
 Requirements on Crypto Stack
AUTOSAR CP R21-11

1 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Document Change History
Date Release Changed by Change Description

2021-11-25 R21-11 AUTOSAR

Release

Management

 Editorial changes

2020-11-30 R20-11 AUTOSAR

Release

Management

 Updated supported algorithms

2019-11-28 R19-11 AUTOSAR

Release

Management

 Updated items in glossary and

abbreviation list

 Changed Document Status from

Final to published

2018-10-31 4.4.0 AUTOSAR

Release

Management

 Adding Coverage of Key Manager

 Removed Secure Counter

functionality

 Editorial changes

2017-12-08 4.3.1 AUTOSAR

Release

Management

 Default error detection renamed to

development error detection

 Editorial changes

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Added requirements for the whole

Crypto Stack and renamed the

document

 Introduced crypto job concept

 Introduced key management

concept

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Editorial changes

2013-10-31 4.1.2 AUTOSAR

Release

Management

 Editorial changes

Document Title Requirements on Crypto Stack
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 426

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R21-11

 Requirements on Crypto Stack
AUTOSAR CP R21-11

2 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Document Change History
Date Release Changed by Change Description

2021-11-25 R21-11 AUTOSAR

Release

Management

 Editorial changes

2020-11-30 R20-11 AUTOSAR

Release

Management

 Updated supported algorithms

2019-11-28 R19-11 AUTOSAR

Release

Management

 Updated items in glossary and

abbreviation list

 Changed Document Status from

Final to published

2018-10-31 4.4.0 AUTOSAR

Release

Management

 Adding Coverage of Key Manager

 Removed Secure Counter

functionality

 Editorial changes

2017-12-08 4.3.1 AUTOSAR

Release

Management

 Default error detection renamed to

development error detection

 Editorial changes

2013-03-15 4.1.1 AUTOSAR

Administration

 TPS_STDT_0078 formatting

 Traceability of

BSWAndRTE_Features

2010-09-30 3.1.5 AUTOSAR

Administration

 Initial release

 Requirements on Crypto Stack
AUTOSAR CP R21-11

3 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and
the companies that have contributed to it shall not be liable for any use of the work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

 Requirements on Crypto Stack
AUTOSAR CP R21-11

4 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Table of Contents

1 Scope of Document .. 5

2 Conventions to be used .. 6

3 Acronyms and abbreviations .. 7

3.1 Glossary of Terms ... 8

4 Functional Overview ... 9

4.1 Supported Algorithms ... 9

5 Requirements Specification .. 11

5.1 Functional Requirements .. 11

5.1.1 Crypto Stack .. 11

5.1.2 Key Manager ... 19

5.1.3 Crypto Service Manager ... 24

5.1.4 Crypto Interface ... 27

5.1.5 Crypto Driver ... 29

5.1.6 Security Event Memory ... 30

5.2 Non-Functional Requirements (Qualities) .. 32

5.2.1 General .. 32

5.2.2 Crypto Service Manager ... 32

5.2.3 Crypto Interface ... 33

5.2.4 Crypto Driver ... 34

6 Requirements Tracing .. 35

7 References .. 37

7.1 Deliverables of AUTOSAR .. 37

7.2 Related standards and norms ... 37

 Requirements on Crypto Stack
AUTOSAR CP R21-11

5 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

1 Scope of Document

This document specifies the requirements of the crypto stack:

 Crypto Service Manager (Csm),

 Crypto Interface (CryIf) and

 Crypto Driver (Crypto)

 Key Manager.

 Requirements on Crypto Stack
AUTOSAR CP R21-11

6 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

2 Conventions to be used

 The representation of requirements in AUTOSAR documents follows the table
specified in [TPS_STDT_00078].

 In requirements, the following specific semantics shall be used (based on the
Internet Engineering Task Force IETF).

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as:

 SHALL: This word means that the definition is an absolute requirement
of the specification.

 SHALL NOT: This phrase means that the definition is an absolute
prohibition of the specification.

 MUST: This word means that the definition is an absolute requirement
of the specification due to legal issues.

 MUST NOT: This phrase means that the definition is an absolute
prohibition of the specification due to legal constraints.

 SHOULD: This word, or the adjective "RECOMMENDED", mean that
there may exist valid reasons in particular circumstances to ignore a
particular item, but the full implications must be understood and
carefully weighed before choosing a different course.

 SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED"
mean that there may exist valid reasons in particular circumstances
when the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed
before implementing any behavior described with this label.

 MAY: This word, or the adjective „OPTIONAL“, means that an item is
truly optional. One vendor may choose to include the item because a
particular marketplace requires it or because the vendor feels that it
enhances the product while another vendor may omit the same item.
An implementation, which does not include a particular option, MUST
be prepared to interoperate with another implementation, which does
include the option, though perhaps with reduced functionality. In the
same vein an implementation, which does include a particular option,
MUST be prepared to interoperate with another implementation, which
does not include the option (except, of course, for the feature the option
provides.)

 Requirements on Crypto Stack
AUTOSAR CP R21-11

7 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

3 Acronyms and abbreviations

Abbreviation /
Acronym:

Description

µC Microcontroller

AES Advanced Encryption Standard

CBC Cipher Block Chaining

CDD Complex Device Driver

CFB Cipher Feedback

CMAC Cipher-based Message Authentication Code

CPU Central Processing Unit

CRYPTO /
Crypto

Crypto Driver

CRYIF / CryIf Crypto Interface

CSM / Csm Crypto Service Manager

DET / Det Default Error Tracer

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie–Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ECU Electronic Control Unit

GCM Galois Counter Mode

GMAC Galois-based Message Authentication Code

HMAC Hash-based Message Authentication Code

HSM / Hsm Hardware Security Module

HW HardWare

KEM Key Encapsulation Mechanism

KeyM Key Manager

MAC Message Authentication Code

MCAL Micro Controller Abstraction Layer

OEM Original Equipment Manufacturer

OFB Output Feedback

PKI Public Key Infrastructure

PRNG Pseudo-Random Number Generator

RACE Rapid Automatic Cryptographic Equipment

RAM Random Access Memory

RIPEMD RACE Integrity Primitives Evaluation Message Digest

RSA Rivest-Shamir-Adleman Cryptosystem

RTE Run Time Environment

SHA Secure Hash Algorithm

SECOC /
SecOc

Secure Onboard Communication

SW SoftWare

SWC SoftWare Component

SWS SoftWare Specification

TRNG True Random Number Generator

Vi VendorId

XEX Xor-Encrypt-Xor

 Requirements on Crypto Stack
AUTOSAR CP R21-11

8 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

XTS XEX-based tweaked-codebook mode with ciphertext stealing

3.1 Glossary of Terms

Terms: Description:

Crypto Driver
Object

A Crypto Driver Object is an instance of a crypto module (hardware
or software), which is able to perform one or more different crypto
operations.

User A user is a configured object with an ID and configured jobs.

Channel A channel is the path from a Crypto Service Manager queue via the
Crypto Interface to a specific Crypto Driver Object.

Job A job is an instance of a user’s configured cryptographic primitive.

Primitive A primitive is an instance of a configured cryptographic algorithm
realized in a Crypto Driver Object. Among others it refers to a
functionality provided by the CSM to the application, the concrete
underlining 'algorithmfamily' (e.g. AES, MD5, RSA, etc.), and a
'algorithmmode' (e.g. ECB, CBC, etc).

Operation An operation of a crypto primitive declares what part of the crypto
primitive shall be performed. There are three different operations:

START Operation indicates a new request of a crypto primitive,
and it shall cancel all previous requests.

