AUTOSAR

. ification of Bit Handlin
Document Title | SPectication of Bit Handiing
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 399
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R21-11

Document Change History

Date Release | Changed by Description
AUTOSAR e No content changes (only converted
2021-11-25 | R21-11 | Release tolaTex)
Management e Artifact inclusion based on
ArtifactAnalysis corrected
AUTOSAR
2020-11-30 | R20-11 | Release e Chapter 7.1 Error sections updated
Management
AUTOSAR e Editorial changes
2019-11-28 | R19-11 | Release e Changed Document Status from
Management Final to published
AUTOSAR iy . :
Management requirement
AUTOSAR e Addition on mnemonic for boolean as
2017-12-08 | 4.3.1 Release “ug“
Management | o Editorial changes
e Removal of the requirement SWS_
Bfx_00204
AUTOSAR e Updation of MISRA violation
2016-11-30 | 4.3.0 Release comment format
Management e Updation of unspecified value range

for BitPn, BitStartPn, BitLn and
ShiftCnt
e Clarifications

AUTOSAR

2015-07-31

422

AUTOSAR
Release
Management

Updated SWS_Bfx_00017 for the
return type of Bfx_GetBit function
from 1 and 0 to TRUE and FALSE
Updated chapter 8.1 for the definition
of bit addressing and updated the
examples of Bfx_SetBit, Bfx_CIrBit,
Bfx_GetBit, Bfx_SetBits, Bfx_
CopyBit, Bfx_PutBits, Bfx_PutBit
Updated SWS_Bfx_00017 for the
return type of Bfx_GetBit function
from 1 and 0 to TRUE and FALSE
without changing the formula
Updated SWS_Bfx_00011 and
SWS_Bfx_00022 for the review
comments provided for the examples
In Table 2, replaced Boolean with
boolean

In SWS_Bfx_00029, in example
re-placed BFX_GetBits_u16u8u8_
u16 with Bfx_GetBits_u16u8u8 u16

2014-10-31

4.2.1

AUTOSAR
Release
Management

Correct usage of const in function
declarations
Editoral changes

2014-03-31

41.3

AUTOSAR
Release
Management

Editorial Changes

2013-10-31

41.2

AUTOSAR
Release
Management

Improve description of how to map
functions to C-files

Improve the definition of error
classification

Editorial changes

2013-03-15

4.1.1

AUTOSAR
Administration

Change return value of Test Bit API
to boolean.

e Improve memory map handling
e Change number of parameter in Put

Bit Api.

AUTOSAR

2011-12-22

4.0.3

AUTOSAR
Administration

Requirements described with more
clarity for ‘Bit Shift and Rotate
operations

e Table correction for PutBit routines
e ‘Copy Bit routine' interfaces

corrected

Error classification support and
definition removed as DET call not
supported by library

Configuration parameter description /
support removed for XXX _
GetVersioninfo routine

Renaming of the term DET in the
abbreviation to “Default Error Trace®

2009-12-18

4.0.1

AUTOSAR
Administration

Signature for necessary Bit handling
functions optimized for easy usage
Bit handling on all signed variables
eliminated

Additional bit handling functions
introduced

2010-02-02

3.1.4

AUTOSAR
Administration

Initial Release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

1 Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standards andnorms
3.2 Related specification

4 Constraints and assumptions

41 Limitations
4.2 Applicabilitytocardomains L.

5 Dependencies to other modules
51 Filestructure
6 Requirements Tracing

7 Functional specification

7.1 Error Classification
711 DevelopmentErrorso oL
7.1.2 Runtime Errors
7.1.3 TransientFaults
7.1.4 Production Errors
7.1.5 Extended Production Errors

7.2 Initialization and shutdown

7.3 UsingLibrary APl

7.4 Library implementation o o o

8 API specification

8.1 Importedtypes
8.2 Typedefinitions
8.3 Comment about functions optimized fortarget
8.4 Bit functions definitions oo
8.4.1 Bfx SetBit
8.4.2 Bix CIrBit.
8.4.3 Bfx GetBit
8.4.4 Bfx SetBits
8.4.5 Bfx GetBits
8.4.6 Bfx SetBitMask
8.4.7 Bfx CIrBitMask
8.4.8 Bfx TstBitMask
8.4.9 Bfx_TstBitLnMask
8.4.10 Bfx_TstParityEven oL
8.4.11 Bfx_ToggleBits

8.4.12 Bfx_ToggleBitMask

© o © (o]

10
10

11
11
12

AUTO SAR

8.4.13 Bfx_ShiftBitRt L
8.4.14 Bfx_ShiftBitLt L
8.4.15 Bfx RotBitRt
8.4.16 Bfx RotBitLt
8.4.17 Bfx_CopyBit
8.4.18 Bfx PutBits
8.4.19 Bfx PutBitsMask,
8.4.20 Bfx PutBit
8.5 Callback notifications
8.6 Scheduledfunctions
8.7 Expectedinterfaces.
8.7.1 Mandatory interfaces
8.7.2 Optionalinterfaces
8.7.3 Configurable interfaces
8.8 Version APl
8.8.1 Bfx_GetVersioninfo

9 Sequence diagrams

10 Configuration specification

10.1 Howtoreadthischapter,
10.2 Containers and configuration parameters
10.3 Published Information L

A Not applicable requirements

AUTOSAR

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture
and below figure shows position of AUTOSAR library in layered architecture.

