AUTOSAR

Document Title

Specification of AUTOSAR
Run-Time Interface

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 923
Document Status published

Part of AUTOSAR Standard

Classic Platform

Part of Standard Release

R21-11

Document Change History

Management

Date Release | Changed by Description
e Introduced SWS items into
AUTOSAR specification
2021-11-25 | R21-11 | Release e Overall review and clarification
Management e ARTI introduced as BSW Module
"Arti"
e New ARTI APl and Errors
e Merged EcuC ArtiXxx containers into
AUTOSAR one Arti container
2020-11-30 | R20-11 | Release e Added ARTI for RTE
Management e Changed document status from draft
to valid
e Added expression syntax
e Corrected trace macros and ARTI
AUTOSAR class names
2019-11-28 | R19-11 | Release e Added and extended several
Management configuration parameters
e Corrected SWS item references
e Changed Document Status from
Final to published
AUTOSAR
2018-10-31 | R4.4.0 Release

e Initial release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

—

Introduction and functional overview
Acronyms and Abbreviations

Related documentation

3.1 Input documents & related standards andnorms
3.2 Related specification

Constraints and assumptions
41 Limitations
Dependencies to other modules

Requirements Tracing

Functional specification

7.1 ARTI Module Description
7.2 ARTIHook Implementation
7.3 ARTIOS Implementation
74 ARTIRTEVFBTraceClient

7.4.1 RTE VFB Trace Client Configuration
7.5 Error Classification
7.5.1 DevelopmentErrors o oL
7.5.2 Runtime Errors
7.5.3 TransientFaults,
754 Production Errors
7.5.5 Extended Production Errors

API specification

8.1 Importedtypes
8.2 Typedefinitions
8.3 Functiondefinitions o

8.3.1 Arti_Init

8.3.2 Arti_GetVersioninfo o L.
8.4 Callback notifications
8.5 Scheduledfunctions,
8.6 Expectedinterfaces.

8.6.1 Mandatory interfaces
8.6.1.1 ARTI TracingMacro
8.6.2 Optionalinterfaces
8.6.2.1 ARTI Generic Stopwatch
8.6.2.2 ARTI Generic Dataflow Stopwatch
8.6.2.3 ARTI Generic Datapoint
8.6.2.4 ARTI Category 1 Interrupts

8.6.2.5 ARTIRTE VFB Trace Client

AUTO SAR

8.6.3 Configurable interfaces

8.7 Servicelnterfaces.
9 Sequence diagrams

10 Configuration specification

10.1 Howtoreadthischapter
10.2 ARTIParameters
10.3 ARTI Generic Container
10.3.1 ArtiGenericComponentClass . .
10.3.2 ArtiGenericComponentinstance
10.4 ARTI Hardware Container
10.5 ARTIOs Container
10.6 ARTIRte Container
10.6.1 ArtiRteRunnableClass
10.6.2 ArtiRteRunnablelnstance
10.6.3 ArtiRteSchedulableClass
10.6.4 ArtiRteSchedulablelnstance . .
10.6.5 ArtiRteVfbTraceHooks
10.7 ARTI Values Container
10.7.1 ArtiConstant
10.7.2 ArtiExpression
10.7.3 ArtiHook
10.7.4 ArtiObjectClassParameter . . .
10.7.5 ArtiObjectinstanceParameter . .
10.7.6 ArtiParameterTypeMap
10.7.7 ArtiStates
10.8 Published Information

A Not applicable requirements

B Example

B.1 ARTI Instrumentation
B.1.1 ARTI Tool Binding (ARTL.h) . . .
B.1.2 ARTI OS Instrumentation
B.1.3 ARTI Arbitrary Instrumentation .

B.2 ARXML Representation of Instrumentation

C Expression Syntax

31

31
32
33
34
38
42
43
44
45
46
48
49
51
51
53
54
55
59
60
62
66
68

68

68

69
69
73
74
75

80

AUTOSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the
AUTOSAR Run-Time Interface (“ARTI”) for debugging and tracing AUTOSAR modules.

ARTI defines an interface between build tools and debugging/tracing tools. The debug-
ging/tracing tools shall then forward tracing information to trace/timing analysis tools.
The interface shall ease and speed up the debugging, tracing and verification of system
behavior as well as round-trip engineering.

Debugging and tracing enables efficient development, integration, optimization and ver-
ification of ECU software. For analyzing several aspects - especially timing aspects - it
becomes essential to link the debugging and tracing data to the scheduling of an ECU.
Knowledge about tasks, interrupts and runnables, in other words: awareness of the
operating system (“OS awareness”), is required.

A good interaction of the tool chain provides complete round-trip engineering from
model down to hardware and back - covering several software levels and several
phases of the V-model.

ARTI shall especially provide

e Support of “OS Awareness”, for example examination of OS specific tasks,
threads etc.

e Support of distributes systems and multi-core

e Support of other AUTOSAR modules (e.g. RTE in CP or ARA in AP)
e Support of instrumentation-based tracing and measurement solutions
e Support of TIMEX

The data flow of the tools and the interfaces of ARTI are depicted in figure 1.1.

Trace/Timing
ARTI Analysis Tool
----------------) S
: s 1
1

_— ~ ™~

ARTI ECU . Event Trace Profiling
Description ' Description Data Data
~
n

bt S/

configures

AUTOSAR
Generator

ECU

Figure 1.1: ARTI data flow

For some important definitions please read also chapter 1 of
RS_FoundationDebugTraceProfile.

AUTOSAR

To implement the features, ARTI uses a similar approach that the former OSEK-ORTI
had, but extends this to current requirements. The tools that generate AUTOSAR mod-
ules (e.g. OS, RTE, etc.) have to extend the ECU configuration with internal information
about this module and emit the extended configuration as a separate file (“ARTI file”).
The information therein shall allow to debug and trace the behavior of this module.
Additional tools will collect all ARTI files of an ECU and allow selecting specific items
to trace and create tracing hook files for a specific trace channel (e.g. internal buffer,
hardware trace buffers, etc.). The build environment creates the final application, which
then can be used in the ECU. Debugging and tracing tools can read in the ARTI files
and are “AUTOSAR aware”, giving additional debugging and tracing features to the de-
veloper. These tools can export a trace file, which in turn can be used in trace analysis
tools for extended timing analysis, time measurements and optimization runs.

Using the standardized work flow allows interchanging the tools as necessary, and use
the tool that fits best for each solution without the need of adapting the work flow.

The work flow of the ARTI file generation and usage is depicted in figure 1.2. ARTI
shall only define interfaces within the build process of an AUTOSAR application (i.e. the
export of the generators, and the hooks within the AUTOSAR modules). The interfaces
for tool communication are post-build and not subject to this specification.

AUTOSAR,

ARTI Selector and export trace file

1instrument, add instrumented -
Tracing Tool

' event Ids evaluations to ARTI file;
1 generate hook implementations

AL
ARTI trace file

] &

v Ana yze trace file / stream Trace & Timing
' Analysis Tool
'

Figure 1.2: ARTI work flow

|]
, AUTOSAR '
L} . 1
' System Configuration m S :
i A elect modules and items to
: Description (= : : instrument, add instrumented AR-I.I—.I Select_lt_ar Tnd
. [: event |ds evaluations to ARTI file; racing loo
! te hook I tati
' Extract ECU System Configuration ; : generate hook implementations
: specific info Generator -
' o
' 't
'
' v 1 ARTI hock implementations
! ECU Extract P
' S Generated
: ! sources
' System Configuration ' -
' Configure ECU Extractor : ' Application
1 —
" '
') ' 1 Compile application Build Tool
1 ECU Configuration H
! Description !
" p P
) P """"-».,_, 1| e s s === » bl el
! i : oot ETEEEEEEEES e [S
1
1 Generate RTE MCAL : :
' modules and Generator Generator Generator, 1 ' Project AR arti
v ARTI files " vl =
' | S
1 Moedules H sources H sources H sources . .) elf
1 . v Application executabls
: ARTI module | Os_arti.arxml Rte_arti.arxml Mecal_arti.arxml ! \
1 description ' : !
[: '
: e | 7 [|
~. o 1 5
' ~— | 7 v+ Debug application Debugging .
' R P ' . Tool
1 race application an Tool
: Select modules and items to 1 : o0
: 1
M]
.t
1 L}
, !
' 1
M]

sources

[

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the ARTI module
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

ORTI "OSEK Run Time Interface", an OSEK specification (in its version
2.2) that defines how debuggers can access OSEK OS internal
information.

Terms: Description:

Debugging "Debugging" refers to halting a system, either as a whole or in

parts, for the purpose of
e inspecting the contents of the system in a frozen state

e single stepping, setting breakpoints, starting and stopping
in C or Assembly code

Tracing "Tracing" refers to collecting run-time information over a certain
period of time

e either as a pure software solution, or with hardware assis-
tance

e may include processor instruction trace, OS scheduling
trace, and/or pure data trace

e including time-stamping for further timing analysis

Timing Measurement "Timing Measurement" refers to capturing of timing information

e by instrumentation, e.g. via Pre-/PostTaskHooks or other
hooks or callouts or

e by dedicated hardware support, e.g. hardware perfor-
mance counters

e does not stop execution

Profiling "Profiling" refers to the process of gaining timing parameters/tim-
ing statistics

¢ of functions, tasks, runnables, modules etc.
e possibly with minimum/maximum/average statistics
e possibly with worst case analysis

e possibly calculated out of trace data, repeated snapshots
or Timing Measurement

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of Operating System
AUTOSAR_SWS_OS

3.2 Related specification

Not applicable yet.

4 Constraints and assumptions

The ARTI concept expects to get an own ARTI module description from each module
to be debugged, traced or profiled, e.g. OS and RTE. This allows mixing modules with
ARTI support with those without ARTI support. However, as ARTI contains internal
information, the implementers of the modules have to provide the ARTI file.

4.1 Limitations

ARTI is supposed to work with debug information created by the compilers. This means
each module that supports ARTI needs to be compiled with debug information, and the
ARTI file has to use the symbol names created by the compiler.

ARTI introduces new hooks. In order to use them, they shall be incorporated into
the module’s C code. Either they are put therein statically, or they are put therein
dynamically by a generator as configured.

Tracing internal events is very time critical. ARTI focuses on the solutions with the
least impact on timing (in some cases with no timing overhead at all), but this depends
on the hardware capabilities of the ECU and the tools. ARTI provides examples that
describe the possibilities for tracing, depending on the available hardware and software
capabilities (see Appendix B).

5 Dependencies to other modules

ARTI depends on OS and RTE module, which refine the ARTI description and hooks
for their purposes.

AUTOSAR

6 Requirements Tracing

The following table references the requirements specified in
RS_ClassicPlatformDebugTraceProfile and links to the fulfilment of these. Please
note that if column “Satisfied by” is empty for a specific requirement this means that
this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_Arti_00035] AUTOSAR shall support tracing | [SWS_Arti_00001] [SWS_Arti_00002]
of arbitrary intervals between a
start and a stop event
[RS_Arti_00036] AUTOSAR shall support tracing | [SWS_Arti_00003] [SWS_Arti_00004]
of arbitrary intervals between a
start and several stop events
[RS_Arti_00037] AUTOSAR shall support tracing | [SWS_Arti_00005] [SWS_Arti_00006]
of arbitrary values
[RS_Arti_00038] AUTOSAR shall support tracing | [SWS_Arti_00007] [SWS_Arti_00008]
of category 1 interrupts.

7 Functional specification

ARTI consists of these functional elements:
e ARTI module description
e ARTI hook implementations

The “ARTI Module Description” is intended to be emitted as an ARXML file. Additional
files, such as the “project ARTI file” or “ARTI trace file” may be stored in another file
format, whereas this format is beyond AUTOSAR and defined elsewhere.

ARTI is not a traditional software module that creates code and changes the system
behavior. Instead ARTI is explicitly designed to not affect the overall system behav-
ior. Especially the generation and export of the ARTI module description is intended
to not influence the module that generates the ARTI export; ARTI should export in-
formation that is already internally available. The exported information will then be
post-processed and used by further debugging and tracing tools. However, it might
be necessary to introduce some special variables or functions to be able to generate
requested information. While this causes some slight impact to the code, it is again
the intention not to change the overall behavior of the module using ARTI. The same
applies to the hooks: while the hooks itself may have some slight impact on the code
base and while the hook implementation (done by the tools consuming ARTI) may have
some impact on the timing and on the program flow, it is the intention of ARTI to change
the module behavior as little as possible — ideally not at all. Depending on the hook
implementation, the behavior may differ. It is the responsibility of the tool vendor to
minimize the impact to the behavior of the system.

AUTOSAR

ARTI shall be defined in a way that it is applicable on the road. If ARTI hooks are
implemented, this obviously comes with high safety requirements regarding the imple-
mentation of the hooks since e.g. some of the ARTI hooks will be executed in the
context of the OS. Special care has to be taken in a multi-core context.

If the implementation of the hooks cannot guarantee safe execution, the ECU must not
be used “on the road”. “On the road” here refers to situations where the operation or
malfunction might cause danger to persons or property.