UPDATE Operation indicates, that the crypto primitive expect
input data.

FINISH Operation indicates, that after this part all data are fed
completely and the crypto primitive can finalize the
calculations.

It is also possible to perform more than one operation at once by
concatenating the corresponding bits of the operation_mode
argument.

Priority The priority of a user defines the importance of it. The higher the
priority (as well in value), the more immediate the user's job will be
executed. The priority of a cryptographic job is part of the user’s
configuration.

Service A service shall be understand as defined in the TR_Glossary
document: A service is a type of operation that has a published
specification of interface and behavior, involving a contract between
the provider of the capability and the potential clients.

 Requirements on Crypto Stack
AUTOSAR CP R21-11

9 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

4 Functional Overview

The Crypto Stack offers a standardized access to cryptographic services for applications
and system functions.
The cryptographic services are, e.g., the computation of hashes, the verification of
asymmetrical signatures, or the symmetrical encryption of data. These services depend
on underlying cryptographic primitives and cryptographic schemes. The CSM shall make
it possible for different applications to use the same service but using different underlying
primitives and/or schemes. E.g., one application might need to use the hash service to
compute an SHA2 digest and another might need to compute an SHA1 digest. Or one
application might need to verify a signature which has been computed with the RSASSA-
PKCS1-V1_5 signature scheme and using SHA1 as an underlying hash primitive, while
another application might need to verify a signature computed with a different scheme
which uses SHA2 as an underlying hash primitive. The Crypto Stack shall make it
possible to configure which services are needed and to create several configurations for
each service where schemes and primitives can be chosen.
Furthermore, since the computation of many of the cryptographic services is very
computation intensive, provisions have to be made for scheduling these long
computations. The jobs shall be configurable to be executed synchronously or
asynchronously.

The Crypto Stack provides services with cryptography functionality, based on software
libraries
or on hardware modules. Also, mixed setups are possible, for example if a hardware
module cannot supply the necessary functionality on its own. In the following, we refer to
all instantiations of underlying functionality, be it hardware or software, as "crypto library".

4.1 Supported Algorithms

The following cryptographic algorithms or primitives should be supported by the Crypto
Stack:

 Random Number Generation

o Deterministic Random Number Generator (DRNG)

o True Random Number Generator (TRNG)

 Symmetric Encryption

o AES

 Key Length: 128 and 256 bits

 Modes: ECB, CBC, CTR, GCM, OFB, CFB, XTS

o PRESENT

 Key Length: 128 bits

 Modes: ECB, CBC, CTR, GCM, OFB, CFB, XTS

o ChaCha12/ChaCha20

 Key Length: 256 bits

 AEAD

o AES GCM

o ChaCha20 and POLY1305

 Asymmetric Encryption/Decryption and Signature Handling

o RSA

 Key Length: 1024, 2048, 3072, 4096

 Requirements on Crypto Stack
AUTOSAR CP R21-11

10 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

 Padding: PKCS#1 v2.2

o ECDSA

 Key Length: 256 bits

 Curve: NIST P-256

o Ed25519

 Hash

o SHA-2

 Length: 224, 256, 384, 512

o SHA-3

 Length: 224, 256, 384, 512

o BLAKE

 Length: 224, 256, 384, 512

o RIPEMD-160

 MAC

o CMAC

o GMAC

o HMAC

o POLY1305

 Key exchange:

o ECDH

 Key Length: 256 bits

 Curve: NIST P-256

o X25519

 Requirements on Crypto Stack
AUTOSAR CP R21-11

11 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

5 Requirements Specification

5.1 Functional Requirements

5.1.1 Crypto Stack

5.1.1.1 General

5.1.1.1.1 [SRS_CryptoStack_00100] Synchronous Job Processing

⌈
Type: Valid

Description: Some crypto services shall allow synchronous job processing.

Rationale: There are some crypto services which can be calculated very fast and are
required very fast. Then, the overhead of the asynchronous job processing
including main function calls and call back functions, is too big.

Use Case: MAC generation for the SecOC module

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01456)

5.1.1.1.2 [SRS_CryptoStack_00101] Asynchronous Job Processing

⌈
Type: Valid

Description: Some crypto services shall allow asynchronous job processing.

Rationale: There are some crypto services which require a lot of time or are executed
in an HSM. Then, synchronous job processing would require too much time.

Use Case: Signature verification

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01456)

5.1.1.1.3 [SRS_CryptoStack_00003] The crypto stack shall be able to incorporate

modules of the crypto library

⌈
Type: Valid

Description: The crypto stack shall be able to incorporate modules of a crypto library.

Rationale: The crypto library itself has to be available in the AUTOSAR stack.

Use Case: SW implementation of cryptographic primitives.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02032)

5.1.1.2 Configuration

5.1.1.2.1 [SRS_CryptoStack_00007] The Crypto Stack shall provide scalability for the
cryptographic features

⌈
Type: Valid

 Requirements on Crypto Stack
AUTOSAR CP R21-11

12 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Description: The Crypto Stack shall guarantee that the unused cryptographic features are not
compiled into the binary.

Rationale: Different security features require different encryption solutions (example:
symmetric/asymmetric encryption, hashing) with or without hardware support. The
hardware profiles available offer different features (example: internal NVM, random
number generator, secure CPU core…). Scalability of cryptographic features allow
different strategies for implementation if some features are not required and thus
minimize SW or HW resource utilization.

Use Case: The mapping between crypto stack and the functionalities of microcontroller hardware
allows hardware vendors to develop generic drivers for their HSMs.

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_01456, RS_BRF_02031)

5.1.1.2.2 [SRS_CryptoStack_00008] The Crypto Stack shall allow static configuration

of keys used for cryptographic jobs

⌈
Type: Valid

Description: The Crypto Stack shall allow static configuration of symmetric and asymmetric key
pairs used for crypto services.

Rationale: It shall be possible to use keys individually.

Use Case: Data encryption with a protected key in the HSM.

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031, RS_BRF_01946)

5.1.1.2.3 [SRS_CryptoStack_00105] The Crypto Stack shall only allow unique key

identifiers

⌈
Type: Valid

Description: There is one keyId configured for each cryptographic key.

Rationale: It shall be possible to treat keys individually.

Use Case: Usage of cryptographic keys.

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031, RS_BRF_01946)

 Requirements on Crypto Stack
AUTOSAR CP R21-11

13 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

5.1.1.2.4 [SRS_CryptoStack_00013] The modules of the crypto stack shall support
only pre-compile time configuration

⌈
Type: Valid

Description: The modules of the crypto stack shall support only pre-compile time configuration.

Rationale: No applicable post-build or link-time parameters

Use Case: All the configurable parameter values must be decided before compile or build time.

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_01136)

5.1.1.2.5 [SRS_CryptoStack_00094] The configuration files of the crypto stack

modules shall be readable for human beings

⌈
Type: Valid

Description: The configuration files of the crypto stack modules shall be readable for
human beings:
e.g. by integration of comments or by tool – support.

Rationale: Human being have to read and understand the configuration. So the
configuration shall be readable and understandable for human being.

Use Case: Debugging

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01456)

5.1.1.3 Initialization

None

5.1.1.4 Normal Operation

5.1.1.4.1 [SRS_CryptoStack_00009] The Crypto Stack shall support reentrancy for all
crypto services

⌈
Type: Valid

Description: The Crypto Stack shall support reentrancy of crypto related interfaces to enable
parallel operations of the same or different type when requested by multiple users.

This requirement also covers scenarios where applications are residing on different
cores.

