
Specification of Bit Handling Routines
AUTOSAR CP R21-11

Document Title Specification of Bit Handling
Routines

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 399

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R21-11

Document Change History
Date Release Changed by Description

2021-11-25 R21-11
AUTOSAR
Release
Management

• No content changes (only converted
to LaTex)
• Artifact inclusion based on

ArtifactAnalysis corrected

2020-11-30 R20-11
AUTOSAR
Release
Management

• Chapter 7.1 Error sections updated

2019-11-28 R19-11
AUTOSAR
Release
Management

• Editorial changes
• Changed Document Status from

Final to published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Addition of 64bit handling
requirement

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Addition on mnemonic for boolean as
“u8“
• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Removal of the requirement SWS_
Bfx_00204
• Updation of MISRA violation

comment format
• Updation of unspecified value range

for BitPn, BitStartPn, BitLn and
ShiftCnt
• Clarifications

1 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Updated SWS_Bfx_00017 for the
return type of Bfx_GetBit function
from 1 and 0 to TRUE and FALSE
• Updated chapter 8.1 for the definition

of bit addressing and updated the
examples of Bfx_SetBit, Bfx_ClrBit,
Bfx_GetBit, Bfx_SetBits, Bfx_
CopyBit, Bfx_PutBits, Bfx_PutBit
• Updated SWS_Bfx_00017 for the

return type of Bfx_GetBit function
from 1 and 0 to TRUE and FALSE
without changing the formula
• Updated SWS_Bfx_00011 and

SWS_Bfx_00022 for the review
comments provided for the examples
• In Table 2, replaced Boolean with

boolean
• In SWS_Bfx_00029, in example

re-placed BFX_GetBits_u16u8u8_
u16 with Bfx_GetBits_u16u8u8_u16

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Correct usage of const in function
declarations
• Editoral changes

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Editorial Changes

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Improve description of how to map
functions to C-files
• Improve the definition of error

classification
• Editorial changes

2013-03-15 4.1.1 AUTOSAR
Administration

• Change return value of Test Bit API
to boolean.
• Improve memory map handling
• Change number of parameter in Put

Bit Api.

2 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

2011-12-22 4.0.3 AUTOSAR
Administration

• Requirements described with more
clarity for ‘Bit Shift and Rotate‘
operations
• Table correction for PutBit routines
• ‘Copy Bit routine‘ interfaces

corrected
• Error classification support and

definition removed as DET call not
supported by library
• Configuration parameter description /

support removed for XXX_
GetVersionInfo routine
• Renaming of the term DET in the

abbreviation to “Default Error Trace“

2009-12-18 4.0.1 AUTOSAR
Administration

• Signature for necessary Bit handling
functions optimized for easy usage
• Bit handling on all signed variables

eliminated
• Additional bit handling functions

introduced

2010-02-02 3.1.4 AUTOSAR
Administration • Initial Release

3 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

Table of Contents

1 Introduction and functional overview 7

2 Acronyms and Abbreviations 8

3 Related documentation 9

3.1 Input documents & related standards and norms 9
3.2 Related specification . 9

4 Constraints and assumptions 10

4.1 Limitations . 10
4.2 Applicability to car domains . 10

5 Dependencies to other modules 11

5.1 File structure . 11

6 Requirements Tracing 12

7 Functional specification 13

7.1 Error Classification . 13
7.1.1 Development Errors . 13
7.1.2 Runtime Errors . 13
7.1.3 Transient Faults . 13
7.1.4 Production Errors . 13
7.1.5 Extended Production Errors 13

7.2 Initialization and shutdown . 13
7.3 Using Library API . 14
7.4 Library implementation . 14

8 API specification 15

8.1 Imported types . 15
8.2 Type definitions . 16
8.3 Comment about functions optimized for target 16
8.4 Bit functions definitions . 17

8.4.1 Bfx_SetBit . 17
8.4.2 Bfx_ClrBit . 18
8.4.3 Bfx_GetBit . 19
8.4.4 Bfx_SetBits . 20
8.4.5 Bfx_GetBits . 21
8.4.6 Bfx_SetBitMask . 22
8.4.7 Bfx_ClrBitMask . 23
8.4.8 Bfx_TstBitMask . 24
8.4.9 Bfx_TstBitLnMask . 25
8.4.10 Bfx_TstParityEven . 26
8.4.11 Bfx_ToggleBits . 26
8.4.12 Bfx_ToggleBitMask . 27

5 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.13 Bfx_ShiftBitRt . 28
8.4.14 Bfx_ShiftBitLt . 29
8.4.15 Bfx_RotBitRt . 30
8.4.16 Bfx_RotBitLt . 31
8.4.17 Bfx_CopyBit . 32
8.4.18 Bfx_PutBits . 33
8.4.19 Bfx_PutBitsMask . 34
8.4.20 Bfx_PutBit . 35

8.5 Callback notifications . 36
8.6 Scheduled functions . 36
8.7 Expected interfaces . 36

8.7.1 Mandatory interfaces . 36
8.7.2 Optional interfaces . 36
8.7.3 Configurable interfaces . 36

8.8 Version API . 37
8.8.1 Bfx_GetVersionInfo . 37

9 Sequence diagrams 38

10 Configuration specification 39

10.1 How to read this chapter . 39
10.2 Containers and configuration parameters 39
10.3 Published Information . 39

A Not applicable requirements 39

6 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture
and below figure shows position of AUTOSAR library in layered architecture.

