AUTOSAR

Document Title

Specification of Function
Inhibition Manager

Document Owner

AUTOSAR

Document Responsibility

AUTOSAR

Document Identification No 82

Document Status

published

Part of AUTOSAR Standard

Classic Platform

Part of Standard Release

R21-11

Document Change History

Management

Date Release | Changed by Description
AUTOSAR

2021-11-25 | R21-11 Release ° SWS_Fim_CONSTR_OOO1 changed
Management to SWS_Fim_CONSTR_00001
AUTOSAR e requirement SWS_Fim_00010

2020-11-30 | R20-11 | Release degraded to explanatory description
Management e requirement SWS_Fim_00062

removed

AUTOSAR ¢ No content changes

2019-11-28 | R19-11 | Release e Changed Document Status from
Management Final to published
AUTOSAR e Editorial changes

2018-10-31 | 4.4.0 Release e corrections regarding Dem and Fim
Management interaction during start-up
AUTOSAR e Minor corrections / clarifications /

2017-12-08 | 4.3.1 Release editorial changes; For details please

refer to the ChangeDocumentation

AUTOSAR

¢ Renaming of Event Status to Monitor
Status following redesign of Dem/
DCM interface
e Changed usage of
Dem_GetEventStatus to
Dem_GetMonitorStatus and
AUTOSAR renamed
2016-11-30 | 4.3.0 Release Fil\/I_DemTriggerOn EventStatus to
Management FiM_DemTriggerOnMonitorStatus
Interfaces following redesign of Dem/
DCM interface
e Removed requirement
SWS_Fim_00073
e minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
e Fim considers EventAvailbilty/
AUTOSAR EventSuppression
2015-07-31 | 4.2.2 Release e Modified Initialization Sequence
Management e minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
AUTOSAR e Simplification of FiM configuration
2014-10-31 | 4.2.1 Release e Support of "Monitored Components”
Management e Postbuild configuration clean up
e Editorial changes
AUTOSAR ,
2014-03-31 | 4.1.3 Release e Revised development error codes
Management e Editorial changes
e Change containers FIMFID and
AUTOSAR FiMInhibitationConfiguration
2013-10-31 | 4.1.2 Release e Editorial changes
Management |, Removed chapter(s) on change
documentation

AUTOSAR

2013-03-15

4.1.1

AUTOSAR
Administration

Apply new requirement format and
requirement IDs (leading zeros to
reach 5 digits)

Move general requirements to
AUTOSAR_SWS_BSWGeneral [1]
Add formal description of the
Standardized AUTOSAR Interface
for the Fim service. Types are
formalized so that the types
generated by the RTE can be used
for the Fim APls.

2011-12-22

4.0.3

AUTOSAR
Administration

Renaming of
FiMCyclicEventEvaluation
configuration parameter into
FiMEventUpdateTriggeredByDem
Reformulation of [SWS_Fim_00070],
SWS_Fim_00073

Inhibition masks use TestFailed bit
instead of
TestFailedThisOperationCycle

e File structure schema changed
e Initialization sequence diagram

added
Remove development error
FIM_FE_EVENTID_OUT_OF_RANGE

2010-09-30

3.1.5

AUTOSAR
Administration

¢ Intra module checks updated
e Corrected multiplicity of configuration

parameters FiMInhChoicedemRef
and FiMInhChoiceSumRef
Introduction of
ImplementationDataType replacing
IntegerType and Boolean
Clarification of chapter describing
interaction between Dem and FiM
7.2.2.3

Relocation of [SWS_Fim_00067]
explaining evaluation by the FiM of
Dem events

Addition of a new requirement
describing the standardized
AUTOSAR interface
[SWS_Fim_00090]

AUTOSAR

2010-02-02

3.1.4

AUTOSAR
Administration

e Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

e OBD related chapter added 7.2.3
e Corrected error description
e Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

e Error classification extended to
report invocation with NULL pointer

e Corrected InternalBehavior of FiM to
fit to API's reentrant behavior

e Minimum value of parameter
FimMaxSummaryLinks fixed

e Document meta information
extended

e Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

e "Advice for users" revised
e "Revision Information" added

21.14

AUTOSAR
Administration

e Modification of the FiM data
structure: Several summarized
events can be assigned to the
FimInhibition-Configuration

¢ Inserted corrected sequence charts
for FiM initialization phase and
FiM _DemTriggerOnEventStatus

e Added file MemMap.h to header file
structure

e Added requirement for extended
header file structure (Schedule
Manager)

e Added SchM_FiM.h to header file
structure

e Legal disclaimer revised

2006-05-16

2.0

AUTOSAR
Administration

Initial Release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

—

2 Acronyms

Introduction and functional overview

and abbreviations

3 Related documentation

3.1 Inputdocuments
3.2 Related standardsandnorms
3.3 Related specification o L L.

4 Constraints and assumptions

4.1 Lim

itations

4.2 Applicabilitytocardomains o oo

5 Dependencies on other modules

5.1 Requirements

5.1.1

Use Cases o i i i

6 Requirements traceability

7 Functional specification

7.1 Background & Rationale oL
7.2 Requirements

7.21

7.2.2

7.2.3

FiMcorevariables
7.2.1.1 Definition of '‘Diagnostic Event’
7.21.2 Definition of 'Monitor Status”
7.21.3 Definition of '"Monitored Component’
7.21.4 Definition of 'Summarized Event’”
7.21.5 Definition of 'Function Identifier’
7.2.1.6 Definition of 'Function Identifier permission state’ . .

FiM core functionalities
7.2.2.1 Initialization oL
7.2.2.2 FiM Data Structure
7.2.2.3 Interaction between Dem and Function Inhibition

Manager (FIM)
7.2.2.4 Interaction between SW-Components and Function
Inhibition Manager (FIM)
7.2.2.5 Application example for FiMusage

OBD-Functionality

7.2.3.1 In-Use-Monitor Performance Ratio (IUMPR) Support

7.3 Errorclassification

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5

Development Errors oL
Runtime Errors
TransientFaults,
ProductionErrors
Extended ProductionErrors.

10

11

11
12
12

13

13
13

14

14
14

16

20

20
20
20
20
20
20
21
21
23
23
23
24

25

AUTO SAR

7.4 Configuration Constraints
8 API specification

8.1 Importedtypes
8.2 Typedefinitions
8.2.1 FiM_ConfigType

8.3 Functiondefinitions
8.3.1 Interface ECUState Manager <->FiM
8.3.1.1 FIM Init

8.3.2 Interface SW-Components <->FiIM
8.3.2.1 FiM_GetFunctionPermission.

8.3.2.2 FiM_ SetFunctionAvailable.

8.3.3 Interface Dem<->FiM
8.3.3.1 FiM_DemTriggerOnMonitorStatus

8.3.3.2 FiM_ DemTriggerOnComponentStatus

8.3.3.3 FIM Demilnit

8.3.34 FiM_GetVersioninfo

8.3.4 Call-back notifications
8.3.5 Scheduledfunctions, .
8.3.5.1 FiIM_MainFunction

8.3.6 Expected Interfaces L.
8.3.6.1 Mandatory Interfaces

8.3.6.2 Optional Interfaces

8.4 Serviceinterfaces e
8.4.1 Client-Server-Interfaces
8.4.1.1 FiM_FunctionInhibition

8.4.1.2 FiM_ControlFunctionAvailable

8.4.2 Implementation Data Types
8.4.2.1 FiM_FunctionldType

8.4.3 Ports
8.4.4 Internal Behavior

9 Sequence diagrams

9.1 Initialization sequence of FIM,
9.2 FiM_DemTriggerOnMonitorStatus
10 Configuration specification
10.1 Howtoreadthischapter
10.2 Containers and configuration parameters
10.2.1 FIM
10.2.2 FiMGeneral,
10.2.3 FiMConfigSet.
10.2.4 FIMFID
10.2.5 FiMInhibitionConfiguration
10.2.6 FiMSummaryEvent
10.3 Published Information

AUTOSAR

A Not applicable requirements

58

AUTOSAR

1 Introduction and functional overview

The Function Inhibition Manager is responsible for providing a control mechanism for
software components and the functionality therein. In this context, a functionality can
be built up of the contents of one, several or parts of runnable entities with the same
set of permission / inhibit conditions. By means of the FiM, inhibiting (deactivation of
application function) these functionalities can be configured and even modified during
runtime (post-built configuration).

Functionality and runnable entity are different and independent types of classifications.
Runnable entities are mainly characterized by their scheduling requirements. In con-
trast to that, functionalities are classified by their inhibit conditions. The services of the
FiM focus on functionalities in SW-Cs, however, they are not limited to them. Function-
alities of the BSW can also use the FiM services.

The functionalities are assigned to an identifier (FID - function identifier) along with the
inhibit conditions for that particular identifier. The functionalities poll for the permission
state of their respective FIDs before execution. If an inhibit condition comes true for a
particular identifier, the corresponding functionality shall not be executed anymore.

The FiM is closely related to the Dem since diagnostic events and their status infor-
mation are supported as inhibit conditions. Hence, functionality which needs to be
stopped in case of a failure, e.g. of a certain sensor, can be represented by a partic-
ular identifier. If the failure is detected and the event is reported to the Dem, the FiM
then inhibits the FID and therefore the corresponding functionality.

In order to handle the relation of functionality and linked events, the identifier and inhibit
conditions of the functionality have been introduced into the SW-C template (equiva-
lence for BSW) and during configuration, data structures are built up to deal with the
sensitiveness of the identifiers against certain events

Software components can be integrated into a new environment as a collection of
events which can be configured without big effort. Furthermore, system analysis is
supported when questions as, for example, "Which functionality is inhibited if a partic-
ular event is detected?" arise. The data basis of the FiM serves as documentation of
the configured relations between events and the SW-C to be inhibited.

In AUTOSAR, the RTE deals with SW-C in terms of their interfaces and scheduling
requirements. In contrast to that, the FiM deals with inhibit conditions and provides
supporting mechanisms for controlling functionalities via respective identifiers (FID).
Therefore, the FiM concept and RTE concept do not interfere with each other.

