
Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

1 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Document Change History
Date Release Changed by Change Description

2021-11-25 R21-11 AUTOSAR

Release

Management

 Updated state machine behavior for
CanTrcv_Init

 Editorial changes

2020-11-30 R20-11 AUTOSAR

Release

Management

 Modeling of Development Errors,
Runtime Errors, and Transient
Faults.

 SOME/IP transformation props miss-
ing is added.

 Clean up of APIs with return type
void, that specify a return value.

 CanTrcv Operation Mode Inconsist-
encies corrected.

2019-11-28 R19-11 AUTOSAR

Release

Management

 Sequence diagram De-Initialization
(SPI Synchronous) and De-
Initialization (SPI Asynchronous)
split into different pages.

 Minor correction in CanTrcv initializa-
tion functionality.

 Changed Document Status from Fi-
nal to published

2018-10-31 4.4.0 AUTOSAR

Release

Management

 Removed DET reporting behavior for
the APIs
CanTrcv_MainFunctionDiagnostics
and CanTrcv_MainFunction during
un-initialized state.

Document Title Specification of CAN Trans-
ceiver Driver

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 71

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R21-11

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

2 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Document Change History
Date Release Changed by Change Description

2017-12-08 4.3.1 AUTOSAR

Release

Management

 CanTrcv_DeInit API added in state
machine diagram

 Editorial changes 'Runtime errors'
added

2016-11-30 4.3.0 AUTOSAR Re-
lease Man-
agement

 Added CanTrcv_DeInit API

 Sequence diagram updated

 CanTrcvGetVersionInfo renamed to
CanTrcvVersionInfoApi

 Updated Configuration class for con-
figuration parameters

 Minor corrections in the MainFunc-
tion periods

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Revised the configuration of CAN
Transceiver.

 Minor corrections in wait state func-
tionality.

 Clarification regarding the wakeup
sources.

2014-03-31 4.1.3 AUTOSAR

Release

Management

 Revised configuration for SPI inter-
face.

 Revised naming convention for
transceiver driver

2013-10-31 4.1.2 AUTOSAR

Release

Management

 Removed 'Timing' row from sched-
uled functions API table.

 Editorial changes

 Removed chapter(s) on change doc-
umentation

2013-03-15 4.1.1 AUTOSAR

Administration

 Updated sequence diagrams

 Reworked according to the new

SWS_BSWGeneral

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

3 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Document Change History
Date Release Changed by Change Description

2011-12-22 4.0.3 AUTOSAR

Administration

 Added support for Partial Networking

 Implemented Production error con-
cept

 Updated Baud rate configuration pa-
rameter handling

 Added support to detect that power-
on was caused by CAN communica-
tion

 Reentrancy attribute is corrected for
APIs

 Corrections in few requirements

 Optional Interfaces Table is correct-
ed

2009-12-18 4.0.1 AUTOSAR

Administration

 CanTrcv state names changed and
state diagram modified

 Usage of SBCs are no longer re-
stricted

 Mode switch requests to the current
mode are allowed

 CanTrvc driver has to invoke
CanIf_TrcvModeIndication after each
mode switch request, when the re-
quested mode has been reached

2010-02-02 3.1.4 AUTOSAR

Administration

 Wakeup event reporting: In R4.0,
CanTrcv stores wakeup events.
CanIf invokes function
CanTrcv_CheckWakeup() periodical-
ly to check for wakeup events.

 Wakeup modes: In R4.0, wakeup
through interrupt mechanism is not
supported. Only POLLING and
NOT_SUPPORTED wakeup modes
are available in CanTrcv.

 Sleep Wait Count added: Wait count
for transitioning into sleep mode
(CanTrcvSleepWaitCount) added.

 Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR

Administration

 Legal disclaimer revised

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

4 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Document Change History
Date Release Changed by Change Description

2007-12-21 3.0.1 AUTOSAR

Administration

 Changed API name
CanIf_TrcvWakeupByBus to
CanIf_SetWakeupEvent

 New error code
CANTRCV_E_PARAM_TRCV_WAK
EUP_MODE has been added.

 Output parameter in the API’s
CanTrcv_GetOpMode,
CanTrcv_GetBusWuReason and
CanTrcv_GetVersionInfo is changed
to pointer type.

 API CanTrcv_CB_WakeupByBus
has been modified

 Document meta information extend-
ed

 Small layout adaptations made

2007-01-24 2.1.15 AUTOSAR

Administration

 CAN transceiver driver is below CAN
interface. All API access from higher
layers are routed through CAN inter-
face.

 One CAN transceiver driver used per
CAN transceiver hardware type. For
different CAN transceiver hardware
types different CAN transceiver driv-
ers are used. One CAN transceiver
driver supports all CAN transceiver
hardware of same type

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

2006-05-16 2.0 AUTOSAR

Administration

 Initial release

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

5 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

6 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Table of Content

1 Introduction ... 8

1.1 Goal of CAN Transceiver Driver .. 9

1.2 Explicitly uncovered CAN transceiver functionality ... 9

1.3 Single wire CAN transceivers according SAE J2411 9

2 Acronyms and abbreviations.. 10

3 Related documentation .. 11

3.1 Input documents ... 11

3.2 Related standards and norms .. 11

3.3 Related specification .. 11

4 Constraints and assumptions ... 12

4.1 Limitations .. 12

4.2 Applicability to car domains ... 12

5 Dependencies to other modules .. 13

5.1 File structure .. 13

5.1.1 Code file structure ... 13

6 Requirements Traceability ... 14

7 Functional specification .. 22

7.1 CAN transceiver driver operation modes ... 22

7.1.1 Operation mode switching ... 23

7.2 CAN transceiver hardware operation modes .. 24

7.2.1 Example for temporary “Go-To-Sleep” mode ... 24

7.2.2 Example for “PowerOn/ListenOnly” mode .. 24

7.3 CAN transceiver wake up types ... 24

7.4 Enabling/Disabling wakeup notification ... 25

7.5 CAN transceiver wake up modes .. 25

7.6 Error classification .. 26

7.6.1 Development Errors .. 26

7.6.2 Runtime Errors .. 27

7.6.3 Transient Faults ... 27

7.6.4 Production Errors .. 27

7.6.5 Extended Production Errors .. 27

7.7 Preconditions for driver initialization .. 28

7.8 Instance concept .. 28

7.9 Wait states ... 28

7.10 Transceivers with selective wakeup functionality 28

8 API specification ... 30

8.1 Imported types ... 30

8.2 Type definitions .. 30

8.3 Function definitions .. 33

8.3.1 CanTrcv_Init .. 33

8.3.2 CanTrcv_SetOpMode ... 34

8.3.3 CanTrcv_GetOpMode ... 37

8.3.4 CanTrcv_GetBusWuReason ... 38

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

7 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

8.3.5 CanTrcv_VersionInfo... 39

8.3.6 CanTrcv_ SetWakeupMode .. 40

8.3.7 CanTrcv_GetTrcvSystemData .. 41

8.3.8 CanTrcv_ClearTrcvWufFlag .. 43

8.3.9 CanTrcv_ReadTrcvTimeoutFlag ... 44

8.3.10 CanTrcv_ClearTrcvTimeoutFlag ... 45

8.3.11 CanTrcv_ReadTrcvSilenceFlag ... 46

8.3.12 CanTrcv_CheckWakeup .. 47

8.3.13 CanTrcv_SetPNActivationState ... 47

8.3.14 CanTrcv_CheckWakeFlag ... 48

8.3.15 CanTrcv_DeInit .. 49

8.4 Scheduled functions ... 50

8.4.1 CanTrcv_MainFunction ... 50

8.4.2 CanTrcv_MainFunctionDiagnostics .. 51

8.5 Call-back notifications .. 52

8.6 Expected Interfaces ... 52

8.6.1 Mandatory Interfaces... 52

8.6.2 Optional Interfaces .. 52

8.6.3 Configurable interfaces ... 54

9 Sequence diagram ... 55

9.1 Wake up with valid validation ... 55

9.2 Interaction with DIO module .. 56

9.3 De-Initialization (SPI Synchronous) ... 58

9.4 De-Initialization (SPI Asynchronous) ... 60

10 Configuration specification ... 62

10.1 How to read this chapter ... 62

10.2 Containers and configuration parameters .. 63

10.2.1 CanTrcv .. 63

10.2.2 CanTrcvGeneral ... 63

10.2.3 CanTrcvConfigSet .. 67

10.2.4 CanTrcvChannel .. 68

10.2.5 CanTrcvAccess .. 75

10.2.6 CanTrcvDioAccess .. 75

10.2.7 CanTrcvDioChannelAccess ... 75

10.2.8 CanTrcvSpiAccess ... 76

10.2.9 CanTrcvSpiSequence .. 77

10.2.10 CanTrcvDemEventParameterRefs .. 78

10.2.11 CanTrcvPartialNetwork .. 79

10.2.12 CanTrcvPnFrameDataMaskSpec .. 82

10.3 Published Information ... 83

11 Not applicable requirements .. 84

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

8 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

1 Introduction

This specification describes the functionality, APIs and configuration of CAN Trans-
ceiver Driver module. The CAN Transceiver Driver module is responsible for handling
the CAN transceiver hardware chips on an ECU.
The CAN Transceiver is a hardware device, which adapts the signal levels that are
used on the CAN bus to the logical (digital) signal levels recognised by a microcon-
troller.
In addition, the transceivers are able to detect electrical malfunctions like wiring is-
sues, ground offsets or transmission of long dominant signals. Depending on the in-
terfacing with the microcontroller, they flag the detected error summarized by a single
port pin or very detailed by SPI.
Some transceivers support power supply control and wake up via the CAN bus. Dif-
ferent wake up/sleep and power supply concepts are usual on the market.
Within the automotive environment, there are mainly three different CAN bus physics
used. These are ISO11898 for high-speed CAN (up to 1Mbits/s), ISO11519 for low-
speed CAN (up to 125Kbits/s) and SAE J2411 for single-wire CAN.
Latest developments include System Basis Chips (SBCs) where power supply con-
trol and advanced watchdogs are implemented in addition to CAN. These are en-
closed in one housing and controlled through single interface (e.g. via SPI).

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

9 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

1.1 Goal of CAN Transceiver Driver

The target of this document is to specify the interfaces and behavior which are appli-
cable to most current and future CAN transceiver devices.
The CAN transceiver driver abstracts the CAN transceiver hardware. It offers a
hardware independent interface to the higher layers. It abstracts from the ECU layout
by using APIs of MCAL layer to access the CAN transceiver hardware.

1.2 Explicitly uncovered CAN transceiver functionality

Some CAN bus transceivers offer additional functionality, for example, ECU self test
or error detection capability for diagnostics.
ECU self test and error detection are not defined within AUTOSAR and requiring
such functionality would lock out most currently used transceiver hardware chips.
Therefore, features like “ground shift detection”, “selective wake up”, “slope control”
are not supported.

1.3 Single wire CAN transceivers according SAE J2411

Single wire CAN according SAE J2411 is not supported by AUTOSAR.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

10 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

2 Acronyms and abbreviations

Abbreviation Description

ComM Communication Manager

DEM Diagnostic Event Manager

DET Default Error Tracer

DIO Digital Input Output (SPAL module)

EB Externally Buffered channels. Buffers containing data to transfer are outside the
SPI Handler/Driver.

EcuM ECU State Manager

IB Internally Buffered channels. Buffers containing data to transfer are inside the SPI
Handler/Driver.

ISR Interrupt Service Routine

MCAL Micro Controller Abstraction Layer

Port Port module (SPAL module)

n/a Not Applicable

SBC System Basis Chip; a device, which integrates e.g. CAN and/or LIN transceiver,
watchdog and power control.

SPAL Standard Peripheral Abstraction Layer

SPI

Channel

A channel is a software exchange medium for data that are defined with the same
criteria: configuration parameters, number of data elements with same size and
data pointers (source & destination) or location. See specification of SPI driver for
more details.

SPI

Job

A job is composed of one or several channels with the same chip select. A job is
considered to be atomic and therefore cannot be interrupted. A job has also an
assigned priority. See specification of SPI driver for more details.

SPI

Sequence

A sequence is a number of consecutive jobs to be transmitted. A sequence de-
pends on a static configuration. See specification of SPI driver for more details.

CAN Channel A physical channel which is connected to a CAN network from a CAN controller
through a CAN transceiver.

API Application Programming Interface

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

11 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
 AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
 AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] Specification of ECU Configuration
 AUTOSAR_TPS_ECUConfiguration.pdf

[4] General Requirements on Basic Software
 AUTOSAR_SRS_BSWGeneral.pdf

[5] Specification of Specification of CAN Interface
 AUTOSAR_SWS_CANInterface.pdf

[6] Basic Software Module Description Template,

 AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[7] General Specification of Basic Software Modules

AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related standards and norms

[8] ISO11898 – Road vehicles - Controller area network (CAN)

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [7] (SWS
BSW General), which is also valid for CAN Transceiver Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CAN Transceiver Driver.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

12 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

4 Constraints and assumptions

4.1 Limitations

[SWS_CanTrcv_00098] ⌈ The CAN bus transceiver hardware shall provide the func-

tionality and an interface which can be mapped to the operation mode model of the

AUTOSAR CAN transceiver driver. ⌋(SRS_BSW_00172)

See also Chapter 7.1.

4.2 Applicability to car domains

This driver might be applicable in all car domains using CAN for communication.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

13 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

5 Dependencies to other modules

Module Dependencies

CanIf All CAN transceiver drivers are arranged below CanIf.

ComM ComM steers CAN transceiver driver communication modes via CanIf. Each CAN trans-
ceiver driver is steered independently.

DET DET gets development error information from CAN transceiver driver.

DEM DEM gets production error information from CAN transceiver driver.

DIO DIO module is used to access CAN transceiver device connected via ports.

EcuM EcuM gets information about wake up events from CAN transceiver driver via CanIf.

SPI SPI module is used to access CAN transceiver device connected via SPI.

5.1 File structure

5.1.1 Code file structure

[SWS_CanTrcv_00064] ⌈ The naming convention prescribed by AUTOSAR is ap-

plied to all files of the CanTrcv module. ⌋(SRS_BSW_00300)

[SWS_CanTrcv_00065] ⌈ The CanTrcv module consists of the following files:

File name Requirements Description

CanTrcv.c SWS_CanTrcv_00069
The implementation general c file. It does not contain
interrupt routines.

CanTrcv.h SWS_CanTrcv_00052
It contains only information relevant for other BSW
modules (API). Differences in API depending in con-
figuration are encapsulated.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

14 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

6 Requirements Traceability

Requirement Description Satisfied by

SRS_BSW_00005 Modules of the ÂµC Abstraction
Layer (MCAL) may not have hard
coded horizontal interfaces

SWS_CanTrcv_00999

SRS_BSW_00006 The source code of software mo-
dules above the ÂµC Abstraction
Layer (MCAL) shall not be proces-
sor and compiler dependent.

SWS_CanTrcv_00999

SRS_BSW_00007 All Basic SW Modules written in C
language shall conform to the
MISRA C 2012 Standard.

SWS_CanTrcv_00999

SRS_BSW_00009 All Basic SW Modules shall be
documented according to a com-
mon standard.

SWS_CanTrcv_00999

SRS_BSW_00010 The memory consumption of all
Basic SW Modules shall be docu-
mented for a defined configuration
for all supported platforms.

