AUTO SAR

Specification of 1/O Hardware Abstraction

AUTOSAR CP R21-11

Document Title

Specification of I1/O Hardware
Abstraction

Document Owner

AUTOSAR

Document Responsibility

AUTOSAR

Document Identification No 47

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R21-11

Document Change History

Date Release |Changed by Change Description
2021-11-25 | R21-11 |[AUTOSAR ¢ No content changes
Release
Management
2020-11-30 | R20-11 |[AUTOSAR e No content changes
Release
Management
2019-11-28 | R19-11 | AUTOSAR e EcuAbstractionComponentType
Release changed to
Management EcuAbstractionSwComponentType.
e Changed Document Status from
Final to published
2018-10-31 440 |AUTOSAR e Debugging section removed
Release
Management
2016-11-30 4.3.0 |AUTOSAR e minor corrections / clarifications /
Release editorial changes; For details please
Management refer to the ChangeDocumentation
2015-07-31 | 4.2.2 |AUTOSAR e Updated loHwAD_Init function
Release prototype
Management
2014-10-31 421 |AUTOSAR e Editorial changes
Release
Management
2014-03-31 4.1.3 |AUTOSAR e Adapted the requirement format.
Release
Management
2013-10-31 4.1.2 |AUTOSAR e Editorial changes
Release e Removed chapter(s) on change

Management

documentation

1 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction

AUTOSAR CP R21-11

Document Change History

Date

Release

Changed by

Change Description

2013-03-15

41.1

AUTOSAR
Administration

Modified GET and SET operations
Extended Production Errors
recommended by the Task Force
“Production Errors”

Define a notification function for
OCU driver

2011-12-22

4.0.3

AUTOSAR
Administration

Update Version Check requirement

2010-09-30

3.15

AUTOSAR
Administration

Names of callback notification APIs
have been corrected.

Exported files <ModuleName>.h of
underlying modules are used,
instead of <ModuleName>_Types.h

2010-02-02

3.14

AUTOSAR
Administration

I/O Hardware Abstraction
configuration has been removed
from the EcucParamDef

Functional Diagnostics' interface has
been added (DCM controls 1/0O
Signals)

Unnecessary classes, attributes and
types removed

Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

Auto generation of chapters 8 and
10 with the Metamodel

Update of tables and some chapters
of the document to stay compliant
with correlated documents
Document meta information
extended

Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

Various images corrected in
PDFversion (printing problems)

2 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction

AUTOSAR CP R21-11

Document Change History

Date

Release

Changed by

Change Description

2006-11-28

2.1.14

AUTOSAR
Administration

File structure updated

Traceability matrix corrected
Restriction for the usage of the SWC
template

Chapter about IOHWAB Runnable
concept reworked

Chapter about IOHWAB description
reworked

Adjustments in the configuration
chapter

Legal disclaimer revised

Release Notes added

“Advice for users” revised

‘Revision Information” added

2006-05-16

2.0

AUTOSAR
Administration

Initial Release

3 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

Table of Contents

1 Introduction and functional OVEIVIEWcoooiiiiiiiiiiie e 7
2 Acronyms and abbreVviatioNS.............ceviiiiiiiiiiiiie e 8
3 Related dOCUMENTALIONcciiiiiiiieeeee et r e e e e e e e e e e e aeeeeas 10
3.1 INPUL OCUMENTS ...ttt e e e e e e e e e e e aaneees 10
3.2 Related standards and NOMMISeeiiiiiiiiiiiiiie e 11
3.3 Related SPeCIfiCAtIONiiiii i ————— 11

4 Constraints and aSSUMPLIONS.uuiiiiiiiiiiiiiiie et e e e e e s e e e e s e eneeees 12
g O IR0 T = o] PP 12
4.2 Applicability to car dOMaiNS...........ccooiiiiiiiii e e e e e e e e 12

5 Dependencies to other MOAUIEScooiiiiiiiiiiiiiie e 13
5.1 Interface With MCAL ArVEISuuuiiiiiiiiiiiiiiiiiiieieeeee e 13
o0t 00 R O 1V = V1 PP 13
5.1.2 Summary of interfaces with MCAL drivers............cccooeeeccininninnniiinineneene, 14

5.2 Interface with the communication driVersccccccieiiieiiies 14
5.3 Interface With SYStEM SEerVICESuuuiiiiiiiiiiiiiiiiiiiie e 15
5.4 Interface With DCMccoiiiiiiee s e a s nannnes 16
5.5 FilE SITUCTUIE ...ttt e e e et e e e e e e enneees 17
5.5.1 COde fil@ SIUCTUIEeviieiiiiiiiiiiieeieeee e 17
5.5.2 Header file StIUCIUIEeeiiiiiiiiiiieiieeee e 17

6 Requirements traceability ... 18
7 Functional SPECITICALION..........euiiiiiiiiiiii e 22
7.1 INtegration COUE........cccii e s s e naennnnnns 22
7.1.1 Background & Rationalecccooiiiiiiiiiiiiiiiciee e 22
7.1.2 Requirements for integration code implementationcccccvvvvvveneeee. 22

7.2 ECU SigNaIS CONCEPL.....eiiieiiiiiiiiiiiiee ettt e 23
7.2.1 Background & RatioNalecoovvviiiiiiiieii e 23
7.2.2 Requirements about ECU Signals............oouviiiiiiiiiiiciccccreien e 24

7.3 ATIDULES ... e e e e e r e e e e e e e e e s 25
7.3.1 Background & RatiONAIEcooiiiiiiiiiiii e 25
7.3.2 Requirements about ECU signal attributes..............cccoceeeiiinniiiiiiiiiinnnee, 25

7.4 1/0 Hardware Abstraction and Software Component Template 25
7.4.1 Background & RatiONAIEoooiiiiiiiiiiiii e 26
7.4.2 Requirements about the usage of Software Component template 26

7.5 Scheduling concept for I/O Hardware Abstraction............ccccceeeeeeiiiiiiiicccinns 27
7.5.1 Background & RatioNale ... 27
7.5.2 Requirements about /O Hardware Abstraction Scheduling concept....... 28

7.6 Error ClassifiCationccooeiiiiiiiiiiiiiiiiiiiieee e e e e e e e e e e e e e e e e s e e e s e 31
7.6.1 DeVElOPMENT EFTOrS ..uvvviiiiiiiiiieiiei ettt 31
7.6.2 RUNUME EITOIS ...uuiiiiiiiiiiiiieeeeeeee et 32
7.6.3 TranSieNt FAUILS.........uuuiiiiiiiiiiiiiiee e 32
AL R A e o o [N Tox 1o o I =1 0] =SSP 32
7.6.5 Extended ProducCtion EITOrIScccuuiiiiieiiiiiiiiiieie et e 32

7.7 Other reqUIrEMENESccoiiiiiiiie ettt e s e s s nannns 32
7.8 1/0 Hardware Abstraction layer deSCriptioncccuveeeeeiiiiiiieiieeee e 32

5 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

A“T@s NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

7.8.1 Background & RatioNalecoevvviiiiiiiiiii e 32
A T U= To (U] 1= 0 4[] £ POSP 33
7.9 EXAMPIES .o 33
7.9.1 EXAMPLE 1: Use case of on-board hardwareccccccvmrvvvvirrnnnnnnnnn. 33
7.9.2 EXAMPLE 2: Use case of failure monitoringccccceevvvvivnivnnnnnnnnnnen. 35
7.9.3 EXAMPLE 3: OUPUL POWET STAGE......cevriiieiiiiiii et eeeiin e e e e eens 36
7.9.4 EXAMPLE 4: Setting sensor and controlling periphery in low power
] = LSO RPPPP PP 38
8 API SPECITICALION.uuuiiiiiiiiiiiiii it e e e e e e e e e e e et e s s e et e e s e e e aaae e annreeees 40
8.1 IMPOMEA LY PES ... r e et e n e 40
8.2 TYPE defiNILIONS ...t e e e e e e e e e e e e e e e e e e s e e e s e e e annes 41
8.2.1 [oHWAD<INIt_Id>_CoNfIgTYPE ..oooiiiiiiieeee et 41
8.3 FUNCLION AEfINITIONSviiiiiiiee i baeee s 42
8.3.1 IoHWAD _INIt<INIE_ 1> ..eviiiiiiiiiiiieeeeeeee e 42
8.3.2 I0HWAD_GetVersionINfO..........iiiii e 43
8.4 Call-back NOtIfICAtIONScccoiiiieiiii e 43
8.4.1 IoHWAD_AdcNotification<#grouplID>cccvieiieeiiiiiiiiiiiie e 44
8.4.2 loHwWAb_Pwm_Notification<#channel>....................cccoceciiiiiiiiiieeeee, 44
8.4.3 loHwWADb_IcuNotification<#channel>................ccoiiiiiiiiiii 45
8.4.4 loHwWADb_GptNotification<#channel>...................cccoooiiiiiiiiiiiiieee 45
8.4.5 loHwWADb_OcuNotification<#channel>..............ccooiiiiii 46
8.4.6 IoHwWAb_Pwm_NotifyReadyForPowerState<#MODE>cccccceeeeenne 47
8.4.7 loHwWADb_ Adc_NotifyReadyForPowerState<#MODE>cccoeeeeeeeenen. 47
8.5 Scheduled fUNCHIONScciiiiiiiiiiii e 48
8.5.1 <Name of scheduled funCtion>ccccoe i 48
8.6 Functional DiagnOStICS INTEITACEcooiiiviiiiiie e 48
8.6.1 loHWAb_Dcm_<EcuSignalName>cccoooiiiiiiiiiiiccceee e 49
8.6.2 loHWAb_Dcm_Read<EcuSignalName>ccccooeeiccnnnininiiiiinenneeen 50
8.7 Power State FUNCLONS ...ttt 51
8.7.1 IoHwWAD_PreparePowerState<#MODE>...........ccccciiiiiiiiiieeeee 51
8.7.2 loHWADb_EnterPowerState <#MODE>coo oo 52
8.8 EXpected INTErfaCES........ccccei et e e e 53
8.8.1 Mandatory INtErfacCes..........uuuuuiiiiiii i 53
8.8.2 Optional INtEITACES ... 56
ST TRC TN To] o N = o o I \\To) 1] To%= 11 o] o [0SR 57
9 SEQUENCE TIAGIAMS ...eeiiiieiiiiiitie e e ettt e e e e e s e e e e e e e s s b e e e e e e e s anbb b e e e e e e e e eanneees 58
9.1 ECU-signal provided by the 1/O Hardware Abstraction (example) 58
9.2 Setting ADC and PWM in a low consumption power state as a result of a
request for an application low power mode (example)ccccevvriiiiiieeeennns 60
10Configuration SPECITICALIONciiiiiiiiiiieee e 62
10.1 Published INfOrmMationeeeieeeiiiiiiiiiiieee e 62
11Not applicable reqUIrEmMENTS ..o 63

6 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

1 Introduction and functional overview

This specification specifies the functionality and the configuration of the AUTOSAR
Basic Software I/0O Hardware Abstraction. The 1/0 Hardware Abstraction is part of the
ECU Abstraction Layer.

The 1/0 Hardware Abstraction shall not be considered as a single module, as it can
be implemented as more than one module. This specification for the I/O Hardware
Abstraction is not intended to standardize this module or group of modules. Instead,
it is intended to be a guideline for the implementation of its functional interfaces with
other modules.

Aim of the 1/O Hardware Abstraction is to provide access to MCAL drivers by
mapping I/O Hardware Abstraction ports to ECU signals. The data provided to the
software component is completely abstracted from the physical layer values.
Therefore, the software component designer does not need detailed knowledge
about the MCAL driver's API and the units of the physical layer values anymore.

The 1/0O Hardware Abstraction is always an ECU specific implementation, because
the requirements of the software components to the basic software have to be fitted
to the features of a certain MCAL implementation.

The 1/0 Hardware Abstraction shall provide the service for initializing the whole 1/0
Hardware Abstraction.