The basic targets of the FiM specification document are:
e Standardization of APIs
¢ Introduction of possible implementation approaches

e Provide the ability for a common approach of OEM and supplier

AUTOSAR

2 Acronyms and abbreviations

Abbreviation / Acronym: Description:

Activity state

The activity state is the status of a software component being executed. The activity state
results from the permission state as a precondition and physical enable condition, too. It is
not calculated by the FiM and not available as a status variable. It can only be derived from
local information within a software component. For further details, see chapter 7.2.1.6.

API Application Programming Interface
BSW Basic Software

Dem Diagnostic Event Manager

ECU Electronic Control Unit

FID Function Identifier

FiM Function Inhibition Manager

Functionality

Functionality comprises User-visible and User-non-visible functional aspects of a system
(AUTOSAR_Glossary.pdf [2]).

In addition to that - in the FiM context - a functionality can be built up of the contents of one,
several or parts of runnable entities with the same set of permission / inhibit conditions. By
means of the FiM, the inhibition of these functionalities can be configured and even modified
by calibration. Each functionality is represented by a unique Functionld. A functionality is
characterized by a specific set of inhibit condition in contrast to runnable entities having
specific scheduling conditions.

HW

Hardware

ID

Identification/Identifier

Inhibition Condition

The relation between one FID, an inhibition mask and the status of a Dem event/component.
(see FiMInhibitionConfiguration)

ISO

International Standardization Organization

MIL

Malfunction Indication Light

Monitoring function

e Part of the Software Component.

e Mechanism to monitor and finally to detect a fault of a certain sensor, actuator or
could be a plausibility check

e Reports states about events from internal processing of a SW-C or from further
processing of return values of other basic software modules.

e See also AUTOSAR_SWS_DiagnosticEventManager [3]

NVRAM Non volatile Memory

OBD On-board Diagnostics

OBDII Emission-related On-board Diagnostics
OEM Original Equipment Manufacturer

oS Operating System

Permission state

The permission state contains the information whether a functionality, represented by its FID,
can be executed or whether it shall not run. The state is controlled by the FiM based on
reported events. For further details, see chapter 7.2.1.6.

RAM Random Access Memory
ROM Read-only Memory
RTE Runtime Environment

Runnable entity

A Runnable Entity is a part of an Atomic Software-Component, which can be executed and
scheduled independently from the other Runnable Entities of this Atomic
Software-Component. It is described by a sequence of instructions that can be started by the
RTE. Each runnable entity is associated with exactly one EntryPoint.

SW-C Software Component
ubs Unified Diagnostic Services
WP Autosar Work Package

AUTOSAR

A

Abbreviation / Acronym: Description:

XXX_ Placeholder for an API provider

Table 2.1: Abbreviations and Acronyms

3 Related documentation

3.1 Input documents
[1] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral

[2] Glossary
AUTOSAR_TR_Glossary

[3] Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager

[4] Requirements on Function Inhibition Manager
AUTOSAR_SRS_FunctionInhibitionManager

[5] Virtual Functional Bus
AUTOSAR_EXP_VFB

[6] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

AUTOSAR

3.2 Related standards and norms

[13] IEC 7498-1 The Basic Model, IEC Norm, 1994

[14] D1.5-General Architecture; ITEA/EAST-EEA, Version 1.0; chapter 3, page 72 et
seq.

[15] D2.1-Embedded Basic Software Structure Requirements; ITEA/EAST-EEA, Ver-
sion 1.0 or higher

[16] D2.2-Description of existing solutions; ITEA/EAST-EEA, Version 1.0 or higher.

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [1, SWS BSW
General], which is also valid for Function Inhibition Manager.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Function Inhibition Manager.

AUTOSAR

4 Constraints and assumptions

[SWS_Fim_00007] [FID numbers shall be unique per FiM. |(SRS_Fim_04701)

Since communication between software components and basic software is limited to
one ECU, the FiM can only control FIDs being located on the same ECU. Note that the
RTE does currently not support communication between basic software and software
components located on different ECUs.

4.1 Limitations

Timing constrains have to be considered for the whole system. Note that the process
and response times strongly depend on the implementation of the FiM module. Hence,
if there are explicit needs for faster responses of the FiM than the cycle (time slice of
the task) these needs have to be considered by the FiM implementation specifically by
the affected application. Special measures have to be implemented by the FiM which
are not explicitly specified in this AUTOSAR document, since here, the implementation
IS - on purpose - not prescribed.

[SWS_Fim_00043] [The FiM shall compute the permission of a FID independently of
the state of other FIDs.|(SRS_Fim_04706)

Interdependencies between FIDs are not supported by the FiM. That means an FID
does not influence another FID.

4.2 Applicability to car domains

The FiM is designed to fulfill the design demands for ECUs with respect to a central
handling of reactions of the system upon detected malfunctions, e.g. open circuit or
shortcut. Therefore, the immediate domain of applicability of the FiM is currently body,
chassis and powertrain ECUs. However, there is no reason that the FiM cannot be
used in implementations of ECUs for other car domains as, for example, infotainment.

One major constraint is that the FiM alone will NOT be able to handle SW-Components
that are:

1. time critical - They might be too slow for local reconfigurations (fast backup reaction
in case of e.g. invalid signals).

2. physically interactive - They might not be sufficiently flexible.

3. safety critical - They might not have sufficient software integrity.

AUTOSAR

5 Dependencies on other modules

[SWS_Fim_00044] [The AUTOSAR Function Inhibition Manager (FiM) has inter-
faces and dependencies on the Diagnostic Event Manager (Dem), the Software Com-
ponents (SW-C) with FID interface, the ECU State Manager, the RTE and the BSW
modules supposed to be inhibited by the FiM.| (SRS _BSW_00384)

e The Diagnostic Event Manager (Dem) is in charge of handling detected mal-
functions denoted as events and reported by monitoring functions. The Dem
informs and updates the Function Inhibition Manager (FiM) upon changes of the
monitor status in order to stop or release functionalities according to assigned
dependencies.

e SW-Components (SW-C) with FID interface query for permission to execute
functionality identified by an FID at the FiM. The FIDs have to be provided by the
SW components.

e ECU State manager is responsible for the basic initialization and de-initialization
of BSW-components.

e BSW module(s) that are supposed to be inhibited by the FiM shall use the Fi
M interface to ask for permission. Therefore, the affected BSW modules have
to provide the corresponding configuration data (EventID - FID - Inhibition mask
relation) at configuration time realized by using a template similar to the SW-
component template. The interface handling for BSW modules corresponds to
the interface handling for SW-components.

e The RTE implements scheduling mechanisms for BSW, e.g. assigns priority and
memory protection to each BSW module used in an ECU.

5.1 Requirements

There are three sources of requirements for this specification:

e The requirements for the functionality of the FiM service are specified in [4]. In
order to model the VFB view of the Service, the chapter on AUTOSAR Services
of the VFB specification [5] has to be considered as an additional requirement.

e For the formal description of the SW-C attributes [6] gives the requirements.

5.1.1 Use Cases

On each ECU, typically one instance of the FiM Service and several Atomic Software
Component instances using this Service are employed. The Atomic Software Compo-
nents are named "clients" further on in this document.

AUTOSAR

Additionally, there are parts of the basic software, which either control the FiM Manager
(e.g. the ECUState Manager for initialization and shutdown) or need to query the FiM
for execution permission themselves.

AUTOSAR

6 Requirements traceability

Requirement

Description

Satisfied by

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_Fim_00999]

[SRS_BSW_00302]

All AUTOSAR Basic Software
Modules shall only export
information needed by other
modules

[SWS_Fim_00999]

[SRS_BSW_00304]

All AUTOSAR Basic Software
Modules shall use only
AUTOSAR data types instead of
native C data types

[SWS_Fim_00027]

[SRS_BSW_00305]

Data types naming convention

[SWS_Fim_00027]

[SRS_BSW_00306]

AUTOSAR Basic Software
Modules shall be compiler and
platform independent

[SWS_Fim_00999]

[SRS_BSW_00307]

Global variables naming
convention

[SWS_Fim_00999]

[SRS_BSW_00308]

AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

[SWS_Fim_00999]

[SRS_BSW_00309]

All AUTOSAR Basic Software
Modules shall indicate all global
data with read-only purposes by
explicitly assigning the const
keyword

[SWS_Fim_00999]

[SRS_BSW_00310]

APl naming convention

[SWS_Fim_00006] [SWS_Fim_00011]
[SWS_Fim_00021]

[SRS_BSW_00312]

Shared code shall be reentrant

[SWS_Fim_00011] [SWS_Fim_00021]

[SRS_BSW_00314]

All internal driver modules shall
separate the interrupt frame
definition from the service
routine

[SWS_Fim_00999]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Fim_00999]

[SRS_BSW_00325]

The runtime of interrupt service
routines and functions that are
running in interrupt context shall
be kept short

[SWS_Fim_00999]

[SRS_BSW_00328]

All AUTOSAR Basic Software
Modules shall avoid the
duplication of code

[SWS_Fim_00999]

[SRS_BSW_00330]

It shall be allowed to use macros
instead of functions where
source code is used and runtime
is critical

[SWS_Fim_00999]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_Fim_00015]

AUTOSAR

Requirement

Description

Satisfied by

[SRS_BSW_00333]

For each callback function it
shall be specified if it is called
from interrupt context or not

[SWS_Fim_00999]

[SRS_BSW_00334]

All Basic Software Modules shall
provide an XML file that contains
the meta data

[SWS_Fim_00999]

[SRS_BSW_00336]

Basic SW module shall be able
to shutdown

[SWS_Fim_00999]

[SRS_BSW_00342]

It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object
code, even mixed

[SWS_Fim_00999]

[SRS_BSW_00343]

The unit of time for specification
and configuration of Basic SW
modules shall be preferably in
physical time unit

[SWS_Fim_00999]

[SRS_BSW_00344]

BSW Modules shall support
link-time configuration

[SWS_Fim_00013]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_Fim_00013]

[SRS_BSW_00347]

A Naming seperation of different
instances of BSW drivers shall
be in place

[SWS_Fim_00999]

[SRS_BSW_00353]

All integer type definitions of
target and compiler specific
scope shall be placed and
organized in a single type
header

[SWS_Fim_00999]

[SRS_BSW_00357]