SWS_CanTrcv_00999

SRS_BSW_00101 The Basic Software Module shall
be able to initialize variables and
hardware in a separate initializati-
on function

SWS_CanTrcv_00001

SRS_BSW_00160 Configuration files of AUTOSAR
Basic SW module shall be readab-
le for human beings

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00161 The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which provides a
standardized interface to higher
software layers

SWS_CanTrcv_00999

SRS_BSW_00164 The Implementation of interrupt
service routines shall be done by
the Operating System, complex
drivers or modules

SWS_CanTrcv_00999

SRS_BSW_00168 SW components shall be tested by
a function defined in a common
API in the Basis-SW

SWS_CanTrcv_00999

SRS_BSW_00171 Optional functionality of a Basic-
SW component that is not required
in the ECU shall be configurable at
pre-compile-time

SWS_CanTrcv_00013

SRS_BSW_00172 The scheduling strategy that is
built inside the Basic Software
Modules shall be compatible with
the strategy used in the system

SWS_CanTrcv_00001,
SWS_CanTrcv_00013,
SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00098,
SWS_CanTrcv_00099

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

15 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

SRS_BSW_00300 All AUTOSAR Basic Software Mo-
dules shall be identified by an un-
ambiguous name

SWS_CanTrcv_00064

SRS_BSW_00304 All AUTOSAR Basic Software Mo-
dules shall use only AUTOSAR
data types instead of native C data
types

SWS_CanTrcv_00999

SRS_BSW_00305 Data types naming convention SWS_CanTrcv_00999

SRS_BSW_00306 AUTOSAR Basic Software Mo-
dules shall be compiler and plat-
form independent

SWS_CanTrcv_00999

SRS_BSW_00307 Global variables naming conventi-
on

SWS_CanTrcv_00999

SRS_BSW_00308 AUTOSAR Basic Software Mo-
dules shall not define global data
in their header files, but in the C
file

SWS_CanTrcv_00999

SRS_BSW_00309 All AUTOSAR Basic Software Mo-
dules shall indicate all global data
with read-only purposes by explici-
tly assigning the const keyword

SWS_CanTrcv_00999

SRS_BSW_00310 API naming convention SWS_CanTrcv_00001,
SWS_CanTrcv_00002,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00008,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_BSW_00312 Shared code shall be reentrant SWS_CanTrcv_00999

SRS_BSW_00321 The version numbers of AUTO-
SAR Basic Software Modules shall
be enumerated according specific
rules

SWS_CanTrcv_00999

SRS_BSW_00325 The runtime of interrupt service
routines and functions that are
running in interrupt context shall
be kept short

SWS_CanTrcv_00999

SRS_BSW_00327 Error values naming convention SWS_CanTrcv_00050,
SWS_CanTrcv_00206,
SWS_CanTrcv_00227

SRS_BSW_00328 All AUTOSAR Basic Software Mo-
dules shall avoid the duplication of
code

SWS_CanTrcv_00999

SRS_BSW_00330 It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

SWS_CanTrcv_00999

SRS_BSW_00331 All Basic Software Modules shall
strictly separate error and status
information

SWS_CanTrcv_00206,
SWS_CanTrcv_00227

SRS_BSW_00333 For each callback function it shall
be specified if it is called from in-
terrupt context or not

SWS_CanTrcv_00999

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

16 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

SRS_BSW_00334 All Basic Software Modules shall
provide an XML file that contains
the meta data

SWS_CanTrcv_00999

SRS_BSW_00336 Basic SW module shall be able to
shutdown

SWS_CanTrcv_00999,
SWS_CanTrcv_91001

SRS_BSW_00337 Classification of development er-
rors

SWS_CanTrcv_00206,
SWS_CanTrcv_00227

SRS_BSW_00339 Reporting of production relevant
error status

SWS_CanTrcv_00228

SRS_BSW_00341 Module documentation shall con-
tains all needed informations

SWS_CanTrcv_00999

SRS_BSW_00342 It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and mo-
dules provided as object code,
even mixed

SWS_CanTrcv_00999

SRS_BSW_00343 The unit of time for specification
and configuration of Basic SW
modules shall be preferably in
physical time unit

SWS_CanTrcv_00112

SRS_BSW_00344 BSW Modules shall support link-
time configuration

SWS_CanTrcv_00999

SRS_BSW_00347 A Naming seperation of different
instances of BSW drivers shall be
in place

SWS_CanTrcv_00016

SRS_BSW_00350 All AUTOSAR Basic Software Mo-
dules shall allow the enab-
ling/disabling of detection and re-
porting of development errors.

SWS_CanTrcv_00050

SRS_BSW_00357 For success/failure of an API call a
standard return type shall be defi-
ned

SWS_CanTrcv_00002

SRS_BSW_00358 The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

SWS_CanTrcv_00001

SRS_BSW_00359 All AUTOSAR Basic Software Mo-
dules callback functions shall
avoid return types other than void
if possible

SWS_CanTrcv_00999

SRS_BSW_00360 AUTOSAR Basic Software Mo-
dules callback functions are allo-
wed to have parameters

SWS_CanTrcv_00999

SRS_BSW_00369 All AUTOSAR Basic Software Mo-
dules shall not return specific de-
velopment error codes via the API

SWS_CanTrcv_00001,
SWS_CanTrcv_00002,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00008,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013,
SWS_CanTrcv_91004,
SWS_CanTrcv_91005

SRS_BSW_00373 The main processing function of
each AUTOSAR Basic Software

SWS_CanTrcv_00013

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

17 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Module shall be named according
the defined convention

SRS_BSW_00375 Basic Software Modules shall re-
port wake-up reasons

SWS_CanTrcv_00007

SRS_BSW_00377 A Basic Software Module can re-
turn a module specific types

SWS_CanTrcv_00005,
SWS_CanTrcv_00007

SRS_BSW_00378 AUTOSAR shall provide a boolean
type

SWS_CanTrcv_00999

SRS_BSW_00383 The Basic Software Module spe-
cifications shall specify which
other configuration files from other
modules they use at least in the
description

SWS_CanTrcv_00999

SRS_BSW_00384 The Basic Software Module spe-
cifications shall specify at least in
the description which other mo-
dules they require

SWS_CanTrcv_00999

SRS_BSW_00385 List possible error notifications SWS_CanTrcv_00050,
SWS_CanTrcv_00206,
SWS_CanTrcv_00227,
SWS_CanTrcv_00228

SRS_BSW_00386 The BSW shall specify the confi-
guration for detecting an error

SWS_CanTrcv_00050

SRS_BSW_00388 Containers shall be used to group
configuration parameters that are
defined for the same object

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00389 Containers shall have names SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00390 Parameter content shall be unique
within the module

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00392 Parameters shall have a type SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00393 Parameters shall have a range SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00394 The Basic Software Module spe-
cifications shall specify the scope
of the configuration parameters

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00395 The Basic Software Module spe-
cifications shall list all configurati-
on parameter dependencies

SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00398 The link-time configuration is
achieved on object code basis in
the stage after compiling and befo-

SWS_CanTrcv_00999

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

18 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

re linking

SRS_BSW_00399 Parameter-sets shall be located in
a separate segment and shall be
loaded after the code

SWS_CanTrcv_00999

SRS_BSW_00400 Parameter shall be selected from
multiple sets of parameters after
code has been loaded and started

SWS_CanTrcv_00999

SRS_BSW_00401 Documentation of multiple in-
stances of configuration parame-
ters shall be available

SWS_CanTrcv_00999

SRS_BSW_00404 BSW Modules shall support post-
build configuration

SWS_CanTrcv_00999

SRS_BSW_00405 BSW Modules shall support mul-
tiple configuration sets

SWS_CanTrcv_00999

SRS_BSW_00406 A static status variable denoting if
a BSW module is initialized shall
be initialized with value 0 before
any APIs of the BSW module is
called

SWS_CanTrcv_00002,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00008,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_BSW_00407 Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

SWS_CanTrcv_00008

SRS_BSW_00408 All AUTOSAR Basic Software Mo-
dules configuration parameters
shall be named according to a
specific naming rule

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00410 Compiler switches shall have defi-
ned values

SWS_CanTrcv_00999

SRS_BSW_00411 All AUTOSAR Basic Software Mo-
dules shall apply a naming rule for
enabling/disabling the existence of
the API

SWS_CanTrcv_00008

SRS_BSW_00413 An index-based accessing of the
instances of BSW modules shall
be done

SWS_CanTrcv_00016

SRS_BSW_00414 Init functions shall have a pointer
to a configuration structure as sin-
gle parameter

SWS_CanTrcv_00001

SRS_BSW_00416 The sequence of modules to be
initialized shall be configurable

SWS_CanTrcv_00999

SRS_BSW_00417 Software which is not part of the
SW-C shall report error events
only after the DEM is fully operati-
onal.

SWS_CanTrcv_00999

SRS_BSW_00422 Pre-de-bouncing of error status
information is done within the DEM

SWS_CanTrcv_00999

SRS_BSW_00423 BSW modules with AUTOSAR
interfaces shall be describable
with the means of the SW-C
Template

SWS_CanTrcv_00999

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

19 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

SRS_BSW_00424 BSW module main processing
functions shall not be allowed to
enter a wait state

SWS_CanTrcv_00013

SRS_BSW_00425 The BSW module description
template shall provide means to
model the defined trigger conditi-
ons of schedulable objects

SWS_CanTrcv_00090

SRS_BSW_00426 BSW Modules shall ensure data
consistency of data which is
shared between BSW modules

SWS_CanTrcv_00999

SRS_BSW_00427 ISR functions shall be defined and
documented in the BSW module
description template

SWS_CanTrcv_00999

SRS_BSW_00428 A BSW module shall state if its
main processing function(s) has to
be executed in a specific order or
sequence

SWS_CanTrcv_00013

SRS_BSW_00429 Access to OS is restricted SWS_CanTrcv_00999

SRS_BSW_00432 Modules should have separate
main processing functions for
read/receive and write/transmit
data path

SWS_CanTrcv_00999

SRS_BSW_00433 Main processing functions are only
allowed to be called from task bo-
dies provided by the BSW
Scheduler

SWS_CanTrcv_00999

SRS_Can_01090 The bus transceiver driver packa-
ge shall offer configuration para-
meters that are needed to configu-
re the driver for a given bus and
the supported notifications

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_Can_01091 The CAN bus transceiver driver
shall support the configuration for
more than one bus

SWS_CanTrcv_00002,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00009,
SWS_CanTrcv_00016

SRS_Can_01092 - SWS_CanTrcv_00091

SRS_Can_01095 The bus transceiver driver shall
support the compile time configu-
ration of one notification to an up-
per layer for change notification for
"wakeup by bus" events

SWS_CanTrcv_00007

SRS_Can_01096 The bus transceiver driver shall
provide an API to initialize the dri-
ver internally

SWS_CanTrcv_00001

SRS_Can_01097 CAN Bus Transceiver driver API
shall be synchronous

SWS_CanTrcv_00001,
SWS_CanTrcv_00002,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_Can_01098 The bus transceiver driver shall
support an API to send the

SWS_CanTrcv_00002,
SWS_CanTrcv_00055

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

20 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

addressed transceiver into its
Standby mode

SRS_Can_01099 The bus transceiver driver shall
support an API to send the
addressed transceiver into its
Sleep mode

SWS_CanTrcv_00002,
SWS_CanTrcv_00055

SRS_Can_01100 The bus transceiver driver shall
support an API to send the
addressed transceiver into its
Normal mode

SWS_CanTrcv_00002,
SWS_CanTrcv_00055

SRS_Can_01101 The bus transceiver driver shall
support an API to read out the cur-
rent operation mode of the
transceiver of a specified bus
within the ECU

SWS_CanTrcv_00005

SRS_Can_01103 The bus transceiver driver shall
support an API to read out the
reason of the last wakeup of a
specified bus within the ECU

SWS_CanTrcv_00007

SRS_Can_01106 The bus transceiver driver shall
call the appropriate callback func-
tion of EcuM in case a wakeup by
bus event is detected

SWS_CanTrcv_00007

SRS_Can_01107 The CAN Transceiver Driver shall
support the situation where a wa-
keup by bus occurs during the
same time the transition to stand-
by/sleep is in progress

SWS_CanTrcv_00999

SRS_Can_01108 The bus transceiver driver shall
support the AUTOSAR ECU state
manager in a way that a safe sys-
tem startup and shutdown is pos-
sible

SWS_CanTrcv_00001,
SWS_CanTrcv_00002,
SWS_CanTrcv_91001,
SWS_CanTrcv_91002,
SWS_CanTrcv_91003

SRS_Can_01109 The bus transceiver driver shall
check the control communication
to the transceiver and the reaction
of the transceiver for correctness

SWS_CanTrcv_00001,
SWS_CanTrcv_00002,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_Can_01110 CAN Bus Transceiver driver shall
handle the transceiver specific
timing requirements internally

SWS_CanTrcv_00001,
SWS_CanTrcv_00002,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_Can_01115 The bus transceiver driver shall
support an API to enable and
disable the wakeup notification for
each bus separately

SWS_CanTrcv_00009

SRS_Can_01138 The CAN Bus Transceiver Driver
shall provide one callback function
for lower layer ICU Driver for wake
up by bus events

SWS_CanTrcv_00999

SRS_Can_01157 The bus transceiver driver shall SWS_CanTrcv_00214

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

21 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

provide an API for clearing the
WUF bit in the tranceiver hardware

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

22 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

7 Functional specification

7.1 CAN transceiver driver operation modes

[SWS_CanTrcv_00055] ⌈ The CanTrcv module shall implement the state diagram

shown below, independently for each configured transceiver. ⌋(SRS_Can_01098,

SRS_Can_01099, SRS_Can_01100)

POWER_ON

Power on Power off

CANTRCV_NORMAL

ACTIVE

CANTRCV_TRCVMODE_SLEEP CANTRCV_TRCVMODE_NORMAL

CANTRCV_TRCVMODE_STANDBY

Legend:

1 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE_NORMAL)

2 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE_STANDBY)

3 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE_SLEEP)

2(a)

CanTrcv_Init()

[CFG2]
2(b)

CanTrcv_DeInit()

3(b)

1(a)

1(c)

1(b)

3(a)

CanTrcv_DeInit()

CanTrcv_Init()

[CFG1]

The main idea intended by this diagram, is to support a lot of up to now available
CAN bus transceivers in a generic view. Depending on the CAN transceiver hard-
ware, the model may have one or two states more than necessary for a given CAN

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

23 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

transceiver hardware but this will clearly decouple the ComM and EcuM from the
used hardware.

[SWS_CanTrcv_00148] ⌈ The function CanTrcv_Init causes a state change to

either CANTRCV_TRCVMODE_SLEEP or CANTRCV_TRCVMODE _STANDBY.
This depends on the configuration and is independently configurable for each trans-

ceiver. ⌋()

State Description

POWER_ON ECU is fully powered.

NOT_ACTIVE
State of CAN transceiver hardware depends on ECU hardware
and on Dio and Port driver configuration. CAN transceiver driv-
er is not initialized and therefore not active.

ACTIVE

The function CanTrcv_Init has been called. It carries CAN
transceiver driver to active state.

Depending on configuration CAN transceiver driver enters the
state CANTRCV_TRCVMODE_SLEEP or
CANTRCV_TRCVMODE_STANDBY.

CANTRCV_TRCVMODE_NORMAL
Full bus communication. If CAN transceiver hardware controls
ECU power supply, ECU is fully powered. The CAN transceiver
driver detects no further wake up information.

CANTRCV_TRCVMODE_STANDBY

No communication is possible. ECU is still powered if CAN
transceiver hardware controls ECU power supply. A transition
to CANTRCV_TRCVMODE_SLEEP is only valid from this
mode. A wake up by bus or by a local wake up event is possi-
ble.

CANTRCV_TRCVMODE_SLEEP
No communication is possible. ECU may be unpowered de-
pending on responsibility to handle power supply. A wake up
by bus or by a local wake up event is possible.

If a CAN transceiver driver covers more than one CAN transceiver (configured as
channels), all transceivers (channels) are either in the state NOT_ACTIVE or in the
state ACTIVE.

In state ACTIVE, each transceiver may be in a different sub state.

7.1.1 Operation mode switching

A mode switch is requested with a call to the function CanTrcv_SetOpMode.

[SWS_CanTrcv_00161] ⌈ A mode switch request to the current mode is allowed and

shall not lead to an error, even if DET is enabled. ⌋()

[SWS_CanTrcv_00158] ⌈ The CanTrcv module shall invoke the callback function

CanIf_TrcvModeIndication, for each mode switch request with call to

CanTrcv_SetOpMode, after the requested mode has been reached referring to the

corresponding CAN transceiver with the abstract CanIf TransceiverId.⌋()

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

24 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

7.2 CAN transceiver hardware operation modes

The CAN transceiver hardware may support more mode transitions than shown in
the state diagram above. The dependencies and the recommended implementations
behaviour are explained in this chapter.
It is implementation specific to decide which CAN transceiver hardware state is cov-
ered by which CAN transceiver driver software state. An implementation has to guar-
antee that the whole functionality of the described CAN transceiver driver software
state is realized by the implementation.