The intention of this document is:
— to determine which part of the Software Component template shall be used
when defining an I/O Hardware Abstraction.
— to explain the way to define generic ports, where ECU signals are mapped.

The intention of this document is not:
— to provide C-APIs
— to provide a specific formalization for every ECU signal, like it is done via the
standardization of functional data (body domain, powertrain, chassis domain)

7 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

2 Acronyms and abbreviations

Specification of 1/O Hardware Abstraction

AUTOSAR CP R21-11

Abbreviation / Description:

Acronym:

AUTOSAR AUTomotive Open System ARchitecture
API Application Programming Interface
BSW Basic SoftWare

BSWMD Basic SoftWare Module Description

CIs Client/Server

DET Default Error Tracer

ECU Electronic Control Unit

HW HardWare

loHWAD Input/Output Hardware Abstraction

ISR Interrupt Service Routine

MCAL MicroController Abstraction Layer

(O8] Operating System

RTE RunTime Environment

S/IR Sender/Receiver

SW SoftWare

SWC SoftWare Component (see [8] for further information)
XML eXtensible Markup Language

Expressions used in this document

Expression Description Example

Within this document, the term ‘callback’ is used for

Callback API services, which are intended for notifications to
other BSW modules.
Callouts are function stubs, which can be filled at

Callout configuration time, with the purpose to add
functionality to the module that provides the callout.

Class A class represents a set of signals that has similar Analogue class,

electrical characteristics.

Discrete class, ...

Client / Server
communication

This definition is an extract from [9]:

Client-server communication involves two entities, the
client which is the

requirer (or user) of a service and the server that
provides the service.

The client initiates the communication, requesting that
the server performs a service, transferring a parameter
set if necessary. The server, in the form of the RTE,
waits for incoming communication requests from a
client, performs the requested service and dispatches
a response to the client's request. So, the direction of
initiation is used to categorize whether an AUTOSAR
Software Component is a client or a server.

Electrical An electrical signal is the physical signal on the pin of | Physical input voltage at
Signal the ECU. an ECU-Pin
) An ECU pin is an electrical hardware connection of the
ECU pin ECU with the rest of the electronic system.
An ECU Signal is the software representation of an Input volt Di i
ECU Signal electrical signal. An ECU signal has attributes and a SEIU u\;OP?/siA’InISS:e €
symbolic nhame put, P
ECU Signal | An ECU Signal Group is the software representation
8 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTO SAR Specification of /O Hardware Abstraction
AUTOSAR CP R21-11

Group of a group of electrical signals.

Characteristics that can be Software (SW) and
Hardware (HW) for each kind of ECU signals existing
Attributes in an ECU. Some of the Attributes are fixed by the port
definitions, others can be configured in the I/O
Hardware Abstraction.

Range,
Lifetime / delay

This definition is an extract from [9]:

Sender-receiver communication involves the
transmission and reception of signals consisting of
atomic data elements that are sent by one component
and received by one or more components. A sender-
receiver interface can contain multiple data elements.
Sender-receiver communication is one-way - any reply
sent by the receiver is sent as a separate sender-
receiver communication. A port of a component that
requires an AUTOSAR sender-receiver interface can
read the data elements described in the interface and
a port that provides the interface can write the data
elements.

Sender-receiver
communication

The symbolic name of a ECU signal is used by the I/O

Symbolic name Hardware Abstraction to make a link (function, pin)

ECU signal attributes

Expression Description Example

This is a functional range and not an
electrical range. All the range is used either
for functional needs or for diagnosis
detections

Range For analogue ECU signals
[lowerLimit...upperLimit] (Voltage, current).
For the particular case of a resistance
signal and a timing signal (period), the
lowerLimit value can not be negative.

[-12Volts...+12Volts] (voltage)
[0.1]
(discrete signals)

[0...upperLimit]

(period timing signal)
[-100...100%]

(Duty Cycle based timing signal)

This attribute is for many Classes dependent
on the range and the Data Type.

Example: (upperLimit - lowerLimit) / [-12 Volts... +12Volts]

Resolution (20taypelengn _1) Data Type : 16 bits
For the others classes, it is known and Resolution =>24 /65535
defined.
Accuracy It depgnds of hardware pelripheral used for ADC convert'er could be a
acquisition and/or generation. 8/10/12/16 bits converter
Inversion between the physical value and the | Physical HighState >
Inversion logical value. This attribute is not visible but | (signal=False)

done by I/O Hardware Abstraction to deliver | Physical LowState >
expected values to users. (signal=True)

Sampling rate for a sampling
windows (burst)

Sampling rate | Time period required to get a signal value.

9 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS BSWGeneral.pdf

[4] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[5] Glossary
AUTOSAR_TR_Glossary.pdf

[6] General Requirements on SPA
AUTOSAR_SRS_SPALGeneral.pdf

[7] Requirements on I/O Hardware Abstraction
AUTOSAR_SRS_IOHWADbstraction.pdf

[8] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[9] Specification of RTE Software
AUTOSAR_SWS_RTE.pdf

[10] Specification of ECU State Manager
AUTOSAR_SWS_ ECUStateManager.pdf

[11] Specification of ECU Resource Template
AUTOSAR_TPS ECUResourceTemplate.pdf

[12] Specification of ADC Driver
AUTOSAR_SWS_ADCDriver.pdf

[13] Specification of DIO Driver
AUTOSAR_SWS_DIODriver.pdf

[14] Specification of ICU Driver
AUTOSAR_SWS_ICUDriver.pdf

[15] Specification of PWM Driver
AUTOSAR_SWS_PWMDriver.pdf

AUTOSAR CP R21-11

10 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

[16] Specification of PORT Driver
AUTOSAR_SWS_PORTDriver.pdf

[17] Specification of GPT Driver
AUTOSAR_SWS_GPTDriver.pdf

[18] Specification of SPI Handler/Driver
AUTOSAR_SWS_SPIHandlerDriver.pdf

[19] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[20] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[21] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

[22] Specification of OCU Driver
AUTOSAR_SWS_ OCUDriver.doc

3.2 Related standards and norms

None

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [21] (SWS
BSW General), which is also valid for IO Hardware Abstraction.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for IO Hardware Abstraction.

11 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S ANAR Specification of I/0 Hardware Abstraction
AUTOSAR CP R21-11

4 Constraints and assumptions

4.1 Limitations

No limitations

4.2 Applicability to car domains

No restrictions

12 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

5 Dependencies to other modules

5.1 Interface with MCAL drivers

5.1.1 Overview

The following picture shows the I/O Hardware Abstraction. It is located above MCAL
drivers. That means the I/O Hardware Abstraction will call the driver’'s APIs for
managing on chip devices. The configuration of the MCAL drivers depends on the
quality of the ECU signals that is required by the SWCs. For instance, it could be
necessary to have notifications when a relevant change occurs on the pin level
(rising edge, falling edge). The system designer has to configure the MCAL drivers to
allow notifications for a given signal. Notifications are generated by MCAL drivers
and are handled within the I/0O Hardware Abstraction.

Please notice that I/O Hardware Abstraction is not intended to abstract GPT
functionalities, but rather to use them to perform its own functionalities. The
interfacing with GPT driver is shown because it is part of the MCAL.

The following picture shows all interfaces with MCAL drivers:

Appication Actuator Saneor
Software Software Sofltwire
Component Component Compeonent
AUTOSAR AUTCSAR AUTOSAR
Imerface Interince Interface

o

— — — "—‘— — — — —
‘ I

AUTOSAR Interface

] TRETEEI, Rt el e
g £ i o &
MCAL W A T : i)
dr ICU driver E.A\"J.uﬂﬂfsl i et : D10 drrver ‘: Port drvar P GPT driver
5 ¥ H o E
A= et s 2 = e ==
ccu ADC P DIO GPT
O O O
ECU Hardware

Figure 5-1: Interfaces with MCAL drivers

13 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

A“T@s NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

5.1.2 Summary of interfaces with MCAL drivers

[SWS_loHwWAb_00078] I'The I/O Hardware Abstraction implementation shall provide

Software Components with access to all MCAL drivers.] (SRS_BSW_00384)

MCAL drivers
loHwWADb ADC OoCuU PWM ICU DIO PORT GPT
driver driver driver driver driver driver driver
Calls API of X X X X X X X
Receives
notifications X X X X - - X
from

The table above must be read as following:
— The I/O Hardware Abstraction calls API of the ADC driver
— The I/O Hardware Abstraction receives notifications from the ADC driver.
— The I/O Hardware Abstraction does not receive notifications from the DIO
driver.

A complete list of all APIs is given in chapter 8.7.1

5.2 Interface with the communication drivers

[SWS_loHwWAb 00079] [The I/O Hardware Abstraction implementation shall provide
Software Components with access to communication drivers (for instance by SPI), if

on-board devices are managed. | (SRS_BSW_00384, SRS_loHwAb_12242)

The following picture shows the I/O Hardware Abstraction, where some signals come
from / are set via the SPI handler / driver.
According to the Layered Software Architecture [2] (ID03-16), the I/O Hardware
Abstraction contains dedicated drivers to manage external devices for instance:

— A driver for external ADC driver, connected via SPI.

— Addriver for external 1/0O realized on an ASIC device, connected via SPI.

14 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

Application Actuator Sensor
Software Software Software
Component Component Component
AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface

L r h
A v y

10 Signal Interfacs

Driver for ext.
10 ASIC y
i
SPI Hand!_er Driver
i v

|

|

! : Communication
l | drivers

Microcontroller

ECU Hardware

Figure 5-2: Interfaces with communication drivers

5.3 Interface with System Services

[SWS_loHwAb 00044] [The I/O Hardware Abstraction implementation shall
interface with the following system services:

— ECU State Manager (init function)

— DET: Default Error Tracer

— BSW Scheduler]| (SRS_BSW_00336, SRS_BSW_00384, SRS_BSW_00101)

15 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

Application Actuator Sensor
Software Software Software
Component Component Component
AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface

~ AuTos

AUTOSAR
Interface

Microcontroller

ECU Hardware

Figure 5-3: Interfaces with system services

5.4 Interface with DCM

The 1/0 Hardware Abstraction shall provide interfaces to DCM, for functional
diagnostics of the software components. DCM will use functional diagnostics for
reading and controlling the implemented ECU signals.

The prototypes of the interfaces provided to DCM shall be within a header file

[oHwWAb_Dcm.h.
For details of the interfaces, refer Section 8.6.

16 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

5.5 File structure

5.5.1 Code file structure

[SWS_loHwWAb _00097] [The code file structure shall not be defined within this
specification. | ()

5.5.2 Header file structure

As there can be multiple, project-specific instances of the I/O Hardware Abstraction,
the file structure cannot be specified.

[SWS loHWAb 00112] [File names should be prefixed with
‘loHwAb_<ComponentName>_<reference>’ (where the field <reference> can be an
implementation-specific category and the field <ComponentName> is the name of
the atomic software component, i.e. the instance of the I/O Hardware Abstraction) in

order to avoid name clashes. | ()

17 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

AUTOSAR

6 Requirements traceability

Requirement Description Satisfied by

SRS_BSW_00005

Modules of the AuC Abstraction
Layer (MCAL) may not have hard
coded horizontal interfaces

SWS_loHwAb_00145

SRS_BSW_00007

All Basic SW Modules written in C
language shall conform to the MISRA
C 2012 Standard.