Figure 1.1: Layered Architecture

Bfx routines specification specifies the functionality, API and the configuration of the
AUTOSAR library for BIT functionality dedicated to fixed-point arithmetic routines.

All bit functions are re-entrant and can handle several simultaneous requests from the
application.

7 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Bfx Library
module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Bfx Short name for Bitfield functions for fixed point

u8 Short name for uint8, specified in AUTOSAR_SWS_Platform
Types

u16 Short name for uint16, specified in AUTOSAR_SWS_
PlatformTypes

u32 Short name for uint32, specified in AUTOSAR_SWS_
PlatformTypes

s8 Short name for sint8, specified in AUTOSAR_SWS_Platform
Types

s16 Short name for sint16, specified in AUTOSAR_SWS_
PlatformTypes

s32 Short name for sint32, specified in AUTOSAR_SWS_
PlatformTypes

boolean Boolean data type, specified in AUTOSAR_SWS_Platform
Types

DET Default Error Tracer

8 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_TR_Glossary

[2] ISO/IEC 9899:1990 Programming Language - C
http://www.iso.org

[3] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral

[4] Requirements on Libraries
AUTOSAR_SRS_Libraries

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for IFX Library.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for IFX Library.

9 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

http://www.iso.org

Specification of Bit Handling Routines
AUTOSAR CP R21-11

4 Constraints and assumptions

4.1 Limitations

No limitations

4.2 Applicability to car domains

No restrictions

10 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

5 Dependencies to other modules

5.1 File structure

[SWS_Bfx_00220] dThe Bfx module shall provide the following files:

• C files, Bfx_<name>.c used to implement the library. All C files shall be prefixed
with ’Bfx’.

Header file Bfx.h provides all public function prototypes and types defined by the BFX
library specificationc(SRS_LIBS_00005)

[SWS_Bfx_00222] dImplementation & grouping of routines with respect to C files shall
be done according to one of the options described below.c()

Option 1 : <Name> can be function name providing one C file per function,

eg.: Bfx_setbit.c etc.

Option 2 : <Name> can have common name of group of functions:

• 2.1 Group by object family:

eg.:Bfx_set.c, Bfx_get.c

• 2.2 Group by routine family:

eg.: Bfx_bit8.c,Bfx_bit16.c etc.

• 2.3 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all Bfx functions,
eg.: Bfx.c.

Using above options gives certain flexibility of choosing suitable granularity with re-
duced number of C files. Depending on the tool-chain linking on demand can be pos-
sible or not.

11 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

6 Requirements Tracing

The following tables reference the requirements specified in [4] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[SRS_BSW_00007] All Basic SW Modules written in

C language shall conform to the
MISRA C 2012 Standard.

[SWS_Bfx_00209]

[SRS_BSW_00304] All AUTOSAR Basic Software
Modules shall use only
AUTOSAR data types instead of
native C data types

[SWS_Bfx_00212]

[SRS_BSW_00348] All AUTOSAR standard types
and constants shall be placed
and organized in a standard type
header file

[SWS_Bfx_00213]

[SRS_BSW_00378] AUTOSAR shall provide a
boolean type

[SWS_Bfx_00212]

[SRS_BSW_00407] Each BSW module shall provide
a function to read out the version
information of a dedicated
module implementation

[SWS_Bfx_00302]

[SRS_BSW_00411] All AUTOSAR Basic Software
Modules shall apply a naming
rule for enabling/disabling the
existence of the API

[SWS_Bfx_00302]

[SRS_BSW_00448] Module SWS shall not contain
requirements from Other
Modules

[SWS_Bfx_00999]

[SRS_LIBS_00001] The functional behavior of each
library functions shall not be
configurable

[SWS_Bfx_00314]

[SRS_LIBS_00002] A library shall be operational
before all BSW modules and
application SW-Cs

[SWS_Bfx_00200]

[SRS_LIBS_00003] A library shall be operational
until the shutdown

[SWS_Bfx_00201]

[SRS_LIBS_00005] Each library shall provide one
header file with its public
interface

[SWS_Bfx_00220]

[SRS_LIBS_00007] Using a library should be
documented

[SWS_Bfx_00205]

[SRS_LIBS_00015] It shall be possible to configure
the microcontroller so that the
library code is shared between
all callers

[SWS_Bfx_00206]

[SRS_LIBS_00017] Usage of macros should be
avoided

[SWS_Bfx_00207]

[SRS_LIBS_00018] A library function may only call
library functions

[SWS_Bfx_00203] [SWS_Bfx_00208]

12 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

7 Functional specification

7.1 Error Classification

[SWS_Bfx_00223] : dSection 7.1 "Error Handling" of the document "General Specifi-
cation of Basic Software Modules" describes the error handling of the Basic Software
in detail. Above all, it constitutes a classification scheme consisting of five error types
which may occur in BSW modules.c()

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors

7.1.3 Transient Faults

There are no transient faults.

7.1.4 Production Errors

There are no production errors.

7.1.5 Extended Production Errors

There are no extended production errors.

