
Specification of Communication Management
AUTOSAR AP R21-11

Document Title Specification of Communication
Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 717

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R21-11

Document Change History
Date Release Changed by Description

2021-11-25 R21-11
AUTOSAR
Release
Management

• Specified use cases and endpoint
configuration for RawDataStreams
• Added E2E communication

protection for Fields
• Added E2E profile P44m and P08m
• Added new ServiceInterface element

Trigger
• Extend DDS Serialization of Payload

chapter
• Extend DDS Network binding chapter
• Added Signal-Based Static Network

binding
• Added Freshness Value

Management (FVM)
• Minor vocabulary improvements and

bugfixes

1 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

2020-11-30 R20-11
AUTOSAR
Release
Management

• Added SecOC Behavior, API and
Freshness Value Management to
specification
• Standardized API Error Codes for

ara::com API
• Added unique ErrorDomain

identifiers
• Added Named Constructor Approach
• Updated E2E Support for methods

and events
• Updated Raw Data Streaming

chapters
• Introduced optional execution context

parameter to APIs with an
asynchronous callback
• Changed

kCapabilityEnforcementError to
kGrantEnforcementError
• Moved magic numbers for "entry

type" field to
PRS_SOMEIPServiceDiscovery
• Editorial Changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Introduced
– Signal2Service Translation

Binding
– Support for Invalid Values
– Additional E2E support
– Service Versioning
– Raw Data Streaming Interface
– Changed Document Status from

Final to published
• Minor changes and bugfixes

2019-03-29 19-03
AUTOSAR
Release
Management

• Predictable Resource Allocation for
Samples
• Usage of Future::Get/Wait with an

unreliable transport
• Removed exceptions on reception of

malformed messages
• Changes to Identity and Access

Management to incorporate Grant
design
• Minor changes and bugfixes

2 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

2018-10-31 18-10
AUTOSAR
Release
Management

• Introduced Adaptive Core types
• Introduced exception-less API
• Refined DDS network binding
• Minor changes and bugfixes

2018-03-29 18-03
AUTOSAR
Release
Management

• DDS Network Binding
• Datatype Namespaces changed
• E2E Protected Methods
• Automatic Reconnection of Proxies
• Minor changes and bugfixes

2017-10-27 17-10
AUTOSAR
Release
Management

• Introduction of Fields
• Introduction of E2E protected

communication
• Introduction of TLV
• Improved specification of SOME/IP

functional behavior
• Minor changes and bugfixes

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

3 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Table of Contents

1 Introduction and functional overview 11

2 Acronyms and Abbreviations 12

3 Related documentation 13

3.1 Input documents & related standards and norms 13
3.2 Related specification . 14

4 Constraints and assumptions 15

4.1 Limitations . 15
4.2 Applicability to car domains . 15

5 Dependencies to other functional clusters 16

5.1 Platform dependencies . 16

6 Requirements Tracing 17

7 Functional specification 48

7.1 General description . 48
7.1.1 Architectural concepts . 48
7.1.2 Design decisions . 50
7.1.3 Communication paradigms 51
7.1.4 Service contract versioning 52

7.2 End-to-end communication protection for Events 54
7.2.1 Limitations . 54
7.2.2 Publisher . 55
7.2.3 Subscriber - GetNewSamples 57

7.2.3.1 Case 1 - there are one or more serialized samples . 59
7.2.3.2 Case 2 - there are no serialized samples 60

7.2.4 Subscriber - Callable f . 60
7.2.5 Subscriber - Access to E2E information 60

7.3 End-to-end communication protection for Methods 61
7.3.1 Limitations . 61
7.3.2 E2E protection of the service method request (Client) 62

7.3.2.1 Serializing the payload 63
7.3.2.2 E2E protection of the payload 64

7.3.3 E2E checking the service method request (Server) 64
7.3.3.1 E2E checking of the payload 68
7.3.3.2 Deserializing the payload 68
7.3.3.3 E2E error notification 69

7.3.4 E2E protection of the service method response (Server)) . . 70
7.3.4.1 Serializing the E2E error response payload 72
7.3.4.2 Serializing the response payload 72
7.3.4.3 E2E protection of the response payload 72

7.3.5 E2E checking the service method response (Client) 73

5 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.3.5.1 E2E checking of the payload 75
7.3.5.2 Deserializing the payload 76
7.3.5.3 E2E error notification 76

7.3.6 Timeout supervision . 77
7.4 End-to-end communication protection for Fields 78

7.4.1 Send a GET message . 78
7.4.2 Receive a GET message . 79
7.4.3 Receive a response to a GET message 80
7.4.4 Send a SET message . 82
7.4.5 Receive a SET message . 83
7.4.6 Receive a response to a SET message 85
7.4.7 Send an UPDATE message 87
7.4.8 Receive an UPDATE message 88

7.5 Raw Data Streaming . 89
7.5.1 Raw Data Streaming Interface 89

7.5.1.1 Limitations . 91
7.5.1.2 Use cases . 91

7.5.2 Raw Data Streaming . 93
7.6 Communication Group . 96

7.6.1 Interfaces . 97
7.6.1.1 Communication Group Server 97
7.6.1.2 Communication Group Client 99

7.6.2 Behavior . 99
7.6.3 Connection . 100

7.6.3.1 Communication Group Server 100
7.6.3.2 Communication Group Client 100

7.6.4 Limitations . 100
7.6.5 Communication Group Model 101
7.6.6 Communication Group Creation 102

7.7 Optional Execution Context . 106
7.8 Network binding . 106

7.8.1 SOME/IP Network binding 108
7.8.1.1 Service Discovery 109
7.8.1.2 Accumulation of SOME/IP messages 117
7.8.1.3 Execution context of message reception actions . . . 118
7.8.1.4 Handling Events . 119
7.8.1.5 Handling Triggers . 123
7.8.1.6 Handling Method Calls 126
7.8.1.7 Handling Fields . 135
7.8.1.8 Serialization of Payload 143

7.8.1.8.1 Basic Data Types 145
7.8.1.8.2 Enumeration Data Types 146
7.8.1.8.3 Scale Linear And Texttable Data Types 146
7.8.1.8.4 Structured Data Types (structs) 146
7.8.1.8.5 Structured Datatypes and Arguments with

Identifier and optional Members 150

6 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.8.1.8.6 Strings . 151
7.8.1.8.7 Vectors and arrays 155
7.8.1.8.8 Associative Maps 159
7.8.1.8.9 Variants . 162

7.8.1.8.9.1 Example: Variant of uint8/uint16 both
padded to 32 bit 164

7.8.1.8.10 Segmentation of SOME/IP messages 164
7.8.1.9 Marker Interface . 165

7.8.2 Signal-Based Network binding 166
7.8.2.1 Signal-Based SOME/IP Network binding 166

7.8.2.1.1 Service Discovery 168
7.8.2.1.2 Accumulation of messages 168
7.8.2.1.3 Execution context of message reception actions 170
7.8.2.1.4 Handling Events 170
7.8.2.1.5 Handling Triggers 175
7.8.2.1.6 Handling Method Calls 178
7.8.2.1.7 Handling Fields 178
7.8.2.1.8 Serialization of Payload 183

7.8.2.2 Signal-Based Static Network binding 184
7.8.2.2.1 Service Discovery 185
7.8.2.2.2 Accumulation of messages 186
7.8.2.2.3 Execution context of message reception actions 187
7.8.2.2.4 Handling Events 187
7.8.2.2.5 Handling Method Calls 187
7.8.2.2.6 Handling Fields 188
7.8.2.2.7 Serialization of Payload 188

7.8.3 DDS Network binding . 188
7.8.3.1 Service Discovery via Domain Participant

USER_DATA QoS policy 189
7.8.3.2 Service Discovery via Topic 198
7.8.3.3 Handling Events . 205
7.8.3.4 Handling Triggers . 211
7.8.3.5 Handling Method Calls 217
7.8.3.6 Handling Fields . 228
7.8.3.7 Serialization of Payload 242

7.8.3.7.1 Basic Data Types 242
7.8.3.7.2 Enumeration Data Types 243
7.8.3.7.3 Structured Data Types (structs) 243
7.8.3.7.4 Strings . 243
7.8.3.7.5 Vectors and Arrays 244
7.8.3.7.6 Associative Maps 244
7.8.3.7.7 Variant . 244

7.8.3.8 End-to-end communication protection 245
7.9 Security . 245

7.9.1 IAM . 245
7.9.1.1 Configuration of Access Control 247

7 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.9.1.2 Remote Access Control 250
7.9.2 Secure Communication . 254

7.9.2.1 Creation and use of secure channels 255
7.9.2.1.1 SOME/IP and DDS network binding 255
7.9.2.1.2 Raw data streaming 256

7.9.2.2 (D)TLS . 256
7.9.2.2.1 SOME/IP Network binding 256
7.9.2.2.2 DDS Network Binding (secure transports) . . . 258
7.9.2.2.3 Raw Data Streaming 260

7.9.2.3 SecOC . 261
7.9.2.3.1 SOME/IP network binding 263
7.9.2.3.2 Signal based network binding 267

7.9.2.4 IPsec . 269
7.9.2.5 DDS Security . 270

7.10 Communication API . 270
7.10.1 Offer service . 270
7.10.2 Service skeleton creation . 271
7.10.3 Processing of service methods 272
7.10.4 Registering get handlers for fields 273
7.10.5 Registering set handlers for fields 273
7.10.6 Find service . 274
7.10.7 Receive events . 274

7.10.7.1 Receive event by polling 274
7.10.7.2 Receive event by getting triggered 274

7.10.8 Call a service method . 275
7.10.9 Update notification events for fields 275
7.10.10 Instance Specifier Translation 276
7.10.11 Invalid Value . 276

8 Communication API specification 277

8.1 C++ language binding . 277
8.1.1 API Header files . 277

8.1.1.1 Service header files 277
8.1.1.2 Common header file 280
8.1.1.3 Types header file . 281
8.1.1.4 Implementation Types header files 282
8.1.1.5 Raw Data Stream header file 283

8.1.2 API Data Types . 284
8.1.2.1 Service Identifier Data Types 284
8.1.2.2 Event Related Data Types 288
8.1.2.3 Trigger Related Data Types 291
8.1.2.4 Method Related Data Types 292
8.1.2.5 Generic Data Types 292

8.1.2.5.1 Future and Promise 292
8.1.2.5.2 Optional Data Types 292
8.1.2.5.3 Variant Data Types 293

8 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.2.6 Error Types . 299
8.1.2.7 E2E Related Data Types 308
8.1.2.8 Raw Data Stream Data Type 310

8.1.3 API Reference . 312
8.1.3.1 Object Creation via Named Constructor Approach . 315
8.1.3.2 Offer service . 315
8.1.3.3 Service skeleton creation 316
8.1.3.4 Send event . 320
8.1.3.5 Send Trigger . 321
8.1.3.6 Provide a service method 322
8.1.3.7 Processing of service methods 323
8.1.3.8 Registering get handlers for fields 325
8.1.3.9 Registering set handlers for fields 326
8.1.3.10 Find service . 327
8.1.3.11 Service proxy creation 332
8.1.3.12 Service proxy destruction 333
8.1.3.13 Service event subscription 333
8.1.3.14 Receive event . 336
8.1.3.15 Receive event by getting triggered 339
8.1.3.16 Service Trigger subscription 341
8.1.3.17 Receive Trigger . 342
8.1.3.18 Receive trigger by getting triggered 343
8.1.3.19 Call a service method 343
8.1.3.20 Get method for fields 347
8.1.3.21 Set method for fields 347
8.1.3.22 Instance Specifier Translation 348
8.1.3.23 Raw Data Stream API 348

9 Service Interfaces 362

9.1 Service Interfaces . 362
9.2 Data Types . 363

A Mentioned Class Tables 365

B Platform Extension API (normative) 437

B.1 Freshness Value Management(FVM) Library API 438
B.1.1 Library API Reference . 438
B.1.2 Error Types . 440

C History of Specification Items 442

C.1 Constraint and Specification Item History of this document according
to AUTOSAR Release R17-10 . 442

C.1.1 Added Traceables in 17-10 442
C.1.2 Changed Traceables in 17-10 446
C.1.3 Deleted Traceables in 17-10 448

C.2 Constraint and Specification Item History of this document according
to AUTOSAR Release R18-03 . 448

9 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

C.2.1 Added Traceables in 18-03 448
C.2.2 Changed Traceables in 18-03 451
C.2.3 Deleted Traceables in 18-03 457

C.3 Constraint and Specification Item History of this document according
to AUTOSAR Release R18-10 . 458

C.3.1 Added Traceables in 18-10 458
C.3.2 Changed Traceables in 18-10 463
C.3.3 Deleted Traceables in 18-10 468

C.4 Constraint and Specification Item History of this document according
to AUTOSAR Release R19-03 . 469

C.4.1 Added Traceables in 19-03 469
C.4.2 Changed Traceables in 19-03 470
C.4.3 Deleted Traceables in 19-03 470

C.5 Constraint and Specification Item History of this document according
to AUTOSAR Release R19-11 . 470

C.5.1 Added Traceables in R19-11 470
C.5.2 Changed Traceables in R19-11 475
C.5.3 Deleted Traceables in R19-11 482

C.6 Constraint and Specification Item History of this document according
to AUTOSAR Release R20-11 . 483

C.6.1 Added Traceables in R20-11 483
C.6.2 Changed Traceables in R20-11 489
C.6.3 Deleted Traceables in R20-11 493

C.7 Constraint and Specification Item History of this document according
to AUTOSAR Release R21-11 . 495

C.7.1 Added Traceables in R21-11 495
C.7.2 Changed Traceables in R21-11 498
C.7.3 Deleted Traceables in R21-11 502

10 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

1 Introduction and functional overview

This document contains the requirements on the functionality, API and the configura-
tion of the AUTOSAR Adaptive Communication Management as part of the Adaptive
AUTOSAR platform foundation.

The Communication Management realizes Service Oriented Communication between
Adaptive AUTOSAR Applications for all levels of communication, e.g. IntraProcess, In-
terProcess, InterMachine. It consists of potentially generated Service Provider Skele-
tons and Service Requester Proxies and optionally the generic Communication Man-
ager software for central brokering and configuration.

The Communication Management provides a built-in safety mechanism (E2E protec-
tion), which can be used for all levels of communication for events and methods.

The documentation of the Communication Management consists of two documents:

• the ARAComAPI explanatory document [1], providing explanations of the design
and behavior descriptions of the ara::com API,

• this document, providing the requirements on the ara::com API.

Therefore it is recommended to read the ARAComAPI explanatory document first to
get an overview and understanding, and to read this document afterward.

11 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Communica-
tion Management that are not included in the AUTOSAR glossary [2].

Abbreviation / Acronym: Description:
CM Communication Management
IP Internet Protocol
SOME/IP Scalable service-Oriented MiddlewarE over IP
TCP Transmission Control Protocol
UDP User Datagram Protocol
E2E End-to-end communication protection
SoC Service-Oriented Communication
SecOC Secure Onboard Communication
DTLS Datagram Transport Layer Security
DDS Data Distribution Service
RTPS Real Time Publish Subscribe Protocol
TTL Time To Live
TLV Tag-Length-Value
RPC Remote Procedure Call
QoS Quality of Service
BOM Byte Order Mark

Term: Description:
Callable In the context of C++ a Callable is defined as: A Callable type is a

type for which the INVOKE operation (used by, e.g., std::function,
std::bind, and std::thread::thread) is applicable. This operation
may be performed explicitly using the library function std::invoke.
(since C++17)

serializedSample A serializedSample is the serialization of a C++ object to an array
and consists of the header that is part of e2e protection and the
serialized data.

Service Binding Act of connecting a Service Requester to a concrete Service In-
stance of a Service Provider.

Multi-Binding Multi-Binding describes setups having multiple connections im-
plemented by different technical transport layers and protocol be-
tween different instances of a single proxy or skeleton class, e.g.:

• A proxy class uses different transport/IPC to communicate
with different skeleton instances.

• Different proxy instances for the same skeleton instance
uses different transport/IPC to communicate with this in-
stance: The skeleton instance supports multiple transport
mechanisms to get contacted.

12 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] Explanation of ara::com API
AUTOSAR_EXP_ARAComAPI

[2] Glossary
AUTOSAR_TR_Glossary

[3] General Requirements specific to Adaptive Platform
AUTOSAR_RS_General

[4] E2E Protocol Specification
AUTOSAR_PRS_E2EProtocol

[5] SOME/IP Protocol Specification
AUTOSAR_PRS_SOMEIPProtocol

[6] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[7] Requirements on E2E
AUTOSAR_RS_E2E

[8] Requirements on Communication Management
AUTOSAR_RS_CommunicationManagement

[9] Middleware for Real-time and Embedded Systems
http://doi.acm.org/10.1145/508448.508472

[10] Patterns, Frameworks, and Middleware: Their Synergistic Relationships
http://dl.acm.org/citation.cfm?id=776816.776917

[11] Reference Model for Service Oriented Architecture 1.0
https://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

[12] SOME/IP Service Discovery Protocol Specification
AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol

[13] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

[14] UTF-8, a transformation format of ISO 10646
http://www.ietf.org/rfc/rfc3629.txt

[15] UTF-16, an encoding of ISO 10646
http://www.ietf.org/rfc/rfc2781.txt

[16] Specification of Adaptive Platform Core
AUTOSAR_SWS_AdaptivePlatformCore

[17] Specification of Socket Adaptor

13 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

http://doi.acm.org/10.1145/508448.508472
http://dl.acm.org/citation.cfm?id=776816.776917
https://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

Specification of Communication Management
AUTOSAR AP R21-11

AUTOSAR_SWS_SocketAdaptor

[18] Data Distribution Service (DDS), Version 1.4
http://www.omg.org/spec/DDS/1.4

[19] DDS Interoperability Wire Protocol, Version 2.2
http://www.omg.org/spec/DDSI-RTPS/2.2

[20] Extensible and Dynamic Topic Types for DDS, Version 1.2
https://www.omg.org/spec/DDS-XTypes/1.2

[21] RPC over DDS, Version 1.0
https://www.omg.org/spec/DDS-RPC/1.0

[22] ISO/IEC C++ 2003 Language DDS PSM, Version 1.0
https://www.omg.org/spec/DDS-PSM-Cxx/1.0

[23] Interface Definition Language (IDL), Version 4.2
https://www.omg.org/spec/IDL/4.2

[24] Specification of Language Binding for modeled AP data types
AUTOSAR_SWS_LanguageBindingForModeledAPdatatypes

[25] DDS Security, Version 1.1
https://www.omg.org/spec/DDS-SECURITY/1.1

[26] Specification of Identity and Access Management
AUTOSAR_SWS_IdentityAndAccessManagement

[27] Specification of Secure Onboard Communication Protocol
AUTOSAR_PRS_SecOcProtocol

[28] Integration of DDS Security
AUTOSAR_TR_DDSSecurityIntegration

[29] Methodology for Adaptive Platform
AUTOSAR_TR_AdaptiveMethodology

[30] ISO/IEC 14882:2011, Information technology – Programming languages – C++
http://www.iso.org

[31] N4659: Working Draft, Standard for ProgrammingLanguage C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, RS Gen-
eral], which is also valid for the CM.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CM.

14 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDSI-RTPS/2.2
https://www.omg.org/spec/DDS-XTypes/1.2
https://www.omg.org/spec/DDS-RPC/1.0
https://www.omg.org/spec/DDS-PSM-Cxx/1.0
https://www.omg.org/spec/IDL/4.2
https://www.omg.org/spec/DDS-SECURITY/1.1
http://www.iso.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

Specification of Communication Management
AUTOSAR AP R21-11

4 Constraints and assumptions

4.1 Limitations

The current version of this document is missing some functionality which is not stan-
dardized and specified within the SWS Communication Management document but
described in Explanation of ara::com API [1] and implemented in the demonstrator
code:

• Local Buffer Overruns
Currently it is not specified what happens if local buffers are full because the
application accesses data slower than they are received over the network.

The general limitations regarding E2E protection and the detectable failure modes are
described in [4]. Additional, platform specific limitations regarding E2E protection are
described in chapter 7.3.1 and 7.2.1.

The following limitations regarding optionality introduced with the Tag-Length-Value
serialization principle described in [5] and [6] apply:

• Optional method arguments
[SWS_CM_CONSTR_00001]{DRAFT} dCommunication Management does cur-
rently not support the existence of optional method arguments.c()

In addition the following features are not supported in the current version of this docu-
ment:

• E2E protection of ServiceInterface.triggers

4.2 Applicability to car domains

No restrictions to applicability.

15 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

5 Dependencies to other functional clusters

5.1 Platform dependencies

The Communication Management is dependent on the E2E protection protocol de-
fined in [7] and [4]. The E2E functions are used to execute end-to-end communication
protection between Service Provider Skeletons and Service Requester Proxies.

16 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

6 Requirements Tracing

The following tables reference the requirements specified in the Requirements on Com-
munication Management document [8] and links to the fulfilment of these.

Please note that if a requirement contained in [8] is not mentioned in the below table, it
means that is not fulfilled by this document.

Requirement Description Satisfied by
[RS_AP_00114] C++ interface shall be

compatible with C++14.
[SWS_CM_00002] [SWS_CM_00003]
[SWS_CM_00004] [SWS_CM_00005]
[SWS_CM_00006] [SWS_CM_00007]
[SWS_CM_00008] [SWS_CM_00010]
[SWS_CM_00011] [SWS_CM_00012]
[SWS_CM_00013] [SWS_CM_00014]
[SWS_CM_00015] [SWS_CM_00016]
[SWS_CM_00017] [SWS_CM_00018]
[SWS_CM_00019] [SWS_CM_00020]
[SWS_CM_00021] [SWS_CM_00022]
[SWS_CM_00023] [SWS_CM_00024]
[SWS_CM_00025] [SWS_CM_00026]
[SWS_CM_00027] [SWS_CM_00028]
[SWS_CM_00029] [SWS_CM_00030]
[SWS_CM_00031] [SWS_CM_00032]
[SWS_CM_00035] [SWS_CM_00101]
[SWS_CM_00111] [SWS_CM_00112]
[SWS_CM_00113] [SWS_CM_00114]
[SWS_CM_00115] [SWS_CM_00116]
[SWS_CM_00117] [SWS_CM_00118]
[SWS_CM_00119] [SWS_CM_00122]
[SWS_CM_00123] [SWS_CM_00125]
[SWS_CM_00130] [SWS_CM_00131]
[SWS_CM_00132] [SWS_CM_00133]
[SWS_CM_00134] [SWS_CM_00135]
[SWS_CM_00136] [SWS_CM_00137]
[SWS_CM_00141] [SWS_CM_00151]
[SWS_CM_00152] [SWS_CM_00153]
[SWS_CM_00162] [SWS_CM_00181]
[SWS_CM_00183] [SWS_CM_00191]
[SWS_CM_00192] [SWS_CM_00193]
[SWS_CM_00194] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_00197]
[SWS_CM_00198] [SWS_CM_00199]
[SWS_CM_00226] [SWS_CM_00227]
[SWS_CM_00228] [SWS_CM_00249]

17 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_00301] [SWS_CM_00302]
[SWS_CM_00304] [SWS_CM_00306]
[SWS_CM_00308] [SWS_CM_00309]
[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00312] [SWS_CM_00313]
[SWS_CM_00314] [SWS_CM_00315]
[SWS_CM_00316] [SWS_CM_00317]
[SWS_CM_00318] [SWS_CM_00319]
[SWS_CM_00333] [SWS_CM_00334]
[SWS_CM_00351] [SWS_CM_00383]
[SWS_CM_00622] [SWS_CM_00623]
[SWS_CM_00700] [SWS_CM_00701]
[SWS_CM_00702] [SWS_CM_00703]
[SWS_CM_00704] [SWS_CM_00705]
[SWS_CM_00706] [SWS_CM_00707]
[SWS_CM_00714] [SWS_CM_00721]
[SWS_CM_00722] [SWS_CM_00723]
[SWS_CM_00724] [SWS_CM_00810]
[SWS_CM_01001] [SWS_CM_01002]
[SWS_CM_01004] [SWS_CM_01005]
[SWS_CM_01006] [SWS_CM_01007]
[SWS_CM_01009] [SWS_CM_01012]
[SWS_CM_01013] [SWS_CM_01015]
[SWS_CM_01018] [SWS_CM_01020]
[SWS_CM_01031] [SWS_CM_01050]
[SWS_CM_01051] [SWS_CM_01052]
[SWS_CM_01053] [SWS_CM_01054]
[SWS_CM_01055] [SWS_CM_01056]
[SWS_CM_01057] [SWS_CM_01058]
[SWS_CM_01059] [SWS_CM_01060]
[SWS_CM_01061] [SWS_CM_01062]
[SWS_CM_01063] [SWS_CM_01064]
[SWS_CM_01065] [SWS_CM_01066]
[SWS_CM_01067] [SWS_CM_01068]
[SWS_CM_01069] [SWS_CM_10362]
[SWS_CM_10372] [SWS_CM_10383]
[SWS_CM_10435] [SWS_CM_10436]
[SWS_CM_10437] [SWS_CM_10438]
[SWS_CM_10440] [SWS_CM_10446]
[SWS_CM_11251] [SWS_CM_11266]
[SWS_CM_11326] [SWS_CM_11350]
[SWS_CM_11351] [SWS_CM_11352]
[SWS_CM_11353] [SWS_CM_11354]
[SWS_CM_11355] [SWS_CM_11356]
[SWS_CM_11357] [SWS_CM_11358]
[SWS_CM_11359] [SWS_CM_11360]
[SWS_CM_11361] [SWS_CM_11362]
[SWS_CM_11363] [SWS_CM_11370]
[SWS_CM_11371] [SWS_CM_12000]
[SWS_CM_90420] [SWS_CM_90421]
[SWS_CM_90422] [SWS_CM_90424]
[SWS_CM_90426] [SWS_CM_90427]
[SWS_CM_90434] [SWS_CM_90435]
[SWS_CM_90437] [SWS_CM_90438]

18 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_AP_00115] Public namespaces. [SWS_CM_00013] [SWS_CM_00018]

[SWS_CM_00019] [SWS_CM_00024]
[SWS_CM_00118] [SWS_CM_00122]
[SWS_CM_00123] [SWS_CM_00152]
[SWS_CM_00153] [SWS_CM_00198]
[SWS_CM_00316] [SWS_CM_00622]
[SWS_CM_00623] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_11264] [SWS_CM_11352]
[SWS_CM_90421] [SWS_CM_90422]
[SWS_CM_90424] [SWS_CM_90426]
[SWS_CM_90427] [SWS_CM_90438]

[RS_AP_00116] Header file name. [SWS_CM_01002] [SWS_CM_01012]
[SWS_CM_01013]

[RS_AP_00119] Return values / application
errors.

[SWS_CM_00018] [SWS_CM_00019]
[SWS_CM_00021] [SWS_CM_00024]
[SWS_CM_00118] [SWS_CM_00122]
[SWS_CM_00123] [SWS_CM_00228]
[SWS_CM_00310] [SWS_CM_00316]
[SWS_CM_00622] [SWS_CM_00623]
[SWS_CM_00704] [SWS_CM_00706]
[SWS_CM_10362] [SWS_CM_10383]
[SWS_CM_10440] [SWS_CM_11264]
[SWS_CM_11265] [SWS_CM_11266]
[SWS_CM_11351] [SWS_CM_11352]
[SWS_CM_11353] [SWS_CM_11355]
[SWS_CM_11357] [SWS_CM_11359]
[SWS_CM_11361] [SWS_CM_11363]
[SWS_CM_90421] [SWS_CM_90422]
[SWS_CM_90426] [SWS_CM_90427]

[RS_AP_00120] Method and Function names. [SWS_CM_00010] [SWS_CM_00011]
[SWS_CM_00012] [SWS_CM_00013]
[SWS_CM_00014] [SWS_CM_00015]
[SWS_CM_00016] [SWS_CM_00020]
[SWS_CM_00022] [SWS_CM_00023]
[SWS_CM_00024] [SWS_CM_00025]
[SWS_CM_00026] [SWS_CM_00027]
[SWS_CM_00028] [SWS_CM_00029]
[SWS_CM_00030] [SWS_CM_00031]
[SWS_CM_00032] [SWS_CM_00035]
[SWS_CM_00101] [SWS_CM_00111]
[SWS_CM_00112] [SWS_CM_00113]
[SWS_CM_00114] [SWS_CM_00116]
[SWS_CM_00118] [SWS_CM_00119]
[SWS_CM_00122] [SWS_CM_00123]
[SWS_CM_00125] [SWS_CM_00141]
[SWS_CM_00151] [SWS_CM_00162]
[SWS_CM_00181] [SWS_CM_00183]
[SWS_CM_00192] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_00198]
[SWS_CM_00199] [SWS_CM_00226]
[SWS_CM_00249] [SWS_CM_00309]
[SWS_CM_00311] [SWS_CM_00316]
[SWS_CM_00333] [SWS_CM_00334]

19 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_00351] [SWS_CM_00383]
[SWS_CM_00701] [SWS_CM_00705]
[SWS_CM_00721] [SWS_CM_00722]
[SWS_CM_00723] [SWS_CM_00724]
[SWS_CM_00810] [SWS_CM_11292]
[SWS_CM_11295] [SWS_CM_11296]
[SWS_CM_11297] [SWS_CM_11298]
[SWS_CM_11299] [SWS_CM_11328]
[SWS_CM_11330] [SWS_CM_11331]
[SWS_CM_11332] [SWS_CM_11333]
[SWS_CM_11334] [SWS_CM_11335]
[SWS_CM_11336] [SWS_CM_11337]
[SWS_CM_11350] [SWS_CM_11352]
[SWS_CM_11354] [SWS_CM_11356]
[SWS_CM_11358] [SWS_CM_11360]
[SWS_CM_11362] [SWS_CM_90420]
[SWS_CM_90435] [SWS_CM_90437]
[SWS_CM_90438]

[RS_AP_00121] Parameter names. [SWS_CM_00012] [SWS_CM_00016]
[SWS_CM_00018] [SWS_CM_00019]
[SWS_CM_00020] [SWS_CM_00025]
[SWS_CM_00028] [SWS_CM_00031]
[SWS_CM_00113] [SWS_CM_00118]
[SWS_CM_00119] [SWS_CM_00122]
[SWS_CM_00123] [SWS_CM_00125]
[SWS_CM_00130] [SWS_CM_00131]
[SWS_CM_00152] [SWS_CM_00153]
[SWS_CM_00162] [SWS_CM_00181]
[SWS_CM_00226] [SWS_CM_00249]
[SWS_CM_00333] [SWS_CM_00622]
[SWS_CM_00623] [SWS_CM_00701]
[SWS_CM_00721] [SWS_CM_00722]
[SWS_CM_10435] [SWS_CM_10436]
[SWS_CM_10437] [SWS_CM_10438]
[SWS_CM_11292] [SWS_CM_11296]
[SWS_CM_11297] [SWS_CM_11299]
[SWS_CM_11328] [SWS_CM_11332]
[SWS_CM_11333] [SWS_CM_11335]
[SWS_CM_11352] [SWS_CM_90437]

[RS_AP_00122] Type names. [SWS_CM_00002] [SWS_CM_00004]
[SWS_CM_00302] [SWS_CM_00303]
[SWS_CM_00304] [SWS_CM_00306]
[SWS_CM_00308] [SWS_CM_00312]
[SWS_CM_00319] [SWS_CM_01050]
[SWS_CM_10432] [SWS_CM_11291]
[SWS_CM_11293] [SWS_CM_11327]
[SWS_CM_11329] [SWS_CM_12367]

[RS_AP_00125] Enumerator and constant
names.

[SWS_CM_00301] [SWS_CM_00310]

20 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_AP_00127] Usage of ara::core types. [SWS_CM_00014] [SWS_CM_00015]

[SWS_CM_00017] [SWS_CM_00018]
[SWS_CM_00019] [SWS_CM_00027]
[SWS_CM_00030] [SWS_CM_00031]
[SWS_CM_00032] [SWS_CM_00112]
[SWS_CM_00113] [SWS_CM_00114]
[SWS_CM_00116] [SWS_CM_00118]
[SWS_CM_00152] [SWS_CM_00191]
[SWS_CM_00192] [SWS_CM_00193]
[SWS_CM_00194] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_00197]
[SWS_CM_00199] [SWS_CM_00226]
[SWS_CM_00228] [SWS_CM_00302]
[SWS_CM_00622] [SWS_CM_00623]
[SWS_CM_00701] [SWS_CM_00704]
[SWS_CM_00705] [SWS_CM_00706]
[SWS_CM_01050] [SWS_CM_10362]
[SWS_CM_10432] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10438] [SWS_CM_10440]
[SWS_CM_10446] [SWS_CM_11266]
[SWS_CM_11291] [SWS_CM_11293]
[SWS_CM_11326] [SWS_CM_11327]
[SWS_CM_11329] [SWS_CM_11350]
[SWS_CM_11351] [SWS_CM_11353]
[SWS_CM_11354] [SWS_CM_11355]
[SWS_CM_11356] [SWS_CM_11357]
[SWS_CM_11358] [SWS_CM_11359]
[SWS_CM_11360] [SWS_CM_11361]
[SWS_CM_11362] [SWS_CM_11363]
[SWS_CM_12367]

[RS_AP_00128] Error reporting. [SWS_CM_00014] [SWS_CM_00015]
[SWS_CM_00017] [SWS_CM_00027]
[SWS_CM_00030] [SWS_CM_00032]
[SWS_CM_00112] [SWS_CM_00114]
[SWS_CM_00116] [SWS_CM_00191]
[SWS_CM_00192] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_00199]
[SWS_CM_00226] [SWS_CM_00701]
[SWS_CM_00705] [SWS_CM_00706]
[SWS_CM_10435] [SWS_CM_10436]
[SWS_CM_10437] [SWS_CM_10438]
[SWS_CM_11326] [SWS_CM_11350]
[SWS_CM_11354] [SWS_CM_11356]
[SWS_CM_11358] [SWS_CM_11360]
[SWS_CM_11362]

21 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_AP_00130] AUTOSAR Adaptive Platform

shall represent a rich and
modern programming
environment.

[SWS_CM_10432] [SWS_CM_10474]
[SWS_CM_11267] [SWS_CM_11268]
[SWS_CM_11291] [SWS_CM_11292]
[SWS_CM_11293] [SWS_CM_11295]
[SWS_CM_11296] [SWS_CM_11297]
[SWS_CM_11298] [SWS_CM_11299]
[SWS_CM_11327] [SWS_CM_11328]
[SWS_CM_11329] [SWS_CM_11330]
[SWS_CM_11331] [SWS_CM_11332]
[SWS_CM_11333] [SWS_CM_11334]
[SWS_CM_11335] [SWS_CM_11336]
[SWS_CM_11337] [SWS_CM_11340]
[SWS_CM_11341] [SWS_CM_11342]
[SWS_CM_12367] [SWS_CM_99023]
[SWS_CM_99024] [SWS_CM_99025]
[SWS_CM_99026] [SWS_CM_99027]

[RS_AP_00132] noexcept behavior of API
functions

[SWS_CM_00027] [SWS_CM_00306]
[SWS_CM_00705] [SWS_CM_01050]
[SWS_CM_01052] [SWS_CM_01054]
[SWS_CM_01055] [SWS_CM_01060]
[SWS_CM_01062] [SWS_CM_01064]
[SWS_CM_01065] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10438] [SWS_CM_11292]
[SWS_CM_11295] [SWS_CM_11296]
[SWS_CM_11298] [SWS_CM_11299]
[SWS_CM_11326] [SWS_CM_11328]
[SWS_CM_11330] [SWS_CM_11331]
[SWS_CM_11332] [SWS_CM_11334]
[SWS_CM_11335] [SWS_CM_11336]
[SWS_CM_11337] [SWS_CM_11371]
[SWS_CM_90420]

[RS_AP_00134] noexcept behavior of class
destructors

[SWS_CM_01050] [SWS_CM_01059]

[RS_AP_00135] Avoidance of shared ownership. [SWS_CM_00306] [SWS_CM_00308]
[RS_AP_00136] Usage of string types. [SWS_CM_10054] [SWS_CM_10242]

[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10285] [SWS_CM_11046]

[RS_AP_00137] Connecting run-time interface
with model.

[SWS_CM_00018] [SWS_CM_00019]
[SWS_CM_00118] [SWS_CM_00152]
[SWS_CM_00622] [SWS_CM_00623]
[SWS_CM_10436] [SWS_CM_10450]
[SWS_CM_10452] [SWS_CM_10590]

[RS_AP_00138] Return type of asynchronous
function calls.

[SWS_CM_00014] [SWS_CM_00015]
[SWS_CM_00017] [SWS_CM_00017]
[SWS_CM_00030] [SWS_CM_00030]
[SWS_CM_00031] [SWS_CM_00031]
[SWS_CM_00031] [SWS_CM_00032]
[SWS_CM_00032] [SWS_CM_00112]
[SWS_CM_00112] [SWS_CM_00113]
[SWS_CM_00113] [SWS_CM_00113]
[SWS_CM_00114] [SWS_CM_00116]
[SWS_CM_00191] [SWS_CM_00191]
[SWS_CM_00192] [SWS_CM_00192]
[SWS_CM_00195] [SWS_CM_00196]

22 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_00196] [SWS_CM_00197]
[SWS_CM_00199] [SWS_CM_00199]
[SWS_CM_10414] [SWS_CM_11350]
[SWS_CM_11350] [SWS_CM_11354]
[SWS_CM_11354] [SWS_CM_11356]
[SWS_CM_11356] [SWS_CM_11358]
[SWS_CM_11358] [SWS_CM_11360]
[SWS_CM_11360] [SWS_CM_11362]
[SWS_CM_11362]

[RS_AP_00139] Return type of synchronous
function calls.

[SWS_CM_00027] [SWS_CM_00027]
[SWS_CM_00195] [SWS_CM_00226]
[SWS_CM_00226] [SWS_CM_00701]
[SWS_CM_00701] [SWS_CM_00705]
[SWS_CM_00705] [SWS_CM_00706]
[SWS_CM_10435] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10436]
[SWS_CM_10437] [SWS_CM_10437]
[SWS_CM_10438] [SWS_CM_10438]
[SWS_CM_11326] [SWS_CM_11326]

[RS_AP_00145] Availability of special member
functions.

[SWS_CM_00130] [SWS_CM_00131]
[SWS_CM_00134] [SWS_CM_00135]
[SWS_CM_00136] [SWS_CM_00137]
[SWS_CM_00152] [SWS_CM_00153]
[SWS_CM_00306] [SWS_CM_00317]
[SWS_CM_00318] [SWS_CM_01050]
[SWS_CM_01051] [SWS_CM_01052]
[SWS_CM_01053] [SWS_CM_01054]
[SWS_CM_01055] [SWS_CM_01056]
[SWS_CM_01057] [SWS_CM_01058]
[SWS_CM_01059] [SWS_CM_01060]
[SWS_CM_01061] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10438] [SWS_CM_10446]
[SWS_CM_10482] [SWS_CM_10483]
[SWS_CM_11303] [SWS_CM_11304]
[SWS_CM_11305] [SWS_CM_11306]
[SWS_CM_11312] [SWS_CM_11313]
[SWS_CM_11314] [SWS_CM_11315]
[SWS_CM_11316] [SWS_CM_11317]
[SWS_CM_11370] [SWS_CM_11371]

[RS_AP_00147] Classes which are created by an
InstanceSpecifer shall not be
copyable, but at most movable.

[SWS_CM_00134] [SWS_CM_00135]
[SWS_CM_00136] [SWS_CM_00137]
[SWS_CM_11303] [SWS_CM_11304]
[SWS_CM_11305] [SWS_CM_11306]
[SWS_CM_11316] [SWS_CM_11317]

[RS_CM_00001] The Communication
Management shall provide a
standardized header file
structure for each service.

[SWS_CM_01001] [SWS_CM_01002]
[SWS_CM_01004] [SWS_CM_01012]
[SWS_CM_01013] [SWS_CM_01017]
[SWS_CM_01019] [SWS_CM_01020]
[SWS_CM_10370] [SWS_CM_10372]
[SWS_CM_10453] [SWS_CM_10488]
[SWS_CM_10490] [SWS_CM_12000]

23 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_CM_00002] The service header files shall

define the namespace for the
respective service.

[SWS_CM_01005] [SWS_CM_01006]
[SWS_CM_01007] [SWS_CM_01008]
[SWS_CM_01009] [SWS_CM_01015]
[SWS_CM_01018] [SWS_CM_01031]
[SWS_CM_10489]

[RS_CM_00004] Communication Management
shall support the translation
between signal-based and
service-oriented communication

[SWS_CM_10360] [SWS_CM_10363]
[SWS_CM_10517] [SWS_CM_10518]
[SWS_CM_10519] [SWS_CM_10520]
[SWS_CM_10521] [SWS_CM_10522]
[SWS_CM_10523] [SWS_CM_80001]
[SWS_CM_80003] [SWS_CM_80004]
[SWS_CM_80017] [SWS_CM_80019]
[SWS_CM_80020] [SWS_CM_80021]
[SWS_CM_80022] [SWS_CM_80023]
[SWS_CM_80024] [SWS_CM_80025]
[SWS_CM_80026] [SWS_CM_80027]
[SWS_CM_80028] [SWS_CM_80030]
[SWS_CM_80032] [SWS_CM_80033]
[SWS_CM_80063] [SWS_CM_80064]
[SWS_CM_80065] [SWS_CM_80066]
[SWS_CM_80067] [SWS_CM_80068]
[SWS_CM_80069] [SWS_CM_80070]
[SWS_CM_80072] [SWS_CM_80074]
[SWS_CM_80075] [SWS_CM_80100]
[SWS_CM_80101] [SWS_CM_80102]
[SWS_CM_80103] [SWS_CM_80501]
[SWS_CM_80502] [SWS_CM_80503]
[SWS_CM_80504] [SWS_CM_80505]
[SWS_CM_80506] [SWS_CM_80507]
[SWS_CM_80508] [SWS_CM_80509]
[SWS_CM_80510] [SWS_CM_80511]
[SWS_CM_80512] [SWS_CM_80513]

[RS_CM_00101] Communication Management
shall provide an interface to offer
services

[SWS_CM_00002] [SWS_CM_00010]
[SWS_CM_00101] [SWS_CM_00102]
[SWS_CM_00103] [SWS_CM_00104]
[SWS_CM_00130] [SWS_CM_00134]
[SWS_CM_00135] [SWS_CM_00152]
[SWS_CM_00153] [SWS_CM_00201]
[SWS_CM_00203] [SWS_CM_00302]
[SWS_CM_00319] [SWS_CM_09004]
[SWS_CM_10410] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10450] [SWS_CM_10451]
[SWS_CM_10458] [SWS_CM_10550]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11029]
[SWS_CM_11030] [SWS_CM_11031]
[SWS_CM_11326] [SWS_CM_90500]
[SWS_CM_90502] [SWS_CM_90503]
[SWS_CM_90504] [SWS_CM_90505]
[SWS_CM_90506] [SWS_CM_90507]
[SWS_CM_90508]

24 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_CM_00102] Communication Management

shall provide an interface to find
services

[SWS_CM_00004] [SWS_CM_00018]
[SWS_CM_00019] [SWS_CM_00020]
[SWS_CM_00122] [SWS_CM_00123]
[SWS_CM_00124] [SWS_CM_00125]
[SWS_CM_00131] [SWS_CM_00136]
[SWS_CM_00137] [SWS_CM_00202]
[SWS_CM_00209] [SWS_CM_00302]
[SWS_CM_00303] [SWS_CM_00304]
[SWS_CM_00312] [SWS_CM_00317]
[SWS_CM_00318] [SWS_CM_00319]
[SWS_CM_00383] [SWS_CM_00622]
[SWS_CM_00623] [SWS_CM_10382]
[SWS_CM_10438] [SWS_CM_10446]
[SWS_CM_10491] [SWS_CM_11006]
[SWS_CM_11007] [SWS_CM_11008]
[SWS_CM_11009] [SWS_CM_11010]
[SWS_CM_11011] [SWS_CM_11012]
[SWS_CM_11041] [SWS_CM_11264]
[SWS_CM_11352] [SWS_CM_90500]
[SWS_CM_90510] [SWS_CM_90511]
[SWS_CM_90512] [SWS_CM_90513]
[SWS_CM_90514]

[RS_CM_00103] Communication Management
shall provide an interface to
subscribe to a specific event
provided by an instance of a
certain service

[SWS_CM_00005] [SWS_CM_00022]
[SWS_CM_00141] [SWS_CM_00205]
[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_00700]
[SWS_CM_00723] [SWS_CM_00724]
[SWS_CM_10377] [SWS_CM_10381]
[SWS_CM_10527] [SWS_CM_10528]
[SWS_CM_10529] [SWS_CM_11018]
[SWS_CM_11019] [SWS_CM_11020]
[SWS_CM_11133] [SWS_CM_11134]
[SWS_CM_11135]

[RS_CM_00104] Communication Management
shall provide an interface to stop
the subscription to an event of a
service instance

[SWS_CM_00023] [SWS_CM_00035]
[SWS_CM_00151] [SWS_CM_00207]
[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_00810]
[SWS_CM_10378] [SWS_CM_10530]
[SWS_CM_11021] [SWS_CM_11136]

[RS_CM_00105] Communication Management
shall provide an interface to stop
offering services

[SWS_CM_00011] [SWS_CM_00111]
[SWS_CM_00204] [SWS_CM_11005]
[SWS_CM_90509]

[RS_CM_00106] Communication Management
shall provide a means to monitor
the state of the subscription to
an event

[SWS_CM_00024] [SWS_CM_00025]
[SWS_CM_00026] [SWS_CM_00310]
[SWS_CM_00311] [SWS_CM_00313]
[SWS_CM_00314] [SWS_CM_00315]
[SWS_CM_00316] [SWS_CM_00333]
[SWS_CM_00334] [SWS_CM_10531]
[SWS_CM_10536] [SWS_CM_10537]
[SWS_CM_11022] [SWS_CM_11027]
[SWS_CM_11028] [SWS_CM_11137]
[SWS_CM_11142] [SWS_CM_11143]

25 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_CM_00107] Communication Management

shall provide a means to
automatically update a proxy
instance in case of restart of the
offered service

[SWS_CM_00021] [SWS_CM_00313]
[SWS_CM_00314] [SWS_CM_00315]
[SWS_CM_10383] [SWS_CM_10491]

[RS_CM_00108] Service Communication –
Uniqueness of offered service

[SWS_CM_00102]

[RS_CM_00200] The Communication
Management shall transform
Fully Qualified Service IDs to
communication protocol specific
Service IDs

[SWS_CM_00102] [SWS_CM_00118]
[SWS_CM_00202] [SWS_CM_00203]
[SWS_CM_00205] [SWS_CM_01010]
[SWS_CM_09004] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10323] [SWS_CM_10325]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10346]
[SWS_CM_10377] [SWS_CM_10381]
[SWS_CM_10452] [SWS_CM_10512]
[SWS_CM_10513] [SWS_CM_10514]
[SWS_CM_10519] [SWS_CM_10520]
[SWS_CM_10521] [SWS_CM_10522]
[SWS_CM_10550] [SWS_CM_10590]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11006]
[SWS_CM_11007] [SWS_CM_11008]
[SWS_CM_11009] [SWS_CM_11010]
[SWS_CM_11011] [SWS_CM_11012]
[SWS_CM_11013] [SWS_CM_11014]
[SWS_CM_11029] [SWS_CM_11030]
[SWS_CM_11031] [SWS_CM_11041]
[SWS_CM_11101] [SWS_CM_11102]
[SWS_CM_11107] [SWS_CM_11112]
[SWS_CM_11151] [SWS_CM_80025]
[SWS_CM_80026] [SWS_CM_80027]
[SWS_CM_80028] [SWS_CM_80067]
[SWS_CM_80068] [SWS_CM_90502]
[SWS_CM_90503] [SWS_CM_90504]
[SWS_CM_90505] [SWS_CM_90506]
[SWS_CM_90507] [SWS_CM_90508]
[SWS_CM_90510] [SWS_CM_90511]
[SWS_CM_90512] [SWS_CM_90513]
[SWS_CM_90514] [SWS_CM_90515]

26 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_CM_00201] Communication Management

shall provide an API to send
events to other applications

[SWS_CM_00003] [SWS_CM_00012]
[SWS_CM_00013] [SWS_CM_00162]
[SWS_CM_00252] [SWS_CM_00253]
[SWS_CM_00254] [SWS_CM_00255]
[SWS_CM_00256] [SWS_CM_00257]
[SWS_CM_00258] [SWS_CM_00259]
[SWS_CM_00260] [SWS_CM_00264]
[SWS_CM_00265] [SWS_CM_00308]
[SWS_CM_00721] [SWS_CM_00722]
[SWS_CM_10034] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10042]
[SWS_CM_10053] [SWS_CM_10054]
[SWS_CM_10055] [SWS_CM_10056]
[SWS_CM_10057] [SWS_CM_10058]
[SWS_CM_10059] [SWS_CM_10060]
[SWS_CM_10070] [SWS_CM_10072]
[SWS_CM_10076] [SWS_CM_10088]
[SWS_CM_10098] [SWS_CM_10099]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10226]
[SWS_CM_10227] [SWS_CM_10230]
[SWS_CM_10234] [SWS_CM_10235]
[SWS_CM_10242] [SWS_CM_10245]
[SWS_CM_10247] [SWS_CM_10248]
[SWS_CM_10250] [SWS_CM_10251]
[SWS_CM_10252] [SWS_CM_10253]
[SWS_CM_10254] [SWS_CM_10255]
[SWS_CM_10256] [SWS_CM_10257]
[SWS_CM_10258] [SWS_CM_10259]
[SWS_CM_10260] [SWS_CM_10261]
[SWS_CM_10262] [SWS_CM_10263]
[SWS_CM_10264] [SWS_CM_10265]
[SWS_CM_10266] [SWS_CM_10267]
[SWS_CM_10268] [SWS_CM_10269]
[SWS_CM_10270] [SWS_CM_10271]
[SWS_CM_10272] [SWS_CM_10273]
[SWS_CM_10274] [SWS_CM_10275]
[SWS_CM_10276] [SWS_CM_10277]
[SWS_CM_10278] [SWS_CM_10279]
[SWS_CM_10280] [SWS_CM_10281]
[SWS_CM_10282] [SWS_CM_10283]
[SWS_CM_10284] [SWS_CM_10285]
[SWS_CM_10287] [SWS_CM_10288]
[SWS_CM_10289] [SWS_CM_10290]
[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10293] [SWS_CM_10294]
[SWS_CM_10319] [SWS_CM_10320]
[SWS_CM_10321] [SWS_CM_10322]

27 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10325] [SWS_CM_10326]
[SWS_CM_10360] [SWS_CM_10361]
[SWS_CM_10363] [SWS_CM_10391]
[SWS_CM_10459] [SWS_CM_10511]
[SWS_CM_10512] [SWS_CM_10513]
[SWS_CM_10514] [SWS_CM_10517]
[SWS_CM_10518] [SWS_CM_10519]
[SWS_CM_10520] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_10524]
[SWS_CM_10525] [SWS_CM_10526]
[SWS_CM_11015] [SWS_CM_11016]
[SWS_CM_11017] [SWS_CM_11040]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11049] [SWS_CM_11050]
[SWS_CM_11130] [SWS_CM_11131]
[SWS_CM_11132] [SWS_CM_11262]
[SWS_CM_11263] [SWS_CM_80021]
[SWS_CM_80022] [SWS_CM_80023]
[SWS_CM_80024] [SWS_CM_80025]
[SWS_CM_80026] [SWS_CM_80027]
[SWS_CM_80028] [SWS_CM_80032]
[SWS_CM_80063] [SWS_CM_80064]
[SWS_CM_80065] [SWS_CM_80066]
[SWS_CM_80067] [SWS_CM_80068]
[SWS_CM_80069] [SWS_CM_80074]
[SWS_CM_90437] [SWS_CM_90438]
[SWS_CM_90501]

[RS_CM_00202] Communication Management
shall provide an API to the
application to poll received
events

[SWS_CM_00027] [SWS_CM_00226]
[SWS_CM_00227] [SWS_CM_00228]
[SWS_CM_00252] [SWS_CM_00253]
[SWS_CM_00254] [SWS_CM_00255]
[SWS_CM_00256] [SWS_CM_00257]
[SWS_CM_00258] [SWS_CM_00259]
[SWS_CM_00260] [SWS_CM_00264]
[SWS_CM_00265] [SWS_CM_00306]
[SWS_CM_00701] [SWS_CM_00702]
[SWS_CM_00703] [SWS_CM_00704]
[SWS_CM_00705] [SWS_CM_00706]
[SWS_CM_00707] [SWS_CM_00714]
[SWS_CM_10016] [SWS_CM_10017]
[SWS_CM_10036] [SWS_CM_10037]
[SWS_CM_10042] [SWS_CM_10053]
[SWS_CM_10054] [SWS_CM_10055]
[SWS_CM_10056] [SWS_CM_10057]
[SWS_CM_10058] [SWS_CM_10059]
[SWS_CM_10060] [SWS_CM_10070]
[SWS_CM_10072] [SWS_CM_10076]
[SWS_CM_10088] [SWS_CM_10098]
[SWS_CM_10099] [SWS_CM_10169]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10226]

28 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_10227] [SWS_CM_10230]
[SWS_CM_10234] [SWS_CM_10235]
[SWS_CM_10242] [SWS_CM_10245]
[SWS_CM_10247] [SWS_CM_10248]
[SWS_CM_10250] [SWS_CM_10251]
[SWS_CM_10252] [SWS_CM_10253]
[SWS_CM_10254] [SWS_CM_10255]
[SWS_CM_10256] [SWS_CM_10257]
[SWS_CM_10258] [SWS_CM_10259]
[SWS_CM_10260] [SWS_CM_10261]
[SWS_CM_10262] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10295]
[SWS_CM_10327] [SWS_CM_10361]
[SWS_CM_10391] [SWS_CM_10459]
[SWS_CM_10532] [SWS_CM_11023]
[SWS_CM_11024] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11046] [SWS_CM_11047]
[SWS_CM_11048] [SWS_CM_11049]
[SWS_CM_11050] [SWS_CM_11138]
[SWS_CM_11139] [SWS_CM_11251]
[SWS_CM_11262] [SWS_CM_11263]
[SWS_CM_80102] [SWS_CM_80103]

[RS_CM_00203] Communication Management
shall trigger the application on
reception of an event

[SWS_CM_00028] [SWS_CM_00029]
[SWS_CM_00181] [SWS_CM_00182]
[SWS_CM_00183] [SWS_CM_00249]
[SWS_CM_00306] [SWS_CM_00309]
[SWS_CM_00351] [SWS_CM_00709]
[SWS_CM_00710] [SWS_CM_00711]
[SWS_CM_10296] [SWS_CM_10328]
[SWS_CM_10379] [SWS_CM_10380]
[SWS_CM_10515] [SWS_CM_10516]
[SWS_CM_10523] [SWS_CM_10534]
[SWS_CM_10535] [SWS_CM_11025]
[SWS_CM_11026] [SWS_CM_11140]
[SWS_CM_11141] [SWS_CM_80030]
[SWS_CM_80072]

29 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_CM_00204] The Communication

Management shall map the
protocol independent Service
Oriented Communication to the
configured protocol binding and
shall execute the protocol
accordingly.

[SWS_CM_00201] [SWS_CM_00202]
[SWS_CM_00203] [SWS_CM_00204]
[SWS_CM_00205] [SWS_CM_00206]
[SWS_CM_00207] [SWS_CM_00208]
[SWS_CM_00209] [SWS_CM_00252]
[SWS_CM_00253] [SWS_CM_00254]
[SWS_CM_00255] [SWS_CM_00256]
[SWS_CM_00257] [SWS_CM_00258]
[SWS_CM_00259] [SWS_CM_00264]
[SWS_CM_01046] [SWS_CM_09004]
[SWS_CM_10000] [SWS_CM_10013]
[SWS_CM_10016] [SWS_CM_10017]
[SWS_CM_10034] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10042]
[SWS_CM_10053] [SWS_CM_10054]
[SWS_CM_10055] [SWS_CM_10056]
[SWS_CM_10057] [SWS_CM_10058]
[SWS_CM_10059] [SWS_CM_10060]
[SWS_CM_10070] [SWS_CM_10072]
[SWS_CM_10076] [SWS_CM_10169]
[SWS_CM_10172] [SWS_CM_10174]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10230]
[SWS_CM_10234] [SWS_CM_10235]
[SWS_CM_10240] [SWS_CM_10242]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10255]
[SWS_CM_10256] [SWS_CM_10257]
[SWS_CM_10258] [SWS_CM_10259]
[SWS_CM_10260] [SWS_CM_10260]
[SWS_CM_10261] [SWS_CM_10262]
[SWS_CM_10262] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10287]
[SWS_CM_10288] [SWS_CM_10289]
[SWS_CM_10290] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10294] [SWS_CM_10295]

30 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_10296] [SWS_CM_10297]
[SWS_CM_10298] [SWS_CM_10299]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10308]
[SWS_CM_10309] [SWS_CM_10310]
[SWS_CM_10311] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10315] [SWS_CM_10316]
[SWS_CM_10317] [SWS_CM_10318]
[SWS_CM_10319] [SWS_CM_10320]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10325] [SWS_CM_10326]
[SWS_CM_10327] [SWS_CM_10328]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]
[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10347] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10357] [SWS_CM_10358]
[SWS_CM_10360] [SWS_CM_10361]
[SWS_CM_10363] [SWS_CM_10377]
[SWS_CM_10378] [SWS_CM_10379]
[SWS_CM_10380] [SWS_CM_10381]
[SWS_CM_10387] [SWS_CM_10388]
[SWS_CM_10389] [SWS_CM_10390]
[SWS_CM_10391] [SWS_CM_10429]
[SWS_CM_10430] [SWS_CM_10431]
[SWS_CM_10441] [SWS_CM_10442]
[SWS_CM_10444] [SWS_CM_10447]
[SWS_CM_10459] [SWS_CM_10511]
[SWS_CM_10512] [SWS_CM_10513]
[SWS_CM_10514] [SWS_CM_10515]
[SWS_CM_10516] [SWS_CM_10517]
[SWS_CM_10518] [SWS_CM_10519]
[SWS_CM_10520] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_10523]
[SWS_CM_10524] [SWS_CM_10525]
[SWS_CM_10526] [SWS_CM_10527]
[SWS_CM_10528] [SWS_CM_10529]
[SWS_CM_10530] [SWS_CM_10531]

31 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_10532] [SWS_CM_10534]
[SWS_CM_10535] [SWS_CM_10536]
[SWS_CM_10537] [SWS_CM_10550]
[SWS_CM_11000] [SWS_CM_11001]
[SWS_CM_11002] [SWS_CM_11003]
[SWS_CM_11005] [SWS_CM_11006]
[SWS_CM_11007] [SWS_CM_11008]
[SWS_CM_11009] [SWS_CM_11010]
[SWS_CM_11011] [SWS_CM_11012]
[SWS_CM_11013] [SWS_CM_11014]
[SWS_CM_11015] [SWS_CM_11016]
[SWS_CM_11017] [SWS_CM_11018]
[SWS_CM_11019] [SWS_CM_11020]
[SWS_CM_11021] [SWS_CM_11022]
[SWS_CM_11023] [SWS_CM_11024]
[SWS_CM_11025] [SWS_CM_11026]
[SWS_CM_11027] [SWS_CM_11028]
[SWS_CM_11029] [SWS_CM_11030]
[SWS_CM_11031] [SWS_CM_11040]
[SWS_CM_11041] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11046] [SWS_CM_11047]
[SWS_CM_11048] [SWS_CM_11049]
[SWS_CM_11050] [SWS_CM_11100]
[SWS_CM_11101] [SWS_CM_11102]
[SWS_CM_11103] [SWS_CM_11104]
[SWS_CM_11105] [SWS_CM_11106]
[SWS_CM_11107] [SWS_CM_11108]
[SWS_CM_11109] [SWS_CM_11110]
[SWS_CM_11111] [SWS_CM_11112]
[SWS_CM_11130] [SWS_CM_11131]
[SWS_CM_11132] [SWS_CM_11133]
[SWS_CM_11134] [SWS_CM_11135]
[SWS_CM_11136] [SWS_CM_11137]
[SWS_CM_11138] [SWS_CM_11139]
[SWS_CM_11140] [SWS_CM_11141]
[SWS_CM_11142] [SWS_CM_11143]
[SWS_CM_11144] [SWS_CM_11145]
[SWS_CM_11146] [SWS_CM_11147]
[SWS_CM_11148] [SWS_CM_11149]
[SWS_CM_11150] [SWS_CM_11151]
[SWS_CM_11152] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156] [SWS_CM_11262]
[SWS_CM_11263] [SWS_CM_11269]
[SWS_CM_11364] [SWS_CM_80001]
[SWS_CM_80003] [SWS_CM_80017]
[SWS_CM_80019] [SWS_CM_80020]

32 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_80021] [SWS_CM_80022]
[SWS_CM_80023] [SWS_CM_80024]
[SWS_CM_80025] [SWS_CM_80026]
[SWS_CM_80027] [SWS_CM_80028]
[SWS_CM_80030] [SWS_CM_80032]
[SWS_CM_80063] [SWS_CM_80064]
[SWS_CM_80065] [SWS_CM_80066]
[SWS_CM_80067] [SWS_CM_80068]
[SWS_CM_80069] [SWS_CM_80072]
[SWS_CM_80074] [SWS_CM_80102]
[SWS_CM_80103] [SWS_CM_80501]
[SWS_CM_80502] [SWS_CM_80503]
[SWS_CM_80504] [SWS_CM_80505]
[SWS_CM_80506] [SWS_CM_80507]
[SWS_CM_80508] [SWS_CM_80509]
[SWS_CM_80512] [SWS_CM_80513]
[SWS_CM_90443] [SWS_CM_90444]
[SWS_CM_90445] [SWS_CM_90446]
[SWS_CM_90451] [SWS_CM_90452]
[SWS_CM_90502] [SWS_CM_90503]
[SWS_CM_90504] [SWS_CM_90505]
[SWS_CM_90506] [SWS_CM_90507]
[SWS_CM_90508] [SWS_CM_90509]
[SWS_CM_90510] [SWS_CM_90511]
[SWS_CM_90512] [SWS_CM_90513]
[SWS_CM_90514] [SWS_CM_90515]

[RS_CM_00205] The Communication
Management shall realize the
SOME/IP service discovery
protocol, the SOME/IP protocol
and the E2E supervision (E2E
protocol).

[SWS_CM_01046] [SWS_CM_01050]
[SWS_CM_01051] [SWS_CM_01052]
[SWS_CM_01053] [SWS_CM_01054]
[SWS_CM_01055] [SWS_CM_01056]
[SWS_CM_01057] [SWS_CM_01058]
[SWS_CM_01059] [SWS_CM_01060]
[SWS_CM_01061] [SWS_CM_01062]
[SWS_CM_01063] [SWS_CM_01064]
[SWS_CM_01065] [SWS_CM_01066]
[SWS_CM_01067] [SWS_CM_01068]
[SWS_CM_01069] [SWS_CM_10000]
[SWS_CM_80001]

[RS_CM_00211] Communication Management
shall provide an interface to
provide methods to other
applications

[SWS_CM_00017] [SWS_CM_00191]
[SWS_CM_00198] [SWS_CM_00199]
[SWS_CM_00252] [SWS_CM_00253]
[SWS_CM_00254] [SWS_CM_00255]
[SWS_CM_00256] [SWS_CM_00257]
[SWS_CM_00258] [SWS_CM_00259]
[SWS_CM_00260] [SWS_CM_00264]
[SWS_CM_00265] [SWS_CM_00301]
[SWS_CM_10036] [SWS_CM_10037]
[SWS_CM_10042] [SWS_CM_10053]
[SWS_CM_10054] [SWS_CM_10055]
[SWS_CM_10056] [SWS_CM_10057]

33 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_10058] [SWS_CM_10059]
[SWS_CM_10060] [SWS_CM_10070]
[SWS_CM_10072] [SWS_CM_10076]
[SWS_CM_10088] [SWS_CM_10098]
[SWS_CM_10099] [SWS_CM_10218]
[SWS_CM_10219] [SWS_CM_10222]
[SWS_CM_10226] [SWS_CM_10227]
[SWS_CM_10230] [SWS_CM_10234]
[SWS_CM_10235] [SWS_CM_10242]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10250]
[SWS_CM_10251] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10254]
[SWS_CM_10255] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10261] [SWS_CM_10262]
[SWS_CM_10263] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10361]
[SWS_CM_10362] [SWS_CM_10371]
[SWS_CM_10391] [SWS_CM_10411]
[SWS_CM_10459] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11046] [SWS_CM_11047]
[SWS_CM_11048] [SWS_CM_11049]
[SWS_CM_11050] [SWS_CM_11262]
[SWS_CM_11263] [SWS_CM_11265]
[SWS_CM_11266] [SWS_CM_11350]
[SWS_CM_11351] [SWS_CM_11353]
[SWS_CM_11354] [SWS_CM_11355]
[SWS_CM_11356] [SWS_CM_11357]
[SWS_CM_11358] [SWS_CM_11359]
[SWS_CM_11360] [SWS_CM_11361]
[SWS_CM_11362] [SWS_CM_11363]
[SWS_CM_90501]

34 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_CM_00212] Communication Management

shall provide an interface to call
methods of other applications
synchronously

[SWS_CM_00006] [SWS_CM_00032]
[SWS_CM_00192] [SWS_CM_00194]
[SWS_CM_00195] [SWS_CM_00196]
[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10300]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10304]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10308] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10311]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10314] [SWS_CM_10315]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10329]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]
[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10347] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10362] [SWS_CM_10371]
[SWS_CM_10414] [SWS_CM_10441]
[SWS_CM_10442] [SWS_CM_10443]
[SWS_CM_10444] [SWS_CM_10447]
[SWS_CM_11100] [SWS_CM_11101]
[SWS_CM_11102] [SWS_CM_11103]
[SWS_CM_11104] [SWS_CM_11105]
[SWS_CM_11106] [SWS_CM_11107]
[SWS_CM_11108] [SWS_CM_11109]
[SWS_CM_11110] [SWS_CM_11111]
[SWS_CM_11112] [SWS_CM_11144]
[SWS_CM_11145] [SWS_CM_11146]
[SWS_CM_11147] [SWS_CM_11148]
[SWS_CM_11149] [SWS_CM_11150]
[SWS_CM_11151] [SWS_CM_11152]
[SWS_CM_11153] [SWS_CM_11154]
[SWS_CM_11155] [SWS_CM_11156]
[SWS_CM_11351] [SWS_CM_11353]
[SWS_CM_11355] [SWS_CM_11357]
[SWS_CM_11359] [SWS_CM_11361]
[SWS_CM_11363]

35 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_CM_00213] Communication Management

shall provide an interface to call
service methods asynchronously

[SWS_CM_00006] [SWS_CM_00032]
[SWS_CM_00193] [SWS_CM_00194]
[SWS_CM_00196] [SWS_CM_00197]
[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10300]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10304]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10308] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10311]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10314] [SWS_CM_10315]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10329]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]
[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10347] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10362] [SWS_CM_10371]
[SWS_CM_10414] [SWS_CM_10440]
[SWS_CM_10441] [SWS_CM_10442]
[SWS_CM_10443] [SWS_CM_10444]
[SWS_CM_10447] [SWS_CM_11100]
[SWS_CM_11101] [SWS_CM_11102]
[SWS_CM_11103] [SWS_CM_11104]
[SWS_CM_11105] [SWS_CM_11106]
[SWS_CM_11107] [SWS_CM_11108]
[SWS_CM_11109] [SWS_CM_11110]
[SWS_CM_11111] [SWS_CM_11112]
[SWS_CM_11144] [SWS_CM_11145]
[SWS_CM_11146] [SWS_CM_11147]
[SWS_CM_11148] [SWS_CM_11149]
[SWS_CM_11150] [SWS_CM_11151]
[SWS_CM_11152] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156] [SWS_CM_11351]
[SWS_CM_11353] [SWS_CM_11355]
[SWS_CM_11357] [SWS_CM_11359]
[SWS_CM_11361] [SWS_CM_11363]

[RS_CM_00214] Communication Management
shall provide an interface to
query the result of an
asynchronously called service
method

[SWS_CM_00193] [SWS_CM_10362]
[SWS_CM_10371] [SWS_CM_10440]
[SWS_CM_11351] [SWS_CM_11353]
[SWS_CM_11355] [SWS_CM_11357]
[SWS_CM_11359] [SWS_CM_11361]
[SWS_CM_11363]

[RS_CM_00215] Communication Management
shall trigger the application on
completion of an asynchronously
called service method

[SWS_CM_00197] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_11104]
[SWS_CM_11108] [SWS_CM_11148]

36 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_CM_00216] Communication Management

shall provide an interface which
aggregates methods to receive a
notification on a changed field
value as well as explicitly getting
and setting the field value

[SWS_CM_00008] [SWS_CM_01031]
[SWS_CM_90501]

[RS_CM_00217] Communication Management
shall provide a method to
remotely set the field value

[SWS_CM_00031] [SWS_CM_00113]
[SWS_CM_10329] [SWS_CM_10333]
[SWS_CM_10335] [SWS_CM_10344]
[SWS_CM_10346] [SWS_CM_10443]
[SWS_CM_11151] [SWS_CM_11152]

[RS_CM_00218] Communication Management
shall provide a method to
remotely get the field value

[SWS_CM_00014] [SWS_CM_00015]
[SWS_CM_00016] [SWS_CM_00030]
[SWS_CM_00112] [SWS_CM_00114]
[SWS_CM_00115] [SWS_CM_00116]
[SWS_CM_00117] [SWS_CM_00119]
[SWS_CM_00120] [SWS_CM_00128]
[SWS_CM_00129] [SWS_CM_00132]
[SWS_CM_00133] [SWS_CM_10329]
[SWS_CM_10333] [SWS_CM_10335]
[SWS_CM_10344] [SWS_CM_10346]
[SWS_CM_10412] [SWS_CM_10413]
[SWS_CM_10415] [SWS_CM_10443]
[SWS_CM_11151] [SWS_CM_11152]

[RS_CM_00219] Communication Management
shall provide an interface which
aggregates methods to send a
notification on value change and
to register a get and set function
for the field value

[SWS_CM_00007]

[RS_CM_00220] Communication Management
shall trigger the set method of
the application which provides
the field

[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156]

[RS_CM_00221] Communication Management
shall trigger the get method of
the application which provides
the field

[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156]

[RS_CM_00223] The Communication
Management shall protect the
transmission of events using
E2E protocol. The E2E
Protection has to be executed
behind the event API.

[SWS_CM_10471] [SWS_CM_10472]
[SWS_CM_10473] [SWS_CM_90406]
[SWS_CM_90430] [SWS_CM_90433]
[SWS_CM_90453] [SWS_CM_90485]

[RS_CM_00224] The communication
management shall provide the
E2E information of the received
event to the application.

[SWS_CM_10475] [SWS_CM_90407]
[SWS_CM_90408] [SWS_CM_90412]
[SWS_CM_90413] [SWS_CM_90417]
[SWS_CM_90431] [SWS_CM_90457]

[RS_CM_00225] Communication Management
shall provide an interface to call
fire&forget service methods

[SWS_CM_90434] [SWS_CM_90435]
[SWS_CM_90436]

37 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_CM_00315] The Communication

Management shall support a
change of the configured
protocol binding without
requiring a re-compilation of the
adaptive application

[SWS_CM_10384] [SWS_CM_10385]
[SWS_CM_10386]

[RS_CM_00400] Communication Management
shall protect the transmission of
methods using E2E protocol.

[SWS_CM_10460] [SWS_CM_10462]
[SWS_CM_10463] [SWS_CM_10464]
[SWS_CM_10465] [SWS_CM_10466]
[SWS_CM_10467] [SWS_CM_10468]
[SWS_CM_10469] [SWS_CM_10472]
[SWS_CM_10473] [SWS_CM_90458]
[SWS_CM_90459] [SWS_CM_90460]
[SWS_CM_90462] [SWS_CM_90463]
[SWS_CM_90466] [SWS_CM_90467]
[SWS_CM_90468] [SWS_CM_90469]
[SWS_CM_90470] [SWS_CM_90471]
[SWS_CM_90472] [SWS_CM_90473]
[SWS_CM_90474] [SWS_CM_90475]
[SWS_CM_90476] [SWS_CM_90477]
[SWS_CM_90479] [SWS_CM_90480]
[SWS_CM_90481] [SWS_CM_90482]
[SWS_CM_90485] [SWS_CM_90486]
[SWS_CM_90487] [SWS_CM_90488]
[SWS_CM_90489] [SWS_CM_90490]
[SWS_CM_90491] [SWS_CM_90492]
[SWS_CM_90493] [SWS_CM_90494]
[SWS_CM_90496] [SWS_CM_90497]
[SWS_CM_90498]

[RS_CM_00401] The communication
management shall provide the
E2E information of the received
method call to the application.

[SWS_CM_10470] [SWS_CM_10471]
[SWS_CM_90464] [SWS_CM_90465]
[SWS_CM_90495] [SWS_CM_90499]

[RS_CM_00402] Communication Management
shall support a decision for
applying the method call based
on E2E results.

[SWS_CM_10467] [SWS_CM_10470]
[SWS_CM_10471] [SWS_CM_90464]
[SWS_CM_90465]

[RS_CM_00410] The Communication
Management shall provide an
API to support reading and
writing raw data streams that
has no datatype information

[SWS_CM_10476] [SWS_CM_10477]
[SWS_CM_10478] [SWS_CM_10479]
[SWS_CM_10480] [SWS_CM_10481]
[SWS_CM_10482] [SWS_CM_10483]
[SWS_CM_10484] [SWS_CM_10485]
[SWS_CM_10486] [SWS_CM_10487]
[SWS_CM_11300] [SWS_CM_11301]
[SWS_CM_11302] [SWS_CM_11303]
[SWS_CM_11304] [SWS_CM_11305]
[SWS_CM_11306] [SWS_CM_11307]
[SWS_CM_11309] [SWS_CM_11310]
[SWS_CM_11311] [SWS_CM_11312]

38 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_11313] [SWS_CM_11314]
[SWS_CM_11315] [SWS_CM_11316]
[SWS_CM_11317] [SWS_CM_11318]
[SWS_CM_11319] [SWS_CM_11320]
[SWS_CM_11322] [SWS_CM_11323]
[SWS_CM_11324] [SWS_CM_11325]
[SWS_CM_90216] [SWS_CM_90217]
[SWS_CM_99004] [SWS_CM_99006]

[RS_CM_00411] Application developers shall be
able to send and receive raw
binary data streams
independent of the underlying
network protocol

[SWS_CM_10476] [SWS_CM_10477]
[SWS_CM_10478] [SWS_CM_10479]
[SWS_CM_10480] [SWS_CM_10481]
[SWS_CM_10482] [SWS_CM_10483]
[SWS_CM_10484] [SWS_CM_10485]
[SWS_CM_10486] [SWS_CM_10487]
[SWS_CM_11300] [SWS_CM_11301]
[SWS_CM_11302] [SWS_CM_11303]
[SWS_CM_11304] [SWS_CM_11305]
[SWS_CM_11306] [SWS_CM_11307]
[SWS_CM_11309] [SWS_CM_11310]
[SWS_CM_11311] [SWS_CM_11312]
[SWS_CM_11313] [SWS_CM_11314]
[SWS_CM_11315] [SWS_CM_11316]
[SWS_CM_11317] [SWS_CM_11318]
[SWS_CM_11319] [SWS_CM_11320]
[SWS_CM_11322] [SWS_CM_11323]
[SWS_CM_11324] [SWS_CM_11325]
[SWS_CM_90216] [SWS_CM_90217]
[SWS_CM_99004] [SWS_CM_99005]
[SWS_CM_99006]

[RS_CM_00412] The Communication
Management shall provide TCP/
IP Sockets as network protocol
for Raw Data Streams

[SWS_CM_10476] [SWS_CM_10477]
[SWS_CM_10478] [SWS_CM_10479]
[SWS_CM_10480] [SWS_CM_10482]
[SWS_CM_10483] [SWS_CM_10484]
[SWS_CM_10485] [SWS_CM_10486]
[SWS_CM_10487] [SWS_CM_11300]
[SWS_CM_11301] [SWS_CM_11302]
[SWS_CM_11303] [SWS_CM_11304]
[SWS_CM_11305] [SWS_CM_11306]
[SWS_CM_11307] [SWS_CM_11309]
[SWS_CM_11310] [SWS_CM_11312]
[SWS_CM_11313] [SWS_CM_11314]
[SWS_CM_11315] [SWS_CM_11316]
[SWS_CM_11317] [SWS_CM_11318]
[SWS_CM_11319] [SWS_CM_11320]
[SWS_CM_11322] [SWS_CM_11323]
[SWS_CM_11324] [SWS_CM_11325]
[SWS_CM_90216] [SWS_CM_99004]
[SWS_CM_99005]

[RS_CM_00500] Service Contract Version for a
Service Interface

[SWS_CM_01010] [SWS_CM_09004]
[SWS_CM_90508] [SWS_CM_99003]

[RS_CM_00501] Service Contract Versioning for
all Transport Deployment
Protocols

[SWS_CM_09004] [SWS_CM_90508]
[SWS_CM_99003]

39 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_CM_00600] Creation of Communication

Groups
[SWS_CM_99000] [SWS_CM_99001]
[SWS_CM_99002] [SWS_CM_99007]
[SWS_CM_99008] [SWS_CM_99009]
[SWS_CM_99010] [SWS_CM_99011]
[SWS_CM_99012] [SWS_CM_99013]
[SWS_CM_99014] [SWS_CM_99015]
[SWS_CM_99016] [SWS_CM_99017]
[SWS_CM_99018] [SWS_CM_99019]
[SWS_CM_99020] [SWS_CM_99021]
[SWS_CM_99022]

[RS_CM_00601] Provide origin of information [SWS_CM_99000] [SWS_CM_99001]
[SWS_CM_99002] [SWS_CM_99007]
[SWS_CM_99008] [SWS_CM_99009]
[SWS_CM_99010] [SWS_CM_99011]
[SWS_CM_99012] [SWS_CM_99013]
[SWS_CM_99014] [SWS_CM_99015]
[SWS_CM_99016] [SWS_CM_99017]
[SWS_CM_99018] [SWS_CM_99019]
[SWS_CM_99020] [SWS_CM_99021]
[SWS_CM_99022]

[RS_CM_00700] The Service Discovery shall
evaluate the service version
compatibility for service
connection

[SWS_CM_99003]

[RS_CM_00701] Service Versioning Blacklist [SWS_CM_10202]
[RS_E2E_08534] E2E protocol shall provide E2E

Check status to the application
[SWS_CM_10475] [SWS_CM_90411]
[SWS_CM_90413] [SWS_CM_90416]
[SWS_CM_90417] [SWS_CM_90420]
[SWS_CM_90421] [SWS_CM_90422]
[SWS_CM_90424] [SWS_CM_90426]
[SWS_CM_90427] [SWS_CM_90431]
[SWS_CM_90461] [SWS_CM_90478]
[SWS_CM_90482] [SWS_CM_90483]
[SWS_CM_90484]

[RS_E2E_08540] E2E protocol shall support
protected periodic/mixed
periodic communication

[SWS_CM_10460] [SWS_CM_90401]
[SWS_CM_90402] [SWS_CM_90403]
[SWS_CM_90404] [SWS_CM_90406]
[SWS_CM_90407] [SWS_CM_90408]
[SWS_CM_90410] [SWS_CM_90411]
[SWS_CM_90412] [SWS_CM_90413]
[SWS_CM_90415] [SWS_CM_90416]
[SWS_CM_90417] [SWS_CM_90430]
[SWS_CM_90433] [SWS_CM_90453]
[SWS_CM_90454] [SWS_CM_90455]
[SWS_CM_90456] [SWS_CM_90457]

40 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_E2E_08541] E2E protocol shall support

protected non-periodic
communication

[SWS_CM_10462] [SWS_CM_10463]
[SWS_CM_10464] [SWS_CM_10465]
[SWS_CM_10466] [SWS_CM_10467]
[SWS_CM_10468] [SWS_CM_10469]
[SWS_CM_10472] [SWS_CM_10473]
[SWS_CM_90458] [SWS_CM_90459]
[SWS_CM_90460] [SWS_CM_90461]
[SWS_CM_90462] [SWS_CM_90463]
[SWS_CM_90466] [SWS_CM_90467]
[SWS_CM_90468] [SWS_CM_90469]
[SWS_CM_90470] [SWS_CM_90471]
[SWS_CM_90472] [SWS_CM_90473]
[SWS_CM_90474] [SWS_CM_90475]
[SWS_CM_90476] [SWS_CM_90477]
[SWS_CM_90478] [SWS_CM_90479]
[SWS_CM_90480] [SWS_CM_90481]
[SWS_CM_90482] [SWS_CM_90485]
[SWS_CM_90486] [SWS_CM_90487]
[SWS_CM_90488] [SWS_CM_90489]
[SWS_CM_90490] [SWS_CM_90491]
[SWS_CM_90492] [SWS_CM_90493]
[SWS_CM_90494] [SWS_CM_90495]
[SWS_CM_90496] [SWS_CM_90497]
[SWS_CM_90498] [SWS_CM_90499]

[RS_IAM_00001] Limit Adaptive Application
access to the Adaptive
Platform Foundation and
Services.

[SWS_CM_10498] [SWS_CM_10499]
[SWS_CM_10500] [SWS_CM_10501]
[SWS_CM_10502] [SWS_CM_10503]
[SWS_CM_10504] [SWS_CM_10505]
[SWS_CM_10506] [SWS_CM_10507]
[SWS_CM_10540] [SWS_CM_10541]
[SWS_CM_90218]

[RS_IAM_00002] Position of Policy Enforcement [SWS_CM_10492] [SWS_CM_10493]
[SWS_CM_10494] [SWS_CM_10498]
[SWS_CM_10499] [SWS_CM_10500]
[SWS_CM_10501] [SWS_CM_10502]
[SWS_CM_10503] [SWS_CM_10504]
[SWS_CM_10505] [SWS_CM_10506]
[SWS_CM_10507] [SWS_CM_10540]
[SWS_CM_10541] [SWS_CM_90218]

[RS_IAM_00006] Access control policies shall be
available to the PDP

[SWS_CM_10538] [SWS_CM_10539]
[SWS_CM_90001] [SWS_CM_90002]
[SWS_CM_90003] [SWS_CM_90005]
[SWS_CM_90006] [SWS_CM_90007]

[RS_IAM_00007] The Adaptive Platform
Foundation shall provide
access control decisions

[SWS_CM_10538] [SWS_CM_10539]
[SWS_CM_90001] [SWS_CM_90002]
[SWS_CM_90003] [SWS_CM_90005]
[SWS_CM_90006] [SWS_CM_90007]

[RS_IAM_00010] Adaptive applications shall only
be able to use AUTOSAR
Resources when authorized

[SWS_CM_10538] [SWS_CM_10539]
[SWS_CM_90001] [SWS_CM_90002]
[SWS_CM_90003] [SWS_CM_90005]
[SWS_CM_90006] [SWS_CM_90007]

41 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_SEC_04001] Secure communication shall be

transmitted using secure
channels

[SWS_CM_11270] [SWS_CM_11271]
[SWS_CM_11272] [SWS_CM_11273]
[SWS_CM_11274] [SWS_CM_11275]
[SWS_CM_11276] [SWS_CM_11277]
[SWS_CM_11278] [SWS_CM_11279]
[SWS_CM_11280] [SWS_CM_11281]
[SWS_CM_11282] [SWS_CM_11283]
[SWS_CM_11284] [SWS_CM_11285]
[SWS_CM_11286] [SWS_CM_11287]
[SWS_CM_11288] [SWS_CM_11289]
[SWS_CM_11290] [SWS_CM_11344]
[SWS_CM_11345] [SWS_CM_11346]
[SWS_CM_90101] [SWS_CM_90102]
[SWS_CM_90103] [SWS_CM_90104]
[SWS_CM_90108] [SWS_CM_90109]
[SWS_CM_90110] [SWS_CM_90115]
[SWS_CM_90116] [SWS_CM_90117]
[SWS_CM_90118] [SWS_CM_90121]
[SWS_CM_90201] [SWS_CM_90202]
[SWS_CM_90203] [SWS_CM_90204]
[SWS_CM_90205] [SWS_CM_90206]
[SWS_CM_90207] [SWS_CM_90209]
[SWS_CM_90211] [SWS_CM_90212]
[SWS_CM_90213] [SWS_CM_90214]
[SWS_CM_90215]

[RS_SEC_04002] Secure channels shall be
configurable

[SWS_CM_11280] [SWS_CM_11281]
[SWS_CM_11282] [SWS_CM_11283]
[SWS_CM_11284] [SWS_CM_11285]
[SWS_CM_11286] [SWS_CM_11287]
[SWS_CM_11288] [SWS_CM_11289]
[SWS_CM_11290] [SWS_CM_11344]
[SWS_CM_11345]

[RS_SEC_04003] The assignment of
communication to specific
secure channels shall be
configurable

[SWS_CM_10495] [SWS_CM_10496]
[SWS_CM_10497] [SWS_CM_11270]
[SWS_CM_11280] [SWS_CM_11281]
[SWS_CM_11282] [SWS_CM_11283]
[SWS_CM_11284] [SWS_CM_11285]
[SWS_CM_11286] [SWS_CM_11287]
[SWS_CM_11288] [SWS_CM_11289]
[SWS_CM_11290] [SWS_CM_11344]
[SWS_CM_11345] [SWS_CM_90102]
[SWS_CM_90202] [SWS_CM_90212]

[RS_SEC_04004] Using secure channels shall be
transparent on the
communication API

[SWS_CM_11280] [SWS_CM_11281]
[SWS_CM_11282] [SWS_CM_11283]
[SWS_CM_11284] [SWS_CM_11285]
[SWS_CM_11286] [SWS_CM_11287]
[SWS_CM_11288] [SWS_CM_11289]
[SWS_CM_11290] [SWS_CM_11344]
[SWS_CM_11345] [SWS_CM_90111]
[SWS_CM_90112] [SWS_CM_90113]
[SWS_CM_90114] [SWS_CM_90119]

[RS_SOMEIPSD_-
00002]

SOME/IP Service Discovery
Protocol shall support unicast
messages

[SWS_CM_00206]

42 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_SOMEIPSD_-
00003]

SOME/IP Service Discovery
Protocol shall support multicast
messages

[SWS_CM_00206]

[RS_SOMEIPSD_-
00005]

SOME/IP Service Discovery
Protocol shall support different
versions of the same service

[SWS_CM_00202] [SWS_CM_00203]
[SWS_CM_00204] [SWS_CM_00205]
[SWS_CM_00206] [SWS_CM_00207]
[SWS_CM_00208] [SWS_CM_10378]

[RS_SOMEIPSD_-
00006]

SOME/IP Service Discovery
Protocol shall define the format
of the Service Discovery
message

[SWS_CM_00202] [SWS_CM_00203]
[SWS_CM_00204] [SWS_CM_00205]
[SWS_CM_00206] [SWS_CM_00207]
[SWS_CM_00208] [SWS_CM_10377]
[SWS_CM_10378] [SWS_CM_10381]

[RS_SOMEIPSD_-
00008]

SOME/IP Service Discovery
Protocol shall support to find the
location of service instances

[SWS_CM_00202] [SWS_CM_00209]

[RS_SOMEIPSD_-
00010]

SOME/IP Service Discovery
Protocol shall provide support to
transport optional data

[SWS_CM_00202] [SWS_CM_00203]
[SWS_CM_00204]

[RS_SOMEIPSD_-
00013]

SOME/IP Service Discovery
Protocol shall support to offer
published services

[SWS_CM_00201] [SWS_CM_00203]

[RS_SOMEIPSD_-
00014]

SOME/IP Service Discovery
Protocol shall support to stop
offering services

[SWS_CM_00204]

[RS_SOMEIPSD_-
00015]

SOME/IP Service Discovery
Protocol shall support to
subscribe to events

[SWS_CM_00205] [SWS_CM_00206]
[SWS_CM_10377] [SWS_CM_10381]

[RS_SOMEIPSD_-
00016]

SOME/IP Service Discovery
Protocol shall support to deny
subscriptions

[SWS_CM_00208]

[RS_SOMEIPSD_-
00017]

SOME/IP Service Discovery
Protocol shall support to stop
subscriptions to events

[SWS_CM_00207] [SWS_CM_10378]

[RS_SOMEIPSD_-
00024]

SOME/IP Service Discovery
shall support configurable
timings

[SWS_CM_00201] [SWS_CM_00209]

[RS_SOMEIPSD_-
00025]

SOME/IP Service Discovery
messages shall contain
information how to contact the
communication partner

[SWS_CM_00203]

[RS_SOMEIP_00003] SOME/IP protocol shall provide
support of multiple versions of a
service interface

[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10512] [SWS_CM_10513]
[SWS_CM_10519] [SWS_CM_10520]
[SWS_CM_10521] [SWS_CM_10522]
[SWS_CM_80025] [SWS_CM_80026]
[SWS_CM_80027] [SWS_CM_80028]
[SWS_CM_80067] [SWS_CM_80068]
[SWS_CM_80069]

43 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_SOMEIP_00004] SOME/IP protocol shall support

event communication
[SWS_CM_10034] [SWS_CM_10287]
[SWS_CM_10288] [SWS_CM_10289]
[SWS_CM_10290] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10294] [SWS_CM_10295]
[SWS_CM_10296] [SWS_CM_10319]
[SWS_CM_10320] [SWS_CM_10321]
[SWS_CM_10322] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10326] [SWS_CM_10327]
[SWS_CM_10328] [SWS_CM_10360]
[SWS_CM_10363] [SWS_CM_10379]
[SWS_CM_10380] [SWS_CM_10511]
[SWS_CM_10512] [SWS_CM_10513]
[SWS_CM_10514] [SWS_CM_10515]
[SWS_CM_10516] [SWS_CM_10517]
[SWS_CM_10518] [SWS_CM_10519]
[SWS_CM_10520] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_10523]
[SWS_CM_80021] [SWS_CM_80022]
[SWS_CM_80023] [SWS_CM_80024]
[SWS_CM_80025] [SWS_CM_80026]
[SWS_CM_80027] [SWS_CM_80028]
[SWS_CM_80030] [SWS_CM_80032]
[SWS_CM_80063] [SWS_CM_80064]
[SWS_CM_80065] [SWS_CM_80066]
[SWS_CM_80067] [SWS_CM_80068]
[SWS_CM_80069] [SWS_CM_80072]
[SWS_CM_80074]

[RS_SOMEIP_00005] SOME/IP protocol shall support
different strategies for event
communication

[SWS_CM_10034] [SWS_CM_10287]
[SWS_CM_10319] [SWS_CM_10360]
[SWS_CM_10363] [SWS_CM_10511]
[SWS_CM_10517] [SWS_CM_10518]
[SWS_CM_80021] [SWS_CM_80063]

[RS_SOMEIP_00006] SOME/IP protocol shall support
uni-directional RPC
communication

[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10314]
[SWS_CM_10441]

[RS_SOMEIP_00007] SOME/IP protocol shall support
bi-directional RPC
communication

[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10308]
[SWS_CM_10309] [SWS_CM_10310]
[SWS_CM_10311] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10329]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]

44 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10441]
[SWS_CM_10442] [SWS_CM_10443]
[SWS_CM_10444] [SWS_CM_10447]

[RS_SOMEIP_00008] SOME/IP protocol shall support
error handling of RPC
communication

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10317] [SWS_CM_10334]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10357] [SWS_CM_10358]
[SWS_CM_10429] [SWS_CM_10430]
[SWS_CM_10513] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_80027]
[SWS_CM_80028]

[RS_SOMEIP_00009] SOME/IP protocol shall support
field communication

[SWS_CM_10319] [SWS_CM_10320]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10325] [SWS_CM_10326]
[SWS_CM_10327] [SWS_CM_10328]
[SWS_CM_10329] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10380] [SWS_CM_10443]
[SWS_CM_10444] [SWS_CM_80063]
[SWS_CM_80064] [SWS_CM_80065]
[SWS_CM_80066] [SWS_CM_80067]
[SWS_CM_80068] [SWS_CM_80069]
[SWS_CM_80072] [SWS_CM_80074]

[RS_SOMEIP_00010] SOME/IP protocol shall support
different transport protocols
underneath

[SWS_CM_10288] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10320]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_80022] [SWS_CM_80064]

[RS_SOMEIP_00012] SOME/IP protocol shall support
session handling

[SWS_CM_10240] [SWS_CM_10301]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10333] [SWS_CM_10344]
[SWS_CM_10345]

45 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_SOMEIP_00014] SOME/IP protocol shall support

handling of protocol errors on
receiver side

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10313] [SWS_CM_10324]
[SWS_CM_10334] [SWS_CM_10345]
[SWS_CM_10428] [SWS_CM_10513]
[SWS_CM_10521] [SWS_CM_10522]
[SWS_CM_80027] [SWS_CM_80028]
[SWS_CM_80069]

[RS_SOMEIP_00017] SOME/IP protocol shall support
grouping events into
eventgroups

[SWS_CM_10287] [SWS_CM_10319]
[SWS_CM_10511] [SWS_CM_10518]
[SWS_CM_80021] [SWS_CM_80063]

[RS_SOMEIP_00018] SOME/IP protocol shall support
grouping fields in eventgroups

[SWS_CM_10319] [SWS_CM_80063]

[RS_SOMEIP_00019] SOME/IP protocol shall identify
services using unique identifiers

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10313] [SWS_CM_10324]
[SWS_CM_10334] [SWS_CM_10345]
[SWS_CM_10513] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_80027]
[SWS_CM_80028] [SWS_CM_80069]

[RS_SOMEIP_00021] SOME/IP protocol shall identify
RPC methods of services using
unique identifiers

[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]

[RS_SOMEIP_00022] SOME/IP protocol shall identify
events of services using unique
identifiers

[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10293] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10512] [SWS_CM_10513]
[SWS_CM_10514] [SWS_CM_10519]
[SWS_CM_10520] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_80025]
[SWS_CM_80026] [SWS_CM_80027]
[SWS_CM_80028] [SWS_CM_80067]
[SWS_CM_80068] [SWS_CM_80069]

[RS_SOMEIP_00025] SOME/IP protocol shall support
the identification of callers of an
RPC using unique identifiers

[SWS_CM_10301] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00026] SOME/IP protocol shall define
the endianness of header and
payload

[SWS_CM_10013] [SWS_CM_10172]
[SWS_CM_80003]

[RS_SOMEIP_00028] SOME/IP protocol shall specify
the serialization algorithm for
data

[SWS_CM_10034] [SWS_CM_10294]
[SWS_CM_10304] [SWS_CM_10316]
[SWS_CM_10326] [SWS_CM_10336]
[SWS_CM_10348] [SWS_CM_10442]
[SWS_CM_10444] [SWS_CM_80032]
[SWS_CM_80074]

[RS_SOMEIP_00041] SOME/IP protocol shall provide
support of multiple versions of
the protocol

[SWS_CM_10291] [SWS_CM_10301]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10323] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10512] [SWS_CM_10519]
[SWS_CM_10520] [SWS_CM_80025]
[SWS_CM_80026] [SWS_CM_80067]
[SWS_CM_80068]

46 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Requirement Description Satisfied by
[RS_SOMEIP_00042] SOME/IP protocol shall support

unicast and multicast based
event communication

[SWS_CM_10289] [SWS_CM_10290]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_80023] [SWS_CM_80024]
[SWS_CM_80065] [SWS_CM_80066]

[RS_SOMEIP_00050] SOME/IP protocol shall support
serialization of extensible data
structs

[SWS_CM_01046] [SWS_CM_01050]
[SWS_CM_01051] [SWS_CM_01052]
[SWS_CM_01053] [SWS_CM_01054]
[SWS_CM_01055] [SWS_CM_01056]
[SWS_CM_01057] [SWS_CM_01058]
[SWS_CM_01059] [SWS_CM_01060]
[SWS_CM_01061] [SWS_CM_01062]
[SWS_CM_01063] [SWS_CM_01064]
[SWS_CM_01065] [SWS_CM_01066]
[SWS_CM_01067] [SWS_CM_01068]
[SWS_CM_01069]

[RS_SOMEIP_00051] SOME/IP protocol shall provide
support for segmented
transmission of large data

[SWS_CM_10445] [SWS_CM_10454]
[SWS_CM_10455] [SWS_CM_10456]
[SWS_CM_10457]

47 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7 Functional specification

7.1 General description

The AUTOSAR Adaptive architecture organizes the software of the AUTOSAR Adap-
tive foundation as functional clusters. These clusters offer common functionality as
services to the applications. The Communication Management (CM) for AUTOSAR
Adaptive is such a functional cluster and is part of "AUTOSAR Runtime for Adaptive
Applications" - ARA. It is responsible for the construction and supervision of communi-
cation paths between applications, both local and remote.