ArnOo4CP

W—-r

Figure 1.1: Layered Architecture

Bfx routines specification specifies the functionality, APl and the configuration of the
AUTOSAR library for BIT functionality dedicated to fixed-point arithmetic routines.

All bit functions are re-entrant and can handle several simultaneous requests from the
application.

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Bfx Library
module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Bfx Short name for Bitfield functions for fixed point

u8 Short name for uint8, specified in AUTOSAR_SWS_Platform
Types

ulé Short name for uint16, specified in AUTOSAR_SWS_
PlatformTypes

u32 Short name for uint32, specified in AUTOSAR_SWS_
PlatformTypes

s8 Short name for sint8, specified in AUTOSAR_SWS_Platform
Types

s16 Short name for sint16, specified in AUTOSAR_SWS_
PlatformTypes

s32 Short name for sint32, specified in AUTOSAR_SWS_
PlatformTypes

boolean Boolean data type, specified in AUTOSAR_SWS_Platform
Types

DET Default Error Tracer

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Glossary
AUTOSAR_TR_Glossary

[2] ISO/IEC 9899:1990 Programming Language - C
http://www.iso.org

[3] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral

[4] Requirements on Libraries
AUTOSAR_SRS_Libraries

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for IFX Library.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for IFX Library.

http://www.iso.org

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

No limitations

4.2 Applicability to car domains

No restrictions

AUTOSAR

5 Dependencies to other modules

5.1 File structure

[SWS_Bfx_00220] [The Bfx module shall provide the following files:

e C files, Bfx_<name>.c used to implement the library. All C files shall be prefixed
with 'Bfx’.

Header file Bfx.h provides all public function prototypes and types defined by the BFX
library specification | (SRS_LIBS 00005)

[SWS_Bfx_00222] [Implementation & grouping of routines with respect to C files shall
be done according to one of the options described below. | ()

Option 1 : <Name> can be function name providing one C file per function,
eg.: Bfx_setbit.c etc.
Option 2 : <Name> can have common name of group of functions:
e 2.1 Group by object family:
eg.:Bfx_set.c, Bfx_get.c
e 2.2 Group by routine family:
eg.: Bfx_bit8.c,Bfx_bit16.c etc.
e 2.3 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all Bfx functions,
eg.: Bfx.c.

Using above options gives certain flexibility of choosing suitable granularity with re-
duced number of C files. Depending on the tool-chain linking on demand can be pos-
sible or not.

AUTOSAR

6 Requirements Tracing

The following tables reference the requirements specified in [4] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[SRS_BSW_00007] | All Basic SW Modules written in | [SWS_Bfx_00209]
C language shall conform to the
MISRA C 2012 Standard.
[SRS_BSW _00304] | All AUTOSAR Basic Software [SWS_Bfx_00212]
Modules shall use only
AUTOSAR data types instead of
native C data types
[SRS_BSW_00348] | All AUTOSAR standard types [SWS_Bfx_00213]
and constants shall be placed
and organized in a standard type
header file

[SRS_BSW_00378] | AUTOSAR shall provide a [SWS_Bfx_00212]
boolean type
[SRS_BSW_00407] | Each BSW module shall provide | [SWS_Bfx_00302]
a function to read out the version
information of a dedicated
module implementation
[SRS_BSW_00411] | All AUTOSAR Basic Software [SWS_Bfx_00302]
Modules shall apply a naming
rule for enabling/disabling the
existence of the API
[SRS_BSW_00448] | Module SWS shall not contain [SWS_Bfx_00999]
requirements from Other
Modules

[SRS_LIBS 00001] | The functional behavior of each [SWS_Bfx_00314]
library functions shall not be
configurable
[SRS_LIBS_00002] | A library shall be operational [SWS_Bfx_00200]
before all BSW modules and
application SW-Cs
[SRS_LIBS_00003] | A library shall be operational [SWS_Bfx_00201]
until the shutdown
[SRS_LIBS_00005] | Each library shall provide one [SWS_Bfx_00220]
header file with its public
interface
[SRS_LIBS_00007] | Using a library should be [SWS_Bfx_00205]
documented
[SRS_LIBS_00015] | It shall be possible to configure [SWS_Bfx_00206]
the microcontroller so that the
library code is shared between

all callers
[SRS_LIBS_00017] | Usage of macros should be [SWS_Bfx 00207]
avoided
[SRS_LIBS_00018] | A library function may only call [SWS_Bfx_00203] [SWS_Bfx_00208]

library functions

AUTOSAR

7 Functional specification

7.1 Error Classification
[SWS_Bfx_00223] : [Section 7.1 "Error Handling" of the document "General Specifi-
cation of Basic Software Modules" describes the error handling of the Basic Software

in detail. Above all, it constitutes a classification scheme consisting of five error types
which may occur in BSW modules.]| ()

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors

7.1.3 Transient Faults

There are no transient faults.

7.1.4 Production Errors

There are no production errors.

7.1.5 Extended Production Errors

There are no extended production errors.