7.2 Initialization and shutdown

[SWS_Bfx_00200] dBfx library shall not require initialization phase. A library function
may be called at the very first step of ECU initialization, e.g. even by the OS or EcuM,
thus the library shall be ready.c(SRS_LIBS_00002)

13 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

[SWS_Bfx_00201] dBfx library shall not require a shutdown operation phase.c(SRS_-
LIBS_00003)

7.3 Using Library API

[SWS_Bfx_00203] dBfx API can be directly called from BSW modules or SWC. No
port definition is required. It is a pure function call.c(SRS_LIBS_00018)

[SWS_Bfx_00205] dUsing a library should be documented. if a BSW module or a SWC
uses a Library, the developer should add an Implementation-DependencyOnArtifact in
the BSW/SWC template.

minVersion and maxVersion parameters correspond to the supplier version. In case
of AUTOSAR library, these parameters may be left empty because a SWC or BSW
module may rely on library behaviour, not on a supplier implementation. However, the
SWC or BSW modules shall be compatible with the AUTOSAR platform where they
are integrated.c(SRS_LIBS_00007)

7.4 Library implementation

[SWS_Bfx_00206] dThe Bfx library shall be implemented in a way that the code can
be shared among callers in different memory partitions.c(SRS_LIBS_00015)

[SWS_Bfx_00207] dUsage of macros must be avoided in the context of Library. The
library function must be declared as function or as inline function and Macro #define
should not be used.c(SRS_LIBS_00017)

[SWS_Bfx_00208] dA library function shall not call any BSW module functions, e.g.
the DET. A library function can call any other library functions since all library functions
are re-entrant but not BSW module functions, as they may not be re-entrantc(SRS_-
LIBS_00018)

[SWS_Bfx_00209] dThe library, written in C programming language, should confirm to
the MISRA C Standard.

Please refer to SWS_BSW_00115 for more details.c(SRS_BSW_00007)

[SWS_Bfx_00212] dAll AUTOSAR library Modules should use the AUTOSAR data
types (Integers, Boolean) instead of native C data types, unless this library is clearly
identified to be compliant only with a platform.c(SRS_BSW_00304, SRS_BSW_00378)

[SWS_Bfx_00213] dAll AUTOSAR library Modules should avoid direct use of compiler
and platform specific keyword, unless this library clearly identified to be compliant only
with a platform.c(SRS_BSW_00348)

[SWS_Bfx_00214] dAll Bit Library modules shall avoid handling user faults and values
outside specified range.c()

14 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[] d

Module Header File Imported Type

Std Std_Types.h Std_VersionInfoType

c()

It is observed that since the sizes of the integer types provided by the C language are
implementation-defined, the range of values that may be represented within each of
the integer types will vary between implementations.

Thus, in order to improve the portability of the software, these types are defined in
Platform_Types.h [6]. The following mnemonic are used in the library routine names.

Note:

The naming convention for the api’s with boolean return type/parameter type is given
as _u8 which shall be interpreted as _b. (Boolean)

If there is no boolean data type present in the return type/parameter type then _u8
shall be interpreted as _u8 only.

Size Platform Type Mnemonic

unsigned 8-Bit boolean u8

signed 8-Bit sint8 s8

signed 16-Bit sint16 s16

signed 32-Bit sint32 s32

unsigned 8-Bit uint8 u8

unsigned 16-Bit uint16 u16

unsigned 32-Bit uint32 u32

Table 8.1: Base Types

As described in [6], the ranges for each of the base types are shown in Table 2.

Base Type Range

boolean [TRUE,FALSE]

uint8 [0, 255]

sint8 [-128, 127]

uint16 [0, 65535]

sint16 [-32768, 32767]

5

15 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

4
uint32 [0, 4294967295]

sint32 [-2147483648, 2147483647]

Table 8.2: Ranges for Base Types

As a convention in the rest of the document:

• Mnemonics will be used in the name of the routines (using <InTypeMn1> that
means Type Mnemonic for Input 1)

• The real type will be used in the description of the prototypes of the routines
(using <InType> or <OutType>).

The bit addressing for the document is

• The bit position of the lowest significant bit is defined as 0(zero)

• The bit field length is defined as the number of bits.

8.2 Type definitions

None

8.3 Comment about functions optimized for target

The functions described in this library may be realized as regular functions or as a ,
inline functions

16 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4 Bit functions definitions

8.4.1 Bfx_SetBit

[SWS_Bfx_00001] d

Service Name Bfx_SetBit_<TypeMn>u8

Syntax void Bfx_SetBit_<TypeMn>u8 (
<Type>* Data,
uint8 BitPn

)

Service ID [hex] 0x01 to 0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) BitPn Bit position

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall set the logical status of input data as ’1’ at the requested bit position.

Available via Bfx.h

c()

[SWS_Bfx_00002] dExpected functionality:

*Data = *Data | (0x01 << BitPn)

For Example:

Data = 10001010b

Bfx_SetBit_u8u8(&Data, 2)

The Data will be updated to 10001110bc()

[SWS_Bfx_00008] dList of implemented functionsc()

Function ID[hex] Function prototype Maximum value of BitPn

0x001 void Bfx_SetBit_u8u8(uint8*, uint8) 7

0x002 void Bfx_SetBit_u16u8(uint16*, uint8) 15

0x003 void Bfx_SetBit_u32u8(uint32*, uint8) 31

0x004 void Bfx_SetBit_u64u8(uint64*, uint8) 63

17 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.2 Bfx_ClrBit

[SWS_Bfx_00010] d

Service Name Bfx_ClrBit_<TypeMn>u8

Syntax void Bfx_ClrBit_<TypeMn>u8 (
<Type>* Data,
uint8 BitPn

)

Service ID [hex] 0x06 to 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) BitPn Bit position

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall clear the logical status of the input data to ’0’ at the requested bit position.