Rationale: Crypto jobs shall be processable simultaneously

 Requirements on Crypto Stack
AUTOSAR CP R21-11

14 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Use Case: Different applications may use cryptographic services in parallel. Handling of different
tasks at the same time is necessary.

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02033)

5.1.1.4.2 [SRS_CryptoStack_00010] The Crypto Stack shall conceal symmetric keys

from the users of crypto services

⌈
Type: Valid

Description: There shall be no interface to extract symmetric key values directly to the user. Keys
shall be addressed via identifiers by the users.

Such keys shall only be exported in an encrypted format.

Rationale: If keys are stored in the application, this increases the chances of invalidation of keys
or keys being compromised.

Use Case: Keys residing in the HSM

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031, RS_BRF_01946)

5.1.1.4.3 [SRS_CryptoStack_00011] The Crypto Stack shall conceal asymmetric

private keys from the users of Crypto services

⌈
Type: Valid

Description: There shall be no interface to extract asymmetric private key values directly to the
user. Keys shall be addressed via identifiers by the Users.

Such keys shall only be exported in an encrypted format.

Rationale: If keys are stored in the application, this increases the chances of invalidation of keys
or keys being compromised.

Use Case: Keys residing in the HSM

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031, RS_BRF_01946)

5.1.1.4.4 [SRS_CryptoStack_00019] The Crypto Stack shall identify random number

generation as a cryptographic primitive which can be requested to a driver

⌈
Type: Valid

 Requirements on Crypto Stack
AUTOSAR CP R21-11

15 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Description: The Crypto Stack shall identify random number generation as a cryptographic
primitive which can be requested to a driver.

Rationale: Random number Generators residing on different crypto drivers should be accessed
using a homogenous interface.

Use Case: Generate random number

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

5.1.1.4.5 [SRS_CryptoStack_00020] The Crypto Stack shall identify symmetric

encryption/decryption as a cryptographic primitive which can be requested
to a driver

⌈
Type: Valid

Description: The Crypto Stack shall identify symmetric encryption/decryption as a cryptographic
primitive which can be requested to a driver.

Rationale: Symmetric algorithms residing on different crypto drivers should be accessed using a
homogenous interface.

Use Case: Encrypted communication

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

5.1.1.4.6 [SRS_CryptoStack_00021] The Crypto Stack shall identify asymmetric

encryption/decryption as a cryptographic primitive which can be requested
to a driver

⌈
Type: Valid

Description: The Crypto Stack shall identify asymmetric encryption/decryption as a cryptographic
primitive which can be requested to a driver.

Rationale: Asymmetric algorithms residing on different crypto drivers should be accessed using a
homogenous interface.

Use Case: Unique Interface for success of heterogeneous hardware- and software-solutions

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

 Requirements on Crypto Stack
AUTOSAR CP R21-11

16 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

5.1.1.4.7 [SRS_CryptoStack_00022] The Crypto Stack shall identify MAC
generation/verification as a cryptographic primitive which can be requested
to a driver

⌈
Type: Valid

Description: The Crypto Stack shall identify MAC generation/verification as a cryptographic
primitive which can be requested to a driver.

Rationale: MAC algorithms residing on different crypto drivers should be accessed using a
homogenous interface.

Use Case: SecOC using MACs to verify messages

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

5.1.1.4.8 [SRS_CryptoStack_00023] The Crypto Stack shall identify asymmetric

signature generation/verification as a cryptographic primitive which can be
requested to a driver

⌈
Type: Valid

Description:
The Crypto Stack shall identify asymmetric signature generation/verification as a
cryptographic primitive which can be requested to a driver.

Rationale: Asymmetric signature algorithms residing on different crypto drivers should be
accessed using a homogenous interface.

Use Case: Signature creation/verification

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

5.1.1.4.9 [SRS_CryptoStack_00024] The Crypto Stack shall identify hash calculation

as a cryptographic primitive which can be requested to a driver

⌈
Type: Valid

Description: The Crypto Stack shall identify hash calculation as a cryptographic primitive which can
be requested to a driver.

Rationale: Hash algorithms residing on different crypto drivers should be accessed using a
homogenous interface.

 Requirements on Crypto Stack
AUTOSAR CP R21-11

17 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Use Case: Signature verification

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

5.1.1.4.10 [SRS_CryptoStack_00026] The Crypto Stack shall provide an interface for

the generation of asymmetric keys

⌈
Type: Valid

Description: The Crypto Stack shall provide an abstracted interface for the generation of
asymmetric key pair service.

Rationale: Key generation services residing on different Crypto drivers should be accessed using
a homogenous interface.

Use Case:
Generation of an asymmetric key pair inside the ECU. Then, the private key never has
to be available outside the ECU.

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

5.1.1.4.11 [SRS_CryptoStack_00027] The Crypto Stack shall provide an interface for

the generation of symmetric keys

⌈
Type: Valid

Description: The Crypto Stack shall abstract the user from multiple symmetric keys stored by
various Crypto Drivers through a standardized interface. Also, it shall provide an
interface to the driver for generation of such keys.

Rationale: Key generation services residing on different Crypto drivers should be accessed using
a homogenous interface.

Use Case: Password-based key input

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

5.1.1.4.12 [SRS_CryptoStack_00103] The Crypto Stack shall provide an interface for

the derivation of symmetric keys

⌈
Type: Valid

Description: The Crypto Stack shall abstract the user from multiple symmetric keys stored by
various Crypto Drivers through a standardized interface. Also, it shall provide an
interface to the driver for derivation of such keys.

 Requirements on Crypto Stack
AUTOSAR CP R21-11

18 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Rationale: Key derivation services residing on different Crypto drivers should be accessed using
a homogenous interface.

Use Case: Password-based key input

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

5.1.1.4.13 [SRS_CryptoStack_00028] The Crypto Stack shall provide an interface for

key exchange mechanisms

⌈
Type: Valid

Description: The Crypto Stack shall support key exchange mechanism as a key management
interface

Rationale: Key exchange algorithms residing on different crypto drivers should be accessed
using a homogenous interface

Use Case: Session handling

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

5.1.1.4.14 [SRS_CryptoStack_00029] The Crypto Stack shall provide an interface for

key wrapping/extraction mechanisms

⌈
Type: Valid

Description: The Crypto Stack shall support key wrapping (encapsulation) and extraction
mechanism forward such requests from CSM to the respective driver. It shall support
wrapping using a symmetric key as well as asymmetric key.

Rationale: Key wrapping and encapsulation algorithms implemented in the driver shall not be
accessed directly by the users and need to be abstracted.

Use Case: Session handling

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031)

5.1.1.4.15 [SRS_CryptoStack_00031] The Crypto Stack shall provide an interface for

parsing certificates

⌈

 Requirements on Crypto Stack
AUTOSAR CP R21-11

19 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Type: Valid

Description: The Crypto Stack shall support parsing certificates and extracting the contained keys

Rationale: The crypto driver shall parse incoming certificates and store the key information in the
corresponding key

Use Case: For PKI it is necessary to obtain public keys out of certificates

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_01946)

5.1.1.4.16 [SRS_CryptoStack_00061] The Crypto Stack shall support detection of

invalid keys

⌈
Type: Valid

Description: The implementation of a cryptographic primitive shall detect and reject invalid keys.

Rationale: Algorithms like RSA or several ECC flavors know keys which can be used to perform
the mathematical foundation of the algorithm without an error but address special
corner cases and are not secure to handle. Keys like that have to be identified and
rejected. There is no generic approach hence the implementation has to be in the
cryptographic primitive itself or, in case hardware is used, in its driver.

