
Specification of Persistency
AUTOSAR AP R21-11

Document Title Specification of Persistency
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 858

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R21-11

Document Change History
Date Release Changed by Description

2021-11-25 R21-11
AUTOSAR
Release
Management

• Clarified and extended specification
of Persistency behavior
• Improved configuration of storage

location and versioning
• kNotInitialized was removed
• Deleted move constructors/operators

2020-11-30 R20-11
AUTOSAR
Release
Management

• Replaced POSIX based file access
API and improved error handling and
symmetry of other APIs
• Full support for encryption and

redundancy by hashes using Crypto
API
• Added information to application

about safety related problems
• Improved installation/update and

redundancy

2019-11-28 R19-11
AUTOSAR
Release
Management

• Introduced reset and restore of
storages
• Introduced storage statistics
• Improved compliance with general

AUTOSAR concepts
• Improved naming and consistency of

classes / methods / functions /
constants
• Changed Document Status from

Final to published

1 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

2019-03-29 19-03
AUTOSAR
Release
Management

• Improved naming of classes /
methods / functions
• Reworked installation/update
• Support for parallel execution in

multiple threads
• Cleaned up usage of ara::core

concepts

2018-10-31 18-10
AUTOSAR
Release
Management

• Introduction of ara::core types and
switch to exceptionless API
• Rework of redundancy approach
• Support for resource limitation
• Improvements and harmonization of

KeyValueStorage and FileProxy API

2018-03-29 18-03
AUTOSAR
Release
Management

• Installation / update of persistent
data
• Data types supported by

KeyValueStorage API

2017-10-27 17-10
AUTOSAR
Release
Management

• Introduction of AUTOSAR model
• Security added
• Redundancy added
• Rework of FileProxy / Stream API

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

2 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Table of Contents

1 Introduction and Functional Overview 9

2 Acronyms and Abbreviations 10

3 Related Documentation 11

3.1 Input Documents & Related Standards and Norms 11
3.2 Further Applicable Specifications . 11

4 Constraints and Assumptions 12

4.1 Known Limitations . 12
4.2 Constraints on Configuration . 12
4.3 Direct Access to Storage Hardware . 12

5 Dependencies to Other Functional Clusters 13

5.1 Protocol Layer Dependencies . 13

6 Requirements Tracing 14

7 Functional Specification 25

7.1 The Architecture of Persistency . 25
7.1.1 Persistency in the Manifest 25
7.1.2 Key-Value Storages in the Manifest 26
7.1.3 File Storages in the Manifest 27

7.2 General Features of Persistency . 28
7.2.1 Functional Cluster Lifecycle 28

7.2.1.1 Initialization and Shutdown of Persistency 28
7.2.2 Error Handling . 29
7.2.3 Parallel Access to Persistent Data 30
7.2.4 Security Concepts . 32
7.2.5 Redundancy Concepts . 34

7.2.5.1 Redundancy Types 38
7.2.6 Installation and Update of Persistent Data 40

7.2.6.1 Installation of Persistent Data 43
7.2.6.1.1 Installation of Key-Value Storage 43
7.2.6.1.2 Installation of File Storage 44

7.2.6.2 Update of Persistent Data 45
7.2.6.2.1 Update of Key-Value Storage 45
7.2.6.2.2 Update of File Storage 46

7.2.6.3 Finalization of Persistent Data after Successful Update 47
7.2.6.4 Roll-Back of Persistent Data after Failed Update . . 48
7.2.6.5 Removal of Persistent Data 48

7.2.7 Resource Management Concepts 49
7.3 Key-Value Storage specific Features 51

7.3.1 Supported Data Types in Key-Value Storages 53
7.4 File Storage specific Features . 54

4 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.4.1 Access to Additional Information about Files 58

8 API Specification 59

8.1 General Features of Persistency . 59
8.1.1 ara::core Types . 59
8.1.2 Update and Removal of Persistent Data 60

8.1.2.1 RegisterApplicationDataUpdateCallback 60
8.1.2.2 UpdatePersistency 60
8.1.2.3 ResetPersistency . 61

8.1.3 Redundancy Handling . 63
8.1.3.1 RecoveryReportKind 63
8.1.3.2 RegisterRecoveryReportCallback 64

8.1.4 Handle Classes . 66
8.1.4.1 SharedHandle Class 66

8.1.4.1.1 SharedHandle::SharedHandle 66
8.1.4.1.2 SharedHandle::operator= 67
8.1.4.1.3 SharedHandle::operator bool 68
8.1.4.1.4 SharedHandle::Operator-> 68
8.1.4.1.5 SharedHandle::Operator* 69

8.1.4.2 UniqueHandle Class 70
8.1.4.2.1 UniqueHandle::UniqueHandle 70
8.1.4.2.2 UniqueHandle::operator= 71
8.1.4.2.3 UniqueHandle::operator bool 71
8.1.4.2.4 UniqueHandle::Operator-> 72
8.1.4.2.5 UniqueHandle::Operator* 72

8.1.5 Errors . 74
8.1.5.1 PerErrc . 74
8.1.5.2 GetPerDomain . 75
8.1.5.3 MakeErrorCode . 75
8.1.5.4 PerException Class 76

8.1.5.4.1 PerException::PerException 76
8.1.5.5 PerErrorDomain Class 76

8.1.5.5.1 PerErrorDomain::Errc 77
8.1.5.5.2 PerErrorDomain::Exception 77
8.1.5.5.3 PerErrorDomain::PerErrorDomain 77
8.1.5.5.4 PerErrorDomain::Name 78
8.1.5.5.5 PerErrorDomain::Message 78
8.1.5.5.6 PerErrorDomain::ThrowAsException 79

8.2 Key-Value Storage . 80
8.2.1 OpenKeyValueStorage . 80
8.2.2 RecoverKeyValueStorage . 81
8.2.3 ResetKeyValueStorage . 81
8.2.4 GetCurrentKeyValueStorageSize 82
8.2.5 KeyValueStorage Class . 83

8.2.5.1 KeyValueStorage::KeyValueStorage 83
8.2.5.2 KeyValueStorage::operator= 84

5 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.2.5.3 KeyValueStorage::~KeyValueStorage 85
8.2.5.4 KeyValueStorage::GetAllKeys 85
8.2.5.5 KeyValueStorage::KeyExists 85
8.2.5.6 KeyValueStorage::GetValue 86
8.2.5.7 KeyValueStorage::SetValue 87
8.2.5.8 KeyValueStorage::RemoveKey 88
8.2.5.9 KeyValueStorage::RecoverKey 88
8.2.5.10 KeyValueStorage::ResetKey 89
8.2.5.11 KeyValueStorage::RemoveAllKeys 90
8.2.5.12 KeyValueStorage::SyncToStorage 91
8.2.5.13 KeyValueStorage::DiscardPendingChanges 91

8.3 File Storage . 93
8.3.1 OpenFileStorage . 93
8.3.2 RecoverAllFiles . 94
8.3.3 ResetAllFiles . 94
8.3.4 GetCurrentFileStorageSize 95
8.3.5 OpenMode . 96
8.3.6 operator| for FileStorage::OpenMode 96
8.3.7 operator|= for FileStorage::OpenMode 97
8.3.8 FileCreationState . 97
8.3.9 FileModificationState . 98
8.3.10 FileInfo . 98

8.3.10.1 FileInfo.creationTime 99
8.3.10.2 FileInfo.modificationTime 99
8.3.10.3 FileInfo.accessTime 99
8.3.10.4 FileInfo.fileCreationState 100
8.3.10.5 FileInfo.fileModificationState 100

8.3.11 FileStorage Class . 100
8.3.11.1 FileStorage::FileStorage 101
8.3.11.2 FileStorage::operator= 101
8.3.11.3 FileStorage::~FileStorage 102
8.3.11.4 FileStorage::GetAllFileNames 102
8.3.11.5 FileStorage::DeleteFile 103
8.3.11.6 FileStorage::FileExists 104
8.3.11.7 FileStorage::RecoverFile 104
8.3.11.8 FileStorage::ResetFile 105
8.3.11.9 FileStorage::GetCurrentFileSize 106
8.3.11.10 FileStorage::GetFileInfo 107
8.3.11.11 FileStorage::OpenFileReadWrite 107
8.3.11.12 FileStorage::OpenFileReadOnly 110
8.3.11.13 FileStorage::OpenFileWriteOnly 112

8.3.12 Origin . 115
8.3.13 ReadAccessor Class . 116

8.3.13.1 ReadAccessor::ReadAccessor 116
8.3.13.2 ReadAccessor::operator= 117
8.3.13.3 ReadAccessor::~ReadAccessor 117

6 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.3.13.4 ReadAccessor::PeekChar 118
8.3.13.5 ReadAccessor::PeekByte 118
8.3.13.6 ReadAccessor::GetChar 119
8.3.13.7 ReadAccessor::GetByte 119
8.3.13.8 ReadAccessor::ReadText 120
8.3.13.9 ReadAccessor::ReadBinary 121
8.3.13.10 ReadAccessor::ReadLine 122
8.3.13.11 ReadAccessor::GetSize 123
8.3.13.12 ReadAccessor::GetPosition 124
8.3.13.13 ReadAccessor::SetPosition 124
8.3.13.14 ReadAccessor::MovePosition 124
8.3.13.15 ReadAccessor::IsEof 125

8.3.14 ReadWriteAccessor Class 126
8.3.14.1 ReadWriteAccessor::ReadWriteAccessor 126
8.3.14.2 ReadWriteAccessor::SyncToFile 126
8.3.14.3 ReadWriteAccessor::SetFileSize 127
8.3.14.4 ReadWriteAccessor::WriteText 127
8.3.14.5 ReadWriteAccessor::WriteBinary 128
8.3.14.6 ReadWriteAccessor::operator<< 129

9 Service Interfaces 130

A Mentioned Class Tables 131

B Platform Extension API (normative) 150

C Interfaces to Other Functional Clusters (informative) 151

D History of Constraints and Specification Items 152

D.1 Constraint and Specification Item History of this Document According
to AUTOSAR Release 17-03 . 152

D.1.1 Added Traceables in 17-03 152
D.1.2 Changed Traceables in 17-03 152
D.1.3 Deleted Traceables in 17-03 152

D.2 Constraint and Specification Item History of this Document According
to AUTOSAR Release 17-10 . 153

D.2.1 Added Traceables in 17-10 153
D.2.2 Changed Traceables in 17-10 153
D.2.3 Deleted Traceables in 17-10 153

D.3 Constraint and Specification Item History of this Document According
to AUTOSAR Release 18-03 . 154

D.3.1 Added Traceables in 18-03 154
D.3.2 Changed Traceables in 18-03 154
D.3.3 Deleted Traceables in 18-03 154

D.4 Constraint and Specification Item History of this Document According
to AUTOSAR Release 18-10 . 155

D.4.1 Added Traceables in 18-10 155

7 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

D.4.2 Changed Traceables in 18-10 155
D.4.3 Deleted Traceables in 18-10 155

D.5 Constraint and Specification Item History of this Document According
to AUTOSAR Release 19-03 . 156

D.5.1 Added Traceables in 19-03 156
D.5.2 Changed Traceables in 19-03 156
D.5.3 Deleted Traceables in 19-03 156

D.6 Constraint and Specification Item History of this Document According
to AUTOSAR Release R19-11 . 157

D.6.1 Added Traceables in R19-11 157
D.6.2 Changed Traceables in R19-11 157
D.6.3 Deleted Traceables in R19-11 157

D.7 Constraint and Specification Item History of this Document According
to AUTOSAR Release R20-11 . 157

D.7.1 Added Traceables in R20-11 157
D.7.2 Changed Traceables in R20-11 158
D.7.3 Deleted Traceables in R20-11 158

D.8 Constraint and Specification Item History of this Document According
to AUTOSAR Release R21-11 . 159

D.8.1 Added Traceables in R21-11 159
D.8.2 Changed Traceables in R21-11 159
D.8.3 Deleted Traceables in R21-11 160

E Not Applicable Requirements 161

8 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

1 Introduction and Functional Overview

This document is the software specification of the Persistency functional
clusterwithin the Adaptive Platform. The Persistency functional clus-
ter will be referenced as Persistency in the remainder of this document.

Persistency offers mechanisms to Adaptive Applications and other func-
tional clusters to store information in the non-volatile memory of a machine. The
data is available over boot and ignition cycles.

The Persistency will typically be implemented as a library that runs within a Pro-
cess of an Adaptive Application, with the rights of that Process.

9 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Persis-
tency that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym Description
FS File Storage
KVS Key-Value Storage

Terms Description
Adaptive Application Refers to the Adaptive Application defined in [1].
Adaptive Platform Refers to the AUTOSAR Adaptive Platform defined in [1].
Adaptive Platform Foundation Refers to the Adaptive Platform Foundation defined in

[1].
Element Refers to either a key-value pair of a Key-Value Storage

or a file of a File Storage. Used in the specification where
something applies to all kinds of storage elements.

Execution Manifest Refers to the Execution Manifest defined in [1].
File A binary or text file to be stored in a File Storage.
File Name The file name uniquely identifies a file within a File

Storage.
File Storage A set of files that are stored persistently.
Functional Cluster Refers to the Functional Cluster defined in [1].
Integrity Persistency distinguishes data integrity, which is ensured by

the configured redundancy, from structural integrity, i.e. the
readability of the structure of a Key-Value Storage or File
Storage.

Key The key uniquely identifies a key-value pair within a Key-
-Value Storage.

Key-Value Pair A key with an associated value, to be stored in a Key-Value
Storage together with the type of the value.

Key-Value Storage A set of key-value pairs that are stored persistently.
Persistency The functional cluster described in this document, which

handles persistent data of AUTOSAR Adaptive Appli-
cations and other functional clusters in File Stor-
ages and Key-Value Storages.

Persistent Data Data that is stored in the persistent memory that can be accessed
by one Process.
Persistency supports different mechanisms to access data in
persistent memory. Concurrent access to the data by several
Processes is not supported as the data is owned exclusively by
one Process.

Redundancy Redundancy is used by Persistency to ensure the in-
tegrity of stored data. It can be configured to use replication
of stored data, CRCs, or Hashes. Typically, only replication will
allow to repair corrupted data.

Service Interface Refers to the Service Interface defined in [1].
Software Package Refers to the Software Package defined in [1].
Storage Refers to either a Key-Value Storage or a File Storage.

Used in the specification where something applies to all kinds of
storages.

Value A value of a key-value pair stored in a Key-Value Stor-
age.

10 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

3 Related Documentation

3.1 Input Documents & Related Standards and Norms

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of Adaptive Platform Core
AUTOSAR_SWS_AdaptivePlatformCore

[3] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[4] Specification of Execution Management
AUTOSAR_SWS_ExecutionManagement

[5] Specification of Cryptography
AUTOSAR_SWS_Cryptography

[6] Specification of Update and Configuration Management
AUTOSAR_SWS_UpdateAndConfigurationManagement

[7] Requirements on Persistency
AUTOSAR_RS_Persistency

[8] General Requirements specific to Adaptive Platform
AUTOSAR_RS_General

[9] Explanation of Adaptive Platform Design
AUTOSAR_EXP_PlatformDesign

[10] Specification of Platform Types for Adaptive Platform
AUTOSAR_SWS_AdaptivePlatformTypes

3.2 Further Applicable Specifications

AUTOSAR provides a core specification [2] which is also applicable for the Persis-
tency. The chapter “General requirements for all FunctionalClusters” of this specifica-
tion shall be considered as an additional and required specification for implementation
of the Persistency.

11 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4 Constraints and Assumptions

4.1 Known Limitations

• Although a Key-Value Storage and File Storage can be configured as
write-only, the current API always allows read access. Read access is even pos-
sible when a file has been opened with ara::per::FileStorage::Open-
FileWriteOnly.

4.2 Constraints on Configuration

There are several constraints on the Persistency configuration that need to be ob-
served by the tooling which creates/processes this part of the Execution Manifest.
These constraints are defined in [3].

4.3 Direct Access to Storage Hardware

Modern embedded controllers use flash memory and similar hardware to store data.
These devices have the intrinsic problem that the signal that can be read from each
memory cell is reduced over time, mainly influenced by the number of write accesses.
In the end, the cell will produce arbitrary values on each read access.

Unfortunately, the distribution of write accesses in typical systems is very uneven.
Some parameters might be updated a few times a second, while some code may stay
untouched for the whole life time of the ECU. To avoid early read errors, wear leveling
should be deployed, such that frequent updates of single data elements are distributed
over the whole memory area.

On the other hand, most operating systems include a file system or at least a flash
driver that takes care of wear leveling, such that a typical implementation of the Per-
sistency will not have to care about the wear leveling. This use case is therefore not
described in any detail in this specification.

12 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

5 Dependencies to Other Functional Clusters

5.1 Protocol Layer Dependencies

The Persistency is (at least partially) compiled as part of an Executable of an
Adaptive Application, and therefore also executed as part of a Process, which
creates an implicit dependency on the Execution Management [4].

For the implementation of redundancy and security purposes, the Persistency ac-
cesses services of the Cryptography [5].

For the installation, update, and deletion of persisted data, the Persistency interacts
with the Update and Configuration Management [6].

13 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

6 Requirements Tracing

The following table references the requirements specified in the AUTOSAR RS Per-
sistency [7] and the AUTOSAR RS General [8], and links to the fulfillments of these.
Please note that if column “Satisfied by” is empty for a specific requirement, this means
that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_AP_00111] The AUTOSAR Adaptive

Platform shall support source
code portability for AUTOSAR
Adaptive applications.

[SWS_PER_NA]

[RS_AP_00114] C++ interface shall be
compatible with C++14.

[SWS_PER_NA]

[RS_AP_00115] Public namespaces. [SWS_PER_00002]
[RS_AP_00116] Header file name. [SWS_PER_NA]
[RS_AP_00119] Return values / application

errors.
[SWS_PER_00042] [SWS_PER_00043]
[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00052] [SWS_PER_00107]
[SWS_PER_00110] [SWS_PER_00111]
[SWS_PER_00112] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115]
[SWS_PER_00116] [SWS_PER_00119]
[SWS_PER_00122] [SWS_PER_00125]
[SWS_PER_00144] [SWS_PER_00162]
[SWS_PER_00163] [SWS_PER_00164]
[SWS_PER_00165] [SWS_PER_00166]
[SWS_PER_00167] [SWS_PER_00168]
[SWS_PER_00313] [SWS_PER_00314]
[SWS_PER_00315] [SWS_PER_00323]
[SWS_PER_00325] [SWS_PER_00327]
[SWS_PER_00329] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00351] [SWS_PER_00352]
[SWS_PER_00357] [SWS_PER_00358]
[SWS_PER_00360] [SWS_PER_00361]
[SWS_PER_00363] [SWS_PER_00364]
[SWS_PER_00365] [SWS_PER_00368]
[SWS_PER_00370] [SWS_PER_00372]
[SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00398]
[SWS_PER_00399] [SWS_PER_00400]
[SWS_PER_00401] [SWS_PER_00402]
[SWS_PER_00403] [SWS_PER_00405]
[SWS_PER_00406] [SWS_PER_00407]
[SWS_PER_00414] [SWS_PER_00416]
[SWS_PER_00418] [SWS_PER_00419]
[SWS_PER_00420] [SWS_PER_00421]
[SWS_PER_00422] [SWS_PER_00423]

14 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_PER_00424] [SWS_PER_00426]
[SWS_PER_00427] [SWS_PER_00428]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00434]
[SWS_PER_00438]

[RS_AP_00120] Method and Function names. [SWS_PER_00042] [SWS_PER_00043]
[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00050] [SWS_PER_00052]
[SWS_PER_00107] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122]
[SWS_PER_00125] [SWS_PER_00144]
[SWS_PER_00162] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00167]
[SWS_PER_00168] [SWS_PER_00313]
[SWS_PER_00314] [SWS_PER_00315]
[SWS_PER_00322] [SWS_PER_00323]
[SWS_PER_00324] [SWS_PER_00325]
[SWS_PER_00326] [SWS_PER_00327]
[SWS_PER_00328] [SWS_PER_00329]
[SWS_PER_00330] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00350] [SWS_PER_00351]
[SWS_PER_00352] [SWS_PER_00355]
[SWS_PER_00356] [SWS_PER_00357]
[SWS_PER_00358] [SWS_PER_00365]
[SWS_PER_00367] [SWS_PER_00368]
[SWS_PER_00369] [SWS_PER_00370]
[SWS_PER_00371] [SWS_PER_00372]
[SWS_PER_00373] [SWS_PER_00374]
[SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00405]
[SWS_PER_00406] [SWS_PER_00407]
[SWS_PER_00413] [SWS_PER_00414]
[SWS_PER_00415] [SWS_PER_00416]
[SWS_PER_00417] [SWS_PER_00418]
[SWS_PER_00419] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00428] [SWS_PER_00429]
[SWS_PER_00430] [SWS_PER_00431]
[SWS_PER_00433] [SWS_PER_00434]
[SWS_PER_00438] [SWS_PER_00459]
[SWS_PER_00460] [SWS_PER_00461]
[SWS_PER_00462]

15 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_AP_00121] Parameter names. [SWS_PER_00043] [SWS_PER_00046]

[SWS_PER_00047] [SWS_PER_00052]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00125]
[SWS_PER_00144] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00315]
[SWS_PER_00322] [SWS_PER_00323]
[SWS_PER_00326] [SWS_PER_00327]
[SWS_PER_00332] [SWS_PER_00333]
[SWS_PER_00334] [SWS_PER_00335]
[SWS_PER_00336] [SWS_PER_00337]
[SWS_PER_00338] [SWS_PER_00350]
[SWS_PER_00351] [SWS_PER_00355]
[SWS_PER_00356] [SWS_PER_00367]
[SWS_PER_00368] [SWS_PER_00369]
[SWS_PER_00370] [SWS_PER_00371]
[SWS_PER_00372] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00405] [SWS_PER_00406]
[SWS_PER_00407] [SWS_PER_00413]
[SWS_PER_00414] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00433]
[SWS_PER_00434] [SWS_PER_00438]

[RS_AP_00122] Type names. [SWS_PER_00146] [SWS_PER_00147]
[SWS_PER_00311] [SWS_PER_00312]
[SWS_PER_00339] [SWS_PER_00340]
[SWS_PER_00342] [SWS_PER_00343]
[SWS_PER_00354] [SWS_PER_00359]
[SWS_PER_00362] [SWS_PER_00411]
[SWS_PER_00412] [SWS_PER_00432]
[SWS_PER_00435] [SWS_PER_00436]
[SWS_PER_00437]

[RS_AP_00124] Variable names. [SWS_PER_NA]
[RS_AP_00127] Usage of ara::core types. [SWS_PER_00042] [SWS_PER_00043]

[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00052] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122]
[SWS_PER_00125] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00311]
[SWS_PER_00312] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]

16 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00354] [SWS_PER_00356]
[SWS_PER_00357] [SWS_PER_00358]
[SWS_PER_00365] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00405] [SWS_PER_00406]
[SWS_PER_00407] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00428] [SWS_PER_00429]
[SWS_PER_00430] [SWS_PER_00431]
[SWS_PER_00433] [SWS_PER_00438]

[RS_AP_00128] Error reporting. [SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00052] [SWS_PER_00111]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00122] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00353] [SWS_PER_00357]
[SWS_PER_00358] [SWS_PER_00365]
[SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00405]
[SWS_PER_00406] [SWS_PER_00407]
[SWS_PER_00424] [SWS_PER_00426]
[SWS_PER_00427] [SWS_PER_00428]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00438]
[SWS_PER_00472] [SWS_PER_00473]
[SWS_PER_00474] [SWS_PER_00475]
[SWS_PER_00476]

[RS_AP_00129] Public types defined by
functional clusters shall be
designed to allow
implementation without dynamic
memory allocation.

[SWS_PER_00042] [SWS_PER_00046]
[SWS_PER_00047] [SWS_PER_00048]
[SWS_PER_00049] [SWS_PER_00050]
[SWS_PER_00052] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115]
[SWS_PER_00116] [SWS_PER_00119]
[SWS_PER_00122] [SWS_PER_00322]
[SWS_PER_00326] [SWS_PER_00330]
[SWS_PER_00332] [SWS_PER_00333]
[SWS_PER_00334] [SWS_PER_00335]
[SWS_PER_00336] [SWS_PER_00337]

17 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_PER_00338] [SWS_PER_00360]
[SWS_PER_00361] [SWS_PER_00363]
[SWS_PER_00364] [SWS_PER_00365]
[SWS_PER_00367] [SWS_PER_00369]
[SWS_PER_00371] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00398] [SWS_PER_00399]
[SWS_PER_00400] [SWS_PER_00401]
[SWS_PER_00402] [SWS_PER_00403]
[SWS_PER_00405] [SWS_PER_00406]
[SWS_PER_00407] [SWS_PER_00413]
[SWS_PER_00417] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00428] [SWS_PER_00429]
[SWS_PER_00430] [SWS_PER_00431]
[SWS_PER_00438] [SWS_PER_00459]
[SWS_PER_00460] [SWS_PER_00461]
[SWS_PER_00462]

[RS_AP_00130] AUTOSAR Adaptive Platform
shall represent a rich and
modern programming
environment.

[SWS_PER_NA]

[RS_AP_00132] noexcept behavior of API
functions

[SWS_PER_00042] [SWS_PER_00043]
[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00050] [SWS_PER_00052]
[SWS_PER_00107] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122]
[SWS_PER_00125] [SWS_PER_00162]
[SWS_PER_00163] [SWS_PER_00164]
[SWS_PER_00165] [SWS_PER_00166]
[SWS_PER_00167] [SWS_PER_00168]
[SWS_PER_00313] [SWS_PER_00314]
[SWS_PER_00315] [SWS_PER_00322]
[SWS_PER_00323] [SWS_PER_00326]
[SWS_PER_00327] [SWS_PER_00330]
[SWS_PER_00332] [SWS_PER_00333]
[SWS_PER_00334] [SWS_PER_00335]
[SWS_PER_00336] [SWS_PER_00337]
[SWS_PER_00338] [SWS_PER_00351]
[SWS_PER_00352] [SWS_PER_00355]
[SWS_PER_00356] [SWS_PER_00357]
[SWS_PER_00358] [SWS_PER_00360]

18 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_PER_00361] [SWS_PER_00363]
[SWS_PER_00364] [SWS_PER_00365]
[SWS_PER_00367] [SWS_PER_00368]
[SWS_PER_00369] [SWS_PER_00370]
[SWS_PER_00371] [SWS_PER_00372]
[SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00398]
[SWS_PER_00399] [SWS_PER_00400]
[SWS_PER_00401] [SWS_PER_00402]
[SWS_PER_00403] [SWS_PER_00405]
[SWS_PER_00406] [SWS_PER_00407]
[SWS_PER_00413] [SWS_PER_00414]
[SWS_PER_00417] [SWS_PER_00418]
[SWS_PER_00419] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00428] [SWS_PER_00429]
[SWS_PER_00430] [SWS_PER_00431]
[SWS_PER_00433] [SWS_PER_00438]

[RS_AP_00134] noexcept behavior of class
destructors

[SWS_PER_00050] [SWS_PER_00330]
[SWS_PER_00417]

[RS_AP_00144] Availability of a named
constructor.

[SWS_PER_00052] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115]
[SWS_PER_00116] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431]

[RS_AP_00146] Classes whose construction
requires interaction by the ARA
framework.