For success/failure of an API call
a standard return type shall be
defined

[SWS_Fim_00999]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR
Basic Software Modules shall be
void

[SWS_Fim_00006] [SWS_Fim_00045]
[SWS_Fim_00059]

[SRS_BSW_00359]

All AUTOSAR Basic Software
Modules callback functions shall
avoid return types other than
void if possible

[SWS_Fim_00999]

[SRS_BSW_00360]

AUTOSAR Basic Software
Modules callback functions are
allowed to have parameters

[SWS_Fim_00999]

[SRS_BSW_00361]

All mappings of not standardized
keywords of compiler specific
scope shall be placed and
organized in a compiler specific
type and keyword header

[SWS_Fim_00999]

[SRS_BSW_00373]

The main processing function of
each AUTOSAR Basic Software
Module shall be named
according the defined
convention

[SWS_Fim_00060]

AUTOSAR

Requirement

Description

Satisfied by

[SRS_BSW_00375]

Basic Software Modules shall
report wake-up reasons

[SWS_Fim_00999]

[SRS_BSW_00377]

A Basic Software Module can
return a module specific types

[SWS_Fim_00027]

[SRS_BSW_00378]

AUTOSAR shall provide a
boolean type

[SWS_Fim_00999]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at
least in the description which
other modules they require

[SWS_Fim_00044]

[SRS_BSW_00386]

The BSW shall specify the
configuration for detecting an
error

[SWS_Fim_00999]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Fim_00092]

[SRS_BSW_00405]

BSW Modules shall support
multiple configuration sets

[SWS_Fim_00092]

[SRS_BSW_00406]

A static status variable denoting
if a BSW module is initialized
shall be initialized with value 0
before any APIs of the BSW
module is called

[SWS_Fim_00045] [SWS_Fim_00055]
[SWS_Fim_00056] [SWS_Fim_00057]
[SWS_Fim_00058] [SWS_Fim_00059]
[SWS_Fim_00104]

[SRS_BSW_00409]

All production code error ID
symbols are defined by the Dem
module and shall be retrieved by
the other BSW modules from
Dem configuration

[SWS_Fim_00999]

[SRS_BSW_00416]

The sequence of modules to be
initialized shall be configurable

[SWS_Fim_00018]

[SRS_BSW_00417]

Software which is not part of the
SW-C shall report error events
only after the DEM is fully
operational.

[SWS_Fim_00999]

[SRS_BSW_00422]

Pre-de-bouncing of error status
information is done within the
DEM

[SWS_Fim_00999]

[SRS_BSW_00423]

BSW modules with AUTOSAR
interfaces shall be describable
with the means of the SW-C
Template

[SWS_Fim_00999]

[SRS_BSW_00424]

BSW module main processing
functions shall not be allowed to
enter a wait state

[SWS_Fim_00999]

[SRS_BSW_00425]

The BSW module description
template shall provide means to
model the defined trigger
conditions of schedulable
objects

[SWS_Fim_00999]

[SRS_BSW_00426]

BSW Modules shall ensure data
consistency of data which is
shared between BSW modules

[SWS_Fim_00999]

AUTO SAR

Requirement

Description

Satisfied by

[SRS_BSW_00427]

ISR functions shall be defined
and documented in the BSW
module description template

[SWS_Fim_00999]

[SRS_BSW_00428]

A BSW module shall state if its
main processing function(s) has
to be executed in a specific
order or sequence

[SWS_Fim_00999]

[SRS_BSW_00429]

Access to OS is restricted

[SWS_Fim_00999]

[SRS_BSW_00432]

Modules should have separate
main processing functions for
read/receive and write/transmit
data path

[SWS_Fim_00999]

[SRS_BSW_00433]

Main processing functions are
only allowed to be called from
task bodies provided by the
BSW Scheduler

[SWS_Fim_00999]

[SRS_Fim_04700]

An Interface for querying the FID
permission status shall be
provided

[SWS_Fim_00011] [SWS_Fim_00090]

[SWS_Fim_00094]

[SRS_Fim_04701]

The Functionalities supervised
by the FIM shall be defined by
static configuration

[SWS_Fim_00002] [SWS_Fim_00003]

[SWS_Fim_00007]

[SRS_Fim_04702]

The FIM shall support different
inhibit options

[SWS_Fim_00012]

[SRS_Fim_04706]

Individual configuration of inhibit
conditions of functionalities shall
be available

[SWS_Fim_00008] [SWS_Fim_00013]
[SWS_Fim_00016] [SWS_Fim_00043]

[SRS_Fim_04709]

The permission state shall be
evaluated before executing
functionalities

[SWS_Fim_00011]

[SRS_Fim_04712]

The permission states at start
up shall be initialized

[SWS_Fim_00018]

[SRS_Fim_04713]

Methods for the computation of
permission states shall be
provided

[SWS_Fim_00009] [SWS_Fim_00015]

[SWS_Fim_00020]

[SRS_Fim_04717]

The permission states shall be
updated

[SWS_Fim_00021] [SWS_Fim_00022]

[SRS_Fim_04719]

Mechanism for summarized
diagnostic event states shall be
provided

[SWS_Fim_00061]

[SRS_Fim_04721]

OBD Functionalities shall be
supported

[SWS_Fim_00999]

[SRS_Fim_04723]

The FIM shall provide a boolean
configuration option per FID.

[SWS_Fim_00105] [SWS_Fim_00106]
[SWS_Fim_00107] [SWS_Fim_00108]

AUTOSAR

7 Functional specification

7.1 Background & Rationale

The Function Inhibition Manager allows querying the permission / inhibition status of
software components and the functionality therein. In the FiM context an FID (FID -
function identifier) identifies an application functionality along with the inhibit conditions
for that particular identifier. The functionalities poll for the permission state of their
FID before execution. If an inhibit condition applies for a particular identifier, the corre-
sponding functionality is not allowed to be executed anymore. By means of the FiM, the
inhibition of these functionalities can be configured and even modified by calibration.
Dem events and their status information are supported as inhibit conditions.

In order to handle the relation of functionality and associated affecting events, the
identifier (FID) and inhibit conditions (events) of the functionality are included in the
SW component template (equivalence for BSW). During configuration of the FiM, data
structures (i.e. an inhibit matrix) are built up to deal with the sensitiveness of the iden-
tifiers against certain events.

7.2 Requirements

7.2.1 FiM core variables
7.2.1.1 Definition of '‘Diagnostic Event’

A ’Diagnostic Event’ is an identifier provided by the Dem to a specific diagnostic monitor
function to report an error.

See AUTOSAR_SWS_DiagnosticEventManager document for further details [3].

7.2.1.2 Definition of 'Monitor Status’

A ’monitor status’ is the status calculated by the Dem according to the reported values
of monitor functions. Possible values are defined by Dem_MonitorStatusType.

See AUTOSAR_SWS_DiagnosticEventManager document for further details [3].

7.2.1.3 Definition of ’'Monitored Component’

A ’Monitored Component’ is an identifier provided by the Dem to a specific monitored
component (hardware component or signal). The FAILED status of a ‘'monitored com-
ponent’ represents the result of all assigned monitoring functions and inherited failure
information from other DemComponents.

AUTOSAR
See AUTOSAR_SWS_DiagnosticEventManager document for further details [3].

7.2.1.4 Definition of ’Summarized Event’

[SWS_Fim_00061] [The FiM configuration shall support summarizing events. A sum-
marized event consists of multiple single diagnostic events. |(SRS_Fim_04719)

During the configuration process, these single events can be combined to a summa-
rized event (ECUC_FiM_00037). A summarized event simplifies dealing with the multi-
ple events that are associated with or represented by the particular summarized event.
For simplicity, this particular summarized event can be used as an inhibit condition in
the SW-C templates.

[SWS_Fim_00064] [The FiM shall also be able to process the inhibit conditions of all
FIDs associated to one summarized event if one of the Dem Events associated to this
summarized event is reported to the FiM. ()

Hence, the particular summarized event is just a representative of multiple diagnostic
events (ref.10.2.3). A use case for summarized events is for example the combination
of all error conditions that indicate a failed sensor:

A sensor X has multiple diagnostics, e.g. short cut ground, battery and open cir-
cuit: X _SCG, X SCB and X _OC. The functions FID 0, FID 1, ..., FID_N are to
be inhibited in case of this fault. A direct configuration requires 3 * N containers
FiMInhibitionConfiguration with FIM_INH _EVENT ID = X SCG/SCB/OC and
FIM_INH_FUNCTION_ID = FID_0/.../N.

With summarized events (FiMSummaryEvent), a group of events can be reused for
several inhibition configurations, by selecting it as FiMInhSumRef. This may simplify
configuration.

7.2.1.5 Definition of ’Function Identifier’

The Fim implements the calculation of function permissions. Object to those calcula-
tions are SW-Components or logical units, which receive the information "Permission
granted" / "permission denied".

To address those components, these have to be configured in FIM and a Function
Identifier is assigned to address them via interfaces.

[SWS_Fim_00002] [The configuration process shall guarantee that Functionlds are
unique per FiM. Two distinct functionalities with different dependencies on events shall
never have the same Functionld (see also [SWS_Fim_00007]).|(SRS_Fim_04701)

[SWS_Fim_00003] [The FiM module’s environment shall use the Functionld to directly
point to the associated functionality information (permission status etc.)|(SRS_Fim_-
04701)

AUTOSAR

The flow of information starts with the API call of the Dem providing changes of the
event information. This information is processed and dependencies to FIDs are eval-
uated. Finally, the permission state of the FIDs is accessed via API through the RTE
(Figure 7.1).

Function Inhibition Manager FIM

I_|:

Event_... H

Event_s
FID_N
FID_L

Event_s

L

FID Mask

Event_t
FID K
FID_L

Event_t

k

FID Mask

'J:

—| Event_... n

+ 4+ ¥ +

A S S e &

FID_...| |FID_K |[FID_L ||FID_M||FID_N ||FID_O

FID_...

¥ Enable of FID
Figure 7.1: Logical information flow to determine FID permission states for an imple-
mentation with permission state stored in RAM

The permission state of each FID is calculated based on the Eventlds assigned to a
specific FID. Afterwards, the calculated permission states of each FID (e.g. FID_K) are
"and-ed" to determine the resulting permission state. This implies an implementation
where the FiM stores the permission state of the FIDs in RAM.