SWS_loHwAb_00145

SRS_BSW_00101

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

SWS_loHwWAb_00036,
SWS_loHwWAb_00044,
SWS_loHwWAb_00059,
SWS_loHwWAb_00060,
SWS_loHWAb_00061

SRS_BSW_00160

Configuration files of AUTOSAR
Basic SW module shall be readable
for human beings

SWS_loHWAb_00145

SRS_BSW_00161

The AUTOSAR Basic Software shall
provide a microcontroller abstraction
layer which provides a standardized
interface to higher software layers

SWS_loHWAb_00145

SRS_BSW_00162

The AUTOSAR Basic Software shall
provide a hardware abstraction layer

SWS_loHWAb_00145

SRS_BSW_00164

The Implementation of interrupt
service routines shall be done by the
Operating System, complex drivers
or modules

SWS_loHWAb_00145

SRS_BSW_00167

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

SWS_loHWAb_00145

SRS_BSW_00168

SW components shall be tested by a
function defined in a common API in
the Basis-SW

SWS_loHwAb_00145

SRS_BSW_00170

The AUTOSAR SW Components
shall provide information about their
dependency from faults, signal
qualities, driver demands

SWS_loHwADb_00145

SRS_BSW_00300

All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

SWS_loHWAb_00145

SRS_BSW_00321

The version numbers of AUTOSAR
Basic Software Modules shall be
enumerated according specific rules

SWS_loHWAb_00145

SRS_BSW_00325

The runtime of interrupt service
routines and functions that are
running in interrupt context shall be
kept short

SWS_loHWAb_00145

SRS_BSW_00333

For each callback function it shall be
specified if it is called from interrupt
context or not

SWS_loHwAb_00033

18 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

AUTOSAR

SRS_BSW_00334

All Basic Software Modules shall
provide an XML file that contains the
meta data

SWS_loHWAb_00145

SRS_BSW_00336

Basic SW module shall be able to
shutdown

SWS_loHwWAb_00036,
SWS_loHWAb_00044

SRS_BSW_00341

Module documentation shall contains
all needed informations

SWS_loHWAb_00145

SRS_BSW_00342

It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object code,
even mixed

SWS_loHWAb_00145

SRS_BSW_00343

The unit of time for specification and
configuration of Basic SW modules
shall be preferably in physical time
unit

SWS_loHWAb_00145

SRS_BSW_00384

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

SWS_loHwWAb_00044,
SWS_loHwAb_00078,
SWS_loHwWAb_00079

SRS_BSW_00398

The link-time configuration is
achieved on object code basis in the
stage after compiling and before
linking

SWS_loHWAb_00145

SRS_BSW_00399

Parameter-sets shall be located in a
separate segment and shall be
loaded after the code

SWS_loHWAb_00145

SRS_BSW_00400

Parameter shall be selected from
multiple sets of parameters after
code has been loaded and started

SWS_loHWAb_00145

SRS_BSW_00404

BSW Modules shall support post-
build configuration

SWS_loHWAb_00145

SRS_BSW_00405

BSW Modules shall support multiple
configuration sets

SWS_loHwAb_00145

SRS_BSW_00414

Init functions shall have a pointer to a
configuration structure as single
parameter

SWS_loHwWAb_00157,
SWS_loHwAb_00158

SRS_BSW_00416

The sequence of modules to be
initialized shall be configurable

SWS_loHWAb_00145

SRS_BSW_00417

Software which is not part of the SW-
C shall report error events only after
the DEM is fully operational.

SWS_loHWAb_00145

SRS_BSW_00423

BSW modules with AUTOSAR
interfaces shall be describable with
the means of the SW-C Template

SWS_loHwADb_00001

SRS_BSW_00424

BSW module main processing
functions shall not be allowed to
enter a wait state

SWS_loHwAb_00145

SRS_BSW_00428

A BSW module shall state if its main
processing function(s) has to be
executed in a specific order or

SWS_loHwAb_00145

19 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

AUTOSAR

sequence

SRS_BSW_00432

Modules should have separate main
processing functions for read/receive
and write/transmit data path

SWS_loHwADb_00145

SRS_BSW_00439

Enable BSW modules to handle
interrupts

SWS_loHWAb_00145

SRS_BSW_00440

The callback function invocation by
the BSW module shall follow the
signature provided by RTE to invoke
servers via Rte_Call API

SWS_loHwWAb_00143

SRS_BSW_00441

Naming convention for type, macro
and function

SWS_loHWAb_00102

SRS_BSW_00450

A Main function of a un-initialized
module shall return immediately

SWS_loHwADb_00035

SRS_loHWAb_00002

The 1/0O Hardware Abstraction shall
provide an interface to the DCM that
allows to control and read the
configured signals

SWS_loHwWAb_00135,
SWS_loHWAb_00136,
SWS_loHwWAb_00138,
SWS_loHwWAb_00139,
SWS_loHwAb_00140,
SWS_loHWAb_00142

SRS_loHwWADb_12242

The 10 Hardware Abstraction shall
hide any communication over ECU
internal onboard peripherals to
access Signals

SWS_loHwWAb_00079

SRS_loHwWADb_12248

The 10 Hardware Abstraction module
shall keep the ECU hardware safe

SWS_loHwAb_00038

SRS_loHWADb_12451

The 10 Hardware Abstraction module
shall not decide on its own to switch
an output on again that has been
switched off for hardware protection
reasons

SWS_loHwAb_00039

SRS_SPAL_00157

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of
drivers and handlers

SWS_loHWAb_00145

SRS_SPAL_12056

All driver modules shall allow the
static configuration of notification
mechanism

SWS_IloHwAb_00032,
SWS_loHwAb_ 00033,
SWS_loHwAb_00034

SRS_SPAL_12057

All driver modules shall implement an
interface for initialization

SWS_loHWAb_00145

SRS_SPAL_12063

All driver modules shall only support
raw value mode

SWS_loHWAb_00145

SRS_SPAL_12064

All driver modules shall raise an error
if the change of the operation mode
leads to degradation of running
operations

SWS_loHWAb_00145

SRS_SPAL_12067

All driver modules shall set their
wake-up conditions depending on the
selected operation mode

SWS_loHwAb_00145

SRS_SPAL_12068

The modules of the MCAL shall be
initialized in a defined sequence

SWS_loHwAb_00145

20 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction

AUTOSAR CP R21-11

SRS_SPAL_12069

All drivers of the SPAL that wake up
from a wake-up interrupt shall report
the wake-up reason

SWS_loHWAb_00145

SRS_SPAL_12075

All drivers with random streaming
capabilities shall use application
buffers

SWS_loHWAb_00145

SRS_SPAL_12077

All drivers shall provide a non
blocking implementation

SWS_loHwAb_00145

SRS_SPAL_12078

The drivers shall be coded in a way
that is most efficient in terms of
memory and runtime resources

SWS_loHwAb_00145

SRS_SPAL_12092

The driver's API shall be accessed by
its handler or manager

SWS_loHWAb_00145

SRS_SPAL_12125

All driver modules shall only initialize
the configured resources

SWS_loHWAb_00145

SRS_SPAL_12129

The ISRs shall be responsible for
resetting the interrupt flags and
calling the according notification
function

SWS_loHWAb_00145

SRS_SPAL_12163

All driver modules shall implement an
interface for de-initialization

SWS_loHWAb_00145

SRS_SPAL_12169

All driver modules that provide
different operation modes shall
provide a service for mode selection

SWS_loHWAb_00145

SRS_SPAL_12263

The implementation of all driver
modules shall allow the configuration
of specific module parameter types at
link time

SWS_loHWAb_00145

SRS_SPAL_12264

Specification of configuration items
shall be provided

SWS_loHWAb_00145

SRS_SPAL_12265

Configuration data shall be kept
constant

SWS_loHWAb_00145

SRS_SPAL_12267

Wakeup sources shall be initialized
by MCAL drivers and/or the MCU
driver

SWS_loHwAb_00145

SRS_SPAL_12461

Specific rules regarding initialization
of controller registers shall apply to
all driver implementations

SWS_loHwAb_00145

SRS_SPAL_12462

The register initialization settings
shall be published

SWS_loHWAb_00145

SRS_SPAL_12463

The register initialization settings
shall be combined and forwarded

SWS_loHWAb_00145

21 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

7 Functional specification

7.1 Integration code

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

The 1/0O Hardware Abstraction, as a part of the ECU abstraction, has been defined as
integration code.

AUTOSAR

Software

Component

Interface

Standard
Software

API 2
B vrB&RTE
relevant

relevant

1 AP0

API 3 Private
Interfaces inside
Basic Software
possible

Application
Software
Component
~ AUTOSAR
Interface

il

Standardized
Interface

Actuator
Software
Component

S AUTOSAR

Interface

Services

Sensor
Software
Component
 AUTOSAR
Interface

I

AUTOSAR
Software

AUTOSAR Runtime Environment (RTE)

T

Application
Software
Component

~ AUTOSAR
- Interface:

T

Standardized
Interface

. AUTOSAR
Interface

. AUTOSAR |
Interface

Communication

ECU
Abstraction

Operating
System

2oBLIaIU|
pazipiepuels

Standardized
Interface

Standardized
Interface

Standardized
Interface

Standardized
Interface

Microcontroller
Abstraction

Complex
Device
Drivers

ECU-Hardware
Figure 7-1: AUTOSAR architecture

7.1.1 Background & Rationale

According to the AUTOSAR glossary [5], integration code is ECU schematic

dependent software located below the AUTOSAR RTE.

7.1.2 Requirements for integration code implementation

The following requirements for the 1/0O Hardware Abstraction are related to hardware

protection.

[SWS_loHwAb 00038] [Integration code usually means that this software is
designed to suite a specific ECU hardware layout. All strategies to protect the
hardware shall be included in this software. This document does not intend to

standardize or give a recommendation for such hardware protection. |
(SRS_loHwAb_12248)

Hardware protection means, that the 1/0 Hardware Abstraction is able to cut off an
output signal, when a failure (short circuit to ground/power supply, over temperature,
overload ...) is detected on the certain output.

22 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

[SWS_loHwAb _00039] [The I/O Hardware Abstraction shall not contain strategies
for failure recovery. Failure recovery actions can only be decided by the responsible

SWC. | (SRS_loHwWAb_12451)

The internal behavior of the 1/0O Hardware Abstraction is project-specific and cannot
be standardized.

There is no 1/0 Hardware Abstraction scalability. The SWC specifies what is needed
(quality of signal) and the 1/0O Hardware Abstraction has to provide it.

7.2 ECU Signals Concept

7.2.1 Background & Rationale

The 1/0 Hardware Abstraction cannot provide Standardized AUTOSAR Interfaces to
AUTOSAR SW-Cs, as its interfaces to the upper layer strongly depend on the chain
of signal acquisition. Instead, the I/O Hardware Abstraction provides AUTOSAR
Interfaces.

These AUTOSAR Interfaces represent an abstraction of electrical signals coming
from the ECU inputs / addressed to ECU outputs.

Alternatively, these electrical signals may also come from other ECUs or be
addressed to other ECUs (e.g. via a CAN network).

Ports are entry points of AUTOSAR components. They are typified by an AUTOSAR
interface. These interfaces correspond to “ECU signals”.

The concept of ECU signals comes from the necessity to guarantee the
interchangeability of hardware platforms.

23 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

Application Actuator Sensor
Software Saftware Softwara 1
Componant Component Componant
AUTOSAR AUTOSAR AUTOSAR AUTOSAR
Intarfaca Interface Intartacs Signal
VFB
AUTOSAR Interface ECU Signal
ECU

Abstraction

Microcontroller
Abstraction

Electrical
Signal

Electrical

ECU Hardware .
Signal

Figure 7-2: ECU signals

7.2.2 Requirements about ECU signals

The I/O Hardware Abstraction handles all inputs and outputs directly connected to
the ECU (except those that have a dedicated driver, like CAN, see requirement
[SWS_loHwAb_00063]).

It includes all inputs and outputs, directly mapped to microcontroller ports, or to an
onboard peripheral. All communication between the microcontroller and the
peripherals (except sensors and actuators and peripherals managed by complex
drivers) are hidden by the I/0 Hardware Abstraction, while considering the provided
interfaces.

An ECU is connected to the rest of the system through networks and inputs and
output pins. Networks are out of scope of this document.

