_00003]
Container Name MemMapAddressingMode
Parent Container MemMapAddressingModeSet
Description Defines a addressing mode with a set of #pragma statements

implementing the start and the stop of a section.
Configuration Parameters

Name MemMapAddressingModeStart [ECUC_MemMap_00004]
Parent Container MemMapAddressingMode
Description Defines a set of #pragma statements implementing the start of a

section.
Multiplicity 1
Type EcucMultilineStringParamDef
Default Value
Regular Expression
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name MemMapAddressingModeStop [ECUC_MemMap_00005]
Parent Container MemMapAddressingMode
Description Defines a set of #pragma statements implementing the start of a

section.
Multiplicity 1
Type EcucMultilineStringParamDef
Default Value
Regular Expression
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

71 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Name MemMapAlignmentSelector [ECUC_MemMap_00006]
Parent Container MemMapAddressingMode
Description Defines a the alignments for which the MemMapAddressingMode

applies. The to be used alignment is defined in the alignment attribute
of the MemorySection. If the MemMapAlignmentSelector fits to
alignment attribute of the MemorySection the set of #pragmas of the
related MemMapAddressingMode shall be used to implement the start
and the stop of a section.

Please note that the same MemMapAddressingMode can be
applicable for several alignments, e.g. "8" bit and "UNSPECIFIED".

Multiplicity 1..*
Type EcucStringParamDef
Default Value
Regular Expression [1-9][0-9]*|0x[0-9a-f]*|0[0-7]*|0b[0-

1]*|UNSPECIFIED|UNKNOWN|BOOLEAN|PTR
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

10.2.4 MemMapAllocation

SWS Item [ECUC_MemMap_00010]
Container Name MemMapAllocation
Parent Container MemMap
Description Defines which MemorySection of a BSW Module or a Software

Component is implemented with which MemMapAddressingModeSet.

This can either be specified for a set of MemorySections which refer to
an identical SwAddrMethod (MemMapGenericMapping) or for
individual MemorySections (MemMapSectionSpecificMapping). If both
are defined for the same MemorySection the
MemMapSectionSpecificMapping overrules the
MemMapGenericMapping.

Configuration Parameters

72 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Included Containers
Container Name Multiplicity Scope / Dependency
MemMapGeneric
Mapping

0..* Defines which SwAddrMethod is implemented with
which MemMapAddressingModeSet.

The pragmas for the implementation of the
MemorySelectorKeywords are taken from the
MemMapAddressingModeStart and
MemMapAddressingModeStop parameters of the
MemMapAddressingModeSet for the individual
alignments.

That this mapping becomes valid requires matching
MemMapSupportedSectionType’s,
MemMapSupportedSectionInitializationPolicy’s and
MemMapSupportedAddressingMethodOption’s.

The MemMapGenericMapping applies only if it is not
overruled by an MemMapSectionSpecificMapping

MemMapMapping
Selector

0..* The container holds a section criteria reusable for
MemMapGenericMappings.

MemMapSectionSpecific
Mapping

0..* Defines which MemorySection of a BSW Module or a
Software Component is implemented with which
MemMapAddressingModeSet.

The pragmas for the implementation of the
MemorySelectorKeywords are taken from the
MemMapAddressingModeStart and
MemMapAddressingModeStop parameters of the
MemMapAddressingModeSet for the specific alignment
of the MemorySection.

The MemMapSectionSpecificMapping precedes a
mapping defined by MemMapGenericMapping.

73 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

MemMapAllocation:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

MemMapGenericMapping:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

MemMapSectionSpecificMapping:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

Identifiable

MemorySection

+ alignment: AlignmentType [0..1]
+ memClassSymbol: CIdentifier [0..1]
+ option: Identifier [0..*]
+ size: PositiveInteger [0..1]
+ symbol: Identifier [0..1]

ARElement
AtpBlueprint

AtpBlueprintable

SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
+ option: Identifier [0..*]
+ sectionInitial izationPolicy: SectionInitial izationPolicyType [0..1]
+ sectionType: MemorySectionType [0..1]

MemMapAddressingModeSetRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 1

MemMapSwAddressMethodRef:
EcucForeignReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 1
destinationType = SW-ADDR-METHOD

MemMapAddressingModeSetRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 1

MemMapMemorySectionRef:
EcucForeignReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 1
destinationType = MEMORY-SECTION

MemMapMappingSelector:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

MemMapPrefixSelector:
EcucStringParamDef

lowerMultipl icity = 0
upperMultiplicity = 1

MemMapMappingSelectorRef:
EcucReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1

+reference

+swAddrmethod 0..1

+subContainer

+reference

+subContainer

+destination

+subContainer

+reference

+parameter

+reference

+reference

Figure 10.3: Overview about MemMapAllocation

10.2.5 MemMapGenericMapping

SWS Item [ECUC_MemMap_00011]
Container Name MemMapGenericMapping
Parent Container MemMapAllocation

74 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Description Defines which SwAddrMethod is implemented with which
MemMapAddressingModeSet.

The pragmas for the implementation of the MemorySelectorKeywords
are taken from the MemMapAddressingModeStart and
MemMapAddressingModeStop parameters of the
MemMapAddressingModeSet for the individual alignments.

That this mapping becomes valid requires matching
MemMapSupportedSectionType’s,
MemMapSupportedSectionInitializationPolicy’s and
MemMapSupportedAddressingMethodOption’s.

The MemMapGenericMapping applies only if it is not overruled by an
MemMapSectionSpecificMapping

Configuration Parameters

Name MemMapAddressingModeSetRef [ECUC_MemMap_00012]
Parent Container MemMapGenericMapping
Description Reference to the MemMapAddressingModeSet which applies to the

MemMapGenericMapping.
Multiplicity 1
Type Reference to MemMapAddressingModeSet

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name MemMapMappingSelectorRef [ECUC_MemMap_00023]
Parent Container MemMapGenericMapping
Description Reference to a MemMapPrefixSelector. The owning

MemMapGenericMapping is only effective for those memories where
the MemMapMappingSelector matches.

Multiplicity 0..1
Type Reference to MemMapMappingSelector

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

75 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Name MemMapSwAddressMethodRef [ECUC_MemMap_00013]
Parent Container MemMapGenericMapping
Description Reference to the SwAddrMethod which applies to the

MemMapGenericMapping.
Multiplicity 1
Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

No Included Containers

10.2.6 MemMapSectionSpecificMapping

SWS Item [ECUC_MemMap_00014]
Container Name MemMapSectionSpecificMapping
Parent Container MemMapAllocation
Description Defines which MemorySection of a BSW Module or a Software

Component is implemented with which MemMapAddressingModeSet.

The pragmas for the implementation of the MemorySelectorKeywords
are taken from the MemMapAddressingModeStart and
MemMapAddressingModeStop parameters of the
MemMapAddressingModeSet for the specific alignment of the
MemorySection.

The MemMapSectionSpecificMapping precedes a mapping defined by
MemMapGenericMapping.

Configuration Parameters

Name MemMapAddressingModeSetRef [ECUC_MemMap_00015]
Parent Container MemMapSectionSpecificMapping
Description Reference to the MemMapAddressingModeSet which applies to the

MemMapModuleSectionSpecificMapping.
Multiplicity 1
Type Reference to MemMapAddressingModeSet

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

76 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Name MemMapMemorySectionRef [ECUC_MemMap_00016]
Parent Container MemMapSectionSpecificMapping
Description Reference to the MemorySection which applies to the

MemMapSectionSpecificMapping.
Multiplicity 1
Type Foreign reference to MEMORY-SECTION

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

No Included Containers

10.2.7 MemMapMappingSelector

SWS Item [ECUC_MemMap_00021]
Container Name MemMapMappingSelector
Parent Container MemMapAllocation
Description The container holds a section criteria reusable for

MemMapGenericMappings.
Configuration Parameters

Name MemMapPrefixSelector [ECUC_MemMap_00022]
Parent Container MemMapMappingSelector
Description The parameter MemMapPrefixSelector defines a regular expression

which shall be applied to the <PREFIX> part of the memory allocation
keywords. The mapping using this selector is only effective for those
memories where the <PREFIX> part of the memory allocation keyword
matches the regular expression.

Note: This is in particular intended the restrict the usage of of a
MemMapAddressingModeSet for a sub set of BSW Modules or
Software Components or a subset of allocatable memory parts inside
BSW Modules or Software Components.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

77 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

No Included Containers

10.2.8 MemMapGenericCompilerMemClass

SWS Item [ECUC_MemMap_00019] (Obsolete)
Container Name MemMapGenericCompilerMemClass
Parent Container MemMap
Description The shortName of the container defines the name of the generic

Compiler memclass which is global for all using modules, e.g.
REGSPACE. The configures the Compiler Abstraction.