7.1 ARTI Module Description

An "ARTI Module Description" is an ARXML file that contains detailed information
about a specific module (e.g. OS, RTE, etc.). In particular, this is:

e Constants
A Constant defines a constant value that is specific to this application or environ-
ment. E.g. the number of CPUs used in an ECU could be defined as a constant.
Constants are used by a debugger to know about the configuration, or to display
the value in a convenient way.
Constants are referred to by an object information (see "Object Information" be-
low). and are only meaningful in the context of an object.
A Constant is represented by the container ArtiConstant (see chapter 10.7.1).

e Expressions
An Expression defines how a specific value can be accessed on the target by
a debugger to display the current state of the application. Expressions are like
C expressions but limited so that they can be evaluated statically. Hence, Ex-
pressions allow only accesses to global variables, and only unary, binary and
trinary oparators are allowed. Especially accesses to local variables and calls
to functions are not allowed. See Appendix C for a full syntax specification of
Expressions.
Expressions are referred to by an object information (see "Object Information”
below) and are used to define the evaluation of parameter values therein.
An Expression is represented by the container ArtiExpression (see chap-
ter 10.7.2).

e Hook definitions
Hook definitions contain information about which hooks are present in the mod-
ule and how they look like. These hook definitions are used to create the hook
implementation and to trace the information defined by the hook.
A Hook definition is represented by the container ArtiHook (see chapter 10.7.3).

e Object information
Objects within a module (e.g. an “OsTask”) get an own representation in the ARTI
module description. The object information contains references to the original
object as well as references to the expressions and hooks used for this object.

AUTOSAR

All objects of a specific kind are collected in a container. The detailed layout of
an object within a specific module is defined in the according SWS.

e Generic components
ARTI is able to define objects that should show up in a debugger or when tracing,
even if those are not standard AUTOSAR objects (e.g. user defined, or additional
OS features like semaphores). See chapter 10.3.

7.2 ARTI Hook Implementation

The ARTI hook implementations are generated by a tool that consumes the ARTI de-
scription files. They are mainly represented by two files:

e ARTLh
This file contains all macros that are used in the modules supporting ARTI to
instrument certain events. It may also contain the implementation of the macro,
or may refer to an implementation in ARTI.c.

e ARTl.c
This file contains the actual implementation of each macro, if it is not empty or
not implemented in the ARTI.h file.

All events that are not active will be mapped to an empty macro definition. All events
that are active will be expanded to the implementation of the instrumentation. The
actual implementation depends on the hardware and software capabilities of the tracing
tool. Thus, it depends on the used tracing tool, how the macros are implemented.

7.3 ARTI OS Implementation

ARTI support for OS is specified in [2, SWS OS, chapter 7.16 “ARTI Debug Informa-
tion”] and [2, SWS OS, chapter 7.17 “ARTI Hook Macros”]. It is related to the applica-
tion note described in [2, SWS OS, chapter 12.8 , “Debug support”].

7.4 ARTI RTE VFB Trace Client

The ARTI RTE VFB trace client is designed to adapt the VFB tracing mechanism to
the ARTI trace. The VFB tracing mechanism provides hooks including parameters
for tracing while ARTI trace focuses on minimal intrusive trace using the ARTI_TRACE
macro.

The ARTI basic software module implements a trace client of the VFB tracing (see
AUTOSAR_SWS_RTE chapter 5.11, “VFB Tracing Reference”).

It configures the RTE to generate the hooks for the trace client. These hooks will be
mapped to the ArRTT_TRACE macro with dedicated ARTI trace classes and events.

AUTOSAR

This mapping is defined in 8.6.2.5. ARTI supports only a subset of the RTE VFB trace
client hooks. So ARTI only supports

® Rte Arti Runnable <cts> <reName>_ Start
® Rte Arti_ Runnable_<cts>_<reName>_ Return
® SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>_Start

® SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>_Return

7.4.1 RTE VFB Trace Client Configuration

The RTE VFB trace client configuration is done in several steps where RTE genera-
tor and ARTI module are interacting. Configuration parameters are exchanged in the
EcuC.

1. RTE configuration provides /AUTOSAR/EcucDefs/Rte/RteSwComponentin-
stance after RTE configuration

2. ARTI creates an own VFB trace client called "Arti" and provides the configuration
for the trace client using its own /AUTOSAR/EcucDefs/Rte/RteGeneration/RteVi-
bTraceClient. Within this container all the /AUTOSAR/EcucDefs/Rte/RteGenera-
tion/RteVfbTraceClient/RteVfbTraceFunction (see AUTOSAR_SWS_RTE RteVf-
bTraceFunction) are listed for which the ARTI module requests the hooks to be
generated. Here ARTI fills out the value and thus generates a 'wishlist’ of tracing
a certain hook function. Examples are

¢ to enable trace of all schedulable entity hooks: Rte_Arti_SchM
e to enable trace of all runnable hooks: Rte_Arti_Runnable

e to enable trace of all runnable hooks of a certain component:
Rte_Arti_Runnable_MyComponentType where MyComponentType is taken
from /AUTOSAR/EcucDefs/Rte/RteSwComponentType

e to enable trace of a runnable hooks of a certain runnable within a cer-
tain component: Rte_Arti_Runnable_MyComponentType_MyRunnable
where MyRunnable is taken from /AUTOSAR/SoftwareTypes/Component-
Types/<ApplicationSwComponentType>/<SwclnternalBehavior>/<RunnableEntity>

Within the RteVfbTraceClient container, add an RteVfbTraceHooksRef with an
URI pointing to the Art iRteVfbTraceHooks container of the ART]I trace client.

3. Based on this configuration the RTE generator creates the source files containing
the trace hooks. The generated hooks are BSW-MODULE-ENTRY where the
FUNCTION-PROTOTYPE-EMITTER is “Arti”.

4. ARTI generator creates the final trace client based on the BSW-MODULE-
ENTRY’s for the ARTI trace client. It

AUTOSAR

e generates the header file for the mapping of the VFB trace hooks to
ARTI_TRACE macro. All unused generated hooks are mappend to (void).
As part of the mapping, the ARTI module needs to provide a Runnable to
Runnableld mapping (see 8.6.2.5, idOf(<reName>)).

e updates the the RTE’'s BSWMD with the missing information:

— extends the BswinternalBehavior of the RTE with each arti hook as func-
tion marked with SW-ADDR-METHOD-REF CODE.

— extends the BSW-MODULE-ENTRY of each hook with the correct SW-
SERVICE-IMPL-POLICY (MACRO, INLINE or STANDARD).

— add the REQUIRED-ARTIFACTS that implement the hooks to the BSW-
IMPLEMENTATION.

— specify the RESOURCE-CONSUMPTION by adding ARTI MEMORY-
SECTION that holds the EXECUTABLE-ENTITY-REFS of all hooks and
add the SECTION-NAME-PREFIX for the required artifacts.

5. Compile RTE

Example 7.1

1. RTE provides /AUTOSAR/EcucDefs/Rte/RteSwComponentinstance

<ECUC-CONTAINER-VALUE UUID="cd307f8d-8496-421b-a%e8-571463b08250
">
<SHORT-NAME>ConsumerComponent </SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/EcucDefs/Rte/RteSwComponentInstance
</DEFINITION-REF>

</Eéaé—CONTAINER—VALUE>
2. ARTI creates VFB trace client

<ECUC-CONTAINER-VALUE UUID="6deObbde-clff-4c6c—ael9-3a0f536e7e9e
">
<SHORT-NAME>Art i</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/EcucDefs/Rte/RteGeneration/RteVfbTraceClient
</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-FUNCTION-NAME-DEF">
/AUTOSAR/EcucDefs/Rte/RteGeneration/
RteVfbTraceClient/RteVfbTraceFunction
</DEFINITION-REF>
<VALUE>Rte_Arti_Runnable_ConsumerComponent</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>

</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>

AUTOSAR

3. Based on this configuration the RTE generator creates the source

<BSW-MODULE—-ENTRY>
<SHORT-NAME>
Rte_Arti_Runnable_ConsumerComponent_RE2_Return
</SHORT-NAME>
<FUNCTION-PROTOTYPE-EMITTER>Art i</FUNCTION-PROTOTYPE-EMITTER
>
<CALL-TYPE>CALLBACK</CALL-TYPE>
</BSW-MODULE-ENTRY>
<BSW-MODULE-ENTRY>
<SHORT-NAME >
Rte_Arti_Runnable_ConsumerComponent_RE2_Start
</SHORT-NAME>
<FUNCTION-PROTOTYPE-EMITTER>Art i</FUNCTION-PROTOTYPE-EMITTER
>
<CALL-TYPE>CALLBACK</CALL-TYPE>
</BSW-MODULE-ENTRY>

4. ARTI generator updates the RTE’s BSWMD with the missing information

e extends the BswinternalBehavior of the RTE with each arti hook

<BSW-CALLED-ENTITY>
<SHORT-NAME >
Rte_Arti_Runnable_ConsumerComponent_RE2_Start
</SHORT-NAME >
<MINIMUM-START-INTERVAL>0 .0</MINIMUM-START-INTERVAL>
<SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">
/AUTOSAR_MemMap/SwAddrMethods/CODE
</SW-ADDR-METHOD-REF>
<IMPLEMENTED-ENTRY-REF DEST="BSW-MODULE-ENTRY"
BASE="Rte_BSWMD_BswModuleEntrys">
Rte_Arti_Runnable_ConsumerComponent_RE2_Start
</IMPLEMENTED-ENTRY-REF>
</BSW-CALLED-ENTITY>
<BSW-CALLED-ENTITY>
<SHORT-NAME >
Rte_Arti_Runnable_ConsumerComponent_RE2_Return
</SHORT-NAME>
<MINIMUM-START-INTERVAL>0 .0</MINIMUM-START-INTERVAL>
<IMPLEMENTED-ENTRY-REF DEST="BSW-MODULE-ENTRY"
BASE="Rte_BSWMD_BswModuleEntrys">
Rte_Arti_Runnable_ConsumerComponent_RE2_Return
</IMPLEMENTED-ENTRY-REF>
</BSW-CALLED-ENTITY>

e extends the BSW-MODULE-ENTRY

<BSW-MODULE—-ENTRY>

AUTOSAR

<SHORT-NAME>
Rte_Arti_Runnable_ConsumerComponent_RE2_Return
</SHORT-NAME>
<FUNCTION-PROTOTYPE-EMITTER>Art i</FUNCTION-PROTOTYPE—
EMITTER>
<CALL-TYPE>CALLBACK</CALL-TYPE>
<SW-SERVICE-IMPL-POLICY>INLINE</SW-SERVICE-IMPL-POLICY>
</BSW-MODULE-ENTRY>
<BSW-MODULE-ENTRY>
<SHORT-NAME>
Rte_Arti_Runnable_ConsumerComponent_ RE2_Start
</SHORT-NAME>
<FUNCTION-PROTOTYPE-EMITTER>Art i</FUNCTION-PROTOTYPE-
EMITTER>
<CALL-TYPE>CALLBACK</CALL-TYPE>
<SW-SERVICE-IMPL-POLICY>INLINE</SW-SERVICE-IMPL-POLICY>
</BSW-MODULE-ENTRY>

e add the REQUIRED-ARTIFACTS

<BSW-IMPLEMENTATION>
<SHORT-NAME>Rt e</SHORT-NAME>
<PROGRAMMING-LANGUAGE>C</PROGRAMMING-LANGUAGE>
<REQUIRED-ARTIFACTS>

<DEPENDENCY-ON-ARTIFACT>
<SHORT-NAME>Rte_Hook_Arti.h</SHORT-NAME>
<CATEGORY>MEMMAP</CATEGORY>
<ARTIFACT-DESCRIPTOR>
<SHORT-LABEL>Rte_Hook_Arti.h</SHORT-LABEL>
<CATEGORY>SWHDR</CATEGORY>
</ARTIFACT-DESCRIPTOR>
<USAGES>
<USAGE>COMP ILE</USAGE>
</USAGES>
</DEPENDENCY-ON-ARTIFACT>

</REQUIRED-ARTIFACTS>

</BSW-IMPLEMENTATION>

e specify the RESOURCE-CONSUMPTION

<RESOURCE-CONSUMPTION>

<MEMORY-SECTION>
<SHORT-NAME>RTE_Arti_CODE</SHORT-NAME>
<EXECUTABLE-ENTITY-REFS>
<EXECUTABLE-ENTITY-REF DEST="BSW-CALLED-ENTITY"
BASE="Rte_BSWMD_BswModuleDescriptions">
Rte/RteInternalBehavior/
Rte_Arti_Runnable_ConsumerComponent_REZ2_Return

AUTOSAR

</EXECUTABLE-ENTITY-REF>
<EXECUTABLE-ENTITY-REF DEST="BSW-CALLED-ENTITY"

BASE="Rte_BSWMD_BswModuleDescriptions">

Rte/RteInternalBehavior/
Rte_Arti_Runnable_ConsumerComponent_RE2_Start

</EXECUTABLE-ENTITY-REF>

</EXECUTABLE-ENTITY-REFS>

<PREFIX-REF DEST="SECTION-NAME-PREFIX"

BASE="Rte_BSWMD_BswImplementations">

Rte/ResConsumption/RTE_Arti

</PREFIX-REF>

<SW-ADDRMETHOD-REF DEST="SW-ADDR-METHOD">
/AUTOSAR_MemMap/SwAddrMethods/CODE

</SW-ADDRMETHOD-REF>
<SYMBOL>CODE</SYMBOL>
</MEMORY-SECTION>

</RESOURCE-CONSUMPTION>

7.5 Error Classification

Section 7.x "Error Handling" of the document "General Specification of Basic Software
Modules" describes the error handling of the Basic Software in detail. Above all, it
constitutes a classification scheme consisting of five error types which may occur in

BSW modules.