Alternatively, the FiM can poll the monitor status to re-calculate the permission state.
The polling is triggered either by a functionality requesting its permission state (SW-C
or BSW) or in a cyclic task. In this case, there is no increased process effort within the
FiM at changes of any event.

AUTOSAR

7.2.1.6 Definition of ’Function Identifier permission state’

[SWS_Fim_00015] [The FID permission state contains the information whether a
functionality represented by its FID can be executed. If the permission state == TRUE,
the functionality associated with the FID is permitted to be executed. If the permis-
sion state == FALSE, the functionality associated with the FID is not allowed to be
executed. | (SRS_BSW _00331, SRS_Fim_04713)

The permission state is based on events reported by the Dem. Therefore, the per-
mission state does not directly consider physical conditions (e.g. temperature, engine
speed...) but those conditions reported to the Dem (e.g. sensor defect).

Additionally to the permission state as prerequisite, the activity state (is the function
active or not) includes physical enable conditions representing whether the functionality
is indeed executed or not, i.e. is active or not.

As stated above, one possible implementation is to provide the permission state in
status variables. An alternative is to compute the permission on the query based on
the underlying dependencies.

Hint: If the permission states are stored in status variables, they are unique values per
FID. SW-components access the status via FiM_GetFunctionPermission.

[SWS_Fim_00009] [If the implementation uses status variables for the permission of
the FIDs, the status variables shall be readable for tracking purposes by the calibra-
tion system (to be defined by AUTOSAR) during the development phase of the ECU. |
(SRS _Fim _04713)

7.2.2 FiM core functionalities
7.2.2.1 Initialization

[SWS_Fim_00018] [If Dem events status information is used, the FiIM module shall
compute the permission states for all FIDs at its initialization based on all restored
monitor status information (not only events stored in the fault memory) of the Dem. |
(SRS_BSW 00416, SRS _Fim_04712)

The FiM is designed that it requires Dem monitor states during initialization. Therefore
the Dem needs to ensure that at the point in time the FiM is initialized, the Dem is
ready to provide monitor states via Dem_GetMonitorState. The Fim is not able to
detect a not initialized Dem due to possible disabled events and will always behave as
described in [SWS_Fim_00097].

[SWS_Fim_00102] [The initialization of Dem and Fim shall always follow the below
order :

step 0) Dem_PrelInit

step 1) Non-volatile memory data has to be available.

AUTOSAR

step 2) FiM_Init (setting up internal variables); after FiM_1nit, the Fim is not yet
ready to be used.

step 3) Dem_1Init: do the internal DEM initialization and use FiM_DemInit to finally
initialize the FIM| ()

Note: From step 3 onwards, the Dem and Fim are finally initialized and ready to be
used.

[SWS_Fim_00104] [If FiM_GetFunctionPermission is called before the FiM is
initialized, the FiM shall return E_NOT_OK.(FiM_DemInit).|(SRS_BSW_00406)

7.2.2.2 FiM Data Structure

[SWS_Fim_00013] [The configuration process of the FiM shall create data structures
within the FiM module to store the inhibit relations (EventID - FID - applicable mask). |
(SRS_BSW_00344, SRS_BSW_00345, SRS_Fim_04706)

A configurable number of Eventlds and inhibition masks are assigned to one FID. The
number of Eventlds and inhibit masks per FID have to match so that for each configured
event, a corresponding inhibit mask exists.

The inhibition mask contains the inhibition conditions for a FID provided that the as-
sociated Eventlds have a certain status (Dem_EventStatusExtendedType). These
masks define which states of an event the FID is sensitive to. However, the mask does
not only address certain bits according to the Dem_FEventStatusExtendedType, it
rather selects an algorithm to calculate the boolean inhibition condition from the bem_ -
EventStatusExtendedType.

The implementation of the FiM data structure cannot be prescribed. A possible im-
plementation of the inhibit matrix could be a block of calibration values for each inhibit
source (=Eventld). That means for each Eventld a list of FIDs and masks is available
that shall be inhibited by this Eventld. A possible FiM structure consisting of such a
configuration and a FID status array is exemplarily shown in Figure 2.

There is an inhibition mask assigned to every FID and both are assigned to a particular
Eventld. If this event has a certain state, the inhibition of the FID becomes active if the
event state matches the configured mask.

AUTOSAR

Assignedeventsfor Inhibitmas ksfor
FID_m FID _m
FID m_event 1 FID m_mask_1
1 FD m 5E5 FID m _event 2 FID_m_mask_2
2 FID r FID m event 3 FID m mask 3
2 FID ¢ FID m event 4 FID m mask 4
4 FID _f Assignedeventsfor |nhibitmasksforFID_t
5 FID_t uses o
- FID t event 1 FID t mask 1
5 FID_unused FID_t event 2 FID_t_mask 2
7 FID _unused
~ FID t event 3 FID t mask 3

Figure 7.2: Inhibit Mask

[SWS_Fim_00008] [The FiM module shall provide the possibility to modify the inhibit
conditions by post-built configuration. | (SRS_Fim_04706)

Depending on the implementation, it might not be possible to:
e Add new events.
e Extend the number of inhibited FID’s per event.

e Extend the specified configuration parameters concerning number of events,
number of FIDs and number of links.

7.2.2.3 Interaction between Dem and Function Inhibition Manager (FiM)
[SWS_Fim_00022] [The purpose of the FiM module is to provide services to control
(permit / inhibit) functionality within SW-Cs based on Dem events being supported as
inhibit conditions. | (SRS_Fim_04717)

[SWS_Fim_00065] [The Function Inhibition Manager shall use the FID - EventIDs
- inhibition masks relations provided by the software components to determine the
permission state for all configured FIDs. | ()

Upon changes in the monitor status of a reported event, the Dem informs the FiM about
the monitor status change via the API function FiM_DemTriggerOnMonitorStatus,
if DemTriggerFiMReports is enabled.

AUTOSAR

On being informed about a monitor status change, the Fim uses the Api Dem_Get-
MonitorStatus to recalculate the function inhibitions.

1. Note: From the function point of view, synchronous update of inhibit / release condi-
tions can be made either within or outside of FiM_MainFunction API.

As mentioned in chapter 4.1, the implementation of the FiM highly depends on require-
ments (e.g. timing requirements) derived from applications. If an application requires
fast reaction times the FiM has to provide FID information sufficiently fast to allow trig-
gering limp-home functionality.

The APIFiM_DemTriggerOnMonitorStatus is only relevant if a status variable per
FID is stored. In an alternative implementation when no status is stored and the per-
mission status is calculated every time when queried, the APl FiM_DemTriggerOn-—
MonitorStatus is without effect.

As an example of implementation, Figure 3 shows the calculation of a single Event
Id-FID link. On the left hand side, the monitor status is reported by the Dem as
Dem_EventStatusExtendedType. This status is compared to the mask configured for
the Eventld associated with the FID.

An inhibition counter is assigned to each FID. The inhibition counter contains the num-
ber of currently inhibiting Eventlds.

If the calculation is performed cyclically (monitor status is read through Dem_Get -
MonitorStatus), the inhibition counter shall be incremented if the status and the
mask match; otherwise, the inhibition counter is not updated. This is applicable for
FiM_GetFunctionPermission (if the permission state has to be computed upon
the query) and FiM_MainFunction APIs.

In the trigger on monitor status change, the stored currently inhibiting Eventlds (inhibi-
tion counter) shall be used for the computation for the permission state. If there is an
monitor status change reported by FiM_DemTriggerOnMonitorStatus, then the
following shall be performed:

a. If the change in status for the Eventld results in a released state (mask does not
match with the monitor status), then the inhibition counter has to be decremented.

b. If the change in status for the Eventld results in an inhibited state (mask matches
with the monitor status), then the inhibition counter has to be incremented.

If the inhibition counter is > 0, then the FID permission state shall be set to FALSE,
otherwise the FID permission state shall be set to TRUE.

AUTOSAR

Figure 7.3: Calculation of permission state based on monitor status information

[SWS_Fim_00012] [The FiM module shall calculate the inhibit status based on the
actual status of the inhibit source and the calibrated mask which exists for each inhibit
source (ref. 10.2.7). The FiM module shall inhibit the FID if the Monitor status is equal
to the calibrated mask (=Defect, Tested, NotTested). The inhibition is deactivated if the
mask of the event does not match anymore the calibrated value. | (SRS_Fim_04702)

Optionally, the tested status can be used for inhibiting. Depending on the inhibition
condition, the inhibition can be active if the event has status "Tested" or "NotTested". If
no tested value is selected, the tested status is not relevant.

The available combinations of status flags are assigned to a predefined value which
has verbal representation like "Tested", "Not_Tested" or Last_Failed".

[SWS_Fim_00098] [The Function Inhibition Manager shall use the FID - DemCom-
ponentld - inhibition configuration to determine the permission state for the configured
FID.

Upon changes of the FAILED status of a DemComponent, the function status shall be
recalculated. Whenever the component status is FAILED (ComponentFailedStatus
= TRUE), the FID is inhibited.| ()

[SWS_Fim_00099] [If the FIM is configured for cyclically polling the status, the FIM
shall use the APl Dem_GetComponentFailed to get the current FAILED status of a
component.| ()

[SWS_Fim_00100] [If the FIM is configured for being triggered on eventStatus (Fi
MCyclicEventEvaluation), the FIM shall accept the status changed information of a
DemComponent by providing the function FiM_DemTriggerOnComponentStatus. |

()

AUTOSAR

7.2.2.4 Interaction between SW-Components and Function Inhibition Manager
(FiM)

[SWS_Fim_00016] | The configuration engineer shall provide at compile time the in-
hibit conditions for each FID required for handling the dependencies of functionalities
and events in the FiM module. | (SRS_Fim_04706)

Note, that modifications by calibration shall be possible. The configuration mechanism
of the FiM using SW-component template contents shall consider these requirements.

First, the FID needs to be introduced and allocated. Furthermore, for each FID a list of
events plus associated mask causing the inhibition of the FID shall be provided by the
SW-component. Chapter 10 introduces how the SW-component template considers
these configuration requirements.