Tags:
atp.Status=obsolete

Configuration Parameters

Name MemMapGenericCompilerMemClassSymbolImpl
[ECUC_MemMap_00020] (Obsolete)

Parent Container MemMapGenericCompilerMemClass
Description Defines the implementation behind the generic MemClassSymbol and

configures the Compiler Abstraction.

Tags:
atp.Status=obsolete

Multiplicity 1
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

No Included Containers

10.3 Published Information

For details refer to the chapter 10.3 Published Information in SWS_BSWGeneral [2].

78 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

11 Analysis

This chapter does not contain requirements. It just gives an overview to used keywords
and their syntax within different compilers. This analysis is required for a correct and
complete specification of methods and keywords and is based on the documents [8],
[9], [10], [11] and [12].

11.1 Memory allocation of variables

Compiler analysis for starting/stopping a memory section for variables:

Compiler Required syntax
Cosmic, S12X Initialized variables:

#pragma section {name}
#pragma section {}

Non Initialized variables:
#pragma section {[name]}
#pragma section []

Metrowerks, S12X #pragma DATA_SEG (<Modif> <Name> | "DEFAULT")
<Modif>: Some of the following strings may be used:
SHORT, __SHORT_SEG,
DIRECT, __DIRECT_SEG,
NEAR, __NEAR_SEG,
FAR, __FAR_SEG,
DPAGE, __DPAGE_SEG,
RPAGE, __RPAGE_SEG
Pragma shall be used in definition and declaration.

Tasking, ST10 #pragma class mem=name
#pragma combine mem=ctype
#pragma align mem=atype
#pragma noclear
#pragma default_attributes
#pragma clear

atype is one of the following align types:
B Byte alignment
W Word alignment
P Page alignment
S Segment alignment
C PEC addressable
I IRAM addressable

ctype is one of the following combine types:
L private (’Local’)
P Public
C Common
G Global
S Sysstack

79 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Compiler Required syntax
U Usrstack
A address Absolute section AT constant address
(decimal, octal or hexadecimal number)

Tasking, TC1796 #pragma pack 0 / 2
Packing of structs. Shall be visible at type declaration
#pragma section type "string"
#pragma noclear
#pragma clear
#pragma for_extern_data_use_memory
#pragma for_initialized_data_use_memory
#pragma for_uninitialized_data_use_memory

GreenHills, V850 #pragma align (n)
#pragma alignvar (n)
#pragma ghs section sect="name"
#pragma ghs section sect =default
Section Keyword:
data, sdata, tdata, zdata, bss, sbss, zbss

ADS, ST30 #pragma arm section [sort_type[[=]"name"]]
[,sort_type="name"]*
sort_type="rwdata, zidata
Alignment control via key words:
__packed, __align()

DIABDATA, MPC5554 #pragma section class_name [init_name] [uninit_name]
[address_mode] [access]
#pragma section class_name
Pragma shall be used before declaration.
class_name for variables:
BSS, DATA, SDATA

Table 11.1: Memory allocation of variables

11.2 Memory allocation of constant variables

Compiler analysis for starting/stopping a memory section for constant variables:

Compiler Required syntax
Cosmic, S12X Initialized variables:

#pragma section const {name}
#pragma section const {}

Metrowerks, S12X #pragma CONST_SEG (<Modif> <Name> | "DEFAULT")
<Modif>: Some of the following strings may be used:
PPAGE, __PPAGE_SEG,
GPAGE, __GPAGE_SEG,
Pragma shall be used in definition and declaration.

80 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Compiler Required syntax
Tasking, ST10 #pragma class mem=name

#pragma align mem=atype
#pragma combine mem=ctype
#pragma default_attributes

atype is one of the following align types:
B Byte alignment
W Word alignment
P Page alignment
S Segment alignment
C PEC addressable
I IRAM addressable

ctype is one of the following combine types:
L private (’Local’)
P Public
C Common
G Global
S Sysstack
U Usrstack
A address Absolute section AT constant address
(decimal, octal or hexadecimal number)

Tasking, TC1796 #pragma pack 0 / 2
Packing of structs. Shall be visible at type declaration

#pragma section type "string"
#pragma for_constant_data_use_memory

GreenHills, V850 #pragma ghs section sect="name"
#pragma ghs section sect =default
Section Keyword:
rodata, rozdata, rosdata

ADS, ST30 #pragma arm section [sort_type[[=]"name"]]
[,sort_type="name"]*
sort_type="rodata

Alignment control via key words:
__packed, __align()

DIABDATA, MPC5554 #pragma section class_name [init_name]
[uninit_name] [address_mode] [access]
#pragma section class_name
Pragma shall be used before declaration.

class_name for constant variables:
CONST, SCONST, STRING

Table 11.2: Memory allocation of constant variables

81 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

11.3 Memory allocation of code

Compiler analysis for starting/stopping a memory section for code:

Compiler Required syntax
Cosmic, S12X Initialized variables:

#pragma section (name)
#pragma section ()

Metrowerks, S12X #pragma CODE_SEG (<Modif> <Name> | "DEFAULT")
<Modif>: Some of the following strings may be used:
DIRECT, __DIRECT_SEG,
NEAR, __NEAR_SEG,
CODE, __CODE_SEG,
FAR, __FAR_SEG,
PPAGE, __PPAGE_SEG,
PIC, __PIC_SEG,
Pragma shall be used in definition and declaration.

Tasking, ST10 #pragma class mem=name
#pragma combine mem=ctype
#pragma default_attributes

ctype is one of the following combine types:
L private (’Local’)
P Public
C Common
G Global
S Sysstack
U Usrstack
A address Absolute section AT constant address

Tasking, TC1796 #pragma section code "string"
#pragma section code_init
#pragma section const_init
#pragma section vector_init
#pragma section data_overlay
#pragma section type[=]"name"
#pragma section all

GreenHills, V850 #pragma ghs section sect="name"
#pragma ghs section sect =default
Section Keyword: text

ADS, ST30 #pragma arm section [sort_type[[=]"name"]]
[,sort_type="name"]*

sort_type="code

DIABDATA, MPC5554 #pragma section class_name [init_name]
[uninit_name] [address_mode] [access]
#pragma section class_name
Pragma shall be used before declaration.

class_name for code:
CODE

Table 11.3: Memory allocation of code

82 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

A Referenced Meta Classes

Class ApplicationSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ApplicationSwComponentType is used to represent the application software.

Tags:atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mult. Kind Note

– – – – –

Table A.1: ApplicationSwComponentType

Class BaseTypeDirectDefinition

Package M2::MSR::AsamHdo::BaseTypes

Note This BaseType is defined directly (as opposite to a derived BaseType)

Base ARObject , BaseTypeDefinition

Attribute Type Mult. Kind Note

baseType
Encoding

BaseTypeEncoding
String

0..1 attr This specifies, how an object of the current BaseType is
encoded, e.g. in an ECU within a message sequence.

Tags:xml.sequenceOffset=90

baseTypeSize PositiveInteger 0..1 attr Describes the length of the data type specified in the
container in bits.

Tags:xml.sequenceOffset=70

byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base type.

Tags:xml.sequenceOffset=110

memAlignment PositiveInteger 0..1 attr This attribute describes the alignment of the memory
object in bits. E.g. "8" specifies, that the object in
question is aligned to a byte while "32" specifies that it is
aligned four byte. If the value is set to "0" the meaning
shall be interpreted as "unspecified".

Tags:xml.sequenceOffset=100

native
Declaration

NativeDeclarationString 0..1 attr This attribute describes the declaration of such a base
type in the native programming language, primarily in the
Programming language C. This can then be used by a
code generator to include the necessary declarations into
a header file. For example

BaseType with shortName: "MyUnsignedInt" native
Declaration: "unsigned short"

Results in

typedef unsigned short MyUnsignedInt;

If the attribute is not defined the referring Implementation
DataTypes will not be generated as a typedef by RTE.

If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and baseType
Size.

5

5

83 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class BaseTypeDirectDefinition

4
This is required to ensure the consistent handling and
interpretation by software components, RTE, COM and
MCM systems.

Tags:xml.sequenceOffset=120

Table A.2: BaseTypeDirectDefinition

Class BswImplementation

Package M2::AUTOSARTemplates::BswModuleTemplate::BswImplementation

Note Contains the implementation specific information in addition to the generic specification (BswModule
Description and BswBehavior). It is possible to have several different BswImplementations referring to
the same BswBehavior.