7.2 Initialization and shutdown

[SWS_Bfx_00200] |Bfx library shall not require initialization phase. A library function
may be called at the very first step of ECU initialization, e.g. even by the OS or EcuM,
thus the library shall be ready. | (SRS_LIBS 00002)

AUTOSAR

[SWS_Bfx_00201] [Bfx library shall not require a shutdown operation phase. |(SRS_-
LIBS 00003)

7.3 Using Library API

[SWS_Bfx_00203] [Bfx APl can be directly called from BSW modules or SWC. No
port definition is required. It is a pure function call.| (SRS_LIBS_00018)

[SWS_Bfx_00205] [Using a library should be documented. if a BSW module or a SWC
uses a Library, the developer should add an Implementation-DependencyOnArtifact in
the BSW/SWC template.

minVersion and maxVersion parameters correspond to the supplier version. In case
of AUTOSAR library, these parameters may be left empty because a SWC or BSW
module may rely on library behaviour, not on a supplier implementation. However, the
SWC or BSW modules shall be compatible with the AUTOSAR platform where they
are integrated. | (SRS_LIBS 00007)

7.4 Library implementation

[SWS_Bfx_00206] [The Bfx library shall be implemented in a way that the code can
be shared among callers in different memory partitions. | (SRS_LIBS_00015)

[SWS_Bfx_00207] [Usage of macros must be avoided in the context of Library. The
library function must be declared as function or as inline function and Macro #define
should not be used. | (SRS_LIBS 00017)

[SWS_Bfx_00208] [A library function shall not call any BSW module functions, e.g.
the DET. A library function can call any other library functions since all library functions
are re-entrant but not BSW module functions, as they may not be re-entrant| (SRS._-
LIBS _00018)

[SWS_Bfx_00209] [The library, written in C programming language, should confirm to
the MISRA C Standard.

Please refer to SWS_BSW_00115 for more details.| (SRS_BSW _00007)

[SWS_Bfx_00212] [All AUTOSAR library Modules should use the AUTOSAR data
types (Integers, Boolean) instead of native C data types, unless this library is clearly
identified to be compliant only with a platform. | (SRS_BSW _00304, SRS_BSW _00378)

[SWS_Bfx_00213] [All AUTOSAR library Modules should avoid direct use of compiler
and platform specific keyword, unless this library clearly identified to be compliant only
with a platform.|(SRS_BSW _00348)

[SWS_Bfx_00214] [All Bit Library modules shall avoid handling user faults and values
outside specified range. | ()

AUTOSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

Module Header File Imported Type
Std Std_Types.h Std_VersionInfoType

It is observed that since the sizes of the integer types provided by the C language are
implementation-defined, the range of values that may be represented within each of

the integer types will vary between implementations.

Thus, in order to improve the portability of the software, these types are defined in
Platform_Types.h [6]. The following mnemonic are used in the library routine names.

Note:

The naming convention for the api’s with boolean return type/parameter type is given

as _u8 which shall be interpreted as _b. (Boolean)

If there is no boolean data type present in the return type/parameter type then _u8

shall be interpreted as _u8 only.

Size Platform Type Mnemonic
unsigned 8-Bit boolean u8

signed 8-Bit sint8 s8

signed 16-Bit sint16 s16
signed 32-Bit sint32 s32
unsigned 8-Bit uint8 u8
unsigned 16-Bit uint16 ul6
unsigned 32-Bit uint32 u3d2

Table 8.1: Base Types

As described in [6], the ranges for each of the base types are shown in Table 2.

Base Type Range

boolean [TRUE,FALSE]
uint8 [0,255]

sint8 [-128,127]
uint16 [0,65535]
sint16 [-32768, 32767]

Y%

AUTOSAR

A

uint32 [0, 4294967295 |
sint32 [2147483648, 2147483647 |

Table 8.2: Ranges for Base Types

As a convention in the rest of the document:

¢ Mnemonics will be used in the name of the routines (using <InTypeMn1> that
means Type Mnemonic for Input 1)

e The real type will be used in the description of the prototypes of the routines
(using <InType> or <OutType>).

The bit addressing for the document is
e The bit position of the lowest significant bit is defined as 0(zero)

¢ The bit field length is defined as the number of bits.

8.2 Type definitions

None

8.3 Comment about functions optimized for target

The functions described in this library may be realized as regular functions or as a ,
inline functions

AUTOSAR

8.4 Bit functions definitions

8.4.1 Bfx_SetBit

[SWS_Bfx_00001] |

Service Name

Bfx_SetBit_<TypeMn>u8

Syntax void Bfx_SetBit_<TypeMn>u8 (
<Type>* Data,
uint8 BitPn
)
Service ID [hex] 0x01 to 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BitPn Bit position
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None

Description

This function shall set the logical status of input data as ’1’ at the requested bit position.

Available via

Bfx.h

10

[SWS_Bfx_00002] [Expected functionality:
*Data = *Data | (0x01 << BitPn)

For Example:
Data = 10001010b

Bfx_SetBit_u8u8(&Data, 2)
The Data will be updated to 10001110b|()
[SWS_Bfx_00008] [List of implemented functions| ()

Function ID[hex]

Function prototype

Maximum value of BitPn

0x001 void Bfx_SetBit_u8u8(uint8*, uint8) 7

0x002 void Bfx_SetBit_u16u8(uint16*, uint8) 15
0x003 void Bfx_SetBit_u32u8(uint32*, uint8) 31
0x004 void Bfx_SetBit_u64u8(uint64*, uint8) 63

AUTO SAR

8.4.2 Bfx_ClIrBit

[SWS_Bfx_00010] [

Service Name

Bfx_CIrBit_<TypeMn>u8

Syntax void Bfx_ClrBit_<TypeMn>u8 (
<Type>* Data,
uint8 BitPn
)
Service ID [hex] 0x06 to 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BitPn Bit position
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None

Description

This function shall clear the logical status of the input data to ’0’ at the requested bit position.