7.2.1 Example for temporary “Go-To-Sleep” mode

The mode often referred to as “Go-to-sleep” is a temporary mode when switching
from Normal to Sleep. The driver encapsulates such a temporary mode within one of
the CAN transceiver driver software states. In addition, the CAN transceiver driver
switches first from Normal to Standby and then with an additional API call from
Standby to Sleep.

7.2.2 Example for “PowerOn/ListenOnly” mode

The mode often referred to as “PowerOn“ or “ListenOnly” is a mode where the CAN
transceiver hardware is only able to receive messages but not able to send messag-
es. Also, transmission of the acknowledge bit during reception of a message is sup-
pressed. This mode is not supported because it is outside of the CAN standard and
not supported by all CAN transceiver hardware chips.

7.3 CAN transceiver wake up types

There are three different scenarios which are often called wake up:

Scenario 1:

 MCU is not powered.
 Parts of ECU including CAN transceiver hardware are powered.
 The considered CAN transceiver is in SLEEP mode.
 A wake up event on CAN bus is detected by CAN transceiver hardware.
 The CAN transceiver hardware causes powering of MCU.

In terms of AUTOSAR, this is kept as a cold start and NOT as a wake up.

Scenario 2:

 MCU is in low power mode.
 Parts of ECU including CAN transceiver hardware are powered.
 The considered CAN transceiver is in STANDBY mode.
 A wake up event on CAN bus is detected by CAN transceiver hardware.
 The CAN transceiver hardware causes a SW interrupt for waking up.

In terms of AUTOSAR, this is kept as a wake up of the CAN channel and of the
MCU.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

25 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Scenario 3:

 MCU is in full power mode.
 At least parts of ECU including CAN transceiver hardware are powered.
 The considered CAN transceiver is in STANDBY mode.
 A wake up event on CAN is detected by CAN transceiver hardware.
 The CAN transceiver hardware either causes a SW interrupt for waking up or

is polled cyclically for wake up events.

In terms of AUTOSAR, this is kept as a wake up of the CAN channel.

7.4 Enabling/Disabling wakeup notification

[SWS_CanTrcv_00171] ⌈ CanTrcv driver shall use the following APIs provided by

ICU driver, to enable and disable the wakeup event notification:
- Icu_EnableNotification
- Icu_DisableNotification

CanTrcv driver shall enable/disable ICU channels only if reference is configured for

the parameter CanTrcvIcuChannelRef.⌋()

CanTrcv driver shall ensure the following to avoid the loss of wakeup events:

[SWS_CanTrcv_00172] ⌈ It shall enable the ICU channels when the transceiver

transitions to the Standby mode (CANTRCV_STANDBY). ⌋()

[SWS_CanTrcv_00173] ⌈ It shall disable the ICU channels when the transceiver

transitions to the Normal mode (CANTRCV_NORMAL). ⌋()

7.5 CAN transceiver wake up modes

CAN transceiver driver offers two wake up modes:

[SWS_CanTrcv_00090] ⌈ NOT_SUPPORTED mode ⌋(SRS_BSW_00388,

SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_00392, SRS_BSW_00393,
SRS_BSW_00394, SRS_BSW_00408, SRS_BSW_00425, SRS_BSW_00160,
SRS_BSW_00172, SRS_Can_01090)
In mode NOT_SUPPORTED, no wake ups are generated by CAN transceiver driver.
This mode is supported by all CAN transceiver hardware types.

[SWS_CanTrcv_00091] ⌈ POLLING mode ⌋(SRS_BSW_00388, SRS_BSW_00389,

SRS_BSW_00390, SRS_BSW_00392, SRS_BSW_00393, SRS_BSW_00394,
SRS_BSW_00395, SRS_BSW_00408, SRS_BSW_00160, SRS_BSW_00172,
SRS_Can_01090, SRS_Can_01092)
In mode POLLING, wake ups generated by CAN transceiver driver may cause CAN
channel wake ups. In this mode, no MCU wake ups are possible. This mode pre-
sumes a support by used CAN transceiver hardware type. Wake up mode POLLING

requires function CanTrcv_CheckWakeup and main function

CanTrcv_MainFunction to be present in source code.

The main function CanTrcv_MainFunction shall be called by BSW scheduler

and CanTrcv_CheckWakeup by CanIf.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

26 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

The selection of the wake up mode is done by the configuration parameter

CanTrcvWakeUpSupport. The support of wake ups may be switched on and off for

each CAN transceiver individually by the configuration parameter CanTrcvWakeup-

ByBusUsed.

Note: In both modes the function CanTrcv_CheckWakeup shall be present, but the

functionality shall be based on the configured wakeup mode (NOT_SUPPORTED
OR POLLING).
Implementation Hint:
If a CAN transceiver needs a specific state transition (e.g. Sleep -> Normal) initiated
by the software after detection of a wake-up, this may be accomplished by the

CanTrcv module, during the execution of CanTrcv_CheckWakeup. This behaviour

is implementation specific.
It has to be assured by configuration of modules, which are involved in wake-up pro-

cess (EcuM, CanIf, ICU etc…) that CanTrcv_CheckWakeup is called, when a trans-

ceiver needs a specific state transition.

7.6 Error classification

Section 7.6 "Error Handling" of the document "General Specification of Basic Soft-
ware Modules" describes the error handling of the Basic Software in detail. Above all,
it constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.6.1 Development Errors

[SWS_CanTrcv_00050]⌈

Type of error Related error code
Error
value

API called with wrong parameter for the CAN
transceiver

CANTRCV_E_INVALID_
TRANSCEIVER

1

API called with null pointer parameter
CANTRCV_E_PARAM_
POINTER

2

API service used without initialization CANTRCV_E_UNINIT 11

API service called in wrong transceiver operation
mode (STANDBY expected)

CANTRCV_E_TRCV_NOT_
STANDBY

21

API service called in wrong transceiver operation
mode (NORMAL expected)

CANTRCV_E_TRCV_NOT_
NORMAL

22

API service called with invalid parameter for Trcv
WakeupMode

CANTRCV_E_PARAM_TRCV_
WAKEUP_MODE

23

API service called with invalid parameter for OpMode
CANTRCV_E_PARAM_TRCV_
OPMODE

24

Configured baud rate is not supported by the
transceiver

CANTRCV_E_BAUDRATE_
NOT_SUPPORTED

25

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

27 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Module initialization has failed, e.g. CanTrcv_Init()
called with an invalid pointer in postbuild.

CANTRCV_E_INIT_FAILED 27

⌋(SRS_BSW_00327, SRS_BSW_00350, SRS_BSW_00385, SRS_BSW_00386)

7.6.2 Runtime Errors

[SWS_CanTrcv_91006]⌈

Type of error Related error code Error value

No/incorrect communication to transceiver. CANTRCV_E_NO_TRCV_CONTROL 26

⌋()

7.6.3 Transient Faults

There are no transient faults.

7.6.4 Production Errors

There are no production errors.

7.6.5 Extended Production Errors

[SWS_CanTrcv_00228]

⌈

Error Name: CANTRCV_E_BUS_ERROR

Short Description: A CAN bus error occured during communication
Long Description: This Extended Production Error shall be issued when a bus failure is de-

tected by the transceiver during the CAN communication..

Detection Criteria:

Fail When the flag corresponding to bus failure is set,

Dem_SetEventStatus shall be reported with parameters

EventId as CANTRCV_E_BUS_ERROR and EventStatus as

DEM_EVENT_STATUS_FAILED.
SWS_CanTrcv_00206, SWS_CanTrcv_00229

Pass When the flag corresponding to bus failure is not set,

Dem_SetEventStatus shall be reported with parameters

EventId as CANTRCV_E_BUS_ERROR and EventStatus as

DEM_EVENT_STATUS_PASSED.
SWS_CanTrcv_00227, SWS_CanTrcv_00229

Secondary Parameters: N/A
Time Required: N/A
Monitor Frequency continuous

⌋(SRS_BSW_00339, SRS_BSW_00385)

[SWS_CanTrcv_00229] ⌈The extended production error CANTRCV_E_BUS_ERROR

(value assigned by DEM) shall be detectable by the CAN tranceiver module when
Bus Error (BUSERR) flag is set, depending on whether it is configured and supported

by hardware. ⌋()

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

28 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

7.7 Preconditions for driver initialization

[SWS_CanTrcv_00099] ⌈ The environment of the CanTrcv module shall make sure

that all necessary BSW drivers (used by the CanTrcv module) have been initialized

and are usable before CanTrcv_Init is called. ⌋(SRS_BSW_00172)

The CAN bus transceiver driver uses drivers for Spi and Dio to control the CAN bus
transceiver hardware. Thus, these drivers must be available and ready to operate be-
fore the CAN bus transceiver driver is initialized.
The CAN transceiver driver may have timing requirements for the initialization se-
quence and the access to the transceiver device which must be fulfilled by these
used underlying drivers.
The timing requirements might be that

1) The call of the CAN bus transceiver driver initialization has to be performed
very early after power up to be able to read all necessary information out of
the transceiver hardware in time for all other users within the ECU.

2) The runtime of the used underlying services is very short and synchronous to
enable the driver to keep his own timing requirements limited by the used
hardware device.

3) The runtime of the driver may be enlarged due to some hardware devices con-
figuring the port pin level to be valid for e.g. 50µs before changing it again to
reach a specific state (e.g. sleep).

7.8 Instance concept

[SWS_CanTrcv_00016] ⌈ For each different CAN transceiver hardware type, an

ECU has one CAN transceiver driver instance. One instance serves all CAN trans-

ceiver hardware of same type. ⌋(SRS_BSW_00347, SRS_BSW_00413,

SRS_Can_01091)

7.9 Wait states

For changing operation modes, the CAN transceiver hardware may have to perform
wait states.

[SWS_CanTrcv_00230] ⌈The CAN Tranceiver Driver shall use the Time service

Tm_BusyWait1us16bit to realize the wait time for transceiver state changes.⌋()

7.10 Transceivers with selective wakeup functionality

This section describes requirements for CAN transceivers with selective wakeup
functionality.
Partial Networking is a state in a CAN system where some nodes are in low power
mode while other nodes are communicating. This reduces the power consumption by

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

29 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

the entire network. Nodes in the low-power modes are woken up by pre-defined
wakeup frames.
Transceivers which support selective wakeup can be woken up by Wake Up Frame/
Frames (WUF), in addition to the wakeup by Wake Up Pattern (WUP) offered by
normal transceivers.

[SWS_CanTrcv_00174] ⌈ If selective wakeup is supported by the transceiver hard-

ware, it shall be indicated with the configuration parameter CanTrcvHwPnSupport.

⌋()

[SWS_CanTrcv_00175] ⌈ The configuration container for selective wakeup function-

ality (CanTrcvPartialNetwork) and for the following APIs:

- 8.4.7 CanTrcv_GetTrcvSystemData,
- 8.4.8 CanTrcv_ClearTrcvWufFlag,
- 8.4.9 CanTrcv_ReadTrcvTimeoutFlag,
- 8.4.10 CanTrcv_ClearTrcvTimeoutFlag and
- 8.4.11 CanTrcv_ReadTrcvSilenceFlag

shall exist only if CanTrcvHwPnSupport = TRUE. ⌋()

[SWS_CanTrcv_00177] ⌈ If selective wakeup is supported, CAN transceivers shall

be configured to wake up on a particular CAN frame or a group of CAN frames using

the parameters CanTrcvPnFrameCanId, CanTrcvPnFrameCanIdMask and

CanTrcvPnFrameDataMask. ⌋()

[SWS_CanTrcv_00178] ⌈ If the transceiver has the ability to identify bus failures

(and distinguish between bus failures and other hardware failures), it shall be indicat-

ed using the configuration parameter CanTrcvBusErrFlag for bus diagnostic pur-

poses. ⌋()

Note:
For CAN transceivers supporting selective wakeup functionality, detection of wakeup

frames is possible during Normal mode (CANTRCV_TRCVMODE_NORMAL). Detected

wakeup frames are signaled by the transceiver WUF flag. This ensures that no
wakeup frame is lost during a transition to Standby mode
(CANTRCV_TRCVMODE_STANDBY).

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

30 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:
[SWS_CanTrcv_00084]⌈

Module Header File Imported Type

Dem
Rte_Dem_Type.h Dem_EventIdType

Rte_Dem_Type.h Dem_EventStatusType

Dio

Dio.h Dio_ChannelGroupType

Dio.h Dio_ChannelType

Dio.h Dio_LevelType

Dio.h Dio_PortLevelType

Dio.h Dio_PortType

EcuM EcuM.h EcuM_WakeupSourceType

Icu Icu.h Icu_ChannelType

Spi

Spi.h Spi_ChannelType

Spi.h Spi_DataBufferType

Spi.h Spi_NumberOfDataType

Spi.h Spi_SequenceType

Spi.h Spi_StatusType

Std
Std_Types.h Std_ReturnType

Std_Types.h Std_VersionInfoType

⌋()

8.2 Type definitions

[SWS_CanTrcv_00209]⌈

Name CanTrcv_ConfigType

Kind Structure

Elements

Implementation specific

Type --

Comment --

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

31 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Description

This is the type of the external data structure containing the overall initialization data
for the CAN transceiver driver and settings affecting all transceivers. Furthermore it
contains pointers to transceiver configuration structures. The contents of the
initialization data structure are CAN transceiver hardware specific.

Available
via

CanTrcv.h

⌋()

[SWS_CanTrcv_00210]⌈

Name CanTrcv_PNActivationType

Kind Enumeration

Range
PN_ENABLED -- PN wakeup functionality in CanTrcv is enabled.

PN_DISABLED -- PN wakeup functionality in CanTrcv is disabled.

Description
Datatype used for describing whether PN wakeup functionality in CanTrcv is enabled
or disabled.

Available
via

CanTrcv.h

⌋()

[SWS_CanTrcv_00211]⌈

Name CanTrcv_TrcvFlagStateType

Kind Enumeration

Range
CANTRCV_FLAG_SET -- The flag is set in the transceiver hardware.

CANTRCV_FLAG_CLEARED -- The flag is cleared in the transceiver hardware.

Description Provides the state of a flag in the transceiver hardware.

Available via CanTrcv.h

⌋()
.

[SWS_CanTrcv_00163]⌈

Name CanTrcv_TrcvModeType

Kind Enumeration

Range

CANTRCV_TRCVMODE_SLEEP -- Transceiver mode SLEEP

CANTRCV_TRCVMODE_STANDBY -- Transceiver mode STANDBY

CANTRCV_TRCVMODE_NORMAL 0x00 Transceiver mode NORMAL

Description Operating modes of the CAN Transceiver Driver.

Available via Can_GeneralTypes.h

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

32 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

⌋()

[SWS_CanTrcv_00164]⌈

Name CanTrcv_TrcvWakeupModeType

Kind Enumeration

Range

CANTRCV_WUMODE_
ENABLE

0x00
The notification for wakeup events is enabled on
the addressed transceiver.

CANTRCV_WUMODE_
DISABLE

0x01
The notification for wakeup events is disabled on
the addressed transceiver.

CANTRCV_WUMODE_
CLEAR

0x02
A stored wakeup event is cleared on the
addressed transceiver.

Description
This type shall be used to control the CAN transceiver concerning wake up events
and wake up notifications.

Available
via

Can_GeneralTypes.h

⌋()

[SWS_CanTrcv_00165]⌈

Name CanTrcv_TrcvWakeupReasonType

Kind Enumeration

Range

CANTRCV_WU_
ERROR

0x00
Due to an error wake up reason was not detected.
This value may only be reported when error was
reported to DEM before.

CANTRCV_WU_
NOT_SUPPORTED

0x01
The transceiver does not support any information for
the wake up reason.

CANTRCV_WU_BY_
BUS

0x02
The transceiver has detected, that the network has
caused the wake up of the ECU.

CANTRCV_WU_
INTERNALLY

0x03
The transceiver has detected, that the network has
woken up by the ECU via a request to NORMAL
mode.

CANTRCV_WU_
RESET

0x04
The transceiver has detected, that the "wake up" is
due to an ECU reset.

CANTRCV_WU_
POWER_ON

0x05
The transceiver has detected, that the "wake up" is
due to an ECU reset after power on.

CANTRCV_WU_BY_
PIN

0x06
The transceiver has detected a wake-up event at one
of the transceiver's pins (not at the CAN bus).

CANTRCV_WU_BY_
SYSERR

0x07
The transceiver has detected, that the wake up of the
ECU was caused by a HW related device failure.