[SWS_PER_00339] [SWS_PER_00340]
[SWS_PER_00342] [SWS_PER_00343]
[SWS_PER_00459] [SWS_PER_00460]
[SWS_PER_00461] [SWS_PER_00462]

[RS_PER_00001] Persistency shall support
storage of persistent data

[SWS_PER_00107] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122]
[SWS_PER_00125] [SWS_PER_00144]
[SWS_PER_00162] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00167]
[SWS_PER_00168] [SWS_PER_00302]
[SWS_PER_00303] [SWS_PER_00304]
[SWS_PER_00309] [SWS_PER_00335]

19 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_PER_00336] [SWS_PER_00337]
[SWS_PER_00338] [SWS_PER_00360]
[SWS_PER_00361] [SWS_PER_00363]
[SWS_PER_00364] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00398] [SWS_PER_00399]
[SWS_PER_00400] [SWS_PER_00401]
[SWS_PER_00402] [SWS_PER_00403]
[SWS_PER_00418] [SWS_PER_00419]
[SWS_PER_00420] [SWS_PER_00421]
[SWS_PER_00422] [SWS_PER_00423]
[SWS_PER_00425] [SWS_PER_00428]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00434]
[SWS_PER_00494] [SWS_PER_00495]
[SWS_PER_00499] [SWS_PER_00501]
[SWS_PER_00502] [SWS_PER_00503]
[SWS_PER_00534] [SWS_PER_00535]

[RS_PER_00002] Persistency shall support to
retrieve data that has been
persistently stored on a platform
instance

[SWS_PER_00049] [SWS_PER_00050]
[SWS_PER_00322] [SWS_PER_00323]
[SWS_PER_00324] [SWS_PER_00325]
[SWS_PER_00339] [SWS_PER_00359]
[SWS_PER_00360] [SWS_PER_00361]
[SWS_PER_00362] [SWS_PER_00363]
[SWS_PER_00364] [SWS_PER_00365]
[SWS_PER_00371] [SWS_PER_00372]
[SWS_PER_00373] [SWS_PER_00374]
[SWS_PER_00398] [SWS_PER_00399]
[SWS_PER_00400] [SWS_PER_00401]
[SWS_PER_00402] [SWS_PER_00403]
[SWS_PER_00459] [SWS_PER_00496]
[SWS_PER_00497] [SWS_PER_00498]
[SWS_PER_00506]

[RS_PER_00003] Persistency shall support
identification of data using a
unique identifier

[SWS_PER_00042] [SWS_PER_00043]
[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00052]
[SWS_PER_00146] [SWS_PER_00147]
[SWS_PER_00331] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00360] [SWS_PER_00361]
[SWS_PER_00363] [SWS_PER_00364]
[SWS_PER_00398] [SWS_PER_00399]
[SWS_PER_00400] [SWS_PER_00401]
[SWS_PER_00402] [SWS_PER_00403]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00496] [SWS_PER_00497]
[SWS_PER_00498] [SWS_PER_00499]
[SWS_PER_00501] [SWS_PER_00502]
[SWS_PER_00504] [SWS_PER_00505]
[SWS_PER_00534] [SWS_PER_00535]

20 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_PER_00004] Persistency shall support access

to file-like structures
[SWS_PER_00107] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122]
[SWS_PER_00125] [SWS_PER_00144]
[SWS_PER_00162] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00167]
[SWS_PER_00168] [SWS_PER_00326]
[SWS_PER_00327] [SWS_PER_00328]
[SWS_PER_00329] [SWS_PER_00330]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00340] [SWS_PER_00342]
[SWS_PER_00343] [SWS_PER_00367]
[SWS_PER_00368] [SWS_PER_00369]
[SWS_PER_00370] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00413] [SWS_PER_00414]
[SWS_PER_00415] [SWS_PER_00416]
[SWS_PER_00417] [SWS_PER_00418]
[SWS_PER_00419] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00428]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00434]
[SWS_PER_00435] [SWS_PER_00436]
[SWS_PER_00437] [SWS_PER_00438]
[SWS_PER_00440] [SWS_PER_00441]
[SWS_PER_00442] [SWS_PER_00443]
[SWS_PER_00444] [SWS_PER_00445]
[SWS_PER_00457] [SWS_PER_00458]
[SWS_PER_00460] [SWS_PER_00461]
[SWS_PER_00462] [SWS_PER_00507]
[SWS_PER_00508] [SWS_PER_00509]
[SWS_PER_00510] [SWS_PER_00511]
[SWS_PER_00512] [SWS_PER_00513]
[SWS_PER_00514] [SWS_PER_00515]
[SWS_PER_00516] [SWS_PER_00517]
[SWS_PER_00518] [SWS_PER_00519]
[SWS_PER_00520] [SWS_PER_00521]
[SWS_PER_00522] [SWS_PER_00523]
[SWS_PER_00524] [SWS_PER_00525]
[SWS_PER_00526] [SWS_PER_00527]
[SWS_PER_00528] [SWS_PER_00529]
[SWS_PER_00530] [SWS_PER_00531]
[SWS_PER_00532] [SWS_PER_00533]

[RS_PER_00005] Persistency shall support
encryption/decryption of
persistent data

[SWS_PER_00210] [SWS_PER_00211]
[SWS_PER_00449] [SWS_PER_00450]
[SWS_PER_00451] [SWS_PER_00464]
[SWS_PER_00465] [SWS_PER_00466]
[SWS_PER_00467] [SWS_PER_00468]

21 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_PER_00008] Persistency shall support

detection of data corruption in
persistent memory

[SWS_PER_00221] [SWS_PER_00317]
[SWS_PER_00318] [SWS_PER_00319]
[SWS_PER_00432] [SWS_PER_00433]
[SWS_PER_00439] [SWS_PER_00447]
[SWS_PER_00448] [SWS_PER_00480]
[SWS_PER_00481] [SWS_PER_00482]
[SWS_PER_00483] [SWS_PER_00484]
[SWS_PER_00485] [SWS_PER_00486]
[SWS_PER_00487] [SWS_PER_00488]
[SWS_PER_00489] [SWS_PER_00490]

[RS_PER_00009] Persistency shall support data
recovery mechanisms if
persistent data was corrupted

[SWS_PER_00317] [SWS_PER_00318]
[SWS_PER_00319] [SWS_PER_00333]
[SWS_PER_00334] [SWS_PER_00335]
[SWS_PER_00336] [SWS_PER_00337]
[SWS_PER_00338] [SWS_PER_00358]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00439] [SWS_PER_00447]
[SWS_PER_00448] [SWS_PER_00452]
[SWS_PER_00453] [SWS_PER_00454]
[SWS_PER_00455] [SWS_PER_00456]
[SWS_PER_00477] [SWS_PER_00478]
[SWS_PER_00479]

[RS_PER_00010] The layout of persistent data
shall be configurable

[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00052]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00210] [SWS_PER_00211]
[SWS_PER_00251] [SWS_PER_00252]
[SWS_PER_00253] [SWS_PER_00254]
[SWS_PER_00265] [SWS_PER_00266]
[SWS_PER_00267] [SWS_PER_00275]
[SWS_PER_00277] [SWS_PER_00281]
[SWS_PER_00283] [SWS_PER_00304]
[SWS_PER_00317] [SWS_PER_00318]
[SWS_PER_00319] [SWS_PER_00320]
[SWS_PER_00321] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00378]
[SWS_PER_00379] [SWS_PER_00380]
[SWS_PER_00382] [SWS_PER_00383]
[SWS_PER_00384] [SWS_PER_00385]
[SWS_PER_00386] [SWS_PER_00387]
[SWS_PER_00388] [SWS_PER_00389]
[SWS_PER_00390] [SWS_PER_00391]

22 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_PER_00392] [SWS_PER_00393]
[SWS_PER_00394] [SWS_PER_00395]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00439]
[SWS_PER_00447] [SWS_PER_00448]
[SWS_PER_00449] [SWS_PER_00450]
[SWS_PER_00451] [SWS_PER_00463]
[SWS_PER_00464] [SWS_PER_00465]
[SWS_PER_00466] [SWS_PER_00467]
[SWS_PER_00468] [SWS_PER_00469]
[SWS_PER_00470] [SWS_PER_00471]
[SWS_PER_CONSTR_00001]
[SWS_PER_CONSTR_00002]
[SWS_PER_CONSTR_00003]
[SWS_PER_CONSTR_00004]

[RS_PER_00011] Persistency shall be able to
ensure and limit the amount of
storage used by persisted data

[SWS_PER_00320] [SWS_PER_00321]
[SWS_PER_00491] [SWS_PER_00492]
[SWS_PER_00493]

[RS_PER_00012] Persistency shall support
installation of persistent data

[SWS_PER_00251] [SWS_PER_00252]
[SWS_PER_00253] [SWS_PER_00254]
[SWS_PER_00265] [SWS_PER_00266]
[SWS_PER_00267] [SWS_PER_00379]
[SWS_PER_00380] [SWS_PER_00382]
[SWS_PER_00383] [SWS_PER_00384]
[SWS_PER_00385] [SWS_PER_00463]
[SWS_PER_00469] [SWS_PER_00470]
[SWS_PER_00471]
[SWS_PER_CONSTR_00001]
[SWS_PER_CONSTR_00002]
[SWS_PER_CONSTR_00003]
[SWS_PER_CONSTR_00004]

[RS_PER_00013] Persistency shall support update
of persistent data

[SWS_PER_00251] [SWS_PER_00275]
[SWS_PER_00277] [SWS_PER_00281]
[SWS_PER_00283] [SWS_PER_00356]
[SWS_PER_00357] [SWS_PER_00378]
[SWS_PER_00379] [SWS_PER_00380]
[SWS_PER_00386] [SWS_PER_00387]
[SWS_PER_00388] [SWS_PER_00389]
[SWS_PER_00390] [SWS_PER_00391]
[SWS_PER_00392] [SWS_PER_00393]
[SWS_PER_00394] [SWS_PER_00395]
[SWS_PER_00463] [SWS_PER_00469]
[SWS_PER_00470] [SWS_PER_00471]

[RS_PER_00014] Persistency shall support
roll-back of persistent data

[SWS_PER_00378] [SWS_PER_00396]
[SWS_PER_00463] [SWS_PER_00469]
[SWS_PER_00470] [SWS_PER_00471]

[RS_PER_00016] Persistency shall support
finalization of an update of
persistent data

[SWS_PER_00446] [SWS_PER_00463]
[SWS_PER_00470] [SWS_PER_00471]

[RS_PER_00017] Persistency shall be able to
report the amount of currently
used storage

[SWS_PER_00405] [SWS_PER_00406]
[SWS_PER_00407] [SWS_PER_00424]

23 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_PER_00018] Persistency shall support central

initialization and shutdown
[SWS_PER_00408] [SWS_PER_00409]
[SWS_PER_00410]

24 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7 Functional Specification

7.1 The Architecture of Persistency

The Persistency offers two different mechanisms to access persistent memory:
Key-Value Storages offer access to a set of keys with associated values (similar
to a database), while File Storages offer access to a set of files (similar to a
directory of a file system).

The typical usage of the Persistency within an Adaptive Application is de-
picted in Figure 7.1. As shown there, an Adaptive Application can use a combi-
nation of multiple Key-Value Storages and multiple File Storages. Of course,
the same applies to other functional clusters using Persistency.

«process»
Adaptive Application

«subsystem,entity»
Persistency

«entity»
Key-Value Storage A

+ Key_A1 = Value_A1
+ Key_A2 = Value_A2
+ Key_An = Value_An

«entity»
Key-Value Storage B

+ Key_B1 = Value_B1
+ Key_B2 = Value_B2
+ Key_Bn = Value_Bn

«entity»
File Storage D

+ File_D1
+ File_D2
+ File_Dn

«entity»
File Storage C

+ File_C1
+ File_C2
+ File_Cn

Figure 7.1: Typical usage of Persistency within an Adaptive Application

7.1.1 Persistency in the Manifest

The Persistency usage of an Adaptive Application is modeled in the Exe-
cution Manifest (furtheron simply referred to as the “manifest”) as part of the
AdaptiveApplicationSwComponentTypes of an Executable. The model has
two principal parts: The application design information, aggregated by the Persis-
tencyKeyValueStorageInterface and the PersistencyFileStorageInter-
face, and the deployment information, aggregated by the PersistencyKeyVal-
ueStorage and the PersistencyFileStorage.

25 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

The API specification holds the classes ara::per::KeyValueStorage and ara:-
:per::FileStorage for access to a Key-Value Storage or a File Storage,
respectively. The global functions of these classes receive the identifier (the fully quali-
fied shortName path) of a PortPrototype typed by a PersistencyInterface as
an ara::core::InstanceSpecifier input parameter (see subsection 8.2.1 and
subsection 8.3.1). Depending on the nature of the PortPrototype, the Key-Value
Storage or File Storage will be accessible as:

Read Only if the PortPrototype is instantiated as RPortPrototype, or

Read/Write if the PortPrototype is instantiated as PRPortPrototype, or

Write Only if the PortPrototype is instantiated as PPortPrototype.

The manifest contains separate deployment data for each Process that references
the Executable. The Process is bound to the deployment data by specialization of
the class PersistencyPortPrototypeToDeploymentMapping, which refers to a
PortPrototype typed by a PersistencyInterface, a PersistencyDeploy-
ment, and the Process.

Usage of base classes in the manifest
For simplification reasons, the information that applies to both the Key-Value Stor-
ages and the File Storages is collected in base classes in the manifest, namely
in PersistencyInterface for PersistencyKeyValueStorageInterface and
PersistencyFileStorageInterface, and in PersistencyDeployment for
PersistencyKeyValueStorage and PersistencyFileStorage.
Likewise, the common information about key-value pairs and files is collected
in PersistencyInterfaceElement for PersistencyDataElement and Per-
sistencyFileElement, and in PersistencyDeploymentElement for Persis-
tencyKeyValuePair and PersistencyFile.
And the link between application design and deployment information, represented by
PersistencyPortPrototypeToDeploymentMapping, is specialized as Persis-
tencyPortPrototypeToKeyValueStorageMapping and PersistencyPort-
PrototypeToFileStorageMapping.

7.1.2 Key-Value Storages in the Manifest

Every Key-Value Storage is represented by a PortPrototype typed by a Per-
sistencyKeyValueStorageInterface in the application design for the respec-
tive AdaptiveApplicationSwComponentType, and by a PersistencyKeyVal-
ueStorage containing deployment information. Every Key-Value Storage can
hold multiple key-value pairs. Key-value pairs can be added and removed
at run-time by the Adaptive Application using the Persistency API (see sub-
subsection 8.2.5.7 and subsubsection 8.2.5.8).

26 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

A Key-Value Storage with predefined key-value pairs can be deployed with
default data during installation or update of an Adaptive Application. This oper-
ation is (indirectly) triggered by the Update and Configuration Management [6]
during installation or update using the deployment information and data provided by
the software package of the Adaptive Application. See subsection 7.2.6.

The link between application design and deployment information of a Key-
-Value Storage is represented by PersistencyPortPrototypeToKeyVal-
ueStorageMapping, which refers to a PortPrototype typed by a Persis-
tencyKeyValueStorageInterface, the corresponding PersistencyKeyVal-
ueStorage, and a Process.

7.1.3 File Storages in the Manifest

Every File Storage is represented by a PortPrototype typed by a Persis-
tencyFileStorageInterface in the application design for the respective Adap-
tiveApplicationSwComponentType, and by a PersistencyFileStorage con-
taining deployment information. Every File Storage can hold multiple files as
described in [3]. Similar to the key-value pairs mentioned above, files can be
created and deleted at run-time by the Adaptive Application using the Persis-
tency API (see subsubsection 8.3.11.11, subsubsection 8.3.11.13, and subsubsec-
tion 8.3.11.5).

A File Storage with predefined files with initial content can be deployed during
installation or update. This operation is also (indirectly) triggered by the Update and
Configuration Management [6]. All needed deployment information and files
come with the software package of the Adaptive Application. See subsec-
tion 7.2.6.

The link between application design and deployment information of a File Storage
is represented by PersistencyPortPrototypeToFileStorageMapping, which
refers to a PortPrototype typed by a PersistencyFileStorageInterface, the
corresponding PersistencyFileStorage, and a Process.

27 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.2 General Features of Persistency

[SWS_PER_00002] dAll specified classes within the Persistency shall reside within
the C++ namespace ara::per.c(RS_AP_00115)

7.2.1 Functional Cluster Lifecycle

7.2.1.1 Initialization and Shutdown of Persistency

Using ara::core::Initialize and ara::core::Deinitialize, the applica-
tion can start and shut down all functional clusters with direct ARA interfaces
(i.e. the Adaptive Platform Foundation).

[SWS_PER_00408] dWhen ara::core::Initialize is called, the Persistency
shall read in the manifest information and prepare the access structures to all Key-
-Value Storages and File Storages that are defined in the manifest.c(RS_-
PER_00018)

[SWS_PER_00409] dWhen ara::core::Deinitialize is called, the Persis-
tency shall implicitly ensure that all open files of all File Storages are persisted
as though ara::per::ReadWriteAccessor::SyncToFile was called and closed
as though the ara::per::UniqueHandles were destructed, and that not persisted
values in all Key-Value Storages are dropped as though ara::per::KeyVal-
ueStorage::DiscardPendingChanges was called. Afterwards, all access struc-
tures shall be freed.c(RS_PER_00018)

The application is expected not to call any API of Persistency (directly or indi-
rectly through other functional clusters) before ara::core::Initialize or
after ara::core::Deinitialize, but Persistency needs to protect itself against
such eventualities.

[SWS_PER_00410]{DRAFT} dAll functions of Persistency and all methods of its
classes shall call ara::core::Abort when they are called after static initializa-
tion but before ara::core::Initialize was called or after ara::core::Deini-
tialize was called.c(RS_PER_00018)

28 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.2.2 Error Handling

Error handling in Persistency is aligned with the guidelines described in [2]. To this
end, the Persistency has to implement a set of standard classes and APIs, which
are described in this section.

[SWS_PER_00472] dPersistency shall use the error codes defined in ara::per:-
:PerErrc to report problems to the calling application via ara::core::Result.
Vendors of Persistency may add their own errors to ara::per::PerErrc, using
codes above 255.c(RS_AP_00128)

ara::per::PerErrc belongs to the ara::per::PerErrorDomain, which can be
used by an application to classify returned errors.

[SWS_PER_00473] dara::per::GetPerDomain shall return the global ara::-
per::PerErrorDomain object.c(RS_AP_00128)

To create its own Persistency error codes, the application may use ara::-
per::MakeErrorCode.

[SWS_PER_00474] dara::per::MakeErrorCode shall return an ara::core::-
ErrorCode when called with an error code from ara::per::PerErrc.c(RS_AP_-
00128)

[SWS_PER_00353] dara::per::PerErrorDomain::Name shall return the NUL-
terminated string “Per”.c(RS_AP_00128)

[SWS_PER_00475] dara::per::PerErrorDomain::Message shall return the er-
ror message associated with the passed ara::core::ErrorCode.c(RS_AP_00128)

The whole Persistency API has been designed to be exception-less. If an ap-
plication prefers to use exceptions, it may use ara::per::PerErrorDomain:-
:ThrowAsException, or simply ara::core::ErrorCode::ThrowAsException.

[SWS_PER_00476] dara::per::PerErrorDomain::ThrowAsException shall
throw an ara::per::PerException that is created from the passed error code.c
(RS_AP_00128)

29 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.2.3 Parallel Access to Persistent Data

According to [9], the persistent data is local to one Process. Therefore, Per-
sistency will never share persistent data between two (or more) Processes,
even of the same Executable. The background of this decision is that Persistency
should not provide an additional communication path for applications besides the
mechanisms provided by the functional cluster Communication Management
(e.g. using ara::com).

[SWS_PER_00309] dPersistent data shall always be local to one Process.c
(RS_PER_00001)

If persistent data needs to be accessed by multiple Processes (of the same or
different applications), it is the duty of the application designer to provide Service
Interfaces for communication.

Persistency is, on the other hand, prepared to handle concurrent access from mul-
tiple threads of the same application, running in the context of the same Process.
To create shared access to a Key-Value Storage or File Storage, either the
ara::per::SharedHandle returned by ara::per::OpenKeyValueStorage and
ara::per::OpenFileStorage can be passed on (i.e. copied) to another thread, or
ara::per::OpenKeyValueStorage and ara::per::OpenFileStorage can be
called in independent threads for the same Key-Value Storage or File Storage,
respectively. All operations of the Key-Value Storage and File Storage support
concurrent access from multiple threads, though operations like ara::per::Recov-
erKeyValueStorage and ara::per::ResetKeyValueStorage or ara::per:-
:RecoverAllFiles and ara::per::ResetAllFiles will only succeed when the
corresponding Key-Value Storage or File Storage is not opened.

Access to single key-value pairs of a Key-Value Storage is possible
from multiple threads at the same time, because the operation of ara::-
per::KeyValueStorage::GetValue and ara::per::KeyValueStorage::-
SetValue are atomic, as are those of ara::per::KeyValueStorage::Re-
moveKey, ara::per::KeyValueStorage::RemoveAllKeys, ara::per::Key-
ValueStorage::SyncToStorage, and ara::per::KeyValueStorage::Dis-
cardPendingChanges.

Access to single files of a File Storage cannot be shared between multiple
threads, because it would be impossible to synchronize read and write accesses and
the corresponding change of the seek position in a file. Accordingly, the ara::-
per::UniqueHandle returned by the OpenFile* APIs can only be moved to an-
other thread, and trying to open an already opened file will fail. Likewise, operations
like ara::per::FileStorage::DeleteFile, ara::per::FileStorage::Re-
coverFile, and ara::per::FileStorage::ResetFile will also not be possible
on open files.

Files are implicitly closed when their ara::per::UniqueHandle goes out of
scope, or when the File Storage to which they belong is closed.

30 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00425] dWhen a File Storage is closed, because all related ara:-
:per::SharedHandles go out of scope, any files which are still open are also
closed.c(RS_PER_00001)

Accessing a ara::per::UniqueHandle of a file of a closed File Storage will
result in undefined behavior.

31 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.2.4 Security Concepts

The Persistency supports encryption and authentication of data stored in a Key-
-Value Storage or File Storage. Whether encryption and/or authentication is
applied, is decided at deployment time. The application is not aware of this fact.

In general, a storage or an element of a storage are encrypted after the creation
of the storage and when the storage is saved, and are decrypted when a storage
is opened. The signed hash used for the authentication of a storage is likewise
verified when opening a storage, and calculated during installation or when saving a
storage.

In case of a read-only storage, encryption is done only once during installa-
tion. A signed hash used for authentication of a read-only storage (or an ele-
ment therein) is either provided as PersistencyDeploymentToCryptoKeySlot-
Mapping.verificationHash (or PersistencyDeploymentElementToCrypto-
KeySlotMapping.verificationHash) in the manifest, or calculated during in-
stallation.

[SWS_PER_00210] dIf a PersistencyDeploymentToCryptoKeySlotMapping
exists in the manifest, and PersistencyDeploymentToCryptoKeySlot-
Mapping.keySlotUsage is set to encryption, the Persistency shall encrypt all
data related to the storage before storing it to the persistent memory.c(RS_PER_-
00005, RS_PER_00010)

[SWS_PER_00464] dIf a PersistencyDeploymentElementToCryptoKeySlot-
Mapping exists in the manifest, and PersistencyDeploymentElementTo-
CryptoKeySlotMapping.keySlotUsage is set to encryption, the Persistency
shall encrypt the element data before storing it to the persistent memory.c(RS_PER_-
00005, RS_PER_00010)

[SWS_PER_00211] dIf a PersistencyDeploymentToCryptoKeySlotMapping
exists in the manifest, and PersistencyDeploymentToCryptoKeySlot-
Mapping.keySlotUsage is set to encryption, the Persistency shall decrypt all
data related to the storage after reading it from persistent memory.c(RS_PER_00005,
RS_PER_00010)

[SWS_PER_00465] dIf a PersistencyDeploymentElementToCryptoKeySlot-
Mapping exists in the manifest, and PersistencyDeploymentElementTo-
CryptoKeySlotMapping.keySlotUsage is set to encryption, the Persistency
shall decrypt the element data after reading it from persistent memory.c(RS_PER_-
00005, RS_PER_00010)

[SWS_PER_00449] dIf a PersistencyDeploymentToCryptoKeySlotMapping
exists in the manifest, and PersistencyDeploymentToCryptoKeySlot-
Mapping.keySlotUsage is set to verification, the Persistency shall sign all
data related to the storage before storing it to the persistent memory.c(RS_PER_-
00005, RS_PER_00010)

32 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00466] dIf a PersistencyDeploymentElementToCryptoKeySlot-
Mapping exists in the manifest, and PersistencyDeploymentElementTo-
CryptoKeySlotMapping.keySlotUsage is set to verification, the Persis-
tency shall sign the element data before storing it to the persistent memory.c(RS_-
PER_00005, RS_PER_00010)

[SWS_PER_00450] dIf a PersistencyDeploymentToCryptoKeySlotMapping
exists in the manifest, and PersistencyDeploymentToCryptoKeySlot-
Mapping.keySlotUsage is set to verification, the Persistency shall verify the
signature of all data related to the storage after reading it from persistent memory.c
(RS_PER_00005, RS_PER_00010)

[SWS_PER_00467] dIf a PersistencyDeploymentElementToCryptoKeySlot-
Mapping exists in the manifest, and PersistencyDeploymentElementTo-
CryptoKeySlotMapping.keySlotUsage is set to verification, the Persis-
tency shall verify the signature of the element data after reading it from persistent
memory.c(RS_PER_00005, RS_PER_00010)

[SWS_PER_00451] dIf PersistencyDeploymentToCryptoKeySlotMapping.
verificationHash is available, the Persistency shall use this hash to verify all
data related to the storage.c(RS_PER_00005, RS_PER_00010)

[SWS_PER_00468] dIf PersistencyDeploymentElementToCryptoKeySlot-
Mapping.verificationHash is available, the Persistency shall use this hash to
verify the element data.c(RS_PER_00005, RS_PER_00010)

The Persistency will use the services of the Cryptography [5] for encryption
and decryption and for creating and verifying signed hashes. It will derive the algo-
rithms and keys to be used from the CryptoKeySlot referenced by Persistency-
DeploymentToCryptoKeySlotMapping or PersistencyDeploymentElement-
ToCryptoKeySlotMapping, and will use them for the access to the Cryptogra-
phy.

33 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.2.5 Redundancy Concepts

The Persistency shall take care of the integrity of the stored data, both for safety
purposes and to prevent data loss. This can be achieved by calculating CRCs or hash
values of the stored data, and by creating redundant copies. All these measures ef-
fectively create some redundancy for the stored data. The concrete measures to be
taken are configurable: The application designer can use PersistencyInterface.
redundancy to request redundancy (by setting it to redundant or redundant-
PerElement), or use PersistencyInterface.redundancyHandling to prese-
lect the actual measures to be taken. During deployment, the integrator can define the
actual measures taken to ensure data integrity using PersistencyDeployment.re-
dundancyHandling. If PersistencyInterface.redundancyHandling is con-
figured, the integrator shall use it as a guidance, but may also choose other, more
appropriate measures based on superior knowledge of the final system.

[SWS_PER_00317] dThe Persistency shall store redundant information for ev-
ery storage represented by a PersistencyDeployment where Persisten-
cyDeployment.redundancyHandling is configured.c(RS_PER_00008, RS_PER_-
00009, RS_PER_00010)

The actual handling of the redundancy configured during deployment is described
in the following sections, see also [SWS_PER_00318], [SWS_PER_00319], and
[SWS_PER_00447].

[SWS_PER_00221] dPersistency shall check the redundant data when accessing
stored data. When the stored data is corrupted, Persistency shall try to restore it
using the available redundancy. If Persistency is not able to recover using the
redundancy, it shall report kValidationFailed.c(RS_PER_00008)

Depending on the actual implementation, Persistency might access the stored data
at different times, e.g. when ara::core::Initialize is called, when a Key-
-Value Storage is opened, or when a file is accessed. The question whether
the redundancy is sufficient for recovery is also implementation specific and can only
be safely assumed for M out of N.

When the recovery failed, the application can choose to use ara::per::Recov-
erKeyValueStorage, ara::per::KeyValueStorage::RecoverKey, ara::-
per::RecoverAllFiles, or ara::per::FileStorage::RecoverFile to re-
cover as much as possible and set the corresponding Key-Value Storage or File
Storage again into a consistent state.

[SWS_PER_00452] dWhen ara::per::RecoverKeyValueStorage is called,
Persistency shall restore the Key-Value Storage to a consistent state, including
redundancy. First, the infrastructure of the whole Key-Value Storage shall be re-
stored, then Persistency shall try to recover all key-value pairs available in the
Key-Value Storage as described in [SWS_PER_00453]. Depending on available
information, the whole Key-Value Storage might be reset to the initial state as de-
scribed in [SWS_PER_00456], losing all updated values of its key-value pairs,
or may contain outdated key-value pairs after the operation.c(RS_PER_00009)

34 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00453] dWhen ara::per::KeyValueStorage::RecoverKey is
called, Persistency shall try to restore the given key to a consistent state, including
redundancy. Depending on available information, the key might be removed, reset
to the initial value as described in [SWS_PER_00477], or might contain an outdated
value after the operation.c(RS_PER_00009)

[SWS_PER_00454]{DRAFT} dWhen ara::per::RecoverAllFiles is called,
Persistency shall restore the File Storage to a consistent state, including re-
dundancy. First, the infrastructure of the whole File Storage shall be restored as
described in [SWS_PER_00478], then Persistency shall try to recover all currently
available files as described in [SWS_PER_00455]. Depending on available infor-
mation, the whole File Storage might be reset to the initial state, losing all updated
content of its files, or may contain outdated files after the operation.c(RS_PER_-
00009)

[SWS_PER_00455]{DRAFT} dWhen ara::per::FileStorage::RecoverFile
is called, Persistency shall try to restore the given file to a consistent state, includ-
ing redundancy. Depending on available information, the file might be removed,
reset to the initial state as described in [SWS_PER_00479], or might contain outdated
content after the operation.c(RS_PER_00009)

Of course the application has to validate the restored data in this case.

Or it can use ara::per::ResetKeyValueStorage, ara::per::KeyVal-
ueStorage::ResetKey, ara::per::ResetAllFiles, or ara::per::-
FileStorage::ResetFile to reset the corrupted item to the initial state according
to the current manifest.

[SWS_PER_00456] dWhen ara::per::ResetKeyValueStorage is called, Per-
sistency shall reset the Key-Value Storage to the state it would have after in-
stallation of the application using the current manifest information.c(RS_PER_-
00009)

[SWS_PER_00477] dWhen ara::per::KeyValueStorage::ResetKey is called,
Persistency shall reset the given key to the state it would have after installation of
the application using the current manifest information. If the key is not available
in the manifest, the call shall fail with kInitValueNotAvailable.c(RS_PER_-
00009)

[SWS_PER_00478] dWhen ara::per::ResetAllFiles is called, Persistency
shall reset the File Storage to the state it would have after installation of the ap-
plication using the current manifest information.c(RS_PER_00009)

[SWS_PER_00479] dWhen ara::per::FileStorage::ResetFile is called,
Persistency shall reset the given file to the state it would have after installa-
tion of the application using the current manifest information. If the file is
not available in the manifest, the call shall fail with kInitValueNotAvailable.c
(RS_PER_00009)

35 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

The application may want to monitor its storages for any problem detected by
redundancy, even if Persistency is able to recover by itself. This might be required
to e.g. get an early indication of hardware problems or for safety critical applica-
tions. This monitoring is supported by Persistency, which will trigger a callback
function of the application in case of any problems with the storages. To acti-
vate this monitoring, the application has to register that callback function using
ara::per::RegisterRecoveryReportCallback.

[SWS_PER_00480]{DRAFT} dWhen ara::per::RegisterRecoveryReport-
Callback is called, Persistency shall register the provided function and enable re-
porting of redundancy problems in all storages of this application.c(RS_PER_-
00008)

Persistency may check redundancy at different places, e.g. when ara::core:-
:Initialize is called, when a storage is opened, or when elements of the
storage are accessed. Whenever a problem is detected with redundancy, inde-
pendently of the situation in which the problem appeared or whether the problem
could be handled, Persistency will inform the application about these problems
via the registered callback, stating kKeyValueStorageRecovered, kKeyRecov-
ered, kFileStorageRecovered, or kFileRecovered when recovery of a Key-
-Value Storage, a File Storage, a key-value pair, or a file was possible,
and kKeyValueStorageRecoveryFailed, kKeyRecoveryFailed, kFileStor-
ageRecoveryFailed, or kFileRecoveryFailed if not. The callback also reports
the affected storage, the affected elements, and how many copies of these ele-
ments were affected (the latter only in case PersistencyRedundancyMOutOfN is
configured).

[SWS_PER_00481]{DRAFT} dWhen a Key-Value Storage is accessed, and a
redundancy problem affecting the whole Key-Value Storage is detected that can-
not be handled by Persistency (i.e. kValidationFailed is returned), Per-
sistency shall call the registered callback with storage set to the ara::core:-
:InstanceSpecifier of the Key-Value Storage, recoveryReportKind set
to kKeyValueStorageRecoveryFailed, an empty ara::core::Vector for re-
portedElements, and an ara::core::Vector with the indices of the affected
redundant instances of the Key-Value Storage in reportedInstances.c(RS_-
PER_00008)

[SWS_PER_00482]{DRAFT} dWhen a Key-Value Storage is accessed, and a
redundancy problem affecting the whole Key-Value Storage is detected that
can be handled by Persistency (i.e. the operation succeeds), Persistency
shall call the registered callback with storage set to the ara::core::Instance-
Specifier of the Key-Value Storage, recoveryReportKind set to kKeyVal-
ueStorageRecovered, an empty ara::core::Vector for reportedElements,
and an ara::core::Vector with the indices of the affected redundant instances of
the Key-Value Storage in reportedInstances.c(RS_PER_00008)

[SWS_PER_00483]{DRAFT} dWhen a File Storage is accessed, and a redun-
dancy problem affecting the whole File Storage is detected that cannot be handled

36 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

by Persistency (i.e. kValidationFailed is returned), Persistency shall call
the registered callback with storage set to the ara::core::InstanceSpecifier
of the File Storage, recoveryReportKind set to kFileStorageRecovery-
Failed, an empty ara::core::Vector for reportedElements, and an ara:-
:core::Vector with the indices of the affected redundant instances of the File
Storage in reportedInstances.c(RS_PER_00008)

[SWS_PER_00484]{DRAFT} dWhen a File Storage is accessed, and a redun-
dancy problem affecting the whole File Storage is detected that can be han-
dled by Persistency (i.e. the operation succeeds), Persistency shall call the
registered callback with storage set to the ara::core::InstanceSpecifier of
the File Storage, recoveryReportKind set to kFileStorageRecovered, an
empty ara::core::Vector for reportedElements, and an ara::core::Vec-
tor with the indices of the affected redundant instances of the File Storage in
reportedInstances.c(RS_PER_00008)

[SWS_PER_00485]{DRAFT} dWhen a Key-Value Storage or one of its keys is
accessed, and a redundancy problem affecting a set of keys is detected that cannot
be handled by Persistency (i.e. kValidationFailed is returned), Persistency
shall call the registered callback with storage set to the ara::core::Instance-
Specifier of the Key-Value Storage, recoveryReportKind set to kKeyRe-
coveryFailed, an ara::core::Vector with the affected keys in reportedEle-
ments, and an ara::core::Vector with the indices of the affected redundant in-
stances of the keys in reportedInstances.c(RS_PER_00008)

[SWS_PER_00486]{DRAFT} dWhen a Key-Value Storage or one of its keys is
accessed, and a redundancy problem affecting a set of keys is detected that can
be handled by Persistency (i.e. the operation succeeds), Persistency shall call
the registered callback with storage set to the ara::core::InstanceSpecifier
of the Key-Value Storage, recoveryReportKind set to kKeyRecovered, an
ara::core::Vector with the affected keys in reportedElements, and an ara:-
:core::Vector with the indices of the affected redundant instances of the keys in
reportedInstances.c(RS_PER_00008)

[SWS_PER_00487]{DRAFT} dWhen a redundancy problem of single keys is re-
ported according to [SWS_PER_00485] or [SWS_PER_00486], Persistency shall
in general ensure that each entry in reportedElements matches an entry in re-
portedInstances at the same positions, the two ara::core::Vectors shall have
the same size. If several instances of a key are affected, the key may appear several
times in reportedElements. As an optimization, if only one key is affected, re-
portedElements may contain the affected key as single entry, related to all entries
of reportedInstances.c(RS_PER_00008)

[SWS_PER_00488]{DRAFT} dWhen a File Storage or one of its files is ac-
cessed, and a redundancy problem affecting a set of files is detected that cannot
be handled by Persistency (i.e. kValidationFailed is returned), Persistency
shall call the registered callback with storage set to the ara::core::Instance-
Specifier of the File Storage, recoveryReportKind set to kFileRecov-

37 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

eryFailed, an ara::core::Vector with the affected files in reportedEle-
ments, and an ara::core::Vector with the indices of the affected redundant in-
stances of the files in reportedInstances.c(RS_PER_00008)

[SWS_PER_00489]{DRAFT} dWhen a File Storage or one of its files is ac-
cessed, and a redundancy problem affecting a set of files is detected that can
be handled by Persistency (i.e. the operation succeeds), Persistency shall call
the registered callback with storage set to the ara::core::InstanceSpecifier
of the File Storage, recoveryReportKind set to kFileRecovered, an ara:-
:core::Vector with the affected files in reportedElements, and an ara::-
core::Vector with the indices of the affected redundant instances of the files in
reportedInstances.c(RS_PER_00008)

[SWS_PER_00490]{DRAFT} dWhen a redundancy problem of single file is re-
ported according to [SWS_PER_00488] or [SWS_PER_00489], Persistency shall
in general ensure that each entry in reportedElements matches an entry in re-
portedInstances at the same positions, the two ara::core::Vectors shall have
the same size. If several instances of a file are affected, the file may appear sev-
eral times in reportedElements. As an optimization, if only one file is affected,
reportedElements may contain the affected file as single entry, related to all en-
tries of reportedInstances.c(RS_PER_00008)

7.2.5.1 Redundancy Types

The type of redundancy that is applied by the Persistency is defined by the set
of PersistencyRedundancyHandling classes aggregated as PersistencyDe-
ployment.redundancyHandling. The level to which redundancy is applied is de-
fined by the possible values of the PersistencyRedundancyHandlingScopeEnum,
which are persistencyRedundancyHandlingScopeStorage and persisten-
cyRedundancyHandlingScopeElement for a Key-Value Storage and its key-
-value pairs, or a File Storage and its files, respectively.