Based on this foundation, the following section specifies particular errors arranged in

the respective subsections below.

7.5.1 Development Errors

There are no development errors.

7.5.2 Runtime Errors

[SWS_Arti_91002] [

Type of error Related error code Error value
Initialization of ARTI module failed ARTI_E_INITIALIZATION 0x01
API| parameter checking: invalid pointer ARTI_E_PARAM_POINTER 0x02

10

AUTOSAR

7.5.3 Transient Faults

There are no transient faults.

7.5.4 Production Errors

There are no production errors.

7.5.5 Extended Production Errors

There are no extended production errors.

8 API specification

8.1 Imported types
This section lists all imported types used by the API. Even if ARTI does not require new
types, some RTE or Component types can be used within the configuration of the hook

functions. Therefore ARTI also has the standardized include structure (see [SRS_-
BSW_00447]) for modules with service interfaces.

8.2 Type definitions

ARTI does not add any type definitions.

8.3 Function definitions
8.3.1 Arti_Init

[SWS_Arti_91004] |

Service Name Arti_Init
Syntax void Arti_Init (
void
)
Service ID [hex] 0x00
Sync/Async Synchronous

AUTOSAR

A

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Service to initialize the ARTI module
Available via Arti.h

10

The implementation of arti_1nit shall be provided by the tool vendor, that implements
ARTI hooks.

[SWS_Arti_00009] [If the initialization fails, the function arti_Init shall raise the
error ARTI_E_INITIALIZATION.]()

8.3.2 Arti_GetVersioninfo

[SWS_Arti_91005] |

Service Name Arti_GetVersionInfo
Syntax void Arti_GetVersionInfo (
Std_VersionInfoType* VersionInfoPtr
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) VersionInfoPtr Pointer to where to store the version information of this module
Return value None
Description Returns the version information of this module.
Available via Arti.h
10

The implementation of arti_GetversionInfo shall be provided by the tool vendor,
that implements ARTI hooks.

[SWS_Arti_00010] [If the parameter versionInfoptr is a null pointer, the function
Arti_GetVersionInfo shall raise the error ARTI_E_PARAM_POINTER. ()

8.4 Callback notifications

ARTI does not provide any callback notifications.

AUTOSAR

8.5 Scheduled functions

ARTI does not have any functions directly called by Basic Software Scheduler.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces
8.6.1.1 ARTI Tracing Macro

There is only one ARTI macro with a set of parameters which define the semantic of
the macro. This macro is used by all modules with ARTI trace capabilities, therefore
ARTI based instrumentation can easily be disabled on a global level.

ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, eventParameter)

Some of the parameters come as tokens (literal text) rather than as symbolic identifiers.
This allows a macro definition to concatenate these parameters to more specific and
efficient macros. Passing and evaluating all parameters as symbolic identifiers at run-
time would be very costly especially by means of run-time consumption.

Here is a possible implementation of the generic ARTI_TRACE macro:

1 #define ARTI_TRACE(_contextName, _className, _instanceName, \

2 instanceParameter, _eventName, eventParameter) \
3 ARTI_TRACE ## _ ## _className ## _ ## _instanceName \

4 ## _ ## _eventName ## _ ## _contextName \

5 ((instanceParameter), (eventParameter))

Such an implementation will generate one hook for all the possible combinations of
_contextName, _className, _instanceName and _eventName and pass parameters
instanceParameter and eventParameter at run-time only. The parameters’ mean-
ings are described in the following.

_contextName Token, literal text, name of the context. One of the following:

NosusP indicating that the hook gets called in a context where interrupts are
disabled

SPRVSR indicating that the called hook may disable interrupts during this call. The
OS functions must not be used for disabling interrupts. Disabling Interrupts
can influence the runtime behavior.

USER indicating the called hook cannot disable interrupts by itself. If it is nec-
essary to disable interrupts, the appropriate OS functions have to be used.
Disabling Interrupts can influence the runtime behavior.

AUTOSAR

_className Token, literal text, name of the class of macros. Classes can be one of
the predefined classes (e.g. Ar_cp_o0s_TAsSK) or user defined. The predefined
classes are specified in the SWS of the according BSW module (e.g. SWS_OS).

_instanceName Name of an instance

instanceParameter Index [uint32] 0..4294967295 of the instance of a particular
_className and _instanceName, the index should start with 0 and be consecu-
tive per _instanceName.

_eventName Token, literal text, name of the event as defined for a particular class (e.g.
OsTask_Start).

eventParameter A [Uint32] 0..4294967295 value as an argument to an event (e.g.
Task Index).

All modules which shall support ARTI tracing shall add calls to this macro with the
module specific parameters.

The parameters that are marked as token, literal text can’t be:
e C macros
e variables
e constants
e enumerations

These parameters are meant to be subject of token concatenation by the C prepro-
cessor or the trace tool provider (provider of ARTI.h) chooses to map these tokens to
symbols within ARTI.h depending on the trace tool.

Examples:

Examples for _className AR_CP_OS_TASK where _instanceParameter specifies
Core ID and _eventParameter specifies Task ID:

1 OS on 2 cores the OS short name is OsA, the OS manages three physical CPU
cores.

e ARTI TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 0, OsTask_Start, 0);
/* OS OsA start of Task with index 0 on it’s own Core 0 */

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 1, OsTask_Start, 0);
/* 0OS OsA start of Task with index 0 on it’s own Core 1 «/

2 OSs on 1 physical core the OS short names are OsA and OsB, both run on the
same physical CPU core (e.g. Hypervisor)

e ARTI_ TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 0, OsTask_Start, 0);
/* 0OS OsA start of Task with index 0 on it’s own Core 0 =%/

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsB, 0, OsTask_Start, 0);
/* OS OsB start of Task with index 0 on it’s own Core 0 =/

AUTOSAR

2 OSs on 4 cores the OS short names are OsA and OsB each OS manages two
physical CPU cores.

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 0, OsTask_Start, 0);
/* OS OsA start of Task with index 0 on it’s own Core 0 =/

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 1, OsTask_Start, 0);
/* 0OS OsA start of Task with index 0 on it’s own Core 1 */

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsB, 0, OsTask_Start, 0);
/* 0OS OsB start of Task with index 0 on it’s own Core 0 =%/

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsB, 1, OsTask_Start, 0);
/* OS OsB start of Task with index 0 on it’s own Core 1 =/

2 OSs, 2 virtual cores each and 3 physical cores the OS short names are OsA and
OsB each OS manages two virtual CPU cores (e.g. Hypervisor manages the
three physical CPU cores).

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, 0OsA, 0, OsTask_Start, 0);
/* OS OsA start of Task with index 0 on it’s own Core 0 x/

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsA, 1, OsTask_Start, 0);
/* OS OsA start of Task with index 0 on it’s own Core 1 =/

e ARTI_ TRACE (NOSUSP, AR_CP_OS_TASK, OsB, 0, OsTask_Start, 0);
/* 0OS OsB start of Task with index 0 on it’s own Core 0 %/

e ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OsB, 1, OsTask_Start, 0);
/* OS OsB start of Task with index 0 on it’s own Core 1 x/

AMODULE, a user defined class with a single instance called aModulel.

e ARTI_TRACE (SPRVSR, AMODULE, AModulel, 0, Thing_Start, 123);

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

8.6.2.1 ARTI Generic Stopwatch

[SWS_Arti_00001] Define USER_STOPWATCH [ARTI shall define a trace class for
tracing of arbitrary intervals between a start and a stop event called USER_STOPWATCH. |
(RS_Arti_00035)

A stopwatch can be used to time between two user defined points in an applica-
tion. The user can put the corresponding ARTI_TRACE macro calls of the class
USER_STOPWATCH anywhere in the code. An arbitrary number of stopwatches are sup-

AUTOSAR

ported by using different instance names (_instanceName). Please note that the trace
tool provider might put limits on the number of active stopwatches.

The trace tool shall at least consider the time between the first start event and the
first stop event in a given sequence and doesn’t need to consider nested start and
Stop events. E.g.

1. Start
2. start (ignored, already started)
3. Stop
4. stop (ignored, no matching START)
5. start
6. Stop
Only events in bold are considered, time is calculated between 7 and 3 and 5 and 6.

[SWS_Arti_00002] Macro USER_STOPWATCH [ARTI macros of the class
USER_STOPWATCH shall compile the following template:| (RS_Arti_00035)

ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, eventParameter);

Parameter Type Description

_contextName Token, literal text | see "8.6.1.1 ARTI Tracing Macro"

_className Token, literal text | USER_STOPWATCH

_instanceName Token, literal text | value that identifies the instance of the
stopwatch

instanceParameter uint32 Not used, should be setto 0

_eventName Token, literal text | value that identifies the event of the timer, one
of Start or Stop

eventParameter uint32 Not used, should be setto 0

Example 8.1

1 ARTI_TRACE (USER, USER_STOPWATCH, myStopwatch, 0, Start, 0);
2 ARTI_TRACE (USER, USER_STOPWATCH, myStopwatch, 0, Stop, 0);

8.6.2.2 ARTI Generic Dataflow Stopwatch

[SWS_Arti_00003] Define USER_DATAFLOW_STOPWATCH [ARTI shall define a
trace class for tracing of arbitrary intervals between a start and several stop events,

AUTOSAR

with the aim to provide insides to a dataflow, called USER_DATAFLOW_STOPWATCH. |
(RS_Arti_00036)

A dataflow stopwatch can be used to time between write and read accesses to a given
variable. The user can put the corresponding ARTI_TRACE macro calls of the class
USER_DATAFLOW_STOPWATCH anywhere in the code. An arbitrary number of dataflow
stopwatches are supported by using different instance names (_instanceName).
Please note that the trace tool provider might put limits on the number of active dataflow
stopwatches.

The trace tool shall at least consider the time between the last write event, the first
Read and the last read event in a given sequence and doesn’t need to consider nested
Write and Read events. E.g.

1. write (ignored as it gets overwritten in 2)
Write

Read

Write

Read (Min)

2 T

Read (ignored, if only consider min and max)
7. Read (Max)

Only events in bold are considered, time is calculated between 2 and 3 and 4 and 5/7.
The time between 4 and the 5 yields the min data age time, likewise the time between
4 and 7 yields the max data age time for the second sequence.

[SWS_Arti_00004] Macro USER_DATAFLOW_STOPWATCH [ARTI macros of the
class user _DaTarLow_sTOPWATCH shall compile the following template:| (RS_Arti_-
00036)

ARTI_TRACE (_contextName, _className, _instanceName, instanceParame-—
ter, _eventName, eventParameter);

Parameter Type Description

__contextName Token, literal text | see "8.6.1.1 ARTI Tracing Macro"

_className Token, literal text | USER_DATAFLOW_STOPWATCH

_instanceName Token, literal text | value that identifies the instance of the
dataflow stopwatch

instanceParameter uint32 Not used, should be setto 0

_eventName Token, literal text | value that identifies the event of the timer, one
of Write or Read

eventParameter uint32 Not used, should be set to 0

Example 8.2

AUTOSAR

1 ARTI_TRACE (USER, USER_DATAFLOW_STOPWATCH, myDataflowStopwatch, 0, Write
r 0);
myVariable = 1;

uint32 temp = myVariable;
ARTI_TRACE (USER, USER_DATAFLOW_STOPWATCH, myDataFlowStopwatch, 0, Read,
0);

a ~ W N

8.6.2.3 ARTI Generic Datapoint

[SWS_Arti_00005] Define USER_DATAPOINT [ARTI shall define a trace class for
tracing of arbitrary values, called user_DATAPOINT. |(RS_Arti_00037)

A datapoint provides the possibility to record different values at user defined locations
in the code. The user can put the corresponding ARTI_TRACE macro calls of the class
USER_DATAPOINT anywhere in the code. An arbitrary number of data points are sup-
ported by using different instance names (_instanceName). Please note that the trace
tool provider might put limits on the number of active data points. There are prede-
fined event names (_eventName) for different data types as defined by AUTOSAR (see
AUTOSAR_SWS_PlatformTypes, e.g. uinT32) this information might be used by the
trace tool for optimized storage and visualization.