Use Case: RSA and several Elliptic Curve Cryptosystems

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02031, RS_BRF_01946)

5.1.1.5 Shutdown Operation

None

5.1.1.6 Fault Operation

None

5.1.2 Key Manager

5.1.2.1 General

5.1.2.1.1 [SRS_CryptoStack_00106] Key manager operation shall either run

synchronously or asynchronously.

⌈

 Requirements on Crypto Stack
AUTOSAR CP R21-11

20 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Type: Valid

Description: A key manager operation shall support synchronous mode or asynchronous mode, if
the computation takes a long time. . For the latter case, a callback shall indicate that
an operation has been completed.

Rationale: To avoid multiple task activation a key management operation shall be executed in the
background.

Use Case: Key derivation can take considerable amount of time

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_0001])

5.1.2.1.2 [SRS_CryptoStack_00107] Key manager shall provide interfaces to generate
or update key material.

⌈
Type: Valid

Description: The KeyM module shall provide an API allowing a software component or DCM to
generate or update the key material for an ECU. KeyM shall use the CSM for the
required cryptographic operations and key storage

Rationale: A basic software module e.g. DCM or software component) triggers to generate or re-
generate key material. The KeyM generates the key material and stores it in the crypto
driver by calling the appropriate functions of the CSM.

Use Case: Key server wants to provide key material

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.1.3 [SRS_CryptoStack_00108] Key manager shall be able to negotiate a shared

secret by exchanging messages with other ECUs

⌈
Type: Valid

Description: The KeyM module shall support key negotiation between ECUs via interfaces to the
PduR.

Rationale: Key management tasks such as multi-party key negotiation can require the exchange
of messages to agree on keys.

Use Case: Onboard negotiation of keys

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.1.4 [SRS_CryptoStack_00109] Key manager shall be able to manage derivation

of key material from a common secret

⌈
Type: Valid

Description: The KeyM module shall provide an API for deriving keys from a common shared
secret.

Rationale: Secret keys (e.g. for secure onboard communication) have to be shared between
multiple ECUs. One way to handle this is to derive the keys from a secret which is
shared between the participating ECUs.

Use Case: The key server provides a common secret and the key manager derives several
symmetric keys out of this common secret.

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

 Requirements on Crypto Stack
AUTOSAR CP R21-11

21 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.1.5 [SRS_CryptoStack_00110] The KeyM module shall support on-board

generated keys

⌈
Type: Valid

Description: The KeyM shall provide an API for handling of on-board generated keys.

Rationale: On-board generated keys have to be negotiated between two or more ECUs.

Use Case: C2 – Key Management

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.1.6 [SRS_CryptoStack_00111] The KeyM module shall support verification of

certificates based on configured rules

⌈
Type: Valid

Description: The certificate verification operations provided by KeyM shall allow to check the
values of configured certificate elements as part of the verification operation.

Rationale: Besides the verification of signatures and basic certificate elements, certificate
verification may require checks whether custom certificate elements conform to
specific rules.

Use Case: C2 – Key Management

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.1.7 [SRS_CryptoStack_00112] The KeyM module shall support retrieving

arbitrary elements of a certificate

⌈
Type: Valid

Description: KeyM shall provide operations to retrieve the value of arbitrary certificate elements

Rationale: Applications and basic software modules may need to use the value of specific
certificate elements to perform operations.

Use Case: C2 – Key Management

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.2 Configuration

5.1.2.2.1 [SRS_CryptoStack_00113] Keys in the crypto stack can be uniquely
identified

⌈
Type: Valid

Description: All keys maintained by KeyM must be uniquely addressed so that new key material
provided by the key server can be assigned to the corresponding key in the crypto
driver.

Rationale: A symbolic identification is required so that KeyM can uniquely identify which key is
used by a corresponding job.

 Requirements on Crypto Stack
AUTOSAR CP R21-11

22 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Use Case: C2 – Key Management

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.2.2 [SRS_CryptoStack_00114] Crypto driver shall place keys into specific key

slots

⌈
Type: Valid

Description: A key shall be placed to a specific key slot. This is required for the SHE to provide the
correct key update information.

Rationale: The SHE update protocol information includes the slot of the key that shall be
updated.

Use Case: C2 – Key Management

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.2.3 [SRS_CryptoStack_00115] KeyM shall be highly configurable to support

different OEM use cases

⌈
Type: Valid

Description: The key management provides various options like certificate handling, key
management operation. Also, there is already a various number of key management
systems established that must be fulfilled with this module. This requires a high
flexibility of the module to adapt it to different use cases.

Rationale: The Key Management depends highly on OEM specific processes and formats.

Use Case: C2 – Key Management

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.3 Initialization

5.1.2.3.1 [SRS_CryptoStack_00116] Keys shall use a default value if configured

⌈
Type: Valid

Description: It shall be possible to configure KeyM to use key default values.

Rationale: A key server may not be available during development of a secure system. So it
should be possible to configure default keys which can be used during development.

Use Case: System tests during development phase.

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.3.2 [SRS_CryptoStack_00117] Keys shall not be used if they are empty or

corrupted

 Requirements on Crypto Stack
AUTOSAR CP R21-11

23 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

⌈
Type: Valid

Description: A key that has no default value or has been programmed but its contents cannot be
retrieved shall be marked as invalid and is therefore not usable.

Rationale: A system that has no properly initialized keys shall not provide any undetermined
cryptographic results.

Use Case: C2 – Key Management

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.4 Normal Operation

5.1.2.4.1 [SRS_CryptoStack_00118] Key material shall be securely stored either in
NVM or CSM

⌈
Type: Valid

Description: The KeyM shall use CSM interfaces for securely storing keys.

Rationale: Off-board generated keys and on-board generated keys have to be securely stored.

Use Case: C2 – Key Management

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.4.2 [SRS_CryptoStack_00119] Provide a proof that the key has been

programmed correctly

⌈
Type: Valid

Description: The KeyM shall provide interfaces for providing a proof for correctly programmed
keys.
A verification function can be used to provide a proof to the key server if the correct
key is programmed and associated with a specific job.

Rationale: Verification of a succesful key installation. A key provider may want to check if the key
has been programmed correctly.

Use Case: C2 – Key Management

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.5 Shutdown Operation

5.1.2.5.1 [SRS_CryptoStack_00120] Cleanup all key material on shutdown operation

⌈
Type: Valid

Description: Keys may be temporarily stored in RAM. A shutdown operation may cleanup these
keys by removing the key data from RAM.

Rationale: Keys may be stored during shutdown operation.
For security reason, keys in RAM shall be destroyed.

Use Case: C2 – Key Management

Dependencies: --

Supporting Concept 636 “Security Extensions” – C2

 Requirements on Crypto Stack
AUTOSAR CP R21-11

24 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Material:

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.2.6 Fault Operation

5.1.2.6.1 [SRS_CryptoStack_00121] Pass security related events to security event
memory (SEM) for secure logging

⌈
Type: Draft

Description: The KeyM shall use the interfaces provided by the security event memory for secure
logging of security related events which are produced by KeyM.

Rationale: Events such as failed key negotiation are security related events which need to be
logged.

Use Case: C2 – Key Management

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C2

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.3 Crypto Service Manager

5.1.3.1 General

5.1.3.1.1 [SRS_CryptoStack_00006] Each primitive of the CRYIF shall belong to
exactly one service of the CSM

⌈
Type: Valid

Description: Each primitive of the CRYIF shall belong to exactly one service of the CSM.