Description This type denotes the wake up reason detected by the CAN transceiver in detail.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

33 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Available
via

Can_GeneralTypes.h

⌋()

8.3 Function definitions

8.3.1 CanTrcv_Init

[SWS_CanTrcv_00001]⌈

Service Name CanTrcv_Init

Syntax

void CanTrcv_Init (

 const CanTrcv_ConfigType* ConfigPtr

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to driver configuration.

Parameters (inout) None

Parameters (out) None

Return value None

Description Initializes the CanTrcv module.

Available via CanTrcv.h

⌋(SRS_BSW_00310, SRS_BSW_00358, SRS_BSW_00369, SRS_BSW_00414,
SRS_BSW_00101, SRS_BSW_00172, SRS_Can_01096, SRS_Can_01097,
SRS_Can_01109, SRS_Can_01110, SRS_Can_01108)

[SWS_CanTrcv_00180] ⌈ The function CanTrcv_Init shall initialize all the con-

nected CAN transceivers based on their initialization sequences and configuration

(provided by parameter ConfigPtr). Meanwhile, it shall support the configuration

sequence of the AUTOSAR stack also. ⌋()

Note that in the time span between power up and the call to CanTrcv_Init, the

CAN transceiver hardware may be in a different state. This depends on hardware
and SPAL driver configuration.
The initialization sequence after reset (e.g. power up) is a critical phase for the CAN
transceiver driver.
This API shall store the wake up event, if any, during initialization time.
See also requirement SWS_CanTrcv_00099.

[SWS_CanTrcv_00167] ⌈ If supported by hardware, CanTrcv_Init shall validate

whether there has been a wake up due to transceiver activity and if TRUE, reporting

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

34 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

shall be done to EcuM via API EcuM_SetWakeupEvent with the wakeup source ref-

erenced in CanTrcvWakeupSourceRef. ⌋()

[SWS_CanTrcv_00181] ⌈ If selective wakeup is enabled and supported by hard-

ware: POR and SYSERR flags of the transceiver status shall be checked by

CanTrcv_Init API. ⌋()

[SWS_CanTrcv_00182] ⌈ If the POR flag or SYSERR flag is set, transceiver shall be

re-configured for selective wakeup functionality by running the configuration se-
quence.
If the POR flag or SYSERR flag is not set, the configuration stored in the transceiver

memory will be still valid and re-configuration is not necessary. ⌋()

[SWS_CanTrcv_00183] ⌈ If the POR flag is set, wakeup shall be reported to EcuM

through API EcuM_SetWakeupEvent with a wakeup source value, which has a “1”

at the bit position according to the symbolic name value referred by CanTrcvPor-

WakeupsourceRef, and “0” on all others. ⌋()

[SWS_CanTrcv_00184] ⌈ If the SYSERR flag is set, wakeup shall be reported to

EcuM through API EcuM_SetWakeupEvent with a wakeup source value, which has

a “1” at the bit position according to the symbolic name value referred by

CanTrcvSyserrWakeupSourceRef, and “0” on all others. ⌋()

[SWS_CanTrcv_00113] ⌈ If there is no/incorrect communication towards the trans-

ceiver, the function CanTrcv_Init shall report the runtime error code

CANTRCV_E_NO_TRCV_CONTROL to the Default Error Trace.

For Eg., there are different transceiver types and different access ways (port connec-
tion, SPI). This development error should be signalled if you detect any miscommuni-
cation with your hardware. Depending on connection type and depending on your
transceiver hardware you may not run in situations where you have to signal this er-

ror. ⌋()

[SWS_CanTrcv_00168] ⌈ If development error detection is enabled for CanTrcv

module: the function CanTrcv_Init shall raise the development error

CANTRCV_E_BAUDRATE_NOT_SUPPORTED, if the configured baud rate is not sup-

ported by the transceiver. ⌋()

 [SWS_CanTrcv_00226] ⌈ In order to implement the AUTOSAR Partial Networking

mechanism CAN transceivers shall support the definition of a data mask for the

Wake Up Frame (the configuration structure of CanTrcvPnFrameDataMask is

mandatory). ⌋()

8.3.2 CanTrcv_SetOpMode

[SWS_CanTrcv_00002]⌈

Service Name CanTrcv_SetOpMode

Syntax
Std_ReturnType CanTrcv_SetOpMode (

 uint8 Transceiver,

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

35 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

 CanTrcv_TrcvModeType OpMode

)

Service ID
[hex]

0x01

Sync/Async Asynchronous

Reentrancy Reentrant for different transceivers

Parameters
(in)

Transceiver CAN transceiver to which API call has to be applied.

OpMode This parameter contains the desired operating mode

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: will be returned if the request for transceiver mode change
has been accepted.
E_NOT_OK: will be returned if the request for transceiver mode
change has not been accepted or any parameter is out of the
allowed range.

Description Sets the mode of the Transceiver to the value OpMode.

Available via CanTrcv.h

⌋(SRS_BSW_00310, SRS_BSW_00357, SRS_BSW_00369, SRS_BSW_00406,
SRS_Can_01091, SRS_Can_01097, SRS_Can_01098, SRS_Can_01099,
SRS_Can_01100, SRS_Can_01109, SRS_Can_01110, SRS_Can_01108)

[SWS_CanTrcv_00102] ⌈ The function CanTrcv_SetOpMode shall switch the inter-

nal state of Transceiver to the value of the parameter OpMode, which can be
CANTRCV_TRCVMODE_NORMAL, CANTRCV_TRCVMODE_STANDBY or

CANTRCV_TRCVMODE_SLEEP. ⌋()

Note: The user of the CanTrcv module may call the function CanTrcv_SetOpMode
with OpMode = CANTRCV_TRCVMODE_STANDBY or
CANTRCV_TRCVMODE_NORMAL, if the Transceiver is in mode
CANTRCV_TRCVMODE_NORMAL.
Note: The user of the CanTrcv module may call the function CanTrcv_SetOpMode
with OpMode = CANTRCV_TRCVMODE_SLEEP,
CANTRCV_TRCVMODE_STANDBY or CANTRCV_TRCVMODE_NORMAL, if the
Transceiver is in mode CANTRCV_TRCVMODE_STANDBY.

This API is applicable to each transceiver with each value for parameter

CanTrcv_SetOpMode, regardless of whether the transceiver hardware supports

these modes or not. This is to simplify the view of the CanIf to the assigned bus.

[SWS_CanTrcv_00105] ⌈ If the requested mode is not supported by the underlying

transceiver hardware, the function CanTrcv_SetOpMode shall return E_NOT_OK.

⌋()

The number of supported busses is set up in the configuration phase.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

36 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

[SWS_CanTrcv_00186] ⌈ If selective wakeup is supported by hardware: the flags

POR and SYSERR of the transceiver status shall be checked by

CanTrcv_SetOpMode API. ⌋()

[SWS_CanTrcv_00187] ⌈ If the POR flag is set, transceiver shall be re-initialized to

run the transceiver’s configuration sequence.⌋ ()

[SWS_CanTrcv_00188] ⌈ If the SYSERR flag is NOT set and the requested mode is

CANTRCV_NORMAL, transceiver shall call the API

CanIf_ConfirmPnAvailability() for the corresponding abstract CanIf Trans-

ceiverId. CanIf_ConfirmPnAvailability informs CanNm (through CanIf and

CanSm) that selective wakeup is enabled.⌋()

[SWS_CanTrcv_00114] ⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_SetOpMode shall report runtime error code

CANTRCV_E_NO_TRCV_CONTROL to the Default Error Tracer and return

E_NOT_OK. ⌋()

[SWS_CanTrcv_00120] ⌈ If development error detection for the module CanTrcv is

enabled:

If the function CanTrcv_SetOpMode is called with OpMode =

CANTRCV_TRCVMODE_STANDBY, and the Transceiver is not in mode
CANTRCV_TRCVMODE_NORMAL or CANTRCV_TRCVMODE_STANDBY, the

function CanTrcv_SetOpMode shall raise the development error

CANTRCV_E_TRCV_NOT_NORMAL otherwise (if DET is disabled) return E_NOT_OK.

⌋()

[SWS_CanTrcv_00121] ⌈ If development error detection for the module CanTrcv is

enabled:

If the function CanTrcv_SetOpMode is called with OpMode =

CANTRCV_TRCVMODE_SLEEP, and the Transceiver is not in mode
CANTRCV_TRCVMODE_STANDBY or CANTRCV_TRCVMODE_SLEEP, the func-

tion CanTrcv_SetOpMode shall raise the development error

CANTRCV_E_TRCV_NOT_STANDBY otherwise (if DET is disabled) return E_NOT_OK.

⌋()

[SWS_CanTrcv_00122] ⌈ If development error detection for the module CanTrcv is

enabled:
If called before the CanTrcv module has been initialized, the function

CanTrcv_SetOpMode shall raise the development error CANTRCV_E_UNINIT oth-

erwise (if DET is disabled) return E_NOT_OK. ⌋()

[SWS_CanTrcv_00123] ⌈ If development error detection for the module CanTrcv is

enabled: If called with an invalid Transceiver number, the function

CanTrcv_SetOpMode shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER otherwise (if DET is disabled) return

E_NOT_OK. ⌋()

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

37 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

[SWS_CanTrcv_00087] ⌈ If development error detection for the module CanTrcv is

enabled: If called with an invalid OpMode, the function CanTrcv_SetOpMode shall

raise the development error CANTRCV_E_PARAM_TRCV_OPMODE otherwise (if DET is

disabled) return E_NOT_OK. ⌋()

8.3.3 CanTrcv_GetOpMode

 [SWS_CanTrcv_00005]⌈

Service Name CanTrcv_GetOpMode

Syntax

Std_ReturnType CanTrcv_GetOpMode (

 uint8 Transceiver,

 CanTrcv_TrcvModeType* OpMode

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Transceiver CAN transceiver to which API call has to be applied.

Parameters
(inout)

None

Parameters (out) OpMode Pointer to operation mode of the bus the API is applied to.

Return value
Std_Return-
Type

E_OK: will be returned if the operation mode was detected.
E_NOT_OK: will be returned if the operation mode was not
detected.

Description Gets the mode of the Transceiver and returns it in OpMode.

Available via CanTrcv.h

⌋(SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_00377, SRS_BSW_00406,
SRS_Can_01091, SRS_Can_01097, SRS_Can_01101, SRS_Can_01109, SRS_Can_01110)

[SWS_CanTrcv_00106] ⌈ The function CanTrcv_GetOpMode shall collect the ac-

tual state of the CAN transceiver driver in the out parameter OpMode. ⌋()
See function CanTrcv_Init for the provided state after the CAN transceiver driver

initialization till the first operation mode change request.
The number of supported busses is statically set in the configuration phase.

[SWS_CanTrcv_00115] ⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_GetOpMode shall report the runtime error code

CANTRCV_E_NO_TRCV_CONTROL to the Default Error Tracer and return E_NOT_OK.

⌋()

[SWS_CanTrcv_00124] ⌈ If development error detection for the module CanTrcv is

enabled: If called before the CanTrcv module has been initialized, the function

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

38 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

CanTrcv_GetOpMode shall raise the development error CANTRCV_E_UNINIT oth-

erwise (if DET is disabled) return E_NOT_OK. ⌋()

[SWS_CanTrcv_00129] ⌈ If development error detection for the module CanTrcv is

enabled: If called with an invalid Transceiver number, the function

CanTrcv_GetOpMode shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER otherwise (if DET is disabled) return

E_NOT_OK. ⌋()

[SWS_CanTrcv_00132] ⌈ If development error detection for the module CanTrcv is

enabled: If called with OpMode = NULL, the function CanTrcv_GetOpMode shall

raise the development error CANTRCV_E_PARAM_POINTER otherwise (if DET is dis-

abled) return E_NOT_OK. ⌋()

8.3.4 CanTrcv_GetBusWuReason

[SWS_CanTrcv_00007]⌈

Service Name CanTrcv_GetBusWuReason

Syntax

Std_ReturnType CanTrcv_GetBusWuReason (

 uint8 Transceiver,

 CanTrcv_TrcvWakeupReasonType* reason

)

Service ID
[hex]

0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Transceiver CAN transceiver to which API call has to be applied.

Parameters
(inout)

None

Parameters
(out)

reason Pointer to wake up reason of the bus the API is applied to.

Return value
Std_Return-
Type

E_OK: will be returned if the transceiver wakeup reason was
provided.
E_NOT_OK: will be returned if no wake up reason is available or if
the service request failed due to development errors.

Description Gets the wakeup reason for the Transceiver and returns it in parameter Reason.

Available via CanTrcv.h

⌋(SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_00375, SRS_BSW_00377,
SRS_BSW_00406, SRS_Can_01091, SRS_Can_01095, SRS_Can_01097, SRS_Can_01103,

SRS_Can_01106, SRS_Can_01109, SRS_Can_01110)

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

39 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

[SWS_CanTrcv_00107] ⌈ The function CanTrcv_GetBusWuReason shall collect

the reason for the wake up that the CAN transceiver has detected in the parameter
Reason. ⌋()
The ability to detect and differentiate the possible wake up reasons depends strongly
on the CAN transceiver hardware.
Be aware if more than one bus is available, each bus may report a different wake up
reason. E.g. if an ECU has CAN, a wake up by CAN may occur and the incoming da-
ta may cause an internal wake up for another CAN bus.
The CAN transceiver driver has a “per bus” view and does not vote the more im-
portant reason or sequence internally. The same may be true if e.g. one transceiver
controls the power supply and the other is just powered or un-powered.
The number of supported busses is statically set in the configuration phase.

[SWS_CanTrcv_00116] ⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_GetBusWuReason shall report the runtime error code

CANTRCV_E_NO_TRCV_CONTROL to the Default Error Tracer and return E_OK. ⌋()

[SWS_CanTrcv_00125] ⌈ If development error detection for the module CanTrcv is

enabled: If called before the CanTrcv module has been initialized, the function

CanTrcv_GetBusWuReason shall raise development error CANTRCV_E_UNINIT

POINTER otherwise (if DET is disabled) return E_NOT_OK. ⌋()

[SWS_CanTrcv_00130] ⌈ If development error detection for the module CanTrcv is

enabled: If called with an invalid Transceiver number, the function

CanTrcv_GetBusWuReason shall raise development error

CANTRCV_E_INVALID_TRANSCEIVER POINTER otherwise (if DET is disabled) re-

turn E_NOT_OK. ⌋()

[SWS_CanTrcv_00133] ⌈ If development error detection for the module CanTrcv is

enabled: If called with Reason = NULL, the function CanTrcv_GetBusWuReason

shall raise the development error CANTRCV_E_PARAM_POINTER POINTER otherwise

(if DET is disabled) return E_NOT_OK. ⌋()

8.3.5 CanTrcv_VersionInfo

[SWS_CanTrcv_00008]⌈

Service Name CanTrcv_GetVersionInfo

Syntax

void CanTrcv_GetVersionInfo (

 Std_VersionInfoType* versioninfo

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

40 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Parameters (out) versioninfo Pointer to version information of this module.

Return value None

Description Gets the version of the module and returns it in VersionInfo.

Available via CanTrcv.h

⌋(SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_00406, SRS_BSW_00407,
SRS_BSW_00411)

8.3.6 CanTrcv_ SetWakeupMode

[SWS_CanTrcv_00009]⌈

Service Name CanTrcv_SetWakeupMode

Syntax

Std_ReturnType CanTrcv_SetWakeupMode (

 uint8 Transceiver,

 CanTrcv_TrcvWakeupModeType TrcvWakeupMode

)

Service ID
[hex]

0x05

Sync/Async Synchronous

Reentrancy Reentrant for different transceivers

Parameters
(in)

Transceiver CAN transceiver to which API call has to be applied.

TrcvWakeup
Mode

Requested transceiver wakeup reason

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: Will be returned, if the wakeup state has been changed to
the requested mode.
E_NOT_OK: Will be returned, if the wakeup state change has
failed or the parameter is out of the allowed range. The previous
state has not been changed.

Description
Enables, disables or clears wake-up events of the Transceiver according to Trcv
WakeupMode.