[SWS_Arti_00006] Macro USER_DATAPOINT [ARTlI macros of the class
USER_DATAPOINT shall compile the following template:| (RS_Arti_00037)

AUTOSAR

ARTI_TRACE (_contextName, _className, _instanceName, instanceParame-—

ter, _eventName, eventParameter);

Parameter

Type

Description

_contextName

Token, literal text

see "8.6.1.1 ARTI Tracing Macro"

_className

Token, literal text

USER_DATAPOINT

_instanceName

Token, literal text

value that identifies the instance of the data
point

instanceParameter

uint32

Not used, should be set to 0

_eventName

Token, literal text

Value that identifies the type of the datapoint.
The type is a hint for the tool vendor how to
interpret the eventParameter, which is always
32bit wide. Shall be one of the following:

e BOOLEAN
o UINT8

e UINT16

o UINT32

e SINT8

e SINT16

e SINT32

o FLOAT32

eventParameter

uint32

Value that shall be recorded by the event (up to
32-bits)

Example 8.3

t ARTI_TRACE (USER,

USER_DATAPOINT, myDatapointO, 0, UINT32, 2ul);
2 ARTI_TRACE (USER, USER_DATAPOINT, myDatapointl, 0, SINT8, s8_Data);

8.6.2.4 ARTI Category 1 Interrupts

[SWS_Arti_00007] Define AR_CP_ARTI_CAT1ISR [ARTI shall define a trace class
for tracing of category 1 interrupts, called AR_cp_aRTI_CAT1ISR.|(RS_Arti_00038)

ARTI needs to trace all states of category 1 interrupts and all its state transitions.
For some timing parameters (e.g. the interrupt pending time), the simple interrupt
start/stop is not enough. Tools evaluating the timings need to reconstruct a more com-
plex state diagram by calculating the transitions from history. To be compatible to

AUTOSAR

standard software, AR_cp_ARTI_CAT1ISR refers to this state model, knowing that tools
need to postprocess the event flow to get all relevant information. However, if an OS
implementation can provide a more detailed state diagram, ARTI allows to define more
events that won’t need postprocessing and allow earlier synchronization of the trace if
it is truncated (limited trace buffers). This state diagram is then handled with the class
AR_CP_ARTIEXT_CAT1ISR. If possible, the second state machine is to be preferred.

AR_CP_ARTI_CAT1ISR :

The class AR_CP_ARTI_CAT1ISR contains events allowing the tracing of catecory
1 interrupts.

The following state diagram shows the states and transitions:

Running
ﬂ
Start T)
Inactive

Figure 8.1: ARTI CAT1ISR state machine

Transitions used by ARTI for class AR_CP_ARTI_CAT1ISR:

Name Transition Event Name
Start Inactive -> Running OsCatlIsr_Start
Stop Running -> Inactive OsCatlIsr_Stop

AR_CP_ARTIEXT_CAT1ISR :

The class AR_CP_ARTIEXT_CAT1ISR contains events allowing the tracing of cate-
cory 1 interrupts with an enhanced state model.

The following state diagram shows the state machine as used by ARTI:

Resume—— Running
Stop
I 4 \
~~ Start

- -

Acﬁvate

Figure 8.2: ARTI EXT CAT1ISR state machine

States used by ARTI for class AR_CP_ARTIEXT_CATI1ISR:

AUTOSAR

ARTI 0S

Inactive Inactive
Activated Inactive
Running Running
Preempted Running

Transitions used by ARTI for class AR_CP_ARTIEXT_CAT1ISR:

Name Transition Event Name

Activate Inactive -> Activated Os-
CatlIsr_Activate

Start Activated -> Running OsCatlIsr_Start

Preempt Running -> Preempted | OsCatlIsr_Preempt

Resume Preempted -> Running | OsCat1Isr_Resume

Stop Running -> Inactive OsCatlIsr_Stop

[SWS_Arti_00008] Macro AR_CP_ARTI_CAT1ISR [ARTI macros of the classes
AR_CP_ARTI_CATI1ISR and AR_CP_ARTIEXT_CAT1ISR shall compile the following tem-
plate:| (RS_Arti_00038)

1 ARTI_TRACE (_contextName, AR_CP_ARTI_CAT1ISR, <OS Short Name>, <Core
Index>, <Event Name>, <CatlIsr Index>)

2 ARTI_TRACE (_contextName, AR _CP_ARTIEXT_CATI1ISR, <OS Short Name>, <Core
Index>, <Event Name>, <CatlIsr Index>)

The <Core Index> for any event shall represent the core index where the corresponding
Cat1lsr is scheduled on.

The <Event Name> should follow the transition table above.

The <Cat1lsr Index> shall be a numeric identifier of the Cat1lsr.

8.6.2.5 ARTI RTE VFB Trace Client

The RTE Trace events are mapped to the following ArRT1_TRACE classes. This mapping
will be generated by the ARTI module.

Runnable Entity Trace Events: AR_CP_RTE_RUNNABLE
e Rte_Arti_Runnable_<cts>_<reName>_Start
e Rte_Arti_Runnable_<cts>_<reName>_Return
BSW Schedulable Entities Trace Events: AR_CP_SCHM_SCHEDULABLE
® SchM _Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>_Start

® SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>_Return

AUTOSAR

8.6.2.5.1 Trace Class - AR_CP_RTE_RUNNABLE

Runnable Entity Invocation

1 #define Rte_Arti_Runnable_<cts>_ <reName>_Start (\\
2 [const_Rte_CDS_<cts>_ptr]) \\

3 ARTI_TRACE (NOSUSP, \\

4 AR_CP_RTE_RUNNABLE, \\

5 shortNameOf (<cts>), \\

6 [const_Rte_CDS_<cts>_ptr] |0, \\

7 RteRunnable_Start, idOf (<reName>))

Runnable Entity Termination

1 #define Rte_ Arti Runnable <cts> <reName> Return(\\
2 [const_Rte_CDS_<cts>_ptr]) \\

3 ARTI_TRACE (NOSUSP, \\

4 AR_CP_RTE_RUNNABLE, \\

5 shortNameOf (<cts>), \\

6 [const_Rte_CDS_<cts>_ptr] |0, \\

7 RteRunnable_Return, 1dOf (<reName>))

<cts> Specifies the component type that is emitted by the RTE. For each component
type the mapping is created.

<reName> is the name of the runnable entity. For each name the mapping is created.

shortNameOf() is a hint of the ARTI module the extract use the short name of the
element in question.

idOf() is a function of the ARTI module to create an 32-bit ID out of an element. This
mapping will also be stored in a type map within ArtiValues and will be referenced
by the hook descriptions.

[] are optional parameters issued by the RTE. If they do exist then they have to be
used. If they do not exist they will be replaced by 0 in the ARTI_TRACE macro.

AUTOSAR

Parameter Type Description

_contextName Token, literal text | see 8.6.1.1 usually this is USER for runnables.
_className Token, literal text | AR_CP_RTE_RUNNABLE

_instanceName Token, literal text | Is the short name of the <ct s>, the

component type symbol of the
AtomicSwComponentType

instanceParameter uint32 Is used in case of multiple instanciation. In this
case the instance handle as specified in the
RTE VFB trace client is used. If single
instanciation is used this parameter is 0.

_eventName Token, literal text | value that identifies the event type of the
Runnable Entitiy

e RteRunnable_ Start

e RteRunnable Return

eventParameter uint32 represents the ID of the <reName>, the ID of
the runnable entity which is generated by the
ARTI module.

8.6.2.5.2 Trace Class - AR_CP_SCHM_SCHEDULABLE

BSW Schedulable Entities Invocation

1 #define SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>
_Start () \\

2 ARTI_TRACE (NOSUSP, \\

3 AR_CP_SCHM_SCHEDULABLE, \\
4 <bsnp>, \\

5 idOf ([<vi>_<ai>1) 10, \\

6 SchMSchedulable_Start, \\
7 1dOf (<entityName>))

BSW Schedulable Entities Termination

1 #define SchM_Arti_Schedulable_<bsnp>_[<vi>_<ai>_]<entityName>
_Return() \\

SchMSchedulable_Return, \\
idOf (<entityName>))

2 ARTI_TRACE (NOSUSP, \\

3 AR_CP_SCHM SCHEDULABLE, \\
4 <bsnp>, \\

5 idOf ([<vi>_<ai>]) 10, \\

6

7

As defined in the RTE specification:
<bsnp> specifies the Basic Software Name Prefix

<Vi> is the Vendor ID of the basic software module

AUTOSAR

<ai> is the Vendor API infix of the basic software module

<entityName> is the name of the BSW Schedulable Entity or Callable Entity

idOf() is a function of the ARTI module to create an 32-bit ID out of an element. This
mapping will also be stored in a type map within ArtiValues and will be referenced
by the hook descriptions.

[] are optional parameters issued by the RTE. If they do exist then they have to be
used. If they do not exist they will be replaced by 0 in the ARTI_TRACE macro.

Parameter Type Description

__contextName Token, literal text | see 8.6.1.1 usually this is NOSUSP for
schedulables.

_className Token, literal text | AR_CP_SCHM_SCHEDULABLE

_instanceName Token, literal text | The <bsnp>, the BSW Scheduler Name Prefix

of the basic software module.

instanceParameter

uint32

Is used when vendorld and vendorApilnfix of
the BSW module are specified. In this case the
ARTI module generated an ID for the used pair
of vendorlp and vendorApilnfix. If vendorld and
vendorApilnfix is not given this parameter is 0.

_eventName Token, literal text | value that identifies the event type of the
Schedulable Entitiy
e SchmSchedulable_Start
e SchmSchedulable Return
eventParameter uint32 represents the ID of the <entityName>, the

ID of the schedulable entity which is generated
by the ARTI module.

AUTOSAR

8.6.2.5.3 Trace Class - AR_CP_VOID

AR_CP_voO1D is used to map VFB tracing hooks that are not used by ARTI. Expanding
ARTI_TRACE with trace class ar_cp_vo1D should result in empty statement that results

in no code at all.

Parameter Type Description

_contextName Token, literal text | see 8.6.1.1 this should be USER for
AR_CP_VOID.

_className Token, literal text | AR_CP_VOID

_instanceName Token, literal text | Not used, set to

instanceParameter uint32 Not used, should be setto 0

_eventName Token, literal text | Not used, set to “”

eventParameter uint32 Not used, should be setto 0

8.6.3 Configurable interfaces

ARTI does not define configurable interfaces.

8.7 Service Interfaces

ARTI does not provide any service interfaces.

9 Sequence diagrams

Not applicable yet.

10 Configuration specification

This chapter defines configuration parameters and their clustering into containers.

Containers and parameters that are related to the OS module are specified in
SWS_QOS, chapter "Containers and configuration parameters for ARTI".

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in

SWS BSWGeneral.

AUTO SAR

10.2 ARTI Parameters

Arti: EcucModuleDef . Arivalues:
+container| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = *

. ArtiGeneric:
+container| gcycParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

ArtiHardware:
+container| gcycParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

i ArtiOs:
+container| gcycParam ConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

ArtiRte:
o +container| e o, cparamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.1: Arti Ecuc Module Definition Class Diagram

Module SWS Item ECUC_Arti_00001

Module Name Arti

Module Description The Arti Module serves as a superordinate container collecting all
information and parameters concerning ARTI.

Post-Build Variant true

Support

Supported Config VARIANT-LINK-TIME, = VARIANT-POST-BUILD, = VARIANT-PRE-

Variants COMPILE

Included Containers

Container Name Multiplicity | Scope / Dependency

ArtiGeneric 0..1 The ArtiGeneric container contains definitions for

generic objects, i.e. not belonging to a standard
AUTOSAR module.

ArtiHardware 0..1 The ArtiHardware container contains ARTI extensions
to the EcucHardware module.

ArtiOs 0..1 The ArtiOs container contains ARTI extensions to the
EcucDefs/Os module.

ArtiRte 0..1 The ArtiRte Container contains all parameters for
ARTI that are filled by the generators RTE.

ArtiValues 0.* The ArtiValues container collects all parameter values

for ARTI that are filled by the generators (OS, RTE, ...)

AUTOSAR

10.3 ARTI Generic Container

ArtiGeneric: ArtiGenericComponentClass:
EcucParamConfContainerDef +subContainer| EcucParamConfContainerDef

lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = *

. ArtiGenericComponentinstance:
+subContainer| ~EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.2: ArtiGeneric Ecuc Module Definition Class Diagram

SWS ltem [ECUC_Arti_00042]
Container Name ArtiGeneric
Parent Container Arti
Description The ArtiGeneric container contains definitions for generic objects, i.e.
not belonging to a standard AUTOSAR module.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time —
Post-build time -

Configuration Parameters

Included Containers

Container Name Multiplicity | Scope / Dependency
ArtiGenericComponent 0.x The class definition describes the layout of the object
Class (similar to a "class" definition in C++).
ArtiGenericComponent 0.x The instance definition describes a specific instantiated
Instance object.

Example 10.1

Examplary Values of the ArtiGeneric Container

<AUTOSAR>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>Vendorl</SHORT-NAME>
<ELEMENTS>
<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>VendorlArtiGeneric</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/Arti
/ArtiGeneric</DEFINITION-REF>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentClass_AMODULE</SHORT-NAME
>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiGeneric/
ArtiGenericComponentClass</DEFINITION-REF>

AUTOSAR

<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentClass_RteWiperSwc</SHORT-
NAME >
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiGeneric/
ArtiGenericComponentClass</DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentClass_VendorlTask</SHORT-
NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiGeneric/
ArtiGenericComponentClass</DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentInstance_AModulel</SHORT-
NAME >
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiGeneric/
ArtiGenericComponentInstance</DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentInstance_TaskHighPriority
</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiGeneric/
ArtiGenericComponentInstance</DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentInstance_Wiper</SHORT-
NAME >
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/
AUTOSAR/EcucDefs/Arti/ArtiGeneric/
ArtiGenericComponentInstance</DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>

</CONTAINERS>

</ECUC-MODULE—-CONFIGURATION-VALUES>

<..