Available via Bfx.h

c()

[SWS_Bfx_00011] dExpected functionality:

*Data = (*Data & ~(0x01 << BitPn))

For Example:

Data = 10001010b

Bfx_ClrBit_u8u8(&Data, 1)

The Data will be updated to 10001000bc()

[SWS_Bfx_00015] dList of implemented functionsc()

Function ID[hex] Function prototype Maximum value of BitPn

0x006 void Bfx_ClrBit_u8u8(uint8*, uint8) 7

0x007 void Bfx_ClrBit_u16u8(uint16*, uint8) 15

0x008 void Bfx_ClrBit_u32u8(uint32*, uint8) 31

0x009 void Bfx_ClrBit_u64u8(uint64*, uint8) 63

18 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.3 Bfx_GetBit

[SWS_Bfx_00016] d

Service Name Bfx_GetBit_<InTypeMn>u8_u8

Syntax boolean Bfx_GetBit_<InTypeMn>u8_u8 (
<InType> Data,
uint8 BitPn

)

Service ID [hex] 0x0a to 0x0c

Sync/Async Synchronous

Reentrancy Reentrant

Data Input dataParameters (in)

BitPn Bit position

Parameters (inout) None

Parameters (out) None

Return value boolean Bit Status

Description This function shall return the logical status of the input data for the requested bit position.

Available via Bfx.h

c()

[SWS_Bfx_00017] dResult = TRUE, ((Data & (0x01 << BitPn)) != 0)

Result = FALSE, else

For Example:

Bfx_GetBit_u8u8(10001010b, 1)

returns TRUEc()

[SWS_Bfx_00020] dList of implemented functionsc()

Function ID[hex] Function prototype maximum value of BitPn

0x00A boolean Bfx_GetBit_u8u8_
u8(uint8,uint8)

7

0x00B boolean Bfx_GetBit_u16u8_
u8(uint16,uint8)

15

0x00C boolean Bfx_GetBit_u32u8_
u8(uint32,uint8)

31

0x00D boolean Bfx_GetBit_u64u8_
u8(uint64,uint8)

63

19 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.4 Bfx_SetBits

[SWS_Bfx_00021] d

Service Name Bfx_SetBits_<TypeMn>u8u8u8

Syntax void Bfx_SetBits_<TypeMn>u8u8u8 (
<Type>* Data,
uint8 BitStartPn,
uint8 BitLn,
uint8 Status

)

Service ID [hex] 0x20 to 0x22

Sync/Async Synchronous

Reentrancy Reentrant

BitStartPn Start bit position

BitLn Bit field length

Parameters (in)

Status Status value

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall set the input data as ’1’ or ’0’ as per ’Status’ value starting from ’BitStartPn’
for the length ’BitLn’.

Available via Bfx.h

c()

[SWS_Bfx_00022] dc()

15 14 13 12 11 10 9 - 2 1 0
1 1 1 0 1 0 0 0 0 0 0

<Bit
Start
Pn>

< BitLn >

For Example:

Data = 1110100000000111b

Bfx_SetBits_u16u8u8u8(&Data, 5, 5, 1)

The Data will be updated to 1110101111100111b

20 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

[SWS_Bfx_00025] dList of implemented functions:c()

Function ID[hex] Function prototype Maximum value of Bit
Ln

Maximum value of Bit
StartPn

Maximum value for
BitStartPn + BitLn

0x020 void Bfx_SetBits_
u8u8u8u8(uint8*,
uint8, uint8, uint8)

8 7 8

0x021 void Bfx_SetBits_
u16u8u8u8(uint16*,
uint8, uint8, uint8)

16 15 16

0x022 void Bfx_SetBits_
u32u8u8u8(uint32*,
uint8, uint8, uint8)

32 31 32

0x023 void Bfx_SetBits_
u64u8u8u8(uint64*,
uint8, uint8, uint8)

64 63 64

8.4.5 Bfx_GetBits

[SWS_Bfx_00028] d

Service Name Bfx_GetBits_<TypeMn>u8u8_<TypeMn>

Syntax <Type> Bfx_GetBits_<TypeMn>u8u8_<TypeMn> (
<Type> Data,
uint8 BitStartPn,
uint8 BitLn

)

Service ID [hex] 0x26 to 0x28

Sync/Async Synchronous

Reentrancy Reentrant

Data Input data

BitStartPn Start bit position

Parameters (in)

BitLn Bit field length

Parameters (inout) None

Parameters (out) None

Return value <Type> Bit field sequence

Description This function shall return the Bits of the input data starting from ’BitStartPn’ for the length of ’Bit
Ln’.

Available via Bfx.h

c()

21 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

[SWS_Bfx_00029] dc()

15 14 13 12 11 10 9 - 2 1 0
1 1 1 0 1 0 0 0 1 1 1

BitStart
Pn

< BitLn >

For Example:

Bfx_GetBits_u16u8u8_u16(1110100000000111b, 9, 5)

returns 0000000000010100b

[SWS_Bfx_00034] dList of implemented functions:c()

Function ID[hex] Function prototype Maximum value of Bit
Ln

Maximum value of Bit
StartPn

Maximum value for
BitStartPn + BitLn

0x026 uint8 Bfx_GetBits_
u8u8u8_
u8(uint8,uint8,uint8)

8 7 8

0x027 uint16 Bfx_GetBits_
u16u8u8_
u16(uint16,uint8,uint8)

16 15 16

0x028 uint32 Bfx_GetBits_
u32u8u8_
u32(uint32,uint8,uint8)

32 31 32

0x029 uint64 Bfx_GetBits_
u64u8u8_
u64(uint64,uint8,uint8)

64 63 64

8.4.6 Bfx_SetBitMask

[SWS_Bfx_00035] d

Service Name Bfx_SetBitMask_<TypeMn><TypeMn>

Syntax void Bfx_SetBitMask_<TypeMn><TypeMn> (
<Type>* Data,
<Type> Mask

)

Service ID [hex] 0x2a to 0x2c

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Mask Mask used to set bits

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall set the data to logical status ’1’ as per the corresponding Mask bits when set
to value 1 and remaining bits will retain their original values.