[SWS _loHWAb 00063] [An ECU signal represents one electrical signal, which
means at least one input or output ECU pin. | ()

The software in this layer shall abstract the ECU pins. Looking from this place (for
example using an oscilloscope) inputs and outputs are only electrical signals. Hence,
all that is defined in this document is related to this concept of electrical signals. One
extension of this concept is diagnosis (electrical failure status). Diagnosis is not
visible from ECU connectors but is provided by the I/O Hardware Abstraction.

Electrical signals with similar behavior may form a class. Therefore, ECU signals,

which denote the software representation of electrical signals may have an
association to an implementation-specific class.

24 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

7.3 Attributes

7.3.1 Background & Rationale

Even though most of the characteristics of each ECU Signal are defined by the SWC,
some properties have to be added to each signal to provide the signal quality the
SWC expects.

7.3.2 Requirements about ECU signal attributes

To detail the chain of signal-acquisition, a list of Attributes is defined to identify
configurable characteristics of ECU signals.
7.3.2.1 Filtering/Debouncing Attribute

[SWS_loHwWAb 00019] [All ECU Signals shall have a Filtering/Debounce Attribute,
so that the captured ‘raw’- values can be filtered or debounced before passing them
to the upper layer. This attribute is only reasonable for input signals. It influences the

implementation of acquisition and access to the signal values. | ()

7.3.2.2 Age Attribute

All ECU signals handled by I/O Hardware Abstraction depend on the ECU hardware
design. This means that the time to set ECU Output signals and the time to get ECU
Input signals could be different from one to other ECU signal. So to guarantee a
template behavior for all kind of ECU signals (Input / Output) a common Age Attribute
is defined and it shall be configured for each ECU signal.

[SWS_loHwWAb_00021] [All ECU signals shall have an Age Attribute. The Age
Attribute has two specific names according to the direction of ECU signal (Input /
Output). Anyway, it always contains a maximum time value. Following descriptions
explain the meaning of this Attribute for each kind of ECU signals.

¢ ECU Input signals: the specific functionality of this attribute is to limit the
signals lifetime. The value defines the maximum allowed age for data of this
signal. If the lifetime is 0, the signal has to be retrieved from the physical
register, immediately. If the lifetime is greater than 0, the signal is valid for the
specified time.

e ECU Output signals: the specific functionality of this attribute is to limit the
signal output to a maximum delay. The value defines the maximum allowed
time until this signal is actually set. If delay is 0, then the signal has to be set
to the physical register, immediately. If the delay is greater than 0, the signal

can be set until the configured time has elapsed. | ()

7.4 1/0 Hardware Abstraction and Software Component Template

Note about this chapter: This chapter refers to document [[8]].
Changes inside this document may influence the content of this chapter.

25 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

7.4.1 Background & Rationale

This approach allows defining the standardization deepness. As explained
previously, the implementation is integration code. Therefore, this chapter only
summarizes how to define the 1/0 Hardware Abstraction as a Software Component
(SWC), and gives a short overview of the internal behavior. The internal behavior
description mainly covers BSW scheduling mechanisms.

7.4.2 Requirements about the usage of Software Component template

[SWS_loHwAb _00001] [The I/O Hardware Abstraction shall be based upon the
Software Component Template as specified in document [[8]]. | (SRS_BSW_00423)

In the same manner as in any other Software Component, the I/O Hardware
Abstraction might be sub-structured, depending on the complexity of an ECU.

Indeed, the 1/0O Hardware Abstraction is a classical Component Prototype, that can
be atomic or composed and that provides and requires interfaces. Moreover, 1/0
Hardware Abstraction may only interact by means of their PortPrototypes with other
Software Components above the RTE. Hidden dependencies that are not expressed by
means of PortPrototypes are not allowed.

However, the I/0O Hardware Abstraction interfaces on one side the MCAL drivers via
Standardized Interfaces and on the other side the RTE. Hence, I/0O Hardware Abstraction
shall respect the virtual ports concept.

[SWS_loHwAb 00025] [The I/O Hardware Abstraction shall be implemented as one
or more instances of the EcuAbstractionSwComponentType. | ()

See [[8]] for further information about the EcuAbstractionSwComponentType.

An instantiation of EcuAbstractionSwComponentType provides a set of ports.
During RTE Generation, only those that are connected with Software Components
are taken into account.

This chapter gives an overview of the virtual ports concept and runnable entities
applied to the I/O Hardware Abstraction needs. The following chapters of this
document describe the points set out here in more detail.

7.4.2.1 Ports concept and I/0O Hardware Abstraction

This is an overview of recommendations for defining Ports of I/O Hardware
Abstraction using the Software Component template.

Further chapters in this document go deeper in usage of ports for I/O Hardware
Abstraction. Nevertheless, it is advised to read the Software Component Template
document [[8]] to be aware of all terms and all concepts used.

The attributes described in chapter 7.3 shall be defined by annotating the ports of the
I/O Hardware Abstraction components with an loHwADbstractionServerAnnotation

(see [[8])).

26 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

7.4.2.2 Software Component and Runnable concept

Software Components have functions to realize their strategies and internal
behaviors. These are partly described using runnable entities. The former is
contained in runnables and the latter depends of runnables design. Runnable entities
are provided by the Atomic Software Component and are (at least indirectly) a
subject for scheduling by the underlying operating system.

An implementation of an atomic Software Component has to provide an entry-point to
code for each Runnable in its "InternalBehavior". For more information, please refer
to the specification [[8]].

The runnable entities are the smallest code-fragments, which can be activated
independently. They are provided by the Atomic Software Component and are
activated by the RTE. Runnables are for instance set up to respond to data exchange
or operation invocation on a server.

The runnable entities have three possible states: Suspended, Enabled and Running.
During run-time, each runnable of an atomic Software Component is (by being a
member of an OS task) in one of these states.

For a sight of available choices and attributes to define each runnables of the Atomic
Software Component, please refer to specification [[8]].

7.5 Scheduling concept for I/O Hardware Abstraction

7.5.1 Background & Rationale

The 1/0O Hardware Abstraction may consist of several BSW modules (e.g. onboard
device driver).

Each of these BSW modules can provide BSW runnable entities (also called
BswModuleEntity in the RTE Specification (see [9]).

To make a parallel, a BswModuleEntity is the equivalent of SWC runnable entities,
for which the AUTOSAR glossary [5] gives the following definition: ,”A Runnable
Entity is a part of an Atomic Software-Component (= definition) which can be
executed and scheduled independently from the other Runnable Entities of this
Atomic Software-Component®.

This means that the 1/0 Hardware Abstraction can use Runnable Scheduling and
BSW Scheduling simultaneously. The Runnable Scheduling handles the Runnable
Entities and is mandatory. Unlike the Runnable Scheduling, the BSW Scheduling is
optional and the interfacing with the BSW Scheduler has to be done manually.

In case of SWC runnable entities, these are called in AUTOSAR OS Tasks bodies.

Runnables are given in the SWC description. Activation of SWC runnables strongly
depends on RTE events.

27 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

In the same way than SWCs are most often activated by RTEEvents, the
schedulables BswModuleEntities can be activated by BswEvents. There is also a
kind of BswModuleEntity which can be activated in interrupt context. This leads to
two sub-classes: BswSchedulableEntity and BswinterruptEntity.

7.5.2 Requirements about I/O Hardware Abstraction Scheduling concept

7.5.2.1 Operations for interfaces provided by Ports

The 1/0O Hardware Abstraction, described from the interfaces point of view,
implements the counterpart of the Portinterfaces defined by the SW-C, i.e. it provides
Runnable Entities that implement the Provide Ports (Server port, Sender/Receiver
port) required by the SW-C.

[SWS_loHwAb 00068] [The implementation behind the service of the I/O Hardware
Abstraction's Provide Ports is ECU specific and the mapping to the corresponding

“Portinterface” shall be documented in the Software Component description. | ()
7.5.2.1.1 Get operation

[SWS_loHwWAb 00069] [For an ECU Signal associated with a Portinterface
configured as an input signal, the 1/O Hardware Abstraction shall provide a GET

operation, and the operation short name can be freely choose. | ()
7.5.2.1.2 Set operation

[SWS_loHwAb_00070] [For an ECU Signal associated with a Portinterface
configured as an output signal, the I/0O Hardware Abstraction shall provide an SET

operation, and the operation shortname can be freely choose. | ()
7.5.2.2 Notification and/or Callback

[SWS_loHwWAb 00032] [The I/O Hardware Abstraction shall define
BswinterruptEntities (a sub-class class of BswModuleEntity by opposition to
BswSchedulableEntity) to fulfill notification and/or callback mechanisms to exchange

data with other modules below the RTE within an interrupt context. |
(SRS_SPAL_12056)

The 1/0O Hardware Abstraction may contain one or several callback functions. The
available callback functions need to be hooked up to the notification interfaces of the
MCAL drivers. Therefore, they have to respect the prototype definition of the MCAL
drivers (no passing parameter, no return parameter).

[SWS_loHwWAb 00033] [The implementation has to take into consideration, that the

callback functions will be executed in interrupt context. | (SRS_BSW_00333,
SRS_SPAL_12056)

Callback functions can additionally provide the capability to trigger Software

Components outside of the I/O Hardware Abstraction. These notifications need to be
handled through the RTE (sender port).

28 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

[SWS_loHwAb _00034] [The number of available callback functions and the order of
execution will be implementation dependent and must be documented in the 1/0

Hardware Abstraction BSWMD. | (SRS_SPAL_12056)

[SWS_loHwAb 00143] [The function prototype for the callback function functions of
the I/O Hardware Abstraction which are routed via RTE shall be implemented
according to the following rule: StdReturnType

Rte Call <p> <o>(<parameters>) | (SRS_BSW_00440)

The callback functions have to be to be compatible to Rte Call <p> <o> API of
the RTE to enable a type safe configuration and implementation of AUTOSAR
Services and 10 Hardware Abstraction.

7.5.2.3 Main function / job processing function

[SWS_loHwAb _00035] [The I/O Hardware Abstraction may contain one or several
job processing functions that are BswSchedulableEntities (a sub-class of
BswModuleEntity by opposition to BswinterruptEntity, e.g. one for each device
driver). They shall be activated according to their use.

They will be time-triggered by the BSW Scheduler. They could be synchronized to
the execution of the other runnable entities.

The number of BswSchedulableEntities and their order of execution will be
implementation dependent and must be documented in the 1/O Hardware Abstraction

description. | (SRS_BSW_00450)
7.5.2.4 Initialization, De-initialization and/or Callout

[SWS_loHwAb_00036] [The I/O Hardware Abstraction shall define
BswModuleEntries to exchange data with other software below the RTE outside

interrupt context, for example in case of BSW initialization/de-initialization. |
(SRS_BSW_00336, SRS_BSW_00101)

These BswModuleEntries are linked to a dedicated BswModuleEntity, which will be
called to perform the service / exchange the data.

The 1/0O Hardware Abstraction may contain one or several initialization and de-
initialization functions (e.g. one for each device driver). Similar to the MCAL drivers
the initialization functions shall contain a parameter to be able to pass different
configurations to the device drivers. This function shall initialize all local and global
variables used by the I/O Hardware Abstraction driver to an initial state.

[SWS_loHwAb_00037] [The initialization/de-initialization functions shall be
used/handled by the ECU State Manager, exclusively. For more information, refer to
[10].

The number of available functions and the order of execution are implementation-
dependent and must be documented in the I/O Hardware Abstraction description. | ()
7.5.2.5 1/0 Hardware Abstraction scheduling examples

7.5.2.5.1 Interface provided by ADC and I/O Hardware Abstraction

The following example shows a scheduling example for an ADC conversion.

The 1/0O Hardware Abstraction shall provide two P-ports.

The Software Component interface in this example is af_pressure.

29 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

The ECU state manager is able to trigger a BswModuleEntry for initialization of the
ADC driver (Call of Adc_Init() with the Adc_ConfigType structure).

Use Case: The software component needs the af_pressure value.