Tags:atp.recommendedPackage=BswImplementations

Base ARElement , ARObject , CollectableElement , Identifiable, Implementation, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

arRelease
Version

RevisionLabelString 1 attr Version of the AUTOSAR Release on which this
implementation is based. The numbering contains three
levels (major, minor, revision) which are defined by
AUTOSAR.

behavior BswInternalBehavior 1 ref The behavior of this implementation.

This relation is made as an association because

• it follows the pattern of the SWCT

• since ARElement cannot be splitted, but we want
supply the implementation later, the Bsw
Implementation is not aggregated in BswBehavior

preconfigured
Configuration

EcucModule
ConfigurationValues

* ref Reference to the set of preconfigured (i.e. fixed)
configuration values for this BswImplementation.

If the BswImplementation represents a cluster of several
modules, more than one EcucModuleConfigurationValues
element can be referred (at most one per module),
otherwise at most one such element can be referred.

Tags:xml.roleWrapperElement=true

recommended
Configuration

EcucModule
ConfigurationValues

* ref Reference to one or more sets of recommended
configuration values for this module or module cluster.

5

84 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class BswImplementation

vendorApiInfix Identifier 0..1 attr In driver modules which can be instantiated several times
on a single ECU, SRS_BSW_00347 requires that the
names of files, APIs, published parameters and memory
allocation keywords are extended by the vendorId and a
vendor specific name. This parameter is used to specify
the vendor specific name. In total, the implementation
specific API name is generated as follows: <Module
Name>_<vendorId>_ <vendorApiInfix>_<API name from
SWS>.

E.g. assuming that the vendorId of the implementer is
123 and the implementer chose a vendorApiInfix of
"v11r456" an API name Can_Write defined in the SWS
will translate to Can_123_v11r456_Write.

This attribute is mandatory for all modules with upper
multiplicity > 1. It shall not be used for modules with
upper multiplicity =1.

See also SWS_BSW_00102.

vendorSpecific
ModuleDef

EcucModuleDef * ref Reference to

• the vendor specific EcucModuleDef used in this
BswImplementation if it represents a single
module

• several EcucModuleDefs used in this Bsw
Implementation if it represents a cluster of
modules

• one or no EcucModuleDefs used in this Bsw
Implementation if it represents a library

Tags:xml.roleWrapperElement=true

Table A.3: BswImplementation

Class BswModuleDescription

Package M2::AUTOSARTemplates::BswModuleTemplate::BswOverview

Note Root element for the description of a single BSW module or BSW cluster. In case it describes a BSW
module, the short name of this element equals the name of the BSW module.

Tags:atp.recommendedPackage=BswModuleDescriptions

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpFeature, AtpStructureElement ,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

bswModule
Dependency

BswModuleDependency * aggr Describes the dependency to another BSW module.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswModuleDependency.shortName, bsw
ModuleDependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

bswModule
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the BSW module.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswModuleDocumentation, bswModule
Documentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=6

5

85 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class BswModuleDescription

expectedEntry BswModuleEntry * ref Indicates an entry which is required by this module.
Replacement of outgoingCallback / requiredEntry.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=expectedEntry.bswModuleEntry, expected
Entry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

implemented
Entry

BswModuleEntry * ref Specifies an entry provided by this module which can be
called by other modules. This includes "main" functions,
interrupt routines, and callbacks. Replacement of
providedEntry / expectedCallback.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=implementedEntry.bswModuleEntry,
implementedEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

internalBehavior BswInternalBehavior * aggr The various BswInternalBehaviors associated with a Bsw
ModuleDescription can be distributed over several
physical files. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=internalBehavior.shortName
xml.sequenceOffset=65

moduleId PositiveInteger 0..1 attr Refers to the BSW Module Identifier defined by the
AUTOSAR standard. For non-standardized modules, a
proprietary identifier can be optionally chosen.

Tags:xml.sequenceOffset=5

providedClient
ServerEntry

BswModuleClientServer
Entry

* aggr Specifies that this module provides a client server entry
which can be called from another parition or core.This
entry is declared locally to this context and will be
connected to the requiredClientServerEntry of another or
the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=providedClientServerEntry.shortName,
providedClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

providedData VariableDataPrototype * aggr Specifies a data prototype provided by this module in
order to be read from another partition or core.The
providedData is declared locally to this context and will be
connected to the requiredData of another or the same
module via the configuration of the BSW Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=providedData.shortName, provided
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

5

86 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class BswModuleDescription

providedMode
Group

ModeDeclarationGroup
Prototype

* aggr A set of modes which is owned and provided by this
module or cluster. It can be connected to the required
ModeGroups of other modules or clusters via the
configuration of the BswScheduler. It can also be
synchronized with modes provided via ports by an
associated ServiceSwComponentType, EcuAbstraction
SwComponentType or ComplexDeviceDriverSw
ComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=providedModeGroup.shortName, provided
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

releasedTrigger Trigger * aggr A Trigger released by this module or cluster. It can be
connected to the requiredTriggers of other modules or
clusters via the configuration of the BswScheduler. It can
also be synchronized with Triggers provided via ports by
an associated ServiceSwComponentType, Ecu
AbstractionSwComponentType or ComplexDeviceDriver
SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=releasedTrigger.shortName, released
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=35

requiredClient
ServerEntry

BswModuleClientServer
Entry

* aggr Specifies that this module requires a client server entry
which can be implemented on another parition or
core.This entry is declared locally to this context and will
be connected to the providedClientServerEntry of another
or the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredClientServerEntry.shortName,
requiredClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

requiredData VariableDataPrototype * aggr Specifies a data prototype required by this module in oder
to be provided from another partition or core.The required
Data is declared locally to this context and will be
connected to the providedData of another or the same
module via the configuration of the BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredData.shortName, required
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

5

87 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class BswModuleDescription

requiredMode
Group

ModeDeclarationGroup
Prototype

* aggr Specifies that this module or cluster depends on a certain
mode group. The requiredModeGroup is local to this
context and will be connected to the providedModeGroup
of another module or cluster via the configuration of the
BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredModeGroup.shortName, required
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

requiredTrigger Trigger * aggr Specifies that this module or cluster reacts upon an
external trigger.This requiredTrigger is declared locally to
this context and will be connected to the providedTrigger
of another module or cluster via the configuration of the
BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredTrigger.shortName, required
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

Table A.4: BswModuleDescription

Class DependencyOnArtifact

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Dependency on the existence of another artifact, e.g. a library.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

artifact
Descriptor

AutosarEngineering
Object

0..1 aggr The specified artifact needs to exist.

usage DependencyUsage
Enum

1..* attr Specification for which process step(s) this dependency is
required.

Table A.5: DependencyOnArtifact

Class EcucModuleConfigurationValues

Package M2::AUTOSARTemplates::ECUCDescriptionTemplate

Note Head of the configuration of one Module. A Module can be a BSW module as well as the RTE and ECU
Infrastructure.

As part of the BSW module description, the EcucModuleConfigurationValues element has two different
roles:

The recommendedConfiguration contains parameter values recommended by the BSW module vendor.

The preconfiguredConfiguration contains values for those parameters which are fixed by the
implementation and cannot be changed.

These two EcucModuleConfigurationValues are used when the base EcucModuleConfigurationValues
(as part of the base ECU configuration) is created to fill parameters with initial values.

Tags:atp.recommendedPackage=EcucModuleConfigurationValuess

5

88 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class EcucModuleConfigurationValues

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

container EcucContainerValue * aggr Aggregates all containers that belong to this module
configuration.

atpVariation: [RS_ECUC_00078]

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=container.shortName, container.definition,
container.variationPoint.shortLabel
vh.latestBindingTime=postBuild
xml.sequenceOffset=10

definition EcucModuleDef 0..1 ref Reference to the definition of this EcucModule
ConfigurationValues element. Typically, this is a vendor
specific module configuration.

Stereotypes: atpIdentityContributor
Tags:xml.sequenceOffset=-10

ecucDefEdition RevisionLabelString 0..1 attr This is the version info of the ModuleDef ECUC
Parameter definition to which this values conform to / are
based on.