5

22 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

4
Available via Bfx.h

c()

[SWS_Bfx_00036] dExpected functionality:

*Data = *Data | Maskc()

[SWS_Bfx_00038] dList of implemented functions:c()

Function ID[hex] Function prototype

0X02A void Bfx_SetBitMask_u8u8(uint8*, uint8)

0X02B void Bfx_SetBitMask_u16u16(uint16*, uint16)

0X02C void Bfx_SetBitMask_u32u32(uint32*, uint32)

0x02D void Bfx_SetBitMask_u64u64(uint64*, uint64)

8.4.7 Bfx_ClrBitMask

[SWS_Bfx_00039] d

Service Name Bfx_ClrBitMask_<TypeMn><TypeMn>

Syntax void Bfx_ClrBitMask_<TypeMn><TypeMn> (
<Type>* Data,
<Type> Mask

)

Service ID [hex] 0x30 to 0x32

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Mask Mask value

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall clear the logical status to ’0’ for the input data for all the bit positions as per
the mask.

Available via Bfx.h

c()

[SWS_Bfx_00040] dThis function shall clear the data to logical status ’0’ as per the
corresponding mask bits value when set to 1. The remaining bits shall retain their
original values.

Expected functionality:

*Data = *Data & ~Maskc()

[SWS_Bfx_00045] dList of implemented functions:c()

23 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

Function ID[hex] Function prototype

0x030 void Bfx_ClrBitMask_u8u8(uint8*, uint8)

0x031 void Bfx_ClrBitMask_u16u16(uint16*, uint16)

0x032 void Bfx_ClrBitMask_u32u32(uint32*, uint32)

0x033 void Bfx_ClrBitMask_u64u64(uint64*, uint64)

8.4.8 Bfx_TstBitMask

[SWS_Bfx_00046] d

Service Name Bfx_TstBitMask_<InTypeMn><InTypeMn>_u8

Syntax boolean Bfx_TstBitMask_<InTypeMn><InTypeMn>_u8 (
<InType> Data,
<InType> Mask

)

Service ID [hex] 0x36 to 0x38

Sync/Async Synchronous

Reentrancy Reentrant

Data Input dataParameters (in)

Mask Mask value

Parameters (inout) None

Parameters (out) None

Return value boolean Value

Description This function shall return TRUE, if all bits defined in Mask value are set in the input Data value.
In all other cases this function shall return FALSE.

Available via Bfx.h

c()

[SWS_Bfx_00047] dResult = TRUE, ((Data & Mask) == Mask)

Result = FALSE, all other casec()

For example:

Bfx_TstBitMask_u8u8_u8(10010011b,10010000b) returns TRUE.

24 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

[SWS_Bfx_00050] dList of implemented functions:c()

Function ID[hex] Function prototype

0x036 boolean Bfx_TstBitMask_u8u8_u8(uint8,uint8)

0x037 boolean Bfx_TstBitMask_u16u16_u8(uint16,uint16)

0x038 boolean Bfx_TstBitMask_u32u32_u8(uint32,uint32)

0x039 boolean Bfx_TstBitMask_u64u64_u8(uint64,uint64)

8.4.9 Bfx_TstBitLnMask

[SWS_Bfx_00051] d

Service Name Bfx_TstBitLnMask_<InTypeMn><InTypeMn>_u8

Syntax boolean Bfx_TstBitLnMask_<InTypeMn><InTypeMn>_u8 (
<InType> Data,
<InType> Mask

)

Service ID [hex] 0x3a to 0x3c

Sync/Async Synchronous

Reentrancy Reentrant

Data Input dataParameters (in)

Mask Mask value

Parameters (inout) None

Parameters (out) None

Return value boolean Data

Description This function makes a test on the input data and if at least one bit is set as per the mask, then
the function shall return TRUE, otherwise it shall return FALSE.

Available via Bfx.h

c()

[SWS_Bfx_00055] dList of implemented functions:c()

Function ID[hex] Function prototype

0x03A boolean Bfx_TstBitLnMask_u8u8_u8(uint8,uint8)

0x03B boolean Bfx_TstBitLnMask_u16u16_u8(uint16,uint16)

0x03C boolean Bfx_TstBitLnMask_u32u32_u8(uint32,uint32)

0x03D boolean Bfx_TstBitLnMask_u64u64_u8(uint64,uint64)

25 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.10 Bfx_TstParityEven

[SWS_Bfx_00056] d

Service Name Bfx_TstParityEven_<InTypeMn>_u8

Syntax boolean Bfx_TstParityEven_<InTypeMn>_u8 (
<InTypeMn> Data

)

Service ID [hex] 0x40 to 0x42

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Data Input Data

Parameters (inout) None

Parameters (out) None

Return value boolean Status

Description This function tests the number of bits set to 1. If this number is even, it shall return TRUE,
otherwise it returns FALSE.