.>

10.3.1 ArtiGenericComponentClass

SWS Item

[ECUC_Arti_00043]

Container Name

ArtiGenericComponentClass

Parent Container

ArtiGeneric

Description

The class definition describes the layout of the object (similar to a
"class" definition in C++).

AUTOSAR

Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time -
Post-build time -

Configuration Parameters

Default Value

Name ArtiGenericComponentClassName [ECUC_Arti_00044]
Parent Container ArtiGenericComponentClass

Description Name of the class.

Multiplicity 1

Type EcucStringParamDef

Regular Expression

Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class

Link time —

Post-build time -
Scope / Dependency scope: ECU
Included Containers
Container Name Multiplicity | Scope / Dependency
ArtiGenericComponent 0.x Parameter definition of a class.
ClassParameter

SWS Item

[ECUC_Arti_00045]

Container Name

ArtiGenericComponentClassParameter

Parent Container

ArtiGenericComponentClass

Description Parameter definition of a class.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time -
Post-build time -

Configuration Parameters

Default Value

Name ArtiGenericComponentClassParameterName [ECUC_Arti_00046]
Parent Container ArtiGenericComponentClassParameter

Description Name of the parameter.

Multiplicity 1

Type EcucStringParamDef

Regular Expression

AUTOSAR

Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Name ArtiGenericComponentClassParameterTypeMapRef
[ECUC_Arti_00053]
Parent Container ArtiGenericComponentClassParameter
Description Refers to a parameter type to interpret the parameter value.
Multiplicity 0..1
Type Reference to ArtiParameterTypeMap
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time —
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

] No Included Containers

Example 10.2

Examplary Value of an ArtiGenericComponentClass Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentClass_AMODULE</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass</DEFINITION
—REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassName</DEFINITION-REF>
<VALUE>AMODULE</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE UUID="">
<SHORT-NAME>AMODULE_RUNNINGTHING</SHORT-NAME>

AUTOSAR

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterDescription</
DEFINITION-REF>
<VALUE>Running Thing</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterName</DEFINITION-REF>
<VALUE>RUNNINGTHING</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterTypeMapRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti
/ArtiParameterTypeMap_RunningThing</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE UUID="">
<SHORT-NAME>AMOULE_THINGSTART</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterDescription</
DEFINITION-REF>
<VALUE>Thing start</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterName</DEFINITION-REF>
<VALUE>THING_START</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>

AUTOSAR

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterTypeMapRef</
DEFINITION-REF>

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti
/ArtiParameterTypeMap_ThingStart</VALUE-REF>

</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

10.3.2 ArtiGenericComponentinstance

SWS ltem [ECUC_Arti_00049]
Container Name ArtiGenericComponentinstance
Parent Container ArtiGeneric
Description The instance definition describes a specific instantiated object.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time —
Post-build time -

Configuration Parameters

Name ArtiGenericComponentinstanceName [ECUC_Arti_00050]
Parent Container ArtiGenericComponentinstance

Description Name of the instance.

Multiplicity 1

Type EcucStringParamDef

Default Value
Regular Expression

Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

Name ArtiGenericComponentinstanceClassRef [ECUC_Arti_00048]
Parent Container ArtiGenericComponentinstance
Description Refers to a ArtGenericClass of which this object is instantiated.
Multiplicity 1
Type Reference to ArtiGenericComponentClass
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: ECU

Included Containers

Container Name

Multiplicity | Scope / Dependency

ArtiGenericComponent 0.” Parameter definition of an instance.
InstanceParameter
SWS Item [ECUC_Arti_00051]

Container Name

ArtiGenericComponentinstanceParameter

Parent Container

ArtiGenericComponentinstance

Description Parameter definition of an instance.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | All Variants
Configuration Class

Link time —

Post-build time -

Configuration Parameters

Name

ArtiGenericComponentinstanceParameterClassParameterRef
[ECUC_Arti_00047]

Parent Container

ArtiGenericComponentinstanceParameter

Description Refers to an ArtiGenericComponentClassParameter that defines this
parameter.
Multiplicity 0.*
Type Reference to ArtiGenericComponentClassParameter
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time -
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -

AUTOSAR

Scope / Dependency

Name

ArtiGenericComponentinstanceParameterConstantRef

[ECUC_Arti_00040]

Parent Container

ArtiGenericComponentinstanceParameter

Description Refers to an ArtiConstant that represents the value of this parameter.
Multiplicity 0..1

Type Reference to ArtiConstant

Post-Build Variant false

Multiplicity

Post-Build Variant
Value

false

Multiplicity Pre-compile time All Variants
Configuration Class

Link time

Post-build time
Value Configuration Pre-compile time All Variants

Class

Link time
Post-build time

Scope / Dependency

Name

ArtiGenericComponentinstanceParameterExpressionRef

[ECUC_Arti_00041]

Parent Container

ArtiGenericComponentinstanceParameter

Description Refers to an ArtiExpression that evaluates the value of this parameter.
Multiplicity 0..1

Type Reference to ArtiExpression

Post-Build Variant false

Multiplicity

Post-Build Variant
Value

false

Multiplicity Pre-compile time All Variants
Configuration Class

Link time

Post-build time
Value Configuration Pre-compile time All Variants

Class

Link time
Post-build time

Scope / Dependency

AUTOSAR

Name ArtiGenericComponentinstanceParameterHookRef
[ECUC_Arti_00052]
Parent Container ArtiGenericComponentinstanceParameter
Description Refers to a hook that records this parameter.
Multiplicity 0.1
Type Reference to ArtiHook
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time —
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time —

Post-build time -

Scope / Dependency

] No Included Containers

Example 10.3

Examplary Value of an ArtiGenericComponentinstance Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentInstance_AModulel</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance</
DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponent InstanceName</DEFINITION-REF>
<VALUE>AModulel</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceClassRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/
VendorlArtiGeneric/ArtiGenericComponentClass_AMODULE</VALUE
—REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>AModulel_RUNNINGTHING</SHORT-NAME>

AUTOSAR

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterExpressionRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti
/ArtiExpression_ArtiGeneric_AModulel_RunningThing</
VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterClassParameterRef<
/DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/
VendorlArtiGeneric/ArtiGenericComponentClass_AMODULE/
AMODULE_RUNNINGTHING</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

10.4 ARTI Hardware Container

ArtiHardwareCoreClass:

ArtiHardware: . =
e +subContainer| EcucParamConfContainerDef

EcucParamConfContainerDef

lowerMultiplicity = 0

lowerMultiplicity = 0 .
upperMultiplicity = 1

upperMultiplicity = 1

ArtiHardwareCorelnstance:

+subContainer| EcucParamConfContaineret

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.3: ArtiHardware Ecuc Module Definition Class Diagram

The ArtiHardware container is specified in SWS_OS.

AUTO SAR

10.5 ARTI Os Container

ArtiOsClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsT askClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOslnstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

ArtiOslsrClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsTaskinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsAlarmClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOslsrinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsContextClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer|

ArtiOsAlarmInstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsMessageContainerClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsContextinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsResourceClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsMessageContainerinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsStackClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsResourcelnstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOs:
EcucParamConfContainerDef +subContainer
lowerMultiplicity = 0
upperMultiplicity = 1
>
+subContainer
>
+subContainer
>
+subContainer
>
+subContainer
>
+subContainer
>
+subContainer
>
+subContainer
>
+reference

ArtiOsGenericComponentRef:
EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = *

+destinatiol

>

ArtiOsStackinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ArtiGenericComponentClass:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from ArtiGeneric)

Figure 10.4: ArtiOs Ecuc Module Definition Class Diagram

The ArtiOs container is specified in SWS_OS.

AUTO SAR

10.6 ARTI Rte Container

Arti: EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

+contai ne$

ArtiRte:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

ArtiRteHookRef: EcucReferenceDef o ArtiHook:
+reference +destination| - gcucParamConfContainerDef

lowerMultiplicity = 0 e —

upperMultiplicity = * lowerMultiplicity = 0

upperMultiplicity = *

. ArtiRteRunnableClass:
+subContainer | gcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

. ArtiRteRunnablelnstance:
+subContainer| gcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

ArtiRteSchedulableClass:
+subContainer | EcycParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

. ArtiRteSchedulablelnstance:
+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer| AttiRteVibTraceHooks:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

Figure 10.5: ArtiRte Ecuc Module Definition Class Diagram

SWS Item [ECUC_Arti_00158]
Container Name ArtiRte
Parent Container Arti

Description

The ArtiRte Container contains all parameters for ARTI that are filled
by the generators RTE.

Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

Name ArtiRteHookRef [ECUC_Arti_00159]

Parent Container ArtiRte

Description Refers to an arti hook which is called by the RTE.
Multiplicity 0..*

Type Reference to ArtiHook

Post-Build Variant false

Multiplicity

AUTOSAR

Post-Build Variant false
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time -

Scope / Dependency

Included Containers

Container Name Multiplicity | Scope / Dependency
ArtiRteRunnableClass 0..1 Contains the layout of an ArtiRteRunnable object.
ArtiRteRunnablelnstance 0..1 Represents an instance of an ArtiRteRunnable object,
extending the BswM RunnableEntity.
ArtiRteSchedulableClass 0..1 Contains the layout of an ArtiRteSchedulable object.
ArtiRteSchedulable 0..1 Represents an instance of an ArtiRteSchedulable
Instance object, extending the Rte Schedulable Entity.
ArtiRteVibTraceHooks 1 This container defines the parent container to which all
trace hook containers are added.
10.6.1 ArtiRteRunnableClass
SWS ltem [ECUC_Arti_00160]
Container Name ArtiRteRunnableClass
Parent Container ArtiRte
Description Contains the layout of an ArtiRteRunnable object.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

Name

ArtiRteRunnableClassGenericComponentClassRef
[ECUC_Arti_00164]

Parent Container

ArtiRteRunnableClass

Value

Description Refers to an ArtiGenericComponentClass that extends the
ArtiRteRunnableClass.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant false

Multiplicity

Post-Build Variant false

AUTOSAR

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time -

Scope / Dependency

Name ArtiRteRunnableldRef [ECUC_Arti_00165]

Parent Container ArtiRteRunnableClass

Description Refers to the ArtiObjectClassParameter that declares the attribute
ArtiRteRunnableldRef in ArtiRteRunnableEntitylnstances. This
attribute specifies the idOf(reName) mapping.

Multiplicity 1

Type Reference to ArtiObjectClassParameter

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE
Link time X | VARIANT-LINK-TIME
Post-build time -

Scope / Dependency

No Included Containers

10.6.2 ArtiRteRunnablelnstance

SWS Item

[ECUC_Arti_00161]

Container Name

ArtiRteRunnablelnstance

Parent Container

ArtiRte

Description Represents an instance of an ArtiRteRunnable object, extending the
BswM RunnableEntity.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

AUTOSAR

Name ArtiRteRunnablelnstanceSymbol [ECUC_Arti_00166]

Parent Container ArtiRteRunnablelnstance

Description Specifies the symbol / function name that implements the runnable.
Multiplicity 0..1

Type EcucStringParamDef

Default Value

Regular Expression

Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time -
Scope / Dependency scope: ECU

Name ArtiRteRunnablelnstanceBswRef [ECUC_Arti_00167]
Parent Container ArtiRteRunnablelnstance
Description Refers to an Rte Runnable that is beeing extended.
Multiplicity 0..1
Type Foreign reference to RUNNABLE-ENTITY
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time -
Scope / Dependency scope: local

Name

ArtiRteRunnablelnstanceGenericComponentinstanceRef
[ECUC_Arti_00168]

Parent Container

ArtiRteRunnablelnstance

Multiplicity

Description Refers to an ArtiGenericComponentinstance that extends the
ArtiRteRunnablelnstance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant false

AUTOSAR

Post-Build Variant false
Value
Multiplicity Pre-compile time VARIANT-PRE-COMPILE

Configuration Class

Link time
Post-build time

VARIANT-LINK-TIME

Value Configuration
Class

Pre-compile time

Link time
Post-build time

VARIANT-PRE-COMPILE

VARIANT-LINK-TIME

Scope / Dependency

No Included Containers

10.6.3 ArtiRteSchedulableClass

SWS Item [ECUC_Arti_00162]
Container Name ArtiRteSchedulableClass
Parent Container ArtiRte

Description Contains the layout of an ArtiRteSchedulable object.
Post-Build Variant false

Multiplicity

Multiplicity Pre-compile time VARIANT-PRE-COMPILE

Configuration Class

Link time
Post-build time

VARIANT-LINK-TIME

Configuration Parameters

Name

ArtiRteSchedulableClassGenericComponentClassRef
[ECUC_Arti_00169]

Parent Container

ArtiRteSchedulableClass

Description Refers to an ArtiGenericComponentClass that extends the
ArtiRteSchedulableClass.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time -

Scope / Dependency

AUTOSAR

Name ArtiRteSchedulableldRef [ECUC_Arti_00170]

Parent Container ArtiRteSchedulableClass

Description Refers to the ArtiObjectClassParameter that declares the attribute
ArtiRteSchmEntityldRef in ArtiRteSchedulablelnstances. This attribute
specifies the idOf(entityName) mapping.