1 — RTE triggers the OP_GET operation of the dedicated P-Port.

2 — R1is a runnable entity and it allows to call the appropriated ADC driver services
ADC_EnableNoatification

ADC_StartGroupConversion

3 — At the end of conversion, the ADC triggers the BswModuleEntry R2, within
interrupt context. This is possible since the notification is allowed for this interface.
The ADC_NotificationGroup() function is specified in the ADC driver

4 — The notification is then “sent” to the Software Component via an RTEevent.

ATOMIC SOFTHARE COMPONENT

) a a
Pressure Sensor

I.'II-III|HIIII.'IIT

R-PORE PROTOTYPE CLIENF SERVER INTERFACE
SHORT NAME
OPERATION PROTOTYPE '

P-PORE PROTOTYPE
PORT AHORT NAME ECELT PIN 23
PR T ANNOTATICN

SIGNAL DATA TYPE: VoltageType
PCCESS: DafaReed Acoess
RUNNARLE ENTITY BSW ruruahiel

. CLIENE SERVER INTERFACTE TRET -

[|
Runnahle Entity B1 BswhloduleEntry B2

BswiloduleEntry
INIT Adc_Init)

BSW. RAMNGE: [...]
Lnit

BEWE Accuracy
Filtering: Yes
Lifetime:

Triggered by
ECU state manager

MCAL ! !
1]
Ia er ADC_EnableMotification ADC MatifleationCarpup
A SlartGrouwpConversion ADC
Ad{: CﬂnﬁgT‘,"PE ADC ReadChannel dl’i\"i:r

1,'.'
Microcontroller

Figure 7-3: Example of loHwWADb runnables

The sequence diagram of this example is in chapter 9

30 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR Specification of I/0O Hardware Abstraction
AUTOSAR CP R21-11

7.5.2.5.2 Synchronous scheduling with Runnable Entities and
BswSchedulableEntities

The following example shows a scheduling example for setting a Lamp linked to a

SMART power.

The SMART power is connected to the microcontroller by SPI bus. Hence, the

dedicated piece of code uses the SPI Handler/Driver.

The FrontLeftLamp value to be set by the RTE is in an I/O Hardware Abstraction
buffer.

An output line to another SMART power is set synchronously to trigger an ADC
conversion of the same electrical signal by the ADC driver.

At the end of conversion, the converted result is available and the notification is set to
the Analog input manager to store the value inside a buffer, available for diagnosis
purpose.

In this example, the periodical treatment is realized by a BswSchedulableEntity.

ApplicationLayer

VFB Concept Set a Powered Output
- Client/Server ConnectToPort FrontLeftLamp

- Sender/Receiver
AUTOSAR Runtime Environment (RTE
RTE M.apping Rte_Sef FrontLeftLamp) Rte_Get{ StFrontLeftLampg
- Services Asynchronous -
- Services Synchronous ; I/0 HW Abstraction Interfaces

Get the Diagnosis Status
ConnectToPorf StFrontLeftLamp

Microcontroller \ /

/
SMART Powers outputy SMART Powex1 output)
By SPlwith Status with iSense satus

Figure 7-4: Example of lIoHwADb runnable — cyclic setting of output and diagnosis

7.6 Error Classification

7.6.1 Development Errors

[SWS_loHWAb 91001]]

Type of error Related error code Error value

31 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTO SAR Specification of /O Hardware Abstraction
AUTOSAR CP R21-11

Up to the implementer to define error he wants to report Up to the implementer 0x01

10

7.6.2 Runtime Errors

There exist no Runtime Errors for IOHardwareAbstraction layer.

7.6.3 Transient Faults

There exist no Transient Faults for IOHardwareAbstraction layer.

7.6.4 Production Errors

There exist no Production Errors for IOHardwareAbstraction layer.

7.6.5 Extended Production Errors

Error Name: Up to the implementer to define error he wants to report
IOHWAB_E_<DESCRIPTIVE_NAME>[<INSTANCE>]

Short Description: Up to the implementer

Long Description: Up to the implementer

Detection Criteria: Fail Up to the ?mplementer
Pass Up to the implementer

Secondary Parameters: |Up to the implementer

Time Required: Up to the implementer

Monitor Frequency Up to the implementer

7.7 Other requirements

For details refer to the chapter 5.1.8 “Version Check” in SWS_BSWGeneral.
7.8 1/0 Hardware Abstraction layer description

7.8.1 Background & Rationale

The 1/0O Hardware Abstraction layer has some analogies with a Software Component,
especially regarding port definition for communication through the RTE. The main
difference is that the I/O Hardware Abstraction is below the RTE (in the ECU
Abstraction Layer). The I/0O Hardware Abstraction is a kind of interface between
Basic Software modules and Application Software.

For the 1/0 Hardware Abstraction, but also for Services, the current methodology
requires filling out two different templates. For example, in order to integrate an

32 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

NVRAM Manager on an AUTOSAR ECU one would use the BSWMD to document its
needs for the BSW Scheduler, OS Resources and so on. In addition, one would use
the SWC to describe the ports towards the RTE.

The 1/0O Hardware Abstraction is a part of BSW. It could be considered as a group of
modules. Although IOHWAB is integration code, each module of IOHWAB could fit to
the BSWDT. Today, it is known that this point is not sufficiently documented in the
current specification.

However, it is agreed that ECU signal will be mapped to a VFB Port (See chapter 7.2
and chapter 7.4). Moreover, to describe the interfaces between an 1/0O Hardware
Abstraction implementation and applicative Software Components implementations
(above RTE), one shall use the Software Component Template.

The intention of this chapter is to summarize all recommendations to define Ports,
Interfaces and all other Software Component like elements during configuration
process.

7.8.2 Requirements

7.8.2.1 1/O Hardware Abstraction Ports definition

[SWS_loHwAb_00075] [The I/O Hardware Abstraction specification defines only
recommendations for the Port usage. The instantiation of the Ports shall be done

during the configuration process and is specific to the ECU electronic design. | ()
The 1/0O Hardware Abstraction proposes to create one Port for each ECU signal
identified, exception made for ECU Diagnosis signals that are connected to ECU
Output signals. A relationship between this ECU signal and the Port shall be created.
Example:

The ECU has 10 Analog input pins, 15 PWM output pins, 15 Digital output pins.

The 1/0 Hardware Abstraction defines at least one Port for each ECU signal. In this
simple example, Ports are instantiated 40 times.

7.9 Examples

7.9.1 EXAMPLE 1: Use case of on-board hardware

This example is derived from a power supplier ECU.

33 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT O SAR Specification of I/0O Hardware Abstraction
AUTOSAR CP R21-11

Sensor SW-C Application SW-C

Switch Evaluation User Logic

IGetDebouncedDI() |

GetSwitchPosition()
RTE

Notification
CwverCurrent()

Signal Abstraction
—

DipPinRead(]

river PWIM Driver
|

S T T

Multiplexer

RTE call

111111))

Figure 7-5: Use case of on-board hardware

The ECU has a high number of Digital Inputs (DI).

One main group is the “slow DI's” for mechanical switches

The second main group is the “fast DI’s” for the diagnosis of the Power IC (this DI
indicates that the output current is to high “over current”, these DI's are not led out of
the ECU)

The MCU has not enough PIN’s -> the slow DI's are connected to 8 bit multiplexers
(3 address lines and 1 data line for each multiplexer)

34 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction

AUTOSAR CP R21-11

the maximum time between the occurrence of an “over current” and the switch of the

Power IC is 1 ms

One OEM requirement is that the reaction of a switch must be not later than 100 ms
One other OEM requirement is that each DI must be debounced by 3 of 5 voting.
However the practice shows that the kind of debouncing is not really important
because the mechanical switches and the power IC do not generate disturbing

signals

The solution today is that all DI (slow and fast) are read every 0,8 ms (cyclic task)
(The scan rate for the slow DI could be lower but the overhead for an additional task
is higher than the runtime savings)
The debouncing for the slow DI's is 1 time in every loop (so the worst cast delay to
the debounced value is 3,2 ms)
If an overcurrent is detected the pin will read again several times but in the same
loop and the power IC will switched off immediately
The application runs every 10 ms and reads the debounced DI for the switches and

the diagnosis information's

Decomposition on the AUTOSAR architecture:

Layer Multiplexed 1/0O Power IC

Application Runnable reads the data every | Gets a notification if the power
10 ms IC detects overcurrent.

RTE Handles runnables

I/0O Hardware Abstraction

8 signal mapped on ports,
definition of port feature and
Client/Server interface

signal abstraction gives the
debounce time (better than a
debounce voting rule)

A cyclic task performs a reading
of input via DIO service call

I/O Hardware Abstraction
makes decision to switch off the
Power IC if an overcurrent is
detected (in the driver of the
external ASIC)

A cyclic task performs a
reading of input via DIO service
call.

MCAL driver

DIO driver: address lines, 1
data line

DIO driver: 1 feedback line from
power IC

PWM driver: 1 line to the power
IC

ECU hardware

Multiplexer: Mapping of 8
electrical signal

Power IC: Controls the power
supply of the multiplexer

7.9.2 EXAMPLE 2: Use case of failure monitoring

In this example, a diagnostic output signal shall be defined with the diagnosis
attribute on the level of the I/O Hardware Abstraction.
Therefore, an input is used to perform the diagnosis of the output.

35 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT O SAR Specification of I/0O Hardware Abstraction
AUTOSAR CP R21-11

sSw.C SW.C SwW.C

RTE

ECU hardware

ECU pins

Figure 7-6: Use case of failure monitoring managed by SPI

When the 1/0O Hardware Abstraction asks for positioning one output
(Dio_WriteChannel), a read-out of the channel is done via an ECU pin configured as
input.

The ICU driver sends a natification to the 1/0 Hardware Abstraction.
The protection strategy is located in the integration code.

Software Component can get the diagnosis value through the port using the
diagnosis operation.

7.9.3 EXAMPLE 3: Output power stage

The ECU hardware has a power stage ASIC.
Therefore, all ECU pins shall be available as “signals” at the level on the 1/0
Hardware Abstraction, just below the RTE.

36 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT O SAR Specification of I/0O Hardware Abstraction
AUTOSAR CP R21-11

Sw.C SwW-C SwW.C

S/R diagnosis
information

ECU pins

Figure 7-7: Use case of output power stage

Some outputs are controlled via the SPI driver/handler.
Some inputs are directly controlled via the DIO driver.
Some voltages, frequencies are set via the PWM driver.

A power stage driver provides the view of all outputs. It calls services of PWM, DIO
drivers and SPI handler. The signal abstraction makes all these outputs “visible” from
the point of view of Software Component (signals are mapped on Ports).

The “Power stage driver” can be configurable.

Diagnosis:

Every failure can be detected on the level of the power stage. The diagnosis data
flow goes through the SPI communication to the Power stage driver

37 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT O SAR Specification of I/0O Hardware Abstraction
AUTOSAR CP R21-11

Then, the diagnosis is provided to all Software Component via an S/R interface.

7.9.4 EXAMPLE 4: Setting sensor and controlling periphery in low power state

The ECU controls a sensor through its ADC and its DIO Peripherals. Under specific
circumstances, the ECU enters an operation mode in which the sensor is shut down
and the ADC is set in low power state.

Application Sensor
Power Mode SWC
Manager

Service Layer

Signal Abstraction and Mode Management

I/O Abstraction Sensor Driver

I/O Drivers
DIO Driver | ADC Driver |

External Sensor

Figure 7.8: Use case low power mode setting

The sequence of actions is as follows:

38 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

The Application Power Mode Manager issues a Mode Request to BswM to switch to
“‘LowPowerMode”.

BswM evaluates the requests and, if the all pre-conditions are met, issues a mode
switch to the Power Mode Manager and to the Sensor SWC.

The sensor SWC stops reading the sensory data (i.e. doesn’t request any Get
operation to the loHwAbs anymore)

The loHwWADbs deregisters its notifications from the ADC and eventually stop HW
cyclical acquisitions.