Available via CanTrcv.h

⌋(SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_00406, SRS_Can_01091,
SRS_Can_01097, SRS_Can_01109, SRS_Can_01110, SRS_Can_01115)

[SWS_CanTrcv_00111] ⌈ Enabled: If the function CanTrcv_SetWakeupMode is

called with TrcvWakupMode = CANTRCV_ WUMODE_ENABLE and if the CanTrcv
module has a stored wakeup event pending for the addressed bus, the CanTrcv

module shall update its wakeup event as ‘present’. ⌋()

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

41 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

[SWS_CanTrcv_00093] ⌈ Disabled: If the function CanTrcv_SetWakeupMode is

called with TrcvWakeupMode = CANTRCV_ WUMODE_DISABLE, the wakeup
events are disabled on the addressed transceiver. It is required by the transceiver
device and the transceiver driver to detect the wakeup events and store it internally,
in order to raise the wakeup events when the wakeup mode is enabled again.

⌋(SRS_BSW_00388, SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_00392,

SRS_BSW_00393, SRS_BSW_00394, SRS_BSW_00395, SRS_BSW_00408,
SRS_BSW_00160, SRS_Can_01090)

[SWS_CanTrcv_00094] ⌈ Clear: If the function CanTrcv_SetWakeupMode is

called with TrcvWakeupMode = CANTRCV_ WUMODE_CLEAR, then a stored

wakeup event is cleared on the addressed transceiver. ⌋()

[SWS_CanTrcv_00150] ⌈ Clearing of wakeup events have to be used when the

wake up notification is disabled to clear all stored wake up events under control of

the higher layer. ⌋()

[SWS_CanTrcv_00095] ⌈ The implementation can enable, disable or clear wake up

events from the last communication cycle. It is very important not to lose wake up

events during the disabled period. ⌋(SRS_BSW_00388, SRS_BSW_00389,

SRS_BSW_00390, SRS_BSW_00392, SRS_BSW_00393, SRS_BSW_00394,
SRS_BSW_00395, SRS_BSW_00408, SRS_BSW_00160, SRS_Can_01090)
The number of supported busses is statically set in the configuration phase.

[SWS_CanTrcv_00117] ⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_SetWakeupMode shall report the runtime error code

CANTRCV_E_NO_TRCV_CONTROL to the Default Error Tracer and return E_NOT_OK.

⌋()

[SWS_CanTrcv_00127] ⌈ If development error detection for the module CanTrcv is

enabled: If called before the CanTrcv has been initialized, the function

CanTrcv_SetWakeupMode shall raise development error CANTRCV_E_UNINIT

POINTER otherwise (if DET is disabled) return E_NOT_OK. ⌋()

[SWS_CanTrcv_00131] ⌈ If development error detection for the module CanTrcv is

enabled: If called with an invalid Transceiver number, the function

CanTrcv_SetWakeupMode shall raise development error

CANTRCV_E_INVALID_TRANSCEIVER POINTER otherwise (if DET is disabled) re-

turn E_NOT_OK. ⌋()

[SWS_CanTrcv_00089] ⌈ If development error detection for the module CanTrcv is

enabled: If called with an invalid TrcvWakeupMode, the function

CanTrcv_SetWakeupMode shall raise the development error

CANTRCV_E_PARAM_TRCV_WAKEUP_MODE

POINTER otherwise (if DET is disabled) return E_NOT_OK. ⌋()

8.3.7 CanTrcv_GetTrcvSystemData

 [SWS_CanTrcv_00213]⌈

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

42 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Service Name CanTrcv_GetTrcvSystemData

Syntax

Std_ReturnType CanTrcv_GetTrcvSystemData (

 uint8 Transceiver,

 uint32* TrcvSysData

)

Service ID
[hex]

0x09

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

Transceiver CAN transceiver ID.

Parameters
(inout)

None

Parameters
(out)

TrcvSysData Configuration/Status data of the transceiver.

Return value
Std_Return-
Type

E_OK: will be returned if the transceiver status is successfully
read.
E_NOT_OK: will be returned if the transceiver status data is not
available or a development error occurs.

Description
Reads the transceiver configuration/status data and returns it through parameter
TrcvSysData. This API shall exist only if CanTrcvHwPnSupport = TRUE.

Available via CanTrcv.h

⌋()

[SWS_CanTrcv_00189] ⌈ The function CanTrcv_GetTrcvSystemData shall read

the configuration/status of the CAN transceiver and store the read data in the out pa-

rameter TrcvSysData. If this is successful, E_OK shall be returned.

Hint: This API can be invoked through diagnostic services or during initialization to
determine the transceiver status and its availability.
Note: Currently an agreement on the parameter set for the transceiver HW specifica-
tion has not been reached. For this reason, the diagnostic data is now returned as a
uint32 (as stored in the transceiver registers). When a definitive and standard pa-
rameter set is defined, a data structure may be defined for abstracting the diagnostic

data. ⌋()

[SWS_CanTrcv_00190] ⌈If there is no/incorrect communication to the transceiver,

the function CanTrcv_GetTrcvSystemData shall report the runtime error code

CANTRCV_E_NO_TRCV_CONTROL to the default Error Tracer and return E_NOT_OK.

⌋()

[SWS_CanTrcv_00191] ⌈ If development error detection is enabled for the CanTrcv

module: if called before the CanTrcv has been initialized, the function

CanTrcv_GetTrcvSystemData shall raise development error

CANTRCV_E_UNINIT otherwise (if DET is disabled) return E_NOT_OK. ⌋()

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

43 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

[SWS_CanTrcv_00192] ⌈ If development error detection is enabled for the CanTrcv

module: if called with an invalid transceiver ID for parameter Transceiver, function

CanTrcv_GetTrcvSystemData shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER otherwise (if DET is disabled) return

E_NOT_OK. ⌋()

[SWS_CanTrcv_00193] ⌈ If development error detection is enabled for the CanTrcv

module: if called with NULL pointer for parameter TrcvSysData, function

CanTrcv_GetTrcvSystemData shall raise the development error

CANTRCV_E_PARAM_POINTER otherwise (if DET is disabled) return E_NOT_OK. ⌋()

8.3.8 CanTrcv_ClearTrcvWufFlag

[SWS_CanTrcv_00214]⌈

Service Name CanTrcv_ClearTrcvWufFlag

Syntax

Std_ReturnType CanTrcv_ClearTrcvWufFlag (

 uint8 Transceiver

)

Service ID [hex] 0x0a

Sync/Async Synchronous

Reentrancy Reentrant for different transceivers

Parameters (in) Transceiver CAN Transceiver ID.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: will be returned if the WUF flag has been cleared.
E_NOT_OK: will be returned if the WUF flag has not been
cleared or a development error occurs.

Description
Clears the WUF flag in the transceiver hardware. This API shall exist only if Can
TrcvHwPnSupport = TRUE.

Available via CanTrcv.h

⌋(SRS_Can_01157)

[SWS_CanTrcv_00194] ⌈ The function CanTrcv_ClearTrcvWufFlag shall clear

the wakeup flag in the CAN transceiver. If successful, E_OK shall be returned.

Implementation Hints:
This API shall be used by the CanSM module for ensuring that no frame wakeup
event is lost, during entering a low-power mode. This API clears the WUF flag.

The CAN transceiver shall be shall be put into Standby mode (CANTRCV_STANDBY)

after clearing of the WUF flag.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

44 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

If a system error (SYSERR, e.g. configuration error) occurs while selective wakeup
functionality is being enabled, transceiver will disable the functionality. Transceiver
will wake up on the next CAN wake pattern (WUP).
In case of any other hardware error (e.g. frame detection error), transceiver will wake

up if the error counter inside the transceiver overflows. ⌋()

[SWS_CanTrcv_00195] ⌈CanTrcv shall inform CanIf that the wakeup flag has been

cleared for the requested Transceiver, through the callback notification

CanIf_ClearTrcvWufFlagIndication referring to the corresponding CAN

transceiver with the abstract CanIf TransceiverId. ⌋()

[SWS_CanTrcv_00196] ⌈⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_ClearTrcvWufFlag shall report the runtime error

CANTRCV_E_NO_TRCV_CONTROL to the Default Error Tracer and return E_NOT_OK.

⌋()

[SWS_CanTrcv_00197] ⌈ If development error detection is enabled for the CanTrcv

module: if called before the CanTrcv has been initialized, the function

CanTrcv_ClearTrcvWufFlag shall raise development error CANTRCV_E_UNINIT

otherwise (if DET is disabled) return E_NOT_OK. ⌋()

[SWS_CanTrcv_00198] ⌈ If development error detection is enabled for the CanTrcv

module: if called with an invalid transceiver ID for parameter Transceiver, function

CanTrcv_ClearTrcvWufFlag shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER otherwise (if DET is disabled) return

E_NOT_OK. ⌋()

8.3.9 CanTrcv_ReadTrcvTimeoutFlag

[SWS_CanTrcv_00215]⌈

Service Name CanTrcv_ReadTrcvTimeoutFlag

Syntax

Std_ReturnType CanTrcv_ReadTrcvTimeoutFlag (

 uint8 Transceiver,

 CanTrcv_TrcvFlagStateType* FlagState

)

Service ID
[hex]

0x0b

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Transceiver CAN transceiver ID.

Parameters
(inout)

None

Parameters
(out)

FlagState State of the timeout flag.

Return value Std_ReturnType E_OK: Will be returned, if status of the timeout flag is

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

45 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

success-fully read.
E_NOT_OK: Will be returned, if status of the timeout flag
could not be read.

Description
Reads the status of the timeout flag from the transceiver hardware. This API shall
exist only if CanTrcvHwPnSupport = TRUE.

Available via CanTrcv.h

⌋()

[SWS_CanTrcv_00199] ⌈ If development error detection is enabled for the module

CanTrcv: If called with an invalid transceiver ID Transceiver, the function

CanTrcv_ReadTrcvTimeoutFlag shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER otherwise (if DET is disabled) return

E_NOT_OK. ⌋()

[SWS_CanTrcv_00200] ⌈ If development error detection is enabled for the module

CanTrcv: If called with FlagState = NULL, the function

CanTrcv_ReadTrcvTimeoutFlag shall raise the development error

CANTRCV_E_PARAM_POINTER otherwise (if DET is disabled) return E_NOT_OK. ⌋()

8.3.10 CanTrcv_ClearTrcvTimeoutFlag

[SWS_CanTrcv_00216]⌈

Service Name CanTrcv_ClearTrcvTimeoutFlag

Syntax

Std_ReturnType CanTrcv_ClearTrcvTimeoutFlag (

 uint8 Transceiver

)

Service ID
[hex]

0x0c

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Transceiver CAN transceiver ID.

Parameters
(inout)

None

Parameters
(out)

None

Return value Std_ReturnType

E_OK: Will be returned, if the timeout flag is successfully
cleared.
E_NOT_OK: Will be returned, if the timeout flag could not be
cleared.

Description
Clears the status of the timeout flag in the transceiver hardware. This API shall
exist only if CanTrcvHwPnSupport = TRUE.

Available via CanTrcv.h

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

46 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

⌋()

 [SWS_CanTrcv_00201] ⌈ If development error detection is enabled for the module

CanTrcv: If called with an invalid transceiver ID Transceiver, the function

CanTrcv_ClearTrcvTimeoutFlag shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER otherwise (if DET is disabled) return

E_NOT_OK. ⌋()

8.3.11 CanTrcv_ReadTrcvSilenceFlag

[SWS_CanTrcv_00217]⌈

Service Name CanTrcv_ReadTrcvSilenceFlag

Syntax

Std_ReturnType CanTrcv_ReadTrcvSilenceFlag (

 uint8 Transceiver,

 CanTrcv_TrcvFlagStateType* FlagState

)

Service ID
[hex]

0x0d

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Transceiver CAN transceiver ID.

Parameters
(inout)

None

Parameters
(out)

FlagState State of the silence flag.

Return value Std_ReturnType

E_OK: Will be returned, if status of the silence flag is success-
fully read.
E_NOT_OK: Will be returned, if status of the silence flag
could not be read.

Description
Reads the status of the silence flag from the transceiver hardware. This API shall
exist only if CanTrcvHwPnSupport = TRUE.

Available via CanTrcv.h

⌋()

[SWS_CanTrcv_00202] ⌈ If development error detection is enabled for the module

CanTrcv: If called with an invalid transceiver ID Transceiver, the function

CanTrcv_ReadTrcvSilenceFlag shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER otherwise (if DET is disabled) return

E_NOT_OK. ⌋()

[SWS_CanTrcv_00203] ⌈ If development error detection is enabled for the module

CanTrcv: If called with FlagState = NULL, the function

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

47 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

CanTrcv_ReadTrcvSilenceFlag shall raise the development error

CANTRCV_E_PARAM_POINTER otherwise (if DET is disabled) return E_NOT_OK. ⌋()

8.3.12 CanTrcv_CheckWakeup

[SWS_CanTrcv_00143]⌈

Service Name CanTrcv_CheckWakeup

Syntax

Std_ReturnType CanTrcv_CheckWakeup (

 uint8 Transceiver

)

Service ID [hex] 0x07

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Transceiver CAN transceiver to which API call has to be applied.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType
E_OK: API call has been accepted
E_NOT_OK: API call has not been accepted

Description Service is called by underlying CANIF in case a wake up interrupt is detected.

Available via CanTrcv.h

⌋()

[SWS_CanTrcv_00144] ⌈ If development error detection for the module CanTrcv is

enabled: If called before the CanTrcv module has been initialized, the function

CanTrcv_CheckWakeup shall raise the development error CANTRCV_E_UNINIT

otherwise (if DET is disabled) return E_NOT_OK. ⌋()

[SWS_CanTrcv_00145] ⌈ If development error detection for the module CanTrcv is

enabled: If called with an invalid Transceiver number, the function

CanTrcv_CheckWakeup shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER otherwise (if DET is disabled) return

E_NOT_OK. ⌋()

[SWS_CanTrcv_00146] ⌈ If supported by hardware, CanTrcv_CheckWakeup shall

validate whether there has been a wake up due to transceiver activity and if TRUE,

reporting shall be done to EcuM via API EcuM_SetWakeupEvent with the wakeup

source referenced in CanTrcvWakeupSourceRef.⌋()

8.3.13 CanTrcv_SetPNActivationState

[SWS_CanTrcv_00219]⌈

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

48 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Service
Name

CanTrcv_SetPNActivationState

Syntax

Std_ReturnType CanTrcv_SetPNActivationState (

 CanTrcv_PNActivationType ActivationState

)

Service ID
[hex]

0x0f

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

Activation
State

PN_ENABLED: PN wakeup functionality in CanTrcv shall be
enabled. PN_DIABLED: PN wakeup functionality in CanTrcv shall
be disabled.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: Will be returned, if the PN has been changed to the
requested configuration.
E_NOT_OK: Will be returned, if the PN configuration change has
failed. The previous configuration has not been changed.

Description
The API configures the wake-up of the transceiver for Standby and Sleep Mode:
Either the CAN transceiver is woken up by a remote wake-up pattern (standard CAN
wake-up) or by the configured remote wake-up frame.

Available via CanTrcv.h

⌋()

 [SWS_CanTrcv_00220] ⌈ If development error detection for the module CanTrcv is

enabled: If called before the CanTrcv module has been initialized, the function

CanTrcv_SetPNActivationState shall raise the development error

CANTRCV_E_UNINIT otherwise (if DET is disabled) return E_NOT_OK. ⌋()

[SWS_CanTrcv_00221] ⌈ CanTrcv shall enable the PN wakeup functionality when

function CanTrcv_SetPNActivationState is called with ActivationState=

PN_ENABLED and return E_OK. ⌋()

[SWS_CanTrcv_00222] ⌈ CanTrcv shall disable the PN wakeup functionality when

function CanTrcv_SetPNActivationState is called with ActivationState=

PN_DISABLED and return E_OK. ⌋()

8.3.14 CanTrcv_CheckWakeFlag

[SWS_CanTrcv_00223]⌈

Service Name CanTrcv_CheckWakeFlag

Syntax Std_ReturnType CanTrcv_CheckWakeFlag (

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

49 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

 uint8 Transceiver

)

Service ID [hex] 0x0e

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) Transceiver CAN transceiver ID.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: Will be returned, if the request for checking the wakeup
flag has been accepted.
E_NOT_OK: Will be returned, if the request for checking the
wakeup flag has not been accepted.

Description Requests to check the status of the wakeup flag from the transceiver hardware.