Available via

Bfx.h

10

[SWS_Bfx_00011] [Expected functionality:

*Data = (*Data & ~(0x01 << BitPn))

For Example:

Data = 10001010b

Bfx_CIrBit_u8u8(&Data, 1)

The Data will be updated to 10001000b| ()
[SWS_Bfx_00015] [List of implemented functions|()

Function ID[hex] Function prototype Maximum value of BitPn
0x006 void Bfx_CIrBit_u8u8(uint8*, uint8) 7

0x007 void Bfx_CIrBit_u16u8(uint16*, uint8) 15

0x008 void Bfx_CIrBit_u32u8(uint32*, uint8) 31

0x009 void Bfx_CIrBit_u64u8(uint64*, uint8) 63

AUTO SAR

8.4.3 Bfx_GetBit

[SWS_Bfx_00016] [

Service Name Bfx_GetBit_<InTypeMn>u8_u8
Syntax boolean Bfx_GetBit_<InTypeMn>u8_u8 (
<InType> Data,
uint8 BitPn
)
Service ID [hex] 0x0a to 0x0c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Data Input data
BitPn Bit position
Parameters (inout) None
Parameters (out) None
Return value boolean Bit Status
Description This function shall return the logical status of the input data for the requested bit position.
Available via Bfx.h
10

[SWS_Bfx_00017] [Result = TRUE, ((Data & (0x01 << BitPn)) |= 0)

Result = FALSE, else

For Example:
Bfx_GetBit_u8u8(10001010b, 1)
returns TRUE| ()
[SWS_Bfx_00020] [List of implemented functions|()
Function ID[hex] Function prototype maximum value of BitPn
0x00A boolean Bfx_GetBit_u8u8_ 7
u8(uint8,uint8)
0x00B boolean Bfx_GetBit_u16u8_ 15
u8(uint16,uint8)
0x00C boolean Bfx_GetBit_u32u8__ 31
u8(uint32,uint8)
0x00D boolean Bfx_GetBit_u64u8__ 63
u8(uint64,uint8)

AUTOSAR

8.4.4 Bfx_SetBits

[SWS_Bfx_00021] [

Service Name Bfx_SetBits_<TypeMn>u8u8u8
Syntax void Bfx_SetBits_<TypeMn>u8u8u8 (
<Type>* Data,
uint8 BitStartPn,
uint8 Bitln,
uint8 Status
)
Service ID [hex] 0x20 to 0x22
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BitStartPn Start bit position
BitLn Bit field length
Status Status value
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None
Description This function shall set the input data as ’1’ or '0’ as per 'Status’ value starting from 'BitStartPn’
for the length 'BitLn’.
Available via Bfx.h

10

[SWS_Bfx_00022] [|()

15 14 13 12 11 10 9
1 1 1 0 1 0 0
<Bit
Start
Pn>
< BitLn >
For Example:

Data = 1110100000000111b

Bfx_SetBits_u16u8u8u8(&Data, 5, 5, 1)

The Data will be updatedto 1110101111100111b

AUTO SAR

[SWS_Bfx_00025] [List of implemented functions:|()

Function ID[hex] Function prototype Maximum value of Bit Maximum value of Bit Maximum value for
Ln StartPn BitStartPn + BitLn
0x020 void Bfx_SetBits_ 8 7 8
u8u8u8u8(uint8*,
uint8, uint8, uint8)
0x021 void Bfx_SetBits_ 16 15 16

u16u8u8u8(uint16*,
uint8, uint8, uint8)

0x022 void Bfx_SetBits_ 32 31 32
u32u8u8u8(uint32*,
uint8, uint8, uint8)

0x023 void Bfx_SetBits_ 64 63 64
u64u8u8u8(uint64*,
uint8, uint8, uint8)

8.4.5 Bfx_GetBits

[SWS_Bfx_00028] [

Service Name Bfx_GetBits_<TypeMn>u8u8_<TypeMn>
Syntax <Type> Bfx_GetBits_<TypeMn>u8u8_<TypeMn> (
<Type> Data,
uint8 BitStartPn,
uint8 BitLn
)
Service ID [hex] 0x26 to 0x28
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Data Input data
BitStartPn Start bit position
BitLn Bit field length
Parameters (inout) None
Parameters (out) None
Return value <Type> Bit field sequence
Description This function shall return the Bits of the input data starting from ’BitStartPn’ for the length of 'Bit
Ln’.
Available via Bfx.h

10

AUTO SAR

[SWS_Bfx_00029] [|()

15 14 13 12 11 10 9 - 2 1 0
1 1 1 0 1 0 0 0 1 1 1
BitStart
Pn
< BitLn >
For Example:

Bfx_GetBits_u16u8u8_u16(1110100000000111b, 9, 5)
returns 0000000000010100b
[SWS_Bfx_00034] [List of implemented functions:| ()

Function ID[hex] Function prototype Maximum value of Bit Maximum value of Bit Maximum value for
Ln StartPn BitStartPn + BitLn
0x026 uint8 Bfx_GetBits_ 8 7 8
u8u8u8_
u8(uint8,uint8,uint8)
0x027 uint16 Bfx_GetBits_ 16 15 16
ul6u8u8
u16(uint16,uint8,uint8)
0x028 uint32 Bfx_GetBits_ 32 31 32
u32u8u8_
u32(uint32,uint8,uint8)
0x029 uint64 Bfx_GetBits_ 64 63 64
u64u8u8_
u64(uint64,uint8,uint8)

8.4.6 Bfx_SetBitMask

[SWS_Bfx_00035] [

Service Name

Bfx_SetBitMask_<TypeMn><TypeMn>

Syntax void Bfx_SetBitMask_<TypeMn><TypeMn> (
<Type>* Data,
<Type> Mask
)
Service ID [hex] 0x2a to 0x2¢c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Mask Mask used to set bits
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None

Description

This function shall set the data to logical status ’1’ as per the corresponding Mask bits when set
to value 1 and remaining bits will retain their original values.