For the Definition of ModuleDef ECUC Parameters the
AdminData shall be used to express the semantic
changes. The compatibility rules between the definition
and value revision labels is up to the module’s vendor.

implementation
ConfigVariant

EcucConfiguration
VariantEnum

0..1 attr Specifies the kind of deliverable this EcucModule
ConfigurationValues element provides. If this element is
not used in a particular role (e.g. preconfigured
Configuration or recommendedConfiguration) then the
value shall be one of VariantPreCompile, VariantLink
Time, VariantPostBuild.

module
Description

BswImplementation 0..1 ref Referencing the BSW module description, which this
EcucModuleConfigurationValues element is configuring.
This is optional because the EcucModuleConfiguration
Values element is also used to configure the ECU
infrastructure (memory map) or Application SW-Cs.
However in case the EcucModuleConfigurationValues are
used to configure the module, the reference is mandatory
in order to fetch module specific "common" published
information.

postBuildVariant
Used

Boolean 0..1 attr Indicates whether a module implementation has or plans
to have (i.e., introduced at link or post-build time) new
post-build variation points. TRUE means yes, FALSE
means no. If the attribute is not defined, FALSE
semantics shall be assumed.

Table A.6: EcucModuleConfigurationValues

Class EcucValueCollection
Package M2::AUTOSARTemplates::ECUCDescriptionTemplate

Note This represents the anchor point of the ECU configuration description.

Tags:atp.recommendedPackage=EcucValueCollections

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

5

89 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class EcucValueCollection
ecucValue EcucModule

ConfigurationValues
* ref References to the configuration of individual software

modules that are present on this ECU.

atpVariation: [RS_ECUC_00079]

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

ecuExtract System 0..1 ref Represents the extract of the System Configuration that is
relevant for the ECU configured with that ECU
Configuration Description.

Table A.7: EcucValueCollection

Class EngineeringObject (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::EngineeringObject

Note This class specifies an engineering object. Usually such an object is represented by a file artifact. The
properties of engineering object are such that the artifact can be found by querying an ASAM catalog file.

The engineering object is uniquely identified by domain+category+shortLabel+revisionLabel.

Base ARObject

Subclasses AutosarEngineeringObject, BuildEngineeringObject, Graphic

Attribute Type Mult. Kind Note

category NameToken 1 attr This denotes the role of the engineering object in the
development cycle. Categories are such as

• SWSRC for source code

• SWOBJ for object code

• SWHDR for a C-header file

Further roles need to be defined via Methodology.

Tags:xml.sequenceOffset=20

domain NameToken 0..1 attr This denotes the domain in which the engineering object
is stored. This allows to indicate various segments in the
repository keeping the engineering objects. The domain
may segregate companies, as well as automotive
domains. Details need to be defined by the Methodology.

Attribute is optional to support a default domain.

Tags:xml.sequenceOffset=40

revisionLabel RevisionLabelString * attr This is a revision label denoting a particular version of the
engineering object.

Tags:xml.sequenceOffset=30

shortLabel NameToken 1 attr This is the short name of the engineering object. Note
that it is modeled as NameToken and not as Identifier
since in ASAM-CC it is also a NameToken.

Tags:xml.sequenceOffset=10

Table A.8: EngineeringObject

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

5

90 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class Identifiable (abstract)

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractDoIpLogicAddressProps, AbstractEvent , AbstractImplementationDataTypeElement ,
AbstractSecurityEventFilter , AbstractSecurityIdsmInstanceFilter , AbstractServiceInstance, AppOsTask
ProxyToEcuTaskProxyMapping, ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartition
Mapping, AsynchronousServerCallResultPoint, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Feature, AutosarOperationArgumentInstance, AutosarVariableInstance, BinaryManifestAddressable
Object , BinaryManifestItemDefinition, BinaryManifestResource, BinaryManifestResourceDefinition, Block
State, BswInternalTriggeringPoint, BswModuleDependency, BuildActionEntity , BuildActionEnvironment,
CanTpAddress, CanTpChannel, CanTpNode, Chapter, ClassContentConditional, ClientIdDefinition,
ClientServerOperation, Code, CollectableElement , ComManagementMapping, CommConnectorPort ,
CommunicationConnector , CommunicationController , Compiler, ConsistencyNeeds, ConsumedEvent
Group, CouplingPort, CouplingPortStructuralElement , CpSoftwareClusterResource, CpSoftwareCluster
ResourceToApplicationPartitionMapping, CpSoftwareClusterToEcuInstanceMapping, CpSoftwareCluster
ToResourceMapping, CryptoServiceMapping, DataPrototypeGroup, DataTransformation, Dependency
OnArtifact, DiagEventDebounceAlgorithm, DiagnosticConnectedIndicator, DiagnosticDataElement,
DiagnosticDebounceAlgorithmProps, DiagnosticFunctionInhibitSource, DiagnosticRoutineSubfunction,
DltApplication, DltArgument, DltLogChannel, DltMessage, DoIpInterface, DoIpLogicAddress, DoIp
RoutingActivation, ECUMapping, EOCExecutableEntityRefAbstract , EcuPartition, EcucContainerValue,
EcucDefinitionElement , EcucDestinationUriDef, EcucEnumerationLiteralDef, EcucQuery, EcucValidation
Condition, EndToEndProtection, EthernetWakeupSleepOnDatalineConfig, EventHandler, ExclusiveArea,
ExecutableEntity , ExecutionTime, FMAttributeDef, FMFeatureMapAssertion, FMFeatureMapCondition, F
MFeatureMapElement, FMFeatureRelation, FMFeatureRestriction, FMFeatureSelection, FlatInstance
Descriptor, FlexrayArTpNode, FlexrayTpConnectionControl, FlexrayTpNode, FlexrayTpPduPool, Frame
Triggering, GeneralParameter, GlobalTimeGateway, GlobalTimeMaster , GlobalTimeSlave, HeapUsage,
HwAttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IPSecRule, IPv6ExtHeaderFilterList, ISignal
ToIPduMapping, ISignalTriggering, IdentCaption, InternalTriggeringPoint, J1939SharedAddressCluster,
J1939TpNode, Keyword, LifeCycleState, LinScheduleTable, LinTpNode, Linker, MacMulticastGroup, Mc
DataInstance, MemorySection, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint, Network
Endpoint, NmCluster , NmEcu, NmNode, NvBlockDescriptor, PackageableElement , ParameterAccess,
PduActivationRoutingGroup, PduToFrameMapping, PduTriggering, PerInstanceMemory, Physical
Channel , PortElementToCommunicationResourceMapping, PortGroup, PortInterfaceMapping, Possible
ErrorReaction, ResourceConsumption, RootSwCompositionPrototype, RptComponent, RptContainer,
RptExecutableEntity, RptExecutableEntityEvent, RptExecutionContext, RptProfile, RptServicePoint, Rte
EventInCompositionSeparation, RteEventInCompositionToOsTaskProxyMapping, RteEventInSystem
Separation, RteEventInSystemToOsTaskProxyMapping, RunnableEntityGroup, SdgAttribute, SdgClass,
SecureCommunicationAuthenticationProps, SecureCommunicationFreshnessProps, SecurityEvent
ContextProps, ServerCallPoint , ServiceNeeds, SignalServiceTranslationElementProps, SignalService
TranslationEventProps, SignalServiceTranslationProps, SocketAddress, SomeipTpChannel, Spec
ElementReference, StackUsage, StaticSocketConnection, StructuredReq, SwGenericAxisParamType,
SwServiceArg, SwcServiceDependency, SwcToApplicationPartitionMapping, SwcToEcuMapping, SwcTo
ImplMapping, SystemMapping, TDCpSoftwareClusterMapping, TDCpSoftwareClusterResourceMapping,
TcpOptionFilterList, TimingCondition, TimingConstraint , TimingDescription, TimingExtensionResource,
TimingModeInstance, TlsCryptoCipherSuite, TlsCryptoCipherSuiteProps, Topic1, TpAddress, Traceable
Table, TraceableText, TracedFailure, TransformationProps, TransformationTechnology, Trigger, Variable
Access, VariationPointProxy, ViewMap, VlanConfig, WaitPoint

Attribute Type Mult. Kind Note

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=adminData
xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags:xml.sequenceOffset=-25

5

91 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class Identifiable (abstract)

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags:xml.sequenceOffset=-50

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags:xml.sequenceOffset=-60

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags:xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.

Tags:xml.attribute=true

Table A.9: Identifiable

Class Implementation (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Description of an implementation a single software component or module.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses BswImplementation, SwcImplementation

Attribute Type Mult. Kind Note

buildAction
Manifest

BuildActionManifest 0..1 ref A manifest specifying the intended build actions for the
software delivered with this implementation.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=codeGenerationTime

codeDescriptor Code * aggr Specifies the provided implementation code.