The CM provides the infrastructure that enables communication between Adaptive
AUTOSAR Applications within one machine and with software entities on other ma-
chines, e.g. other Adaptive AUTOSAR applications or Classic AUTOSAR SWCs. All
communication paths can be established at design- , start-up- or run-time.

This specification includes the syntax of the API, the relationship of API to the model
and describes semantics, e.g. through state machines, and assumption of pre-, post-
conditions and use of APIs. The specification does not provide constraints on the SW
architecture of a platform implementation, so there is no definition of basic software
modules and no specification of implementation or internal technical architecture of
the Communication Management.

7.1.1 Architectural concepts

The Communication management of AUTOSAR Adaptive can be logically divided into
the following sub-parts:

• Language binding

• End-to-end communication protection

• Communication / Network binding

• Communication Management software

48 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Adaptive Platform Foundation

(Virtual) Machine / Hardware

Communication Management

Adaptive Application

Ethernet Driver

TCP/IP

SOME/IP
Transport

IPC
Transport

IPC

Dispatching and Discovery

ara::com API

Execution Management

API

C++ Language Binding

Communication Binding

Figure 7.1: Technical Architecture of Communication Management

In the context of Communication Management, the following types of interfaces are
defined:

• Public Application Interface: Part of the Adaptive AUTOSAR API and specified in
the SWS. This is the standardized ara::com API.

• Functional Cluster Interactions: Interaction between functional clusters. Not nor-
mative, intended to make specification more readable and to support integration
of SW into demonstrator. (dotted arrow in 7.1) And also interactions between
elements within a functional cluster. Not used in specifications, so it is a non-
standardized interface. Used for communication inside Communication Manage-
ment software (grey arrow in 7.1)

Please note, that Language Binding and Communication Binding depend on a specific
configuration by the integrator, but they need to be deployed within the application
binary. This results in the fact that the serialization of the Communication Binding will
run in the execution context of the Adaptive Application.

For the design of ARA API the following constraints apply:

• Support the independence of application software components

• Use of Service-oriented communication without dependency on a specific com-
munication protocol

49 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• Make the API as lean as possible, neither supporting very specific use cases
which could also be done on top of the API, nor supporting component model
or higher level concepts. The API is restricted to support core communication
mechanisms.

• Support for dynamic communication:

– No discovery by application middleware, the clients know the server but the
Server does not know the clients. Event subscription is the only dynamic
communication pattern in the application.

– Full service discovery in the application. No communication paths are known
at configuration time. An API for Service discovery allows the application
code to choose the service instance.

• Support both Event/Callback and Polling style usage of the API to enable classic
RTE style paradigms. To support high determinism demands in case of callback-
based / event-based interaction, there shall be the possibility to avoid uncontrolled
context switches.

• Support both synchronous callback-based communication and asynchronous
communication philosophy.

• Support of client/server communication.

• Support of sender/receiver communication with queued semantics where the re-
ceiver caches are configurable.

• Support of selection of trigger conditions for task activation.

• Extensions for security.

• Extensions for Quality Of Service QoS.

• Scalability for real-time systems.

• Support of built-in end-to-end communication protection, where a use-case-
specific behavior can be done on top of ARA API.

7.1.2 Design decisions

The design of the ARA API covers the following principles:

• It uses the Proxy/Skeleton pattern:

– The (service) proxy is the representative of the possibly remote (i.e. other
process, other core, other node) service. It is an instance of a C++ class
local to the application/client, which uses the service.

– The (service) skeleton is the connection of the user provided service imple-
mentation to the middleware transport infrastructure. Service implementa-
tion class is derived from the (service) skeleton.

50 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– Beside proxies/skeletons, there might exist a so-called "Runtime" (singleton)
class to provide some essentials to manage proxies and skeletons. But
this is communication management software implementation specific and
therefore not specified in this document, but may be specified in a future
version.

Regarding proxy/skeleton design pattern in general and its role in middleware
implementations, see [9] [10].

• It supports callback mechanisms on data reception.

• The API has zero-copy capabilities including the possibility for memory manage-
ment in the middleware.

• It is aligned with the AUTOSAR service model (services, instances, events, meth-
ods, ...) to allow the generation of proxies and skeletons out of this model.

• Full discovery and service instance selection support on API level.

• Client/Server Communication uses concepts introduced by C++11 language, e.g.
std::future, std::promise, to fully support method calls between different contexts.

• Abstract from SOME/IP specific behavior, but support SOME/IP service mecha-
nisms, as methods, events and fields.

• Support/implement the standard end-to-end protection protocols, as specified in
[7] and [4].

• Support of Service contract versioning.

• Support Event and Polling style usage of the API equally to enable classic RT
style paradigms.

• Fully exploit C++11/14 features in API design to provide usability and comfort for
the application developer.

See ARAComAPI explanatory [1] for more details and explanations on the ARA API
design.

7.1.3 Communication paradigms

Service-Oriented Communication (SoC) as a part of Service-Oriented Architecture
(SOA) [11] is the main communication pattern for Adaptive AUTOSAR Applications.
It allows establishing communication paths both at run-time, so it can be used to build
up dynamic communication with unknown number of participants. Figure 7.2 shows
the basic operation principle of Service-Oriented Communication.

51 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Service
Registry

Application 1
Service provider

offer

call

Service
Registry

Application 2
Service requester

find

Figure 7.2: Service-Oriented Communication

Service Discovery decides whether external and internal service-oriented communi-
cation is established. The discovery strategy shall allow either returning a specific
service instance or all available instances providing the requested service at the time
of the request, no matter if they are available locally or remote. The Communication
Management software should provide an optimized implementation for both the Ser-
vice discovery and the communication connection, depending on the location where
the service provider resides. More about Service Discovery can be found in SOME/IP
Service Discovery Protocol Specification [12].

The service class is the central element of the Service-Oriented Communication pat-
tern applied in Adaptive AUTOSAR. It represents the service by collecting the methods
and events which are provided or requested by the applications implementing the con-
crete service functionality.

7.1.4 Service contract versioning

In Service Oriented Architecture (SOA) environments the client and the provider of
a service rely on a contract which covers the service interface and behavior. The
interface and the behavior of a service may change over time. Therefore, service
contract versioning has been introduced to differentiate between the different versions
of a service.

52 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Figure 7.3: Service contract versioning over time

The AUTOSAR Adaptive platform supports service contract versioning. The service
contract versioning is separated between the design phase and the deployment phase.
This means that any service at design level may have its own version number which is
mapped to a version number of the used network binding and vice versa. The mapping
process is manually done by the service designer or integrator.

Figure 7.4: Service contract versioning flow

Note:

1. The contract version of a ServiceInterface consists of a majorVersion
and a minorVersion number. The majorVersion number indicates backwards-
incompatible service changes. The minorVersion number indicates backwards-
compatible service changes.

53 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• for backwards-incompatible interface or behavior changes the majorVersion
number is increased and the minorVersion number is set to 0.

• for backwards-compatible interface or behavior changes the majorVersion
number is unchanged and the minorVersion number is increased.

2. The contract version of a ServiceInterface is mapped to a version of the
ServiceInterfaceDeployment. This version mapping may be done several times
resulting in several ServiceInterfaceDeployments for the same ServiceIn-
terface. Such a mapping will result in unambiguous identification on each VLAN
according to the [constr_1723] in [6].

[SWS_CM_99003]{DRAFT} dThe version of ServiceInterfaceDeployment shall
be evaluated by the Service Discovery in terms of backwards-compatibility based on
the used network binding for service connection.c(RS_CM_00500, RS_CM_00501,
RS_CM_00700)

7.2 End-to-end communication protection for Events

This section specifies the integration of E2E communication protection in ara::com
for the processing of Events.

[SWS_CM_90402]{DRAFT} dAn E2E-protected Event shall have its options con-
figured in End2EndEventProtectionProps and E2EProfileConfiguration.c
(RS_E2E_08540)

[SWS_CM_90433]{DRAFT} dThe E2E functions mentioned in this section using the
names E2E_protect and E2E_check shall meet the requirements on E2E protec-
tion as defined in [7] and comply with the E2E protection protocol specification of [4]
(especially [PRS_E2E_00323]).c(RS_E2E_08540, RS_CM_00223)

For each specific Event class belonging to a specific Service-
Proxy/ServiceSkeleton class the E2E dataID - based on, e.g., a combination of
Service ID, Service Instance ID and Event ID - is available.

7.2.1 Limitations

The specified E2E communication protection for events is limited.

• EndToEndTransformationComSpecProps are not supported.

General limitations regarding E2E protection and the detectable failure modes are de-
scribed in [4].

The values of the following E2E parameters are defined as fixed by the standard and
shall not be changed. See [PRS_E2E_00324] of [4]:

• counterOffset

54 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• crcOffset

• dataIdNibbleOffset

The value of following E2E parameters shall be set to the default values specified by
[PRS_E2E_00324] of [4]:

• offset

The value of dataIdMode for Events and the notifier of Fields shall be set ac-
cording to the dataIdMode of the E2EProfileConfiguration which is refer-
enced (in role e2eProfileConfiguration) by the AdaptivePlatformService-
Instance.e2eEventProtectionProps which reference (in role event) the Ser-
viceEventDeployment of the particular Event or the Field notifier.

7.2.2 Publisher

[SWS_CM_90453]{DRAFT} dFor E2E-protected Events, E2E protection shall be per-
formed within the context of Send.c(RS_CM_00223, RS_E2E_08540)

Figure 7.5 shows an overview of the interaction of components involved during the E2E
protection at the publisher side.

55 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Publisher

application

ara::com Transmission

Creation of the header that is

protected by E2E.

Serialization of the C++ object

(sample) to an array.

Publisher application fills in the

sample C++ objects and calls

the dedicated generated

skeleton event class to trigger

the transmission.

The core part, doing the E2E

logic including creation of E2E

header.

Creation of further header that

is not protected by E2E.

Delivery of the entire message

to the transmission layer.

skeletonEvent.Send

(sample)

Serialize(sample):

serializedSample

sample.speed =

app.currentVehicleSpeed

SendMessage

(serializedSample)

E2E_protect(dataID,

serializedSample)

AddNonProtectedHeader

(serializedSample)

AddE2EProtectedHeader

(serializedSample)

Figure 7.5: E2E Publisher

[SWS_CM_90430]{DRAFT} dFor E2E-protected Events, Send shall serialize the
sample and potentially add a protocol header according to the rules of the respective
network binding (e.g., according to [SWS_CM_10291] in case of SOME/IP network
binding), resulting in serialized data.c(RS_CM_00223, RS_E2E_08540)

From E2E protection perspective this serialized data include both a non-protected part
as well as the part to be protected (see [PRS_E2E_USE_00236] and [PRS_E2E_-
USE_00741]).

56 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_90401]{DRAFT} dFor E2E-protected Events, E2E_protect shall be in-
voked on the to be protected serialized data (passed as argument serializedData
to E2E_protect) according to [PRS_E2E_00323].c(RS_E2E_08540)

[SWS_CM_90403]{DRAFT} dFor E2E-protected Events, the
End2EndEventProtectionProps.dataId shall be passed as argument dataID
to E2E_protect.c(RS_E2E_08540)

[SWS_CM_90404]{DRAFT} dFor E2E-protected Events, in case of SOME/IP seri-
alization the E2E protection header shall be added to the message. If the protocol
specification of the respective network binding imposes restrictions on the placement
of the E2E protection header (e.g., [PRS_SOMEIP_00941] in case of SOME/IP net-
work binding), then these restrictions shall be honored.c(RS_E2E_08540)

7.2.3 Subscriber - GetNewSamples

[SWS_CM_90406]{DRAFT} dFor E2E-protected Events, E2E checking shall be per-
formed within the context of GetNewSamples.c(RS_CM_00223, RS_E2E_08540)

Figure 7.6 shows an overview of the interaction of components involved during the E2E
checking at the subscriber side.

57 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Subscriber
application

The core E2E logic.
dataID is determined
at latest during the
instantiation of the
proxy.

ara::com Reception

alt new serializedSamples from Reception

[at least one serializedSample]

[no new serializedSamples]

loop through received samples until maxNumberOfSamples is reached

Example how to
access E2E global
state

The entire communication
state ("can the samples be
consumed or not") is
available with the new
getter function
GetE2EStateMachineState().

Example how to
access E2E result of a
dedicated sample

Callable f finally
transfers the
ownership of the
SamplePtr to the
subscribing
application. The
application can
already retrieve the
ProfileCheckResult in
the context of the
callable to decide if the
sample should be kept
or could be destroyed.

If no new
serializedSamples,
then execute
E2E_check() so that E2E
knows that no data has
been received
(lost/delayed).

There are possibly
several new messages.
GetN ewSamples()
processes all of them
in a sequence.

Possible retun values
are:
* OK
* REPEATED
* WRONGSEQUENCE
* WRONGCRC

Possible retun values
are:
* NONEWDATA

E2E_check(dataID,
null_ptr): Result

GetN ewSamples(f, maxN umberOfSamples):
ara::core::Result<size_t>

GetE2EStateMachineState(): Result

SamplePtr->GetProfileCheckStatus:
Result

P rocessN onProtectedHeader
(serializedSample)

f(SamplePtr)

GetMessages():
serializedSamples

Store Result in
global SMState

Store Result in
ProfileCheckStatus of
SamplePtr

D eserialize(serializedSample):
sam ple

ProcessE2EProtectedHeader(
serializedSample)

E2E_check (dataID,
serializedSample): Result

Store Result in
global SMState

Figure 7.6: E2E Subscriber

58 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_90407]{DRAFT} dFor E2E-protected Events, GetNewSamples shall first
get the collection of all serialized data that have not been fetched during the last call of
this GetNewSamples function.c(RS_CM_00224, RS_E2E_08540)

From E2E protection perspective this serialized data include both a non-protected part
as well as the part to be protected (see [PRS_E2E_USE_00236] and [PRS_E2E_-
USE_00741]).

7.2.3.1 Case 1 - there are one or more serialized samples

For E2E-protected Events, in case serialized data for one or more samples are re-
ceived, then for each sample, the following steps are to be done:

[SWS_CM_90408]{DRAFT} dFor the given E2E-protected sample, GetNewSamples
shall process the non-E2E protected header (if any) of the sample’s serialized data.c
(RS_CM_00224, RS_E2E_08540)

[SWS_CM_90410]{DRAFT} dFor the given E2E-protected sample, E2E_check shall
be invoked on the protected serialized data (passed as argument serializedData
to E2E_check) according to [RS_E2E_08540] and [PRS_E2E_00323].c(RS_E2E_-
08540)

[SWS_CM_90454]{DRAFT} dFor the given E2E-protected sample, the
End2EndEventProtectionProps.dataId shall be passed as argument dataID
to E2E_check.c(RS_E2E_08540)

[SWS_CM_90411]{DRAFT} dIn return, for the given E2E-protected sample,
E2E_check shall provide a Result (e2eResult according to [PRS_E2E_00322] of
[4]) containing the elements SMState (e2eState according to [PRS_E2E_00322] of
[4]) and ProfileCheckStatus (e2eStatus according to [PRS_E2E_00322] of [4]).c
(RS_E2E_08540, RS_E2E_08534)

[SWS_CM_90455]{DRAFT} dFor the given E2E-protected sample, the E2E protection
header shall be removed from the serialized data.c(RS_E2E_08540)

[SWS_CM_90412]{DRAFT} dFor the given E2E-protected sample, GetNewSamples
shall deserialize the resulting serialized data according to the rules of the respective
network binding (e.g., according to [SWS_CM_10294] in case of SOME/IP network
binding), resulting in the deserialized sample.c(RS_CM_00224, RS_E2E_08540)

[SWS_CM_90413]{DRAFT} dFor the given E2E-protected sample, GetNewSamples
shall store the ProfileCheckStatus in the SamplePtr and shall update/overwrite
the global SMState within its specific Event class of the specific E2E-protected
Event.c(RS_CM_00224, RS_E2E_08540, RS_E2E_08534)

59 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.2.3.2 Case 2 - there are no serialized samples

For E2E-protected Events, in case no serialized data are received, the steps are sim-
pler and E2E protection works as timeout detection.

[SWS_CM_90415]{DRAFT} dE2E_check shall be invoked on a null sample (i.e., a null
pointer shall be passed as argument serializedData to E2E_check) according to
[RS_E2E_08540] and [PRS_E2E_00323].c(RS_E2E_08540)

[SWS_CM_90456]{DRAFT} dThe End2EndEventProtectionProps.dataId shall
be passed as argument dataID to E2E_check.c(RS_E2E_08540)

[SWS_CM_90416]{DRAFT} dIn return, for the given null sample, E2E_check shall
provide a Result (e2eResult according to [PRS_E2E_00322] of [4]) containing
the elements SMState (e2eState according to [PRS_E2E_00322] of [4]) and Pro-
fileCheckStatus (e2eStatus according to [PRS_E2E_00322] of [4]).c(RS_E2E_-
08540, RS_E2E_08534)

[SWS_CM_90417]{DRAFT} dGetNewSamples shall update/overwrite the global SM-
State within its specific Event class of the specific E2E-protected Event.c(RS_CM_-
00224, RS_E2E_08540, RS_E2E_08534)

7.2.4 Subscriber - Callable f

The user provided Callable f is invoked for each received sample. The Callable
f is called with the SamplePtr of the corresponding sample as parameter. The Sam-
plePtr contains the deserialized sample including the ProfileCheckStatus.

7.2.5 Subscriber - Access to E2E information

[SWS_CM_90457]{DRAFT} dEach SamplePtr shall provide a GetProfileCheck-
Status method to access the ProfileCheckStatus of each sample (see
[SWS_CM_90420]).c(RS_CM_00224, RS_E2E_08540)

[SWS_CM_10475]{DRAFT} dA GetE2EStateMachineState method shall be pro-
vided for each Event class of a specific ServiceProxy class.c(RS_CM_00224, RS_-
E2E_08534)

[SWS_CM_90431]{DRAFT} dThe GetE2EStateMachineState method shall pro-
vide access to the global SMState of the specific Event class, which was determined
by the last run of E2E_check function invoked during the last call of GetNewSamples
(see [SWS_CM_90417]).c(RS_CM_00224, RS_E2E_08534)

1 ara::com::e2e::SMState GetE2EStateMachineState() const noexcept;

60 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.3 End-to-end communication protection for Methods

This section specifies the integration of E2E communication protection in ara::com
for the processing of Methodss. This includes E2E communication protection for a
Method’s request as well as E2E communication protection for any kind of Method’s
response (i.e., normal or error response).

[SWS_CM_10460]{DRAFT} dAn E2E-protected Method shall have its options con-
figured in End2EndMethodProtectionProps and E2EProfileConfiguration.c
(RS_CM_00400, RS_E2E_08540)

[SWS_CM_90485]{DRAFT} dThe E2E functions mentioned in this section using the
name E2E_protect and E2E_check shall meet the requirements on E2E protec-
tion as defined in [7] and comply with the E2E protection protocol specification of [4]
(especially [PRS_E2E_00828]).c(RS_CM_00400, RS_E2E_08541, RS_CM_00223)

For each specific Method class ([SWS_CM_00196]) belonging to a specific Servi-
ceProxy class and for each provided method (see [SWS_CM_00191]) belonging to a
specific ServiceSkeleton class the E2E dataID - based on, e.g., a combination of
Service ID, Service Instance ID and Method ID - is available.

Within the scope of this section a failed E2E check is an invocation of E2E_check
returning an e2eStatus of either REPEATED, WRONGSEQUENCE, NOTAVAILABLE,
or NONEWDATA. A successful E2E check is an invocation of E2E_check returning
an e2eStatus different from REPEATED, WRONGSEQUENCE, NOTAVAILABLE, and
NONEWDATA.

7.3.1 Limitations

The specified E2E communication protection for methods is limited.

• The processing mode kEvent (concurrent threads) is not supported for E2E pro-
tected methods.

• EndToEndTransformationComSpecProps are not supported.

General limitations regarding E2E protection and the detectable failure modes are de-
scribed in [4].

The values of the following E2E parameters are defined as fixed by the standard and
shall not be changed. See [PRS_E2E_00324] of [4]:

• counterOffset

• crcOffset

• dataIdNibbleOffset

The value of following E2E parameters shall be set to the default values specified by
[PRS_E2E_00324] of [4]:

61 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• offset

The value of dataIdMode for Methods and the getters and setters of Fields shall
be set according to the dataIdMode of the E2EProfileConfiguration which is ref-
erenced (in role e2eProfileConfiguration) by the AdaptivePlatformServi-
ceInstance.e2eMethodProtectionProps which reference (in role method) the
ServiceMethodDeployment of the particular Method or the Field getter/setter.

7.3.2 E2E protection of the service method request (Client)

[SWS_CM_10462]{DRAFT} dFor E2E-protected Methods, E2E protection of the re-
quest message shall be performed within the context of the operator() of the
Method class (see [SWS_CM_00196]) of the respective service method.c(RS_CM_-
00400, RS_E2E_08541)

Figure 7.7 shows an overview of the interaction of components involved during the E2E
protection of the Method request at the client side.

62 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Client application ara::com Transmission

Creation of the header that is

protected by E2E (Client ID,

Session ID, Protocol Version,

Interface Version, Message

Type and Return Code).

Serialization of the argument

list (payload) to an array.

Client application calls the

dedicated generated skeleton

method class to trigger the

transmission.

The core part, doing the E2E

logic including creation of E2E

header.

Creation of further header that

is not protected by E2E

(Service ID, Method ID and

Length).

Delivery of the entire message

to the transmission layer.

E2E_protect(dataID, sourceID,

messageType, messageResult,

serializedData)

SendMessage(serializedData)

AddNonProtectedHeader

(serializedData)

Serialize(arg1,.. ,argN):

serializedData

proxyMethod.<method name>

(arg1, ...,argN): ara::core::Future

store message

counter

AddE2EProtectedHeader

(serializedData)

Figure 7.7: Interaction of components during E2E protection of the Method request at
the client side

7.3.2.1 Serializing the payload

[SWS_CM_90458]{DRAFT} dFor E2E-protected Method requests, operator()
shall serialize the Method’s in and inout arguments and potentially add a proto-
col header according to the rules of the respective network binding (e.g., according

63 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

to [SWS_CM_10301] in case of SOME/IP network binding), resulting in the serialized
data.c(RS_CM_00400, RS_E2E_08541)

From E2E protection perspective this serialized data include both a non-protected part
as well as the part to be protected (see [PRS_E2E_USE_00236] and [PRS_E2E_-
USE_00741]).

7.3.2.2 E2E protection of the payload

[SWS_CM_90479]{DRAFT} dFor E2E-protected Method requests, E2E_protect
shall be invoked on the to be protected serialized data (passed as argument seri-
alizedData to E2E_protect) according to [RS_E2E_08541], [PRS_E2E_00323],
and [PRS_E2E_00828].c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_10463]{DRAFT} dFor E2E-protected Method requests, the
End2EndMethodProtectionProps.dataId shall be passed as argument dataID
to E2E_protect.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90486]{DRAFT} dFor E2E-protected Method requests using profiles
P04m, P07m, P08m, or P44m, the End2EndMethodProtectionProps.sourceId
shall be passed as argument sourceID to E2E_protect.c(RS_CM_00400, RS_-
E2E_08541)

[SWS_CM_90487]{DRAFT} dFor E2E-protected Method requests using profiles
P04m, P07m, P08m, or P44m, STD_MESSAGETYPE_REQUEST (0) shall be passed
as argument messageType to E2E_protect.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90488]{DRAFT} dFor E2E-protected Method requests using profiles
P04m, P07m, P08m, or P44m, STD_MESSAGERESULT_OK (0) shall be passed as ar-
gument messageResult to E2E_protect.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_10464]{DRAFT} dFor E2E-protected Method requests, the E2E protection
header shall be added to the message. If the protocol specification of the respective
network binding imposes restrictions on the placement of the E2E protection header
(e.g., [PRS_SOMEIP_00941] in case of SOME/IP network binding), then these restric-
tions shall be honored.c(RS_CM_00400, RS_E2E_08541)

7.3.3 E2E checking the service method request (Server)

[SWS_CM_10466]{DRAFT} dFor E2E-protected Method requests, E2E check-
ing shall be performed within the context of the message reception within the
ServiceSkeleton if the MethodCallProcessingMode is set to kEventSin-
gleThread.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_10468]{DRAFT} dFor E2E-protected Method requests, E2E checking
shall be performed within the context of ProcessNextMethodCall within the Ser-

64 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

viceSkeleton if the MethodCallProcessingMode is set to kPoll.c(RS_CM_-
00400, RS_E2E_08541)

[SWS_CM_10467]{DRAFT} dIn case a MethodCallProcessingMode of kEvent
has been passed to the named constructor of the ServiceSkeleton for a service
using e2e-protected methods (see [SWS_CM_10436] or [SWS_CM_10435]), an error
code kWrongMethodCallProcessingMode shall be returned in the Result of the named
constructor Create(). If logging is enabled, the error shall be logged.c(RS_CM_00402,
RS_CM_00400, RS_E2E_08541)

Note: A MethodCallProcessingMode set to kEvent is not supported for E2E-
protected Methods.

Figures 7.8 and 7.9 show an overview of the interaction of components involved during
the E2E checking of the Method request at the server side.

65 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Server application ara::com Reception

alt Result of E2E_check is okay

[Result != P_ERROR]

[Result == P_ERROR]

alt Message av ailable

[not available]

[available]

E2E_check is processed

within

ProcessNextMethdCall

for polling mode

In case no message is

available no response

message is created.

Any response (ERROR or

normal RESPONSE) to an

E2E protected request

shall be E2E protected

itself.

MessageReception(serializedData)

GetMessage: serializedData

skeletonMethod.<method name>(arg1, ..,argN):

ara::core::Future<MethodOutput>

ProcessE2EProtectedHeader(

serializedData)

ProcessNonProtectedHeader

(serializedData)

ProcessNextMethodCall (): ara::core::

Future<bool>

E2EErrorHandler(errorCode, dataID,

messageCounter)

Deserialize

(serializedData):

arg1,.. ,argN

E2EErrorHandler(kNoNewData, 0, 0)

E2E_check(dataID, sourceID,

messageType, messageResult,

serializedData): Result

Figure 7.8: Interaction of components during E2E checking of the Method request at the
server side - polling

66 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Server application ara::com Reception

alt Result of E2E_check is okay

[Result != P_ERROR]

[Result == P_ERROR]

alt Message av ailable

[not available]

[available]

E2E_check is processed

within the message

reception for event

driven execution

In case no message is

available no response

message is created.

Any response (ERROR or

normal RESPONSE) to an

E2E protected request

shall be E2E protected

itself.

skeletonMethod.<method name>(arg1, ..,argN):

ara::core::Future<MethodOutput>

Deserialize

(serializedData):

arg1,.. ,argN

ProcessNonProtectedHeader

(serializedData)

E2E_check(dataID, sourceID,

messageType, messageResult,

serializedData): Result

E2EErrorHandler(errorCode, dataID,

messageCounter)

E2EErrorHandler(kNoNewData, 0, 0)

ProcessE2EProtectedHeader(

serializedData)

GetMessage: serializedData

MessageReception(serializedData)

Figure 7.9: Interaction of components during E2E checking of the Method request at the
server side - event driven

67 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.3.3.1 E2E checking of the payload

For E2E-protected Method requests, in case serialized data are available the following
steps are to be done:

[SWS_CM_90459]{DRAFT} dFor the given E2E-protected Method request, the non-
E2E-protected header (if any) of the Method request’s serialized data shall be pro-
cessed.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90480]{DRAFT} dFor the given E2E-protected Method request,
E2E_check() shall be invoked on the protected serialized data (passed as argu-
ment serializedData to E2E_check()) according to [RS_E2E_08541], [PRS_-
E2E_00323], and [PRS_E2E_00828].c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90460]{DRAFT} dFor the given E2E-protected Method request, the
End2EndMethodProtectionProps.dataId shall be passed as argument dataID
to E2E_check()).c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90489]{DRAFT} dFor E2E-protected Method requests using profiles
P04m, P07m, P08m, or P44m, a reference to a variable to store the sourceID to
shall be passed as argument sourceID to E2E_check. E2E_check shall extract the
E2E Source ID contained in the E2E protection header into this variable. This extracted
sourceID shall be stored for later use during E2E protection of response payload (see
[SWS_CM_90492]).c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90490]{DRAFT} dFor E2E-protected Method requests using profiles
P04m, P07m, P08m, or P44m, STD_MESSAGETYPE_REQUEST (0) shall be passed
as argument messageType to E2E_protect.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90491]{DRAFT} dFor E2E-protected Method requests using profiles
P04m, P07m, P08m, or P44m, STD_MESSAGERESULT_OK (0) shall be passed as ar-
gument messageResult to E2E_protect.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90461]{DRAFT} dIn return, for the given E2E-protected Method request,
E2E_check shall provide a Result (e2eResult according to [PRS_E2E_00322] of
[4]) containing the elements SMState (e2eState according to [PRS_E2E_00322] of
[4]) and ProfileCheckStatus (e2eStatus according to [PRS_E2E_00322] of [4]).c
(RS_E2E_08541, RS_E2E_08534)

[SWS_CM_90462]{DRAFT} dFor the given E2E-protected Method request, the E2E
protection header shall be removed from the serialized data.c(RS_CM_00400, RS_-
E2E_08541)

7.3.3.2 Deserializing the payload

In case the call to E2E_check (according to [SWS_CM_90459]) indicated a successful
E2E check of the request message further processing of the request message shall
take place.

68 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_90463]{DRAFT} dFor the given E2E-protected Method request, the re-
sulting serialized data shall be deserialized according to the rules of the respective
network binding (e.g., according to [SWS_CM_10304] in case of SOME/IP network
binding), resulting in the deserialized in and inout arguments to the Method call.c
(RS_CM_00400, RS_E2E_08541)

7.3.3.3 E2E error notification

In case the call to E2E_check (according to [SWS_CM_90459]) indicated a failed E2E
check of the request message, the server application can get notified via an E2E error
handler.

[SWS_CM_10470]{DRAFT} E2E Error Handler - Existence dThe ServiceSkele-
ton shall provide a virtual E2EErrorHandler method with arguments for error-
Code, dataID, and messageCounter. This E2EErrorHandler function shall have
an empty implementation which may be overridden by the actual ServiceSkeleton
implementation. The E2EErrorHandler implementation is not required to be reen-
trant.

1 virtual void E2EErrorHandler(
2 ara::com::e2e::E2EErrorCode errorCode,
3 ara::com::e2e::DataID dataID,
4 ara::com::e2e::MessageCounter messageCounter
5)
6 {
7 };

c(RS_CM_00401, RS_CM_00402)

[SWS_CM_90464]{DRAFT} E2E Error Handler - Invocation dE2EErrorHandler
shall be invoked from within a separate thread by the Communication Management
software in case E2E_check reports an E2E error.c(RS_CM_00401, RS_CM_00402)

[SWS_CM_10471]{DRAFT} E2E Error Handler - Invocation Arguments dIn case
a new request message is available, E2EErrorHandler shall be called with the fol-
lowing arguments: errorCode shall be set to the ProfileCheckStatus obtained
in [SWS_CM_90411], dataID shall be set to End2EndMethodProtectionProps.
dataId, and messageCounter shall be set to the E2E counter of the received re-
quest message.c(RS_CM_00223, RS_CM_00401, RS_CM_00402)

[SWS_CM_90465]{DRAFT} E2E Error Handler - Invocation Arguments dIn case
no new request message is available, E2EErrorHandler shall be called with the
following arguments: errorCode shall be set to the kNotAvailable, dataID shall
be set to 0, and messageCounter shall be set 0.c(RS_CM_00401, RS_CM_00402)

69 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.3.4 E2E protection of the service method response (Server))

[SWS_CM_90481]{DRAFT} dFor E2E-protected Methods, E2E protection of the re-
sponse message shall be performed after the execution of the service method (in case
of a successful E2E check according to [SWS_CM_90480]) or after the execution of
the E2E error handler (in case of a failed E2E check according to [SWS_CM_90480]).c
(RS_CM_00400, RS_E2E_08541)

Figure 7.10 shows an overview of the interaction of components involved during the
E2E protection of the Method response at the server side.

70 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Figure 7.10: Interaction of components during E2E protection of the Method response
at the server side

71 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.3.4.1 Serializing the E2E error response payload

[SWS_CM_10472]{DRAFT} E2E Error Response dIn case E2E_check (according
to [SWS_CM_90480]) reported an E2E error, an error response message according to
the used network binding (e.g., [SWS_CM_10312] in case of SOME/IP) shall be sent
to the client.c(RS_CM_00223, RS_CM_00400, RS_E2E_08541)

[SWS_CM_90466]{DRAFT} Payload of the E2E Error Response dThe payload of
this error response message shall contain an ara::core::ErrorCode of error do-
main ara::com::e2e::E2EErrorDomain. The value of this ara::core::Er-
rorCode shall be set to the corresponding error value of E2E_check according to
[SWS_CM_90421]. The serialization of this error code and the potential adding of a
protocol header shall take place according to the used network binding (e.g., according
to [SWS_CM_10312] and [SWS_CM_10428] in case of SOME/IP).c(RS_CM_00400,
RS_E2E_08541)

7.3.4.2 Serializing the response payload

[SWS_CM_90467]{DRAFT} Payload of the Normal or Application Error Response
dFor E2E-protected Methods the Method inout and out arguments or the applica-
tion error shall be serialized and a protocol header shall be potentially added according
to the rules of the respective network binding (e.g., according to [SWS_CM_10312] in
case of SOME/IP network binding), resulting in the serialized data.c(RS_CM_00400,
RS_E2E_08541)

From E2E communication protection perspective this serialized data include both a
non-protected part as well as the part to be protected (see [PRS_E2E_USE_00236]
and [PRS_E2E_USE_00741]).

7.3.4.3 E2E protection of the response payload

[SWS_CM_90468]{DRAFT} dFor E2E-protected Method responses, E2E_protect
shall be invoked on the to be protected serialized data (passed as argument serial-
izedData to E2E_protect) according to [RS_E2E_08541], [PRS_E2E_00323], and
[PRS_E2E_00828].c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_10469]{DRAFT} dFor E2E-protected Method responses, the
End2EndMethodProtectionProps.dataId shall be passed as argument dataID
to E2E_protect.c(RS_CM_00400, RS_E2E_08541)

Note: This is the same dataID that has been contained in the corresponding Method
request.

[SWS_CM_90492]{DRAFT} dFor E2E-protected Method responses using profiles
P04m, P07m, P08m, or P44m, the stored sourceID (which has been extracted

72 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

according to [SWS_CM_90489]) shall shall be passed as argument sourceID to
E2E_protect.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90493]{DRAFT} dFor E2E-protected Method responses using profiles
P04m, P07m, P08m, or P44m, STD_MESSAGETYPE_RESPONSE (1) shall be passed
as argument messageType to E2E_protect.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90494]{DRAFT} dFor E2E-protected Method responses using profiles
P04m, P07m, P08m, or P44m, in case of a normal response (i.e., neither
an application error response message nor an E2E error response message),
STD_MESSAGERESULT_OK (0) shall be passed as argument messageResult to
E2E_protect.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90495]{DRAFT} dFor E2E-protected Method responses using pro-
files P04m, P07m, P08m, or P44m, in case of an error response (i.e., ei-
ther an application error response message or an E2E error response message),
STD_MESSAGERESULT_ERROR (1) shall be passed as argument messageResult to
E2E_protect.c(RS_CM_00401, RS_E2E_08541)

[SWS_CM_90469]{DRAFT} dFor E2E-protected Method responses, the E2E counter
contained in the corresponding Method request shall be used as E2E counter in the
call to E2E_protect.c(RS_CM_00400, RS_E2E_08541)

Note: The Method response carries the same dataID and E2E counter as the corre-
sponding Method request to simplify the multiple client scenarios and allow the client
to monitor the E2E counter.

[SWS_CM_90470]{DRAFT} dFor E2E-protected Method responses, the E2E protec-
tion header shall be added to the message. If the protocol specification of the re-
spective network binding imposes restrictions on the placement of the E2E protection
header (e.g., [PRS_SOMEIP_00941] in case of SOME/IP network binding), then these
restrictions shall be honored.c(RS_CM_00400, RS_E2E_08541)

7.3.5 E2E checking the service method response (Client)

[SWS_CM_90471]{DRAFT} dFor E2E-protected Method responses, E2E checking
shall be performed within the context of the message reception within the Service-
Proxy.c(RS_CM_00400, RS_E2E_08541)

Figure 7.11 shows an overview of the interaction of components involved during the
E2E checking of the Method response at the client side.

73 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Figure 7.11: Interaction of components during E2E checking of the Method response at
the client side

74 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.3.5.1 E2E checking of the payload

For E2E-protected Method responses, in case serialized data are available the follow-
ing steps are to be done:

[SWS_CM_90472]{DRAFT} dFor the given E2E-protected Method responses, the
non-E2E-protected header (if any) of the Method response’s serialized data shall be
processed.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90473]{DRAFT} dFor the given E2E-protected Method response,
E2E_check() shall be invoked on the protected serialized data (passed as argu-
ment serializedData to E2E_check()) according to [RS_E2E_08541], [PRS_-
E2E_00323], and [PRS_E2E_00828].c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90474]{DRAFT} dFor the given E2E-protected Method response, the
End2EndMethodProtectionProps.dataId shall be passed as argument dataID
to E2E_check()).c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_10465]{DRAFT} dFor E2E-protected Method response, the response
message shall carry the same E2E counter value as the request message. In case
the E2E counter is different, the response message shall be discarded (without any
further processing).c(RS_CM_00400, RS_E2E_08541)

Implementation Hint: The E2E counter can be extracted from the resulting state of
the E2E_Protect()/E2E_Check() function.

[SWS_CM_90496]{DRAFT} dFor E2E-protected Method responses using profiles
P04m, P07m, P08m, or P44m, the End2EndMethodProtectionProps.sourceId
shall be passed as argument sourceID to E2E_check.c(RS_CM_00400, RS_E2E_-
08541)

[SWS_CM_90497]{DRAFT} dFor E2E-protected Method responses using profiles
P04m, P07m, P08m, or P44m, STD_MESSAGETYPE_RESPONSE (1) shall be passed
as argument messageType to E2E_check.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90498]{DRAFT} dFor E2E-protected Method responses using profiles
P04m, P07m, P08m, or P44m, in case of a normal response (i.e., neither
an application error response message nor an E2E error response message),
STD_MESSAGERESULT_OK (0) shall be passed as argument messageResult to
E2E_check.c(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90499]{DRAFT} dFor E2E-protected Method responses using pro-
files P04m, P07m, P08m, or P44m, in case of an error response (i.e., ei-
ther an application error response message or an E2E error response message),
STD_MESSAGERESULT_ERROR (1) shall be passed as argument messageResult to
E2E_check.c(RS_CM_00401, RS_E2E_08541)

[SWS_CM_90478]{DRAFT} dIn return, for the given E2E-protected Method response,
E2E_check shall provide a Result (e2eResult according to [PRS_E2E_00322] of
[4]) containing the elements SMState (e2eState according to [PRS_E2E_00322] of

75 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[4]) and ProfileCheckStatus (e2eStatus according to [PRS_E2E_00322] of [4]).c
(RS_E2E_08541, RS_E2E_08534)

[SWS_CM_90482]{DRAFT} dThe global SMState within its specific Method class
of a specific ServiceProxy class shall be updated/overwriten with the element SM-
State of the Result provided by E2E_check according to [SWS_CM_90478].c(RS_-
CM_00400, RS_E2E_08541, RS_E2E_08534)

[SWS_CM_90475]{DRAFT} dFor the given E2E-protected Method response, the E2E
protection header shall be removed from the serialized data.c(RS_CM_00400, RS_-
E2E_08541)

7.3.5.2 Deserializing the payload

In case the call to E2E_check (according to [SWS_CM_90473]) indicated a successful
E2E check of the response message, further processing of the response message shall
take place.

[SWS_CM_90476]{DRAFT} dFor the given E2E-protected Method response, the re-
sulting serialized data shall be deserialized according to the rules of the respective
network binding (e.g., according to [SWS_CM_10316] and [SWS_CM_10429] in case
of SOME/IP network binding), resulting in the deserialized inout and out arguments
to the Method call or in the deserialized application error.c(RS_CM_00400, RS_E2E_-
08541)

[SWS_CM_10473]{DRAFT} Handling the E2E Error Response dHandling of an E2E
error response message (sent due to a detected E2E error in request according to
[SWS_CM_10472]) shall be done in the same way as the reception and the handling
of any other error response message according to the used network binding (e.g., ac-
cording to [SWS_CM_10429] in case of SOME/IP network binding).c(RS_CM_00223,
RS_CM_00400, RS_E2E_08541)

7.3.5.3 E2E error notification

In case the call to E2E_check (according to [SWS_CM_90473]) indicated a failed E2E
check of the response message, the client application shall get notified in the following
way:

[SWS_CM_90477]{DRAFT} E2E Error Return Code dFor the given E2E-protected
Method response in case of failed E2E check an ara::core::ErrorCode
of error domain ara::com::e2e::E2EErrorDomain with value set to Pro-
fileCheckStatus obtained in [SWS_CM_90478] shall be constructed according to
[SWS_CM_90421]. This ara::core::ErrorCode shall be passed as argument in a
call to SetError() on the Promise.c(RS_CM_00400, RS_E2E_08541)

The handling of normal and application error responses (according to
[SWS_CM_90476]) combined with the handlling of E2E error responses (according to

76 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10473]) and the explicit notification of E2E errors detected in the response
message (according to [SWS_CM_90477]) will yield an ara::core::Result
containing either

• the correct output of the server operation in case of absence of any error

• an ara::core::ErrorCode of the error domain ApApplicationError.er-
rorDomain with the value set to ApApplicationError.errorCode of the
raised ApApplicationError in case the ClientServerOperation raised
one of its configured possible ClientServerOperation.possibleApErrors
and no E2E error was detected in the request message and the response mes-
sage

• an ara::core::ErrorCode of error domain ara::com::e2e::-
E2EErrorDomain and the value set to the ProfileCheckStatus of
the Result of the E2E_check call at the server side in case an E2E error
was detected in the request message at the server side and no E2E error was
detected in the response message at the client side

• an ara::core::ErrorCode of error domain ara::com::e2e::-
E2EErrorDomain and the value set to the ProfileCheckStatus of
the Result of the E2E_check call at the client side in case an E2E error was
detected in the response message at the client side

[SWS_CM_90483]{DRAFT} dA GetE2EStateMachineState method shall be pro-
vided for each Method class of a specific ServiceProxy class.c(RS_E2E_08534)

[SWS_CM_90484]{DRAFT} dThe GetE2EStateMachineState method shall pro-
vide access to the global SMState of the specific Method class, which was deter-
mined by the last run of E2E_check function invoked during the last reception of the
Method response (see [SWS_CM_90482]).c(RS_E2E_08534)

1 ara::com::e2e::SMState GetE2EStateMachineState() const noexcept;

7.3.6 Timeout supervision

ara::com does not support any timeout supervision for method calls. A lost re-
sponse message could block some ara::core::Future methods like wait() for-
ever. In case of E2E such a timeout supervision is desired, wherefore the adaptive
application is strongly recommended to implement timeout supervision, e.g., by using
the ReportCheckpoint() method of the ara::phm::SupervisedEntity or the
wait_for(), wait_until(), or the is_ready() methods of the ara::core::-
Future.

77 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.4 End-to-end communication protection for Fields

This section specifies E2E protection for fields. For details of fields see [5]. A
field is a data object that can be accessed by a getter and/or setter method. In
addition update notifications may be provided to subscribers, whenever the value of
the field gets updated. The principle of fields is already specified. This sec-
tion specifies the E2E protection for fields. The E2E protection for methods Get
and Set follows the E2E protection for Methods (chapter 7.3). The specifications [
SWS_CM_10460] and [SWS_CM_90485] define the parameters for E2E protection of
the methods Get() and Set(). The limitations of chapter 7.3.1 are applicable.

The E2E protection for Update follows the E2E protection for events (chapter 7.2).
The specifications [SWS_CM_90402] and [SWS_CM_90433] define the parameters
for E2E protection of the update event. The limitations of chapter 7.2.1 are applicable.

E2E results OK and OK_SOME_LOST are successful results. E2E results ERROR, RE-
PEATED, WRONGSEQUENCE, NOTAVAILABLE and NONEWDATA are considered error re-
sults.

There are E2E profiles 4m, 7m, 8m or 44m for the protection of methods (Get, Set).
Also the other E2E profiles can be used for the protection of methods. But in this case
some parameters of SOME/IP are not protected.

7.4.1 Send a GET message

The client application calls the Get() function at ara::com without arguments. A
future for this method call is created by ara::com. Data of method Get() are
serialized.

The E2E serialization follows the specification of [SWS_CM_90458] with the following
exception: The result is a list without parameters because a Get() method has no IN
or INOUT parameters.

The parameters dataID, sourceID, messageType and messageResult for
E2E_XXmProtect method are passed as described in chapter 7.3.2.2.

After E2E protection the non E2E protected part is added to the message as described
in [SWS_CM_10464].

Figure 7.12 shows the message flow of sending a Get() method. The figure does not
list all details of E2E protection, e.g. functions of CRC library are omitted in this figure.

78 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Client Application ara::com Transmission

������ �� �	�
������ �������

�����	�� �� ������ �� �� ��� ��������� �	�� �
	��� ���

����	�� ��� �������
 ���	��� ��������� ���	��� !����"�

#$�� ��� %����� �����

��&���� ��� ��� ��� �������	�� �
�&����

'�� ��&�	���� �� ������ �	����� ���

��������	��

#����&	��	�� �(�� ������)
SendMessage(serial ized

data)

Store E2E
counter()

Serial ize
data()

Add non E2E protected
header()

E2E:ProtectData(Data ID, Source
ID, ...)

Add E2E protected
header()

Field.Get
()

Figure 7.12: Send a GET Message

7.4.2 Receive a GET message

The message is received by the Publisher application. The Publisher application is a
server application.

The E2E check of the received message follows the specification of chapter 7.3.3.

The type of the message to be sent back to the client is RESPONSE or ERROR. That de-
pends on the result of the E2E check. If the E2E check fails, then the Return Code of
the ERROR message is initialized with an E2E error code (See [PRS_SOMEIP_00191]).

Figure 7.13 shows the reception of a GET message. The E2E protected part of the
serialized header is checked for E2E errors. If the incoming message was received
with an E2E error, then the Publisher is informed through the E2E error handler (see
chapter 7.3.3.3). In this case no value is retrieved from Publisher.

If the incoming message is received without E2E error, the GetHandler of the Publisher
application is called.

79 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Independent of the result of the E2E check a response message is sent to the client
(caller of the Get() function). The message sent back to the client has message type
type RESPONSE and return code either (OK) or (ERROR).

This response message is E2E protected the same way as the Get() message as
described in chapters 7.3.4.1, 7.3.4.2 and 7.3.4.3.

Transmission ara::com Publisher

alt

[no E2E error]

[E2E error]

���������� ��
� ���������

���� ��� ��� ������

��
 ������� ���� ��������

��
 ��
�� ���� �!

��
 ������� ���� �����

��
 ��
�� ���� ��� ����� "���#����$�#%%&'&(

��
��)������ �� ��� ���
��
��

� ���� ��
 �� ��� �����
 �� � ��)� �

)������

��� ���
��
��)������ ����
� � �
��
�� ��

*�
"(

E2E
ErrorHandler()

Add E2E protected
header()

Process E2E protected
header()

Process non protected
header()

Serialize return
value()

E2E_Protect
()

E2E_Check
()

skeletonField.GetHandler
()

Deserial ize
data()

Get the message (serial ized
data)

Send
()

Message reception (serial ized
data)

Add non protected
header()

Figure 7.13: Receive a GET Message

7.4.3 Receive a response to a GET message

The reception of an E2E protected response message is described in chapter 7.3.5.

80 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

If the message is received with an E2E error, then the E2E Errorhandler of the client
is called. The future of the Get() function is set to ready state with an error code.
That is described in chapter 7.3.5.

The received message is of type RESPONSE or ERROR (see [PRS_SOMEIP_00055]).
Type ERROR indicates that an E2E error occurred at the server site. If a message of
type ERROR is received with Return Code of E2E error (indicating that the Publisher
received the Get request with an E2E error) then the E2E Errorhandler of the
Client Application is called. The future of the Get() function is set to ready state
with an error code.

It is up to the Client application how to react to a call of its Errorhandler.

If the RESPONSE message is received without E2E errors then the future is updated
with the received value of the Publishers field. The future becomes ready and the
Client application can use this value.

If a RESPONSE message to an outgoing Get message does not arrive at all, then the
client application is not informed if the value was retrieved from the remote application.
The future of Field.Get() is not updated to state ready. In this case the client
application can send the Get message again to the remote application to retrieve the
value, or initiate its own error handling. A timeout supervision (chapter 7.3.6) may
unlock the future. Figure 7.14 shows reception of a message from the server.

81 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Client Application

���� ���� �	

�

 ���

ara::com Transmission

alt

[E2E check OK]

[E2E Error]

alt

[received message has type ERROR]

[E2E error]

[no E2E error]

����� �����	���� �	���� �
� ��������

�	��� ��	����� �� ��� ����� �
 �� �� �����

�����	�����

����
��� �	
 �������� ��� ����� 	��

������ 	� ����� ��

	��

��� ������ �� �������� ! ������

��	�"� �������� �	�� �	� �� ����������

������ �� �������� ! ���	���

Store result in SM
state()

E2E_Check
()

process error
domain()

process error
domain()

Output.setvalue
(data)

Deserial ized serial ized
data()

GetMessage(serial ized
data)

Field.Get
()

Output.setError
(errorcode)

Process non protected
data()

process data
()

GetE2EStateMachineState
()

Process E2E protected
header()

MessageReception
()

Figure 7.14: Receive response to a GET Message

7.4.4 Send a SET message

The E2E serialization follows the specification of [SWS_CM_90458]. Only one param-
eter is serialized: The parameter to be set at the publisher application.

The parameters dataID, sourceID, messageType and messageResult for
E2E_XXmProtect method are passed as described in chapter 7.3.2.2.

82 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

After E2E protection the non E2E protected part is added to message as described in
specification [SWS_CM_10464].

Figure 7.15 shows the message flow of sending a Set() method. The figure does
not list all details of E2E protection, e.g. functions of libraries E2ELib and CrcLib are
omitted in this figure.

The client application calls the Set() function at ara::com with one argument (the
value that shall overwrite the field’s value).

Client Application ara::com Transmission

������ �� �	�
������

�������

�����	�� �� ������ �� �� ��� ��������� �	��

�
	��� ��� ���	�� ��� �������
 ����	���

��������� ����	��� ����!� "#�� ��� $�����

�����

��%���� ��� ��� ��� �������	��

�
�%�����

&�� ��%�	���� �� ������ �	����� ���

�������	��

"����%	��	�� �'�� ������(

SendMessage(serialized
data)

Add non E2E protected
header()

Field.Set
()

Add E2E protected
header()

E2E_Protect(Data ID, Source
ID, ...)

SendMessage(serial ized
data)

Serial ized
data()

Store E2E
counter()

Figure 7.15: Send a SET Message

7.4.5 Receive a SET message

The message is received by the Publisher application. The Publisher application is a
server application.

The E2E check of the received message follows the specification of chapter 7.3.3.

If the incoming message is received without E2E error the SetHandler of the Publisher
application is called. The SetHandler returns the value to be written to the Publisher’s

83 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

field. The returned value may be identical to the parameter of the SET message (suc-
cessful update). But there is also the possibility that an update could not be performed
completely. If the parameter of the SET message is out of range then the field may be
left unchanged or the field is updated by a value inside the field’s range. The type of
the response message is RESPONSE.

If the incoming message is received with an E2E error, then the Publisher is informed
through the E2E error handler (see chapter 7.3.3.3). In this case The SetHandler of the
Publisher is not called. The type of the response message is ERROR. If the E2E_Check
fails the Return Code of the ERROR message is initialized with an E2E error code
(See [PRS_SOMEIP_00191]).

The type of the message to be sent back to the client is RESPONSE or ERROR. That
depends on the result of the E2E check.

The message to be returned (type ERROR or RESPONSE) is serialized, E2E protected
and sent back to the client.

This response message is E2E protected the same way as the Get() message as
described in chapters 7.3.4.1, 7.3.4.2 and 7.3.4.3.

Figure 7.16 shows the reception of a SET message. The E2E protected part of the
serialized header is checked for E2E errors. If the incoming message was received
with an E2E error, then the Publisher is informed through the E2E error handler. The
Publisher’s field is not updated and no value is retrieved from Publisher’s field.

84 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Transmission ara::com Publisher

���������� ��
� ���������

���� ��� ��� ������

��
 �������
� ������� ��
��� �����

alt

[no E2E error]

[E2E error]

��
 ��
��� ���� �� �������� ��

��
 ��
��� ���� �� ��������
� �� ��� �����

 ���!��"�#�!$$%&%'

�������� ������� �� ��� ���
��
��

����������
 �� ��� �����
 �� �������� �������

��� ���
��
�� ������� ����
� ���
��
�� �� ��
 '

skeletonField.SetHandler
(argument)

E2E_Check
()

Get the message (serialized
data)

Process E2E protected
header()

Add E2E protected
header()

Add non protected
header()

Message reception (serial ized
data)

E2E
ErrorHandler()

Deserialize
data()

Process non protected
header()

Serial ize return
value()

E2E_Protect
()

Send
()

Figure 7.16: Receive a SET Message

7.4.6 Receive a response to a SET message

The reception of an E2E protected response message is described in chapter 7.3.5.

85 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

If the message is received with an E2E error, then the Errorhandler of the client is
called. The future of the Set() function is set to ready state with an error code ().That
is described in chapter 7.3.5.3.

The received message is of type RESPONSE or ERROR (see [PRS_SOMEIP_00055]).
Type ERROR indicates that an E2E error occurred at the server site. If a message of
type ERROR is received with Return Code of E2E error (indicating that the Publisher
received the Set request with an E2E error) then the Errorhandler of the Client Appli-
cation is called. The future of the Set() function is set to ready state with an error
code.

It is up to the Client application how to react to a call of its Errorhandler.

If the RESPONSE message is received without E2E errors then the future is updated
with the received value of Publisher’s field. The future becomes ready and the Client
application can use this value.

If a RESPONSE message to an outgoing Set message does not arrive at all then the
client application is not informed about the value which is set at the remote application.
The future of Field.Set() is not updated to state ready. In this case the client
application can send the Set message again to the remote application in order to set
the intended value and receive the set value or initiate its own error handling. A timeout
supervision (chapter 7.3.6) can unlock the future.

Figure 7.17 shows reception of a response. This message is of type RESPONSE or
ERROR (see [PRS_SOMEIP_00055]) and similar to the reception of a response to a
GET message.

86 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Client Application

���� ���� �	

�
 ���

ara::com Transmission

alt

[E2E check OK]

[E2E Error]

alt

[received message has type ERROR]

[E2E error]

[no E2E error]

����� �����	���� �	���� �
�

�������� �	��� ��	����� �� ���

����� �
 �� �� ����� �����	�����

����
��� �	
 �������� ��� ����� 	��

������ 	� ����� ��

	��

��� ������ �� �������� ! ������

��	�"� �������� �	�� �	� �� ����������

������ �� �������� ! ���	���

process data
()

GetMessage(serial ized
data)

process error
domain()

Field.Set
()

Store result in SM
state()

Output.setvalue
(data)

Deserial ize serial ized
data()

Process non protected
data()

process error
domain()

MessageReception
()

GetE2EStateMachineState
()

Output.SetError
(errorcode)

Process E2E protected
header()

E2E_Check
()

Figure 7.17: Receive response to a SET Message

7.4.7 Send an UPDATE message

The application triggers the sending of update messages to subscribers. The update
of a field’s value by a SetHandler() is a reason to trigger update messages.

An update of a subscriber is an event. The E2E protection of an update is described in
chapter 7.2.2. The update message is sent to every subscriber to the publisher’s field.

87 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Figure 7.18 shows sending of field update messages.
Publisher ara::com Transmission

���������� 	�
 ���
� ���
���
 �����

���������� 	�
 ���
� ���
���
 �������

skeletonField.update (field
value)

Send
()

E2E_Protect
()

Serialize return
value()

Add non protected
header()

Add E2E protected
header()

Figure 7.18: Send an UPDATE Message

7.4.8 Receive an UPDATE message

The loop over samples indicates that more than one update messages are collected
and evaluated by E2E state machine. In the case of E2E fields this is rather a theoreti-
cal option. Usually the number of received update messages is zero or one.

The reception of E2E protected fields is described in chapter 7.2.3.

The reception of E2E protected fields follows the principle of E2E protected events (see
figure 7.6 in chapter 7.2). This reception of E2E protected fields demands periodic
communication.

If one or more update messages are received the E2E state machine provides one
of the following results: OK, ERROR, REPEATED, NONEWDATA, WRONGSEQUENCE (See
[PRS_E2E_00597]). Only result OK indicates that the received value is valid.

Figure 7.19 shows reception of a field update message.

88 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Subscriber

������� ����	
�� ������

ara::com Transmission

alt

[no sample received]

[at least 1 sample received]

�����	�	�� ������� ����	
�� ������ �����

��� �� �
����� ��� ������� �� �	���� ������

�� ����	�� 	� ����	
�� ���� ��� ��������� �� ��� ��� ����� ���

����	�� 	� ����	
��

�����	�	�� ������� ����	
�� ������ �!��	��

E2E_Check(dataID, null_ptr):
Result

SamplePtr-
>GetProfi leCheckStatus()

GetNewSamples (callback f.
MaxNumberOfSamples)

Store result in ProfileCheckStatus of
SamplePtr()

Process non protected
header()

GetMessage
()

Process non protected
data()

GetE2EStateMachineState
()

f
(SamplePtr)

Store result in E2E SM
state()

Deserialize
data()

serial ized
samples()

E2E_Check
()

Store result in E2E SM
state()

Figure 7.19: Receive an UPDATE Message

7.5 Raw Data Streaming

7.5.1 Raw Data Streaming Interface

In some cases it is necessary for the application software to be able to process raw
binary data streams sent over a communication channel. In a raw binary data stream
the data is not typed, and is handled as a continuing sequence of bytes. So serialization

89 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

of the data is not necessary. This section specifies an interface as part of ara::com
to support processing of raw binary data streams, as an alternative to SOME/IP.

The interface is statically defined and independent of the underlying network protocol.
However, currently the modeling for the Raw Data Streaming Interface only supports
TCP/IP sockets as transport layer. Both unicast and multicast socket connections shall
be supported. The sockets can use both TCP or UDP as transport protocol. TCP is
the natural choice for RawDataStreams since it is a reliable stream oriented protocol.
However, UDP shall also be supported when an unreliable connection is acceptable
for the application.

The operations of the interface are synchronous. The default behavior is blocking, but
a timeout handling shall be implemented to return the call with an error if the operation
takes too long. The timeout values are applied as parameters to each operation. See
the description for each operation below on how the timeout handling is applied.

The integration of the Raw Data Streaming Interface and Adaptive Applications is done
in the deployment phase, by specifying various attributes and parameters for the socket
connections that shall be used for the Raw Data Stream, using RawDataStreamMap-
ping and EthernetRawDataStreamMapping. The model and the parameters are
described in TPS_ManifestSpecification [6].

Secure communication can be achieved by applying TLS or IPSec protocols in the
middleware. Also access control imposed by the IAM can be applied for Raw Data
Streams. All security functions are configurable in the deployment and mapping model
of Raw Data Streaming Interface, see TPS_ManifestSpecification [6].

For safety critical applications wanting to use RawDataStreaming, a safety analysis
needs to be done by the application developer, to find relevant communication faults
for the stream data. If a protection of data exchange algorithm is needed, such as
E2E protection, this will not be provided in the RawDataStream interface, but is to
be implemented in the application layer that is using the RawDataStream interface.
This is because only raw data with no data type information is transferred over the
RawDataStream.

An application can use the Raw Data Streaming API both as a client (connecting to
a listening Raw Data Streaming service) or server (waiting for incoming connections
from clients).

Figure 7.20 shows the logical view of the usage of RawDataStream instances.

90 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Figure 7.20: Raw Data Stream Logical View.

7.5.1.1 Limitations

The current solution does not support any runtime variance in terms of network topol-
ogy, such as service discovery functionality, which means that the RawDataStreams
has to be configured statically on the same ECU as the application. Dynamic configu-
ration and runtime functionality will be added in future releases if needed.

The multicast support is limited to one-to-many, i.e. a server can send data to mul-
tiple clients using multicast, but only receive data from one client, using the unicast
address. Also multicast shall only be used with UDP. For TCP connections, only 1-to-1
connections are supported, i.e. multiple clients to one server is not supported.

7.5.1.2 Use cases

The RawDataStream interface can be used in the following set-ups:

• Client (connect to) to an external non-AUTOSAR sensor providing raw data on a
socket connection.

• Server (wait for a connection from) for an external non-AUTOSAR sensor provid-
ing raw data on a socket connection.

• Client or Server for another AUTOSAR external RawDataStream instance.

RawDataStream socket connections can be setup for UDP or TCP, Unicast or Multicast.
Currently the use cases in fig 7.21 are supported.

91 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Figure 7.21: The currently supported use cases for Raw Data Streams, and which arti-
facts in the Deployment model that shall be used to configure the different use cases

92 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.5.2 Raw Data Streaming

For the Raw Data Stream C++ API reference, see chapter 8.1.3.23.

[SWS_CM_10476] Defining a RawDataStream dTo open a RawDataStream connec-
tion a RawDataStream instance is created. The constructor creates the necessary
socket data structures for RawDataStream Communication, using the artifacts speci-
fied in the mapped EthernetRawDataStreamClientMapping and EthernetRaw-
DataStreamServerMapping.c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_99004]{DRAFT} Ethernet endpoint configuration d

Ethernet socket connections are statically configured in the Deployment model as
part of the Service Instance Manifest, and used throughout the connected session
for the RawDataStreams communication. The following configuration elements can be
specified on the Deployment model of each RawDataStreamClient or RawDataStream-
Server instance, identified through the InstanceSpecifier provided to the constructor.

RawDataStreamClient endpoint and credentials configuration elements:

• Local Network Endpoint: EthernetRawDataStreamClientMapping.local-
CommConnector

• Local UdpPort: EthernetRawDataStreamClientMapping.localUdpPort

• Local TcpPort: EthernetRawDataStreamClientMapping.localTcpPort

• Socket Options: EthernetRawDataStreamClientMapping.socketOption

• (D)TLS properties: EthernetRawDataStreamClientMapping.tlsSecure-
ComProps

• Remote Unicast Credentials: EthernetRawDataStreamClientMapping.
unicastCredentials (UDP/TCP)

• Multicast Credentials: EthernetRawDataStreamClientMapping.multi-
castCredentials (UDP only)

RawDataStreamServer endpoint and credentials configuration elements:

• Local Network Endpoint: EthernetRawDataStreamServerMapping.local-
CommConnector

• Local UdpPort: EthernetRawDataStreamServerMapping.localUdpPort

• Local TcpPort: EthernetRawDataStreamServerMapping.localTcpPort

• Socket Options: EthernetRawDataStreamServerMapping.socketOption

• (D)TLS properties: EthernetRawDataStreamServerMapping.tlsSecure-
ComProps

• Remote Unicast Credentials: EthernetRawDataStreamServerMapping.
unicastUdpCredentials (UDP only)

93 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• Multicast Credentials: EthernetRawDataStreamServerMapping.multi-
castCredentials (UDP only)

For the RawDataStreamClients the following shall apply:

• Remote server credentials for unicast communication must always be defined
for the client. The Unicast remote server credentials are configured in Raw-
DataStreamEthernetTcpUdpCredentials aggregated by the Etherne-
tRawDataStreamClientMapping in the role unicastCredentials.

• A tcpPort and udpPort shall not be defined in the same RawDataS-
treamEthernetTcpUdpCredentials element.

• If a TcpPort is defined in the EthernetRawDataStreamClientMapping.uni-
castCredentials, these credentials are used for Connect() calls to establish
the connection to the server.

• This unicast connection shall always be used for WriteData() calls to send data
to the server (for both UDP and TCP).

• If Multicast Credentials are defined for the client, the RawDataStream shall bind
and join the multicast address and udpPort given in the MulticastCredentials.
The MulticastCredentials is configured in RawDataStreamEthernetUdpCre-
dentials aggregated by the EthernetRawDataStreamClientMapping.
This multicast socket connection shall be read from when ReadData() is called.

• If no MulticastCredentials are defined for the client, the Unicast Remote Creden-
tials shall also be used for ReadData() calls.

For the RawDataStreamServers the following shall apply:

• If Multicast Credentials is defined for the server, a multicast connection shall
be created using the Multicast Credentials which are configured in RawDataS-
treamEthernetUdpCredentials aggregated by the EthernetRawDataS-
treamServerMapping in the role multicastCredentials. Then the data is
sent on this multicast socket when WriteData() is called.

• If Remote Unicast Credentials are defined for the server, a unicast socket shall
be created using the Unicast Credentials which are configured in RawDataS-
treamEthernetUdpCredentials aggregated by the EthernetRawDataS-
treamServerMapping in the role unicastUdpCredentials. Then the data
is sent on this unicast socket when WriteData() is called.

• The local credentials defined in EthernetCommunicationConnector shall al-
ways be used to create a unicast socket and read data from a client when Read-
Data() is called on the server side. If no local credentials are defined, reading of
data from the server cannot be performed, and an error kStreamNotConnected
will be returned.

• If a localTcpPort is defined in EthernetRawDataStreamServerMapping,
the credentials defined in EthernetCommunicationConnector are used to
create, bind, and listen to the socket used for TCP communication when the

94 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

constructor of RawDataStream is called. Then the server accepts incoming con-
nection requests when WaitForConnection() is called.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_90216]{DRAFT} Socket Options configuration dFor both RawDataS-
treamClients and RawDataStreamServers a list of socket options can be defined in
the attribute socketOption to be applied to the sockets created for unicast or multi-
cast communication. The options shall be specified as a list of strings. The accepted
values are platform specific and shall be documented by the vendor.c(RS_CM_00410,
RS_CM_00411, RS_CM_00412)

An example of socketOption definition is to provide a series of "option", "value" pairs
for POSIX socket level options, e.g.: ["SO_KEEPALIVE", "1", SO_RCVBUF","1024"]

[SWS_CM_90217]{DRAFT} TLS properties configuration dFor both RawDataS-
treamClients and RawDataStreamServers (D)TLS properties can be defined in the at-
tributes tlsSecureComProps to configure usage of TLS to create secure UDP and
TCP channels for the RawDataStreams according to the Transport Layer Security pro-
tocol. See [SWS_CM_90211]c(RS_CM_00410, RS_CM_00411)

Note: Usage of (D)TLS is restricted to 1:1 socket connections (use case 1 and 2 of
figure Figure 7.21).

The functionality of a RawDataStream for Client communication is realized in these
four operations: Connect, Shutdown, ReadData and WriteData. A RawDataStream
for Server Communication is realized in these four operations: WaitForConnection,
Shutdown, ReadData and WriteData.

[SWS_CM_10477] Connect stream link dEach invocation of the Connect operation
for a TCP socket connection shall establish a communication link with a remote server
that is listening for socket connections, The socket created in the RawDataStream
instance shall be used for the connection. For UDP socket connections Connect shall
do nothing.c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_99005]{DRAFT}Wait for incoming connections dEach invocation of the
WaitForConnection operation shall wait for and accept incoming requests for establish-
ment of a TCP communication link with a connecting remote client. The socket created
and prepared in the RawDataStream instance shall be used for the connection. For
UDP socket connections WaitForConnection shall do nothing.c(RS_CM_00411, RS_-
CM_00412)

[SWS_CM_10478] Shutdown stream link dEach invocation of the Shutdown opera-
tion shall destroy the communication link for the stream.c(RS_CM_00410, RS_CM_-
00411, RS_CM_00412)

[SWS_CM_10479] Read data from stream dEach invocation of the ReadData opera-
tion shall request to read a number of bytes from the stream. The read data shall be
moved to a buffer returned as result from the function, together with the actual number
of bytes transferred.c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

95 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10480] Write data to stream dEach invocation of the WriteData operation
shall request to write a number of bytes to the stream and send it out on the socket
connection. The actual number of bytes transferred shall be returned. It shall be
possible to apply a timeout value for the operation. The operation shall write the data
to the socket or internal buffer, and then return with the number of bytes written. For
efficiency, the Write operation does not wait until data is actually sent on the bus, but
the TCP data flow handling shall make sure that data is transmitted and received in the
correct order. For UDP connections the order cannot be guaranteed.c(RS_CM_00410,
RS_CM_00411, RS_CM_00412)

[SWS_CM_99006]{DRAFT} Timeout handling dFor all Connect, WaitForConnection,
Read and Write RawDataStream operations a timeout value can be specified via a
parameter in runtime. If no timeout parameter is given the operation shall block. If
a timeout value is specified, and the operation does not finish within the specified
time, an error code RawErrc::kCommunicationTimeout shall be returned and the
technical state of the RawDataStream connection shall be restored to the same as
before the call was made.c(RS_CM_00410, RS_CM_00411)

7.6 Communication Group

The Communication Group is a communication concept based on ara::com which is
designed for Adaptive State Management applications. It can be seen as a composite
Service which manages information routing in a defined manner. A Communication
Group has one server and multiple clients. The server is able to send broadcast and
peer to peer messages to the clients of a Communication Group. The clients can
acknowledge these messages. The server of a Communication Group can further
verify how many clients are connected to the Communication Group at every time.
Applications can connect/disconnect to a Communication Group instance using one of
the two Communication Group Service Interfaces, CommunicationGroupServer or
CommunicationGroupClient.

96 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Confidential C

S = Skeleton
P = Proxy

Figure 7.22: Communication Group

7.6.1 Interfaces

The Communication Group uses two Service interfaces, one for a Communication
Group Server and one for Communication Group clients.

7.6.1.1 Communication Group Server

[SWS_CM_99000]{DRAFT} CommunicationGroupServer Service dA Communi-
cation Group shall provide a CommunicationGroupServer Service to be used by
the Server of a Communication Group.c(RS_CM_00600, RS_CM_00601)

[SWS_CM_99001]{DRAFT} Broadcast method of CommunicationGroupServer
Service dThe CommunicationGroupServer Service shall provide the method
broadcast to broadcast messages to the clients of the Communication Group. This
method shall take as input parameter the message to be broadcasted. In case the
boardcast method fails the method return shall provide an error code as specified in
[SWS_CM_99024].c(RS_CM_00600, RS_CM_00601)

The C++ signature below presents the resulting boardcast method of a generated
Service Proxy/Skeleton interface.

template <typename T>
ara::core::Future<void> broadcast (const T& msg);

97 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_99002]{DRAFT} Peer To Peer Message method of Communication-
GroupServer Service dThe CommunicationGroupServer Service shall provide
a method message to send a message to a dedicated client of the Communication
Group. This method shall take as input parameters the message to be sent, and
the clientID of the client which shall be addressed. In case the message method
fails the method return shall provide an error code as specified in [SWS_CM_99024].c
(RS_CM_00600, RS_CM_00601)

The C++ signature below presents the resulting message method of a generated Ser-
vice Proxy/Skeleton interface.

template <typename T>
ara::core::Future<void> message (std::uint32_t clientID, const T& msg);

[SWS_CM_99014]{DRAFT} Message Response event of Communication-
GroupServer Service dThe CommunicationGroupServer Service shall provide
an event response that contains the respond of a dedicated client to a broadcast
or a peer to peer message of the Communication Group. The event shall provide
the response message and the clientID of this response.c(RS_CM_00600, RS_-
CM_00601)

The C++ signature below presents the resulting event response message of a gener-
ated Service Proxy/Skeleton interface.

template <typename R>
struct Response {
std::uint32_t clientID;
const R& responseMsg
}

[SWS_CM_99015]{DRAFT} List Clients method of CommunicationGroupServer
Service dThe CommunicationGroupServer Service shall provide a method list-
Clients to report about the connected clients of the Communication Group. This
method shall have no input parameters and shall return the list of clients. In
case the listClients method fails the method return shall provide an error code as
specified in [SWS_CM_99024].c(RS_CM_00600, RS_CM_00601)

The C++ signature below presents the resulting listClients method of a generated
Service Proxy/Skeleton interface.

ara::core::Future<ara::core::Vector<std::uint32_t>> listClients();

98 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.6.1.2 Communication Group Client

[SWS_CM_99007]{DRAFT} CommunicationGroupClient Service dThe clients of
a Communication Group shall provide a CommunicationGroupClient Service to be
used by a Communication Group.

c(RS_CM_00600, RS_CM_00601)

[SWS_CM_99008]{DRAFT} Message method of CommunicationGroupClient
Service dThe CommunicationGroupClient Service shall provide a method mes-
sage for the client to receive a message from the Communication Group. This method
shall take as input parameter the message. In case the message method fails the
method return shall provide an error code as specified in [SWS_CM_99024].c(RS_-
CM_00600, RS_CM_00601)

The C++ signature below presents the resulting message method of a generated Ser-
vice Proxy/Skeleton interface.

template <typename T>
ara::core::Future<void> message (const T& msg);

[SWS_CM_99009]{DRAFT} Message Response event of CommunicationGroup-
Client Service dThe CommunicationGroupClient Service shall provide an event
response for the client to send a response message to the Communication Group.
The event shall provide the response message.c(RS_CM_00600, RS_CM_00601)

The C++ signature below presents the resulting event response message of a gener-
ated Service Proxy/Skeleton interface.

template <typename R>
const R& responseMsg;

7.6.2 Behavior

The Communication Group performs the following tasks to enable a Communication
Group.

[SWS_CM_99010]{DRAFT} Broadcast task dA Broadcast task shall be triggered by
the broadcast method of the CommunicationGroupServer Service. The Commu-
nicationGroup shall forward this broadcast message to all connected clients by calling
the message method of the CommunicationGroupClient Service from each con-
nected client.c(RS_CM_00600, RS_CM_00601)

[SWS_CM_99011]{DRAFT} Peer To Peer message task dA Peer to Peer message
task shall be triggered by the message method (which includes the client address) of
the CommunicationGroupServer Service. The CommunicationGroup shall forward

99 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

this message to the addressed client by calling the message method of the Communi-
cationGroupClient Service of this client.c(RS_CM_00600, RS_CM_00601)

[SWS_CM_99012]{DRAFT}Message Response task dThe Message Response task
shall be triggered by the message response event of the CommunicationGroup-
Client Service from a client . The CommunicationGroup shall forward this response
message with the client source address to the message response event of the Com-
municationGroupServer Service.c(RS_CM_00600, RS_CM_00601)

[SWS_CM_99013]{DRAFT} List Clients task dThe List Clients task shall be triggered
by the list clients method of the CommunicationGroupServer Service. The
CommunicationGroup shall provide the list of all connected client addresses with the
return of the list clients method of the CommunicationGroupServer Service.c
(RS_CM_00600, RS_CM_00601)

7.6.3 Connection

The connection and disconnection to Communication Group is performed by standard
ara::com functions.

7.6.3.1 Communication Group Server

The Server of a Communication Group connects to a Communication Group by con-
necting to the CommunicationGroupServer Service of this Communication group
(using FindService or StartFindService).

[SWS_CM_99016]{DRAFT} Connection Status of a Communication Group Server
dThe Server of the Communication Group shall be considered to be connected if the
server has successfully subscribed to the response message response event of the
CommunicationGroupServer Service, else the Server shall be considered not con-
nected.c(RS_CM_00600, RS_CM_00601)

7.6.3.2 Communication Group Client

A Communication Group client connects to a Communication Group by offering the
CommunicationGroupClient Service. A Communication Group client disconnects
to a Communication Group by stop offering the CommunicationGroupClient Ser-
vice.

7.6.4 Limitations

The Communication Group concept has the following limitations:

100 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• There is only one Server for an instance of a Communication Group at a given
time.

• A Client provides the CommunicationGroupClient Service to only one in-
stance of a Communication Group at a given time.

The figure below outlines a connection example for a Communication Group.

Confidential C

Figure 7.23: Communication Group connection example

7.6.5 Communication Group Model

The model of Communication Group is labeled by one of three standard ServiceIn-
terface.category values. See also the TPS_ManifestSpecification [6].

[SWS_CM_99017]{DRAFT} category value COMMUNICATION_GROUP dThe Ser-
viceInterface.category value COMMUNICATION_GROUP shall be used to define
a Communication Group template.c(RS_CM_00600, RS_CM_00601)

[SWS_CM_99018]{DRAFT} category value COMMUNICATION_GROUP_SERVER
dThe ServiceInterface.category value COMMUNICATION_GROUP_SERVER shall
be used to define CommunicationGroupServer service.c(RS_CM_00600, RS_-
CM_00601)

[SWS_CM_99019]{DRAFT} category value COMMUNICATION_GROUP_CLIENT
dThe ServiceInterface.category value COMMUNICATION_GROUP_CLIENT shall
be used to define CommunicationGroupClient service.c(RS_CM_00600, RS_-
CM_00601)

101 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

The figure below presents the relations between these category values.

ServiceInterface
category: COMMUNICATION_GROUP

- method message(msg)
- event response(responseMsg)

ServiceInterface
category: COMMUNICATION_GROUP_SERVER

- method broadcast(msg)
- method message(clientId, msg)
- event response(clientID, responseMsg)

- method listClients()

ServiceInterface
category: COMMUNICATION_GROUP_CLIENT

- method message(msg)
- event response(responseMsg)

<<derive>>

<<derive>>

Figure 7.24: Communication Group service interface categories

7.6.6 Communication Group Creation

A Communication Group is created by defining a Communication Group template
only.

[SWS_CM_99020]{DRAFT}Communcation Group template dThe Communication
Group template is a ServiceInterface of type CommunicationGroupClient
with the category value COMMUNICATION_GROUP. It shall be used to define a Com-
munication Group, where:

• The SHORT-NAME of this template shall define of the name of the Communica-
tion Group.

• The event definition according to [SWS_CM_99009] shall define the data type of
the message responses of the Communication Group.

• The method definition according to [SWS_CM_99008] shall define the data type
of the messages of the Communication Group.

c(RS_CM_00600, RS_CM_00601)

Based on the Communication Group template [SWS_CM_99020] the ServiceIn-
terfaces for the CommunicationGroupServer [SWS_CM_99000] and the Com-
municationGroupClient [SWS_CM_99007] can be generated/derived.

102 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_99021]{DRAFT} SHORT-NAME value of generated Communication-
GroupServer service dThe SHORT-NAME value of generated Communication-
GroupServer service shall be the SHORT-NAME of the according Communication
Group template concatenated by the name Server.c(RS_CM_00600, RS_CM_-
00601)

[SWS_CM_99022]{DRAFT} SHORT-NAME value of generated Communication-
GroupClient service dThe SHORT-NAME value of generated Communication-
GroupClient service shall be the SHORT-NAME of the according Communication
Group template concatenated by the name Client.c(RS_CM_00600, RS_CM_-
00601)

The figures below outline the Communication Group creation flow.

The Communication Group Template defines the name of the Communication Group
and defines the message and message response datatypes.

Confidential C

Name of Communication Group

message datatype definition

response message definition

1

Figure 7.25: Communication Group Template

The CommunicationGroupServer and the CommunicationGroupClient Ser-
vice descriptions are derived from the Communication Group Template.

103 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Confidential C

Figure 7.26: Communication Group Flow

104 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Confidential C

2

Figure 7.27: Communication Group Server Service Description

Note:

• The PowerModeResponse datatype is a structure of clientID and Power-
ModeRespMsg datatype.

• The Clients datatype is a vector of uint32 datatype.

105 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Confidential C

3

Figure 7.28: Communication Group Client Service Description

7.7 Optional Execution Context

Some ara::com API’s with an asynchronous callback allow the use of an op-
tional execution context parameter (see [SWS_CM_11352], [SWS_CM_11352],
[SWS_CM_11354], [SWS_CM_11356], [SWS_CM_11358], [SWS_CM_11360],
[SWS_CM_11362]). The execution context parameter gives the user more control
over the execution environment of a method call.

[SWS_CM_11364]{DRAFT} Minimal behaviour of provided Execution Context
dAn optionally provided execution context executor shall:

• execute every function that it was passed to.

• execute each function it was passed to only once.

c(RS_CM_00204)

7.8 Network binding

The following chapters describe the requirements according to specific network proto-
col bindings.

Since the selection of a particular network protocol binding is an integrator driven de-
ployment decision, any change in the selection of a particular network protocol binding
or changes in the various attributes and parameters of a particular network protocol

106 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

binding shall be possible without requiring a re-compilation of the involved adaptive
applications. The required changes to the involved adaptive application shall be limited
to a re-linking (either static or dynamic) of the involved adaptive application.

[SWS_CM_10384]{DRAFT} Change of Service Interface Deployment dA change
of the service interface deployment shall be possible without re-compiling the involved
adaptive applications. – This means that the following changes in the service interface
deployment shall be possible without the need for a re-compilation of the adaptive
applications:

• changes to the concrete type of ServiceInterfaceDeployment and the com-
posed ServiceMethodDeployment, ServiceFieldDeployment, and Ser-
viceEventDeployment (e.g., changing a SomeipServiceInterfaceDe-
ployment to a UserDefinedServiceInterfaceDeployment)

• changes to one or more attributes of meta-classes derived from Servi-
ceInterfaceDeployment, ServiceMethodDeployment, ServiceField-
Deployment, and ServiceEventDeployment (e.g., changing the value of
SomeipEventDeployment.separationTime)

• backwards-compatible changes to the technology specific service version num-
ber of the ServiceInterfaceDeployment.

c(RS_CM_00315)
Note that changes to SomeipServiceVersion.majorVersion are an exception
here, since any change to SomeipServiceVersion.majorVersion indicates an in-
compatible change of the ServiceInterface and thus affects the involved adaptive
applications mandating a re-compilation of the involved adaptive applications.

[SWS_CM_10385]{DRAFT} Change of Service Instance Deployment dA change of
the service instance deployment shall be possible without re-compiling the involved
adaptive applications. – This means that the following changes in the service instance
deployment shall be possible without the need for a re-compilation of the adaptive
applications:

• changes to the concrete type of ProvidedApServiceInstance and/or Re-
quiredApServiceInstance (e.g., changing a ProvidedSomeipService-
Instance to a ProvidedUserDefinedServiceInstance and a Required-
SomeipServiceInstance to a RequiredUserDefinedServiceInstance)

• changes to one or more attributes of meta-class derived from ProvidedApSer-
viceInstance and/or RequiredApServiceInstance (e.g., changing the
value of the SomeipProvidedEventGroup.multicastThreshold or the
SomeipSdServerServiceInstanceConfig.serviceOfferTimeToLive).

• backwards-compatible changes to the technology specific service version num-
ber of the ServiceInterfaceDeployment.

c(RS_CM_00315) Note that changes to SomeipServiceVersion.majorVersion
are an exception here, since any change to SomeipServiceVersion.majorVer-
sion indicates an incompatible change of the ServiceInterface and thus affects

107 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

the involved adaptive applications mandating a re-compilation of the involved adaptive
applications.

[SWS_CM_10386]{DRAFT} Change of Network Configuration dA change of the
network configuration shall be possible without re-compiling the involved adaptive ap-
plications. – This means that the following changes in the network configuration shall
be possible without the need for a re-compilation of the adaptive applications:

• changes to one or more attributes of a concrete ServiceInstance-
ToMachineMapping (e.g., changing the value of the SomeipService-
InstanceToMachineMapping.udpPort or the SomeipServiceInstance-
ToMachineMapping.tcpPort.

c(RS_CM_00315)

Abstract network protocol bindings for service ports shall be specified inside the service
instance manifest to deploy network bindings of service instances.

[SWS_CM_10590]{DRAFT} Abstract Network Protocol Binding dThe usage of
abstract network protocol binding for ProvidedApServiceInstance and Re-
quiredApServiceInstance shall be supported to deploy network bindings of Ser-
viceInterfaces. An abstract network protocol binding shall cover SOME/IP, DDS
and UserDefined protocols and is specified inside the service instance manifest. It
is used with an InstanceSpecifier and shall be specified as followed:
<port context>::<port name>, where:

• <port context> specifies the instantiation context of the port which might be
an instantiation path or any other unique identifiable information.

• <port name> specifies the port name.

Note: it is possible to specify multiple technology bindings for a port (Multi-Binding).c
(RS_CM_00200, RS_AP_00137)

[SWS_CM_10416]{DRAFT} Reception of a malformed message dIn case any net-
work binding does receive a message, which it identifies as malformed, the message
shall be discarded and the error shall not be propagated to the application.c()

Note: The incident should also be logged if logging is configured and the corresponding
network binding supports it.

7.8.1 SOME/IP Network binding

SOME/IP supports different kind of bindings:

SOME/IP Events:

• uni-cast is one-to-one communication

• multi-cast is one-to-many communication

108 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

In case the active subscriptions will reach the multi-cast-threshold the communication
paradigm will be switched from uni-cast to multi-cast to gain a better network utilization.
Below the multi-cast-threshold SOME/IP is maintaining for a subscription a single uni-
cast communication.

SOME/IP Events:

• many-to-one communication using multiple uni-cast communications

[SWS_CM_10000] SOME/IP Compliance dThe SOME/IP network binding shall imple-
ment the SOME/IP Protocol and the SOME/IP Service Discovery Protocol defined in
[5] and [12].c(RS_CM_00204, RS_CM_00205)

[SWS_CM_10013] Header Byte order dAll headers shall be encoded in network
byte order Big Endian (MostSignificantByteFirst) [RFC 791].c(RS_CM_00204, RS_-
SOMEIP_00026)

[SWS_CM_10172] Payload Byte order definition dThe byte order of the parameters
inside the payload shall be defined by byteOrder of ApSomeipTransformation-
Props.c(RS_CM_00204, RS_SOMEIP_00026)

[SWS_CM_10240]{DRAFT} Session handling state dIf ApSomeipTransforma-
tionProps.sessionHandling is present and set to value SOMEIPTransformerS-
essionHandlingEnum.sessionHandlingActive, the Session handling shall be
Active. If ApSomeipTransformationProps.sessionHandling is present and set
to value SOMEIPTransformerSessionHandlingEnum.sessionHandlingInac-
tive, the Session handling shall be Inactive.c(RS_CM_00204, RS_SOMEIP_00012)

7.8.1.1 Service Discovery

[SWS_CM_00201] Start of service discovery protocol on Server side dThe reg-
istration of a new offered service which is bound to SOME/IP shall trigger the start
of the initial wait phase of the SOME/IP service discovery protocol.c(RS_CM_00204,
RS_CM_00101, RS_SOMEIPSD_00024, RS_SOMEIPSD_00013)

The different phases of SOME/IP Service Discovery on the Server side are configured
in the Manifest in the ProvidedSomeipServiceInstance element. The configura-
tion is described in more detail in TPS_ManifestSpecification by

• [TPS_MANI_03012] (Initial Wait Phase),

• [TPS_MANI_03013] (Repetition Wait Phase),

• [TPS_MANI_03014] (Main Phase).

The corresponding timing parameters for these phases are configured via InitialS-
dDelayConfig and RequestResponseDelay. The sharing of timers is described in
[TPS_MANI_03230].

109 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00209] Start of service discovery protocol on Client side dThe search
for a new service which is bound to SOME/IP shall trigger the start of the initial wait
phase.c(RS_CM_00204, RS_CM_00102, RS_SOMEIPSD_00024, RS_SOMEIPSD_-
00008)

(See also [PRS_SOMEIPSD_00395], [PRS_SOMEIPSD_00397], [PRS_-
SOMEIPSD_00399], [PRS_SOMEIPSD_00416], [PRS_SOMEIPSD_00435], [PRS_-
SOMEIPSD_00752] and [PRS_SOMEIPSD_00133])

The different phases of SOME/IP Service Discovery on the Client side are configured in
the Manifest in the RequiredSomeipServiceInstance element. The configuration
is described in more detail in TPS_ManifestSpecification by

• [TPS_MANI_03026] (Initial Wait Phase),

• [TPS_MANI_03027] (Repetition Wait Phase).

The corresponding timing parameters for these phases are configured via InitialS-
dDelayConfig and RequestResponseDelay. The sharing of timers is described in
[TPS_MANI_03231]. TTL for Find Service Entries is described in [TPS_MANI_03028].