The loHWAbs commands external sensory HW into a low power mode or shut it off.
The loHWADs calls its Low Power Mode preparation Callouts and then its Low Power
Mode setting Callouts, as defined in the configuration in order to attain the ADC (in
this case) power state related to the requested Application Low Power mode
“‘LowPowerMode”

The process can be controlled step by step by introducing more fine granular mode
requests and reacting on the acknowledgements and/or switches.

39 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

8 API specification

8.1 Imported types

In this chapter, all types included from the following modules are listed:

(I

Module Header File Imported Type
Adc.h Adc_GroupType
Adc.h Adc_StatusType

Adc
Adc.h Adc_StreamNumSampleType
Adc.h Adc_ValueGroupType
Dio.h Dio_ChannelGroupType
Dio.h Dio_ChannelType

Dio Dio.h Dio_LevelType
Dio.h Dio_PortLevelType
Dio.h Dio_PortType

EcuM EcuM.h EcuM_WakeupSourceType
Gpt.h Gpt_ChannelType

Gpt Gpt.h Gpt_ModeType
Gpt.h Gpt_ValueType
Icu.h Icu_ActivationType
Icu.h Icu_ChannelType
Icu.h Icu_DutyCycleType

Icu Icu.h Icu_EdgeNumberType
Icu.h Icu_IndexType
Icu.h Icu_InputStateType
Icu.h Icu_ValueType
Ocu.h Ocu_ChannelType
Ocu.h Ocu_PinStateType

Ocu
Ocu.h Ocu_ReturnType
Ocu.h Ocu_ValueType

Port Port.h Port_PinDirectionType

40 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

Port.h Port_PinModeType
Port.h Port_PinType
Pwm.h Pwm_ChannelType
Pwm
Pwm.h Pwm_OutputStateType
Spi.h Spi_AsyncModeType
Spi.h Spi_ChannelType
Spi.h Spi_DataBufferType
Spi.h Spi_ HWUnitType
Spi.h Spi_JobResultType
Spi
Spi.h Spi_JobType
Spi.h Spi_NumberOfDataType
Spi.h Spi_SeqgResultType
Spi.h Spi_SequenceType
Spi.h Spi_StatusType
Std_Types.h Std_ReturnType
Std
Std_Types.h Std_VersioninfoType
10

8.2 Type definitions

8.2.1 loHwAD<Init_ld> ConfigType

[SWS_loHwAb_00157]]

Name loHwWADb{Init_Id} ConfigType

Kind Structure

implementation specific

Elements Type --
Comment --
Description Configuration data structure of the loHwAb module.

Available via loHwWADb.h

|(SRS_BSW_00414)

41 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

8.3 Function definitions

This is a list of functions provided for upper layer modules.

NOTE FOR 1/O HARDWARE ABSTRACTION:

As explained in the previous chapters, no functional API will be specified for
the I/O Hardware Abstraction.

8.3.1 loHwWADb_Init<Init_Id>

[SWS loHWAb 00119][

Service Name

loHWAb_ Init<Init_Id>

void IoHwAb Init<Init Id> (

Syntax const IoHwAb{Init Id} ConfigType* ConfigPtr
)

Service ID [hex] | 0x01

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) | ConfigPtr Pointer to the selected configuration set.

Earameters None

(inout)

Parameters (out) | None

Return value None

Description

Initializes either all the 10 Hardware Abstraction software or is a part of the 10
Hardware Abstraction.

Available via

loHWADb.h

10

[SWS_loHwWAb 00158] [The Configuration pointer ConfigPtr shall always have a
NULL_PTR value | (SRS_BSW_00414)

The Configuration pointer ConfigPtr is currently not used and shall therefore be set
NULL_PTR value.

[SWS_loHwWAb_00059] [This kind of function initializes either all the 1/0 Hardware
Abstraction software, or a part of the 1/0 Hardware Abstraction. | (SRS_BSW_00101)

[SWS_loHwAb 00060] [The multiplicity of I/O devices managed by the 1/0
Hardware Abstraction software shall be handled via several init functions. Each init
function shall be tagged with an <Init_ID>. Therefore, an external device, having its

42 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

driver encapsulated inside the 1/0 Hardware Abstraction, can be separately
initialized. | (SRS_BSW_00101)

[SWS_loHwWAb_00061] [This kind of init function shall called by the ECU State
Manager. The ECU integrator is able to configure the init sequence order called by

the ECU State manager. | (SRS_BSW_00101)
[SWS_loHwWAb 00102] [After having finished the module initialization, the 1/0

Hardware Abstraction state shall be set to IOHWAB IDLE, the job result shall be set
to IOHWAB JOB OK. | (SRS_BSW_00441)

8.3.2 IoHwWADb_GetVersioninfo

[SWS_loHWAb

00120]]

Service Name

loHWAb_GetVersioninfo

void IoHwAb GetVersionInfo (

Syntax Std VersionInfoType* versioninfo
)
Service ID [hex] | 0x10
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) | None
Parameters
. None
(inout)
Parameters versioninfo Pointer to where to store the version information of this
(out) implementation of 10 Hardware Abstraction.
Return value None

Description

Returns the version information of this module.

Available via

loHWAb.h

10

8.4 Call-back notifications

This is a list of functions provided for lower layer modules.

43 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

8.4.1 loHwADb_AdcNotification<#grouplID>

[SWS_loHwAb_00121][

Service Name

loHwAb_AdcNotification<#grouplD>

void IoHwAb AdcNotification<#groupID> (

Syntax void

)
Service ID [hex] | 0x20
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Earameters None
(inout)
Parameters (out) | None
Return value None

Description

Will be called by the ADC Driver when a group conversion is completed for
group <#grouplD>.

Available via

loHwWAb_Adc.h

10

[SWS_loHWAb 00104] [The function loHwWAb_AdcNotification<#grouplD> is
intended to be called by the ADC driver when a group conversion is completed for

group <#grouplD>.] ()

8.4.2 loHwAb_Pwm_Notification<#channel>

[SWS_loHwAb_00122]]

Service Name

loHwWAb_PwmNotification<#channel>

void IoHwAb PwmNotification<#channel> (

Syntax void

)
Service ID [hex] 0x30
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters
. None
(inout)
Parameters (out) | None

44 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTO SAR Specification of /O Hardware Abstraction

AUTOSAR CP R21-11

Return value

None

Description

Will be called by the PWM Driver when a signal edge occurs on channel
<#channel>.

Available via

loHWAb_Pwm.h

10

[SWS_loHwAb 00105] [The function loHwAb_PwmNoatification<#channel> is
intended to be called by the PWM driver when a signal edge occurs on channel

<#channel>.]| ()

8.4.3 loHwWADb IcuNotification<#channel>

[SWS loHWAb 00123][

Service Name

loHwWADb _IcuNotification<#channel>

void IoHwAb IcuNotification<#channel> (

Syntax void

)
Service ID [hex] 0x40
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
I?arameters None
(inout)
Parameters (out) None
Return value None

Description

Will be called by the ICU driver when a signal edge occurs on channel
<#tchannel>.

Available via

loHWADb _Icu.h

10

[SWS_loHwWAb_00106] [The function loHwAb_IcuNotification<#channel> is
intended to be called by the ICU driver when a signal edge occurs on channel

<#channel>.] ()

8.4.4 loHWADb_GptNotification<#channel>

[SWS_loHwAb_00124][

Service Name

loHwWAb_GptNotification<#channel>

Syntax

void IoHwAb GptNotification<#channel> (

45 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

void

)
Service ID [hex] 0x50
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
F_’arameters None
(inout)
Parameters (out) | None
Return value None

Description

Will be called by the GPT driver when a timer value expires on channel
<#channel>.

Available via

loHWAb_Gpt.h

10

[SWS_loHwWAb 00107] [The function loHwAb_GptNotification<#channel> is
intended to be called by the GPT driver when a timer value expires on channel

<#channel>.]| ()

8.4.5 loHwWADb_OcuNotification<#channel>

[SWS_loHWAb

00155][

Service Name

loHwWAb_OcuNotification<#channel>

void IoHwAb OcuNotification<#channel> (

Syntax void

)
Service ID
[hex] Oxa0
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) | None
Parameters
. None
(inout)
Parameters None
(out)
Return value None

Description

Will be called by the OCU driver when the current value of the threshold matches
the threshold on the channel<#channel>.

46 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

Available via

loHWAb_Ocu.h

10

[SWS_loHwAb 00156] [The function loHwWAb_OcuNoatification<#channel> is
intended to be called by the OCU driver when the current value of the counter

matches the threshold on channel <#channel>.] ()

8.4.6 loHwWAb_Pwm_NotifyReadyForPowerState<#MODE>

[SWS_loHWAb

91002]]

Service Name

loHWAb_Pwm_NotifyReadyForPowerState<#Mode>

void IoHwAb Pwm NotifyReadyForPowerState<#Mode> (

Syntax void

)
Service ID [hex] | 0x60
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) | None
Parameters None
(inout)
Parameters None
(out)
Return value None

Description

The API shall be invoked by the PWM Driver when the requested power state
preparation for mode <#Mode> is completed.

Available via

loHWAb_Pwm.h

10

This interface provided by CDD or loHwADs is needed if the PWM Driver is
configured to support power state control in asynchronous mode.

8.4.7 loHWAD_

[SWS_loHWAb

Adc_NotifyReadyForPowerState<#MODE>

00154]]

Service Name

loHwAb_Adc_NotifyReadyForPowerState<#Mode>

Syntax

void IoHwAb Adc NotifyReadyForPowerState<#Mode> (
void

)

47 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

Service ID [hex] | 0x70
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) | None
Parameters None
(inout)
Parameters

None
(out)
Return value None

Description

The API shall be invoked by the ADC Driver when the requested power state
preparation for mode <#Mode> is completed.

Available via

loHwWAb_Adc.h

10

This interface provided by CDD or loHwWADs is needed if the ADC Driver is configured
to support power state control in asynchronous mode.

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non-

reentrant.

8.5.1 <Name of scheduled function>

Service name:

<Name of API call>

Service ID [hex]:

<Number of service ID. This ID is used as parameter for the error report API of
Default Error Tracer. The ID shall not be equal to an ID within chapter 0>

Description: <Set of local software requirements including ID that define the operation of this
API call.>
Timing: <fixed cyclic / variable cyclic / on pre condition>

Pre condition:

<List of assumptions about the environment in which the API call must operate.>

Configuration:

<Description of statically configurable attributes that affect this API call. For
instance cycle time(s) in case of fixed cyclic timing.>

8.6 Functional Diagnostics Interface

This chapter describes the interface the 1/0 Hardware Abstraction provides to the
DCM module to realize ‘Functional Diagnostics of Software Components’.

48 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

‘Functional Diagnostics of Software Components’ means, that by the provided
interface, the DCM module is able to control and read each implemented ECU signal.

8.6.1 loHwWAb_ Dcm_<EcuSignalName>

[SWS_loHwAb_00135][

Service .
Name loHwWAb_Dcm_<EcuSignalName>
void IoHwAb Dcm <EcuSignalName> (
Svnt uint8 action,
pAINEERS <EcuSignalDataType> signal
)
Service ID
[hex] 0xBO
Sync/Async | Synchronous
Reentrancy | --
IOHWAB_RETURNCONTROLTOECU: Unlock the signal IOHWAB_
RESETTODEFAULT: Lock the signal and set it to a configured default value
Parameters action | IOHWAB_FREEZECURRENTSTATE: Lock the signal to the current value
: IOHWAB_SHORTTERMADJUSTMENT: Lock the signal and adjust it to a
(in) o
value given by the DCM module
signal | Value to adjust the signal to (only used for 'short term adjustment').
Parameters
. None
(inout)
Parameters None
(out)
Return
value None
This function provides control access to a certain ECU Signal to the DCM module
Description (<EcuSignalname> is the symbolic name of an ECU Signal). The ECU signal can be
P locked and unlocked by this function. Locking 'freezes' the ECU signal to the current
value, the configured default value or a value given by the parameter 'signal’.
A_vallable loHWAb_Dcm.h
via -

J(SRS_loHwWAb_00002)
[SWS_loHwWAb 00136] [This function allows controlling the associated ECU Signal,

i.e. the ECU Signal can be locked, unlocked, and adjusted to a certain value. |
(SRS_loHwAb_00002)

[SWS_loHwAb 00138] [This function shall be pre compile time configurable
On/Off. | (SRS_loHwAb_00002)

49 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

Locking a signal means, that the certain signal is software-locked towards the SW-C,
i.e. the SW-C's requests have no effect on the hardware in the locked state. In case
C/S-communication is used for input signals, it might be necessary to have an
loHwADb-internal buffer, whose value can be adjusted by the DCM.