5

92 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class Implementation (abstract)

compiler Compiler * aggr Specifies the compiler for which this implementation has
been released

generated
Artifact

DependencyOnArtifact * aggr Relates to an artifact that will be generated during the
integration of this Implementation by an associated
generator tool. Note that this is an optional information
since it might not always be in the scope of a single
module or component to provide this information.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

hwElement HwElement * ref The hardware elements (e.g. the processor) required for
this implementation.

linker Linker * aggr Specifies the linker for which this implementation has
been released.

mcSupport McSupportData 0..1 aggr The measurement & calibration support data belonging to
this implementation. The aggregtion is <<atpSplitable>>
because in case of an already exisiting BSW
Implementation model, this description will be added later
in the process, namely at code generation time.

Stereotypes: atpSplitable
Tags:atp.Splitkey=mcSupport

programming
Language

Programminglanguage
Enum

0..1 attr Programming language the implementation was created
in.

requiredArtifact DependencyOnArtifact * aggr Specifies that this Implementation depends on the
existance of another artifact (e.g. a library). This
aggregation of DependencyOnArtifact is subject to
variability with the purpose to support variability in the
implementations. Different algorithms in the
implementation might cause different dependencies, e.g.
the number of used libraries.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

required
GeneratorTool

DependencyOnArtifact * aggr Relates this Implementation to a generator tool in order to
generate additional artifacts during integration.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

resource
Consumption

ResourceConsumption 0..1 aggr All static and dynamic resources for each implementation
are described within the ResourceConsumption class.

Stereotypes: atpSplitable
Tags:atp.Splitkey=resourceConsumption.shortName

swcBsw
Mapping

SwcBswMapping 0..1 ref This allows a mapping between an SWC and a BSW
behavior to be attached to an implementation description
(for AUTOSAR Service, ECU Abstraction and Complex
Driver Components). It is up to the methodology to define
whether this reference has to be set for the Swc- or Bsw
Implementtion or for both.

swVersion RevisionLabelString 0..1 attr Software version of this implementation. The numbering
contains three levels (like major, minor, patch), its values
are vendor specific.

usedCode
Generator

String 0..1 attr Optional: code generator used.

vendorId PositiveInteger 0..1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list

Table A.10: Implementation

93 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Class ImplementationDataType

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.

Tags:atp.recommendedPackage=ImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.

If set to True, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Specifies an element of an array, struct, or union data
type.

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable
Tags:atp.Splitkey=symbolProps.shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table A.11: ImplementationDataType

Enumeration MemoryAllocationKeywordPolicyType

Package M2::MSR::DataDictionary::AuxillaryObjects

Note Enumeration to specify the name pattern of the Memory Allocation Keyword.

Literal Description

addrMethodShort
Name

The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
Allocation Keywords in the code are build with the shortName of the SwAddrMethod. This is the
default value if the attribute does not exist.

Tags:atp.EnumerationLiteralIndex=0

addrMethodShort
NameAndAlignment

The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
Allocation Keywords in the code are build with the shortName of the SwAddrMethod and a variable
alignment postfix.

Thereby the alignment postfix needs to be consistent with the alignment attribute of the related
MemorySection.

Tags:atp.EnumerationLiteralIndex=1

Table A.12: MemoryAllocationKeywordPolicyType

94 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Class MemorySection

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::MemorySectionUsage

Note Provides a description of an abstract memory section used in the Implementation for code or data. It shall
be declared by the Implementation Description of the module or component, which actually allocates the
memory in its code. This means in case of data prototypes which are allocated by the RTE, that the
generated Implementation Description of the RTE shall contain the corresponding MemorySections.

The attribute "symbol" (if symbol is missing: "shortName") defines the module or component specific
section name used in the code. For details see the document "Specification of Memory Mapping".
Typically the section name is build according the pattern:

<SwAddrMethod shortName>[_<further specialization nominator>][_<alignment>]

where

• [<SwAddrMethod shortName>] is the shortName of the referenced SwAddrMethod

• [_<further specialization nominator>] is an optional infix to indicate the specialization in the
case that several MemorySections for different purpose of the same Implementation Description
referring to the same or equally named SwAddrMethods.

• [_<alignment>] is the alignment attributes value and is only applicable in the case that the
memoryAllocationKeywordPolicy value of the referenced SwAddrMethod is set to addrMethod
ShortNameAndAlignment

MemorySection used to Implement the code of RunnableEntitys and BswSchedulableEntitys shall have a
symbol (if missing: shortName) identical to the referred SwAddrMethod to conform to the generated RTE
header files.

In addition to the section name described above, a prefix is used in the corresponding macro code in
order to define a name space. This prefix is by default given by the shortName of the BswModule
Description resp. the SwComponentType. It can be superseded by the prefix attribute.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

alignment AlignmentType 0..1 attr The attribute describes the typical alignment of objects
within this memory section.

executableEntity ExecutableEntity * ref Reference to the ExecutableEntitites located in this
section. This allows to locate different Executable
Entitities in different sections even if the associated Sw
Addrmethod is the same.

This is applicable to code sections only.

memClass
Symbol

CIdentifier 0..1 attr Defines a specific symbol in order to generate the
compiler abstraction "memclass" code for this Memory
Section. The existence of this attribute supersedes the
usage of swAddrmethod.shortName for this purpose.

The complete name of the "memclass" preprocessor
symbol is constructed as <prefix>_<memClassSymbol>
where prefix is defined in the same way as for the
enclosing MemorySection. See also AUTOSAR_SWS_
CompilerAbstraction SWS_COMPILER_00040.

Tags:atp.Status=obsolete

option Identifier * attr This attribute introduces the ability to specify further
intended properties of this MemorySection. The following
two values are standardized (to be used for code sections
only and exclusively to each other):

• INLINE - The code section is declared with the
compiler abstraction macro INLINE.

• LOCAL_INLINE - The code section is declared
with the compiler abstraction macro LOCAL_
INLINE

5

5

95 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class MemorySection

4
In both cases (INLINE and LOCAL_INLINE) the inline
expansion depends on the compiler specific
implementation of these macros. Depending on this, the
code section either corresponds to an actual section in
memory or is put into the section of the caller. See
AUTOSAR_SWS_CompilerAbstraction for more details.

prefix SectionNamePrefix 0..1 ref The prefix used to set the memory section’s namespace
in the code. The existence of a prefix element
supersedes rules for a default prefix (such as the Bsw
ModuleDescription’s shortName). This allows the user to
define several name spaces for memory sections within
the scope of one module, cluster or SWC.

size PositiveInteger 0..1 attr The size in bytes of the section.

swAddrmethod SwAddrMethod 0..1 ref This association indicates that this module specific
(abstract) memory section is part of an overall SwAddr
Method, referred by the upstream declarations (e.g.
calibration parameters, data element prototypes, code
entities) which share a common addressing strategy. This
can be evaluated for the ECU configuration of the build
support.

This association shall always be declared by the
Implementation description of the module or component,
which allocates the memory in its code. This means in
case of data prototypes which are allocated by the RTE,
that the software components only declare the grouping
of its data prototypes to SwAddrMethods, and the
generated Implementation Description of the RTE actually
sets up this association.

symbol Identifier 0..1 attr Defines the section name as explained in the main
description. By using this attribute for code generation
(instead of the shortName) it is possible to define several
different MemorySections having the same name - e.g.
symbol = CODE - but using different sectionName
Prefixes.

Table A.13: MemorySection

Enumeration MemorySectionType

Package M2::MSR::DataDictionary::AuxillaryObjects

Note Enumeration to specify the essential nature of the data which can be allocated in a common memory
class by the means of the AUTOSAR Memory Mapping.

Literal Description

calibrationVariables This memory section is reserved for "virtual variables" that are computed by an MCD system during a
measurement session but do not exist in the ECU memory.

Tags:atp.EnumerationLiteralIndex=2

calprm To be used for calibratable constants of ECU-functions.

Tags:atp.EnumerationLiteralIndex=3

code To be used for mapping code to application block, boot block, external flash etc.

Tags:atp.EnumerationLiteralIndex=4

configData Constants with attributes that show that they reside in one segment for module configuration.

Tags:atp.EnumerationLiteralIndex=5

5

96 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Enumeration MemorySectionType

const To be used for global or static constants.

Tags:atp.EnumerationLiteralIndex=6

excludeFromFlash This memory section is reserved for "virtual parameters" that are taken for computing the values of
so-called dependent parameter of an MCD system. Dependent Parameters that are not at the same
time "virtual parameters" are allocated in the ECU memory.