[SWS_CM_00202] SOME/IP FindService message dThe entries in the SOME/IP
FindService message shall be as follows:

• The entry type shall be set to FindService (see [PRS_SOMEIPSD_00268] for
numerical value).

• The Service ID shall be derived from the Manifest where the SomeipServi-
ceInterfaceDeployment element defines the serviceInterfaceId.

• The Instance ID shall be derived from the Manifest where the Required-
SomeipServiceInstance element defines the requiredServiceInstan-
ceId for the SomeipServiceInterfaceDeployment that is referenced by
the RequiredSomeipServiceInstance in the role serviceInterfaceDe-
ployment. If the requiredServiceInstanceId is set to "ALL" then 0xFFFF
shall be used.

• Major Version of the RequiredSomeipServiceInstance that is searched
shall be derived from the Manifest where the SomeipServiceVersion element
that is aggregated by the SomeipServiceInterfaceDeployment in the role
serviceInterfaceVersion defines the majorVersion.

• Minor Version of the RequiredSomeipServiceInstance that is searched
shall be derived from the Manifest from the requiredMinorVersion attribute
in the RequiredSomeipServiceInstance.

if versionDrivenFindBehavior is set to minimumMinorVersion then the
minorVersion shall be set to 0xFFFF FFFF and all found services with a minor
version smaller than the requiredMinorVersion shall not be considered for
service discovery.

110 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

if versionDrivenFindBehavior is set to exactOrAnyMinorVersion then
the minorVersion shall be set with the requiredMinorVersion. If the mi-
norVersion is set to "ALL", then 0xFFFF FFFF shall be used.

• TTL shall be derived from the Manifest where the SomeipSdClientService-
InstanceConfig element that is referenced by the RequiredSomeipServi-
ceInstance in the role sdClientConfig defines the serviceFindTimeTo-
Live.

• Configuration Option shall be used in the find message if at least one capabil-
ityRecord is defined in the RequiredSomeipServiceInstance element.
The content of the Configuration Option shall be derived from the key/value pairs
defined in each capabilityRecord.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102, RS_SOMEIPSD_00006, RS_-
SOMEIPSD_00005, RS_SOMEIPSD_00008, RS_SOMEIPSD_00010)

[SWS_CM_10202] Version blacklist dThe service connection of a Required-
SomeipServiceInstance with a certain SomeipServiceVersion shall not be
considered for service discovery for this instance if this SomeipServiceVersion
is listed inside a RequiredSomeipServiceInstance.blacklistedVersion.c
(RS_CM_00701)

[SWS_CM_00203] SOME/IP OfferService message dThe entries in the SOME/IP Of-
ferService message shall be as follows:

• The entry type shall be set to OfferService (see [PRS_SOMEIPSD_00268] for
numerical value).

• The Service ID shall be derived from the Manifest where the SomeipServi-
ceInterfaceDeployment element defines the serviceInterfaceId.

• The Instance ID shall be derived from the Manifest where the Provided-
SomeipServiceInstance element defines the serviceInstanceId for the
SomeipServiceInterfaceDeployment that is referenced by the Provid-
edSomeipServiceInstance in the role serviceInterfaceDeployment.

• Major Version of the SomeipServiceInterfaceDeployment that is offered
shall be derived from the Manifest where the SomeipServiceVersion element
that is aggregated by the SomeipServiceInterfaceDeployment in the role
serviceInterfaceVersion defines the majorVersion.

• Minor Version of the SomeipServiceInterfaceDeployment that is offered
shall be derived from the Manifest where the SomeipServiceVersion element
that is aggregated by the SomeipServiceInterfaceDeployment in the role
serviceInterfaceVersion defines the minorVersion.

• TTL shall be derived from the Manifest where the SomeipSdServerService-
InstanceConfig element that is referenced by the ProvidedSomeipServi-
ceInstance in the role sdServerConfig defines the serviceOfferTime-
ToLive.

111 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• IPv4 Endpoint Option shall be used if the Machine to which the Provid-
edSomeipServiceInstance is mapped with the ServiceInstanceToMa-
chineMapping provides an EthernetCommunicationConnector that refers
to a NetworkEndpoint in the role unicastNetworkEndpoint where an IPv4
Address is configured in theIpv4Configuration element.

• IPv6 Endpoint Option shall be used if the Machine to which the Provid-
edSomeipServiceInstance is mapped with the ServiceInstanceToMa-
chineMapping provides an EthernetCommunicationConnector that refers
to a NetworkEndpoint in the role unicastNetworkEndpoint where an IPv6
Address is configured in theIpv6Configuration element.

• The Transport Layer Protocol used in the IPv4 Endpoint option and/or IPv6 End-
point option shall be derived from the Manifest where the SomeipServiceIn-
stanceToMachineMapping element that maps the ProvidedSomeipServi-
ceInstance to an EthernetCommunicationConnector of a Machine de-
fines the transport protocol and the port number.

– UDP shall be used if SomeipServiceInstanceToMachineMapping.
udpPort is configured.

– TCP shall be used if SomeipServiceInstanceToMachineMapping.
tcpPort is configured.

In case the port number (SomeipServiceInstanceToMachineMapping.
udpPort or SomeipServiceInstanceToMachineMapping.tcpPort) is
cofigured to 0, an ephemeral port shall be used. If the port number is config-
ured to a value different from 0 exactly that value shall be used.

• Configuration Option shall be used in the offer message if at least one capa-
bilityRecord is defined for the ProvidedSomeipServiceInstance. The
content of the Configuration Option shall be derived from the key/value pairs de-
fined in each capabilityRecord.

c(RS_CM_00204, RS_CM_00200, RS_CM_00101, RS_SOMEIPSD_00006,
RS_SOMEIPSD_00005, RS_SOMEIPSD_00010, RS_SOMEIPSD_00013, RS_-
SOMEIPSD_00025)

[SWS_CM_00204] SOME/IP StopOffer message dThe entries in the SOME/IP
StopOffer message shall be as follows:

• The entry type shall be set to StopOfferService (see [PRS_SOMEIPSD_00268]
for numerical value).

• ServiceId shall be set to the same value as in the OfferService message.

• InstanceId shall be set to the same value as in the OfferService message.

• Major Version shall be set to the same value as in the OfferService message.

• Minor Version shall be set to the same value as in the OfferService message.

112 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• TTL shall be set to 0x000000 value.

• IPv4 Endpoint Option shall be set to the same value as in the OfferService mes-
sage.

• IPv6 Endpoint Option shall be set to the same value as in the OfferService mes-
sage.

• Configuration Option shall be set to the same value as in the OfferService mes-
sage.

c(RS_CM_00204, RS_CM_00105, RS_SOMEIPSD_00006, RS_SOMEIPSD_00005,
RS_SOMEIPSD_00010, RS_SOMEIPSD_00014)

[SWS_CM_10377] Sending SOME/IP SubscribeEventgroup messages - ini-
tial dThe subscription to at least one Event (ServiceInterface.event) of
an Eventgroup (SomeipEventGroup) by invoking the Subscribe method (see
[SWS_CM_00141]) of the specific Event class of the ServiceProxy class shall
cause the sending of a SOME/IP SubscribeEventgroup messages in case there is
no active subscription for the particular Eventgroup (either because there was no
previous subscription to this particular Eventgroup or the TTL of every received Sub-
scribeGroupAck message (see [SWS_CM_00206]) for the particular Eventgroup has
already expired).

The subscription to at least one Event of an Eventgroup by invoking the Subscribe
method (see [SWS_CM_00141]) of the specific Event class of the ServiceProxy
class shall not cause the sending of a SOME/IP SubscribeEventgroup messages in
case there is an active subscription for the particular Eventgroup (because there
was some previous subscription to this particular Eventgroup and the TTL of at least
one received SubscribeGroupAck message (see [SWS_CM_00206]) for the particular
Eventgroup has not yet expired).c(RS_CM_00204, RS_CM_00200, RS_CM_00103,
RS_SOMEIPSD_00006, RS_SOMEIPSD_00015)

[SWS_CM_10381] Sending SOME/IP SubscribeEventgroup messages - renewal
dIf the TTL of an active subscription for a particular Eventgroup is about to ex-
pire and there is at least one active subscription for an Event of this Eventgroup,
a SubscribeEventgroup message shall be sent to refresh the active subscription to
the particular Eventgroup.c(RS_CM_00204, RS_CM_00200, RS_CM_00103, RS_-
SOMEIPSD_00006, RS_SOMEIPSD_00015)

[SWS_CM_00205] Content of SOME/IP SubscribeEventgroup message dThe en-
tries in the SOME/IP SubscribeEventgroup message shall be as follows:

• The entry type shall be set to SubscribeEventgroup (see [PRS_SOMEIPSD_-
00270] for numerical value).

• The Service ID shall be taken from the offer message.

• The Instance ID shall be taken from the offer message.

• Major Version shall be derived from the offer message.

113 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• Eventgroup ID shall be derived from Manifest where the RequiredSomeipSer-
viceInstance element aggregates the SomeipRequiredEventGroup in the
role requiredEventGroup. The SomeipRequiredEventGroup contains the
eventGroup reference to the SomeipEventGroup where the eventGroupId
is defined.

• TTL shall be derived from Manifest where the RequiredSomeipServiceIn-
stance element aggregates the SomeipRequiredEventGroup in the role
requiredEventGroup. The SomeipRequiredEventGroup aggregates the
sdClientEventGroupTimingConfig where the timeToLive is defined.

• IPv4 Endpoint Option shall be sent if the offer message contains an IPv4 End-
point Option. In this case the IPv4 Address sent in the IPv4 Endpoint Option of
the SubscribeEventgroup message is configured in the Manifest where the Re-
quiredSomeipServiceInstance element is mapped with the ServiceIn-
stanceToMachineMapping to an EthernetCommunicationConnector of
a Machine. The EthernetCommunicationConnector refers to a Network-
Endpoint in the role unicastNetworkEndpoint where an IPv4 Address is
configured in theIpv4Configuration element.

• IPv6 Endpoint Option shall be sent if the offer message contains an IPv6 End-
point Option. In this case the IPv6 Address sent in the IPv6 Endpoint Option of
the SubscribeEventgroup message is configured in the Manifest where the Re-
quiredSomeipServiceInstance element is mapped with the ServiceIn-
stanceToMachineMapping to an EthernetCommunicationConnector of
a Machine. The EthernetCommunicationConnector refers to a Network-
Endpoint in the role unicastNetworkEndpoint where an IPv6 Address is
configured in theIpv6Configuration element.

• The Transport Layer Protocol used in the IPv4 Endpoint option and/or IPv6 End-
point option shall be derived from the Manifest where the SomeipEventGroup
points either to SomeipEventDeployments where the transportProtocol
is set to udp or to tcp. The SomeipServiceInstanceToMachineMapping
element that maps the RequiredSomeipServiceInstance to an Ethernet-
CommunicationConnector of a Machine the transport protocol and the port
number.

– UDP shall be used if SomeipServiceInstanceToMachineMap-
ping.udpPort is configured and the SomeipEventGroup contains
SomeipEventDeployments where the transportProtocol is set to
udp. The UDP port shall be derived from SomeipServiceInstance-
ToMachineMapping.udpPort. In case the port number (SomeipSer-
viceInstanceToMachineMapping.udpPort) is cofigured to 0, an
ephemeral port shall be used. If the port number is configured to a value
different from 0 exactly that value shall be used.

– TCP shall be used if SomeipServiceInstanceToMachineMap-
ping.tcpPort is configured and the SomeipEventGroup contains
SomeipEventDeployments where the transportProtocol is set

114 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

to tcp. The TCP port shall be derived from SomeipServiceIn-
stanceToMachineMapping.tcpPort. In case the port number (
SomeipServiceInstanceToMachineMapping.tcpPort) is cofigured
to 0, an ephemeral port shall be used. If the port number is configured to a
value different from 0 exactly that value shall be used.

c(RS_CM_00204, RS_CM_00200, RS_CM_00103, RS_SOMEIPSD_00006, RS_-
SOMEIPSD_00005, RS_SOMEIPSD_00015)

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message dThe entries in the
SOME/IP SubscribeEventgroupAck message shall be as follows:

• The entry type shall be set to SubscribeEventgroupAck (see [PRS_SOMEIPSD_-
00270] for numerical value).

• ServiceId shall be set to the same value as in the SubscribeEventgroup message
that is answered by this SubscribeEventgroupAck message.

• InstanceId shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupAck message.

• Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupAck message.

• Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message that is answered by this SubscribeEventgroupAck message.

• TTL shall be set to the same value as in the SubscribeEventgroup message that
is answered by this SubscribeEventgroupAck message.

• IPv4 Multicast Option shall be derived from the Manifest if a multicastThresh-
old with a value greater 0 is defined for the SomeipProvidedEventGroup
and a ipv4MulticastIpAddress is defined for the same SomeipProvid-
edEventGroup.

• IPv6 Multicast Option shall be derived from the Manifest if a multicastThresh-
old with a value greater 0 is defined for the SomeipProvidedEventGroup
and a ipv6MulticastIpAddress is defined for the same SomeipProvid-
edEventGroup.

• The Transport Layer Protocol shall be set to UDP. Only UDP is supported as
transport layer protocol in the IPv4 Multicast Option and/or IPv6 Multicast Option.

• The UDP Port shall be derived from the the Manifest where the Provid-
edSomeipServiceInstance that aggregates the SomeipProvidedEvent-
Group has the eventMulticastUdpPort defined.

c(RS_CM_00204, RS_SOMEIPSD_00015, RS_SOMEIPSD_00006, RS_-
SOMEIPSD_00002, RS_SOMEIPSD_00003, RS_SOMEIPSD_00005)

[SWS_CM_00208] SOME/IP SubscribeEventgroupNack message dThe entries in
the SOME/IP SubscribeEventgroupNack message shall be as follows:

115 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• The entry type shall be set to SubscribeEventgroupNack (see [PRS_-
SOMEIPSD_00270] for numerical value).

• ServiceId shall be set to the same value as in the SubscribeEventgroup message
that is answered by this SubscribeEventgroupNack message.

• InstanceId shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupNack message.

• Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupNack message.

• Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message that is answered by this SubscribeEventgroupNack message.

• TTL shall be set to the 0x000000 value.

c(RS_CM_00204, RS_SOMEIPSD_00016, RS_SOMEIPSD_00006, RS_-
SOMEIPSD_00005)

[SWS_CM_10378] Sending SOME/IP StopSubscribeEventgroup messages
dStopping the subscription of an Event (ServiceInterface.event) of an
Eventgroup (SomeipEventGroup) by invoking the Unsubscribe method (see
[SWS_CM_00151]) of the specific Event class of the ServiceProxy class shall not
cause the sending of a SOME/IP StopSubscribeEventgroup message if there are still
active subscriptions for other Events of the same Eventgroup.

Stopping the subscription of the last Event of an Eventgroup by invoking the Unsub-
scribe method (see [SWS_CM_00151]) of the specific Event class of the Servi-
ceProxy class shall cause the sending of a SOME/IP StopSubscribeEventgroup mes-
sage.c(RS_CM_00204, RS_CM_00104, RS_SOMEIPSD_00006, RS_SOMEIPSD_-
00005, RS_SOMEIPSD_00017)

[SWS_CM_00207] Content of SOME/IP StopSubscribeEventgroup message dThe
entries in the SOME/IP StopSubscribeEventgroup message shall be as follows:

• The entry type shall be set to StopSubscribeEventgroup (see [PRS_-
SOMEIPSD_00270] for numerical value).

• ServiceId shall be set to the same value as in the SubscribeEventgroup message.

• InstanceId shall be set to the same value as in the SubscribeEventgroup mes-
sage.

• Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage.

• Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message.

• TTL shall be set to the 0x000000 value.

116 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• IPv4 Endpoint Option shall be set to the same value as in the SubscribeEvent-
group message.

• IPv6 Endpoint Option shall be set to the same value as in the SubscribeEvent-
group message.

c(RS_CM_00204, RS_CM_00104, RS_SOMEIPSD_00006, RS_SOMEIPSD_00005,
RS_SOMEIPSD_00017)

7.8.1.2 Accumulation of SOME/IP messages

[SWS_CM_10387] Data accumulation for UDP data transmission dTo allow for the
transmission of multiple SOME/IP event, method request and method response mes-
sages within a single UDP datagram, data accumulation for UDP data transmission
shall be supported.c(RS_CM_00204)

[SWS_CM_10388] Enabling of data accumulation for UDP data transmission
dData accumulation for UDP data transmission over the udpPort and unicast-
NetworkEndpoint defined on the EthernetCommunicationConnector that is
referenced by a SomeipServiceInstanceToMachineMapping shall be enabled
if the attribute SomeipServiceInstanceToMachineMapping.udpCollection-
BufferSizeThreshold is set to a value. In this case all event and method mes-
sages that are configured for data accumulation shall be aggregated in a buffer until
a transmission trigger (see [SWS_CM_10389] and [SWS_CM_10390]) arrives and the
data transmission starts.c(RS_CM_00204)

[SWS_CM_10389] Configuration of a data accumulation on a Provided-
SomeipServiceInstance for transmission over UDP dFor a Provided-
SomeipServiceInstance all method responses and events for which the udp-
CollectionTrigger is set to never shall be aggregated in a buffer until a trigger
arrives that starts the data transmission.

The following trigger options shall be supported:

• a SOME/IP message needs to be transmitted for which the udpCollection-
Trigger is set to always.

• the udpCollectionBufferTimeout is reached for one of the SOME/IP mes-
sage already aggregated in the buffer.

• the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

• adding the method response or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

c(RS_CM_00204)

117 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10390] Configuration of a data accumulation on a Required-
SomeipServiceInstance for transmission over UDP dFor a Required-
SomeipServiceInstance all method requests for which the udpCollection-
Trigger is set to never shall be aggregated in a buffer until a trigger arrives that
starts the data transmission.

The following trigger options shall be supported:

• a SOME/IP message needs to be transmitted for which the udpCollection-
Trigger is set to always.

• the udpCollectionBufferTimeout is reached for one of the SOME/IP mes-
sage already aggregated in the buffer.

• the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

• adding the method request or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

c(RS_CM_00204)

In the following sections the term "sending of a SOME/IP message shall be requested"
will be used to describe the fact that the sending of the message is requested but
may be deferred due to data accumulation for UDP data transmission according to
[SWS_CM_10388], [SWS_CM_10389], and [SWS_CM_10390].

7.8.1.3 Execution context of message reception actions

In the following sections the term "upon reception" will be used to describe the fact that
certain actions (e.g, the deserialization of the payload according to [SWS_CM_10294])
will be performed at a point in time between the actual reception of a message and
the call of the corresponding API (e.g., the GetNewSamples (see [SWS_CM_00701])
method of the respective Event class). This specification deliberately does not explic-
itly state whether these actions will be performed in the context of message reception,
in the context of the API call, or in a completely seperate execution context to leave
room for potential optimizations of a concrete ara::com implementation.

The only restriction imposed here refers to the execution context of the EventRe-
ceiveHandler (see [SWS_CM_00309]). – Executing the EventReceiveHandler
in the context of the GetNewSamples (see [SWS_CM_00701]) method is not allowed,
since according to [SWS_CM_00181] the EventReceiveHandlershall use the Get-
NewSamples method to access the retrieved event data.

[SWS_CM_11270]{DRAFT} Selecting elements of the ServiceInterface for SecOC
transmission dIt is possible to define which elements of the ServiceInterface of
the particular AdaptivePlatformServiceInstance shall be securedby SecOC.

118 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

The selection of ServiceInterface elements is done by the ServiceInter-
faceElementSecureComConfigthat is aggregated by AdaptivePlatformSer-
viceInstance.

The following configuration in the ServiceInterfaceElementSecureComConfig
is applicable:

• Methods
The roles methodCall and methodReturn identify the method(s) that shall
be sprotected by SecOC with the configuration settings that are available in the
ServiceInterfaceElementSecureComConfig element.

• Events
The role event identifies the event(s) that shall be protected by SecOC
with the configuration settings that are availble in the ServiceInterfaceEle-
mentSecureComConfig element.

• Fields
The roles fieldNotifier, getterCall, getterReturn, setterCall and
setterReturn identify the field content that shall be protected by SecOC
with the configuration settings that are available in the ServiceInterfaceEle-
mentSecureComConfig element.

c(RS_SEC_04001, RS_SEC_04003)

7.8.1.4 Handling Events

[SWS_CM_10287] Conditions for sending of a SOME/IP event message dThe
sending of a SOME/IP event message shall be requested by invoking the Send method
of the respective Event class (see [SWS_CM_00162] and [SWS_CM_90437]) if there
is at least one active subscriber and the offer of the service containing the event has
not been stopped (either because the TTL contained in the SOME/IP OfferService
message (see [SWS_CM_00203]) has expired or because the StopOfferService
method (see [SWS_CM_00111]) of the ServiceSkeleton class has been called). An
active subscriber is an adaptive application that has invoked the Subscribe method
of the respective Event class (see [SWS_CM_00141]) and has not canceled the sub-
scription by invoking the Unsubscribe method of the respective Event class (see
[SWS_CM_00151]) and where the subscription has not yet expired since the TTL
contained in the SOME/IP SubscribeEventgroup message (see [SWS_CM_00205])
has been exceeded.c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00005, RS_SOMEIP_00017)

[SWS_CM_10288] Transport protocol for sending of a SOME/IP event message
dThe SOME/IP event message shall be transmitted using UDP if the threshold de-
fined by the multicastThreshold attribute of the SomeipProvidedEventGroup
that is aggregated by the ProvidedSomeipServiceInstance in the role event-
Group in the Manifest has been reached (see [PRS_SOMEIPSD_00134]). The
SOME/IP event message shall be transmitted using the transport protocol defined by

119 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

the attribute SomeipServiceInterfaceDeployment.eventDeployment.trans-
portProtocol in the Manifest if this threshold has not been reached (see [PRS_-
SOMEIPSD_00802]).c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00010)

[SWS_CM_10289] Source of a SOME/IP event message dThe SOME/IP event
message shall use the unicast IP address and port taken from the IPv4/v6 End-
point Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP OfferService message
([SWS_CM_00203]) as source address and source port for the transmission.c(RS_-
CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00042)

[SWS_CM_10290] Destination of a SOME/IP event message dThe SOME/IP event
message shall use the multicast IP address and the port taken from the IPv4/v6 Multi-
cast Option (see [PRS_SOMEIPSD_00322]) of the SOME/IP SubscribeEventgroupAck
message (see [SWS_CM_00206]) as destination address and destination port for the
transmission if the threshold defined by the multicastThreshold attribute of the
SomeipProvidedEventGroup that is aggregated by the ProvidedSomeipServi-
ceInstance in the role eventGroup in the Manifest has been reached (see [PRS_-
SOMEIPSD_00134]). The SOME/IP event message shall use the unicast IP address
and the port taken from the IPv4/v6 Endpoint Option (see [PRS_SOMEIPSD_00304])
of the SOME/IP SubscribeEventgroup message ([SWS_CM_00205]) as destination
address and destination port for the transmission if this threshold has not been reached
(see [PRS_SOMEIPSD_00134]). In case multiple Endpoint Options have been con-
tained in the SOME/IP SubscribeEventgroup message, the one matching the selected
transport protocol (see [SWS_CM_10289]) shall be used.c(RS_CM_00204, RS_CM_-
00201, RS_SOMEIP_00004, RS_SOMEIP_00042)

[SWS_CM_10291] Content of the SOME/IP event message dThe entries in the
SOME/IP event message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

• In case of inactive Session Handling, see [SWS_CM_10240], the Session ID (see
[PRS_SOMEIP_00703]) is unused for event messages and thus shall be set to
0x0000 (see [PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]).

120 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

In case of active Session Handling, see [SWS_CM_10240], the Session ID
is used for event messages and thus shall be incremented (with proper wrap
around) upon every transmission of an event message (see [PRS_SOMEIP_-
00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_-
00925]).

The information whether the Session Handling is activated or deactivated for an
event can be derived from the sessionHandling attribute contained in the Ap-
SomeipTransformationProps that is referenced by the Transformation-
PropsToServiceInterfaceElementMapping that in turn points to the event.

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

• The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for event messages and thus (according to [PRS_SOMEIP_00925]) shall
be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the serialized Variable-
DataPrototype composed by the ServiceInterface in role event) accord-
ing to the SOME/IP serialization rules.

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004) The serialization rules
are explained in section 7.8.1.8.

[SWS_CM_10292] Checks for a received SOME/IP event message dUpon reception
of a SOME/IP event message the following checks shall be conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Use the Length (see [PRS_SOMEIP_00042]) being larger than 8 in combination
with the Message type (see [PRS_SOMEIP_00055]) being set to NOTIFICA-
TION to determine that the received SOME/IP message is actually an event.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Event ID (see [PRS_SOMEIP_00040]) matches the eventId at-
tribute of one of the SomeipEventDeployments of the SomeipServiceIn-
terfaceDeployment.

• Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.

121 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.
majorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP event message shall be
discarded and and the incident shall be logged (if logging is enabled for the
ara::com implementation).c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_-
SOMEIP_00019, RS_SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004,
RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10293] Identifying the right event dUsing the Service ID (see [PRS_-
SOMEIP_00040]) and the serviceInterfaceId attribute of the SomeipServi-
ceInterfaceDeployment element as well as the Event ID (see [PRS_SOMEIP_-
00040]) and the eventId attribute of the SomeipEventDeployments of the
SomeipServiceInterfaceDeployment, the right event shall be identified.c(RS_-
CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_-
00022)

[SWS_CM_10379] Silently discarding SOME/IP event messages for unsub-
scribed events dIf the event identified according to [SWS_CM_10293] does not have
an active subscription because the Subscribe method (see [SWS_CM_00141]) of
the specific Event class of the ServiceProxy class has not been called, or the
Unsubscribe method (see [SWS_CM_00151]) of the specific Event class of the
ServiceProxy class has been called, or the TTL of the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has expired, the received SOME/IP event
message shall be silently discarded (i.e., [SWS_CM_10294], [SWS_CM_10295], and
[SWS_CM_10296] shall not be performed).c(RS_CM_00204, RS_CM_00203, RS_-
SOMEIP_00004)

[SWS_CM_10296] Invoke receive handler dIn case a receive handler was registered
using the SetReceiveHandler method (see [SWS_CM_00181]) of the respective
Event class for the event determined according to [SWS_CM_10293] this registered
receive handler shall be invoked.c(RS_CM_00204, RS_CM_00203, RS_SOMEIP_-
00004)

[SWS_CM_10294] Deserializing the payload dBased on the event determined ac-
cording to [SWS_CM_10293] the Payload of the SOME/IP event message (i.e., the
serialized VariableDataPrototype composed by the ServiceInterface in role
event) shall be deserialized according to the SOME/IP serialization rules.c(RS_CM_-
00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00028) The serialization
rules are explained in section 7.8.1.8.

[SWS_CM_10295] Providing the received event data dThe deserialized pay-
load containing the event data shall be provided via the GetNewSamples (see
[SWS_CM_00701]) method of the respective Event class for the event determined

122 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

according to [SWS_CM_10293].c(RS_CM_00204, RS_CM_00202, RS_SOMEIP_-
00004)

[SWS_CM_10360]{DRAFT} Failures in sending a SOME/IP event message dIf the
sending of the SOME/IP event message fails locally (due to a network error which is
notified to the ara::com implementation), the ara::com implementation shall return
an error indicating "network binding failure" in the Result of the Send() method of the
respective Event class (see [SWS_CM_00162] and [SWS_CM_90437]).c(RS_CM_-
00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00005, RS_CM_00004)

7.8.1.5 Handling Triggers

[SWS_CM_10511]{DRAFT} Conditions for sending of a SOME/IP trigger dThe
sending of a SOME/IP trigger shall be requested by invoking the Send method of
the respective Trigger class (see [SWS_CM_00721]) if there is at least one ac-
tive subscriber and the offer of the service containing the trigger has not been
stopped (either because the TTL contained in the SOME/IP OfferService message
(see [SWS_CM_00203]) has expired or because the StopOfferService method
(see [SWS_CM_00111]) of the ServiceSkeleton class has been called). An ac-
tive subscriber is an adaptive application that has invoked the Subscribe method
of the respective Trigger class (see [SWS_CM_00723]) and has not canceled the
subscription by invoking the Unsubscribe method of the respective Trigger class
(see [SWS_CM_00810]) and where the subscription has not yet expired since the TTL
contained in the SOME/IP SubscribeEventgroup message (see [SWS_CM_00205])
has been exceeded.c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00005, RS_SOMEIP_00017)

Please note that in the Manifest configuration the SomeipServiceInterfaceDe-
ployment.eventDeployment is used to configure triggers in the same way as
events. The only difference is that in case of a trigger the SomeipEventDeployment
will reference the Trigger in the role trigger. Therefore the following specification
items described in chapter 7.8.1.4 are also valid for Triggers since a trigger defines
a special kind of an event.

• [SWS_CM_10288]

• [SWS_CM_10289]

• [SWS_CM_10290]

[SWS_CM_10512]{DRAFT} Content of the SOME/IP trigger dThe entries in the
SOME/IP trigger shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

123 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to 8

• The Client ID (see [PRS_SOMEIP_00702]) is unused for triggers (according to
[PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

• In case of inactive Session Handling, see [SWS_CM_10240], the Session ID (see
[PRS_SOMEIP_00703]) is unused for triggers and thus shall be set to 0x0000
(see [PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]).

In case of active Session Handling, see [SWS_CM_10240], the Session ID is
used for triggers and thus shall be incremented (with proper wrap around) upon
every transmission of an trigger (see [PRS_SOMEIP_00933], [PRS_SOMEIP_-
00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_00925]).

The information whether the Session Handling is activated or deactivated for a
trigger can be derived from the sessionHandling attribute contained in the Ap-
SomeipTransformationProps that is referenced by the Transformation-
PropsToServiceInterfaceElementMapping that in turn points to the trig-
ger.

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

• The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for triggers and thus (according to [PRS_SOMEIP_00925]) shall be set
to E_OK (0x00).

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004)

[SWS_CM_10513]{DRAFT} Checks for a received SOME/IP trigger dUpon recep-
tion of a SOME/IP trigger the following checks shall be conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Use the Length (see [PRS_SOMEIP_00042]) being equal to 8 in combination with
the Message type (see [PRS_SOMEIP_00055]) being set to NOTIFICATION to
determine that the received SOME/IP message is actually a trigger.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

124 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• Verify that the Event ID (see [PRS_SOMEIP_00040]) matches the eventId at-
tribute of one of the SomeipEventDeployments of the SomeipServiceIn-
terfaceDeployment.

• Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.
majorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP trigger shall be discarded and
and the incident shall be logged (if logging is enabled for the ara::com implementa-
tion).c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00019, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_SOMEIP_00008,
RS_SOMEIP_00014)

[SWS_CM_10514]{DRAFT} Identifying the right trigger dUsing the Service ID (see
[PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the SomeipSer-
viceInterfaceDeployment element as well as the Event ID (see [PRS_SOMEIP_-
00040]) and the eventId attribute of the SomeipEventDeployments of the
SomeipServiceInterfaceDeployment, the right trigger shall be identified.c(RS_-
CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_-
00022)

[SWS_CM_10515]{DRAFT} Silently discarding SOME/IP triggers for unsub-
scribed triggers dIf the trigger identified according to [SWS_CM_10514] does not
have an active subscription because the Subscribe method (see [SWS_CM_00723])
of the specific Trigger class of the ServiceProxy class has not been called, or the
Unsubscribe method (see [SWS_CM_00810]) of the specific Trigger class of the
ServiceProxy class has been called, or the TTL of the SOME/IP SubscribeTrigger-
group message (see [SWS_CM_00205]) has expired, the received SOME/IP trigger
shall be silently discarded (i.e., [SWS_CM_00226], and [SWS_CM_00249] shall not
be performed).c(RS_CM_00204, RS_CM_00203, RS_SOMEIP_00004)

[SWS_CM_10516]{DRAFT} Invoke receive handler dIn case a receive handler was
registered using the SetReceiveHandler method (see [SWS_CM_00249]) of the
respective Trigger class for the trigger determined according to [SWS_CM_10514]
this registered receive handler shall be invoked.c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004)

[SWS_CM_10517]{DRAFT} Failures in sending a SOME/IP trigger dIf the send-
ing of the SOME/IP trigger fails locally (due to a network error which is notified to
the ara::com implementation), the ara::com implementation shall return an er-
ror indicating "network binding failure" in the Result of the Send() method of the
respective Trigger class (see [SWS_CM_00721]).c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00005, RS_CM_00004)

125 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.8.1.6 Handling Method Calls

[SWS_CM_10297] Conditions for sending of a SOME/IP request message dThe
sending of a SOME/IP request message shall be requested by invoking the function
call operator (operator()) of the respective Method class (see [SWS_CM_00196])
if the providing service instance has not stopped offering the service (either because
the TTL contained in the SOME/IP OfferService message (see [SWS_CM_00203]) has
expired or because the StopOfferService method (see [SWS_CM_00111]) of the
ServiceSkeleton class has been called).c(RS_CM_00204, RS_CM_00212, RS_-
CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10441] Failures in sending of a SOME/IP request message dIf the send-
ing of the SOME/IP request message fails locally (in a way which is notified to the
ara::com implementation), the ara::com implementation shall make the Future
returned by the function call operator (operator()) of the respective Method class
(see [SWS_CM_00196]) ready according to [SWS_CM_10440].c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10298] Transport protocol for sending of a SOME/IP request mes-
sage dThe SOME/IP request message shall be transmitted using the transport pro-
tocol defined by the attribute SomeipServiceInterfaceDeployment.methodDe-
ployment.transportProtocol in the Manifest.c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00010)

[SWS_CM_10299] Source of a SOME/IP request message dThe SOME/IP re-
quest message shall use the unicast IP address defined in the Manifest by the
Ipv4Configuration/Ipv6Configuration attribute of the NetworkEndpoint
that is referenced (in role unicastNetworkEndpoint) by the EthernetCom-
municationConnector of a Machine which in turn is mapped to the Re-
quiredSomeipServiceInstance by means of a SomeipServiceInstance-
ToMachineMapping as source address for the transmission. The port number config-
ured via udpPort shall be used to derive the source port for the transmission in case
the selected transport protocol (see [SWS_CM_10298]) is UDP. If this port number is
configured to 0, an ephemeral port shall be used. If the port number is configured
to a value different from 0 exactly that port shall be used. The port number config-
ured via tcpPort shall be used to derive the source port for the transmission in case
the selected transport protocol (see [SWS_CM_10298]) is TCP. If this port number is
configured to 0, an ephemeral port shall be used. If the port number is configured to a
value different from 0 exactly that port shall be used.c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00010)

[SWS_CM_10300] Destination of a SOME/IP request message dThe SOME/IP re-
quest message shall use the unicast IP address and port taken from the IPv4/v6 End-
point Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP OfferService message
([SWS_CM_00203]) as destination address and destination port for the transmission.
In case multiple Endpoint Options have been contained in the SOME/IP OfferService
message, the one matching the selected transport protocol (see [SWS_CM_10298])

126 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

shall be used.c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_-
00006, RS_SOMEIP_00007)

[SWS_CM_10301] Content of the SOME/IP request message dThe entries in the
SOME/IP request message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
methodDeployment.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be set to a value that uniquely
identifies the client within a Machine. - This may be achived by dynamically
generating unique client IDs upon construction of the ServiceProxy.

• The Session ID (see [PRS_SOMEIP_00703]) shall be set to 0x0001 for the first
call of a particular method by a given client and shall be incremented by 1 af-
ter each call performed by this client for the respective method (see [PRS_-
SOMEIP_00533]). Once the Session ID reaches 0xFFFF, it shall wrap around
and start with 0x0001 again (see [PRS_SOMEIP_00521]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to RE-
QUEST_NO_RETURN (0x01) in case the ClientServerOperation referenced
by methodDeployment.method contains a fireAndForget attribute which is
set to true. The Message Type shall be set to REQUEST (0x00) otherwise.

• The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for request messages and thus (according to [PRS_SOMEIP_00920])
shall be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the ArgumentDataPro-
totypes of the ClientServerOperation with direction set to in and
inout serialized according to their order) according to the SOME/IP serialization
rules.

c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_SOMEIP_-
00006, RS_SOMEIP_00007, RS_SOMEIP_00003, RS_SOMEIP_00012, RS_-
SOMEIP_00021, RS_SOMEIP_00025, RS_SOMEIP_00041) The SOME/IP serializa-
tion rules are explained in section 7.8.1.8.

127 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10302] Checks for a received SOME/IP request message dUpon recep-
tion of a SOME/IP request message the following checks shall be conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to either RE-
QUEST_NO_RETURN (0x01) or REQUEST (0x00) to determine that the received
SOME/IP message is actually a SOME/IP request message.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
dId attribute of one of the SomeipMethodDeployments of the SomeipSer-
viceInterfaceDeployment.

• Verify that the Message Type (see [PRS_SOMEIP_00055]) is set to RE-
QUEST_NO_RETURN (0x01) in case the the ClientServerOperation ref-
erenced by methodDeployment.method of the SomeipMethodDeployment
with matching methodId attribute contains a fireAndForget attribute which is
set to true. Verify that the Message Type is set to REQUEST (0x00) otherwise.

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.
majorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP request message shall be dis-
carded and the incident shall be logged (if logging is enabled for the ara::com imple-
mentation).c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_-
SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00003, RS_SOMEIP_00019,
RS_SOMEIP_00021, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10303] Identifying the right method dUsing the Service ID (see [PRS_-
SOMEIP_00040]) and the serviceInterfaceId attribute of the SomeipServi-
ceInterfaceDeployment element as well as the Method ID (see [PRS_SOMEIP_-
00038]) and the methodId attribute of the SomeipMethodDeployments of the
SomeipServiceInterfaceDeployment, the right method shall be identified.c
(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_SOMEIP_-
00006, RS_SOMEIP_00007, RS_SOMEIP_00021)

[SWS_CM_10304] Deserializing the payload dBased on the method determined ac-
cording to [SWS_CM_10303] the Payload of the SOME/IP request message shall be
deserialized according to the SOME/IP serialization rules.c(RS_CM_00204, RS_CM_-
00212, RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_-
00028) The SOME/IP serialization rules are explained in section 7.8.1.8.

128 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10306] Invoke the method - event driven dIn case a MethodCall-
ProcessingMode of either kEvent or kEventSingleThread has been passed to
the constructor of the ServiceSkeleton (see [SWS_CM_00130]), the deserialized
payload containing the method data (i.e., method ID and input arguments) shall be
used to invoke the service method (see [SWS_CM_00191]) identified according to
[SWS_CM_10303] of the ServiceSkeleton class as a consequence to the reception
of the SOME/IP request message.c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10307] Invoke the method - polling dIn case a MethodCallProcess-
ingMode of kPoll has been passed to the constructor of the ServiceSkele-
ton (see [SWS_CM_00130]), the deserialized payload containing the method data
(i.e., method ID and input arguments) shall be used to invoke the service method
(see [SWS_CM_00191]) identified according to [SWS_CM_10303] of the Ser-
viceSkeleton class upon a call to the ProcessNextMethodCall method (see
[SWS_CM_00199]) of the ServiceSkeleton class.c(RS_CM_00204, RS_CM_-
00212, RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10447]{DRAFT} Dealing with unmodelled ApApplicationErrors dIf
the service method (see [SWS_CM_00191]) returnes an ApApplicationError
different from the modeled ones (i.e., different from the ones referenced by the
ClientServerOperation in role possibleApError or in role possibleApEr-
rorSet.apApplicationError),treating this as a violation according to [SWS_-
CORE_00003]. No message shall be sent back to the client.c(RS_CM_00204, RS_-
CM_00212, RS_CM_00213, RS_SOMEIP_00007)

[SWS_CM_10308] Conditions for sending of a SOME/IP response message dThe
sending of a SOME/IP response message shall be requested upon availability of
a result of the ara::core::Future, which either contains a valid value or an
ara::core::ErrorCode matching one of the possible ApApplicationErrors
referenced by the ClientServerOperation in the role possibleApError or
in role possibleApErrorSet.apApplicationError of the service method (see
[SWS_CM_10306] and [SWS_CM_10307]) in case the Message Type of the corre-
sponding SOME/IP request message was set to REQUEST (0x00).c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007)

[SWS_CM_10309] Transport protocol for sending of a SOME/IP response mes-
sage dThe SOME/IP response message shall be transmitted using the transport pro-
tocol defined by the attribute SomeipServiceInterfaceDeployment.methodDe-
ployment.transportProtocol in the Manifest.c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00010)

[SWS_CM_10310] Source of a SOME/IP response message dThe SOME/IP re-
sponse message shall use the unicast IP address defined in the Manifest by the
Ipv4Configuration/Ipv6Configuration attribute of the NetworkEndpoint

129 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

that is referenced (in role unicastNetworkEndpoint) by the EthernetCommu-
nicationConnector of a Machine which in turn is mapped to the Provid-
edSomeipServiceInstance by means of a SomeipServiceInstanceToMa-
chineMapping as source address for the transmission. The port number config-
ured via udpPort shall be used to derive the source port for the transmission in case
the selected transport protocol (see [SWS_CM_10309]) is UDP. If this port number is
configured to 0, an ephemeral port shall be used. If the port number is configured
to a value different from 0 exactly that port shall be used. The port number config-
ured via tcpPort shall be used to derive the source port for the transmission in case
the selected transport protocol (see [SWS_CM_10309]) is TCP. If this port number is
configured to 0, an ephemeral port shall be used. If the port number is configured to a
value different from 0 exactly that port shall be used.c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00010)

[SWS_CM_10311] Destination of a SOME/IP response message dThe SOME/IP
response message shall use the unicast source IP address and the source port of
the corresponding received SOME/IP request message (see [SWS_CM_10299]) as
destination address and destination port for the transmission.c(RS_CM_00204, RS_-
CM_00212, RS_CM_00213, RS_SOMEIP_00007)

[SWS_CM_10312] Content of the SOME/IP response message dThe entries in the
SOME/IP response message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
methodDeployment.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be copied from the correspond-
ing SOME/IP request message (see [SWS_CM_10301]).

• The Session ID (see [PRS_SOMEIP_00703]) shall be copied from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

130 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to ERROR (0x81)
in case the ClientServerOperation returned one of the possible ApAppli-
cationErrors referenced by the ClientServerOperation in role possi-
bleApError or in role possibleApErrorSet.apApplicationError1. The
Message Type shall be set to RESPONSE (0x80) otherwise.

• The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) shall
be set to E_NOT_OK (0x01) in case the ClientServerOperation raised one
of the possible ApApplicationErrors referenced by the ClientServerOp-
eration in role possibleApError or in role possibleApErrorSet.apAp-
plicationError. The Return Code shall be set to E_OK (0x00) otherwise.

• The Payload shall contain the serialized payload according to the SOME/IP se-
rialization rules. In case of NO raised ApApplicationError, the Argument-
DataPrototypes of the ClientServerOperation with direction set to
inout and out shall be serialized according to their order. – otherwise in case
of a raised ApApplicationError, which is represented as an ara::core:-
:ErrorCode contained in the ara::core::Result, the payload shall contain
the serialized application error according to [SWS_CM_10428].

c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_SOMEIP_-
00007, RS_SOMEIP_00003, RS_SOMEIP_00012, RS_SOMEIP_00021, RS_-
SOMEIP_00025, RS_SOMEIP_00041, RS_SOMEIP_00008) The SOME/IP serializa-
tion rules are explained in section 7.8.1.8.

[SWS_CM_10428] payload representing application error dA raised application er-
ror shall be represented by a SOME/IP union: The type field of the union shall be set
to 0x01. The element of the union with type field set to 0x01 shall be a SOME/IP struct
with the following elements in depicted order:

• an uint64 representing the ApApplicationErrorDomain.value, to which
the raised ApApplicationError belongs (ApApplicationError.errorDo-
main).

• an int32 representing the ApApplicationError.errorCode, which is repre-
sented on binding level as ara::core::ErrorCode::Value().

Additionally, following SOME/IP Transformation property values for the ApApplica-
tionError are hard coded:

• sizeOfUnionLengthField/=32bit

• sizeOfUnionTypeSelectorField/=8bit

• sizeOfStructLengthField/=16bit

1Note that this is in fact an incompatibility with the AUTOSAR classic platform (i.e., in cases where
an AUTOSAR adaptive platform server operates with an AUTOSAR classic platform client) which de-
fines that a Message Type of RESPONSE (0x80) shall be used in case an ApApplicationError is
raised. – Please consult the release notes of the AUTOSAR classic platform regarding details about this
incompatibility issue and how to create a project specific work-around.

131 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• sizeOfStringLengthField/=16bit

• byte-Order=network-byte-order(big endian)

• TLV for struct=no

• alignment=no

• String encoding=UTF-8

• String BOM=true

• String null-termination=true

c(RS_SOMEIP_00014)

[SWS_CM_10313] Checks for a received SOME/IP response message dUpon re-
ception of a SOME/IP response message the following checks shall be conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to either RE-
SPONSE (0x80) or ERROR (0x81) to determine that the received SOME/IP mes-
sage is actually a SOME/IP response message or error response message.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
dId attribute of one of the SomeipMethodDeployments of the SomeipSer-
viceInterfaceDeployment.

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.
majorVersion.

• Verify that the Client ID (see [PRS_SOMEIP_00702]) matches the client from the
corresponding SOME/IP request message (see [SWS_CM_10301]).

• The Session ID (see [PRS_SOMEIP_00703]) matches the client from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

If any of the above checks fails the received SOME/IP response message shall
be discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation).c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_-
CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00003, RS_SOMEIP_00012, RS_-
SOMEIP_00019, RS_SOMEIP_00021, RS_SOMEIP_00025, RS_SOMEIP_00041,
RS_SOMEIP_00008, RS_SOMEIP_00014)

132 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10314] Identifying the right method dUsing the Service ID (see [PRS_-
SOMEIP_00040]) and the serviceInterfaceId attribute of the SomeipServi-
ceInterfaceDeployment element as well as the Method ID (see [PRS_SOMEIP_-
00038]) and the methodId attribute of the SomeipMethodDeployments of the
SomeipServiceInterfaceDeployment, the right method shall be identified.c
(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_SOMEIP_-
00006, RS_SOMEIP_00007, RS_SOMEIP_00021)

[SWS_CM_10315] Discarding orphaned responses dIn case the method call has
been canceled according to [SWS_CM_00194] in the mean time, the received respon-
se/error messages of the canceled methods shall be ignored.c(RS_CM_00204, RS_-
CM_00212, RS_CM_00213)

[SWS_CM_10357] Distinguishing errors from normal responses dThe Message
Type (see [PRS_SOMEIP_00055]) and the Return Code (see [PRS_SOMEIP_00058]
and [PRS_SOMEIP_00191]) of the SOME/IP message shall be used to determine
whether the received SOME/IP message is a normal response (Message Type set
to RESPONSE (0x80) and Return Code set to 0x0) or an error response (Message Type
set to ERROR (0x81) or Return Code set to a value different from 0x0)2 w.r.t. the further
processing according to [SWS_CM_10316], [SWS_CM_10358], [SWS_CM_10429],
[SWS_CM_10430] and [SWS_CM_10317].c(RS_CM_00204, RS_SOMEIP_00008)

[SWS_CM_10316] Deserializing the payload - normal response messages dBased
on the method determined according to [SWS_CM_10314] the Payload of the response
message shall be deserialized according to the SOME/IP serialization rules. – There-
fore the ArgumentDataPrototypes with direction set to inout and out shall
be deserialized according to their order.c(RS_CM_00204, RS_CM_00212, RS_CM_-
00213, RS_SOMEIP_00007, RS_SOMEIP_00028) The SOME/IP serialization rules
are explained in section 7.8.1.8.

[SWS_CM_10442] Failures during deserialization of response messages dIn
case of failures during deserialization of response messages, the ara::com
implementation shall make the Future returned by the function call operator
(operator()) of the respective Method class (see [SWS_CM_00196]) ready accord-
ing to [SWS_CM_10440].c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_-
SOMEIP_00007, RS_SOMEIP_00028)

[SWS_CM_10358] Identifying the right application error in a message with Mes-
sage Type set to RESPONSE (0x80) dIf the Return Code see [PRS_SOMEIP_00058]
and [PRS_SOMEIP_00191]) contains a value larger than 0x1F the corresponding
value of the ApApplicationError.errorCode attribute shall be determined by sub-
tracting 0x1F from the Return Code value. Using this computed ApApplication-
Error.errorCode attribute value and the ApApplicationError.errorCode at-
tribute of all ApApplicationErrors referenced in role possibleApError by the

2The additional case of SOME/IP response messages with a Return Code (see [PRS_SOMEIP_-
00058] and [PRS_SOMEIP_00191]) set to a value different from 0x0 is in place for the sake of compati-
bility with the AUTOSAR classic platform (i.e., AUTOSAR adaptive platform client and AUTOSAR classic
platform server) which defines that a Message Type of RESPONSE (0x80) shall be used even in case
ApApplicationErrors are raised.

133 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

ClientServerOperation corresponding to the method determined according to
[SWS_CM_10314], the right application error shall be identified.

If this computed ApApplicationError.errorCode attribute value does not match
any of the ApApplicationError.errorCode attributes of all ApApplication-
Errors referenced in role possibleApError or in role possibleApErrorSet.
apApplicationError by the ClientServerOperation, the error response mes-
sage shall be discarded and the incident shall be logged (if logging is enabled for
the ara::com implementation), and the Future returned by the function call operator
(operator()) of the respective Method class (see [SWS_CM_00196]) shall be made
ready according to [SWS_CM_10440].

If this computed ApApplicationError.errorCode attribute value does match
more than one of the ApApplicationError.errorCode attributes of all ApAppli-
cationErrors referenced in role possibleApError or in role possibleApEr-
rorSet.apApplicationError by the ClientServerOperation, the error re-
sponse message shall be discarded and the incident shall be logged (if logging is en-
abled for the ara::com implementation), and the Future returned by the function call
operator (operator()) of the respective Method class (see [SWS_CM_00196]) shall
be made ready according to [SWS_CM_10440].c(RS_CM_00204, RS_SOMEIP_-
00008)

Note: This is for backward compatibility to old servers using RESPONSE (0x80) even in
case of application errors.

[SWS_CM_10429] Identifying the right application error in a message with Mes-
sage Type set to ERROR (0x81) dIf the Return Code see [PRS_SOMEIP_00058] and
[PRS_SOMEIP_00191]) contains a value equal to 0x01 (E_NOT_OK) then the cor-
responding ApApplicationError shall be identfied by deserializing the Payload of
the message according to the error payload format described in [SWS_CM_10428].c
(RS_CM_00204, RS_SOMEIP_00008)

[SWS_CM_10430] Handling invalid messages with Message Type set to ERROR
(0x81) dIf the Return Code see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191])
contains a value NOT equal to 0x01 or the value is equal to 0x01, but either the
contained payload does NOT comply with [SWS_CM_10428] or the application error
identified by the deserialized ApApplicationErrorDomain.value and ApAppli-
cationError.errorCode is not referenced in role possibleApError or in role
possibleApErrorSet.apApplicationError by the related ClientServerOp-
eration, the error response message shall be discarded, the incident shall be logged
(if logging is enabled for the ara::com implementation), and the Future returned
by the function call operator (operator()) of the respective Method class (see
[SWS_CM_00196]) shall be made ready according to [SWS_CM_10440].c(RS_CM_-
00204, RS_SOMEIP_00008)

[SWS_CM_10317] Making the Future ready dIn order to make the Future re-
turned by the function call operator (operator()) of the respective Method class
(see [SWS_CM_00196]) ready, depending on the type or received message (see
[SWS_CM_10357]) either the set_value operation (see [SWS_CORE_00345] and

134 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CORE_00346]) or the SetError (see [SWS_CORE_00347]) operation of
the Promise corresponding to this Future shall be invoked. This will unblock
any blocking get, wait, wait_for, and wait_until calls that have been per-
formed on this Future. – The set_value operation shall be invoked in case of
a received normal response message using the deserialized payload according to
[SWS_CM_10316] as an argument. The SetError operation shall be invoked in case
of a received error response message using the determined application error accord-
ing to [SWS_CM_10358] and [SWS_CM_10429] of type ara::core::ErrorCode
as an argument.c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215,
RS_SOMEIP_00007, RS_SOMEIP_00008)

[SWS_CM_10318] Invoke the notification function dIf a notification function has
been registered with the Future’s then method (see [SWS_CM_00197]), this noti-
fication function shall be invoked.c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_CM_00215, RS_SOMEIP_00007)

7.8.1.7 Handling Fields

[SWS_CM_10319] Conditions for sending of a SOME/IP event message dThe
sending of a SOME/IP event message shall be requested by invoking the Up-
date method of the respective Field class (see [SWS_CM_00119]) or if the Fu-
ture returned by the SetHandler registered with RegisterSetHandler (see
[SWS_CM_00116]) becomes ready if there is at least one active subscriber and the
offer of the service containing the event has not been stopped (either because the
TTL contained in the SOME/IP OfferService message (see [SWS_CM_00203]) has
expired or because the StopOfferService method (see [SWS_CM_00111]) of the
ServiceSkeleton class has been called). An active subscriber is an adaptive ap-
plication that has invoked the Subscribe method of the respective Field class (see
[SWS_CM_00120]) and has not canceled the subscription by invoking the Unsub-
scribe method of the respective Field class (see [SWS_CM_00120]) and where
the subscription has not yet expired since the TTL contained in the SOME/IP Sub-
scribeEventgroup message (see [SWS_CM_00205]) has been exceeded.c(RS_CM_-
00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_-
00005, RS_SOMEIP_00017, RS_SOMEIP_00018)

[SWS_CM_10320] Transport protocol for sending of a SOME/IP event message
dThe SOME/IP event message shall be transmitted using UDP if the threshold defined
by the multicastThreshold attribute of the SomeipProvidedEventGroup that
is aggregated by the ProvidedSomeipServiceInstance in the role eventGroup
in the Manifest has been reached (see [PRS_SOMEIPSD_00134]). The SOME/IP
event message shall be transmitted using the transport protocol defined by the
attribute SomeipServiceInterfaceDeployment.fieldDeployment.notifier.
transportProtocol in the Manifest if this threshold has not been reached (see
[PRS_SOMEIPSD_00802]).c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00009, RS_SOMEIP_00010)

135 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10321] Source of a SOME/IP event message dThe source ad-
dress and the source port of the SOME/IP event message shall set according
to [SWS_CM_10289].c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00009, RS_SOMEIP_00042)

[SWS_CM_10322] Destination of a SOME/IP event message dThe destination ad-
dress and the destination port of the SOME/IP event message shall be set according
to [SWS_CM_10290].c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00009, RS_SOMEIP_00042)

[SWS_CM_10323] Content of the SOME/IP event message dThe entries in the
SOME/IP event message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
fieldDeployment.notifier.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

• In case of inactive Session Handling, see [SWS_CM_10240], the Session ID (see
[PRS_SOMEIP_00703]) is unused for event messages and thus shall be set to
0x0000 (see [PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]).

In case of active Session Handling, see [SWS_CM_10240], the Session ID
is used for event messages and thus shall be incremented (with proper wrap
around) upon every transmission of an event message (see [PRS_SOMEIP_-
00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_-
00925]).

The information whether the Session Handling is activated or deactivated for an
event can be derived from the sessionHandling attribute contained in the Ap-
SomeipTransformationProps that is referenced by the Transformation-
PropsToServiceInterfaceElementMapping that in turn points to the event.

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

136 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for event messages and thus (according to [PRS_SOMEIP_00925]) shall
be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) according to the SOME/IP
serialization rules.

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_SOMEIP_00009)
The SOME/IP serialization rules are explained in section 7.8.1.8.

[SWS_CM_10324] Checks for a received SOME/IP event message dUpon recep-
tion of a SOME/IP event message the checks defined in [SWS_CM_10292] shall be
conducted. If any of the above checks fails the received SOME/IP event message shall
be discarded and and the incident shall be logged (if logging is enabled for the ara:-
:com implementation).c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00019, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_SOMEIP_00009,
RS_SOMEIP_00014)

[SWS_CM_10325] Identifying the right event dUsing the Service ID (see [PRS_-
SOMEIP_00040]) and the serviceInterfaceId attribute of the SomeipServi-
ceInterfaceDeployment element as well as the Event ID (see [PRS_SOMEIP_-
00040]) and the eventId attribute of the SomeipFieldDeployment.notifiers
of the SomeipServiceInterfaceDeployment, the right event shall be identi-
fied.c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00009, RS_SOMEIP_00022)

[SWS_CM_10380] Silently discarding SOME/IP event messages for unsub-
scribed events dIf the event identified according to [SWS_CM_10325] does not have
an active subscription because the Subscribe method (see [SWS_CM_00141]) of
the specific Field class of the ServiceProxy class has not been called, or the
Unsubscribe method (see [SWS_CM_00151]) of the specific Field class of the
ServiceProxy class has been called, or the TTL of the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has expired, the received SOME/IP event
message shall be silently discarded (i.e., [SWS_CM_10326], [SWS_CM_10327], and
[SWS_CM_10328] shall not be performed).c(RS_CM_00204, RS_CM_00203, RS_-
SOMEIP_00004, RS_SOMEIP_00009)

[SWS_CM_10328] Invoke receive handler dIn case a ReceiveHandler was reg-
istered using the SetReceiveHandler method (see [SWS_CM_00120]) of the re-
spective Field class for the event determined according to [SWS_CM_10325] this
registered receive handler shall be invoked.c(RS_CM_00204, RS_CM_00203, RS_-
SOMEIP_00004, RS_SOMEIP_00009)

[SWS_CM_10326] Deserializing the payload dBased on the event determined ac-
cording to [SWS_CM_10325] the Payload of the SOME/IP event message (i.e., the se-
rialized Field composed by the ServiceInterface in role field) shall be deseri-
alized according to the SOME/IP serialization rules.c(RS_CM_00204, RS_CM_00201,

137 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00028) The SOME/IP seri-
alization rules are explained in section 7.8.1.8.

[SWS_CM_10327] Providing the received event data dThe deserialized pay-
load containing the event data shall be provided via the GetNewSamples (see
[SWS_CM_00701]) method of the respective Field class for the event determined
according to [SWS_CM_10325].c(RS_CM_00204, RS_CM_00202, RS_SOMEIP_-
00004, RS_SOMEIP_00009)

[SWS_CM_10329] Conditions for sending of a SOME/IP request message dThe
sending of a SOME/IP request message shall be requested by invoking the Set or Get
method of the respective Field class (see [SWS_CM_00112] and [SWS_CM_00113])
if the providing service instance has not stopped offering the service (either because
the TTL contained in the SOME/IP OfferService message (see [SWS_CM_00203]) has
expired or because the StopOfferService method (see [SWS_CM_00111]) of the
ServiceSkeleton class has been called).c(RS_CM_00212, RS_CM_00213, RS_-
CM_00217, RS_CM_00218, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10443] Failures in sending of a SOME/IP request message dIf the
sending of the SOME/IP request message fails locally (in a way which is notified
to the ara::com implementation), the ara::com implementation shall make the
Future returned by the Set or Get method of the respective Field class (see
[SWS_CM_00112] and [SWS_CM_00113]) ready according to [SWS_CM_10440].c
(RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218, RS_SOMEIP_-
00007, RS_SOMEIP_00009)

[SWS_CM_10330] Transport protocol for sending of a SOME/IP request message
dThe SOME/IP request message for the Set method shall be transmitted using the
transport protocol defined by the attribute SomeipServiceInterfaceDeployment.
fieldDeployment.set.transportProtocol in the Manifest. The SOME/IP re-
quest message for the Get method shall be transmitted using the transport protocol de-
fined by the attribute SomeipServiceInterfaceDeployment.fieldDeployment.
get.transportProtocol respectively.c(RS_CM_00204, RS_CM_00212, RS_CM_-
00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10331] Source of a SOME/IP request message dThe source ad-
dress and the source port of the SOME/IP request message shall be set accord-
ing to [SWS_CM_10299].c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_-
SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10332] Destination of a SOME/IP request message dThe destination
address and the destination port of the SOME/IP request message shall be set
according to [SWS_CM_10300].c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10333] Content of the SOME/IP request message dThe entries in the
SOME/IP request message shall be as follows:

138 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) for the Set method shall be derived
from the Manifest where the SomeipServiceInterfaceDeployment element
defines the fieldDeployment.set.methodId. The Method ID for the Get
method shall be derived from the Manifest where the SomeipServiceInter-
faceDeployment element defines the fieldDeployment.get.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be set to a value that uniquely
identifies the client within a Machine. – This may be achieved by dynamically
generating unique client IDs upon construction of the ServiceProxy.

• The Session ID (see [PRS_SOMEIP_00703]) shall be set to 0x0001 for the first
call of the particular method by a given client and shall be incremented by 1
after each call performed by this client for the respective method (see [PRS_-
SOMEIP_00533]). Once the Session ID reaches 0xFFFF, it shall wrap around
and start with 0x0001 again (see [PRS_SOMEIP_00521]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to REQUEST (0x00).

• The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for request messages and thus (according to [PRS_SOMEIP_00920])
shall be set to E_OK (0x00).

• The Payload for the request message for the Set method shall contain the seri-
alized payload (i.e., the serialized Field composed by the ServiceInterface
in role field) according to the SOME/IP serialization rules. The Payload for the
request message for the Get method will be empty.

c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_SOMEIP_-
00007, RS_SOMEIP_00009, RS_CM_00217, RS_CM_00218, RS_SOMEIP_00003,
RS_SOMEIP_00012, RS_SOMEIP_00021, RS_SOMEIP_00025, RS_SOMEIP_-
00041) The SOME/IP serialization rules are explained in section 7.8.1.8.

[SWS_CM_10334] Checks for a received SOME/IP request message dUpon recep-
tion of a SOME/IP request message the following checks shall be conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

139 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to REQUEST
(0x00) to determine that the received SOME/IP message is actually a SOME/IP
request message.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
dId attribute of one of the SomeipMethodDeployments of the SomeipSer-
viceInterfaceDeployment.

• Verify that the Message Type (see [PRS_SOMEIP_00055]) is set to REQUEST
(0x00).

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.
majorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP request message shall be dis-
carded and the incident shall be logged (if logging is enabled for the ara::com imple-
mentation).c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_-
SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003, RS_SOMEIP_00019,
RS_SOMEIP_00021, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10335] Identifying the right method dUsing the Service ID (see [PRS_-
SOMEIP_00040]) and the serviceInterfaceId attribute of the SomeipServi-
ceInterfaceDeployment element as well as the Method ID (see [PRS_SOMEIP_-
00038]) and the methodId attribute of the SomeipFieldDeployment.sets and
SomeipFieldDeployment.gets of the SomeipServiceInterfaceDeployment,
the right method shall be identified.c(RS_CM_00204, RS_CM_00200, RS_CM_-
00212, RS_CM_00213, RS_CM_00217, RS_CM_00218, RS_SOMEIP_00007, RS_-
SOMEIP_00009, RS_SOMEIP_00021)

[SWS_CM_10336] Deserializing the payload dBased on the method determined ac-
cording to [SWS_CM_10335] the Payload of the SOME/IP request message shall be
deserialized according to the SOME/IP serialization rules.c(RS_CM_00204, RS_CM_-
00212, RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_-
00028) The SOME/IP serialization rules are explained in section 7.8.1.8.

[SWS_CM_10338] Invoke the registered set/get handlers - event driven dIn case
a MethodCallProcessingMode of either kEvent or kEventSingleThread has
been passed to the constructor of the ServiceSkeleton (see [SWS_CM_00130]),
the deserialized payload containing the method data (i.e., method ID and input ar-
guments) shall be used to invoke a registered SetHandler resp. GetHandler

140 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

(see [SWS_CM_00114] and [SWS_CM_00116]) of the Field class as a conse-
quence to the reception of the SOME/IP request message.c(RS_CM_00204, RS_-
CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221, RS_SOMEIP_00007,
RS_SOMEIP_00009)

[SWS_CM_10339] Invoke the registered set/get handlers - polling dIn case a
MethodCallProcessingMode of kPoll has been passed to the constructor of
the ServiceSkeleton (see [SWS_CM_00130]), the deserialized payload contain-
ing the method data (i.e., method ID and input arguments) shall be used to in-
voke a registered SetHandler resp. GetHandler (see [SWS_CM_00114] and
[SWS_CM_00116]) of the Field class upon a call to the ProcessNextMethodCall
method (see [SWS_CM_00199]) of the ServiceSkeleton class.c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221, RS_SOMEIP_-
00007, RS_SOMEIP_00009)

[SWS_CM_10340] Conditions for sending of a SOME/IP response message
dThe sending of a SOME/IP response message shall be requested upon the re-
turn of a registered SetHandler resp. GetHandler (see [SWS_CM_00114]
and [SWS_CM_00116]).c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_-
CM_00220, RS_CM_00221, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10341] Transport protocol for sending of a SOME/IP response mes-
sage dThe SOME/IP response message for the Set method shall be transmit-
ted using the transport protocol defined by the attribute SomeipServiceInter-
faceDeployment.fieldDeployment.set.transportProtocol in the Manifest.
The SOME/IP response message for the Get method shall be transmitted using
the transport protocol defined by the attribute SomeipServiceInterfaceDeploy-
ment.fieldDeployment.get.transportProtocol respectively.c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_-
SOMEIP_00010)

[SWS_CM_10342] Source of a SOME/IP response message dThe source ad-
dress and the source port of the SOME/IP response message shall be set accord-
ing to [SWS_CM_10310].c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_-
SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10343] Destination of a SOME/IP response message dThe destination
address and the destination port of the SOME/IP response message shall be set
according to [SWS_CM_10311].c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10344] Content of the SOME/IP response message dThe entries in the
SOME/IP response message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) for the Set method shall be derived
from the Manifest where the SomeipServiceInterfaceDeployment element

141 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

defines the fieldDeployment.set.methodId. The Method ID for the Get
method shall be derived from the Manifest where the SomeipServiceInter-
faceDeployment element defines the fieldDeployment.get.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be copied from the correspond-
ing SOME/IP request message (see [SWS_CM_10301]).

• The Session ID (see [PRS_SOMEIP_00703]) shall be copied from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to RESPONSE
(0x80).

• The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) shall
be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) which has either been pro-
vided by the value of the Future returned by the registered SetHandler resp.
GetHandler or obtained internally) according to the SOME/IP serialization rules.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003, RS_SOMEIP_-
00012, RS_SOMEIP_00021, RS_SOMEIP_00025, RS_SOMEIP_00041, RS_-
SOMEIP_00008) The SOME/IP serialization rules are explained in section 7.8.1.8.

[SWS_CM_10345] Checks for a received SOME/IP response message dUpon re-
ception of a SOME/IP response message the checks defined in [SWS_CM_10313]
shall be conducted. If any of the above checks fails the received SOME/IP event
message shall be discarded and the incident shall be logged (if logging is en-
abled for the ara::com implementation).c(RS_CM_00204, RS_CM_00212, RS_-
CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003, RS_-
SOMEIP_00012, RS_SOMEIP_00019, RS_SOMEIP_00021, RS_SOMEIP_00025,
RS_SOMEIP_00041, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10346] Identifying the right method dUsing the Service ID (see [PRS_-
SOMEIP_00040]) and the serviceInterfaceId attribute of the SomeipServi-
ceInterfaceDeployment element as well as the Method ID (see [PRS_SOMEIP_-
00038]) and the methodId attribute of the SomeipFieldDeployment.sets and
SomeipFieldDeployment.gets of the SomeipServiceInterfaceDeployment,

142 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

the right method shall be identified.c(RS_CM_00204, RS_CM_00200, RS_CM_-
00212, RS_CM_00213, RS_CM_00217, RS_CM_00218, RS_SOMEIP_00007, RS_-
SOMEIP_00009, RS_SOMEIP_00021)

[SWS_CM_10347] Discarding orphaned responses dOrphaned responses shall be
discarded according to [SWS_CM_10315].c(RS_CM_00204, RS_CM_00212, RS_-
CM_00213)

[SWS_CM_10348] Deserializing the payload dBased on the method determined ac-
cording to [SWS_CM_10346] the Payload of the SOME/IP response message shall be
deserialized according to the SOME/IP serialization rules.c(RS_CM_00204, RS_CM_-
00212, RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_-
00028) The SOME/IP serialization rules are explained in section 7.8.1.8.

[SWS_CM_10444] Failures during deserialization of response messages dIn
case of failures during deserialization of response messages, the ara::com imple-
mentation shall make the Future returned by the Set or Get method of the re-
spective Field class (see [SWS_CM_00112] and [SWS_CM_00113]) ready accord-
ing to [SWS_CM_10440].c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_-
SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00028)

[SWS_CM_10349] Making the Future ready dIn order to make the Future returned
by the Set or Get method of the respective Field class (see [SWS_CM_00113] and
[SWS_CM_00112]) ready, the set_value operation (see [SWS_CORE_00345] and
[SWS_CORE_00346]) of the Promise corresponding to this Future shall be invoked
using the deserialized payload as an argument. This will unblock any blocking get,
wait, wait_for, and wait_until calls that have been performed on this Future.c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215, RS_SOMEIP_-
00007, RS_SOMEIP_00009)

[SWS_CM_10350] Invoke the notification function dAny registered notification func-
tion shall be invoked according to [SWS_CM_10318].c(RS_CM_00204, RS_CM_-
00212, RS_CM_00213, RS_CM_00215, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10363]{DRAFT} Failures in sending a SOME/IP event message dIf the
sending of the SOME/IP event message generated by a field update fails locally (due to
a network error which is notified to the ara::com implementation), the ara::com imple-
mentation shall return an error indicating "network binding failure" in the Result of the
Update() method of the respective Field class (see [SWS_CM_00119]).c(RS_CM_-
00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00005, RS_CM_00004)

7.8.1.8 Serialization of Payload

[SWS_CM_10034] Serialization of Payload dThe serialization of the payload shall
be based on the definition of the ServiceInterface of the data.c(RS_CM_00204,
RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00005, RS_SOMEIP_00028)

143 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10169] Missing parameters dTo allow migration the deserialization shall
ignore parameters attached to the end of previously known parameter list.c(RS_CM_-
00204, RS_CM_00202)

This means: Parameters that were not defined in the ServiceInterface used to
generate or parametrize the deserialization code but exist at the end of the serialized
data will be ignored by the deserialization.

[SWS_CM_10259] Seralization Padding dAfter the serialized data of a variable data
length DataPrototype a padding for alignment purposes shall be added for the con-
figured alignment (see [SWS_CM_10260]) if the variable data length DataPrototype
is not the last element in the serialized data stream.c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211) This requirement does not apply for the serialization
of extensible structs and methods (see chapter 7.8.1.8.4).

[SWS_CM_10260] Setting the alignment for a variable data length data el-
ement dIf SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps. alignment is set for a variable data length data element, the
value of SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps.alignment shall define the alignment. This requirement does not ap-
ply for the serialization of extensible structs and methods.c(RS_CM_00204, RS_CM_-
00204, RS_CM_00201, RS_CM_00202, RS_CM_00211) (see chapter 7.8.1.8.4)

[SWS_CM_11262] Missing alignment for a variable data length data ele-
ment dIf SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps.alignment is not set for a variable data length data element, the value
of TransformationPropsToServiceInterfaceElementMapping.transfor-
mationProps.alignment shall define the alignment. This requirement does not
apply for the serialization of extensible structs and methods.c(RS_CM_00204, RS_-
CM_00201, RS_CM_00202, RS_CM_00211) (see chapter 7.8.1.8.4)

[SWS_CM_11263] Precedence of alignment settings for a variable data length
data element dIf SomeipDataPrototypeTransformationProps.someipTrans-
formationProps.alignment and TransformationPropsToServiceInter-
faceElementMapping.transformationProps.alignment are both not set for a
variable data length data element, no alignment shall be applied.c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10263] Padding for a fixed length data element dAfter serialized fixed
data length data elements, the SOME/IP network binding shall never add automatically
a padding for alignment.c(RS_CM_00201, RS_CM_00211)

Note:
If the following data element shall be aligned, a padding element of according size
needs to be explicitly inserted into the CppImplementationDataType.

[SWS_CM_10037] Alignment calculation dAlignment shall always be calculated from
start of SOME/IP message.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_-
CM_00211)

144 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

This attribute defines the memory alignment. The SOME/IP network binding does not
try to automatically align parameters but aligns as specified. The alignment is currently
constraint to multiple of 1 Byte to simplify code generators.

SOME/IP payload should be placed in memory so that the SOME/IP payload is suit-
able aligned. For infotainment ECUs an alignment of 8 Bytes (i.e. 64 bits) should be
achieved, for all ECU at least an alignment of 4 Bytes should be achieved. An efficient
alignment is highly hardware dependent.

[SWS_CM_10016] Deserializing of exceeded unexpected data dIf more data than
expected shall be deserialized, the unexpected data shall be discarded. The known
fraction shall be considered.c(RS_CM_00204, RS_CM_00202)

[SWS_CM_10017] Deserializing incomplete data belonging to a field dIf less data
than expected shall be deserialized and the data to be deserialized belong to a Field,
the initValue should be used if it is defined. Otherwise the data shall be discarded
and the incident shall be logged (if logging is enabled for the ara::com implementa-
tion).c(RS_CM_00204, RS_CM_00202)

In the following the serialization of different parameters is specified.

7.8.1.8.1 Basic Data Types

[SWS_CM_10036] Serialization of supported StdCppImplementationDataTypes
dThe primitive StdCppImplementationDataTypes defined in [13] which shall be
supported for serialization are listed in Table 7.1.c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

Type Description Size [bit] Remark
boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)
std::uint8_t unsigned Integer 8
std::uint16_t unsigned Integer 16
std::uint32_t unsigned Integer 32
std::uint64_t unsigned Integer 64
std::int8_t signed Integer 8
std::int16_t signed Integer 16
std::int32_t signed Integer 32
std::int64_t signed Integer 64
float floating point number 32 IEEE 754 binary32 (Single Preci-

sion)
double floating point number 64 IEEE 754 binary64 (Double Preci-

sion)

Table 7.1: Primitive StdCppImplementationDataTypes supported for serialization

The Byte Order is specified common for all parameters by byteOrder of ApSomeip-
TransformationProps.

145 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.8.1.8.2 Enumeration Data Types

[SWS_CM_10361] Serializing Enumeration Data Type dEnumeration Data
Type shall be serialized according to [SWS_CM_10036] based on their underlying
primitive StdCppImplementationDataType (i.e., the Primitive Cpp Imple-
mentation Data Type that is defined as the underlying type of the enumeration as
defined in [SWS_LBAP_00027])c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

7.8.1.8.3 Scale Linear And Texttable Data Types

[SWS_CM_10391] Serializing Scale Linear And Texttable Data Type
dScale Linear And Texttable Data Type shall be serialized according to
[SWS_CM_10361] based on the Enumeration Data Type they were specified
with (see [SWS_LBAP_00031]).c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

7.8.1.8.4 Structured Data Types (structs)

[SWS_CM_10042] Serializing a struct Data Type dA Structure Cpp Implemen-
tation Data Type shall be serialized in order of depth-first traversal.c(RS_CM_-
00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

The SOME/IP network binding doesn’t automatically align parameters of a struct.

Insert reserved/padding elements into the AUTOSAR data type if needed for alignment,
since the SOME/IP network binding shall not automatically add such padding.

So if for example a struct includes a std::uint8_t and a std::uint32_t, they are just written
sequentially into the buffer. This means that there is no padding between the uint8
and the first byte of the std::uint32_t; therefore, the std::uint32_t might not be aligned.
So the system designer has to consider to add padding elements to the data type to
achieve the required alignment or set it globally.

Warning about unaligned structs or similar shall not be done in the SOME/IP network
binding but only in the tool chain used to generate the SOME/IP network binding.

The SOME/IP network binding does not automatically insert dummy/padding elements.

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of structs. The length
field of a struct describes the number of bytes of the struct. This allows for extensible
structs which allow better migration of interfaces.

[SWS_CM_00252] Missing size of length field for structs dIf attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StructLengthField is set to a value equal to 0, no length field shall be inserted
in front of the serialized struct for which the ApSomeipTransformationProps is

146 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

defined via SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10252] dIf attribute SomeipDataPrototypeTransformationProps.
someipTransformationProps.sizeOfStructLengthField is set to a value
greater 0, a length field shall be inserted in front of the serialized struct for
which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps.c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10268] Setting the size length field for structs dIf attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.byte-
Order is set this attribute shall define the byte order for the length field that shall
be inserted in front of the serialized struct for which the ApSomeipTransfor-
mationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_00253] Default size of length field for structs dIf attribute Transfor-
mationPropsToServiceInterfaceElementMapping.transformationProps.
sizeOfStructLengthField is set to a value equal to 0 and attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.size-
OfStructLengthField is not set, no length field shall be inserted in front of
the serialized struct for which the ApSomeipTransformationProps is defined
via SomeipDataPrototypeTransformationProps.someipTransformation-
Props.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00254] Precedence when setting size of length field for structs dIf at-
tribute TransformationPropsToServiceInterfaceElementMapping.trans-
formationProps.sizeOfStructLengthField is set to a value greater 0
and attribute SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps.sizeOfStructLengthField is not set, a length field shall be in-
serted in front of the serialized struct for which the ApSomeipTransformation-
Props is defined via SomeipDataPrototypeTransformationProps.someip-
TransformationProps.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_-
CM_00211)

[SWS_CM_10269] Setting the byte order of the length field for structs dIf at-
tribute TransformationPropsToServiceInterfaceElementMapping.trans-
formationProps.byteOrder is set and attribute SomeipDataPrototypeTrans-
formationProps.someipTransformationProps.byteOrder is not set, the at-
tribute TransformationPropsToServiceInterfaceElementMapping.trans-
formationProps.byteOrder shall define the byte order for the length field that
shall be inserted in front of the serialized struct for which the ApSomeipTrans-
formationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

147 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00255] Default size of length field for structs dIf attribute Trans-
formationPropsToServiceInterfaceElementMapping.transformation-
Props.sizeOfStructLengthField is not set and attribute SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOf-
StructLengthField is not set, no length field shall be inserted in front of the
serialized struct.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10270] Default byte order for the length field of structs dIf at-
tribute TransformationPropsToServiceInterfaceElementMapping.trans-
formationProps.byteOrder is not set and attribute SomeipDataPrototype-
TransformationProps.someipTransformationProps.byteOrder is not set, a
byte order of mostSignificantByteFirst (i.e., big endian) shall be used for the
length field that shall be inserted in front of the serialized associative struct.c(RS_-
CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10253] Default data type for the length field of structs dIf SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StructLengthField defines the data type for the length field of a struct, the data
shall be:

• uint8 if sizeOfStructLengthField equals 1

• uint16 if sizeOfStructLengthField equals 2

• uint32 if sizeOfStructLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00256] Default data type for the length field of structs dIf Transfor-
mationPropsToServiceInterfaceElementMapping.transformationProps.
sizeOfStructLengthField defines the the data type for the length field of a struct,
the data shall be:

• uint8 if sizeOfStructLengthField equals 1

• uint16 if sizeOfStructLengthField equals 2

• uint32 if sizeOfStructLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10218] Scope of length field value for structs dThe serializing SOME/IP
network binding shall write the size (in bytes) of the serialized struct (without the size
of the length field) into the length field of the struct.c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10219] Length greater than expected struct length dIf the length is
greater than the expected length of a struct (as specified in the data type definition) a
deserializing SOME/IP network binding shall only interpret the expected data and skip
the unexpected.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

148 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP network binding can use the supplied length information.

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint32 a

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

Figure 7.29: Serialization of Structs without Length Fields (Example)

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint16 lf1

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

uint32 a

uint16 lf2

uint16 lf3

Figure 7.30: Serialization of Structs with Length Fields (Example)

[SWS_CM_01046] Definition of tlvDataIdDefinition dRegarding the definition
of tlvDataIdDefinition see [TPS_MANI_01097] and [constr_1594] for details.c
(RS_CM_00204, RS_CM_00205, RS_SOMEIP_00050)

149 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.8.1.8.5 Structured Datatypes and Arguments with Identifier and optional
Members

To achieve enhanced forward and backward compatibility, an additional Data ID can
be added in front of struct members or method arguments. The receiver then can
skip unknown members/arguments, i.e. where the Data ID is unknown. New member-
s/arguments can be added at arbitrary positions when Data IDs are transferred in the
serialized byte stream.

Structs are modeled in the Manifest using CppImplementationDataType of
category STRUCTURE and members are represented by CppImplementation-
DataTypeElements. Method arguments are represented by ArgumentDataProto-
types.

The assignment of Data IDs is modeled in the Manifest in the context of Transforma-
tionPropsToServiceInterfaceElementMapping. Refer to [6] for more details.

Moreover, the usage of Data IDs allows describing structs with optional members.
Whether a member is optional or not, is defined in the Manifest using the attribute
CppImplementationDataTypeElement.isOptional.

Whether an optional member is actually present in the struct or not, is to be determined
during runtime. This is realized in the Adaptive Platform using the ara::core::-
Optional class template (see 8.1.2.5.2 Optional Data Types).

In addition to the Data ID, a wire type encodes the datatype of the following member.
Data ID and wire type are encoded in a so-called tag.

For more details, please refer to [5].

[SWS_CM_90443] Wire type for non-dynamic data types dIf Transforma-
tionPropsToServiceInterfaceElementMapping.transformationProps.
isDynamicLengthFieldSize is set to false or is not defined, the serializer
shall use wire type 4 for serializing complex types and shall use the fixed size
length fields. The size is defined in TransformationPropsToServiceInter-
faceElementMapping.transformationProps.sizeOfStructLengthField,
sizeOfArrayLengthField or sizeOfStringLengthField.c(RS_CM_00204)

[SWS_CM_90444] Wire type for dynamic data types dIf TransformationProp-
sToServiceInterfaceElementMapping.transformationProps.isDynami-
cLengthFieldSize is set to true, the transformer shall use wire types 5,6,7 for
serializing complex types and shall chose the size of the length field according to this
wire type.c(RS_CM_00204)

[SWS_CM_90445] A deserializer shall always be able to handle the wire types
4, 5, 6 and 7 dA deserializer shall always be able to handle the wire types 4, 5, 6
and 7 independent of the setting of TransformationPropsToServiceInter-
faceElementMapping.transformationProps.isDynamicLengthFieldSize.c
(RS_CM_00204)

150 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_90446] Data ID dIf a Data ID is defined for an ArgumentDataPrototype
or CppImplementationDataType by means of TransformationPropsToSer-
viceInterfaceElementMapping.TlvDataIdDefinition.id, a tag shall be in-
serted in the serialized byte stream.c(RS_CM_00204)

Note: regarding existence of Data IDs, refer to [6].

Note: regarding existence of length field, refer to [5].

Rationale: The length field is required to skip unknown members/arguments during
deserialization.

[SWS_CM_90451] Byte order for the length field of serialized structs dTransfor-
mationPropsToServiceInterfaceElementMapping.transformationProps.
byteOrder shall define the byte order for the length field.c(RS_CM_00204)

[SWS_CM_90452] Default byte order for the length field of structs dTransfor-
mationPropsToServiceInterfaceElementMapping.transformationProps.
byteOrder is not defined, a byte order of mostSignificantByteFirst shall be used for
the length field.c(RS_CM_00204)

Regarding structure members and serialization examples, refer to [5].

7.8.1.8.6 Strings

[SWS_CM_10053] Strings encoding dStrings shall be encoded using Unicode and
terminated with a "\0"-character.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10054] Supported encoding dDifferent Unicode encoding shall be sup-
ported including UTF-8, UTF-16BE, and UTF-16LE. Since these encoding have a dy-
namic length of bytes per character, the maximum length in bytes is up to three times
the length of characters in UTF-8 plus 1 Byte for the termination with a "\0" or two
times the length of the characters in UTF-16 plus 2 Bytes for a "\0". UTF-8 character
can be up to 6 bytes and an UTF-16 character can be up to 4 bytes.c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211, RS_AP_00136)

[SWS_CM_10285] Responsibility of proper string encoding dThe application pro-
vides the string always in the UTF-8 encoding. The SOME/IP binding has to re-encode
the data to the on-the-wire encoding that is configured by ApSomeipTransforma-
tionProps.stringEncoding.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211, RS_AP_00136)

[SWS_CM_10055] UTF-16LE and UTF-16BE terminating bytes dUTF-16LE and
UTF-16BE strings shall be zero terminated with a "\0" character. This means they shall
end with (at least) two 0x00 Bytes.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

151 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10056] UTF-16LE and UTF-16BE strings length dUTF-16LE and UTF-
16BE strings shall have an even length.c(RS_CM_00204, RS_CM_00201, RS_CM_-
00202, RS_CM_00211)

[SWS_CM_10057] Odd UTF-16LE and UTF-16BE string length dFor UTF-16LE and
UTF-16BE strings having an odd length the last byte shall be silently removed by the re-
ceiving SOME/IP network binding.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10248] Odd UTF-16LE and UTF-16BE string length dIn case of UTF-
16LE and UTF-16BE strings having an odd length, after removal of the last byte, the
two bytes before shall be 0x00 bytes (termination) for a string to be valid.c(RS_CM_-
00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10058] String start byte(BOM) dAll strings shall always start with a
Byte Order Mark (BOM).c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_-
00211)

For the specification of BOM, see [14] and [15]. Please note that the BOM is used in
the serialized strings to achieve compatibility with Unicode.

[SWS_CM_10459] Legacy string serialization dThe legacy string serialization shall
be triggered if a Unicode is detected and attribute ApSomeipTransformation-
Props.implementsLegacyStringSerialization is true.c(RS_CM_00204, RS_-
CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10059] BOM checking by SOME/IP network binding implementation
dThe receiving SOME/IP network binding implementation shall check the BOM and
handle a missing BOM or a malformed BOM as an error by discarding the complete
payload and logging the incident (if logging is enabled for the ara::com implementa-
tion).c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10060] BOM addition dThe BOM shall be added by the SOME/IP sending
network binding implementation.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10242] Model representation of UTF-8 Strings dAn UTF-8 String shall
be represented by an CppImplementationDataType

• with category equal to STRING

• which may be mapped to an ApplicationDataType with category equal to
STRING using a DataTypeMap

• with ApplicationPrimitiveDataType.swDataDefProps.swTextProps.
baseType.baseTypeDefinition.baseTypeEncoding set to UTF-8 in case
that the DataTypeMap is defined.

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211, RS_AP_00136)

Please note that according to [constr_1674] the only supported encoding of CppIm-
plementationDataType with category equal to STRING is UTF-8.

152 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

According to SOME/IP serialized strings start with a length field of 8, 16 or 32 bit which
preceeds the actual string data. The value of this length field holds the length of the
string including the BOM and any string termination in units of bytes.

[SWS_CM_10271] Default size of length field for strings dIf attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.size-
OfStringLengthField is set to a value greater 0, a length field shall be inserted
in front of the serialized string for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10272] Byte order of length field for strings dIf attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.byte-
Order is set this attribute shall define the byte order for the length field that shall
be inserted in front of the serialized string for which the ApSomeipTransfor-
mationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10273] Size of length field for strings dIf attribute Transforma-
tionPropsToServiceInterfaceElementMapping.transformationProps.
sizeOfStringLengthField is set to a value greater 0 and attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.size-
OfStringLengthField is not set, a length field shall be inserted in front of the
serialized struct for which the ApSomeipTransformationProps is defined via
SomeipDataPrototypeTransformationProps.someipTransformation-
Props.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10274] Setting byte order for the length field of strings dIf at-
tribute TransformationPropsToServiceInterfaceElementMapping.trans-
formationProps.byteOrder is set and attribute SomeipDataPrototypeTrans-
formationProps.someipTransformationProps.byteOrder is not set, the at-
tribute TransformationPropsToServiceInterfaceElementMapping.trans-
formationProps.byteOrder shall define the byte order for the length field that
shall be inserted in front of the serialized string for which the ApSomeipTrans-
formationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10275] Default size of length field for strings dIf attribute Transfor-
mationPropsToServiceInterfaceElementMapping.transformationProps.
sizeOfStringLengthField is not set or set a value of 0 and attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.size-
OfStringLengthField is not set or set to a value of 0, a length field of 4 bytes with
the data type uint32 shall be inserted in front of the serialized string.c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

153 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10276] Default byte order for the length field of strings dIf at-
tribute TransformationPropsToServiceInterfaceElementMapping.trans-
formationProps.byteOrder is not set and attribute SomeipDataPrototype-
TransformationProps.someipTransformationProps.byteOrder is not set, a
byte order of mostSignificantByteFirst (i.e., big endian) shall be used for the
length field that shall be inserted in front of the serialized string.c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10277] Data type of the length field for strings dIf SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StringLengthField defines the the data type for the length field of a string, the
data shall be:

• uint8 if sizeOfStringLengthField equals 1

• uint16 if sizeOfStringLengthField equals 2

• uint32 if sizeOfStringLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10278] Data type of the length field for strings dIf Transforma-
tionPropsToServiceInterfaceElementMapping.transformationProps.
sizeOfStringLengthField defines the the data type for the length field of a string,
the data shall be:

• uint8 if sizeOfStringLengthField equals 1

• uint16 if sizeOfStringLengthField equals 2

• uint32 if sizeOfStringLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10245] Serialization of strings dSerialization of strings shall consist of the
following steps:

1. Add the Length Field - The value of the length field shall be filled with the number
of bytes needed for the string (i.e., the result of ara::core::String::length
()), including the BOM and any string termination that needs to be added.

2. Appending BOM right after the length field according to the configured Ap-
SomeipTransformationProps.byteOrder, if BOM is not already available
in the first 3 (UTF-8) bytes of the to be serialized array containing the string. If
the BOM is already present, simply copy the BOM into the output buffer.

3. Perform the re-encoding from UTF-8 to UTF-16 if the on-the-wire encoding is
configured as UTF-16 by ApSomeipTransformationProps.stringEncod-
ing. The re-encoding from UTF-8 to UTF-16BE shall be done if the configured
ApSomeipTransformationProps.byteOrder is set to mostSignificant-
ByteFirst. The re-encoding rom UTF-8 to to UTF-16LE shall be done if the

154 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

configured ApSomeipTransformationProps.byteOrder is set to mostSig-
nificantByteLast.

4. Copying the string data into the output buffer.

5. Termination of the string with 0x00(UTF-8) or 0x0000 (UTF-16) if not terminated
yet by appending 0x00(UTF-8) or 0x0000 (UTF-16).

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211, RS_AP_00136)

[SWS_CM_10247]{DRAFT} Deserialization of strings dDeserialization of strings
shall consist of the following steps:

1. Check whether the string starts with a BOM. If not, the complete payload shall be
discarded and the incident shall be logged (if logging is enabled for the ara::com
implementation).

2. Check whether BOM has the same value as ApSomeipTransformation-
Props.byteOrder. If not, the complete payload shall be discarded and the
incident shall be logged.

3. Remove the BOM

4. Silently discard the last byte of the string in case of an UTF-16 string with odd
length (in bytes)

5. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, the complete payload shall be discarded and the incident shall be logged.

6. Perform the re-encoding from UTF-16 to UTF-8 if the on-the-wire encoding is
configured as UTF-16 by ApSomeipTransformationProps.stringEncod-
ing. The re-encoding from UTF-16BE to UTF-8 shall be done if the configured
ApSomeipTransformationProps.byteOrder is set to mostSignificant-
ByteFirst. The re-encoding from UTF-16LE to UTF-8 shall be done if the
configured ApSomeipTransformationProps.byteOrder is set to mostSig-
nificantByteLast.

7. Copy the string data (i.e., everything but the BOM and any string termination
added during serialization).

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211, RS_AP_00136)

7.8.1.8.7 Vectors and arrays

SOME/IP supports arrays with static and dynamic length but there is no definition of
vectors on this abstraction level. Therefore, vectors are mapped to arrays with dynamic
length. The SOME/IP specification requires to add a length field of 8, 16 or 32 bit in
front of data structures with dynamic length. The length field of arrays describes the
total number of bytes. Note that this section uses only the term array which can also
be used to realize vectors.