\Y

AUTOSAR

| Available via Bfx.h

10
[SWS_Bfx_00036] [Expected functionality:

*Data = *Data | Mask|()
[SWS_Bfx_00038] [List of implemented functions:|()

Function ID[hex] Function prototype

0X02A void Bfx_SetBitMask_u8u8(uint8*, uint8)
0X02B void Bfx_SetBitMask_u16u16(uint16*, uint16)
0X02C void Bfx_SetBitMask_u32u32(uint32*, uint32)
0x02D void Bfx_SetBitMask_u64u64(uint64*, uint64)

8.4.7 Bfx_ClIrBitMask

[SWS_Bfx_00039] [

Service Name Bfx_ClrBitMask_<TypeMn><TypeMn>
Syntax void Bfx_ClrBitMask_<TypeMn><TypeMn> (
<Type>* Data,
<Type> Mask
)
Service ID [hex] 0x30 to 0x32
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Mask Mask value
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None
Description This function shall clear the logical status to '0’ for the input data for all the bit positions as per
the mask.
Available via Bfx.h

[SWS_Bfx_00040] [This function shall clear the data to logical status '0’ as per the
corresponding mask bits value when set to 1. The remaining bits shall retain their
original values.

Expected functionality:
*Data = *Data & ~Mask| ()
[SWS_Bfx_00045] [List of implemented functions:|()

AUTO SAR

Function ID[hex]

Function prototype

0x030

void Bfx_CIrBitMask_u8u8(uint8*, uint8)

0x031 void Bfx_CIrBitMask_u16u16(uint16*, uint16)
0x032 void Bfx_CIrBitMask_u32u32(uint32*, uint32)
0x033 void Bfx_CIrBitMask_u64u64(uint64*, uint64)

8.4.8 Bfx_TstBitMask

[SWS_Bfx_00046] [

Service Name

Bfx_TstBitMask_<InTypeMn><InTypeMn>_u8

Syntax boolean Bfx_TstBitMask_<InTypeMn><InTypeMn>_u8 (
<InType> Data,
<InType> Mask
)
Service ID [hex] 0x36 to 0x38
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Data Input data
Mask Mask value
Parameters (inout) None
Parameters (out) None
Return value boolean Value

Description

This function shall return TRUE, if all bits defined in Mask value are set in the input Data value.

In all other cases this function shall return FALSE.

Available via

Bfx.h

10

[SWS_Bfx_00047] [Result = TRUE, ((Data & Mask) == Mask)
Result = FALSE, all other case|()

For example:

Bfx_TstBitMask_u8u8 u8(10010011b,10010000b) returns TRUE.

AUTO SAR

[SWS_Bfx_00050] [List of implemented functions:|()

Function ID[hex] Function prototype

0x036 boolean Bfx_TstBitMask_u8u8_u8(uint8,uint8)
0x037 boolean Bfx_TstBitMask_u16u16_u8(uint16,uint16)
0x038 boolean Bfx_TstBitMask_u32u32_u8(uint32,uint32)
0x039 boolean Bfx_TstBitMask_u64u64_u8(uint64,uint64)

8.4.9 Bfx_TstBitLnMask

[SWS_Bfx_00051] |

Service Name Bfx_TstBitLnMask_<InTypeMn><InTypeMn>_u8
Syntax boolean Bfx_TstBitLnMask_<InTypeMn><InTypeMn>_u8 (
<InType> Data,
<InType> Mask
)
Service ID [hex] 0x3a to 0x3c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Data Input data
Mask Mask value
Parameters (inout) None
Parameters (out) None
Return value boolean Data
Description This function makes a test on the input data and if at least one bit is set as per the mask, then
the function shall return TRUE, otherwise it shall return FALSE.
Available via Bfx.h

10
[SWS_Bfx_00055] [List of implemented functions:] ()

Function ID[hex] Function prototype

0x03A boolean Bfx_TstBitLnMask_u8u8_u8(uint8,uint8)
0x03B boolean Bfx_TstBitLnMask_u16u16_u8(uint16,uint16)
0x03C boolean Bfx_TstBitLnMask_u32u32_u8(uint32,uint32)
0x03D boolean Bfx_TstBitLnMask_u64u64_u8(uint64,uint64)

AUTO SAR

8.4.10 Bfx_TstPari

[SWS_Bfx_00056] [

tyEven

Service Name

Bfx_TstParityEven_<InTypeMn>_u8

Syntax boolean Bfx_TstParityEven_<InTypeMn>_u8 (
<InTypeMn> Data
)
Service ID [hex] 0x40 to 0x42
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Data | Input Data
Parameters (inout) None
Parameters (out) None
Return value boolean | Status

Description

This function tests the number of bits set to 1. If this number is even, it shall return TRUE,
otherwise it returns FALSE.