Available via Bfx.h

c()

[SWS_Bfx_00060] dList of implemented functions:c()

Function ID[hex] Function prototype

0x040 boolean Bfx_TstParityEven_u8_u8(uint8)

0x041 boolean Bfx_TstParityEven_u16_u8(uint16)

0x042 boolean Bfx_TstParityEven_u32_u8(uint32)

0x043 boolean Bfx_TstParityEven_u64_u8(uint64)

8.4.11 Bfx_ToggleBits

[SWS_Bfx_00061] d

Service Name Bfx_ToggleBits_<TypeMn>

Syntax void Bfx_ToggleBits_<TypeMn> (
<Type>* Data

)

Service ID [hex] 0x46 to 0x48

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function toggles all the bits of data (1’s Complement Data).

5

26 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

4
Available via Bfx.h

c()

[SWS_Bfx_00065] dList of implemented functions:c()

Function ID[hex] Function prototype

0x046 void Bfx_ToggleBits_u8(uint8*)

0x047 void Bfx_ToggleBits_u16(uint16*)

0x048 void Bfx_ToggleBits_u32(uint32*)

0x049 void Bfx_ToggleBits_u64(uint64*)

8.4.12 Bfx_ToggleBitMask

[SWS_Bfx_00066] d

Service Name Bfx_ToggleBitMask_<TypeMn><TypeMn>

Syntax void Bfx_ToggleBitMask_<TypeMn><TypeMn> (
<Type>* Data,
<Type> Mask

)

Service ID [hex] 0x4a to 0x4c

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Mask Mask

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function toggles the bits of data when the corresponding bit of the mask is enabled and set
to 1.

Available via Bfx.h

c()

27 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

[SWS_Bfx_00069] dList of implemented functions:c()

Function ID[hex] Function prototype

0x04A void Bfx_ToggleBitMask_u8u8(uint8*, uint8)

0x04B void Bfx_ToggleBitMask_u16u16(uint16*, uint16)

0x04C void Bfx_ToggleBitMask_u32u32(uint32*, uint32)

0x04D void Bfx_ToggleBitMask_u64u64(uint64*, uint64)

8.4.13 Bfx_ShiftBitRt

[SWS_Bfx_00070] d

Service Name Bfx_ShiftBitRt_<TypeMn>u8

Syntax void Bfx_ShiftBitRt_<TypeMn>u8 (
<Type>* Data,
uint8 ShiftCnt

)

Service ID [hex] 0x50 to 0x52

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ShiftCnt Shift right count

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall shift data to the right by ShiftCnt. The most significant bit (left-most bit) is
replaced by a ’0’ bit and the least significant bit (right-most bit) is discarded for every single bit
shift cycle.

Available via Bfx.h

c()

[SWS_Bfx_00075] dList of implemented functions:c()

Function ID[hex] Function prototype Maximum value of ShiftCnt

0X050 void Bfx_ShiftBitRt_u8u8(uint8*, uint8) 7

0X051 void Bfx_ShiftBitRt_u16u8(uint16*,
uint8)

15

0X052 void Bfx_ShiftBitRt_u32u8(uint32*,
uint8)

31

0x053 void Bfx_ShiftBitRt_u64u8(uint64*,
uint8)

63

28 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.14 Bfx_ShiftBitLt

[SWS_Bfx_00076] d

Service Name Bfx_ShiftBitLt_<TypeMn>u8

Syntax void Bfx_ShiftBitLt_<TypeMn>u8 (
<Type>* Data,
uint8 ShiftCnt

)

Service ID [hex] 0x56 to 0x58

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ShiftCnt Shift left count

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall shift data to the left by ShiftCnt. The least significant bit (right-most bit) is
replaced by a ’0’ bit and the most significant bit (left-most bit) is discarded for every single bit
shift cycle.

Available via Bfx.h

c()

[SWS_Bfx_00080] dList of implemented functions:c()

Function ID[hex] Function prototype Maximum value of ShiftCnt

0X056 void Bfx_ShiftBitLt_u8u8(uint8*, uint8) 7

0X057 void Bfx_ShiftBitLt_u16u8(uint16*,
uint8)

15

0X058 void Bfx_ShiftBitLt_u32u8(uint32*,
uint8)

31

0x059 void Bfx_ShiftBitLt_u64u8(uint64*,
uint8)

63

29 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.15 Bfx_RotBitRt

[SWS_Bfx_00086] d

Service Name Bfx_RotBitRt_<TypeMn>u8

Syntax void Bfx_RotBitRt_<TypeMn>u8 (
<Type>* Data,
uint8 ShiftCnt

)

Service ID [hex] 0x5a to 0x5c

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ShiftCnt Shift count

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall rotate data to the right by ShiftCnt. The least significant bit is rotated to the
most significant bit location for every single bit shift cycle.