155 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00257] Missing size of array length field dIf attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeO-
fArrayLengthField is set to a value equal to 0, no length field shall be inserted
in front of the serialized array for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps. – Note that omitting the length field by setting someipTransforma-
tionProps.sizeOfArrayLengthField to 0 is only allowed for arrays with static
length (i.e., fixed length arrays) though (see also [constr_3447]).c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10256] Size of the length field for arrays dIf attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeO-
fArrayLengthField is set to a value greater 0, a length field shall be inserted
in front of the serialized array for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10279] Setting byte order for the length field of strings dIf attribute
SomeipDataPrototypeTransformationProps.someipTransformation-
Props.byteOrder is set this attribute shall define the byte order for the length field
that shall be inserted in front of the serialized array for which the ApSomeipTrans-
formationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_00258] Default size of the length field for arrays dIf attribute
TransformationPropsToServiceInterfaceElementMapping.transforma-
tionProps.sizeOfArrayLengthField is set to a value equal to 0 and attribute
SomeipDataPrototypeTransformationProps.someipTransformation-
Props.sizeOfArrayLengthField is not set, no length field shall be inserted in
front of the serialized array for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps. – Note that omitting the length field by setting someipTransforma-
tionProps.sizeOfArrayLengthField to 0 is only allowed for arrays with static
length (i.e., fixed length arrays) though (see also [constr_3447]).c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00259] Setting size of the length field for arrays dIf attribute
TransformationPropsToServiceInterfaceElementMapping.transforma-
tionProps.sizeOfArrayLengthField is set to a value greater 0 and attribute
SomeipDataPrototypeTransformationProps.someipTransformation-
Props.sizeOfArrayLengthField is not set, a length field shall be inserted in front
of the serialized array for which the ApSomeipTransformationProps is defined
via SomeipDataPrototypeTransformationProps.someipTransformation-
Props.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

156 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10280] Setting the byte order for size of length field for arrays dIf at-
tribute TransformationPropsToServiceInterfaceElementMapping.trans-
formationProps.byteOrder is set and attribute SomeipDataPrototypeTrans-
formationProps.someipTransformationProps.byteOrder is not set, the at-
tribute TransformationPropsToServiceInterfaceElementMapping.trans-
formationProps.byteOrder shall define the byte order for the length field that
shall be inserted in front of the serialized array for which the ApSomeipTrans-
formationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10258] Default size of the length field for arrays dIf attribute Transfor-
mationPropsToServiceInterfaceElementMapping.transformationProps.
sizeOfArrayLengthField is not set and attribute SomeipDataPrototype-
TransformationProps.someipTransformationProps.sizeOfArrayLength-
Field is not set, a length field of 4 bytes with the data type uint32 shall be inserted
in front of the serialized array.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10281] Byte order of length field for arrays dIf attribute Transfor-
mationPropsToServiceInterfaceElementMapping.transformationProps.
byteOrder is not set and attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.byteOrder is not set, a byte order of
mostSignificantByteFirst (i.e., big endian) shall be used for the length field
that shall be inserted in front of the serialized array.c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10257] Datatype for the length field of arrays dIf SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr-
rayLengthField defines the the data type for the length field of a array, the data
shall be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00260] Datatype for the length field of arrays dIf Transforma-
tionPropsToServiceInterfaceElementMapping.transformationProps.
sizeOfArrayLengthField defines the the data type for the length field of a array,
the data shall be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

157 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10076] Serializing arrays dA array shall be serialized as the concatenation
of the following elements:

• the length indicator which holds the length (in bytes) of the following array

• the array which contains the serialized elements of the array

where the size of the length field shall be determined as specified by ApSomeip-
TransformationProps.sizeOfArrayLengthField which applies to the arrayc
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10234] Vector representation dA vector is represented in adaptive plat-
form by a CppImplementationDataType with the category VECTOR. The payload
is defined by a templateArgument that points with the templateType reference to
the data type of elements that are contained in the vector. Note that vectors are real-
ized with dynamic sized arrays on SOME/IP level.c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10235] Array representation dAn array is represented in adaptive plat-
form by an CppImplementationDataType with the category ARRAY. The payload
is defined by a templateArgument that points with the templateType reference to
the data type of elements that are contained in the array. Note that CppImplemen-
tationDataType with the category ARRAY are realized with fixed length arrays on
SOME/IP level.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

In case of nested arrays, the same scheme applies.

[SWS_CM_10222] Setting the size of the length field for arrays dThe serializing
SOME/IP network binding shall write the size (in bytes) of the serialized array (without
the size of the length field) into the length field.c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

The layout of arrays with dynamic length is shown in 7.31 and Figure 7.32 where L_1
and L_2 denote the length in bytes. The serialization of one- and multi-dimensional
dynamic length arrays is described in the next two subchapters.

One-dimensional

A one-dimensional array carries a number of elements of the same type.

Element_1

…

element size e

n [byte]

Length n

8,16 or 32 bit

Element_2 Element_3 Element_n

Figure 7.31: One-dimensional arrays (Example)

158 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10070] Serializing one-dimentional array dA one-dimensional array shall
be serialized by concatenating the arrays elements in order.c(RS_CM_00204, RS_-
CM_00201, RS_CM_00202, RS_CM_00211)

Multi-dimensional

[SWS_CM_10072] Serializing multi-dimentional array dThe serialization of multi-
dimensional arrays shall happen in depth-first order.c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

Element_a[1][j…k_1]

L_1 [byte]

Length n

8,16 or 32 bit

E1,1 E1,2 E1,k_1 …
L_1

Element_a[2][j…k_2]

E1,1 E1,2 E1,k_2 …
L_2 …

L_2 [byte]

n [byte]

Figure 7.32: Multi-dimensional arrays (Example)

In case of multi-dimensional dynamic length arrays, each array (serialized as SOME/IP
array) needs to have its own length field. See L_1 and L_2 in Figure 7.32.

7.8.1.8.8 Associative Maps

Associative map is modeled as StdCppImplementationDataType with category
ASSOCIATIVE_MAP in the Manifest. As stated in the AUTOSAR Manifest Specifica-
tion [6] the “natural” language binding in C++ for an associative map is ara::core:-
:Map<key_type,value_type> where key_type is the data type used for the key
of a map element and value_type is the data type for the value of a map element.
Hereby key_type and value_type are derived from defined CppTemplateArgu-
ments aggregated by the Associative Map Cpp Implementation Data Type.
Please see [SWS_LBAP_00023] for more details.

[SWS_CM_10261] Serialization of an associative map dAs far as serialization is
concerned the serialized representation of an associative map shall consist of the fol-
lowing parts without any intermediate padding:

• Length field: A length field describing the size of the associative map excluding
the length field itself in units of bytes.

• Elements: The individual map elements themselves

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

159 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10262] Insertion of an associative map length field dIf attribute
SomeipDataPrototypeTransformationProps.someipTransformation-
Props.sizeOfArrayLengthField is set to a value greater 0, a length field shall
be inserted in front of the serialized associative map for which the ApSomeipTrans-
formationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps. – Note that omitting the length field by setting
someipTransformationProps.sizeOfArrayLengthField to 0 is only allowed
for arrays with static length (i.e., fixed length arrays) though (see also [constr_3447]).c
(RS_CM_00204, RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10282] Setting the byte order for size of the length field for associa-
tive maps dIf attribute SomeipDataPrototypeTransformationProps.someip-
TransformationProps.byteOrder is set this attribute shall define the byte order
for the length field that shall be inserted in front of the serialized associative map
for which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps.c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00264] Setting the size of the length field for associative maps dIf at-
tribute TransformationPropsToServiceInterfaceElementMapping.trans-
formationProps.sizeOfArrayLengthField is set to a value greater 0
and attribute SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps.sizeOfArrayLengthField is not set, a length field shall be in-
serted in front of the serialized associative map for which the ApSomeipTrans-
formationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps. – Note that omitting the length field by setting
someipTransformationProps.sizeOfArrayLengthField to 0 is only allowed
for arrays with static length (i.e., fixed length arrays) though (see also [constr_3447]).c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10283] Setting the byte order for size of the length field for associative
maps dIf attribute TransformationPropsToServiceInterfaceElementMap-
ping.transformationProps.byteOrder is set and attribute SomeipDataProto-
typeTransformationProps.someipTransformationProps.byteOrder is not
set, the attribute TransformationPropsToServiceInterfaceElementMap-
ping.transformationProps.byteOrder shall define the byte order for the length
field that shall be inserted in front of the serialized associative map for which the Ap-
SomeipTransformationProps is defined via SomeipDataPrototypeTransfor-
mationProps.someipTransformationProps.c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10267] Insertion of an associative map length field dIf attribute
TransformationPropsToServiceInterfaceElementMapping.transforma-
tionProps.sizeOfArrayLengthField is not set and attribute SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr-
rayLengthField is not set, a length field of 4 bytes with the data type uint32 shall be
inserted in front of the serialized associative map.c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

160 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10284] Default byte order for size of the length field for associative
maps dIf attribute TransformationPropsToServiceInterfaceElementMap-
ping.transformationProps.byteOrder is not set and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.byte-
Order is not set, a byte order of mostSignificantByteFirst (i.e., big endian)
shall be used for the length field that shall be inserted in front of the serialized
associative map.c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10264] Size of the associative map length field dIf SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr-
rayLengthField defines the the data type for the length field of an associative map,
the data shall be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00265] Datatype for the length field of associative maps dIf Trans-
formationPropsToServiceInterfaceElementMapping.transformation-
Props.sizeOfArrayLengthField defines the the data type for the length field of
an associative map, the data shall be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10265] Serialization of associative map elements dThe individual ele-
ments of the associative map shall be serialized as a sequence of key-value pairs with-
out any additional intermediate padding. Hereby the key attribute of an element shall
be serialized first followed by the value attribute of this element.c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

Table 7.2 illustrates the serialized form of an example map consisting of 3 elements
where each element consists of a key-value pair of type uint16 each. The sizeO-
fArrayLengthField is set to 4 bytes.

length field = 4 Bytes
key0 value0
key1 value1
key2 value2

Table 7.2: Example of a serialized associative map

161 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10266] Applicability of mandatory padding after variable length data
elements dAny mandatory padding (see [TPS_MANI_03107] and [TPS_MANI_-
03073]) after variable length data elements (see [[TPS_MANI_03103], [TPS_MANI_-
03104], [TPS_MANI_03117] and [TPS_MANI_03105]) shall be applied after the se-
rialized key attribute as well as after the value attribute in case the respective at-
tributes is typed by a variable length data type. This requirement does not apply for
the serialization of extensible structs and methods.c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211) (see chapter 7.8.1.8.4)

Note: Adhering to [SWS_CM_10266] is essential to ensure interoperability with the
AUTOSAR classic platform where maps may be modelled as ApplicationArray-
DataType with a dynamicArraySizeProfile of VSA_LINEAR where each array
element is an ApplicationRecordDataType of variable length and thus [TPS_-
SYST_02126] applies to the individual ApplicationRecordElements.

7.8.1.8.9 Variants

A Variant (type-safe union) can contain different types of elements. For example, if one
defines a Variant of type uint8 and type uint16, the Variant shall carry an element of
uint8 or uint16. When using different types of elements the alignment of subsequent
parameters may be distorted. To resolve this, padding might be needed.

[SWS_CM_10088] Serialization layout of Variants dThe default serialization layout
of Variants are specified by the union data type in SOME/IP which is shown in Table
7.3.c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

Length field (optional)
Type field
Element including padding [sizeof(padding) = length - sizeof(element)]

Table 7.3: Default serialization layout of unions (Variants)

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of unions (Variants). The
length field of a union (Variant) describes the number of bytes in the union (Variant).

This allows the deserializing network binding to quickly calculate the position where the
data after the union (Variant) begin in the serialized data stream. This gets necessary
if the union (Variant) contains data which are larger than expected, for example if a
struct was extended with appended new members and only the first "old" members are
deserialized by the SOME/IP network binding.

[SWS_CM_10254] Variant length field dIf attribute sizeOfUnionLengthField of
ApSomeipTransformationProps is set to a value greater 0, a length field shall be
inserted in front of the serialized Variant for which the ApSomeipTransformation-
Props is defined.c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10255] Variant length field data type dIf ApSomeipTransformation-
Props.sizeOfUnionLengthField is present for a Variant specified the data type of

162 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

the length field for the Variant shall be determined by the value of ApSomeipTrans-
formationProps.sizeOfUnionLengthField:

• uint8 if sizeOfUnionLengthField equals 1

• uint16 if sizeOfUnionLengthField equals 2

• uint32 if sizeOfUnionLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10226] Serialized Variant size dThe serializing SOME/IP network binding
shall write the size (in bytes) of the serialized Variant (including padding bytes but
without the size of the length field and type field) into the length field of the Variant. This
requirement does not apply for the serialization of extensible structs and methods.c
(RS_CM_00201, RS_CM_00202, RS_CM_00211) (see chapter 7.8.1.8.4)

[SWS_CM_10227] Length greater than expected Variant length dIf the length is
greater than the expected length of a Variant a deserializing SOME/IP network binding
shall only interpret the expected data and skip the unexpected.c(RS_CM_00201, RS_-
CM_00202, RS_CM_00211)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP network binding can use the supplied length information.

The type field describes the type of the element. The length of the type field can be 32,
16, 8 or 0 bits.

[SWS_CM_10250] Data type for the length field of variants dThe data type of the
type field of a Variant shall be determined using the ara::core::Variant::index
() member function. The Variant template class is specified in [16].c(RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10251] Value of the variant type field dThe value of the type field shall be
set to the value which is returned by the ara::core::Variant::index() member
function and incremented by 1.
Note: The ara::core::Variant::index() member function returns a zero-based
index of the element hold in the Variant. A negative index represents a valueless
Variant.c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10098] Possible values of the variant type field dPossible values of the
type field are defined by the elements of the Variant. The types are encoded in ascend-
ing order starting with 1 reusing the index encoding format of the Variant incremented
by 1. The encoded value 0 is reserved for the NULL type - i.e. a valueless (empty)
Variant.c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10099] Serialization of variant types dThe element is serialized depend-
ing on the type in the type field. This also defines the length of the data. All bytes
behind the data that are covered by the length, are padding. The deserializer shall skip
the padding bytes by calculating the required number according to the formula given in
[SWS_CM_10088].c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

163 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10230]{DRAFT} Data type for size of union field dIf ApSomeipTrans-
formationProps.sizeOfUnionTypeSelectorField is present for a specified
Variant, the data type of the type selector field for the Variant shall be determined by the
value of ApSomeipTransformationProps.sizeOfUnionTypeSelectorField:

• uint8 if sizeOfUnionTypeSelectorField equals 1

• uint16 if sizeOfUnionTypeSelectorField equals 2

• uint32 if sizeOfUnionTypeSelectorField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.8.1.8.9.1 Example: Variant of uint8/uint16 both padded to 32 bit

In this example a length of the length field is specified as 32 bits. The Variant shall
support a uint8 and a uint16 as elements. Both are padded to the 32 bit boundary
(length=4 Bytes).

A uint8 will be serialized like this:

Length = 4 Bytes
Type = 1
uint8 Padding 0x00 Padding 0x00 Padding 0x00

A uint16 will be serialized like this:

Length = 4 Bytes
Type = 2
uint16 Padding 0x00 Padding 0x00

7.8.1.8.10 Segmentation of SOME/IP messages

[SWS_CM_10454] event message segmentation dIf the SomeipEventDe-
ployment aggregates SomeipEventDeployment.maximumSegmentLength the
SOME/IP event message shall be transmitted/received using segmentation as de-
scribed in [PRS_SOMEIP_00720] and following. If a SomeipEventDeployment.
separationTime is provided, it shall be considered on sender side.c(RS_SOMEIP_-
00051)

[SWS_CM_10455] method request message segmentation dIf the Someip-
MethodDeployment aggregates SomeipMethodDeployment.maximumSeg-
mentLengthRequest the SOME/IP request message shall be transmitted/re-
ceived using segmentation as described in [PRS_SOMEIP_00720] and following. If
a SomeipMethodDeployment.separationTimeRequest is provided, it shall be
considered on sender side.c(RS_SOMEIP_00051)

164 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10456] Message segmentation for the get and set methods of fields
dFor the get and set methods aggregated by a SomeipFieldDeployment
[SWS_CM_10455] shall apply. For the notifier aggregated by a SomeipField-
Deployment [SWS_CM_10454] shall apply.c(RS_SOMEIP_00051)

[SWS_CM_10457] Small messages segmentation dFor messages that would fit into
one segment no segmentation (i.e. no TP-Header) shall be applied.c(RS_SOMEIP_-
00051)

[SWS_CM_10445]{DRAFT} SomeIpBurstTransmission dIf parameter
SomeipEventDeployment.burstSize, SomeipMethodDeployment.burst-
SizeRequest or SomeipMethodDeployment.burstSizeResponse is set to a
value > 1 and the corresponding message is segmented no separationTime shall be
applied for this number of segments. If not configured, SeparationTime will be
applied between all frames.c(RS_SOMEIP_00051)

Note: If burstSize is set on receiver side it can be used to optimize buffer handling
for reception of bursts.

7.8.1.9 Marker Interface

On the AUTOSAR adaptive platform there are use-cases for the utilization of a Servi-
ceInterface that does not have any method, event, or field defined. In other words, the
existence of a ServiceInterface by itself represents a valid semantics that has a value
on its own.

A service instance that corresponds to such a ServiceInterface may be offered with the
mere intention to signal that the ECU that provides the service instance is becoming
ready for something. So the SOME/IP Service Discovery mechanism is used to indi-
cate the readiness. But for the communication not SOME/IP but a different protocol will
be used.

For example an ECU may indicate with a service offer that it is ready to being diag-
nosed. A tester could then take the existence of the offer as an indication to initiate a
connection to the respective ECU.

[SWS_CM_10458] Handling of an ServiceInterface that does not contain any
events, methods, or fields dIf a SomeipServiceInterfaceDeployment is de-
fined for a ServiceInterface that does not contain any events, methods, or fields and
a ProvidedSomeipServiceInstance is defined in the ServiceInstanceMani-
fest that points to the SomeipServiceInterfaceDeployment in the role servi-
ceInterface then:

• the ServiceInterface shall be offered over SOME/IP as defined by
[SWS_CM_00203] which means that the Endpoint Option shall include
the IP-Address, Port Number and Protocol as defined by the Provided-
SomeipServiceInstance

165 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• the Server shall not create a UDP/TCP socket and shall not bind any socket to
the configured server address

c(RS_CM_00101)

7.8.2 Signal-Based Network binding

The applications on the adaptive platform communicate with each other in a service-
oriented manner. When exchanging information with software components executed
on an AUTOSAR classic platform which make use of signal-based communication,
a conversion between this signal-based communication and the service-oriented com-
munication needs to take place. Hereby the signals of a received signal-based commu-
nication is being made available as elements of a provided ServiceInterface. The
signals of a sent signal-based communication are being made available as elements of
a required ServiceInterface. The conversion between signal-based communica-
tion and service-oriented communication may be performed by a software component
on an AUTOSAR classic platform gateway ECU or by an adaptive application on an
AUTOSAR adaptive platform Machine.

There are two approaches how the signal-based information is made available at the
adaptive AUTOSAR Machine:

• Network binding (see section 7.8.2.1)

• Network binding (see section 7.8.2.2)

7.8.2.1 Signal-Based SOME/IP Network binding

The Signal-Based SOME/IP network binding is currently a specialization of the
SOME/IP network binding and many aspects of the SOME/IP network binding are
re-used. Instead of replicating many specification items from the SOME/IP network
binding the approach of this Signal-Based SOME/IP network binding chapter is to
replicate the chapter structure. Specification items which are applicable to the Sig-
nal-Based SOME/IP network binding are just referenced, specification items which
are NOT applicable to the Signal-Based SOME/IP network binding are explicitly ex-
cluded (via reference), and changed specification items are marked and the origin is
referenced.

One major difference between the SOME/IP network binding and the Signal-Based
SOME/IP network binding is the serialization technology. While the SOME/IP network
binding only supports SOME/IP serialized payload the Signal-Based SOME/IP net-
work binding supports the signal-based serialization of Classic platform COM-Stack as
well as the SOME/IP serialization of payload (in order to support mixed use-cases).

[SWS_CM_11269]{DRAFT} Definition of serialization technology dThe serializa-
tion technology is defined by the attribute SomeipEventDeployment.serializer.
If the attribute is set to signalBased then the signal-service-translation is responsible

166 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

for the handling of the serialization. If the attribute is set to someip then the SOME/IP
serializer is responsible for the handling of the serialization.c(RS_CM_00204)

See also chapter 7.8.2.1.8 and chapter 7.8.1.8.

In figure 7.33 an example of a mixed serialized service is illustrated. The event x is
defined to use someip serializer while event y is defined to use signalBased
serializer. Both are part of one service and share the service discovery and gen-
eral event handling.

Adaptive Platform Foundation

(Virtual) Machine / Hardware

Communication Management

Adaptive Application

Ethernet Driver

TCP/IP

SOME/IP
Transport

IPC
Transport

IPC

Dispatching and Discovery

ara::com API

C++ Language Binding

Communication Binding

H PDUSOME/IP Serialized BytesH

ara::com service API:
- OfferService();

- x.Send(dataX);

- y.Send(dataY);

SomeIpEventDeployment y

- eventId = 79

- serialization=signalBased

SomeIpEventDeployment x

- eventId = 98

- serialization=someip

dataX dataY

SOME/IP serializer signal-service-translation

H PDUSOME/IP Serialized BytesH

x.Send(dataX) y.Send(dataY)

Figure 7.33: Example serialization settings

The modeling of the signal-based communication and the mapping between the indi-
vidual elements of a ServiceInterface to the corresponding ISignalTrigger-
ings is defined in the chapter “Signal-based communication” in [6].

[SWS_CM_10174]{DRAFT} Mix of signal-based and SOME/IP communication dA
combination of signal-based network binding and SOME/IP network binding shall be
possible in a way to support the reception of a mix of signal-based communication and
SOME/IP communication within a single UDP datagram or a single TCP stream on one
UDP/TCP socket. Such a mix can occur when using [17] with enabled PDU-header
option on the sender side.c(RS_CM_00204)

This allows to define the transport of messages from several services on the same
socket, regardless of the serialization setting. Thus messages using the pure SOME/IP
network binding can be transported together with messages using the signal-based
network binding on the same socket.

167 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Also one service - which consists of events with different serialization technologies (i.e.
someip and signalBased) - shall be able to be transported on the same socket (this
is covered by the signal-based network binding).

Based on [SWS_CM_10000]:

[SWS_CM_80001]{DRAFT} dThe signal-based network binding shall implement the
SOME/IP Service Discovery Protocol defined in [12] and the SOME/IP Protocol defined
in [5] (except for the serialization of signal-based payload).c(RS_CM_00204, RS_CM_-
00205, RS_CM_00004)

[SWS_CM_10013] applies.

This means that Length and Type fields shall be always in network byte order.

Based on [SWS_CM_10172]:

[SWS_CM_80003]{DRAFT} Byte order for signal-based network binding with
SOME/IP serialization dIf SomeipEventDeployment.serializer is set to someip
then
the byte order of the parameters inside the payload shall be defined by byteOrder
of ApSomeipTransformationProps.c(RS_CM_00204, RS_SOMEIP_00026, RS_-
CM_00004)

[SWS_CM_80004]{DRAFT} Byte order for signal-based network binding with
signal-based serialization dIf SomeipEventDeployment.serializer is set to
signalBased then
the byte order of the parameters inside the payload shall be defined by the respective
packingByteOrder of ISignalToIPduMapping and
by the packingByteOrder of PduToFrameMapping.c(RS_CM_00004)

[SWS_CM_10240] applies.

7.8.2.1.1 Service Discovery

The section 7.8.1.1 is fully applicable to the signal-based network binding.

7.8.2.1.2 Accumulation of messages

Based on [SWS_CM_10387]:

[SWS_CM_80017]{DRAFT} Data accumulation for UDP data transmission dTo al-
low for the transmission of multiple messages (SOME/IP event, SOME/IP method re-
quest, SOME/IP method response, signal-based event, and signal-based field notifier)
within a single UDP datagram, data accumulation for UDP data transmission shall be
supported.c(RS_CM_00204, RS_CM_00004)

[SWS_CM_10388] applies.

168 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Based on [SWS_CM_10389]:

[SWS_CM_80019]{DRAFT} Configuration of a data accumulation on a Pro-
videdSomeipServiceInstance for transmission over UDP dFor a Provided-
SomeipServiceInstance all method responses and events for which the udp-
CollectionTrigger is set to never shall be aggregated in a buffer until a trigger
arrives that starts the data transmission.

The following trigger options shall be supported:

• a message needs to be transmitted for which the udpCollectionTrigger is
set to always.

• the udpCollectionBufferTimeout is reached for one of the message al-
ready aggregated in the buffer.

• the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

• adding the method response or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

c(RS_CM_00204, RS_CM_00004)

Based on [SWS_CM_10390]:

[SWS_CM_80020]{DRAFT} Configuration of a data accumulation on a Re-
quiredSomeipServiceInstance for transmission over UDP dFor a Required-
SomeipServiceInstance all method requests for which the udpCollection-
Trigger is set to never shall be aggregated in a buffer until a trigger arrives that
starts the data transmission.

The following trigger options shall be supported:

• a message needs to be transmitted for which the udpCollectionTrigger is
set to always.

• the udpCollectionBufferTimeout is reached for one of the message al-
ready aggregated in the buffer.

• the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

• adding the method request or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

c(RS_CM_00204, RS_CM_00004)

In the following sections the term "sending of a message shall be requested" will
be used to describe the fact that the sending of the message is requested but

169 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

may be deferred due to data accumulation for UDP data transmission according to
[SWS_CM_10388], [SWS_CM_80019], and [SWS_CM_80020].

7.8.2.1.3 Execution context of message reception actions

The section 7.8.1.3 is fully applicable to the signal-based network binding.

7.8.2.1.4 Handling Events

Based on [SWS_CM_10287]:

[SWS_CM_80021]{DRAFT} Conditions for sending of an event message dThe
sending of an event message shall be requested by invoking the Send method of
the respective Event class (see [SWS_CM_00162] and [SWS_CM_90437]) if there
is at least one active subscriber and the offer of the service containing the event has
not been stopped (either because the TTL contained in the SOME/IP OfferService
message (see [SWS_CM_00203]) has expired or because the StopOfferService
method (see [SWS_CM_00111]) of the ServiceSkeleton class has been called). An
active subscriber is an adaptive application that has invoked the Subscribe method
of the respective Event class (see [SWS_CM_00141]) and has not canceled the sub-
scription by invoking the Unsubscribe method of the respective Event class (see
[SWS_CM_00151]) and where the subscription has not yet expired since the TTL
contained in the SOME/IP SubscribeEventgroup message (see [SWS_CM_00205])
has been exceeded.c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00005, RS_SOMEIP_00017, RS_CM_00004)

Based on [SWS_CM_10288]:

[SWS_CM_80022]{DRAFT} Transport protocol for sending of an event message
dThe event message shall be transmitted using UDP if the threshold defined by the
multicastThreshold attribute of the SomeipProvidedEventGroup that is aggre-
gated by the ProvidedSomeipServiceInstance in the role eventGroup in the
Manifest has been reached (see [PRS_SOMEIPSD_00134]).

The event message shall be transmitted using the transport protocol defined by
the attribute SomeipServiceInterfaceDeployment.eventDeployment.trans-
portProtocol in the Manifest if this threshold has not been reached (see [PRS_-
SOMEIPSD_00802]).c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00010, RS_CM_00004)

Based on [SWS_CM_10289]:

[SWS_CM_80023]{DRAFT} Source of an event message dThe event message
shall use the unicast IP address and port taken from the IPv4/v6 Endpoint
Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP OfferService message

170 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

([SWS_CM_00203]) as source address and source port for the transmission.c(RS_-
CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00042, RS_CM_-
00004)

Based on [SWS_CM_10290]:

[SWS_CM_80024]{DRAFT} Destination of an event message dThe event message
shall use the multicast IP address and the port taken from the IPv4/v6 Multicast Op-
tion (see [PRS_SOMEIPSD_00322]) of the SOME/IP SubscribeEventgroupAck mes-
sage (see [SWS_CM_00206]) as destination address and destination port for the
transmission if the threshold defined by the multicastThreshold attribute of the
SomeipProvidedEventGroup that is aggregated by the ProvidedSomeipServi-
ceInstance in the role eventGroup in the Manifest has been reached (see [PRS_-
SOMEIPSD_00134]). The event message shall use the unicast IP address and the
port taken from the IPv4/v6 Endpoint Option (see [PRS_SOMEIPSD_00304]) of the
SOME/IP SubscribeEventgroup message ([SWS_CM_00205]) as destination address
and destination port for the transmission if this threshold has not been reached (see
[PRS_SOMEIPSD_00134]). In case multiple Endpoint Options have been contained in
the SOME/IP SubscribeEventgroup message, the one matching the selected transport
protocol (see [SWS_CM_80023]) shall be used.c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00042, RS_CM_00004)

Based on the serviceInterfaceId and eventId the respective event is deter-
mined. If the serializer is defined as someip serializer the SOME/IP event
handling applies.

Based on [SWS_CM_10291]:

[SWS_CM_80025]{DRAFT} Content of the SOME/IP serialized event message dIf
SomeipEventDeployment.serializer is set to someip then
the entries in the SOME/IP serialized event message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

• In case of inactive Session Handling, see [SWS_CM_80240], the Session ID (see
[PRS_SOMEIP_00703]) is unused for event messages and thus shall be set to
0x0000 (see [PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]).

171 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

In case of active Session Handling, see [SWS_CM_80240], the Session ID
is used for event messages and thus shall be incremented (with proper wrap
around) upon every transmission of an event message (see [PRS_SOMEIP_-
00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_-
00925]).

The information whether the Session Handling is activated or deactivated for an
event can be derived from the sessionHandling attribute contained in the Ap-
SomeipTransformationProps that is referenced by the Transformation-
PropsToServiceInterfaceElementMapping that in turn points to the event.

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

• The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for event messages and thus (according to [PRS_SOMEIP_00925]) shall
be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the serialized Variable-
DataPrototype composed by the ServiceInterface in role event) accord-
ing to the SOME/IP serialization rules.

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_CM_00004)

If the serializer is defined as signalBased the signal-based event handling ap-
plies. As the message containing the signal-based payload is going to be routed to the
Classic platform (without the SOME/IP Transformation) the header just contains
the Message Id (i.e. ServiceID and Event ID) (see [SWS_CM_80026]).

[SWS_CM_80026]{DRAFT} Content of the signal-based serialized event mes-
sage dIf SomeipEventDeployment.serializer is set to signalBased then
the entries in the signal-based event message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the serial-
ized payload in units of bytes

172 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• The Payload shall contain the serialized payload (i.e., the serialized Vari-
ableDataPrototype composed by the ServiceInterface in role event)
according to the signal-service-translation serialization rules defined in TPS-
ManifestSpecification [6].

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_CM_00004)

If the serializer is defined as someip serializer the SOME/IP event handling
applies.

Based on [SWS_CM_10292]:

[SWS_CM_80027]{DRAFT} Checks for a received SOME/IP serialized event mes-
sage dIf SomeipEventDeployment.serializer is set to someip then
upon reception of a SOME/IP serialized event message the following checks shall be
conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Use the Length being larger than 8 in combination with the Message type (see
[PRS_SOMEIP_00055]) being set to NOTIFICATION to determine that the re-
ceived SOME/IP message is actually an event.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Event ID (see [PRS_SOMEIP_00040]) matches the eventId at-
tribute of one of the SomeipEventDeployments of the SomeipServiceIn-
terfaceDeployment which have the attribute SomeipEventDeployment.
serializer set to someip.

• Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.
majorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP serialized event message
shall be discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation).c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_-
SOMEIP_00019, RS_SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004,
RS_SOMEIP_00008, RS_SOMEIP_00014, RS_CM_00004)

If the serializer is defined as signalBased the signal-based event handling ap-
plies. As the message containing the signal-based payload is coming from the Classic
platform (without the SOME/IP Transformation) the header just contains the Mes-
sage Id (i.e. ServiceID and Event ID) (see [SWS_CM_80028]).

173 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_80028]{DRAFT} Checks for a received signal-based serialized event
message dIf SomeipEventDeployment.serializer is set to signalBased then
upon reception of a signal-based serialized event message the following checks shall
be conducted:

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Event ID (see [PRS_SOMEIP_00040]) matches the eventId at-
tribute of one of the SomeipEventDeployments of the SomeipServiceIn-
terfaceDeployment which have the attribute SomeipEventDeployment.
serializer set to signalBased.

• Verify that the Length is larger than 0.

If any of the above checks fails the received signal-based event message shall
be discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation).c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_-
SOMEIP_00019, RS_SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004,
RS_SOMEIP_00008, RS_SOMEIP_00014, RS_CM_00004)

[SWS_CM_10293] applies.

Based on [SWS_CM_10379]:

[SWS_CM_80030]{DRAFT} Silently discarding event messages for unsubscribed
events dIf the event identified according to [SWS_CM_10293] does not have an active
subscription because the Subscribe method (see [SWS_CM_00141]) of the spe-
cific Event class of the ServiceProxy class has not been called, or the Unsub-
scribe method (see [SWS_CM_00151]) of the specific Event class of the Servi-
ceProxy class has been called, or the TTL of the SOME/IP SubscribeEventgroup
message (see [SWS_CM_00205]) has expired, then the received event message shall
be silently discarded (i.e., [SWS_CM_80032], [SWS_CM_80033], [SWS_CM_10295],
and [SWS_CM_10296] shall not be performed).c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004, RS_CM_00004)

[SWS_CM_10296] applies.

Based on [SWS_CM_10294]:

[SWS_CM_80032]{DRAFT} Deserializing the SOME/IP serialized payload dIf
SomeipEventDeployment.serializer is set to someip then based on the event
determined according to [SWS_CM_10293] the Payload of the SOME/IP serial-
ized event message (i.e., the serialized VariableDataPrototype composed by
the ServiceInterface in role event) shall be deserialized according to the
SOME/IP serialization rules.c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00028, RS_CM_00004)

Note: [SWS_CM_80032] supports the mix of signal-based and SOME/IP commu-
nication use case defined in [SWS_CM_10174].

174 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_80033]{DRAFT} Deserializing the signal-based serialized payload dIf
SomeipEventDeployment.serializer is set to signalBased then based on the
event determined according to [SWS_CM_10293] the Payload of the signal-based se-
rialized event message (i.e., the serialized VariableDataPrototype composed by
the ServiceInterface in role event) shall be deserialized according to the signal-
service-translation serialization rules defined in TPS-ManifestSpecification [6].c(RS_-
CM_00004)

[SWS_CM_10295] applies.

[SWS_CM_10360] applies.

7.8.2.1.5 Handling Triggers

[SWS_CM_10518]{DRAFT} Conditions for sending of a trigger dThe sending of
an trigger shall be requested by invoking the Send method of the respective Trig-
ger class (see [SWS_CM_00721] if there is at least one active subscriber and the
offer of the service containing the trigger has not been stopped (either because the
TTL contained in the SOME/IP OfferService message (see [SWS_CM_00203]) has
expired or because the StopOfferService method (see [SWS_CM_00111]) of the
ServiceSkeleton class has been called). An active subscriber is an adaptive appli-
cation that has invoked the Subscribe method of the respective Trigger class (see
[SWS_CM_00723]) and has not canceled the subscription by invoking the Unsub-
scribe method of the respective Trigger class (see [SWS_CM_00810]) and where
the subscription has not yet expired since the TTL contained in the SOME/IP Sub-
scribeEventgroup message (see [SWS_CM_00205]) has been exceeded.c(RS_CM_-
00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00005, RS_SOMEIP_-
00017, RS_CM_00004)

Please note that in the Manifest configuration the SomeipServiceInterfaceDe-
ployment.eventDeployment is used to configure triggers in the same way as
events. The only difference is that in case of a trigger the SomeipEventDeployment
will reference the Trigger in the role trigger. Therefore the following specification
items described in chapter 7.8.2.1.4 are also valid for Triggers since a trigger defines
a special kind of an event.

• [SWS_CM_80022]

• [SWS_CM_80023]

• [SWS_CM_80024]

Based on the serviceInterfaceId and eventId the respective trigger is deter-
mined. If the serializer is defined as someip serializer the SOME/IP trigger
handling applies.

[SWS_CM_10519]{DRAFT} Content of the SOME/IP serialized trigger message
dIf SomeipEventDeployment.serializer is set to someip then
the entries in the SOME/IP serialized trigger message shall be as follows:

175 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId.

• The Length shall be set to 8

• The Client ID (see [PRS_SOMEIP_00702]) is unused for trigger (according to
[PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

• In case of inactive Session Handling, see [SWS_CM_80240], the Session ID (see
[PRS_SOMEIP_00703]) is unused for trigger and thus shall be set to 0x0000 (see
[PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]).

In case of active Session Handling, see [SWS_CM_80240], the Session ID is
used for trigger and thus shall be incremented (with proper wrap around) upon
every transmission of an trigger (see [PRS_SOMEIP_00933], [PRS_SOMEIP_-
00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_00925]).

The information whether the Session Handling is activated or deactivated for a
trigger can be derived from the sessionHandling attribute contained in the Ap-
SomeipTransformationProps that is referenced by the Transformation-
PropsToServiceInterfaceElementMapping that in turn points to the trig-
ger.

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

• The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for trigger messages and thus (according to [PRS_SOMEIP_00925])
shall be set to E_OK (0x00).

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_CM_00004)

If the serializer is defined as signalBased the signal-based trigger handling ap-
plies. As the message containing the signal-based payload is going to be routed to the
Classic platform (without the SOME/IP Transformation) the header just contains
the Message Id (i.e. ServiceID and Event ID) (see [SWS_CM_10520]).

[SWS_CM_10520]{DRAFT} Content of the signal-based serialized trigger mes-
sage dIf SomeipEventDeployment.serializer is set to signalBased then
the entries in the signal-based trigger shall be as follows:

176 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId.

• The Length shall be set to 0.

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_CM_00004)

If the serializer is defined as someip serializer the SOME/IP trigger handling
applies.

[SWS_CM_10521]{DRAFT} Checks for a received SOME/IP serialized trigger
message dIf SomeipEventDeployment.serializer is set to someip then
upon reception of a SOME/IP serialized trigger the following checks shall be conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Use the Length being equal to 8 in combination with the Message type (see
[PRS_SOMEIP_00055]) being set to NOTIFICATION to determine that the re-
ceived SOME/IP message is actually a trigger.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Event ID (see [PRS_SOMEIP_00040]) matches the eventId at-
tribute of one of the SomeipEventDeployments of the SomeipServiceIn-
terfaceDeployment which have the attribute SomeipEventDeployment.
serializer set to someip.

• Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.
majorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP serialized trigger shall
be discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation).c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_-
SOMEIP_00019, RS_SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004,
RS_SOMEIP_00008, RS_SOMEIP_00014, RS_CM_00004)

If the serializer is defined as signalBased the signal-based trigger handling ap-
plies. As the message containing the signal-based payload is coming from the Classic

177 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

platform (without the SOME/IP Transformation) the header just contains the Mes-
sage Id (i.e. ServiceID and Event ID) (see [SWS_CM_10520]).

[SWS_CM_10522]{DRAFT} Checks for a received signal-based serialized trigger
dIf SomeipEventDeployment.serializer is set to signalBased then
upon reception of a signal-based serialized trigger the following checks shall be con-
ducted:

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Event ID (see [PRS_SOMEIP_00040]) matches the eventId at-
tribute of one of the SomeipEventDeployments of the SomeipServiceIn-
terfaceDeployment which have the attribute SomeipEventDeployment.
serializer set to signalBased.

• Verify that the Length is equal to 0.

If any of the above checks fails the received signal-based trigger shall be discarded
and the incident shall be logged (if logging is enabled for the ara::com implementa-
tion).c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00019, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_SOMEIP_00008,
RS_SOMEIP_00014, RS_CM_00004)

[SWS_CM_10514] applies.

[SWS_CM_10523]{DRAFT} Silently discarding trigger for unsubscribed triggers
dIf the trigger identified according to [SWS_CM_10514] does not have an active sub-
scription because the Subscribe method (see [SWS_CM_00723]) of the specific
Trigger class of the ServiceProxy class has not been called, or the Unsubscribe
method (see [SWS_CM_00810]) of the specific Trigger class of the ServiceProxy
class has been called, or the TTL of the SOME/IP SubscribeEventgroup message (see
[SWS_CM_00205]) has expired, then the received trigger shall be silently discarded
(i.e., [SWS_CM_00226], and [SWS_CM_00249] shall not be performed).c(RS_CM_-
00204, RS_CM_00203, RS_SOMEIP_00004, RS_CM_00004)

[SWS_CM_00249] applies.

7.8.2.1.6 Handling Method Calls

As the signal service translation does not apply to methods the handling is identical to
the SOME/IP method serialization, see chapter 7.8.1.6.

7.8.2.1.7 Handling Fields

Based on [SWS_CM_10319]:

178 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_80063]{DRAFT} Conditions for sending of an event message dThe
sending of an event message shall be requested by invoking the Update method
of the respective Field class (see [SWS_CM_00119]) or if the Future returned
by the SetHandler registered with RegisterSetHandler (see [SWS_CM_00116])
becomes ready if there is at least one active subscriber and the offer of the ser-
vice containing the event has not been stopped (either because the TTL contained in
the SOME/IP OfferService message (see [SWS_CM_00203]) has expired or because
the StopOfferService method (see [SWS_CM_00111]) of the ServiceSkeleton
class has been called). An active subscriber is an adaptive application that has in-
voked the Subscribe method of the respective Field class (see [SWS_CM_00120])
and has not canceled the subscription by invoking the Unsubscribe method of the
respective Field class (see [SWS_CM_00120]) and where the subscription has not
yet expired since the TTL contained in the SOME/IP SubscribeEventgroup message
(see [SWS_CM_00205]) has been exceeded.c(RS_CM_00204, RS_CM_00201, RS_-
SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00005, RS_SOMEIP_00017,
RS_SOMEIP_00018, RS_CM_00004)

Based on [SWS_CM_10320]:

[SWS_CM_80064]{DRAFT} Transport protocol for sending of an event message
dThe event message shall be transmitted using UDP if the threshold defined by the
multicastThreshold attribute of the SomeipProvidedEventGroup that is aggre-
gated by the ProvidedSomeipServiceInstance in the role eventGroup in the
Manifest has been reached (see [PRS_SOMEIPSD_00134]).

The event message shall be transmitted using the transport protocol defined by the
attribute SomeipServiceInterfaceDeployment.fieldDeployment.notifier.
transportProtocol in the Manifest if this threshold has not been reached (see
[PRS_SOMEIPSD_00802]).c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00009, RS_SOMEIP_00010, RS_CM_00004)

Based on [SWS_CM_10321]:

[SWS_CM_80065]{DRAFT} Source of an event message dThe source address and
the source port of the event message shall set according to [SWS_CM_80023].c
(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00009, RS_-
SOMEIP_00042, RS_CM_00004)

Based on [SWS_CM_10322]:

[SWS_CM_80066]{DRAFT} Destination of an event message dThe destination
address and the destination port of the event message shall be set according
to [SWS_CM_80024].c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00009, RS_SOMEIP_00042, RS_CM_00004)

Based on the serviceInterfaceId and eventId the respective field notifier is de-
termined. If the serializer is defined as someip serializer the SOME/IP seri-
alized event handling applies.

Based on [SWS_CM_10323]:

179 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_80067]{DRAFT} Content of the SOME/IP serialized event message dIf
SomeipEventDeployment.serializer is set to someip then
the entries in the SOME/IP serialized event message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
fieldDeployment.notifier.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

• In case of inactive Session Handling the Session ID (see [SWS_CM_10240])
the Session ID (see [PRS_SOMEIP_00703]) is unused for event messages and
thus shall be set to 0x0000 (see [PRS_SOMEIP_00932]) and [PRS_SOMEIP_-
00925]).

In case of active Session Handling, see [SWS_CM_10240], the Session ID
is used for event messages and thus shall be incremented (with proper wrap
around) upon every transmission of an event message (see [PRS_SOMEIP_-
00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_-
00925]).

The information whether the Session Handling is activated or deactivated for an
event can be derived from the sessionHandling attribute contained in the Ap-
SomeipTransformationProps that is referenced by the Transformation-
PropsToServiceInterfaceElementMapping that in turn points to the event.

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

• The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for event messages and thus (according to [PRS_SOMEIP_00925]) shall
be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) according to the SOME/IP
serialization rules.

180 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_SOMEIP_00009,
RS_CM_00004)

If the serializer is defined as signalBased the signal-based event handling ap-
plies. As the message containing the signal-based payload is going to be routed to the
Classic platform (without the SOME/IP Transformation) the header just contains
the Message Id (i.e. ServiceID and Event ID) (see [SWS_CM_80068]).

[SWS_CM_80068]{DRAFT} Content of the signal-based serialized event mes-
sage dIf SomeipEventDeployment.serializer is set to signalBased then
the entries in the signal-based serialized event message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the serial-
ized payload in units of bytes

• The Payload shall contain the serialized payload (i.e., the serialized Vari-
ableDataPrototype composed by the ServiceInterface in role event)
according to the signal-service-translation serialization rules defined in TPS-
ManifestSpecification [6].

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_SOMEIP_00009,
RS_CM_00004)

If the serializer is defined as someip serializer the SOME/IP serialized event
handling applies.

Based on [SWS_CM_10324]:

[SWS_CM_80069]{DRAFT} Checks for a received SOME/IP serialized event mes-
sage dIf SomeipEventDeployment.serializer is set to someip then
upon reception of a SOME/IP serialized event message the checks defined in
[SWS_CM_80027] shall be conducted.

If any of the above checks fails the received SOME/IP serialized event message shall
be discarded and the incident shall be logged (if logging is enabled for the ara:-
:com implementation).c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00019, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_SOMEIP_00009,
RS_SOMEIP_00014, RS_CM_00004)

If the serializer is defined as signalBased the signal-based event handling ap-
plies. As the message containing the signal-based payload is coming from the Classic

181 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

platform (without the SOME/IP Transformation) the header just contains the Mes-
sage Id (i.e. ServiceID and Event ID) (see [SWS_CM_80070]).

[SWS_CM_80070]{DRAFT} Checks for a received signal-based event message
dIf SomeipEventDeployment.serializer is set to signalBased then
upon reception of a signal-based event message the checks defined in
[SWS_CM_80028] shall be conducted.

If any of the above checks fails the received signal-based event message shall be
discarded and the incident shall be logged (if logging is enabled for the ara::com
implementation).c(RS_CM_00004)

[SWS_CM_10325] applies.

Based on [SWS_CM_10380]:

[SWS_CM_80072]{DRAFT} Silently discarding event messages for unsubscribed
events dIf the event identified according to [SWS_CM_10325] does not have an active
subscription because the Subscribe method (see [SWS_CM_00141]) of the spe-
cific Field class of the ServiceProxy class has not been called, or the Unsub-
scribe method (see [SWS_CM_00151]) of the specific Field class of the Servi-
ceProxy class has been called, or the TTL of the SOME/IP SubscribeEventgroup
message (see [SWS_CM_00205]) has expired, then the received event message shall
be silently discarded (i.e., [SWS_CM_80074], [SWS_CM_80101], [SWS_CM_10327],
and [SWS_CM_10328] shall not be performed).c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004, RS_SOMEIP_00009, RS_CM_00004)

[SWS_CM_10328] applies.

Based on [SWS_CM_10326]:

[SWS_CM_80074]{DRAFT} Deserializing the SOME/IP serialized payload dIf
SomeipEventDeployment.serializer is set to someip then
based on the event determined according to [SWS_CM_10325] the Payload of the
SOME/IP serialized event message (i.e., the serialized Field composed by the Ser-
viceInterface in role field) shall be deserialized according to the SOME/IP serial-
ization rules.c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_-
00009, RS_SOMEIP_00028, RS_CM_00004)

Note: [SWS_CM_80074] supports the mix of signal-based and SOME/IP commu-
nication use case defined in [SWS_CM_10174].

[SWS_CM_80075]{DRAFT} Deserializing the signal-based payload dIf
SomeipEventDeployment.serializer is set to signalBased then
based on the event determined according to [SWS_CM_10325] the Payload of
the signal-based serialized event message (i.e., the serialized Field composed
by the ServiceInterface in role field) shall be deserialized according to the
signal-service-translation serialization rules defined in TPS-ManifestSpecification [6].c
(RS_CM_00004)

[SWS_CM_10327] applies.

182 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10329] applies.

[SWS_CM_10443] applies.

[SWS_CM_10330] applies.

[SWS_CM_10331] applies.

[SWS_CM_10332] applies.

[SWS_CM_10333] applies.

[SWS_CM_10334] applies.

[SWS_CM_10335] applies.

[SWS_CM_10336] applies.

[SWS_CM_10338] applies.

[SWS_CM_10339] applies.

[SWS_CM_10340] applies.

[SWS_CM_10341] applies.

[SWS_CM_10342] applies.

[SWS_CM_10343] applies.

[SWS_CM_10344] applies.

[SWS_CM_10345] applies.

[SWS_CM_10346] applies.

[SWS_CM_10347] applies.

[SWS_CM_10348] applies.

[SWS_CM_10444] applies.

[SWS_CM_10349] applies.

[SWS_CM_10350] applies.

[SWS_CM_10363] applies.

7.8.2.1.8 Serialization of Payload

The serialization technology is defined by the attribute SomeipEventDeployment.
serializer. If the attribute is set to signalBased then the signal-service-
translation is responsible for the handling of the serialization. If the attribute is set
to someip then the SOME/IP serializer (see section 7.8.1.8) is responsible for the
handling of the serialization.

183 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_80100]{DRAFT} SOME/IP serialization of signal-based network bind-
ing dIf the attribute SomeipEventDeployment.serializer is set to someip then
the serialization of the payload shall be based on the SOME/IP serialization rules.c
(RS_CM_00004)

Note: SOME/IP serialization rules are defined in section 7.8.1.8.

[SWS_CM_80101]{DRAFT} ServiceInstanceToSignalMapping input for seri-
alization of signal-based network binding dIf the attribute SomeipEventDeploy-
ment.serializer is set to signalBased then
the serialization of the payload shall be based on the definition of the Servi-
ceInstanceToSignalMapping defined for the signal-service-translation in TPS-
ManifestSpecification [6].c(RS_CM_00004)

[SWS_CM_80102]{DRAFT} Ignoring not mapped elements dTo allow migration the
deserialization shall ignore signals which are not subject to ServiceInstance-
ToSignalMapping.c(RS_CM_00004, RS_CM_00204, RS_CM_00202)

[SWS_CM_80103]{DRAFT} Deserializing incomplete data belonging to a field dIf
less data than expected shall be deserialized and the data to be deserialized belong
to a Field, the initValue shall be used if it is defined. Otherwise the data shall
be completely discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation).c(RS_CM_00004, RS_CM_00204, RS_CM_00202)

7.8.2.2 Signal-Based Static Network binding

The Signal-Based Static network binding is enabled when a Service-
InstanceToSignalMapping refers to a ProvidedUserDefinedServiceIn-
stance or RequiredUserDefinedServiceInstance of category SIGNAL-
BASED_WITH_HEADER or SIGNALBASED_NO_HEADER.

Please note that there is currently no static ara::com API optimization defined, thus
it is expected that the adaptive application, which interacts with a ServiceInter-
face, uses the same steps as in any other service oriented interaction (i.e. calling
OfferService(), FindService(), Subscribe(), ...).

The general approach is:

For a ProvidedUserDefinedServiceInstance the connection is established in a
UDP / TCP Server role.

For a RequiredUserDefinedServiceInstance the connection is established in a
UDP / TCP Client role.

184 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.8.2.2.1 Service Discovery

[SWS_CM_80501]{DRAFT} Mapping of Offer Service (Signal-Based Static
network binding) dWhen instructed to offer a service instance which is
mapped to a ProvidedUserDefinedServiceInstance of category SIGNAL-
BASED_WITH_HEADER or SIGNALBASED_NO_HEADER, then the Signal-Based
Static network binding shall create / use a socket for each entry in the remotePeers
list. Each connection is defined by the localUdpPortNumber or localTcpPort-
Number and one element out of the remotePeers list. If a connection with identical
credentials already exists then this existing connection shall be used.

If a localUdpPortNumber is defined then each connection is created using the UDP
protocol and bound to the listed remotePeers.

If a localTcpPortNumber is defined then each connection is created using the TCP
protocol and is listening for client connections.c(RS_CM_00004, RS_CM_00204)

[SWS_CM_80512]{DRAFT} Mapping of Stop Offer Service (Signal-Based
Static network binding) dWhen instructed to stop offering a service instance which
is mapped to a ProvidedUserDefinedServiceInstance of category SIG-
NALBASED_WITH_HEADER or SIGNALBASED_NO_HEADER, then the Signal-Based
Static network binding shall check:

• If this is the last service instance which uses the respective connection then this
connection shall be closed.

• If there are still other service instance using this connection then the connection
shall be kept open.

c(RS_CM_00004, RS_CM_00204)

[SWS_CM_80502]{DRAFT} Mapping of Find Service (Signal-Based Static
network binding) dWhen instructed to find a service instance which is
mapped to a RequiredUserDefinedServiceInstance of category SIGNAL-
BASED_WITH_HEADER or SIGNALBASED_NO_HEADER, then the Signal-Based
Static network binding shall immediately return a ara::com::ServiceHandle-
Container with information about the static connection:

• localUdpPortNumber or localTcpPortNumber

• information about the EthernetCommunicationConnector (VLAN) where
the connection shall be applied to

• a multicastIpAddresswhere the events will be consumed in case of multicast
reception

• remotePeer information of the remote sender of the data (IP-Address and Port
number)

c(RS_CM_00004, RS_CM_00204)

185 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_80503]{DRAFT} Mapping of Subscribe Service (Signal-Based
Static network binding) dWhen instructed to subscribe to an event which
is part of a RequiredUserDefinedServiceInstance of category SIGNAL-
BASED_WITH_HEADER or SIGNALBASED_NO_HEADER, then the Signal-Based
Static network binding shall:

If there is not already a socket connection established:

• TCP: use the information from the ara::com::ServiceHandleContainer
create the socket and connect to the server.

• UDP: use the information from the ara::com::ServiceHandleContainer
create the socket.

If there is already a socket connection established: use this socket connection.c(RS_-
CM_00004, RS_CM_00204)

[SWS_CM_80513]{DRAFT} Mapping of Unsubscribe Service (Signal-Based
Static network binding) dWhen instructed to un-subscribe from an event which
is part of a RequiredUserDefinedServiceInstance of category SIGNAL-
BASED_WITH_HEADER or SIGNALBASED_NO_HEADER, then the Signal-Based
Static network binding shall check:

• If this is the last service instance which uses the respective connection then this
connection shall be closed.

• If there are still other service instance using this connection then the connection
shall be kept open.

c(RS_CM_00004, RS_CM_00204)

7.8.2.2.2 Accumulation of messages

[SWS_CM_80505]{DRAFT} Data accumulation for UDP data transmission (
Signal-Based Static network binding) dTo allow for the transmission of multi-
ple messages (signal-based events and signal-based field notifiers) within a single
UDP datagram, data accumulation for UDP data transmission shall be supported.c
(RS_CM_00004, RS_CM_00204)

[SWS_CM_80504]{DRAFT} Configuration of a data accumulation on a Require-
dUserDefinedServiceInstance for transmission over UDP (Signal-Based
Static network binding) dFor a ProvidedUserDefinedServiceInstance of
category SIGNALBASED_WITH_HEADER which has a udpCollectionBuffer-
SizeThreshold > 0 defined, the events and field notifiers where udpCollection-
Trigger is set to never shall be aggregated in a buffer until a trigger arrives that
starts the data transmission.

The following trigger options shall be supported:

186 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• a message needs to be transmitted for which the udpCollectionTrigger is
set to always.

• the udpCollectionBufferTimeout is reached for one of the messages al-
ready aggregated in the buffer.

• the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

• adding the event of field notifier to the buffer would lead to a message larger than
the maximum possible size (e.g. MTU size). In this case the actual buffer shall
be triggered before handling the new event or field notifier.

c(RS_CM_00004, RS_CM_00204)

7.8.2.2.3 Execution context of message reception actions

The section 7.8.1.3 is fully applicable to the Signal-Based Static network binding.

7.8.2.2.4 Handling Events

[SWS_CM_80506]{DRAFT} Arbitrary Message Header usage for Signal-
Based Static network binding messages dIf a ProvidedUserDefinedSer-
viceInstance or RequiredUserDefinedServiceInstance of category SIG-
NALBASED_WITH_HEADER is defined then each message shall have an Arbitrary
Message Header (see [TPS_Manifest]) defined. This message header is composed
of a 32 bit wide Message ID field and 32 bit wide Message Length field. Both encoded
in big endian.

The the signal based payload is appended (the Message Length field is used to deter-
mine how long the payload is in bytes).c(RS_CM_00004, RS_CM_00204)

[SWS_CM_80507]{DRAFT} No header option for Signal-Based Static
network binding messages dIf a ProvidedUserDefinedServiceIn-
stance or RequiredUserDefinedServiceInstance of category SIGNAL-
BASED_NO_HEADER is defined then there is no header information standardized and
thus the signal based payload is the only content of the message.c(RS_CM_00004,
RS_CM_00204)

7.8.2.2.5 Handling Method Calls

[SWS_CM_80508]{DRAFT} No method support for Signal-Based Static net-
work binding dThe Signal-Based Static network binding does not support meth-
ods.c(RS_CM_00004, RS_CM_00204)

187 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.8.2.2.6 Handling Fields

[SWS_CM_80509]{DRAFT} Only field notifier support for Signal-Based
Static network binding dThe Signal-Based Static network binding only sup-
ports the field notifier. Getter or Setter methods are not supported.c(RS_CM_00004,
RS_CM_00204)

7.8.2.2.7 Serialization of Payload

In case of the static signal-service-translation always the signal-service-translation is
responsible for the handling of the serialization.

[SWS_CM_80510]{DRAFT} Ignoring not mapped elements dTo allow migration the
deserialization shall ignore signals which are not subject to ServiceInstance-
ToSignalMapping.c(RS_CM_00004)

[SWS_CM_80511]{DRAFT} Deserializing incomplete data belonging to a field dIf
less data than expected shall be deserialized and the data to be deserialized belong
to a Field, the initValue shall be used if it is defined. Otherwise the data shall
be completely discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation).c(RS_CM_00004)

7.8.3 DDS Network binding

[SWS_CM_11000] DDS Compliance dThe DDS network binding shall comply with the
DDS Minimum Profile defined in [18], the DDS Wire Interoperability protocol (RTPS)
defined in [19], and the DDS-XTYPES Minimal Programming Interface and Network
Interoperability Profiles defined in [20].c(RS_CM_00204)

[SWS_CM_90500]{DRAFT} Choice of Service Instance discovery protocol d
DdsProvidedServiceInstances and DdsRequiredServiceInstances provide
a discoveryType attribute permitting the choice between two distinct discovery pro-
tocols. For a Service Interface Skeleton to be discoverable by a Service Interface Proxy,
both shall be configured with the same discoveryType value.c(RS_CM_00101, RS_-
CM_00102)

The DomainParticipantUserDataQos setting provides a discovery protocol that
leverages the USER_DATA QoS policy of DDS Domain Participants, assigning a
purpose-specific format string to it as described in 7.8.3.1 below. This approach is
fast and nimble, since no additional DDS Entities beyond Domain Participants need to
be created to exercise discovery of Service Instances.

The Topic setting provides, as described in section 7.8.3.2 below, a discovery proto-
col that employs a purpose-specific Topic of a well-defined type to distribute Service
Instance announcements in a publish-subscribe, instance-based fashion. This pro-
tocol, although more resource-demanding (DDS entities down to a single DataWriter

188 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

need to be created for Skeletons, same for a DataReader in Proxies), enhances in-
teroperability and enables advanced DDS features such as persistence, routing and
durability.

[SWS_CM_90501]{DRAFT} Topic naming for Domain Participant USER_DATA
QoS - based Service Instances dWhen DomainParticipantUserDataQos
is set in the discoveryType attribute for a specific DdsProvidedSer-
viceInstance or DdsRequiredServiceInstance, the de-facto Topic nam-
ing scheme for events, methods and fields is the one described for SER-
VICE_INSTANCE_RESOURCE_PARTITION.c(RS_CM_00201, RS_CM_00211, RS_-
CM_00216)

7.8.3.1 Service Discovery via Domain Participant USER_DATA QoS policy

[SWS_CM_11001] Mapping of OfferService method dWhen instructed to offer a Ser-
vice, the DDS Binding shall perform the following operations:

• [SWS_CM_11002] It shall assign a DDS DomainParticipant to the Service In-
stance.

• [SWS_CM_11003] It shall assign a DDS Topic and a DDS DataWriter to ev-
ery VariableDataPrototype defined in the ServiceInterface in the role
event.

• [SWS_CM_10550] It shall assign a DDS Topic and a DDS DataWriter to every
Trigger defined in the ServiceInterface in the role trigger.

• [SWS_CM_11029] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DataReader, to provide ac-
cess to all ClientServerOperations defined in the ServiceInterface the
role method.

• [SWS_CM_11030] It shall assign a DDS Topic and a DDS DataWriter to every
Field defined in the ServiceInterface in the role field with its hasNoti-
fier attribute set to true.

• [SWS_CM_11031] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DDS DataReader, to provide
access to all the Fields defined in the ServiceInterface in the role field
with hasGetter and/or hasSetter attributes set to true via getter/setter invo-
cation.

• [SWS_CM_09004] It shall add the Service ID, Service Instance IDs, and Ser-
viceInterface contract version to the DDS DomainParticipant’s USER_DATA
QoS Policy.

c(RS_CM_00204, RS_CM_00200, RS_CM_00101)

189 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_11002] Assigning a DDS DomainParticipant to a Service Instance dThe
DDS Binding shall assign a DDS DomainParticipant to every Service Instance. The
configuration of the DomainParticipant is described in the TPS_ManifestSpecification:

• The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the domainId.

• The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the qosProfile.

Before creating a new DomainParticipant, the DDS binding shall first look for existing
DomainParticipants in the current process that match the configuration criteria speci-
fied above3. If the search is successful, the binding shall assign the DomainParticipant
found to the Service4; otherwise, the binding shall create a new DomainParticipant
according to the desired configuration and assign it to the Service.

Once the DomainParticipant is available to the Service Instance, the binding implemen-
tation shall create a DDS Publisher and a DDS Subscriber to enclose all DataWriters
and DataReaders associated with the Instance. The Partition QoS of both the DDS
Publisher and DDS Subscriber shall contain the following partition name:

"ara.com://services/<svcId>_<svcInId>"

Where:

<svcId> is the Service Id derived from the Manifest, where the DdsServiceInter-
faceDeployment element defines the serviceInterfaceId.

<svcInId> is the Instance Id derived from the Manifest, where the DdsProvided-
ServiceInstance element defines the serviceInstanceId.

Publisher and Subscriber objects may be reused across events and other resources
provided by the Service Instance; therefore, they shall not be removed until the enclos-
ing DomainParticipant is destroyed.

c(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_11003] Assigning a DDS Topic and a DDS DataWriter to every Event
in the ServiceInterface dThe DDS binding shall assign a DDS Topic to every
event in the ServiceInterface according to the mapping rules specified in
[SWS_CM_11015]. Since these DDS Topics may already be available in the Domain-
Participant assigned to the Service Instance (e.g., because a different Service Instance
assigned to the same DomainParticipant may have created them), the service shall first
look for existing Topics in the DomainParticipant matching the required criteria. If the
search is unsuccessful, the DomainParticipant shall create a new DDS Topic to repre-
sent the event as defined in [SWS_CM_11015].

3The DDS APIs that provide the ability to find existing DomainParticipants search in the scope of the
address space of the current process—only local DomainParticipants may be reused.

4The rules specified in this binding ensure the creation of only one DomainParticipant for a given
Domain and set of QoS settings (qosProfile).

190 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Once all DDS Topics representing the events in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per event using the DDS Publisher created in
[SWS_CM_11002]. The DataWriter shall be configured according to the qosProfile
specified in the associated DdsEventQosProps.

Topic objects may be reused across service instances; therefore, they shall not be
removed until the enclosing DomainParticipant is destroyed.c(RS_CM_00204, RS_-
CM_00200, RS_CM_00101)

[SWS_CM_10550]{DRAFT} Assigning a DDS Topic and a DDS DataWriter to ev-
ery Trigger in the ServiceInterface dThe DDS binding shall assign a DDS Topic to
every trigger in the ServiceInterface according to the mapping rules specified
in [SWS_CM_10524]. Since these DDS Topics may already be available in the Do-
mainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the ser-
vice shall first look for existing Topics in the DomainParticipant matching the required
criteria. If the search is unsuccessful, the DomainParticipant shall create a new DDS
Topic to represent the trigger as defined in [SWS_CM_10524].

Once all DDS Topics representing the triggers in the ServiceInterface are
ready for use, the DomainParticipant assigned to the Service Instance shall create
one DDS DataWriter of the equivalent Topic per trigger using the DDS Publisher
created in [SWS_CM_11002]. The DataWriter shall be configured according to the
qosProfile specified in the associated DdsEventQosProps that in turn refers via
DdsEventDeployment to the triggers.

Topic objects may be reused across service instances; therefore, they shall not be
removed until the enclosing DomainParticipant is destroyed.c(RS_CM_00204, RS_-
CM_00200, RS_CM_00101)

[SWS_CM_11029] Assigning a DDS Request and Reply Topic, and DataWriters
and DataReaders, to the Methods in the ServiceInterface dThe DDS binding shall
instantiate a DDS Service [21] to handle requests to all the methods in the Servi-
ceInterface.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service that handles those method calls according to the mapping rules spec-
ified in [SWS_CM_11100]. Since these DDS Topics may already be available in the
DomainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the service
shall first look for existing Topics in the DomainParticipant matching the required crite-
ria. If the search is unsuccessful, the DomainParticipant shall create new DDS Request
and Reply Topics to represent the DDS Service as specified in [SWS_CM_11100].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

• [SWS_CM_11106] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_11002].

191 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• [SWS_CM_11107] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_11002].

Topic objects may be reused across service instances; therefore, they shall not be
removed until the enclosing DomainParticipant is destroyed.c(RS_CM_00204, RS_-
CM_00200, RS_CM_00101) The handling of method calls with DDS is specified in
7.8.3.5.

[SWS_CM_11030] Assigning a DDS Topic and a DDS DataWriter to every Field
in the ServiceInterface with its hasNotifier attribute equal to true dThe DDS
binding shall assign a DDS Topic to every field in the ServiceInterface with
its hasNotifier attribute set to true according to the mapping rules specified in
[SWS_CM_11130]. Since these DDS Topics may already be available in the Domain-
Participant assigned to the Service Instance (e.g., because a different Service Instance
assigned to the same DomainParticipant may have created them), the service shall first
look for existing Topics in the DomainParticipant matching the required criteria. If the
search is unsuccessful, the DomainParticipant shall create a new DDS Topic to repre-
sent the field as defined in [SWS_CM_11130].

Once all DDS Topics representing the fields in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per field with the hasNotifier attribute set to
true using the DDS Publisher created in [SWS_CM_11002]. The DataWriter shall
be configured according to the qosProfile specified in the associated DdsField-
QosProps.

Topic objects may be reused across service instances; therefore, they shall not be
removed until the enclosing DomainParticipant is destroyed.c(RS_CM_00204, RS_-
CM_00200, RS_CM_00101)

[SWS_CM_11031] Assigning a DDS Request and Reply Topic, and DataWriters
and DataReaders, to the Field Getters/Setters in the ServiceInterface dThe DDS
binding shall instantiate a DDS Service [21] to handle get/set requests to all the fields
in the ServiceInterface with hasGetter and/or hasSetter set to true.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service according to the mapping rules specified in [SWS_CM_11144]. Since
these DDS Topics may already be available in the DomainParticipant assigned to the
Service Instance (e.g., because a different Service Instance assigned to the same Do-
mainParticipant may have created them), the service shall first look for existing Topics
in the DomainParticipant matching the required criteria. If the search is unsuccessful,
the DomainParticipant shall create new DDS Request and Reply Topics to represent
the DDS Service as specified in [SWS_CM_11144].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

• [SWS_CM_11149] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_11002].

192 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• [SWS_CM_11150] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_11002].

Topic objects may be reused across service instances; therefore, they shall not be
removed until the enclosing DomainParticipant is destroyed.c(RS_CM_00204, RS_-
CM_00200, RS_CM_00101) The handling of fields with DDS is specified in section
7.8.3.6.

[SWS_CM_09004] Adding Service IDs, Service Instance IDs, and ServiceInter-
face Contract Versions to the DDS DomainParticipant’s USER_DATA QoS Policy
dThe binding implementation shall configure the USER_DATA QoS Policy of the DDS
DomainParticipant associated with the Service Instance to propagate Service IDs, In-
stance IDs, and ServiceInterface contract versions, using the native DDS discov-
ery mechanisms defined in [19]. The USER_DATA QoS Policy appends a user-defined
value to the DomainParticipant’s discovery messages. This information shall be used
by ara::com Clients and DDS native applications to identify a DomainParticipant as an
“ara::com DomainParticipant” that provides one or more Service Instances.

Service IDs, Service Instance IDs, and ServiceInterface contract versions shall
be encoded in the USER_DATA QoS Policy in string format according to the following
pattern:

"ara.com://services/<svcId>_<svcInId>-<svcMajVersion>.<svcMinVersion>
[&<svcId>_<svcInId>-<svcMajVersion>.<svcMinVersion>]*"

Where:

<svcId> is the Service ID derived from the Manifest, where the DdsServiceInter-
faceDeployment element defines the serviceInterfaceId.

<svcInId> is the Instance ID derived from the Manifest, where the DdsProvided-
ServiceInstance element defines the serviceInstanceId.

<svcMajVersion> is derived from the Manifest, where the majorVersion element
of the ServiceInterface defines the contract’s major version.

<svcMinVersion> is derived from the Manifest, where the minorVersion element
of the ServiceInterface defines the contract’s minor version.

Because a DomainParticipant may be associated with one or more Service Instances,
the syntax specified above allows appending one or more <svcId>_<svcInId>-
<svcMajVersion>.<svcMinVersion> pairs to the USER_DATA QoS:

• If USER_DATA QoS is empty, the binding implementation shall set
it to "ara.com://services/<svcId>_<svcInId>-<svcMajVersion>.-
<svcMinVersion>".

• Else, if USER_DATA QoS is not empty, the binding implementation shall ap-
pend the Service ID and Instance to the current value preceded by an amper-
sand symbol (i.e., "&<svcId>_<svcInId>-<svcMajVersion>.<svcMin-
Version>").

193 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00204, RS_CM_00200, RS_CM_00101, RS_CM_00500, RS_CM_00501)

[SWS_CM_11005] Mapping of StopOfferService method dWhen instructed to stop
offering a Service, the DDS Binding shall perform the following operations:

• It shall remove the appropriate Service and Instance IDs from the USER_DATA
QoS Policy of the DDS DomainParticipant assigned to the Service Instance.

• It shall remove all DDS DataWriters associated with events in the ServiceIn-
terface created in previous calls to the OfferService() method.

• It shall remove all DDS DataWriters associated with triggers in the Servi-
ceInterface created in previous calls to the OfferService() method.

• It shall remove all DDS DataWriters and DataReaders associated with the
ClientServerOperations defined in the role method created in previous
calls to the OfferService() method.

• It shall remove all DDS DataWriters associated with fields in the ServiceIn-
terface with their hasNotifier attribute set to true created in previous calls
to the OfferService() method.

• It shall remove all DDS DataWriters and DataReaders associated with the
fields in the ServiceInterface with hasGetter and/or hasSetter at-
tributes set to true created in previous calls to the OfferService() method.

c(RS_CM_00204, RS_CM_00105)

[SWS_CM_11006] Mapping of FindService method dWhen instructed to find remote
Services, the DDS Binding shall perform the following operations:

• [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable of
finding remote Services Instances. If such DomainParticipant does not exist, the
DDS binding shall create a new one as specified in [SWS_CM_11008].

• [SWS_CM_11009] It shall iterate over the list of discovered remote DomainPar-
ticipants and look for those associated with Service Instances that: (1) match the
filter criteria specified in the FindService() call, (2) have a compatible Ser-
viceInterface contract version, and (3) have a ServiceInterface contract
version that is not part of a DdsRequiredServiceInstance.blacklisted-
Version.

• It shall return a HandleType object for every Service Instance that: (1) matches
the filter criteria, (2) has a compatible ServiceInterface contract version, and
(3) has a ServiceInterface contract version that is not part of a DdsRe-
quiredServiceInstance.blacklistedVersion. The Handle object shall
contain a reference to both the DomainParticipant that was used in the discovery
phase and the DDS Publisher and Subscriber created to match the partition of
the remote service instance (see [SWS_CM_11009]), so that they can be used
to create the appropriate DataWriters and DataReaders to handle remote com-
munication.

194 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11007] Finding a DDS DomainParticipant suitable for performing
client-side operations dThe DDS binding shall provide client-side methods with a
DDS DomainParticipant capable of discovering and communicating with remote DDS
DomainParticipants assigned to the requested Service Instance(s). The configuration
of the DomainParticipant is described in the TPS_ManifestSpecification:

• The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element defines the domainId.

• The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element defines the qosProfile.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11008] Creating a DDS DomainParticipant suitable for perform-
ing client-side operations dTo create a DomainParticipant capable of discovering
and communicating with remote DDS DomainParticipants assigned to Service In-
stances, the binding implementation shall use the configuration parameters in the
TPS_ManifestSpecification described in [SWS_CM_11007].c(RS_CM_00204, RS_-
CM_00200, RS_CM_00102)

[SWS_CM_11009] Discovering remote Service Instances through DDS Domain-
Participants dDDS DomainParticipants created or retrieved in the context of Ser-
vice Discovery are responsible for discovering remote DomainParticipants assigned
to ara::com Service Instances.

To retrieve the list of discovered Service Instances, the DDS binding shall iterate first
the list of remote DomainParticipants the DomainParticipant has discovered so far.
This shall be done by calling read() on the DomainParticipant’s built-in DataReader
for the DCPSParticipant Topic. DCPSParticipant is a standard DDS Topic de-
fined in [19] that DomainParticipants use to inform other DomainParticipants of their
presence in the network. Among other things, DCPSParticipant Topics propagate
the DomainParticipant’s USER_DATA QoS Policy; therefore, these messages provide
all the necessary information to identify remote DomainParticipants associated with
ara::com Service Instances.

The DDS binding shall analyze the content of the USER_DATA QoS of each remote Do-
mainParticipant and check whether they are associated with Service Instances match-
ing the following criteria:

If requiredServiceInstanceId is set to “ALL”, the binding shall return a new han-
dle for each service instance found in remote DomainParticipants’ USER_DATA QoS
according to the following pattern:

"ara.com://services/.*<svcId>.*"

Else, if requiredServiceInstanceId is set to any value other than “ALL”, the bind-
ing shall return a new handle for every service instance found in remote DomainPar-
ticipants’ USER_DATA QoS according to the following pattern:

195 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

"ara.com://services/.*<svcId>_<reqSvcInId>.*"

Where:

<svcId> is the corresponding serviceInterfaceId.

<reqSvcInId> is the corresponding requiredServiceInstanceId.

In either case, before returning new handles the binding implementation shall evaluate
the ServiceInterface contract version for the corresponding Service Instance in
the content of the USER_DATA QoS. The binding shall return a new handle only if:

1. The ServiceInterface contract version of the discovered service instance is
compatible with the serviceInterfaceDeployment version of the DdsRe-
quiredServiceInstance according to [RS_CM_00501].

2. The ServiceInterface contract version is not part of any DdsRequiredSer-
viceInstance.blacklistedVersion, according to [RS_CM_00701].

Before returning new handles, the binding implementation shall ensure that the Do-
mainParticipant used in the discovery phase has one DDS Publisher and one DDS
Subscriber per service instance found matching the filter criteria5. The Partition QoS
of both DDS Publisher and DDS Subscriber shall contain the following partition name
to match the partition in which the DataReaders and DataWriters associated with the
remote service instance are operating (in consonance with [SWS_CM_11002]):

"ara.com://services/<svcId>_<reqSvcInId>"

If the binding implementation does not find a DDS Publisher with the aforementioned
requirements, it shall create a new one and configure the Publisher’s Partition QoS with
the partition name defined above. Likewise, if it does not find a DDS Subscriber with
those requirements, it shall create a new one and configure it accordingly.

Publisher and Subscriber objects may be reused across proxies associated with a
remote service instance; therefore, they shall not be removed until the enclosing Do-
mainParticipant is destroyed.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11010] Mapping of StartFindService method dWhen instructed to start
a continuous service search, the DDS Binding shall perform the following operations:

• [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable of
finding remote Service Instances. If such DomainParticipant does not exist, the
DDS binding shall create it as specified in [SWS_CM_11008].

• [SWS_CM_11011] It shall define a DDS BuiltinParticipantListener capable of call-
ing the given FindServiceHandler upon the occurrence of any of the following
events:

5These Publishers and Subscribers will be used to enclose all the DDS DataWriters and DataRead-
ers, respectively, that will handle communication with the corresponding remote service instance’s DDS
DataReaders and DataWriters.

196 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

1. A remote DomainParticipant assigned to a matching Service is discovered.

2. A remote DomainParticipant assigned to a matching Service does not con-
tain the service anymore (i.e., any time a remote DomainParticipant stopped
offering a matching Service by removing it from its USER_DATA QoS).

3. A remote DomainParticipant assigned to a matching Service ceases
to exist (i.e., the instance state is either NOT_ALIVE_DISPOSED or
NOT_ALIVE_NO_WRITERS).

• [SWS_CM_11012] It shall bind the defined BuiltinParticipantListener to the Do-
mainParticipant.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11011] Defining a DDS BuiltinParticipantListener dThe DDS Binding
implementation shall define a BuiltinParticipantListener class to handle noti-
fications whenever a remote DomainParticipant is discovered. This class shall derive
from the standard DataReaderListener class [18], specifying that the data type
of the samples to be handled is ParticipantBuiltinTopicData—the data type
associated with the built-in DataReader for samples of DCPSParticipant Topic [19].

BuiltinParticipantListener shall implement the following methods according
to the specified instructions:

• A Constructor that takes as a parameter references to a FindServiceHan-
dler and a requiredServiceInstanceId. These references shall be stored
in member variables so that they can be used by subsequent executions of
on_data_available()—which is the method the listener calls every time a
new DomainParticipant is discovered.

• An on_data_available() method that calls FindServiceHandler us-
ing the value of the member variable requiredServiceInstanceId. If
the returned ServiceHandleContainer contains more than one element,
on_data_available() shall invoke FindServiceHandler and pass the
container as a parameter; otherwise the method shall return and perform no
further action.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11012] Binding a BuiltinParticipantListener to a DDS DomainPartici-
pant dTo bind a BuiltinParticipantListener to a DDS DomainParticipant, the
DDS binding implementation shall create a new BuiltinParticipantListener
object (see [SWS_CM_11011]) passing FindServiceHandler and requiredSer-
viceInstanceId to the listener’s constructor. Then service shall then bind the newly
created listener to the DomainParticipant using the set_listener() method with
StatusMask = DATA_AVAILABLE_STATUS6.

6Note that the syntax of set_listener() and StatusMask is described in terms of the DDS
Platform-Independent Model specified in [18]. Different Platform-Specific Mappings, such as the DDS-
CPP-PSM specified in [22], map these concepts into more language-friendly constructs.

197 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

The BuiltinParticipantListener shall be removed when the enclosing DomainParticipant
is destroyed.c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11013] Mapping of StopFindService method dWhen instructed to stop a
continuous service search initiated by a previous call to StartFindService(), the
DDS Binding shall perform the following operations:

• [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable
of finding remote Service Instances. If such DomainParticipant does not exist,
StopFindService() shall return and perform no further action.

• [SWS_CM_11014] It shall unbind the BuiltinParticipantListener from
the retrieved DDS DomainParticipant7.

c(RS_CM_00204, RS_CM_00200)

[SWS_CM_11014] Unbinding a BuiltinParticipantListener from a DDS Domain-
Participant dWhen instructed to unbind a BuiltinParticipantListener from
a DDS DomainParticipant, the DDS binding implementation service shall invoke the
DomainParticipant’s set_listener() method to disable the listener. In that case,
set_listener() shall be called with StatusMask = STATUS_MASK_NONE.c(RS_-
CM_00204, RS_CM_00200)

7.8.3.2 Service Discovery via Topic

[SWS_CM_90502]{DRAFT} Mapping of OfferService method dWhen instructed to
offer a Service, the DDS Binding shall perform the following operations:

• [SWS_CM_90503] It shall assign a DDS DomainParticipant to the Service In-
stance.

• [SWS_CM_90504] It shall assign a DDS Topic and a DDS DataWriter to ev-
ery VariableDataPrototype defined in the ServiceInterface in the role
event.

• [SWS_CM_90505] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DataReader, to provide ac-
cess to all ClientServerOperations defined in the ServiceInterface the
role method.

• [SWS_CM_90506] It shall assign a DDS Topic and a DDS DataWriter to every
Field defined in the ServiceInterface in the role field with its hasNoti-
fier attribute set to true.

• [SWS_CM_90507] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DDS DataReader, to provide

7Note that with the behavior specified for FindService() and StartFindService()—the only
methods capable of creating DomainParticipants—guarantees that the DomainParticipant used by sub-
sequent calls to StartFindService() and StopFindService() will be the same.

198 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

access to all the Fields defined in the ServiceInterface in the role field
with hasGetter and/or hasSetter attributes set to true via getter/setter invo-
cation.

• [SWS_CM_90508] It shall advertise the Service Interface ID, Service Instance
ID, and ServiceInterface contract version via the ara.com://services/-
discovery DDS topic

c(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_90503]{DRAFT} Assigning a DDS DomainParticipant to a Service
Instance dThe DDS Binding shall assign a DDS DomainParticipant to every Ser-
vice Instance. The configuration of the DomainParticipant is described in the
TPS_ManifestSpecification:

• The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the domainId.

• The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the qosProfile.

Before creating a new DomainParticipant, the DDS binding shall first look for existing
DomainParticipants in the current process that match the configuration criteria speci-
fied above8. If the search is successful, the binding shall assign the DomainParticipant
found to the Service9; otherwise, the binding shall create a new DomainParticipant
according to the desired configuration and assign it to the Service.

Once the DomainParticipant is available to the Service Instance, the binding implemen-
tation shall create a DDS Publisher and a DDS Subscriber to enclose all DataWriters
and DataReaders associated with the Service Instance.

c(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_90504]{DRAFT} Assigning a DDS Topic and a DDS DataWriter to ev-
ery Event in the ServiceInterface dThe DDS binding shall assign a DDS Topic to
every event in the ServiceInterface according to the mapping rules specified
in [SWS_CM_11015]. Since these DDS Topics may already be available in the Do-
mainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the ser-
vice shall first look for existing Topics in the DomainParticipant matching the required
criteria. If the search is unsuccessful, the DomainParticipant shall create a new DDS
Topic to represent the event as defined in [SWS_CM_11015].

Once all DDS Topics representing the events in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per event using the DDS Publisher created in

8The DDS APIs that provide the ability to find existing DomainParticipants search in the scope of the
address space of the current process—only local DomainParticipants may be reused.

9The rules specified in this binding ensure the creation of only one DomainParticipant for a given
Domain and set of QoS settings (qosProfile).

199 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_90503]. The DataWriter shall be configured according to the qosProfile
specified in the associated DdsEventQosProps.

Topic objects may be reused across service instances; therefore, they shall not be
removed until the enclosing DomainParticipant is destroyed.c(RS_CM_00204, RS_-
CM_00200, RS_CM_00101)

[SWS_CM_90505]{DRAFT} Assigning a DDS Request and Reply Topic, and
DataWriters and DataReaders, to the Methods in the ServiceInterface dThe DDS
binding shall instantiate a DDS Service [21] to handle requests to all the methods in
the ServiceInterface.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service that handles those method calls according to the mapping rules spec-
ified in [SWS_CM_11100]. Since these DDS Topics may already be available in the
DomainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the service
shall first look for existing Topics in the DomainParticipant matching the required crite-
ria. If the search is unsuccessful, the DomainParticipant shall create new DDS Request
and Reply Topics to represent the DDS Service as specified in [SWS_CM_11100].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

• [SWS_CM_11106] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_90503].

• [SWS_CM_11107] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_90503].

Topic objects may be reused across service instances; therefore, they shall not be
removed until the enclosing DomainParticipant is destroyed.c(RS_CM_00204, RS_-
CM_00200, RS_CM_00101)

The handling of method calls with DDS is specified in 7.8.3.5.

[SWS_CM_90506]{DRAFT} Assigning a DDS Topic and a DDS DataWriter to ev-
ery Field in the ServiceInterface with its hasNotifier attribute equal to true dThe
DDS binding shall assign a DDS Topic to every field in the ServiceInterface
with its hasNotifier attribute set to true according to the mapping rules specified
in [SWS_CM_11130]. Since these DDS Topics may already be available in the Do-
mainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the ser-
vice shall first look for existing Topics in the DomainParticipant matching the required
criteria. If the search is unsuccessful, the DomainParticipant shall create a new DDS
Topic to represent the field as defined in [SWS_CM_11130].

Once all DDS Topics representing the fields in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per field with the hasNotifier attribute set to
true using the DDS Publisher created in [SWS_CM_90503]. The DataWriter shall

200 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

be configured according to the qosProfile specified in the associated DdsField-
QosProps.

Topic objects may be reused across service instances; therefore, they shall not be
removed until the enclosing DomainParticipant is destroyed.c(RS_CM_00204, RS_-
CM_00200, RS_CM_00101)

[SWS_CM_90507]{DRAFT} Assigning a DDS Request and Reply Topic, and
DataWriters and DataReaders, to the Field Getters/Setters in the ServiceInter-
face dThe DDS binding shall instantiate a DDS Service [21] to handle get/set requests
to all the fields in the ServiceInterface with hasGetter and/or hasSetter set
to true.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service according to the mapping rules specified in [SWS_CM_11144]. Since
these DDS Topics may already be available in the DomainParticipant assigned to the
Service Instance (e.g., because a different Service Instance assigned to the same Do-
mainParticipant may have created them), the service shall first look for existing Topics
in the DomainParticipant matching the required criteria. If the search is unsuccessful,
the DomainParticipant shall create new DDS Request and Reply Topics to represent
the DDS Service as specified in [SWS_CM_11144].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

• [SWS_CM_11149] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_90503].

• [SWS_CM_11150] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_90503].

Topic objects may be reused across service instances; therefore, they shall not be
removed until the enclosing DomainParticipant is destroyed.c(RS_CM_00204, RS_-
CM_00200, RS_CM_00101)

The handling of fields with DDS is specified in section 7.8.3.6.

[SWS_CM_90508]{DRAFT} Advertising Service IDs, Service Instance IDs, and
ServiceInterface Contract Versions over the ara.com://services/discovery
topic dThe binding implementation shall configure DDS Topic, Publisher and
DataWriter objects supporting the publication of announcement messages over
the ara.com://services/discovery topic, whose type is ServiceAnnounce-
mentMessage and is defined as follows10:

1 module dds {
2 module ara {
3 module com {

10DDS types are often defined in OMG IDL [23], which provides a standard language-independent
format to represent data types and interfaces. Even though we use IDL throughout the specification
to define data types, the use of IDL to is not mandated (i.e., a compliant implementation could choose
to hand-craft these types, run code generation from an equivalent XML syntax, or run vendor-specific
mechanisms to generate the actual data types).

201 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4

5 enum ServiceInstanceResourceIdentifierType {
6 SERVICE_INSTANCE_RESOURCE_PARTITION,
7 SERVICE_INSTANCE_RESOURCE_TOPIC_PREFIX,
8 SERVICE_INSTANCE_RESOURCE_INSTANCE_ID
9 };

10

11 struct ServiceVersion {
12 uint32 major_version;
13 uint32 minor_version;
14 };
15

16 struct ServiceAnnouncementMessage {
17 @key string<256> interface_id;
18 @key uint16 instance_id;
19 ServiceVersion version;
20 ServiceInstanceResourceIdentifierType identifier_type;
21 };
22

23 }; // module com
24 }; // module ara
25 }; // module dds

Where:

interface_id is the Service Instance ID derived from the Manifest, where
the DdsServiceInterfaceDeployment defines the serviceInterfaceId.
The value of this field contributes to the topic instance key

instance_id is the Service Instance ID derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInter-
faceId. The value of this field contributes to the topic instance key

version is derived from the Manifest, where the majorVersion element of the
ServiceInterface defines the contract major version, and the minorVer-
sion element of the ServiceInterface defines the contract minor version

identifier_type defines the protocol used by consumers of the Service Instance
to bind themselves with it. This choice will determine topic naming, usage
of partitions and the relevance of in-band instance identifers in the follow-
ing requirements: [SWS_CM_11015], [SWS_CM_11100], [SWS_CM_11130],
[SWS_CM_11144] and [SWS_CM_10524].

In order to guarantee reception of ServiceAnnouncementMessage samples by all
Service Interface consumers, including those joining after the Service Instance has
been advertised, the following DataWriter QoS policies shall be set for the ara.com:-
//services/discovery topic:

• RELIABILITY set to RELIABLE

• HISTORY set to KEEP_LAST with DEPTH set to 1

• DURABILITY set to TRANSIENT_LOCAL

202 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Once the ara.com://services/discovery topic DataWriter is properly set up and
ready to use, the offering Service Instance shall:

1. Instantiate a ServiceAnnouncementMessage sample, update it with the
proper values uniquely identifying the Service Instance, and use it to register
via register_instance() a unique instance (keyed by interface_id and
instance_id)

2. Use the Instance Handle returned by the previous step to publish the sample via
write()

3. Keep a copy the sample and the Instance Handle for use upon Service Instance
tear down (see [SWS_CM_11005])

c(RS_CM_00204, RS_CM_00200, RS_CM_00101, RS_CM_00500, RS_CM_00501)

[SWS_CM_90509]{DRAFT} Mapping of StopOfferService method dWhen in-
structed to stop offering a Service, the DDS Binding shall perform the following op-
erations:

• Call dispose() using the sample and the Instance Handle kept during Service
Instance announcement (see [SWS_CM_90508])

• It shall remove all DDS DataWriters associated with events in the ServiceIn-
terface created in previous calls to the OfferService() method.

• It shall remove all DDS DataWriters and DataReaders associated with the
ClientServerOperations defined in the role method created in previous
calls to the OfferService() method.

• It shall remove all DDS DataWriters associated with fields in the ServiceIn-
terface with their hasNotifier attribute set to true created in previous calls
to the OfferService() method.

• It shall remove all DDS DataWriters and DataReaders associated with the
fields in the ServiceInterface with hasGetter and/or hasSetter at-
tributes set to true created in previous calls to the OfferService() method.

c(RS_CM_00204, RS_CM_00105)

[SWS_CM_90510]{DRAFT} Mapping of FindService method dWhen instructed to
find remote Services, the DDS Binding shall perform the following operations:

• [SWS_CM_90511] It shall look for an existing DDS DomainParticipant capable of
finding remote Services Instances. If such DomainParticipant does not exist, the
DDS binding shall create a new one as specified in [SWS_CM_90512].

• [SWS_CM_90513] It shall create a DataReader matching the Topic and QoS
policies defined by [SWS_CM_90508], looking into all samples received for those
associated with Service Instances that: (1) match the filter criteria specified in
the FindService() call, (2) have a compatible ServiceInterface contract

203 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

version, and (3) have a ServiceInterface contract version that is not part of
a DdsRequiredServiceInstance.blacklistedVersion.

• It shall return a HandleType object for every Service Instance that: (1) matches
the filter criteria, (2) has a compatible ServiceInterface contract version, and
(3) has a ServiceInterface contract version that is not part of a DdsRe-
quiredServiceInstance.blacklistedVersion.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_90511]{DRAFT} Finding a DDS DomainParticipant suitable for per-
forming client-side operations dThe DDS binding shall provide client-side methods
with a DDS DomainParticipant capable of discovering and communicating with remote
DDS DomainParticipants assigned to the requested Service Instance(s). The configu-
ration of the DomainParticipant is described in the TPS_ManifestSpecification:

• The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element defines the domainId.

• The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element defines the qosProfile.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_90512]{DRAFT} Creating a DDS DomainParticipant suitable for per-
forming client-side operations dTo create a DomainParticipant capable of discov-
ering and communicating with remote DDS DomainParticipants assigned to Service
Instances, the binding implementation shall use the configuration parameters in the
TPS_ManifestSpecification described in [SWS_CM_90511].c(RS_CM_00204, RS_-
CM_00200, RS_CM_00102)

[SWS_CM_90513]{DRAFT} Discovering remote Service Instances through the
ara.com://services/discovery topic dDDS DomainParticipants created or retrieved
in the context of Service Discoverty are responsible for discovering remote Domain-
Participants assigned to ara::com Service Instances.

To retrieve a list of discovered Service Instances, the DDS binding shall process
inbound ServiceAnnouncementMessage samples from the ara.com://ser-
vices/discovery topic. This shall be done by calling read() on the DataReader
object defined by [SWS_CM_90510].

If requiredServiceInstanceId is set to ALL, the binding shall return a new handle
for each service instance declared by inbound ServiceAnnouncementMessage, as
long as its interface_id field matches the corresponding serviceInterfaceId.