Virtual parameters, on the other hand, are not allocated in the ECU memory. Virtual parameters exist
in the ECU Hex file for the purpose of being considered (for computing the values of dependent
parameters) during an offline-calibration session.

Tags:atp.EnumerationLiteralIndex=7

var To be used for global or static variables. The expected initialization is specified with the attribute
sectionInitializationPolicy.

Tags:atp.EnumerationLiteralIndex=9

Table A.14: MemorySectionType

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement , EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity , ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingIdent, SingleLanguageReferrable, SoConI
PduIdentifier, SocketConnectionBundle, TimeSyncServerConfiguration, TpConnectionIdent

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags:xml.sequenceOffset=-90

Table A.15: Referrable

Class RunnableEntity

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior

Note A RunnableEntity represents the smallest code-fragment that is provided by an AtomicSwComponent
Type and are executed under control of the RTE. RunnableEntities are for instance set up to respond to
data reception or operation invocation on a server.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , ExecutableEntity , Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

argument
(ordered)

RunnableEntity
Argument

* aggr This represents the formal definition of a an argument to
a RunnableEntity.

5

97 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class RunnableEntity

asynchronous
ServerCall
ResultPoint

AsynchronousServer
CallResultPoint

* aggr The server call result point admits a runnable to fetch the
result of an asynchronous server call.

The aggregation of AsynchronousServerCallResultPoint
is subject to variability with the purpose to support the
conditional existence of client server PortPrototypes and
the variant existence of server call result points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=asynchronousServerCallResultPoint.short
Name, asynchronousServerCallResultPoint.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

canBeInvoked
Concurrently

Boolean 0..1 attr If the value of this attribute is set to "true" the enclosing
RunnableEntity can be invoked concurrently (even for one
instance of the corresponding AtomicSwComponent
Type). This implies that it is the responsibility of the
implementation of the RunnableEntity to take care of this
form of concurrency.

dataRead
Access

VariableAccess * aggr RunnableEntity has implicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataReadAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataReadAccess in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReadAccess.shortName, dataRead
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointBy
Argument

VariableAccess * aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype. The result is passed back to the
application by means of an argument in the function
signature.

The aggregation of dataReceivePointByArgument is
subject to variability with the purpose to support the
conditional existence of sender receiver PortPrototype or
the variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReceivePointByArgument.shortName,
dataReceivePointByArgument.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

98 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class RunnableEntity

dataReceive
PointByValue

VariableAccess * aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The result is passed back to the application by means of
the return value. The aggregation of dataReceivePointBy
Value is subject to variability with the purpose to support
the conditional existence of sender receiver ports or the
variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReceivePointByValue.shortName, data
ReceivePointByValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataSendPoint VariableAccess * aggr RunnableEntity has explicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataSendPoint is subject to variability
with the purpose to support the conditional existence of
sender receiver PortPrototype or the variant existence of
data send points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataSendPoint.shortName, dataSend
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataWrite
Access

VariableAccess * aggr RunnableEntity has implicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataWriteAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataWriteAccess in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataWriteAccess.shortName, dataWrite
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

external
TriggeringPoint

ExternalTriggeringPoint * aggr The aggregation of ExternalTriggeringPoint is subject to
variability with the purpose to support the conditional
existence of trigger ports or the variant existence of
external triggering points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=externalTriggeringPoint.ident.shortName,
externalTriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

internal
TriggeringPoint

InternalTriggeringPoint * aggr The aggregation of InternalTriggeringPoint is subject to
variability with the purpose to support the variant
existence of internal triggering points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

99 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class RunnableEntity

modeAccess
Point

ModeAccessPoint * aggr The runnable has a mode access point. The aggregation
of ModeAccessPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode access points in
the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeAccessPoint.ident.shortName, mode
AccessPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeSwitch
Point

ModeSwitchPoint * aggr The runnable has a mode switch point. The aggregation
of ModeSwitchPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode switch points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeSwitchPoint.shortName, modeSwitch
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

parameter
Access

ParameterAccess * aggr The presence of a ParameterAccess implies that a
RunnableEntity needs read only access to a Parameter
DataPrototype which may either be local or within a Port
Prototype.

The aggregation of ParameterAccess is subject to
variability with the purpose to support the conditional
existence of parameter ports and component local
parameters as well as the variant existence of Parameter
Access (points) in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=parameterAccess.shortName, parameter
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

readLocal
Variable

VariableAccess * aggr The presence of a readLocalVariable implies that a
RunnableEntity needs read access to a VariableData
Prototype in the role of implicitInterRunnableVariable or
explicitInterRunnableVariable.

The aggregation of readLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitInterRunnableVariable and explicit
InterRunnableVariable or the variant existence of read
LocalVariable (points) in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=readLocalVariable.shortName, readLocal
Variable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

serverCallPoint ServerCallPoint * aggr The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to variability with
the purpose to support the conditional existence of client
server PortPrototypes or the variant existence of server
call points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=serverCallPoint.shortName, serverCall
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

100 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class RunnableEntity

symbol CIdentifier 0..1 attr The symbol describing this RunnableEntity’s entry point.
This is considered the API of the RunnableEntity and is
required during the RTE contract phase.

waitPoint WaitPoint * aggr The WaitPoint associated with the RunnableEntity.

writtenLocal
Variable

VariableAccess * aggr The presence of a writtenLocalVariable implies that a
RunnableEntity needs write access to a VariableData
Prototype in the role of implicitInterRunnableVariable or
explicitInterRunnableVariable.

The aggregation of writtenLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitInterRunnableVariable and explicit
InterRunnableVariable or the variant existence of written
LocalVariable (points) in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=writtenLocalVariable.shortName, written
LocalVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.16: RunnableEntity

Class SectionNamePrefix
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::MemorySectionUsage

Note A prefix to be used for generated code artifacts defining a memory section name in the source code of
the using module or SWC.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mult. Kind Note

implementedIn DependencyOnArtifact 0..1 ref Optional reference that allows to Indicate the code artifact
(header file) containing the preprocessor implementation
of memory sections with this prefix.

The usage of this link supersedes the usage of a memory
mapping header with the default name (derived from the
BswModuleDescription’s shortName).

Table A.17: SectionNamePrefix

Class SwAddrMethod
Package M2::MSR::DataDictionary::AuxillaryObjects

Note Used to assign a common addressing method, e.g. common memory section, to data or code objects.
These objects could actually live in different modules or components.

Tags:atp.recommendedPackage=SwAddrMethods

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

memory
Allocation
KeywordPolicy

MemoryAllocation
KeywordPolicyType

0..1 attr Enumeration to specify the name pattern of the Memory
Allocation Keyword.

5

101 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class SwAddrMethod
option Identifier * attr This attribute introduces the ability to specify further

intended properties of the MemorySection in with the
related objects shall be placed.

These properties are handled as to be selected. The
intended options are mentioned in the list.

In the Memory Mapping configuration, this option list is
used to determine an appropriate MemMapAddressing
ModeSet.

section
Initialization
Policy

SectionInitialization
PolicyType

0..1 attr Specifies the expected initialization of the variables
(inclusive those which are implementing VariableData
Prototypes). Therefore this is an implementation
constraint for initialization code of BSW modules
(especially RTE) as well as the start-up code which
initializes the memory segment to which the AutosarData
Prototypes referring to the SwAddrMethod’s are later on
mapped.

If the attribute is not defined it has the identical semantic
as the attribute value "INIT"

sectionType MemorySectionType 0..1 attr Defines the type of memory sections which can be
associated with this addresssing method.

Table A.18: SwAddrMethod

Class SwBaseType

Package M2::MSR::AsamHdo::BaseTypes

Note This meta-class represents a base type used within ECU software.

Tags:atp.recommendedPackage=BaseTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, BaseType, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.19: SwBaseType

Class SwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for AUTOSAR software components.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType

Attribute Type Mult. Kind Note

consistency
Needs

ConsistencyNeeds * aggr This represents the collection of ConsistencyNeeds
owned by the enclosing SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

102 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class SwComponentType (abstract)

port PortPrototype * aggr The PortPrototypes through which this SwComponent
Type can communicate.

The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=port.shortName, port.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

portGroup PortGroup * aggr A port group being part of this component.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

swcMapping
Constraint

SwComponentMapping
Constraints

* ref Reference to constraints that are valid for this Sw
ComponentType.

swComponent
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

unitGroup UnitGroup * ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponentType.

Table A.20: SwComponentType

Class SwcImplementation

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcImplementation

Note This meta-class represents a specialization of the general Implementation meta-class with respect to the
usage in application software.