Available via CanTrcv.h

⌋()

[SWS_CanTrcv_00224] ⌈ CanTrcv shall inform the CanIf with the callback notifica-

tion CanIf_CheckTrcvWakeFlagIndication, that the wake flag of the CAN

Transceiver with the corresponding TransceiverId has been checked.⌋()

[SWS_CanTrcv_00225] ⌈ If development error detection is enabled for the module

CanTrcv: If called with an invalid transceiver ID Transceiver, the function

CanTrcv_CheckWakeFlag shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER otherwise (if DET is disabled) return

E_NOT_OK.⌋()

8.3.15 CanTrcv_DeInit

[SWS_CanTrcv_91001]⌈

Service Name CanTrcv_DeInit

Syntax

void CanTrcv_DeInit (

 void

)

Service ID [hex] 0x10

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

50 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Return value None

Description De-initializes the CanTrcv module.

Available via CanTrcv.h

⌋(SRS_Can_01108, SRS_BSW_00336)

[SWS_CanTrcv_91002] ⌈The function CanTrcv_DeInit shall de-initialize all the con-

nected CAN transceivers based on their de-initialization sequenc-

es.⌋(SRS_Can_01108)

[SWS_CanTrcv_91003] ⌈The function CanTrcv_DeInit shall set the CAN transceiver

hardware to the state NOT_ACTIVE.⌋(SRS_Can_01108)

In the state NOT_ACTIVE, the CAN transceiver hardware allows to be re-configured
with a new configuration sequence

[SWS_CanTrcv_91004] ⌈ If there is no/incorrect communication towards the trans-
ceiver, the function CanTrcv_DeInit shall report the runtime error
CANTRCV_E_NO_TRCV_CONTROL code to the Default Error Tracer.

For Eg., there are different transceiver types and different access ways (port connec-
tion, SPI). This development error should be signaled if you detect any miscommuni-
cation with your hardware. Depending on connection type and depending on your
transceiver hardware you may not run in situations where you have to signal this er-
ror. ⌋(SRS_BSW_00369)

[SWS_CanTrcv_91005] ⌈ If development error detection for the CanTrcv module is
enabled: The function CanTrcv_DeInit shall raise the error
CANTRCV_E_TRCV_NOT_STANDBY if the transceiver is not in mode
CANTRCV_TRCVMODE_STANDBY or CANTRCV_TRCVMODE_SLEEP.
⌋(SRS_BSW_00369)

8.4 Scheduled functions

This chaper lists all functions provided by the CanTrcv module and called directly by
the Basic Software Module Scheduler.

8.4.1 CanTrcv_MainFunction

[SWS_CanTrcv_00013]⌈

Service Name CanTrcv_MainFunction

Syntax

void CanTrcv_MainFunction (

 void

)

Service ID [hex] 0x06

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

51 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Description Service to scan all busses for wake up events and perform these event.

Available via SchM_CanTrcv.h

⌋(SRS_BSW_00310, SRS_BSW_00369, SRS_BSW_00373, SRS_BSW_00406,
SRS_BSW_00424, SRS_BSW_00428, SRS_BSW_00171, SRS_BSW_00172, SRS_Can_01097,

SRS_Can_01109, SRS_Can_01110)

The CAN bus transceiver driver may have cyclic jobs like polling for wake up events
(if configured).

[SWS_CanTrcv_00112] ⌈ The CanTrcv_MainFunction shall scan all busses in

STANDBY and SLEEP for wake up events.
This function shall set a wake-up event flag to perform these events.

⌋(SRS_BSW_00343)

According to [SRS_BSW_00424], main processing functions shall be allocated by
basic tasks. No special call order to be kept. This function is directly called by Basic
Software Scheduler.

See configuration parameter CanTrcvWakeUpSupport.

8.4.2 CanTrcv_MainFunctionDiagnostics

[SWS_CanTrcv_00218]⌈

Service Name CanTrcv_MainFunctionDiagnostics

Syntax

void CanTrcv_MainFunctionDiagnostics (

 void

)

Service ID
[hex]

0x08

Description
Reads the transceiver diagnostic status periodically and sets product/development
accordingly.

Available via SchM_CanTrcv.h

⌋()

[SWS_CanTrcv_00204] ⌈ The cyclic function

CanTrcv_MainFunctionDiagnostics shall read the transceiver status periodi-

cally and report production/development errors accordingly. ⌋()

[SWS_CanTrcv_00205] ⌈ The cyclic function

CanTrcv_MainFunctionDiagnostics shall exist only if CanTrcvBusErrFlag

= TRUE. ⌋()

[SWS_CanTrcv_00206] ⌈If configured and supported by hardware: if the BUSERR

flag reported from BSW is set, function CanTrcv_MainFunctionDiagnostics

shall call the API Dem_SetEventStatus with parameters EventId as

CANTRCV_E_BUS_ERROR and EventStatus as DEM_EVENT_STATUS_FAILED.

⌋(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

52 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

[SWS_CanTrcv_00227] ⌈If configured and supported by hardware: if the BUSERR

flag reported from BSW is reset, function CanTrcv_MainFunctionDiagnostics

shall call the API Dem_SetEventStatus with parameters EventId as

CANTRCV_E_BUS_ERROR and EventStatus as DEM_EVENT_STATUS_PASSED.⌋

(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

8.5 Call-back notifications

Since the CanTrcv is a driver module, it doesn’t provide any callback functions for
lower layer modules.

8.6 Expected Interfaces

This chapter lists all functions the module CanTrcv requires from other modules.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_CanTrcv_00085]⌈

API Function
Header
File

Description

CanIf_Trcv-
ModeIndication

CanIf_Can
Trcv.h

This service indicates a transceiver state transition referring to the
corresponding CAN transceiver with the abstract CanIf Transceiver
Id.

Det_Report-
RuntimeError

Det.h
Service to report runtime errors. If a callout has been configured
then this callout shall be called.

⌋()

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_CanTrcv_00086]⌈

API Function
Header
File

Description

CanIf_Check-
TrcvWakeFlag-
Indication

CanIf_
Can
Trcv.h

This service indicates that the check of the transceiver's wake-up flag
has been finished by the corresponding CAN transceiver with the
abstract CanIf TransceiverId. This indication is used to cope with the
asynchronous transceiver communication.

CanIf_ClearTrcv-
WufFlag-
Indication

CanIf_
Can
Trcv.h

This service indicates that the transceiver has cleared the WufFlag
referring to the corresponding CAN transceiver with the abstract Can
If TransceiverId.

CanIf_Confirm- CanIf_ This service indicates that the transceiver is running in PN

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

53 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

PnAvailability Can
Trcv.h

communication mode referring to the corresponding CAN transceiver
with the abstract CanIf TransceiverId.

Dem_SetEvent-
Status

Dem.h

Called by SW-Cs or BSW modules to report monitor status
information to the Dem. BSW modules calling Dem_SetEventStatus
can safely ignore the return value. This API will be available only if
({Dem/DemConfigSet/DemEventParameter/DemEventReporting
Type} == STANDARD_REPORTING)

Det_ReportError Det.h Service to report development errors.

Dio_Read-
Channel

Dio.h Returns the value of the specified DIO channel.

Dio_Read-
ChannelGroup

Dio.h This Service reads a subset of the adjoining bits of a port.

Dio_ReadPort Dio.h Returns the level of all channels of that port.

Dio_Write-
Channel

Dio.h Service to set a level of a channel.

Dio_Write-
ChannelGroup

Dio.h
Service to set a subset of the adjoining bits of a port to a specified
level.

Dio_WritePort Dio.h Service to set a value of the port.

EcuM_Set-
WakeupEvent

EcuM.h Sets the wakeup event.

Icu_Disable-
Notification

Icu.h This function disables the notification of a channel.

Icu_Enable-
Notification

Icu.h This function enables the notification on the given channel.

Spi_GetStatus Spi.h Service returns the SPI Handler/Driver software module status.

Spi_ReadIB Spi.h
Service for reading synchronously one or more data from an IB SPI
Handler/Driver Channel specified by parameter.

Spi_SetupEB Spi.h
Service to setup the buffers and the length of data for the EB SPI
Handler/Driver Channel specified.

Spi_Sync-
Transmit

Spi.h Service to transmit data on the SPI bus

Spi_WriteIB Spi.h
Service for writing one or more data to an IB SPI Handler/Driver
Channel specified by parameter.

Tm_Busy-
Wait1us16bit

Tm.h
Performs busy waiting by polling with a guaranteed minimum waiting
time.

⌋()

check of the transceiver's wake-up flag has been finished by the corresponding CAN
transceiver with the abstract CanIf TransceiverId. This indication is used to cope with
the asynchronous transceiver communication.

1. The interfaces of the SPI module are used by the CanTrcv module if there are
instances of the container CanTrcvSpiSequence.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

54 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

2. The interfaces of the DIO module are used by the CanTrcv module if there are
instances of the container CanTransceiverDIOAccess.

Note: If the Can transceiver is controlled via Dio/Spi, the Dio/Spi interfaces are re-
quired to fulfill the core functionality of the module. Which interfaces are needed ex-
actly shall not be detailed further in this specification

8.6.3 Configurable interfaces

There are no configurable interfaces for CAN transceiver driver.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

55 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

9 Sequence diagram

The focus of the following diagrams is on the interaction between the CAN transceiv-
er driver and the BSW modules CanIf, ComM, EcuM and Dio. Depending on the CAN

transceiver hardware, one or more calls to Dio_WriteChannels may be neces-

sary.
Depending on the transceiver hardware, there may be a need of wait states for some
transitions.

9.1 Wake up with valid validation

For all wakeup related sequence diagrams please refer to chapter 9 of ECU State
Manager.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

56 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

9.2 Interaction with DIO module

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

57 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

«module»

EcuM

«module»

ComM

«module»

CanIf

«module»

CanTrcv

«module»

Dio

«Peripheral»

ETH Hardware (PHY)

Integration

Code

«module»

CanSM

Comment:

CAN transceiver hardware

is now in NORMAL mode.

It's ready to operate.

Comment:

CAN transceiver hardware

is now in STANDBY

mode. No transmitting or

receiving possible. It's

ready to wake up again.

alt

[Stop & Sleep CAN Network]

Comment:

CAN transceiver hardware

is now in SLEEP mode.

No transmitting or

receiving possible. It's

ready to wake up again

alt

[Start CAN Network]

set/reset HW ports()

CanSM_RequestComMode(COMM_NO_COMMUNICATION)

Dio_WriteChannel()

CanTrcv_SetOpMode()

ComM_EcuM_WakeUpIndication(NetworkHandleType)

EcuM_AL_SwitchOff()

Dio_WriteChannel()

Dio_WriteChannel(Dio_ChannelType, Dio_LevelType)

Dio_WriteChannel(Dio_ChannelType, Dio_LevelType)

Dio_WriteChannel(Dio_ChannelType, Dio_LevelType)

set/reset HW ports()

CanIf_SetTrcvMode(CANIF_TRCV_MODE_STANDBY)

CanIf_SetTrcvMode(CANIF_TRCV_MODE_SLEEP)

Dio_WriteChannel()

ComM_EcuM_WakeUpIndication()

Dio_WriteChannel(Dio_ChannelType, Dio_LevelType)

CanTrcv_SetOpMode(CANIF_TRCV_MODE_STANDBY)

set/reset HW ports()

CanSM_RequestComMode()

CanIf_SetTrcvMode(CANIF_TRCV_MODE_NORMAL)

CanIf_SetTrcvMode()

Dio_WriteChannel(Dio_ChannelType, Dio_LevelType)

Dio_WriteChannel(Dio_ChannelType, Dio_LevelType)

CanIf_SetTrcvMode()

CanTrcv_SetOpMode()

CanSM_RequestComMode()

set/reset HW ports()

set/reset HW ports()

CanTrcv_SetOpMode()

EcuM_AL_SwitchOff()

Dio_WriteChannel()

CanTrcv_SetOpMode(CANIF_TRCV_MODE_NORMAL)

CanTrcv_SetOpMode(CANIF_TRCV_MODE_SLEEP)

Dio_WriteChannel()

CanSM_RequestComMode(COMM_FULL_COMMUNICATION)

Dio_WriteChannel()

set/reset HW ports()

CanIf_SetTrcvMode()

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

58 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

9.3 De-Initialization (SPI Synchronous)

«module»

CanTrcv

«module»

EcuM

«module»

CanIf

«module»

ComM

«module»

CanSM

«module»

Spi

«module»

Can

ComM state ==

NoCom

CanSM mode ==

SilentCom

Trcv ==

NORMAL

Ctrl ==

STARTED

SPI request is processed synchronously

[1] CanSm_MainFunction() shall not return if

response indication was called during request

function. The next step in Shutdown sequence

shall directly be performed.

-> Here CanSM_ClearWufFlagIndication was

called during CanSM_ClearTrcvWufFlag

-> next step in sequence

(CanIf_SetControllerMode) shall be performed

In CanSM buffered CtrlMode =

CAN_CS_STOPPED

see note [1]

alt CanSM_ClearTrcvWufFlagIndication() was called

This diagram will be continued on the next page...

(Please ignore everything below this Note. This i just for display purposes only.)

CanSM_RequestComMode(NetworkA, NoCom)

CanTrcv_SetOpMode(Transceiver, CANIF_TRCV_MODE_STANDBY): Std_ReturnType

CanIf_ClearTrcvWufFlagIndication(TransceiverId)

Spi_SyncTransmit(Sequence)

Can_SetControllerMode(Controller, CAN_T_STOP)

CanIf_ClearTrcvWufFlag(TransceiverId)

CanIf_TrcvModeIndication(TransceiverId, CANIF_TRCV_MODE_STANDBY)

Spi_SyncTransmit(Sequence)

CanSM_ClearTrcvWufFlagIndication(Transceiver)

CanIf_SetTrcvMode(TransceiverId, CANIF_TRCV_MODE_STANDBY)

CanTrcv_ClearTrcvWufFlag(Transceiver)

CanIf_SetControllerMode(ControllerId, CAN_CS_STOPPED)

CanSM_MainFunction()

CanSM_TransceiverModeIndication(TransceiverId, CANIF_TRCV_MODE_STANDBY)

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

59 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

«module»

CanTrcv

«module»

EcuM

«module»

CanIf

«module»

ComM

«module»

CanSM

«module»

Spi

«module»

Can

alt CanSM_TransceiverModeIndication was called with TransceiverMode == STANDBY

In CanSM buffered CtrlMode =

CANIF_CS_SLEEP if E_OK has

been returned

If CanIf_SetControllerMode(ControllerId,

CANIF_CS_SLEEP) returns E_NOT_OK, the

buffered CC state in CanSM is not

changed to CANIF_CS_SLEEP

alt Wakeup Source

[bus (priority_high)]

[pin (prio_medium)]

[no wakeup (prio_low)]

see note [1]

see note [1] If Wake Flags are cleared, the

dominant level on RxD has

to be cleared. -> OEM HW

requirement

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

see note [1]

This diagram is the continuation of the diagram on the previous page.

(Please ignore everything above this Note. This is just for display purposes only.)

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

CanIf_CheckTrcvWakeFlag(TransceiverId)

ComM_BusSM_ModeIndication(NetworkA, NoCom)

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

ComM_CanSM_ModeIndication(NetworkA, NoCom)

CanTrcv_CheckWakeFlag(Transceiver)

CanIf_SetControllerMode(ControllerId, CANIF_CS_SLEEP)

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

:E_OK / E_NOT_OK

Clear Wake Flag via Spi_SyncTransmit()

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

Can_SetControllerMode(Controller, CAN_T_SLEEP)

[optional]:EcuM_SetWakeupEvent(WuSourcePin)

EcuM_SetWakeupEvent(WuSourceBus)

:CAN_OK / CAN_NOT_OK

Read Wake Flag via Spi_SyncTransmit()

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

60 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

9.4 De-Initialization (SPI Asynchronous)

«module»

CanTrcv

«module»

EcuM

«module»

CanIf

«module»

ComM

«module»

CanSM

«module»

Spi

«module»

Can

ComM state ==

NoCom

CanSM mode ==

SilentCom

Trcv == NORMAL Ctrl == STARTED

alt CanSM_ClearTrcvWufFlagIndication() was called

In CanSM buffered CtrlMode =

CAN_CS_STOPPED

[1] It could be checked via

- Spi_JobEndNotification() callback or

- Spi_GetSequenceResult() or

- Spi_ReadIB()

whether SPI request was successfully transmitted via

SPI lines.