Else, if requiredServiceInstanceId is set to any value other than ALL, the
binding should return a new handle for each service instance declared by inbound
ServiceAnnouncementMessage, as long as its interface_id field matches the
serviceInterfaceId and its instance_id field matches requiredServiceIn-
stanceId.

204 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

In either case, before returning new handles, the binding implementation shall evalu-
ate the ServiceInterface contract version for the corresponding Service Instance
in the content of the ServiceAnnouncementMessage samples. The binding shall
return a new handle only if:

1. The ServiceInterface contract version of the discovered service instance is
compatible with the serviceInterfaceDeployment version of the DdsRe-
quiredServiceInstance according to [RS_CM_00501]

2. The ServiceInterface contract version is not part of any DdsRequiredSer-
viceInstance.blacklistedVersion, according to [RS_CM_00701].

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_90514]{DRAFT} Mapping of StartFindService method dWhen in-
structed to start a continuous service search, the DDS Binding shall perform the fol-
lowing operations:

• [SWS_CM_90511] It shall look for an existing DDS DomainParticipant capable of
finding remote Service Instances. If such DomainParticipant does not exist, the
DDS binding shall create it as specified in [SWS_CM_90512].

• It shall continuously monitor arrival of ServiceAnnouncementMessage sam-
ples through the ara.com://services/discovery topic, calling FindSer-
viceHandler whenever a matching Service Instance is discovered.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_90515]{DRAFT} Mapping of StopFindService method dWhen in-
structed to stop a continuous service search initiated by a previous call to StartFind-
Service(), the DDS Binding shall perform the following operations:

• [SWS_CM_90511] It shall look for an existing DDS DomainParticipant capable
of finding remote Service Instances. If such DomainParticipant does not exist,
StopFindService() shall return and perform no further action.

• It shall stop monitoring the arrival of ServiceAnnouncementMessage samples
through the ara.com://services/discovery topic.

c(RS_CM_00204, RS_CM_00200)

7.8.3.3 Handling Events

[SWS_CM_11015] Mapping Events to DDS Topics dThe DDS binding shall map ev-
ery VariableDataPrototype defined in the ServiceInterface in the role event
to a DDS Topic. The equivalent DDS Topic shall be configured as follows:

• The Topic Name shall be derived from the Manifest according to the following
rules:

205 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

– Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceId>

– Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
to ara.com://services/<InterfaceID>/<InstanceID>/<Topic-
Name>

– Where:

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
serviceInterfaceId

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId or DdsRequiredServiceInstance.re-
quiredServiceInstanceId

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsEventDeployment.topicName

• The Topic Data Type shall be defined as specified in [SWS_CM_11016], and shall
be registered under the equivalent data type name.

c(RS_CM_00204, RS_CM_00201)

[SWS_CM_11016] DDS Topic data type definition dThe data type of a DDS Topic
representing an Event shall be constructed according to the following IDL definition:

1 struct <eventTypeName>EventType {
2 @key uint16 instance_id;
3 <eventTypeName> data;
4 };

Where:

<eventTypeName> is the Cpp Implementation Data Type symbol

206 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

data is the actual value of the event, which shall be constructed and encoded ac-
cording to the DDS serialization rules. The @external annotation is optionally
allowed, for cases where references yield implementation benefits over values.

c(RS_CM_00204, RS_CM_00201)

The DDS serialization rules are defined in section 7.8.3.7.

[SWS_CM_11017] Mapping of Send method dWhen instructed to send an event
message, the DDS Binding shall construct a new sample of the equivalent DDS Topic
data type (see [SWS_CM_11016]) as follows:

• The Instance Id field (instance_id) shall be derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInstan-
ceId.

• The Data field (data) shall point to the data input parameter of the Send()
method.

That sample shall be then passed as a parameter to the write() method of the DDS
DataWriter associated with the event, which shall serialize the sample according to
the serialization rules, and publish it over DDS.c(RS_CM_00204, RS_CM_00201)

The DDS serialization rules are defined in section 7.8.3.7.

[SWS_CM_11018] Mapping of Subscribe method dWhen instructed to subscribe to
an event, the DDS binding shall create a DDS DataReader using the DDS Subscriber
created for the proxy in [SWS_CM_11009]. The rules to create the DataReader are
specified in [SWS_CM_11019].

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11019] Creating a DDS DataReader for event subscription dThe
DDS binding shall create a DDS DataReader for the Topic associated with
the event (see [SWS_CM_11015]). If the provided or consumed Service In-
stance has been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, to ensure the proxy communicates only
with the service instance it is bound to, the binding implementation shall use the DDS
Subscriber created in [SWS_CM_11002] (whose partition name is "ara.com://-
services/<svcId>_<reqSvcInId>") to create the DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsEven-
tQosProps element defines the qosProfile that shall be used. To configure
the DataReader’s cache size according to the maxSampleCount specified in the
Subscribe() method call, the value of the DataReader’s HISTORY QoS speci-
fied in qosProfile shall be overridden as follows:

207 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– history.kind = KEEP_LAST_HISTORY_QOS

– history.depth = <maxSampleCount>

• Listener shall be an instance of the DataReaderListener class specified in
[SWS_CM_11020].

• StatusMask shall be set to STATUS_MASK_NONE.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11020] Defining a DDS DataReaderListener dThe DDS Binding imple-
mentation shall define a DataReaderListener class capable of handling notifica-
tions when a new sample is received and/or when the matched status of the subscrip-
tion changes. This class shall derive from the standard DataReaderListener class
[18], specifying that the samples to be handled are of the Topic data type specified in
[SWS_CM_11016].

The DataReaderListener shall implement the following methods according to the
specified instructions:

• A Constructor that initializes two member variables that hold references to an
EventReceiveHandler and a SubscriptionStateChangeHandler.

• An on_data_available() method that calls the EventReceiveHandler if it
has been set and there are valid samples in the DataReader’s cache.

• An on_subscription_matched() method that calls GetSubscription-
State() and passes the resulting SubscriptionState to Subscription-
StateChangeHandler if it has been set.

• A set_event_receive_handler() method that takes as an input parameter
a reference to an EventReceiveHandler and updates the member variable
holding a reference to an EventReceiveHandler to point to the input parame-
ter.

• A set_subscription_state_change_handler() method that takes as an
input parameter a reference to a SubscriptionStateChangeHandler and
updates the member variable holding a reference to a SubscriptionState-
ChangeHandler to point to the input parameter.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11021] Mapping of Unsubscribe method dWhen instructed to unsub-
scribe from a service event, the DDS binding shall delete the DataReader associated
with the event.c(RS_CM_00204, RS_CM_00104)

[SWS_CM_11022] Mapping of GetSubscriptionState method dWhen instructed to
provide the subscription state, the DDS binding shall check if the DataReader associ-
ated with the subscription exists:

• If it does exist, the binding shall call the DataReader’s
get_subscription_matched_status() method next.

208 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– If the total_count attribute of the resulting SubscriptionMatched-
Status is greater than zero, GetSubscriptionState() shall return
SubscriptionState = kSubscribed.

– Otherwise, it shall return SubscriptionState = kSubscription-
Pending.

• Else, if it does not exist—which indicates that either Subscribe() has never in-
voked or Unsubscribe() has been called before—GetSubscriptionState
() shall return SubscriptionState = kNotSubscribed.

c(RS_CM_00204, RS_CM_00106)

[SWS_CM_11023] Mapping of GetNewSamples method dWhen instructed to get
new samples, the DDS binding shall perform a take() on the DataReader as follows:

• If a maxNumberOfSamples is specified, the binding implementation shall invoke
take() with max_samples = maxNumberOfSamples.

• Else, if no maxNumberOfSamples is specified (i.e., if maxNumberOfSam-
ples is equal to the default value std::numeric_limits<std::size_t>
::max()), the binding implementation shall invoke take() without specifying
a max_samples limit.

After calling take(), the binding implementation shall invoke the Callable f for ev-
ery valid sample taken from the DataReader’s cache (i.e., every sample with Sample-
Info.valid_data equal to true), providing f with a reference to the corresponding
sample.

c(RS_CM_00204, RS_CM_00202)

[SWS_CM_11024] Mapping of GetFreeSampleCount method dWhen instructed to
provide the number of free sample slots, the binding implementation shall return the
number free sample slots in the DDS DataReader’s cache.c(RS_CM_00204, RS_CM_-
00202)

[SWS_CM_11025] Mapping of SetReceiveHandler method dWhen instructed to reg-
ister an EventReceiveHandler, the binding implementation shall perform the follow-
ing operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_event_receive_handler() method to instruct the lis-
tener to invoke the new EventReceiveHandler whenever there is data avail-
able.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or
DATA_AVAILABLE_STATUS, set it to DATA_AVAILABLE_STATUS.

209 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– If the original value of StatusMask was
SUBSCRIPTION_MATCHED_STATUS, set it to
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

c(RS_CM_00204, RS_CM_00203)

[SWS_CM_11026] Mapping of UnsetReceiveHandler method dWhen instructed to
unregister an EventReceiveHandler, the binding implementation shall perform the
following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_event_receive_handler() method to unset the internal
EventReceiveHandler that is called whenever there is data available.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or
DATA_AVAILABLE_STATUS, set it to STATUS_MASK_NONE.

– If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to SUBSCRIPTION_MATCHED_STATUS.

c(RS_CM_00204, RS_CM_00203)

[SWS_CM_11027] Mapping of SetSubscriptionStateHandler method dWhen in-
structed to register a SubscriptionStateChangeHandler, the binding implemen-
tation shall perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_subscription_state_change_handler() method to
instruct the listener to invoke the new SubscriptionStateChangeHandler
whenever there is a change in the SubscriptionMatchedStatus.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE
or SUBSCRIPTION_MATCHED_STATUS, set it to SUBSCRIP-
TION_MATCHED_STATUS.

210 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

c(RS_CM_00204, RS_CM_00106)

[SWS_CM_11028] Mapping of UnsetSubscriptionStateHandler method dWhen in-
structed to unregister a SubscriptionStateChangeHandler, the binding imple-
mentation shall perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_subscription_state_change_handler() method to
instruct the listener to unset the internal SubscriptionStateChangeHandler
that is called whenever there is a change in the SubscriptionMatchedSta-
tus.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or SUB-
SCRIPTION_MATCHED_STATUS, set it to STATUS_MASK_NONE.

– If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS.

c(RS_CM_00204, RS_CM_00106)

7.8.3.4 Handling Triggers

[SWS_CM_10524]{DRAFT} Mapping Triggers to DDS Topics dThe DDS binding
shall map every Trigger defined in the ServiceInterface in the role trigger to
a DDS Topic. The equivalent DDS Topic shall be configured as follows:

• The Topic Name shall be derived from the Manifest according to the following
rules:

– If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall

211 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

– Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceId>

– Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
to ara.com://services/<InterfaceID>/<InstanceID>/<Topic-
Name>

– Where:

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
serviceInterfaceId

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId or DdsRequiredServiceInstance.re-
quiredServiceInstanceId

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsEventDeployment.topicName associ-
ated with the trigger

• The Topic Data Type shall be defined as specified in [SWS_CM_10525], and shall
be registered under the equivalent data type name.

c(RS_CM_00204, RS_CM_00201)

[SWS_CM_10525]{DRAFT} DDS Topic data type definition dThe data type of a DDS
Topic representing a trigger shall be constructed according to the following IDL defini-
tion:

1 struct TriggerType {
2 @key uint16 instanceIdentifier;
3 };

Where:

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

c(RS_CM_00204, RS_CM_00201)

212 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10526]{DRAFT} Mapping of Send method dWhen instructed to send a
trigger message, the DDS Binding shall construct a new sample of the equivalent DDS
Topic data type (see [SWS_CM_10525]) as follows:

• The Instance Id field (instance_id) shall be derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInstan-
ceId.

That sample shall be then passed as a parameter to the write() method of the DDS
DataWriter associated with the trigger, which shall serialize the sample according
to the serialization rules, and publish it over DDS.c(RS_CM_00204, RS_CM_00201)

The DDS serialization rules are defined in section 7.8.3.7.

[SWS_CM_10527]{DRAFT} Mapping of Subscribe method dWhen instructed to
subscribe to a trigger, the DDS binding shall create a DDS DataReader using the DDS
Subscriber created for the proxy in [SWS_CM_11009] or [SWS_CM_90513]. The rules
to create the DataReader are specified in [SWS_CM_10528].c(RS_CM_00204, RS_-
CM_00103)

[SWS_CM_10528]{DRAFT} Creating a DDS DataReader for trigger subscrip-
tion dThe DDS binding shall create a DDS DataReader for the Topic associated
with the trigger (see [SWS_CM_10524]). If the provided or consumed Service
Instance has been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, to ensure the proxy communicates only
with the service instance it is bound to, the binding implementation shall use the DDS
Subscriber created in [SWS_CM_11009] (whose partition name is "ara.com://-
services/<svcId>_<reqSvcInId>") to create the DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsEven-
tQosProps element defines the qosProfile that shall be used.

• Listener shall be an instance of the DataReaderListener class specified in
[SWS_CM_11020].

• StatusMask shall be set to STATUS_MASK_NONE.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_10529]{DRAFT} Defining a DDS DataReaderListener dThe DDS Bind-
ing implementation shall define a DataReaderListener class capable of handling
notifications when a new sample is received and/or when the matched status of the
subscription changes. This class shall derive from the standard DataReaderLis-
tener class [18], specifying that the samples to be handled are of the Topic data type
specified in [SWS_CM_10525].

The DataReaderListener shall implement the following methods according to the
specified instructions:

213 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• A Constructor that initializes two member variables that hold references to an
TriggerReceiveHandler and a SubscriptionStateChangeHandler.

• An on_data_available() method that calls the TriggerReceiveHandler
if it has been set and there are valid samples in the DataReader’s cache.

• An on_subscription_matched() method that calls GetSubscription-
State() and passes the resulting SubscriptionState to Subscription-
StateChangeHandler if it has been set.

• A set_trigger_receive_handler() method that takes as an input parame-
ter a reference to an TriggerReceiveHandler and updates the member vari-
able holding a reference to an TriggerReceiveHandler to point to the input
parameter.

• A set_subscription_state_change_handler() method that takes as an
input parameter a reference to a SubscriptionStateChangeHandler and
updates the member variable holding a reference to a SubscriptionState-
ChangeHandler to point to the input parameter.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_10530]{DRAFT} Mapping of Unsubscribe method dWhen instructed to
unsubscribe from a service trigger, the DDS binding shall delete the DataReader as-
sociated with the trigger.c(RS_CM_00204, RS_CM_00104)

[SWS_CM_10531]{DRAFT} Mapping of GetSubscriptionState method dWhen in-
structed to provide the subscription state, the DDS binding shall check if the
DataReader associated with the subscription exists:

• If it does exist, the binding shall call the DataReader’s
get_subscription_matched_status() method next.

– If the total_count attribute of the resulting SubscriptionMatched-
Status is greater than zero, GetSubscriptionState() shall return
SubscriptionState = kSubscribed.

– Otherwise, it shall return SubscriptionState = kSubscription-
Pending.

• Else, if it does not exist—which indicates that either Subscribe() has never in-
voked or Unsubscribe() has been called before—GetSubscriptionState
() shall return SubscriptionState = kNotSubscribed.

c(RS_CM_00204, RS_CM_00106)

[SWS_CM_10532]{DRAFT} Mapping of GetNewTriggers method dWhen instructed
to get new triggers, the DDS binding shall perform a take() on the DataReader with-
out specifying a max_samples limit.

214 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

After calling take(), the binding implementation shall increase the internal trigger
count proportionally to the number of samples returned by take().c(RS_CM_00204,
RS_CM_00202)

[SWS_CM_10534]{DRAFT} Mapping of SetReceiveHandler method dWhen in-
structed to register an TriggerReceiveHandler, the binding implementation shall
perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_trigger_receive_handler() method to instruct the lis-
tener to invoke the new TriggerReceiveHandler whenever there is data avail-
able.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or
DATA_AVAILABLE_STATUS, set it to DATA_AVAILABLE_STATUS.

– If the original value of StatusMask was
SUBSCRIPTION_MATCHED_STATUS, set it to
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

c(RS_CM_00204, RS_CM_00203)

[SWS_CM_10535]{DRAFT} Mapping of UnsetReceiveHandler method dWhen in-
structed to unregister an TriggerReceiveHandler, the binding implementation
shall perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_trigger_receive_handler() method to unset the inter-
nal TriggerReceiveHandler that is called whenever there is data available.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or
DATA_AVAILABLE_STATUS, set it to STATUS_MASK_NONE.

– If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to SUBSCRIPTION_MATCHED_STATUS.

215 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00204, RS_CM_00203)

[SWS_CM_10536]{DRAFT} Mapping of SetSubscriptionStateHandler method
dWhen instructed to register a SubscriptionStateChangeHandler, the binding
implementation shall perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_subscription_state_change_handler() method to
instruct the listener to invoke the new SubscriptionStateChangeHandler
whenever there is a change in the SubscriptionMatchedStatus.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE
or SUBSCRIPTION_MATCHED_STATUS, set it to SUBSCRIP-
TION_MATCHED_STATUS.

– If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

c(RS_CM_00204, RS_CM_00106)

[SWS_CM_10537]{DRAFT} Mapping of UnsetSubscriptionStateHandler method
dWhen instructed to unregister a SubscriptionStateChangeHandler, the binding
implementation shall perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_subscription_state_change_handler() method to
instruct the listener to unset the internal SubscriptionStateChangeHandler
that is called whenever there is a change in the SubscriptionMatchedSta-
tus.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or SUB-
SCRIPTION_MATCHED_STATUS, set it to STATUS_MASK_NONE.

– If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS.

216 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00204, RS_CM_00106)

7.8.3.5 Handling Method Calls

The RPC over DDS Specification (DDS-RPC) [21] introduces the concept of DDS Ser-
vices. These Services provide the mechanisms required to define and implement
methods that can be invoked remotely by DDS “client” applications using the build-
ing blocks of the DDS data-centric publish-subscribe middleware [18]. In this section,
we specify how to handle ara::com method calls over DDS by defining the appropriate
mapping between ara::com service methods and DDS service methods.

[SWS_CM_11100] Mapping Methods to DDS Service Methods and Topics dEvery
ServiceInterface containing one or more ClientServerOperations defined in
the role method shall have an associated DDS Service to enable ara::com Service
Instances to offer those operations, and to enable client applications to invoke them.
The equivalent DDS Service shall provide all of the methods of the corresponding
ServiceInterface.

DDS Services shall be constructed according to the Basic Service Mapping Profile of
the RPC over DDS specification [21], which assigns two DDS Topics to every DDS Ser-
vice: a Request Topic and a Reply Topic. Thus, every ServiceInterface containing
one or more ClientServerOperations defined in the role method shall trigger the
creation of two equivalent DDS Topics.

The equivalent DDS Request Topic shall be configured as follows:

• The Request Topic Name shall be derived from the Manifest according to the
following rules:

– If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

– Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceId>

– Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set

217 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

to ara.com://services/<InterfaceID>/<InstanceID>/<Topic-
Name>

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
serviceInterfaceId

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId or DdsRequiredServiceInstance.re-
quiredServiceInstanceId

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsServiceInterfaceDeployment.
methodRequestTopicName

• The Request Topic Data Type shall be defined as specified in [SWS_CM_11101],
and shall be registered under the equivalent data type’s name.

The equivalent DDS Reply Topic shall be configured as follows:

• The Reply Topic Name shall be derived from the Manifest according to the fol-
lowing rules:

– If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

– Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceId>

– Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
to ara.com://services/<InterfaceID>/<InstanceID>/<Topic-
Name>

– Where:

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
serviceInterfaceId

218 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId or DdsRequiredServiceInstance.re-
quiredServiceInstanceId

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsServiceInterfaceDeployment.
methodReplyTopicName

• The Reply Topic Data Type shall be defined as specified in [SWS_CM_11102],
and shall be registered under the equivalent data type’s name.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11101] DDS Service Request Topic data type definition dAs specified
in section 7.5.1.1.6 of [21], the Request Topic data type is a structure composed of a
Request Header with meta-data a Call Structure with data. The IDL definition of the
Request Topic data type is the following:

1 struct <svcId>Method_Request {
2 dds::rpc::RequestHeader header;
3 <svcId>Method_Call data;
4 };

Where:

<svcId> is the corresponding serviceInterfaceId.

dds::rpc::RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [21].

<svcId>Method_Call is the union that holds the value of the input parameters of
the corresponding methods, according to the rules specified in section 7.5.1.1.6
of [21].

dds::rpc::RequestHeader shall be constructed as specified in section 7.5.1.1.1
of [21]. On top of that, the binding implementation shall set instanceName (a mem-
ber of the RequestHeader structure that specifies the DDS Service instance name)
to a string representation of the serviceInstanceId of the service instance that
provides the methods.

<svcId>Method_Call shall be constructed as specified in section 7.5.1.1.6 of [21]:

• The name of the union shall be <svcId>Method_Call.

• The union discriminator shall be a 32-bit signed integer.

• The union shall have a default case of type dds::rpc::UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

• The union shall have a case label for each ClientServerOperation defined
in the ServiceInterface with the role method, where:

219 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– The integer value of the case label shall be a 32-bit hash of the
ClientServerOperation’s shortName. The binding implementation
shall compute the hash as specified in section 7.5.1.1.2 of [21]. Represen-
tations of the service interface in OMG IDL [23] shall define 32-bit signed
integer constants (i.e., const int32 <svcId>Method_<methodName>
_Hash; where <methodName> is the shortName of the ClientServer-
Operation) to simplify the representation of the union cases (see below).

– The member name for the case label shall be the shortName of the
ClientServerOperation.

– The type for each case label shall be <svcId>Method_<methodName>
_In, which shall be constructed as specified in section 7.5.1.1.4 of [21] (see
below).

The IDL definition of the <svcId>Method_Call union is the following:
1 union <svcId>Method_Call switch(int32) {
2 default:
3 dds::rpc::UnknownOperation unknownOp;
4 case <svcId>Method_<method0Name>_Hash:
5 <svcId>Method_<method0Name>_In <method0Name>;
6 case <svcId>Method_<method1Name>_Hash:
7 <svcId>Method_<method1Name>_In <method1Name>;
8 // ...
9 case <svcId>Method_<methodNName>_Hash:

10 <svcId>Method_<methodNName>_In <methodNName>;
11 };

As defined in section 7.5.1.1.4 of [21], the <svcId>Method_<methodName>_In
structure shall contain as members all the ArgumentDataPrototypes of the
ClientServerOperation with direction set to in or inout. The IDL repre-
sentation of <svcId>Method_<methodName>_In is the following:

1 struct <svcId>Method_<methodName>_In {
2 <ArgumentDataPrototype[0]>;
3 <ArgumentDataPrototype[1]>;
4 // ...
5 <ArgumentDataPrototype[n]>;
6 };

In accordance with [21], for methods with no input parameters, the DDS binding shall
generate a <svcId>Method_<methodName>_In structure with a single member
named dummy of type dds::rpc::UnusedMember (see section 7.5.1.1.1 of [21]).

The resulting Request Topic data type shall be encoded according to the DDS serial-
ization rules. Unions, such as the <svcId>Method_Call union, shall be serialized as
specified in section 7.4.3.5 of [20].c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_CM_00200)

[SWS_CM_11102] DDS Service Reply Topic data type definition dAs specified in
section 7.5.1.1.7 of [21], the Reply Topic data type is a structure composed of a Reply

220 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Header with meta-data and a Return Structure with data. The IDL definition of the
Reply Topic data type is the following:

1 struct <svcId>Method_Reply {
2 dds::rpc::ReplyHeader header;
3 <svcId>Method_Return data;
4 };

Where:

<svcId> is the corresponding serviceInterfaceId.

dds::rpc::ReplyHeader is the standard Reply Header defined in section 7.5.1.1.1
of [21].

<svcId>Method_Return is the union that holds the return values (i.e., return values,
output parameter values, and/or errors) of the corresponding response, according
to the rules specified in section 7.5.1.1.7 of [21].

dds::rpc::ReplyHeader shall be constructed as specified in section 7.5.1.1.1 of
[21].

<svcId>Method_Return shall be constructed as specified in section 7.5.1.1.7 of
[21]:

• The name of the union shall be <svcId>Method_Return.

• The union discriminator shall be a 32-bit signed integer.

• The union shall have a default case of type dds::rpc::UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

• The union shall have a case label for each ClientServerOperation defined
in the ServiceInterface with the role method, where:

– The integer value of the case label shall be a 32-bit hash of the
ClientServerOperation’s shortName. The binding implementation
shall compute the hash as specified in section 7.5.1.1.2 of [21]. Represen-
tations of the service interface in OMG IDL [23] shall define 32-bit signed
integer constants (i.e., const int32 <svcId>Method_<methodName>
_Hash; where <methodName> is the shortName of the ClientServer-
Operation) to simplify the representation of the union cases (see below).

– The member name for the case label shall be the shortName of the
ClientServerOperation.

– The type for each case label shall be <svcId>Method_<methodName>
_Result, which shall be constructed as specified in section 7.5.1.1.4 of
[21] (see below).

The IDL definition of <svcId>Method_Return is the following:
1 union <svcId>Method_Return switch(int32) {
2 default:
3 dds::rpc::UnknownOperation unknownOp;

221 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4 case <svcId>Method_<method0Name>_Hash:
5 <svcId>Method_<method0Name>_Result <method0Name>;
6 case <svcId>Method_<method1Name>_Hash:
7 <svcId>Method_<method1Name>_Result <method1Name>;
8 // ...
9 case <svcId>Method_<methodNName>_Hash:

10 <svcId>Method_<methodNName>_Result <methodNName>
11 };

As defined in section 7.5.1.1.5 of [21], the <svcId>Method_<methodName>_Re-
sult union shall be constructed as follows:

• The union discriminator shall be a 32-bit signed integer.

• The union shall have a case with label dds::RETCODE_OK to represent a suc-
cessful return:

– The value of RETCODE_OK shall be 0x00, as specified in section 2.3.3 of
[18].

– The successful case shall have a single member named result of type
<svcId>Method_<methodName>_Out (see below).

• The union shall also have a case with label dds::RETCODE_ERROR to represent
the ApApplicationError the method may return:

– The value of RETCODE_ERROR shall be 0x01, as specified in section 2.3.3
of [18].

– The error case shall have a single member named error of type ara::-
core::ErrorCode (see [SWS_CM_10428]).

The IDL representation of <svcId>Method_<methodName>_Result is the follow-
ing:

1 union <svcId>Method_<methodName>_Result switch(int32) {
2 case dds::RETCODE_OK:
3 <svcId>Method_<methodName>_Out result;
4 case dds::RETCODE_ERROR:
5 ara::core::ErrorCode error;
6 };

Lastly, as defined in section 7.5.1.1.5 of [21], the <svcId>Method_<methodName>
_Out structure be constructed as follows:

• The structure shall contain as members all the ArgumentDataPrototypes of
the ClientServerOperation with direction set to out or inout.

• The members of the structure representing out and inout arguments shall ap-
pear in the structure in the same order as they were declared.

• If the method has no out, and no inout arguments, the structure shall contain
a single member named dummy of type dds::rpc::UnusedMember (in accor-
dance with section 7.5.1.1.1 of [21]).

222 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

The IDL representation of <svcId>Method_<methodName>_Out is the following:
1 struct <svcId>Method_<methodName>_Out {
2 <ArgumentDataPrototype[0]>;
3 <ArgumentDataPrototype[1]>;
4 // ...
5 <ArgumentDataPrototype[n]>;
6 };

The resulting Reply Topic data type shall be encoded according to the DDS serial-
ization rules. Unions, such as the <svcId>Method_<methodName>_Result union,
shall be serialized as specified in section 7.4.3.5 of [20].c(RS_CM_00204, RS_CM_-
00212, RS_CM_00213, RS_CM_00200)

[SWS_CM_10431] Mapping of ara::core::ErrorCode dA ApApplicationError
shall be represented according to the following IDL [23]:

1 module dds {
2 module ara {
3 module core {
4

5 struct ErrorCode {
6 uint64 error_domain_value;
7 int32 error_code;
8 };
9

10 }; // module core
11 }; // module ara
12 }; // module dds

Where:

error_domain_value is a 64-bit unsigned integer representing the ApApplica-
tionErrorDomain. value, to which the raised ApApplicationError be-
longs.

error_code is a 32-bit signed integer representing the ApApplicationError. er-
rorCode, which is represented on binding level as ara::core::ErrorCode:-
:Value().

ara::core::ErrorCode shall be serialized according to the DDS serialization rules.
Since IDL modules are translated to C++ namespaces during IDL to C++ code gener-
ation, the additional top-level module dds prevents clashing of the generated C++ type
with ara::com’s own ara::core::ErrorCode definition.c(RS_CM_00204)

The DDS serialization rules are defined in section 7.8.3.7.

[SWS_CM_11103] Creating a DataWriter to handle method requests on the client
side dThe DDS binding shall create a DDS DataWriter for the Request Topic asso-
ciated with the methods of the ServiceInterface (see [SWS_CM_11101]) upon
proxy instantiation.

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure

223 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

the proxy communicates only with the service instance it is bound to, the binding im-
plementation shall use the DDS Publisher created in [SWS_CM_11009] (whose par-
tition name is "ara.com://services/<svcId>_<reqSvcInId>") to create the
DataWriter.

The DataWriter shall be configured as follows:

• DataWriterQos shall be set as specified in the Manifest, where the DdsRe-
quiredServiceInstance element defines the qosProfile that shall be
used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11104] Creating a DataReader to handle method responses on the
client side dThe DDS binding shall create a DDS DataReader for the Reply Topic
associated with the methods of the ServiceInterface (see [SWS_CM_11102])
upon proxy instantiation.

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure
the proxy communicates only with the service instance it is bound to, the binding im-
plementation shall use the DDS Subscriber created in [SWS_CM_11009] (whose par-
tition name is "ara.com://services/<svcId>_<reqSvcInId>") to create the
DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsRe-
quiredServiceInstance element defines the qosProfile that shall be
used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215)

[SWS_CM_11105] Creating a DataReader to handle method requests on the
server side dThe DDS binding shall create a DDS DataReader for the Request Topic
associated with the methods of the ServiceInterface (see [SWS_CM_11101]) as
part of the OfferService() operation (see [SWS_CM_11001]).

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, the bind-
ing shall use the DDS Subscriber created in [SWS_CM_11002] (whose partition name
is "ara.com://services/<svcId>_<svcInId>") to create the DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsPro-
videdServiceInstance element defines the qosProfile that shall be used.

• Listener and StatusMask shall be set according to the value of Method-
CallProcessingMode that was selected in the constructor of the Ser-
viceSkeleton class:

224 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– For MethodCallProcessingMode = kEvent or kEventSin-
gleThread, Listener shall be set to an instance of the DataRead-
erListener class specified in [SWS_CM_11110], and StatusMask shall
be set to DATA_AVAILABLE_STATUS.

– For MethodCallProcessingMode = kPoll, Listener shall remain
unset, and StatusMask shall be set to STATUS_MASK_NONE.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11106] Creating a DataWriter to handle method responses on the
server side dThe DDS binding shall create a DDS DataWriter for the Reply Topic
associated with the methods of the ServiceInterface (see [SWS_CM_11102]) as
part of the OfferService() operation (see [SWS_CM_11101]).

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, the bind-
ing implementation shall use the DDS Publisher created in [SWS_CM_11002] (whose
partition name is "ara.com://services/<svcId>_<svcInId>") to create the
DataWriter.

The DataWriter shall be configured as follows:

• DataWriterQos shall be set as specified in the Manifest, where the DdsPro-
videdServiceInstance element defines the qosProfile that shall be used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11107] Calling a service method from the client side dWhen instructed
to call a method from the client side, the DDS binding shall construct a new sam-
ple of the Request Topic—an instance of the Request Topic data type defined in
[SWS_CM_11101])—as follows:

• To initialize the RequestHeader object,

– requestId shall be set by the underlying DDS implementation according
to the rules specified in [21].

– instanceName shall be set by the binding implementation to the servi-
ceInstanceId of the remote service instance.

• To initialize the <svcId>Method_Call object, the binding implementation shall
first select the appropriate union case (as specified in [SWS_CM_11101], the
hash of the method’s name is the union discriminator that selects the union case),
and then set accordingly the structure containing all the in and inout argu-
ments.

That sample shall then be passed as a parameter to the write() method of the DDS
DataWriter created in [SWS_CM_11103] to handle method requests on the client side,
which shall serialize the sample according to the DDS serialization rules, and publish
it over DDS.c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213)

225 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

The DDS serialization rules are defined in section 7.8.3.7.

[SWS_CM_11108] Notifying the client of a response to a method call dTo notify
the client application of a response as a result of a method call, the DDS binding
implementation shall invoke either the set_value() operation or the SetError()
operation of the ara::core::Promise corresponding to the ara::core::Future
that is returned to the caller.

If the discriminator of the <svcId>Method_<methodName>_Result union holding
the response for the specific method call in the received DDS Reply Topic sample is
dds::RETCODE_OK (i.e., 0 as defined in [18]), the binding implementation shall call the
ara::core::Promise’s set_value() operation (see [SWS_CORE_00345] and
[SWS_CORE_00346]) using the members representing the out and inout argu-
ments in the corresponding <svcId>Method_<methodName>_Out result (see
[SWS_CM_11102]).

Else, for any other discriminator value, the binding implementation shall call the ara:-
:core::Promise’s SetError() operation (see [SWS_CORE_00347]) with the cor-
responding ara::core::ErrorCode, which is based on the corresponding ApAp-
plicationError (see [SWS_CM_11102]).

In either case, the associated set operation shall be performed upon the recep-
tion of a new Reply Topic sample by the corresponding DDS DataReader (see
[SWS_CM_11104]). The DDS binding shall use the DataReader’s take() to pro-
cess the sample. Moreover, to correlate a request with a response, the binding shall
compare the header.relatedRequestId of the received sample with the original
requestId that was set and sent in [SWS_CM_11107]11 12.

If a received relatedRequestId does not correspond to a requestId that has been
sent by the client, the response shall be discarded.c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_CM_00215)

[SWS_CM_11109] Processing a method call on the server side (event driven)
dIn case a MethodCallProcessingMode of either kEvent or kEventSin-
gleThread has been passed to the constructor of the ServiceSkeleton (see
[SWS_CM_00130]), the binding implementation shall create a DataReaderLis-
tener to process the requests asynchronously—as described in [SWS_CM_11110]—
and attach an instance of it to the DataReader processing the requests in accordance
with [SWS_CM_11105]. The listener is responsible for identifying the method that shall

11The RPC over DDS specification [21] does not mandate a specific mechanism or context to in-
voke the take() operation on the DataReader that subscribes to method replies.Implementers of this
specification may therefore follow different approaches to address this issue.

12For instance, a proxy could provide a ara::core::Map<dds::SampleIdentity,
ara::core::Promise<T> > to hold the ara::core::Promises assigned to every request
(identified by their dds::SampleIdentity requestId), and install a DataReaderListener (on
the DataReader created in [SWS_CM_11104]) with an on_data_available() method that could
call the setter of the corresponding ara::core::Promise using the relatedRequestId of the
received Reply Topic sample to address it. Alternatively, a compliant solution could also call take() in
the context of a std::async using a dds::core::Waitset [18] to block until the reception of the
expected sample.

226 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

process the request and dispatch it (see [SWS_CM_11110]).c(RS_CM_00204, RS_-
CM_00212, RS_CM_00213)

[SWS_CM_11110] Creating a DataReaderListener to process asynchronous re-
quests on the server side dAccording to [SWS_CM_11105], a MethodCallPro-
cessingMode of either kEvent or kEventSingleThread requires the instantiation
of a DataReaderListener to process asynchronously requests on the server side. The
resulting listener shall derive from the standard DataReaderListener class [18],
specifying that the data type of the samples to be handled is the Request Topic data
type defined in [SWS_CM_11101].

The DataReaderListener shall implement the following methods according to the
specified instructions:

• An on_data_available() method responsible for reading the received re-
quests from the DataReader’s cache—using the take() operation—and dis-
patching them to the appropriate methods for processing. To identify the
method of the ServiceSkeleton class that shall process each request,
on_data_available() shall use the union discriminator of the <svcId>
Method_Call and provide the destination method with the specific Argument-
DataPrototypes in the union case.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11111] Processing a method call on the server side (polling) dIn
case a MethodCallProcessingMode of kPoll has been passed to the construc-
tor of the ServiceSkeleton (see [SWS_CM_00130]), the ProcessNextMethod-
Call method is be responsible for calling take() on the DataReader processing
the Request Topic associated with the service (see [SWS_CM_11105]). Process-
NextMethodCall, shall take only the first sample from the DataReader’s cache and
dispatch the call the appropriate service method (see [SWS_CM_00191]) of the Ser-
viceSkeleton class according to the value of the of the discriminator of the <sv-
cId>Method_Call union and provide the destination method with the specific Ar-
gumentDataPrototypes in the union case.c(RS_CM_00204, RS_CM_00212, RS_-
CM_00213)

[SWS_CM_11112] Sending a method call response from the server side dThe
binding implementation shall send a response upon the return (either as a result of a
normal return or through one of the possible ApApplicationErrors referenced by
the ClientServerOperation in the role possibleApError) of the service method
(see [SWS_CM_10306] and [SWS_CM_10307]).

To send the response, the DDS binding shall construct a new sample of the Reply Topic
—an instance of the Reply Topic data type defined in [SWS_CM_11102])—as follows:

• To initialize the ReplyHeader object,

– relatedRequestId shall be set to the value of the header.re-
questId attribute of the request that triggered the method call (see
[SWS_CM_11107]).

227 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• To initialize the <svcId>Method_Return object, the binding implementation
shall:

– Select the appropriate union case (as specified in [SWS_CM_11102], the
hash of the method’s name is the union discriminator that selects the union
case).

– Set the <svcId>Method_<methodName>_Result union selecting its
union discriminator based on whether the operation generated the correct
result or raised an ApApplicationError:

∗ If operation generated the correct result, the binding shall select the
union case for dds::RETCODE_OK and set the <svcId>Method_
<methodName>_Out structure with all the out and inout arguments.

∗ Otherwise, if the operation raised an ApApplicationError, the bind-
ing shall select the union case 0x01 and construct the corresponding
ara::core::ErrorCode (see [SWS_CM_11102]).

The sample shall then be passed as a parameter to the write() method of the DDS
DataWriter created in [SWS_CM_11105] to handle method responses on the server
side, which shall serialize the sample according to the DDS serialization rules, and pub-
lish it over DDS.c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213)

The DDS serialization rules are defined in section 7.8.3.7.

7.8.3.6 Handling Fields

[SWS_CM_11130] Mapping Fields with hasNotifier attribute to DDS Topics dThe
DDS binding shall assign a DDS Topic to every Field defined in the ServiceInter-
face in the role field with hasNotifier = true to enable its notification semantics
over DDS. The equivalent DDS Topic shall be configured as follows:

• The Topic Name shall be derived from the Manifest according to the following
rules:

– If the provided or consumed Service Instance has
been advertised with the identifier_type attribute
set to SERVICE_INSTANCE_RESOURCE_PARTITION
orSERVICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name
shall be set to ara.com://services/<InterfaceID>/<Major>
.<Minor>/<TopicName>

– Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the

228 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceId>

– Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
to ara.com://services/<InterfaceID>/<InstanceID>/<Topic-
Name>

– Where:

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
serviceInterfaceId

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId or DdsRequiredServiceInstance.re-
quiredServiceInstanceId

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsEventDeployment.topicName defined
for DdsFieldDeployment in the notifier role

• The Topic Data Type shall be defined as specified in [SWS_CM_11131], and shall
be registered under the equivalent data type’s name.

c(RS_CM_00204, RS_CM_00201)

[SWS_CM_11131] Field Notifier DDS Topic data type definition dThe data type of a
DDS Topic representing a Field Notifier shall be constructed according to the following
IDL definition:

1 struct <fieldTypeName>FieldNotifierType {
2 @key uint16 instance_id;
3 <fieldTypeName> data;
4 };

Where:

<fieldTypeName> is the Cpp Implementation Data Type symbol [24].

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

data is the actual value of the field, which shall be constructed and encoded ac-
cording to the DDS serialization rules. The @external annotation is optionally
allowed, for cases where references yield implementation benefits over values.

c(RS_CM_00204, RS_CM_00201)

The DDS serialization rules are defined in section 7.8.3.7.

229 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_11132] Mapping of Update method dWhen instructed to transmit a field
notification message, the DDS binding shall construct a new sample of the equivalent
DDS Topic data type (see [SWS_CM_11131]) as follows:

• The Instance Id field (instance_id) shall be derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInstan-
ceId.

• The Data field (data) shall point to the data input parameter of the Update()
method.

That sample shall be then passed as a parameter to the write() method of the DDS
DataWriter associated with the field, which shall serialize the sample according to
the DDS serialization rules specified, and publish it over DDS.c(RS_CM_00204, RS_-
CM_00201)

The DDS serialization rules are defined in section 7.8.3.7.

[SWS_CM_11133] Mapping of Subscribe method dWhen instructed to subscribe to a
field, the DDS binding shall create a DDS DataReader to handle the subscription using
the DDS Subscriber created for the proxy in [SWS_CM_11002]. The rules to create the
DataReader are specified in [SWS_CM_11134].c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11134] Creating a DDS DataReader for field subscription dThe
DDS binding shall create a DDS DataReader for the Topic associated with
the field (see [SWS_CM_11130]). If the provided or consumed Service In-
stance has been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, to ensure the proxy communicates only
with the service intsance it is bound to, the binding implementation shall use the DDS
Subscriber created in [SWS_CM_11009] (whose partition name is "ara.com://-
services/<svcId>_<reqSvcInId>") to create the DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the qosProfile that shall be used. To configure
the DataReader’s cache size according to the field subscription semantics, the
maxSampleCount specified in the Subscribe() method call, the value of the
DataReader’s HISTORY QoS specified in qosProfile shall be overridden as
follows:

– history.kind = KEEP_LAST_HISTORY_QOS

– history.depth = <maxSampleCount>

Moreover, to ensure that the proxy received the current value of the field as soon
as it creates the subscription, the DataReaders’s DURABILITY QoS shall be over-
ridden as follows:

– durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS

Likewise, the RELIABILITY QoS shall be overridden as follows:

230 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– reliability.kind = RELIABLE_RELIABILITY_QOS

• Listener shall be an instance of the DataReaderListener class specified in
[SWS_CM_11135].

• StatusMask shall be set to STATUS_MASK_NONE.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11135] Creating a DDS DataReaderListener for field subscription dThe
DDS implementation shall define a DataReaderListener class to handle field noti-
fications when a new sample is received and/or the matched status of the subscription
changes following the instructions specified in [SWS_CM_11020].

The DataReaderListener class shall specify that the samples to be handled are of
the Topic data type specified in [SWS_CM_11131].c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11136] Mapping of Unsubscribe method dWhen instructed to unsub-
scribe from a field event, the DDS binding shall delete the DataReader associated with
the field notifier.c(RS_CM_00204, RS_CM_00104)

[SWS_CM_11137] Mapping of GetSubscriptionState method dThe GetSubscrip-
tionState method shall be mapped as specified in [SWS_CM_11022] using the
DataReader created in [SWS_CM_11134].c(RS_CM_00204, RS_CM_00106)

[SWS_CM_11138] Mapping of GetNewSamples method dThe GetNewSamples
method shall be mapped as specified in [SWS_CM_11023] using the DataReader cre-
ated in [SWS_CM_11134].c(RS_CM_00204, RS_CM_00202)

[SWS_CM_11139] Mapping of GetFreeSampleCount method dThe GetFreeSam-
pleCount method shall be mapped as specified in [SWS_CM_11024] using the
DataReader created in [SWS_CM_11134].c(RS_CM_00204, RS_CM_00202)

[SWS_CM_11140] Mapping of SetReceiveHandler method dThe SetReceiveHan-
dler method shall be mapped as specified in [SWS_CM_11025] using the DataReader
created in [SWS_CM_11134].c(RS_CM_00204, RS_CM_00203)

[SWS_CM_11141] Mapping of UnsetReceiveHandler method dThe UnsetReceive-
Handler method shall be mapped as specified in [SWS_CM_11026] using the
DataReader created in [SWS_CM_11134].c(RS_CM_00204, RS_CM_00203)

[SWS_CM_11142] Mapping of SetSubscriptionStateHandler method dThe Set-
SubscriptionStateHandler method shall be mapped as specified in [SWS_CM_11027]
using the DataReader created in [SWS_CM_11134].c(RS_CM_00204, RS_CM_-
00106)

[SWS_CM_11143] Mapping of UnsetSubscriptionStateHandler method
dThe UnsetSubscriptionStateHandler method shall be mapped as specified in
[SWS_CM_11028] using the DataReader created in [SWS_CM_11134].c(RS_CM_-
00204, RS_CM_00106)

231 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_11144] Mapping of Field Get/Set methods to DDS Service Methods
and Topics dEvery ServiceInterface containing one or more Fields defined in
the role field with hasGetter or hasSetter attributes set to true shall have an
associated DDS Service to enable ara::com Service Instances to offer those opera-
tions, and to enable client applications to invoke them. The equivalent DDS Service
shall provide the getter and setter methods for all the fields in the corresponding
ServiceInterface.

In compliance with [SWS_CM_11100], these DDS Services shall be constructed ac-
cording to the Basic Service Mapping Profile of the RPC over DDS specification [21].
Thus, every ServiceInterface containing one or more fields with the hasGet-
ter or hasSetter attributes enabled shall trigger the creation of a pair of DDS Topics:
a Request Topic and a Reply Topic.

The equivalent DDS Request Topic shall be configured as follows:

• The Request Topic Name shall be derived from the Manifest according to the
following rules:

– If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

– Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceId>

– Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
to ara.com://services/<InterfaceID>/<InstanceID>/<Topic-
Name>

– Where:

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
serviceInterfaceId

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId or DdsRequiredServiceInstance.re-
quiredServiceInstanceId

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

232 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

<TopicName> is the value of DdsServiceInterfaceDeployment.
fieldRequestTopicName

• The Request Topic Data Type shall be defined as specified in [SWS_CM_11145].

The equivalent DDS Reply Topic shall be configured as follows:

• The Reply Topic Name shall be derived from the Manifest according to the fol-
lowing rules:

– If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

– Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceId>

– Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
to ara.com://services/<InterfaceID>/<InstanceID>/<Topic-
Name>

– Where:

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
serviceInterfaceId

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId or DdsRequiredServiceInstance.re-
quiredServiceInstanceId

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsServiceInterfaceDeployment.
fieldReplyTopicName

• The Reply Topic Data Type shall be defined as specified in [SWS_CM_11146].

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11145] DDS Service Request Topic data type definition for Field getter
and setter operations dAs specified in section 7.5.1.1.6 of [21], the Request Topic

233 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

data type is a structure composed of a Request Header with meta-data and a Call
Structure with data. The IDL definition of the Request Topic data type for the DDS
Service handling field getters and setters is the following:

1 struct <svcId>Field_Request {
2 dds::rpc::RequestHeader header;
3 <svcId>Field_Call data;
4 };

Where:

<svcId> is the corresponding serviceInterfaceId.

dds::rpc::RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [21].

<svcId>Field_Call is the union that holds the value of the input parameters of the
corresponding methods, according to the rules specified in section 7.5.1.1.6 of
[21].

dds::rpc::RequestHeader shall be constructed as specified in section 7.5.1.1.1
of [21]. On top of that, the binding implementation shall set the instanceName (a
member of the RequestHeader structure that specifies the DDS service instance
name) to a string representation of the serviceInstanceId of the service instance
that provides the fields (which have getters or setters).

<svcId>Field_Call shall be constructed as specified in section 7.5.1.1.6 of [21].

• The name of the union shall be <svcId>Field_Call.

• The union discriminator shall be a 32-bit signed integer.

• The union shall have a default case of type dds::rpc::UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

• The union shall have a case label for each hasGetter and hasSetter attribute
equal to true in the Fields defined in the ServiceInterface with the role
field, where:

– The integer value of the case label shall be a 32-bit hash of the field
getter or setter name. That is, "Get<fieldName>" and "Set<field-
Name>"; where <fieldName> is the shortName of the Field. The
binding implementation shall compute the hash as specified in section
7.5.1.1.2 of [21]. Representations of the service interface in OMG IDL [23]
shall define 32-bit signed integer constants (i.e., const int32 <svcId>
Field_Get<fieldName>_Hash or const int32 <svcId>Field_Set
<fieldName>_Hash) to simplify the representation of the union cases (see
below).

– The member name for the case label shall be get<FieldName> for getter
methods and set<FieldName> for setter methods.

234 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– The type for each case level shall be <svcId>Field_Get<fieldName>
_In for getter methods, and <svcId>Field_Set<fieldName>_In for
setter methods, which shall be constructed as specified in section 7.5.1.1.4
of [21] (see below).

The IDL definition of the <svcId>Field_Call union is the following:
1 union <svcId>Field_Call switch(int32) {
2 default:
3 dds::rpc::UnknownOperation unknownOp;
4 case <svcId>Field_Get<Field0Name>_Hash:
5 <svcId>Field_Get<Field0Name>_In get<Field0Name>;
6 case <svcId>Field_Set<Field0Name>_Hash:
7 <svcId>Field_Set<Field0Name>_In set<Field0Name>;
8 case <svcId>Field_Get<Field1Name>_Hash:
9 <svcId>Field_Get<Field1Name>_In get<Field1Name>;

10 case <svcId>Field_Set<Field1Name>_Hash:
11 <svcId>Field_Set<Field1Name>_In set<Field1Name>;
12 // ...
13 case <svcId>Field_Get<FieldNName>_Hash:
14 <svcId>Field_Get<FieldNName>_In get<FieldNName>;
15 case <svcId>Field_Set<FieldNName>_Hash:
16 <svcId>Field_Set<FieldNName>_In set<FieldNName>;
17 };

According to 7.5.1.1.4 of [21], <svcId>Field_Set<FieldName>_In structures shall
contain as member, the corresponding StdCppImplementationDataType repre-
senting the value of Field to be set. Conversely, <svcId>Field_Get<FieldName>
_In shall contain a single member named dummy of type dds::rpc::UnusedMem-
ber (see section 7.5.1.1.1 of [21]) to indicate that the method has no input parameters.

The resulting Request Topic data type shall be encoded according to the DDS serial-
ization rules. Unions, such as the <svcId>Field_Call union, shall be serialized as
specified in section 7.4.3.5 of [20].c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11146] DDS Service Reply Topic data type definition for Field getter
and setter operations dAs specified in section 7.5.1.1.7 of [21], the Reply Topic data
type is a structure composed of a Reply Header with meta-data and a Return Structure
with data. The IDL definition of the Reply Topic data type for the DDS Service handling
field getters and setters is the following:

1 struct <svcId>Field_Reply {
2 dds::rpc::ReplyHeader header;
3 <svcId>Field_Return data;
4 };

Where:

<svcId> is the corresponding serviceInterfaceId.

dds::rpc::ReplyHeader is the standard Reply Header defined in section 7.5.1.1.1
of [21].

235 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

<svcId>Field_Return is the union that holds the return values of the correspond-
ing response, according to the rules specified in section 7.5.1.1.7 of [21].

dds::rpc::ReplyHeader shall be constructed as specified in section 7.5.1.1.1 of
[21].

<svcId>Field_Return shall be constructed as specified in section 7.5.1.1.7 of [21]:

• The name of the union shall be <svcId>Field_Return.

• The union discriminator shall be a 32-bit signed integer.

• The union shall have a default case of type dds::rpc::UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

• The union shall have a case label for each hasGetter and hasSetter attribute
equal to true in the Fields defined in the ServiceInterface with the role
field, where:

– The integer value of the case label shall be a 32-bit hash of the field
getter or setter name. That is, "Get<FieldName>" and "Set<Field-
Name>"; where <FieldName> is the shortName of the Field. The
binding implementation shall compute the hash as specified in section
7.5.1.1.2 of [21]. Representations of the service interface in OMG IDL [23]
shall define 32-bit signed integer constants (i.e., const int32 <svcId>
Field_Get<FieldName>_Hash or const int32 <svcId>Field_Set
<FieldName>_Hash) to simplify the representation of the union cases (see
below).

– The member name of the case label shall be get<FieldName> for getter
methods and set<FieldName> for setter methods.

– The type for each case label shall be <svcId>Field_Get<FieldName>
_Result for getter methods and <svcId>Field_Set<FieldName>_Re-
sult for setter methods, which shall be constructed as specified in section
7.5.1.1.4 of [21] (see below).

The IDL definition of <svcId>Field_Return is the following:
1 union <svcId>Field_Return switch(int32) {
2 default:
3 dds::rpc::UnknownOperation unknownOp;
4 case <svcId>Field_Get<Field0Name>_Hash:
5 <svcId>Field_Get<Field0Name>_Result get<Field0Name>;
6 case <svcId>Field_Set<Field0Name>_Hash:
7 <svcId>Field_Set<Field0Name>_Result set<Field0Name>;
8 case <svcId>Field_Get<Field1Name>_Hash:
9 <svcId>Field_Get<Field1Name>_Result get<Field1Name>;

10 case <svcId>Field_Set<Field1Name>_Hash:
11 <svcId>Field_Set<Field1Name>_Result set<Field1Name>;
12 // ...
13 case <svcId>Field_Get<FieldNName>_Hash:
14 <svcId>Field_Get<FieldNName>_Result get<FieldNName>;
15 case <svcId>Field_Set<FieldNName>_Hash:

236 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

16 <svcId>Field_Set<FieldNName>_Result set<FieldNName>;
17 };

According with [SWS_CM_00112] and [SWS_CM_00113], both getters and set-
ters have the same output parameter. Therefore, in accordance with section
7.5.1.1.5 of [21], both the <svcId>Field_Get<FieldName>_Result and <svcId>
Field_Set<FieldName>_Result unions shall be constructed as follows:

• The union discriminator shall be a 32-bit signed integer.

• The union shall have a case with label dds::RETCODE_OK to represent a suc-
cessful return:

– The value of RETCODE_OK shall be 0, as specified in section 2.3.3 of [18].

– The successful case shall have a single member named result_ of type
<svcId>Field_Get<FieldName>_Out to hold the value to be returned
to the getter, or type <svcId>Field_Set<FieldName>_Out to hold the
value to be returned to the setter (see below).

The IDL representation of <svcId>Field_Get<FieldName>_Result is the follow-
ing:

1 union <svcId>Field_Get<FieldName>_Result switch(int32) {
2 case dds::RETCODE_OK:
3 <svcId>Field_Get<FieldName>_Out result_;
4 };

Likewise, the IDL representation of <svcId>Field_Set<FieldName>_Result is
the following:

1 union <svcId>Field_Set<FieldName>_Result switch(int32) {
2 case dds::RETCODE_OK:
3 <svcId>Field_Set<FieldName>_Out result_;
4 };

Both types <svcId>Field_Get<FieldName>_Out and its counterpart <svcId>
Field_Set<FieldName>_Out shall map to a structure with a single member named
return_ of the StdCppImplementationDataType representing the value of the
corresponding Field.

The resulting Reply Topic data type shall be encoded according to the DDS serializa-
tion rules. Unions, such as the <svcId>Field_Return union, shall be serialized as
specified in section 7.4.3.5 of [20].c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11147] Creating a DataWriter to handle get/set requests on the client
side dThe DDS binding shall create a DDS DataWriter for the Request Topic asso-
ciated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11145]) upon proxy instantiation.

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure

237 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

the proxy communicates only with the service instance it is bound to, the binding im-
plementation shall use the DDS Publisher created in [SWS_CM_11009] (whose par-
tition name is "ara.com://services/<svcId>_<reqSvcInId>") to create the
DataWriter.

The DataWriter shall be configured as follows:

• DataWriterQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the qosProfile that shall be used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11148] Creating a DataReader to handle get/set responses on the
client side dThe DDS binding shall create a DDS DataReader for the Reply Topic as-
sociated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11146]) upon proxy instantiation.

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure
the proxy communicates only with the service instance it is bound to, the binding im-
plementation shall use the DDS Subscriber created in [SWS_CM_11009] (whose par-
tition name is "ara.com://services/<svcId>_<reqSvcInId>") to create the
DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the qosProfile that shall be used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215)

[SWS_CM_11149] Creating a DataReader to handle get/set requests on the
server side dThe DDS binding shall create a DDS DataReader for the Request Topic
associated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11145]).

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, the bind-
ing shall use the DDS Subscriber created in [SWS_CM_11002] (whose partition name
is "ara.com://services/<svcId>_<svcInId>") to create the DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the qosProfile that shall be used.

• Listener and StatusMask shall be set according to the value of Method-
CallProcessingMode that was selected in the constructor of the Ser-
viceSkeleton class:

238 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– For MethodCallProcessingMode = kEvent or kEventSin-
gleThread, Listener shall be set to an instance of the DataRead-
erListener class specified in [SWS_CM_11154], and StatusMask shall
be set to DATA_AVAILABLE_STATUS.

– For MethodCallProcessingMode = kPoll, Listener shall remain
unset, and StatusMask shall be set to STATUS_MASK_NONE.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11150] Creating a DataWriter to handle get/set responses on the
server side dThe DDS binding shall create a DDS DataWriter for the Reply Topic as-
sociated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11146]).

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, the bind-
ing implementation shall use the DDS Publisher created in [SWS_CM_11002] (whose
partition name is "ara.com://services/<svcId>_<svcInId>") to create the
DataWriter.

The DataWriter shall be configured as follows:

• DataWriterQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the qosProfile that shall be used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11151] Calling get/set method associated with a field from the client
side dWhen instructed to call the Get() or Set() method associated with a Field
from the client side, the DDS binding shall construct a new sample of the corre-
sponding Request Topic—an instance of the Request Topic data type defined in
[SWS_CM_11145]—as follows:

• To initialize the RequestHeader object,

– requestId shall be set by the underlying DDS implementation according
to the rules specified in [21].

– instanceName shall be set by the binding implementation to the servi-
ceInstanceId of the remote service instance.

• To initialize the <svcId>Field_Call object, the binding implementation shall
first select the appropriate union case (as specified in [SWS_CM_11145], the
hash of the field getter/setter’s name is the union discriminator that selects the
union case). Then,

– If the call corresponds to a getter, the binding shall leave the dummy member
of the <svcId>Field_Get<FieldName>_In structure unset.

239 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

– Else, if the call corresponds to a setter, the binding shall set accordingly the
only member of the <svcId>Field_Set<FieldName>_In structure with
the new value for the field.

That sample shall then be passed as a parameter to the write() method of the DDS
DataWriter created in [SWS_CM_11147] to handle get/set requests on the client side,
which shall serialize the sample according to the DDS serialization rules, and publish
it over DDS.c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_-
CM_00217, RS_CM_00218)

The DDS serialization rules are defined in section 7.8.3.7.

[SWS_CM_11152] Notifying the client of the response to the get/set method
call dTo notify the client application of a response as a result of call to a Get()
or Set() method associated with a Field, the DDS binding implementation shall
invoke the set_value() operation (see [SWS_CORE_00345] and [SWS_CORE_-
00346]) with the value of the corresponding result_ member of either the <sv-
cId>Field_Get<FieldName>_Result structure, for get operations; or <svcId>
Field_Set<FieldName>_Out, for set operations.

The associated set operation shall be performed upon the reception of a new Re-
ply Topic sample by the corresponding DDS DataReader (see [SWS_CM_11148]).
The DDS binding shall use the DataReader’s take() method to process the sam-
ple. Moreover, to correlate a request with a response, the binding shall compare the
header.relatedRequestsId of the received sample with the original requestId
that was sent in [SWS_CM_11151]13. If the relatedRequestId does not correspond
to a requestId that has been sent by the client, the response shall be discarded.c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218)

[SWS_CM_11153] Processing a get/set method call associated with a field on
the server side (event driven) dIn case a MethodCallProcessingMode of ei-
ther kEvent or kEventSingleThread has been passed to the constructor of the
ServiceSkeleton (see [SWS_CM_00130]), the binding implementation shall create
a DataReaderListener to process the requests asynchronously—as described in
[SWS_CM_11154]—and attach an instance of it to the DataReader processing the re-
quests for the getters and setters of the ServiceInterface’s fields in accordance
with [SWS_CM_11149]. The listener is responsible for identifying the method that shall
process the request and dispatch it (see [SWS_CM_11154]).c(RS_CM_00204, RS_-
CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221)

[SWS_CM_11154] Creating a DataReaderListener to process asynchronous
requests for field getters and setters on the server side dAccording to
[SWS_CM_11149], a MethodCallProcessingMode of either kEvent or kEventS-
ingleThread requires the instantiation of a DataReaderListener to process asyn-
chronously requests on the server side. The resulting listener shall derive from the
standard DataReaderListener class [18], specifying that the type of the samples to
be handled is the Request Topic data type defined in [SWS_CM_11145].

13See footnotes in [SWS_CM_11108].

240 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

The DataReaderListener shall implement the following method according to the
specified instructions:

• An on_data_available() method responsible for reading the received re-
quests from the DataReader’s cache—using the take() operation—and dis-
patching it to the corresponding registered SetHandler or—if it applies—
GetHandler (see [SWS_CM_00114] and [SWS_CM_00116]). To identify the
field of the ServiceSkeleton class, the operation (i.e., Set() or Get()),
and therefore the corresponding handler; on_data_available() shall use the
union discriminator of the <svcId>Field_Call union (see [SWS_CM_11145]).
In the case of a Set() operation, the method shall provide the corresponding
SetHandler with the only member of the received <svcId>Field_<Field-
Name>_In structure, which contains the new value to be set. In the case of a Get
() operation, the binding shall dispatch to the corresponding GetHandler—if it
was registered—or to an internal lookup operation for the current value of the
field if it was not.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221)

[SWS_CM_11155] Processing a get/set method call associated with a field on
the server side (polling) dIn case a MethodCallProcessingMode of kPoll has
been passed to the constructor of the ServiceSkeleton (see [SWS_CM_00130]),
the ProcessNextMethodCall method is responsible for calling take() on
the DataReader processing the Request Topic associated with the service (see
[SWS_CM_11145]). ProcessNextMethodCall shall take only the first sample from
the DataReader’s cache and dispatch it to the corresponding registered SetHandler
or—if it applies—GetHandler (see [SWS_CM_00114] and [SWS_CM_00116]).

To identify the field of the ServiceSkeleton class, the operation (i.e., Set() or Get
()), and therefore the corresponding handler, the binding implementation shall use
the union discriminator of the <svcId>Field_Call union (see [SWS_CM_11145]).
In the case of a Set() operation, the binding shall provide the corresponding
SetHandler with the only member of the received <svcId>Field_<FieldName>
_In structure, which contains the new value to be set. In the case of a Get() oper-
ation, the binding shall call the corresponding GetHandler—if it was registered—or
dispatch to an internal lookup operation for the current value of the field if it was not.c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221)

[SWS_CM_11156] Sending a response for a get/set method call associated with
a field from the server side dThe binding implementation shall send a response upon
the return of (1) a SetHandler in the case of a Set() operation; (2) a GetHandler in
the case of a Get() operation where a GetHandler has previously been registered;
or (3) a lookup operation14 as a result of a Get() operation where no GetHandler
was previously registered.

14An internal lookup operation to retrieve the current value of a field.

241 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

To send the response, the DDS binding shall construct a new sample of the Reply
Topic—an instance of the Reply Topic data type defined in [SWS_CM_11146]—as
follows:

• To initialize the ReplyHeader object,

– relatedRequestId shall be set to the value of the header.re-
questId attribute of the request that triggered the method call (see
[SWS_CM_11151]).

• To initialize the <svcId>Field_Return object, the binding implementation
shall:

– Select the appropriate union case (as specified in [SWS_CM_11146]), the
hash of the field’s getter/setter method is the union discriminator that selects
the union case).

– Set the appropriate <svcId>Field_Get<FieldName>_Result—for Get
() operations—or <svcId>Field_Set<FieldName>_Result—for Set
() operations. In both cases, the binding shall select the union case for
dds::RETCODE_OK and set the corresponding structure with the value re-
trieved upon the return of (1), (2), or (3).

The sample shall then be passed as a parameter to the write() method of the DDS
DataWriter created in [SWS_CM_11150] to handle method responses on the server
side, which shall serialize the sample according to the DDS serialization rules, an pub-
lish it over DDS.c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220,
RS_CM_00221)

The DDS serialization rules are defined in section 7.8.3.7.

7.8.3.7 Serialization of Payload

[SWS_CM_11040] DDS standard serialization rules dThe serialization of the pay-
load shall be done according to the DDS standard serialization rules defined in section
7.4.3.5 of [20].c(RS_CM_00204, RS_CM_00201)

7.8.3.7.1 Basic Data Types

[SWS_CM_11041] DDS serialization of StdCppImplementationDataType of
category VALUE dStdCppImplementationDataType of category VALUE shall
be serialized according to the standard serialization rules for the equivalent DDS
PRIMITIVE_TYPE defined in section 7.4.3.5 of [20]. Table 7.4 provides the equivalent
DDS PRIMITIVE_TYPEs for the primitive StdCppImplementationDataTypes with
category VALUE defined in [13].c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

Type DDS Type Remark

242 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

boolean Boolean
std::uint8_t Byte Shall be encoded as a Byte type (opaque 8-bit type).
std::uint16_t UInt16
std::uint32_t UInt32
std::uint64_t UInt64
std::int8_t Byte Shall be encoded as a Byte type (opaque 8-bit type).
std::int16_t Int16
std::int32_t Int32
std::int64_t Int64
float Float32
double Float64

Table 7.4: StdCppImplementationDataTypes with category VALUE supported for seri-
alization

7.8.3.7.2 Enumeration Data Types

[SWS_CM_11042] DDS serialization of enumeration data types dEnumeration
data types shall be serialized according to the standard serialization rules for DDS
ENUM_TYPE defined in section 7.4.3.5 of [20].

The bit bound of the ENUM_TYPE shall be set to the size of the enumeration’s underlying
basic data type (i.e., the Primitive Cpp Implementation Data Type according
to [SWS_LBAP_00027]) in bits.c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

7.8.3.7.3 Structured Data Types (structs)

[SWS_CM_11043] DDS serialization of StdCppImplementationDataType of
category STRUCTURE dStdCppImplementationDataType of category STRUC-
TURE shall be serialized according to the standard serialization rules for DDS
STRUCT_TYPE defined in section 7.4.3.5 of [20].

Optional members of the structure shall be marked as optional as specified in section
7.2.2.4.4.5 of [20].c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.8.3.7.4 Strings

[SWS_CM_11044] DDS serialization of StdCppImplementationDataType of
category STRING with string shortName dAn StdCppImplementation-
DataType of category STRING shall be serialized according to the standard seri-
alization rules for DDS STRING_TYPE defined in section 7.4.3.5 of [20].c(RS_CM_-
00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

243 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_11046] Encoding Format and Endianness of Strings in DDS dSection
7.4.1.1.2 of [20] specifies the standard character encoding format for STRING_TYPE:
UTF-8. The serialized version shall not include a Byte Order Mark (BOM), as byte order
information is already available in the RTPS Encapsulation Identifier and the XCDR
serialization format [20].c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_-
00211, RS_AP_00136)

7.8.3.7.5 Vectors and Arrays

[SWS_CM_11047] DDS serialization of CppImplementationDataType of cat-
egory VECTOR dA CppImplementationDataType of category VECTOR shall be
serialized according to the standard serialization rules for DDS SEQUENCE_TYPE de-
fined in section 7.4.3.5 of [20].

Binding implementations shall serialize VECTOR CppImplementationDataTypes
with more than one dimension, as nested DDS sequences.c(RS_CM_00204, RS_-
CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_11048] DDS serialization of CppImplementationDataType of cate-
gory ARRAY dA CppImplementationDataType of category ARRAY shall be se-
rialized according to the standard serialization rules for DDS ARRAY_TYPE defined in
section 7.4.3.5 of [20].c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_-
00211)

7.8.3.7.6 Associative Maps

[SWS_CM_11049] DDS serialization of CppImplementationDataType of cat-
egory ASSOCIATIVE_MAP dCppImplementationDataType of category ASSO-
CIATIVE_MAP shall be serialized according to the standard serialization rules for DDS
MAP_TYPE defined in section 7.4.3.5 of [20].c(RS_CM_00204, RS_CM_00201, RS_-
CM_00202, RS_CM_00211)

7.8.3.7.7 Variant

[SWS_CM_11050] DDS serialization of CppImplementationDataType of cat-
egory VARIANT dCppImplementationDataType of category VARIANT shall be
serialized according to the standard serialization rules for DDS UNION_TYPE defined
in section 7.4.3.5 of [20].c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_-
00211)

244 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

7.8.3.8 End-to-end communication protection

The present DDS network binding is defined in terms of interactions between ara:-
:com APIs and standard DDS APIs. Hence, End-to-end communication protection as
described in sections 7.2 and 7.3 doesn’t apply, because API calls can’t be check-
summed or payloaded the same way serialized messages are.

By no means does this imply that DDS is exempt from E2E protection assurances,
they are simply provided by the DDS middleware. Please find below the different kinds
of faults defined in [4] (derived from ISO-26262-6:2011, annex D.2.4) and their corre-
sponding DDS/RTPS protection mechanism:

• Repetition, loss, insertion, incorrect sequence, information from a sender re-
ceived by only a subset of receivers, and blocking access to a communica-
tion channel: submessage 64-bit sequence number, as defined in [19] section
8.3.5.4 "SequenceNumber", and additional SequenceNumber-typed fields in sec-
tion 8.3.7 "RTPS Submessages"

• Delay of information and blocking access to a communication channel: LA-
TENCY_BUDGET Quality of Service policy, as defined in [18] section 2.2.3.8 "LA-
TENCY_BUDGET"

• Masquerade or incorrect addressing of information: DDS Security authentication
plugin, as defined in [25] section 8.3 "Authentication Plugin"

• Corruption of information, asymmetric information sent from a sender to mul-
tiple receivers: rtpsMessageChecksum under HeaderExtension submessage
([RTPS 2.5 or higher]). In absence of this feature, [25] also provides message
integrity verification built into its message authentication protocol

• Translation of these fault conditions into ara::com::e2e::ProfileCheck-
Status values depends on the specific capacities of the DDS implementation
to report per-sample the status of the aforementioned protection measures (se-
quence numbers, latency budget, message authentications, checksums)

7.9 Security

In the following chapter the behavior according to the meta-model of access control
and secure communication shall be described.

7.9.1 IAM

Access control for Communication Management allows to restrict the instances and
elements of services that a local application or a remote subject (e.g., a remote ECU)
may request to access. Having access control in place reduces the potential damage

245 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

that a compromised application (in case of local IAM) or a compromised ECU (in case
of remote IAM) can cause.

Figure 7.34 demonstrates an example scenario where local IAM and remote IAM can
take place. Upon a method call from a service, the client’s request will be checked by
the local IAM to ensure that the application is issuing a legitimate request based on its
configured access rights. After successful authorization, the request will be forwarded
to the machine where the service is running. When the request arrives at the recipient
machine, the remote IAM takes place and a check will be performed to verify if such a
request coming from the given sender ECU was envisioned.

Figure 7.34: Local and Remote Identity and Access Management

The following assumptions have to be held true to realize access control:

1. Communication between two applications has to be realized by using ara::com
interfaces Communication Management to enable access control.

2. Process separation as defined in SWS IdentityAndAccessManagement [26].

All access permissions for Communication Management are modeled using ComGrant
model elements. A ComGrant can be used to model access permissions that either
apply to a Machine-local Process or to a remote subject, i.e., either a local Process
or a remote entity can be the subject of the access control policy: If a ComGrant
references an AbstractIamRemoteSubject in the role remoteSubject, then the
subjects of the ComGrant are all remote entities that can be identified using the in-
formation specified in the referenced AbstractIamRemoteSubject. If a ComGrant
does not reference any remoteSubject, then the subjects of the ComGrant are all
Processes referenced in the role process by ServiceInstanceToPortProto-
typeMappings which reference an AdaptivePlatformServiceInstance in the
role serviceInstance that is referenced by the ComGrant in the role serviceIn-
stance.

246 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Local access control and remote access control may be enforced independently from
each other.

7.9.1.1 Configuration of Access Control

While Identity and Access Management (IAM) serves as an umbrella for access control
on the Adaptive Platform, the enforcement of access control is implemented in
different functional clusters such as CM. If no IAM Functional Cluster is instantiated on
a Machine, then no enforcement of access control by CM is expected.

[SWS_CM_10492]{DRAFT} IAM Module Instantiation dIf no IamModuleInstan-
tiation is defined on the Machine, CM shall perform no access control, i.e., no
access to any service shall be restricted because of missing ComGrants.c(RS_IAM_-
00002)

Depending on the architecture and the security model, all local Processes might be
trusted, thus not requiring local access control. Furthermore, it is possible that all
remote ECUs are trusted, e.g., because access control is already performed locally.
For these cases, there are two configuration options to enable remote access control
and local access control independently.

[SWS_CM_10493]{DRAFT} Local Access Control Activation dIf IamModuleIn-
stantiation.localComAccessControlEnabled is defined and is set to false, CM
shall perform no local access control, i.e., no access to any service from a local Pro-
cess shall be restricted because of missing ComGrants. If IamModuleInstanti-
ation is defined on the Machine and IamModuleInstantiation.localComAc-
cessControlEnabled is not defined or is set to true, CM shall perform local access
control.c(RS_IAM_00002)

[SWS_CM_10494]{DRAFT} Remote Access Control Activation dIf IamModuleIn-
stantiation.remoteAccessControlEnabled is defined and is set to false, CM
shall perform no remote access control, i.e., no access to any service from a remote
subject shall be restricted because of missing ComGrants. If IamModuleInstanti-
ation is defined on the Machine and IamModuleInstantiation.remoteAccess-
ControlEnabled is not defined or is set to true, CM shall perform remote access
control.c(RS_IAM_00002)

[SWS_CM_90001]{DRAFT} Restrictions on executing methods dThe invocation of
a method by an application shall be executed depending on the existence of Com-
MethodGrant, ComFieldGrant without a reference remoteSubject and with the
role attribute of ComFieldGrant set to FieldAccessEnum.getter or FieldAc-
cessEnum.setter. From a temporal perspective the enforcement of intent shall take
place between the invocation of one of the following methods and invocation of the
continuation registered with then() (see [SWS_CORE_00331]) or the access to re-
sult of the Future (via the get() method (see [SWS_CORE_00326])) returned by
these methods:

247 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• the function call operator (operator()) of the respective Method class (see
[SWS_CM_00196])

• the Set() method of the respective Field class (see [SWS_CM_00113])

• the Get() method of the respective Field class (see [SWS_CM_00112])

If the software tries to access a field/event/method in the absence of a Grant that
controls access to the field/even/method then the error code ComErrc::kGrantEn-
forcementError shall be returned in the Future of the respective methods (op-
erator(), Set(), Get()). The error shall be logged.c(RS_IAM_00006, RS_IAM_00007,
RS_IAM_00010)

[SWS_CM_90002]{DRAFT} Restrictions on sending events dSending an event by
an application shall be enabled depending on the existence of ComEventGrant or
ComFieldGrant without a reference remoteSubject and with the role attribute set
to FieldAccessEnum.setter. From a temporal perspective the enforcement of in-
tent shall take place after the invocation of the following method:

• the Send() method of the respective Event class (see [SWS_CM_00162])

• the Update() method of the respective Field class (see [SWS_CM_00119])

A failure of the Grant enforcement (i.e., the triggering of an event without appropriate
intent modeling) shall cause the event to be dropped silently.c(RS_IAM_00006, RS_-
IAM_00007, RS_IAM_00010)

[SWS_CM_90003]{DRAFT} Restrictions on receiving events dSubscribing to event
notifications shall be enabled depending on the existence of ComEventGrant or Com-
FieldGrant without a reference remoteSubject and with the role attribute set to
FieldAccessEnum.getter. From a temporal perspective the enforcement of the
intent shall take place after the invocation of the following method:

• the Subscribe() method of the respective Event class (see
[SWS_CM_00141])

A failure of the Grant enforcement (i.e., the subscription to an event without appropri-
ate intent modeling) shall cause the subscription to the event to be dropped silently.c
(RS_IAM_00006, RS_IAM_00007, RS_IAM_00010)

[SWS_CM_10538]{DRAFT} Restrictions on sending triggers dSending a trigger by
an application shall be enabled depending on the existence of ComEventGrant with-
out a reference remoteSubject. In case of a Trigger the ComEventGrant refer-
ences the ServiceEventDeployment that in turn references the trigger. From a
temporal perspective the enforcement of intent shall take place after the invocation of
the following method:

• the Send() method of the respective Trigger class (see [SWS_CM_00721])

A failure of the Grant enforcement (i.e., the triggering of a trigger without appropriate
intent modeling) shall cause the trigger to be dropped silently.c(RS_IAM_00006, RS_-
IAM_00007, RS_IAM_00010)

248 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10539]{DRAFT} Restrictions on receiving triggers dReceiving a trig-
ger shall be enabled depending on the existence of ComEventGrant without a refer-
ence remoteSubject. In case of a Trigger the ComEventGrant references the
ServiceEventDeployment that in turn references the trigger. From a temporal
perspective the enforcement of the intent shall take place after the invocation of the
following method:

• the Subscribe() method of the respective Trigger class (see
[SWS_CM_00723])

A failure of the Grant enforcement (i.e., the subscription to a trigger without appropri-
ate intent modeling) shall cause the subscription to the trigger to be dropped silently.c
(RS_IAM_00006, RS_IAM_00007, RS_IAM_00010)

[SWS_CM_90005]{DRAFT} Restrictions on offering services dOffering a service
instance shall be enabled depending on the presence of a ComOfferServiceGrant
without a reference remoteSubject. From a temporal perspective the enforcement
of the intent shall take place after the invocation of the following method:

• the constructor of the respective ServiceSkeleton class (see
[SWS_CM_00130])

If the software tries to access a field/event/method in the absence of a Grant that
controls access to the field/even/method then the error code ComErrc::kGrantEn-
forcementError shall be returned in the Result of the named constructor function
Create() for the ServiceSkeleton class. The error shall be logged.c(RS_IAM_-
00006, RS_IAM_00007, RS_IAM_00010)

[SWS_CM_90006]{DRAFT} Restrictions on using services dUsing a service in-
stance shall be enabled depending on the presence of a ComFindServiceGrant
without a reference remoteSubject. From a temporal perspective the enforcement
of the intent shall take place after the invocation of the following method:

• the constructor of the respective ServiceProxy class (see [SWS_CM_00131])

If the software tries to access a field/event/method in the absence of a Grant that
controls access to the field/even/method then the error code ComErrc::kGrantEn-
forcementError shall be returned in the Result of the named constructor function
Create() for the ServiceProxy class. The error shall be logged.c(RS_IAM_00006,
RS_IAM_00007, RS_IAM_00010)

[SWS_CM_90007] Restrictions on using RawDataStreams dUsing a RawDataS-
tream instance shall be enabled depending on the presence of a RawDataStream-
Grant. From a temporal perspective the enforcement of the intent shall take place
after the invocation of the following method:

• the Connect() method of the respective RawDataStream class (see
[SWS_CM_10484])

249 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

If the software tries to access a field/event/method in the absence of a Grant that
controls access to the field/even/method then the error code ComErrc::kGrantEn-
forcementError shall be returned in the Result of the Connect() function. The error
shall be logged.c(RS_IAM_00006, RS_IAM_00007, RS_IAM_00010)

Note:
In case of [SWS_CM_90002] and [SWS_CM_90003] dropping data, the application
will not be notified.

A logging facility for security events is currently not defined in the AUTOSAR Adaptive
Platform. Logging violations of access restrictions according to [SWS_CM_90001],
[SWS_CM_90002], [SWS_CM_90003], [SWS_CM_90005] and [SWS_CM_90006] is
up to the implementation or specific ECU projects.

7.9.1.2 Remote Access Control

In order to enforce access control on remote entities, the requesting entity first has to
be authenticated, i.e., the identity of the remote subject has to be established. Then, it
has to be decided whether the access is allowed according to the modeled grants.

There are currently three ways to authenticate a remote subject:

• TLS: If the remote subject is connected via (D)TLS secure communication, prop-
erties of this TLS connection and the used certificates can be used for authenti-
cating the remote subject.

• IPsec: If IPsec is used to establish secure communication, IP related informa-
tion specified for IPsec configuration can be used for authenticating the remote
subject.

• IP: If IP based communication is used and the authenticity of communication
partners can be guaranteed by, e.g., the operational environment, IP related in-
formation can be used for authenticating the remote subject.

Please note that while SecOC can also provide authenticity of a communication partner,
it is not used in this section, because the existing association between SecOC keys
and DataIDs already provides a fine grained access control mechanism directly on the
level of secure communication and thus additionally applying IAM would not yield any
benefit.

[SWS_CM_10495]{DRAFT} TLS-based Authentication dCommunication Manage-
ment shall associate remote subjects communicating via an established (D)TLS con-
nection to a TlsIamRemoteSubject according to [TPS_MANI_TlsRemotePeer].c
(RS_SEC_04003)

[SWS_CM_10496]{DRAFT} IP and IPsec-based Authentication dCommunication
Management shall associate remote subjects communicating via IP to an IPSe-
cIamRemoteSubject or an IpIamRemoteSubject according to [TPS_MANI_-
IPsecRemotePeer] and [TPS_MANI_IPGeneralRemotePeer].c(RS_SEC_04003)

250 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Please note that IPsec is usually handled by the OS and may therefore be transparent
to Communication Management. Therefore, authentication of IPsec secured connec-
tions relies on tuples of IP addresses, protocols, and ports only.

[SWS_CM_10497]{DRAFT} Authentication Failure dIf IamModuleInstantia-
tion.remoteAccessControlEnabled is set to true and a remote subject cannot
be authenticated, Communication Management shall silently drop all messages from
this remote subject.c(RS_SEC_04003)

[SWS_CM_10498]{DRAFT} Remote access control on executing methods dIf a
remote subject requests the execution of a method of a service interface, but there
exists no ComMethodGrant that

• references the requesting remote subject in the role remoteSubject and

• references a ProvidedApServiceInstance in the role serviceInstance
and

• references the requested method in the role serviceDeployment,

then Communication Management shall drop the request.c(RS_IAM_00001, RS_-
IAM_00002)

[SWS_CM_10499]{DRAFT} Remote access control on providing methods dIf the
execution of a method of a service interface provided by a remote subject is requested,
but there exists no ComMethodGrant that

• references the providing remote subject in the role remoteSubject and

• references a RequiredApServiceInstance in the role serviceInstance
and

• references the requested method in the role serviceDeployment,

then Communication Management shall drop the request.c(RS_IAM_00001, RS_-
IAM_00002)

[SWS_CM_10500]{DRAFT} Remote access control on providing events dIf a re-
mote subject provides an event of a service interface, but there exists no ComEvent-
Grant that

• references the providing remote subject in the role remoteSubject and

• references a RequiredApServiceInstance in the role serviceInstance
and

• references the provided event in the role serviceDeployment,

then Communication Management shall drop the provided event.c(RS_IAM_00001,
RS_IAM_00002)

[SWS_CM_10501]{DRAFT} Remote access control on consuming events dIf a
remote subject subscribes to an event of a service interface, but there exists no
ComEventGrant that

251 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• references the subscribing remote subject in the role remoteSubject and

• references a ProvidedApServiceInstance in the role serviceInstance
and

• references the subscribed event in the role serviceDeployment,

then Communication Management shall drop the subscription request.c(RS_IAM_-
00001, RS_IAM_00002)

[SWS_CM_10502]{DRAFT} Remote access control on providing field notifiers dIf
a remote subject sends a field notifier, but there exists no ComFieldGrant that

• references the providing remote subject in the role remoteSubject and

• references a RequiredApServiceInstance in the role serviceInstance
and

• references the event in the role serviceDeployment,

then Communication Management shall drop the field notifier.c(RS_IAM_00001, RS_-
IAM_00002)

[SWS_CM_10503]{DRAFT} Remote access control on providing field setters dIf
the execution of a set method of a field provided by a remote subject is requested, but
there exists no ComFieldGrant that

• has the parameter ComFieldGrant.role set to setter or getterSetter and

• references the providing remote subject in the role remoteSubject and

• references a RequiredApServiceInstance in the role serviceInstance
and

• references the event in the role serviceDeployment,

then Communication Management shall drop the request.c(RS_IAM_00001, RS_-
IAM_00002)

[SWS_CM_10504]{DRAFT} Remote access control on providing field getters dIf
the execution of a get method of a field provided by a remote subject is requested, but
there exists no ComFieldGrant that

• has the parameter ComFieldGrant.role set to getter or getterSetter and

• references the providing remote subject in the role remoteSubject and

• references a RequiredApServiceInstance in the role serviceInstance
and

• references the event in the role serviceDeployment,

then Communication Management shall drop the request.c(RS_IAM_00001, RS_-
IAM_00002)

252 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10505]{DRAFT} Remote access control on consuming field notifiers
dIf a remote subject subscribes to a field notifier , but there exists no ComFieldGrant
that

• references the subscribing remote subject in the role remoteSubject and

• references a ProvidedApServiceInstance in the role serviceInstance
and

• references the event in the role serviceDeployment,

then Communication Management shall drop the the subscription request.c(RS_IAM_-
00001, RS_IAM_00002)

[SWS_CM_10506]{DRAFT} Remote access control on calling field setters dIf a
remote subject requests the execution of a set method of a field, but there exists no
ComFieldGrant that

• has the parameter ComFieldGrant.role set to setter or getterSetter and

• references the requesting remote subject in the role remoteSubject and

• references a ProvidedApServiceInstance in the role serviceInstance
and

• references the event in the role serviceDeployment,

then Communication Management shall drop the request.c(RS_IAM_00001, RS_-
IAM_00002)

[SWS_CM_10507]{DRAFT} Remote access control on calling field getters dIf a
remote subject requests the execution of a get method of a field, but there exists no
ComFieldGrant that

• has the parameter ComFieldGrant.role set to getter or getterSetter and

• references the requesting remote subject in the role remoteSubject and

• references a ProvidedApServiceInstance in the role serviceInstance
and

• references the event in the role serviceDeployment,

then Communication Management shall drop the request.c(RS_IAM_00001, RS_-
IAM_00002) [SWS_CM_10540]{DRAFT} Remote access control on providing trig-
gers dIf a remote subject provides a trigger of a service interface, but there exists
no ComEventGrant that

• references the providing remote subject in the role remoteSubject and

• references a RequiredApServiceInstance in the role serviceInstance
and

• references the ServiceEventDeployment in the role serviceDeployment
that in turn references the provided trigger.

253 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

then Communication Management shall drop the provided trigger.c(RS_IAM_00001,
RS_IAM_00002)

[SWS_CM_10541]{DRAFT} Remote access control on consuming triggers dIf a
remote subject subscribes to an trigger of a service interface, but there exists no
ComEventGrant that

• references the subscribing remote subject in the role remoteSubject and

• references a ProvidedApServiceInstance in the role serviceInstance
and

• references the ServiceEventDeployment in the role serviceDeployment
that in turn references the subscribed trigger.

then Communication Management shall drop the subscription request.c(RS_IAM_-
00001, RS_IAM_00002)

7.9.2 Secure Communication

Communication in Adaptive Platform can be transported via TCP and UDP. Therefore
different security mechanisms have to be available to secure the communication. The-
following security protocols are currently supported:

• TLS 1.2 (see [RFC5246])

• DTLS 1.2 (see [RFC6347])

• SecOC

• IPSec

• DDS Security

The configuration of SecOc and TLS security protocols has a dependency on the net-
work binding:

• For SOME/IP network binding AUTOSAR allows the configuration of secure com-
munication for a ServiceInterface by configuring either TlsSecureComProps
meta-class or SecOcSecureComProps meta-class . Both are specialization
of SecureComProps class that is referenced by ServiceInstanceToMa-
chineMapping. In the case of SecOc additionally ServiceInterfaceEle-
mentSecureComConfig needs to be defined and it determines the configura-
tion settings for the individual ServiceInterface elements. When TlsSecure-
ComProps is configured, all the service interface elements are secured and
ServiceInterfaceElementSecureComConfig is not used.

• For Signal based network binding, only SecOc configuration is possible, and
the configuration is determined by SecureCommunicationAuthentication-
Props of a SecuredIPdu referenced by the PduTriggering. SecureComProps is
not used in the context of signal-based network binding.

254 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• For DDS Network binding, DDS Transport Security over TCP (TLS), DDS Trans-
port Security over UDP (DTLS) and DDS Security [25] (as transport-independent
security) are valid, independent and mutually exclusive choices for securing un-
derlying DDS communications.

The configuration of Ipsec (IPSecConfig) in aggregated by a NetworkEndpoint there-
fore it is independent of the network binding.

SOME/IP supports one-to-many (unicast) and many-to-many (multicast) communica-
tion paradigms. These paradigms may switch at runtime for events (see multicast-
Threshold).

It is therefore important to be aware of the limitations of the secure channel approach:

• Confidentiality of events
If events are transported using UDP and may be sent using multicast, they can-
not be guaranteed confidential due to the fact that only SecOC can be used to
secure multicast communication and SecOC does not offer confidentiality. This
restriction does not apply to DDS Security.

7.9.2.1 Creation and use of secure channels

7.9.2.1.1 SOME/IP and DDS network binding

[SWS_CM_90101]{DRAFT} Secure UDP and TCP channel creation for TLS, DTLS
and SecOC dThe Communication Management software shall create secure UDP
channels according to the input for all SecureComProps referenced by Service-
InstanceToMachineMapping in the role secureComPropsForUdp. The Commu-
nication Management software shall create secure TCP channels according to the in-
put for all SecureComProps referenced by ServiceInstanceToMachineMapping
in the role secureComPropsForTcp. Secure channels may be shared by multiple
AdaptivePlatformServiceInstances by multiplexing the communication, i.e. by
referencing the same SecureComProps in the same role.c(RS_SEC_04001)

[SWS_CM_90102]{DRAFT} Using secure TLS, DTLS and SecOC channels dAll
communication triggered by a Skeleton or Proxy shall be sent via the respective
secure channel according to the configuration input. In the configuration the ap-
propriate secure channel is identified by examining the references to SecureCom-
Props of ServiceInstanceToMachineMapping for the AdaptivePlatform-
ServiceInstance that is mapped to an EthernetCommunicationConnector
of a Machine by this ServiceInstanceToMachineMapping.c(RS_SEC_04001,
RS_SEC_04003)

The actual secure channel to be created is determined by the concrete sub-class of
the SecureComProps base-class.

255 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_90201]{DRAFT} Secure TLS and DTLS channel creation in the
DDS Network Binding dSecure channels shall be created as specified in
[SWS_CM_90101].c(RS_SEC_04001)

[SWS_CM_90202]{DRAFT}Using TLS and DTLS secure channels in the DDS Net-
work Binding dSecure channels shall be used as specified in [SWS_CM_90102].c
(RS_SEC_04001, RS_SEC_04003)

7.9.2.1.2 Raw data streaming

[SWS_CM_90211] Secure UDP and TCP channel creation for TLS and DTLS dThe
Communication Management software shall create secure UDP and TCP channels
according to the input for all TlsSecureComProps as part of the EthernetRaw-
DataStreamMapping.c(RS_SEC_04001)

[SWS_CM_90212] Using secure TLS, DTLS channels dAll communication triggered
by a RawDataStream shall be sent via the respective secure channel according to the
input. The appropriate secure channel is defined in the TlsSecureComProps as part
of the EthernetRawDataStreamMapping that is mapped to an EthernetCommu-
nicationConnector.c(RS_SEC_04001, RS_SEC_04003)

7.9.2.2 (D)TLS

A (D)TLS secure channel may provide authenticity, integrity and confidentiality which
may be used on combination with SOME/IP and DDS network binding as well as with
raw data streaming.