[SWS_PER_00318] dIn case a PersistencyRedundancyHandling aggregated
as PersistencyDeployment.redundancyHandling is derived as Persisten-
cyRedundancyCrc, the Persistency shall calculate a CRC value when persisting
the storage or an element of the storage (depending on PersistencyDeploy-
ment.redundancyHandling.scope), and shall use this CRC to check the storage
or the element when it is read back.c(RS_PER_00008, RS_PER_00009, RS_PER_-
00010)

[SWS_PER_00439] dPersistency shall calculate the CRC value using the al-
gorithm defined by PersistencyRedundancyCrc.algorithmFamily with the bit
width defined by PersistencyRedundancyCrc.length.c(RS_PER_00008, RS_-
PER_00009, RS_PER_00010)

38 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00319] dIn case a PersistencyRedundancyHandling aggregated
as PersistencyDeployment.redundancyHandling is derived as Persisten-
cyRedundancyMOutOfN, the Persistency shall store N copies when persisting the
storage or an element of the storage (depending on PersistencyDeployment.
redundancyHandling.scope), and shall check that at least M of the N copies of the
storage or the element are identical when it is read back. N is defined by n, and M
is defined by m.c(RS_PER_00008, RS_PER_00009, RS_PER_00010)

[SWS_PER_00447]{DRAFT} dIn case a PersistencyRedundancyHandling ag-
gregated as PersistencyDeployment.redundancyHandling is derived as Per-
sistencyRedundancyHash, the Persistency shall calculate a hash value when
persisting the storage or an element of the storage (depending on Persis-
tencyDeployment.redundancyHandling.scope), and shall use this hash value
to check the storage or the element when it is read back.c(RS_PER_00008, RS_-
PER_00009, RS_PER_00010)

[SWS_PER_00448]{DRAFT} dPersistency shall calculate the hash value using
the algorithm defined by PersistencyRedundancyHash.algorithmFamily with
the bit width defined by PersistencyRedundancyHash.length. If Persisten-
cyRedundancyHash.initializationVectorLength is configured, an initializa-
tion vector of this length shall be calculated containing random data and passed to the
hash algorithm.c(RS_PER_00008, RS_PER_00009, RS_PER_00010)

A possible approach to calculate the hash value and the random data would be to
use the Cryptography [5]. The integration will have to take care that the con-
figured PersistencyRedundancyHash.length and PersistencyRedundancy-
Hash.initializationVectorLength are supported by the configured Persis-
tencyRedundancyHash.algorithmFamily.

39 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.2.6 Installation and Update of Persistent Data

The Update and Configuration Management [6] handles the life cycle of Adap-
tive Applications with the following phases:

• Installation of new software

• Update of already installed software

• Finalization of updated software after the update succeeded

• Roll-back of updated software after the update failed

• Removal of installed software

For all these phases, persistent data needs to be handled alongside the appli-
cation. The Adaptive Application may trigger this handling explicitly by calling
ara::per::UpdatePersistency during the verification phase that follows the in-
stallation or update, or rely on the Persistency to do this implicitly when per-
sistent data is accessed (ara::per::OpenKeyValueStorage/ara::per::-
OpenFileStorage). In both cases, the Persistency will compare the stored man-
ifest version against the current manifest version, and perform the required action.

Persistency stores information about already installed storages together with ver-
sion information in a central location.

[SWS_PER_00463]{DRAFT} dPersistency shall store information about the
installed Key-Value Storages and File Storages in the location denoted
by ProcessToMachineMapping.persistencyCentralStorageURI of the Pro-
cessToMachineMapping that refers to the Process that is referenced by Persis-
tencyPortPrototypeToDeploymentMappings. It shall also store the current
manifest version in this location.c(RS_PER_00010, RS_PER_00012, RS_PER_-
00013, RS_PER_00014, RS_PER_00016)

[SWS_PER_00469] dWhen ara::per::UpdatePersistency is called, the Per-
sistency shall follow [SWS_PER_00382] (for installation), [SWS_PER_00386] and
[SWS_PER_00387] (for update), or [SWS_PER_00396] (for roll-back) for each stor-
age configured as PersistencyDeployment in the deployment data.c(RS_PER_-
00010, RS_PER_00012, RS_PER_00013, RS_PER_00014)

[SWS_PER_00470] dWhen a Key-Value Storage is opened by the applica-
tion using ara::per::OpenKeyValueStorage, the Persistency shall follow
[SWS_PER_00382] (for installation), [SWS_PER_00386] and [SWS_PER_00387] (for
update), [SWS_PER_00446] (for finalization), or [SWS_PER_00396] (for roll-back) for
this Key-Value Storage configured as PersistencyKeyValueStorage in the
deployment data.c(RS_PER_00010, RS_PER_00012, RS_PER_00013, RS_PER_-
00014, RS_PER_00016)

[SWS_PER_00471] dWhen a File Storage is opened by the applica-
tion using ara::per::OpenFileStorage, the Persistency shall follow
[SWS_PER_00382] (for installation), [SWS_PER_00386] and [SWS_PER_00387] (for

40 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

update), [SWS_PER_00446] (for finalization), or [SWS_PER_00396] (for roll-back)
for each File Storage configured as PersistencyFileStorage in the deploy-
ment data.c(RS_PER_00010, RS_PER_00012, RS_PER_00013, RS_PER_00014,
RS_PER_00016)

[SWS_PER_00378] dPersistency shall extract the Executable.version and the
PersistencyDeployment.version from the manifest, and store them persis-
tently in the location denoted by ProcessToMachineMapping.persistencyCen-
tralStorageURI.c(RS_PER_00010, RS_PER_00013, RS_PER_00014)

The Executable.version is used by Persistency to detect a change of the ap-
plication (see [SWS_PER_00387]), while the PersistencyDeployment.version is
used to detect a change of the deployed persistent data (see [SWS_PER_00386]
and [SWS_PER_00396]).

[SWS_PER_CONSTR_00001]{DRAFT} dWhen the Executable.version is in-
creased, the PersistencyDeployment.version needs to be increased, too.c(RS_-
PER_00010, RS_PER_00012)

The PersistencyDeployment.version and Executable.version are Stron-
gRevisionLabelStrings. These strings consists of a MajorVersion, a Mi-
norVersion, a PatchVersion, and additional labels for pre-release version and
build metadata. It is assumed that at least one of the first three will be incremented
when the version is changed, while the additional labels might be arbitrary.

[SWS_PER_CONSTR_00002]{DRAFT} dWhen the PersistencyDeployment.
version or Executable.version is increased, the MajorVersion, MinorVer-
sion, or PatchVersion have to be incremented.c(RS_PER_00010, RS_PER_-
00012)

After installation of the Adaptive Application, the Persistency will install pre-
defined persistent data from the manifest. There are different possibilities how
this persistent data can be defined in the manifest:

• Persistent data can be defined by an application designer within
PersistencyKeyValueStorageInterface or PersistencyFileStor-
ageInterface.

• Persistent data that was defined by an application designer can be changed
and fine-tuned by an integrator within PersistencyKeyValueStorage or
PersistencyFileStorage.

• Persistent data can be directly defined by an integrator within Persisten-
cyKeyValueStorage or PersistencyFileStorage.

[SWS_PER_00379] dElements defined in the deployment data (PersistencyDe-
ploymentElement) shall always be preferred over the elements defined in the ap-
plication design (PersistencyInterfaceElement). The latter shall only be used if
the former does not exist.c(RS_PER_00010, RS_PER_00012, RS_PER_00013)

41 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

After an update of the Adaptive Application or the manifest, the Persis-
tency will create a backup of the persistent data, and then update the existing
persistent data using one of the following strategies:

• Existing persistent data is kept unchanged (keepExisting).

• Existing persistent data is replaced (overwrite).

• Existing persistent data is removed (delete).

• New persistent data is added (keepExisting and overwrite).

The update strategy can be set during application design or deployment, and can
be defined for the whole Key-Value Storage or File Storage (Persistency-
CollectionLevelUpdateStrategyEnum – keepExisting or delete) and for a
single key-value pair or file (PersistencyElementLevelUpdateStrate-
gyEnum – keepExisting, overwrite, or delete).

[SWS_PER_00251] dAn update strategy defined in the deployment data (Persis-
tencyDeploymentElement.updateStrategy) shall always be preferred over the
update strategy defined in the application design (PersistencyInterfaceEle-
ment.updateStrategy). The latter shall only be used if the former does not exist.c
(RS_PER_00010, RS_PER_00012, RS_PER_00013)

PersistencyDeployment.updateStrategy is a mandatory attribute and therefore
PersistencyInterface.updateStrategy is just a recommendation for the de-
ployment and never used by Persistency.

[SWS_PER_00380] dAn update strategy defined for a single element (Persisten-
cyDeploymentElement.updateStrategy, PersistencyInterfaceElement.
updateStrategy) shall always be preferred over the update strategy defined for
the enclosing storage (PersistencyDeployment.updateStrategy, Persis-
tencyInterface.updateStrategy). The latter shall only be used if the former
does not exist.c(RS_PER_00010, RS_PER_00012, RS_PER_00013)

When the update succeeded, the Update and Configuration Management will
finalize the new Adaptive Application. The Persistency will free the resources
allocated by the last backup when it is opened the first time after the update succeeded.

When the update failed, the Update and Configuration Management will revert
to the old Adaptive Application and/or manifest. The Persistency will then
replace the currently used persistent data by the backup created during the up-
date.

Finally, when the Adaptive Application is removed, the Update and Config-
uration Management is responsible to remove the related persistent data as
well.

42 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.2.6.1 Installation of Persistent Data

[SWS_PER_00382] dWhen a storage is opened by the application, the Per-
sistency shall check for the existence of any persistent data of this Process.
If no persistent data is found, the Persistency shall initialize the persistent
data.c(RS_PER_00010, RS_PER_00012)

Initialization of persistent data is described in paragraph 7.2.6.1.1 and paragraph
7.2.6.1.2.

7.2.6.1.1 Installation of Key-Value Storage

[SWS_PER_00383] dPersistency shall create a Key-Value Storage for each
PortPrototype typed by a PersistencyKeyValueStorageInterface that is
found in the manifest of a newly installed Adaptive Application.c(RS_PER_-
00010, RS_PER_00012)

The Key-Value Storages created by [SWS_PER_00383] are identified at run-
time by the shortName path of the PortPrototype, passed as ara::core::In-
stanceSpecifier to ara::per::OpenKeyValueStorage.

[SWS_PER_00252] dPersistency shall create an entry in the Key-Value Stor-
age for each PersistencyKeyValueStorageInterface.dataElement and
PersistencyKeyValueStorage.keyValuePair that is found in the manifest of
a newly installed or updated Adaptive Application, and for which the update
strategy is not delete.c(RS_PER_00010, RS_PER_00012)

Key-Value Storage entries are identified by the key. An entry with identical
key might be defined both in the PersistencyKeyValueStorageInterface as
dataElement and the PersistencyKeyValueStorage as keyValuePair, in
which case [SWS_PER_00379] applies. The update strategy is determined accord-
ing to [SWS_PER_00251] and [SWS_PER_00380].

[SWS_PER_00253] dEntries in the Key-Value Storage shall use the shortName
of the PersistencyDataElement and/or PersistencyKeyValuePair as key.c
(RS_PER_00010, RS_PER_00012)

[SWS_PER_00254] dEntries in the Key-Value Storage shall be created with
the data type defined by the CppImplementationDataType which types the
PersistencyDataElement and/or by the CppImplementationDataType refer-
enced as PersistencyKeyValuePair.valueDataType.c(RS_PER_00010, RS_-
PER_00012)

[SWS_PER_00384] dEntries in the Key-Value Storage shall be created with the
value taken from the PersistencyKeyValuePair.initValue or, if that does
not exist, from the PersistencyDataRequiredComSpec.initValue.c(RS_PER_-
00010, RS_PER_00012)

43 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_CONSTR_00003] dA manifest is not valid if the value or data type of
any PersistencyKeyValuePair or PersistencyDataElement cannot be deter-
mined, or if the determined data types are conflicting.c(RS_PER_00010, RS_PER_-
00012)

Invalid manifests should be rejected by the tooling.

7.2.6.1.2 Installation of File Storage

[SWS_PER_00385] dPersistency shall create a File Storage for each Port-
Prototype typed by a PersistencyFileStorageInterface that is found in the
manifest of a newly installed Adaptive Application.c(RS_PER_00010, RS_-
PER_00012)

The File Storages created by [SWS_PER_00385] are identified at run-time by the
shortName path of the PortPrototype, passed as ara::core::InstanceSpec-
ifier to ara::per::OpenFileStorage.

[SWS_PER_00265] dPersistency shall create a file in the File Storage for
each PersistencyFileStorageInterface.fileElement and Persistency-
FileStorage.file that is found in the manifest of a newly installed or updated
Adaptive Application, and for which the update strategy is not delete.c(RS_-
PER_00010, RS_PER_00012)

The files within a File Storage are identified by their file name. A file with
the same file name might be defined both in the PersistencyFileStorageIn-
terface as fileElement and the PersistencyFileStorage as file, in which
case [SWS_PER_00379] applies. The update strategy is determined according to
[SWS_PER_00251] and [SWS_PER_00380].

[SWS_PER_00266] dFiles in the File Storage shall use the file name iden-
tified by PersistencyFileElement.fileName and/or PersistencyFile.file-
Name.c(RS_PER_00010, RS_PER_00012)

[SWS_PER_00267] dFiles in the File Storage shall be created with the content
taken from the resource (within the installed SoftwarePackage) that is addressed
by PersistencyFile.contentUri or, if that does not exist, by Persistency-
FileElement.contentUri. If that does not exist either, an empty file shall be
created.c(RS_PER_00010, RS_PER_00012)

[SWS_PER_CONSTR_00004] dA manifest is invalid if the shortNames of a Per-
sistencyFileElement and a PersistencyFile with the same file name dif-
fers.c(RS_PER_00010, RS_PER_00012)

Invalid manifests should be rejected by the tooling.

44 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.2.6.2 Update of Persistent Data

[SWS_PER_00386] dWhen a storage is opened by the application, the Per-
sistency shall compare the PersistencyDeployment.version in the manifest
against the stored version. If the version in the manifest is higher than the stored
version, the Persistency shall first create a backup of all the persistent data of
this Process and then update the data.c(RS_PER_00010, RS_PER_00013)

Only one set of backup data needs to be kept at any time. When a new update is
performed, old backup data could be overwritten. Update of persistent data is
described in paragraph 7.2.6.2.1 and paragraph 7.2.6.2.2.

[SWS_PER_00387] dIf the application registered a function using ara::per:-
:RegisterApplicationDataUpdateCallback, and if the Persistency had to
update at least one of its storages according to [SWS_PER_00386], it shall compare
the Executable.version in the manifest against the stored version. If the version
in the manifest is higher than the stored version, the Persistency shall call the reg-
istered function for each storage that was updated according to [SWS_PER_00386].c
(RS_PER_00010, RS_PER_00013)

The function registered by the application using ara::per::RegisterAppli-
cationDataUpdateCallback can be used by the application to update ele-
ments of a storage manually. The storage is identified by the ara::core::In-
stanceSpecifier provided to this function. The application might then, based
on the Executable.version of the stored data provided as second argument to the
function, read in the stored data in the old format or with the old type, convert the data,
and store it again with the new format or new type expected by the current version.

Example: Version 1 of the application stored the maximum speed in mph as uint8,
but version 2 expects the maximum speed in km/h as uint16. The update callback
function will then see that a Key-Value Storage from version 1 of the Executable
has been updated to the current version, and can read in the old maximum speed
by ara::per::KeyValueStorage::GetValue as uint8, convert it, and store it
as uint16 with ara::per::KeyValueStorage::SetValue after removing the old
value with ara::per::KeyValueStorage::RemoveKey.

7.2.6.2.1 Update of Key-Value Storage

[SWS_PER_00388] dWhen a new PortPrototype typed by a PersistencyKey-
ValueStorageInterface is detected in an updated manifest, the Persistency
shall create a Key-Value Storage as specified in [SWS_PER_00383].c(RS_PER_-
00010, RS_PER_00013)

[SWS_PER_00389] dWhen a PortPrototype typed by a PersistencyKeyVal-
ueStorageInterface is missing in an updated manifest, the Persistency
shall remove the corresponding Key-Value Storage.c(RS_PER_00010, RS_PER_-
00013)

45 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00390] dWhen a PersistencyKeyValueStorageInterface.
dataElement and/or a PersistencyKeyValueStorage.keyValuePair with
a new key is detected in an updated manifest, the Persistency shall cre-
ate a new entry in the Key-Value Storage as specified in [SWS_PER_00252],
[SWS_PER_00253], [SWS_PER_00254], and [SWS_PER_00384].c(RS_PER_00010,
RS_PER_00013)

[SWS_PER_00391] dWhen an existing key-value pair cannot be associated with
any PersistencyKeyValueStorageInterface.dataElement or Persisten-
cyKeyValueStorage.keyValuePair in an updated manifest, and the update
strategy of the PersistencyKeyValueStorage corresponding to the Key-Value
Storage is delete, the Persistency shall remove that key-value pair from
the Key-Value Storage.c(RS_PER_00010, RS_PER_00013)

The update strategy is determined according to [SWS_PER_00251].

[SWS_PER_00275] dWhen an existing key-value pair can be associated
with a PersistencyKeyValueStorageInterface.dataElement or Persis-
tencyKeyValueStorage.keyValuePair in an updated manifest, and the update
strategy is overwrite, the Persistency shall replace that key-value pair with
the new type and value as specified in [SWS_PER_00254] and [SWS_PER_00384].c
(RS_PER_00010, RS_PER_00013)

An entry with identical key might be defined both in the PersistencyKey-
ValueStorageInterface and the PersistencyKeyValueStorage, in which
case [SWS_PER_00379] applies. The update strategy is determined according to
[SWS_PER_00251] and [SWS_PER_00380].

[SWS_PER_00277] dWhen an existing key-value pair can be associated
with a PersistencyKeyValueStorageInterface.dataElement or Persis-
tencyKeyValueStorage.keyValuePair in an updated manifest, and the update
strategy is delete, the Persistency shall remove that key-value pair from the
Key-Value Storage.c(RS_PER_00010, RS_PER_00013)

Updated key-value pairs with the update strategy keepExisting will not be
touched during an update. Persistency will neither check the value nor the type of
the existing entry.

7.2.6.2.2 Update of File Storage

[SWS_PER_00392] dWhen a new PortPrototype typed by a Persistency-
FileStorageInterface is detected in an updated manifest, the Persistency
shall create a File Storage as specified in [SWS_PER_00385].c(RS_PER_00010,
RS_PER_00013)

[SWS_PER_00393] dWhen a PortPrototype typed by a PersistencyFileStor-
ageInterface is missing in an updated manifest, the Persistency shall remove
the corresponding File Storage.c(RS_PER_00010, RS_PER_00013)

46 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00394] dWhen a PersistencyFileStorageInterface.fileEle-
ment and/or PersistencyFileStorage.file with a new file name is de-
tected in an updated manifest, the Persistency shall create a new file in
the File Storage as specified in [SWS_PER_00265], [SWS_PER_00266], and
[SWS_PER_00267].c(RS_PER_00010, RS_PER_00013)

[SWS_PER_00395] dWhen an existing file cannot be associated with any Per-
sistencyFileStorageInterface.fileElement or PersistencyFileStor-
age.file in an updated manifest, and the update strategy of the Persistency-
FileStorage corresponding to the File Storage is delete, the Persistency
shall remove that file from the File Storage.c(RS_PER_00010, RS_PER_00013)

The update strategy is determined according to [SWS_PER_00251].

[SWS_PER_00281] dWhen an existing file can be associated with a Persisten-
cyFileStorageInterface.fileElement or PersistencyFileStorage.file
in an updated manifest, and the update strategy is overwrite, the Persis-
tency shall replace the content of that file with the new content as specified in
[SWS_PER_00267].c(RS_PER_00010, RS_PER_00013)

A file with the same file name might be defined both in the Persisten-
cyFileStorageInterface and the PersistencyFileStorage, in which case
[SWS_PER_00379] applies. The update strategy is determined according to
[SWS_PER_00251] and [SWS_PER_00380].

[SWS_PER_00283] dWhen an existing file can be associated with a Persisten-
cyFileStorageInterface.fileElement or PersistencyFileStorage.file
in an updated manifest, and the update strategy is delete, the Persistency shall
remove that file from the File Storage.c(RS_PER_00010, RS_PER_00013)

Updated files with the update strategy keepExisting will not be touched during
an update. Persistency will not check the content of the existing file.

7.2.6.3 Finalization of Persistent Data after Successful Update

After installation and update, Persistency will usually be called with ara::per::-
UpdatePersistency within the verification phase of the application. When this
succeeded, the application will be finalized by Update and Configuration
Management and then started again in normal execution mode. In this case, Per-
sistency should remove any backups that were created during a preceding update.

[SWS_PER_00446] dWhen a storage is opened by the application, and ara:-
:per::UpdatePersistency has not been called since Persistency was initial-
ized, the Persistency shall compare the PersistencyDeployment.version in
the manifest against the stored version. If the two versions are identical, the Per-
sistency shall remove all backup data of the storage.c(RS_PER_00016)

Update of persistent data is described in subsubsection 7.2.6.2.

47 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.2.6.4 Roll-Back of Persistent Data after Failed Update

[SWS_PER_00396] dWhen a storage is opened by the application, the Per-
sistency shall compare the PersistencyDeployment.version in the manifest
against the stored version. If the version in the manifest is lower than the stored
version, the Persistency shall compare the version in the manifest against the
version stored in backup data. If the versions match, the Persistency shall restore
the backup. Otherwise, it shall remove all storages, and re-install the persistent
data from the manifest.c(RS_PER_00014)

Initialization of persistent data is described in subsubsection 7.2.6.1.

7.2.6.5 Removal of Persistent Data

Persistency is not able to remove its own data when the Update and Con-
figuration Management removes an application, because the applica-
tion will not be executed in this case, and therefore Persistency does not
run. On the other hand, the Update and Configuration Management may use
the information in the manifest (ProcessToMachineMapping.persistencyCen-
tralStorageURI, PersistencyFileStorage.uri, and PersistencyKeyVal-
ueStorage.uri) to obtain the locations of persistent data, and, if it has access
to the locations, remove it.

48 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.2.7 Resource Management Concepts

The Persistency supports configuration of both an upper and a lower limit for the
resources used by a Key-Value Storage or a File Storage.

The lower limit may already be defined by the application developer using Persis-
tencyInterface.minimumSustainedSize.

During deployment, the integrator may update the lower limit using PersistencyDe-
ployment.minimumSustainedSize and add an upper limit using Persistency-
Deployment.maximumAllowedSize.

[SWS_PER_00320] dThe Persistency shall ensure that the space configured by
PersistencyDeployment.minimumSustainedSize is always available for the
storage.c(RS_PER_00010, RS_PER_00011)

One possibility to achieve this would be to initially allocate the minimum size during
deployment, and never reduce the size below this value when persistent data is
removed. But the implementation of the Persistency is free to chose other appro-
priate measures.

[SWS_PER_00321] dThe Persistency shall ensure that the space actually allocated
by a storage never surpasses the amount configured by PersistencyDeploy-
ment.maximumAllowedSize.c(RS_PER_00010, RS_PER_00011)

This could be ensured by supervising all write accesses to persistent data. But
again, the implementation of the Persistency is free to chose other appropriate
measures.

The application can also poll the amount of storage space currently occupied by a
complete Key-Value Storage or File Storage by using ara::per::GetCur-
rentKeyValueStorageSize or ara::per::GetCurrentFileStorageSize, re-
spectively. Naturally, the returned values will not drop below a configured minimum
size (PersistencyDeployment.minimumSustainedSize) or rise above a config-
ured maximum size (PersistencyDeployment.maximumAllowedSize).

[SWS_PER_00491]{DRAFT} dara::per::GetCurrentKeyValueStorageSize
shall return the total size of the storage space currently allocated to a Key-Value
Storage, including administrative data (apart from data stored in ProcessToMa-
chineMapping.persistencyCentralStorageURI), redundant data, and backup
data.c(RS_PER_00011)

[SWS_PER_00492] dara::per::GetCurrentFileStorageSize shall return the
total size of the storage space currently allocated to a File Storage, including ad-
ministrative data (apart from data stored in ProcessToMachineMapping.persis-
tencyCentralStorageURI), all its files, redundant data, and backup data.c(RS_-
PER_00011)

In addition, the application can poll the amount of storage space currently occupied
by a single file using ara::per::FileStorage::GetCurrentFileSize of an
open File Storage.

49 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00493]{DRAFT} dara::per::FileStorage::GetCurrentFile-
Size shall return the current size of the the passed file. This size shall reflect only
the data contained in the file. In case several redundant instances of the file exist,
the size of the currently accessed instance shall be returned.c(RS_PER_00011)

50 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.3 Key-Value Storage specific Features

To access a Key-Value Storage, the application has to call ara::per::-
OpenKeyValueStorage with the ara::core::InstanceSpecifier derived from
the manifest (a shortName path from the Executable to a PortPrototype or
a mapping derived from FunctionalClusterInteractsWithFunctionalClus-
terMapping). This call will return an ara::per::SharedHandle of an ara::-
per::KeyValueStorage. The Key-Value Storage is closed when the ara::-
per::SharedHandle and all of its copies go out of scope, or when ara::core::-
Deinitialize is called.

[SWS_PER_00506] dWhen ara::per::OpenKeyValueStorage is called, and
Persistency is properly initialized as described in [SWS_PER_00408], Persis-
tency shall create a temporary storage that provides access to the Key-Value
Storage identified by the ara::core::InstanceSpecifier, and shall create
and return an ara::per::SharedHandle of an ara::per::KeyValueStorage.c
(RS_PER_00002)

If ara::per::OpenKeyValueStorage is called without proper initialization,
[SWS_PER_00410] applies.

All operations on a Key-Value Storage will be done in a temporary storage cre-
ated during the call to ara::per::OpenKeyValueStorage, which the applica-
tion can persist using ara::per::KeyValueStorage::SyncToStorage, or re-
set to the last stored state with ara::per::KeyValueStorage::DiscardPend-
ingChanges.

Therefore, if the Key-Value Storage is just destructed (also implicitly when the
Process terminates), the Key-Value Storage is not updated, and the next time the
Key-Value Storage is accessed, the application will see the last saved state.

[SWS_PER_00331] dModifications of a Key-Value Storage that have not been per-
sisted with a call to ara::per::KeyValueStorage::SyncToStorage shall be dis-
carded when the Key-Value Storage is closed or the system is restarted, just as
if ara::per::KeyValueStorage::DiscardPendingChanges had been called.c
(RS_PER_00003)

Changes done by any thread (using a copy of the ara::per::SharedHandle) will
be immediately visible in all other threads. This also applies to ara::per::KeyVal-
ueStorage::DiscardPendingChanges, which resets the key-value pairs in
all threads, and to ara::per::KeyValueStorage::SyncToStorage, which per-
sists all changes done by any thread.

[SWS_PER_00494] dWhen ara::per::KeyValueStorage::SyncToStorage is
called, Persistency shall store all changes permanently that have been done to
the Key-Value Storage since the last call to this method or since the Key-Value
Storage was opened. Persistency shall also update any configured redundancy
within this call.c(RS_PER_00001)

The handling of redundancy is described in detail in subsection 7.2.5.

51 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00495] dWhen ara::per::KeyValueStorage::DiscardPend-
ingChanges is called, Persistency shall reset the Key-Value Storage to
the last persisted state, which is the state after the last call to ara::per::Key-
ValueStorage::SyncToStorage or after opening the Key-Value Storage.c
(RS_PER_00001)

Single key-value pairs of the Key-Value Storage are accessed using ara:-
:per::KeyValueStorage::GetValue and ara::per::KeyValueStorage::-
SetValue. ara::per::KeyValueStorage::SetValue may also be used to cre-
ate a key-value pair.

[SWS_PER_00496] dWhen ara::per::KeyValueStorage::GetValue is called,
Persistency shall first check whether the key-value pair is present in the tem-
porary storage, and otherwise return directly with kKeyNotFound.c(RS_PER_00002,
RS_PER_00003)

[SWS_PER_00497] dWhen ara::per::KeyValueStorage::GetValue is called
for an existing key-value pair, Persistency shall check whether the tem-
plated data type matches the stored data type, and otherwise return directly with
kDataTypeMismatch.c(RS_PER_00002, RS_PER_00003)

[SWS_PER_00498] dWhen ara::per::KeyValueStorage::GetValue is called
for an existing key-value pair with the correct templated data type, Persistency
shall return the stored value of the key-value pair, or, if the value was recently
changed by ara::per::KeyValueStorage::SetValue (also in another thread),
this new temporary value.c(RS_PER_00002, RS_PER_00003)

[SWS_PER_00499] dWhen ara::per::KeyValueStorage::SetValue is called
for an existing key-value pair, Persistency shall check whether the tem-
plated data type matches the stored data type, and otherwise return directly with
kDataTypeMismatch.c(RS_PER_00001, RS_PER_00003)

[SWS_PER_00534] dWhen ara::per::KeyValueStorage::SetValue is called
for an existing key-value pair with the correct templated data type, Persistency
shall store the new value of the key-value pair in the temporary storage.c(RS_-
PER_00001, RS_PER_00003)

[SWS_PER_00501] dWhen ara::per::KeyValueStorage::SetValue is called,
and the key-value pair does not exist in the temporary storage, Persistency
shall create the key-value pair with the templated data type and the provided
value in the temporary storage.c(RS_PER_00001, RS_PER_00003)

To remove a single key-value pair, the application may use ara::per:-
:KeyValueStorage::RemoveKey, while ara::per::KeyValueStorage::Re-
moveAllKeys empties the Key-Value Storage. The type of a key-value pair
may be changed by first removing it, and then creating it with the new type.