8.6.2 loHwWAb_Dcm_Read<EcuSignalName>

[SWS_loHwAb_00139][

Service Name | loHwAb_Dcm_Read<EcuSignalName>
void IoHwAb Dcm Read<EcuSignalName> (
Syntax <EcuSignalDataType>* signal
)
Service ID 0xCO
[hex]
Sync/Async Synchronous
Reentrancy -
Parameters
; None
(in)
Parameters None
(inout)
:)altjrgmeters signal Pointer to the variable where the current signal value shall be stored
Return value None
Descriotion This function provides read access to a certain ECU Signal to the DCM module
P (<EcuSignalname> is the symbolic name of an ECU Signal).
Available via loHwWAb_Dcm.h

|(SRS_loHwWAb_00002)

[SWS_loHwAb 00140] [This function provides read access to a certain ECU Signal
to the DCM module. The read access is independent from the ECU Signal's current
state (locked/unlocked) and shall always read the current physical value from the

hardware. | (SRS_loHwWAb_00002)

[SWS_loHwWAb 00142] [This function shall be pre compile time configurable On/Off.
| (SRS_loHWAb_00002)

50 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTO SAR Specification of /O Hardware Abstraction
AUTOSAR CP R21-11

8.7 Power State Functions

8.7.1 IoHWADb_PreparePowerState<#MODE>

[SWS loHWAb 00146]

ﬁerwce loHWAb_PreparePowerState<#Mode>
ame
void IoHwAb PreparePowerState<#Mode> (
Syntax void
)
Service ID
[hex] 0x80

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
. None
(in)
Parameters None
(inout)
Parameters

None

(out)

Return value | None

The API shall be invoked by the loHwADbs in order to prepare the transition to a given
power state. The aim of this API is to incapsulate all actions to prepare the HW for a
predefined power mode, decoupling application power definition from HW power
states.

Description

Available via | loHwAb.h

10

[SWS_loHwAb_00149] [
This API is a configurable callout and shall be defined per configuration once per

Power Mode to be managed. | ()

[SWS_loHwAb_00150] |
This callout shall be executed in the context of the loHwAbs SWC, meaning that it

has full access to the MCAL. | ()

Many peripheral power state transition requests can be connected to a given Power
Mode transition to be implemented by this callout, along with any other action needed
to bring the peripherals in the desired power state (cross dependencies between
peripherals can be solved in this context).

51 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction

8.7.2 loHwWAb_EnterPowerState <#MODE>

[SWS_loHwAb_00147][

AUTOSAR CP R21-11

Service
Name loHWAb_EnterPowerState<#Mode>
void IoHwAb EnterPowerState<#Mode> (
Syntax void
)
Service ID 0x90
[hex]
Sync/Async | Asynchronous
Reentrancy Non Reentrant
Parameters None
(in)
Parameters None
(inout)
Parameters
None
(out)
Return value | None

The API shall be invoked by the loHwADbs in order to effectively enter a power state
which was prepared by the APl loHwAb_PreparePowerState<#Mode>() . The aim of

Description | this APl is to incapsulate all actions to set the HW in a power state corresponding to
a predefined power mode, decoupling application power definition from HW power
states.

Available via | loHwAb.h

10

[SWS_loHWAb_00151]
['This API is a configurable callout and shall be defined per configuration once per

Power Mode to be managed. ()

[SWS_loHwAb_00152]
['This callout shall be executed in the context of the loHwAbs SWC, meaning that it

has full access to the MCAL. ()

[SWS_loHwWADb_ 00153]
[This APl executes all power state transition prepared by the preceding call to the

correposonding loHwWAb_PreparePowerState<#Mode>. |()

52 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

Specification of 1/O Hardware Abstraction

AUTOSAR
AUTOSAR CP R21-11

8.8 Expected Interfaces

In this chapter, all interfaces required from other modules are listed.

8.8.1 Mandatory Interfaces

There are no mandatory interfaces for I/O Hardware Abstraction. Which interfaces
the I/O Hardware Abstraction uses depends on the expected functionality of the
channels that are defined by the SWC.

Example of an I/O Hardware Abstraction using all MCAL drivers APIs :

Note that <module_name>_Init and <module_name>_Delnit functions are not listed
below. The initialization sequence is called by the ECU state manager, and not by
the I/O Hardware Abstraction.

< module_name>_GetVersionInfo functions are also not listed here.

This table has been built according to following documents

Driver ADC document [12]
Driver DIO document [13]
Driver ICU document [14]
Driver PWM document [15]
Driver PORT document [16]
Driver GPT document [17]
Driver SPI document [18]
Driver OCU document O
[1[1If
API Function H_eader Description
File
é?;(agetGroup- Adc.h Returns the conversion status of the requested ADC Channel group.
Returns the number of valid samples per channel, stored in the result
Adc Get- buffer. Reads a pointer, pointing to a position in the group result buffer.
- With the pointer position, the results of all group channels of the last
StreamLast- Adc.h ; . ,
Poi completed conversion round can be accessed. With the pointer and the
ointer . i
return value, all valid group conversion results can be accessed (the
user has to take the layout of the result buffer into account).
Reads the group conversion result of the last completed conversion
Adc Read- round of the requested group and stores the channel values starting at
Grou Adc.h the DataBufferPtr address. The group channel values are stored in
P ascending channel number order (in contrast to the storage layout of
the result buffer if streaming access is configured).
Initializes ADC driver with the group specific result buffer start address
where the conversion results will be stored. The application has to
Adc_Setup- Adc.h ensure that the application buffer, where DataBufferPtr points to, can
ResultBuffer ' hold all the conversion results of the specified group. The initialization
with Adc_SetupResultBuffer is required after reset, before a group
conversion can be started.

53 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

Adc_Start- Starts the conversion of all channels of the requested ADC Channel
Group- Adc.h
. group.

Conversion

Adc_Stop-

Group- Adc.h Stops the conversion of the requested ADC Channel group.
Conversion

Dio_Read- Dio.h Returns the value of the specified DIO channel.

Channel

Dio_Read- . . . o .

ChannelGroup Dio.h This Service reads a subset of the adjoining bits of a port.
Dio_ReadPort Dio.h Returns the level of all channels of that port.

Dio_Write- Dio.h Service to set a level of a channel.

Channel

Dio_Write- . . S . o

- Dio.h Service to set a subset of the adjoining bits of a port to a specified level.

ChannelGroup

Dio_WritePort Dio.h Service to set a value of the port.

Got Check- Checks if a wakeup capable GPT channel is the source for a wakeup
ngzeu Gpt.h event and calls the ECU state manager service EcuM_SetWakeup

P Event in case of a valid GPT channel wakeup event.

Gpt_Disable- Gpt.h Disables the wakeup interrupt of a channel (relevant in sleep mode).
Wakeup

Gpt_Enable- Gpt.h Enables the wakeup interrupt of a channel (relevant in sleep mode).
Wakeup

Gpt_GetTime- .

Elapsed Gpt.h Returns the time already elapsed.

Gpt_G_e_tTlme- Gpt.h Returns the time remaining until the target time is reached.
Remaining

Gpt_SetMode Gpt.h Sets the operation mode of the GPT.

lcu_Disable- Icu.h This function disables the counting of edges of the given channel.
EdgeCount

Icu_.|.3|sa.1ble— Icu.h This function disables the notification of a channel.

Notification

lcu_Disable- Icu.h This function disables the wakeup capability of a single ICU channel.
Wakeup

Icu_Enable- Icu.h This function enables the counting of edges of the given channel
EdgeCount ' '
Icu__I_Ena_bIe— Icu.h This function enables the natification on the given channel.
Notification

Icu_Enable- lcu.h This function (re-)enables the wakeup capability of the given ICU
Wakeup ' channel.

Icu_GetDuty- Icu.h This function reads the coherent active time and period time for the
54 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

CycleValues given ICU Channel.
lcu_GetEdge- Icu.h This function reads the number of counted edges.
Numbers
Isctl;TéBetlnput— Icu.h This function returns the status of the ICU input.
Bigfféﬂme_ Icu.h This function reads the elapsed Signal Low Time for the given channel.
Icu_Get-
Timestamp- Icu.h This function reads the timestamp index of the given channel.
Index
IggarFlztesetEdge— Icu.h This function resets the value of the counted edges to zero.
Icu_Set-
Activation- Icu.h This function sets the activation-edge for the given channel.
Condition
lcu_StartSignal- Icu.h This function starts the measurement of signals.
Measurement
Igu_Start- Icu.h This function starts the capturing of timer values on the edges.
Timestamp
lcu_StopSignal- Icu.h This function stops the measurement of signals of the given channel.
Measurement
Icu_Stop-
. Icu.h This function stops the timestamp measurement of the given channel.

Timestamp
ch_.D|s.abIe- Ocu.h This service is used to disable notifications from an OCU channel.
Notification
Ocu_Enable- . L e

= Ocu.h This service is used to enable notifications from an OCU channel.
Notification
Ocu_Get- Ocu.h Service to read the current value of the counter.
Counter
Ocu_Set- Service to set the value of the channel threshold using an absolute input
Absolute- Ocu.h data 9 P
Threshold '
Ocu_SetPin- Ocu.h Service to set immediately the level of the pin associated to an OCU
State ' channel.
Ocu_Set- . .

— Service to set the value of the channel threshold relative to the current
Relative- Ocu.h

value of the counter.

Threshold
Ocu_Start- Ocu.h Service to start an OCU channel.
Channel
Ocu_Stop- Ocu.h Service to stop an OCU channel.
Channel
Port_Refresh- Port.h Refreshes port direction.

55 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

PortDirection

Port_SetPin-

Direction Port.h Sets the port pin direction
Port_SetPin- .
Mode Port.h Sets the port pin mode.
Pwm_Get- Pwm.h | Service to read the internal state of the PWM output signal
OutputState ' b gnal.
Spl_Async- Spi.h Service to transmit data on the SPI bus.
Transmit
Spi_Cancel Spi.h Service cancels the specified on-going sequence transmission.
Spi_GetHW- . This service returns the status of the specified SPI Hardware
; Spi.h . ;
UnitStatus microcontroller peripheral.
Fszgls—ﬁet‘mb' Spi.h This service returns the last transmission result of the specified Job.
Spi_Get-
. This service returns the last transmission result of the specified
Sequence- Spi.h
Sequence.
Result
Spi_GetStatus | Spi.h Service returns the SPI Handler/Driver software module status.
Spi_Main- SchM_
Function_- Spih --
Handling pI.
. . Service for reading synchronously one or more data from an IB SPI
Spi_ReadIB Spi.h Handler/Driver Channel specified by parameter.
Spi_SetAsync- . Service to set the asynchronous mechanism mode for SPI busses
Spi.h
Mode handled asynchronously.
. . Service to setup the buffers and the length of data for the EB SPI
Spi_SetupEB Spi-h Handler/Driver Channel specified.
?p'—sy’?‘:' Spi.h Service to transmit data on the SPI bus
ransmit
Spi_ WritelB Spi.h Service for wr!t!ng one or more data to an IB SPI Handler/Driver
Channel specified by parameter.
1010

8.8.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional
functionality of the I/O Hardware Abstraction.