The TLS and DTLS implementation should support the following cipher suites:

• TLS_PSK_WITH_NULL_SHA256 for authentic communication (see [RFC5487])

• TLS_PSK_WITH_AES_128_GCM_SHA256 for confidential communication (see
[RFC5487])

7.9.2.2.1 SOME/IP Network binding

[SWS_CM_90103]{DRAFT} TLS secure channel for ServiceInterface content us-
ing reliable transport dA TLS secure channel shall be created and used if a TlsSe-
cureComProps instance is referenced in the role secureComPropsForTcp by a
ServiceInstanceToMachineMapping. All content of the ServiceInterface
that is referenced by the AdaptivePlatformServiceInstance that in turn is refer-
enced by the ServiceInstanceToMachineMapping that is configured for transmis-
sion over “tcp” in the ServiceInterfaceDeployment is selected for transmission
over the TLS secured channel.c(RS_SEC_04001)

256 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_90104]{DRAFT} DTLS secure channel for ServiceInterface content
using unreliable transport dA DTLS secure channel shall be created and used if
a TlsSecureComProps instance is referenced in the role secureComPropsForUdp
by a ServiceInstanceToMachineMapping. All content of the ServiceInter-
face that is referenced by the AdaptivePlatformServiceInstance that in turn
is referenced by the ServiceInstanceToMachineMapping that is configured for
transmission over “udp” in the ServiceInterfaceDeployment is selected for trans-
mission over the TLS secured channel.c(RS_SEC_04001)

[SWS_CM_90121]{DRAFT} TLS server role of a Skeleton dThe TLS secure channel
shall be associated with the respective Skeleton and the implementation shall act as
a TLS server, if the AdaptivePlatformServiceInstance referenced in

• [SWS_CM_90103]

• [SWS_CM_90104]

is a ProvidedApServiceInstance.c(RS_SEC_04001)

According to the constraints [constr_3485] and [constr_3486] a Proxy and Skeleton
cannot be bound to the identical local endpoint (IP address and port). Hence, a local
endpoint can either act as a TLS client or as a TLS server exclusively. However, if mul-
tiple Proxys are bound to the same endpoint, their common channel shall be shared
in the middleware. Likewise, if multiple Skeletons are bound to the same endpoint,
their common channel shall be shared in the middleware.

[SWS_CM_90119]{DRAFT} Behavior of a creating ServiceProxy over TLS or
DTLS dThe instantiation according to [SWS_CM_00131] shall trigger the asyn-
chronous handshake.c(RS_SEC_04004)

[SWS_CM_90111]{DRAFT} Behavior of a ServiceProxy over TLS before success-
ful completion of the handshake dThe communication channel is ready as soon as
the TLS handshake is completed.

Therefore, the future returned by the following methods shall only be satisfied after the
handshake has finished and once the communication was successful:

• the function call operator (operator()) of the respective Method class (see
[SWS_CM_00196])

• the Set() method of the respective Field class (see [SWS_CM_00113])

• the Get() method of the respective Field class (see [SWS_CM_00112])

If the handshake fails, the error code ComErrc::kPeerIsUnreachable shall be
returned in the Future of the respective methods (operator(), Set(), Get()). The error
shall be logged.c(RS_SEC_04004)

[SWS_CM_90112]{DRAFT} Behavior of a ServiceProxy over DTLS before suc-
cessful completion of the handshake dThe communication channel is ready as soon
as the DTLS handshake is completed. Before completion the middleware shall drop all
requests as if the remote peer is unreachable.c(RS_SEC_04004)

257 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

The rationale for choosing different behavior in [SWS_CM_90111] and
[SWS_CM_90112] is to reflect the nature of the underlying transport. E.g. plain
UDP would also silently discard packets that cannot be sent, where TCP would report
an error.

[SWS_CM_90113]{DRAFT} Behavior of a ServiceSkeleton over TLS before suc-
cessful completion of the handshake dThe communication channel is ready as
soon as the TLS handshake is completed. Therefore, [SWS_CM_10287] and
[SWS_CM_10319] shall be extended to checking whether the TLS handshake did suc-
cessfully finish.

Therefore, as if the proxy was not connected, the invocation of the following methods
shall not result in sending any data:

• the Send() method of the respective Event class (see [SWS_CM_00162])

• the Send() method of the respective Trigger class (see [SWS_CM_00721])

• the Update() method of the respective Field class (see [SWS_CM_00119])

c(RS_SEC_04004)

[SWS_CM_90114]{DRAFT} Behavior of a ServiceSkeleton over DTLS before
successful completion of the handshake dThe communication channel is ready
as soon as the TLS handshake is completed. Therefore, [SWS_CM_10287] and
[SWS_CM_10319] shall be extended to checking whether the TLS handshake did suc-
cessfully finish.

Therefore, as if the proxy was not connected, the invocation of the following methods
shall not result in sending any data:

• the Send() method of the respective Event class (see [SWS_CM_00162])

• the Send() method of the respective Trigger class (see [SWS_CM_00721])

• the Update() method of the respective Field class (see [SWS_CM_00119])

c(RS_SEC_04004)

7.9.2.2.2 DDS Network Binding (secure transports)

DDS is built upon the Real-Time Publish-Subscribe (RTPS) wire protocol, which allows
different implementations of the standard to interoperate at the wire level. The DDS-
RTPS specification [19] defines the wire protocol using a Model Driven Architecture;
i.e., in terms of a Platform-Independent Model (PIM), which can be mapped to Platform
Specific Models (PSM) targeting different transport protocols. In particular, [19] defines

258 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

a UDP PSM, and different DDS vendors have implemented TCP PSMs15, and Shared
Memory PSMs for Inter-Process Communication (IPC).

For consistency with the secure channel modeling and secure communication mech-
anisms specified in 7.9.2.2.1, this section defines support for communication over the
following security protocols:

• DTLS, for secure communication over UDP.

• TLS, for secure communication over TCP.

• IPSec, for secure communication over IP.

[SWS_CM_90203]{DRAFT} TLS secure channel for methods using reliable trans-
port dA TLS secure channel shall be created and used if:

• a TlsSecureComProps instance is referenced in the role secureComProps-
ForTcp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secure channel by the ServiceInterfaceElementSecureComConfig and
this method is configured for transmission over “tcp” by transportProtocol
in the associated DdsServiceInterfaceDeployment.

The DataReaders and DataWriters associated with the method shall be configured to
operate over TLS.c(RS_SEC_04001)

[SWS_CM_90204]{DRAFT} DTLS secure channel for methods using unreliable
transport dA DTLS secure channel shall be created and used if:

• a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this method is configured for transmission over “udp” by transportProtocol
in the associated DdsServiceInterfaceDeployment.

The DataReaders and DataWriters associated with the method shall be configured to
operate over DTLS.c(RS_SEC_04001)

[SWS_CM_90205]{DRAFT} TLS secure channel for events using reliable trans-
port dA TLS secure channel shall be created and used if:

• A TlsSecureComProps instance is referenced in the role secureComProps-
ForTcp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “tcp” by transportProtocol in
the associated DdsEventDeployment.

15A standard TCP PSM for DDS-RTPS is under development, the RFP document is publicly avail-
able at the Object Management Group website: https://www.omg.org/cgi-bin/doc.cgi?mars/
2017-9-24.

259 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

https://www.omg.org/cgi-bin/doc.cgi?mars/2017-9-24
https://www.omg.org/cgi-bin/doc.cgi?mars/2017-9-24

Specification of Communication Management
AUTOSAR AP R21-11

The DataReaders and DataWriters associated with the event shall be configured to
operate over TLS.c(RS_SEC_04001)

[SWS_CM_90206]{DRAFT} DTLS secure channel for events using unreliable
transport dA DTLS secure channel shall be created and used if:

• a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “udp” by transportProtocol in
the associated DdsEventDeployment.

The DataReaders and DataWriters associated with the event shall be configured to
operate over DTLS.c(RS_SEC_04001)

[SWS_CM_90207]{DRAFT} TLS secure channel for fields dThe requirements
[SWS_CM_90203], [SWS_CM_90204], [SWS_CM_90205] and [SWS_CM_90206] ap-
ply to fields in the same manner, since fields are a composition of methods and
events.c(RS_SEC_04001)

[SWS_CM_90209]{DRAFT} IPsec secure channel between communication nodes
and Transport of Service communication over an IPsec security association dAn
IPsec secure channel shall be created and used according to the requirements and
constraints specified in [SWS_CM_90117] and [SWS_CM_90118].c(RS_SEC_04001)

7.9.2.2.3 Raw Data Streaming

Raw Data Stream communication can be transported via TCP and UDP. Therefore
different security mechanism have to be available to secure the stream communication.
The following security protocols are currently supported:

• TLS

• DTLS

• IPSec

[SWS_CM_90213] TLS secure channel for raw data streams using reliable trans-
port dA TLS secure channel shall be created and used if

• a TlsSecureComProps instance is part of a EthernetRawDataStreamMap-
ping and is configured for transmission over “tcp” by assigning a localTcpPort
in the EthernetRawDataStreamMapping

c(RS_SEC_04001)

[SWS_CM_90214] DTLS secure channel for methods using unreliable transport
dA DTLS secure channel shall be created and used if:

260 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• a TlsSecureComProps instance is part of a EthernetRawDataStreamMap-
ping and is configured for transmission over “udp” by assigning a localUdp-
Port in the EthernetRawDataStreamMapping

c(RS_SEC_04001)

[SWS_CM_90215] IPsec secure channel between communication nodes and
Transport of Raw Data Stream communication over an IPsec security association
dAn IPsec secure channel shall be created and used according to the requirements
and constraints specified in [SWS_CM_90117] and [SWS_CM_90118], but applying
the EthernetRawDataStreamMapping to map to the EthernetCommunication-
Connector.c(RS_SEC_04001)

7.9.2.3 SecOC

The Secure Onboard Communication (SecOC) feature is embedded into the Adap-
tive Communication Management. The behavioral aspects of the SecOC protocol are
specified in the PRS_SecOcProtocolSpecification.

One major goal is to achieve interoperability with the AUTOSAR Classic Platform
SecOC functionality. This is especially applicable to the usage of UDP multicast mes-
sages (where SecOC is currently the only protocol supported) and secured signal-
based communication with AUTOSAR Classic Platform through the signal-based net-
work binding.

The SecOC secure channel may provide authenticity and integrity.

Communication Management

Ethernet
Driver

SOME/IP
Transport

IPC
Transport

Dispatching and Discovery

TCP/IP

IPC

SecOC

Figure 7.35: SecOC embedded in the Adaptive Communication Management

In order to achieve interoperability with the AUTOSAR Classic Platform the SecOC
should be applied identically also in Adaptive Communication Management. The au-
thentication information comprises of an Authenticator (e.g. Message Authentication
Code) and optionally a Freshness Value.

261 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

The SOME/IP Message Header as shown in figure 7.36 divided into two parts: Part
I containing the Message ID and the Length and Part II containing Request ID, Pro-
tocol Version, Interface Version, Message Type and Return Code(SOME/IP Protocol
Specification [5]).

Protocol Version [8 bit] Interface Version [8 bit] Message Type [8 bit] Return Code [8 bit]

Request ID (Client ID / Session ID) [32 bit]

Length [32 bit]

Message ID (Service ID / Method ID) [32 bit]

Payload [variable size]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
o

v
e

re
d

 b
y
 L

e
n

g
th

Figure 7.36: SOME/IP header structure

In figure 7.38 the handling of the SOME/IP payload, the SecOC part, and the SOME/IP
Message Header are illustrated. This setup is defined by the AUTOSAR Classic plat-
form. In order to achieve interoperability the Communication Management shall im-
plement an identical behavior. It is essential that the Part I of the SOME/IP Message
header is NOT covered by the SecOC calculation.

To keep the interoperability with the AUTOSAR Classic Platform and provide the op-
tional Freshness Value Management functionality the Adaptive Communication Man-
agement will rely on a pluggable Freshness Value Management Library.

Figure 7.37: Freshness Value Management Pluggable Library

262 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

This library will provide the Freshness Value Management API comprising the replica
of the AUTOSAR Classic Platform FreshnessManagement Client Server Interface and
corresponding functions of the Callout Definitions.

7.9.2.3.1 SOME/IP network binding

SOME/IP Serialized PayloadSOME/IP
Msg Header

Part II

SOME/IP Serialized Payload

x y z

SOME/IP
Msg Header

Part II

SOME/IP
Msg Header

Part I x y z

SecOC
(truncated)
Freshness

SecOC
(truncated)

Authenticator

SOME/IP Serialized Payload

x y z

SOME/IP
Msg Header

Part II

SecOC
(truncated)
Freshness

SecOC
(truncated)

Authenticator

Payload covered by SecOC

Payload covered by SOME/IP Length

Figure 7.38: Payload covered by SecOC and SOME/IP transport

[SWS_CM_90108]{DRAFT} SecOC secure channel for methods using reliable
transport dA SecOC secure channel shall be created and used if:

• A SecOcSecureComProps instance is referenced in the role secureComPro-
psForTcp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this method of the AdaptivePlatformServiceInstance is configured for
transmission over “tcp” by transportProtocol in the associated Someip-
MethodDeployment.

c(RS_SEC_04001)

[SWS_CM_90115]{DRAFT} SecOC secure channel for methods using unreliable
transport dA SecOC secure channel shall be created and used if:

• A SecOcSecureComProps instance is referenced in the role secureComPro-
psForUdp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this method of the AdaptivePlatformServiceInstance is configured for
transmission over “udp” by transportProtocol in the associated Someip-
MethodDeployment.

263 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_SEC_04001)

[SWS_CM_90109]{DRAFT} SecOC secure channel for events and triggers using
reliable transport dA SecOC secure channel shall be created and used if:

• A SecOcSecureComProps instance is referenced in the role secureCom-
PropsForTcp by a ServiceInstanceToMachineMapping and an event or
trigger of the AdaptivePlatformServiceInstance is selected for trans-
mission over the secured channel by the ServiceInterfaceElementSe-
cureComConfig and this event or trigger of the AdaptivePlatformSer-
viceInstance is configured for transmission over “tcp” by transportProto-
col in the associated SomeipEventDeployment.

c(RS_SEC_04001)

[SWS_CM_90116]{DRAFT} SecOC secure channel for events and triggers using
unreliable transport dA SecOC secure channel shall be created and used if:

• A SecOcSecureComProps instance is referenced in the role secureCom-
PropsForUdp by a ServiceInstanceToMachineMapping and an event or
trigger of the AdaptivePlatformServiceInstance is selected for trans-
mission over the secured channel by the ServiceInterfaceElementSe-
cureComConfig and this event or trigger of the AdaptivePlatformSer-
viceInstance is configured for transmission over “udp” by transportPro-
tocol in the associated SomeipEventDeployment.

c(RS_SEC_04001)

[SWS_CM_90110]{DRAFT} SecOC secure channel for fields dThe requirements
[SWS_CM_90108], [SWS_CM_90109], [SWS_CM_90115], [SWS_CM_90116] apply
to fields in the same manner, since fields are a composition of methods and events.c
(RS_SEC_04001)

[SWS_CM_11271]{DRAFT} SecOC secure channel behavior dWhenever a SecOC
secure channel interaction is detected (based on the configuration options of
[SWS_CM_90108], [SWS_CM_90115], [SWS_CM_90109], [SWS_CM_90116], and
[SWS_CM_90110]) the SecOC functionality shall be applied according to:

• sending according to [SWS_CM_11272], [SWS_CM_11274]

• reception according to [SWS_CM_11273], [SWS_CM_11275]

c(RS_SEC_04001)

[SWS_CM_11272]{DRAFT} Lifecycle management of FVM dThe lifecycle of an
SecOC FreshnessValueManager implementation shall be managed by ara::com.c
(RS_SEC_04001)

[SWS_CM_11273]{DRAFT} Initialization of the FVM d

264 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• Initializing of the SecOC FreshnessValueManager implementation by call-
ing Freshness Value Mananement Library API ara::com::secoc::-
FVM::Initialize.

c(RS_SEC_04001)

[SWS_CM_11274]{DRAFT} SecOC secure channel sending dIf a message is con-
figured to be SecOC sent, the message shall be secured according to [27] and following
steps shall be performed:

• the message shall be handled as Authentic message by the Communication Man-
agement

• the message Authentication shall be performed in the order of operations after
the E2E protection calculations

• if the ServiceInterfaceElementSecureComConfig has an attribute
freshnessValueId defined, the Communication Management shall call
the Freshness Value Mananement Library API ara::com::secoc::-
FVM::GetTxFreshness with the freshnessValueId

• calculate the MAC using the Authentic message ([PRS_SecOc_00200] see [27]),
(optionally the Freshness Value), and the dataId

• if the attribute authInfoTxLength is defined, the Authenticator ([PRS_-
SecOc_00210] see [27]) shall be truncated

• if the attribute freshnessValueTxLength is defined, the Freshness Value
shall be truncated ([PRS_SecOc_00201] see [27])

• combine the Authentic message, (truncated) Freshness Value, and (trun-
cated) Authenticator ([PRS_SecOc_00211] see [27])

• continue in the Communication Management with the send processing

The details for the construction of secure message are described in: [PRS_-
SecOc_00103, PRS_SecOc_00105, PRS_SecOc_00200, PRS_SecOc_00207,
PRS_SecOc_00208, PRS_SecOc_00209, PRS_SecOc_00210, PRS_SecOc_00211,
PRS_SecOc_00212] (see [27])c(RS_SEC_04001)

[SWS_CM_11275]{DRAFT} SecOC secure message build attempts dFor every
message to be send and secured with SecOC [27] an Authentication Build
Counter([PRS_SecOc_00202] see [27]) shall be maintained:

• the Authentication Build Counter shall be set to 0 if the operation was
successful.

• if the query of the freshness value ara::com::secoc::FVM::GetTxFresh-
ness return a recoverable error kFVNotAvailable, or an error occurs during
calculation of the Authenticator, the Authentication Build Counter is
incremented and the process of securing the message will be retried in an imple-
mentation specific manner.

265 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• if the Authentication Build Counter has reached the SecOC imple-
mentation specific threshold SecOCAuthenticationBuildAttempts([PRS_-
SecOc_00206] see [27]), the message shall be discarded and the incident shall
be logged (if logging is enabled for the ara::com implementation).

The process is described in: [PRS_SecOc_00201, PRS_SecOc_00202, PRS_-
SecOc_00203, PRS_SecOc_00204, PRS_SecOc_00205, PRS_SecOc_00206]
(see [27])c(RS_SEC_04001)

[SWS_CM_11276]{DRAFT} SecOC secure channel reception dIf a message is con-
figured to be SecOC received then the message shall be verified according to [27] and
following steps shall be performed:

• the message shall be handled as Secured message by the Communication Man-
agement

• if the attribute freshnessValueTxLength is defined, the Freshness Value
will be calculated by calling the Freshness Value Mananement Library
API ara::com::secoc::FVM::GetRxFreshness with SecOCFreshness-
ValueID equals to defined freshnessValueId and with the SecOCTrun-
catedFreshnessValue equals to the extracted Truncated Freshness
Value([PRS_SecOc_00317] see [27]) from the Secured message, otherwise the
Freshness Value([PRS_SecOc_00316] see [27]) shall be extracted from the
Secured message itself

• if the attribute authInfoTxLength is defined, the Truncated Authentica-
tor([PRS_SecOc_00315] see [27]) shall be extracted from the Secured mes-
sage, otherwise the Authenticator([PRS_SecOc_00317] see [27]) shall be
extracted from the Secured message

• verify the message by calculating the MAC using the Secured message, op-
tionally the Freshness Value([PRS_SecOc_00300], and comparing the result
with received Truncated Authenticator([PRS_SecOc_00315] and continue
in the Communication Management with the receive processing

• the message authentication procedure is done before E2E checks

The details for the verification of secure message are described in: [PRS_-
SecOc_00103, PRS_SecOc_00300, PRS_SecOc_00313, PRS_SecOc_00314,
PRS_SecOc_00315, PRS_SecOc_00316, PRS_SecOc_00317, PRS_SecOc_00318,
PRS_SecOc_00319, PRS_SecOc_00330] (see [27])c(RS_SEC_04001)

[SWS_CM_11277]{DRAFT} SecOC secure message verification attempts dFor
every message received and secured with SecOc, an Authentication Build
Counter([PRS_SecOc_00301] shall be maintained:

• the Authentication Build Counter shall be set to 0 if the operation was
successful.

266 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• if the query of the freshness value Freshness Value Mananement Library
API ara::com::secoc::FVM::GetRxFreshness returns a recoverable er-
ror kFVNotAvailable, or an error occurs during calculation of the Authen-
ticator, the Authentication Build Counter shall be incremented and
the process of message verification will be retried in an implementation specific
manner.

• if the counter has reached an implementation specific threshold SecOCAu-
thVerifyAttempts([PRS_SecOc_00307] see [27]), the message shall be dis-
carded and the incident shall be logged (if logging is enabled for the ara::com
implementation).

• if the calculation of the Authenticator([PRS_SecOc_00315] was successful
but the verification failed for the SecOC implementation specific threshold SecO-
CAuthVerifyAttempts([PRS_SecOc_00306] see [27]), the message shall be
discarded and the incident shall be logged (if logging is enabled for the ara::com
implementation).

The process is described in: [PRS_SecOc_00301, PRS_00302, PRS_00303, PRS_-
00304, PRS_00305, PRS_00306, PRS_00307, PRS_00308, PRS_00309, PRS_-
00310, PRS_00311, PRS_00312] (see [27])c(RS_SEC_04001)

The SecOC VerificationStatus service is used to propagate the status of each
verification attempt from the SecOC to an application. It can be used to continuously
monitor the number of failed verification attempts and would allow setting up a security
management system/intrusion detection system that is able to detect an attack flood
and react with adequate dynamic countermeasures.

[SWS_CM_11278]{DRAFT} SecOC verification results dCommunication Manage-
ment shall make each verification result (VerificationStatusResult) accessible
via the VerificationStatus service.c(RS_SEC_04001)

[SWS_CM_11279]{DRAFT} SecOc override the verification result
dCommunication Management shall allow the configuration of SecOC behavior
via the VerifyStatusOverride or VerifyStatusOverride methods. The
overwrite options are defined by OverrideStatus. The configuration is available
per dataID in the case of VerificationStatusConfigurationByDataId
service or per freshnessID in the case of VerificationStatusConfigura-
tionByFreshnessId service.c(RS_SEC_04001)

7.9.2.3.2 Signal based network binding

The SOME/IP Message Header as shown in figure 7.36 is divided into two parts: Part
I containing the Message ID and the Length and Part II containing Request ID, Pro-
tocol Version, Interface Version, Message Type and Return Code (SOME/IP Protocol
Specification [5]).

267 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

In case of signal-service-translation only a partial header is used, namely the Part I. In
figure 7.39 the handling of the Header Part I, the signal based payload, and the SecOC
part is illustrated.

Signal based Serialized Payload

Signal based Serialized Payload

x y z

x y z

SecOC
(truncated)
Freshness

SecOC
(truncated)

Authenticator

Signal based Serialized Payload

x y z

SecOC
(truncated)
Freshness

SecOC
(truncated)

Authenticator

Payload covered by SecOC

Payload covered by SOME/IP Length

SOME/IP
Msg Header

Part I

Figure 7.39: Payload covered by SecOC and Signal2Service transport

[SWS_CM_11346]{DRAFT} dIf the ISignalTriggering is used in a signal-service-
translation (the attribute SomeipEventDeployment.serializer equals signal-
Based), CM shall check if the PduTriggering of this ISignalIPdu is referenced
by a SecuredIPdu and use the SecureCommunicationAuthenticationProps,
SecureCommunicationFreshnessProps and SecureCommunicationProps of
the SecuredIPdu as configuration of SecOc.c(RS_SEC_04001)

As described in Security chapter of [6], in the context of signal-based communi-
cation, SecOC is highly embedded into the Classic platform architecture the signal-
service translation approach on security is to use the same architecture for its specifi-
cation.

The input for signal based SecOC configuration is shown in figure 7.40:

268 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

IPdu

SecuredIPdu

+ useAsCryptographicIPdu: Boolean [0..1]
+ useSecuredPduHeader: SecuredPduHeaderEnum [0..1]

SecureCommunicationProps

+ authDataFreshnessLength: PositiveInteger [0..1]
+ authDataFreshnessStartPosition: PositiveInteger [0..1]
+ authenticationBuildAttempts: PositiveInteger [0..1]
+ authenticationRetries: PositiveInteger
+ dataId: PositiveInteger
+ freshnessValueId: PositiveInteger [0..1]
+ messageLinkLength: PositiveInteger [0..1]
+ messageLinkPosition: PositiveInteger [0..1]
+ secondaryFreshnessValueId: PositiveInteger [0..1]
+ securedAreaLength: PositiveInteger [0..1]
+ securedAreaOffset: PositiveInteger [0..1]

Identifiable

PduTriggering

CommConnectorPort

IPduPort

+ iPduSignalProcessing: IPduSignalProcessingEnum [0..1]
+ rxSecurityVerification: Boolean [0..1]
+ timestampRxAcceptanceWindow: TimeValue [0..1]
+ useAuthDataFreshness: Boolean [0..1]

FibexElement

SecureCommunicationPropsSet

Identifiable

SecureCommunicationFreshnessProps

+ freshnessCounterSyncAttempts: PositiveInteger [0..1]
+ freshnessTimestampTimePeriodFactor: PositiveInteger [0..1]
+ freshnessValueLength: PositiveInteger [0..1]
+ freshnessValueTxLength: PositiveInteger [0..1]
+ useFreshnessTimestamp: Boolean [0..1]

Identifiable

SecureCommunicationAuthenticationProps

+ authInfoTxLength: PositiveInteger [0..1]

«enumeration»
SecuredPduHeaderEnum

 noHeader
 securedPduHeader08Bit
 securedPduHeader16Bit
 securedPduHeader32Bit

+authenticationProps 0..*+freshnessProps 0..*

+iPduPort *

+secureCommunicationProps 1

+authenticationProps 0..1+freshnessProps 0..1

+payload 1

Figure 7.40: Input for for signal based SecOC configuration

7.9.2.4 IPsec

IPsec provides cryptographic protection for IP datagrams in IPv4 and IPv6 network
packets.

[SWS_CM_90117]{DRAFT} IPsec secure channel between communication nodes
dAn IPsec secure channel shall be created and used if an AdaptivePlatform-
ServiceInstance is mapped by ServiceInstanceToMachineMapping to an
EthernetCommunicationConnector that points with the unicastNetworkEnd-
point to a NetworkEndpoint that aggregates an IPSecConfig.

The IPSecRules in the IPSecConfig define security associations between the Net-
workEndpoint that aggregates this IPSecConfig and remote nodes that are de-
fined by the referenced remoteIpAddress.c(RS_SEC_04001)

[SWS_CM_90118]{DRAFT} Transport of Service communication over an IPsec
security association dIf a communication connection is established between a Ser-
vice Provider and Service Requester and the configured transport layer connection

269 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

matches the defined security association then the IP packets exchanged between the
Service Provider and Service Requester will be protected by IPsec.

In other words it means that if the IPsec security association defined by

• the local Address (IP Address defined by the networkEndpointAddress, Port
and Protocol defined by localPortRangeStart and localPortRangeEnd

• the remote Address (IP Address defined by the remoteIpAddress, Port and
Protocol defined by remotePortRangeStart or remotePortRangeEnd)

equals the settings defined by

• the ServiceInstanceToMachineMapping for the ProvidedApServiceIn-
stance and

• the ServiceInstanceToMachineMapping for the RequiredApServiceIn-
stance and

• this network connection is established

then the IP packets between the two nodes will be protected according to the configu-
ration that is also defined in the IPSecRule.c(RS_SEC_04001)

7.9.2.5 DDS Security

DDS Security, as defined in [25], is a complementary standard to DDS, providing
transport-independent security measures (authentication, secrecy, non-repudiation, in-
tegrity, access control and logging) without requiring changes to application logic.

Mapping DDS Service Interface and Instance Deployment models, as well as IAM
Communications Grant models, to DDS QoS policies, and DDS Security certificate,
governance and permission files is defined by [28].

[SWS_CM_90218]{DRAFT} Enforcement of IAM grants through DDS Security
dAdaptive Applications providing or requiring Service Interface Instances through the
DDS Network Binding shall enforce, when provided, deployed DDS Security policies.c
(RS_IAM_00001, RS_IAM_00002)

7.10 Communication API

In the following chapter the functional API specification shall be described.

7.10.1 Offer service

For the service offering C++ API reference, see chapter 8.1.3.2.

270 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00102]{DRAFT} Uniqueness of offered service on local machine
dUpon a call to OfferService() the Communication Management shall check the
offered service for uniqueness on the local machine using information available to the
service discovery. If the implementation detects a duplication (i.e., a service with the
same serviceInstanceId, serviceInterfaceId and majorVersion on the
same VLAN (e.g.according to [constr_1723] of [6]) is already registered, the requested
service offering shall not start, and the function shall return positively after error is
logged.c(RS_CM_00200, RS_CM_00101, RS_CM_00108)

Note: System/vehicle-wide Uniqueness of offered service (see [RS_CM_00108]);
System/vehicle-wide uniqueness should be targeted in a best-effort way, i.e., if knowl-
edge about a a remotely offered service is available, this knowledge shall be used in
the uniqueness check.

[SWS_CM_00103] Protocol where a service is offered dWhen a new service is
offered by the application, the Communication Management shall check over which
protocols this service shall be offered. This information is configured in the class
of ServiceInterfaceDeployment referencing the offered ServiceInterface
in the role serviceInterface. According of the type of the ServiceInter-
faceDeployment the Communication Management shall trigger the service offer-
ing over respective protocol. If the class is SomeipServiceInterfaceDeploy-
ment then the Some/IP network binding shall handle the OfferService call as de-
scribed in [SWS_CM_00203]. If the class is DdsServiceInterfaceDeployment,
then the DDS network binding shall handle the OfferService call as described in
[SWS_CM_11001]. If the class is UserDefinedServiceInterfaceDeployment,
the Communication Management implementer is responsible for implementing the Of-
ferService method in an appropriate way.c(RS_CM_00101)

[SWS_CM_00104]{DRAFT} StopOfferService dWhen a service calls StopOf-
ferService, the Communication Management shall check over which network bind-
ing the offered service shall be stopped. This information is configured in the class
of ServiceInterfaceDeployment referencing the offered ServiceInterface in
the role serviceInterface. If the class is SomeipServiceInterfaceDeploy-
ment then the Some/IP network binding shall handle the mapping of the StopOf-
ferService method as described in [SWS_CM_00204]. If the class is DdsSer-
viceInterfaceDeployment, then the DDS network binding shall handle the map-
ping of the StopOfferService as described in [SWS_CM_11005]. If the class is
UserDefinedServiceInterfaceDeployment, the Communication Management
implementer is responsible for implementing the StopOfferService method in an
appropriate way.c(RS_CM_00101)

7.10.2 Service skeleton creation

For the service skeleton creation C++ API reference, see chapter 8.1.3.3.

271 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_10410] InstanceIdentifier check during the creation of service
skeleton dThe Communication Management shall check the value of the InstanceI-
dentifier argument: the identifier shall be unique. If the same InstanceIdenti-
fier is used for the creation of more than one skeleton instance of the same service
shall be handled as violation according to [SWS_CORE_00003].c(RS_CM_00101)

[SWS_CM_10450] InstanceSpecifier check during the creation of service
skeleton dThe Communication Management shall check the value of the Instance-
Specifier argument: the specifier shall be unique, using the same instance specifier
for the creation of more than one skeleton instance of the same service shall be han-
dled as violation according to [SWS_CORE_00003].c(RS_CM_00101, RS_AP_00137)

[SWS_CM_10451] InstanceIdentifierContainer check during the creation
of service skeleton dThe Communication Management shall check the value of the
InstanceIdentifierContainer argument:

• the container size shall be bigger than zero

• the identifiers of the container shall be unique

• the identifiers of the container shall correspond to the same instance specifier.

If there are failing checks, and the same InstanceIdentifier is used for the creation of
more than one skeleton instance of the same service shall be handled as violation
according to [SWS_CORE_00003].c(RS_CM_00101)

7.10.3 Processing of service methods

For the processing of service methods C++ API reference, see chapter 8.1.3.7.

[SWS_CM_10411]{DRAFT} Service method processing modes dThe following ser-
vice method processing modes shall be supported:

• Polling: Instead of calling a provided service method, the Communication Man-
agement software collects incoming service method invocations. The processing
of each invocation is explicitly triggered by the implementation providing the ser-
vice method using the mechanism defined in [SWS_CM_00199].

• Event-driven, concurrent: The Communication Management software activates
the invoked service method when the invocation arrives. Consumer concurrent
calls are allowed and will be processed concurrently on provider side by using
different threads.
This is the default mode.

• Event-driven, sequential: The Communication Management software activates
the invoked service method when the invocation arrives. Consumer concurrent
calls are allowed, but will not be processed concurrently on provider side, by
instead executing them one after the other to avoid the need of synchronization
mechanisms in the implementation providing the service method.

272 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00211)

7.10.4 Registering get handlers for fields

For the registering get handlers for fields C++ API reference, see chapter 8.1.3.8.

[SWS_CM_10412]{DRAFT} Invoking GetHandlers dThe registered GetHandler
shall be called by the implementation whenever the Communication Management re-
ceives a Get.c(RS_CM_00218)

7.10.5 Registering set handlers for fields

For the registering set handlers for fields C++ API reference, see chapter 8.1.3.9.

[SWS_CM_10413]{DRAFT} Invoking SetHandlers dThe registered SetHandler
shall be called by the implementation whenever the Communication Management re-
ceives a Set.c(RS_CM_00218)

Note: Upon a call to the SetHandler, the Service Provider has to validate the received
field value (it can accept, modify or reject it). After that, it sets the new value in the
future object (see [SWS_CM_00116]). If the SetHandler needs to access the current
field value to validate the new field value, the skeleton implementation has to
provide a replica of the underlying field value that is accessible from application
level.

[SWS_CM_10415]{DRAFT} Notify the Field value after a call to the SetHandler
function dThe Communication Management implementation shall take the effective
field value returned by the SetHandler function, and send it back to the requester
as return value of the set function (see [SWS_CM_00113]), and to all the other sub-
scribed entities via notification (see [SWS_CM_00119]).c(RS_CM_00218)

[SWS_CM_00128]{DRAFT} Ensuring the existence of valid Field values dTo en-
sure the existence of a valid field values upon a call to the Subscribe() method (see
[SWS_CM_00141]) or to the Get() method (see [SWS_CM_00112]) the ara::com im-
plementation shall do the following: If a service containing a Field is offered via a call
to OfferService() (see [SWS_CM_00101]), if Update() has not been called yet
and one or more of the following applies:

• hasNotifier = true

• hasGetter = true and a GetHandler (see [SWS_CM_00114]) has not yet
been registered.

Then the error code ComErrc::kFieldValueIsNotValid shall be returned in the
result type of OfferService(). The error shall be logged.c(RS_CM_00218)

[SWS_CM_00129]{DRAFT} Ensuring the existence of SetHandler dUpon a call to
OfferService() in a skeleton implementation for a given service, the following error

273 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

check shall be made: if for at least one contained Field having hasSetter = true no
SetHandler (see [SWS_CM_00116]) has been registered yet, the error code Com-
Errc::kSetHandlerNotSet shall be returned in the result type of OfferService().
The error shall be logged.c(RS_CM_00218)

7.10.6 Find service

For the find service C++ API reference, see chapter 8.1.3.10.

[SWS_CM_00124]{DRAFT} Find service handler invocation dAfter calling the
StartFindService method, the FindServiceHandler shall be called by the
Communication Management software to receive the found services. By the first call,
the FindServiceHandler shall receive the initially known matches, if there are any.
In following, the FindServiceHandler shall be called every time the availability of
any of the services matching the given instance criteria changes.c(RS_CM_00102)

[SWS_CM_10382]{DRAFT} Calling stop find service for already stopped finds
dCalls to the StopFindService method using a FindServiceHandle obtained
from a StartFindService that already has been stopped shall be silently ignored.c
(RS_CM_00102)

7.10.7 Receive events

For the event data access C++ API reference, see chapter 8.1.3.14.

[SWS_CM_00709] FIFO semantics dThe Communication Management shall provide
buffering with FIFO semantics between sender and receiver of events.c(RS_CM_-
00203)

[SWS_CM_00710]{DRAFT} No implicit context switches dReception of a new event
shall not lead to an implicit context switch in the receiver process when polling behavior
is employed (i.e. No ReceiveHandler has been set via SetReceiveHandler())c
(RS_CM_00203)

7.10.7.1 Receive event by polling

For the polling access no additional APIs on top of 8.1.3.14 are needed.

7.10.7.2 Receive event by getting triggered

For the receive event by getting triggered C++ API reference, see chapter 8.1.3.15.

274 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00182]{DRAFT} Event Receive Handler call serialization dThe Com-
munication Management shall serialize calls to the registered EventReceiveHan-
dler function as it is not guaranteed that the callback function is re-entrant.c(RS_-
CM_00203)

[SWS_CM_00711]{DRAFT} dAfter the Communication Management has called the
registered EventReceiveHandler function for a specific Event class instance, the
next call to GetNewSamples on the same instance shall provide at least one data
sample as long as GetFreeSampleCount is not already returning 0 at the point in
time of the call.c(RS_CM_00203)

7.10.8 Call a service method

For the call a service method C++ API reference, see chapter 8.1.3.19.

[SWS_CM_10414]{DRAFT} Initiate a method call dAt the point of time when the
caller calls the method (see [SWS_CM_00196]), the Communication Management
software does not know yet if the result shall be returned with synchronous or asyn-
chronous behavior. Therefore the Communication Management software shall instanti-
ate the ara::core::Future object to be returned to the caller, but shall not perform
actions which lead to uncontrolled context switches from the caller point of view, e.g.
an asynchronous event-style mechanism for a wait-on-event.c(RS_CM_00212, RS_-
CM_00213, RS_AP_00138)

[SWS_CM_10371]{DRAFT} Context of return checked errors dIf during process-
ing of a method call one of the checked errors (see subsubsection 8.1.2.6) occurs,
the corresponding ara::core::ErrorCode shall be returned in the context of the
ara::core::Future::GetResult()/ara::core::Future::get() call.c(RS_-
CM_00211, RS_CM_00212, RS_CM_00213, RS_CM_00214)

[SWS_CM_90436]{DRAFT} No checked errors for Fire and Forget method
calls dThere shall be no checked errors returned for Fire and Forget method
calls.c(RS_CM_00225)

7.10.9 Update notification events for fields

[SWS_CM_00120]{DRAFT} Provision of an update notification event for a Field
dIf hasNotifier is true, update notification events for the Field shall be provided as
of the following requirements:

• [SWS_CM_00141] Method to subscribe to a service event. This subscribe leads
immediately to a service event that contains the initial field value send from
provider side to the consumer.

• [SWS_CM_00151] Method to unsubscribe from a service event.

• [SWS_CM_00316] Method to query the subscription state.

275 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• [SWS_CM_00701] Method to receive a service event using polling.

• [SWS_CM_00181] Method to enable service event trigger.

• [SWS_CM_00182] Event Receive Handler call serialization.

• [SWS_CM_00183] Method to disable service event trigger.

• [SWS_CM_00333] Method to set a subscription state change handler.

• [SWS_CM_00334] Method to unset a subscription state change handler.

Except that the corresponding methods reside in the Field class instead of the Event
class.c(RS_CM_00218)

7.10.10 Instance Specifier Translation

For the instance specifier translation C++ API reference, see chapter 8.1.3.22.

[SWS_CM_10452]{DRAFT} InstanceSpecifier translation to InstanceIdentifiers
dThe Communication Management shall translate an InstancSpecifier to In-
stanceIdentifiers. Based on the match there shall be zero, 1 or multiple In-
stanceIdentifiers .c(RS_CM_00200, RS_AP_00137)

7.10.11 Invalid Value

[SWS_CM_10453]{DRAFT} Implementation of invalidValue dFor AUTOSAR
data types which have an invalidValue specified, header file shall also contain the
following definition in the same namespace as type declaration:

constexpr static <SourceDataType> kInvalidValue<DataType> = <InvalidValue>;

where

• <DataType> is the short name of the data type

• <SourceDataType> is data type, implicitly convertible to <DataType>;
In simplest case <DataType> itself.

• <InvalidValue> is the value defined as invalidValue for the data type

c(RS_CM_00001)

Note: invalidValues are only applicable to CppImplementationDataType of
category TYPE_REFERENCE and STRING.

276 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8 Communication API specification

While the primary focus of ara::com is targeted towards an implementation in the C++
programming language, the following chapter structures of the document allow for fu-
ture versions to add further Language Bindings.

8.1 C++ language binding

8.1.1 API Header files

This chapter specifies those C++ header files used directly in the API implementation of
the ServiceInterface in an Adaptive Application. As part of the Adaptive Platform
Methodology, these C++ header files are generated by a workflow tool directly from the
ServiceInterface ARXML configuration either as part of the i) Service/Common/-
Types Header file generation, or the ii) Implementation Types header file generation
[24].

The following requirements are applicable for all header files; requirements which are
specific for a header file are described in own sub-chapters.

[SWS_CM_01020]{DRAFT} Common/Service header files directory structure
dThe Service header files defined by [SWS_CM_01002] and the Common header files
defined by [SWS_CM_01012] shall be located within the folder:

<namespace[0]>/<namespace[1]>/.../<namespace[n]>/

where:
<namespace[0]> ... <namespace[n]> are the namespace names as defined
in [SWS_CM_01005].c(RS_CM_00001, RS_AP_00114)

[SWS_CM_12000]{DRAFT} Implementation types header files directory structure
dThe communication management expects the Implementation Types header files gen-
erated according to [SWS_CM_12001] shall be located within the directory according
to [SWS_LBAP_00034].c(RS_CM_00001, RS_AP_00114)

8.1.1.1 Service header files

The Service header files are the central definition of the ara::com API and any associ-
ated data structures that are required by the AdaptiveApplication software components
to use the communication management.

[SWS_CM_01002]{DRAFT} Service header files existence dThe communication
management shall provide one Proxy header file and one Skeleton header file for each
ServiceInterface defined in the input by using the file name <name>_proxy.-
h for the Proxy header file and <name>_skeleton.h for the Skeleton header file,

277 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

where <name> is the ServiceInterface.shortName converted to lower-case let-
ters.c(RS_CM_00001, RS_AP_00114, RS_AP_00116)

[SWS_CM_01004]{DRAFT} Inclusion of common header file dThe Proxy and
Skeleton header file shall include the Common header file:

1 #include "<namespace[0]>/<namespace[1]>/.../<namespace[n]>/<name>
_common.h"

where:
<namespace[0]> ... <namespace[n]> are the namespace names as defined
in [SWS_CM_01005] and [SWS_LBAP_00035]. <name> is the the ServiceInter-
face.shortName converted to lower-case letters.c(RS_CM_00001, RS_AP_00114)

Namespaces are used to separate the definition of services from each other to prevent
name conflicts and they allow to use reasonably short names.

[SWS_CM_01005]{DRAFT} Namespace of Service header files dBased on the
symbol attributes of the ordered SymbolProps aggregated by PortInterface in
role namespace, the C++ namespace of the Service header file shall be:

1 namespace <ServiceInterface.namespace[0].symbol> {
2 namespace <ServiceInterface.namespace[1].symbol> {
3 namespace <...> {
4 namespace <ServiceInterface.namespace[n].symbol> {
5 ...
6 } // namespace <ServiceInterface.namespace[n].symbol>
7 } // namespace <...>
8 } // namespace <ServiceInterface.namespace[1].symbol>
9 } // namespace <ServiceInterface.namespace[0].symbol>

with all namespace names converted to lower-case letters.c(RS_CM_00002, RS_AP_-
00114)

Note: In order to avoid name clashes between Events, Fields, and
Methods of different ServiceInterfaces in situation where the Events
(ServiceInterface.event), Fields (ServiceInterface.field), and Meth-
ods (ServiceInterface.method) of the different ServiceInterfaces carry the
same shortName, it is highly recommend to place different ServiceInterfaces
into dedicated unique C++ namespaces. This is achieved by attaching correspond-
ing ordered SymbolProps to the ServiceInterfaces where the ordered Symbol-
Props differ in at least one of their symbol attributes.

Starting from the innermost namespace as defined by [SWS_CM_01005], there are
additional C++ namespaces for the proxy or the skeleton and for the events and meth-
ods. These namespaces are used for the declarations and definitions as described in
chapter 8.1.3.

[SWS_CM_01006]{DRAFT} Service skeleton namespace dThe C++ namespace for
a specific service skeleton class shall be:

1 namespace skeleton {
2 ...
3 } // namespace skeleton

278 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00002, RS_AP_00114)

[SWS_CM_01007]{DRAFT} Service proxy namespace dThe C++ namespace for a
specific service proxy class shall be:

1 namespace proxy {
2 ...
3 } // namespace proxy

c(RS_CM_00002, RS_AP_00114)

[SWS_CM_01009]{DRAFT} Service events namespace dThe Proxy and Skeleton
header file shall provide a C++ namespace for the definition of events within the name-
space defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace events {
2 ...
3 } // namespace events

c(RS_AP_00114, RS_CM_00002)

[SWS_CM_01015]{DRAFT} Service methods namespace dThe Proxy and Skeleton
header file shall provide a C++ namespace for the definition of methods within the
namespace defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace methods {
2 ...
3 } // namespace methods

c(RS_CM_00002, RS_AP_00114)

[SWS_CM_01031]{DRAFT} Service fields namespace dThe Proxy and Skeleton
header file shall provide a C++ namespace for the definition of fields within the name-
space defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace fields {
2 ...
3 } // namespace fields

c(RS_CM_00002, RS_CM_00216, RS_AP_00114)

As a summary of the C++ namespace requirements [SWS_CM_01005],
[SWS_CM_01006], and [SWS_CM_01009], the namespace hierarchy in the Skeleton
header file looks like:

1 namespace <ServiceInterface.namespace[0].symbol> {
2 namespace <ServiceInterface.namespace[1].symbol> {
3 namespace <...> {
4 namespace <ServiceInterface.namespace[n].symbol> {
5 namespace skeleton {
6

7 namespace events {
8 ...
9 } // namespace events

10

11 namespace methods {

279 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

12 ...
13 } // namespace methods
14

15 namespace fields {
16 ...
17 } // namespace fields
18

19 ...
20 } // namespace skeleton
21 } // namespace <ServiceInterface.namespace[n].symbol>
22 } // namespace <...>
23 } // namespace <ServiceInterface.namespace[1].symbol>
24 } // namespace <ServiceInterface.namespace[0].symbol>

As a summary of the C++ namespace requirements [SWS_CM_01005],
[SWS_CM_01007], [SWS_CM_01009], and [SWS_CM_01015], the namespace
hierarchy in the Proxy header file looks like:

1 namespace <ServiceInterface.namespace[0].symbol> {
2 namespace <ServiceInterface.namespace[1].symbol> {
3 namespace <...> {
4 namespace <ServiceInterface.namespace[n].symbol> {
5 namespace proxy {
6

7 namespace events {
8 ...
9 } // namespace events

10

11 namespace methods {
12 ...
13 } // namespace methods
14

15 namespace fields {
16 ...
17 } // namespace fields
18

19 ...
20 } // namespace proxy
21 } // namespace <ServiceInterface.namespace[n].symbol>
22 } // namespace <...>
23 } // namespace <ServiceInterface.namespace[1].symbol>
24 } // namespace <ServiceInterface.namespace[0].symbol>

8.1.1.2 Common header file

The Common header file includes the ara::com specific type declarations derived from
the ApApplicationErrors composed by a particular ServiceInterface as well
Service Identifier type declarations related to a particular ServiceInterface.

[SWS_CM_01012]{DRAFT} Common header file existence dThe communication
management shall provide a Common header file for each ServiceInterface de-
fined in the input by using the file name <name>_common.h, where <name> is the

280 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

ServiceInterface.shortName converted to lower-case letters.c(RS_CM_00001,
RS_AP_00114, RS_AP_00116)

As a minimal requirement, the Types header file and the Implementation Types header
files need to be included.

[SWS_CM_01001]{DRAFT} Inclusion of Types header file dThe Common header
file shall include the Types header file:

1 #include "ara/com/types.h"

c(RS_CM_00001, RS_AP_00114)

[SWS_CM_10372]{DRAFT} Inclusion of Implementation Types header files dThe
Common header file shall include the Implementation Types header files of those Cp-
pImplementationDataTypes that are actually used by the particular ServiceIn-
terface:

1 #include "<namespace[0]>/<namespace[1]>/.../<namespace[n]>/impl_type_<
symbol>.h"

where <namespace[0..n]> is the namespace hierarchy defined in [SWS_LBAP_-
00035], and <symbol> is the Cpp Implementation Data Type symbol accord-
ing to [24] converted to lower-case letters.c(RS_CM_00001, RS_AP_00114)

It is not mandatory that all declarations and definitions are located directly in the Com-
mon header file. A Communication Management implementation might also distribute
the declarations and definitions into different header files, but at least all those header
files need to be included into the Common header file.

[SWS_CM_10370]{DRAFT} Common header file for Application Errors dThe Com-
mon header file shall include the class definitions for all ApApplicationError-
Domains for the ApApplicationErrors of a ServiceInterface according to
[SWS_CM_11266].c(RS_CM_00001)

[SWS_CM_01017]{DRAFT} Service Identifier Type definitions in Common header
file dThe Common header file shall include the information to identify the service type
according to the requirement [SWS_CM_01010].c(RS_CM_00001)

[SWS_CM_01008]{DRAFT} Namespace for Service Identifier Type definitions
dThe declarations and definitions according to [SWS_CM_01017] shall be located in
the C++ namespace as defined by [SWS_CM_01005] to match to the namespace of
the related skeleton and proxy header file.c(RS_CM_00002)

8.1.1.3 Types header file

The Types header file includes the data type definitions which are specific for the
ara::com API. Such data type definitions are used in the standardized proxy and skele-
ton interfaces defined in chapter 8.1.3.

281 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_01013]{DRAFT} Types header file existence dThe communication man-
agement shall provide a Types header file by using the file name types.h.c(RS_CM_-
00001, RS_AP_00114, RS_AP_00116)

[SWS_CM_01018]{DRAFT} Types header file namespace dThe C++ namespace for
the data type definitions included by the Types header file shall be:

1 namespace ara {
2 namespace com {
3 ...
4 } // namespace com
5 } // namespace ara

c(RS_CM_00002, RS_AP_00114)

It is not mandatory that all data type definitions are located directly in the Types header
file. A Communication Management implementation might also distribute the defini-
tions into different header files, but at least all those header files need to be included
into the Types header file.

[SWS_CM_01019]{DRAFT} Data Type declarations in Types header file
dThe Types header file shall include the data type definitions according to
[SWS_CM_00301], [SWS_CM_00302], [SWS_CM_00303], [SWS_CM_00304],
[SWS_CM_00383], [SWS_CM_00306], [SWS_CM_00308], [SWS_CM_00309],
[SWS_CM_00310], and [SWS_CM_00311].c(RS_CM_00001)

8.1.1.4 Implementation Types header files

As part of the Adaptive Application methodology, all referenced CppImplementa-
tionDataTypes in all modeled ServiceInterfaces for a given Adaptive Appli-
cation, must be processed by an ARA generator to generate the respective C++
language binding representation [29].

The processing rules which specify how an ARA generator shall create the Imple-
mentation Types header files are specified in detail in [24]. The role of communication
management is as a ’consumer’ of the respective generated Implementation Types
header files.

[SWS_CM_12001]{DRAFT} C++ Implementation Data Types files dThe communi-
cation management shall use the generated C++ Implementation Types header files
produced according to:

• [SWS_LBAP_00032] (header file generation),

• [SWS_LBAP_00033] (header file naming),

• [SWS_LBAP_00034] (directory naming),

c()

282 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.1.5 Raw Data Stream header file

The Raw data stream header file includes the data type definitions specific for the
ara::com::raw API for Raw Data Streams.

[SWS_CM_10488] Raw data stream header file existence dThe communication
management shall provide a Raw data stream header file by using the file name
raw_data_stream.h.c(RS_CM_00001)

[SWS_CM_10489] Raw data stream header file namespace dThe C++ namespace
for the data type definitions included by the Raw data stream header file shall be:

1 namespace ara {
2 namespace com {
3 namespace raw {
4 ...
5 } // namespace raw
6 } // namespace com
7 } // namespace ara

c(RS_CM_00002)

[SWS_CM_10490] Data Type declarations in Raw data stream header file
dThe Raw data stream header file shall include the class definitions according
to [SWS_CM_10481], [SWS_CM_10482], [SWS_CM_10483], [SWS_CM_10484],
[SWS_CM_10485], [SWS_CM_10486] and [SWS_CM_10487].c(RS_CM_00001)

283 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.2 API Data Types

This chapter describes the data types used by the ara::com API, both the specific ones
which are part of the standardized proxy and skeleton interfaces, and the ones derived
from the description based on the AUTOSAR meta-model.

8.1.2.1 Service Identifier Data Types

The data types described in this chapter are derived from the ara::com API design and
as a part of the API, they are used to identify a specific service or service instance.

A service can be identified at least by a fully qualified name and a version. The servi-
ceIdentifier is not visible in the ara::com API, as the specific service skeleton and
proxy class itself represent the service type, but the serviceIdentifier is needed
for the implementation of the Communication Management software. It is defined here
to guarantee a minimum amount of information.

[SWS_CM_01010]{DRAFT} Service Identifier and Service Con-
tract Version dThe Communication Management shall provide a C++
class named ServiceInterface.shortName. The class contains at
least a fully qualified name identifier (serviceIdentifier) , a ser-
vice contract major (serviceContractVersionMajor) and minor
(serviceContractVersionMinor) version number.

The value of serviceContractVersionMajor shall be derived from the ma-
jorVersion attribute in the ServiceInterface. The value of serviceCon-
tractVersionMinor shall be derived from the minorVersion attribute in the Ser-
viceInterface.

The exact type of serviceIdentifier is specific to the Communication Manage-
ment software provider. Its concrete realization is implementation defined. To allow for
logging and for storing and managing in C++ container classes by the using application,
however, the type of the class shall satisfy the EqualityComparable requirements
according to table 17, the LessThanComparable requirements according to table 18,
and the CopyAssignable requirements according to table 23 of section 17.6.3.1 of
[30]. These requirements are fulfilled if the operators operator==, operator<, and
operator= as well as a toString() method is provided.

1 class <ServiceInterface.shortName> {
2 public:
3 static const serviceIdentifierType serviceIdentifier;
4

5 static std::uint32_t serviceContractVersionMajor;
6 static std::uint32_t serviceContractVersionMinor;
7 };
8

9 class serviceIdentifierType {
10 bool operator==(const serviceIdentifierType& other) const;
11 bool operator<(const serviceIdentifierType& other) const;
12 serviceIdentifierType& operator=(const serviceIdentifierType& other);

284 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

13 ara::core::StringView ToString() const;
14 };

c(RS_CM_00200, RS_CM_00500)

There might exist different instances of exactly the same service in the system. To han-
dle this, an InstanceIdentifier or an InstanceSpecifier are used to identify
a specific instance of a service. These are a necessary parameter of the API defined
for both the skeleton and proxy side:

• on service skeleton side, it types the parameter needed to
identify the service instance when creating an instance by
[SWS_CM_00130],[SWS_CM_00152],[SWS_CM_00153].

• on service proxy side, it types the parameter needed to identify the ser-
vice instance when searching for a specific instance by [SWS_CM_00122] or
[SWS_CM_00123].

[SWS_CM_00302]{DRAFT} Instance Identifier Class dThe Communication
Management shall provide a class InstanceIdentifier. It contains instance infor-
mation and information about the service type. This will make the InstanceIdentifier
unique for different instances.
The definition of the InstanceIdentifier can be extended by the Communication
Management software provider, but at least the given Named Constructor Create
(), the class constructor and the class method signatures must be preserved. In-
stanceIdentifier shall further satisfy the EqualityComparable requirements
according to table 17, the LessThanComparable requirements according to table 18,
and the CopyAssignable requirements according to table 23 of section 17.6.3.1 of
[30] to allow for logging of InstanceIdentifiers as well as storing and managing
InstanceIdentifiers in C++ container classes by the using application. These
requirements are fulfilled if the operators operator==, operator<, and operator=
as well as a ToString() method is provided.

The format of the string passed to the constructor, or returned by the ToString()
method is specific to the Communication Management software provider, and not
standardized.

In case the format of the string representation provided to Create() is corrupted, or
not compliant to the software provider specification, an error code ComErrc::kIn-
validInstanceIdentifierString shall be returned in the Result type.
The class constructor shall throw a ComException in case the format of the string
provided is corrupted, or not compliant to the software provider specification.

1 class InstanceIdentifier {
2 public:
3

4 static ara::core::Result<InstanceIdentifier> Create(StringView
serializedFormat) noexcept;

285 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

5 explicit InstanceIdentifier(ara::core::StringView serializedFormat);
6 ara::core::StringView ToString() const;
7 bool operator==(const InstanceIdentifier& other) const;
8 bool operator<(const InstanceIdentifier& other) const;
9 InstanceIdentifier& operator=(const InstanceIdentifier& other);

10 };

c(RS_CM_00101, RS_CM_00102, RS_AP_00114, RS_AP_00122, RS_AP_00127)

[SWS_CM_00319]{DRAFT} Instance Identifier Container Class dThe Communica-
tion Management shall provide the definition of a InstanceIdentifierContainer.
The container holds a list of InstanceIdentifier. The assigned data type is al-
lowed to be changed by the Communication Management software provider, but must
adhere to the general container requirements according to table 96 of section 23.2.1
and the sequence container requirements according to table 100 of section 23.2.3 of
[30]. A ara::core::Vector for example fulfills these requirements.

1 using InstanceIdentifierContainer = ara::core::Vector<InstanceIdentifier>;

c(RS_CM_00101, RS_CM_00102, RS_AP_00114, RS_AP_00122)

The following data types are used for the handling of services on the service consumer
side, therefore they are part of the API defined for the proxy side.

To identify a triggered request to find a service, the StartFindService method of
[SWS_CM_00123] returns a FindServiceHandle which is used as parameter to
cancel this request with StopFindService as described in [SWS_CM_00125].

[SWS_CM_00303]{DRAFT} Find Service Handle dThe Communication Manage-
ment shall provide the definition of an opaque FindServiceHandle with exactly this
name. FindServiceHandle shall satisfy the EqualityComparable requirements
according to table 17, the LessThanComparable requirements according to table 18,
and the CopyAssignable requirements according to table 23 of section 17.6.3.1 of
[30] to allow storing and managing FindServiceHandles in C++ container classes
by the using application. These requirements are fulfilled if the following operators are
provided: operator==, operator<, and operator=. The exact definition of Find-
ServiceHandle is communication management implementation specific.c(RS_CM_-
00102, RS_AP_00122)

For example, a definition of FindServiceHandle could look like this:
1 struct FindServiceHandle {
2 internal::ServiceId serviceIdentifier;
3 internal::InstanceId instanceIdentifier;
4 std::uint32_t uid;
5

6 bool operator==(const FindServiceHandle& other) const;
7 bool operator<(const FindServiceHandle& other) const;
8 FindServiceHandle& operator=(const FindServiceHandle& other);
9 ...

10 };

286 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

The usage of the API to find service instances, as defined in [SWS_CM_00122] and
[SWS_CM_00123], provides a handle container holding a list of handles. Each handle
represents an existing service instance and by passing the handle as parameter to the
proxy constructor [SWS_CM_00131], it allows the ara::com API user to create a proxy
instance to access this service instance.

[SWS_CM_00312]{DRAFT} Handle Type Class dThe Communication Management
shall provide the definition of HandleType. It types the handle for a specific service
instance and shall contain the information that is needed to create a ServiceProxy.
The definition of the HandleType can be extended by the Communication Manage-
ment software provider, but at least the given class and class method signatures must
be preserved.
HandleType shall satisfy the EqualityComparable requirements according to ta-
ble 17 and the LessThanComparable requirements according to table 18 of sec-
tion 17.6.3.1 of [30]. These requirements are fulfilled if the following operators are
provided: operator== and operator<. This, together with [SWS_CM_00317]
and [SWS_CM_00318], allows storing and managing HandleTypes in C++ container
classes by the using application.
The definition of the HandleType class shall be located inside the ServiceProxy
class defined by [SWS_CM_00004]. This allows the Communication Management
software to provide handles with different implementation dependent on the binding
to the represented service.

1 class HandleType {
2 public:
3 bool operator==(const HandleType& other) const;
4 bool operator<(const HandleType& other) const;
5 const ara::com::InstanceIdentifier& GetInstanceId() const;
6 };

c(RS_CM_00102, RS_AP_00114, RS_AP_00122)

Since the Communication Management software is responsible for creation of handles
and the application just uses instances of it, the constructor signature is not part of the
HandleType specification.

[SWS_CM_00317]{DRAFT} Copy semantics of handle Type Class dThe Commu-
nication Management shall provide the possibility to copy construct and copy assign a
HandleType instance from another instance.

HandleType(const HandleType&);
HandleType& operator=(const HandleType&);

c(RS_CM_00102, RS_AP_00114, RS_AP_00145)

[SWS_CM_00318]{DRAFT} Move semantics of handle Type Class dThe Commu-
nication Management shall provide the possibility to move construct and move assign
a HandleType instance from another instance.

HandleType(HandleType &&);
HandleType& operator=(HandleType &&);

287 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00102, RS_AP_00114, RS_AP_00145)

[SWS_CM_11371]{DRAFT} HandleType destructor dThe Communication Manage-
ment shall provide a destructor for the the HandleType.

~HandleType() noexcept;

c(RS_AP_00114, RS_AP_00145, RS_AP_00132)

[SWS_CM_00304]{DRAFT} Service Handle Container dThe Communication Man-
agement shall provide the definition of a ServiceHandleContainer. The container
holds a list of service handles and is used as a return value of the FindService
methods. The assigned data type is allowed to be changed by the Communication
Management software provider, but must adhere to the general container requirements
according to table 96 of section 23.2.1 and the sequence container requirements ac-
cording to table 100 of section 23.2.3 of [30]. A ara::core::Vector for example
fulfills these requirements.

1 template <typename T>
2 using ServiceHandleContainer = ara::core::Vector<T>;

c(RS_CM_00102, RS_AP_00114, RS_AP_00122)

The possibility to continuously find services by registering a handler function as defined
in [SWS_CM_00123] requires a definition of such a handler function. The function
implementation itself is to be provided by the proxy user.

[SWS_CM_00383]{DRAFT} Find Service Handler dThe Communication Manage-
ment shall provide the definition of FindServiceHandler as a function wrapper for
the handler function that gets called by the Communication Management software in
case the service availability changes. It takes as input parameter a handle container
containing handles for all matching service instances and a FindServiceHandle
which can be used to invoke StopFindService (see [SWS_CM_00125]) from within
the FindServiceHandler.

1 template <typename T>
2 using FindServiceHandler =
3 std::function<void(ServiceHandleContainer<T>, FindServiceHandle)>;

c(RS_CM_00102, RS_AP_00114, RS_AP_00120)

See [SWS_CM_00304] for the type definition of ServiceHandleContainer.

8.1.2.2 Event Related Data Types

Event handling on receiver side is based on queued communication with config-
urable cache sizes. The cache size for a specific event of a proxy instance is de-
termined by the Communication Management, when subscribing to a specific event by
[SWS_CM_00141].

288 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

After the receiver subscribed to an event, the method GetNewSamples as defined in
[SWS_CM_00701] is used to retrieve the data samples of that event. In the context
of GetNewSamples application provided callback functions are called by the Commu-
nication Management, where Sample Pointers to the data samples retrieved from un-
derlying queues are passed in. A Sample Pointer is an alias for an event data type
pointer.

SamplePtr behaves similar to std::unique_ptr but it may be implemented with a
subset of features. It also contains an additional method GetProfileCheckStatus
to access the E2E results provided by ProfileCheckStatus of the referred sample.

[SWS_CM_00306]{DRAFT} Sample Pointer dThe Communication Management
shall provide a SamplePtr template which provides a pointer to a managed data
object. The implementation shall at least contain the following constructors, assign
operators and methods:

template< typename T >
class SamplePtr {

// Default constructor
constexpr SamplePtr() noexcept;

// semantically equivalent to Default constructor
constexpr SamplePtr(std::nullptr_t) noexcept;

// Copy constructor is deleted
SamplePtr (const SamplePtr&) = delete;

// Move constructor
SamplePtr(SamplePtr&&) noexcept;

// Destructor
~SamplePtr() noexcept;

// Default copy assignment operator is deleted
SamplePtr& operator=(const SamplePtr&) = delete;

// Assignment of nullptr_t
SamplePtr& operator=(std::nullptr_t) noexcept;

// Move assignment operator
SamplePtr& operator=(SamplePtr&&) noexcept;

// Dereferences the stored pointer
T& operator*() const noexcept;
T* operator->() const noexcept;

//Checks if the stored pointer is null
explicit operator bool () const noexept;

289 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

// Swaps the managed object
void Swap (SamplePtr&) noexcept;

//Replaces the managed object
void Reset (std::nullptr_t) noexcept;

//Returns the stored object
T* Get () const noexcept;

// Returns the end 2 end protection check result
ara::com::e2e::ProfileCheckStatus GetProfileCheckStatus() const noexcept;

};

c(RS_CM_00202, RS_CM_00203, RS_AP_00114, RS_AP_00122, RS_AP_00132,
RS_AP_00135, RS_AP_00145)

[SWS_CM_90420]{DRAFT} E2E ProfileCheckStatus of a sample dThe SamplePtr
shall provide the access to the ProfileCheckStatus of each sample by means of
the method GetProfileCheckStatus:

1 ara::com::e2e::ProfileCheckStatus GetProfileCheckStatus() const noexcept;
2

c(RS_E2E_08534, RS_AP_00114, RS_AP_00120, RS_AP_00132)

On the event provider side, it is possible to let the Communication Management
allocate the memory for the storage of the data before sending it as defined in
[SWS_CM_90438]. A Sample Allocatee Pointer is an alias for an event data type
pointer used both for allocation and data sending.

[SWS_CM_00308]{DRAFT} Sample Allocatee Pointer dThe Communication Man-
agement shall provide the definition of SampleAllocateePtr as a pointer to a data
sample allocated by the Communication Management implementation. The implemen-
tation is allowed to be changed by the Communication Management software provider.

1 template <typename T>
2 using SampleAllocateePtr = std::unique_ptr<T>;

c(RS_CM_00201, RS_AP_00114, RS_AP_00122, RS_AP_00135)

The event receiver can register an Event Receive Handler as a callback to get no-
tified if new event data has arrived. The callback function itself is defined in the
event consumer implementation; the Event Receive Handler type is just an general
purpose function alias for the use in the method SetReceiveHandler as defined by
[SWS_CM_00181].

[SWS_CM_00309]{DRAFT} Event Receive Handler dThe Communication Manage-
ment shall provide the definition of EventReceiveHandler as a function wrapper
without parameters for the handler function that gets called by the Communication
Management software in case new event data arrives for an event. The event receiver
must provide the function implementation which is not required to be re-entrant.

290 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

The symbolic name is set; for the alias it is recommended to use the C++ general-
purpose polymorphic function wrapper std::function, but this is not mandatory and
is allowed to be changed by the Communication Management software provider.

1 using EventReceiveHandler = std::function<void()>;

c(RS_AP_00114, RS_CM_00203, RS_AP_00120)

The event receiver can monitor the state of a service event subscription by request-
ing or getting a notification of the Subscription State (see [SWS_CM_00316] and
[SWS_CM_00311]), as the real process of subscription might happen at a later point
in time than the return of the call to Subscribe. The Subscription State related
ara::com API methods require the definitions of a Subscription State enumeration
([SWS_CM_00310]) and a Subscription State Changed Handler function wrapper.

[SWS_CM_00310]{DRAFT} Subscription State dThe Communication Management
shall provide an enumeration SubscriptionState which defines the subscription
state of an event.

1 enum class SubscriptionState : std::uint8_t {
2 kSubscribed,
3 kNotSubscribed,
4 kSubscriptionPending
5 };

c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_AP_00114, RS_AP_00125,
RS_AP_00119)

[SWS_CM_00311]{DRAFT} Subscription State Changed Handler dThe Communi-
cation Management shall provide the definition of SubscriptionStateChangeHan-
dler as a function wrapper for the handler function that gets called by the Communi-
cation Management software in case the subscription state of an event has changed.

1 using SubscriptionStateChangeHandler =
2 std::function<void(SubscriptionState)>;

c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_AP_00114, RS_AP_00120)

8.1.2.3 Trigger Related Data Types

The trigger receiver can register an Trigger Receive Handler as a callback to get
notified if new trigger has arrived. The callback function itself is defined in the trig-
ger consumer implementation; the Trigger Receive Handler type is just an general
purpose function alias for the use in the method SetReceiveHandler as defined by
[SWS_CM_00249].

[SWS_CM_00351]{DRAFT} Trigger Receive Handler dThe definition of Trigger Re-
ceive Handler is the same as Trigger Receive Handler defined in [SWS_CM_00309]

1 using TriggerReceiveHandler = std::function<void()>;

291 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_AP_00114, RS_CM_00203, RS_AP_00120)

The trigger receiver can monitor the state of a service event subscription by re-
questing or getting a notification of the Subscription State (see [SWS_CM_00316]
and [SWS_CM_00311]), as the real process of subscription might happen at a later
point in time than the return of the call to Subscribe. The Subscription State re-
lated ara::com API methods require the definitions of a Subscription State enumeration
([SWS_CM_00310]) and a Subscription State Changed Handler function wrapper.

The [SWS_CM_00310] and [SWS_CM_00311] are also valid for triggers as well.

8.1.2.4 Method Related Data Types

Service method invocation on provider side can be executed in different processing
modes, where the Method Call Processing Mode is set as a parameter of the Ser-
viceSkeleton constructor defined by [SWS_CM_00130].

[SWS_CM_00301]{DRAFT} Method Call Processing Mode dThe Communication
Management shall provide an enumeration MethodCallProcessingMode which de-
fines the processing modes for the service implementation side.

1 enum class MethodCallProcessingMode : std::uint8_t {
2 kPoll,
3 kEvent,
4 kEventSingleThread
5 };

c(RS_CM_00211, RS_AP_00114, RS_AP_00125)

The expected behavior of each processing mode is described in [SWS_CM_00198].

8.1.2.5 Generic Data Types

8.1.2.5.1 Future and Promise

The Future and Promise class templates are described in [16].

8.1.2.5.2 Optional Data Types

The Optional class template ara::core::Optional used in ara::com to provide
access to optional record elements of a Structure Cpp Implementation Data
Type is described in [16].

292 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.2.5.3 Variant Data Types

The class template ara::core::Variant is used to provide a type-save union rep-
resentation is described in [16]. Whenever there is a mention of the standard C++17
Item std::variant, the implied source material is [31].

The class template std::variant at a given time either holds a value of one of its alter-
native types, or in the case of an error, no value.

[SWS_CM_01050]{DRAFT} Variant Class Template dThe Communication Man-
agement shall at least provide an Variant class template which provides a type-save
union representation.

template< class... Types >
class Variant {

// Default constructor
Variant() noexcept;
// Move constructor
Variant(Variant&&) noexcept;
// Copy constructor
Variant(const Variant&);

// Converting constructor
template< class T >
Variant (T&&) noexcept;
// Explicit converting constructors
template< class T, class... Args >
explicit Variant (std::in_place_type_t<T> , Arg&&...);
template< class T, class U, class... Args >
explicit Variant (std::in_place_type_t<T> , std::initializer_list<U> ,

Arg&&...);
template< std::size_t I, class... Args >
explicit Variant (std::in_place_index_t<I> , Arg&&...);
template< std::size_t I, class U, class... Args >
explicit Variant (std::in_place_index_t<I> , std::initializer_list<U> ,

Arg&&...);

// Destructor
~Variant() noexcept;

// Move assignment operator
Variant& operator=(Variant&&) noexcept;
// Default copy assignment operator
Variant& operator=(const Variant&);
// Converting assignment operator
template < class T >
Variant& operator=(T&&) noexcept;

// Returns the zero-based index of the alternative

293 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

std::size_t index();
// Checks if the Variant is an invalid state
bool valueless_by_exception() const noexcept;

// Modifiers
template < class T, class... Args >
void emplace(Args&&...);
template < class T, class U, class... Args >
void emplace(std::initializer_list<U> , Args&&...);
template < std::size_t I, class... Args >
void emplace(Args&&...);
template <std::size_t I, class U, class... Args>
void emplace(initializer_list<U> , Args&&...);

// Swap
void swap(Variant&) noexcept;

};

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00122, RS_AP_-
00132, RS_AP_00127, RS_AP_00134, RS_AP_00145)

[SWS_CM_01051]{DRAFT} Variant default constructor dThe Variant construc-
tor

1 Variant();

behaves as the std::variant constructor
1 variant();

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00145)

[SWS_CM_01052]{DRAFT} Variant move constructor dThe Variant move con-
structor

1 Variant(Variant&&) noexcept;

behaves as the std::variant move constructor
1 constexpr variant(variant&& other) noexcept;

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00132, RS_AP_-
00145)

[SWS_CM_01053]{DRAFT} Variant copy constructor dThe Variant copy con-
structor

1 Variant(const Variant&);

behaves as the std::variant copy constructor
1 constexpr variant(const variant& other);

294 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00145)

[SWS_CM_01054]{DRAFT} Variant converting constructor dThe Variant con-
verting constructor

1 template< class T >
2 Variant (T&&) noexcept;

behaves as the std::variant converting constructor
1 template< class T >
2 constexpr variant(TT& t) noexcept;

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00132, RS_AP_-
00145)

[SWS_CM_01055]{DRAFT} Variant explicit converting constructor with speci-
fied alternative dThe Variant explicit converting constructor with specified alterna-
tive

1 template< class T, class... Args >
2 explicit Variant (std::in_place_type_t<T> , Arg&&...);

behaves as the std::variant explicit converting constructor with specified alterna-
tive

1 template< class T, class... Args >
2 constexpr explicit variant (std::in_place_type_t<T> , Arg&&... args);

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00132, RS_AP_-
00145)

[SWS_CM_01056]{DRAFT} Variant explicit converting constructor with speci-
fied alternative and initializer list dThe Variant explicit converting constructor with
specified alternative and initializer list

1 template< class T, class U, class... Args >
2 explicit Variant (std::in_place_type_t<T> , std::initializer_list<U> ,

Arg&&...);

behaves as the std::variant explicit converting constructor with specified alterna-
tive and initializer list

1 template< class T, class U, class... Args >
2 constexpr explicit variant (std::in_place_type_t<T> , std::

initializer_list<U> il, Arg&&... args);

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00145)

[SWS_CM_01057]{DRAFT} Variant explicit converting constructor with alterna-
tive specified by index dThe Variant explicit converting constructor with alternative
specified by index

1 template< std::size_t I, class... Args >
2 explicit Variant (std::in_place_index_t<I> , Arg&&...);

295 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

behaves as the std::variant with alternative specified by index
1 template< std::size_t I, class... Args >
2 constexpr explicit variant (std::in_place_index_t<I> , Arg&&... args)

;

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00145)

[SWS_CM_01058]{DRAFT} Variant explicit converting constructor with alter-
native specified by index and initializer list dThe Variant explicit converting con-
structor with alternative specified by index and initializer list

1 template< std::size_t I, class U, class... Args >
2 explicit Variant (std::in_place_index_t<I> , std::initializer_list<U>

, Arg&&...);

behaves as the std::variant with alternative specified by index and initializer list
1 template< std::size_t I, class U, class... Args >
2 constexpr explicit variant (std::in_place_index_t<I> , std::

initializer_list<U> il, Arg&&... args);

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00145)

[SWS_CM_01059]{DRAFT} Variant destructor dThe Variant destructor
1 ~Variant() noexcept;

behaves as the std::variant destructor with noexcept specifier
1 ~variant() noexcept;

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00134, RS_AP_-
00145)

[SWS_CM_01060]{DRAFT} Variant move assignment operator dThe Variant
move assignment operator

1 Variant& operator=(Variant&&) noexcept;

behaves as the std::variant move assignment operator
1 constexpr variant(variant&& rhs) noexcept

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00132, RS_AP_-
00145)

[SWS_CM_01061]{DRAFT} Variant default copy assignment operator dThe
Variant default copy assignment operator

1 Variant& operator=(const Variant&);

behaves as the std::variant default copy assignment operator
1 variant& operator=(const variant& rhs);

296 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00145)

[SWS_CM_01062]{DRAFT} Variant converting assignment operator dThe
Variant converting assignment operator

1 template < class T >
2 Variant& operator=(T&&) noexcept;

behaves as the std::variant converting assignment operator
1 template < class T >
2 variant& operator=(T&& t) noexcept;

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00132)

[SWS_CM_01063]{DRAFT} Variant function to return the zero-based index of
the alternative dThe Variant function returns the zero-based index of the alternative

1 std::size_t index();

behaves as the std::variant function to return the zero-based index of the alterna-
tive

1 constexpr std::size_t index();

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114)

[SWS_CM_01064]{DRAFT} Variant function to check if the Variant is in invalid
state dThe Variant function checks if the Variant is in invalid state

1 bool valueless_by_exception() const noexcept;

behaves as the std::variant function to return false if the variant holds a value,
else true

1 constexpr bool valueless_by_exception() const noexcept;

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00132)

[SWS_CM_01066]{DRAFT} Variant function to create a new value in-place, in
an existing Variant object dThe Variant creates a new value in-place, in an existing
Variant object

1 template < class T, class... Args >
2 void emplace(Args&&...);

behaves as the std::variant emplace function to create a new value in-place, in an
existing Variant object

1 template < class T, class... Args >
2 void emplace(Args&&... args);

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114)

[SWS_CM_01067]{DRAFT} Variant function to create a new value in-place, in
an existing Variant object using an initializer list dThe Variant creates a new
value in-place, in an existing Variant object using initializer list

297 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

1 template < class T, class U, class... Args >
2 void emplace(std::initializer_list<U> , Args&&...);

behaves as the std::variant emplace function to create a new value in-place, in an
existing Variant object using an initializer list

1 template < class T, class U, class... Args >
2 void emplace(std::initializer_list<U> il , Args&&... args);

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114)

[SWS_CM_01068]{DRAFT} Variant function to create a new value in-place, in
an existing Variant object by destoying and initializing the contained value dThe
Variant creates a new value in-place, in an existing Variant object by destroying and
initializing the contained value

1 template < std::size_t I, class... Args >
2 void emplace(Args&&...);

behaves as the std::variant emplace function to create a new value in-place, in an
existing Variant object by destroying and initializing the contained value

1 template < std::size_t I, class... Args >
2 void emplace(Args&&... args);

The behavior is undefined if I is not less than sizeof...(Types)c(RS_CM_00205, RS_-
SOMEIP_00050, RS_AP_00114)

[SWS_CM_01069]{DRAFT} Variant function to create a new value in-place, in
an existing Variant object by destoying and initializing the contained value using
an initializer list dThe Variant creates a new value in-place, in an existing Variant
object by destroying and initializing the contained value using an initializer list

1 template <std::size_t I, class U, class... Args>
2 void emplace(initializer_list<U> , Args&&...);

behaves as the std::variant emplace function to create a new value in-place, in
an existing Variant object by destroying and initializing the contained value using an
initializer list

1 template <std::size_t I, class U, class... Args>
2 void emplace(initializer_list<U> il , Args&&... args);

The behavior is undefined if I is not less than sizeof...(Types)c(RS_CM_00205, RS_-
SOMEIP_00050, RS_AP_00114)

[SWS_CM_01065]{DRAFT} Variant function to swap two Variants dThe Vari-
ant function swaps two Variants

1 void swap(Variant&) noexcept;

behaves as the std::variant function to swap two Variants
1 void swap(Variant& rhs) noexcept;

c(RS_CM_00205, RS_SOMEIP_00050, RS_AP_00114, RS_AP_00132)

298 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.2.6 Error Types

[SWS_CM_11265]{DRAFT} Use of general ara::com errors dAny Checked Error
of a service interface shall be reported via the return type as specified in [16].c(RS_-
CM_00211, RS_AP_00119)

In ara::com, there are the following types of Checked Errors:

1. General ara::com errors: These errors can occur in a call of a service interface
method but are not specific to a certain service interface. They are defined in the
error domain ara::com::ComErrorDomain.

2. E2E errors: These errors are specific to E2E checks. They are defined in the
error domain ara::com::e2e::E2EErrorDomain (see chapter 8.1.2.7)

3. Application Errors: These errors are specific to a certain service interface call.
They are defined as ApApplicationError in the meta-model.

4. Communication Group Errors: These errors are specific to communication
groups. They are defines in the error domain ara::com::cg::CgErrorDo-
main

Errors can also occur in a call to a RawDataStreamClientInterface or Raw-
DataStreamServerInterface instance method. These errors are defined in the
error domain ara::com::raw::RawErrorDomain

[SWS_CM_11264]{DRAFT} Definition general ara::com errors dGeneral ara::com
errors shall be defined in the error domain ara::com::ComErrorDomain in accor-
dance with [16].c(RS_CM_00102, RS_AP_00115, RS_AP_00119)

[SWS_CM_11267]{DRAFT} General errors domain dError domain to describe gen-
eral ara::com errors ara::com::ComErrorDomain shall be defined. It shall have the
shortname Com and the identifier 0x8000’0000’0000’1267.c(RS_AP_00130)

[SWS_CM_10432]{DRAFT} d

Kind: enumeration

Symbol: ComErrc

Scope: namespace ara::com

Underlying type: ara::core::ErrorDomain::CodeType

Syntax: enum class ComErrc : ara::core::ErrorDomain::CodeType {...};

kServiceNotAvailable= 1 Service is not available.

kMaxSamplesExceeded= 2 Application holds more SamplePtrs than commited
in Subscribe().

kNetworkBindingFailure= 3 Local failure has been detected by the network
binding.

kGrantEnforcementError= 4 Request was refused by Grant enforcement layer.

kPeerIsUnreachable= 5 TLS handshake fail.

kFieldValueIsNotValid= 6 Field Value is not valid,.

Values:

kSetHandlerNotSet= 7 SetHandler has not been registered.

5

299 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
kUnsetFailure= 8 Failure has been detected by unset operation.

kSampleAllocationFailure= 9 Not Sufficient memory resources can be allocated.

kIllegalUseOfAllocate= 10 The allocation was illegally done via custom
allocator (i.e., not via shared memory allocation).

kServiceNotOffered= 11 Service not offered.

kCommunicationLinkError= 12 Communication link is broken.

kCommunicationStackError= 14 Communication Stack Error, e.g. network stack,
network binding, or communication framework
reports an error

kInstanceIDCouldNotBeResolved= 15 ResolveInstanceIDs() failed to resolve InstanceID
from InstanceSpecifier, i.e. is not mapped correctly.

kMaxSampleCountNotRealizable= 16 Provided maxSampleCount not realizable.

kWrongMethodCallProcessingMode=
17

Wrong processing mode passed to constructor
method call.

kErroneousFileHandle= 18 The FileHandle returned from FindServce is corrupt/
service not available.

kCouldNotExecute= 19 Command could not be executed in provided
Execution Context.

kInvalidInstanceIdentifierString= 20 Given InstanceIdentifier string is corrupted or
non-compliant.

Header file: #include "ara/com/com_error_domain.h"

Description: The ComErrc enumeration defines the error codes for the ComErrorDomain. .

c(RS_AP_00130, RS_AP_00122, RS_AP_00127)

[SWS_CM_11327]{DRAFT} d

Kind: class

Symbol: ComException

Scope: namespace ara::com

Base class: ara::core::Exception

Syntax: class ComException : public Exception {...};

Header file: #include "ara/com/com_error_domain.h"

Description: Defines a class for exceptions to be thrown by the Communication APIs. .

c(RS_AP_00130, RS_AP_00122, RS_AP_00127)

[SWS_CM_11328]{DRAFT} d

Kind: function

Symbol: ComException(ara::core::ErrorCode errorCode)

Scope: class ara::com::ComException

Syntax: explicit ComException (ara::core::ErrorCode errorCode) noexcept;

Parameters (in): errorCode The error code.

Exception Safety: noexcept

Header file: #include "ara/com/com_error_domain.h"

Description: Constructs a new ComException object containing an error code.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00132)

300 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_11329]{DRAFT} d

Kind: class

Symbol: ComErrorDomain

Scope: namespace ara::com

Base class: ara::core::ErrorDomain

Syntax: class ComErrorDomain final : public ErrorDomain {...};

Unique ID: 0x8000’0000’0000’1267

Header file: #include "ara/com/com_error_domain.h"

Description: Defines a class representing the Communication error domain.

c(RS_AP_00130, RS_AP_00122, RS_AP_00127)

[SWS_CM_11336]{DRAFT} d

Kind: type alias

Symbol: Errc

Scope: class ara::com::ComErrorDomain

Derived from: ComErrc

Syntax: using Errc = ComErrc;

Header file: #include "ara/com/com_error_domain.h"

Description: Alias for the error code value enumeration.

c(RS_AP_00120, RS_AP_00130, RS_AP_00132)

[SWS_CM_11337]{DRAFT} d

Kind: type alias

Symbol: Exception

Scope: class ara::com::ComErrorDomain

Derived from: ComException

Syntax: using Exception = ComException;

Header file: #include "ara/com/com_error_domain.h"

Description: Alias for the exception base class.

c(RS_AP_00120, RS_AP_00130, RS_AP_00132)

[SWS_CM_11330]{DRAFT} d

Kind: function

Symbol: ComErrorDomain()

Scope: class ara::com::ComErrorDomain

Syntax: constexpr ComErrorDomain () noexcept;

Exception Safety: noexcept

Header file: #include "ara/com/com_error_domain.h"

Description: Constructs a new ComErrorDomain object.

c(RS_AP_00120, RS_AP_00130, RS_AP_00132)

301 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_11331]{DRAFT} d

Kind: function

Symbol: Name()

Scope: class ara::com::ComErrorDomain

Syntax: const char* Name () const noexcept override;

Return value: const char * "Com".

Exception Safety: noexcept

Header file: #include "ara/com/com_error_domain.h"

Description: Returns a string constant associated with ComErrorDomain.

c(RS_AP_00120, RS_AP_00130, RS_AP_00132)

[SWS_CM_11332]{DRAFT} d

Kind: function

Symbol: Message(CodeType errorCode)

Scope: class ara::com::ComErrorDomain

Syntax: const char* Message (CodeType errorCode) const noexcept override;

Parameters (in): errorCode The error code number.

Return value: const char * The message associated with the error code.

Exception Safety: noexcept

Header file: #include "ara/com/com_error_domain.h"

Description: Returns the message associated with errorCode.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00132)

[SWS_CM_11333]{DRAFT} d

Kind: function

Symbol: ThrowAsException(const ara::core::ErrorCode &errorCode)

Scope: class ara::com::ComErrorDomain

Syntax: void ThrowAsException (const ara::core::ErrorCode &errorCode) const
noexcept(false) override;

Parameters (in): errorCode The error to throw.

Return value: None

Exception Safety: noexcept(false)

Header file: #include "ara/com/com_error_domain.h"

Description: Creates a new instance of ComException from errorCode and throws it as a C++ exception.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130)

[SWS_CM_11334]{DRAFT} d

Kind: function

Symbol: GetComErrorDomain()

5

302 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Scope: namespace ara::com

Syntax: constexpr ara::core::ErrorDomain& GetComErrorDomain () noexcept;

Return value: ara::core::ErrorDomain & Return a reference to the global ComErrorDomain
object.

Exception Safety: noexcept

Header file: #include "ara/com/com_error_domain.h"

Description: Returns a reference to the global ComErrorDomain object.

c(RS_AP_00120, RS_AP_00130, RS_AP_00132)

[SWS_CM_11335]{DRAFT} d

Kind: function

Symbol: MakeErrorCode(ara::com::ComErrc code, ara::core::ErrorDomain::SupportDataType data)

Scope: namespace ara::com

Syntax: constexpr ara::core::ErrorCode MakeErrorCode (ara::com::ComErrc code,
ara::core::ErrorDomain::SupportDataType data) noexcept;

code Error code number.Parameters (in):
data Vendor defined data associated with the error.

Return value: ara::core::ErrorCode An ErrorCode object.

Exception Safety: noexcept

Header file: #include "ara/com/com_error_domain.h"

Description: Creates an instance of ErrorCode.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00132)

[SWS_CM_11266]{DRAFT} Definition of Application Errors dEach ApApplica-
tionError references an ApApplicationErrorDomain. The error domain corre-
sponding ApApplicationErrorDomain shall be defined as specified in [16]. The
corresponding enumeration shall contain an entry for each ApApplicationError
referencing this ApApplicationErrorDomain using the shortName of the ApAp-
plicationError as symbol and the errorCode of the ApApplicationError as
value:

1

2 enum class <ApApplicationErrorDomain.SN>Errc : ara::core::ErrorDomain::
CodeType

3 {
4 <ApApplicationError.SN> = <ApApplicationError.errorCode>,
5

6 };

c(RS_CM_00211, RS_AP_00114, RS_AP_00119, RS_AP_00127)

[SWS_CM_11268] Definition general ara::com::raw errors dGeneral ara::com::raw
errors shall be defined in the error domain ara::com::raw::RawErrorDomain in
accordance with [16].

c(RS_AP_00130)

303 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_99025]{DRAFT} Raw errors domain dError domain to describe ara::com
errors related to the RawDataStreamInterface ara::com::raw::RawErrorDo-
main shall be defined. It shall have the shortname Raw and the identifier
0x8000’0000’0000’1280.c(RS_AP_00130)

[SWS_CM_12367] d

Kind: enumeration

Symbol: RawErrc

Scope: namespace ara::com::raw

Underlying type: ara::core::ErrorDomain::CodeType

Syntax: enum class RawErrc : ara::core::ErrorDomain::CodeType {...};

kStreamNotConnected= 1 Trying to use a raw data stream without an
established connection.

kCommunicationTimeout= 2 The operation was not successful and timed out.

kConnectionRefused= 3 The target address was not listening for connections
or refused the connection request.

kAddressNotAvailable= 4 The specified address is not available from the local
machine.

kStreamAlreadyConnected= 5 The specified connection is already connected.

kConnectionClosedByPeer= 6 Network error. The established connection has been
shut down during writing (POSIX EPIPE).

kPeerUnreachable= 7 Network error. The peer is unreachable (POSIX
ENETUNREACH).

kConnectionAborted= 8 Network error. The incoming connection was
aborted (POSIX ECONNABORTED).

kInterruptedBySignal= 9 System error. Operation interrupted by system
(POSIX EINTR).

Values:

kConnectionCreationFailed= 10 Permission to create a connection is denied.
(POSIX EACCES)

Header file: #include "ara/com/raw/raw_error_domain.h"

Description: The RawErrc enumeration defines the error codes for the RawErrorDomain. .

c(RS_AP_00130, RS_AP_00122, RS_AP_00127)

[SWS_CM_11291]{DRAFT} d

Kind: class

Symbol: RawException

Scope: namespace ara::com::raw

Base class: ara::core::Exception

Syntax: class RawException : public Exception {...};

Header file: #include "ara/com/raw/raw_error_domain.h"

Description: Defines a class for exceptions to be thrown by the Raw Data Streams.

c(RS_AP_00130, RS_AP_00122, RS_AP_00127)

[SWS_CM_11292]{DRAFT} d

304 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Kind: function

Symbol: RawException(ara::core::ErrorCode errorCode)

Scope: class ara::com::raw::RawException

Syntax: explicit RawException (ara::core::ErrorCode errorCode) noexcept;

Parameters (in): errorCode The error code.

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_error_domain.h"

Description: Constructs a new RawException object containing an error code.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00132)

[SWS_CM_11298]{DRAFT} d

Kind: function

Symbol: GetRawErrorDomain()

Scope: namespace ara::com::raw

Syntax: constexpr ara::core::ErrorDomain& GetRawErrorDomain () noexcept;

Return value: ara::core::ErrorDomain & Return a reference to the global RawErrorDomain
object.

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_error_domain.h"

Description: Returns a reference to the global RawErrorDomain object.

c(RS_AP_00120, RS_AP_00130, RS_AP_00132)

[SWS_CM_11299]{DRAFT} d

Kind: function

Symbol: MakeErrorCode(ara::com::raw::RawErrc code, ara::core::ErrorDomain::SupportDataType data)

Scope: namespace ara::com::raw

Syntax: constexpr ara::core::ErrorCode MakeErrorCode (ara::com::raw::RawErrc
code, ara::core::ErrorDomain::SupportDataType data) noexcept;

code Error code number.Parameters (in):
data Vendor defined data associated with the error.

Return value: ara::core::ErrorCode An ErrorCode object.

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_error_domain.h"

Description: Creates an instance of ErrorCode.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00132)

[SWS_CM_11293]{DRAFT} d

Kind: class

Symbol: RawErrorDomain

Scope: namespace ara::com::raw

5

305 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Base class: ara::core::ErrorDomain

Syntax: class RawErrorDomain final : public ErrorDomain {...};

Unique ID: 0x8000’0000’0000’1280

Header file: #include "ara/com/raw/raw_error_domain.h"

Description: Defines a class representing the Raw Data Streams error domain.

c(RS_AP_00130, RS_AP_00122, RS_AP_00127)

[SWS_CM_11295]{DRAFT} d

Kind: function

Symbol: Name()

Scope: class ara::com::raw::RawErrorDomain

Syntax: const char* Name () const noexcept override;

Return value: const char * "Raw".