Available via

Bfx.h

10

[SWS_Bfx_00060] [List of implemented functions:|()

Function ID[hex] Function prototype

0x040 boolean Bfx_TstParityEven_u8_u8(uint8)

0x041 boolean Bfx_TstParityEven_u16_u8(uint16)

0x042 boolean Bfx_TstParityEven_u32_u8(uint32)

0x043 boolean Bfx_TstParityEven_u64_u8(uint64)
8.4.11 Bfx_ToggleBits

[SWS_Bfx_00061] |

Service Name

Bfx_ToggleBits_<TypeMn>

Syntax void Bfx_ToggleBits_<TypeMn> (
<Type>* Data
)
Service ID [hex] 0x46 to 0x48
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None

Description

This function toggles all the bits of data (1's Complement Data).

V

AUTO SAR

| Available via Bfx.h

10
[SWS_Bfx_00065] [List of implemented functions:| ()

Function ID[hex] Function prototype

0x046 void Bfx_ToggleBits_u8(uint8*)
0x047 void Bfx_ToggleBits_u16(uint16*)
0x048 void Bfx_ToggleBits_u32(uint32*)
0x049 void Bfx_ToggleBits_u64(uint64*)

8.4.12 Bfx_ToggleBitMask

[SWS_Bfx_00066] [

Service Name Bfx_ToggleBitMask_<TypeMn><TypeMn>
Syntax void Bfx_ToggleBitMask_<TypeMn><TypeMn> (
<Type>* Data,
<Type> Mask
)
Service ID [hex] Ox4a to Ox4c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Mask Mask
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None
Description This function toggles the bits of data when the corresponding bit of the mask is enabled and set
to 1.
Available via Bfx.h

10

AUTO SAR

[SWS_Bfx_00069] [List of implemented functions:|()

Function ID[hex] Function prototype

0x04A void Bfx_ToggleBitMask_u8u8(uint8*, uint8)
0x04B void Bfx_ToggleBitMask_u16u16(uint16*, uint16)
0x04C void Bfx_ToggleBitMask_u32u32(uint32*, uint32)
0x04D void Bfx_ToggleBitMask_u64u64(uint64*, uint64)

8.4.13 Bfx_ShiftBitRt

[SWS_Bfx_00070] [

Service Name Bfx_ShiftBitRt_<TypeMn>u8
Syntax void Bfx_ShiftBitRt_<TypeMn>u8 (
<Type>* Data,
uint8 ShiftCnt
)
Service ID [hex] 0x50 to 0x52
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ShiftCnt Shift right count
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None
Description This function shall shift data to the right by ShiftCnt. The most significant bit (left-most bit) is
replaced by a '0’ bit and the least significant bit (right-most bit) is discarded for every single bit
shift cycle.
Available via Bfx.h
[SWS_Bfx_00075] [List of implemented functions:| ()
Function ID[hex] Function prototype Maximum value of ShiftCnt
0X050 void Bfx_ShiftBitRt_u8u8(uint8*, uint8) 7
0X051 void Bfx_ShiftBitRt_u16u8(uint16*, 15
uint8)
0X052 void Bfx_ShiftBitRt_u32u8(uint32*, 31
uint8)
0x053 void Bfx_ShiftBitRt_u64u8(uint64*, 63
uint8)

AUTO SAR

8.4.14 Bfx_ShiftBitLt

[SWS_Bfx_00076] [

Service Name Bfx_ShiftBitLt_<TypeMn>u8
Syntax void Bfx_ShiftBitLt_<TypeMn>u8 (
<Type>* Data,
uint8 ShiftCnt
)
Service ID [hex] 0x56 to 0x58
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ShiftCnt Shift left count
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None
Description This function shall shift data to the left by ShiftCnt. The least significant bit (right-most bit) is
replaced by a ’0’ bit and the most significant bit (left-most bit) is discarded for every single bit
shift cycle.
Available via Bfx.h

10
[SWS_Bfx_00080] [List of implemented functions:|()

Function ID[hex] Function prototype Maximum value of ShiftCnt
0X056 void Bfx_ShiftBitLt_u8u8(uint8*, uint8) 7
0X057 void Bfx_ShiftBitLt_u16u8(uint16*, 15
uint8)
0X058 void Bfx_ShiftBitLt_u32u8(uint32*, 31
uint8)
0x059 void Bfx_ShiftBitLt_u64u8(uint64*, 63
uint8)

AUTOSAR

8.4.15 Bfx_RotBitRt

[SWS_Bfx_00086] [

Service Name

Bfx_RotBitRt_<TypeMn>u8

Syntax void Bfx_RotBitRt_<TypeMn>u8 (
<Type>* Data,
uint8 ShiftCnt
)
Service ID [hex] 0x5a to 0x5¢
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ShiftCnt Shift count
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None

Description

This function shall rotate data to the right by ShiftCnt. The least significant bit is rotated to the
most significant bit location for every single bit shift cycle.