Rationale: There are channels which map a user specific crypto primitive via the CRYIF
to the underlying Crypto Driver module.

Use Case: The CRYIF is responsible for each service to map to the corresponding
Crypto Driver module

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02032)

5.1.3.2 Configuration

5.1.3.2.1 [SRS_CryptoStack_00079] The job processing mode (synchronous or
asynchronous) of a CSM service shall be defined by static configuration

⌈
Type: Valid

Description: The mode of cryptographic jobs provided by the CSM shall be defined by
static configuration.

Rationale: It shall not be possible to change the behavior of a specific CSM service
during runtime.

Use Case: Synchronous hash calculation

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01456, RS_BRF_01136)

 Requirements on Crypto Stack
AUTOSAR CP R21-11

25 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

5.1.3.2.2 [SRS_CryptoStack_00102] The priority of a user and its crypto jobs shall be
defined by static configuration

⌈
Type: Valid

Description: The user’s priority shall be defined by static configuration. All jobs of that
user inherit that priority.

Rationale: There are crypto jobs which have to processed very fast (e.g. MAC
generation for the SecOC). Other crypto jobs (e.g. hashing over the whole
ROM) take very long but are not time critical.

Use Case: Prioritized job processing

Dependencies: --

Supporting Material: --

⌋()

5.1.3.2.3 [SRS_CryptoStack_00080] The set of cryptographic services provided by the

CSM shall be defined by static configuration

⌈
Type: Valid

Description: The set of cryptographic services provided by the CSM shall be defined by
static configuration.

Rationale: It is not possible during runtime to add new CSM services.

Use Case: If symmetrical encryption is supported by the driver, it has to be configured
which user with which is key is using it.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01456, RS_BRF_01136)

5.1.3.2.4 [SRS_CryptoStack_00081] The CSM module specification shall specify

which other modules are required

⌈
Type: Valid

Description: The CSM module specification shall specify which other modules are
required.

Rationale: Basic functionality

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01456, RS_BRF_01064)

5.1.3.2.5 [SRS_CryptoStack_00082] The CSM module specification shall specify the

interface and behavior of the callback function, if the asynchronous job
processing mode is selected

⌈
Type: Valid

Description: The CSM module specification shall specify how the callback function has to
be implemented, if the asynchronous job processing mode is selected.

Rationale: The CSM has to call the callback function. Thus, the CSM has to know the
signature of the callback function.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01456, RS_BRF_01064)

 Requirements on Crypto Stack
AUTOSAR CP R21-11

26 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

5.1.3.3 Initialization

5.1.3.4 Normal Operation

5.1.3.4.1 [SRS_CryptoStack_00084] The CSM module shall use the streaming
approach for some selected services

⌈
Type: Valid

Description: The CSM module shall use the streaming approach for some provided
services (see Software Specification of CSM).

Rationale: Basic functionality

Use Case: It shall be possible to hand over the input data in small chunks to the service.

Dependencies: --

Supporting Material:

⌋(RS_BRF_01456)

5.1.3.5 Shutdown Operation

<what to do when the module is shut down>

5.1.3.6 Fault Operation

5.1.3.6.1 [SRS_CryptoStack_00086] The CSM module shall distinguish between error
types

⌈
Type: Valid

Description: The CSM module shall distinguish between the following two types or errors:
- errors that can only occur during development
- errors that are expected to occur also in production code

Rationale: Basic functionality

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02168, RS_BRF_02272)

5.1.3.6.2 [SRS_CryptoStack_00087] The CSM module shall report detected

development errors to the Default Error Tracer

⌈
Type: Valid

Description: The CSM module shall report detected development errors to the Default
Error Tracer

Rationale: Basic functionality

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02168, RS_BRF_02272)

5.1.3.6.3 [SRS_CryptoStack_00096] The CSM module shall not return specific

development error codes via the API

⌈
Type: Valid

 Requirements on Crypto Stack
AUTOSAR CP R21-11

27 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Description: The CSM module shall not return specific development error codes via the
API. In case of a detected development error the error shall only be reported
to the DET. If the API function which detected the error has the return type
Std_ReturnType, it shall return E_NOT_OK.

Rationale: Basic functionality

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_00129, RS_BRF_02168)

5.1.3.6.4 [SRS_CryptoStack_00097] The CSM shall check passed API parameters for

validity

⌈
Type: Valid

Description: The CSM shall check passed API parameters for validity. This checking shall
be statically configurable for those errors that only can occur during
development.

Rationale: Basic functionality

Use Case: Debugging

Dependencies: --

Supporting Material: --

⌋(RS_BRF_00129, RS_BRF_02168, RS_BRF_02232)

5.1.4 Crypto Interface

5.1.4.1 Configuration

5.1.4.1.1 [SRS_CryptoStack_00014] The Crypto Interface shall have an interface to
the static configuration information of the Crypto Driver

⌈
Type: Valid

Description: The Crypto Interface shall have an interface to the static configuration information of
the Crypto Driver.

Rationale: Flexibility and scalability

Use Case: To derive vendor API Infix to support multiple Crypto Drivers

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_01008)

5.1.4.1.2 [SRS_CryptoStack_00015] Channels mapped to different Crypto Driver

Objects shall be uniquely configurable in Crypto Interface

⌈
Type: Valid

 Requirements on Crypto Stack
AUTOSAR CP R21-11

28 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Description: The Crypto Interface shall support a configuration model where all virtual channels
shall be statically mapped to Crypto Driver Objects.

Virtual channels are the virtual way from the queue of the CSM over the CRYIF to the
corresponding Crypto Driver Object.

Rationale: Each crypto driver object in the driver can be abstracted from and utilized by CSM
using virtual channels.

Use Case: Two hardware resources: one for symmetric cryptography, one for asymmetric
cryptography

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02032, RS_BRF_01456, RS_BRF_01136)

5.1.4.2 Initialization

5.1.4.3 Normal Operation

5.1.4.4 Shutdown Operation

None

5.1.4.5 Fault Operation

5.1.4.5.1 [SRS_CryptoStack_00034] The Crypto Interface shall report detected
development errors to the Default Error Tracer

⌈
Type: Valid

Description: The Crypto Interface shall report detected development errors to the Default Error
Tracer (DET).

The detection and reporting shall be statically configurable with one single
preprocessor switch.

Rationale: Debugging Support

Use Case: All the input parameters and internal states have to be validated before processing.

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02232)

 Requirements on Crypto Stack
AUTOSAR CP R21-11

29 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

5.1.5 Crypto Driver

5.1.5.1 Configuration

5.1.5.1.1 [SRS_CryptoStack_00036] The Crypto Driver shall allow static configuration
of Crypto Driver Objects

⌈
Type: Valid

Description: The Crypto Driver shall allow defining of different Crypto Driver Objects.

Rationale: Abstraction of different hardware units

Use Case: Parallel processing of symmetric operations and asymmetric operations

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_01456, RS_BRF_01136)

5.1.5.1.2 [SRS_CryptoStack_00104] Crypto Interface keys mapped to different Crypto

Driver Keys shall be uniquely configurable in the Crypto Interface

⌈
Type: Valid

Description: The Crypto Interface shall support a configuration model where all CRYIF keys shall
be statically mapped to keys in the crypto driver.

Rationale: Similar to the channels where the CsmQueue is mapped to the Crypto Driver Object,
the keys in the CSM have to mapped via the CRYIF to the corresponding key in the
Crypto Driver.