[SWS_PER_00502]{DRAFT} dWhen ara::per::KeyValueStorage::Re-
moveKey is called, Persistency shall first check whether the key-value pair is

52 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

present in the temporary storage, and otherwise return directly with kKeyNotFound.c
(RS_PER_00001, RS_PER_00003)

[SWS_PER_00535] dWhen ara::per::KeyValueStorage::RemoveKey is called
for an existing key-value pair, Persistency shall remove the key-value pair
from the temporary storage.c(RS_PER_00001, RS_PER_00003)

[SWS_PER_00503] dWhen ara::per::KeyValueStorage::RemoveAllKeys is
called, Persistency shall remove all key-value pairs from the temporary stor-
age, resulting in an empty Key-Value Storage.c(RS_PER_00001)

Finally, the application can check for the existence of a single key with ara::-
per::KeyValueStorage::KeyExists, and acquire a list of all currently available
keys using ara::per::KeyValueStorage::GetAllKeys.

[SWS_PER_00504] dara::per::KeyValueStorage::KeyExists shall return
true if the key is present in the temporary storage, otherwise it shall return false.c
(RS_PER_00003)

[SWS_PER_00505] dara::per::KeyValueStorage::GetAllKeys shall return
an ara::core::Vector of ara::core::String, containing all the keys that are
present in the temporary storage. If the temporary storage is empty, an empty ara:-
:core::Vector shall be returned.c(RS_PER_00003)

7.3.1 Supported Data Types in Key-Value Storages

The Persistency supports the following classes of data types in the functions ara:-
:per::KeyValueStorage::GetValue (templated via T) and ara::per::Key-
ValueStorage::SetValue (templated via T) of a Key-Value Storage.

[SWS_PER_00302] dThe Persistency shall be able to store all data types described
in [10] in a Key-Value Storage.c(RS_PER_00001)

[SWS_PER_00303] dThe Persistency shall be able to store serialized binary data
in a Key-Value Storage. Serialized binary data has to be presented as ara::-
core::Vector of ara::core::Byte.c(RS_PER_00001)

This allows the application to store custom data types.

[SWS_PER_00304] dThe Persistency shall be able to store all CppImple-
mentationDataTypes referred via PersistencyKeyValueStorageInterface.
dataTypeForSerialization or via PersistencyKeyValueStorageInter-
face.dataElement in the application design of a PersistencyKeyValueStorage
in the corresponding Key-Value Storage. See [3].c(RS_PER_00001, RS_PER_-
00010)

53 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

7.4 File Storage specific Features

To access a File Storage, the application has to call ara::per::Open-
FileStorage with the ara::core::InstanceSpecifier derived from the man-
ifest (a shortName path from the Executable to a PortPrototype or a
mapping derived from FunctionalClusterInteractsWithFunctionalClus-
terMapping). This call will return an ara::per::SharedHandle of an ara:-
:per::FileStorage. The File Storage is closed when the ara::per::-
SharedHandle and all of its copies go out of scope, or when ara::core::Deini-
tialize is called.

[SWS_PER_00507] dWhen ara::per::OpenFileStorage is called, and Persis-
tency is properly initialized as described in [SWS_PER_00408], Persistency shall
create the necessary structures to access the File Storage identified by the ara:-
:core::InstanceSpecifier, and create and return an ara::per::SharedHan-
dle of an ara::per::FileStorage.c(RS_PER_00004)

If ara::per::OpenFileStorage is called without proper initialization,
[SWS_PER_00410] applies.

To check for the existence of a single file, the application may call ara:-
:per::FileStorage::FileExists, and ara::per::FileStorage::GetAll-
FileNames will return a list of all currently available files of the File Storage.

[SWS_PER_00508] dara::per::FileStorage::FileExists shall return true if
the file is present in the File Storage, otherwise it shall return false.c(RS_PER_-
00004)

[SWS_PER_00509] dara::per::FileStorage::GetAllFileNames shall return
an ara::core::Vector of ara::core::String, containing the file names of
all the files that are present in the File Storage. If the File Storage is empty,
an empty ara::core::Vector shall be returned.c(RS_PER_00004)

Files may be have been installed with the application or may have been cre-
ated during an update. To create new files, the application may use ara:-
:per::FileStorage::OpenFileReadWrite or ara::per::FileStorage::-
OpenFileWriteOnly, and it can use ara::per::FileStorage::DeleteFile to
remove any file.

[SWS_PER_00510]{DRAFT} dWhen ara::per::FileStorage::DeleteFile is
called, Persistency shall first check whether the file is present in the File Stor-
age, and otherwise return directly with kFileNotFound.c(RS_PER_00004)

[SWS_PER_00511] dWhen ara::per::FileStorage::DeleteFile is called for
an existing file, Persistency shall remove the file from the File Storage.c
(RS_PER_00004)

To access a file of a File Storage, the application has to call ara::per:-
:FileStorage::OpenFileReadWrite, ara::per::FileStorage::OpenFil-
eReadOnly, or ara::per::FileStorage::OpenFileWriteOnly with the file

54 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

name of the file. These calls will return an ara::per::UniqueHandle of an
ara::per::ReadAccessor or ara::per::ReadWriteAccessor.

[SWS_PER_00512] dWhen ara::per::FileStorage::OpenFileReadOnly (or
one of the overloaded versions ara::per::FileStorage::OpenFileReadOnly
with ara::per::OpenMode or ara::per::FileStorage::OpenFileReadOnly
with ara::per::OpenMode and separate buffer) is called, Persistency shall cre-
ate the necessary structures to access the file identified by the file name, and
create and return an ara::per::UniqueHandle of an ara::per::ReadAcces-
sor.c(RS_PER_00004)

[SWS_PER_00513] dWhen ara::per::FileStorage::OpenFileReadWrite
or ara::per::FileStorage::OpenFileWriteOnly (or one of their over-
loaded versions ara::per::FileStorage::OpenFileReadWrite with ara:-
:per::OpenMode, ara::per::FileStorage::OpenFileReadWrite with
ara::per::OpenMode and separate buffer, ara::per::FileStorage::Open-
FileWriteOnly with ara::per::OpenMode, or ara::per::FileStorage::-
OpenFileWriteOnly with ara::per::OpenMode and separate buffer) are called,
Persistency shall create the necessary structures to access the file identified
by the file name, and create and return an ara::per::UniqueHandle of an
ara::per::ReadWriteAccessor.c(RS_PER_00004)

The file is closed when the ara::per::UniqueHandle goes out of scope, or when
ara::core::Deinitialize is called.

[SWS_PER_00457] dWhen a file is closed, Persistency shall ensure that all
changes to the file are persisted. This does not need to be done immediately like
when ara::per::ReadWriteAccessor::SyncToFile is called, but may happen
at a later time, latest when the file is opened again, or ara::core::Deinitial-
ize is called.c(RS_PER_00004)

Some of the overloads of the file opening functions receive an ara::per::Open-
Mode as an argument. OpenModes can be combined using the operators “|” and “|=”.

[SWS_PER_00514] dara::per::operator “|” and ara::per::operator “|=”
take two ara::per::OpenMode arguments and return the combined ara::per:-
:OpenMode.c(RS_PER_00004)

All files of Persistency are implicitly readable, even when opened as "write only",
which is expressed by ara::per::ReadWriteAccessor inheriting from ara::-
per::ReadAccessor. The ara::per::ReadAccessor class consequently also
offers the methods related to file positions.

[SWS_PER_00515]{DRAFT} dara::per::ReadAccessor::SetPosition shall
set the file position to the provided position. If the provided position is located out-
side of the current content of the file (including the position at the end of the file),
ara::per::ReadAccessor::SetPosition shall keep the previous file position
and return kInvalidPosition.c(RS_PER_00004)

55 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00516]{DRAFT} dara::per::ReadAccessor::MovePosition shall
move the file position to offset bytes according to the provided origin. If the new
position would be located outside of the current content of the file (including the po-
sition at the end of the file), ara::per::ReadAccessor::MovePosition shall
keep the previous file position and return kInvalidPosition.c(RS_PER_00004)

[SWS_PER_00517] dara::per::ReadAccessor::GetPosition shall return the
current read/write position in the file. In the case of an empty file, the position
shall be returned as 0.c(RS_PER_00004)

[SWS_PER_00518]{DRAFT} dara::per::ReadAccessor::IsEof shall return
true if the position is the last possible position in the file, i.e. the position directly
after the last character in the file, or 0 in case the file is empty.c(RS_PER_00004)

ara::per::ReadAccessor::IsEof will return true if the current position corre-
sponds to the total file size, which can be obtained separately using ara::per::-
ReadAccessor::GetSize.

[SWS_PER_00519]{DRAFT} dara::per::ReadAccessor::GetSize shall return
the current total size of the file.c(RS_PER_00004)

Persistency does not care whether the content of a file is text or some binary
data, and therefore offers separate methods to access the file content as text or as
binary data. To read content from a text file, the application may use one of the
following methods of the ara::per::ReadAccessor class:

[SWS_PER_00520] dara::per::ReadAccessor::PeekChar shall return the
character at the current file position without changing the position.c(RS_PER_-
00004)

[SWS_PER_00521] dara::per::ReadAccessor::GetChar shall return the char-
acter at the current file position and advance the position by one.c(RS_PER_00004)

[SWS_PER_00522] dara::per::ReadAccessor::ReadText shall read the text
from the current position to the end of the file and return it as an ara::core:-
:String. The position shall be set to the end of the file.c(RS_PER_00004)

[SWS_PER_00523] dara::per::ReadAccessor::ReadText shall read the n
characters of text from the current position and return them as an ara::core::-
String. The position shall be incremented by n. In case the end of the file is
reached during this operation, the available characters shall be returned, and the posi-
tion shall be set to the end of the file.c(RS_PER_00004)

[SWS_PER_00524] dara::per::ReadAccessor::ReadLine shall read all char-
acters until the delimiter (defaulting to the newline character) or the end of the file
is reached, and return them as a ara::core::String. The delimiter shall not be
included in the returned ara::core::String. The position shall be set to the char-
acter following the delimiter or the end of the file.c(RS_PER_00004)

All these functions return characters with a size of eight bits, which are just so-called
code units in case of UTF-8, not code points. Persistency itself does not change or

56 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

interpret the content of a file when accessing it in text mode. It is assumed, though,
that files in the File Storage are encoded as UTF-8 (see [RS_AP_00136]; this
is also in line with the constraint for StdCppImplementationDataType of category
STRING in [3], see [constr_1674]). It is also assumed that line endings are handled
according to UNIX conventions, i.e. just LF ("\n").

The following methods of the ara::per::ReadAccessor class can be used by an
application to read binary content from a file:

[SWS_PER_00525] dara::per::ReadAccessor::PeekByte shall return the byte
at the current file position without changing the position.c(RS_PER_00004)

[SWS_PER_00526] dara::per::ReadAccessor::GetByte shall return the byte
at the current file position and advance the position by one.c(RS_PER_00004)

[SWS_PER_00527] dara::per::ReadAccessor::ReadBinary shall read binary
data from the current position to the end of the file and return it as an ara::core:-
:Vector of ara::core::Byte. The position shall be set to the end of the file.c
(RS_PER_00004)

[SWS_PER_00528] dara::per::ReadAccessor::ReadBinary shall read the n
characters of text from the current position and return them as an ara::core::-
Vector of ara::core::Byte. The position shall be incremented by n. In case the
end of the file is reached during this operation, the available bytes shall be returned,
and the position shall be set to the end of the file.c(RS_PER_00004)

To write text to files, the application may use the ara::per::ReadWriteAc-
cessor::WriteText method or the ara::per::ReadWriteAccessor::opera-
tor "«" of the ara::per::ReadWriteAccessor class, which treat text in the same
way as described above for e.g. ara::per::ReadAccessor::ReadText.

[SWS_PER_00529]{DRAFT} dara::per::ReadWriteAccessor::WriteText
shall write the characters provided as ara::core::StringView to the file,
overwriting current content and advancing the end of the file if necessary. The
position shall be set to character following the last character that was written during
this operation, or to the end of the file.c(RS_PER_00004)

[SWS_PER_00530]{DRAFT} dara::per::ReadWriteAccessor::operator "«"
shall write the characters provided as ara::core::StringView to the file, over-
writing current content and advancing the end of the file if necessary. The position
shall be set to character following the last character that was written during this op-
eration, or to the end of the file. If an error occurs during this operation, the file
content might be partially updated and the resulting file position might not be as
expected.c(RS_PER_00004)

To write binary data to a file, the application may use the method ara::per:-
:ReadWriteAccessor::WriteBinary of the ara::per::ReadWriteAccessor
class.

[SWS_PER_00531]{DRAFT} dara::per::ReadWriteAccessor::WriteBinary
shall write the bytes provided as ara::core::Span of ara::core::Byte to the

57 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

file, overwriting current content and advancing the end of the file if necessary.
The position shall be set to byte following the last byte that was written during this
operation, or to the end of the file.c(RS_PER_00004)

The application may use ara::per::ReadWriteAccessor::SetFileSize to
explicitly set the file size to a defined value in order to truncate a file or to empty
it. Enlarging files is not supported by ara::per::ReadWriteAccessor::Set-
FileSize.

[SWS_PER_00532]{DRAFT} dara::per::ReadWriteAccessor::SetFileSize
shall set the file size to the provided value. The read/write position shall be set to the
end of the file if the current position is higher than the new file size. If the provided
value is larger than the current file size, ara::per::ReadWriteAccessor::-
SetFileSize shall return kInvalidSize.c(RS_PER_00004)

When the application changed a file, Persistency will ensure that these
changes are persisted. This can happen at any time, and latest when the file
is closed. To trigger an additional synchronization of the file content to the per-
sistent storage, the application may call ara::per::ReadWriteAccessor::-
SyncToFile.

[SWS_PER_00533] dWhen ara::per::ReadWriteAccessor::SyncToFile is
called, Persistency shall start writing the content of the file to the persistent stor-
age. The actual update of the persistent storage may still be ongoing or may not even
have started when this call returns.c(RS_PER_00004)

7.4.1 Access to Additional Information about Files

To gain information about stored files, the Persistency provides the method
ara::per::FileStorage::GetFileInfo. This method returns information about
the time the file was created (creationTime), last modified (modification-
Time), and last accessed (accessTime), and how and by whom it was created (
fileCreationState) and last modified (fileModificationState).

[SWS_PER_00440] dThe method ara::per::FileStorage::GetFileInfo shall
gather the required information into a ara::per::FileInfo struct and return it to
the application.c(RS_PER_00004)

In case the Persistency uses a file system of the underlying OS, part of that infor-
mation (like the creation or access time) can be obtained from the file system. This
information might not be accurate if the file is currently open.

[SWS_PER_00458]{DRAFT} dIf creationTime, modificationTime, or ac-
cessTime are not available, they shall be set to 0.c(RS_PER_00004)

As an example, the accessTime is not available for a read-only File Storage, and
would therefore be reported as “midnight 1970-01-01”.

58 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8 API Specification

The APIs for accessing File Storages and Key-Value Storage are completely
separate, and therefore divided into separate sections. Additional sections describe
common functionality.

The API of Persistency is designed around the ara::per::SharedHandle and
ara::per::UniqueHandle, which are returned by factory functions like ara:-
:per::OpenKeyValueStorage or ara::per::FileStorage::OpenFileRead-
Write. The classes defined in this chapter cannot be constructed directly by the
Adaptive Application, and consequently the default constructors are considered
to be not publicly accessible (i.e. to be deleted, private, or protected).

8.1 General Features of Persistency

8.1.1 ara::core Types

The ara::per API is based heavily on the ara::core types defined in [2].

ara::core::Result is used wherever possible, and because of this, most methods
are defined as noexcept.

Consequently, in situations where memory cannot be allocated for new objects, the
Persistency shall terminate the process by calling ara::core::Abort (see [2]).

59 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.1.2 Update and Removal of Persistent Data

The Persistency allows for updating and resetting/removing all installed Key-
-Value Storages and File Storages. And the application may also register
a callback function that is called after the update of any Key-Value Storage and
File Storage.

8.1.2.1 RegisterApplicationDataUpdateCallback

[SWS_PER_00356] d

Kind: function

Symbol: RegisterApplicationDataUpdateCallback(std::function< void(const ara::core::InstanceSpecifier
&storage, ara::core::String version)> appDataUpdateCallback)

Scope: namespace ara::per

Syntax: void RegisterApplicationDataUpdateCallback (std::function< void(const
ara::core::InstanceSpecifier &storage, ara::core::String version)> app
DataUpdateCallback) noexcept;

Parameters (in): appDataUpdateCallback The callback function to be called by Persistency
after an update of persistent data took place. The
function will be called with the shortName path of an
updated Key-Value Storage or File Storage, and with
the Executable version with which the Persistency
was last accessed.

Return value: None

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/update.h"

Description: Registers an application data update callback with Persistency.

The provided callback function will be called by Persistency if an update of stored application
data might be necessary. This decision is based on the Executable versions.

The version that last accessed Persistency is provided as an argument to the callback, as well
as the InstanceSpecifier referring to the updated Key-Value Storage or File Storage. Based on
this information, the application can decide which updates are actually necessary, e.g. a
migration from any older version could be supported, with different steps required for each of
these.

The provided function will be called from the context of UpdatePersistency(), OpenKeyValue
Storage(), or OpenFileStorage().

c(RS_PER_00013, RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00132)

8.1.2.2 UpdatePersistency

[SWS_PER_00357] d

Kind: function

Symbol: UpdatePersistency()

5

60 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Scope: namespace ara::per

Syntax: ara::core::Result<void> UpdatePersistency () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails during the
update operation.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails during the update operation.

PerErrc::kResourceBusy Returned if ResetPersistency is currently being
executed, or if RecoverKeyValueStorage or Reset
KeyValueStorage is currently being executed for any
Key-Value Storage, or if RecoverAllFiles or ResetAll
Files is currently being executed for any File
Storage, or a SharedHandle of a Key-Value Storage
or a File Storage is currently in use.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the update.

Header file: #include "ara/per/update.h"

Description: Updates all Persistency File Storages and Key-Value Storages after a new manifest was
installed.

This method can be used to update the persistent data of the application during verification
phase.

c(RS_PER_00013, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00132)

8.1.2.3 ResetPersistency

[SWS_PER_00358] d

Kind: function

Symbol: ResetPersistency()

Scope: namespace ara::per

Syntax: ara::core::Result<void> ResetPersistency () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

Errors: PerErrc::kPhysicalStorageFailure Returned if access to the storage fails during the
reset operation.

5

61 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
PerErrc::kResourceBusy Returned if UpdatePersistency is currently being

executed, or if RecoverKeyValueStorage or Reset
KeyValueStorage is currently being executed for any
Key-Value Storage, or if RecoverAllFiles or ResetAll
Files is currently being executed for any File
Storage, or a SharedHandle of a Key-Value Storage
or a File Storage is currently in use.

Header file: #include "ara/per/update.h"

Description: Resets all File Storages and Key-Value Storages by entirely removing their content.

The File Storages and Key-Value Storages will be re-created when OpenFileStorage or Open
KeyValueStorage is called next time.

c(RS_PER_00009, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00132)

62 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.1.3 Redundancy Handling

The Persistency supports redundant storage of Key-Value Storages, File
Storages, and the key-value pairs and files contained in these. An error in
the stored data that can be fixed using the redundantly stored data will be implicitly
fixed when the Key-Value Storage or File Storage is accessed, an error is only
returned by Persistency when the redundancy fails. To be able to track whether
storage errors have been fixed using the available redundancy, the application
can register the following callback function.

8.1.3.1 RecoveryReportKind

[SWS_PER_00432] d

Kind: enumeration

Symbol: RecoveryReportKind

Scope: namespace ara::per

Underlying type: std::uint32_t

Syntax: enum class RecoveryReportKind : std::uint32_t {...};

kKeyValueStorageRecoveryFailed= 1 A Key-Value Storage was corrupted, an insufficient
number of valid copies existed. storage contains the
short-name path of the Key-Value Storage, reported
Elements is empty, reportedInstances contains the
indices of the affected Key-Value Storage copies.

kKeyValueStorageRecovered= 2 A Key-Value Storage was corrupted, but a sufficient
number of valid copies existed. storage contains the
short-name path of the Key-Value Storage, reported
Elements is empty, reportedInstances contains the
indices of the affected Key-Value Storage copies.

kKeyRecoveryFailed= 3 A set of key-value pairs was corrupted, an
insufficient number of valid copies existed. storage
contains the short-name path of the Key-Value
Storage, reportedElements contains the list of
affected keys, reportedInstances contains the
indices of the affected Key-Value Storage or
key-value pair copies. In general, the nth key in
reportedElements corresponds to the nth index in
reportedInstances, i.e. a key may be reported
several times if several copies are broken. In case
only one key-value pair is affected, reported
Elements may be provided containing just this key.

Values:

kKeyRecovered= 4 A set of key-value pairs was corrupted, but a
sufficient number of valid copies existed. storage
contains the short-name path of the Key-Value
Storage, reportedElements contains the list of
affected keys, reportedInstances contains the
indices of the affected Key-Value Storage or
key-value pair copies. In general, the nth key in
reportedElements corresponds to the nth index in
reportedInstances, i.e. a key may be reported
several times if several copies are broken. In case
only one key-value pair is affected, reported
Elements may be provided containing just this key.

5

63 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
kFileStorageRecoveryFailed= 5 A File Storage was corrupted, an insufficient number

of valid copies existed. storage contains the
short-name path of the File Storage, reported
Elements is empty, reportedInstances contains the
indices of the affected File Storage copies.

kFileStorageRecovered= 6 A File Storage was corrupted, but a sufficient
number of valid copies existed. storage contains the
short-name path of the File Storage, reported
Elements is empty, reportedInstances contains the
indices of the affected File Storage copies.

kFileRecoveryFailed= 7 A set of files was corrupted, an insufficient number
of valid copies existed. storage contains the
short-name path of the File Storage, reported
Elements contains the list of affected file names,
reportedInstances contains the indices of the
affected File Storage or file copies. In general, the
nth file name in reportedElements corresponds to
the nth index in reportedInstances, i.e. a file name
may be reported several times if several copies are
broken. In case only one file is affected, reported
Elements may be provided containing just this file
name.

kFileRecovered= 8 A set of files was corrupted, but a sufficient number
of valid copies existed. storage contains the
short-name path of the File Storage, reported
Elements contains the list of affected file names,
reportedInstances contains the indices of the
affected File Storage or file copies. In general, the
nth file name in reportedElements corresponds to
the nth index in reportedInstances, i.e. a file name
may be reported several times if several copies are
broken. In case only one file is affected, reported
Elements may be provided containing just this file
name.

Header file: #include "ara/per/recovery.h"

Description: Defines the reported recovery actions.

c(RS_PER_00008, RS_AP_00122)

8.1.3.2 RegisterRecoveryReportCallback

[SWS_PER_00433] d

Kind: function

Symbol: RegisterRecoveryReportCallback(std::function< void(const ara::core::InstanceSpecifier
&storage, ara::per::RecoveryReportKind recoveryReportKind, ara::core::Vector<
ara::core::String > reportedElements, ara::core::Vector< std::uint8_t > reportedInstances)>
recoveryReportCallback)

Scope: namespace ara::per

Syntax: void RegisterRecoveryReportCallback (std::function< void(const
ara::core::InstanceSpecifier &storage, ara::per::RecoveryReportKind
recoveryReportKind, ara::core::Vector< ara::core::String > reported
Elements, ara::core::Vector< std::uint8_t > reportedInstances)>
recoveryReportCallback) noexcept;

5

64 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Parameters (in): recoveryReportCallback The callback function to be called by Persistency to

report errors in the stored data that were corrected
using the available redundancy. The function will be
called with the shortName path of the affected
Key-Value Storage or File Storage in storage and
information on what has been corrected, placed in
the parameters recoveryReportKind, reported
Elements, and reportedInstances.

Return value: None

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/recovery.h"

Description: Register a recovery reporting callback with Persistency.

This callback can be used in safety-aware applications to detect actions of the Persistency that
are related to the correctness of the persisted data and the reliability of the storage.

c(RS_PER_00008, RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00132)

65 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.1.4 Handle Classes

This section contains the definition of the handle classes used in the API of the Per-
sistency. The ara::per::SharedHandle (templated via typenameT) is used to
provide shared access to either a ara::per::KeyValueStorage or a ara::per:-
:FileStorage, while the ara::per::UniqueHandle (templated via typenameT)
is used to provide non-shared access to either a ara::per::ReadAccessor or a
ara::per::ReadWriteAccessor to a File Storage.

8.1.4.1 SharedHandle Class

[SWS_PER_00362] d

Kind: class

Symbol: SharedHandle

Scope: namespace ara::per

Syntax: template <typename T>
class SharedHandle final {...};

Template param: typename T –

Header file: #include "ara/per/shared_handle.h"

Description: Handle to a File Storage or Key-Value Storage.

A SharedHandle is returned by the functions OpenFileStorage() and OpenKeyValueStorage()
and can be passed between threads as needed.

It provides the abstraction that is necessary to allow thread-safe implementation of OpenFile
Storage() and OpenKeyValueStorage().

c(RS_PER_00002, RS_AP_00122)

8.1.4.1.1 SharedHandle::SharedHandle

[SWS_PER_00367] d

Kind: function

Symbol: SharedHandle(SharedHandle &&sh)

Scope: class ara::per::SharedHandle

Syntax: SharedHandle (SharedHandle &&sh) noexcept;

Parameters (in): sh The SharedHandle object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Move constructor for SharedHandle.

The source handle object is invalidated and cannot be used anymore.

The operator bool() shall be used to check the state of a handle object before using any other
operators of the handle object.

66 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00369] d

Kind: function

Symbol: SharedHandle(const SharedHandle &sh)

Scope: class ara::per::SharedHandle

Syntax: SharedHandle (const SharedHandle &sh) noexcept;

Parameters (in): sh The SharedHandle object to be copied.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Copy constructor for SharedHandle.

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

8.1.4.1.2 SharedHandle::operator=

[SWS_PER_00368] d

Kind: function

Symbol: operator=(SharedHandle &&sh)

Scope: class ara::per::SharedHandle

Syntax: SharedHandle& operator= (SharedHandle &&sh) &noexcept;

Parameters (in): sh The SharedHandle object to be moved.

Return value: SharedHandle & The moved SharedHandle object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Move assignment operator for SharedHandle.

The source handle object is invalidated and cannot be used anymore.

The operator bool() shall be used to check the state of a handle object before using any other
operators of the handle object.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00370] d

Kind: function

Symbol: operator=(const SharedHandle &sh)

Scope: class ara::per::SharedHandle

Syntax: SharedHandle& operator= (const SharedHandle &sh) &noexcept;

Parameters (in): sh The SharedHandle object to be copied.

Return value: SharedHandle & The moved SharedHandle object.

Exception Safety: noexcept

5

67 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Copy assignment operator for SharedHandle.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.1.4.1.3 SharedHandle::operator bool

[SWS_PER_00398] d

Kind: function

Symbol: operator bool()

Scope: class ara::per::SharedHandle

Syntax: explicit operator bool () const noexcept;

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Handle state.

True if the handle represents a valid object of the templated class, False if the handle is empty
(e.g. after a move operation).

Using other operators than bool() of an empty handle will result in undefined behavior.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

8.1.4.1.4 SharedHandle::Operator->

[SWS_PER_00363] d

Kind: function

Symbol: operator->()

Scope: class ara::per::SharedHandle

Syntax: T* operator-> () noexcept;

Return value: T * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Non-constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

[SWS_PER_00364] d

68 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: operator->()

Scope: class ara::per::SharedHandle

Syntax: const T* operator-> () const noexcept;

Return value: const T * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

8.1.4.1.5 SharedHandle::Operator*

[SWS_PER_00402] d

Kind: function

Symbol: operator*()

Scope: class ara::per::SharedHandle

Syntax: T& operator* () noexcept;

Return value: T & –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Non-constant dereference operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

[SWS_PER_00403] d

Kind: function

Symbol: operator*()

Scope: class ara::per::SharedHandle

Syntax: const T& operator* () const noexcept;

Return value: const T & –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Constant dereference operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

69 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.1.4.2 UniqueHandle Class

[SWS_PER_00359] d

Kind: class

Symbol: UniqueHandle

Scope: namespace ara::per

Syntax: template <typename T>
class UniqueHandle final {...};

Template param: typename T –

Header file: #include "ara/per/unique_handle.h"

Description: Handle to a ReadAccessor or ReadWriteAccessor.

A UniqueHandle is returned by the functions OpenFileReadOnly(), OpenFileWriteOnly(), and
OpenFileReadWrite().

c(RS_PER_00002, RS_AP_00122)

8.1.4.2.1 UniqueHandle::UniqueHandle

[SWS_PER_00371] d

Kind: function

Symbol: UniqueHandle(UniqueHandle &&uh)

Scope: class ara::per::UniqueHandle

Syntax: UniqueHandle (UniqueHandle &&uh) noexcept;

Parameters (in): uh The UniqueHandle object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Move constructor for UniqueHandle.

The source handle object is invalidated and cannot be used anymore.

The operator bool() shall be used to check the state of a handle object before using any other
operators of the handle object.

c(RS_PER_00002, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00373] d

Kind: function

Symbol: UniqueHandle(const UniqueHandle &)

Scope: class ara::per::UniqueHandle

Syntax: UniqueHandle (const UniqueHandle &)=delete;

Header file: #include "ara/per/unique_handle.h"

Description: The copy constructor for UniqueHandle shall not be used.

c(RS_PER_00002, RS_AP_00120)

70 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.1.4.2.2 UniqueHandle::operator=

[SWS_PER_00372] d

Kind: function

Symbol: operator=(UniqueHandle &&uh)

Scope: class ara::per::UniqueHandle

Syntax: UniqueHandle& operator= (UniqueHandle &&uh) &noexcept;

Parameters (in): uh The UniqueHandle object to be moved.

Return value: UniqueHandle & The moved UniqueHandle object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Move assignment operator for UniqueHandle.

The source handle object is invalidated and cannot be used anymore.

The operator bool() shall be used to check the state of a handle object before using any other
operators of the handle object.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00374] d

Kind: function

Symbol: operator=(const UniqueHandle &)

Scope: class ara::per::UniqueHandle

Syntax: UniqueHandle& operator= (const UniqueHandle &)=delete;

Header file: #include "ara/per/unique_handle.h"

Description: The copy assignment operator for UniqueHandle shall not be used.

c(RS_PER_00002, RS_AP_00120)

8.1.4.2.3 UniqueHandle::operator bool

[SWS_PER_00399] d

Kind: function

Symbol: operator bool()

Scope: class ara::per::UniqueHandle

Syntax: explicit operator bool () const noexcept;

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

5

71 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Description: Handle state.

True if the handle represents a valid object of the templated class, False if the handle is empty
(e.g. after a move operation).

Using other operators than bool() of an empty handle will result in undefined behavior.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

8.1.4.2.4 UniqueHandle::Operator->

[SWS_PER_00360] d

Kind: function

Symbol: operator->()

Scope: class ara::per::UniqueHandle

Syntax: T* operator-> () noexcept;

Return value: T * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Non-constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

[SWS_PER_00361] d

Kind: function

Symbol: operator->()

Scope: class ara::per::UniqueHandle

Syntax: const T* operator-> () const noexcept;

Return value: const T * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

8.1.4.2.5 UniqueHandle::Operator*

[SWS_PER_00400] d

72 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: operator*()

Scope: class ara::per::UniqueHandle

Syntax: T& operator* () noexcept;

Return value: T & –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Non-constant dereference operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

[SWS_PER_00401] d

Kind: function

Symbol: operator*()

Scope: class ara::per::UniqueHandle

Syntax: const T& operator* () const noexcept;

Return value: const T & –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Constant dereference operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

73 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.1.5 Errors

The Persistency implements an error handling based on ara::core::Result.
The errors supported by the Persistency are listed in subsubsection 8.1.5.1.