This could either be done in interrupt context or in

CanTrcv_MainFunction().

see note [1]

see note [1]

In CanSM buffered Trcv Mode =

CANIF_TRCV_MODE_STANDBY

This diagram will be continued on the next page...

(Please ignore everything below this Note. This i just for display purposes only.)

CanSM_ClearTrcvWufFlagIndication(Transceiver)

CanTrcv_SetOpMode(Transceiver, CANIF_TRCV_MODE_STANDBY): Std_ReturnType

Can_SetControllerMode(Controller, CAN_T_STOP)

CanTrcv_ClearTrcvWufFlag(Transceiver): Std_ReturnType

CanIf_TrcvModeIndication(TransceiverId, CANIF_TRCV_MODE_STANDBY)

CanSM_MainFunction()

CanSM_MainFunction()

CanSM_RequestComMode(NetworkA, NoCom): Std_ReturnType

Spi_AsyncTransmit(Sequence): Std_ReturnType

CanIf_ClearTrcvWufFlagIndication(TransceiverId)

CanIf_SetTrcvMode(TransceiverId, CANIF_TRCV_MODE_STANDBY): Std_ReturnType

Spi_AsyncTransmit(Sequence): Std_ReturnType

CanIf_SetControllerMode(ControllerId, CAN_CS_STOPPED)

CanIf_ClearTrcvWufFlag(TransceiverId): Std_ReturnType

CanSM_TransceiverModeIndication(TransceiverId, CANIF_TRCV_MODE_STANDBY)

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

61 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

«module»

CanTrcv

«module»

EcuM

«module»

CanIf

«module»

ComM

«module»

CanSM

«module»

Spi

«module»

Can

alt CanSM_TransceiverModeIndication was called with TransceiverMode == STANDBY

In CanSM buffered CtrlMode =

CANIF_CS_SLEEP if E_OK has

been returned

If CanIf_SetControllerMode(ControllerId, CANIF_CS_SLEEP)

returns E_NOT_OK, the buffered CC state in CanSM is not

changed to CANIF_CS_SLEEP

alt Wakeup Source

[bus (priority_high)]

[pin (prio_medium)]

[no wakeup (prio_low)]

see note [1]

see note [1] If Wake Flags are cleared, the

dominant level on RxD has to be

cleared. -> OEM HW requirement

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

see note [1]

This diagram is the continuation of the diagram on the previous page.

(Please ignore everything above this Note. This is just for display purposes only.)

Can_SetControllerMode(Controller, CAN_T_SLEEP)

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

Read Wake Flag via Spi_AsyncTransmit()

ComM_BusSM_ModeIndication(NetworkA, NoCom)

CanIf_CheckTrcvWakeFlag(TransceiverId): Std_ReturnType

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

:CAN_OK / CAN_NOT_OK

ComM_CanSM_ModeIndication(NetworkA, NoCom)

CanIf_SetControllerMode(ControllerId, CANIF_CS_SLEEP)

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

CanTrcv_CheckWakeFlag(Transceiver): Std_ReturnType

Clear Wake Flag via Spi_AsyncTransmit()

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

[optional]:EcuM_SetWakeupEvent(WuSourcePin)

:E_OK / E_NOT_OK

EcuM_SetWakeupEvent(WuSourceBus)

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

62 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

10 Configuration specification

In general this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CanTrcv.

Chapter 10.2.1 specifies published information of the module CanTrcv.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral

[SWS_CanTrcv_00231] ⌈The Can Transceiver Driver module shall reject configura-

tions with partition mappings which are not supported by the implementation. ⌋()

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

63 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters are described in preceding chapters.

10.2.1 CanTrcv
SWS Item ECUC_CanTrcv_00192 :

Module Name CanTrcv

Module Description Configuration of the CanTrcv (CAN Transceiver driver) module.

Post-Build Variant Support true

Supported Config Variants VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvConfigSet 1
This container contains the configuration parameters and sub
containers of the AUTOSAR WdgM module.

CanTrcvGeneral 1 Container gives CAN transceiver driver basic information.

CanTrcv: EcucModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanTrcvChannel:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanTrcvGeneral:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

CanTrcvAccess:

EcucChoiceContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

CanTrcvConfigSet:

EcucParamConfContainerDef

CanTrcvPartialNetwork:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvSPICommTimeout:

EcucIntegerParamDef

min = 0

max = 100

defaultValue = 0

CanTrcvSPICommRetries:

EcucIntegerParamDef

min = 0

max = 255

defaultValue = 0

+container

+subContainer

+parameter

+subContainer

+container

+subContainer

+parameter

10.2.2 CanTrcvGeneral
SWS Item ECUC_CanTrcv_00090 :

Container Name CanTrcvGeneral

Parent Container CanTrcv

Description Container gives CAN transceiver driver basic information.

Configuration Parameters

SWS Item ECUC_CanTrcv_00152 :

Name

CanTrcvDevErrorDetect
Parent Container CanTrcvGeneral

Description Switches the development error detection and notification on or off.

 true: detection and notification is enabled.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

64 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

 false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00184 :

Name

CanTrcvIndex
Parent Container CanTrcvGeneral

Description Specifies the InstanceId of this module instance. If only one instance is
present it shall have the Id 0.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00187 :

Name

CanTrcvMainFunctionDiagnosticsPeriod
Parent Container CanTrcvGeneral

Description This parameter describes the period for cyclic call to
CanTrcv_MainFunctionDiagnostics. Unit is seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range]0 .. INF[

Default value --

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00186 :

Name

CanTrcvMainFunctionPeriod
Parent Container CanTrcvGeneral

Description This parameter describes the period for cyclic call to
CanTrcv_MainFunction. Unit is seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range]0 .. INF[

Default value --

Post-Build Variant Multi- false

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

65 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

plicity

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00190 :

Name

CanTrcvTimerType
Parent Container CanTrcvGeneral

Description Type of the Time Service Predefined Timer.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range None None

Timer_1us16bit 16 bit 1us timer

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity Config-
uration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configura-
tion Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependen-
cy

scope: local

SWS Item ECUC_CanTrcv_00153 :

Name

CanTrcvVersionInfoApi
Parent Container CanTrcvGeneral

Description Switches version information API on and off. If switched off, function need
not be present in compiled code.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00191 :

Name

CanTrcvWaitTime
Parent Container CanTrcvGeneral

Description Wait time for transceiver state changes in seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. 2.55E-4]

Default value --

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

66 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00154 :

Name

CanTrcvWakeUpSupport
Parent Container CanTrcvGeneral

Description Informs whether wake up is supported by polling or not supported. In case no
wake up is supported by the hardware, setting has to be NOT_SUPPORTED. Only
in the case of wake up supported by polling, function CanTrcv_MainFunction has
to be present and to be invoked by the scheduler.

Multiplicity 1

Type EcucEnumerationParamDef

Range CANTRCV_WAKEUP_BY_POLLING Wake up by polling

CANTRCV_WAKEUP_NOT_-
SUPPORTED

Wake up is not supported

Post-Build Variant
Value

false

Value Configura-
tion Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependen-
cy

scope: local
dependency: CanTrcvWakeupByBusUsed

SWS Item ECUC_CanTrcv_00193 :

Name

CanTrcvEcucPartitionRef
Parent Container CanTrcvGeneral

Description Maps the CAN transceiver driver to zero or multiple ECUC partitions to
make the modules API available in this partition. The module will operate
as an independent instance in each of the partitions.

Multiplicity 0..*

Type Reference to [EcucPartition]

Post-Build Variant Multi-
plicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

67 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

EcucPartition:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanTrcvGeneral:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

CanTrcvDevErrorDetect:

EcucBooleanParamDef

defaultValue = false

CanTrcvVersionInfoApi:

EcucBooleanParamDef

defaultValue = false

CanTrcvWakeUpSupport:

EcucEnumerationParamDef

CANTRCV_WAKEUP_BY_POLLING:

EcucEnumerationLiteralDef

CANTRCV_WAKEUP_NOT_SUPPORTED:

EcucEnumerationLiteralDef

CanTrcvIndex:

EcucIntegerParamDef

min = 0

max = 255

CanTrcvMainFunctionPeriod:

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvMainFunctionDiagnosticsPeriod:

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvTimerType:

EcucEnumerationParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

None:

EcucEnumerationLiteralDef

Timer_1us16bit:

EcucEnumerationLiteralDef

CanTrcvWaitTime:

EcucFloatParamDef

min = 0

max = 0.000255

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvEcucPartitionRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

+parameter

+parameter

+literal

+parameter

+destination

+literal

+literal

+parameter

+parameter

+reference

+literal

+parameter

+parameter

+parameter

10.2.3 CanTrcvConfigSet
SWS Item ECUC_CanTrcv_00173 :

Container Name CanTrcvConfigSet

Parent Container CanTrcv

Description
This container contains the configuration parameters and sub containers of
the AUTOSAR WdgM module.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

68 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Configuration Parameters

SWS Item ECUC_CanTrcv_00175 :

Name

CanTrcvSPICommRetries
Parent Container CanTrcvConfigSet

Description Indicates the maximum number of communication retries in case of a failed
SPI communication (applies both to timed out communication and to er-
rors/NACK in the response data).
If configured value is '0', no retry is allowed (communication is expected to
succeed at first try).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: This parameter exists only if atleast one SPI Sequence is
referenced in CanTrcvSpiSequence.

SWS Item ECUC_CanTrcv_00174 :

Name

CanTrcvSPICommTimeout
Parent Container CanTrcvConfigSet

Description Indicates the maximum time allowed to the CanTrcv for replying (either
positively or negatively) to a SPI command.
Timeout is configured in milliseconds. Timeout value of '0' means that no
specific timeout is to be used by CanTrcv and the communication is exe-
cuted at the best of the SPI HW capacity.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 100

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: This parameter exists only if atleast one SPI Sequence is
referenced in CanTrcvSpiSequence.

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvChannel 1..*
Container gives CAN transceiver driver information about a
single CAN
transceiver (channel).

10.2.4 CanTrcvChannel
SWS Item ECUC_CanTrcv_00143 :

Container Name CanTrcvChannel

Parent Container CanTrcvConfigSet

Description
Container gives CAN transceiver driver information about a single CAN
transceiver (channel).

Configuration Parameters

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

69 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

SWS Item ECUC_CanTrcv_00155 :

Name

CanTrcvChannelId
Parent Container CanTrcvChannel

Description Unique identifier of the CAN Transceiver Channel.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_CanTrcv_00096 :

Name

CanTrcvChannelUsed
Parent Container CanTrcvChannel

Description Shall the related CAN transceiver channel be used?

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00097 :

Name

CanTrcvControlsPowerSupply
Parent Container CanTrcvChannel

Description Is ECU power supply controlled by this transceiver?
TRUE = Controlled by transceiver.
FALSE = Not controlled by transceiver.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00160 :

Name

CanTrcvHwPnSupport
Parent Container CanTrcvChannel

Description Indicates whether the HW supports the selective wake-up function
TRUE = Selective wakeup feature is supported by the transceiver
FALSE = Selective wakeup functionality is not available in transceiver

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

70 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

dependency: CanTrcvWakeUpSupport

SWS Item ECUC_CanTrcv_00146 :

Name

CanTrcvInitState
Parent Container CanTrcvChannel

Description State of CAN transceiver after call to CanTrcv_Init.

Multiplicity 1

Type EcucEnumerationParamDef

Range CANTRCV_OP_MODE_SLEEP Sleep operation mode

CANTRCV_OP_MODE_STANDBY Standby operation mode

Post-Build Variant
Value

false

Value Configura-
tion Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependen-
cy

scope: local

SWS Item ECUC_CanTrcv_00147 :

Name

CanTrcvMaxBaudrate
Parent Container CanTrcvChannel

Description Indicates the data transfer rate in kbps.
Maximum data transfer rate in kbps for transceiver hardware type. Only
used for validation purposes. This value can be used by configuration
tools.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 12000

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00148 :

Name

CanTrcvWakeupByBusUsed
Parent Container CanTrcvChannel

Description Is wake up by bus supported? If CAN transceiver hardware does not sup-
port wake up by bus value is always FALSE. If CAN transceiver hardware
supports wake up by bus value is TRUE or FALSE depending whether it is
used or not.
TRUE = Is used.
FALSE = Is not used.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

71 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

dependency: CanTrcvWakeUpSupport

SWS Item ECUC_CanTrcv_00194 :

Name

CanTrcvChannelEcucPartitionRef
Parent Container CanTrcvChannel

Description Maps the CAN transceiver channel to zero or one ECUC partitions. The
ECUC partition referenced is a subset of the ECUC partitions where the
CAN transceiver driver is mapped to.

Multiplicity 0..1

Type Reference to [EcucPartition]

Post-Build Variant Multi-
plicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_CanTrcv_00185 :

Name

CanTrcvIcuChannelRef
Parent Container CanTrcvChannel

Description Reference to the IcuChannel to enable/disable the interrupts
for wakeups.

Multiplicity 0..1

Type Symbolic name reference to [IcuChannel]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item ECUC_CanTrcv_00181 :

Name

CanTrcvPorWakeupSourceRef
Parent Container CanTrcvChannel

Description Symbolic name reference to specify the wakeup sources that should be
used in the calls to EcuM_SetWakeupEvent as specified in
[SWS_CanTrcv_00183] and [SWS_CanTrcv_00184].
This reference is mandatory if the HW supports POR or SYSERR flags

Multiplicity 0..1

Type Symbolic name reference to [EcuMWakeupSource]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

72 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Scope / Dependency scope: ECU

SWS Item ECUC_CanTrcv_00182 :

Name

CanTrcvSyserrWakeupSourceRef
Parent Container CanTrcvChannel

Description Symbolic name reference to specify the wakeup sources that should be
used in the calls to EcuM_SetWakeupEvent as specified in
[SWS_CanTrcv_00183] and [SWS_CanTrcv_00184]
This reference is mandatory if the HW supports POR or SYSERR flags

Multiplicity 0..1

Type Symbolic name reference to [EcuMWakeupSource]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_CanTrcv_00177 :

Name

CanTrcvWakeupSourceRef
Parent Container CanTrcvChannel

Description Reference to a wakeup source in the EcuM configuration.
This reference is only needed if CanTrcvWakeupByBusUsed is true.

Multiplicity 0..1

Type Symbolic name reference to [EcuMWakeupSource]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: CanTrcvWakeupByBusUsed

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvAccess 1
Container gives CanTrcv Driver information about access
to a single CAN transceiver.

CanTrcvDemEventParameter-
Refs

0..1

Container for the references to DemEventParameter ele-
ments which shall be invoked using the API
Dem_SetEventStatus in case the corresponding error oc-
curs. The EventId is taken from the referenced DemEv-
entParameter's DemEventId symbolic value. The stand-
ardized errors are provided in this container and can be
extended by vendor-specific error references.

CanTrcvPartialNetwork 0..1
Container gives CAN transceiver driver information about
the configuration of Partial Networking functionality.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

73 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

[SWS_CanTrcv_00233] ⌈ The ECUC partitions referenced by CanTrcvChan-

nelEcucPartitionRef shall be a subset of the ECUC partitions referenced by

CanTrcvEcucPartitionRef.⌋()

[SWS_CanTrcv_CONSTR_00235]⌈ If CanTrcvEcucPartitionRef references one or

more ECUC partitions, CanTrcvChannelEcucPartitionRef shall have a multiplicity of

one and reference one of these ECUC partitions as well.⌋()

[SWS_CanTrcv_00234] ⌈ CanTrcvChannel and CanController of one communication
channel shall all reference the same ECUC partition.⌋()

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

74 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

CANTRCV_OP_MODE_STANDBY:

EcucEnumerationLiteralDef

CANTRCV_OP_MODE_SLEEP:

EcucEnumerationLiteralDef

CanTrcvChannel:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanTrcvWakeupByBusUsed:

EcucBooleanParamDef

defaultValue = false

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvInitState: EcucEnumerationParamDef

CanTrcvControlsPowerSupply:

EcucBooleanParamDef

defaultValue = false

CanTrcvChannelUsed: EcucBooleanParamDef

defaultValue = true

CanTrcvMaxBaudrate: EcucIntegerParamDef

max = 12000

min = 0

CanTrcvAccess: EcucChoiceContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

CanTrcvChannelId: EcucIntegerParamDef

symbolicNameValue = true

max = 255

CanTrcvPartialNetwork:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvWakeupSourceRef: EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

EcuMWakeupSource: EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 32

CanTrcvPorWakeupSourceRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

CanTrcvSyserrWakeupSourceRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

CanTrcvIcuChannelRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

IcuChannel:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanTrcvDemEventParameterRefs:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CANTRCV_E_BUS_ERROR:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

DemEventParameter:

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

EcucPartition:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanTrcvChannelEcucPartitionRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+parameter

+reference +destination

+subContainer

+parameter

+reference

+parameter

+literal

+reference

+reference

+reference +destination

+destination

+destination

+subContainer

+destination

+subContainer

+literal

+parameter

+destination

+parameter

+reference

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

75 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

10.2.5 CanTrcvAccess
SWS Item ECUC_CanTrcv_00101 :

Choice container Name CanTrcvAccess

Parent Container CanTrcvChannel

Description
Container gives CanTrcv Driver information about access to a single CAN
transceiver.