Use Case: Multiple Crypto Driver modules where each module has its own key identifiers

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_02032, RS_BRF_01456, RS_BRF_01136)

5.1.5.2 Initialization

5.1.5.3 Normal Operation

5.1.5.3.1 [SRS_CryptoStack_00098] The Crypto Driver shall provide access to all
cryptographic algorithms supported by the hardware

⌈
Type: Valid

Description: The Crypto Driver shall support access to all by the Crypto Stack supported
algorithms.

Rationale: Usage of hardware support and performance benefits.

 Requirements on Crypto Stack
AUTOSAR CP R21-11

30 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

Use Case: Primitives which are supported by the HSM should be accessible through the Crypto
Driver

Dependencies: --

Supporting
Material:

--

⌋()

5.1.5.4 Shutdown Operation

None

5.1.5.5 Fault Operation

5.1.6 Security Event Memory

5.1.6.1 General

5.1.6.1.1 [SRS_CryptoStack_00122] Log security events reported by basic software
modules and SWC

⌈
Type: Valid

Description: The security event memory (SEM) shall enable to log security events (SE) which are
monitored by BSW modules or SWCs.
It shall be possible to store the type of the security event along with data which is
useful for forensic analysis.

Rationale: Log security events in a way that is useful for forensic analysis

Use Case: UC1.1: BSW modules or SWCs write security related events to the SEM

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C1

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.6.1.2 [SRS_CryptoStack_00123] Configure security event properties

⌈
Type: Valid

Description: Depending on the type of security event the number of storable snap shots and the
properties of the snap shots shall be configurable.

Rationale: Depending on the type of event different data needs to be stored in the snapshot for
the event. Depending on the expected frequency of the event specific numbers of
storable snapshots are sufficient.

Use Case: UC1.1: BSW modules or SWCs write security related events to the SEM

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C1

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

5.1.6.1.3 [SRS_CryptoStack_00124] Allow authorized users to read SEM data via

diagnostic interfaces

⌈
Type: Valid

Description: The SEM shall provide SEM data via diagnostic interfaces.

 Requirements on Crypto Stack
AUTOSAR CP R21-11

31 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

SEM data shall be protected from unauthorized read and write access via diagnostic
interfaces.

Rationale: Diagnostic testers are used to access SEM data

Use Case: UC1.2: Authorized stakeholders read data from the SEM for off-board forensic
analysis

Dependencies: --

Supporting
Material:

Concept 636 “Security Extensions” – C1

⌋(Uptrace: Link to RS_Main: [RS_Main_00514])

 Requirements on Crypto Stack
AUTOSAR CP R21-11

32 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

5.2 Non-Functional Requirements (Qualities)

5.2.1 General

5.2.2 Crypto Service Manager

5.2.2.1 [SRS_CryptoStack_00088] The CSM module shall provide an
abstraction layer which offers a standardized interface to higher
software layers to access cryptographic algorithms

⌈
Type: Valid

Description: The CSM module shall provide an abstraction layer which offers a
standardized interface to higher software layers to access cryptographic
algorithms.

Rationale: An abstraction layer encapsulates internal behaviors and reduces
complexity. It also increases maintainability, improves portability and eases
testability.

Use Case: Session handling.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01456, RS_BRF_01016, RS_BRF_01056)

5.2.2.2 [SRS_CryptoStack_00089] The CSM module shall be located in the
AUTOSAR service layer

⌈
Type: Valid

Description: The CSM module shall be located in the Autosar service layer

Rationale: Management functionality must be available to all modules and layers of the
system

Use Case: The CSM module shall be accessible from applications above the RTE.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01016, RS_BRF_01408)

5.2.2.3 [SRS_CryptoStack_00090] The CSM shall provide an interface to be
accessible via the RTE

⌈
Type: Valid

Description: The CSM shall provide an interface to be accessible via the RTE.

Rationale: The CSM module shall be accessible from applications above the RTE.

Use Case: Applications which require crypto services.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01408, RS_BRF_01280)

 Requirements on Crypto Stack
AUTOSAR CP R21-11

33 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

5.2.2.4 [SRS_CryptoStack_00091] The CSM shall provide one Provide--Port for
each configuration

⌈
Type: Valid

Description: The CSM shall provide one Provide--Port for each configuration. All
configured services shall be accessible via this port.

Rationale: All crypto services shall be accessible from applications above the RTE via
the Provide-Port.

Use Case: All applications request to the CSM uses this port.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056, RS_BRF_01280, RS_BRF_01408, RS_BRF_01456)

5.2.2.5 [SRS_CryptoStack_00092] The CSM shall provide one Require-Port for
each configuration

⌈
Type: Valid

Description: The CSM shall provide one Require-Port for each configuration. The
configured callback function shall be accessible via this port.

Rationale: All crypto services shall have access to the configured callback functions via
the Require-Port.

Use Case: Most asynchronous services own a callback function.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056, RS_BRF_01280, RS_BRF_01408, RS_BRF_01456)

5.2.3 Crypto Interface

5.2.3.1 [SRS_CryptoStack_00075] The Crypto Interface shall be the interface
layer between the underlying crypto driver(s) and upper layers

⌈
Type: Valid

Description: The Crypto Interface is the single interface for all upper Layer (BSW) for crypto
operations.
The Crypto Interface is the single user of the Crypto Driver

Rationale: Interfaces and interaction

Use Case: Different Users might need to access more than one Crypto Drivers or SW based
solutions. Also, different upper layers might need to access crypto services.

Dependencies: --

Supporting
Material:

AUTOSAR_WP Architecture_SoftwareArchitecture

⌋(RS_BRF_01000, RS_BRF_01008, RS_BRF_01016)

 Requirements on Crypto Stack
AUTOSAR CP R21-11

34 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

5.2.3.2 [SRS_CryptoStack_00076] The Crypto Interface implementation and
interface shall be independent from underlying Crypto Hardware or
Software

⌈
Type: Valid

Description: The CRYIF implementation and CRYIF interfaces shall be independent from the
underlying Crypto Driver modules.

Rationale: Portability and reusability

Use Case: Encapsulate implementation details of a specific Crypto module from higher software
layers.

Dependencies: --

Supporting
Material:

--

⌋(RS_BRF_01000, RS_BRF_02031)

5.2.4 Crypto Driver

5.2.4.1 [SRS_CryptoStack_00095] The Crypto Driver module shall strictly
separate error and status information

⌈
Type: Valid

Description: The Crypto Driver module shall strictly separate error and status information.
This requirement applies to return values and also to internal variables.

Rationale: The distinction between error and status information allow an easier handling
with them. Errors shall be treated differently than status information.