Tags:atp.recommendedPackage=SwcImplementations

Base ARElement , ARObject , CollectableElement , Identifiable, Implementation, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

behavior SwcInternalBehavior 0..1 ref The internal behavior implemented by this
Implementation.

perInstance
MemorySize

PerInstanceMemory
Size

* aggr Allows a definition of the size of the per-instance memory
for this implementation. The aggregation of PerInstance
MemorySize is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects, in this case PerInstanceMemory.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

5

103 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class SwcImplementation

required
RTEVendor

String 0..1 attr Identify a specific RTE vendor. This information is
potentially important at the time of integrating (in
particular: linking) the application code with the RTE. The
semantics is that (if the association exists) the
corresponding code has been created to fit to the
vendor-mode RTE provided by this specific vendor.
Attempting to integrate the code with another RTE
generated in vendor mode is in general not possible.

Table A.21: SwcImplementation

Class SwcInternalBehavior
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior

Note The SwcInternalBehavior of an AtomicSwComponentType describes the relevant aspects of the
software-component with respect to the RTE, i.e. the RunnableEntities and the RTEEvents they respond
to.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, InternalBehavior , Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

arTypedPer
Instance
Memory

VariableDataPrototype * aggr Defines an AUTOSAR typed memory-block that needs to
be available for each instance of the SW-component.

This is typically only useful if supportsMultipleInstantiation
is set to "true" or if the component defines NVRAM
access via permanent blocks.

The aggregation of arTypedPerInstanceMemory is subject
to variability with the purpose to support variability in the
software component’s implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arTypedPerInstanceMemory.shortName, ar
TypedPerInstanceMemory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

event RTEEvent * aggr This is a RTEEvent specified for the particular Swc
InternalBehavior.

The aggregation of RTEEvent is subject to variability with
the purpose to support the conditional existence of RTE
events. Note: the number of RTE events might vary due
to the conditional existence of PortPrototypes using Data
ReceivedEvents or due to different scheduling needs of
algorithms.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=event.shortName, event.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

exclusiveArea
Policy

SwcExclusiveArea
Policy

* aggr Options how to generate the ExclusiveArea related APIs.
When no SwcExclusiveAreaPolicy is specified for an
ExclusiveArea the default values apply.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveAreaPolicy, exclusiveArea
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

104 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class SwcInternalBehavior
explicitInter
Runnable
Variable

VariableDataPrototype * aggr Implement state message semantics for establishing
communication among runnables of the same
component. The aggregation of explicitInterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=explicitInterRunnableVariable.shortName,
explicitInterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

handle
TerminationAnd
Restart

HandleTerminationAnd
RestartEnum

0..1 attr This attribute controls the behavior with respect to
stopping and restarting. The corresponding AtomicSw
ComponentType may either not support stop and restart,
or support only stop, or support both stop and restart.

implicitInter
Runnable
Variable

VariableDataPrototype * aggr Implement state message semantics for establishing
communication among runnables of the same
component. The aggregation of implicitInterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=implicitInterRunnableVariable.shortName,
implicitInterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

includedData
TypeSet

IncludedDataTypeSet * aggr The includedDataTypeSet is used by a software
component for its implementation.

Stereotypes: atpSplitable
Tags:atp.Splitkey=includedDataTypeSet

includedMode
Declaration
GroupSet

IncludedMode
DeclarationGroupSet

* aggr This aggregation represents the included Mode
DeclarationGroups

Stereotypes: atpSplitable
Tags:atp.Splitkey=includedModeDeclarationGroupSet

instantiation
DataDefProps

InstantiationDataDef
Props

* aggr The purpose of this is that within the context of a given
SwComponentType some data def properties of individual
instantiations can be modified. The aggregation of
InstantiationDataDefProps is subject to variability with the
purpose to support the conditional existence of Port
Prototypes and component local memories like "per
InstanceParameter" or "arTypedPerInstanceMemory".

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instantiationDataDefProps, instantiationData
DefProps.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

105 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class SwcInternalBehavior
perInstance
Memory

PerInstanceMemory * aggr Defines a per-instance memory object needed by this
software component. The aggregation of PerInstance
Memory is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perInstanceMemory.shortName, perInstance
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perInstance
Parameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s) that needs
to be available for each instance of the
software-component. This is typically only useful if
supportsMultipleInstantiation is set to "true". The
aggregation of perInstanceParameter is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perInstanceParameter.shortName, per
InstanceParameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

portAPIOption PortAPIOption * aggr Options for generating the signature of port-related calls
from a runnable to the RTE and vice versa. The
aggregation of PortPrototypes is subject to variability with
the purpose to support the conditional existence of ports.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portAPIOption, portAPIOption.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

runnable RunnableEntity * aggr This is a RunnableEntity specified for the particular Swc
InternalBehavior.

The aggregation of RunnableEntity is subject to variability
with the purpose to support the conditional existence of
RunnableEntities. Note: the number of RunnableEntities
might vary due to the conditional existence of Port
Prototypes using DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=runnable.shortName, runnable.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

service
Dependency

SwcService
Dependency

* aggr Defines the requirements on AUTOSAR Services for a
particular item.

The aggregation of SwcServiceDependency is subject to
variability with the purpose to support the conditional
existence of ports as well as the conditional existence of
ServiceNeeds.

The SwcServiceDependency owned by an SwcInternal
Behavior can be located in a different physical file in order
to support that SwcServiceDependency might be
provided in later development steps or even by different

5

5

106 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class SwcInternalBehavior

4
expert domain (e.g OBD expert for Obd related Service
Needs) tools. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=serviceDependency.shortName, service
Dependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

shared
Parameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s) shared
between SwComponentPrototypes of the same Sw
ComponentType The aggregation of sharedParameter is
subject to variability with the purpose to support variability
in the software components implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=sharedParameter.shortName, shared
Parameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

supports
Multiple
Instantiation

Boolean 0..1 attr Indicate whether the corresponding software-component
can be multiply instantiated on one ECU. In this case the
attribute will result in an appropriate component API on
programming language level (with or without instance
handle).

variationPoint
Proxy

VariationPointProxy * aggr Proxy of a variation points in the C/C++ implementation.

Stereotypes: atpSplitable
Tags:atp.Splitkey=variationPointProxy.shortName

Table A.22: SwcInternalBehavior

Class SwcToImplMapping

Package M2::AUTOSARTemplates::SystemTemplate::SWmapping

Note Map instances of an AtomicSwComponentType to a specific Implementation.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

component SwComponent
Prototype

1..* iref Reference to the software component instances that are
being mapped to the specified Implementation. The
targeted SwComponentPrototype needs be of the Atomic
SwComponentType being implemented by the referenced
Implementation.

InstanceRef implemented by:ComponentInSystem
InstanceRef

component
Implementation

SwcImplementation 1 ref Reference to a specific Implementation description.

Implementation to be used by the specified SW
component instance. This allows to achieve more precise
estimates for the resource consumption that results from
mapping the instance of an atomic SW component onto
an ECU.

Table A.23: SwcToImplMapping

107 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

Class SystemMapping

Package M2::AUTOSARTemplates::SystemTemplate

Note The system mapping aggregates all mapping aspects (mapping of SW components to ECUs, mapping of
data elements to signals, and mapping constraints).

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

application
PartitionToEcu
Partition
Mapping

ApplicationPartitionTo
EcuPartitionMapping

* aggr Mapping of ApplicationPartitions to EcuPartitions

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=applicationPartitionToEcuPartition
Mapping.shortName, applicationPartitionToEcuPartition
Mapping.variationPoint.shortLabel
vh.latestBindingTime=postBuild

appOsTask
ProxyToEcu
TaskProxy
Mapping

AppOsTaskProxyToEcu
TaskProxyMapping

* aggr Mapping of an OsTaskProxy that was created in the
context of a SwComponent to an OsTaskProxy that was
created in the context of an Ecu.

com
Management
Mapping

ComManagement
Mapping

* aggr Mappings between Mode Management PortGroups and
communication channels.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=systemDesignTime

cryptoService
Mapping

CryptoServiceMapping * aggr This aggregation represents the collection of crypto
service mappings in the context of the enclosing System
Mapping.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=cryptoServiceMapping.shortName, crypto
ServiceMapping.variationPoint.shortLabel
vh.latestBindingTime=postBuild

dataMapping DataMapping * aggr The data mappings defined.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

ecuResource
Mapping

ECUMapping * aggr Mapping of hardware related topology elements onto their
counterpart definitions in the ECU Resource Template.