Multiplicity 1

Type Reference to ArtiObjectClassParameter

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE
Link time X | VARIANT-LINK-TIME
Post-build time -

Scope / Dependency

No Included Containers

10.6.4 ArtiRteSchedulablelnstance

SWS Item

[ECUC_Arti_00163]

Container Name

ArtiRteSchedulablelnstance

Parent Container

ArtiRte

Description Represents an instance of an ArtiRteSchedulable object, extending the
Rte Schedulable Entity.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

Name ArtiRteSchedulablelnstanceSymbol [ECUC_Arti_00171]

Parent Container ArtiRteSchedulablelnstance

Description Specifies the symbol / function name that implements the schedulable.
Multiplicity 0..1

Type EcucStringParamDef

Default Value

Regular Expression

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -

AUTOSAR

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time -
Scope / Dependency scope: ECU

Name ArtiRteSchedulablelnstanceBswRef [ECUC_Arti_00172]
Parent Container ArtiRteSchedulablelnstance
Description Refers to an Rte Schedulable that is beeing extended.
Multiplicity 0..1
Type Foreign reference to BSW-SCHEDULABLE-ENITIY
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time -
Scope / Dependency scope: local

Name

ArtiRteSchedulablelnstanceGenericComponentinstanceRef
[ECUC_Arti_00173]

Parent Container

ArtiRteSchedulablelnstance

Description Refers to an ArtiGenericComponentinstance that extends the
ArtiRteSchedulablelnstance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time -

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time -

Scope / Dependency

| No Included Containers

AUTO SAR

10.6.5 ArtiRteVibTraceHooks

SWS ltem [ECUC_Arti_00177]

Container Name ArtiRteVfbTraceHooks

Parent Container ArtiRte

Description This container defines the parent container to which all trace hook
containers are added.

Configuration Parameters

Included Containers

Container Name Multiplicity | Scope / Dependency

RteVfbTraceHook 0.* This container represents a specific VFB Trace hook. Its
ShortName equals the hook function’s C symbol.

10.7 ARTI Values Container

Artivalues: ArtiConstant: *+parameter| - anicongtantString:
EcucParamConfContainerDef +subContainer| EcucParamConfContainerdef [@ EcucStringParamDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *

ArtiExpression: *+parameter ArtiExpressionString:

+subContainer| gcycParamConfContainerDef EcucStringParamDef

lowerMultiplicity = 0
upperMultiplicity = *

) ArtiHook:
+subContainer| gcycparamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

. ArtiObjectClassParameter:
+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

. ArtiObjectinstanceParameter:
+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

. ArtiParameterTypeMap:
+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer AttiStates:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.6: ArtiValues Ecuc Module Definition Class Diagram

SWS Item [ECUC_Arti_00002]

Container Name ArtiValues

Parent Container Arti

Description The ArtiValues container collects all parameter values for ARTI that are
filled by the generators (OS, RTE, ...)

AUTOSAR

Post-Build Variant false

Multiplicity

Multiplicity Pre-compile time X | All Variants

Configuration Class

Link time —
Post-build time -

Configuration Parameters

Included Containers

Container Name Multiplicity | Scope / Dependency

ArtiConstant 0.x This container holds a constant value.

ArtiExpression 0.x This container holds a C like expression that a debugger
can evaluate. This is similar to what is already done in
ORTI.

ArtiHook 0.* This container represents an ARTI hook that is present
in the module.

ArtiObjectClass 0.x This container represents a parameter of an Arti object

Parameter class definition.

ArtiObjectinstance 0.r This container represents a parameter of an Arti object

Parameter instance.

ArtiParameterTypeMap 0.* A map of key/value pairs to map a parameter value to a
display string and/or an Arti or EcuC object.

ArtiStates 0.x This container contains all states of tasks, isrs... that the
EcuC uses.

Example 10.4

Examplary Values of the ArtiValues Container

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>VendorlArti</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/Arti/
ArtiValues</DEFINITION-REF>
<CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiConstant_ArtiSwc_WiperLocation_Front</SHORT-
NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiConstant</DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiExpression_ArtiHwCore_CurrentTaskOnCore(O</SHORT
—NAME >
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiExpression</DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook_ArtiOs_TaskStart</SHORT-NAME>

AUTOSAR

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiHook</DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>
ArtiObjectClassParameter_ArtiHwCore_CurrentApplication</
SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiObjectClassParameter</
DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>
ArtiObjectInstanceParameter_CurrentApplicationOnCore(O</
SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiObjectInstanceParameter</
DEFINITION-REF>
<...>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_Core</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap</DEFINITION-
REF>
<...>
</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE-CONFIGURATION-VALUES>
<...>

10.7.1 ArtiConstant

SWS Item [ECUC_Arti_00006]
Container Name ArtiConstant
Parent Container ArtiValues
Description This container holds a constant value.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time —
Post-build time -

Configuration Parameters

AUTOSAR

Name ArtiConstantString [ECUC_Arti_00008]

Parent Container ArtiConstant

Description This is the constant value for a specific parameter.
Multiplicity 1

Type EcucStringParamDef

Default Value
Regular Expression

Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -

Scope / Dependency scope: ECU

| No Included Containers

Example 10.5

Examplary Value of an ArtiConstant Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiConstant_ArtiSwc_WiperLocation_Front</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiConstant</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiConstant/ArtiConstantString</DEFINITION
—REF>
<VALUE>Front</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC—-CONTAINER-VALUE>

10.7.2 ArtiExpression

SWS ltem [ECUC_Arti_00009]
Container Name ArtiExpression
Parent Container ArtiValues
Description This container holds a C like expression that a debugger can evaluate.
This is similar to what is already done in ORTI.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time —
Post-build time -

Configuration Parameters

AUTOSAR

Name ArtiExpressionString [ECUC_Arti_00011]

Parent Container ArtiExpression

Description This string represents a C like expression that a debugger can
evaluate.

Multiplicity 1

Type EcucStringParamDef

Default Value
Regular Expression

Post-Build Variant true
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -

Scope / Dependency scope: ECU

| No Included Containers

Example 10.6

Examplary Value of an ArtiExpression Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiExpression_ArtiHwCore_CurrentTaskOnCore(0</SHORT-
NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiExpression</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiExpression/ArtiExpressionString</
DEFINITION-REF>
<VALUE>Os_ControlledCoreInfo[0U].RunningTask</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>

10.7.3 ArtiHook

SWS ltem [ECUC_Arti_00012]
Container Name ArtiHook
Parent Container ArtiValues
Description This container represents an ARTI hook that is present in the module.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | All Variants
Configuration Class

Link time —

Post-build time -
Configuration Parameters

AUTOSAR

Name ArtiHookClass [ECUC_Arti_00013]

Parent Container ArtiHook

Description Name of the (schedule) class of macros. Classes can be one of the
predefined classes or user defined.

Multiplicity 1

Type EcucStringParamDef

Default Value

Regular Expression

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: ECU

Default Value

Name ArtiHookContext [ECUC_Arti_00014]

Parent Container ArtiHook

Description Name of the execution context. One of NOSUSP, SPRVSR, or USER.
See also chapter "ARTI Tracing Macro".

Multiplicity 1

Type EcucStringParamDef

Regular Expression

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: ECU

Default Value

Name ArtiHookEventName [ECUC_Arti_00015]

Parent Container ArtiHook

Description The name of the event as defined for a particular class, or an arbitrary
name for generic classes.

Multiplicity 1

Type EcucStringParamDef

Regular Expression

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: ECU

AUTOSAR

Name ArtiHooklInstance [ECUC_Arti_00017]
Parent Container ArtiHook

Description Name of an instance of the (schedule) class.
Multiplicity 1

Type EcucStringParamDef

Default Value

Regular Expression

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: ECU

Value

Name ArtiHookEventParameterTypeRef [ECUC_Arti_00016]

Parent Container ArtiHook

Description Refers to a parameter type to interpret the hook event number.
Multiplicity 0..1

Type Reference to ArtiParameterTypeMap

Post-Build Variant false

Multiplicity

Post-Build Variant false

Class

Link time
Post-build time

Multiplicity Pre-compile time All Variants
Configuration Class

Link time

Post-build time
Value Configuration Pre-compile time All Variants

Scope / Dependency

scope: ECU

Value

Name ArtiHookInstanceParameterTypeRef [ECUC_Arti_00018]

Parent Container ArtiHook

Description Refers to a parameter type to interpret the hook instance number.
Multiplicity 0..1

Type Reference to ArtiParameterTypeMap

Post-Build Variant false

Multiplicity

Post-Build Variant false

Multiplicity
Configuration Class

Pre-compile time

Link time
Post-build time

All Variants

AUTOSAR

Value Configuration Pre-compile time X | All Variants
Class

Link time —

Post-build time -
Scope / Dependency scope: ECU

| No Included Containers

Example 10.7

Examplary Value of an ArtiHook Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook ArtiOs_TaskStart</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiHook</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookClass</DEFINITION-REF>
<VALUE>AR_CP_OS_TASK</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookContext</DEFINITION-REF>
<VALUE>NOSUSP</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookEventName</DEFINITION-REF>
<VALUE>OsTask_Start</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiHook/ArtiHookInstance</DEFINITION-REF>
<VALUE>Vendor1lOsCore</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookEventParameterTypeRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_TaskId</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookInstanceParameterTypeRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_Core</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>

AUTOSAR

</ECUC-CONTAINER-VALUE>

10.7.4 ArtiObjectClassParameter

SWS Item

[ECUC_Arti_00020]

Container Name

ArtiObjectClassParameter

Parent Container

ArtiValues

Configuration Class

Link time
Post-build time

Description This container represents a parameter of an Arti object class definition.
Post-Build Variant false

Multiplicity

Multiplicity Pre-compile time All Variants

Configuration Parameters

Class

Link time
Post-build time

Name ArtiObjectClassParameterTypeMapRef [ECUC_Arti_00028]
Parent Container ArtiObjectClassParameter
Description Refers to a parameter type to interpret the instance parameter value.
Multiplicity 0..1
Type Reference to ArtiParameterTypeMap
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time All Variants
Configuration Class
Link time
Post-build time
Value Configuration Pre-compile time All Variants

Scope / Dependency

scope: ECU

] No Included Containers

Example 10.8

Examplary Value of an ArtiObjectClassParameter Container

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiObjectClassParameter_ ArtiHwCore_CurrentTask</SHORT-

NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiObjectClassParameter</DEFINITION-

REF>

<PARAMETER-VALUES>

AUTOSAR

<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiObjectClassParameter/
ArtiObjectClassParameterDescription</DEFINITION-REF>
<VALUE>Current Running AUTOSAR Task</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiObjectClassParameter/
ArtiObjectClassParameterTypeMapRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_TaskExpr</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>

10.7.5 ArtiObjectinstanceParameter

SWS Item
Container Name
Parent Container

[ECUC_Arti_00021]
ArtiObjectinstanceParameter
ArtiValues

Description This container represents a parameter of an Arti object instance.
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time -
Post-build time -

Configuration Parameters

Name ArtiObjectinstanceParameterConstantRef [ECUC_Arti_00007]
Parent Container ArtiObjectinstanceParameter
Description Refers to a constant representing the value of this parameter.
Multiplicity 0..1
Type Reference to ArtiConstant
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time -
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -

AUTOSAR

Scope / Dependency

scope: ECU

Name ArtiObjectinstanceParameterExpressionRef [ECUC_Arti_00010]
Parent Container ArtiObjectinstanceParameter
Description Refers to an expression that evaluates the value of this parameter.
Multiplicity 0..1
Type Reference to ArtiExpression
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time —
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Name ArtiObjectinstanceParameterHookRef [ECUC_Arti_00019]
Parent Container ArtiObjectinstanceParameter
Description Refers to a hook that records this parameter.
Multiplicity 0..1
Type Reference to ArtiHook
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time -
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: ECU

| No Included Containers

Example 10.9

Examplary Value of an ArtiObjectinstanceParameter Container

<ECUC-CONTAINER-VALUE>

<SHORT-NAME>ArtiObjectInstanceParameter_CurrentTaskOnCore(0</SHORT-

NAME>

AUTOSAR

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiObjectInstanceParameter</

DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiObjectInstanceParameter/
ArtiObjectInstanceParameterExpressionRef</DEFINITION-REF>

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiExpression_ArtiHwCore_CurrentTaskOnCore(O</VALUE-REF>

</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>

10.7.6 ArtiParameterTypeMap

SWS ltem [ECUC_Arti_00022]
Container Name ArtiParameterTypeMap
Parent Container ArtiValues

Description A map of key/value pairs to map a parameter value to a display string
and/or an Arti or EcuC object.

Post-Build Variant false

Multiplicity

Multiplicity Pre-compile time X | All Variants

Configuration Class
Link time -
Post-build time -

Configuration Parameters

Included Containers

Container Name Multiplicity | Scope / Dependency

ArtiParameterTypeMap 1.” A key/value pair to map a parameter value to a display
Pair string and/or an Arti or EcuC object.

SWS ltem [ECUC_Arti_00023]

Container Name

ArtiParameterTypeMapPair

Parent Container

ArtiParameterTypeMap

Description A key/value pair to map a parameter value to a display string and/or an
Arti or EcuC object.