[

API Function

Header File

Description

56 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR

Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

Det_ReportError

Det.h

Service to report development errors.

EcuM_SetWakeupEvent

EcuM.h

Sets the wakeup event.

10

8.8.3 Job End Notification

None

57 of 63

Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTOSAR Specification of 1/O Hardware Abstraction
AUTOSAR CP R21-11

9 Sequence diagrams

9.1 ECU-signal provided by the I/O Hardware Abstraction (example)
This sequence diagram explains the example of chapter 7.5.2.5.

In this example, the Sensor / Actuator Component is the client, the I/O Hardware
Abstraction is the server.

The Sensor/Actuator Component asks for a new value of the af_pressure AUTOSAR
signal that is an ECU signal on the level of the I/O Hardware Abstraction.

After Adc conversion is finished, a notification coming from MCAL driver is converted
into a RTE event for the Sensor / Actuator Component. Then, it can perform a
synchronous read of the value present in the af_pressure signal buffer.

«SensorActuatorHW» «module» «module» «module» «Peripheral»
Sensor / Actuator EcuM loHWAb Adc ADC Conversion
Component == &= === Unit

]]]
| | |
| Adc_Init(const |

AdchOnfigType*)
____________ oo_Ademito

|
loHWAb_Init<Init_ld>(const :

T
|
|
|
|
|
|
|
| |
| |
loHWAb<Init_ld>_ConfigType*) | |
| |
1oHwAD_Init<init 1d>(_ _| I I
I I
T . [[
| | Adc_EnableGroupNotification(Adc_GroupType) | |
| = |
| |
[Adc_EnableGroupNotification() |
I e I
| = |
loHWAb_GetVoltage(af_pressure) ! : :
t
| | |
: Adc_StartGroupConversion(Adc_GroupType) : :
: start conversion !
! = Adc_StartGroupConversion()
IoHWAb_GetVoltage) = | [~~~ ~~~~—~—7 7777777777777
o ____ _lorwas _Getvoltage)_ __ __ _ _ |
|
|
|
| Interrupt()
: loHwAb_Adc_Notification_Group1()
| [I
| | |
: AdcionDemandReadChanneI(AdcichanneIType)I: :
| Adc_ValueType | |
| |
| |
| |
! lez — — — Adc_OnDemandReadChannel(_ _ _ _ | !
SetRTEEvent() :
t
_I:r| | L | |
: loHwWAb_ReadVoltage(af_pressue, &buffer)) : : :
| | |
! | |
- __ __ _ loHwAb ReadVoltage) _ __ _ __ | | I
< | | |
T | T | |
1 1 1 1 1
Group 1:
- Channel 1
- Channel 2

- Notification mechanism is activated

Figure 9-1: Sequence diagram - ADC conversion

58 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTO SAR Specification of /O Hardware Abstraction
AUTOSAR CP R21-11

Notes:

APIs IToHwAb GetVoltage (af pressure) and
IoHwAbReadVoltage (af pressure, &buffer) are not specified interfaces, and
are given only for the example.

The diagram in this example is intended to show the runnables and is not intended to
show the server port to runnable mapping.

59 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT o OoOSAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

9.2 Setting ADC and PWM in alow consumption power state as a
result of arequest for an application low power mode
(example)

«module» «module «module» «module»
BswM Rte loHwAb Adc
oo oo

T T T
|
RTE/SchMSwitch(chal |

T
| | |
| | |
i i
| |
i i
——————————————————— | |
_L J i i
] | |
| o L I |
|
|
loHwAb_PreparePowerState_LowPowerModeA() }
i
|
i
Adc_GetCurrentPowerState() |
e 1_‘
T
Pwm_GetCurrentPowerState()
]
|
S Hi i
i T
Adc_PreparePowerState(PwrSts_1) |
At the moment in witch the API < MSN -_PreparePower: Slale retumns, the
preparation processis started and runsin background, driven by the
Sy <MSN>_Main_PowerStateTransiti onManagerAPl
Pwm_PreparePowerState(PwrSts_3) }
i
|
5 A
i
| T
[___ i i
loHwAbs_PollForResults just indicates a ! !
periodic runnable of the loHwAbs which } }
1 checksif all notifications have been sentand, | | |
L if s0, activates the second phase of the power | | |
| PeriodicTask) State transition: power state setting | |
i i
| |
i i
loHwWAb_PollForResults() I I
i i
|
} This Callbackis called by the MCAL_B_Main_PowerStateTransitionManager.
] | | The same isvalid for MCAL_A.
i
|
_ loHWADb_Pwm 0 !

I loHwADb_Adc_|

|

|

|

|

|

|

|

JoHwAb_PollForResults() }
|

|

loHwAb_EnterPowerStateLP1() }
|

I

Adc_

PeriodicTask)

e e e~

Pwm_SetPowerState() >

RTE/SchMSwitch(LowPowerModeA_Transition_End

Figure 9-2.1: asynchronous power state setting.

The sequence diagram in Figure 9-2 refers to a power state transition, where the
peripherals are configured for asynchronous power state transitions. After having
received a request to prepare a power state, the peripheral’s driver issues a
notification to the caller (in this case loHwADS) to inform it of being ready to transition
to the new power state.

60 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUTO SAR Specification of /O Hardware Abstraction
AUTOSAR CP R21-11

In the following sequence diagram a synchronous transition is shown (the peripheral
Is immediately ready to transition, as soon as the preparation APIs return):

«module» «module» «module» «module» «module»

BswM Rte IoHWAD Adc Pwm
oo oo oo

T T T T T

S—

|
| OnEntryRunnable_LowPowerModeA()

At the moment the <MSN>_PreparePowerTransition

APIs retum, the preparation is completed and the
peripherals are ready to be set in the new power state.

E ToHWADS | 0

T

Adc_SetPowerState() - |
|
|
|

S 1
|
i i
Pwm_SetPowerState() !
]
e == m e e e e e e 1_‘

IRTE/SchMSwitch(LowPowerModeA_Transition_End)
<

Figure 9-3.2: synchronous power state setting.

61 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

AUT@S NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

10 Configuration specification
The 1/0 Hardware Abstraction has no standardized configuration parameters and is

therefore not part of the AUTOSAR ECU-C Parameter Definition. All parameters are
vendor specific parameters.

10.1Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

62 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

A“T@s NAR Specification of /0 Hardware Abstraction
AUTOSAR CP R21-11

11 Not applicable requirements

[SWS_loHwWAb _00145] [These requirements are not applicable to this

specification. | (SRS_BSW_00300, SRS_BSW_00321, SRS_BSW_00325, SRS_BSW_00334,
SRS_BSW_00341, SRS_BSW_00342, SRS_BSW_00343, SRS_BSW_00398, SRS_BSW_00399,
SRS_BSW_00400, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_00416, SRS_BSW_00417,
SRS_BSW_00424, SRS_BSW_00428, SRS_BSW_00432, SRS_BSW_00439, SRS_BSW_00005,
SRS_BSW_00007, SRS_BSW_00160, SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00164,
SRS_BSW_00167, SRS_BSW_00168, SRS_BSW_00170, SRS_SPAL_12057, SRS_SPAL_12063,
SRS_SPAL_12064, SRS_SPAL_12067, SRS_SPAL_12068, SRS_SPAL_12069, SRS_SPAL_12075,
SRS_SPAL_12077, SRS_SPAL_12078, SRS_SPAL_12092, SRS_SPAL_12125, SRS_SPAL_12129,
SRS_SPAL_12163, SRS_SPAL_12169, SRS_SPAL_12263, SRS_SPAL_12264, SRS_SPAL_12265,

SRS_SPAL_12267, SRS_SPAL_12461, SRS_SPAL_12462, SRS_SPAL_12463, SRS_SPAL_00157)

63 of 63 Document ID 47: AUTOSAR_SWS_IOHardwareAbstraction

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Interface with MCAL drivers
	5.1.1 Overview
	5.1.2 Summary of interfaces with MCAL drivers

	5.2 Interface with the communication drivers
	5.3 Interface with System Services
	5.4 Interface with DCM
	5.5 File structure
	5.5.1 Code file structure
	5.5.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 Integration code
	7.1.1 Background & Rationale
	7.1.2 Requirements for integration code implementation

	7.2 ECU Signals Concept
	7.2.1 Background & Rationale
	7.2.2 Requirements about ECU signals

	7.3 Attributes
	7.3.1 Background & Rationale
	7.3.2 Requirements about ECU signal attributes
	7.3.2.1 Filtering/Debouncing Attribute
	7.3.2.2 Age Attribute

	7.4 I/O Hardware Abstraction and Software Component Template
	7.4.1 Background & Rationale
	7.4.2 Requirements about the usage of Software Component template
	7.4.2.1 Ports concept and I/O Hardware Abstraction
	7.4.2.2 Software Component and Runnable concept

	7.5 Scheduling concept for I/O Hardware Abstraction
	7.5.1 Background & Rationale
	7.5.2 Requirements about I/O Hardware Abstraction Scheduling concept
	7.5.2.1 Operations for interfaces provided by Ports
	7.5.2.1.1 Get operation
	7.5.2.1.2 Set operation

	7.5.2.2 Notification and/or Callback
	7.5.2.3 Main function / job processing function
	7.5.2.4 Initialization, De-initialization and/or Callout
	7.5.2.5 I/O Hardware Abstraction scheduling examples
	7.5.2.5.1 Interface provided by ADC and I/O Hardware Abstraction
	7.5.2.5.2 Synchronous scheduling with Runnable Entities and BswSchedulableEntities

	7.6 Error Classification
	7.6.1 Development Errors
	7.6.2 Runtime Errors
	7.6.3 Transient Faults
	7.6.4 Production Errors
	7.6.5 Extended Production Errors

	7.7 Other requirements
	7.8 I/O Hardware Abstraction layer description
	7.8.1 Background & Rationale
	7.8.2 Requirements
	7.8.2.1 I/O Hardware Abstraction Ports definition

	7.9 Examples
	7.9.1 EXAMPLE 1: Use case of on-board hardware
	7.9.2 EXAMPLE 2: Use case of failure monitoring
	7.9.3 EXAMPLE 3: Output power stage
	7.9.4 EXAMPLE 4: Setting sensor and controlling periphery in low power state

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 IoHwAb<Init_Id>_ConfigType

	8.3 Function definitions
	8.3.1 IoHwAb_Init<Init_Id>
	8.3.2 IoHwAb_GetVersionInfo

	8.4 Call-back notifications
	8.4.1 IoHwAb_AdcNotification<#groupID>
	8.4.2 IoHwAb_Pwm_Notification<#channel>
	8.4.3 IoHwAb_IcuNotification<#channel>
	8.4.4 IoHwAb_GptNotification<#channel>
	8.4.5 IoHwAb_OcuNotification<#channel>
	8.4.6 IoHwAb_Pwm_NotifyReadyForPowerState<#MODE>
	8.4.7 IoHwAb_Adc_NotifyReadyForPowerState<#MODE>

	8.5 Scheduled functions
	8.5.1 <Name of scheduled function>

	8.6 Functional Diagnostics Interface
	8.6.1 IoHwAb_Dcm_<EcuSignalName>
	8.6.2 IoHwAb_Dcm_Read<EcuSignalName>

	8.7 Power State Functions
	8.7.1 IoHwAb_PreparePowerState<#MODE>
	8.7.2 IoHwAb_ EnterPowerState <#MODE>

	8.8 Expected Interfaces
	8.8.1 Mandatory Interfaces
	8.8.2 Optional Interfaces
	8.8.3 Job End Notification

	9 Sequence diagrams
	9.1 ECU-signal provided by the I/O Hardware Abstraction (example)
	9.2 Setting ADC and PWM in a low consumption power state as a result of a request for an application low power mode (example)

	10 Configuration specification
	10.1 Published Information

	11 Not applicable requirements