atpVariation: The ECU Resource type might be variable.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=systemDesignTime

j1939Controller
ApplicationTo
J1939NmNode
Mapping

J1939Controller
ApplicationToJ1939Nm
NodeMapping

* aggr Mapping of a J1939ControllerApplication to a J1939Nm
Node.

mapping
Constraint

MappingConstraint * aggr Constraints that limit the mapping freedom for the
mapping of SW components to ECUs.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=systemDesignTime

pncMapping PncMapping * aggr Mappings between Virtual Function Clusters and Partial
Network Clusters.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=systemDesignTime

5

108 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class SystemMapping

portElementTo
ComResource
Mapping

PortElementTo
Communication
ResourceMapping

* aggr maps a communication resource to CP Software Clusters

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portElementToComResourceMapping.short
Name, portElementToComResourceMapping.variation
Point.shortLabel
atp.Status=draft
vh.latestBindingTime=postBuild

resource
Estimation

EcuResourceEstimation * aggr Resource estimations for this set of mappings, zero or
one per ECU instance.

atpVariation: Used ECUs are variable.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=systemDesignTime

resourceTo
Application
Partition
Mapping

CpSoftwareCluster
ResourceToApplication
PartitionMapping

* aggr Maps a Software Cluster resource to an Application
Partition to restrict the usage.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=resourceToApplicationPartition
Mapping.shortName, resourceToApplicationPartition
Mapping.variationPoint.shortLabel
atp.Status=draft
vh.latestBindingTime=systemDesignTime

rteEvent
Separation

RteEventInSystem
Separation

* aggr Separation constraint that limits the mapping freedom for
the mapping of RteEvents to OsTasks in the System
context.

rteEventToOs
TaskProxy
Mapping

RteEventInSystemToOs
TaskProxyMapping

* aggr Constraint that enforces a mapping of RteEvent to a
particular OsTask in the System context.

signalPath
Constraint

SignalPathConstraint * aggr Constraints that limit the mapping freedom for the
mapping of data elements to signals.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=systemDesignTime

softwareCluster
ToResource
Mapping

CpSoftwareClusterTo
ResourceMapping

* aggr maps a service resource to CP Software Clusters

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=softwareClusterToResourceMapping.short
Name, softwareClusterToResourceMapping.variation
Point.shortLabel
atp.Status=draft
vh.latestBindingTime=preCompileTime

swCluster
Mapping

CpSoftwareClusterTo
EcuInstanceMapping

* aggr The mappings of SW cluster to ECUs.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swClusterMapping.shortName, swCluster
Mapping.variationPoint.shortLabel
atp.Status=draft
vh.latestBindingTime=systemDesignTime

swcTo
Application
Partition
Mapping

SwcToApplication
PartitionMapping

* aggr Allows to map a given SwComponentPrototype to a
formally defined partition at a point in time when the
corresponding EcuInstance is not yet known or defined.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swcToApplicationPartitionMapping.short
Name, swcToApplicationPartitionMapping.variation
Point.shortLabel
vh.latestBindingTime=postBuild

5

109 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

4
Class SystemMapping

swImplMapping SwcToImplMapping * aggr The mappings of AtomicSoftwareComponent Instances to
Implementations.

atpVariation: Derived, because SwcToEcuMapping is
variable.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

swMapping SwcToEcuMapping * aggr The mappings of SW components to ECUs.

atpVariation: SWC shall be mapped to other ECUs.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table A.24: SystemMapping

Class VariableDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a
VariableDataPrototype allocates "static" memory on the ECU. In some cases optimization strategies
might lead to a situation where the memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used
executes.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table A.25: VariableDataPrototype

B Not applicable requirements

[SWS_MemMap_00999] dThese requirements are not applicable to this specifica-
tion.c(SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_00344, SRS_BSW_00159,
SRS_BSW_00167, SRS_BSW_00171, SRS_BSW_00170, SRS_BSW_00419, SRS_-
BSW_00383, SRS_BSW_00388, SRS_BSW_00389, SRS_BSW_00390, SRS_-
BSW_00392, SRS_BSW_00393, SRS_BSW_00394, SRS_BSW_00395, SRS_-
BSW_00396, SRS_BSW_00397, SRS_BSW_00398, SRS_BSW_00399, SRS_-
BSW_00400, SRS_BSW_00375, SRS_BSW_00101, SRS_BSW_00416, SRS_-
BSW_00406, SRS_BSW_00168, SRS_BSW_00407, SRS_BSW_00423, SRS_-
BSW_00424, SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_00427, SRS_-
BSW_00428, SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433, SRS_-
BSW_00336, SRS_BSW_00337, SRS_BSW_00369, SRS_BSW_00339, SRS_-
BSW_00422, SRS_BSW_00417, SRS_BSW_00323, SRS_BSW_00004, SRS_-
BSW_00409, SRS_BSW_00385, SRS_BSW_00386, SRS_BSW_00161, SRS_-
BSW_00162, SRS_BSW_00005, SRS_BSW_00164, SRS_BSW_00325, SRS_-
BSW_00342, SRS_BSW_00343, SRS_BSW_00160, SRS_BSW_00007, SRS_-
BSW_00300, SRS_BSW_00413, SRS_BSW_00347, SRS_BSW_00307, SRS_-
BSW_00310, SRS_BSW_00373, SRS_BSW_00327, SRS_BSW_00335, SRS_-

110 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
AUTOSAR CP R21-11

BSW_00350, SRS_BSW_00408, SRS_BSW_00410, SRS_BSW_00411, SRS_-
BSW_00346, SRS_BSW_00314, SRS_BSW_00348, SRS_BSW_00353, SRS_-
BSW_00301, SRS_BSW_00302, SRS_BSW_00312, SRS_BSW_00357, SRS_-
BSW_00377, SRS_BSW_00378, SRS_BSW_00308, SRS_BSW_00309, SRS_-
BSW_00358, SRS_BSW_00414, SRS_BSW_00359, SRS_BSW_00360, SRS_-
BSW_00330, SRS_BSW_00331, SRS_BSW_00009, SRS_BSW_00401, SRS_-
BSW_00172, SRS_BSW_00010, SRS_BSW_00333, SRS_BSW_00341, SRS_-
BSW_00334, SRS_BSW_00305, SRS_BSW_00380, SRS_BSW_00438, SRS_-
BSW_00439, SRS_BSW_00440, SRS_BSW_00447, SRS_BSW_00448, SRS_-
BSW_00449, SRS_BSW_00450, SRS_BSW_00451, SRS_BSW_00452, SRS_-
BSW_00453, SRS_BSW_00454, SRS_BSW_00456, SRS_BSW_00457, SRS_-
BSW_00458, SRS_BSW_00459, SRS_BSW_00460, SRS_BSW_00461, SRS_-
BSW_00462, SRS_BSW_00003, SRS_BSW_00304, SRS_BSW_00318, SRS_-
BSW_00321, SRS_BSW_00374, SRS_BSW_00379, SRS_BSW_00402, SRS_-
BSW_00463, SRS_BSW_00466, SRS_BSW_00467, SRS_BSW_00469, SRS_-
BSW_00470, SRS_BSW_00471, SRS_BSW_00472, SRS_BSW_00473, SRS_-
BSW_00478, SRS_BSW_00479, SRS_BSW_00480, SRS_BSW_00481, SRS_-
BSW_00482)

111 of 111 Document ID 128: AUTOSAR_SWS_MemoryMapping

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General issues
	7.2 Mapping of variables and code
	7.2.1 Requirements on implementations using memory mapping header files for BSW Modules and Software Components
	7.2.1.1 Splitting of modules in allocatable memory parts
	7.2.1.2 config constants versus non-config constants
	7.2.1.3 Data Sections
	7.2.1.4 Code Sections

	7.2.2 Requirements on memory mapping header files

	7.3 Examples
	7.3.1 Code Section
	7.3.2 Fast Variable Section
	7.3.3 Code Section in ICC2 cluster
	7.3.4 Callout sections
	7.3.5 Allocatable Memory Parts

	8 API specification
	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 MemMap
	10.2.2 MemMapAddressingModeSet
	10.2.3 MemMapAddressingMode
	10.2.4 MemMapAllocation
	10.2.5 MemMapGenericMapping
	10.2.6 MemMapSectionSpecificMapping
	10.2.7 MemMapMappingSelector
	10.2.8 MemMapGenericCompilerMemClass

	10.3 Published Information

	11 Analysis
	11.1 Memory allocation of variables
	11.2 Memory allocation of constant variables
	11.3 Memory allocation of code

	A Referenced Meta Classes
	B Not applicable requirements