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_error_domain.h"

Description: Returns a string constant associated with RawErrorDomain.

c(RS_AP_00120, RS_AP_00130, RS_AP_00132)

[SWS_CM_11296]{DRAFT} d

Kind: function

Symbol: Message(CodeType errorCode)

Scope: class ara::com::raw::RawErrorDomain

Syntax: const char* Message (CodeType errorCode) const noexcept override;

Parameters (in): errorCode The error code number.

Return value: const char * The message associated with the error code.

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_error_domain.h"

Description: Returns the message associated with errorCode.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00132)

[SWS_CM_11297]{DRAFT} d

Kind: function

Symbol: ThrowAsException(const ara::core::ErrorCode &errorCode)

Scope: class ara::com::raw::RawErrorDomain

Syntax: void ThrowAsException (const ara::core::ErrorCode &errorCode) const
noexcept(false) override;

Parameters (in): errorCode The error to throw.

Return value: None

Exception Safety: noexcept(false)

5

306 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Header file: #include "ara/com/raw/raw_error_domain.h"

Description: Creates a new instance of RawException from errorCode and throws it as a C++ exception.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130)

[SWS_CM_99026]{DRAFT} E2E errors domain dError domain to describe E2E re-
lated ara::com errors ara::com::e2e::E2EErrorDomain shall be defined. It shall
have the shortname E2E and the identifier 0x8000’0000’0000’1268.c(RS_AP_00130)

[SWS_CM_10474]{DRAFT} d

Kind: enumeration

Symbol: E2EErrc

Scope: namespace ara::com::e2e

Underlying type: ara::core::ErrorDomain::CodeType

Syntax: enum class E2EErrc : ara::core::ErrorDomain::CodeType {...};

kRepeated= 1 Data has a repeated counter.

kWrongSequence= 2 The checks of the Data in this cycle were
successful, with the exception of counter jump,
which changed more than the allowed delta.

kError= 3 Error not related to counters occurred (e.g. wrong
crc, wrong length, wrong Data ID) or the return of
the check function was not OK.

kNotAvailable= 4 No value has been received yet (e.g. during
initialization). This is used as the initialization value
for the buffer, it is not returned by any E2E profile.

Values:

kNoNewData= 5 No new data is available.

Header file: #include "ara/com/e2e/e2e_error_domain.h"

Description: The E2EErrc enumeration defines the error codes for the E2EErrorDomain. .

c(RS_AP_00130)

[SWS_CM_99023]{DRAFT} Definition general ara::com::cg errors dGeneral
ara::com::cg errors shall be defined in the error domain ara::com::cg::CgError-
Domain in accordance with [16].c(RS_AP_00130)

[SWS_CM_99024]{DRAFT} d

Kind: enumeration

Symbol: CgErrc

Scope: namespace ara::com::cg

Underlying type: ara::core::ErrorDomain::CodeType

Syntax: enum class CgErrc : ara::core::ErrorDomain::CodeType {...};

kCommunicationGroupNotActive= 1 Commincation Group not active/connected by a
Server.

kNoClients= 2 No communication group clients.

kWrongClientAddress= 3 Wrong client address.

Values:

kBindingError= 4 Error at technology binding.

5

307 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
kMemoryError= 5 Memory Error.

kServerExists= 6 Other server already connected to communication
group.

Header file: #include "ara/com/cg/cg_error_domain.h"

Description: The CgErrc enumeration defines the error codes for the CgErrorDomain. .

c(RS_AP_00130)

[SWS_CM_99027]{DRAFT} Cg errors domain dError domain to describe ara::com
errors related to the Communication Groups ara::com::cg::CgErrorDomain shall
be defined. It shall have the shortname Cg and the identifier 0x8000’0000’0000’1270.c
(RS_AP_00130)

8.1.2.7 E2E Related Data Types

Some data types are used only in context of e2e-protected communication of events.

[SWS_CM_90421]{DRAFT} ara::com::e2e::ProfileCheckStatus dThe Communica-
tion Management shall provide an enumeration ara::com::e2e::ProfileCheck-
Status which represents the results of the check of a single sample:

• kOk: The checks of the sample in this cycle were successful (including counter
check).

• kRepeated: sample has a repeated counter.

• kWrongSequence: The checks of the sample in this cycle were successful, with
the exception of counter jump, which changed more than the allowed delta.

• kError: Error not related to counters occurred (e.g. wrong crc, wrong length,
wrong Data ID).

• kCheckDisabled: No E2E check status available. Return value of
function GetProfileCheckStatus if EndToEndTransformationComSpecProps.
disableEndToEndCheck is set to TRUE

1 enum class ProfileCheckStatus : std::uint8_t
2 {
3 kOk,
4 kRepeated,
5 kWrongSequence,
6 kError,
7 kCheckDisabled
8 };

Results of E2E are described in [PRS_E2E_00322] and [PRS_E2E_00677] of [4].c
(RS_E2E_08534, RS_AP_00114, RS_AP_00115, RS_AP_00119)

308 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_90426]{DRAFT} Mapping of ProfileCheckStatus dThe E2E profile
independent results according to [PRS_E2E_00677] shall be mapped to the enumera-
tion literals of ara::com::e2e::ProfileCheckStatus as described in Table 8.1.c
(RS_E2E_08534, RS_AP_00114, RS_AP_00115, RS_AP_00119)

Enumeration literal of ProfileCheckStatus Profile independent result of E2E_Check()
kOk OK
kRepeated REPEATED
kWrongSequence WRONGSEQUENCE
kError WRONGCRC
n/a NONEWDATA
kCheckDisabled n/a

Table 8.1: Mapping of ProfileCheckStatus

The E2E state machine SMState is determined by checking a history of Pro-
fileCheckStatuses. The current value of SMState mirrors the current state of
the E2E supervision, but is not necessarily applicable to all samples received during
the last update.

[SWS_CM_90422]{DRAFT} ara::com::e2e::SMState dThe Communication Manage-
ment shall provide an enumeration ara::com:e2e::SMState which represents in
what state is the E2E supervision after the most recent check of the sample(s) of a
received sample of the event. If SMState is Valid, and the GetProfileCheck-
Status did not result in Error then the last checked sample can be used.

• kValid: Communication of the samples of this event functioning properly ac-
cording to E2E checks, sample(s) can be used.

• kNoData: No data have been received from the publisher at all.

• kInit: Not enough data where the E2E check yielded OK from the publisher is
available since the initialization, sample(s) cannot be used.

• kInvalid: Too few data where the E2E check yielded OK or to many data where
the E2E check yielded ERROR were received within the E2E time window – com-
munication of the sample of this event not functioning properly, sample(s) can-
not be used.

• kStateMDisabled: No E2E state machine available. Return value of function
GetE2EStateMachineState if EndToEndTransformationComSpecProps.
disableEndToEndStateMachine is set to TRUE.

1 enum class SMState : std::uint8_t
2 {
3 kValid,
4 kNoData,
5 kInit,
6 kInvalid,
7 kStateMDisabled
8 };

309 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Results of E2E state machine are described in [PRS_E2E_00322] and [PRS_E2E_-
00678] of [4].c(RS_E2E_08534, RS_AP_00114, RS_AP_00115, RS_AP_00119)

[SWS_CM_90427]{DRAFT} Mapping of SMState dThe communication channel sta-
tus according to [PRS_E2E_00678] shall be mapped to the enumeration literals of SM-
State as described in Table 8.2.c(RS_E2E_08534, RS_AP_00114, RS_AP_00115,
RS_AP_00119)

Enumeration literal of SMState communication channel status
kValid VALID
kNoData NODATA, DEINIT
kInit INIT
kInvalid INVALID
kStateMDisabled n/a

Table 8.2: Mapping of SMState

8.1.2.8 Raw Data Stream Data Type

[SWS_CM_11300]{DRAFT} d

Kind: struct

Symbol: ReadDataResult

Scope: namespace ara::com::raw

Syntax: struct ReadDataResult {...};

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: The ReadDataResult struct used as return value from ReadData().

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11301]{DRAFT} d

Kind: variable

Symbol: data

Scope: struct ara::com::raw::ReadDataResult

Type: ara::com::SamplePtr< std::uint8_t >

Syntax: ara::com::SamplePtr<std::uint8_t> data;

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Pointer to the read data (SamplePtr to get std::unique_ptr semantics).

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11302]{DRAFT} d

Kind: variable

Symbol: numberOfBytes

5

310 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Scope: struct ara::com::raw::ReadDataResult

Type: std::size_t

Syntax: std::size_t numberOfBytes;

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: The actual number of bytes read from the stream.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

311 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.3 API Reference

The ServiceInterface description is the input for the generation of the service API
header files content.

The proxy and skeleton header files contain different classes representing the Servi-
ceInterface itself and its elements event, method and field.

[SWS_CM_00002]{DRAFT} Service skeleton class dThe Communication Manage-
ment shall provide the definition of a C++ class named <name>Skeleton in the ser-
vice skeleton header file within the namespace defined by [SWS_CM_01006], where
<name> is the ServiceInterface.shortName in upper camel case format.

1 class UpperCamelCase(<ServiceInterface.shortName>)Skeleton {
2 ...
3 };

c(RS_CM_00101, RS_AP_00114, RS_AP_00122)

[SWS_CM_00003]{DRAFT} Service skeleton Event class dFor each Variable-
DataPrototype defined in the ServiceInterface in the role event the definition
of a C++ class using the shortName in upper camel case format of the Variable-
DataPrototype shall be provided in the service skeleton header file within the name-
space defined by [SWS_CM_01009].

1 class UpperCamelCase(<VariableDataPrototype.shortName>) {
2 ...
3 };

c(RS_CM_00201, RS_AP_00114)

[SWS_CM_00007]{DRAFT} Service skeleton Field class dFor each Field defined
in the ServiceInterface in the role field the definition of a C++ class using the
shortName in upper camel case format of the Field shall be provided in the service
skeleton header file within the namespace defined by [SWS_CM_01031].

1 class UpperCamelCase(<Field.shortName>) {
2 ...
3 };

c(RS_CM_00219, RS_AP_00114)

[SWS_CM_00004]{DRAFT} Service proxy class dThe Communication Management
shall provide the definition of a C++ class named <name>Proxy in the service proxy
header file within the namespace defined by [SWS_CM_01007], where <name> is the
ServiceInterface.shortName in upper camel case format.

1 class UpperCamelCase(<ServiceInterface.shortName>)Proxy {
2 ...
3 };

c(RS_CM_00102, RS_AP_00114, RS_AP_00122)

[SWS_CM_00005]{DRAFT} Service proxy Event class dFor each VariableDat-
aPrototype defined in the ServiceInterface in the role event the definition of

312 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

a C++ class using the shortName in upper camel case format of the VariableDat-
aPrototype shall be provided in the service proxy header file within the namespace
defined by [SWS_CM_01009].

1 class UpperCamelCase(<VariableDataPrototype.shortName>) {
2 ...
3 };

c(RS_CM_00103, RS_AP_00114)

[SWS_CM_00006]{DRAFT} Service proxy Method class dFor each
ClientServerOperation defined in the ServiceInterface in the role method
the definition of a C++ class using the shortName in upper camel case format of the
ClientServerOperation shall be provided in the service proxy header file within
the namespace defined by [SWS_CM_01015].

1 class UpperCamelCase(<ClientServerOperation.shortName> {
2 ...
3 };

c(RS_CM_00212, RS_CM_00213, RS_AP_00114)

[SWS_CM_00008]{DRAFT} Service proxy Field class dFor each Field defined in
the ServiceInterface in the role field the definition of a C++ class using the
shortName in upper camel case format of the ServiceInterface shall be provided
in the service proxy header file within the namespace defined by [SWS_CM_01031].

1 class UpperCamelCase(<Field.shortName>) {
2 ...
3 };

c(RS_CM_00216, RS_AP_00114)

[SWS_CM_99028]{DRAFT} Types of APIs - Communication and Service Dis-
covery APIs dThere are two categories of APIs: Service Discovery API and
Communication API.

Service Discovery API : These APIs are used in service discovery process. The fol-
lowing APIs are Service Discovery APIs:

• OfferService()

• StopOfferService()

• RegisterGetHandler()

• RegisterSetHandler()

• FindService()

• StartFindService()

• StopFindService()

• GetHandle()

313 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• Subscribe()

• Unsubscribe()

• GetSubscriptionState()

• SetSubscriptionStateChangeHandler()

• UnsetSubscriptionStateChangeHandler()

• SetReceiveHandler()

• UnsetReceiveHandler()

Communication API : These APIs are used in communication between Client and
Server. The following APIs are Communication APIs:

• Send()

• Allocate()

• Update()

• GetNewSamples()

• GetFreeSampleCount()

• Method call operator()

• Get()

• Set()

c()

[SWS_CM_00009]{DRAFT} Re-entrancy and thread-safety - General dThe concur-
rent invocation of communication APIs shall be allowed irrespective of the class in-
stance. - I.e., concurrent invocation of different member functions shall be allowed for
the same class instance and for different class instances.

The concurrent invocation of service discovery APIs shall be allowed for different class
instances and shall not be allowed for same class instances.

Only communication APIs shall be thread-safe against each other (for same class in-
stance).

Service Discovery APIs shall be NOT thread-safe against each other, or against Com-
munication APIs (for same proxy/skeleton instance).c()

The following sub-chapters describe the content of the previously defined classes.

314 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.3.1 Object Creation via Named Constructor Approach

The Named Constructor approach enables exception-less error reporting for object
construction. Since service skeletons and service proxies can be created using a
Named Constructor, this section describes the general requirements of this ap-
proach. For the service skeleton and service proxy creation C++ API reference, see
chapter 8.1.3.3 and 8.1.3.11, respectively.

[SWS_CM_11326]{DRAFT} Creation of an object using Named Constructor ap-
proach dThe ClassToBeCreated shall provide a static member function Create() re-
turning the constructed object embedded in an ara::core::Result. This function
first performs all operations for constructing an object of ClassToBeCreated, which may
fail or result in an error. E.g. parameter checks or resource allocation may fail. If an
error occurs during these operations, the error is returned as an ara::core::ErrorCode
in the ara::core::Result. If no error occurs, the created object is returned as a value in
the ara::core::Result. The value object can then be considered as valid. The function
shall not throw an exception.

static ara::core::Result<ClassToBeCreated>
Create(/* construction arguments */)
noexcept;

Unless a potentially-throwing constructor shall be available for ClassToBeCreated, only
the Create() function shall be public for the user. All regular constructors shall be
private.c(RS_CM_00101, RS_AP_00114, RS_AP_00139, RS_AP_00128, RS_AP_-
00132, RS_AP_00127, RS_AP_00139)

8.1.3.2 Offer service

For the functional description of the service offering API, see chapter 7.10.1.

[SWS_CM_00101] Method to offer a service dThe Communication Management
shall provide an OfferService method as part of the ServiceSkeleton class to
offer a service to applications.

ara::core::Result<void> OfferService();

If the offered service contains a Field, and the field value is not valid according to
[SWS_CM_00128] when OfferService() is called, the service shall not be offered,
and the error code ComErrc::kFieldValueIsNotValid shall be returned in the
Result type.

If the offered service contains a Field that is defined with hasSetter=true, and no
SetHandler has been registered yet, the service shall not be offered, and the error
code ComErrc::kSetHandlerNotSet shall be returned in the Result type. See
[SWS_CM_00129]c(RS_CM_00101, RS_AP_00114, RS_AP_00120)

[SWS_CM_00010]{DRAFT} Re-entrancy and thread-safety - OfferService
dOfferService shall be re-entrant and thread-safe for different ServiceSkeleton

315 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

class instances. When called re-entrant or concurrently on the same ServiceSkele-
ton class instance, the behavior is undefined.c(RS_CM_00101, RS_AP_00114, RS_-
AP_00120)

[SWS_CM_00111] Method to stop offering a service dThe Communication Manage-
ment shall provide a StopOfferService method as part of the ServiceSkeleton
class to stop offering services to applications.

void StopOfferService();

c(RS_CM_00105, RS_AP_00114, RS_AP_00120)

[SWS_CM_00011]{DRAFT} Re-entrancy and thread-safety- StopOfferService
dStopOfferService shall be re-entrant and thread-safe for different Ser-
viceSkeleton class instances. When called re-entrant or concurrently on the same
ServiceSkeleton class instance, the behavior is undefined.c(RS_CM_00105, RS_-
AP_00114, RS_AP_00120)

8.1.3.3 Service skeleton creation

For the functional description of the service skeleton creation API, see chapter 7.10.2.

[SWS_CM_00130] Creation of service skeleton using Instance ID dThe Communi-
cation Management shall provide a constructor for each specific ServiceSkeleton
class taking two arguments:

• InstanceIdentifier: The identifier of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton(
ara::com::InstanceIdentifier instanceID,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent
);

c(RS_CM_00101, RS_AP_00114, RS_AP_00121, RS_AP_00145)

[SWS_CM_10435] Exception-less creation of service skeleton using Instance ID
dThe Communication Management shall provide a non-throwing constructor for each
specific ServiceSkeleton class using the Named Constructor idiom according to
[SWS_CM_11326]. The Named Constructor shall be called Create() and shall take
two arguments:

316 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• InstanceIdentifier: The identifier of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

static ara::core::Result<ServiceSkeleton> Create(
const ara::com::InstanceIdentifier &instanceID,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent) noexcept ;

In case e2e-protected methods are used by the service, and a MethodCallProcess-
ingMode of kEvent is passed to the constructor, an error code kWrongMethodCallPro-
cessingMode shall be returned in the Result. See [SWS_CM_10467]

In case of a Grant enforcement failure, an error code ComErrc::kGrantEnforce-
mentError shall be returned in the Result. See [SWS_CM_90005].

c(RS_CM_00101, RS_AP_00114, RS_AP_00115, RS_AP_00121, RS_AP_00139,
RS_AP_00128, RS_AP_00132, RS_AP_00127, RS_AP_00139, RS_AP_00145)

[SWS_CM_00152] Creation of service skeleton using Instance Spec dThe Commu-
nication Management shall provide a constructor for each specific ServiceSkeleton
class taking two arguments:

• InstanceSpecifier: The specifiers of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CORE_08001] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton(
ara::core::InstanceSpecifier instanceSpec,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent
);

c(RS_CM_00101, RS_AP_00114, RS_AP_00115, RS_AP_00121, RS_AP_00127,
RS_AP_00137, RS_AP_00145)

[SWS_CM_10436] Exception-less creation of service skeleton using Instance
Spec dThe Communication Management shall provide a non-throwing constructor for
each specific ServiceSkeleton class using the Named Constructor idiom according
to [SWS_CM_11326]. The Named Constructor shall be called Create() and shall take
two arguments:

317 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• InstanceSpecifier: The specifiers of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CORE_08001] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

static ara::core::Result<ServiceSkeleton> Create(
const ara::core::InstanceSpecifier &instanceSpec,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent) noexcept;

In case e2e-protected methods are used by the service, and a MethodCallProcess-
ingMode of kEvent is passed to the constructor, an error code kWrongMethodCallPro-
cessingMode shall be returned in the Result. See [SWS_CM_10467].

In case of a Grant enforcement failure, an error code ComErrc::kGrantEnforce-
mentError shall be returned in the Result. See [SWS_CM_90005].

c(RS_CM_00101, RS_AP_00114, RS_AP_00115, RS_AP_00121, RS_AP_00139,
RS_AP_00128, RS_AP_00132, RS_AP_00127, RS_AP_00137, RS_AP_00139, RS_-
AP_00145)

[SWS_CM_00153] Creation of service skeleton using Instance ID Container
dThe Communication Management shall provide a constructor for each specific Ser-
viceSkeleton class taking two arguments:

• InstanceIdentifierContainer: The container of instances of a service,
each instance element needed to distinguish different instances of exactly the
same service in the system. See [SWS_CM_00319] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton(
ara::com::InstanceIdentifierContainer instanceIDs,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent
);

c(RS_CM_00101, RS_AP_00114, RS_AP_00115, RS_AP_00121, RS_AP_00145)

[SWS_CM_10437] Exception-less creation of service skeleton using Instance ID
Container dThe Communication Management shall provide a non-throwing construc-
tor for each specific ServiceSkeleton class using the Named Constructor idiom
according to [SWS_CM_11326]. The Named Constructor shall be called Create() and
shall take two arguments:

318 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• InstanceIdentifierContainer: The container of instances of a service,
each instance element needed to distinguish different instances of exactly the
same service in the system. See [SWS_CM_00319] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

static ara::core::Result<ServiceSkeleton> Create(
const ara::com::InstanceIdentifierContainer &instanceIDs,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent) noexcept;

In case e2e-protected methods are used by the service, and a MethodCallProcess-
ingMode of kEvent is passed to the constructor, an error code kWrongMethodCallPro-
cessingMode shall be returned in the Result. See [SWS_CM_10467].

In case of a Grant enforcement failure, an error code ComErrc::kGrantEnforce-
mentError shall be returned in the Result. See [SWS_CM_90005].

c(RS_CM_00101, RS_AP_00114, RS_AP_00115, RS_AP_00121, RS_AP_00139,
RS_AP_00128, RS_AP_00132, RS_AP_00127, RS_AP_00139, RS_AP_00145)

[SWS_CM_00134] Copy semantics of service skeleton class dThe Communication
Management shall disable the generation of the copy constructor and the copy assign-
ment operator for each specific ServiceSkeleton class.

ServiceSkeleton(const ServiceSkeleton&) = delete;
ServiceSkeleton& operator=(const ServiceSkeleton&) = delete;

c(RS_CM_00101, RS_AP_00114, RS_AP_00145, RS_AP_00147)

[SWS_CM_00135] Move semantics of service skeleton class dThe Communication
Management shall provide the possibility to move construct and move assign a Ser-
viceSkeleton instance from another instance.

ServiceSkeleton(ServiceSkeleton &&);
ServiceSkeleton& operator=(ServiceSkeleton &&);

c(RS_CM_00101, RS_AP_00114, RS_AP_00145, RS_AP_00147)

[SWS_CM_11370]{DRAFT} ServiceSkeleton destructor dThe Communication Man-
agement shall provide a destructor for the ServiceSkeleton.

~ServiceSkeleton();

c(RS_AP_00114, RS_AP_00145)

319 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.3.4 Send event

Inside the specific Event class belonging to the specific ServiceSkeleton class a
Send method shall be provided to initiate sending the corresponding event .To support
sending of events where the data is owned by the application and continuously updated
and the data is explicitly created for sending the Send method shall be provided in two
ways: One where the application is owner of the data and the Send method makes a
copy for sending and one where Communication Management is responsible for the
data and the application is not allowed to do anything with the data after sending.

[SWS_CM_00162] Send event where application is responsible for the data dThe
Send method of the specific Event class where the application is responsible for the
data and the Communication Management creates a copy for sending takes in the
input parameter data, the data to send and sends it to all subscribed applications.
This version of the Send method shall be used whenever the application wants to work
further with the data.

ara::core::Result<void> Event::Send(const SampleType &data);

If not successful, Send() shall return an ara::core::ErrorCode from the ara::-
com::ComErrorDomain indicating the error. The following errors are possible:

• ComErrc::kServiceNotOffered: Service not offered.

• ComErrc::kCommunicationLinkError: Communication link is broken.

• ComErrc::kCommunicationStackError: Communication Stack Error, e.g.
network stack, network binding, or communication framework reports an error.

c(RS_CM_00201, RS_AP_00114, RS_AP_00120, RS_AP_00121)

[SWS_CM_90437] Send event where Communication Management is responsible
for the data dThe Send method of the specific Event class where the Communication
Management is responsible for the data and the application is not allowed to access
the data after sending takes in the input parameter data, the data to send and sends
it to all subscribed applications.

ara::core::Result<void> Event::Send(ara::com::SampleAllocateePtr
<SampleType> data);

Before sending the event the corresponding data has to be requested from the Com-
munication Management (see [SWS_CM_90438]) and filled with the respective data.

This version of the Send method shall be used whenever the data is created explicitly
for sending and no further processing is happening afterward by the application itself.

If not successful, Send() shall return an ara::core::ErrorCode from the ara::-
com::ComErrorDomain indicating the error. The following errors are possible:

• ComErrc::kServiceNotOffered: Service not offered.

• ComErrc::kCommunicationLinkError: Communication link is broken.

320 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• ComErrc::kCommunicationStackError: Communication Stack Error, e.g.
network stack, network binding, or communication framework reports an error.

c(RS_CM_00201, RS_AP_00114, RS_AP_00120, RS_AP_00121)

[SWS_CM_00012]{DRAFT} Re-entrancy and thread-safety - Send dSend shall be
re-entrant and thread-safe for different Event class instances. When called re-entrant
or concurrently on the same Event class instance, the behavior is undefined.c(RS_-
CM_00201, RS_AP_00114, RS_AP_00120, RS_AP_00121)

[SWS_CM_90438] Allocating data for event transfer dData shall be requested by
calling the Allocate method of the specific Event class. By calling the Send method
with the data, it is ensured that the data will be freed by the Communication Manage-
ment.

There are two error codes that shall be returned in the Result of Allocate():

• ComErrc::kSampleAllocationFailure: If the allocation of the shared
memory fails (i.e., failure to retrieve/allocate a shared slot for a sample).

• ComErrc::kIllegalUseOfAllocate: If the allocation is done via custom al-
locator (i.e., not via shared memory allocation).The error shall be logged.

ara::core::Result<ara::com::SampleAllocateePtr<SampleType>>
Event::Allocate();

c(RS_CM_00201, RS_AP_00114, RS_AP_00115, RS_AP_00120)

See [SWS_CM_00308] for the type definition of SampleAllocateePtr and ARA-
ComAPI explanatory document [1] for more details on the behavior.

Since the SampleAllocateePtr pointer type behaves like a std::unique_ptr,
the ownership of the pointer has to be transferred via std::move for utilizing zero-
copy optimizations.

[SWS_CM_00013]{DRAFT} Re-entrancy and thread-safety - Allocate
dAllocate shall be re-entrant and thread-safe for different Event class instances.
When called re-entrant or concurrently on the same Event class instance, the behavior
is undefined.c(RS_CM_00201, RS_AP_00114, RS_AP_00115, RS_AP_00120)

8.1.3.5 Send Trigger

Inside the specific Trigger class belonging to the specific ServiceSkeleton class
a Send method shall be provided to initiate sending the corresponding trigger.

[SWS_CM_00721]{DRAFT} Send trigger dThe Sendmethod of the specific Trigger
class send trigger to all subscribed applications.

ara::core::Result<void> Trigger::Send();

321 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

If not successful, Send() shall return an ara::core::ErrorCode from the ara::-
com::ComErrorDomain indicating the error. The following errors are possible:

• ComErrc::kServiceNotOffered: Service not offered.

• ComErrc::kCommunicationLinkError: Communication link is broken.

• ComErrc::kCommunicationStackError: Communication Stack Error, e.g.
network stack, network binding, or communication framework reports an error.

c(RS_CM_00201, RS_AP_00114, RS_AP_00120, RS_AP_00121)

[SWS_CM_00722]{DRAFT} Re-entrancy and thread-safety - Send dSend shall be
re-entrant and thread-safe for different Trigger class instances. When called re-
entrant or concurrently on the same Trigger class instance, the behavior is unde-
fined.c(RS_CM_00201, RS_AP_00114, RS_AP_00120, RS_AP_00121)

8.1.3.6 Provide a service method

[SWS_CM_00191]{DRAFT} Provision of method dA pure virtual method shall be
defined inside the specific ServiceSkeleton class for each provided method of the
service.
The name of this method and its parameters are derived from the signature of the pro-
vided service method.
The service method input parameters shall become input parameters of the respective
method defined inside the ServiceSkeleton class.
An Output type combining the possible output parameters shall be provided inside
the ServiceSkeleton class.
The method shall return an ara::core::Future object wrapping the output param-
eters as result.
A corresponding subclass providing implementations for the methods shall be created
to implement the methods of a respective ServiceSkeleton.

struct Method1Output {
TypeOutputParameter1 output1;
TypeOutputParameter2 output2;
...

};

virtual ara::core::Future <Method1Output> Method1(
TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

) = 0;

c(RS_CM_00211, RS_AP_00114, RS_AP_00138, RS_AP_00128, RS_AP_00127,
RS_AP_00138)

322 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_90434]{DRAFT} Provision of a Fire and Forget method dA pure vir-
tual method shall be defined inside the specific ServiceSkeleton class for each pro-
vided Fire and Forget method of the service.
The name of this method and its parameters are derived from the signature of the pro-
vided Fire and Forget method.
The Fire and Forget method input parameters shall become input parameters of
the respective method defined inside the ServiceSkeleton class.
The Fire and Forget method shall have no return values.
A corresponding subclass providing implementations for the Fire and Forget
methods shall be created to implement the Fire and Forget method of a respec-
tive ServiceSkeleton.

virtual void FireForgetMethod1(
TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

) = 0;

c(RS_CM_00225, RS_AP_00114)

[SWS_CM_00017]{DRAFT} Re-entrancy and thread-safety - ServiceSkeleton
method implementation dThe ServiceSkeleton method implementation shall be
re-entrant and thread-safe in case the ServiceSkeleton instance has been cre-
ated in event-driven concurrent mode(kEvent). - The ServiceSkeleton method
implementation may be non-re-entrant and non-thread-safe otherwise (i.e., in event-
driven sequential mode (kEventSingleThread) and in polling mode (kPoll)).c
(RS_CM_00211, RS_AP_00114, RS_AP_00138, RS_AP_00128, RS_AP_00127,
RS_AP_00138)

8.1.3.7 Processing of service methods

For the functional description of the processing of service methods API, see chapter
7.10.3.

[SWS_CM_00198]{DRAFT} Set service method processing mode dWith the instan-
tiation of a specific ServiceSkeleton class, the mode for processing service method
invocations is set by providing an ara::com::MethodCallProcessingMode as a
parameter of the constructor. The mode allows the implementation providing the ser-
vice method to select how the incoming service method invocations are processed.
The selection is valid for all the methods of the specific ServiceSkeleton instance.
The data type representing the processing modes is defined by [SWS_CM_00301].
The following processing modes shall be supported:

• Polling (enumeration element kPoll)

• Event-driven, concurrent (enumeration element kEvent)

• Event-driven, sequential (enumeration element kEventSingleThread)

323 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00211, RS_AP_00114, RS_AP_00115, RS_AP_00120)

[SWS_CM_00199]{DRAFT} Process Service method invocation dInside the spe-
cific ServiceSkeleton class, a ProcessNextMethodCall method shall be pro-
vided. This method allows the implementation providing the service method to trigger
the execution of the next service consumer method call at a specific point of time if the
processing mode is set to Polling.
The method shall return an ara::core::Future object wrapping a bool param-
eter as return value. A returned value true indicates that there is at least one
pending invocation, returning false indicates the opposite. The returned ara::-
core::Future becomes ready, after the service method (see [SWS_CM_00191] or
[SWS_CM_90434]) invoked due to ProcessNextMethodCall() has completed.

ara::core::Future<bool> ProcessNextMethodCall();

c(RS_CM_00211, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128,
RS_AP_00127, RS_AP_00138)

[SWS_CM_11350]{DRAFT} Execution Context for process service method invo-
cation dFor the ProcessNextMethodCall method described in [SWS_CM_00199]
a second overload with an additional input parameter. This parameter shall provide
an executioner object in which any asynchronous computation spawn by Process-
NextMethodCall shall be invoked. The minimum behavior of the Execution Con-
text is defined in [SWS_CM_11364].For the first overload without an execution con-
text argument an implementation defined default execution context (like in previous
AUTOSAR releases) shall be used.

template<typename ExecutorT>
ara::core::Future<bool> ProcessNextMethodCall(ExecutorT &&executor);

c(RS_CM_00211, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128,
RS_AP_00127, RS_AP_00138)

[SWS_CM_11351]{DRAFT} Error behaviour of provided Execution Context for
process service method invocation dIn case a ProcessNextMethodCall() can-
not be executed with the provided executor (e.g. because of resource problem) an
ComErrc::kCouldNotExecute error shall be raised in all cases.c(RS_CM_00211,
RS_CM_00212, RS_CM_00213, RS_CM_00214, RS_AP_00114, RS_AP_00119,
RS_AP_00127)

[SWS_CM_10362]{DRAFT} Raising checked errors for application errors
dWhenever on the skeleton side of a service method an ApApplicationError
– according to the interface description in the Manifest – is detected, the corre-
sponding ara::core::ErrorCode representing this ApApplicationError (see
[SWS_CM_11266]) shall be stored into the ara::core::Promise object, from which
the ara::core::Future is returned to the caller.c(RS_CM_00211, RS_CM_00212,
RS_CM_00213, RS_CM_00214, RS_AP_00114, RS_AP_00119, RS_AP_00127)

324 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.3.8 Registering get handlers for fields

For the functional description of the registering get handlers for fields API, see chapter
7.10.4.

[SWS_CM_00114]{DRAFT} Registering Getters dInside the specific Field class
belonging to the specific ServiceSkeleton class a RegisterGetHandler method
shall be provided to give the possibility to register a GetHandler.

ara::core::Result<void> RegisterGetHandler(
std::function<ara::core::Future<FieldType>(

)> getHandler);

c(RS_CM_00218, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128,
RS_AP_00127)

[SWS_CM_11360]{DRAFT} Execution Context for registering Getters dFor the
RegisterGetHandler method described in [SWS_CM_00114] a second overload
with an additional input parameter shall be provided. This parameter shall provide
an executioner object in which any asynchronous computation spawn by Register-
GetHandler shall be invoked. The minimum behavior of the Execution Context is
defined in [SWS_CM_11364].

template<typename ExecutorT>
ara::core::Result<void> RegisterGetHandler(
std::function<ara::core::Future<FieldType>(

)> getHandler, ExecutorT&& executor);

For the first overload without an execution context argument an implementation de-
fined default execution context (like in previous AUTOSAR releases) shall be used.c
(RS_CM_00211, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128,
RS_AP_00127, RS_AP_00138)

[SWS_CM_11361]{DRAFT} Error behaviour of provided Execution Context for
registering Getters dIn case a RegisterGetHandler() cannot be executed with
the provided executor (e.g. because of resource problem) a ComErrc::kCouldNo-
tExecute error shall be raised in all cases.c(RS_CM_00211, RS_CM_00212, RS_-
CM_00213, RS_CM_00214, RS_AP_00114, RS_AP_00119, RS_AP_00127)

[SWS_CM_00115]{DRAFT} Existence of RegisterGetHandler method dThe exis-
tence of RegisterGetHandler as part of the Field class shall be controlled by
Field.hasGetter.c(RS_CM_00218, RS_AP_00114)

[SWS_CM_00014]{DRAFT} Re-entrancy and thread-safety - RegisterGetH-
andler dRegisterGetHandler shall be re-entrant and thread-safe for different
Field class instances. When called re-entrant or concurrently on the same Field
class instance, the behavior is undefined.c(RS_CM_00218, RS_AP_00114, RS_AP_-
00120, RS_AP_00138, RS_AP_00128, RS_AP_00127)

325 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.3.9 Registering set handlers for fields

For the functional description of the registering set handlers for fields API, see chapter
7.10.5.

[SWS_CM_00116]{DRAFT} Registering Setters dInside the specific Field class be-
longing to the specific ServiceSkeleton class a RegisterSetHandler function
shall be provided to give the possibility to register a SetHandler.

ara::core::Result<void> RegisterSetHandler(
std::function<ara::core::Future<FieldType>(

const FieldType& value)> setHandler);

c(RS_CM_00218, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128,
RS_AP_00127)

[SWS_CM_11362]{DRAFT} Execution Context for registering Setters dFor the
RegisterSetHandler method described in [SWS_CM_00116] a second overload
with an additional input parameter shall be provided. This parameter shall provide
an executioner object in which any asynchronous computation spawn by Register-
SetHandler shall be invoked. The minimum behavior of the Execution Context is
defined in [SWS_CM_11364].

template<typename ExecutorT>
ara::core::Result<void> RegisterSetHandler(
std::function<ara::core::Future<FieldType>(

const FieldType& value)> setHandler, ExecutorT&& executor);

For the first overload without an execution context argument an implementation de-
fined default execution context (like in previous AUTOSAR releases) shall be used.c
(RS_CM_00211, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128,
RS_AP_00127, RS_AP_00138)

[SWS_CM_11363]{DRAFT} Error behaviour of provided Execution Context for
registering Setters dIn case a RegisterGetHandler() cannot be executed with
the provided executor (e.g. because of resource problem) a ComErrc::kCouldNo-
tExecute error shall be raised in all cases.c(RS_CM_00211, RS_CM_00212, RS_-
CM_00213, RS_CM_00214, RS_AP_00114, RS_AP_00119, RS_AP_00127)

[SWS_CM_00117]{DRAFT} Existence of the RegisterSetHandler method dThe ex-
istence of RegisterSetHandler as part of the Field class shall be controlled by
Field.hasSetter.c(RS_CM_00218, RS_AP_00114)

[SWS_CM_00015]{DRAFT} Re-entrancy and thread-safety - Register-
SetHandler dRegisterSetHandler shall be re-entrant and thread-safe for
different Field class instances. When called re-entrant or concurrently on the same
Field class instance, the behavior is undefined.c(RS_CM_00218, RS_AP_00114,
RS_AP_00120, RS_AP_00138, RS_AP_00128, RS_AP_00127)

326 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00119]{DRAFT} Update Function dInside the specific Field class be-
longing to the specific ServiceSkeleton class an Update function shall be pro-
vided to initiate the transmission of updated field data to the subscribers. See
[SWS_CM_00162] for the required behavior. The Update method shall look as follows:

ara::core::Result<void> Field::Update(const FieldType &value);

It shall return void if the connection is successful, or an ara::core::ErrorCode
from the ara::com::ComErrorDomain indicating the error if not successful (see
chapter 8.1.2.6 Error Types).

The following errors from the ara::core::ComErrorDomain are possible:

• kServiceNotOffered: Service not offered.

• kCommunicationLinkError: Communication link is broken.

• kCommunicationStackError: Communication Stack Error, e.g. network stack,
network binding, or communication framework reports an error

The Update function shall also update the field’s internal value, if:

• If Field.hasGetter is true (according to [SWS_CM_00132] and

• no custom Getter has been registered

An update notification shall be sent, if hasNotification is true (in accordance to
[SWS_CM_00120].c(RS_CM_00218, RS_AP_00114, RS_AP_00120, RS_AP_00121)

[SWS_CM_00016]{DRAFT} Re-entrancy and thread-safety - Update dUpdate
shall be re-entrant and thread-safe for different Field class instances. When called
re-entrant or concurrently on the same Field class instance, the behavior is unde-
fined.c(RS_CM_00218, RS_AP_00114, RS_AP_00120, RS_AP_00121)

8.1.3.10 Find service

For the functional description of the find service API, see chapter 7.10.6.

The Communication Management shall provide FindService methods as part of the
ServiceProxy class to enable applications to find services. To support event-based
and time-triggered systems the FindService methods shall be provided in a handler
registration and a immediately returned request style.

[SWS_CM_00122]{DRAFT} Find service with immediately returned request
using Instance ID dThe FindService method of the ServiceProxy class with
immediately returned request takes an instance ID qualifying the wanted instance
of the service as input parameter.
It shall return a result struct encapsulating a container of handles for all matching
service instances, or an ara::core::ErrorCode from the ara::com::ComEr-
rorDomain indicating the error if not successful.

327 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

There is one FindService method for using a specified InstanceIdentifier.

static ara::core::Result<ara::com::ServiceHandleContainer<
<ProxyClassName>::HandleType>>

FindService(ara::com::InstanceIdentifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004].

The following errors from ara::com::ComErrorDomain are possible:

• kNetworkBindingFailure: Local failure has been detected by the network
binding.

• kGrantEnforcementError: Request was refused by Grant enforcement
layer.

• kPeerIsUnreachable: Transport Layer Security handshake failed.

InstanceIdentifier validation errors or allocation failures of the ServiceHan-
dleContainer should be treated as Violations. ([SWS_CORE_00003], [SWS_-
CORE_00005])c(RS_CM_00102, RS_AP_00114, RS_AP_00115, RS_AP_00120,
RS_AP_00121, RS_AP_00119)

For the definition of the types used in the FindService signature, see:

• [SWS_CM_00304] for ServiceHandleContainer,

• [SWS_CM_00312] for HandleType,

• [SWS_CM_00302] for InstanceIdentifier.

[SWS_CM_00622]{DRAFT} Find service with immediately returned request using
Instance Specifier dThe FindService method of the ServiceProxy class with im-
mediately returned request takes an instance Specifier qualifying the wanted Abstract
Network Binding for the instance.
It shall return a result struct encapsulating a container of handles for all matching ser-
vice instances, or an ara::core::ErrorCode from the ara::com::ComErrorDo-
main indicating the error if not successful.

static ara::core::Result<ara::com::ServiceHandleContainer<
<ProxyClassName>::HandleType>>

FindService(ara::core::InstanceSpecifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004].

The following errors from ara::com::ComErrorDomain are possible:

• kNetworkBindingFailure: Local failure has been detected by the network
binding.

328 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• kGrantEnforcementError: Request was refused by Grant enforcement
layer.

• kPeerIsUnreachable: Transport Layer Security handshake failed.

InstanceSpecifier validation errors, or allocation failures of the ServiceHan-
dleContainer should be treated as Violations. ([SWS_CORE_00003], [SWS_-
CORE_00005])c(RS_CM_00102, RS_AP_00114, RS_AP_00115, RS_AP_00121,
RS_AP_00119, RS_AP_00127, RS_AP_00137)

For the definition of the types used in the FindService signature, see:

• [SWS_CM_00304] for ServiceHandleContainer,

• [SWS_CM_00312] for HandleType,

• [SWS_CORE_08001] for InstanceSpecifier.

[SWS_CM_00018]{DRAFT} Re-entrancy and thread-safety - FindService
dFindService is neither re-entrant nor thread-safe. When called re-entrant or con-
currently, the behavior is undefined.c(RS_CM_00102, RS_AP_00114, RS_AP_00115,
RS_AP_00121, RS_AP_00119, RS_AP_00127, RS_AP_00137)

[SWS_CM_00123]{DRAFT} Find service with handler registration using In-
stance ID dThe StartFindService method of the ServiceProxy class with
handler registration takes as input parameters a FindServiceHandler, fitting
for the corresponding ServiceProxy class which gets called upon detection of a
matching service, and an instance ID qualifying the wanted instance of the service.
The return value is a result struct encapsulating a FindServiceHandle for this
search/find request, or an ara::core::ErrorCode from the ara::com::Com-
ErrorDomain indicating the error if not successful. The FindServiceHandle is
needed to stop the service availability monitoring and related firing of the given handler.

There is one StartFindService method for using a specified InstanceIdenti-
fier.

static ara::core::Result<ara::com::FindServiceHandle> StartFindService(
ara::com::FindServiceHandler<<ProxyClassName>::HandleType> handler,
ara::com::InstanceIdentifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004].

The following errors from ara::com::ComErrorDomain are possible:

• kNetworkBindingFailure: Local failure has been detected by the network
binding.

• kGrantEnforcementError: Request was refused by Grant enforcement
layer.

• kPeerIsUnreachable: Transport Layer Security handshake failed.

329 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

InstanceIdentifier validation errors or allocation failures of the ServiceHan-
dleContainer should be treated as Violations. ([SWS_CORE_00003], [SWS_-
CORE_00005])

c(RS_CM_00102, RS_AP_00114, RS_AP_00115, RS_AP_00120, RS_AP_00121,
RS_AP_00119)

For the definition of the types used in the StartFindService signature, see:

• [SWS_CM_00303] for FindServiceHandle,

• [SWS_CM_00383] for FindServiceHandler,

• [SWS_CM_00312] for HandleType,

• [SWS_CM_00302] for InstanceIdentifier.

Note: StartFindService is an asynchronous indication of availability and not to be
abused for liveness monitoring.

[SWS_CM_11352]{DRAFT} Execution Context for finding service with handler
registration using Instance ID dFor the StartFindService method described in
[SWS_CM_00123] a second overload with an additional input parameter shall be pro-
vided. This parameter shall provide an executioner object in which any asynchronous
computation spawn by StartFindService shall be invoked. The minimum behavior
of the Execution Context is defined in [SWS_CM_11364].

template<typename ExecutorT>
static ara::com::FindServiceHandle StartFindService(

ara::com::FindServiceHandler<<ProxyClassName>::HandleType> handler,
ara::com::InstanceIdentifier instance, ExecutorT&& executor);

For the first overload without an execution context argument an implementation de-
fined default execution context (like in previous AUTOSAR releases) shall be used.c
(RS_CM_00102, RS_AP_00114, RS_AP_00115, RS_AP_00120, RS_AP_00121,
RS_AP_00119)

[SWS_CM_11353]{DRAFT} Error behavior of provided Execution Context for
finding service with handler registration using Instance ID dIn case a StartFind-
Service() cannot be executed with the provided executor (e.g. because of resource
problem) an ComErrc::kCouldNotExecute error shall be raised in all cases.c(RS_-
CM_00211, RS_CM_00212, RS_CM_00213, RS_CM_00214, RS_AP_00114, RS_-
AP_00119, RS_AP_00127)

[SWS_CM_00623]{DRAFT} Find service with handler registration using Instance
Specifier dThe StartFindService method of the ServiceProxy class with han-
dler registration takes as input parameters a FindServiceHandler, fitting for the
corresponding ServiceProxy class which gets called upon detection of a matching
service, and an instance Specifier qualifying the wanted Abstract Network Binding of
the instance of the service. The return value is a result struct encapsulating a Find-
ServiceHandle for this search/find request, or an ara::core::ErrorCode from

330 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

the ara::com::ComErrorDomain indicating the error if not successful. The Find-
ServiceHandle is needed to stop the service availability monitoring and related firing
of the given handler.

static ara::core::Result<ara::com::FindServiceHandle> StartFindService(
ara::com::FindServiceHandler<<ProxyClassName>::HandleType> handler,
ara::core::InstanceSpecifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004].

The following errors from ara::com::ComErrorDomain are possible:

• kNetworkBindingFailure: Local failure has been detected by the network
binding.

• kGrantEnforcementError: Request was refused by Grant enforcement
layer.

• kPeerIsUnreachable: Transport Layer Security handshake failed.

InstanceSpecifier validation errors, or allocation failures of the ServiceHan-
dleContainer should be treated as Violations. ([SWS_CORE_00003], [SWS_-
CORE_00005])c(RS_CM_00102, RS_AP_00114, RS_AP_00115, RS_AP_00121,
RS_AP_00119, RS_AP_00127, RS_AP_00137)

For the definition of the types used in the StartFindService signature, see:

• [SWS_CM_00303] for FindServiceHandle,

• [SWS_CM_00383] for FindServiceHandler,

• [SWS_CM_00312] for HandleType,

• [SWS_CORE_08001] for InstanceSpecifier.

Note: StartFindService is an asynchronous indication of availability and not to be
abused for liveness monitoring.

[SWS_CM_00019]{DRAFT} Re-entrancy and thread-safety - StartFindService
dStartFindService is neither re-entrant nor thread-safe. When called re-entrant
or concurrently, the behavior is undefined.c(RS_CM_00102, RS_AP_00114, RS_AP_-
00115, RS_AP_00121, RS_AP_00119, RS_AP_00127, RS_AP_00137)

[SWS_CM_00125]{DRAFT} Stop find service dTo stop receiving further notifications
the ServiceProxy class shall provide a StopFindService method. The Find-
ServiceHandle returned by the FindService method with handler registration has
to be provided as input parameter.

void StopFindService(ara::com::FindServiceHandle handle)

c(RS_CM_00102, RS_AP_00114, RS_AP_00120, RS_AP_00121)

See [SWS_CM_00303] for the type definition of FindServiceHandle.

331 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00020]{DRAFT} Re-entrancy and thread-safety - StopFindService
dStopFindService shall be re-entrant and thread-safe for different ara::com::-
FindServiceHandles. When called re-entrant or concurrently with the same ara:-
:com::FindServiceHandle, the behavior is undefined.c(RS_CM_00102, RS_AP_-
00114, RS_AP_00120, RS_AP_00121)

8.1.3.11 Service proxy creation

[SWS_CM_00131]{DRAFT} Creation of service proxy dThe Communication Man-
agement shall provide a constructor for each specific ServiceProxy class taking a
handle returned by any FindService method of the ServiceProxy class to get a
valid ServiceProxy based on the handles returned by FindService.

explicit ServiceProxy::ServiceProxy(const HandleType &handle);

c(RS_CM_00102, RS_AP_00114, RS_AP_00121, RS_AP_00145)

[SWS_CM_10438]{DRAFT} Exception-less creation of service proxy dThe Com-
munication Management shall provide a non-throwing constructor for each spe-
cific ServiceProxy class using the Named Constructor idiom according to
[SWS_CM_11326]. The Named Constructor shall be called Create() and shall take
a handle returned by any FindService method of the ServiceProxy class as
argument.

static ara::core::Result<ServiceProxy> Create(
const HandleType &handle) noexcept;

In case the handle returned from FindService is corrupt, an error code kErroneousFile-
Handle shall be returned in the Result.

In case of a Grant enforcement failure, an error code ComErrc::kGrantEnforce-
mentError shall be returned in the Result. See [SWS_CM_90006].

c(RS_CM_00102, RS_AP_00114, RS_AP_00121, RS_AP_00139, RS_AP_00128,
RS_AP_00132, RS_AP_00127, RS_AP_00139, RS_AP_00145)

[SWS_CM_10383]{DRAFT} GetHandle function to return the proxy instance cre-
ation handle dThe Communication Management shall provide a GetHandle method
for each specific ServiceProxy class to get the handle from which the Service-
Proxy instance has been created.

HandleType ServiceProxy::GetHandle() const;

c(RS_CM_00107, RS_AP_00114, RS_AP_00119)

See [SWS_CM_00312] for the type definition of HandleType.

[SWS_CM_00021]{DRAFT} Re-entrancy and thread-safety - GetHandle
dGetHandle shall be re-entrant and thread-safe irrespective of the Service-
Proxy class instance. - i.e. GetHandle shall be re-entrant and thread-safe for

332 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

the same ServiceProxy class instance and for different ServiceProxy class
instances.c(RS_CM_00107, RS_AP_00114, RS_AP_00119)

[SWS_CM_00136]{DRAFT} Copy semantics of service proxy class dThe Commu-
nication Management shall disable the generation of the copy constructor and the copy
assignment operator for each specific ServiceProxy class.

ServiceProxy(const ServiceProxy&) = delete;
ServiceProxy& operator=(const ServiceProxy&) = delete;

c(RS_CM_00102, RS_AP_00114, RS_AP_00145, RS_AP_00147)

[SWS_CM_00137]{DRAFT} Move semantics of service proxy class dThe Commu-
nication Management shall provide the possibility to move construct and move assign
a ServiceProxy instance from another instance.

ServiceProxy(ServiceProxy &&);
ServiceProxy& operator=(ServiceProxy &&);

c(RS_CM_00102, RS_AP_00114, RS_AP_00145, RS_AP_00147)

[SWS_CM_10491]{DRAFT} Re-establishing service connection dIn case the ser-
vice becomes temporarily unavailable (due to restart, network problem or so), or if an
error occurs while establishing a connection to the service, the error shall be logged,
and the Communication Management shall retry to establish the connection once the
next offer is received.c(RS_CM_00102, RS_CM_00107)

8.1.3.12 Service proxy destruction

[SWS_CM_10446]{DRAFT} Destruction of service proxy dThe destructor of each
specific ServiceProxy class shall destroy the Promise instances corresponding to
the Future instances returned by the function call operator (operator()) of the re-
spective Method class (see [SWS_CM_00196]) or by the Get or Set method of the
respective Field class (see [SWS_CM_00112] and [SWS_CM_00113]) by explicitly
or implicitly invoking the destructor of the Promise (see [SWS_CORE_00349]). This
in turn will make the corresponding Future ready (if this is not already the case) with
an ara::core::ErrorCode (see [SWS_CORE_00501]) where the error domain is
set to ara::core::FutureErrorDomain (see [SWS_CORE_00421]) and the value
is set to broken_promise (see [SWS_CORE_00400]).c(RS_CM_00102, RS_AP_-
00114, RS_AP_00127, RS_AP_00145)

8.1.3.13 Service event subscription

[SWS_CM_00141] Method to subscribe to a service event dInside the specific
Event class belonging to the specific ServiceProxy class a Subscribe method
shall be provided to start subscription of the corresponding event. As input parameter
the cacheSize of the subscription needs to be specified.

333 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

ara::core:Result<void> Event::Subscribe(
std::size_t maxSampleCount

);

If the Event is already subscribed to at the time of the call, and the provided maxSam-
pleCount value is the same as for the current subscription, Subscribe() shall return
silently without any action.

If the Event is already subscribed to at the time of the call, and the provided maxSam-
pleCount value is different from the value for the current subscription, Subscribe
() shall return the error code ComErrc::kMaxSampleCountNotRealizable in the
Result.c(RS_CM_00103, RS_AP_00114, RS_AP_00120)

[SWS_CM_00700]{DRAFT} Ensure memory allocation of maxSampleCount sam-
ples dThe Communication Management shall ensure, that after returning from method
Subscribe sufficient memory resources are available, so that the number of samples
given in parameter maxSampleCount can be concurrently accessed by application
layer.c(RS_CM_00103, RS_AP_00114)

[SWS_CM_00022]{DRAFT} Re-entrancy and thread-safety - Subscribe
dSubscribe shall be re-entrant and thread-safe for different Event class in-
stances. When called re-entrant or concurrently on the same Event class instance,
the behavior is undefined.c(RS_CM_00103, RS_AP_00114, RS_AP_00120)

[SWS_CM_00151] Method to unsubscribe from a service event dInside the specific
Event class belonging to the specific ServiceProxy class a Unsubscribe method
shall be provided to allow for unsubscribing from previously subscribed events.

void Event::Unsubscribe();

If the Event is not subscribed to at the time of the call, Unsubscribe() shall return
silently without any action.c(RS_CM_00104, RS_AP_00114, RS_AP_00120)

[SWS_CM_00023]{DRAFT} Re-entrancy and thread-safety - Unsubscribe
dUnsubscribe shall be re-entrant and thread-safe for different Event class in-
stances. When called re-entrant or concurrently on the same Event class instance,
the behavior is undefined.c(RS_CM_00104, RS_AP_00114, RS_AP_00120)

[SWS_CM_00316] Query Subscription State dThe Communication Management
shall provide an API GetSubscriptionState which returns the subscription state
of an event. The conditions for the Subscription state being returned by GetSub-
scriptionState shall be the same as for the SubscriptionStateChangeHan-
dler described in [SWS_CM_00311], [SWS_CM_00313] and [SWS_CM_00314].

1 ara::com::SubscriptionState GetSubscriptionState() const;

c(RS_CM_00106, RS_AP_00114, RS_AP_00115, RS_AP_00120, RS_AP_00119)

[SWS_CM_00024]{DRAFT} Re-entrancy and thread-safety - GetSubscription-
State dGetSubscriptionState shall be re-entrant and thread-safe for different
Event class instances. When called re-entrant or concurrently on the same Event

334 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

class instance, the behavior is undefined.c(RS_CM_00106, RS_AP_00114, RS_AP_-
00115, RS_AP_00120, RS_AP_00119)

[SWS_CM_00333] Set Subscription State change handler dThe Communication
Management shall provide an API SetSubscriptionStateChangeHandler to give
the possibility to set a subscription state change handler. This handler shall be called
by the Communication Management implementation as soon as the subscription state
of this event has changed. Handler may be overwritten during runtime.

1 ara::core::Result<void> SetSubscriptionStateChangeHandler(ara::com::
SubscriptionStateChangeHandler handler);

c(RS_CM_00106, RS_AP_00114, RS_AP_00120, RS_AP_00121)

[SWS_CM_11354]{DRAFT} Execution Context for setting Subscription State
change handler dFor the SetSubscriptionStateChangeHandler method de-
scribed in [SWS_CM_00333] a second overload with an additional input parame-
ter shall be provided. This parameter shall provide an executioner object in which
any asynchronous computation spawn by SetSubscriptionStateChangeHan-
dler shall be invoked. The minimum behavior of the Execution Context is defined
in [SWS_CM_11364].

template<typename ExecutorT>
ara::core::Result<void> SetSubscriptionStateChangeHandler(

ara::com::SubscriptionStateChangeHandler handler, ExecutorT&& executor);

For the first overload without an execution context argument an implementation de-
fined default execution context (like in previous AUTOSAR releases) shall be used.c
(RS_CM_00211, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128,
RS_AP_00127, RS_AP_00138)

[SWS_CM_11355]{DRAFT} Error behaviour of provided Execution Context for
setting Subscription State change handler dIn case a SetSubscriptionStat-
eChangeHandler() cannot be executed with the provided executor (e.g. because
of resource problem) an ComErrc::kCouldNotExecute error shall be raised in all
cases.c(RS_CM_00211, RS_CM_00212, RS_CM_00213, RS_CM_00214, RS_AP_-
00114, RS_AP_00119, RS_AP_00127)

[SWS_CM_00025]{DRAFT} Re-entrancy and thread-safety - SetSubscription-
StateChangeHandler dSetSubscriptionStateChangeHandler shall be re-
entrant and thread-safe for different Event class instances. When called re-entrant
or concurrently on the same Event class instance, the behavior is undefined.c(RS_-
CM_00106, RS_AP_00114, RS_AP_00120, RS_AP_00121)

[SWS_CM_00334] Unset Subscription State change handler dThe Communication
Management shall provide an API UnsetSubscriptionStateChangeHandler to
give the possibility to unset the subscription state change handler.

1 void UnsetSubscriptionStateChangeHandler();

c(RS_CM_00106, RS_AP_00114, RS_AP_00120)

335 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00026]{DRAFT} Re-entrancy and thread-safety - UnsetSubscrip-
tionStateChangeHandler dUnsetSubscriptionStateChangeHandler shall
be re-entrant and thread-safe for different Event class instances. When called re-
entrant or concurrently on the same Event class instance, the behavior is undefined.c
(RS_CM_00106, RS_AP_00114, RS_AP_00120)

[SWS_CM_00313] Call SubscriptionStateChangeHandler with kSubscription-
Pending dThe Communication Management shall call the SubscriptionState-
ChangeHandler with the value kSubscriptionPending in the following cases:

• the client subscribes to an event and the actual subscription does not happen
immediately (e.g. due to a bus protocol)

• the client is subscribed to an event and Communication Management has de-
tected that the server instance is currently not available (due to restart, network
problem or so)

c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107, RS_AP_00114)

Note: Method Calls may lead to a kServiceNotAvailable error [SWS_CM_11264]
at that time.

[SWS_CM_00314] Call SubscriptionStateChangeHandler with kSubscribed dThe
Communication Management shall call the SubscriptionStateChangeHandler
with the value kSubscribed in the following cases:

• the client subscribes to an event and the actual subscription is established suc-
cessfully

• the client is subscribed to an event and the actual subscription is re-established
again after being temporarily unavailable (due to restart, network problem or so)

c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107, RS_AP_00114)

[SWS_CM_00315] Re-establishing an active subscription dThe Communication
Management shall re-establish the actual subscription again after the server ser-
vice being temporarily unavailable (due to restart, network problem or so). This
shall work independently of whether a network binding is involved or not. The re-
establishment shall also provide a possible update of binding specific connection prop-
erties if needed.c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107,
RS_AP_00114)

8.1.3.14 Receive event

Inside the specific Event class belonging to the specific ServiceProxy class, a Get-
NewSamples and a GetFreeSampleCount method shall be provided to allow for ac-
cess of received events.

336 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00701] Method to update the event cache dThe Communication Man-
agement shall provide an GetNewSamples method as part of the Event class to up-
date the event cache with the meanwhile received data samples. As input parameters
the GetNewSamples method expects a Callable f and allows to specify a maxNum-
berOfSamples to restrict the number of received data samples being processed in
this call.

template <typename F>
ara::core::Result<std::size_t> GetNewSamples(

F&& f,
std::size_t maxNumberOfSamples =

std::numeric_limits<std::size_t>::max());

c(RS_CM_00202, RS_AP_00114, RS_AP_00120, RS_AP_00121, RS_AP_00139,
RS_AP_00128, RS_AP_00127, RS_AP_00139)

[SWS_CM_00702] Signature of Callable f dThe user provided Callable f has to
comply with the following signature:

void(ara::com::SamplePtr<SampleType const>)

For the definition of the types used in the signature of f, see:

• [SWS_CM_00306] for SamplePtr.

c(RS_CM_00202, RS_AP_00114)

[SWS_CM_00703] Sequence of actions in GetNewSamples dIn the context of the
GetNewSamples call, the Communication Management shall do the following steps
repeatedly:

• get next received event data sample from underlying receive buffers.

• de-serialize the data, if needed.

• place the de-serialized data sample of type SampleType in the local cache.

• call user provided f with a SamplePtr (including ProfileCheckStatus) ref-
erencing the data sample located in local cache.

until at least one of the following conditions is true:

• maxNumberOfSamples have already been fetched from the underlying receive
buffers within this GetNewSamples call.

• maxSampleCount reached. I.e. the application is currently holding exactly as
many SamplePtrs provided by this Event class instance, than it has committed
in call to Subscribe via maxSampleCount.

• no new data samples available from underlying receive buffers.

• size_t indicating the number of data samples passed to f in the context of the
call.

c(RS_CM_00202, RS_AP_00114)

337 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00704]{DRAFT} Return Value dThe returned ara::core::Result con-
tains a ara::core::ErrorCode (see [SWS_CORE_00501]) where the error domain
is set to ara::com::ComErrorDomain with the value kMaxSamplesExceeded in-
dicating, that applications SamplePtrs count has been exceeded. This means that
all SamplePtrs are currently held by the application and no more samples can be
delivered.c(RS_CM_00202, RS_AP_00114, RS_AP_00119, RS_AP_00127)

Note: This means that maxSampleCount, which is given in the Subscribe() method
is exceeded

[SWS_CM_11358]{DRAFT} Execution Context to update the event cache dFor
the GetNewSamples method described in [SWS_CM_00701] a second overload with
an additional input parameter shall be provided. This parameter shall provide an
executioner object in which any asynchronous computation spawn by GetNewSam-
ples shall be invoked. The minimum behavior of the Execution Context is defined in
[SWS_CM_11364].

template<typename ExecutorT>
ara::core::Result<std::size_t> GetNewSamples(

F&& f,
std::size_t maxNumberOfSamples =

std::numeric_limits<std::size_t>::max(),
ExecutorT&& executor);

For the first overload without an execution context argument an implementation de-
fined default execution context (like in previous AUTOSAR releases) shall be used.c
(RS_CM_00211, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128,
RS_AP_00127, RS_AP_00138)

[SWS_CM_11359]{DRAFT} Error behaviour of provided Execution Context to up-
date the event cache dIn case a GetNewSamples() cannot be executed with the
provided executor (e.g. because of resource problem) an ComErrc::kCouldNotEx-
ecute error shall be raised in all cases.c(RS_CM_00211, RS_CM_00212, RS_CM_-
00213, RS_CM_00214, RS_AP_00114, RS_AP_00119, RS_AP_00127)

[SWS_CM_00714] Re-entrancy and thread-safety - GetNewSamples
dGetNewSamples shall be re-entrant and thread-safe for different Event class
instances. When called re-entrant or concurrently on the same Event class instance,
the behavior is undefined. (If required, the application shall implement the locks).c
(RS_CM_00202, RS_AP_00114)

For the E2E-protected events, after updating the event cache via the GetNewSam-
ples method, and before accessing the SamplePtrs, the current Result needs to
be retrieved by calling the GetResult method.

[SWS_CM_90424] Provide E2E Result dInside the specific E2E-protected Events
belonging to the specific ServiceProxy class, the method GetResult shall be pro-
vided.

const ara::com::e2e::Result GetResult() const;

338 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_E2E_08534, RS_AP_00114, RS_AP_00115)

[SWS_CM_00705] Query Free Sample Slots dThe Communication Management
shall provide a GetFreeSampleCount method as part of the Event class to query
the number of free/unused slots for event sample data.

std::size_t GetFreeSampleCount() const noexcept;

c(RS_CM_00202, RS_AP_00114, RS_AP_00120, RS_AP_00139, RS_AP_00128,
RS_AP_00132, RS_AP_00127, RS_AP_00139)

[SWS_CM_00706] Return Value of GetFreeSampleCount dThe returned size_t
indicates the number of free/unused slots for event sample data in the local cache.c
(RS_CM_00202, RS_AP_00114, RS_AP_00119, RS_AP_00139, RS_AP_00128,
RS_AP_00127)

[SWS_CM_00707] Calculation of Free Sample Count d

• After call to Subscribe with parameter maxSampleCount set to N and before
any call to GetNewSamples on the same Event class instance, a call to Get-
FreeSampleCount shall return N.

• Each SamplePtr created by the Communication Middleware in the context of
a call to GetNewSamples on the same Event class instance shall lead to a
decrement of count of free samples.

• Each destruction or std::nullptr_t assignment (see [SWS_CM_00306]) of
a SamplePtr instance created from this Event class instance shall lead to an
increment of count of free samples.

c(RS_CM_00202, RS_AP_00114)

[SWS_CM_00027]{DRAFT} Re-entrancy and thread-safety - GetFreeSample-
Count dGetFreeSampleCount shall be re-entrant and thread-safe irrespective of the
Event class instance i.e. GetFreeSampleCount shall be re-entrant and thread-safe
for the same Event class instance and for different Event class instances.c(RS_-
CM_00202, RS_AP_00114, RS_AP_00120, RS_AP_00139, RS_AP_00128, RS_-
AP_00132, RS_AP_00127, RS_AP_00139)

8.1.3.15 Receive event by getting triggered

For the functional description of the receive event by getting triggered API, see chapter
7.10.7.2.

[SWS_CM_00181]{DRAFT} Enable service event trigger dTo enable that applica-
tions get triggered upon receiving of an event inside the specific Event class belong-
ing to the specific ServiceProxy class a SetReceiveHandler method shall be
provided to allow for specifying the function to call upon event arrival. Therefore, it
takes as input parameter handler a pointer to the respective function.

339 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

ara::core::Result<void> Event::SetReceiveHandler(
ara::com::EventReceiveHandler handler);

The EventReceiveHandler constitutes a function without parameters and has to
use the GetNewSamples method of the specific Event class to access the retrieved
event data. See [SWS_CM_00309] for its definition.

In case SetReceiveHandler() fails, ComErrc::kSetHandlerNotSet shall be
returned in the Result.c(RS_CM_00203, RS_AP_00114, RS_AP_00120, RS_AP_-
00121)

[SWS_CM_11356]{DRAFT} Execution Context for enabling service event trig-
ger dFor the SetReceiveHandler method described in [SWS_CM_00181] a second
overload with an additional input parameter shall be provided. This parameter shall
provide an executioner object in which any asynchronous computation spawn by Se-
tReceiveHandler shall be invoked. The minimum behavior of the Execution Context
is defined in [SWS_CM_11364].

template<typename ExecutorT>
ara::core::Result<void> Event::SetReceiveHandler(

ara::com::EventReceiveHandler handler, ExecutorT&& executor);

For the first overload without an execution context argument an implementation de-
fined default execution context (like in previous AUTOSAR releases) shall be used.c
(RS_CM_00211, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128,
RS_AP_00127, RS_AP_00138)

[SWS_CM_11357]{DRAFT} Error behaviour of provided Execution Context for
enabling service event trigger dIn case a SetReceiveHandler() cannot be exe-
cuted with the provided executor (e.g. because of resource problem) an ComErrc::-
kCouldNotExecute error shall be raised in all cases.c(RS_CM_00211, RS_CM_-
00212, RS_CM_00213, RS_CM_00214, RS_AP_00114, RS_AP_00119, RS_AP_-
00127)

[SWS_CM_00028]{DRAFT} Re-entrancy and thread-safety - SetReceiveHan-
dler dSetReceiveHandler shall be re-entrant and thread-safe for different Event
class instances. When called re-entrant or concurrently on the same Event class in-
stance, the behavior is undefined.c(RS_CM_00203, RS_AP_00114, RS_AP_00120,
RS_AP_00121)

[SWS_CM_00183]{DRAFT} Disable service event trigger dTo disable the triggering
of the application upon receiving of an event inside the specific Event class belonging
to the specific ServiceProxy class an UnsetReceiveHandler method shall be
provided to allow for disabling of triggering the application.

ara::core::Result<void> Event::UnsetReceiveHandler();

In case UnsetReceiveHandler() fails, ComErrc::kUnsetFailure shall be re-
turned in the Result.

c(RS_CM_00203, RS_AP_00114, RS_AP_00120)

340 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00029]{DRAFT} Re-entrancy and thread-safety - UnsetReceiveHan-
dler dUnsetReceiveHandler shall be re-entrant and thread-safe for different
Event class instances. When called re-entrant or concurrently on the same Event
class instance, the behavior is undefined.c(RS_CM_00203, RS_AP_00114, RS_AP_-
00120)

8.1.3.16 Service Trigger subscription

[SWS_CM_00723]{DRAFT} Method to subscribe to a service trigger dInside the
specific Trigger class belonging to the specific ServiceProxy class a Subscribe
method shall be provided to start subscription of the corresponding trigger.

ara::core::Result<void> Trigger::Subscribe();

If the Trigger is already subscribed to at the time of the call, and Subscribe() is
invoked, it shall return silently without any action.c(RS_CM_00103, RS_AP_00114,
RS_AP_00120)

[SWS_CM_00724]{DRAFT} Re-entrancy and thread-safety - Subscribe
dSubscribe shall be re-entrant and thread-safe for different Trigger class in-
stances. When called re-entrant or concurrently on the same Trigger class instance,
the behavior is undefined.c(RS_CM_00103, RS_AP_00114, RS_AP_00120)

[SWS_CM_00810]{DRAFT} Method to unsubscribe from a service trigger dInside
the specific Trigger class belonging to the specific ServiceProxy class a Un-
subscribe method shall be provided to allow for unsubscribing from previously sub-
scribed triggers.

void Trigger::Unsubscribe();

If the Trigger is not subscribed to at the time of the call, Unsubscribe() shall return
silently without any action.c(RS_CM_00104, RS_AP_00114, RS_AP_00120)

[SWS_CM_00035]{DRAFT} Re-entrancy and thread-safety - Unsubscribe
dUnsubscribe shall be re-entrant and thread-safe for different Trigger class in-
stances. When called re-entrant or concurrently on the same Trigger class instance,
the behavior is undefined.c(RS_CM_00104, RS_AP_00114, RS_AP_00120)

Getting subscription state and set a subscription change handler for Trigger is the
same as for Event. The following specification are also valid for Trigger:

• [SWS_CM_00316] Query Subscription State.

• [SWS_CM_00024] Reentrancy - GetSubscriptionState.

• [SWS_CM_00333] Set Subscription State change handler.

• [SWS_CM_11354] Execution Context for setting Subscription State change han-
dler.

341 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

• [SWS_CM_11355] Error behavior of provided Execution Context for setting Sub-
scription State change handler.

• [SWS_CM_00025] Reentrancy - SetSubscriptionStateChangeHandler.

• [SWS_CM_00334] Unset Subscription State change handler.

• [SWS_CM_00026] Reentrancy - UnsetSubscriptionStateChangeHan-
dler.

• [SWS_CM_00313] Call SubscriptionStateChangeHandler with kSubscription-
Pending.

• [SWS_CM_00314] Call SubscriptionStateChangeHandler with kSubscribed.

• [SWS_CM_00315] Re-establishing an active subscription.

8.1.3.17 Receive Trigger

Inside the specific Trigger class belonging to the specific ServiceProxy class, a
GetNewTriggers method shall be provided to allow for access of received triggers.

[SWS_CM_00226]{DRAFT} Method to update the trigger counter dThe Communi-
cation Management shall provide an GetNewTriggers method as part of the Trig-
ger class to update the trigger counter.

std::size_t GetNewTriggers();

c(RS_CM_00202, RS_AP_00114, RS_AP_00120, RS_AP_00121, RS_AP_00139,
RS_AP_00128, RS_AP_00127, RS_AP_00139)

[SWS_CM_00227]{DRAFT} Sequence of actions in GetNewTriggers dIn the con-
text of the GetNewTriggers call, the Communication Management shall get the num-
ber of triggers occurred since the last call of GetNewTriggers.c(RS_CM_00202,
RS_AP_00114)

[SWS_CM_00228]{DRAFT} Return Value dThe returned size_t indicates the num-
ber of triggers occurred since the last call to GetNewTriggers (Zero value means that
there is no new triggers received).c(RS_CM_00202, RS_AP_00114, RS_AP_00119,
RS_AP_00127)

[SWS_CM_11251]{DRAFT} Re-entrancy and thread-safety - GetNewTriggers
dGetNewTriggers shall be re-entrant and thread-safe for different Trigger class
instances. When called concurrently on the same Trigger class instance, the behav-
ior is undefined.c(RS_CM_00202, RS_AP_00114)

342 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.3.18 Receive trigger by getting triggered

For the functional description of the receive trigger by getting triggered API, see
[SWS_CM_00182].

[SWS_CM_00249]{DRAFT} Enable service Trigger trigger dTo enable that ap-
plications get triggered upon receiving of a trigger inside the specific Trigger class
belonging to the specific ServiceProxy class a SetReceiveHandler method shall
be provided to allow for specifying the function to call upon trigger arrival. Therefore, it
takes as input parameter handler a pointer to the respective function.

ara::core::Result<void> Trigger::SetReceiveHandler(
ara::com::TriggerReceiveHandler handler);

The TriggerReceiveHandler constitutes a function without parameters and has
to use the GetNewTriggers method of the specific Trigger class to access the
retrieved trigger counter. See [SWS_CM_00351] for its definition. In case SetRe-
ceiveHandler() fails, ComErrc::kSetHandlerNotSet shall be returned in the
Result.c(RS_CM_00203, RS_AP_00114, RS_AP_00120, RS_AP_00121)

The following specification are also valid for Trigger

• [SWS_CM_00028] Reentrancy - SetReceiveHandler

• [SWS_CM_00183] Disable service event trigger

• [SWS_CM_00029] Reentrancy - UnsetReceiveHandler

8.1.3.19 Call a service method

For the functional description of the call a service method API, see chapter 7.10.8.

[SWS_CM_00196]{DRAFT} Initiate a method call dFor each service method (i.e.,
ServiceInterface.method with ClientServerOperation.fireAndForget
set to false) of a ServiceInterface a specific Method class named by the
ServiceInterface.method.shortName shall be provided inside the specific
ServiceProxy class of the ServiceInterface.
Within this Method class, a dedicated method Output type combining the possible
output parameters (ClientServerOperation.arguments with ArgumentDat-
aPrototype.direction set to out or inout) shall be provided.
Additionally the operator() shall be provided inside the specific Method class to
allow the call of a method provided by a server.
As input parameters, the operator() shall take the respective input parameters (
ClientServerOperation.arguments with ArgumentDataPrototype.direc-
tion set to in or inout) of the provided method.
The operator() shall return an ara::core::Future object wrapping the dedi-
cated method Output type.

343 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

class Method {
struct Output {

TypeOutputParameter1 output1;
TypeOutputParameter2 output2;
...

};

ara::core::Future<Output> operator()(
TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

);
};

c(RS_CM_00212, RS_CM_00213, RS_AP_00114, RS_AP_00120, RS_AP_00138,
RS_AP_00128, RS_AP_00127, RS_AP_00138)

The method call according to [SWS_CM_00196] will return immediately. The caller’s
selection of a synchronous or asynchronous behavior to get the method output is
achieved by the use of the returned ara::core::Future object which is used to
query for method completion and result including possible error.

[SWS_CM_00032]{DRAFT} Re-entrancy and thread-safety - Method call operator
doperator() shall be re-entrant and thread-safe irrespective of the Method class
instance i.e. operator() shall be re-entrant and thread-safe for the same Method
class instance and for different Method class instances.c(RS_CM_00212, RS_CM_-
00213, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128, RS_AP_-
00127, RS_AP_00138)

[SWS_CM_00194]{DRAFT} Cancel the method call dThe destructor of the re-
turned ara::core::Future object shall be used by the caller to cancel the request
after issuing a method call. Deleting the returned ara::core::Future object shall
result in the abort of the method call and ensure that any related buffers are released
and no result is returned to the caller.c(RS_CM_00212, RS_CM_00213, RS_AP_-
00114, RS_AP_00127)

This is a mechanism on client side to tell the Communication Management software
that the caller is not interested in the method result anymore. Cancellation of the
method call is not propagated to the server side execution of the method.

[SWS_CM_00195]{DRAFT} Retrieving results of the method call dThe method Ge-
tResult() of the returned ara::core::Future object shall be used to retrieve the
result of the method call as ara::core::Result. The call of the method GetRe-
sult() will block if there is not yet a result available and will return after the result has
been received returning an object of the respective Output or an error. As an alter-
native, get() returns the contained object of the result from GetResult(), or throws
the contained error as exception, respectively.c(RS_CM_00212, RS_AP_00114, RS_-
AP_00120, RS_AP_00138, RS_AP_00128, RS_AP_00127, RS_AP_00139)

344 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_00192]{DRAFT} Synchronous behavior of method call dTo achieve syn-
chronous behavior of the method call, the methods of ara::core::Future object
with blocking behavior shall be used because they only return when the output of the
method call according to [SWS_CM_00196] is available: get(), wait(), wait_for
(), wait_until(). With the call of one of these methods and the result still pending,
the Communication Management software is allowed to perform actions which lead
to uncontrolled context switches from the caller point of view, e.g. an asynchronous
event-style mechanism for a wait-on-event.c(RS_CM_00212, RS_AP_00114, RS_-
AP_00120, RS_AP_00138, RS_AP_00128, RS_AP_00127, RS_AP_00138)

Note that there are situations where the methods of an ara::core::Future object
with blocking behavior will block forever. The adaptive application will need to gracefully
handle such a situation. Prominent examples for such situations are the following ones:

• the request message or the response message of the (remote) service method
call gets lost

• the implementation for the service method in the subclass of the respective Ser-
viceSkeleton (see [SWS_CM_00194]) does not return (i.e., hangs)

ara::com will not internally perform some kind of timeout supervision in order to
eventually unblock those blocking ara::core::Future methods. If such a timeout
supervision is desired from the perspective of the adaptive application, it is up to the
adaptive application to implement according mechanisms, e.g., by using the wait_for
(), wait_until(), or the is_ready() methods of the ara::core::Future.

On the other hand there are situations where the ara::com implementation on the
client side knows that an issued (remote) service method call will not succeed and
thus would block forever. Prominent examples for such situations are the following
ones:

• the sending of request message of the (remote) service method failed locally (i.e.,
the corresponding system or library call indicated an error)

• the received response message partly contains malformed message content but
contains sufficient correct information allowing to determine the method this re-
sponse is targeted at (i.e., there is sufficient information available about who to
notify/which ara::core::Future to fulfill) – in case of the SOME/IP network
binding (see Section 7.8.1) this would be a response message where

– the layer 2 and layer 4 checksums are correct

– the SOME/IP header (which contains the method ID) is intact (e.g., in case of
a SOME/IP response message, the checks described in [SWS_CM_10313]
are passed)

– the de-serialization of the payload fails though

[SWS_CM_10440]{DRAFT} Aborting method calls in case of locally detected
failures dTo notify the adaptive application about locally detected failures which

345 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

prevent an issued (remote) service method call from succeeding, the ara::-
com implementation shall make the Future returned by the function call opera-
tor (operator()) of the respective Method class (see [SWS_CM_00196]) or by
the Get or Set method of the respective Field class (see [SWS_CM_00112] and
[SWS_CM_00113]) ready by invoking the SetError (see [SWS_CORE_00347]) op-
eration of the Promise corresponding to this Future with an ara::core::Error-
Code (see [SWS_CORE_00501]) where the error domain is set to ara::com::Com-
ErrorDomain (see [SWS_CM_11264]) and the value is set to kNetworkBinding-
Failure (see [SWS_CM_10432]) as an argument.c(RS_CM_00213, RS_CM_00214,
RS_AP_00114, RS_AP_00119, RS_AP_00127)

[SWS_CM_00193]{DRAFT} Asynchronous behavior of method call with polling
dTo achieve asynchronous behavior of the method call with polling on the result avail-
ability, the non-blocking method is_ready() of ara::core::Future object shall
be used. If is_ready() returns true, the next call of get() shall not block, but
immediately return the valid value.c(RS_CM_00213, RS_CM_00214, RS_AP_00114,
RS_AP_00127)

Note:
When the user just calls is_ready() of ara::core::Future and on positive re-
sponse, finally GetResult()/get() of ara::core::Future, retrieving the result
works polling-based without any overhead in the middleware and uncontrolled context
switches due to asynchronous event-style mechanisms.

[SWS_CM_00197]{DRAFT} Asynchronous behavior of method call with notifica-
tion dTo achieve asynchronous behavior of the method call with event-driven notifica-
tion on the result availability, the non-blocking method then() of ara::core::Fu-
ture object shall be used. It allows to register a function, which gets asynchronously
called in case the future has a valid result.c(RS_CM_00213, RS_CM_00215, RS_AP_-
00114, RS_AP_00127, RS_AP_00138)

[SWS_CM_90435]{DRAFT} Initiate a Fire and Forget method call dFor
each fire and forget service method (i.e., ServiceInterface.method with
ClientServerOperation.fireAndForget set to true) of a ServiceInter-
face a specific FireAndForgetMethod class named by the ServiceInterface.
method.shortName shall be provided inside the specific ServiceProxy class of the
ServiceInterface.
Within this FireAndForgetMethod class, the operator() shall be provided to
allow the call of a fire and forget method provided by a server.
As input parameters, the operator() shall take the respective input parameters (
ClientServerOperation.arguments with ArgumentDataPrototype.direc-
tion set to in) of the provided fire and forget method.
The operator() shall not have return values.

class FireAndForgetMethod {
void operator()(

TypeInputParameter1 input1,
TypeInputParameter2 input2,

346 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

...
);

};

c(RS_CM_00225, RS_AP_00114, RS_AP_00120)

8.1.3.20 Get method for fields

[SWS_CM_00112]{DRAFT} Method to get the value of a field dThe Communication
Management shall provide a Get method as part of the Field class to offer a service
to request the current value of the service provider.

ara::core::Future<FieldType> Get();

c(RS_CM_00218, RS_AP_00114, RS_AP_00120, RS_AP_00138, RS_AP_00128,
RS_AP_00127, RS_AP_00138)

[SWS_CM_00132]{DRAFT} Existence of getter method dThe existence of the Get
method as part of the Field class shall be controlled by Field.hasGetter.c(RS_-
CM_00218, RS_AP_00114)

[SWS_CM_00030]{DRAFT} Re-entrancy and thread-safety - Get dGet shall be re-
entrant and thread-safe irrespective of the Field class instance i.e. Get shall be re-
entrant and thread-safe for the same Field class instance and for different Field
class instances.c(RS_CM_00218, RS_AP_00114, RS_AP_00120, RS_AP_00138,
RS_AP_00128, RS_AP_00127, RS_AP_00138)

8.1.3.21 Set method for fields

[SWS_CM_00113]{DRAFT} Method to set the value of a field dThe Communication
Management shall provide a Set method as part of the Field class to offer a service
to the applications to request the setting of a new value within the service provider.

ara::core::Future<FieldType> Set(const FieldType& value);

c(RS_CM_00217, RS_AP_00114, RS_AP_00120, RS_AP_00121, RS_AP_00138,
RS_AP_00138, RS_AP_00127, RS_AP_00138)

[SWS_CM_00133]{DRAFT} Existence of the set method dThe existence of the set
method as part of the Field class shall be controlled by Field.hasSetter.c(RS_-
CM_00218, RS_AP_00114)

[SWS_CM_00031]{DRAFT} Re-entrancy and thread-safety - Set dSet shall be re-
entrant and thread-safe irrespective of the Field class instance i.e. Set shall be re-
entrant and thread-safe for the same Field class instance and for different Field
class instances.c(RS_CM_00217, RS_AP_00114, RS_AP_00120, RS_AP_00121,
RS_AP_00138, RS_AP_00138, RS_AP_00127, RS_AP_00138)

347 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

8.1.3.22 Instance Specifier Translation

For the functional description of the Instance Specifier Translation API, see chapter
7.10.10.

[SWS_CM_00118]{DRAFT} d

Kind: function

Symbol: ResolveInstanceIDs(ara::core::InstanceSpecifier modelName)

Scope: namespace ara::com::runtime

Syntax: ara::core::Result<ara::com::InstanceIdentifierContainer> Resolve
InstanceIDs (ara::core::InstanceSpecifier modelName);

Parameters (in): modelName The instance specifier to be translated.

Return value: ara::core::Result< ara::com::Instance
IdentifierContainer >

An Instance Identifier list if successful, otherwise an
error code indicating the error

Errors: ara::com::ComErrc::kInstanceIDCould
NotBeResolved

ResolveInstanceIDs() failed to resolve InstanceID
from InstanceSpecifier, i.e. is not mapped correctly.

Header file: #include "ara/com/runtime/runtime.h"

Description: Method Instance Specifier Translation. The Communication Management shall provide a
ResolveInstanceIDs method to translate an InstanceSpecifier to an Instance Identifiers list. The
size of the list could be 0, 1 or greater than 1 depending on the match.

c(RS_CM_00200, RS_AP_00114, RS_AP_00115, RS_AP_00120, RS_AP_00121,
RS_AP_00119, RS_AP_00127, RS_AP_00137)

For the definition of the types used in the ResolveInstanceIDs signature, see:

• [SWS_CM_00319] for InstanceIdentifierContainer,

• [SWS_CORE_08001] for InstanceSpecifier.

8.1.3.23 Raw Data Stream API

For the functional description of the Raw Data Stream API, see chapter 7.5.2.

[SWS_CM_10481] d

Kind: class

Symbol: RawDataStreamClient

Scope: namespace ara::com::raw

Syntax: class RawDataStreamClient final {...};

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: This class defines a RawDataStreamClient object for reading and writing binary data streams
over a network connection.

c(RS_CM_00410, RS_CM_00411)

[SWS_CM_10482] d

348 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Kind: function

Symbol: Create(const ara::core::InstanceSpecifier &instance)

Scope: class ara::com::raw::RawDataStreamClient

Syntax: ara::core::Result<RawDataStreamClient> Create (const
ara::core::InstanceSpecifier &instance) noexcept;

Parameters (in): instance The instance specifier for the instance.

Return value: ara::core::Result< RawDataStream
Client >

ara::core::Result<RawDataStreamClient> The Raw
DataStreamClient object if succesful, otherwise an
error code indicating the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kConnection
CreationFailed

Permission to create a connection is denied.
(POSIX EACCES)

Errors:

ara::com::raw::RawErrc::kAddressNot
Available

The specified address is not available from the local
machine.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Named exception-less constructor that takes an instance Specifier qualifying the wanted
network binding and parameters for the instance.

If Remote Unicast Credentials (TCP or UDP) are defined for the client, the constructor shall
create an endpoint for the communication, and store the handle in the created RawDataStream
Client object, to be used in the Read- and Write-operations for the RawDataStreamClient (for
1:1 use cases).

If Multicast Credentials (UDP) are defined for the client, the constructor shall create an endpoint
for the communication, bind and join the multicast address and port specified in the Multicast
Credentials.

For 1:N use cases this endpoint shall be used when RawDataStreamsClient.ReadData() is
called, otherwise (for 1:1 use cases), the unicast endpoint shall be used for reading data.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145)

[SWS_CM_10483] d

Kind: function

Symbol: ~RawDataStreamClient()

Scope: class ara::com::raw::RawDataStreamClient

Syntax: ~RawDataStreamClient () noexcept;

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Destructor of the RawDataStreamClient that deletes the RawDataStreamClient instance.

If the connection is still open, the connection should be closed and shut down before destroying
the RawDataStreamClient object.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145)

[SWS_CM_11303]{DRAFT} d

Kind: function

Symbol: RawDataStreamClient(const RawDataStreamClient &)

Scope: class ara::com::raw::RawDataStreamClient

Syntax: RawDataStreamClient (const RawDataStreamClient &)=delete;

5

349 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Copy constructor of the RawDataStreamClient - not allowed.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145, RS_AP_00147)

[SWS_CM_11304]{DRAFT} d

Kind: function

Symbol: operator=(const RawDataStreamClient &)

Scope: class ara::com::raw::RawDataStreamClient

Syntax: RawDataStreamClient& operator= (const RawDataStreamClient &)=delete;

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Copy assignment operator of the RawDataStreamClient - not allowed.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145, RS_AP_00147)

[SWS_CM_11305]{DRAFT} d

Kind: function

Symbol: RawDataStreamClient(RawDataStreamClient &&other)

Scope: class ara::com::raw::RawDataStreamClient

Syntax: RawDataStreamClient (RawDataStreamClient &&other) noexcept;

Parameters (in): other The RawDataStreamClient object to be moved.

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Move constructor of the RawDataStreamClient.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145, RS_AP_00147)

[SWS_CM_11306]{DRAFT} d

Kind: function

Symbol: operator=(RawDataStreamClient &&other)

Scope: class ara::com::raw::RawDataStreamClient

Syntax: RawDataStreamClient& operator= (RawDataStreamClient &&other)
&noexcept;

Parameters (in): other The RawDataStreamClient object to be moved.

Return value: RawDataStreamClient & –

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Move assignment operator of the RawDataStreamClient.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145, RS_AP_00147)

[SWS_CM_10484] d

350 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Kind: function

Symbol: Connect()

Scope: class ara::com::raw::RawDataStreamClient

Syntax: ara::core::Result<void> Connect () noexcept;

Return value: ara::core::Result< void > void if successful, otherwise an error code indicating
the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kConnection
Refused

The connection was refused by target.

ara::com::raw::RawErrc::kAddressNot
Available

The specified address is not available from the local
machine.

ara::com::raw::RawErrc::kStream
AlreadyConnected

The specified connection is already connected.

ara::com::raw::RawErrc::kPeer
Unreachable

The peer is unreachable by the network.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Sets up a unicast socket connection for the RawDataStream defined by the instance, and
establishes a connection to the TCP server.

In the case of UDP, no connection is established. Incoming and outgoing packets are restricted
to the specified address. The socket endpoints and attributes are specified in the manifest
which is accessed through the InstanceSpecifer provided in the constructor. If TLS security
protocol is configured for the socket connection, the TLS/DTLS connection shall be initialized
here.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

Note: For TLS/DTLS connection with Raw Data Streaming see also chapter 7.9.2.2.3.

[SWS_CM_11307]{DRAFT} d

Kind: function

Symbol: Connect(std::chrono::milliseconds timeout)

Scope: class ara::com::raw::RawDataStreamClient

Syntax: ara::core::Result<void> Connect (std::chrono::milliseconds timeout)
noexcept;

Parameters (in): timeout Timeout value for this operation.

Return value: ara::core::Result< void > void if successful, otherwise an error code indicating
the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kConnection
Refused

The connection was refused by target.

ara::com::raw::RawErrc::kAddressNot
Available

The specified address is not available from the local
machine.

ara::com::raw::RawErrc::k
CommunicationTimeout

The connect operation timed out.

ara::com::raw::RawErrc::kStream
AlreadyConnected

The specified connection is already connected.

Errors:

ara::com::raw::RawErrc::kPeer
Unreachable

The peer is unreachable by the network.

5

351 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Sets up a unicast socket connection for the RawDataStream defined by the instance, and
establishes a connection to the TCP server.

In the case of UDP, no connection is established. Incoming and outgoing packets are restricted
to the specified address. The socket endpoints and attributes are specified in the manifest
which is accessed through the InstanceSpecifer provided in the constructor. If TLS security
protocol is configured for the socket connection, the TLS/DTLS connection shall be initialized
here.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_10485] d

Kind: function

Symbol: Shutdown()

Scope: class ara::com::raw::RawDataStreamClient

Syntax: ara::core::Result<void> Shutdown () noexcept;

Return value: ara::core::Result< void > void if successful, otherwise an error code indicating
the error

Exception Safety: noexcept

ara::com::raw::RawErrc::kStreamNot
Connected

Trying to shutdown a RawDataStream without an
established connection.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Closes the socket connection for the RawDataStream defined by the instance. Both the
receiving and the sending part of the socket connection shall be shut down.

For TCP, the full-duplex connection shall be shut down disallowing further receptions and
transmissions, before closing the socket.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_10486] d

Kind: function

Symbol: ReadData(std::size_t maxLength)

Scope: class ara::com::raw::RawDataStreamClient

Syntax: ara::core::Result<ReadDataResult> ReadData (std::size_t maxLength)
noexcept;

Parameters (in): maxLength The requested number of bytes to read from the
stream.