During the configuration process, the data structures are built up. Depending on the
implementation this could, e.g. be a mapping of an event onto all affected FIDs or
alternatively vice versa, a mapping of a FID onto all events affecting it.

Controlling implies that within the implemented functionality, the permission of a FID is
queried via AUTOSAR service.

[SWS_Fim_00020] [The FiM module shall ensure an immediate control of functionality
by synchronously responding to an incoming permission query. The FiM module shall
realize this behavior either by storing the permission state as a status variable or by
evaluation of the event states upon permission query. | (SRS_Fim_04713)

[SWS_Fim_00105] [If a function (FID) is set to not available using the interface
FiM_SetFunctionAvailable, its permission state FiM_GetFunctionPermis-
sion shall always return FALSE | (SRS_Fim_04723)

7.2.2.5 Application example for FiM usage

Front-left
Anti-pinch
Sensor SW-C

Front-left
Window-lifter
SW-C

— Functionld :

Automatic_window_
closing_allowed

— Eventid :
anti_pinch

Functionld:
Automatic_window_closing_allowed

Eventid Mask
anti_pinch Last_Failed

DEM p----- > FIM

Figure 7.4: FiM usage

e The configuration of the FiM actually establishes the relationship between the
Eventld and the assigned Functionld(s)

AUTOSAR

e The required information is:

— For each Functionld: How does the status of the Functionld depend on the
status of one/several Eventlds?

*x The mask determines the relationship between the Eventld status and
the inhibit status of the Functionld.

x The row result is 'OR’ed to come up with the overall result for one Func-
tionld if it depends on several Eventlds.

7.2.3 OBD-Functionality
7.2.3.1 In-Use-Monitor Performance Ratio (IUMPR) Support

In order to track the behavior of diagnostic functions in every day usage, in particular
the capability to find malfunctions, the regulations require the tracking of this perfor-
mance in relation to a standardized driving profile. This is called "In-Use Monitor Per-
formance Ratio" (IUMPR) defined as the number of times a fault could have been found
(=numerator) divided by the number of times the standardized driving profile has been
fulfilled (=denominator). The relevant data recording is allocated in the Dem based on
FIDs and EventIDs.

Thus, based on the FiM configuration of the referenced FIDs it can be evaluated
whether a Ratio Id specific data record needs to be stopped. In particular, IUMPR
tracking shall be stopped as long as the entry remains visible in service $07.

The Dem may use the FiM configuration for its IUMPR calculation or by call of Fim_—
GetFunctionPermission of a dedicated FID.

Note: The FiM does not provide special OBDII functionality but uses already existing
mechanisms for OBDII.

7.3 Error classification

Section 7.x "Error Handling" of the document "General Specification of Basic Software
Modules" describes the error handling of the Basic Software in detail. Above all, it
constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

AUTOSAR

7.3.1 Development Errors

[SWS_Fim_00076] [

Type of error Related error code Error value

API function called before the FiM module has FIM_E_UNINIT 0x01
been full initialized or after the FiM module has
been shut down

FiM_GetFunctionPermission called with wrong FID | FIM_E_FID_OUT_OF_RANGE 0x02

Dem calls FiM with invalid Eventld FIM_E_EVENTID_OUT_OF_RANGE 0x03

APl is invoked with NULL Pointer. FIM_E_PARAM_POINTER 0x04

Invalid configuration set selection FIM_E_INIT_FAILED 0x05
10

7.3.2 Runtime Errors

There are no runtime errors.

7.3.3 Transient Faults

There are no transient faults.

7.3.4 Production Errors

There are no productions errors.

7.3.5 Extended Production Errors

There are no Extended Production Errors.

7.4 Configuration Constraints

[SWS_Fim_CONSTR_00001] [For each configured FiMInhibitionConfigura-
tion, at least one of FiMInhSumRef Or FiMInhEventRef Or FiMInhComponen—
tRef shall be configured.]()

AUTOSAR

8 API specification

8.1 Imported types

In this chapter, all types included from the following files are listed:
[SWS_Fim_00081] |

Module Header File Imported Type
Dem Dem.h Dem_ComponentldType
Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_MonitorStatusType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
10

8.2 Type definitions

8.2.1 FiM_ConfigType

[SWS_Fim_00092] [

Name FiM_ConfigType

Kind Structure

Elements -
Type -
Comment implementation specific

Description This type defines a data structure for the post build parameters of the FIM. At initialization the FIM
gets a pointer to a structure of this type to get access to its configuration data, which is necessary
for initializsation.

Available via FiM.h

|(SRS_BSW_00404, SRS_BSW_00405)

8.3 Function definitions

This is a list of functions provided for upper layer modules.

AUTOSAR

8.3.1 Interface ECUState Manager <-> FiM

8.3.1.1 FiM_lInit

[SWS_Fim_00077] [

Service Name FiM_Init
Syntax void FiM_TInit (
const FiM_ConfigTypex FiMConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) FiMConfigPtr -
Parameters (inout) None
Parameters (out) None
Return value None
Description This service initializes the FIM.
Available via FiM.h

|() Note: see Chapter 9.1

[SWS_Fim_00045] [If development error detection is turned on the FiM module shall
report an error to the DET if it has not successfully completed the initialization and has
detected not permitted access. | (SRS_BSW _00358, SRS _BSW _00406)

[SWS_Fim_00059] [A static status variable denoting if the FiM is initialized shall be
initialized with value 0 before any APIs of the FiM is called.

FiM_Init shall set the static status variable to a value not equal to 0.| (SRS_BSW_-
00358, SRS _BSW _00406)

In order to restore the permission states quickly, it is recommended that the Dem pro-
vides direct access to monitor status information if Dem and FiM are implemented as
a cluster. In this case, the FiM needs to have knowledge about the data structure of
the Dem so that it can directly access Eventld states.

Note: There is no explicit action during shutdown. The permission states remain valid
until the ECU is shut down since they directly depend on the monitor status information.

8.3.2 Interface SW-Components <-> FiM
8.3.2.1 FiM_GetFunctionPermission

[SWS_Fim_00011] |

AUTOSAR

Service Name FiM_GetFunctionPermission
Syntax Std_ReturnType FiM_GetFunctionPermission (
FiM _FunctionIdType FID,
booleanx Permission
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) FID Identification of a functionality by assigned FID. The Functionld is
configured in the FIM.
Min.: 1 (0: Indication of no functionality) Max.: Result of
configuration of FIDs in FIM (Max is either 255 or 65535)
Parameters (inout) None
Parameters (out) Permission TRUE: FID has permission to run FALSE: FID has no permission
to run, i.e. shall not be executed
Return value Std_ReturnType E_OK: The request is accepted
E_NOT_OK: The request is not accepted, ie. initialization of FIM
not completed
Description This service reports the permission state to the functionality.
Available via FiM.h

|(SRS_BSW_00310, SRS_BSW _00312, SRS_Fim_04700, SRS_Fim_04709)

[SWS_Fim_00066] [The SW Components and the BSW shall use the function FiM_-
GetFunctionPermission to query for the permission to execute a certain function-
ality represented by the respective FID.|()

[SWS_Fim_00025] [The function FiM_GetFunctionPermission shall deliver the
return value synchronously to enable direct use of this information for controlling and
executing the underlying code in the software component.| ()

[SWS_Fim_00055] [If development error detection for the module FiM is enabled: the
function FiM_GetFunctionPermission shall perform a plausibility check on the FID
range. If a FID is out of range, the function shall raise a development error and return
no permission (FALSE). | (SRS_BSW_00406)

[SWS_Fim_00056] [If development error detection for the module FiM is enabled:
the function FiM_GetFunctionPermission shall check that the initialization of the
module FiM has been completed. If the function detects that the initialization is not
complete, it shall raise a development error and return no permission (FALSE). | (SRS_-
BSW _00406)

8.3.2.2 FiM_ SetFunctionAvailable

[SWS_Fim_00106] [

AUTO SAR

Service Name FiM_SetFunctionAvailable
Ehnnax Std_ReturnType FiM_SetFunctionAvailable (
FiM _FunctionIdType FID,
boolean Availability
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) FID Identification of a functionality by assigned FID.
Availability The permission of the requested FID: TRUE: Function is
available. FALSE: Function is not available.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The request is accepted
E_NOT_OK: Request is not accepted (e.g. invalid FID is given)
Description This service sets the availability of a function. The function is only available if FiMAvailability
Support is configured as True.
Available via FiM.h

|(SRS_Fim_04723)

8.3.3 Interface Dem <-> FiM
8.3.3.1 FiM_DemTriggerOnMonitorStatus

[SWS_Fim_00021] |

Service Name FiM_DemTriggerOnMonitorStatus
Syntax void FiM_DemTriggerOnMonitorStatus (
Dem_EventIdType EventId
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Eventld Identification of an Event by assigned event number. The Event
Number is configured in the DEM. Min.: 1 (0: Indication of no
Event or Failure) Max.: Result of configuration of Event Numbers
in DEM (Max is either 255 or 65535)
Parameters (inout) None
Parameters (out) None
Return value None
Description This service is provided to be called by the Dem in order to inform the Fim about monitor status
changes.
Available via FiM_Dem.h

|(SRS_BSW_00310, SRS BSW_00312, SRS _Fim 04717)

AUTOSAR

[SWS_Fim_00057] [If development error detection for the module FiM is enabled: the
function FiM_DemTriggerOnMonitorStatus shall perform a plausibility check on
the Eventld. If the requested Eventld is not existing in the Dem configuration, the
function shall raise the development error FIM_E_EVENTID_OUT_OF_RANGE.|(SRS_-
BSW _00406)

[SWS_Fim_00058] [If development error detection for the module FiM is enabled: The
function FiM_DemTriggerOnMonitorStatus shall check for complete initialization
of the FiM. If the function detects that the initialization is not complete, it shall raise a
development error. | (SRS_BSW _00406)

8.3.3.2 FiM_ DemTriggerOnComponentStatus

[SWS_Fim_00101] [

Service Name FiM_DemTriggerOnComponentStatus
Syntax void FiM_DemTriggerOnComponentStatus (
Dem_ComponentIdType ComponentId,
boolean ComponentFailedStatus
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Componentld Identification of a DemComponent.
ComponentFailedStatus New FAILED status of the component.
Parameters (inout) None
Parameters (out) None
Return value None
Description Triggers on changes of the component failed status.
Available via FiM_Dem.h
10

8.3.3.3 FiM_DemlInit

[SWS_Fim_00006] [

Service Name FiM_DemlInit
Syntax void FiM DemInit (
void
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Non Reentrant

AUTOSAR

A
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This service re-initializes the FIM.
Available via FiM_Dem.h

|(SRS_BSW_00310, SRS_BSW_00358)

[SWS_Fim_00069] [The function FiM_DemInit shall compute the permission state

for all FIDs.|()

[SWS_Fim_00082] [The function FiM_DemInit shall access the Eventld states via
the function Dem_GetMonitorStatus and the component information via Dem_Get -

ComponentFailed.|()

8.3.3.4 FiM_GetVersioninfo

[SWS_Fim_00078] [

Service Name FiM_GetVersionInfo
Syntax void FiM_GetVersionInfo (
Std_VersionInfoTypex versioninfo
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None
Description This service returns the version information of this module.
Available via FiM.h
10

8.3.4 Call-back notifications

This chapter lists all functions provided by the FiM module and used by lower layer

modules.