Container Choices

Container Name Multiplicity Scope / Dependency

CanTrcvDioAccess 0..1

Container gives CAN transceiver driver information about ac-
cessing ports and port pins. In addition relation between CAN
transceiver hardware pin names and Dio port access infor-
mation is given.
If a CAN transceiver hardware has no Dio interface, there is no
instance of this container.

CanTrcvSpiAccess 0..1
Container gives CAN transceiver driver information about ac-
cessing Spi. If a CAN transceiver hardware has no Spi inter-
face, there is no instance of this container.

CanTrcvSpiSequence:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

CanTrcvDioAccess:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

CanTrcvSpiSequenceName:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

requiresSymbolicNameValue = true

CanTrcvHardwareInterfaceName:

EcucStringParamDef
CanTrcvAccess:

EcucChoiceContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

CanTrcvDioSymNameRef:

EcucChoiceReferenceDef

CanTrcvDioChannelAccess:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

CanTrcvSpiAccessSynchronous:

EcucBooleanParamDef

defaultValue = false

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvSpiAccess:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

+subContainer

+reference

+parameter

+choice

+reference

+choice

+subContainer

+parameter

10.2.6 CanTrcvDioAccess
SWS Item ECUC_CanTrcv_00145 :

Container Name CanTrcvDioAccess

Parent Container CanTrcvAccess

Description

Container gives CAN transceiver driver information about accessing ports
and port pins. In addition relation between CAN transceiver hardware pin
names and Dio port access information is given.
If a CAN transceiver hardware has no Dio interface, there is no instance of
this container.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvDioChannelAccess 1..*
Container gives DIO channel access by single Can transceiver
channel.

10.2.7 CanTrcvDioChannelAccess
SWS Item ECUC_CanTrcv_00157 :

Container Name CanTrcvDioChannelAccess

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

76 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Parent Container CanTrcvDioAccess

Description Container gives DIO channel access by single Can transceiver channel.

Configuration Parameters

SWS Item ECUC_CanTrcv_00150 :

Name

CanTrcvHardwareInterfaceName
Parent Container CanTrcvDioChannelAccess

Description CAN transceiver hardware interface name. It is typically the name of a pin.
From a Dio point of view it is either a port, a single channel or a channel
group. Depending on this fact either
CANTRCV_DIO_PORT_SYMBOLIC_NAME or
CANTRCV_DIO_CHANNEL_SYMBOLIC_NAME or
CANTRCV_DIO_CHANNEL_GROUP_SYMBOLIC_NAME
shall reference a Dio configuration.
The CAN transceiver driver implementation description shall list up this
name for the appropriate CAN transceiver hardware.

Multiplicity 1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00149 :

Name

CanTrcvDioSymNameRef
Parent Container CanTrcvDioChannelAccess

Description Choice Reference to a DIO Port, DIO Channel or DIO Channel Group. This
reference replaces the CANTRCV_DIO_PORT_SYM_NAME,
CANTRCV_DIO_CHANNEL_SYM_NAME and
CANTRCV_DIO_GROUP_SYM_NAME references in the Can Trcv SWS.

Multiplicity 1

Type Choice reference to [DioChannel , DioChannelGroup , DioPort]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

No Included Containers

10.2.8 CanTrcvSpiAccess
SWS Item ECUC_CanTrcv_00183 :

Container Name CanTrcvSpiAccess

Parent Container CanTrcvAccess

Description
Container gives CAN transceiver driver information about accessing Spi. If
a CAN transceiver hardware has no Spi interface, there is no instance of
this container.

Configuration Parameters

Included Containers

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

77 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Container Name Multiplicity Scope / Dependency

CanTrcvSpiSequence 1..*

Container gives CAN transceiver driver information about one
SPI sequence.
One SPI sequence used by CAN transceiver driver is in exclu-
sive use for it. No other driver is allowed to access this se-
quence. CAN transceiver driver may use one sequence to ac-
cess n CAN transceiver hardwares chips of the same type or n
sequences are used to access one single CAN transceiver
hardware chip.
If a CAN transceiver hardware has no SPI interface, there is
no instance of this container.

10.2.9 CanTrcvSpiSequence
SWS Item ECUC_CanTrcv_00144 :

Container Name CanTrcvSpiSequence

Parent Container CanTrcvSpiAccess

Description

Container gives CAN transceiver driver information about one SPI se-
quence.
One SPI sequence used by CAN transceiver driver is in exclusive use for
it. No other driver is allowed to access this sequence. CAN transceiver
driver may use one sequence to access n CAN transceiver hardwares
chips of the same type or n sequences are used to access one single CAN
transceiver hardware chip.
If a CAN transceiver hardware has no SPI interface, there is no instance of
this container.

Configuration Parameters

SWS Item ECUC_CanTrcv_00176 :

Name

CanTrcvSpiAccessSynchronous
Parent Container CanTrcvSpiSequence

Description This parameter is used to define whether the access to the Spi sequence
is synchronous or asynchronous.
true: SPI access is synchronous.
false: SPI access is asynchronous.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00151 :

Name

CanTrcvSpiSequenceName
Parent Container CanTrcvSpiSequence

Description Reference to a Spi sequence configuration container.

Multiplicity 0..*

Type Symbolic name reference to [SpiSequence]

Post-Build Variant Multi-
plicity

false

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

78 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: SpiSequence

No Included Containers

.

CanTrcvSpiSequenceName:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

requiresSymbolicNameValue = true

SpiSequence:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

DioChannelGroup:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

CanTrcvDioAccess:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

CanTrcvSpiSequence:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

DioPort: EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

DioChannel:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

CanTrcvDioSymNameRef:

EcucChoiceReferenceDef

CanTrcvDioChannelAccess:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

+destination

+destination

+destination+reference

+destination
+subContainer

+reference

+subContainer

+subContainer

10.2.10 CanTrcvDemEventParameterRefs
SWS Item ECUC_CanTrcv_00188 :

Container Name CanTrcvDemEventParameterRefs

Parent Container CanTrcvChannel

Description

Container for the references to DemEventParameter elements which shall
be invoked using the API Dem_SetEventStatus in case the corresponding
error occurs. The EventId is taken from the referenced DemEventParame-
ter's DemEventId symbolic value. The standardized errors are provided in
this container and can be extended by vendor-specific error references.

Configuration Parameters

SWS Item ECUC_CanTrcv_00189 :

Name

CANTRCV_E_BUS_ERROR
Parent Container CanTrcvDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when bus
error has occurred.

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

79 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: DEM

No Included Containers

10.2.11 CanTrcvPartialNetwork
SWS Item ECUC_CanTrcv_00161 :

Container Name CanTrcvPartialNetwork

Parent Container CanTrcvChannel

Description
Container gives CAN transceiver driver information about the configuration
of Partial Networking functionality.

Configuration Parameters

SWS Item ECUC_CanTrcv_00169 :

Name

CanTrcvBaudRate
Parent Container CanTrcvPartialNetwork

Description Indicates the data transfer rate in kbps.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 12000

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: Although WUF with DLC=0 is technically possible, it is explic-
itly not wanted.

SWS Item ECUC_CanTrcv_00171 :

Name

CanTrcvBusErrFlag
Parent Container CanTrcvPartialNetwork

Description Indicates if the Bus Error (BUSERR) flag is managed by the BSW. This
flag is set if a bus failure is detected by the transceiver.
TRUE = Supported by transceiver and managed by BSW.
FALSE = Not managed by BSW.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

80 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00164 :

Name

CanTrcvPnCanIdIsExtended
Parent Container CanTrcvPartialNetwork

Description Indicates whether extended or standard ID is used.
TRUE = Extended Can identifier is used.
FALSE = Standard Can identifier is used

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00172 :

Name

CanTrcvPnEnabled
Parent Container CanTrcvPartialNetwork

Description Indicates whether the selective wake-up function is enabled or disabled in
HW.
TRUE = Selective wakeup feature is enabled in the transceiver hardware
FALSE = Selective wakeup feature is disabled in the transceiver hardware

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00163 :

Name

CanTrcvPnFrameCanId
Parent Container CanTrcvPartialNetwork

Description CAN ID of the Wake-up Frame (WUF).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00162 :

Name

CanTrcvPnFrameCanIdMask
Parent Container CanTrcvPartialNetwork

Description ID Mask for the selective activation of the transceiver. It is used to enable-
Frame Wake-up (WUF) on a group of IDs.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

81 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00168 :

Name

CanTrcvPnFrameDlc
Parent Container CanTrcvPartialNetwork

Description Data Length of the Wake-up Frame (WUF).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 8

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00170 :

Name

CanTrcvPowerOnFlag
Parent Container CanTrcvPartialNetwork

Description Description: Indicates if the Power On Reset (POR) flag is available and is
managed by the transceiver.
TRUE = Supported by Hardware.
FALSE = Not supported by Hardware

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvPnFrameData-
MaskSpec

0..8
Defines data payload mask to be used on the received
payload in order to determine if the transceiver must be
woken up by the received Wake-up Frame (WUF).

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

82 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

CanTrcvPartialNetwork:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvPnFrameCanIdMask:

EcucIntegerParamDef

min = 0

max = 4294967295

CanTrcvPnFrameCanId:

EcucIntegerParamDef

min = 0

max = 4294967295

CanTrcvPnCanIdIsExtended:

EcucBooleanParamDef

defaultValue = false

CanTrcvPnFrameDataMaskSpec:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 8

CanTrcvPnFrameDataMask:

EcucIntegerParamDef

min = 0

max = 255

CanTrcvPnFrameDataMaskIndex:

EcucIntegerParamDef

min = 0

max = 7

CanTrcvPnFrameDlc:

EcucIntegerParamDef

min = 0

max = 8

CanTrcvBaudRate: EcucIntegerParamDef

min = 0

max = 12000

CanTrcvPowerOnFlag:

EcucBooleanParamDef

defaultValue = false

CanTrcvBusErrFlag:

EcucBooleanParamDef

defaultValue = false

CanTrcvPnEnabled:

EcucBooleanParamDef

defaultValue = false

+parameter

+parameter

+subContainer

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

10.2.12 CanTrcvPnFrameDataMaskSpec
SWS Item ECUC_CanTrcv_00165 :

Container Name CanTrcvPnFrameDataMaskSpec

Parent Container CanTrcvPartialNetwork

Description
Defines data payload mask to be used on the received payload in order to
determine if the transceiver must be woken up by the received Wake-up
Frame (WUF).

Configuration Parameters

SWS Item ECUC_CanTrcv_00166 :

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

83 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

Name

CanTrcvPnFrameDataMask
Parent Container CanTrcvPnFrameDataMaskSpec

Description Defines the n byte (Byte0 = LSB) of the data payload mask to be used on
the received payload in order to determine if the transceiver must be wok-
en up by the received Wake-up Frame (WUF).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00167 :

Name

CanTrcvPnFrameDataMaskIndex
Parent Container CanTrcvPnFrameDataMaskSpec

Description holds the position n in frame of the mask-part

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 7

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral

Specification of CAN Transceiver Driver
AUTOSAR CP R20-11

84 of 84 Document ID 71: AUTOSAR_SWS_CANTransceiverDriver

11 Not applicable requirements

[SWS_CanTrcv_00999] ⌈ These requirements are not applicable to this specifica-

tion. ⌋ (SRS_BSW_00304, SRS_BSW_00305, SRS_BSW_00306,

SRS_BSW_00307, SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00312,
SRS_BSW_00321, SRS_BSW_00325, SRS_BSW_00328, SRS_BSW_00330,
SRS_BSW_00333, SRS_BSW_00334, SRS_BSW_00336, SRS_BSW_00341,
SRS_BSW_00342, SRS_BSW_00344, SRS_BSW_00359, SRS_BSW_00360,
SRS_BSW_00378, SRS_BSW_00383, SRS_BSW_00384, SRS_BSW_00398,
SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00401, SRS_BSW_00404,
SRS_BSW_00405, SRS_BSW_00410, SRS_BSW_00416, SRS_BSW_00417,
SRS_BSW_00422, SRS_BSW_00423, SRS_BSW_00426, SRS_BSW_00427,
SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00005,
SRS_BSW_00006, SRS_BSW_00007, SRS_BSW_00009, SRS_BSW_00010,
SRS_BSW_00161, SRS_BSW_00164, SRS_BSW_00168, SRS_Can_01107,
SRS_Can_01138)

	1 Introduction
	1.1 Goal of CAN Transceiver Driver
	1.2 Explicitly uncovered CAN transceiver functionality
	1.3 Single wire CAN transceivers according SAE J2411

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure

	6 Requirements Traceability
	7 Functional specification
	7.1 CAN transceiver driver operation modes
	7.1.1 Operation mode switching

	7.2 CAN transceiver hardware operation modes
	7.2.1 Example for temporary “Go-To-Sleep” mode
	7.2.2 Example for “PowerOn/ListenOnly” mode

	7.3 CAN transceiver wake up types
	7.4 Enabling/Disabling wakeup notification
	7.5 CAN transceiver wake up modes
	7.6 Error classification
	7.6.1 Development Errors
	7.6.2 Runtime Errors
	7.6.3 Transient Faults
	7.6.4 Production Errors
	7.6.5 Extended Production Errors

	7.7 Preconditions for driver initialization
	7.8 Instance concept
	7.9 Wait states
	7.10 Transceivers with selective wakeup functionality

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 CanTrcv_Init
	8.3.2 CanTrcv_SetOpMode
	8.3.3 CanTrcv_GetOpMode
	8.3.4 CanTrcv_GetBusWuReason
	8.3.5 CanTrcv_VersionInfo
	8.3.6 CanTrcv_ SetWakeupMode
	8.3.7 CanTrcv_GetTrcvSystemData
	8.3.8 CanTrcv_ClearTrcvWufFlag
	8.3.9 CanTrcv_ReadTrcvTimeoutFlag
	8.3.10 CanTrcv_ClearTrcvTimeoutFlag
	8.3.11 CanTrcv_ReadTrcvSilenceFlag
	8.3.12 CanTrcv_CheckWakeup
	8.3.13 CanTrcv_SetPNActivationState
	8.3.14 CanTrcv_CheckWakeFlag
	8.3.15 CanTrcv_DeInit

	8.4 Scheduled functions
	8.4.1 CanTrcv_MainFunction
	8.4.2 CanTrcv_MainFunctionDiagnostics

	8.5 Call-back notifications
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagram
	9.1 Wake up with valid validation
	9.2 Interaction with DIO module
	9.3 De-Initialization (SPI Synchronous)
	9.4 De-Initialization (SPI Asynchronous)

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 CanTrcv
	10.2.2 CanTrcvGeneral
	10.2.3 CanTrcvConfigSet
	10.2.4 CanTrcvChannel
	10.2.5 CanTrcvAccess
	10.2.6 CanTrcvDioAccess
	10.2.7 CanTrcvDioChannelAccess
	10.2.8 CanTrcvSpiAccess
	10.2.9 CanTrcvSpiSequence
	10.2.10 CanTrcvDemEventParameterRefs
	10.2.11 CanTrcvPartialNetwork
	10.2.12 CanTrcvPnFrameDataMaskSpec

	10.3 Published Information

	11 Not applicable requirements