Post-Build Variant false

Multiplicity

Multiplicity Pre-compile time X | All Variants

Configuration Class
Link time -
Post-build time -

Configuration Parameters

AUTOSAR

Name ArtiParameterTypeMapPairlnput [ECUC_Arti_00024]
Parent Container ArtiParameterTypeMapPair
Description The numerical value given by a parameter to translate.
When used with ArtiHooks, this parameter is mandatory (multiplicity 1)
and its value is limited to the range of 0..65535.
This parameter may be used to map the values given by
"instanceParameter" and/or the "eventParameter" of the ARTI_TRACE
macro.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0..
18446744073709551615
Default Value
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time —
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Default Value

Name ArtiParameterTypeMapPairOutput [ECUC_Arti_00026]
Parent Container ArtiParameterTypeMapPair

Description The string to display for the Input value.

Multiplicity 0..1

Type EcucStringParamDef

Regular Expression

Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time -
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: ECU

AUTOSAR

Name ArtiParameterTypeMapPairlnputExpressionRef [ECUC_Arti_00025]
Parent Container ArtiParameterTypeMapPair
Description Refers to an expression that evaluates to a numerical value to translate.
Multiplicity 0..1
Type Reference to ArtiExpression
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time —
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Name ArtiParameterTypeMapPairOutputRef [ECUC_Arti_00027]

Parent Container ArtiParameterTypeMapPair

Description Choice Reference to ArtiOsTasklnstance, ArtiOslsrinstance,
ArtiStatesTaskState, OsAppMode, ArtiOsContextinstance, or
ArtiOsStackinstance.

Multiplicity 0..1

Type Choice reference to [ArtiOsContextinstance, ArtiOslsrinstance,
ArtiOsStackInstance, ArtiOsTaskInstance, ArtiStatesTaskState,
OsAppMode]

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | All Variants

Configuration Class
Link time -
Post-build time -

Value Configuration Pre-compile time X | All Variants

Class
Link time -
Post-build time -

Scope / Dependency scope: ECU

] No Included Containers

Example 10.10

Examplary Values of an ArtiParameterTypeMap Containers

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_TaskId</SHORT-NAME>

AUTOSAR

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>TaskHighPrio</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/Artivalues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput<
/DEFINITION-REF>
<VALUE>1</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput
</DEFINITION-REF>
<VALUE>HighPriority</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_OsAppMode</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>AppModeDefault</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput<
/DEFINITION-REF>
<VALUE>1</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput
</DEFINITION-REF>
<VALUE>OSDEFAULTAPPMODE</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>AppModeNone</SHORT-NAME>

AUTOSAR

10.7.7

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput<
/DEFINITION-REF>
<VALUE>0</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput
</DEFINITION-REF>
<VALUE>0S_APPMODE_NONE</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_TaskExpr</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Task_1</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput<
/DEFINITION-REF>
<VALUE>&Task_1</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput
</DEFINITION-REF>
<VALUE>Task_1</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

ArtiStates

AUTOSAR

SWS Item

[ECUC_Arti_00029]

Container Name

ArtiStates

Parent Container

ArtiValues

Configuration Class

Link time
Post-build time

Description This container contains all states of tasks, isrs... that the EcuC uses.
Post-Build Variant false

Multiplicity

Multiplicity Pre-compile time All Variants

Configuration Parameters

Name ArtiStatesTaskEnhanced [ECUC_Arti_00032]

Parent Container ArtiStates

Description Set to true, if the OS provides an "enhanced" state model with
"READY" split to "Activated", "Preempted", "Released".

Multiplicity 1

Type EcucBooleanParamDef

Default Value

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: local

Included Containers

Container Name

Multiplicity | Scope / Dependency

Configuration Class

Link time
Post-build time

ArtiStatesTaskState 0. Each state used by the OS has to be listed as
ArtiStatesTaskState Parameter with a choice of the
states.

SWS Item [ECUC_Arti_00030]

Container Name ArtiStatesTaskState

Parent Container ArtiStates

Description Each state used by the OS has to be listed as ArtiStatesTaskState

Parameter with a choice of the states.

Post-Build Variant false

Multiplicity

Multiplicity Pre-compile time All Variants

Configuration Parameters

AUTOSAR

Name ArtiStatesTaskStateEnum [ECUC_Arti_00033]

Parent Container ArtiStatesTaskState

Description ArtiStatesTaskState choice of the states.

Multiplicity 1

Type EcucEnumerationParamDef

Range ArtiTaskStateActivated activated
ArtiTaskStatePreempted preempted
ArtiTaskStateReady ready
ArtiTaskStateReleased released
ArtiTaskStateRunning running
ArtiTaskStateSuspended suspended
ArtiTaskStateWaiting waiting

Post-Build Variant false

Value

Value Configuration Pre-compile time X | All Variants

Class
Link time —
Post-build time -

Scope / Dependency scope: local

| No Included Containers

10.8 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

A Not applicable requirements

B Example

The example provided in this chapter demonstrates how to apply ARTI to an operating
system and also how to use ARTI from within the application to trace some user-defined
data. It also shows how the generic ARTI_TRACE macro can be mapped to different
tracing implementations. In the example, these first tracing implementations is provided
by VENDOR_A the second by VENDOR_B.

The C code of the example compiles but is not functional. The operating sys-
tem is boiled down to three functions: SuspendaAllInterrupts, ResumeAllInter—
rupts and startos. The application code defined the main function and two tasks:
Task_Cylinder0 and Task_Cylinderl.

Section B.1 holds all the C code demonstrating the ARTI instrumentation and sec-
tion B.1.3 contains the corresponding ARXML code.

AUTO SAR

B.1 ARTI Instrumentation

B.1.1 ARTI Tool Binding (ARTI.h)

Listing B.1: Example for ARTl.h
1 #ifndef _TOOL_VENDOR_BINDING_H_

2 f#define _TOOL_VENDOR_BINDING_H__

3

4 #include <stdint.h>

5

6 #1if defined VENDOR_A

7 /* ARTI Trace Macro =*/

8 i define ARTI_TRACE (_contextName, _className, _instanceName,

instanceParameter, _eventName, event_value) \

9 (void) TraceImpl ## _ ## _className ## _ ## _eventName ## _ ##

_instanceName ## _ ## _contextName((instanceParameter), (

event_value))

11 /x Prototypes for AR_CP_OS_TASK =/

12 void TraceImpl AR_CP_OS_TASK_OsTask_Start_OS_SHORT_NAME_SPRVSR (uint32_t
instanceParameter, uint32_t event_value);

13 void TraceImpl_ AR_CP_OS_TASK_OsTask_Stop_OS_SHORT_NAME_SPRVSR (uint32_t
instanceParameter, uint32_t event_value);

15 void TraceImpl AR CP_OS_TASK_ OsTask_Start_0OS_SHORT_NAME_USER (uint32_t
instanceParameter, uint32_t event_value);

16 void TraceImpl_ AR_CP_OS_TASK_OsTask_Stop_OS_SHORT_NAME_USER (uint32_t
instanceParameter, uint32_t event_value);

18 void TraceImpl AR CP_OS_TASK_OsTask_Start_0OS_SHORT_NAME_NOSUSP (uint32_t
instanceParameter, uint32_t event_value);

19 void TraceImpl_ AR_CP_OS_TASK OsTask_Stop_OS_SHORT_NAME_NOSUSP (uint32_t
instanceParameter, uint32_t event_value);

20

21 /* Prototypes for Ingnition_Control =*/

22 void TraceImpl_Ingnition_Control_IgnitionStart_CylinderO_USER (uint32_t
instanceParameter, uint32_t event_value);

23 void TraceImpl_Ingnition_Control_IgnitionStop_Cylinder0_USER (uint32_t
instanceParameter, uint32_t event_value);

24

25 void TraceImpl_ Ingnition_Control_ IgnitionStart_Cylinderl USER(uint32_t
instanceParameter, uint32_t event_value);

26 void TraceImpl_Ingnition_Control_IgnitionStop_Cylinderl_USER (uint32_t
instanceParameter, uint32_t event_value);

27

28 #elif defined VENDOR_B

29 /* ARTI Trace Macro =/

30 # define ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, event_value) \
31 (void) TraceImpl ## _ ## _className ## _ ## _contextName ((
_instanceName), (instanceParameter), (_eventName), (

event_value))
32
33 /+ Defines for AR_CP_OS_TASK =/
3 /+ Instance Names =/

AUTO SAR

35 #define OS_SHORT_NAME (0)

3 /+ Event Names */

37 #define OsTask_Start (0)

38 #define OsTask_Stop (1)

39

40 /x Defines for Ingnition_Control =/

41 /% Instance Names =/

42 #define CylinderQ (0)

43 #define Cylinderl (1)

44 /* Event Names */

45 #define IgnitionStart (0)

46 #define IgnitionStop (1)

47

48 /* Prototypes for AR_CP_OS_TASK x/

49 void TraceImpl_ AR _CP_OS_TASK_SPRVSR(uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value);

50 void TraceImpl_ AR CP_OS_TASK USER(uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value);

51 void TraceImpl_ AR_CP_OS_TASK_NOSUSP (uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value);

52

53 /% Prototypes for Ingnition_Control =/

54 void TraceImpl_Ingnition_Control_ SPRVSR(uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value);

55 void TraceImpl_Ingnition_Control_USER(uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value);

56 void TraceImpl_Ingnition_Control_ NOSUSP (uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value);

57

58 #else

59 # define ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, event_value) (void)O0

60 #endif

61

62

63 #endif

Listing B.2: Example for ARTl.c
#include <stdint.h>

-

2
3 #include "os.h"

4 #include "tool-vendor_binding.h"
5

6 /* Stubs for intrinsics =/

7 #define _ disable () ((void) (0))
8 #define _ _enable () ((void) (0))

9

10 #if defined VENDOR_A

12 void TraceImpl_ AR CP_OS_TASK_OsTask_Start_0OS_SHORT_NAME_SPRVSR (uint32_t
instanceParameter, uint32_t event_value)

14 _ _disable();

15 TraceImpl_ AR _CP_OS_TASK_OsTask_Start_0OS_SHORT_NAME_NOSUSP (
instanceParameter, event_value);

AUTO SAR

16 __enable();

19 void TraceImpl_ AR_CP_OS_TASK_OsTask_Stop_OS_SHORT_NAME_SPRVSR (uint32_t
instanceParameter, uint32_t event_value)
20 |

21 _ _disable();

22 TraceImpl_AR_CP_OS_TASK_OsTask_Stop_0OS_SHORT_NAME_NOSUSP (
instanceParameter, event_value);

23 __enable();

24}

25

26 void TraceImpl_ AR_CP_OS_TASK_OsTask_Start_0OS_SHORT_NAME_USER (uint32_t
instanceParameter, uint32_t event_value)

27 |

28 SuspendAllInterrupts();

29 TraceImpl AR CP_OS_TASK OsTask_ Start_0S_SHORT_NAME_NOSUSP (
instanceParameter, event_value);

30 ResumeAllInterrupts();

31}

32

33 void TraceImpl AR CP_OS_TASK OsTask_Stop_OS_SHORT_NAME_USER (uint32_t
instanceParameter, uint32_t event_value)

34 |

35 SuspendAllInterrupts();

36 TraceImpl_ AR _CP_OS_TASK_OsTask_Stop_OS_SHORT_NAME_NOSUSP (
instanceParameter, event_value);

37 ResumeAllInterrupts();

38 }

39

40 void TraceImpl AR_CP_OS_TASK OsTask_Start_OS_SHORT_NAME_NOSUSP (uint32_t
instanceParameter, uint32_t event_value)

41 |

42 (void) instanceParameter; // avoid warning "unused parameter"
43 (void)event_value; // avoid warning "unused parameter"

44

45 // actual tracing code goes here

46 }

47

48 void TraceImpl_AR_CP_OS_TASK_OsTask_Stop_OS_SHORT_NAME_NOSUSP (uint32_t
instanceParameter, uint32_t event_value)

49 |

50 (void) instanceParameter; // avoid warning "unused parameter"
51 (void)event_value; // avoid warning "unused parameter"

52

53 // actual tracing code goes here

54 }

55

56 void TraceImpl_ Ingnition_Control_ IgnitionStart_CylinderO_USER (uint32_t
instanceParameter, uint32_t event_value)

57 {

58 (void) instanceParameter; // avoid warning "unused parameter"
59 (void)event_value; // avoid warning "unused parameter”

60 SuspendAllInterrupts();

61 // actual tracing code goes here

62 ResumeAllInterrupts();

AUTO SAR

63 }

64

65 void TraceImpl_Ingnition_Control_TIgnitionStop_Cylinder0_USER (uint32_t
instanceParameter, uint32_t event_value)

66 {

67 (void) instanceParameter; // avoid warning "unused parameter"
68 (void)event_value; // avoid warning "unused parameter"

69 SuspendAllInterrupts () ;

70 // actual tracing code goes here

71 ResumeAllInterrupts();

72}

73
74 void TraceImpl_Ingnition_Control_IgnitionStart_Cylinderl_ USER (uint32_t
instanceParameter, uint32_t event_value)

75 |

76 (void) instanceParameter; // avoid warning "unused parameter"
77 (void)event_value; // avoid warning "unused parameter"

78 SuspendAllInterrupts();

79 // actual tracing code goes here

80 ResumeAllInterrupts();

81}

82

83 void TracelImpl_TIngnition_Control_TIgnitionStop_Cylinderl_USER (uint32_t
instanceParameter, uint32_t event_value)