No callback notification is specified.

AUTOSAR

8.3.5 Scheduled functions

This chapter lists all functions provided by the FiM module and called directly by the
Basic Software Module Scheduler.

8.3.5.1 FiM_MainFunction

[SWS_Fim_00060] |

Service Name FiM_MainFunction
Syntax void FiM_MainFunction (
void
)
Service ID [hex] 0x05
Description -
Available via SchM_FiM.h

|(SRS_BSW _00373)

The evaluation of permission states can be performed either on event change or cycli-
cally.

[SWS_Fim_00070] [If FiM module polls monitor status (as defined in configuration
parameter FiMEventUpdateTriggeredByDem = FALSE) and decides to do it in a
cyclic manner, FiM_MainFunction shall be used to calculate the permission states
of all Eventlds using their inhibition masks. The APl Dem_GetMonitorStatus shall
be used to get status information of Eventlds. | ()

[SWS_Fim_00097] [If Dem_GetMonitorStatus returns E_NOT_OK, the FIM shall
not consider this event in its inhibition mask calculation| ()

[SWS_Fim_00067] [The FiM shall perform the evaluation of actual Eventlds status in-
formation cyclically for all the Eventlds using the inhibition mask and then calculate the
corresponding FID permission states. FiM shall access the monitor status information
using the APl Dem_GetMonitorStatus if Dem and FiM are implemented as sepa-
rate modules. FiM shall access the monitor status structure of Dem if Dem and FiM
are implemented as a bundle.]| ()

8.3.6 Expected Interfaces

This chapter lists all functions the module FiM requires from other modules.

AUTOSAR

8.3.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_Fim_00079] |

API Function Header File Description
Dem_GetMonitorStatus Dem.h Gets the current monitor status for an event.
SchM_ActMainFunction_FiM <none> Invokes the SchM_ActMainFunction function to

trigger the activation of a corresponding main
processing function.

10

8.3.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Fim_00080] [

API Function Header File Description
Det_ReportError Det.h Service to report development errors.

8.4 Service interfaces

This chapter specifies the ports and port interfaces to operate the FiM functionality
over the VFB.

8.4.1 Client-Server-Interfaces
8.4.1.1 FiM_FunctionInhibition

Using the concepts of the SW-C template, the interface is defined as follows:
[SWS_Fim_00090] |

| Name | FunctionInhibition

AUTO SAR

A
Comment The SW Components can use this service to query for the permission to execute a certain
functionality represented by a FID.
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation GetFunctionPermission
Comment Get the permission state of the respective FID.
Variation -
Parameters Permission
Type boolean
Direction ouT
Comment The permission of the requested FID.
TRUE: FID has permission to run
FALSE: FID has no permission to run, i.e. shall not be executed
Variation —
Possible Errors E_OK
E_NOT_OK

|(SRS_Fim_04700)

8.4.1.2 FiM_ControlFunctionAvailable

Using the concepts of the SW-C template, the interface is defined as follows:
[SWS_Fim_00107] |

Name ControlFunctionAvailable
Comment SW Components can use this service to set the availability of a function.
IsService true
Variation ({ecuc(FiM/FiMGeneral/FiMAvailabilitySupport)} == True)
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed

Operation SetFunctionAvailable
Comment Sets the availability of a function.
Variation -
Parameters Availability
Type boolean
Direction IN
Comment The permission of the requested FID:
TRUE: Function is available.
FALSE: Function is not available.
Variation -
Possible Errors E_OK
E_NOT_OK

(SRS _Fim_04723)

8.4.2

8.4.2.1

AUTO SAR

Implementation Data Types

FiM_FunctionldType

[SWS_Fim_00027] |

Name FiM_FunctionldType
Kind Type
Derived from Basetype Variation
uint16 platform depended
uint8 platform depended
Range 0..255, 0..65535 - Identifier of functionality
Configurable, size depends on
System complexity. Remark: Not
all numbers are valid. The FIM
data generation tool shall only
assign valid values.
Description Type for the FunctionID
Variation -
Available via Rte_FiM_Type.h

|(SRS_BSW_00304, SRS_BSW _00305, SRS_BSW _00377)

8.4.3 Ports

[SWS_Fim_00094] |

Name Func_{Name}

Kind ProvidedPort | Interface FunctionInhibition

Description A client can query the FiM for execution permission for a specific function. The FIDs which
represent the functions are not directly used by the client SW-C. Instead, the mechanism of
"port-defined argument values" is used and every FID is mapped to a separate port that is
responsible for the data exchange via RTE.

Port Defined Type FiM_FunctionldType

AT V) Value {ecuc(FiM/FiMConfigSet/FiMFID/FiMFunctionid.value)}

Variation Name = {ecuc(FiM/FiMConfigSet/FiMFID.SHORT-NAME)}

|(SRS_Fim_04700)
[SWS_Fim_00108] [

Name Control_{Name}

Kind ProvidedPort | Interface ControlFunctionAvailable
Description A client can set the availability for a specific function.

Port Defined Type FiM_FunctionldType

Argument Value(s) | “yapq {ecuc(FIM/FiMConfigSet/FiIMFID/FiMFunctionid.value)}

\Y

AUTOSAR

A

Variation

({ecuc(FiM/FiMGeneral/FiMAvailabilitySupport)} == True)
Name = {ecuc(FiM/FiMConfigSet/FiIMFID.SHORT-NAME)}

|(SRS_Fim 04723)

8.4.4 Internal Behavior

The InternalBehavior of the FiM Service is only seen by the local RTE. Additionally to
the definition of the function identifiers as port defined arguments, the InternalBehavior
has to specify the operation invoked runnables:

Internal Behavior FiM {

// definition of associated operation-invoked RTE-events not shown

// (it is done in the same way as for any SWC type)

// section

"runnable entities":

RunnableEntity GetFunctionPermission

symbol "FiMGetFunctionPermission"

canbeInvokedConcurrently = TRUE

}

AUTOSAR

9 Sequence diagrams

9.1 Initialization sequence of FiM

«module» «module» «module» «module» Function
EcuM NvM Dem FiM
O (e o) oSO
T T T
| | |
| Dem_Prelnit() |
; »

NvM_ReadAll()

m——

e I

! FiM_Init(const FiM_ConfigType*) |

<--—-——-———-—-—-—-- e ———— === 4= ——————

|
|
FiM_GetFunctionPermission(Std_ReturnType,
Fi M_IFunctionIdType, boolean**)

|
|
E_NOT_OK()
! L]
1
Dem_Init(const Dem_ConfigType*) : :
.)	
FiM_DemlInit()	
- —	
loop Determine All Permission Status/	
: Dem_GetMonitorStatus(Std_RetumnType, :	
Dem_EventldType, Dem_MonitorStatusType**)	
@	

| |
| |
| |
| > |
: Calculate :
| Permission |
| L Status() |
| |
| |
| FiM_DemlInit() |
I < ---- =——=s— I
[- |
e Dem nit0_ _ _ _ _ _ ! !

FiM_FunctionldType, boolean**) |
| |

T FiM_GetFunctionPermission(Std_ReturnType,
|
|
|
|
|
|
|

o

Figure 9.1: Initialization sequence of FiM

9.2 FiM_DemTriggerOnMonitorStatus

The sequence diagram below illustrates how the Dem informs the FiM about the
change of a certain monitor status by calling FiM_DemTriggerOnMonitorStatus.
Furthermore, it indicates how the FID is affected by requesting permission status using
FiM_GetFunctionPermission.

AUTOSAR

«module» SW-C (Functionality) «module»

Dem FiM
O

FiM_DemTriggerOnMonitorStatus(Dem_EventldType)

-
FiM_DemTriggerOnMonitorStatus()

<_ ___________ 'r ___
T I T
| | |
! Dem_GetMonitorStatus(Std_ReturnType, Dem_EventldType, |
g +

Dem MonltorStatusType**)

_____________ :__________BET:GE‘“_”TE°§E“ES<2______________________>
T T
| FiM_GetFunctionPermission(Std_RetumnType, |
[FiM_FunctionldType, boolean**y s

|

|

| Fim_GetFunctionPermission()

S E_——_——_—_—_—_—_—_—_—_—_ e T

| -
|

Figure 9.2: FiM_DemTriggerOnMonitorStatus

AUTOSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification, Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module Fi
M.

Chapter 10.3 specifies published information of the module FiM.

10.1 How to read this chapter

For details refer to the chapter 10.1 "Introduction to configuration specification" in
SWS_BSWGeneral [1].

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters are described in Chapter 7 and Chapter 8.

10.2.1 FiM

Module SWS Item ECUC_FiM_00612

Module Name FiM

Module Description Configuration of the FiM (Function Inhibition Manager) module.

Post-Build Variant true

Support

Supported Config VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Variants

Included Containers

Container Name Multiplicity | Scope / Dependency

FiMConfigSet 1 This container contains the configuration parameters
and sub containers of the FiM module supporting
multiple configuration sets.