Available via

Bfx.h

|() For example:
If ShiftCnt = 1 then,

uint8 Data = 0001 0111 (before rotate right)
Data = 1000 1011 (after rotate right)

If ShiftCnt = 3 then,

uint8 Data = 0001 0111 (before rotate right)
Data = 1110 0010 (after rotate right)
[SWS_Bfx_00090] [List of implemented functions:| ()

Function ID[hex] Function prototype Maximum value of ShiftCnt
0X05A void Bfx_RotBitRt_u8u8(uint8*, uint8) 7
0X05B void Bfx_RotBitRt_u16u8(uint16*, 15
uint8)
0X05C void Bfx_RotBitRt_u32u8(uint32*, 31
uint8)
0x05D void Bfx_RotBitRt_u64u8(uint64*, 63
uint8)

AUTO SAR

8.4.16 Bfx_RotBitLt

[SWS_Bfx_00095] [

Service Name

Bfx_RotBitLt_<TypeMn>u8

Syntax void Bfx_RotBitLt_<TypeMn>u8 (
<Type>* Data,
uint8 ShiftCnt
)
Service ID [hex] 0x60 to 0x62
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ShiftCnt Shift count
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None

Description

This function shall rotate data to the left by ShiftCnt. The most significant bit is rotated to the
least significant bit location for every single bit shift cycle.

Available via

Bfx.h

|() For example:
If ShiftCnt = 1 then,

uint8 Data = 1011 0111 (before rotate left)
Data = 0110 1111 (after rotate left)

If ShiftCnt = 3 then,

uint8 Data = 1011 0111 (before rotate left)
Data = 1011 1101 (after rotate left)
[SWS_Bfx_00098] [List of implemented functions:| ()

Function ID[hex] Function prototype Maximum value of ShiftCnt
0X060 void Bfx_RotBitLt_u8u8(uint8*, uint8) 7
0X061 void Bfx_RotBitLt_u16u8(uint16*, 15
uint8)
0X062 void Bfx_RotBitLt_u32u8(uint32*, 31
uint8)
0x063 void Bfx_RotBitLt_u64u8(uint64*, 63
uint8)

AUTO SAR

8.4.17 Bfx_CopyBit

[SWS_Bfx_00101] |

Service Name

Bfx_CopyBit_<TypeMn>u8<TypeMn>u8

Syntax void Bfx_CopyBit_<TypeMn>u8<TypeMn>u8 (
<Type>* DestinationData,
uint8 DestinationPosition,
<Type> SourceData,
uint8 SourcePosition
)
Service ID [hex] 0x66 to 0x68
Sync/Async Synchronous
Reentrancy Reentrant

Parameters (in)

DestinationPosition

Destination position

SourceData

Source data

SourcePosition

Source position

Parameters (inout)

DestinationData

Pointer to destination data

Parameters (out)

None

Return value

None

Description This function shall copy a bit from source data from bit position to destination data at bit
position.
Available via Bfx.h

|() For Example:

DestinationData = 10100001b
BFX_CopyBit_u8u8u8u8(&DestinationData, 6, 11011010, 1)
The DestinationData will have 11100001b

[SWS_Bfx_00108] [List of implemented functions:|()

Function ID[hex] Function prototype Maximum value for SourcePosition and
DestinationPosition
0X066 void Bfx_CopyBit_u8u8u8u8(uint8*, 7
uint8, uint8, uint8)
0X067 void Bfx_CopyBit_u16u8ui6u8(uint16*, | 15
uint8, uint16, uint8)
0X068 void Bfx_CopyBit_u32u8u32u8(uint32*, | 31
uint8, uint32, uint8)
0x069 void Bfx_CopyBit_u64u8u64u8(uint64*, | 63
uint8, uint64, uint8)

AUTO SAR

8.4.18 Bfx_PutBits

[SWS_Bfx_00110] [

Service Name

Bfx_PutBits_<TypeMn>u8u8<TypeMn>

Syntax void Bfx_PutBits_<TypeMn>u8u8<TypeMn> (
<Type>* Data,
uint8 BitStartPn,
uint8 BitLn,
<Type> Pattern
)
Service ID [hex] 0x70 to 0x72
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BitStartPn Start bit position
BitLn Bit field length
Pattern Pattern to be set
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None

Description This function shall put bits as mentioned in Pattern to the input Data from the specified bit
position.
Available via Bfx.h

|() For Example:

Data = 11110000b
Bfx_PutBits_u8u8u8u8(&Data, 1, 3, 00000011b)
The Data will have 11110110b
[SWS_Bfx_00112] [List of implemented functions:|()

Function ID[hex]

Function prototype

Maximum value of Bit
Ln

Maximum value of Bit
StartPn

Maximum value for
BitStartPn + BitLn

0x070

void Bfx_PutBits_
u8u8u8u8(uint8*,
uint8, uint8, uint8)

8

7

8

0x071

void Bfx_PutBits_
u16u8u8u16(uint16*,
uint8, uint8, uint16)

16

0x072

void Bfx_PutBits_
u32u8u8u32(uint32*,
uint8, uint8, uint32)

32

31

32

0x073

void Bfx_PutBits_
ub64u8u8ub4(uint64*,
uint8, uint8, uint64)

64

63

64

AUTO SAR

8.4.19 Bfx_PutBitsMask

[SWS_Bfx_00120] [

Service Name

Bfx_PutBitsMask_<TypeMn><TypeMn><TypeMn>

Syntax void Bfx_PutBitsMask_<TypeMn><TypeMn><TypeMn> (
<Type>* Data,
<Type> Pattern,
<Type> Mask
)
Service ID [hex] 0x80 to 0x82
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Pattern Pattern to be set
Mask Mask value
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None

Description

This function shall put all bits defined in Pattern and for which the corresponding Mask bit is set
to 1 in the input Data.