8.1.5.1 PerErrc

[SWS_PER_00311] d

Kind: enumeration

Symbol: PerErrc

Scope: namespace ara::per

Underlying type: ara::core::ErrorDomain::CodeType

Syntax: enum class PerErrc : ara::core::ErrorDomain::CodeType {...};

kStorageNotFound= 1 The requested Key-Value Storage or File Storage is
not configured in the AUTOSAR model.

kKeyNotFound= 2 The provided key cannot be not found in the
Key-Value Storage.

kIllegalWriteAccess= 3 Opening a file for writing or changing, or
synchronizing a key-value pair failed, because the
storage is configured read-only.

kPhysicalStorageFailure= 4 An error occurred when accessing the physical
storage, e.g. because of a corrupted file system or
corrupted hardware, or because of insufficient
access rights.

kIntegrityCorrupted= 5 The structural integrity of the storage could not be
established. This can happen when the internal
structure of a Key-Value Storage or the meta data of
a File Storage is corrupted.

kValidationFailed= 6 The validation of redundancy measures failed for a
single key-value pair, for the whole Key-Value
Storage, for a single file, or for the whole File
Storage.

kEncryptionFailed= 7 The encryption or decryption failed for a single
key-value pair, for the whole Key-Value Storage, for
a single file, or for the whole File Storage.

kDataTypeMismatch= 8 The provided data type does not match the stored
data type.

kInitValueNotAvailable= 9 The operation could not be performed because no
initial value is available.

kResourceBusy= 10 The operation could not be performed because the
resource is currently busy.

kOutOfStorageSpace= 12 The allocated storage quota was exceeded.

kFileNotFound= 13 The requested file name cannot be not found in the
File Storage.

kInvalidPosition= 15 SetPosition tried to move to a position that is not
reachable (i.e. which is smaller than zero or greater
than the current size of the file).

Values:

kIsEof= 16 The application tried to read from the end of the file
or from an empty file.

5

74 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
kInvalidOpenMode= 17 Opening a file failed because the requested

combination of OpenModes is invalid.

kInvalidSize= 18 SetFileSize tried to set a new size that is bigger than
the current file size.

Header file: #include "ara/per/per_error_domain.h"

Description: Defines the errors for Persistency.

The enumeration values 0 - 255 are reserved for AUTOSAR assigned errors, the stack provider
is free to define additional errors starting from 256.

c(RS_AP_00122, RS_AP_00127)

8.1.5.2 GetPerDomain

[SWS_PER_00352] d

Kind: function

Symbol: GetPerDomain()

Scope: namespace ara::per

Syntax: constexpr const ara::core::ErrorDomain& GetPerDomain () noexcept;

Return value: const ara::core::ErrorDomain & The global PerErrorDomain object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/per_error_domain.h"

Description: Returns the global PerErrorDomain object.

c(RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.1.5.3 MakeErrorCode

[SWS_PER_00351] d

Kind: function

Symbol: MakeErrorCode(PerErrc code, ara::core::ErrorDomain::SupportDataType data)

Scope: namespace ara::per

Syntax: constexpr ara::core::ErrorCode MakeErrorCode (PerErrc code,
ara::core::ErrorDomain::SupportDataType data) noexcept;

code Error code number.Parameters (in):
data Vendor defined data associated with the error.

Return value: ara::core::ErrorCode An ErrorCode object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/per_error_domain.h"

5

75 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Description: Creates an error code.

c(RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.1.5.4 PerException Class

[SWS_PER_00354] d

Kind: class

Symbol: PerException

Scope: namespace ara::per

Base class: ara::core::Exception

Syntax: class PerException : public Exception {...};

Header file: #include "ara/per/per_error_domain.h"

Description: Exception type thrown by Persistency.

c(RS_AP_00122, RS_AP_00127)

8.1.5.4.1 PerException::PerException

[SWS_PER_00355] d

Kind: function

Symbol: PerException(ara::core::ErrorCode errorCode)

Scope: class ara::per::PerException

Syntax: explicit PerException (ara::core::ErrorCode errorCode) noexcept;

Parameters (in): errorCode The error code.

Exception Safety: noexcept

Header file: #include "ara/per/per_error_domain.h"

Description: Construct a new Persistency exception object containing an error code.

c(RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.1.5.5 PerErrorDomain Class

The error handling requires an ara::core::ErrorDomain, which can be used to
check the errors returned via ara::core::Result.

[SWS_PER_00312] d

76 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: class

Symbol: PerErrorDomain

Scope: namespace ara::per

Base class: ara::core::ErrorDomain

Syntax: class PerErrorDomain final : public ErrorDomain {...};

Unique ID: 0x8000’0000’0000’0101

Header file: #include "ara/per/per_error_domain.h"

Description: Defines the error domain for Persistency.

c(RS_AP_00122, RS_AP_00127)

8.1.5.5.1 PerErrorDomain::Errc

[SWS_PER_00411] d

Kind: type alias

Symbol: Errc

Scope: class ara::per::PerErrorDomain

Derived from: PerErrc

Syntax: using Errc = PerErrc;

Header file: #include "ara/per/per_error_domain.h"

Description: Alias for the error code value enumeration.

c(RS_AP_00122)

8.1.5.5.2 PerErrorDomain::Exception

[SWS_PER_00412] d

Kind: type alias

Symbol: Exception

Scope: class ara::per::PerErrorDomain

Derived from: PerException

Syntax: using Exception = PerException;

Header file: #include "ara/per/per_error_domain.h"

Description: Alias for the exception base class.

c(RS_AP_00122)

8.1.5.5.3 PerErrorDomain::PerErrorDomain

[SWS_PER_00313] d

77 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: PerErrorDomain()

Scope: class ara::per::PerErrorDomain

Syntax: PerErrorDomain () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/per_error_domain.h"

Description: Creates a PerErrorDomain instance.

c(RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.1.5.5.4 PerErrorDomain::Name

[SWS_PER_00314] d

Kind: function

Symbol: Name()

Scope: class ara::per::PerErrorDomain

Syntax: const char* Name () const noexcept override;

Return value: const char * The name of the error domain.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/per_error_domain.h"

Description: Returns the name of the error domain.

c(RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.1.5.5.5 PerErrorDomain::Message

[SWS_PER_00315] d

Kind: function

Symbol: Message(CodeType errorCode)

Scope: class ara::per::PerErrorDomain

Syntax: const char* Message (CodeType errorCode) const noexcept override;

Parameters (in): errorCode The error code number.

Return value: const char * The message associated with the error code.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/per_error_domain.h"

Description: Returns the message associated with the error code.

c(RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

78 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.1.5.5.6 PerErrorDomain::ThrowAsException

[SWS_PER_00350] d

Kind: function

Symbol: ThrowAsException(const ara::core::ErrorCode &errorCode)

Scope: class ara::per::PerErrorDomain

Syntax: void ThrowAsException (const ara::core::ErrorCode &errorCode) const
override;

Parameters (in): errorCode The error to throw.

Return value: None

Thread Safety: no

Header file: #include "ara/per/per_error_domain.h"

Description: Throws the exception associated with the error code.

c(RS_AP_00120, RS_AP_00121)

79 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.2 Key-Value Storage

This section lists all functions and classes that are required to operate a Key-Value
Storage.

The following functions are used to get access to a Key-Value Storage, to recover
as much as possible after it was corrupted, to reset it to the deployed defaults, and to
get the amount of storage space allocated to the Key-Value Storage.

8.2.1 OpenKeyValueStorage

[SWS_PER_00052] d

Kind: function

Symbol: OpenKeyValueStorage(const ara::core::InstanceSpecifier &kvs)

Scope: namespace ara::per

Syntax: ara::core::Result<SharedHandle<KeyValueStorage> > OpenKeyValueStorage
(const ara::core::InstanceSpecifier &kvs) noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueStorageInterface.

Return value: ara::core::Result< SharedHandle< Key
ValueStorage > >

A Result containing a SharedHandle for the Key
ValueStorage. In case of an error, it contains any of
the errors defined below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyKeyValueStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if RecoverKeyValue
Storage or ResetKeyValueStorage is currently being
executed for the same Key-Value Storage.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated values.

Header file: #include "ara/per/key_value_storage.h"

Description: Opens a Key-Value Storage.

OpenKeyValueStorage will fail with kResourceBusy when the Key-Value Storage is currently
being modified by a call from another thread to UpdatePersistency, ResetPersistency, Recover
KeyValueStorage, or ResetKeyValueStorage.

Because multiple threads can access the same Key-Value Storage concurrently, the Key-Value
Storage might not be closed when the SharedHandle returned by this function goes out of
scope. It will only be closed when all SharedHandles that refer to the same Key-Value Storage
went out of scope.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132, RS_AP_00144)

80 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.2.2 RecoverKeyValueStorage

[SWS_PER_00333] d

Kind: function

Symbol: RecoverKeyValueStorage(const ara::core::InstanceSpecifier &kvs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> RecoverKeyValueStorage (const
ara::core::InstanceSpecifier &kvs) noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueStorageInterface.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyKeyValueStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if ResetKeyValue
Storage is currently being executed for the same
Key-Value Storage, or a SharedHandle of the same
Key-Value Storage is currently in use.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated values.

Header file: #include "ara/per/key_value_storage.h"

Description: Recovers a Key-ValueStorage.

RecoverKeyValueStorage allows to recover a Key-Value Storage when the redundancy checks
fail.

It will fail with kResourceBusy when the Key-Value Storage is currently open, or when it is
modified by a call from another thread to UpdatePersistency, ResetPersistency, RecoverKey
ValueStorage, or ResetKeyValueStorage.

This method does a best-effort recovery of all key-value pairs. After recovery, keys might show
outdated or initial value, or might be lost.

c(RS_PER_00003, RS_PER_00009, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.2.3 ResetKeyValueStorage

[SWS_PER_00334] d

Kind: function

Symbol: ResetKeyValueStorage(const ara::core::InstanceSpecifier &kvs)

Scope: namespace ara::per

5

81 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Syntax: ara::core::Result<void> ResetKeyValueStorage (const

ara::core::InstanceSpecifier &kvs) noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueStorageInterface.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyKeyValueStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if RecoverKeyValue
Storage is currently being executed for the same
Key-Value Storage, or a SharedHandle of the same
Key-Value Storage is currently in use.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated values.

Header file: #include "ara/per/key_value_storage.h"

Description: Resets a Key-Value Storage to the initial state.

ResetKeyValueStorage allows to reset a Key-Value Storage to the initial state, containing only
key-value pairs which were deployed from the manifest, with their initial values. Afterwards, the
Key-Value Storage will appear as if it was newly installed from the current manifest.

It will fail with kResourceBusy when the Key-Value Storage is currently open, or when it is
modified by a call from another thread to UpdatePersistency, ResetPersistency, RecoverKey
ValueStorage, or ResetKeyValueStorage.

c(RS_PER_00003, RS_PER_00009, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.2.4 GetCurrentKeyValueStorageSize

[SWS_PER_00405] d

Kind: function

Symbol: GetCurrentKeyValueStorageSize(const ara::core::InstanceSpecifier &kvs)

Scope: namespace ara::per

Syntax: ara::core::Result<std::uint64_t> GetCurrentKeyValueStorageSize (const
ara::core::InstanceSpecifier &kvs) noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueStorageInterface.

Return value: ara::core::Result< std::uint64_t > A Result containing the occupied space in bytes. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

5

82 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyKeyValueStorageInterface
configured for this Executable.

Errors:

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

Header file: #include "ara/per/key_value_storage.h"

Description: Returns the space in bytes currently occupied by a Key-Value Storage.

The returned size includes all meta data and the space used for redundancy and backups.

The returned size is only accurate if no other operation on the Key-Value Storage takes place at
the same time.

c(RS_PER_00017, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.5 KeyValueStorage Class

This section shows the methods available for a ara::per::KeyValueStorage ob-
ject obtained from a call to ara::per::OpenKeyValueStorage.

[SWS_PER_00339] d

Kind: class

Symbol: KeyValueStorage

Scope: namespace ara::per

Syntax: class KeyValueStorage final {...};

Header file: #include "ara/per/key_value_storage.h"

Description: The Key-Value Storage contains a set of keys with associated values.

c(RS_PER_00002, RS_AP_00122, RS_AP_00146)

8.2.5.1 KeyValueStorage::KeyValueStorage

[SWS_PER_00459]{DRAFT} d

Kind: function

Symbol: KeyValueStorage()

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage ()=delete;

Header file: #include "ara/per/key_value_storage.h"

Description: The default constructor for KeyValueStorage shall not be used.

c(RS_PER_00002, RS_AP_00120, RS_AP_00129, RS_AP_00146)

[SWS_PER_00322] d

83 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: KeyValueStorage(KeyValueStorage &&kvs)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage (KeyValueStorage &&kvs)=delete;

Header file: #include "ara/per/key_value_storage.h"

Description: The move constructor for KeyValueStorage shall not be used.

c(RS_PER_00002, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00324] d

Kind: function

Symbol: KeyValueStorage(const KeyValueStorage &)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage (const KeyValueStorage &)=delete;

Header file: #include "ara/per/key_value_storage.h"

Description: The copy constructor for KeyValueStorage shall not be used.

c(RS_PER_00002, RS_AP_00120)

8.2.5.2 KeyValueStorage::operator=

[SWS_PER_00323] d

Kind: function

Symbol: operator=(KeyValueStorage &&kvs)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage& operator= (KeyValueStorage &&kvs) &=delete;

Header file: #include "ara/per/key_value_storage.h"

Description: The move assignment operator for KeyValueStorage shall not be used.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00325] d

Kind: function

Symbol: operator=(const KeyValueStorage &)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage& operator= (const KeyValueStorage &)=delete;

Header file: #include "ara/per/key_value_storage.h"

Description: The copy assignment operator for KeyValueStorage shall not be used.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120)

84 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.2.5.3 KeyValueStorage::~KeyValueStorage

[SWS_PER_00050] d

Kind: function

Symbol: ~KeyValueStorage()

Scope: class ara::per::KeyValueStorage

Syntax: ~KeyValueStorage () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/key_value_storage.h"

Description: Destructor for KeyValueStorage.

c(RS_PER_00002, RS_AP_00120, RS_AP_00129, RS_AP_00132, RS_AP_00134)

8.2.5.4 KeyValueStorage::GetAllKeys

[SWS_PER_00042] d

Kind: function

Symbol: GetAllKeys()

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<ara::core::Vector<ara::core::String> > GetAllKeys ()
const noexcept;

Return value: ara::core::Result< ara::core::Vector<
ara::core::String > >

A Result containing a list of available keys. In case
of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

Errors:

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Header file: #include "ara/per/key_value_storage.h"

Description: Returns a list of all currently available keys of this Key-Value Storage.

The list of keys is only accurate if no key-value pair is added or deleted at the same time.

c(RS_PER_00003, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00129,
RS_AP_00132)

8.2.5.5 KeyValueStorage::KeyExists

[SWS_PER_00043] d

85 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: KeyExists(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<bool> KeyExists (ara::core::StringView key) const
noexcept;

Parameters (in): key The key that shall be checked.

Return value: ara::core::Result< bool > A Result containing true if the key could be located
or false if it couldn’t. In case of an error, it contains
any of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

Errors:

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Header file: #include "ara/per/key_value_storage.h"

Description: Checks if a key-value pair exists in this Key-Value Storage.

The result is only accurate if no key-value pair is added or deleted at the same time. E.g. when
a key-value pair is removed in another thread directly after this function returned "true", the
result is not valid anymore.

c(RS_PER_00003, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00132)

8.2.5.6 KeyValueStorage::GetValue

[SWS_PER_00332] d

Kind: function

Symbol: GetValue(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: template <class T>
ara::core::Result<T> GetValue (ara::core::StringView key) const
noexcept;

Template param: T The type of the value that shall be retrieved.

Parameters (in): key The key to look up.

Return value: ara::core::Result< T > A Result containing the retrieved value. In case of
an error, it contains any of the errors defined below,
or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kKeyNotFound Returned if the provided key does not exist in the
Key-Value Storage.

Errors:

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

5

86 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the

structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kDataTypeMismatch Returned if the data type of stored value does not
match the templated type.

Header file: #include "ara/per/key_value_storage.h"

Description: Returns the value assigned to a key of this Key-Value Storage.

GetValue may be delayed by an ongoing call from another thread to RemoveAllKeys or Discard
PendingChanges, or to SetValue, RemoveKey, RecoverKey, or ResetKey for the same
key-value pair.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.5.7 KeyValueStorage::SetValue

[SWS_PER_00046] d

Kind: function

Symbol: SetValue(ara::core::StringView key, const T &value)

Scope: class ara::per::KeyValueStorage

Syntax: template <class T>
ara::core::Result<void> SetValue (ara::core::StringView key, const T
&value) noexcept;

Template param: T The type of the value that shall be set.

key The key to assign the value to.Parameters (in):

value The value to store.
Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any

of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the Key-Value Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kDataTypeMismatch Returned if the data type of an already stored value
does not match the templated type.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated value.

Header file: #include "ara/per/key_value_storage.h"

5

87 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Description: Stores a key-value pair in this Key-Value Storage.

If a value already exists and has the same data type as the new value, it is overwritten. If the
new value has a different data type than the stored value, kDataTypeMismatch is returned.

SetValue may be delayed by an ongoing call from another thread to RemoveAllKeys, SyncTo
Storage, or DiscardPendingChanges, or to SetValue, GetValue, RemoveKey, RecoverKey, or
ResetKey for the same key-value pair.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.5.8 KeyValueStorage::RemoveKey

[SWS_PER_00047] d

Kind: function

Symbol: RemoveKey(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> RemoveKey (ara::core::StringView key)
noexcept;

Parameters (in): key The key to be removed.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kKeyNotFound Returned if the provided key does not exist in the
Key-Value Storage.

PerErrc::kIllegalWriteAccess Returned if the Key-Value Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

Errors:

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

Header file: #include "ara/per/key_value_storage.h"

Description: Removes a key and the associated value from this Key-Value Storage.

RemoveKey may be delayed by an ongoing call from another thread to RemoveAllKeys, SyncTo
Storage, or DiscardPendingChanges, or to SetValue, GetValue, RemoveKey, RecoverKey, or
ResetKey for the same key-value pair.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.5.9 KeyValueStorage::RecoverKey

[SWS_PER_00427] d

88 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: RecoverKey(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> RecoverKey (ara::core::StringView key)
noexcept;

Parameters (in): key The key to be recovered.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kKeyNotFound Returned if the provided key does not exist in the
Key-Value Storage.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the restored value.

Header file: #include "ara/per/key_value_storage.h"

Description: Recovers a single key-value pair of this Key Value Storage.

This method allows to recover a single key-value pair when the redundancy checks fail.

This method does a best-effort recovery of the key-value pair. After recovery, the key-value pair
might contain outdated or initial content, or might be lost.

RecoverKey may be delayed by an ongoing call from another thread to RemoveAllKeys, SyncTo
Storage, or DiscardPendingChanges, or to SetValue, GetValue, RemoveKey, RecoverKey, or
ResetKey for the same key-value pair.

c(RS_PER_00003, RS_PER_00009, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.2.5.10 KeyValueStorage::ResetKey

[SWS_PER_00426] d

Kind: function

Symbol: ResetKey(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> ResetKey (ara::core::StringView key) noexcept;

Parameters (in): key The key to be reset.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

5

89 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
PerErrc::kIllegalWriteAccess Returned if the Key-Value Storage is configured as

read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kInitValueNotAvailable Returned if no intitial value was configured for this
key.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the restored value.

Header file: #include "ara/per/key_value_storage.h"

Description: Resets a key of this Key-Value Storage to its initial value.

ResetKey allows to reset a single key to its initial value. If the key is currently not available in the
Key-Value Storage, it is re-created. Afterwards, the key-value pair will appear in both cases as if
it was newly installed from the current manifest.

ResetKey will fail with kInitValueNotAvailable when neither design nor deployment define an
initial value for the key.

ResetKey may be delayed by an ongoing call from another thread to RemoveAllKeys, SyncTo
Storage, or DiscardPendingChanges, or to SetValue, GetValue, RemoveKey, RecoverKey, or
ResetKey for the same key-value pair.

c(RS_PER_00003, RS_PER_00009, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.2.5.11 KeyValueStorage::RemoveAllKeys

[SWS_PER_00048] d

Kind: function

Symbol: RemoveAllKeys()

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> RemoveAllKeys () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the Key-Value Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

Errors:

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

Header file: #include "ara/per/key_value_storage.h"

5

90 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Description: Removes all key-value pairs and associated values from this Key-Value Storage.

RemoveAllKeys may be delayed by an ongoing call from another thread to RemoveAllKeys,
SyncToStorage, DiscardPendingChanges, SetValue, GetValue, RemoveKey, RecoverKey, or
ResetKey.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.5.12 KeyValueStorage::SyncToStorage

[SWS_PER_00049] d

Kind: function

Symbol: SyncToStorage()

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> SyncToStorage () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the Key-Value Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated values.

Header file: #include "ara/per/key_value_storage.h"

Description: Triggers flushing of changed key-value pairs of the Key-Value Storage to the physical storage.

SyncToStorage may be delayed by an ongoing call from another thread to RemoveAllKeys,
DiscardPendingChanges, SetValue, RemoveKey, RecoverKey, or ResetKey.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00129, RS_AP_00132)

8.2.5.13 KeyValueStorage::DiscardPendingChanges

[SWS_PER_00365] d

Kind: function

Symbol: DiscardPendingChanges()

5

91 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> DiscardPendingChanges () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

Errors:

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Header file: #include "ara/per/key_value_storage.h"

Description: Removes all pending changes to this Key-Value Storage since the last call to SyncToStorage()
or since this Key-Value Storage was opened using OpenKeyValueStorage().

DiscardPendingChanges may be delayed by an ongoing call from another thread to RemoveAll
Keys, SyncToStorage, DiscardPendingChanges, SetValue, GetValue, RemoveKey, RecoverKey,
or ResetKey.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00129, RS_AP_00132)

92 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.3 File Storage

This section lists all functions and classes that are required to operate a File Stor-
age.

The following functions are used to get access to a File Storage, to recover as
much as possible after it was corrupted, to reset it to the deployed defaults, and to get
the amount of storage space allocated to the File Storage. In addition, operators
are present to combine the ara::per::OpenMode values passed as mode to the
OpenFile* functions.

8.3.1 OpenFileStorage

[SWS_PER_00116] d

Kind: function

Symbol: OpenFileStorage(const ara::core::InstanceSpecifier &fs)

Scope: namespace ara::per

Syntax: ara::core::Result<SharedHandle<FileStorage> > OpenFileStorage (const
ara::core::InstanceSpecifier &fs) noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileStorageInterface.

Return value: ara::core::Result< SharedHandle< File
Storage > >

A Result containing a SharedHandle for the File
Storage. In case of an error, it contains any of the
errors defined below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyFileStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if RecoverAllFiles or
ResetAllFiles is currently being executed for the
same File Storage.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated files.

Header file: #include "ara/per/file_storage.h"

Description: Opens a File Storage.

OpenFileStorage will fail with kResourceBusy when the File Storage is currently being modified
by a call from another thread to UpdatePersistency, ResetPersistency, RecoverAllFiles, or
ResetAllFiles.

Because multiple threads can access the same File Storage concurrently, the File Storage
might not be closed when the SharedHandle returned by this function goes out of scope. It will
only be closed when all SharedHandles that refer to the same File Storage went out of scope.

93 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132, RS_AP_00144)

8.3.2 RecoverAllFiles

[SWS_PER_00335] d

Kind: function

Symbol: RecoverAllFiles(const ara::core::InstanceSpecifier &fs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> RecoverAllFiles (const ara::core::Instance
Specifier &fs) noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileStorageInterface.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyFileStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if ResetAllFiles is
currently being executed for the same File Storage,
or a SharedHandle of the same File Storage is
currently in use.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the restored files.

Header file: #include "ara/per/file_storage.h"

Description: Recovers a File Storage, including all files.

RecoverAllFiles recovers a File Storage when the redundancy checks fail.

It will fail with kResourceBusy when the File Storage is currently open, or when it is modified by
a call from another thread to UpdatePersistency, ResetPersistency, RecoverAllFiles, or ResetAll
Files.

This method does a best-effort recovery of all files. After recovery, files might show outdated or
initial content, or might be lost.

c(RS_PER_00001, RS_PER_00004, RS_PER_00009, RS_PER_00010, RS_AP_-
00119, RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_-
00129, RS_AP_00132)

8.3.3 ResetAllFiles

[SWS_PER_00336] d

94 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: ResetAllFiles(const ara::core::InstanceSpecifier &fs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> ResetAllFiles (const ara::core::Instance
Specifier &fs) noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileStorageInterface.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyFileStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if RecoverAllFiles is
currently being executed for the same File Storage,
or a SharedHandle of the same File Storage is
currently in use.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the restored files.

Header file: #include "ara/per/file_storage.h"

Description: Resets a File Storage, including all files.

ResetAllFiles resets a File Storage to the initial state, containing only the files which were
deployed from the manifest, with their initial content. Afterwards, the File Storage will appear as
if it was newly installed from the current manifest.

It will fail with kResourceBusy when the File Storage is currently open, or when it is modified by
a call from another thread to UpdatePersistency, ResetPersistency, RecoverAllFiles, or ResetAll
Files.

c(RS_PER_00001, RS_PER_00004, RS_PER_00009, RS_PER_00010, RS_AP_-
00119, RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_-
00129, RS_AP_00132)

8.3.4 GetCurrentFileStorageSize

[SWS_PER_00406] d

Kind: function

Symbol: GetCurrentFileStorageSize(const ara::core::InstanceSpecifier &fs)

Scope: namespace ara::per

Syntax: ara::core::Result<std::uint64_t> GetCurrentFileStorageSize (const
ara::core::InstanceSpecifier &fs) noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileStorageInterface.

5

95 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Return value: ara::core::Result< std::uint64_t > A Result containing the occupied space in bytes. In

case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyFileStorageInterface
configured for this Executable.

Errors:

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

Header file: #include "ara/per/file_storage.h"

Description: Returns the space in bytes currently occupied by a File Storage.

The returned size includes all meta data and the space used for redundancy and backups.

The returned size is only accurate if no other operation on the File Storage takes place at the
same time.

c(RS_PER_00017, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.3.5 OpenMode

[SWS_PER_00147] d

Kind: enumeration

Symbol: OpenMode

Scope: namespace ara::per

Underlying type: std::uint32_t

Syntax: enum class OpenMode : std::uint32_t {...};

kAtTheBeginning= 1 << 0 Sets the seek position to the beginning of the file
when the file is opened. This mode cannot be
combined with kAtTheEnd.

kAtTheEnd= 1 << 1 Sets the seek position to the end of the file when the
file is opened. This mode cannot be combined with
kAtTheBeginning or kTruncate.

kTruncate= 1 << 2 Removes existing content when the file is opened.
This mode cannot be combined with kAtTheEnd.

Values:

kAppend= 1 << 3 Append to the end. Always seeks to the end of the
file before writing.

Header file: #include "ara/per/file_storage.h"

Description: This enumeration defines how a file shall be opened.

The values can be combined (using | and |=) as long as they do not contradict each other.

c(RS_PER_00003, RS_AP_00122)

8.3.6 operator| for FileStorage::OpenMode

[SWS_PER_00144] d

96 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: operator|(OpenMode left, OpenMode right)

Scope: namespace ara::per

Syntax: constexpr OpenMode operator| (OpenMode left, OpenMode right);

left First OpenMode modifiers.Parameters (in):

right Second OpenMode modifiers.

Return value: OpenMode returns Merged OpenMode modifiers.

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Merges two OpenMode modifiers into one.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121)

8.3.7 operator|= for FileStorage::OpenMode

[SWS_PER_00434] d

Kind: function

Symbol: operator|=(OpenMode &left, const OpenMode &right)

Scope: namespace ara::per

Syntax: OpenMode& operator|= (OpenMode &left, const OpenMode &right);

left Left OpenMode modifiers.Parameters (in):

right Right OpenMode modifiers.

Return value: OpenMode & returns The modified OpenMode.

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Merges an OpenMode modifier into this OpenMode.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121)

8.3.8 FileCreationState

[SWS_PER_00435] d

Kind: enumeration

Symbol: FileCreationState

Scope: namespace ara::per

Underlying type: std::uint32_t

Syntax: enum class FileCreationState : std::uint32_t {...};

Values: kCreatedDuringInstallion= 1 The file was created by Persistency after installation
of the application or after ResetPersistency.

5

97 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
kCreatedDuringUpdate= 2 The file was created by Persistency during an

update.

kCreatedDuringReset= 3 The file was re-created due to a call to ResetFile or
ResetAllFiles.

kCreatedDuringRecovery= 4 The file was re-created by Persistency after a
corruption was detected.

kCreatedByApplication= 5 The file was created by the application.

Header file: #include "ara/per/file_storage.h"

Description: This enumeration describes how and when a file was created.

c(RS_PER_00004, RS_AP_00122)

8.3.9 FileModificationState

[SWS_PER_00436] d

Kind: enumeration

Symbol: FileModificationState

Scope: namespace ara::per

Underlying type: std::uint32_t

Syntax: enum class FileModificationState : std::uint32_t {...};

kModifiedDuringUpdate= 2 The file was last modified by Persistency during an
update.

kModifiedDuringReset= 3 The file was last modified by Persistency due to a
call to ResetFile or ResetAllFiles.

kModifiedDuringRecovery= 4 The file was last modified by Persistency after a
corruption was detected.

Values:

kModifiedByApplication= 5 The file was last modified by the application.

Header file: #include "ara/per/file_storage.h"

Description: This enumeration describes how and when a file was last modified.

c(RS_PER_00004, RS_AP_00122)

8.3.10 FileInfo

[SWS_PER_00437] d

Kind: struct

Symbol: FileInfo

Scope: namespace ara::per

Syntax: struct FileInfo {...};

Header file: #include "ara/per/file_storage.h"

Description: This structure contains additional information on a file returned by GetFileInfo.

98 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

c(RS_PER_00004, RS_AP_00122)

8.3.10.1 FileInfo.creationTime

[SWS_PER_00441] d

Kind: variable

Symbol: creationTime

Scope: struct ara::per::FileInfo

Type: std::uint64_t

Syntax: std::uint64_t creationTime;

Header file: #include "ara/per/file_storage.h"

Description: Time in nanoseconds since midnight 1970-01-01 UTC at which the file was created.

c(RS_PER_00004)

8.3.10.2 FileInfo.modificationTime

[SWS_PER_00442] d

Kind: variable

Symbol: modificationTime

Scope: struct ara::per::FileInfo

Type: std::uint64_t

Syntax: std::uint64_t modificationTime;

Header file: #include "ara/per/file_storage.h"

Description: Time in nanoseconds since midnight 1970-01-01 UTC at which the file was last modified.

c(RS_PER_00004)

8.3.10.3 FileInfo.accessTime

[SWS_PER_00443] d

Kind: variable

Symbol: accessTime

Scope: struct ara::per::FileInfo

Type: std::uint64_t

Syntax: std::uint64_t accessTime;

Header file: #include "ara/per/file_storage.h"

Description: Time in nanoseconds since midnight 1970-01-01 UTC at which the file was last accessed.