Use Case: All return values are error information.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_00129, RS_BRF_02168, RS_BRF_02232, RS_BRF_02272)

 Requirements on Crypto Stack
AUTOSAR CP R21-11

35 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

6 Requirements Tracing

Requirement Description Satisfied by

RS_BRF_00129 AUTOSAR shall support
data corruption detection
and protection

SRS_CryptoStack_00095, SRS_CryptoStack_00096,
SRS_CryptoStack_00097

RS_BRF_01000 AUTOSAR architecture
shall organize the BSW
in a hardware
independent and a
hardware dependent
layer

SRS_CryptoStack_00075, SRS_CryptoStack_00076

RS_BRF_01008 AUTOSAR shall organize
the hardware dependent
layer in a microcontroller
independent and a
microcontroller
dependent layer

SRS_CryptoStack_00014, SRS_CryptoStack_00075

RS_BRF_01016 AUTOSAR shall provide
a modular design inside
software layers

SRS_CryptoStack_00075, SRS_CryptoStack_00088,
SRS_CryptoStack_00089

RS_BRF_01056 AUTOSAR BSW
modules shall provide
standardized interfaces

SRS_CryptoStack_00088, SRS_CryptoStack_00091,
SRS_CryptoStack_00092

RS_BRF_01064 AUTOSAR BSW shall
provide callback
functions in order to
access upper layer
modules

SRS_CryptoStack_00081, SRS_CryptoStack_00082

RS_BRF_01136 AUTOSAR shall support
variants of configured
BSW data resolved after
system start-up

SRS_CryptoStack_00013, SRS_CryptoStack_00015,
SRS_CryptoStack_00036, SRS_CryptoStack_00079,
SRS_CryptoStack_00080, SRS_CryptoStack_00104

RS_BRF_01280 AUTOSAR RTE shall
offer the external
interfaces between
Software Components
and between Software
Components and BSW

SRS_CryptoStack_00090, SRS_CryptoStack_00091,
SRS_CryptoStack_00092

RS_BRF_01408 AUTOSAR shall provide
a service layer that is
accessible from each
basic software layer

SRS_CryptoStack_00089, SRS_CryptoStack_00090,
SRS_CryptoStack_00091, SRS_CryptoStack_00092

RS_BRF_01456 AUTOSAR services shall
provide system wide
cryptographic
functionality

SRS_CryptoStack_00007, SRS_CryptoStack_00015,
SRS_CryptoStack_00036, SRS_CryptoStack_00079,
SRS_CryptoStack_00080, SRS_CryptoStack_00081,
SRS_CryptoStack_00082, SRS_CryptoStack_00084,
SRS_CryptoStack_00088, SRS_CryptoStack_00091,
SRS_CryptoStack_00092, SRS_CryptoStack_00094,
SRS_CryptoStack_00100, SRS_CryptoStack_00101,
SRS_CryptoStack_00104

RS_BRF_01946 AUTOSAR
microcontroller
abstraction shall provide

SRS_CryptoStack_00008, SRS_CryptoStack_00010,
SRS_CryptoStack_00011, SRS_CryptoStack_00031,
SRS_CryptoStack_00061, SRS_CryptoStack_00105

 Requirements on Crypto Stack
AUTOSAR CP R21-11

36 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

access to cryptographic
hardware

RS_BRF_02031 AUTOSAR shall provide
uniform access to
cryptographic solutions
implemented either by
software or hardware

SRS_CryptoStack_00007, SRS_CryptoStack_00008,
SRS_CryptoStack_00010, SRS_CryptoStack_00011,
SRS_CryptoStack_00019, SRS_CryptoStack_00020,
SRS_CryptoStack_00021, SRS_CryptoStack_00022,
SRS_CryptoStack_00023, SRS_CryptoStack_00024,
SRS_CryptoStack_00026, SRS_CryptoStack_00027,
SRS_CryptoStack_00028, SRS_CryptoStack_00029,
SRS_CryptoStack_00061, SRS_CryptoStack_00076,
SRS_CryptoStack_00103, SRS_CryptoStack_00105

RS_BRF_02032 AUTOSAR security shall
allow integration of
cryptographic primitives
into the cryptographic
service manager

SRS_CryptoStack_00003, SRS_CryptoStack_00006,
SRS_CryptoStack_00015, SRS_CryptoStack_00104

RS_BRF_02033 AUTOSAR shall provide
concurrent access to
cryptographic services

SRS_CryptoStack_00009

RS_BRF_02168 AUTOSAR diagnostics
shall provide a central
classification and
handling of abnormal
operative conditions

SRS_CryptoStack_00086, SRS_CryptoStack_00087,
SRS_CryptoStack_00095, SRS_CryptoStack_00096,
SRS_CryptoStack_00097

RS_BRF_02232 AUTOSAR shall support
development with run-
time assertion checks

SRS_CryptoStack_00034, SRS_CryptoStack_00095,
SRS_CryptoStack_00097

RS_BRF_02272 AUTOSAR shall offer
tracing of application
software behavior

SRS_CryptoStack_00086, SRS_CryptoStack_00087,
SRS_CryptoStack_00095

 Requirements on Crypto Stack
AUTOSAR CP R21-11

37 of 37 Document ID 426: AUTOSAR_SRS_CryptoStack

7 References

7.1 Deliverables of AUTOSAR

[1] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[2] Layered Software Architecture

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] Software Standardization Template

AUTOSAR_TPS_StandardizationTemplate.pdf

[4] Specification of System Template

AUTOSAR_TPS_SystemTemplate.pdf

[5] Requirements on AUTOSAR Features
AUTOSAR_RS_Features

7.2 Related standards and norms

	1 Scope of Document
	2 Conventions to be used
	3 Acronyms and abbreviations
	3.1 Glossary of Terms

	4 Functional Overview
	4.1 Supported Algorithms

	5 Requirements Specification
	5.1 Functional Requirements
	5.1.1 Crypto Stack
	5.1.1.1 General
	5.1.1.1.1 [SRS_CryptoStack_00100] Synchronous Job Processing
	5.1.1.1.2 [SRS_CryptoStack_00101] Asynchronous Job Processing
	5.1.1.1.3 [SRS_CryptoStack_00003] The crypto stack shall be able to incorporate modules of the crypto library

	5.1.1.2 Configuration
	5.1.1.2.1 [SRS_CryptoStack_00007] The Crypto Stack shall provide scalability for the cryptographic features
	5.1.1.2.2 [SRS_CryptoStack_00008] The Crypto Stack shall allow static configuration of keys used for cryptographic jobs
	5.1.1.2.3 [SRS_CryptoStack_00105] The Crypto Stack shall only allow unique key identifiers
	5.1.1.2.4 [SRS_CryptoStack_00013] The modules of the crypto stack shall support only pre-compile time configuration
	5.1.1.2.5 [SRS_CryptoStack_00094] The configuration files of the crypto stack modules shall be readable for human beings

	5.1.1.3 Initialization
	5.1.1.4 Normal Operation
	5.1.1.4.1 [SRS_CryptoStack_00009] The Crypto Stack shall support reentrancy for all crypto services
	5.1.1.4.2 [SRS_CryptoStack_00010] The Crypto Stack shall conceal symmetric keys from the users of crypto services
	5.1.1.4.3 [SRS_CryptoStack_00011] The Crypto Stack shall conceal asymmetric private keys from the users of Crypto services
	5.1.1.4.4 [SRS_CryptoStack_00019] The Crypto Stack shall identify random number generation as a cryptographic primitive which can be requested to a driver
	5.1.1.4.5 [SRS_CryptoStack_00020] The Crypto Stack shall identify symmetric encryption/decryption as a cryptographic primitive which can be requested to a driver
	5.1.1.4.6 [SRS_CryptoStack_00021] The Crypto Stack shall identify asymmetric encryption/decryption as a cryptographic primitive which can be requested to a driver
	5.1.1.4.7 [SRS_CryptoStack_00022] The Crypto Stack shall identify MAC generation/verification as a cryptographic primitive which can be requested to a driver
	5.1.1.4.8 [SRS_CryptoStack_00023] The Crypto Stack shall identify asymmetric signature generation/verification as a cryptographic primitive which can be requested to a driver
	5.1.1.4.9 [SRS_CryptoStack_00024] The Crypto Stack shall identify hash calculation as a cryptographic primitive which can be requested to a driver
	5.1.1.4.10 [SRS_CryptoStack_00026] The Crypto Stack shall provide an interface for the generation of asymmetric keys
	5.1.1.4.11 [SRS_CryptoStack_00027] The Crypto Stack shall provide an interface for the generation of symmetric keys
	5.1.1.4.12 [SRS_CryptoStack_00103] The Crypto Stack shall provide an interface for the derivation of symmetric keys
	5.1.1.4.13 [SRS_CryptoStack_00028] The Crypto Stack shall provide an interface for key exchange mechanisms
	5.1.1.4.14 [SRS_CryptoStack_00029] The Crypto Stack shall provide an interface for key wrapping/extraction mechanisms
	5.1.1.4.15 [SRS_CryptoStack_00031] The Crypto Stack shall provide an interface for parsing certificates
	5.1.1.4.16 [SRS_CryptoStack_00061] The Crypto Stack shall support detection of invalid keys