84 |

85 (void) instanceParameter; // avoid warning "unused parameter"
86 (void)event_value; // avoid warning "unused parameter"

87 SuspendAllInterrupts();

88 // actual tracing code goes here

89 ResumeAllInterrupts();

90 }

91

92 #elif defined VENDOR_B

93

94 void TraceImpl_ AR_CP_OS_TASK_SPRVSR(uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value)

95 |

% __disable();

97 TraceImpl_ AR CP_OS_TASK_NOSUSP (instanceName, instanceParameter,
eventName, event_value);

98 __enable();

99 }

100
101 void TraceImpl AR_CP_OS_TASK_USER (uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value)

102 {

103 SuspendAllInterrupts();

104 TraceImpl_ AR _CP_OS_TASK_NOSUSP (instanceName, instanceParameter,
eventName, event_value);

105 ResumeAllInterrupts();

106}

107

108 void TraceImpl AR_CP_OS_TASK_NOSUSP (uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value)

109 {

110 (void) instanceName; // avoid warning "unused parameter"

AUTO SAR

111
112
113
114
115
116
117
118

119
120
121

122
123
124
125

126
127
128

129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144

(void)instanceParameter; // avoid warning "unused parameter"
(void)eventName; // avoid warning "unused parameter"
(void)event_value; // avoid warning "unused parameter"

// actual tracing code goes here

void TracelImpl_ Ingnition_Control_SPRVSR (uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value)

_ _disable();

TraceImpl_Ingnition_Control_NOSUSP (instanceName, instanceParameter,
eventName, event_value);

__enable();

void TraceImpl_Ingnition_Control_USER (uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value)

SuspendAllInterrupts();

TraceImpl_Ingnition_Control_ NOSUSP (instanceName, instanceParameter,
eventName, event_value);

ResumeAllInterrupts();

void TraceImpl_Ingnition_Control_NOSUSP (uint32_t instanceName, uint32_t
instanceParameter, uint32_t eventName, uint32_t event_value)

void) instanceName; // avoid warning "unused parameter"

void) instanceParameter; // avoid warning "unused parameter"
)
)

(
(
(void)eventName; // avoid warning "unused parameter"

(void)event_value; // avoid warning "unused parameter”

// actual tracing code goes here

#else

#endif

B.1.2 ARTI OS Instrumentation

© 0 N o O »~ 0 N =

=3

Listing B.3: Example for OS instrumentation header

#ifndef _OS_H_
#define _OS_H_

#define TASK (_taskname) void OS_TASK ## _ ## _taskname (void)

void SuspendAllInterrupts (void);
void ResumeAllInterrupts (void);

void StartOS (void);

#endif

AUTO SAR

Listing B.4: Example for OS instrumentation source

finclude "user_main.h"
#include "tool-vendor_binding.h"

void SuspendAllInterrupts (void)

{
//

© 00 N oo o~ W N =

void ResumeAllInterrupts (void)
10 |

11 //

14 void StartOS (void)
15 |

16 const int myCoreld = 0;

17 const int OS_TASK_Task_Cylinder0O_ID
18

19 // for testing the ARTI interface,

= 2;

directly (rather than implementing an OS)
20 ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, OS_SHORT_NAME,
OsTask_Start, OS_TASK_Task_CylinderO_1ID);

21 OS_TASK_Task_CylinderO () ;

22 ARTI_TRACE (NOSUSP, AR _CP_OS_TASK, OS_SHORT_NAME,
OsTask_Stop, OS_TASK_Task_Cylinder0_1ID);

23}

B.1.3 ARTI Arbitrary Instrumentation

myCoreld,

myCoreld,

Listing B.5: Example for arbitrary (user code) instrumentation header

#ifndef _USER_MAIN_H_
#define _USER_MAIN_H_

#include "os.h"
extern TASK (Task_Cylinder0);
extern TASK(Task_Cylinderl);

© N o o ~ 0w Nno=

#endif

Listing B.6: Example for arbitrary (user code) instrumentation source

#include <stdlib.h>

#include "os.h"
#include "tool-vendor_binding.h"

TASK (Task_Cylinder0)
{

© N o o ~ W Nno=

ARTI_TRACE (USER, Ingnition_Control,
53);

9 // inject

10 ARTI_TRACE (USER, Ingnition_Control,

14

CylinderQ,

CylinderoO,

0,

0,

IgnitionStart,

IgnitionStop,

we call the task UserTaskl here

53)

AUTOSAR

13 TASK(Task_Cylinderl)
14 {

15 ARTI_TRACE (USER, Ingnition_Control, Cylinderl, 0, IgnitionStart,
77) ;

16 // inject

17 ARTI_TRACE (USER, Ingnition_Control, Cylinderl, 0, IgnitionStop, 77)

14

20 int main (void)

22 StartOS () ;

23

24 exit (EXIT_SUCCESS) ;
25

26 return -1;

B.2 ARXML Representation of Instrumentation

Example B.1

Examplary value of the ArtiHook container for OsTask_Start

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook_ArtiOs_TaskStart</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiHook</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiHook/ArtiHookClass</DEFINITION-REF>
<VALUE>AR_CP_0OS_TASK</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookEventName</DEFINITION-REF>
<VALUE>OsTask_Start</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookInstance</DEFINITION-REF>
<VALUE>OS_SHORT_NAME</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookEventParameterTypeRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_TaskCylinderId</VALUE-REF>
</ECUC-REFERENCE-VALUE>

AUTOSAR

<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookInstanceParameterTypeRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiParameterTypeMap_Core</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>

Example B.2

Examplary value of the ArtiOsInstance container using the hooks

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsInstance_Conf</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsInstance</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiOs/ArtiOsInstance/ArtiOsInstanceEcucRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlEcucOs/
Vendor1l0s</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiHook_ ArtiOs_TaskStart</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiHook_ArtiOs_TaskStop</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>

Example B.3

Examplary value of the ArtiHook container for arbitrary use

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook_IgnitionControl_Cyl0_IgnitionStart</SHORT-NAME
>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiHook</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>

AUTOSAR

<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookClass</DEFINITION-REF>
<VALUE>Ignition_Control</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookEventName</DEFINITION-REF>
<VALUE>IgnitionStart</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiHook/ArtiHookInstance</DEFINITION-REF>
<VALUE>CylinderO</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>

Example B.4

Examplary value of an ArtiGenericComponentClass container with parameters holding
hooks

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentClass_IgnitionControl</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass</DEFINITION
—REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassName</DEFINITION-REF>
<VALUE>ADIFFERENT</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE UUID="">
<SHORT-NAME>IgnitionStart</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterDescription</
DEFINITION-REF>
<VALUE>Ignition Start</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterName</DEFINITION-REF>

AUTOSAR

<VALUE>IGNITION_START</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE UUID="">
<SHORT-NAME>IgnitionStop</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterDescription</
DEFINITION-REF>
<VALUE>Ignition Stop</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentClass/
ArtiGenericComponentClassParameter/
ArtiGenericComponentClassParameterName</DEFINITION-REF>
<VALUE>IGNITION_STOP</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

Example B.5

Examplary value of an ArtiGenericComponentinstance container using the hooks

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiGenericComponentInstance_IgnitionCyl0</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance</
DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceName</DEFINITION-REF>
<VALUE>Ignition Cylinder 0</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceClassRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/
VendorlArtiGeneric/
ArtiGenericComponentClass_IgnitionControl</VALUE-REF>

AUTOSAR

</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>IgnitionCyl0Start</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs

/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterClassParameterRef<
/DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/

VendorlArtiGeneric/
ArtiGenericComponentClass_IgnitionControl/IgnitionStart
</VALUE-REF>

</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs

/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterHookRef</
DEFINITION-REF>

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti
/ArtiHook_IgnitionControl_CylO0_IgnitionStart</VALUE-REF

>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>TIgnitionCyl0Stop</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs

/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterClassParameterRef<
/DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/

VendorlArtiGeneric/
ArtiGenericComponentClass_IgnitionControl/IgnitionStop<
/VALUE-REF>

</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs

/Arti/ArtiGeneric/ArtiGenericComponentInstance/
ArtiGenericComponentInstanceParameter/
ArtiGenericComponentInstanceParameterHookRef</

DEFINITION-REF>

AUTOSAR

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti
/ArtiHook_IgnitionControl_Cyl0_IgnitionStop</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

C Expression Syntax

This section describes the grammar of Expressions using the Extended Backus-Naur

12 cast_expression e

type_name ')’ } unary_expression ;

Form.
1 expression = logical_OR_expression { ’?’ expression ’:’ expression } ;
2 logical_ OR_expression = logical_AND_expression { ’ ||’ logical_AND_expression } ;
3 logical AND_expression = inclusive_OR_expression { ’&&’ inclusive_OR_expression } ;
4 inclusive_OR_expression = exclusive_OR_expression { ’ |’ exclusive_OR_expression } ;
5 exclusive_OR_expression = AND_expression { ’"’ AND_expression } ;
6 AND_expression = equality_expression { ’'&’ equality_expression } ;
7 equality_expression = relational_expression { (==’ | ’'!=’) relational_expression } ;
8 relational_expression = shift_expression { ('<’ | '>" | '<=' | ’'>=') shift_expression } ;
9 shift_expression = additive_expression { (<<’ | ’>>') additive_expression } ;
10 additive_expression = multiplicative_expression { ('+’ | ’'=’) multiplicative_expression } ;
1 multiplicative_expression = cast_expression { ('%’ | '/’ | '%') cast_expression } ;

13 unary_expression postfix_expression | unary_operator cast_expression | ’‘sizeof’ unary_expression | ’sizeof’
(! type_name ")’

14 unary_operator S A A A LA L A A

15 postfix_expression = primary_expression { ' [’ expression ']’ | (’.’ | '->'") appl_identifier } ;

16 primary_expression = appl_identifier | constant | ’ (' expression ')’ ;

17 constant = integer_constant | character_constant | floating_constant | enumeration_constant ;

18 type_name = type_specifier { type_specifier } ["’] ;

19 type_specifier = ’'void’ | ’char’ | ’short’ | 'int’ | ’long’ | 'float’ | ’‘double’ | ’'signed’ | ‘unsigned’ |

type_def_name ;
20 type_def_name

Where:

appl_identifier;

integer_constant

represents an integer number, where the standard C convention
is used for decimal, hexadecimal and octal notation.

character_constant

follows the C definition for a character, including the support of
all standard escape sequences, such as \n’, "\’ etc.

floating_constant

follows the C definition for a floating point number.

enumeration_constant

follows the C definition for an "enum" constant.

appl_identifier

represents any C identifier and represents application symbols.
These symbols rely on symbolic information retrieved from the
debug information of the application and must have 'external
linkage’ scope (e.g. global C variables). The symbol value is
only valid after the application has executed its initialization
phase (typically this is the system startup code before reaching
the applications entry point, which is main() in C). The only
exception to this constraint is when using the unary
address-operator (&).

Further rules:

e Whitespace (blank, TAB) between terminals is ignored.

AUTOSAR

¢ All keywords and identifiers are case-sensitive.

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 ARTI Module Description
	7.2 ARTI Hook Implementation
	7.3 ARTI OS Implementation
	7.4 ARTI RTE VFB Trace Client
	7.4.1 RTE VFB Trace Client Configuration

	7.5 Error Classification
	7.5.1 Development Errors
	7.5.2 Runtime Errors
	7.5.3 Transient Faults
	7.5.4 Production Errors
	7.5.5 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 Arti_Init
	8.3.2 Arti_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.1.1 ARTI Tracing Macro

	8.6.2 Optional interfaces
	8.6.2.1 ARTI Generic Stopwatch
	8.6.2.2 ARTI Generic Dataflow Stopwatch
	8.6.2.3 ARTI Generic Datapoint
	8.6.2.4 ARTI Category 1 Interrupts
	8.6.2.5 ARTI RTE VFB Trace Client

	8.6.3 Configurable interfaces

	8.7 Service Interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 ARTI Parameters
	10.3 ARTI Generic Container
	10.3.1 ArtiGenericComponentClass
	10.3.2 ArtiGenericComponentInstance

	10.4 ARTI Hardware Container
	10.5 ARTI Os Container
	10.6 ARTI Rte Container
	10.6.1 ArtiRteRunnableClass
	10.6.2 ArtiRteRunnableInstance
	10.6.3 ArtiRteSchedulableClass
	10.6.4 ArtiRteSchedulableInstance
	10.6.5 ArtiRteVfbTraceHooks

	10.7 ARTI Values Container
	10.7.1 ArtiConstant
	10.7.2 ArtiExpression
	10.7.3 ArtiHook
	10.7.4 ArtiObjectClassParameter
	10.7.5 ArtiObjectInstanceParameter
	10.7.6 ArtiParameterTypeMap
	10.7.7 ArtiStates

	10.8 Published Information

	A Not applicable requirements
	B Example
	B.1 ARTI Instrumentation
	B.1.1 ARTI Tool Binding (ARTI.h)
	B.1.2 ARTI OS Instrumentation
	B.1.3 ARTI Arbitrary Instrumentation

	B.2 ARXML Representation of Instrumentation

	C Expression Syntax