99 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

c(RS_PER_00004)

8.3.10.4 FileInfo.fileCreationState

[SWS_PER_00444] d

Kind: variable

Symbol: fileCreationState

Scope: struct ara::per::FileInfo

Type: FileCreationState

Syntax: FileCreationState fileCreationState;

Header file: #include "ara/per/file_storage.h"

Description: Information on how and by whom the file was created.

c(RS_PER_00004)

8.3.10.5 FileInfo.fileModificationState

[SWS_PER_00445] d

Kind: variable

Symbol: fileModificationState

Scope: struct ara::per::FileInfo

Type: FileModificationState

Syntax: FileModificationState fileModificationState;

Header file: #include "ara/per/file_storage.h"

Description: Information on how and by whom the file was last modified.

c(RS_PER_00004)

8.3.11 FileStorage Class

This section shows the methods available for a ara::per::FileStorage object
obtained from a call to ara::per::OpenFileStorage.

[SWS_PER_00340] d

Kind: class

Symbol: FileStorage

Scope: namespace ara::per

Syntax: class FileStorage final {...};

5

100 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Header file: #include "ara/per/file_storage.h"

Description: The File Storage contains a set of files identified by their file names.

c(RS_PER_00004, RS_AP_00122, RS_AP_00146)

8.3.11.1 FileStorage::FileStorage

[SWS_PER_00460]{DRAFT} d

Kind: function

Symbol: FileStorage()

Scope: class ara::per::FileStorage

Syntax: FileStorage ()=delete;

Header file: #include "ara/per/file_storage.h"

Description: The default constructor for FileStorage shall not be used.

c(RS_PER_00004, RS_AP_00120, RS_AP_00129, RS_AP_00146)

[SWS_PER_00326] d

Kind: function

Symbol: FileStorage(FileStorage &&fs)

Scope: class ara::per::FileStorage

Syntax: FileStorage (FileStorage &&fs)=delete;

Header file: #include "ara/per/file_storage.h"

Description: The move constructor for FileStorage shall not be used.

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00328] d

Kind: function

Symbol: FileStorage(const FileStorage &)

Scope: class ara::per::FileStorage

Syntax: FileStorage (const FileStorage &)=delete;

Header file: #include "ara/per/file_storage.h"

Description: The copy constructor for FileStorage shall not be used.

c(RS_PER_00004, RS_AP_00120)

8.3.11.2 FileStorage::operator=

[SWS_PER_00327] d

101 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: operator=(FileStorage &&fs)

Scope: class ara::per::FileStorage

Syntax: FileStorage& operator= (FileStorage &&fs) &=delete;

Header file: #include "ara/per/file_storage.h"

Description: The move assignment operator for FileStorage shall not be used.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00329] d

Kind: function

Symbol: operator=(const FileStorage &)

Scope: class ara::per::FileStorage

Syntax: FileStorage& operator= (const FileStorage &)=delete;

Header file: #include "ara/per/file_storage.h"

Description: The copy assignment operator for FileStorage shall not be used.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120)

8.3.11.3 FileStorage::~FileStorage

[SWS_PER_00330] d

Kind: function

Symbol: ~FileStorage()

Scope: class ara::per::FileStorage

Syntax: ~FileStorage () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/file_storage.h"

Description: Destructor for FileStorage.

c(RS_PER_00004, RS_AP_00120, RS_AP_00129, RS_AP_00132, RS_AP_00134)

8.3.11.4 FileStorage::GetAllFileNames

[SWS_PER_00110] d

Kind: function

Symbol: GetAllFileNames()

5

102 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Scope: class ara::per::FileStorage

Syntax: ara::core::Result<ara::core::Vector<ara::core::String> > GetAllFile
Names () const noexcept;

Return value: ara::core::Result< ara::core::Vector<
ara::core::String > >

A Result containing a list of available file names. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

Errors:

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Header file: #include "ara/per/file_storage.h"

Description: Returns a list of all currently available file names of this File Storage.

The list of file names is only accurate if no file is added or deleted at the same time.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00127,
RS_AP_00129, RS_AP_00132)

8.3.11.5 FileStorage::DeleteFile

[SWS_PER_00111] d

Kind: function

Symbol: DeleteFile(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<void> DeleteFile (ara::core::StringView fileName)
noexcept;

Parameters (in): fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

Errors:

PerErrc::kResourceBusy Returned if the file is open, or if RecoverFile or
ResetFile with the same file name is currently being
executed.

5

103 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
PerErrc::kFileNotFound Returned if the provided file does not exist in the File

Storage.

Header file: #include "ara/per/file_storage.h"

Description: Deletes a file from this File Storage.

This operation will fail with kResourceBusy when the file is currently open.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.3.11.6 FileStorage::FileExists

[SWS_PER_00112] d

Kind: function

Symbol: FileExists(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<bool> FileExists (ara::core::StringView fileName)
const noexcept;

Parameters (in): fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Return value: ara::core::Result< bool > A Result containing true if the file could be located
or false if it couldn’t. In case of an error, it contains
any of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

Errors:

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Header file: #include "ara/per/file_storage.h"

Description: Checks if a file exists in this File Storage.

The result is only accurate if no file is added or deleted at the same time. E.g. when a file is
removed in another thread directly after this function returned "true", the result is not valid
anymore.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.3.11.7 FileStorage::RecoverFile

[SWS_PER_00337] d

104 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: RecoverFile(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<void> RecoverFile (ara::core::StringView fileName)
noexcept;

Parameters (in): fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kResourceBusy Returned if the file is open, or if DeleteFile or Reset
File with the same file name is currently being
executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the restored file.

Errors:

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

Header file: #include "ara/per/file_storage.h"

Description: Recovers a file of this File Storage.

This method allows to recover a single file when the redundancy checks fail.

It will fail with kResourceBusy when the file is currently open.

This method does a best-effort recovery of the file. After recovery, the file might show outdated
or initial content, or might be lost.

c(RS_PER_00001, RS_PER_00004, RS_PER_00009, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.3.11.8 FileStorage::ResetFile

[SWS_PER_00338] d

Kind: function

Symbol: ResetFile(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<void> ResetFile (ara::core::StringView fileName)
noexcept;

Parameters (in): fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

5

105 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kInitValueNotAvailable Returned if no intitial value was configured for this
file.

PerErrc::kResourceBusy Returned if the file is open, or if DeleteFile or
RecoverFile with the same file name is currently
being executed.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is restored.

Header file: #include "ara/per/file_storage.h"

Description: Resets a file of this File Storage to its initial content.

ResetFile allows to reset a single file to its initial content. If the file is currently not available in
the File Storage, it is re-created. Afterwards, the file will appear in both cases as if it was newly
installed from the current manifest.

It will fail with kResourceBusy when the file is currently open, and with kInitValueNotAvailable
when neither design nor deployment define an initial content for the file.

c(RS_PER_00001, RS_PER_00004, RS_PER_00009, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.3.11.9 FileStorage::GetCurrentFileSize

[SWS_PER_00407] d

Kind: function

Symbol: GetCurrentFileSize(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<std::uint64_t> GetCurrentFileSize (ara::core::String
View fileName) const noexcept;

Parameters (in): fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Return value: ara::core::Result< std::uint64_t > A Result containing the occupied space in bytes. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

Errors:

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

Header file: #include "ara/per/file_storage.h"

5

106 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Description: Returns the space in bytes currently occupied by the content of a file of this File Storage.

The returned size is only accurate if no other operation on the file takes place at the same time.

c(RS_PER_00017, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.3.11.10 FileStorage::GetFileInfo

[SWS_PER_00438] d

Kind: function

Symbol: GetFileInfo(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<FileInfo> GetFileInfo (ara::core::StringView file
Name) const noexcept;

Parameters (in): fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Return value: ara::core::Result< FileInfo > A Result containing a FileInfo struct. In case of an
error, it contains any of the errors defined below, or
a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

Errors:

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

Header file: #include "ara/per/file_storage.h"

Description: Returns additional information on a file of this File Storage.

The returned FileInfo struct contains information about the times when the file was created, last
modified, and last accessed, and about how and by whom the file was created and last
modified. The modificationTime, accessTime, and fileModificationState returned in the FileInfo
are only accurate if the file is currently not open.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.3.11.11 FileStorage::OpenFileReadWrite

[SWS_PER_00375] d

Kind: function

Symbol: OpenFileReadWrite(ara::core::StringView fileName)

5

107 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileReadWrite
(ara::core::StringView fileName) noexcept;

Parameters (in): fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading and writing.

The file is opened with the seek position set to the beginning (corresponding to kAtThe
Beginning).

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132, RS_AP_00144)

[SWS_PER_00113] d

Kind: function

Symbol: OpenFileReadWrite(ara::core::StringView fileName, OpenMode mode)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileReadWrite
(ara::core::StringView fileName, OpenMode mode) noexcept;

fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Parameters (in):

mode Mode with which the file shall be opened.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

5

108 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

Errors:

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading and writing with a defined mode.

If not otherwise specified by the provided mode, the file is opened with the seek position set to
the beginning (corresponding to kAtTheBeginning).

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132, RS_AP_00144)

[SWS_PER_00429] d

Kind: function

Symbol: OpenFileReadWrite(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileReadWrite
(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer) noexcept;

fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

mode Mode with which the file shall be opened.

Parameters (in):

buffer Memory to be used for block-wise reading/writing.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

Errors:

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

5

109 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the

structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading and writing with a user provided buffer.

If not otherwise specified by the provided mode, the file is opened with the seek position set to
the beginning (corresponding to kAtTheBeginning).

The provided buffer will be used by the ReadWriteAccessor to implement block-wise reading
and writing to speed up multiple small accesses to the file.

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132, RS_AP_00144)

8.3.11.12 FileStorage::OpenFileReadOnly

[SWS_PER_00376] d

Kind: function

Symbol: OpenFileReadOnly(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadAccessor> > OpenFileReadOnly (
ara::core::StringView fileName) noexcept;

Parameters (in): fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Return value: ara::core::Result< UniqueHandle<
ReadAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

Errors:

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

5

110 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading.

The file is opened with the seek position set to the beginning (corresponding to kAtThe
Beginning).

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132, RS_AP_00144)

[SWS_PER_00114] d

Kind: function

Symbol: OpenFileReadOnly(ara::core::StringView fileName, OpenMode mode)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadAccessor> > OpenFileReadOnly (
ara::core::StringView fileName, OpenMode mode) noexcept;

fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Parameters (in):

mode Mode with which the file shall be opened.

Return value: ara::core::Result< UniqueHandle<
ReadAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

Errors:

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading with a defined mode.

If not otherwise specified by the provided mode, the file is opened with the seek position set to
the beginning (corresponding to kAtTheBeginning).

The file will be closed when the returned UniqueHandle goes out of scope.

111 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132, RS_AP_00144)

[SWS_PER_00430] d

Kind: function

Symbol: OpenFileReadOnly(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadAccessor> > OpenFileReadOnly (
ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer) noexcept;

fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

mode Mode with which the file shall be opened.

Parameters (in):

buffer Memory to be used for block-wise reading.

Return value: ara::core::Result< UniqueHandle<
ReadAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

Errors:

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading with a user provided buffer.

If not otherwise specified by the provided mode, the file is opened with the seek position set to
the beginning (corresponding to kAtTheBeginning).

The provided buffer will be used by the ReadAccessor to implement block-wise reading to
speed up multiple small accesses to the file.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132, RS_AP_00144)

8.3.11.13 FileStorage::OpenFileWriteOnly

[SWS_PER_00377] d

112 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: OpenFileWriteOnly(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileWriteOnly
(ara::core::StringView fileName) noexcept;

Parameters (in): fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for writing.

The file is truncated (corresponding to kTruncate).

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132, RS_AP_00144)

[SWS_PER_00115] d

Kind: function

Symbol: OpenFileWriteOnly(ara::core::StringView fileName, OpenMode mode)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileWriteOnly
(ara::core::StringView fileName, OpenMode mode) noexcept;

fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

Parameters (in):

mode Mode with which the file shall be opened.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

5

113 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

Errors:

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for writing with a defined mode.

If not otherwise specified by the provided mode, the file is truncated (corresponding to k
Truncate).

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132, RS_AP_00144)

[SWS_PER_00431] d

Kind: function

Symbol: OpenFileWriteOnly(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileWriteOnly
(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer) noexcept;

fileName File name of the file. May correspond to the
PersistencyFile.fileName of a configured file.

mode Mode with which the file shall be opened.

Parameters (in):

buffer Memory to be used for block-wise writing.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

Errors: PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

5

114 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for writing with a user provided buffer.

If not otherwise specified by the provided mode, the file is truncated (corresponding to k
Truncate).

The provided buffer will be used by the ReadWriteAccessor to implement block-wise writing to
speed up multiple small accesses to the file.

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132, RS_AP_00144)

8.3.12 Origin

[SWS_PER_00146] d

Kind: enumeration

Symbol: Origin

Scope: namespace ara::per

Underlying type: std::uint32_t

Syntax: enum class Origin : std::uint32_t {...};

kBeginning= 0 Seek from the beginning of the file.

kCurrent= 1 Seek from the current position.

Values:

kEnd= 2 Seek from the end of the file.

Header file: #include "ara/per/read_accessor.h"

Description: Specification of origin used in MovePosition.

c(RS_PER_00003, RS_AP_00122)

115 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.3.13 ReadAccessor Class

This section shows the methods available for a ara::per::ReadAccessor ob-
ject obtained from a call to ara::per::FileStorage::OpenFileReadOnly, and
for the inheriting ara::per::ReadWriteAccessor object obtained from a call
to ara::per::FileStorage::OpenFileWriteOnly or ara::per::FileStor-
age::OpenFileReadWrite.

[SWS_PER_00342] d

Kind: class

Symbol: ReadAccessor

Scope: namespace ara::per

Syntax: class ReadAccessor {...};

Header file: #include "ara/per/read_accessor.h"

Description: ReadAccessor is used to read file data.

It provides binary and text mode methods for checking or getting the current byte/character
(PeekByte/PeekChar, GetByte/GetChar) methods for reading a section of a binary/text file
(ReadBinary/ReadText), a method to read a line of text (ReadLine), and methods for checking
and setting the current position in the file (GetPosition, SetPosition, MovePosition, IsEof) and
for checking the current size of the file (GetSize).

c(RS_PER_00004, RS_AP_00122, RS_AP_00146)

8.3.13.1 ReadAccessor::ReadAccessor

[SWS_PER_00461]{DRAFT} d

Kind: function

Symbol: ReadAccessor()

Scope: class ara::per::ReadAccessor

Syntax: ReadAccessor ()=delete;

Header file: #include "ara/per/read_accessor.h"

Description: The default constructor for ReadAccessor shall not be used.

c(RS_PER_00004, RS_AP_00120, RS_AP_00129, RS_AP_00146)

[SWS_PER_00413] d

Kind: function

Symbol: ReadAccessor(ReadAccessor &&ra)

Scope: class ara::per::ReadAccessor

Syntax: ReadAccessor (ReadAccessor &&ra)=delete;

Header file: #include "ara/per/read_accessor.h"

Description: The move constructor for ReadAccessor shall not be used.

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

116 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00415] d

Kind: function

Symbol: ReadAccessor(const ReadAccessor &)

Scope: class ara::per::ReadAccessor

Syntax: ReadAccessor (const ReadAccessor &)=delete;

Header file: #include "ara/per/read_accessor.h"

Description: The copy constructor for ReadAccessor shall not be used.

c(RS_PER_00004, RS_AP_00120)

8.3.13.2 ReadAccessor::operator=

[SWS_PER_00414] d

Kind: function

Symbol: operator=(ReadAccessor &&ra)

Scope: class ara::per::ReadAccessor

Syntax: ReadAccessor& operator= (ReadAccessor &&ra) &=delete;

Header file: #include "ara/per/read_accessor.h"

Description: The move assignment operator for ReadAccessor shall not be used.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00416] d

Kind: function

Symbol: operator=(const ReadAccessor &)

Scope: class ara::per::ReadAccessor

Syntax: ReadAccessor& operator= (const ReadAccessor &)=delete;

Header file: #include "ara/per/read_accessor.h"

Description: The copy assignment operator for ReadAccessor shall not be used.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120)

8.3.13.3 ReadAccessor::~ReadAccessor

[SWS_PER_00417] d

Kind: function

Symbol: ~ReadAccessor()

Scope: class ara::per::ReadAccessor

5

117 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Syntax: ~ReadAccessor () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Destructor for ReadAccessor.

c(RS_PER_00004, RS_AP_00120, RS_AP_00129, RS_AP_00132, RS_AP_00134)

8.3.13.4 ReadAccessor::PeekChar

[SWS_PER_00167] d

Kind: function

Symbol: PeekChar()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<char> PeekChar () const noexcept;

Return value: ara::core::Result< char > A Result containing a character. In case of an error,
it contains any of the errors defined below, or a
vendor specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Returns the character at the current position of the file.

The current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.3.13.5 ReadAccessor::PeekByte

[SWS_PER_00418] d

Kind: function

Symbol: PeekByte()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::Byte> PeekByte () const noexcept;

5

118 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Return value: ara::core::Result< ara::core::Byte > A Result containing a byte. In case of an error, it

contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Returns the byte at the current position of the file.

The current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.3.13.6 ReadAccessor::GetChar

[SWS_PER_00168] d

Kind: function

Symbol: GetChar()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<char> GetChar () noexcept;

Return value: ara::core::Result< char > A Result containing a character. In case of an error,
it contains any of the errors defined below, or a
vendor specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Returns the character at the current position of the file, advancing the current position.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.3.13.7 ReadAccessor::GetByte

[SWS_PER_00419] d

119 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: GetByte()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::Byte> GetByte () noexcept;

Return value: ara::core::Result< ara::core::Byte > A Result containing a byte. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Returns the byte at the current position of the file, advancing the current position.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.3.13.8 ReadAccessor::ReadText

[SWS_PER_00420] d

Kind: function

Symbol: ReadText()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::String> ReadText () noexcept;

Return value: ara::core::Result< ara::core::String > A Result containing a String. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Reads all remaining characters into a String, starting from the current position.

The current position is set to the end of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

120 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00165] d

Kind: function

Symbol: ReadText(std::uint64_t n)

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::String> ReadText (std::uint64_t n)
noexcept;

Parameters (in): n Number of characters to read.

Return value: ara::core::Result< ara::core::String > A Result containing a String. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Reads a number of characters into a String, starting from the current position.

The current position is advanced accordingly.

If the end of the file is reached, the number of returned characters can be less than the
requested number, and the current position is set to the end of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.3.13.9 ReadAccessor::ReadBinary

[SWS_PER_00421] d

Kind: function

Symbol: ReadBinary()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::Vector<ara::core::Byte> > ReadBinary ()
noexcept;

Return value: ara::core::Result< ara::core::Vector<
ara::core::Byte > >

A Result containing a Vector of Byte. In case of an
error, it contains any of the errors defined below, or
a vendor specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

Errors:

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

5

121 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
PerErrc::kIsEof Returned if the current position is at the end of the

file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Reads all remaining bytes into a Vector of Byte, starting from the current position.

The current position is set to the end of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

[SWS_PER_00422] d

Kind: function

Symbol: ReadBinary(std::uint64_t n)

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::Vector<ara::core::Byte> > ReadBinary
(std::uint64_t n) noexcept;

Parameters (in): n Number of bytes to read.

Return value: ara::core::Result< ara::core::Vector<
ara::core::Byte > >

A Result containing a Vector of Byte. In case of an
error, it contains any of the errors defined below, or
a vendor specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Reads a number of bytes into a Vector of Byte, starting from the current position.

The current position is advanced accordingly.

If the end of the file is reached, the number of returned bytes can be less than the requested
number, and the current position is set to the end of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.3.13.10 ReadAccessor::ReadLine

[SWS_PER_00119] d

122 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: ReadLine(char delimiter=’\n’)

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::String> ReadLine (char delimiter=’\n’)
noexcept;

Parameters (in): delimiter The character that is used as delimiter.

Return value: ara::core::Result< ara::core::String > A Result containing a String. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Reads a complete line of characters into a String, advancing the current position accordingly.

The end of the line is demarcated by the delimiter, or by "\\n" (ASCII 0x0a) if that parameter is
omitted. The delimiter itself is not included in the returned String.

If the end of the file is reached, the remaining characters are returned and the current position
is set to the end of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00129, RS_AP_00132)

8.3.13.11 ReadAccessor::GetSize

[SWS_PER_00424] d

Kind: function

Symbol: GetSize()

Scope: class ara::per::ReadAccessor

Syntax: std::uint64_t GetSize () const noexcept;

Return value: std::uint64_t The current size of the file in bytes.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Returns the current size of a file in bytes.

c(RS_PER_00017, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

123 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.3.13.12 ReadAccessor::GetPosition

[SWS_PER_00162] d

Kind: function

Symbol: GetPosition()

Scope: class ara::per::ReadAccessor

Syntax: std::uint64_t GetPosition () const noexcept;

Return value: std::uint64_t The current position in the file in bytes from the
beginning of the file.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Returns the current position relative to the beginning of the file.

The returned position may be at the end of the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.3.13.13 ReadAccessor::SetPosition

[SWS_PER_00163] d

Kind: function

Symbol: SetPosition(std::uint64_t position)

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<void> SetPosition (std::uint64_t position) noexcept;

Parameters (in): position Current position in the file in bytes from the
beginning of the file.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

Errors: PerErrc::kInvalidPosition Returned if the given position is beyond the end of
the file.

Header file: #include "ara/per/read_accessor.h"

Description: Sets the current position relative to the beginning of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00132)

8.3.13.14 ReadAccessor::MovePosition

[SWS_PER_00164] d

124 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: MovePosition(Origin origin, std::int64_t offset)

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<std::uint64_t> MovePosition (Origin origin,
std::int64_t offset) noexcept;

origin Starting point from which to move ’offset’ bytes.Parameters (in):

offset Offset in bytes relative to ’origin’. Can be positive in
case of kBeginning and kCurrent and negative in
case of kCurrent and kEnd. In case of kCurrent, an
offset of zero will not change the current position. In
case of kEnd, an offset of zero will set the position to
the end of the file.

Return value: ara::core::Result< std::uint64_t > A Result containing the new position in bytes from
the beginning of the file. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

Errors: PerErrc::kInvalidPosition Returned if the resulting position is lower than zero
or beyond the end of the file.

Header file: #include "ara/per/read_accessor.h"

Description: Moves the current position in the file relative to the Origin.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00132)

8.3.13.15 ReadAccessor::IsEof

[SWS_PER_00107] d

Kind: function

Symbol: IsEof()

Scope: class ara::per::ReadAccessor

Syntax: bool IsEof () const noexcept;

Return value: bool True if the current position is at the end of the file,
false otherwise.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Checks if the current position is at end of file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_-
00132)

125 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

8.3.14 ReadWriteAccessor Class

This section shows the methods available for a ara::per::ReadWriteAccessor
object obtained from a call to ara::per::FileStorage::OpenFileWriteOnly
or ara::per::FileStorage::OpenFileReadWrite.

[SWS_PER_00343] d

Kind: class

Symbol: ReadWriteAccessor

Scope: namespace ara::per

Base class: ReadAccessor

Syntax: class ReadWriteAccessor : public ReadAccessor {...};

Header file: #include "ara/per/read_write_accessor.h"

Description: ReadWriteAccessor is used to read and write file data.

It provides the WriteBinary and WriteText methods featuring a Result for controlled,
unformatted writing, and the operator<< method for simple formatted writing. It also provides
SyncToFile() to flush the buffer of the operating system to the storage.

c(RS_PER_00004, RS_AP_00122, RS_AP_00146)

8.3.14.1 ReadWriteAccessor::ReadWriteAccessor

[SWS_PER_00462]{DRAFT} d

Kind: function

Symbol: ReadWriteAccessor()

Scope: class ara::per::ReadWriteAccessor

Syntax: ReadWriteAccessor ()=delete;

Header file: #include "ara/per/read_write_accessor.h"

Description: The default constructor for ReadWriteAccessor shall not be used.

c(RS_PER_00004, RS_AP_00120, RS_AP_00129, RS_AP_00146)

8.3.14.2 ReadWriteAccessor::SyncToFile

[SWS_PER_00122] d

Kind: function

Symbol: SyncToFile()

Scope: class ara::per::ReadWriteAccessor

Syntax: ara::core::Result<void> SyncToFile () noexcept;

5

126 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any

of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the updated file size.

Header file: #include "ara/per/read_write_accessor.h"

Description: Triggers flushing of the current file content to the physical storage.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00128,
RS_AP_00127, RS_AP_00129, RS_AP_00132)

8.3.14.3 ReadWriteAccessor::SetFileSize

[SWS_PER_00428] d

Kind: function

Symbol: SetFileSize(std::uint64_t size)

Scope: class ara::per::ReadWriteAccessor

Syntax: ara::core::Result<void> SetFileSize (std::uint64_t size) noexcept;

Parameters (in): size New size of the file.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

Errors:

PerErrc::kInvalidSize Returned if the new size is larger than the current
size.

Header file: #include "ara/per/read_write_accessor.h"

Description: Reduces the size of the file to ’size’, effectively removing the current content of the file beyond
this size.

The current file position is unchanged if it is lower than ’size’, or set to the last valid position in
the file otherwise. If ’size’ is 0, the current file position will also be set to 0.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00128,
RS_AP_00127, RS_AP_00129, RS_AP_00132)

8.3.14.4 ReadWriteAccessor::WriteText

[SWS_PER_00166] d

127 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Kind: function

Symbol: WriteText(ara::core::StringView s)

Scope: class ara::per::ReadWriteAccessor

Syntax: ara::core::Result<void> WriteText (ara::core::StringView s) noexcept;

Parameters (in): s A StringView containing the characters to be written.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

Errors:

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the updated file size.

Header file: #include "ara/per/read_write_accessor.h"

Description: Writes the content of a StringView to the file.

The time when the content is persisted depends on the implementation of Persistency. SyncTo
File can be used to force Persistency to persist the file content.

In case of an error, the file content might be corrupted, and the current position might or might
not have changed.

The expected state of the file for each supported error can be expected to be as follows: k
PhysicalStorageFailure: The state of the file is unknown. It could have been entirely destroyed.
kEncryptionFailed: The content of the file and the current position will have been updated, but
could not be persisted. The persisted file will reflect an older version of the file. kOutOfStorage
Space: The content of the file will have been updated, but the part of the operation that
exceeded the quota will have been discarded. The current position will be at the end of the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.3.14.5 ReadWriteAccessor::WriteBinary

[SWS_PER_00423] d

Kind: function

Symbol: WriteBinary(ara::core::Span< const ara::core::Byte > b)

Scope: class ara::per::ReadWriteAccessor

Syntax: ara::core::Result<void> WriteBinary (ara::core::Span< const
ara::core::Byte > b) noexcept;

Parameters (in): b A Span of Byte containing the bytes to be written.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

Errors: PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

5

128 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored

data fails.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the updated file size.

Header file: #include "ara/per/read_write_accessor.h"

Description: Writes the content of a Span of Byte to the file.

The time when the content is persisted depends on the implementation of Persistency. SyncTo
File can be used to force Persistency to persist the file content.

In case of an error, the file content might be corrupted, and the current position might or might
not have changed.

The expected state of the file for each supported error can be expected to be as follows: k
PhysicalStorageFailure: The state of the file is unknown. It could have been entirely destroyed.
kEncryptionFailed: The content of the file and the current position will have been updated, but
could not be persisted. The persisted file will reflect an older version of the file. kOutOfStorage
Space: The content of the file will have been updated, but the part of the operation that
exceeded the quota will have been discarded. The current position will be at the end of the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.3.14.6 ReadWriteAccessor::operator<<

[SWS_PER_00125] d

Kind: function

Symbol: operator<<(ara::core::StringView s)

Scope: class ara::per::ReadWriteAccessor

Syntax: ReadWriteAccessor& operator<< (ara::core::StringView s) noexcept;

Parameters (in): s The StringView containing the characters to be
written.

Return value: ReadWriteAccessor & The ReadWriteAccessor object.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_write_accessor.h"

Description: Writes the content of a StringView to the file.

This operator is just a comfort feature for non-safety critical applications. If an error occurs
during this operation, it is silently ignored.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

129 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

9 Service Interfaces

The Persistency does not provide any service interfaces via ara::com.

130 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class AdaptiveApplicationSwComponentType

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This meta-class represents the ability to support the formal modeling of application software on the
AUTOSAR adaptive platform. Consequently, it shall only be used on the AUTOSAR adaptive platform.

Tags:
atp.Status=draft
atp.recommendedPackage=AdaptiveApplicationSwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Attribute Type Mult. Kind Note

internalBehavior AdaptiveSwcInternal
Behavior

0..1 aggr This aggregation represents the internal behavior of the
AdaptiveApplicationSwComponentType for the AUTOSAR
adaptive platform.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
atp.Status=draft
vh.latestBindingTime=preCompileTime

Table A.1: AdaptiveApplicationSwComponentType

Class CppImplementationDataType (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the way to specify a reusable data type definition taken as a the basis for a
C++ language binding

Tags:atp.Status=draft

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , CppImplementationDataTypeContextTarget ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses CustomCppImplementationDataType, StdCppImplementationDataType

Attribute Type Mult. Kind Note

arraySize PositiveInteger 0..1 attr This attribute can be used to specify the array size if the
enclosing CppImplementationDataType has array
semantics.

Stereotypes: atpVariation
Tags:
atp.Status=draft
vh.latestBindingTime=preCompileTime

headerFile String 0..1 attr Configuration of the Header File with the custom class
declaration.

Tags:atp.Status=draft

namespace
(ordered)

SymbolProps * aggr This aggregation allows for the definition an own
namespace for the enclosing CppImplementationData
Type.

Tags:atp.Status=draft

5

131 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class CppImplementationDataType (abstract)

subElement
(ordered)

CppImplementation
DataTypeElement

* aggr This represents the collection of sub-elements of the
enclosing CppImplementationDataType

Tags:atp.Status=draft

template
Argument
(ordered)

CppTemplateArgument * aggr This aggregation allows for the specification of properties
of template arguments

Tags:atp.Status=draft

typeEmitter NameToken 0..1 attr This attribute can be taken to control how the respective
CppImplementationDataType is contributed to the
language binding.

Tags:atp.Status=draft

typeReference CppImplementation
DataType

0..1 ref This reference shall be defined to define a type reference
(a.k.a. typedef).

Tags:atp.Status=draft

Table A.2: CppImplementationDataType

Class CryptoKeySlot

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This meta-class represents the ability to define a concrete key to be used for a crypto operation.

Tags:
atp.ManifestKind=MachineManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

allocateShadow
Copy

Boolean 0..1 attr This attribute defines whether a shadow copy of this Key
Slot shall be allocated to enable rollback of a failed Key
Slot update campaign (see interface BeginTransaction).

Tags:atp.Status=draft

cryptoAlgId String 0..1 attr This attribute defines a crypto algorithm restriction (kAlgId
Any means without restriction). The algorithm can be
specified partially: family & length, mode, padding.

Future Crypto Providers can support some crypto
algorithms that are not well known/ standardized today,
therefore AUTOSAR doesn’t provide a concrete list of
crypto algorithms’ identifiers and doesn’t suppose usage
of numerical identifiers. Instead of this a provider supplier
should provide string names of supported algorithms in
accompanying documentation. The name of a crypto
algorithm shall follow the rules defined in the specification
of cryptography for Adaptive Platform.

Tags:atp.Status=draft

cryptoObject
Type

CryptoObjectTypeEnum 0..1 attr Object type that can be stored in the slot. If this field
contains "Undefined" then mSlotCapacity must be
provided and larger then 0.

Tags:atp.Status=draft

keySlotAllowed
Modification

CryptoKeySlotAllowed
Modification

0..1 aggr Restricts how this keySlot may be used

Tags:atp.Status=draft

keySlotContent
AllowedUsage

CryptoKeySlotContent
AllowedUsage

* aggr Restriction of allowed usage of a key stored to the slot.

Tags:atp.Status=draft

5

132 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class CryptoKeySlot

slotCapacity PositiveInteger 0..1 attr Capacity of the slot in bytes to be reserved by the stack
vendor. One use case is to define this value in case that
the cryptoObjectType is undefined and the slot size can
not be deduced from cryptoObjectType and cryptoAlgId.
"0" means slot size can be deduced from cryptoObject
Type and cryptoAlgId.