Available via

Bfx.h

|() For Example:

Bfx_PutBitsMask_u8u8u8(11100000b, 11001101b, 00001111b)
results in *Data =11101101b
[SWS_Bfx_00124] [List of implemented functions:|()

Function ID[hex] Function prototype

0x080 void Bfx_PutBitsMask_u8u8u8(uint8*, uint8, uint8)

0x081 void Bfx_PutBitsMask_u16u16u16(uint16*, uint16, uint16)
0x082 void Bfx_PutBitsMask_u32u32u32(uint32*, uint32, uint32)
0x083 void Bfx_PutBitsMask_u64u64u64(uint64*, uint64, uint64)

AUTO SAR

8.4.20 Bfx_PutBit

[SWS_Bfx_00130] [

Service Name

Bfx_PutBit_<TypeMn>u8u8

Syntax void Bfx_PutBit_<TypeMn>u8u8 (
<Type>* Data,
uint8 BitPn,
boolean Status
)
Service ID [hex] 0x85 to 0x87
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) BitPn Bit position
Status Status value
Parameters (inout) Data Pointer to input data
Parameters (out) None
Return value None

Description This function shall update the bit specified by BitPn of input data as ’1’ or ‘0’ as per 'Status’
value.
Available via Bfx.h

|() For Example:

uint8 InputData = 11100111b;
Bfx_PutBit_u8u8u8(&InputData, 4, TRUE);

results in InputData = 11110111b

[SWS_Bfx_00132] [List of implemented functions:| ()

Function ID[hex] Function prototype Maximum value of BitPn
0x085 void Bfx_PutBit_u8u8u8(uint8*, uint8, 7
boolean)
0x086 void Bfx_PutBit_u16u8u8(uint16*, 15
uint8, boolean)
0x087 void Bfx_PutBit_u32u8u8(uint32*, 31
uint8, boolean)
0x088 void Bfx_PutBit_u64u8u8(uint64*, 63
uint8, boolean)

AUTOSAR

8.5 Callback notifications

None

8.6 Scheduled functions

The Bfx library does not have scheduled functions.

8.7 Expected interfaces

None

8.7.1 Mandatory interfaces

None

8.7.2 Optional interfaces

None

8.7.3 Configurable interfaces

None

AUTOSAR

8.8 Version API

8.8.1 Bfx_GetVersioninfo

[SWS_Bfx_00301] |

Service Name Bfx_GetVersioninfo
Syntax void Bfx_GetVersionInfo (
Std_VersionInfoType* Versioninfo
)
Service ID [hex] Oxff
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) Versioninfo Pointer to where to store the version information of this module.
Format according [BSW00321]
Return value None
Description Returns the version information of this library.
Available via Bfx.h

|() The version information of a BSW module generally contains:
Module Id

Vendor Id

Vendor specific version numbers

[SWS_Bfx_00302] [If source code for caller and callee of Bfx_GetVersionInfo is avail-
able, the Bfx library should realize Bfx_GetVersionInfo as a macro defined in the mod-
ule’s header file.|(SRS_BSW _00407, SRS _BSW _00411)

AUTOSAR

9 Sequence diagrams

Not applicable

AUTOSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Bfx.

Chapter 10.3 specifies published information of the module Bfx.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS BSWGeneral.

10.2 Containers and configuration parameters

[SWS_Bfx_00314] [The Bfx library shall not have any configuration options that may
affect the functional behavior of the routines. i.e. for a given set of input parameters,
the outputs shall be always the same. For example, the returned value in case of error
shall not be configurable. | (SRS_LIBS_00001)

However, a library vendor is allowed to add specific configuration options concerning
library implementation, e.g. for resources consumption optimization.

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

A Not applicable requirements

[SWS_Bfx_00999] [These requirements are not applicable to this specification. |
(SRS_BSW 00448)

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Error Classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Transient Faults
	7.1.4 Production Errors
	7.1.5 Extended Production Errors

	7.2 Initialization and shutdown
	7.3 Using Library API
	7.4 Library implementation

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Comment about functions optimized for target
	8.4 Bit functions definitions
	8.4.1 Bfx_SetBit
	8.4.2 Bfx_ClrBit
	8.4.3 Bfx_GetBit
	8.4.4 Bfx_SetBits
	8.4.5 Bfx_GetBits
	8.4.6 Bfx_SetBitMask
	8.4.7 Bfx_ClrBitMask
	8.4.8 Bfx_TstBitMask
	8.4.9 Bfx_TstBitLnMask
	8.4.10 Bfx_TstParityEven
	8.4.11 Bfx_ToggleBits
	8.4.12 Bfx_ToggleBitMask
	8.4.13 Bfx_ShiftBitRt
	8.4.14 Bfx_ShiftBitLt
	8.4.15 Bfx_RotBitRt
	8.4.16 Bfx_RotBitLt
	8.4.17 Bfx_CopyBit
	8.4.18 Bfx_PutBits
	8.4.19 Bfx_PutBitsMask
	8.4.20 Bfx_PutBit

	8.5 Callback notifications
	8.6 Scheduled functions
	8.7 Expected interfaces
	8.7.1 Mandatory interfaces
	8.7.2 Optional interfaces
	8.7.3 Configurable interfaces

	8.8 Version API
	8.8.1 Bfx_GetVersionInfo

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.3 Published Information

	A Not applicable requirements