	5.1.1.5 Shutdown Operation
	5.1.1.6 Fault Operation

	5.1.2 Key Manager
	5.1.2.1 General
	5.1.2.1.1 [SRS_CryptoStack_00106] Key manager operation shall either run synchronously or asynchronously.
	5.1.2.1.2 [SRS_CryptoStack_00107] Key manager shall provide interfaces to generate or update key material.
	5.1.2.1.3 [SRS_CryptoStack_00108] Key manager shall be able to negotiate a shared secret by exchanging messages with other ECUs
	5.1.2.1.4 [SRS_CryptoStack_00109] Key manager shall be able to manage derivation of key material from a common secret
	5.1.2.1.5 [SRS_CryptoStack_00110] The KeyM module shall support on-board generated keys
	5.1.2.1.6 [SRS_CryptoStack_00111] The KeyM module shall support verification of certificates based on configured rules
	5.1.2.1.7 [SRS_CryptoStack_00112] The KeyM module shall support retrieving arbitrary elements of a certificate

	5.1.2.2 Configuration
	5.1.2.2.1 [SRS_CryptoStack_00113] Keys in the crypto stack can be uniquely identified
	5.1.2.2.2 [SRS_CryptoStack_00114] Crypto driver shall place keys into specific key slots
	5.1.2.2.3 [SRS_CryptoStack_00115] KeyM shall be highly configurable to support different OEM use cases

	5.1.2.3 Initialization
	5.1.2.3.1 [SRS_CryptoStack_00116] Keys shall use a default value if configured
	5.1.2.3.2 [SRS_CryptoStack_00117] Keys shall not be used if they are empty or corrupted

	5.1.2.4 Normal Operation
	5.1.2.4.1 [SRS_CryptoStack_00118] Key material shall be securely stored either in NVM or CSM
	5.1.2.4.2 [SRS_CryptoStack_00119] Provide a proof that the key has been programmed correctly

	5.1.2.5 Shutdown Operation
	5.1.2.5.1 [SRS_CryptoStack_00120] Cleanup all key material on shutdown operation

	5.1.2.6 Fault Operation
	5.1.2.6.1 [SRS_CryptoStack_00121] Pass security related events to security event memory (SEM) for secure logging

	5.1.3 Crypto Service Manager
	5.1.3.1 General
	5.1.3.1.1 [SRS_CryptoStack_00006] Each primitive of the CRYIF shall belong to exactly one service of the CSM

	5.1.3.2 Configuration
	5.1.3.2.1 [SRS_CryptoStack_00079] The job processing mode (synchronous or asynchronous) of a CSM service shall be defined by static configuration
	5.1.3.2.2 [SRS_CryptoStack_00102] The priority of a user and its crypto jobs shall be defined by static configuration
	5.1.3.2.3 [SRS_CryptoStack_00080] The set of cryptographic services provided by the CSM shall be defined by static configuration
	5.1.3.2.4 [SRS_CryptoStack_00081] The CSM module specification shall specify which other modules are required
	5.1.3.2.5 [SRS_CryptoStack_00082] The CSM module specification shall specify the interface and behavior of the callback function, if the asynchronous job processing mode is selected

	5.1.3.3 Initialization
	5.1.3.4 Normal Operation
	5.1.3.4.1 [SRS_CryptoStack_00084] The CSM module shall use the streaming approach for some selected services

	5.1.3.5 Shutdown Operation
	5.1.3.6 Fault Operation
	5.1.3.6.1 [SRS_CryptoStack_00086] The CSM module shall distinguish between error types
	5.1.3.6.2 [SRS_CryptoStack_00087] The CSM module shall report detected development errors to the Default Error Tracer
	5.1.3.6.3 [SRS_CryptoStack_00096] The CSM module shall not return specific development error codes via the API
	5.1.3.6.4 [SRS_CryptoStack_00097] The CSM shall check passed API parameters for validity

	5.1.4 Crypto Interface
	5.1.4.1 Configuration
	5.1.4.1.1 [SRS_CryptoStack_00014] The Crypto Interface shall have an interface to the static configuration information of the Crypto Driver
	5.1.4.1.2 [SRS_CryptoStack_00015] Channels mapped to different Crypto Driver Objects shall be uniquely configurable in Crypto Interface

	5.1.4.2 Initialization
	5.1.4.3 Normal Operation
	5.1.4.4 Shutdown Operation
	5.1.4.5 Fault Operation
	5.1.4.5.1 [SRS_CryptoStack_00034] The Crypto Interface shall report detected development errors to the Default Error Tracer

	5.1.5 Crypto Driver
	5.1.5.1 Configuration
	5.1.5.1.1 [SRS_CryptoStack_00036] The Crypto Driver shall allow static configuration of Crypto Driver Objects
	5.1.5.1.2 [SRS_CryptoStack_00104] Crypto Interface keys mapped to different Crypto Driver Keys shall be uniquely configurable in the Crypto Interface

	5.1.5.2 Initialization
	5.1.5.3 Normal Operation
	5.1.5.3.1 [SRS_CryptoStack_00098] The Crypto Driver shall provide access to all cryptographic algorithms supported by the hardware

	5.1.5.4 Shutdown Operation
	5.1.5.5 Fault Operation

	5.1.6 Security Event Memory
	5.1.6.1 General
	5.1.6.1.1 [SRS_CryptoStack_00122] Log security events reported by basic software modules and SWC
	5.1.6.1.2 [SRS_CryptoStack_00123] Configure security event properties
	5.1.6.1.3 [SRS_CryptoStack_00124] Allow authorized users to read SEM data via diagnostic interfaces

	5.2 Non-Functional Requirements (Qualities)
	5.2.1 General
	5.2.2 Crypto Service Manager
	5.2.2.1 [SRS_CryptoStack_00088] The CSM module shall provide an abstraction layer which offers a standardized interface to higher software layers to access cryptographic algorithms
	5.2.2.2 [SRS_CryptoStack_00089] The CSM module shall be located in the AUTOSAR service layer
	5.2.2.3 [SRS_CryptoStack_00090] The CSM shall provide an interface to be accessible via the RTE
	5.2.2.4 [SRS_CryptoStack_00091] The CSM shall provide one Provide--Port for each configuration
	5.2.2.5 [SRS_CryptoStack_00092] The CSM shall provide one Require-Port for each configuration

	5.2.3 Crypto Interface
	5.2.3.1 [SRS_CryptoStack_00075] The Crypto Interface shall be the interface layer between the underlying crypto driver(s) and upper layers
	5.2.3.2 [SRS_CryptoStack_00076] The Crypto Interface implementation and interface shall be independent from underlying Crypto Hardware or Software

	5.2.4 Crypto Driver
	5.2.4.1 [SRS_CryptoStack_00095] The Crypto Driver module shall strictly separate error and status information

	6 Requirements Tracing
	7 References
	7.1 Deliverables of AUTOSAR
	7.2 Related standards and norms