Tags:atp.Status=draft

slotType CryptoKeySlotType
Enum

0..1 attr This attribute defines whether the keySlot is exclusively
used by the Application; or whether it is used by Stack
Services and managed by a Key Manager Application.

Tags:atp.Status=draft

Table A.3: CryptoKeySlot

Enumeration CryptoKeySlotUsageEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This enum defines the possible roles of the keySlotUsage.

Tags:atp.Status=draft

Literal Description

encryption Key slot usage for encryption

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

verification Key slot usage for verification

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

Table A.4: CryptoKeySlotUsageEnum

Class Executable
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This meta-class represents an executable program.

Tags:
atp.Status=draft
atp.recommendedPackage=Executables

Base ARElement , ARObject , AtpClassifier , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

buildType BuildTypeEnum 0..1 attr This attribute describes the buildType of a module and/or
platform implementation.

Tags:atp.Status=draft

loggingBehavior LoggingBehaviorEnum 0..1 attr This attribute indicates the intended logging behavior of
the enclosing Executable.

Tags:atp.Status=draft

minimumTimer
Granularity

TimeValue 0..1 attr This attribute describes the minimum timer resolution
(TimeValue of one tick) that is required by the Executable.

Tags:atp.Status=draft

5

133 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class Executable
reporting
Behavior

ExecutionState
ReportingBehavior
Enum

0..1 attr this attribute controls the execution state reporting
behavior of the enclosing Executable.

Tags:atp.Status=draft

rootSw
Component
Prototype

RootSwComponent
Prototype

0..1 aggr This represents the root SwCompositionPrototype of the
Executable. This aggregation is required (in contrast to a
direct reference of a SwComponentType) in order to
support the definition of instanceRefs in Executable
context.

Tags:atp.Status=draft

version StrongRevisionLabel
String

0..1 attr Version of the executable.

Tags:atp.Status=draft

Table A.5: Executable

Class FunctionalClusterInteractsWithFunctionalClusterMapping (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This meta-class identifies a relation between functional clusters on the adaptive platform such one
functional cluster can call APIs of the other functional cluster.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Subclasses ArtifactChecksumToCryptoProviderMapping, ComCertificateToCryptoCertificateMapping, ComKeyTo
CryptoKeySlotMapping, ComSecOcToCryptoKeySlotMapping, PersistencyDeploymentElementToCrypto
KeySlotMapping, PersistencyDeploymentToCryptoKeySlotMapping, PersistencyDeploymentToDltLogSink
Mapping, TimeBaseProviderToPersistencyMapping

Attribute Type Mult. Kind Note

– – – – –

Table A.6: FunctionalClusterInteractsWithFunctionalClusterMapping

Class PPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port providing a certain port interface.

Base ARObject , AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

provided
Interface

PortInterface 0..1 tref The interface that this port provides.

Stereotypes: isOfType

Table A.7: PPortPrototype

Class PRPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This kind of PortPrototype can take the role of both a required and a provided PortPrototype.

Base ARObject , AbstractProvidedPortPrototype, AbstractRequiredPortPrototype, AtpBlueprintable, Atp
Feature, AtpPrototype, Identifiable, MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

5

134 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class PRPortPrototype

provided
Required
Interface

PortInterface 0..1 tref This represents the PortInterface used to type the PRPort
Prototype

Stereotypes: isOfType

Table A.8: PRPortPrototype

Enumeration PersistencyCollectionLevelUpdateStrategyEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This enumeration provides possible values for the update strategy on interface/storage level.

Tags:atp.Status=draft

Literal Description

delete The update strategy is to delete all values on the level of the respective collection.

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

keepExisting The update strategy is to keep the existing values on the level of the respective collection.

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

Table A.9: PersistencyCollectionLevelUpdateStrategyEnum

Class PersistencyDataElement

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the ability to formally specify a piece of data that is subject to persistency in
the context of the enclosing PersistencyKeyValueStorageInterface.

PersistencyDataElement represents also a key-value pair of the deployed PersistencyKeyValueStorage
and provides an initial value.

Tags:atp.Status=draft

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, PersistencyInterfaceElement , Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.10: PersistencyDataElement

Class PersistencyDataRequiredComSpec

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ComSpec

Note This meta-class represents the ability to define port-specific attributes for supporting use cases of data
persistency on the required side.

Tags:atp.Status=draft

Base ARObject , RPortComSpec

Attribute Type Mult. Kind Note

dataElement PersistencyData
Element

1 ref This refrence represents the PersistencyDataElement for
which the PersistencyDataRequiredComSpec applies.

Tags:atp.Status=draft

5

135 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class PersistencyDataRequiredComSpec

initValue ValueSpecification 0..1 aggr This aggregation represents the definition of an initial
value for the PersistencyDataElement referenced by the
enclosing PersistencyDataRequiredComSpec

Tags:atp.Status=draft

Table A.11: PersistencyDataRequiredComSpec

Class PersistencyDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract meta-class serves as a base class for concrete classes representing different aspects of
persistency.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableExclusivePackageElement , UploadablePackageElement

Subclasses PersistencyFileStorage, PersistencyKeyValueStorage

Attribute Type Mult. Kind Note

maximum
AllowedSize

PositiveUnlimitedInteger 0..1 attr The value of this attribute represents the maximum size
allowed at deployment time for the enclosing Persistency
Deployment.

Tags:atp.Status=draft

minimum
SustainedSize

PositiveInteger 0..1 attr The value of this attribute represents the minimum size
guaranteed at deployment time for the enclosing
PersistencyDeployment.

Tags:atp.Status=draft

redundancy
Handling

PersistencyRedundancy
Handling

* aggr This aggregation represents the chosen approaches to
handle redundancy.

Tags:atp.Status=draft

updateStrategy PersistencyCollection
LevelUpdateStrategy
Enum

1 attr This attribute shall be used to specify the update strategy
of the respective PersistencyDeployment as a whole.

Tags:atp.Status=draft

version StrongRevisionLabel
String

0..1 attr The attribute represents the version of the PersistencyFile
Storage or PersistencyKeyValueStorage.

Tags:atp.Status=draft

Table A.12: PersistencyDeployment

Class PersistencyDeploymentElement (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract meta-class serves as a base class for concrete classes representing different aspects of
elements of a PersistencyDeployment.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses PersistencyFile, PersistencyKeyValuePair

Attribute Type Mult. Kind Note

updateStrategy PersistencyElement
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyDeploymentElement.

Tags:atp.Status=draft

Table A.13: PersistencyDeploymentElement

136 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Class PersistencyDeploymentElementToCryptoKeySlotMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This meta-class represents the ability to define a mapping between the PersistencyDeploymentElement
and a CryptoKeySlot.

Tags:
atp.Status=draft
atp.recommendedPackage=FCInteractions

Base ARElement , ARObject , CollectableElement , FunctionalClusterInteractsWithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

cryptoKeySlot CryptoKeySlot 0..1 ref This reference represents the mapped CryptoKeySlot.

Tags:atp.Status=draft

keySlotUsage CryptoKeySlotUsage
Enum

0..1 attr This attribute defines the role of the keySlot assignment.

Tags:atp.Status=draft

persistency
Deployment
Element

PersistencyDeployment
Element

0..1 ref This reference represents the mapped Persistency
Deployment.

Tags:atp.Status=draft

verificationHash String 0..1 attr This attribute defines the hash of the storage used in
case of verification.

Tags:atp.Status=draft

Table A.14: PersistencyDeploymentElementToCryptoKeySlotMapping

Class PersistencyDeploymentToCryptoKeySlotMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This meta-class represents the ability to define a mapping between the PersistencyDeployment and a
CryptoKeySlot.

Tags:
atp.Status=draft
atp.recommendedPackage=FCInteractions

Base ARElement , ARObject , CollectableElement , FunctionalClusterInteractsWithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

cryptoKeySlot CryptoKeySlot 0..1 ref This reference represents the mapped CryptoKeySlot.

Tags:atp.Status=draft

keySlotUsage CryptoKeySlotUsage
Enum

0..1 attr This attribute defines the role of the keySlot assignment.

Tags:atp.Status=draft

persistency
Deployment

PersistencyDeployment 1 ref This reference represents the mapped Persistency
Deployment.

Tags:atp.Status=draft

verificationHash String 0..1 attr This attribute defines the hash of the storage used in
case of verification.

Tags:atp.Status=draft

Table A.15: PersistencyDeploymentToCryptoKeySlotMapping

137 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Enumeration PersistencyElementLevelUpdateStrategyEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This enumeration provides possible values for the update strategy on element level.

Tags:atp.Status=draft

Literal Description

delete The update strategy is to delete the value of the respective data item.

Tags:
atp.EnumerationLiteralIndex=2
atp.Status=draft

keepExisting The update strategy is to keep the existing value of the respective data item.

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

overwrite The update strategy is to overwrite the respective data item.

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

Table A.16: PersistencyElementLevelUpdateStrategyEnum

Class PersistencyFile

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the model of a file as part of the persistency on deployment level.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyFiles

Base ARObject , Identifiable, MultilanguageReferrable, PersistencyDeploymentElement , Referrable

Attribute Type Mult. Kind Note

contentUri UriString 0..1 attr This attribute represents the URI that identifies the initial
content of the PersistencyFile.

Tags:atp.Status=draft

fileName String 1 attr This attribute holds filename part of the storage location
for the PersistencyFile, e.g. file on the file system.

Tags:atp.Status=draft

Table A.17: PersistencyFile

Class PersistencyFileElement

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class has the ability to represent a file at design time such that it is possible to configure the
behavior for accessing the represented file at run-time.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, PersistencyInterfaceElement , Referrable

Attribute Type Mult. Kind Note

contentUri UriString 1 attr This attribute represents the URI that identifies the initial
content of the PersistencyFile.

Tags:atp.Status=draft

5

138 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class PersistencyFileElement

fileName String 1 attr This attribute holds filename part of the storage location
for the PersistencyFileProxy, e.g. file on the file system.

Tags:atp.Status=draft

Table A.18: PersistencyFileElement

Class PersistencyFileStorage

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class comes with the ability to define a collection of single files (directory) that creates the
deployment-side counterpart to a PortPrototype typed by a PersistencyFileStorageInterface.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyFileStorages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
PersistencyDeployment , Referrable, UploadableExclusivePackageElement , UploadablePackageElement

Attribute Type Mult. Kind Note

file PersistencyFile * aggr This aggregation represents the collection of files
aggregated by the PersistencyFileStorage.

Tags:atp.Status=draft

uri UriString 1 attr This attribute holds the storage location for the
PersistencyFileStorage, e.g. a directory on the file
system.

Tags:atp.Status=draft

Table A.19: PersistencyFileStorage

Class PersistencyFileStorageInterface

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the ability to implement a PortInterface for supporting persistency use cases for
files.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyFileStorageInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PersistencyInterface, PortInterface,
Referrable

Attribute Type Mult. Kind Note

fileElement PersistencyFileElement * aggr This aggregation represents the collection of Persistency
FileStorages in the context of the enclosing Persistency
FileStorageInterface.

Tags:atp.Status=draft

maxNumberOf
Files

PositiveInteger 0..1 attr This attribute represents the definition of an upper bound
for the handling of files at run-time in the context of the
enclosing PersistencyFileStorageInterface.

Tags:atp.Status=draft

Table A.20: PersistencyFileStorageInterface

139 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Class PersistencyInterface (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the abstract ability to define a PortInterface for the support of persistency use
cases.

Tags:atp.Status=draft

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Subclasses PersistencyFileStorageInterface, PersistencyKeyValueStorageInterface

Attribute Type Mult. Kind Note

minimum
SustainedSize

PositiveInteger 0..1 attr The value of this attribute represents the minimum size
required at design time for the enclosing Persistency
Interface.

Tags:atp.Status=draft

redundancy PersistencyRedundancy
Enum

0..1 attr This attribute represents a requirement towards the
redundancy of storage.

Tags:atp.Status=draft

redundancy
Handling

PersistencyRedundancy
Handling

* aggr This aggregation represents the chosen approaches to
handle redundancy for the various use cases
implemented by subclasses

Tags:atp.Status=draft

updateStrategy PersistencyCollection
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyInterface as a whole.

Tags:atp.Status=draft

Table A.21: PersistencyInterface

Class PersistencyInterfaceElement (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the abstract ability to define an element of a PortInterface for the support of
persistency use cases.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses PersistencyDataElement, PersistencyFileElement

Attribute Type Mult. Kind Note

updateStrategy PersistencyElement
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyInterfaceElement.

Tags:atp.Status=draft

Table A.22: PersistencyInterfaceElement

Class PersistencyKeyValuePair

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to formally model a key-value pair in the context of the deployment
of persistency.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, PersistencyDeploymentElement , Referrable

Attribute Type Mult. Kind Note

5

140 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class PersistencyKeyValuePair

initValue ValueSpecification 0..1 aggr This aggregation represents the ability to define an initial
value for the value side of the key-value pair. Please note
that it does not make sense to configure an initial value if
the PersistencyDeploymentElement.updateStrategy is set
to the value delete.

Tags:atp.Status=draft

valueDataType AbstractImplementation
DataType

1 ref This reference represents the data type applicable for the
value of the key-value pair.

Tags:atp.Status=draft

Table A.23: PersistencyKeyValuePair

Class PersistencyKeyValueStorage

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to model a key-value storage on deployment level.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyKeyValueStorages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
PersistencyDeployment , Referrable, UploadableExclusivePackageElement , UploadablePackageElement

Attribute Type Mult. Kind Note

keyValuePair PersistencyKeyValue
Pair

* aggr This aggregation represents the key-value-pairs owned
by the enclosing PersistencyKeyValueStorage.

Tags:atp.Status=draft

uri UriString 0..1 attr This attribute holds the storage location for the
PersistencyKeyValueStorage, e.g. file on the file system.

Tags:atp.Status=draft

Table A.24: PersistencyKeyValueStorage

Class PersistencyKeyValueStorageInterface

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the ability to implement a PortInterface for supporting persistency use cases for
data.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyKeyValueStorageInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PersistencyInterface, PortInterface,
Referrable

Attribute Type Mult. Kind Note

dataElement PersistencyData
Element

* aggr This aggregation represents the collection of Persistency
DataElements in the context of the enclosing Persistency
KeyValueStorageInterface.

Tags:atp.Status=draft

dataTypeFor
Serialization

AbstractImplementation
DataType

* ref This reference identifies the AbstractImplementationData
Types that shall be supported for storing in a key-value
storage in addition to the types already determined from
tha aggregation of PersistencyDataElement.

Tags:atp.Status=draft

Table A.25: PersistencyKeyValueStorageInterface

141 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Class PersistencyPortPrototypeToDeploymentMapping (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract bas class implements the shared functionality of all mapping between a PortPrototype, a
Process, and a specific subclass of PersistencyDeployment.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableExclusivePackageElement , UploadablePackageElement

Subclasses PersistencyPortPrototypeToFileStorageMapping, PersistencyPortPrototypeToKeyValueStorageMapping

Attribute Type Mult. Kind Note

portPrototype PortPrototype 0..1 iref This reference represents the mapped PortPrototype.

Tags:atp.Status=draft
InstanceRef implemented by:PortPrototypeIn
ExecutableInstanceRef

process Process 1 ref This reference represents the process required as context
for the mapping.

Tags:atp.Status=draft

Table A.26: PersistencyPortPrototypeToDeploymentMapping

Class PersistencyPortPrototypeToFileStorageMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to define a mapping between a collection of files on deployment
level to a given PortPrototype.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyPortPrototypeToFileStorageMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , PersistencyPortPrototypeToDeploymentMapping, Referrable, UploadableExclusivePackage
Element , UploadablePackageElement

Attribute Type Mult. Kind Note

fileStorage PersistencyFileStorage 1 ref This reference represents the mapped file storage.

Tags:atp.Status=draft

Table A.27: PersistencyPortPrototypeToFileStorageMapping

Class PersistencyPortPrototypeToKeyValueStorageMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to define a mapping between a PortPrototype and a key-value
storage.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyPortPrototypeToKeyValueStorageMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , PersistencyPortPrototypeToDeploymentMapping, Referrable, UploadableExclusivePackage
Element , UploadablePackageElement

Attribute Type Mult. Kind Note

keyValue
Storage

PersistencyKeyValue
Storage

1 ref This reference represents the mapped key-value storage.

Tags:atp.Status=draft

Table A.28: PersistencyPortPrototypeToKeyValueStorageMapping

142 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Class PersistencyRedundancyChecksum (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note Abstract class that defines the common attributes for implementations of redundancy.

Tags:atp.Status=draft

Base ARObject , PersistencyRedundancyHandling

Subclasses PersistencyRedundancyCrc, PersistencyRedundancyHash

Attribute Type Mult. Kind Note

algorithmFamily String 1 attr This attribute identifies the algorithm family that is used to
execute the CRC/Hash.

Tags:atp.Status=draft

length PositiveInteger 1 attr This attribute describes the length of the CRC/Hash in the
unit bits.

Tags:atp.Status=draft

Table A.29: PersistencyRedundancyChecksum

Class PersistencyRedundancyCrc

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class formally describes the usage of a CRC for the implementation of redundancy.

Tags:atp.Status=draft

Base ARObject , PersistencyRedundancyChecksum, PersistencyRedundancyHandling

Attribute Type Mult. Kind Note

– – – – –

Table A.30: PersistencyRedundancyCrc

Enumeration PersistencyRedundancyEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ComSpec

Note This meta-class provides a way to specify in which way redundancy shall be applied on collection
level.

Tags:atp.Status=draft

Literal Description

none This value represents the requirement that redundancy measures are not applied on persistency
storage level.

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

redundant This value represents the requirement that redundancy measures are applied on persistency storage
level.

The nature of the redundant persistent storage is not further qualified and subject to integrator
decisions.

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

5

143 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Enumeration PersistencyRedundancyEnum

redundantPer
Element

This value represents the requirement that redundancy measures are applied on key-value level of a
key-value storage or on file level of a file storage.

The nature of the redundancy used on the persistent storage is not further qualified and subject to
integrator decisions.

Tags:
atp.EnumerationLiteralIndex=2
atp.Status=draft

Table A.31: PersistencyRedundancyEnum

Class PersistencyRedundancyHandling (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract base class represents a formal description of redundancy.

Tags:atp.Status=draft

Base ARObject

Subclasses PersistencyRedundancyChecksum, PersistencyRedundancyMOutOfN

Attribute Type Mult. Kind Note

scope PersistencyRedundancy
HandlingScopeEnum

0..1 attr This attribute controls the scope in which the redundancy
handling is applied.

Tags:atp.Status=draft

Table A.32: PersistencyRedundancyHandling

Enumeration PersistencyRedundancyHandlingScopeEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class provides values to control the scope of redundancy measures in the persistency
deployment

Tags:atp.Status=draft

Literal Description

persistency
Redundancy
HandlingScope
Element

The redundancy handling shall be applied on element level (key-value pair and file).

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

persistency
Redundancy
HandlingScope
Storage

The redundancy handling shall be applied on storage (key-value storage and file storage) level.

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

Table A.33: PersistencyRedundancyHandlingScopeEnum

Class PersistencyRedundancyHash

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class formally describes the usage of a Hash for the implementation of redundancy.

Tags:atp.Status=draft

Base ARObject , PersistencyRedundancyChecksum, PersistencyRedundancyHandling

Attribute Type Mult. Kind Note

5

144 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class PersistencyRedundancyHash

initialization
VectorLength

PositiveInteger 0..1 attr Length of the initialization vector.

Tags:atp.Status=draft

Table A.34: PersistencyRedundancyHash

Class PersistencyRedundancyMOutOfN

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class provides the ability to describe redundancy via an "M out of N" approach. In this case N
is the number of copies created and M is the minimum number of identical copies to justify a reliable read
access to the data.

Tags:atp.Status=draft

Base ARObject , PersistencyRedundancyHandling

Attribute Type Mult. Kind Note

m PositiveInteger 1 attr This attribute represents the "M" coordinate in the "M out
of N" scheme.

Tags:atp.Status=draft

n PositiveInteger 1 attr This attribute represents the "N" coordinate in the "M out
of N" scheme.

Tags:atp.Status=draft

Table A.35: PersistencyRedundancyMOutOfN

Class PortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Attribute Type Mult. Kind Note

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

logAndTrace
Message
CollectionSet

LogAndTraceMessage
CollectionSet

0..1 ref Reference to a collection of Log or Trace messages that
will be used by the application.

Tags:atp.Status=draft

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

portPrototype
Props

PortPrototypeProps 0..1 aggr This attribute allows for the definition of further
qualification of the semantics of a PortPrototype.

Tags:atp.Status=draft

5

145 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class PortPrototype (abstract)

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table A.36: PortPrototype

Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class provides information required to execute the referenced executable.

Tags:
atp.Status=draft
atp.recommendedPackage=Processes

Base ARElement , ARObject , AbstractExecutionContext , AtpClassifier , CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.

Tags:atp.Status=draft

deterministic
Client

DeterministicClient 0..1 ref This reference adds further execution characteristics for
deterministic clients.

Tags:atp.Status=draft

executable Executable 0..1 ref Reference to executable that is executed in the process.

Stereotypes: atpUriDef
Tags:atp.Status=draft

functionCluster
Affiliation

String 0..1 attr This attribute specifies which functional cluster the
process is affiliated with.

Tags:atp.Status=draft

numberOf
RestartAttempts

PositiveInteger 0..1 attr This attribute defines how often a process shall be
restarted if the start fails.

numberOfRestartAttempts = "0" OR Attribute not existing,
start once

numberOfRestartAttempts = "1", start a second time

Tags:atp.Status=draft

preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.

Tags:atp.Status=draft

processState
Machine

ModeDeclarationGroup
Prototype

0..1 aggr Set of Process States that are defined for the process.

Tags:atp.Status=draft

securityEvent SecurityEventDefinition * ref The reference identifies the collection of SecurityEvents
that can be reported by the enclosing SoftwareCluster.

Stereotypes: atpSplitable; atpUriDef
Tags:
atp.Splitkey=securityEvent
atp.Status=draft

stateDependent
StartupConfig

StateDependentStartup
Config

* aggr Applicable startup configurations.

Tags:atp.Status=draft

Table A.37: Process

146 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

Class ProcessToMachineMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::MachineManifest

Note This meta-class has the ability to associate a Process with a Machine. This relation involves the definition
of further properties, e.g. timeouts.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

design ProcessDesignTo
MachineDesignMapping

0..1 ref This reference represents the identification of the
design-time representation for the ProcessToMachine
Mapping that owns the reference.

Tags:atp.Status=draft

machine Machine 0..1 ref This reference identifies the Machine in the context of the
ProcessToMachineMapping.

Tags:atp.Status=draft

nonOsModule
Instantiation

NonOsModule
Instantiation

0..1 ref This supports the optional case that the process
represents a platform module.

Tags:atp.Status=draft

persistency
CentralStorage
URI

UriString 0..1 attr This attribute identifies a central place for the mapped
Process to store the list of available storages and version
information.

Tags:atp.Status=draft

process Process 1 ref This reference identifies the Process in the context of the
ProcessToMachineMapping.

Tags:atp.Status=draft

shallNotRunOn ProcessorCore * ref This reference indicates a collection of cores onto which
the mapped process shall not be executing.

Tags:atp.Status=draft

shallRunOn ProcessorCore * ref This reference indicates a collection of cores onto which
the mapped process shall be executing.

Tags:atp.Status=draft

Table A.38: ProcessToMachineMapping

Class RPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port requiring a certain port interface.

Base ARObject , AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

required
Interface

PortInterface 0..1 tref The interface that this port requires.

Stereotypes: isOfType

Table A.39: RPortPrototype

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

5

147 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class Referrable (abstract)

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, CppImplementationDataTypeContextTarget ,
DiagnosticEnvModeElement , EthernetPriorityRegeneration, ExclusiveAreaNestingOrder, HwDescription
Entity , ImplementationProps, ModeTransition, MultilanguageReferrable, NmNetworkHandle, Pnc
MappingIdent, SingleLanguageReferrable, SoConIPduIdentifier, SocketConnectionBundle, Someip
RequiredEventGroup, TimeSyncServerConfiguration, TpConnectionIdent

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags:xml.sequenceOffset=-90

Table A.40: Referrable

Class SoftwarePackage

Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents the ability to formalize the content of a software package.

Tags:
atp.Status=draft
atp.recommendedPackage=SoftwarePackages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

actionType SoftwarePackageAction
TypeEnum

1 attr This attribute defines the action to be taken in the step of
processing the enclosing SoftwarePackage.

Tags:atp.Status=draft

activationAction SoftwarePackage
ActivationActionEnum

0..1 attr This attribute governs the action to be taken after the
installation of the SoftwareCluster completed.

Tags:atp.Status=draft

compressed
Software
PackageSize

PositiveInteger 1 attr This size represents the size of the compressed Software
Package.

Tags:atp.Status=draft

deltaPackage
Applicable
Version

StrongRevisionLabel
String

0..1 attr This attribute identifies the version of the included
SoftwareCluster for which the enclosing SoftwarePackage
can be used as a delta update

Tags:atp.Status=draft

estimated
DurationOf
Operation

TimeValue 0..1 attr This attribute provides an estimation about how long the
operation of the SoftwarePackage is going to take.

Tags:atp.Status=draft

minimum
SupportedUcm
Version

RevisionLabelString 1 attr This attribute identifies the minimum supported version of
the UCM for this SoftwarePackage.

Tags:atp.Status=draft

packagerId PositiveInteger 1 attr This attribute identifies Id of the organization that provides
the packager generating the SoftwarePackage.

Tags:atp.Status=draft

5

148 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

4
Class SoftwarePackage

packager
Signature

CryptoService
Certificate

1 ref This reference identifies the certificate that represents the
packager’s signature.

Tags:atp.Status=draft

purposeOf
Update

Documentation 0..1 ref The referenced Documentation is supposed to provide a
description of the purpose of the update.

Tags:atp.Status=draft

softwareCluster SoftwareCluster 1 ref This reference identifies the SoftwareCluster that belongs
to the SoftwarePackage. The nature of this relation is
actually more like an aggregation than a reference. But
the relation is still modelled as a reference because two
ARElements cannot aggregate each other.

Tags:atp.Status=draft

uncompressed
SoftwareCluster
Size

PositiveInteger 1 attr This attribute gives an indication about the storage that
has to be available on the target.

Tags:atp.Status=draft

Table A.41: SoftwarePackage

Class StdCppImplementationDataType

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the way to specify a data type definition that is taken as the basis for a C++
language binding to a C++ Standard Library feature.

Tags:
atp.Status=draft
atp.recommendedPackage=CppImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , CppImplementationDataType, CppImplementationData
TypeContextTarget , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.42: StdCppImplementationDataType

Primitive StrongRevisionLabelString

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This primitive represents a revision label which identifies an object under version control. It represents a
pattern which requires three integer numbers separated by a dot, representing from left to right Major
Version, MinorVersion, PatchVersion and additional labels for pre-release version and build metadata.

Legal patterns are for example: 1.0.0-alpha+001 1.0.0+20130313144700 1.0.0-beta+exp.sha.5114f85

Tags:
atp.Status=draft
xml.xsd.customType=STRONG-REVISION-LABEL-STRING
xml.xsd.pattern=(0|[1-9]\d*)\.(0|[1-9]\d*)\.(0|[1-9]\d*)(-((0|[1-9]\d*|\d*[a-zA-Z-][0-9a-z
A-Z-]*)(\.(0|[1-9]\d*|\d*[a-zA-Z-][0-9a-zA-Z-]*))*))?(\+([0-9a-zA-Z-]+(\.[0-9a-zA-Z-]+)*))?
xml.xsd.type=string

Table A.43: StrongRevisionLabelString

149 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

B Platform Extension API (normative)

The Persistency cluster does not provide a platform extension API. The latter would
be required to defined a plugin interface for platform specific extensions of the Per-
sistency.

150 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

C Interfaces to Other Functional Clusters
(informative)

The Persistency cluster does not provide any direct interfaces to other functional
clusters. Other functional clusters may use the APIs of Persistency just like the
application.