Available via Bfx.h

c() For example:

If ShiftCnt = 1 then,

uint8 Data = 0001 0111 (before rotate right)

Data = 1000 1011 (after rotate right)

If ShiftCnt = 3 then,

uint8 Data = 0001 0111 (before rotate right)

Data = 1110 0010 (after rotate right)

[SWS_Bfx_00090] dList of implemented functions:c()

Function ID[hex] Function prototype Maximum value of ShiftCnt

0X05A void Bfx_RotBitRt_u8u8(uint8*, uint8) 7

0X05B void Bfx_RotBitRt_u16u8(uint16*,
uint8)

15

0X05C void Bfx_RotBitRt_u32u8(uint32*,
uint8)

31

0x05D void Bfx_RotBitRt_u64u8(uint64*,
uint8)

63

30 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.16 Bfx_RotBitLt

[SWS_Bfx_00095] d

Service Name Bfx_RotBitLt_<TypeMn>u8

Syntax void Bfx_RotBitLt_<TypeMn>u8 (
<Type>* Data,
uint8 ShiftCnt

)

Service ID [hex] 0x60 to 0x62

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ShiftCnt Shift count

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall rotate data to the left by ShiftCnt. The most significant bit is rotated to the
least significant bit location for every single bit shift cycle.

Available via Bfx.h

c() For example:

If ShiftCnt = 1 then,

uint8 Data = 1011 0111 (before rotate left)

Data = 0110 1111 (after rotate left)

If ShiftCnt = 3 then,

uint8 Data = 1011 0111 (before rotate left)

Data = 1011 1101 (after rotate left)

[SWS_Bfx_00098] dList of implemented functions:c()

Function ID[hex] Function prototype Maximum value of ShiftCnt

0X060 void Bfx_RotBitLt_u8u8(uint8*, uint8) 7

0X061 void Bfx_RotBitLt_u16u8(uint16*,
uint8)

15

0X062 void Bfx_RotBitLt_u32u8(uint32*,
uint8)

31

0x063 void Bfx_RotBitLt_u64u8(uint64*,
uint8)

63

31 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.17 Bfx_CopyBit

[SWS_Bfx_00101] d

Service Name Bfx_CopyBit_<TypeMn>u8<TypeMn>u8

Syntax void Bfx_CopyBit_<TypeMn>u8<TypeMn>u8 (
<Type>* DestinationData,
uint8 DestinationPosition,
<Type> SourceData,
uint8 SourcePosition

)

Service ID [hex] 0x66 to 0x68

Sync/Async Synchronous

Reentrancy Reentrant

DestinationPosition Destination position

SourceData Source data

Parameters (in)

SourcePosition Source position

Parameters (inout) DestinationData Pointer to destination data

Parameters (out) None

Return value None

Description This function shall copy a bit from source data from bit position to destination data at bit
position.

Available via Bfx.h

c() For Example:

DestinationData = 10100001b

BFX_CopyBit_u8u8u8u8(&DestinationData, 6, 11011010, 1)

The DestinationData will have 11100001b

[SWS_Bfx_00108] dList of implemented functions:c()

Function ID[hex] Function prototype Maximum value for SourcePosition and
DestinationPosition

0X066 void Bfx_CopyBit_u8u8u8u8(uint8*,
uint8, uint8, uint8)

7

0X067 void Bfx_CopyBit_u16u8u16u8(uint16*,
uint8, uint16, uint8)

15

0X068 void Bfx_CopyBit_u32u8u32u8(uint32*,
uint8, uint32, uint8)

31

0x069 void Bfx_CopyBit_u64u8u64u8(uint64*,
uint8, uint64, uint8)

63

32 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.18 Bfx_PutBits

[SWS_Bfx_00110] d

Service Name Bfx_PutBits_<TypeMn>u8u8<TypeMn>

Syntax void Bfx_PutBits_<TypeMn>u8u8<TypeMn> (
<Type>* Data,
uint8 BitStartPn,
uint8 BitLn,
<Type> Pattern

)

Service ID [hex] 0x70 to 0x72

Sync/Async Synchronous

Reentrancy Reentrant

BitStartPn Start bit position

BitLn Bit field length

Parameters (in)

Pattern Pattern to be set

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall put bits as mentioned in Pattern to the input Data from the specified bit
position.

Available via Bfx.h

c() For Example:

Data = 11110000b

Bfx_PutBits_u8u8u8u8(&Data, 1, 3, 00000011b)

The Data will have 11110110b

[SWS_Bfx_00112] dList of implemented functions:c()

Function ID[hex] Function prototype Maximum value of Bit
Ln

Maximum value of Bit
StartPn

Maximum value for
BitStartPn + BitLn

0x070 void Bfx_PutBits_
u8u8u8u8(uint8*,
uint8, uint8, uint8)

8 7 8

0x071 void Bfx_PutBits_
u16u8u8u16(uint16*,
uint8, uint8, uint16)

16 15 16

0x072 void Bfx_PutBits_
u32u8u8u32(uint32*,
uint8, uint8, uint32)

32 31 32

0x073 void Bfx_PutBits_
u64u8u8u64(uint64*,
uint8, uint8, uint64)

64 63 64

33 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.19 Bfx_PutBitsMask

[SWS_Bfx_00120] d

Service Name Bfx_PutBitsMask_<TypeMn><TypeMn><TypeMn>

Syntax void Bfx_PutBitsMask_<TypeMn><TypeMn><TypeMn> (
<Type>* Data,
<Type> Pattern,
<Type> Mask

)

Service ID [hex] 0x80 to 0x82

Sync/Async Synchronous

Reentrancy Reentrant

Pattern Pattern to be setParameters (in)
Mask Mask value

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall put all bits defined in Pattern and for which the corresponding Mask bit is set
to 1 in the input Data.