FiMGeneral 1

AUTOSAR

AUTOSARParameterDefinition:

EcucDefinitionCollection

+module

FiM: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

10.2.2 FiMGeneral

FiMGeneral:
+container| EcucParamConfContainerDef

FiMConfigSet:
EcucParamConfContainerDef

+container

+subContainer

FiMFID: EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+parameter

FiMFunctionld:
EcuclntegerParamDef

max = 65535

min =0
upperMultiplicity = 1
lowerMultiplicity = 1
symbolicNameValue = true

+subContainer

FiMInhibitionConfiguration:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+subContainer

FiMSummaryEvent:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.1: Configuration overview for FiM

SWS Iltem [ECUC_FiM_00040]
Container Name FiMGeneral
Parent Container FiM

Description

Configuration Parameters

AUTOSAR

Name FiMAvailabilitySupport [ECUC_FiM_00610]
Parent Container FiMGeneral
Description This configuration parameter specifies, if the Fim shall support the
service to set the Availabity of a Funtionality.
true: Service is supported. false: Service is not supported
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: local

Name FiMDevErrorDetect [ECUC_FiM_00087]
Parent Container FiMGeneral
Description Switches the development error detection and notification on or off.
e true: detection and notification is enabled.
o false: detection and notification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: local

Default Value

Name FiMEventUpdateTriggeredByDem [ECUC_FiM_00086]

Parent Container FiMGeneral

Description This configuration parameter specifies the way FIM obtains status of
Eventlds.
TRUE: the DEM informs FIM about changes of monitor status, FALSE:
the FIM polls monitor status from the DEM module either cyclically or
on demand.

Multiplicity 1

Type EcucBooleanParamDef

Post-Build Variant
Value

false

AUTOSAR

Value Configuration Pre-compile time X | All Variants
Class

Link time —

Post-build time -
Scope / Dependency scope: local

Name FiMMainFunctionPeriod [ECUC_FiM_00611]

Parent Container FiMGeneral

Description Allow to configure the time for the periodic cyclic task.
Please note: This configuration value shall be equal to the value in the
Basic Software Scheduler configuration of the RTE module.
The AUTOSAR configuration standard is to use Sl units, so this
parameter is defined as float value in seconds. FiM configuration tools
shall convert this float value to the appropriate value format for the use
in the software implementation of FiM.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[|

Default Value

Post-Build Variant false

Value

Value Configuration Pre-compile time X | All Variants

Class
Link time -
Post-build time -

Scope / Dependency scope: local

Name FiMMaxEventsPerFidInhibitionConfiguration [ECUC_FiM_00608]

Parent Container FiMGeneral

Description This configuration parameter specifies the total maximum number of
inhibiting events in a FiMInhibitionConfiguration.
Its applicable for post build configuration versions only and may be
used to allocate the maximum size of memory to store and execute the
configuration.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 1.. 65535

Default Value

Post-Build Variant false

Value

Value Configuration Pre-compile time X | All Variants

Class
Link time —
Post-build time -

Scope / Dependency scope: local

AUTOSAR

Name FiMMaxFiMInhibitionConfigurations [ECUC_FiM_00606]

Parent Container FiMGeneral

Description This configuration parameter specifies the total maximum number of
FiMInhibitionConfigurations.
Its applicable for post build configuration versions only and may be
used to allocate the maximum size of memory to store and execute the
configuration.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 1.. 65535

Default Value

Post-Build Variant false

Value

Value Configuration Pre-compile time X | All Variants

Class
Link time —
Post-build time -

Scope / Dependency scope: local

Name FiMMaxInputEventsPerSummaryEvents [ECUC_FiM_00609]

Parent Container FiMGeneral

Description This configuration parameter specifies the total maximum number of
input events per summary event.
Its applicable for post build configuration versions only and may be
used to allocate the maximum size of memory to store and execute the
configuration.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 1.. 65535

Default Value

Post-Build Variant false

Value

Value Configuration Pre-compile time X | All Variants

Class
Link time —
Post-build time -

Scope / Dependency scope: local

Name FiMMaxSumEventsPerFidInhibitionConfiguration [ECUC_FiM_00607]

Parent Container FiMGeneral

Description This configuration parameter specifies the total maximum number of
inhibiting summary events in a FiMInhibitionConfiguration.
Its applicable for post build configuration versions only and may be
used to allocate the maximum size of memory to store and execute the
configuration.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 1.. 65535

AUTOSAR

Default Value

Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: local

Name FiMMaxSummaryEvents [ECUC_FiM_00091]
Parent Container FiMGeneral
Description This configuration parameter specifies the maximum number of
summarized events that can be configured.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 65535 |
Default Value
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: local

Name FiMVersioninfoApi [ECUC_FiM_00094]
Parent Container FiMGeneral
Description This configuration parameter is used to switch on or to switch off the
API to get the version information.
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: local

| No Included Containers

AUTO SAR

FiM: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

FiMGeneral:
EcucParamConfContainerDef

+parameter

+parameter

FiMVersioninfoApi:

EcucBooleanParamDef

upperMultiplicity = 1
lowerMultiplicity = 1
defaultValue = false

FiMEventUpdateTriggeredByDem:

EcucBooleanParamDef

upperMultiplicity = 1
lowerMultiplicity = 1

FiMMainFunctionPeriod: EcucFloatParamDef

+parameter

+parameter

FiMDevErrorDetect:
EcucBooleanParamDef

upperMultiplicity = 1
lowerMultiplicity = 1
defaultValue = false

min =0
upperMultiplicity = 1
lowerMultiplicity = 1
max = INF

FiMAvailabilitySupport: EcucBooleanParamDef

+parameter

FiMMaxSummaryEvents:

EcucintegerParamDef

+parameter

max = 65535

min =0
upperMultiplicity = 1
lowerMultiplicity = 1

upperMultiplicity = 1
lowerMultiplicity = 1
defaultvValue = false

FiMMaxSumEventsPerFidInhibitionConfiguration:

EcucintegerParamDef

+parameter

>

FiMMaxFiMInhibitionConfigurations:

EcucintegerParamDef

+parameter

max = 65535

min =1
upperMultiplicity = 1
lowerMultiplicity = 0

max = 65535
min=1
upperMultiplicity = 1
lowerMultiplicity = 0

FiMMaxEventsPerFidInhibitionConfiguration:
EcuclintegerParamDef

+parameter

>

FiMMaxInputEventsPerSummaryEvents:

EcucintegerParamDef

+parameter

max = 65535

min =1
upperMultiplicity = 1
lowerMultiplicity = 0

max = 65535
min=1
upperMultiplicity = 1
lowerMultiplicity = 0

Figure 10.2: Configuration overview for FiMGeneral

10.2.3 FiMConfigSet

SWS Item

[ECUC_FiM_00601]

Container Name

FiMConfigSet

AUTOSAR

Parent Container

FiM

Description

This container contains the configuration parameters and sub
containers of the FiM module supporting multiple configuration sets.

Configuration Parameters

Included Containers

Container Name Multiplicity | Scope / Dependency

FIMFID 1.7 This container includes symbolic names of all FIDs.
FiMInhibition 1.* This container includes all configuration parameters
Configuration concerning the relationship between event and FID.
FiMSummaryEvent 0..x The summarized Eventld definition record consists of a

summarized event ID and specific Dem Events.

This record means that a particular FID that has to be
disabled in case of summarized event (defined above) is
to be disabled in any of the specific events. A possible
solution could be assigning events as summarized
events along with a list of specific events. During the
configuration process the summarized event substitutes
the referenced single events.

However, it is not outlined how this requirement is solved
- whether by configuration process or by implementation
within the FiM. The FiM configuration tool could also
build up a suitable data structure for summarized events
and deal with it in the FiM implementation.

10.2.4 FiMFID

SWS Item

[ECUC_FiM_00039]

Container Name

FiMFID

Parent Container

FiMConfigSet

Description

This container includes symbolic names of all FIDs.

Configuration Parameters

AUTOSAR

Name FiMFunctionld [ECUC_FiM_00085]

Parent Container FiIMFID

Description Unique identifier of a FimFunctionld. This parameter should not be
changeable by user, because the Id should be generated by Fim itself
to prevent gaps and multiple use of an Id.
Note: The implementer can add the attribute 'withAuto’ to the
parameter definition which indicates that the value can be calculated by
the generator automatically. When ‘withAuto’ is set to 'true’ for this
parameter definition the 'isAutoValue’ can be set to 'true’. If
‘isAutoValue’ is set to 'true’ the actual value will not be considered
during ECU Configuration but will be (re-)calculated by the code
generator and stored in the value attribute afterwards.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0.. 65535 |

Default Value

Post-Build Variant false

Value

Value Configuration Pre-compile time X | All Variants

Class
Link time —
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

10.2.5 FiMInhibitionConfiguration

SWS Item

[ECUC_FiM_00038]

Container Name

FiMInhibitionConfiguration

Parent Container

FiMConfigSet

Description This container includes all configuration parameters concerning the
relationship between event and FID.
Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time -
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

AUTOSAR

Name FiMInhInhibitionMask [ECUC_FiM_00096]

Parent Container FiMInhibitionConfiguration

Description The configuration parameter is used to specify the inhibition mask for
an event - FID relation.

Multiplicity 1

Type EcucEnumerationParamDef

Range FIM_LAST_FAILED Last Failed - DEM_UDS_STATUS_TF

Post-Build Variant
Value

flag of Dem Eventstatus is set
Use case: Re-configuration, avoiding
follow-up errors

FIM_NOT_TESTED

Not Tested this cycle -
DEM_UDS_STATUS_TNCTOC flag of
Dem Eventstatus is set.

Use case: Scheduling of monitors.

FIM_TESTED

Tested -
DEM_UDS_STATUS_TNCTOC flag of
Dem Eventstatus is not set.

Use case: Self deactivation, check
during driving cycle.

FIM_TESTED_AND_FAIL
ED

true

Tested and Failed -
DEM_UDS_STATUS_TF flag of Dem
Eventstatus is set and
DEM_UDS_STATUS_TNCTOC flag is
not set

Use case: Avoiding deadlocks,
repeated monitoring.