151 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

D History of Constraints and Specification Items

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

D.1 Constraint and Specification Item History of this Document
According to AUTOSAR Release 17-03

D.1.1 Added Traceables in 17-03

[SWS_PER_00002] [SWS_PER_00003] [SWS_PER_00004] [SWS_PER_00005]
[SWS_PER_00006] [SWS_PER_00007] [SWS_PER_00010] [SWS_PER_00011]
[SWS_PER_00012] [SWS_PER_00013] [SWS_PER_00014] [SWS_PER_00015]
[SWS_PER_00016] [SWS_PER_00017] [SWS_PER_00018] [SWS_PER_00019]
[SWS_PER_00020] [SWS_PER_00021] [SWS_PER_00022] [SWS_PER_00023]
[SWS_PER_00024] [SWS_PER_00025] [SWS_PER_00026] [SWS_PER_00027]
[SWS_PER_00028] [SWS_PER_00029] [SWS_PER_00040] [SWS_PER_00041]
[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00044] [SWS_PER_00045]
[SWS_PER_00046] [SWS_PER_00047] [SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00050] [SWS_PER_00051] [SWS_PER_00052] [SWS_PER_00053]
[SWS_PER_00054] [SWS_PER_00055] [SWS_PER_00056] [SWS_PER_00057]
[SWS_PER_00058] [SWS_PER_00059] [SWS_PER_00060] [SWS_PER_00061]
[SWS_PER_00062] [SWS_PER_00066] [SWS_PER_00069] [SWS_PER_00070]
[SWS_PER_00071] [SWS_PER_00072] [SWS_PER_00073] [SWS_PER_00074]
[SWS_PER_00075] [SWS_PER_00076] [SWS_PER_00077] [SWS_PER_00078]

D.1.2 Changed Traceables in 17-03

none

D.1.3 Deleted Traceables in 17-03

none

152 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

D.2 Constraint and Specification Item History of this Document
According to AUTOSAR Release 17-10

D.2.1 Added Traceables in 17-10

[SWS_PER_00008] [SWS_PER_00100] [SWS_PER_00101] [SWS_PER_00102]
[SWS_PER_00103] [SWS_PER_00104] [SWS_PER_00105] [SWS_PER_00106]
[SWS_PER_00107] [SWS_PER_00108] [SWS_PER_00109] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112] [SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116] [SWS_PER_00117] [SWS_PER_00118]
[SWS_PER_00119] [SWS_PER_00120] [SWS_PER_00121] [SWS_PER_00122]
[SWS_PER_00123] [SWS_PER_00124] [SWS_PER_00125] [SWS_PER_00126]
[SWS_PER_00127] [SWS_PER_00128] [SWS_PER_00129] [SWS_PER_00130]
[SWS_PER_00131] [SWS_PER_00132] [SWS_PER_00133] [SWS_PER_00134]
[SWS_PER_00140] [SWS_PER_00141] [SWS_PER_00142] [SWS_PER_00143]
[SWS_PER_00144] [SWS_PER_00145] [SWS_PER_00150] [SWS_PER_00151]
[SWS_PER_00152] [SWS_PER_00153] [SWS_PER_00154] [SWS_PER_00155]
[SWS_PER_00156] [SWS_PER_00157] [SWS_PER_00160] [SWS_PER_00161]
[SWS_PER_00200] [SWS_PER_00201] [SWS_PER_00210] [SWS_PER_00211]
[SWS_PER_00220] [SWS_PER_00221] [SWS_PER_00222] [SWS_PER_00500]

D.2.2 Changed Traceables in 17-10

[SWS_PER_00003] [SWS_PER_00004] [SWS_PER_00010] [SWS_PER_00013]
[SWS_PER_00014] [SWS_PER_00016] [SWS_PER_00017] [SWS_PER_00041]
[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00044] [SWS_PER_00046]
[SWS_PER_00047] [SWS_PER_00048] [SWS_PER_00049] [SWS_PER_00050]
[SWS_PER_00051] [SWS_PER_00060] [SWS_PER_00061] [SWS_PER_00076]

D.2.3 Deleted Traceables in 17-10

[SWS_PER_00011] [SWS_PER_00021] [SWS_PER_00022] [SWS_PER_00023]
[SWS_PER_00024] [SWS_PER_00025] [SWS_PER_00026] [SWS_PER_00027]
[SWS_PER_00028] [SWS_PER_00029] [SWS_PER_00040] [SWS_PER_00045]
[SWS_PER_00053] [SWS_PER_00054] [SWS_PER_00055] [SWS_PER_00056]
[SWS_PER_00057] [SWS_PER_00058] [SWS_PER_00059] [SWS_PER_00062]
[SWS_PER_00066] [SWS_PER_00069] [SWS_PER_00070] [SWS_PER_00071]
[SWS_PER_00072] [SWS_PER_00073] [SWS_PER_00074] [SWS_PER_00075]
[SWS_PER_00077] [SWS_PER_00078]

153 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

D.3 Constraint and Specification Item History of this Document
According to AUTOSAR Release 18-03

D.3.1 Added Traceables in 18-03

[SWS_PER_00080] [SWS_PER_00146] [SWS_PER_00147] [SWS_PER_00148]
[SWS_PER_00162] [SWS_PER_00163] [SWS_PER_00164] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00167] [SWS_PER_00168] [SWS_PER_00169]
[SWS_PER_00170] [SWS_PER_00171] [SWS_PER_00172] [SWS_PER_00173]
[SWS_PER_00174] [SWS_PER_00175] [SWS_PER_00176] [SWS_PER_00180]
[SWS_PER_00181] [SWS_PER_00182] [SWS_PER_00250] [SWS_PER_00251]
[SWS_PER_00252] [SWS_PER_00253] [SWS_PER_00254] [SWS_PER_00255]
[SWS_PER_00256] [SWS_PER_00257] [SWS_PER_00258] [SWS_PER_00259]
[SWS_PER_00260] [SWS_PER_00261] [SWS_PER_00262] [SWS_PER_00264]
[SWS_PER_00265] [SWS_PER_00266] [SWS_PER_00267] [SWS_PER_00268]
[SWS_PER_00269] [SWS_PER_00270] [SWS_PER_00271] [SWS_PER_00272]
[SWS_PER_00273] [SWS_PER_00274] [SWS_PER_00275] [SWS_PER_00276]
[SWS_PER_00277] [SWS_PER_00278] [SWS_PER_00279] [SWS_PER_00280]
[SWS_PER_00281] [SWS_PER_00282] [SWS_PER_00283] [SWS_PER_00284]
[SWS_PER_00285] [SWS_PER_00300] [SWS_PER_00301] [SWS_PER_00302]
[SWS_PER_00303] [SWS_PER_00304] [SWS_PER_UNUSED]

D.3.2 Changed Traceables in 18-03

[SWS_PER_00004] [SWS_PER_00113] [SWS_PER_00114] [SWS_PER_00115]
[SWS_PER_00132] [SWS_PER_00133] [SWS_PER_00134] [SWS_PER_00201]
[SWS_PER_00220] [SWS_PER_00500]

D.3.3 Deleted Traceables in 18-03

[SWS_PER_00003] [SWS_PER_00005] [SWS_PER_00006] [SWS_PER_00007]
[SWS_PER_00008] [SWS_PER_00010] [SWS_PER_00012] [SWS_PER_00013]
[SWS_PER_00014] [SWS_PER_00015] [SWS_PER_00016] [SWS_PER_00017]
[SWS_PER_00018] [SWS_PER_00019] [SWS_PER_00020] [SWS_PER_00051]
[SWS_PER_00060] [SWS_PER_00061] [SWS_PER_00076] [SWS_PER_00100]
[SWS_PER_00101] [SWS_PER_00102] [SWS_PER_00103] [SWS_PER_00104]
[SWS_PER_00105] [SWS_PER_00109] [SWS_PER_00117] [SWS_PER_00118]
[SWS_PER_00120] [SWS_PER_00121] [SWS_PER_00123] [SWS_PER_00150]
[SWS_PER_00151] [SWS_PER_00152] [SWS_PER_00153] [SWS_PER_00154]
[SWS_PER_00155] [SWS_PER_00156] [SWS_PER_00157]

154 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

D.4 Constraint and Specification Item History of this Document
According to AUTOSAR Release 18-10

D.4.1 Added Traceables in 18-10

[SWS_PER_00309] [SWS_PER_00311] [SWS_PER_00312] [SWS_PER_00313]
[SWS_PER_00314] [SWS_PER_00315] [SWS_PER_00316] [SWS_PER_00317]
[SWS_PER_00318] [SWS_PER_00319] [SWS_PER_00320] [SWS_PER_00321]
[SWS_PER_00322] [SWS_PER_00323] [SWS_PER_00324] [SWS_PER_00325]
[SWS_PER_00326] [SWS_PER_00327] [SWS_PER_00328] [SWS_PER_00329]
[SWS_PER_00330] [SWS_PER_00331] [SWS_PER_00332] [SWS_PER_00333]
[SWS_PER_00334] [SWS_PER_00335] [SWS_PER_00336] [SWS_PER_00337]
[SWS_PER_00338] [SWS_PER_00339] [SWS_PER_00340] [SWS_PER_00341]
[SWS_PER_00342] [SWS_PER_00343] [SWS_PER_00344] [SWS_PER_00345]
[SWS_PER_00346] [SWS_PER_00347] [SWS_PER_00348] [SWS_PER_NA]

D.4.2 Changed Traceables in 18-10

[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00044] [SWS_PER_00046]
[SWS_PER_00047] [SWS_PER_00048] [SWS_PER_00049] [SWS_PER_00050]
[SWS_PER_00052] [SWS_PER_00106] [SWS_PER_00107] [SWS_PER_00108]
[SWS_PER_00110] [SWS_PER_00111] [SWS_PER_00112] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115] [SWS_PER_00116] [SWS_PER_00119]
[SWS_PER_00122] [SWS_PER_00124] [SWS_PER_00125] [SWS_PER_00126]
[SWS_PER_00127] [SWS_PER_00128] [SWS_PER_00140] [SWS_PER_00141]
[SWS_PER_00142] [SWS_PER_00143] [SWS_PER_00144] [SWS_PER_00145]
[SWS_PER_00147] [SWS_PER_00160] [SWS_PER_00161] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165] [SWS_PER_00166] [SWS_PER_00180]
[SWS_PER_00181] [SWS_PER_00182] [SWS_PER_00210] [SWS_PER_00211]

D.4.3 Deleted Traceables in 18-10

[SWS_PER_00004] [SWS_PER_00041] [SWS_PER_00080] [SWS_PER_00129]
[SWS_PER_00130] [SWS_PER_00131] [SWS_PER_00132] [SWS_PER_00133]
[SWS_PER_00134] [SWS_PER_00148] [SWS_PER_00169] [SWS_PER_00170]
[SWS_PER_00171] [SWS_PER_00172] [SWS_PER_00173] [SWS_PER_00174]
[SWS_PER_00175] [SWS_PER_00176] [SWS_PER_00200] [SWS_PER_00201]
[SWS_PER_00220] [SWS_PER_00250] [SWS_PER_00500] [SWS_PER_UNUSED]

155 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

D.5 Constraint and Specification Item History of this Document
According to AUTOSAR Release 19-03

D.5.1 Added Traceables in 19-03

[SWS_PER_00349] [SWS_PER_00350] [SWS_PER_00351] [SWS_PER_00352]
[SWS_PER_00353] [SWS_PER_00354] [SWS_PER_00355] [SWS_PER_00356]
[SWS_PER_00357] [SWS_PER_00358] [SWS_PER_00359] [SWS_PER_00360]
[SWS_PER_00361] [SWS_PER_00362] [SWS_PER_00363] [SWS_PER_00364]
[SWS_PER_00365] [SWS_PER_00366] [SWS_PER_00367] [SWS_PER_00368]
[SWS_PER_00369] [SWS_PER_00370] [SWS_PER_00371] [SWS_PER_00372]
[SWS_PER_00373] [SWS_PER_00374] [SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00378] [SWS_PER_00379] [SWS_PER_00380]
[SWS_PER_00381] [SWS_PER_00382] [SWS_PER_00383] [SWS_PER_00384]
[SWS_PER_00385] [SWS_PER_00386] [SWS_PER_00387] [SWS_PER_00388]
[SWS_PER_00389] [SWS_PER_00390] [SWS_PER_00391] [SWS_PER_00392]
[SWS_PER_00393] [SWS_PER_00394] [SWS_PER_00395] [SWS_PER_00396]
[SWS_PER_00397] [SWS_PER_CONSTR_00001] [SWS_PER_CONSTR_00002]
[SWS_PER_CONSTR_00003] [SWS_PER_CONSTR_00004]

D.5.2 Changed Traceables in 19-03

[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00044] [SWS_PER_00046]
[SWS_PER_00047] [SWS_PER_00048] [SWS_PER_00049] [SWS_PER_00052]
[SWS_PER_00110] [SWS_PER_00111] [SWS_PER_00112] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115] [SWS_PER_00116] [SWS_PER_00119]
[SWS_PER_00127] [SWS_PER_00128] [SWS_PER_00144] [SWS_PER_00145]
[SWS_PER_00251] [SWS_PER_00252] [SWS_PER_00253] [SWS_PER_00254]
[SWS_PER_00265] [SWS_PER_00266] [SWS_PER_00267] [SWS_PER_00275]
[SWS_PER_00277] [SWS_PER_00281] [SWS_PER_00283] [SWS_PER_00304]
[SWS_PER_00311] [SWS_PER_00312] [SWS_PER_00313] [SWS_PER_00314]
[SWS_PER_00315] [SWS_PER_00322] [SWS_PER_00323] [SWS_PER_00326]
[SWS_PER_00327] [SWS_PER_00328] [SWS_PER_00329] [SWS_PER_00330]
[SWS_PER_00332] [SWS_PER_00333] [SWS_PER_00334] [SWS_PER_00335]
[SWS_PER_00336] [SWS_PER_00337] [SWS_PER_00338] [SWS_PER_00340]

D.5.3 Deleted Traceables in 19-03

[SWS_PER_00160] [SWS_PER_00161] [SWS_PER_00255] [SWS_PER_00256]
[SWS_PER_00257] [SWS_PER_00258] [SWS_PER_00259] [SWS_PER_00260]
[SWS_PER_00261] [SWS_PER_00262] [SWS_PER_00264] [SWS_PER_00268]
[SWS_PER_00269] [SWS_PER_00270] [SWS_PER_00271] [SWS_PER_00272]
[SWS_PER_00273] [SWS_PER_00274] [SWS_PER_00276] [SWS_PER_00278]

156 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00279] [SWS_PER_00280] [SWS_PER_00282] [SWS_PER_00284]
[SWS_PER_00285] [SWS_PER_00300] [SWS_PER_00301] [SWS_PER_00316]

D.6 Constraint and Specification Item History of this Document
According to AUTOSAR Release R19-11

D.6.1 Added Traceables in R19-11

[SWS_PER_00398] [SWS_PER_00399] [SWS_PER_00400] [SWS_PER_00401]
[SWS_PER_00402] [SWS_PER_00403] [SWS_PER_00404] [SWS_PER_00405]
[SWS_PER_00406] [SWS_PER_00407] [SWS_PER_00408] [SWS_PER_00409]
[SWS_PER_00410]

D.6.2 Changed Traceables in R19-11

[SWS_PER_00049] [SWS_PER_00113] [SWS_PER_00114] [SWS_PER_00115]
[SWS_PER_00144] [SWS_PER_00145] [SWS_PER_00146] [SWS_PER_00147]
[SWS_PER_00163] [SWS_PER_00164] [SWS_PER_00303] [SWS_PER_00317]
[SWS_PER_00318] [SWS_PER_00319] [SWS_PER_00323] [SWS_PER_00327]
[SWS_PER_00345] [SWS_PER_00351] [SWS_PER_00365] [SWS_PER_00368]
[SWS_PER_00370] [SWS_PER_00372]

D.6.3 Deleted Traceables in R19-11

[SWS_PER_00044] [SWS_PER_CONSTR_00001]

D.7 Constraint and Specification Item History of this Document
According to AUTOSAR Release R20-11

D.7.1 Added Traceables in R20-11

[SWS_PER_00411] [SWS_PER_00412] [SWS_PER_00413] [SWS_PER_00414]
[SWS_PER_00415] [SWS_PER_00416] [SWS_PER_00417] [SWS_PER_00418]
[SWS_PER_00419] [SWS_PER_00420] [SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00424] [SWS_PER_00425] [SWS_PER_00426]
[SWS_PER_00427] [SWS_PER_00428] [SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00432] [SWS_PER_00433] [SWS_PER_00434]
[SWS_PER_00435] [SWS_PER_00436] [SWS_PER_00437] [SWS_PER_00438]
[SWS_PER_00439] [SWS_PER_00440] [SWS_PER_00441] [SWS_PER_00442]
[SWS_PER_00443] [SWS_PER_00444] [SWS_PER_00445] [SWS_PER_00446]

157 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00447] [SWS_PER_00448] [SWS_PER_00449] [SWS_PER_00450]
[SWS_PER_00451]

D.7.2 Changed Traceables in R20-11

[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049] [SWS_PER_00052] [SWS_PER_00107]
[SWS_PER_00110] [SWS_PER_00111] [SWS_PER_00112] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115] [SWS_PER_00116] [SWS_PER_00119]
[SWS_PER_00122] [SWS_PER_00125] [SWS_PER_00144] [SWS_PER_00146]
[SWS_PER_00147] [SWS_PER_00162] [SWS_PER_00163] [SWS_PER_00164]
[SWS_PER_00165] [SWS_PER_00166] [SWS_PER_00167] [SWS_PER_00168]
[SWS_PER_00210] [SWS_PER_00211] [SWS_PER_00251] [SWS_PER_00252]
[SWS_PER_00265] [SWS_PER_00266] [SWS_PER_00267] [SWS_PER_00275]
[SWS_PER_00277] [SWS_PER_00281] [SWS_PER_00283] [SWS_PER_00304]
[SWS_PER_00311] [SWS_PER_00312] [SWS_PER_00317] [SWS_PER_00318]
[SWS_PER_00319] [SWS_PER_00332] [SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336] [SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00339] [SWS_PER_00340] [SWS_PER_00342] [SWS_PER_00343]
[SWS_PER_00356] [SWS_PER_00357] [SWS_PER_00358] [SWS_PER_00365]
[SWS_PER_00375] [SWS_PER_00376] [SWS_PER_00377] [SWS_PER_00378]
[SWS_PER_00379] [SWS_PER_00380] [SWS_PER_00383] [SWS_PER_00385]
[SWS_PER_00388] [SWS_PER_00389] [SWS_PER_00390] [SWS_PER_00391]
[SWS_PER_00392] [SWS_PER_00393] [SWS_PER_00394] [SWS_PER_00395]
[SWS_PER_00396] [SWS_PER_00405] [SWS_PER_00406] [SWS_PER_00407]
[SWS_PER_00409] [SWS_PER_CONSTR_00004]

D.7.3 Deleted Traceables in R20-11

[SWS_PER_00106] [SWS_PER_00108] [SWS_PER_00124] [SWS_PER_00126]
[SWS_PER_00127] [SWS_PER_00128] [SWS_PER_00140] [SWS_PER_00141]
[SWS_PER_00142] [SWS_PER_00143] [SWS_PER_00145] [SWS_PER_00180]
[SWS_PER_00181] [SWS_PER_00182] [SWS_PER_00341] [SWS_PER_00344]
[SWS_PER_00345] [SWS_PER_00346] [SWS_PER_00347] [SWS_PER_00348]
[SWS_PER_00349] [SWS_PER_00366] [SWS_PER_00381] [SWS_PER_00404]
[SWS_PER_CONSTR_00002]

158 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

D.8 Constraint and Specification Item History of this Document
According to AUTOSAR Release R21-11

D.8.1 Added Traceables in R21-11

[SWS_PER_00452] [SWS_PER_00453] [SWS_PER_00454] [SWS_PER_00455]
[SWS_PER_00456] [SWS_PER_00457] [SWS_PER_00458] [SWS_PER_00459]
[SWS_PER_00460] [SWS_PER_00461] [SWS_PER_00462] [SWS_PER_00463]
[SWS_PER_00464] [SWS_PER_00465] [SWS_PER_00466] [SWS_PER_00467]
[SWS_PER_00468] [SWS_PER_00469] [SWS_PER_00470] [SWS_PER_00471]
[SWS_PER_00472] [SWS_PER_00473] [SWS_PER_00474] [SWS_PER_00475]
[SWS_PER_00476] [SWS_PER_00477] [SWS_PER_00478] [SWS_PER_00479]
[SWS_PER_00480] [SWS_PER_00481] [SWS_PER_00482] [SWS_PER_00483]
[SWS_PER_00484] [SWS_PER_00485] [SWS_PER_00486] [SWS_PER_00487]
[SWS_PER_00488] [SWS_PER_00489] [SWS_PER_00490] [SWS_PER_00491]
[SWS_PER_00492] [SWS_PER_00493] [SWS_PER_00494] [SWS_PER_00495]
[SWS_PER_00496] [SWS_PER_00497] [SWS_PER_00498] [SWS_PER_00499]
[SWS_PER_00501] [SWS_PER_00502] [SWS_PER_00503] [SWS_PER_00504]
[SWS_PER_00505] [SWS_PER_00506] [SWS_PER_00507] [SWS_PER_00508]
[SWS_PER_00509] [SWS_PER_00510] [SWS_PER_00511] [SWS_PER_00512]
[SWS_PER_00513] [SWS_PER_00514] [SWS_PER_00515] [SWS_PER_00516]
[SWS_PER_00517] [SWS_PER_00518] [SWS_PER_00519] [SWS_PER_00520]
[SWS_PER_00521] [SWS_PER_00522] [SWS_PER_00523] [SWS_PER_00524]
[SWS_PER_00525] [SWS_PER_00526] [SWS_PER_00527] [SWS_PER_00528]
[SWS_PER_00529] [SWS_PER_00530] [SWS_PER_00531] [SWS_PER_00532]
[SWS_PER_00533] [SWS_PER_00534] [SWS_PER_00535] [SWS_PER_CONSTR_-
00001] [SWS_PER_CONSTR_00002]

D.8.2 Changed Traceables in R21-11

[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049] [SWS_PER_00050] [SWS_PER_00052]
[SWS_PER_00107] [SWS_PER_00110] [SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114] [SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122] [SWS_PER_00125] [SWS_PER_00144]
[SWS_PER_00146] [SWS_PER_00147] [SWS_PER_00162] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165] [SWS_PER_00166] [SWS_PER_00167]
[SWS_PER_00168] [SWS_PER_00210] [SWS_PER_00211] [SWS_PER_00221]
[SWS_PER_00251] [SWS_PER_00252] [SWS_PER_00265] [SWS_PER_00275]
[SWS_PER_00277] [SWS_PER_00281] [SWS_PER_00283] [SWS_PER_00311]
[SWS_PER_00312] [SWS_PER_00313] [SWS_PER_00314] [SWS_PER_00315]
[SWS_PER_00317] [SWS_PER_00318] [SWS_PER_00319] [SWS_PER_00320]
[SWS_PER_00321] [SWS_PER_00322] [SWS_PER_00323] [SWS_PER_00324]
[SWS_PER_00325] [SWS_PER_00326] [SWS_PER_00327] [SWS_PER_00328]
[SWS_PER_00329] [SWS_PER_00330] [SWS_PER_00331] [SWS_PER_00332]

159 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

[SWS_PER_00333] [SWS_PER_00334] [SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338] [SWS_PER_00339] [SWS_PER_00340]
[SWS_PER_00342] [SWS_PER_00343] [SWS_PER_00350] [SWS_PER_00351]
[SWS_PER_00352] [SWS_PER_00354] [SWS_PER_00355] [SWS_PER_00356]
[SWS_PER_00357] [SWS_PER_00358] [SWS_PER_00359] [SWS_PER_00360]
[SWS_PER_00361] [SWS_PER_00362] [SWS_PER_00363] [SWS_PER_00364]
[SWS_PER_00365] [SWS_PER_00367] [SWS_PER_00368] [SWS_PER_00369]
[SWS_PER_00370] [SWS_PER_00371] [SWS_PER_00372] [SWS_PER_00373]
[SWS_PER_00374] [SWS_PER_00375] [SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00378] [SWS_PER_00379] [SWS_PER_00380] [SWS_PER_00382]
[SWS_PER_00383] [SWS_PER_00385] [SWS_PER_00386] [SWS_PER_00387]
[SWS_PER_00391] [SWS_PER_00395] [SWS_PER_00396] [SWS_PER_00398]
[SWS_PER_00399] [SWS_PER_00400] [SWS_PER_00401] [SWS_PER_00402]
[SWS_PER_00403] [SWS_PER_00405] [SWS_PER_00406] [SWS_PER_00407]
[SWS_PER_00410] [SWS_PER_00411] [SWS_PER_00412] [SWS_PER_00413]
[SWS_PER_00414] [SWS_PER_00415] [SWS_PER_00416] [SWS_PER_00417]
[SWS_PER_00418] [SWS_PER_00419] [SWS_PER_00420] [SWS_PER_00421]
[SWS_PER_00422] [SWS_PER_00423] [SWS_PER_00424] [SWS_PER_00426]
[SWS_PER_00427] [SWS_PER_00428] [SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00432] [SWS_PER_00433] [SWS_PER_00434]
[SWS_PER_00435] [SWS_PER_00436] [SWS_PER_00437] [SWS_PER_00438]
[SWS_PER_00441] [SWS_PER_00442] [SWS_PER_00443] [SWS_PER_00444]
[SWS_PER_00445] [SWS_PER_00446] [SWS_PER_00447] [SWS_PER_00449]
[SWS_PER_00450] [SWS_PER_00451]

D.8.3 Deleted Traceables in R21-11

[SWS_PER_00222] [SWS_PER_00397]

160 of 161 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R21-11

E Not Applicable Requirements

[SWS_PER_NA]{DRAFT} dThese requirements are not applicable to this specifi-
cation.c(RS_AP_00111, RS_AP_00114, RS_AP_00116, RS_AP_00124, RS_AP_-
00130)

161 of 161 Document ID 858: AUTOSAR_SWS_Persistency

	1 Introduction and Functional Overview
	2 Acronyms and Abbreviations
	3 Related Documentation
	3.1 Input Documents & Related Standards and Norms
	3.2 Further Applicable Specifications

	4 Constraints and Assumptions
	4.1 Known Limitations
	4.2 Constraints on Configuration
	4.3 Direct Access to Storage Hardware

	5 Dependencies to Other Functional Clusters
	5.1 Protocol Layer Dependencies

	6 Requirements Tracing
	7 Functional Specification
	7.1 The Architecture of Persistency
	7.1.1 Persistency in the Manifest
	7.1.2 Key-Value Storages in the Manifest
	7.1.3 File Storages in the Manifest

	7.2 General Features of Persistency
	7.2.1 Functional Cluster Lifecycle
	7.2.1.1 Initialization and Shutdown of Persistency

	7.2.2 Error Handling
	7.2.3 Parallel Access to Persistent Data
	7.2.4 Security Concepts
	7.2.5 Redundancy Concepts
	7.2.5.1 Redundancy Types

	7.2.6 Installation and Update of Persistent Data
	7.2.6.1 Installation of Persistent Data
	7.2.6.1.1 Installation of Key-Value Storage
	7.2.6.1.2 Installation of File Storage

	7.2.6.2 Update of Persistent Data
	7.2.6.2.1 Update of Key-Value Storage
	7.2.6.2.2 Update of File Storage

	7.2.6.3 Finalization of Persistent Data after Successful Update
	7.2.6.4 Roll-Back of Persistent Data after Failed Update
	7.2.6.5 Removal of Persistent Data

	7.2.7 Resource Management Concepts

	7.3 Key-Value Storage specific Features
	7.3.1 Supported Data Types in Key-Value Storages

	7.4 File Storage specific Features
	7.4.1 Access to Additional Information about Files

	8 API Specification
	8.1 General Features of Persistency
	8.1.1 ara::core Types
	8.1.2 Update and Removal of Persistent Data
	8.1.2.1 RegisterApplicationDataUpdateCallback
	8.1.2.2 UpdatePersistency
	8.1.2.3 ResetPersistency

	8.1.3 Redundancy Handling
	8.1.3.1 RecoveryReportKind
	8.1.3.2 RegisterRecoveryReportCallback

	8.1.4 Handle Classes
	8.1.4.1 SharedHandle Class
	8.1.4.1.1 SharedHandle::SharedHandle
	8.1.4.1.2 SharedHandle::operator=
	8.1.4.1.3 SharedHandle::operator bool
	8.1.4.1.4 SharedHandle::Operator->
	8.1.4.1.5 SharedHandle::Operator*

	8.1.4.2 UniqueHandle Class
	8.1.4.2.1 UniqueHandle::UniqueHandle
	8.1.4.2.2 UniqueHandle::operator=
	8.1.4.2.3 UniqueHandle::operator bool
	8.1.4.2.4 UniqueHandle::Operator->
	8.1.4.2.5 UniqueHandle::Operator*

	8.1.5 Errors
	8.1.5.1 PerErrc
	8.1.5.2 GetPerDomain
	8.1.5.3 MakeErrorCode
	8.1.5.4 PerException Class
	8.1.5.4.1 PerException::PerException

	8.1.5.5 PerErrorDomain Class
	8.1.5.5.1 PerErrorDomain::Errc
	8.1.5.5.2 PerErrorDomain::Exception
	8.1.5.5.3 PerErrorDomain::PerErrorDomain
	8.1.5.5.4 PerErrorDomain::Name
	8.1.5.5.5 PerErrorDomain::Message
	8.1.5.5.6 PerErrorDomain::ThrowAsException

	8.2 Key-Value Storage
	8.2.1 OpenKeyValueStorage
	8.2.2 RecoverKeyValueStorage
	8.2.3 ResetKeyValueStorage
	8.2.4 GetCurrentKeyValueStorageSize
	8.2.5 KeyValueStorage Class
	8.2.5.1 KeyValueStorage::KeyValueStorage
	8.2.5.2 KeyValueStorage::operator=
	8.2.5.3 KeyValueStorage::~KeyValueStorage
	8.2.5.4 KeyValueStorage::GetAllKeys
	8.2.5.5 KeyValueStorage::KeyExists
	8.2.5.6 KeyValueStorage::GetValue
	8.2.5.7 KeyValueStorage::SetValue
	8.2.5.8 KeyValueStorage::RemoveKey
	8.2.5.9 KeyValueStorage::RecoverKey
	8.2.5.10 KeyValueStorage::ResetKey
	8.2.5.11 KeyValueStorage::RemoveAllKeys
	8.2.5.12 KeyValueStorage::SyncToStorage
	8.2.5.13 KeyValueStorage::DiscardPendingChanges

	8.3 File Storage
	8.3.1 OpenFileStorage
	8.3.2 RecoverAllFiles
	8.3.3 ResetAllFiles
	8.3.4 GetCurrentFileStorageSize
	8.3.5 OpenMode
	8.3.6 operator| for FileStorage::OpenMode
	8.3.7 operator|= for FileStorage::OpenMode
	8.3.8 FileCreationState
	8.3.9 FileModificationState
	8.3.10 FileInfo
	8.3.10.1 FileInfo.creationTime
	8.3.10.2 FileInfo.modificationTime
	8.3.10.3 FileInfo.accessTime
	8.3.10.4 FileInfo.fileCreationState
	8.3.10.5 FileInfo.fileModificationState

	8.3.11 FileStorage Class
	8.3.11.1 FileStorage::FileStorage
	8.3.11.2 FileStorage::operator=
	8.3.11.3 FileStorage::~FileStorage
	8.3.11.4 FileStorage::GetAllFileNames
	8.3.11.5 FileStorage::DeleteFile
	8.3.11.6 FileStorage::FileExists
	8.3.11.7 FileStorage::RecoverFile
	8.3.11.8 FileStorage::ResetFile
	8.3.11.9 FileStorage::GetCurrentFileSize
	8.3.11.10 FileStorage::GetFileInfo
	8.3.11.11 FileStorage::OpenFileReadWrite
	8.3.11.12 FileStorage::OpenFileReadOnly
	8.3.11.13 FileStorage::OpenFileWriteOnly

	8.3.12 Origin
	8.3.13 ReadAccessor Class
	8.3.13.1 ReadAccessor::ReadAccessor
	8.3.13.2 ReadAccessor::operator=
	8.3.13.3 ReadAccessor::~ReadAccessor
	8.3.13.4 ReadAccessor::PeekChar
	8.3.13.5 ReadAccessor::PeekByte
	8.3.13.6 ReadAccessor::GetChar
	8.3.13.7 ReadAccessor::GetByte
	8.3.13.8 ReadAccessor::ReadText
	8.3.13.9 ReadAccessor::ReadBinary
	8.3.13.10 ReadAccessor::ReadLine
	8.3.13.11 ReadAccessor::GetSize
	8.3.13.12 ReadAccessor::GetPosition
	8.3.13.13 ReadAccessor::SetPosition
	8.3.13.14 ReadAccessor::MovePosition
	8.3.13.15 ReadAccessor::IsEof

	8.3.14 ReadWriteAccessor Class
	8.3.14.1 ReadWriteAccessor::ReadWriteAccessor
	8.3.14.2 ReadWriteAccessor::SyncToFile
	8.3.14.3 ReadWriteAccessor::SetFileSize
	8.3.14.4 ReadWriteAccessor::WriteText
	8.3.14.5 ReadWriteAccessor::WriteBinary
	8.3.14.6 ReadWriteAccessor::operator<<

	9 Service Interfaces
	A Mentioned Class Tables
	B Platform Extension API (normative)
	C Interfaces to Other Functional Clusters (informative)
	D History of Constraints and Specification Items
	D.1 Constraint and Specification Item History of this Document According to AUTOSAR Release 17-03
	D.1.1 Added Traceables in 17-03
	D.1.2 Changed Traceables in 17-03
	D.1.3 Deleted Traceables in 17-03

	D.2 Constraint and Specification Item History of this Document According to AUTOSAR Release 17-10
	D.2.1 Added Traceables in 17-10
	D.2.2 Changed Traceables in 17-10
	D.2.3 Deleted Traceables in 17-10

	D.3 Constraint and Specification Item History of this Document According to AUTOSAR Release 18-03
	D.3.1 Added Traceables in 18-03
	D.3.2 Changed Traceables in 18-03
	D.3.3 Deleted Traceables in 18-03

	D.4 Constraint and Specification Item History of this Document According to AUTOSAR Release 18-10
	D.4.1 Added Traceables in 18-10
	D.4.2 Changed Traceables in 18-10
	D.4.3 Deleted Traceables in 18-10

	D.5 Constraint and Specification Item History of this Document According to AUTOSAR Release 19-03
	D.5.1 Added Traceables in 19-03
	D.5.2 Changed Traceables in 19-03
	D.5.3 Deleted Traceables in 19-03

	D.6 Constraint and Specification Item History of this Document According to AUTOSAR Release R19-11
	D.6.1 Added Traceables in R19-11
	D.6.2 Changed Traceables in R19-11
	D.6.3 Deleted Traceables in R19-11

	D.7 Constraint and Specification Item History of this Document According to AUTOSAR Release R20-11
	D.7.1 Added Traceables in R20-11
	D.7.2 Changed Traceables in R20-11
	D.7.3 Deleted Traceables in R20-11

	D.8 Constraint and Specification Item History of this Document According to AUTOSAR Release R21-11
	D.8.1 Added Traceables in R21-11
	D.8.2 Changed Traceables in R21-11
	D.8.3 Deleted Traceables in R21-11

	E Not Applicable Requirements