Available via Bfx.h

c() For Example:

Bfx_PutBitsMask_u8u8u8(11100000b, 11001101b, 00001111b)

results in *Data = 11101101b

[SWS_Bfx_00124] dList of implemented functions:c()

Function ID[hex] Function prototype

0x080 void Bfx_PutBitsMask_u8u8u8(uint8*, uint8, uint8)

0x081 void Bfx_PutBitsMask_u16u16u16(uint16*, uint16, uint16)

0x082 void Bfx_PutBitsMask_u32u32u32(uint32*, uint32, uint32)

0x083 void Bfx_PutBitsMask_u64u64u64(uint64*, uint64, uint64)

34 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.4.20 Bfx_PutBit

[SWS_Bfx_00130] d

Service Name Bfx_PutBit_<TypeMn>u8u8

Syntax void Bfx_PutBit_<TypeMn>u8u8 (
<Type>* Data,
uint8 BitPn,
boolean Status

)

Service ID [hex] 0x85 to 0x87

Sync/Async Synchronous

Reentrancy Reentrant

BitPn Bit positionParameters (in)

Status Status value

Parameters (inout) Data Pointer to input data

Parameters (out) None

Return value None

Description This function shall update the bit specified by BitPn of input data as ’1’ or ’0’ as per ’Status’
value.

Available via Bfx.h

c() For Example:

uint8 InputData = 11100111b;

Bfx_PutBit_u8u8u8(&InputData, 4, TRUE);

results in InputData = 11110111b

[SWS_Bfx_00132] dList of implemented functions:c()

Function ID[hex] Function prototype Maximum value of BitPn

0x085 void Bfx_PutBit_u8u8u8(uint8*, uint8,
boolean)

7

0x086 void Bfx_PutBit_u16u8u8(uint16*,
uint8, boolean)

15

0x087 void Bfx_PutBit_u32u8u8(uint32*,
uint8, boolean)

31

0x088 void Bfx_PutBit_u64u8u8(uint64*,
uint8, boolean)

63

35 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.5 Callback notifications

None

8.6 Scheduled functions

The Bfx library does not have scheduled functions.

8.7 Expected interfaces

None

8.7.1 Mandatory interfaces

None

8.7.2 Optional interfaces

None

8.7.3 Configurable interfaces

None

36 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

8.8 Version API

8.8.1 Bfx_GetVersionInfo

[SWS_Bfx_00301] d

Service Name Bfx_GetVersionInfo

Syntax void Bfx_GetVersionInfo (
Std_VersionInfoType* Versioninfo

)

Service ID [hex] 0xff

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) Versioninfo Pointer to where to store the version information of this module.
Format according [BSW00321]

Return value None

Description Returns the version information of this library.

Available via Bfx.h

c() The version information of a BSW module generally contains:

Module Id

Vendor Id

Vendor specific version numbers

[SWS_Bfx_00302] dIf source code for caller and callee of Bfx_GetVersionInfo is avail-
able, the Bfx library should realize Bfx_GetVersionInfo as a macro defined in the mod-
ule’s header file.c(SRS_BSW_00407, SRS_BSW_00411)

37 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

9 Sequence diagrams

Not applicable

38 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

Specification of Bit Handling Routines
AUTOSAR CP R21-11

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Bfx.

Chapter 10.3 specifies published information of the module Bfx.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral.

10.2 Containers and configuration parameters

[SWS_Bfx_00314] dThe Bfx library shall not have any configuration options that may
affect the functional behavior of the routines. i.e. for a given set of input parameters,
the outputs shall be always the same. For example, the returned value in case of error
shall not be configurable.c(SRS_LIBS_00001)

However, a library vendor is allowed to add specific configuration options concerning
library implementation, e.g. for resources consumption optimization.

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

A Not applicable requirements

[SWS_Bfx_00999] dThese requirements are not applicable to this specification.c
(SRS_BSW_00448)

39 of 39 Document ID 399: AUTOSAR_SWS_BFXLibrary

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Error Classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Transient Faults
	7.1.4 Production Errors
	7.1.5 Extended Production Errors

	7.2 Initialization and shutdown
	7.3 Using Library API
	7.4 Library implementation

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Comment about functions optimized for target
	8.4 Bit functions definitions
	8.4.1 Bfx_SetBit
	8.4.2 Bfx_ClrBit
	8.4.3 Bfx_GetBit
	8.4.4 Bfx_SetBits
	8.4.5 Bfx_GetBits
	8.4.6 Bfx_SetBitMask
	8.4.7 Bfx_ClrBitMask
	8.4.8 Bfx_TstBitMask
	8.4.9 Bfx_TstBitLnMask
	8.4.10 Bfx_TstParityEven
	8.4.11 Bfx_ToggleBits
	8.4.12 Bfx_ToggleBitMask
	8.4.13 Bfx_ShiftBitRt
	8.4.14 Bfx_ShiftBitLt
	8.4.15 Bfx_RotBitRt
	8.4.16 Bfx_RotBitLt
	8.4.17 Bfx_CopyBit
	8.4.18 Bfx_PutBits
	8.4.19 Bfx_PutBitsMask
	8.4.20 Bfx_PutBit

	8.5 Callback notifications
	8.6 Scheduled functions
	8.7 Expected interfaces
	8.7.1 Mandatory interfaces
	8.7.2 Optional interfaces
	8.7.3 Configurable interfaces

	8.8 Version API
	8.8.1 Bfx_GetVersionInfo

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.3 Published Information

	A Not applicable requirements