Value Configuration
Class

Pre-compile time

Link time
Post-build time

X | VARIANT-PRE-COMPILE

X | VARIANT-POST-BUILD

Scope / Dependency

scope: local

Name FiMInhComponentRef [ECUC_FiM_00605]

Parent Container FiMInhibitionConfiguration

Description Reference to a DemComponent which is necessary for function
permission.

Multiplicity 0..*

Type Reference to DemComponent

Post-Build Variant true

Multiplicity

Post-Build Variant true

Value

Multiplicity
Configuration Class

Pre-compile time

Link time
Post-build time

X | VARIANT-PRE-COMPILE

X | VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time

Link time
Post-build time

X | VARIANT-PRE-COMPILE

X | VARIANT-POST-BUILD

AUTOSAR

Scope / Dependency

scope: local

Name FiMInhEventRef [ECUC_FiM_00100]

Parent Container FiMInhibitionConfiguration

Description Selection of an single DEM Event.

Multiplicity 0..”

Type Symbolic name reference to DemEventParameter
Post-Build Variant true

Multiplicity

Post-Build Variant true

Value

Multiplicity
Configuration Class

Pre-compile time

Link time
Post-build time

VARIANT-PRE-COMPILE

VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time

Link time
Post-build time

VARIANT-PRE-COMPILE

VARIANT-POST-BUILD

Scope / Dependency

scope: local

Name FiMInhFunctionldRef [ECUC_FiM_00095]
Parent Container FiMInhibitionConfiguration

Description

Multiplicity 1

Type Reference to FIMFID

Post-Build Variant
Value

true

Value Configuration
Class

Pre-compile time

Link time
Post-build time

VARIANT-PRE-COMPILE

VARIANT-POST-BUILD

Scope / Dependency

scope: local

Name FiMInhSumRef [ECUC_FiM_00102]
Parent Container FiMInhibitionConfiguration
Description Selection of a summarized Event.
Multiplicity 0..*

Type Reference to FiMSummaryEvent
Post-Build Variant true

Multiplicity

Post-Build Variant true

Value

Multiplicity
Configuration Class

Pre-compile time

Link time
Post-build time

VARIANT-PRE-COMPILE

VARIANT-POST-BUILD

AUTOSAR

Value Configuration
Class

Pre-compile time

Link time
Post-build time

VARIANT-PRE-COMPILE

VARIANT-POST-BUILD

Scope / Dependency

scope: local

| No Included Containers

AUTO SAR

FiMConfigSet:
EcucParamConfContainerDef

+subContainer

FiMInhibitionConfiguration:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+destination

DemComponent:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

>
FiMFunctionld:
+subContainer FiMFID:) EcucintegerParamDef
EcucParamConfContainerDef
+parameter max = 65535
lowerMultiplicity = 1 min =0
upperMultiplicity = * upperMultiplicity = 1
lowerMultiplicity = 1
symbolicNameValue = true
+destination
FiMInhFunctionldRef:
EcucReferenceDef
+reference ——
lowerMultiplicity = 1
upperMultiplicity = 1
+subContainer
FiMInhSumRef: FiMSummaryEvent:
+reference EcucReferenceDef +destination EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *
. F|I\I/IEInhInh|ti!t|0;MaskD . +literal FIM LAST FAILED:
CLCENAMETanom el ambe EcucEnumerationLiteralDef
upperMultiplicity = 1
lowerMultiplicity = 1
o +literal FIM_TESTED:
EcucEnumerationLiteralDef
+parameter
+literal FIM_NOT _TESTED:
EcucEnumerationLiteralDef
+literal | FIM_TESTED_AND_FAILED:
EcucEnumerationLiteralDef
FiMInhEventRef: EcucReferenceDef —DemEventParamet.er:
L EcucParamConfContainerDef
+reference P +destination
lowerMultiplicity = 0 —
upperMultiplicity = * upperMuIt.|pI.|c.|ty_— 65535
requiresSymbolicNameValue = true lowerMultiplicity = 1
+parameter
FiMInhComponentRef: .
DemEventld:
+reference EcucReferenceDef _—
‘ ——— EcuclntegerParamDef
lowerMultiplicity = 0
upperMultiplicity = * TIER = Gk
min =1

symbolicNameValue = true

Figure 10.3: Configuration overview for FiMInhibitionConfiguration

AUTOSAR

10.2.6 FiMSummaryEvent

SWS Item [ECUC_FiM_00603]
Container Name FiMSummaryEvent
Parent Container FiMConfigSet

Description

The summarized Eventld definition record consists of a summarized
event ID and specific Dem Events.

This record means that a particular FID that has to be disabled in case
of summarized event (defined above) is to be disabled in any of the
specific events. A possible solution could be assigning events as
summarized events along with a list of specific events. During the
configuration process the summarized event substitutes the referenced
single events.

However, it is not outlined how this requirement is solved - whether by
configuration process or by implementation within the FiM. The FiM
configuration tool could also build up a suitable data structure for
summarized events and deal with it in the FiM implementation.

Post-Build Variant

true

Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class

Link time —

Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name FiMInputEventRef [ECUC_FiM_00604]
Parent Container FiMSummaryEvent
Description Reference to DemEventParameters combined to this summarized
event.
Multiplicity 1.7
Type Symbolic name reference to DemEventParameter
Post-Build Variant true
Multiplicity
Post-Build Variant true
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time —
Post-build time X | VARIANT-POST-BUILD
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time —
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

No Included Containers

AUTOSAR

FiMConfigSet:
EcucParamConfContainerDef

+subContainer

FiMSummaryEvent:
EcucParamConfContainerDef

FiMInputEventRef: EcucReferenceDef

+reference

lowerMultiplicity =
upperMultiplicity = *

lowerMultiplicity = 1

0 @ — upperMultiplicity = *

+

requiresSymbolicNameValue = true

destination

DemEventParameter:

EcucParamConfContainerDef

upperMultiplicity =
lowerMultiplicity =

65535
1

+parameteI

DemEventid:
EcuclntegerParamDef

max = 65535
min =1

symbolicNameValue = true

Figure 10.4: Configuration overview for FiIMSummaryEvent

10.3 Published Information

For details refer to the chapter 10.3 "Published Information" in SWS_BSWGeneral[1].

A Not applicable requirements

[SWS_Fim_00999] |These requirements are not applicable to this specification. |

(SRS_BSW_00301,

SRS_BSW_00302, SRS_BSW_00306, SRS_BSW_00307,

SRS_BSW_00308, SRS_BSW_00309, SRS_BSW _00314, SRS_BSW_00323, SRS_-

BSW_00325,
BSW_00334,
BSW _00347,
BSW_00360,
BSW_0038s,
BSW_00423,
BSW_00427,

SRS_BSW_00328,
SRS_BSW_00336,
SRS_BSW_00353,
SRS_BSW_00361,
SRS_BSW_00409,
SRS _BSW 00424,
SRS_BSW_00428,

BSW_00433, SRS_Fim_04721)

SRS_BSW_00330,
SRS_BSW_00342,
SRS_BSW _00357,
SRS_BSW_00375,
SRS _BSW _00417,
SRS_BSW_00425,
SRS_BSW_00429,

SRS_BSW_00333,
SRS _BSW_00343,
SRS_BSW _00359,
SRS_BSW_00378,
SRS _BSW_00422,
SRS_BSW_00426,
SRS _BSW_00432,

SRS_-
SRS_-
SRS_-
SRS_-
SRS_-
SRS_-
SRS_-

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies on other modules
	5.1 Requirements
	5.1.1 Use Cases

	6 Requirements traceability
	7 Functional specification
	7.1 Background & Rationale
	7.2 Requirements
	7.2.1 FiM core variables
	7.2.1.1 Definition of 'Diagnostic Event'
	7.2.1.2 Definition of 'Monitor Status'
	7.2.1.3 Definition of 'Monitored Component'
	7.2.1.4 Definition of 'Summarized Event'
	7.2.1.5 Definition of 'Function Identifier'
	7.2.1.6 Definition of 'Function Identifier permission state'

	7.2.2 FiM core functionalities
	7.2.2.1 Initialization
	7.2.2.2 FiM Data Structure
	7.2.2.3 Interaction between Dem and Function Inhibition Manager (FiM)
	7.2.2.4 Interaction between SW-Components and Function Inhibition Manager (FiM)
	7.2.2.5 Application example for FiM usage

	7.2.3 OBD-Functionality
	7.2.3.1 In-Use-Monitor Performance Ratio (IUMPR) Support

	7.3 Error classification
	7.3.1 Development Errors
	7.3.2 Runtime Errors
	7.3.3 Transient Faults
	7.3.4 Production Errors
	7.3.5 Extended Production Errors

	7.4 Configuration Constraints

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 FiM_ConfigType

	8.3 Function definitions
	8.3.1 Interface ECUState Manager <-> FiM
	8.3.1.1 FiM_Init

	8.3.2 Interface SW-Components <-> FiM
	8.3.2.1 FiM_GetFunctionPermission
	8.3.2.2 FiM_ SetFunctionAvailable

	8.3.3 Interface Dem <-> FiM
	8.3.3.1 FiM_DemTriggerOnMonitorStatus
	8.3.3.2 FiM_ DemTriggerOnComponentStatus
	8.3.3.3 FiM_DemInit
	8.3.3.4 FiM_GetVersionInfo

	8.3.4 Call-back notifications
	8.3.5 Scheduled functions
	8.3.5.1 FiM_MainFunction

	8.3.6 Expected Interfaces
	8.3.6.1 Mandatory Interfaces
	8.3.6.2 Optional Interfaces

	8.4 Service interfaces
	8.4.1 Client-Server-Interfaces
	8.4.1.1 FiM_FunctionInhibition
	8.4.1.2 FiM_ControlFunctionAvailable

	8.4.2 Implementation Data Types
	8.4.2.1 FiM_FunctionIdType

	8.4.3 Ports
	8.4.4 Internal Behavior

	9 Sequence diagrams
	9.1 Initialization sequence of FiM
	9.2 FiM_DemTriggerOnMonitorStatus

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 FiM
	10.2.2 FiMGeneral
	10.2.3 FiMConfigSet
	10.2.4 FiMFID
	10.2.5 FiMInhibitionConfiguration
	10.2.6 FiMSummaryEvent

	10.3 Published Information

	A Not applicable requirements