Return value: ara::core::Result< ReadDataResult > a struct of type ReadDataResult if succesful,
otherwise an error code indicating the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kStreamNot
Connected

Trying to read from a stream without an established
connection.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

5

352 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Requests to read a number of bytes of data from the socket connection for the RawDataStream
defined by the instance.

If Multicast Credentials are defined for the client, the data shall be read from the multicast
socket created in the constructor (for 1:N use cases), otherwise the data shall be read from the
unicast TCP socket connection set up in Connect() (for 1:1 TCP unicast use case), or the
unicast UDP socket created in the constructor (for 1:1 UDP unicast use case).

For efficiency, the zero-copy semantics of ara::com::SamplePtr is used, which means that the
ownership of the allocated memory of the read data is transferred to the application in the Read
DataResult.data value.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11309]{DRAFT} d

Kind: function

Symbol: ReadData(std::size_t maxLength, std::chrono::milliseconds timeout)

Scope: class ara::com::raw::RawDataStreamClient

Syntax: ara::core::Result<ReadDataResult> ReadData (std::size_t maxLength,
std::chrono::milliseconds timeout) noexcept;

maxLength The number of bytes to read from the stream.Parameters (in):

timeout Timeout value for this operation.

Return value: ara::core::Result< ReadDataResult > a struct of type ReadDataResult if succesful,
otherwise an error code indicating the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kStreamNot
Connected

Trying to read from a stream without an established
connection.

ara::com::raw::RawErrc::k
CommunicationTimeout

No data was read until the timeout expired.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Requests to read a number of bytes of data from the socket connection for the RawDataStream
defined by the instance.

If Multicast Credentials are defined for the client, the data shall be read from the multicast
socket created in the constructor (for 1:N use cases), otherwise the data shall be read from the
unicast TCP socket connection set up in Connect() (for 1:1 TCP unicast use case), or the
unicast UDP socket created in the constructor (for 1:1 UDP unicast use case).

For efficiency, the zero-copy semantics of ara::com::SamplePtr is used, which means that the
ownership of the allocated memory of the read data is transferred to the application in the Read
DataResult.data value.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_10487] d

Kind: function

Symbol: WriteData(ara::com::SamplePtr< std::uint8_t > data, std::size_t maxLength)

Scope: class ara::com::raw::RawDataStreamClient

Syntax: ara::core::Result<std::size_t> WriteData (ara::com::SamplePtr<
std::uint8_t > data, std::size_t maxLength) noexcept;

5

353 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
data pointer to the byte array to send. A SamplePtr is

used to get std::unique_ptr semantics.
Parameters (in):

maxLength The number of bytes to write to the stream.

Return value: ara::core::Result< std::size_t > the actual number of bytes written if succesful,
otherwise an error code indicating the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kStreamNot
Connected

Trying to write to a stream without an established
connection.

ara::com::raw::RawErrc::kConnection
ClosedByPeer

The established connection has been shut down
during writing.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Requests to write of a number of bytes to the the socket connection for the RawDataStream
defined by the instance (for 1:1 use cases).

If Multicast Credentials are defined for the client reading of data, a single socket can be used
for both multicast reading and unicast writing (for use case 1:N UDP + 1:1 UDP, Server sends
data via multicast, and a client sends control data via unicast). For efficiency, the zero-copy
semantics of ara::com::SamplePtr is used.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11310]{DRAFT} d

Kind: function

Symbol: WriteData(ara::com::SamplePtr< std::uint8_t > data, std::size_t maxLength,
std::chrono::milliseconds timeout)

Scope: class ara::com::raw::RawDataStreamClient

Syntax: ara::core::Result<std::size_t> WriteData (ara::com::SamplePtr<
std::uint8_t > data, std::size_t maxLength, std::chrono::milliseconds
timeout) noexcept;

data pointer to the byte array to send. A SamplePtr is
used to get std::unique_ptr semantics.

maxLength The number of bytes to write to the stream.

Parameters (in):

timeout Timeout value for this operation.

Return value: ara::core::Result< std::size_t > the actual number of bytes written if succesful,
otherwise an error code indicating the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kStreamNot
Connected

Trying to write to a stream without an established
connection.

ara::com::raw::RawErrc::k
CommunicationTimeout

No data was written until the timeout expired.

ara::com::raw::RawErrc::kConnection
ClosedByPeer

The established connection has been shut down
during writing.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

5

354 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Description: Requests to write a number of bytes to the the socket connection for the RawDataStream

defined by the instance.

If Multicast Credentials are defined for the client reading of data, a single socket can be used
for both multicast reading and unicast writing (for use case 1:N UDP + 1:1 UDP, Server sends
data via multicast, and a client sends control data via unicast). For efficiency, the zero-copy
semantics of ara::com::SamplePtr is used.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11311]{DRAFT} d

Kind: class

Symbol: RawDataStreamServer

Scope: namespace ara::com::raw

Syntax: class RawDataStreamServer final {...};

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: This class defines a RawDataStreamServer object for reading and writing binary data streams
over a network connection.

c(RS_CM_00410, RS_CM_00411)

[SWS_CM_11312]{DRAFT} d

Kind: function

Symbol: Create(const ara::core::InstanceSpecifier &instance)

Scope: class ara::com::raw::RawDataStreamServer

Syntax: ara::core::Result<RawDataStreamServer> Create (const
ara::core::InstanceSpecifier &instance) noexcept;

Parameters (in): instance The instance specifier for the instance.

Return value: ara::core::Result< RawDataStream
Server >

ara::core::Result<RawDataStreamServer> The Raw
DataStreamServer object if succesful, otherwise an
error code indicating the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kConnection
CreationFailed

Permission to create a connection is denied.
(POSIX EACCES)

ara::com::raw::RawErrc::kAddressNot
Available

The specified address is not available from the local
machine.

Errors:

ara::com::raw::RawErrc::kStream
AlreadyConnected

The specified connection is already connected.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Named exception-less constructor that takes an instance Specifier qualifying the wanted
network credentials (UDP or TCP) for the instance. A socket shall be created and bound to the
address and port specified in the local credentials. In case of TCP it shall also mark the socket
as passive and listen for connections (for use case 1:1 TCP unicast). If Remote Unicast
Credentials (UDP) are defined for the server, the constructor shall create an endpoint for the
communication, and store the handle in the created RawDataStreamServer object, to be used
in the Read and Write- operations for the RawDataStreamServer (for use case 1:1 UDP
unicast). If Multicast Credentials (UDP) are defined for the server, the constructor shall create
an endpoint for the remote communication, bind and join the multicast address and port
specified in the MulticastCredentials. In this case, this endpoint shall be used when RawData
StreamsServer.WriteData() is called (for 1:N use cases), otherwise the unicast endpoint shall
be used for writing data (for 1:1 use cases).

355 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145)

[SWS_CM_11313]{DRAFT} d

Kind: function

Symbol: ~RawDataStreamServer()

Scope: class ara::com::raw::RawDataStreamServer

Syntax: ~RawDataStreamServer () noexcept;

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Destructor of the RawDataStreamServer that deletes the RawDataStreamServer instance.

If the connection is still open, the connection should be closed and shut down before destroying
the RawDataStreamClient object.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145)

[SWS_CM_11314]{DRAFT} d

Kind: function

Symbol: RawDataStreamServer(const RawDataStreamServer &)

Scope: class ara::com::raw::RawDataStreamServer

Syntax: RawDataStreamServer (const RawDataStreamServer &)=delete;

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Copy constructor of the RawDataStreamServer - not allowed.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145)

[SWS_CM_11315]{DRAFT} d

Kind: function

Symbol: operator=(const RawDataStreamServer &)

Scope: class ara::com::raw::RawDataStreamServer

Syntax: RawDataStreamServer& operator= (const RawDataStreamServer &)=delete;

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Copy assignment operator of the RawDataStreamServer - not allowed.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145)

[SWS_CM_11316]{DRAFT} d

Kind: function

Symbol: RawDataStreamServer(RawDataStreamServer &&other)

Scope: class ara::com::raw::RawDataStreamServer

Syntax: RawDataStreamServer (RawDataStreamServer &&other) noexcept;

Parameters (in): other The RawDataStreamServer object to be moved.

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_data_stream.h"

5

356 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Description: Move constructor of the RawDataStreamServer.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145, RS_AP_00147)

[SWS_CM_11317]{DRAFT} d

Kind: function

Symbol: operator=(RawDataStreamServer &&other)

Scope: class ara::com::raw::RawDataStreamServer

Syntax: RawDataStreamServer& operator= (RawDataStreamServer &&other)
&noexcept;

Parameters (in): other The RawDataStreamServer object to be moved.

Return value: RawDataStreamServer & –

Exception Safety: noexcept

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Move assignment operator of the RawDataStreamServer.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412, RS_AP_00145, RS_AP_00147)

[SWS_CM_11318]{DRAFT} d

Kind: function

Symbol: WaitForConnection()

Scope: class ara::com::raw::RawDataStreamServer

Syntax: ara::core::Result<void> WaitForConnection () noexcept;

Return value: ara::core::Result< void > void if successful, otherwise an error code indicating
the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kConnection
Aborted

The incoming connection was aborted by the
network.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Enables the RawDataStreamServer instance for incoming connections.

For TCP the constructor marks the socket as ready to accept connection requests from a client
(see SWS_CM_11312), and WaitForConnection() waits to accept an incoming connection
request. In the case of UDP, no connection is established, and the operation shall return with no
action.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11319]{DRAFT} d

Kind: function

Symbol: WaitForConnection(std::chrono::milliseconds timeout)

Scope: class ara::com::raw::RawDataStreamServer

5

357 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Syntax: ara::core::Result<void> WaitForConnection (std::chrono::milliseconds

timeout) noexcept;

Parameters (in): timeout Timeout value for this operation.

Return value: ara::core::Result< void > void if successful, otherwise an error code indicating
the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::k
CommunicationTimeout

The WaitForConnection operation timed out.

ara::com::raw::RawErrc::kConnection
Aborted

The incoming connection was aborted by the
network.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Enables the RawDataStreamServer instance for incoming connections.

For TCP the constructor marks the socket as ready to accept connection requests from a client
(see SWS_CM_11312), and WaitForConnection() waits to accept an incoming connection
request. In the case of UDP, no connection is established, and the operation shall return with no
action.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11320]{DRAFT} d

Kind: function

Symbol: Shutdown()

Scope: class ara::com::raw::RawDataStreamServer

Syntax: ara::core::Result<void> Shutdown () noexcept;

Return value: ara::core::Result< void > void if successful, otherwise an error code indicating
the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kStreamNot
Connected

Trying to shutdown a RawDataStream without an
established connection.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Closes the socket connection for the RawDataStream defined by the instance.

Both the receiving and the sending part of the socket connection shall be shut down. For TCP,
the full-duplex connection shall be shut down disallowing further receptions and transmissions,
before closing the socket.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11322]{DRAFT} d

Kind: function

Symbol: ReadData(std::size_t maxLength)

Scope: class ara::com::raw::RawDataStreamServer

Syntax: ara::core::Result<ReadDataResult> ReadData (std::size_t maxLength)
noexcept;

5

358 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Parameters (in): maxLength The number of bytes to read from the stream.

Return value: ara::core::Result< ReadDataResult > a struct of type ReadDataResult if succesful,
otherwise an error code indicating the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kStreamNot
Connected

Trying to read from a stream without an established
connection.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Requests to read a number of bytes of data from the Unicast socket connection for the Raw
DataStream defined by the instance.

For efficiency, the zero-copy semantics of ara::com::SamplePtr is used, which means that the
ownership of the allocated memory of the read data is transferred to the application in the Read
DataResult.data value.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11323]{DRAFT} d

Kind: function

Symbol: ReadData(std::size_t maxLength, std::chrono::milliseconds timeout)

Scope: class ara::com::raw::RawDataStreamServer

Syntax: ara::core::Result<ReadDataResult> ReadData (std::size_t maxLength,
std::chrono::milliseconds timeout) noexcept;

maxLength The number of bytes to read from the stream.Parameters (in):

timeout Parameter to assign a timeout for this operation.

Return value: ara::core::Result< ReadDataResult > a struct of type ReadDataResult.

Exception Safety: noexcept

ara::com::raw::RawErrc::kStreamNot
Connected

Trying to read from a stream without an established
connection.

ara::com::raw::RawErrc::k
CommunicationTimeout

No data was read until the timeout expired.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Requests to read a number of bytes of data from the unicast socket connection for the Raw
DataStream defined by the instance.

For efficiency, the zero-copy semantics of ara::com::SamplePtr is used, which means that the
ownership of the allocated memory of the read data is transferred to the application in the Read
DataResult.data value.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11324]{DRAFT} d

Kind: function

Symbol: WriteData(ara::com::SamplePtr< std::uint8_t > data, std::size_t maxLength)

Scope: class ara::com::raw::RawDataStreamServer

5

359 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Syntax: ara::core::Result<std::size_t> WriteData (ara::com::SamplePtr<

std::uint8_t > data, std::size_t maxLength) noexcept;

data pointer to the byte array to send. A SamplePtr is
used to get std::unique_ptr semantics.

Parameters (in):

maxLength The number of bytes to write to the stream.

Return value: ara::core::Result< std::size_t > the actual number of bytes written if succesful,
otherwise an error code indicating the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kStreamNot
Connected

Trying to write to a stream without an established
connection.

ara::com::raw::RawErrc::kConnection
ClosedByPeer

The established connection has been shut down
during writing.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

Description: Requests to write a number of bytes to the the socket connection for the RawDataStream
defined by the instance.

If Remote Multicast Credentials are defined for the server, the data shall be written to the
multicast socket created in the constructor (for 1:N use cases). Otherwise in case of TCP, the
data shall be written to the unicast socket connection set up in WaitForConnection() (for 1:1
TCP unicast use case). In case of UDP the data shall be written to the unicast socket created
in the constructor (1:1 UDP unicast).

For efficiency, the zero-copy semantics of ara::com::SamplePtr is used.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

[SWS_CM_11325]{DRAFT} d

Kind: function

Symbol: WriteData(ara::com::SamplePtr< std::uint8_t > data, std::size_t maxLength,
std::chrono::milliseconds timeout)

Scope: class ara::com::raw::RawDataStreamServer

Syntax: ara::core::Result<std::size_t> WriteData (ara::com::SamplePtr<
std::uint8_t > data, std::size_t maxLength, std::chrono::milliseconds
timeout) noexcept;

data pointer to the byte array to send. A SamplePtr is
used to get std::unique_ptr semantics.

maxLength The number of bytes to write to the stream.

Parameters (in):

timeout Parameter to assign a timeout for this operation.

Return value: ara::core::Result< std::size_t > the actual number of bytes written if succesful,
otherwise an error code indicating the error.

Exception Safety: noexcept

ara::com::raw::RawErrc::kStreamNot
Connected

Trying to write to a stream without an established
connection.

ara::com::raw::RawErrc::k
CommunicationTimeout

No data was written until the timeout expired.

ara::com::raw::RawErrc::kConnection
ClosedByPeer

The established connection has been shut down
during writing.

Errors:

ara::com::raw::RawErrc::kInterrupted
BySignal

The operation was interrupted by the system.

Header file: #include "ara/com/raw/raw_data_stream.h"

5

360 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Description: Requests to write a number of bytes to the the socket connection for the RawDataStream

defined by the instance.

If Remote Multicast Credentials are defined for the server, the data shall be written to the
multicast socket created in the constructor (for 1:N use cases). Otherwise in case of TCP, the
data shall be written to the unicast socket connection set up in WaitForConnection() (for 1:1
TCP unicast use case). In case of UDP the data shall be written to the unicast socket created
in the constructor (1:1 UDP unicast).

For efficiency, the zero-copy semantics of ara::com::SamplePtr is used.

c(RS_CM_00410, RS_CM_00411, RS_CM_00412)

For the definition of the types used in the ReadData and WriteData signature, see:

• [SWS_CM_00306] for SamplePtr

361 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

9 Service Interfaces

9.1 Service Interfaces

[SWS_CM_11280]{DRAFT} d

Name VerificationStatus

NameSpace ara::com::secoc

Events VerificationStatus
Type VerificationStatusContainer

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

[SWS_CM_11282]{DRAFT} d

Name VerificationStatusConfigurationByDataId

NameSpace ara::com::secoc

Method VerifyStatusOverride

Description This service method provides the ability to force specific behavior of SecOc: accept or drop a message
with or without performing the verification of authenticator or independent of the authenticator verification
result, and to force a specific result for VerificationStatusResult allowing additional fault handling in the
application.

FireAndForget false

dataID

Description Data ID for which the override operation shall happen

Type uint16_t

Variation

Parameter

Direction IN

overrideStatus

Description The override status enum that defines whether verification is executed and whether
the message is passed on, and for how long the override is active

Type OverrideStatus

Variation

Parameter

Direction IN

numberOfMessagesToOverride

Description Number of sequential VerifyStatus to override when using a specific counter for
authentication verification. This is only considered when OverrideStatus is equal to k
SecOcOverrideDropUntilLimit, kSecOcOverrideSkipUntilLimit or kSecOcOverride
PassUntilLimit.

Type uint8_t

Variation

Parameter

Direction IN

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

362 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_11281]{DRAFT} d

Name VerificationStatusConfigurationByFreshnessId

NameSpace ara::com::secoc

Method VerifyStatusOverride

Description This service method provides the ability to force specific behavior of SecOc: accept or drop a message
with or without performing the verification of authenticator or independent of the authenticator verification
result, and to force a specific result for VerificationStatusResult allowing additional fault handling in the
application.

FireAndForget false

freshnessID

Description Freshness value ID for which the override operation shall happen

Type uint16_t

Variation

Parameter

Direction IN

overrideStatus

Description The override status enum that defines whether verification is executed and whether
the message is passed on, and for how long the override is active

Type OverrideStatus

Variation

Parameter

Direction IN

numberOfMessagesToOverride

Description Number of sequential VerifyStatus to override when using a specific counter for
authentication verification. This is only considered when OverrideStatus is equal to k
SecOcOverrideDropUntilLimit, kSecOcOverrideSkipUntilLimit or kSecOcOverride
PassUntilLimit.

Type uint8_t

Variation

Parameter

Direction IN

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

9.2 Data Types

[SWS_CM_11285]{DRAFT} d

Name OverrideStatus

Kind TYPE_REFERENCE

Derived from uint8_t

Description Override Status enum

Range / Symbol Limit Description

kSecOcOverrideDropUntil
Notice

0x00 Until further notice, authenticator verification is not performed, PDU is
dropped, verification result is set to kSecOcNoVerification.

5

363 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
kSecOcOverrideDropUntilLimit 0x01 Until NumberOfMessagesToOverride is reached, authenticator

verification is not performed, PDU is dropped, verification result is set
to kSecOcNoVerification.

kSecOcOverrideCancel 0x02 Cancel Override of VerifyStatus.

kSecOcOverridePassUntil
Notice

0x40 Until further notice, authenticator verification is performed, PDU is
forwarded to the application independent of verification result,
verification result is set to kSecOcVerificationFailureOverwritten in
case of failed verification.

kSecOcOverrideSkipUntilLimit 0x41 Until NumberOfMessagesToOverride is reached, authenticator
verification is not performed, PDU is sent to the application,
verification result is set to kSecOcNoVerification.

kSecOcOverridePassUntilLimit 0x42 Until NumberOfMessagesToOverride is reached, authenticator
verification is performed, PDU is sent to the application independent of
verification result, verification result is set to kSecOcVerificationFailure
Overwritten in case of failed verification.

kSecOcOverrideSkipUntil
Notice

0x43 Until further notice, authenticator verification is not performed, PDU is
sent to the application, verification result is set to kSecOcNo
Verification.

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

[SWS_CM_11283]{DRAFT} d

Name VerificationStatusContainer

Kind STRUCTURE

Subelements freshnessValueID uint16_t

verificationStatus VerificationStatusResult

secOCDataId uint16_t

Derived from -

Description Data structure to bundle the status of a verification attempt for a specific Freshness Value
and Data ID

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

[SWS_CM_11284]{DRAFT} d

Name VerificationStatusResult

Kind TYPE_REFERENCE

Derived from uint8_t

Description Data structure to bundle the status of a verification attempt for a specific Freshness Value
and Data ID

Range / Symbol Limit Description

kSecOcVerificationSuccess 0x00 Verification successful

kSecOcVerificationFailure 0x01 Verification not successful

kSecOcFreshnessFailure 0x02 Verification not successful because of wrong freshness value.

kSecOcAuthenticationBuild
Failure

0x03 Verification not successful because of wrong build authentication
codes

kSecOcNoVerification 0x04 Verification has been skipped and the data has been provided to the
application as is.

kSecOcVerificationFailure
Overwritten

0x05 Verification failed, but the PDU was passed on to the application due
to the override status for this PDU.

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

364 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document.

Class AbstractIamRemoteSubject (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::SCREIAM

Note This abstract meta-class defines the proxy information about the remote node.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses IPSecIamRemoteSubject, IpIamRemoteSubject, TlsIamRemoteSubject

Attribute Type Mult. Kind Note

– – – – –

Table A.1: AbstractIamRemoteSubject

Class AbstractRawDataStreamEthernetCredentials (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::RawDataStreamMapping

Note This meta-class serves as an abstract base class for the configuration of network credentials.

Tags:atp.Status=draft

Base ARObject , Describable

Subclasses RawDataStreamEthernetTcpUdpCredentials, RawDataStreamEthernetUdpCredentials

Attribute Type Mult. Kind Note

ipV4Address Ip4AddressString 0..1 attr This attribute describes the IP V4 address of the remote
server.

Tags:atp.Status=draft

ipV6Address Ip6AddressString 0..1 attr This attribute describes the IP V6 address of the remote
server.

Tags:atp.Status=draft

udpPort PositiveInteger 0..1 attr This attribute represents the configuration of a UDP port
number.

Tags:atp.Status=draft

Table A.2: AbstractRawDataStreamEthernetCredentials

Class AdaptivePlatformServiceInstance (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a service instance in
an abstract way.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Subclasses ProvidedApServiceInstance, RequiredApServiceInstance

Attribute Type Mult. Kind Note

5

365 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class AdaptivePlatformServiceInstance (abstract)

e2eEvent
ProtectionProps

End2EndEvent
ProtectionProps

* aggr This aggregation allows to protect an event or a field
notifier that is defined inside of the ServiceInterface that
is referenced by the ServiceInstance in the role service
Interface.

Tags:atp.Status=draft

e2eMethod
ProtectionProps

End2EndMethod
ProtectionProps

* aggr This aggregation allows to protect a method or a field
getter or a field setter that is defined inside of the Service
Interface that is referenced by the ServiceInstance in the
role serviceInterface

Tags:atp.Status=draft

secureCom
Config

ServiceInterface
ElementSecureCom
Config

* aggr Configuration settings to secure the communication of
ServiceInterface elements.

Tags:atp.Status=draft

serviceInterface
Deployment

ServiceInterface
Deployment

0..1 ref Reference to a ServiceInterfaceDeployment that identifies
the ServiceInterface that is represented by the Service
Instance.

Tags:atp.Status=draft

Table A.3: AdaptivePlatformServiceInstance

Class ApApplicationError

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the ability to formally specify the semantics of an application error on the
AUTOSAR adaptive platform

Tags:
atp.Status=draft
atp.recommendedPackage=ApplicationErrors

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

errorCode Integer 1 attr This attribute has the ability to specify the error code
value within the enclosing AdaptivePlatformApplication
Error.

Tags:atp.Status=draft

errorDomain ApApplicationError
Domain

1 ref This reference represents the error domain of the Ap
ApplicationError.

Tags:atp.Status=draft

Table A.4: ApApplicationError

Class ApApplicationErrorDomain

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the ability to define a global error domain for an ApApplicationError.

Tags:
atp.Status=draft
atp.recommendedPackage=ApplicationErrorDomains

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

5

366 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ApApplicationErrorDomain

namespace
(ordered)

SymbolProps * aggr This aggregation defines the namespace of the Ap
ApplicationErrorDomain

Tags:atp.Status=draft

value PositiveUnlimitedInteger 1 attr This attribute identifies the error category.

Tags:atp.Status=draft

Table A.5: ApApplicationErrorDomain

Class ApApplicationErrorSet

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class acts as a reference target that represents an entire collection of APApplicationErrors.
This takes the burden from ClientServerOperations that reference a larger number of ApApplication
Errors.

Tags:
atp.Status=draft
atp.recommendedPackage=ApplicationErrorSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

apApplication
Error

ApApplicationError * ref This reference represents the collection of ApApplication
Error represented by the enclosing ApApplicationErrorSet

Tags:atp.Status=draft

Table A.6: ApApplicationErrorSet

Class ApSomeipTransformationProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::SerializationProperties

Note SOME/IP serialization properties.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, TransformationProps

Attribute Type Mult. Kind Note

alignment PositiveInteger 0..1 attr Defines the padding for alignment purposes that will be
added by the SOME/IP transformer after the serialized
data of the variable data length data element. The
alignment shall be specified in Bits.

Tags:atp.Status=draft

byteOrder ByteOrderEnum 0..1 attr Specifies the byte order of data in the serialized data
stream.

Tags:atp.Status=draft

5

367 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ApSomeipTransformationProps

implements
LegacyString
Serialization

Boolean 0..1 attr This attribute indicates that Strings in the SOME/IP
message shall NOT be serialized according to the SOME/
IP specification for Strings.

If this attribute is set to true, BOM and null-termination
shall NOT be added in the serialization for Strings in the
payload.

If this attribute is set to false (or not set) BOM and
null-termination shall be added in the serialization for
Strings in the payload according to the SOME/IP
specification for Strings.

NOTE! This attribute is not future safe, and will be
removed in an upcoming AUTOSAR release!

Tags:atp.Status=draft

isDynamic
LengthFieldSize

Boolean 0..1 attr This attribute represents the ability to control the setting
of the wire type for TLV encoding.

If the attribute is set to True then wire type 5-7 shall be
used.

If the attribute does not exist or is set to False then wire
type 4 shall be used.

Tags:atp.Status=draft

session
Handling

SOMEIPTransformer
SessionHandlingEnum

0..1 attr Defines whether the SOME/IP transformer shall use
session handling for Sender/Receiver communication.

Tags:atp.Status=draft

sizeOfArray
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the referenced
dataPrototype in case of a variable size Array (Vector),
fixed-size Array or an Associative_Map. It describes the
size of the length field (in Bytes) that will be put in front of
the Array or Associative_Map in the SOME/IP message.

Tags:atp.Status=draft

sizeOfString
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the referenced
dataPrototype in case of a String. It describes the size of
the length field (in Bytes) that will be put in front of the
String in the SOME/IP message.

Tags:atp.Status=draft

sizeOfStruct
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the referenced
dataPrototype in case of an Struct. It describes the size of
the length field (in Bytes) that will be put in front of the
Struct in the SOME/IP message.

Tags:atp.Status=draft

sizeOfUnion
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the referenced
dataPrototype in case of a Union. It describes the size of
the length field (in Bytes) that will be put in front of the
Union in the SOME/IP message.

Tags:atp.Status=draft

sizeOfUnion
TypeSelector
Field

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the referenced
dataPrototype in case of a Union. It describes the size of
the type selector field (in Bytes) that will be put in front of
the Union in the SOME/IP message.

Tags:atp.Status=draft

stringEncoding BaseTypeEncoding
String

0..1 attr Configures the encoding for SOME/IP serialization for the
referenced dataPrototype in case of an String.

Tags:atp.Status=draft

Table A.7: ApSomeipTransformationProps

368 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class ApplicationArrayDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which is an array, each element is of the same application data type.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow if it is a
variable size array.

element ApplicationArray
Element

0..1 aggr This association implements the concept of an array
element. That is, in some cases it is necessary to be able
to identify single array elements, e.g. as input values for
an interpolation routine.

Table A.8: ApplicationArrayDataType

Class ApplicationDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note ApplicationDataType defines a data type from the application point of view. Especially it should be used
whenever something "physical" is at stake.

An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.

It should be possible to model the application level aspects of a VFB system by using ApplicationData
Types only.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType

Attribute Type Mult. Kind Note

– – – – –

Table A.9: ApplicationDataType

Class ApplicationError

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This is a user-defined error that is associated with an element of an AUTOSAR interface. It is specific for
the particular functionality or service provided by the AUTOSAR software component.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

errorCode Integer 0..1 attr The RTE generator is forced to assign this value to the
corresponding error symbol. Note that for error codes
certain ranges are predefined (see RTE specification).

Table A.10: ApplicationError

Class ApplicationPrimitiveDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

5

369 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ApplicationPrimitiveDataType

Note A primitive data type defines a set of allowed values.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.11: ApplicationPrimitiveDataType

Class ApplicationRecordDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which can be decomposed into prototypes of other application data types.

Tags:atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

element
(ordered)

ApplicationRecord
Element

* aggr Specifies an element of a record.

The aggregation of ApplicationRecordElement is subject
to variability with the purpose to support the conditional
existence of elements inside a ApplicationrecordData
Type.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

Table A.12: ApplicationRecordDataType

Class ApplicationRecordElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of one particular element of an application record data type.

Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ApplicationRecordElement as optional. This
means the that, at runtime, the ApplicationRecord
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the ApplicationRecordElement as not valid at the sending
end of a communication and determine its validity at the
receiving end.

Table A.13: ApplicationRecordElement

Class ArgumentDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

5

370 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ArgumentDataPrototype

Note An argument of an operation, much like a data element, but also carries direction information and is
owned by a particular ClientServerOperation.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

direction ArgumentDirection
Enum

0..1 attr This attribute specifies the direction of the argument
prototype.

serverArgument
ImplPolicy

ServerArgumentImpl
PolicyEnum

0..1 attr This defines how the argument type of the servers
RunnableEntity is implemented.

If the attribute is not defined this has the same semantics
as if the attribute is set to the value useArgumentType for
primitive arguments and structures.

Table A.14: ArgumentDataPrototype

Enumeration ArgumentDirectionEnum

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note Use cases:

• Arguments in ClientServerOperation can have different directions that need to be formally
indicated because they have an impact on how the function signature looks like eventually.

• Arguments in BswModuleEntry already determine a function signature, but the direction is
used to specify the semantics, especially of pointer arguments.

Literal Description

in The argument value is passed to the callee.

Tags:atp.EnumerationLiteralIndex=0

inout The argument value is passed to the callee but also passed back from the callee to the caller.

Tags:atp.EnumerationLiteralIndex=1

out The argument value is passed from the callee to the caller.

Tags:atp.EnumerationLiteralIndex=2

Table A.15: ArgumentDirectionEnum

Class AutosarDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for user defined AUTOSAR data types for software.

Base ARElement , ARObject , AtpClassifier , AtpType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Subclasses AbstractImplementationDataType, ApplicationDataType

Attribute Type Mult. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this AutosarDataType.

Table A.16: AutosarDataType

Class BaseType (abstract)

Package M2::MSR::AsamHdo::BaseTypes

Note This abstract meta-class represents the ability to specify a platform dependent base type.

5

371 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class BaseType (abstract)

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses SwBaseType

Attribute Type Mult. Kind Note

baseType
Definition

BaseTypeDefinition 1 aggr This is the actual definition of the base type.

Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table A.17: BaseType

Class BaseTypeDirectDefinition

Package M2::MSR::AsamHdo::BaseTypes

Note This BaseType is defined directly (as opposite to a derived BaseType)

Base ARObject , BaseTypeDefinition

Attribute Type Mult. Kind Note

baseType
Encoding

BaseTypeEncoding
String

0..1 attr This specifies, how an object of the current BaseType is
encoded, e.g. in an ECU within a message sequence.

Tags:xml.sequenceOffset=90

baseTypeSize PositiveInteger 0..1 attr Describes the length of the data type specified in the
container in bits.

Tags:xml.sequenceOffset=70

byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base type.

Tags:xml.sequenceOffset=110

memAlignment PositiveInteger 0..1 attr This attribute describes the alignment of the memory
object in bits. E.g. "8" specifies, that the object in
question is aligned to a byte while "32" specifies that it is
aligned four byte. If the value is set to "0" the meaning
shall be interpreted as "unspecified".

Tags:xml.sequenceOffset=100

5

372 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class BaseTypeDirectDefinition

native
Declaration

NativeDeclarationString 0..1 attr This attribute describes the declaration of such a base
type in the native programming language, primarily in the
Programming language C. This can then be used by a
code generator to include the necessary declarations into
a header file. For example

BaseType with shortName: "MyUnsignedInt" native
Declaration: "unsigned short"

Results in

typedef unsigned short MyUnsignedInt;

If the attribute is not defined the referring Implementation
DataTypes will not be generated as a typedef by RTE.

If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and baseType
Size.

This is required to ensure the consistent handling and
interpretation by software components, RTE, COM and
MCM systems.

Tags:xml.sequenceOffset=120

Table A.18: BaseTypeDirectDefinition

Enumeration ByteOrderEnum

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note When more than one byte is stored in the memory the order of those bytes may differ depending on
the architecture of the processing unit. If the least significant byte is stored at the lowest address, this
architecture is called little endian and otherwise it is called big endian.

ByteOrder is very important in case of communication between different PUs or ECUs.

Literal Description

mostSignificantByte
First

Most significant byte shall come at the lowest address (also known as BigEndian or as
Motorola-Format)

Tags:atp.EnumerationLiteralIndex=0

mostSignificantByte
Last

Most significant byte shall come highest address (also known as LittleEndian or as Intel-Format)

Tags:atp.EnumerationLiteralIndex=1

opaque For opaque data endianness conversion has to be configured to Opaque. See AUTOSAR COM
Specification for more details.

Tags:atp.EnumerationLiteralIndex=2

Table A.19: ByteOrderEnum

Class ClientServerOperation

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An operation declared within the scope of a client/server interface.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

argument
(ordered)

ArgumentDataPrototype * aggr An argument of this ClientServerOperation

Stereotypes: atpVariation
Tags:vh.latestBindingTime=blueprintDerivationTime

5

373 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ClientServerOperation

fireAndForget Boolean 0..1 attr This attribute defines whether this method is a fire&forget
method (true) or not (false).

Tags:atp.Status=draft

possibleApError ApApplicationError * ref This reference identifies AdaptivePlatformApplication
Errors as a possible error raised by the enclosing Client
ServerOperation.

Tags:atp.Status=draft

possibleApError
Set

ApApplicationErrorSet * ref This reference represents the ability to refer to an entire
group of ApApplicationErrors as one model element
instead of having to refer to all the represented Ap
ApplicationErrors separately.

Tags:atp.Status=draft

Table A.20: ClientServerOperation

Class ComEventGrant
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to grant access to a ServiceInterface.event.

Tags:
atp.Status=draft
atp.recommendedPackage=Grants

Base ARElement , ARObject , CollectableElement , ComGrant , Grant , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

design ComEventGrantDesign 0..1 ref This reference identifies the ComEventGrantDesign that
the enclosing ComEventGrant was created from.

Stereotypes: atpUriDef
Tags:atp.Status=draft

service
Deployment

ServiceEvent
Deployment

1 ref This reference identifies the applicable deployment within
the context of an AdaptivePlatformServiceInstance for
which the grant applies.

Tags:atp.Status=draft

Table A.21: ComEventGrant

Class ComFieldGrant
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to grant access to a ServiceInterface.field.

Tags:
atp.Status=draft
atp.recommendedPackage=Grants

Base ARElement , ARObject , CollectableElement , ComGrant , Grant , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

design ComFieldGrantDesign 0..1 ref This reference identifies the ComFieldGrantDesign that
the enclosing ComFieldGrant was created from.

Stereotypes: atpUriDef
Tags:atp.Status=draft

5

374 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ComFieldGrant
role FieldAccessEnum 1 attr This attribute provides the ability to further specify the

access to the ServiceInterface.field.

Tags:atp.Status=draft

service
Deployment

ServiceField
Deployment

1 ref This reference identifies the applicable deployment within
the context of an AdaptivePlatformServiceInstance for
which the grant applies.

Tags:atp.Status=draft

Table A.22: ComFieldGrant

Class ComFindServiceGrant
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to grant the finding a service.

Tags:
atp.Status=draft
atp.recommendedPackage=Grants

Base ARElement , ARObject , CollectableElement , Grant , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

design ComFindServiceGrant
Design

0..1 ref This reference identifies the ComFindServiceGrantDesign
that the enclosing ComFindServiceGrant was created
from.

Stereotypes: atpUriDef
Tags:atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

0..1 ref This reference identifies the AdaptivePlatformService
Instances for which the grant applies.

Tags:atp.Status=draft

Table A.23: ComFindServiceGrant

Class ComGrant (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class serves as the abstract base class for defining specific ComGrants

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Grant , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses ComEventGrant, ComFieldGrant, ComMethodGrant

Attribute Type Mult. Kind Note

remoteSubject AbstractIamRemote
Subject

* ref This optional reference defines the remoteSubject that is
allowed to access the defined Object via the Grant.

Tags:atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

1 ref This reference identifies the applicable AdaptivePlatform
ServiceInstance for which the grant applies.

Tags:atp.Status=draft

Table A.24: ComGrant

375 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class ComMethodGrant
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to grant access to a ServiceInterface.method.

Tags:
atp.Status=draft
atp.recommendedPackage=Grants

Base ARElement , ARObject , CollectableElement , ComGrant , Grant , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

design ComMethodGrant
Design

0..1 ref This reference identifies the ComMethodGrantDesign that
the enclosing ComMethodGrant was created from.

Stereotypes: atpUriDef
Tags:atp.Status=draft

service
Deployment

ServiceMethod
Deployment

1 ref This reference identifies the applicable deployment within
the context of an AdaptivePlatformServiceInstance for
which the grant applies.

Tags:atp.Status=draft

Table A.25: ComMethodGrant

Class ComOfferServiceGrant
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to grant the offering of a service.

Tags:
atp.Status=draft
atp.recommendedPackage=Grants

Base ARElement , ARObject , CollectableElement , Grant , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

design ComOfferServiceGrant
Design

0..1 ref This reference identifies the ComOfferServiceGrant
Design that the enclosing ComOfferServiceGrant was
created from.

Stereotypes: atpUriDef
Tags:atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

1 ref This reference identifies the AdaptivePlatformService
Instances for which the grant applies.

Tags:atp.Status=draft

Table A.26: ComOfferServiceGrant

Class CppImplementationDataType (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the way to specify a reusable data type definition taken as a the basis for a
C++ language binding

Tags:atp.Status=draft

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , CppImplementationDataTypeContextTarget ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses CustomCppImplementationDataType, StdCppImplementationDataType

Attribute Type Mult. Kind Note

5

376 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class CppImplementationDataType (abstract)

arraySize PositiveInteger 0..1 attr This attribute can be used to specify the array size if the
enclosing CppImplementationDataType has array
semantics.

Stereotypes: atpVariation
Tags:
atp.Status=draft
vh.latestBindingTime=preCompileTime

headerFile String 0..1 attr Configuration of the Header File with the custom class
declaration.

Tags:atp.Status=draft

namespace
(ordered)

SymbolProps * aggr This aggregation allows for the definition an own
namespace for the enclosing CppImplementationData
Type.

Tags:atp.Status=draft

subElement
(ordered)

CppImplementation
DataTypeElement

* aggr This represents the collection of sub-elements of the
enclosing CppImplementationDataType

Tags:atp.Status=draft

template
Argument
(ordered)

CppTemplateArgument * aggr This aggregation allows for the specification of properties
of template arguments

Tags:atp.Status=draft

typeEmitter NameToken 0..1 attr This attribute can be taken to control how the respective
CppImplementationDataType is contributed to the
language binding.

Tags:atp.Status=draft

typeReference CppImplementation
DataType

0..1 ref This reference shall be defined to define a type reference
(a.k.a. typedef).

Tags:atp.Status=draft

Table A.27: CppImplementationDataType

Class CppImplementationDataTypeElement

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated. A CppImplementationDataTypeElement is used to represent an element of a
structure, defining its type.

Tags:atp.Status=draft

Base ARObject , AbstractImplementationDataTypeElement , AtpClassifier , AtpFeature, AtpStructureElement ,
CppImplementationDataTypeContextTarget , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing CppImplementationDataTypeElement as
optional. This means the that, at runtime, the Cpp
ImplementationDataTypeElement may or may not have a
valid value and shall therefore be ignored.

The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not valid at
the sending end of a communication and determine its
validity at the receiving end.

Tags:atp.Status=draft

5

377 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class CppImplementationDataTypeElement

typeReference CppImplementation
DataTypeElement
Qualifier

0..1 aggr This aggregation defines the type of the Cpp
ImplementationDataTypeElement and determines
whether in C++ the CppImplementationDataTypeElement
is defined inside or outside of the enclosing Cpp
ImplementationDataType.

Tags:atp.Status=draft

Table A.28: CppImplementationDataTypeElement

Class CppTemplateArgument

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class has the ability to define properties for template arguments.

Tags:atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

allocator Allocator 0..1 ref This reference identifies the applicable allocator.

Tags:atp.Status=draft

category CategoryString 0..1 attr This attribute shall be used to contribute further
clarification regarding the semantics of the enclosing Cpp
TemplateArgument.

Tags:atp.Status=draft

inplace Boolean 0..1 attr This attribute specifies whether the shortName of the
referenced templateType is used in the code generation
and the type declaration is defined outside of the
enclosing CppImplementationDataType (true) or whether
the type definition is embedded inside of the enclosing
CppImplementationDataType and the shortName is
ignored (false).

Tags:atp.Status=draft

templateType CppImplementation
DataType

0..1 ref This reference identifies the data type of the specific
template argument required for the language binding.

Tags:atp.Status=draft

Table A.29: CppTemplateArgument

Class DataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Base class for prototypical roles of any data type.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ApplicationCompositeElementDataPrototype, AutosarDataPrototype

Attribute Type Mult. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr This property allows to specify data definition properties
which apply on data prototype level.

Table A.30: DataPrototype

378 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class DataTypeMap

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This class represents the relationship between ApplicationDataType and its implementing Abstract
ImplementationDataType.

Base ARObject

Attribute Type Mult. Kind Note

applicationData
Type

ApplicationDataType 0..1 ref This is the corresponding ApplicationDataType

implementation
DataType

AbstractImplementation
DataType

0..1 ref This is the corresponding AbstractImplementationData
Type.

Table A.31: DataTypeMap

Class DdsEventDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note DDS configuration settings for an Event.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceEventDeployment

Attribute Type Mult. Kind Note

eventTopic
AccessRule

DdsTopicAccessRule 0..1 ref DDS Security access rule applicable to the DDS Topics
used for the service interface event.

Tags:atp.Status=draft

topicName String 0..1 attr Name of the DDS Topic associated with the Event.

Tags:atp.Status=draft

transport
Protocol

String * attr This attribute defines over which Transport Layer
Protocol(s) this event is intended to be sent.

Tags:atp.Status=draft

Table A.32: DdsEventDeployment

Class DdsEventQosProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Configuration properties of the Event using DDS as the underlying network binding.

Tags:atp.Status=draft

Base ARObject , DdsQosProps

Attribute Type Mult. Kind Note

event ServiceEvent
Deployment

1 ref Reference to an event that is provided.

Tags:atp.Status=draft

Table A.33: DdsEventQosProps

Class DdsFieldDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note DDS configuration settings for a Field.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceFieldDeployment

5

379 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class DdsFieldDeployment

Attribute Type Mult. Kind Note

notifier DdsEventDeployment 0..1 aggr This aggregation represents the settings of the notifier.

Tags:atp.Status=draft

Table A.34: DdsFieldDeployment

Class DdsFieldQosProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Configuration properties of the Field interaction when using DDS as the underlying network binding.

Tags:atp.Status=draft

Base ARObject , DdsQosProps

Attribute Type Mult. Kind Note

field ServiceField
Deployment

1 ref Reference to the field.

Tags:atp.Status=draft

Table A.35: DdsFieldQosProps

Class DdsProvidedServiceInstance
Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a provided service
instance in a concrete implementation on top of DDS.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , DdsQosProps, Dds
ServiceInstanceProps, Identifiable, MultilanguageReferrable, PackageableElement , ProvidedApService
Instance, Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

discoveryType DdsServiceInstance
DiscoveryTypeEnum

0..1 attr Discovery protocol.

Tags:atp.Status=draft

eventQosProps DdsEventQosProps * aggr List of configuration properties for the Events that are
provided by the Service Instance.

Tags:atp.Status=draft

fieldNotifierQos
Props

DdsFieldQosProps * aggr List of configuration properties for Field notifiers that are
provided by the Service Instance.

Tags:atp.Status=draft

resource
IdentifierType

DdsServiceInstance
ResourceIdentifierType
Enum

0..1 attr Type of resource identification scheme.

Tags:atp.Status=draft

serviceInstance
Id

PositiveInteger 0..1 attr Identification number that is used by DDS to identify
DomainParticipants associated with an instance of the
service.

Tags:atp.Status=draft

Table A.36: DdsProvidedServiceInstance

380 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class DdsQosProps (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note QoS configuration properties for the DDS entities associated with an event, method, or field provided by
or requested from a Service Instance using DDS as the underlying network binding.

Tags:atp.Status=draft

Base ARObject

Subclasses DdsEventQosProps, DdsFieldQosProps, DdsServiceInstanceProps

Attribute Type Mult. Kind Note

qosProfile String 0..1 attr Identifies a group of QoS Policies that apply to the DDS
entities associated with the event, method, field, or the
service instance.

Tags:atp.Status=draft

Table A.37: DdsQosProps

Class DdsRequiredServiceInstance

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a required service
instance in a concrete implementation on top of DDS.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , DdsQosProps, Dds
ServiceInstanceProps, Identifiable, MultilanguageReferrable, PackageableElement , Referrable,
RequiredApServiceInstance, UploadablePackageElement

Attribute Type Mult. Kind Note

blacklisted
Version

DdsServiceVersion * aggr Collection of blacklisted versions.

Tags:atp.Status=draft

discoveryType DdsServiceInstance
DiscoveryTypeEnum

0..1 attr Discovery protocol.

Tags:atp.Status=draft

eventQosProps DdsEventQosProps * aggr List of configuration properties for the Events that are
required by the Service Instance.

Tags:atp.Status=draft

fieldNotifierQos
Props

DdsFieldQosProps * aggr List of configuration properties for Field notifiers that are
required by the Service Instance.

Tags:atp.Status=draft

requiredService
InstanceId

AnyServiceInstanceId 0..1 attr This attribute represents the ability to describe the
required service instance ID.

Tags:atp.Status=draft

Table A.38: DdsRequiredServiceInstance

Class DdsServiceInstanceProps (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Common configuration properties for the DDS entities provided by or requested from a Service Instance
using DDS as the underlying network binding.

Tags:atp.Status=draft

Base ARObject , DdsQosProps

Subclasses DdsProvidedServiceInstance, DdsRequiredServiceInstance

5

381 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class DdsServiceInstanceProps (abstract)

Attribute Type Mult. Kind Note

domainId Integer 1 attr This attribute identifies the DDS Domain the Service
Instance shall join.

Tags:atp.Status=draft

Table A.39: DdsServiceInstanceProps

Class DdsServiceInterfaceDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note DDS configuration settings for a ServiceInterface.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInterfaceDeployments

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, ServiceInterfaceDeployment , UploadablePackageElement

Attribute Type Mult. Kind Note

fieldReplyTopic
Name

String 0..1 attr Name of the DDS Reply Topic associated with the Field.

Tags:atp.Status=draft

fieldRequest
TopicName

String 0..1 attr Name of the DDS Request Topic associated with the
Field.

Tags:atp.Status=draft

fieldTopics
AccessRule

DdsTopicAccessRule 0..1 ref DDS Security access rule applicable to the DDS Topics
used for service interface field access methods (Get, Set).

Tags:atp.Status=draft

methodReply
TopicName

String 0..1 attr Name of the DDS Reply Topic associated with the
Method.

Tags:atp.Status=draft

methodRequest
TopicName

String 0..1 attr Name of the DDS Request Topic associated with the
Method.

Tags:atp.Status=draft

methodTopics
AccessRule

DdsTopicAccessRule 0..1 ref DDS Security access rule applicable to the DDS Topics
used for service interface methods.

Tags:atp.Status=draft

serviceInterface
Id

String 1 attr Unique Identifier that identifies the ServiceInterface in
DDS. This Identifier is encoded in the USER_DATA QoS
of the DomainParticipant associated with the Service
Instance and its value is propagated by DDS Discovery
messages.

Tags:atp.Status=draft

transport
Protocol

String * attr This attribute defines over which Transport Layer
Protocol(s) this Method is intended to be sent.

Tags:atp.Status=draft

Table A.40: DdsServiceInterfaceDeployment

Class E2EProfileConfiguration

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::E2E

5

382 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class E2EProfileConfiguration

Note This element holds E2E profile specific configuration settings.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

clearFromValid
ToInvalid

Boolean 0..1 attr Clear monitoring window on transition from state Valid to
state Invalid.

Tags:atp.Status=draft

dataIdMode DataIdModeEnum 0..1 attr This attribute describes the inclusion mode that is used to
include the implicit Data ID in the one-byte CRC.

Tags:atp.Status=draft

e2eProfile
Compatibility
Props

E2EProfileCompatibility
Props

0..1 ref Reference to additional settings for the E2E state
machine.

Tags:atp.Status=draft

maxDelta
Counter

PositiveInteger 0..1 attr Maximum allowed difference between two counter values
of two consecutively received valid messages. For
example, if the receiver gets data with counter 1 and Max
DeltaCounter is 3, then at the next reception the receiver
can accept Counters with values 2, 3 or 4.

Tags:atp.Status=draft

maxErrorState
Init

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INIT.

Tags:atp.Status=draft

maxErrorState
Invalid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INVALID.

Tags:atp.Status=draft

maxErrorState
Valid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_VALID.

Tags:atp.Status=draft

minOkStateInit PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INIT.

Tags:atp.Status=draft

minOkState
Invalid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INVALID.

Tags:atp.Status=draft

minOkState
Valid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_VALID.

Tags:atp.Status=draft

profileName NameToken 1 attr Definition of the E2E profile.

Tags:atp.Status=draft

windowSizeInit PositiveInteger 0..1 attr Size of the monitoring window of state Init for the E2E
state machine.

Tags:atp.Status=draft

5

383 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class E2EProfileConfiguration

windowSize
Invalid

PositiveInteger 0..1 attr Size of the monitoring window of state Invalid for the E2E
state machine.

Tags:atp.Status=draft

windowSize
Valid

PositiveInteger 0..1 attr Size of the monitoring window of state Valid for the E2E
state machine.

Tags:atp.Status=draft

Table A.41: E2EProfileConfiguration

Class End2EndEventProtectionProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::E2E

Note This element allows to protect an event or a field notifier with an E2E profile.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

dataId (ordered) PositiveInteger * attr This represents a unique numerical identifier for the
referenced event or field notifier that is included in the
CRC calculation.

Note: ID is used for protection against masquerading.
The details concerning the maximum number of values
(this information is specific for each E2E profile)
applicable for this attribute are controlled by a semantic
constraint that depends on the category of the EndToEnd
Protection.

Tags:atp.Status=draft

dataLength PositiveInteger 0..1 attr Length of payload including E2E header in bits.

Tags:atp.Status=draft

dataUpdate
Period

TimeValue 0..1 attr This attribute describes the period in which the
applications are assumed to process E2E-protected
messages. The middleware does not use this attribute at
all.

Tags:atp.Status=draft

e2eProfile
Configuration

E2EProfileConfiguration 0..1 ref Reference to E2E profile configuration settings that are
valid to protect the referenced event or field notifier.

Tags:atp.Status=draft

event ServiceEvent
Deployment

0..1 ref Reference to an event that is protected by the E2E profile.

Tags:atp.Status=draft

maxDataLength PositiveInteger 0..1 attr Maximum length of payload including E2E header in bits.

Tags:atp.Status=draft

minDataLength PositiveInteger 0..1 attr Minimum length of payload including E2E header in bits.

Tags:atp.Status=draft

Table A.42: End2EndEventProtectionProps

Class End2EndMethodProtectionProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::E2E

5

384 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class End2EndMethodProtectionProps

Note This element allows to protect a method, a field setter or a field getter with an E2E profile.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

dataId (ordered) PositiveInteger * attr This represents a numerical identifier that is included in
the CRC calculation. This dataId is used for call and
response.

Note: ID is used for protection against masquerading.
The details concerning the maximum number of values
(this information is specific for each E2E profile)
applicable for this attribute are controlled by a semantic
constraint that depends on the category of the EndToEnd
Protection.

Tags:atp.Status=draft

dataLength PositiveInteger 0..1 attr Length of payload including E2E header in bits.

Tags:atp.Status=draft

dataUpdate
Period

TimeValue 0..1 attr This attribute describes the period in which the
applications are assumed to process E2E-protected
messages. The middleware does not use this attribute at
all.

Tags:atp.Status=draft

e2eProfile
Configuration

E2EProfileConfiguration 0..1 ref Reference to E2E profile configuration settings that are
valid to protect the referenced method, field getter or field
setter.

Tags:atp.Status=draft

maxDataLength PositiveInteger 0..1 attr Maximum length of payload including E2E header in bits.

Tags:atp.Status=draft

method ServiceMethod
Deployment

0..1 ref Reference to a method, a field getter or a field setter that
is protected by the E2E profile.

Tags:atp.Status=draft

minDataLength PositiveInteger 0..1 attr Minimum length of payload including E2E header in bits.

Tags:atp.Status=draft

sourceId PositiveInteger 0..1 attr This represents a unique numerical identifier identifying
the source of a certain transmission. In case of C/S
communication, this ID uniquely identifies the client.

Note: ID is used for protection against masquerading.
The details concerning the maximum number of values
(this information is specific for each E2E profile)
applicable for this attribute are controlled by a semantic
constraint that depends on the category of the EndToEnd
Protection.

Tags:atp.Status=draft

Table A.43: End2EndMethodProtectionProps

Class EndToEndTransformationComSpecProps

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note The class EndToEndTransformationIComSpecProps specifies port specific configuration properties for
EndToEnd transformer attributes.

Base ARObject , Describable, TransformationComSpecProps

5

385 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class EndToEndTransformationComSpecProps

Attribute Type Mult. Kind Note

clearFromValid
ToInvalid

Boolean 0..1 attr Clear monitoring window on transition from state Valid to
state Invalid.

disableEndTo
EndCheck

Boolean 0..1 attr Disables/Enables the E2E check. The E2Eheader is
removed from the payload independent from the setting of
this attribute.

disableEndTo
EndState
Machine

Boolean 0..1 attr Disables the E2EStateMachine (only E2E check
functionality is performed)

e2eProfile
Compatibility
Props

E2EProfileCompatibility
Props

0..1 ref Reference to additional settings for the E2E state
machine.

maxDelta
Counter

PositiveInteger 0..1 attr Maximum allowed difference between two counter values
of two consecutively received valid messages. For
example, if the receiver gets data with counter 1 and Max
DeltaCounter is 3, then at the next reception the receiver
can accept Counters with values 2, 3 or 4.

maxErrorState
Init

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INIT.

The minimum value is 0.

maxErrorState
Invalid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INVALID.

The minimum value is 0.

maxErrorState
Valid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_VALID.

The minimum value is 0.

minOkStateInit PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INIT.

The minimum value is 1.

minOkState
Invalid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INVALID.

The minimum value is 1.

minOkState
Valid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_VALID.

The minimum value is 1.

windowSizeInit PositiveInteger 0..1 attr Size of the monitoring window of state Init for the E2E
state machine.

windowSize
Invalid

PositiveInteger 0..1 attr Size of the monitoring window of state Invalid for the E2E
state machine.

windowSize
Valid

PositiveInteger 0..1 attr Size of the monitoring window of state Valid for the E2E
state machine.

Table A.44: EndToEndTransformationComSpecProps

Class EndToEndTransformationDescription

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

5

386 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class EndToEndTransformationDescription

Note EndToEndTransformationDescription holds these attributes which are profile specific and have the same
value for all E2E transformers.

Base ARObject , Describable, TransformationDescription

Attribute Type Mult. Kind Note

clearFromValid
ToInvalid

Boolean 0..1 attr Clear monitoring window on transition from state Valid to
state Invalid.

counterOffset PositiveInteger 0..1 attr Offset of the counter in the Data[] array in bits.

crcOffset PositiveInteger 0..1 attr Offset of the CRC in the Data[] array in bits.

dataIdMode DataIdModeEnum 0..1 attr This attribute describes the inclusion mode that is used to
include the implicit two-byte Data ID in the one-byte CRC.

dataIdNibble
Offset

PositiveInteger 0..1 attr Offset of the Data ID nibble in the Data[] array in bits.

e2eProfile
Compatibility
Props

E2EProfileCompatibility
Props

0..1 ref Reference to additional settings for the E2E state
machine.

maxDelta
Counter

PositiveInteger 0..1 attr Maximum allowed difference between two counter values
of two consecutively received valid messages. For
example, if the receiver gets data with counter 1 and Max
DeltaCounter is 3, then at the next reception the receiver
can accept Counters with values 2, 3 or 4.

maxErrorState
Init

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INIT.

maxErrorState
Invalid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INVALID.

maxErrorState
Valid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_VALID.

maxNoNewOr
RepeatedData

PositiveInteger 0..1 attr The maximum allowed amount of consecutive failed
counter checks.

minOkStateInit PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INIT.

minOkState
Invalid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INVALID.

minOkState
Valid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_VALID.

offset PositiveInteger 0..1 attr Offset of the E2E header in the Data[] array in bits.

profileBehavior EndToEndProfile
BehaviorEnum

0..1 attr Behavior of the check functionality

profileName NameToken 1 attr Definition of the E2E profile.

syncCounterInit PositiveInteger 0..1 attr Number of checks required for validating the consistency
of the counter that shall be received with a valid counter
(i.e. counter within the allowed lock-in range) after the
detection of an unexpected behavior of a received
counter.

upperHeader
BitsToShift

PositiveInteger 0..1 attr This attribute describes the number of upper-header bits
to be shifted.

value = 0 or not present: shift of upper header is NOT
performed.

5

5

387 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class EndToEndTransformationDescription

4
value > 0: the E2E Transformer on the protect-side, takes
the first upperHeaderBitsToShift bits from the upper buffer
(e.g. SOME/IP header part generated by SOME/IP
transformer) and shifts them towards the lower bytes and
bits within the Data[] for the length of the E2E header
(e.g. 12 bytes in case of E2E Profile 4). This means the
shift distance is fixed - it depends on the E2E header size
- what is configured here is the number of bits that are to
be shifted. This option is defined because the Some/IP
header generated by SOME/IP transformer shall be, due
to compatibility between non-protected and
E2E-protected communication, at the same position,
which is before E2E header.

windowSizeInit PositiveInteger 0..1 attr Size of the monitoring window of state Init for the E2E
state machine.

windowSize
Invalid

PositiveInteger 0..1 attr Size of the monitoring window of state Invalid for the E2E
state machine.

windowSize
Valid

PositiveInteger 0..1 attr Size of the monitoring window of state Valid for the E2E
state machine.

Table A.45: EndToEndTransformationDescription

Class EthernetCommunicationConnector
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::EthernetTopology

Note Ethernet specific attributes to the CommunicationConnector.

Base ARObject , CommunicationConnector , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

apApplication
Endpoint

ApApplicationEndpoint * aggr Collection of Application Addresses that are used on the
CommunicationConnector.

Tags:atp.Status=draft

maximum
Transmission
Unit

PositiveInteger 0..1 attr This attribute specifies the maximum transmission unit in
bytes.

neighborCache
Size

PositiveInteger 0..1 attr This attribute specifies the size of neighbor cache or ARP
table in units of entries.

pathMtu
Enabled

Boolean 0..1 attr If enabled the IPv4/IPv6 processes incoming ICMP
"Packet Too Big" messages and stores a MTU value for
each destination address.

pathMtuTimeout TimeValue 0..1 attr If this value is >0 the IPv4/IPv6 will reset the MTU value
stored for each destination after n seconds.

pncFilterData
Mask

PositiveUnlimitedInteger 0..1 attr Bit mask for Ethernet Payload used to configure the NM
filter mask for the Network Management.

Tags:atp.Status=obsolete

unicastNetwork
Endpoint

NetworkEndpoint 0..1 ref Network Endpoint that defines the IPAddress of the
machine.

Tags:atp.Status=draft

Table A.46: EthernetCommunicationConnector

Class EthernetRawDataStreamClientMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::RawDataStreamMapping

5

388 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class EthernetRawDataStreamClientMapping

Note This meta-class represents the ability to map a client PortPrototype to a Ethernet-based communication
channel.

Tags:
atp.Status=draft
atp.recommendedPackage=RawDataStreamingMappings

Base ARElement , ARObject , CollectableElement , EthernetRawDataStreamMapping, Identifiable,
MultilanguageReferrable, PackageableElement , RawDataStreamMapping, Referrable, Uploadable
PackageElement

Attribute Type Mult. Kind Note

remoteServer
Config

EthernetRawData
StreamRemoteServer
Config

0..1 aggr This aggregation is used to configure the credentials of
the remote server.

Tags:atp.Status=draft

Table A.47: EthernetRawDataStreamClientMapping

Class EthernetRawDataStreamLocalEndpointConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::RawDataStreamMapping

Note This meta-class has the ability to act as a wrapper for the configuration of the remote endpoint in the
context of a raw data stream mapping.

Tags:atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

localComm
Connector

EthernetCommunication
Connector

0..1 ref This attribute represents the CommunicationConnector
taken for socket-based data communication.

Tags:atp.Status=draft

localTcpPort ApApplicationEndpoint 0..1 ref This aggregation represents the configuration of a local
TCP port number.

Tags:atp.Status=draft

localUdpPort ApApplicationEndpoint 0..1 ref This aggregation represents the configuration of a local
unicast UDP port number.

Tags:atp.Status=draft

Table A.48: EthernetRawDataStreamLocalEndpointConfig

Class EthernetRawDataStreamMapping (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::RawDataStreamMapping

Note This meta-class serves as the abstract bases class for the ability to map a PortPrototype to a
Ethernet-based communication channel.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , RawDataStreamMapping, Referrable, UploadablePackageElement

Subclasses EthernetRawDataStreamClientMapping, EthernetRawDataStreamServerMapping

Attribute Type Mult. Kind Note

localEndpoint
Config

EthernetRawData
StreamLocalEndpoint
Config

0..1 aggr This aggregation is used to configure the credentials of
the endpoint.

Tags:atp.Status=draft

5

389 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class EthernetRawDataStreamMapping (abstract)

socketOption String * attr This attribute represents the ability to specify non-formal
socket options that might only be valid for specific
platforms. AUTOSAR does not define a standardized
meaning for the possible values of this attribute.

Tags:atp.Status=draft

tlsSecureCom
Props

TlsSecureComProps 0..1 ref This reference provides the ability to define TLS-related
properties for the enclosing SocketRawDataStream
Mapping.

Tags:atp.Status=draft

Table A.49: EthernetRawDataStreamMapping

Class EthernetRawDataStreamRemoteClientConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::RawDataStreamMapping

Note This meta-class has the ability to act as a wrapper for the configuration of the remote server in the
context of a raw data stream client mapping.

Tags:atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

multicast
Credentials

RawDataStream
EthernetUdpCredentials

0..1 aggr This aggregation represents the configuration of multicast
credentials for communication with a remote raw data
stream client.

Tags:atp.Status=draft

unicastUdp
Credentials

RawDataStream
EthernetUdpCredentials

0..1 aggr This aggregation represents the configuration of a remote
raw data stream client that communicates via unicast over
UDP.

Tags:atp.Status=draft

Table A.50: EthernetRawDataStreamRemoteClientConfig

Class EthernetRawDataStreamRemoteServerConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::RawDataStreamMapping

Note This meta-class has the ability to act as a wrapper for the configuration of the remote server in the
context of a raw data stream client mapping.

Tags:atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

multicast
Credentials

RawDataStream
EthernetUdpCredentials

0..1 aggr This aggregation represents the configuration of multicast
credentials for communication with a remote raw data
stream server.

Tags:atp.Status=draft

unicast
Credentials

RawDataStream
EthernetTcpUdp
Credentials

0..1 aggr This meta-class represents the ability to map a server
PortPrototype to a Ethernet-based communication
channel.

Tags:atp.Status=draft

Table A.51: EthernetRawDataStreamRemoteServerConfig

390 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class EthernetRawDataStreamServerMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::RawDataStreamMapping

Note This meta-class represents the ability to map a server PortPrototype to a Ethernet-based communication
channel.

Tags:
atp.Status=draft
atp.recommendedPackage=RawDataStreamingMappings

Base ARElement , ARObject , CollectableElement , EthernetRawDataStreamMapping, Identifiable,
MultilanguageReferrable, PackageableElement , RawDataStreamMapping, Referrable, Uploadable
PackageElement

Attribute Type Mult. Kind Note

remoteClient
Config

EthernetRawData
StreamRemoteClient
Config

0..1 aggr This aggregation is used to configure the credentials of
the remote client.

Tags:atp.Status=draft

Table A.52: EthernetRawDataStreamServerMapping

Class Field
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the ability to define a piece of data that can be accessed with read and/or
write semantics. It is also possible to generate a notification if the value of the data changes.

Tags:atp.Status=draft

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

hasGetter Boolean 1 attr This attribute controls whether read access is foreseen to
this field.

Tags:atp.Status=draft

hasNotifier Boolean 1 attr This attribute controls whether a notification semantics is
foreseen to this field.

Tags:atp.Status=draft

hasSetter Boolean 1 attr This attribute controls whether write access is foreseen to
this field.

Tags:atp.Status=draft

Table A.53: Field

Enumeration FieldAccessEnum
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::GrantDesign::ComGrant

Note This meta-class provides values that qualify access to a field.

Tags:atp.Status=draft

Literal Description

getter Access to the getter of the Field.

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

getterSetter Access to getter and setter of the field

Tags:
atp.EnumerationLiteralIndex=2
atp.Status=draft

5

391 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Enumeration FieldAccessEnum
setter Access to the setter of the Field.

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

Table A.54: FieldAccessEnum

Class FieldSenderComSpec

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ComSpec

Note Port specific communication attributes for a Field that is defined in a ServiceInterface.

Tags:atp.Status=draft

Base ARObject , PPortComSpec, SenderComSpec

Attribute Type Mult. Kind Note

initValue ValueSpecification 1 aggr Initial value for a Field that is set before the Service
Interface is offered.

Tags:atp.Status=draft

Table A.55: FieldSenderComSpec

Class IPSecConfig

Package M2::AUTOSARTemplates::SystemTemplate::SecureCommunication

Note IPsec is a protocol that is designed to provide "end-to-end" cryptographically-based security for IP
network connections.

Base ARObject

Attribute Type Mult. Kind Note

ipSecConfig
Props

IPSecConfigProps 0..1 ref Global IPsec configuration settings that are valid for all
IPSecRules that are defined on the NetworkEndpoint.

ipSecRule IPSecRule * aggr IPSec rules and filters that are defined in the IPSecConfig
for a specific NetworkEndpoint.

Table A.56: IPSecConfig

Class IPSecIamRemoteSubject

Package M2::AUTOSARTemplates::AdaptivePlatform::SCREIAM

Note This meta-class defines the proxy information about the remote node in case of IPsec.

Tags:
atp.Status=draft
atp.recommendedPackage=IamRemoteSubjects

Base ARElement , ARObject , AbstractIamRemoteSubject , CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

localIpSecRule IPSecRule * ref This reference is used to describe theRemoteSubjects
local IPSecRules.

Tags:atp.Status=draft

Table A.57: IPSecIamRemoteSubject

392 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class IPSecRule
Package M2::AUTOSARTemplates::SystemTemplate::SecureCommunication

Note This element defines an IPsec rule that describes communication traffic that is monitored, protected and
filtered.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

direction Communication
DirectionType

0..1 attr This attribute defines the direction in which the traffic is
monitored. If this attribute is not set a bidirectional traffic
monitoring is assumed.

headerType IPsecHeaderTypeEnum 0..1 attr Header type specifying the IPsec security mechanism.

ipProtocol IPsecIpProtocolEnum 0..1 attr This attribute defines the relevant IP protocol used in the
Security Policy Database (SPD) entry.

localCertificate CryptoService
Certificate

* ref This reference identifies the applicable certificate used for
a local authentication.

localId String 0..1 attr This attribute defines how the local participant should be
identified for authentication.

localPortRange
End

PositiveInteger 0..1 attr This attribute restricts the traffic monitoring and defines
an end value for the local port range.

If this attribute is not set then this rule shall be effective
for all local ports.

Please note that port ranges are currently not supported
in the AUTOSAR AP’s operating system backend. If AP
systems are involved, each IPsec rule may only contain a
single port.

localPortRange
Start

PositiveInteger 0..1 attr This attribute restricts the traffic monitoring and defines a
start value for the local port range.

If this attribute is not set then this rule shall be effective
for all local ports.

Please note that port ranges are currently not supported
in the AUTOSAR AP’s operating system backend. If AP
systems are involved, each IPsec rule may only contain a
single port.

mode IPsecModeEnum 0..1 attr This attribute defines the type of the connection.

policy IPsecPolicyEnum 0..1 attr An IPsec policy defines the rules that determine which
type of IP traffic needs to be secured using IPsec and
how that traffic is secured.

preSharedKey CryptoServiceKey 0..1 ref This reference identifies the applicable cryptograhic key
used for authentication.

priority PositiveInteger 0..1 attr This attribute defines the priority of the IPSecRule (SPD
entry). The processing of entries is based on priority,
starting with the highest priority "0".

remote
Certificate

CryptoService
Certificate

* ref This reference identifies the applicable certificate used for
a remote authentication.

remoteId String 0..1 attr This attribute defines how the remote participant should
be identified for authentication.

remoteIp
Address

NetworkEndpoint * ref Definition of the remote NetworkEndpoint. With this
reference the connection between the local Network
Endpoint and the remote NetworkEndpoint is described
on which the traffic is monitored.

5

393 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class IPSecRule
remotePort
RangeEnd

PositiveInteger 0..1 attr This attribute restricts the traffic monitoring and defines
an end value for the remote port range.

If this attribute is not set then this rule shall be effective
for all local ports.

Please note that port ranges are currently not supported
in the AUTOSAR AP’s operating system backend. If AP
systems are involved, each IPsec rule may only contain a
single port.

remotePort
RangeStart

PositiveInteger 0..1 attr This attribute restricts the traffic monitoring and defines a
start value for the remote port range.

If this attribute is not set then this rule shall be effective
for all local ports.

Please note that port ranges are currently not supported
in the AUTOSAR AP’s operating system backend. If AP
systems are involved, each IPsec rule may only contain a
single port.

Table A.58: IPSecRule

Class ISignalIPdu

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note Represents the IPdus handled by Com. The ISignalIPdu assembled and disassembled in AUTOSAR
COM consists of one or more signals. In case no multiplexing is performed this IPdu is routed to/from the
Interface Layer.

A maximum of one dynamic length signal per IPdu is allowed.

Tags:atp.recommendedPackage=Pdus

Base ARObject , CollectableElement , FibexElement , IPdu, Identifiable, MultilanguageReferrable, Packageable
Element , Pdu, Referrable

Attribute Type Mult. Kind Note

iPduTiming
Specification

IPduTiming 0..1 aggr Timing specification for Com IPdus (Transmission
Modes). This information is mandatory for the sender in a
System Extract. This information may be omitted on
receivers in a System Extract.

atpVariation: The timing of a Pdu can vary.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

iSignalToPdu
Mapping

ISignalToIPduMapping * aggr Definition of SignalToIPduMappings included in the Signal
IPdu.

atpVariation: The content of a PDU can be variable.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

unusedBit
Pattern

Integer 1 attr AUTOSAR COM and AUTOSAR IPDUM are filling not
used areas of an IPDU with this bit-pattern. This attribute
is mandatory to avoid undefined behavior. This
byte-pattern will be repeated throughout the IPdu.

Table A.59: ISignalIPdu

Class ISignalToIPduMapping

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

5

394 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ISignalToIPduMapping

Note An ISignalToIPduMapping describes the mapping of ISignals to ISignalIPdus and defines the position of
the ISignal within an ISignalIPdu.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

iSignal ISignal 0..1 ref Reference to a ISignal that is mapped into the ISignal
IPdu.

Each ISignal contained in the ISignalGroup shall be
mapped into an IPdu by an own ISignalToIPduMapping.
The references to the ISignal and to the ISignalGroup in
an ISignalToIPduMapping are mutually exclusive.

iSignalGroup ISignalGroup 0..1 ref Reference to an ISignalGroup that is mapped into the
SignalIPdu. If an ISignalToIPduMapping for an ISignal
Group is defined, only the UpdateIndicationBitPosition
and the transferProperty is relevant. The startPosition
and the packingByteOrder shall be ignored.

Each ISignal contained in the ISignalGroup shall be
mapped into an IPdu by an own ISignalToIPduMapping.
The references to the ISignal and to the ISignalGroup in
an ISignalToIPduMapping are mutually exclusive.

packingByte
Order

ByteOrderEnum 0..1 attr This parameter defines the order of the bytes of the signal
and the packing into the SignalIPdu. The byte ordering
"Little Endian" (MostSignificantByteLast), "Big Endian"
(MostSignificantByteFirst) and "Opaque" can be selected.
For opaque data endianness conversion shall be
configured to Opaque. The value of this attribute impacts
the absolute position of the signal into the SignalIPdu
(see the startPosition attribute description).

For an ISignalGroup the packingByteOrder is irrelevant
and shall be ignored.

startPosition UnlimitedInteger 0..1 attr This parameter is necessary to describe the bitposition of
a signal within an SignalIPdu. It denotes the least
significant bit for "Little Endian" and the most significant
bit for "Big Endian" packed signals within the IPdu (see
the description of the packingByteOrder attribute). In
AUTOSAR the bit counting is always set to "sawtooth"
and the bit order is set to "Decreasing". The bit counting
in byte 0 starts with bit 0 (least significant bit). The most
significant bit in byte 0 is bit 7.

Please note that the way the bytes will be actually sent on
the bus does not impact this representation: they will
always be seen by the software as a byte array.

If a mapping for the ISignalGroup is defined, this attribute
is irrelevant and shall be ignored.

transferProperty TransferPropertyEnum 0..1 attr Defines how the referenced ISignal contributes to the
send triggering of the ISignalIPdu.

update
IndicationBit
Position

UnlimitedInteger 0..1 attr The UpdateIndicationBit indicates to the receivers that the
signal (or the signal group) was updated by the sender.
Length is always one bit. The UpdateIndicationBitPosition
attribute describes the position of the update bit within the
SignalIPdu. For Signals of a ISignalGroup this attribute is
irrelevant and shall be ignored.

Note that the exact bit position of the updateIndicationBit
Position is linked to the value of the attribute packingByte
Order because the method of finding the bit position is
different for the values mostSignificantByteFirst and most
SignificantByteLast. This means that if the value of
packingByteOrder is changed while the value of update

5

5

395 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ISignalToIPduMapping

4
IndicationBitPosition remains unchanged the exact bit
position of updateIndicationBitPosition within the
enclosing ISignalIPdu still undergoes a change.

This attribute denotes the least significant bit for "Little
Endian" and the most significant bit for "Big Endian"
packed signals within the IPdu (see the description of the
packingByteOrder attribute). In AUTOSAR the bit
counting is always set to "sawtooth" and the bit order is
set to "Decreasing". The bit counting in byte 0 starts with
bit 0 (least significant bit). The most significant bit in byte
0 is bit 7.

Table A.60: ISignalToIPduMapping

Class ISignalTriggering

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note A ISignalTriggering allows an assignment of ISignals to physical channels.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

iSignal ISignal 0..1 ref This reference shall be used if an ISignal is transported
on the PhysicalChannel. This reference forms an XOR
relationship with the ISignalTriggering-ISignalGroup
reference.

iSignalGroup ISignalGroup 0..1 ref This reference shall be used if an ISignalGroup is
transported on the PhysicalChannel. This reference
forms an XOR relationship with the ISignal
Triggering-ISignal reference.

iSignalPort ISignalPort * ref References to the ISignalPort on every ECU of the
system which sends and/or receives the ISignal.

References for both the sender and the receiver side
shall be included when the system is completely defined.

Table A.61: ISignalTriggering

Class IamModuleInstantiation
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to define a definition of an IAM instantiation.

Tags:atp.Status=draft

Base ARObject , AdaptiveModuleInstantiation, Identifiable, MultilanguageReferrable, NonOsModule
Instantiation, Referrable

Attribute Type Mult. Kind Note

grant Grant * ref This reference identifies the applicable Grants for this Iam
ModuleInstantiation.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=grant
atp.Status=draft

localCom
AccessControl
Enabled

Boolean 0..1 attr This switch activates the policy enforcement in
Communication Management on local applications.

Tags:atp.Status=draft

5

396 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class IamModuleInstantiation
remoteAccess
ControlEnabled

Boolean 0..1 attr This switch activates the check of the remote subject.

Tags:atp.Status=draft

Table A.62: IamModuleInstantiation

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractDoIpLogicAddressProps, AbstractEvent , AbstractImplementationDataTypeElement ,
AbstractSecurityEventFilter , AbstractSecurityIdsmInstanceFilter , AbstractServiceInstance, Abstract
SignalBasedToISignalTriggeringMapping, AdaptiveModuleInstantiation, AdaptiveSwcInternalBehavior,
ApApplicationEndpoint, ApplicationEndpoint, ApplicationError, ArtifactChecksum, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpFeature, AutosarOperationArgumentInstance, AutosarVariableInstance,
BuildActionEntity , BuildActionEnvironment, Chapter, CheckpointTransition, ClassContentConditional,
ClientIdDefinition, ClientServerOperation, Code, CollectableElement , ComManagementMapping, Comm
ConnectorPort , CommunicationConnector , CommunicationController , Compiler, ConsistencyNeeds,
ConsumedEventGroup, CouplingPort, CouplingPortStructuralElement , CryptoCertificate, CryptoKeySlot,
CryptoProvider, CryptoServiceMapping, DataPrototypeGroup, DataTransformation, DdsDomainRange,
DependencyOnArtifact, DeterministicClientResourceNeeds, DiagEventDebounceAlgorithm, Diagnostic
ConnectedIndicator, DiagnosticDataElement, DiagnosticDebounceAlgorithmProps, DiagnosticFunction
InhibitSource, DiagnosticRoutineSubfunction, DltApplication, DltArgument, DltMessage, DoIpInterface,
DoIpLogicAddress, DoIpRoutingActivation, E2EProfileConfiguration, End2EndEventProtectionProps,
End2EndMethodProtectionProps, EndToEndProtection, EthernetWakeupSleepOnDatalineConfig, Event
Handler, EventMapping, ExclusiveArea, ExecutableEntity , ExecutionTime, FMAttributeDef, FMFeature
MapAssertion, FMFeatureMapCondition, FMFeatureMapElement, FMFeatureRelation, FMFeature
Restriction, FMFeatureSelection, FieldMapping, FireAndForgetMapping, FlexrayArTpNode, FlexrayTp
PduPool, FrameTriggering, GeneralParameter, GlobalSupervision, GlobalTimeGateway, GlobalTime
Master , GlobalTimeSlave, HealthChannel , HeapUsage, HwAttributeDef, HwAttributeLiteralDef, HwPin,
HwPinGroup, IPSecRule, IPv6ExtHeaderFilterList, ISignalToIPduMapping, ISignalTriggering, Ident
Caption, InternalTriggeringPoint, Keyword, LifeCycleState, Linker, MacMulticastGroup, McDataInstance,
MemorySection, MethodMapping, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint,
NetworkEndpoint, NmCluster , NmNode, PackageableElement , ParameterAccess, PduActivationRouting
Group, PduToFrameMapping, PduTriggering, PerInstanceMemory, PersistencyDeploymentElement ,
PersistencyInterfaceElement , PhmSupervision, PhysicalChannel , PortGroup, PortInterfaceMapping,
PossibleErrorReaction, ProcessToMachineMapping, Processor, ProcessorCore, PskIdentityToKeySlot
Mapping, RecoveryNotification, ResourceConsumption, ResourceGroup, RootSwClusterDesign
ComponentPrototype, RootSwComponentPrototype, RootSwCompositionPrototype, RptComponent, Rpt
Container, RptExecutableEntity, RptExecutableEntityEvent, RptExecutionContext, RptProfile, RptService
Point, RunnableEntityGroup, SdgAttribute, SdgClass, SecOcJobMapping, SecOcJobRequirement,
SecureCommunicationAuthenticationProps, SecureCommunicationDeployment , SecureCommunication
FreshnessProps, SecurityEventContextProps, ServiceEventDeployment , ServiceFieldDeployment ,
ServiceInterfaceElementSecureComConfig, ServiceMethodDeployment , ServiceNeeds, SignalService
TranslationEventProps, SignalServiceTranslationProps, SocketAddress, SoftwarePackageStep, Someip
EventGroup, SomeipProvidedEventGroup, SomeipTpChannel, SpecElementReference, StackUsage,
StaticSocketConnection, StructuredReq, SupervisionCheckpoint, SupervisionMode, SupervisionMode
Condition, SwGenericAxisParamType, SwServiceArg, SwcServiceDependency, SystemMapping,
SystemMemoryUsage, TimeBaseResource, TimingCondition, TimingConstraint , TimingDescription,
TimingExtensionResource, TimingModeInstance, TlsCryptoCipherSuite, TlsCryptoCipherSuiteProps, Tls
JobMapping, Topic1, TpAddress, TraceableTable, TraceableText, TracedFailure, TransformationProps,
TransformationTechnology, Trigger, UcmDescription, UcmStep, VariableAccess, VariationPointProxy,
VehicleRolloutStep, ViewMap, VlanConfig, WaitPoint

Attribute Type Mult. Kind Note

5

397 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class Identifiable (abstract)

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=adminData
xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags:xml.sequenceOffset=-25

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags:xml.sequenceOffset=-50

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags:xml.sequenceOffset=-60

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags:xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.

Tags:xml.attribute=true

Table A.63: Identifiable

Class ImplementationProps (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Defines a symbol to be used as (depending on the concrete case) either a complete replacement or a
prefix when generating code artifacts.

5

398 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ImplementationProps (abstract)

Base ARObject , Referrable

Subclasses BswSchedulerNamePrefix, ExecutableEntityActivationReason, SectionNamePrefix, SymbolProps,
SymbolicNameProps

Attribute Type Mult. Kind Note

symbol CIdentifier 0..1 attr The symbol to be used as (depending on the concrete
case) either a complete replacement or a prefix.

Table A.64: ImplementationProps

Class InitialSdDelayConfig

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::ServiceInstances

Note This element is used to configure the offer behavior of the server and the find behavior on the client.

Base ARObject

Attribute Type Mult. Kind Note

initialDelayMax
Value

TimeValue 1 attr Max Value in seconds to delay randomly the first offer (if
aggregated in role initialOfferBehavior by SomeipSd
ServerServiceInstanceConfig) or the transmission of a
find message (if aggregated in role initialFindBehavior by
SomeipSdClientServiceInstanceConfig).

initialDelayMin
Value

TimeValue 1 attr Min Value in seconds to delay randomly the first offer (if
aggregated in role initialOfferBehavior by SomeipSd
ServerServiceInstanceConfig) or the transmission of a
find message (if aggregated in role initialFindBehavior by
SomeipSdClientServiceInstanceConfig).

initial
Repetitions
BaseDelay

TimeValue 0..1 attr The base delay for offer repetitions (if aggregated in role
initialOfferBehavior by SomeipSdServerServiceInstance
Config) or find repetitions (if aggregated in role initialFind
Behavior by SomeipSdClientServiceInstanceConfig).
Successive find messages have an exponential back off
delay.

initial
RepetitionsMax

PositiveInteger 0..1 attr Describes the maximum amount of offer repetitions (if
aggregated in role initialOfferBehavior by SomeipSd
ServerServiceInstanceConfig) or the maximum amount of
find repetitions (if aggregated in role initialFindBehavior
by SomeipSdClientServiceInstanceConfig).

Table A.65: InitialSdDelayConfig

Class IpIamRemoteSubject

Package M2::AUTOSARTemplates::AdaptivePlatform::SCREIAM

Note This meta-class defines the proxy information about the remote node in case of general IP
communication.

Tags:
atp.Status=draft
atp.recommendedPackage=IamRemoteSubjects

Base ARElement , ARObject , AbstractIamRemoteSubject , CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

authentic
Connection
Props

IpIamAuthentic
ConnectionProps

* aggr Definition of IP rules assigned to the IpIamRemote
Subject.

Tags:atp.Status=draft

Table A.66: IpIamRemoteSubject

399 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class Ipv4Configuration

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::EthernetTopology

Note Internet Protocol version 4 (IPv4) configuration.

Base ARObject , NetworkEndpointAddress

Attribute Type Mult. Kind Note

assignment
Priority

PositiveInteger 0..1 attr Priority of assignment (1 is highest). If a new address
from an assignment method with a higher priority is
available, it overwrites the IP address previously assigned
by an assignment method with a lower priority.

defaultGateway Ip4AddressString 0..1 attr IP address of the default gateway.

dnsServer
Address

Ip4AddressString * attr IP addresses of preconfigured DNS servers.

Tags:xml.namePlural=DNS-SERVER-ADDRESSES

ipAddressKeep
Behavior

IpAddressKeepEnum 0..1 attr Defines the lifetime of a dynamically fetched IP address.

ipv4Address Ip4AddressString 0..1 attr IPv4 Address. Notation: 255.255.255.255. The IP
Address shall be declared in case the ipv4AddressSource
is FIXED and thus no auto-configuration mechanism is
used.

ipv4Address
Source

Ipv4AddressSource
Enum

0..1 attr Defines how the node obtains its IP address.

networkMask Ip4AddressString 0..1 attr Network mask. Notation 255.255.255.255

ttl PositiveInteger 0..1 attr Lifespan of data (0..255). The purpose of the TimeToLive
field is to avoid a situation in which an undeliverable
datagram keeps circulating on a system.

Table A.67: Ipv4Configuration

Class Ipv6Configuration

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::EthernetTopology

Note Internet Protocol version 6 (IPv6) configuration.

Base ARObject , NetworkEndpointAddress

Attribute Type Mult. Kind Note

assignment
Priority

PositiveInteger 0..1 attr Priority of assignment (1 is highest). If a new address
from an assignment method with a higher priority is
available, it overwrites the IP address previously assigned
by an assignment method with a lower priority.

defaultRouter Ip6AddressString 0..1 attr IP address of the default router.

dnsServer
Address

Ip6AddressString * attr IP addresses of pre configured DNS servers.

Tags:xml.namePlural=DNS-SERVER-ADDRESSES

enableAnycast Boolean 0..1 attr This attribute is used to enable anycast addressing (i.e. to
one of multiple receivers).

hopCount PositiveInteger 0..1 attr The distance between two hosts. The hop count n means
that n gateways separate the source host from the
destination host (Range 0..255)

ipAddressKeep
Behavior

IpAddressKeepEnum 0..1 attr Defines the lifetime of a dynamically fetched IP address.

ipAddressPrefix
Length

PositiveInteger 0..1 attr IPv6 prefix length defines the part of the IPv6 address
that is the network prefix.

ipv6Address Ip6AddressString 0..1 attr IPv6 Address. Notation: FFFF:...:FFFF. The IP Address
shall be declared in case the ipv6AddressSource is
FIXED and thus no auto-configuration mechanism is
used.

5

400 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class Ipv6Configuration

ipv6Address
Source

Ipv6AddressSource
Enum

0..1 attr Defines how the node obtains its IP address.

Table A.68: Ipv6Configuration

Class Machine
Package M2::AUTOSARTemplates::AdaptivePlatform::MachineManifest

Note Machine that represents an Adaptive Autosar Software Stack.

Tags:
atp.Status=draft
atp.recommendedPackage=Machines

Base ARElement , ARObject , AtpClassifier , AtpFeature, AtpStructureElement , CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

default
Application
Timeout

EnterExitTimeout 0..1 aggr This aggration defines a default timeout in the context of a
given Machine with respect to the launching and
termination of applications.

Tags:atp.Status=draft

environment
Variable

TagWithOptionalValue * aggr This aggregation represents the collection of environment
variables that shall be added to the environment defined
on the level of the enclosing Machine.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=environmentVariable, environment
Variable.variationPoint.shortLabel
atp.Status=draft

machineDesign MachineDesign 1 ref Reference to the MachineDesign this Machine is
implementing.

Tags:atp.Status=draft

module
Instantiation

AdaptiveModule
Instantiation

* aggr Configuration of Adaptive Autosar module instances that
are running on the machine.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=moduleInstantiation.shortName
atp.Status=draft

processor Processor 1..* aggr This represents the collection of processors owned by the
enclosing machine.

Tags:atp.Status=draft

secure
Communication
Deployment

SecureCommunication
Deployment

* aggr Deployment of secure communication protocol
configuration settings to crypto module entities.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=secureCommunicationDeployment.short
Name
atp.Status=draft

trustedPlatform
Executable
LaunchBehavior

TrustedPlatform
ExecutableLaunch
BehaviorEnum

1 attr This attribute controls the behavior of how authentication
affects the ability to launch for each Executable.

Tags:atp.Status=draft

Table A.69: Machine

401 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class NetworkEndpoint

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::EthernetTopology

Note The network endpoint defines the network addressing (e.g. IP-Address or MAC multicast address).

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

fullyQualified
DomainName

String 0..1 attr Defines the fully qualified domain name (FQDN) e.g.
some.example.host.

ipSecConfig IPSecConfig 0..1 aggr Optional IPSec configuration that provides security
services for IP packets.

network
Endpoint
Address

NetworkEndpoint
Address

1..* aggr Definition of a Network Address.

Tags:xml.name
Plural=NETWORK-ENDPOINT-ADDRESSES

priority PositiveInteger 0..1 attr Defines the frame priority where values from 0 (best
effort) to 7 (highest) are allowed.

Table A.70: NetworkEndpoint

Class <<atpPrototype>> PduToFrameMapping

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note A PduToFrameMapping defines the composition of Pdus in each frame.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

packingByte
Order

ByteOrderEnum 1 attr This attribute defines the order of the bytes of the Pdu
and the packing into the Frame. Please consider that
[constr_3246] and [constr_3222] are restricting the usage
of this attribute.

pdu Pdu 1 ref Reference to a I-Pdu, N-Pdu or NmPdu that is transmitted
in the Frame.

startPosition Integer 1 attr This attribute describes the bitposition of a Pdu within a
Frame.

Please note that the absolute position of the Pdu in the
Frame is determined by the definition of the packingByte
Order attribute. If Big Endian is specified, the start
position indicates the bit position of the most significant bit
in the Frame. If Little Endian is specified, the start position
indicates the bit position of the least significant bit in the
Frame. The bit counting in byte 0 starts with bit 0 (least
significant bit). The most significant bit in byte 0 is bit 7.

The Pdus are byte aligned in a Frame and only the values
0, 8, 16, 24,... (for little endian) and 7, 15, 23, ... (for big
endian) are allowed.

update
IndicationBit
Position

Integer 0..1 attr Indication to the receivers that the corresponding Pdu
was updated by the sender. This attribute describes the
position of the update bit in the frame that aggregates this
PDUToFrameMapping. Length is always one bit.

Note that the exact bit position of the updateIndicationBit
Position is linked to the value of the attribute packingByte
Order because the method of finding the bit position is
different for the values mostSignificantByteFirst and most
SignificantByteLast. This means that if the value of
packingByteOrder is changed while the value of update
IndicationBitPosition remains unchanged the exact bit
position of updateIndicationBitPosition within the
enclosing Frame still undergoes a change.

5

5

402 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class <<atpPrototype>> PduToFrameMapping

4
This attribute denotes the least significant bit for "Little
Endian" and the most significant bit for "Big Endian"
packed signals within the IPdu (see the description of the
packingByteOrder attribute). In AUTOSAR the bit
counting is always set to "sawtooth" and the bit order is
set to "Decreasing". The bit counting in byte 0 starts with
bit 0 (least significant bit). The most significant bit in byte
0 is bit 7.

Table A.71: PduToFrameMapping

Class PduTriggering

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note The PduTriggering describes on which channel the IPdu is transmitted. The Pdu routing by the PduR is
only allowed for subclasses of IPdu.

Depending on its relation to entities such channels and clusters it can be unambiguously deduced
whether a fan-out is handled by the Pdu router or the Bus Interface.

If the fan-out is specified between different clusters it shall be handled by the Pdu Router. If the fan-out is
specified between different channels of the same cluster it shall be handled by the Bus Interface.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

iPdu Pdu 1 ref Reference to the Pdu for which the PduTriggering is
defined. One I-Pdu can be triggered on different channels
(PduR fan-out). The Pdu routing by the PduR is only
allowed for subclasses of IPdu.

Nevertheless is the reference to the Pdu element
necessary since the PduTriggering element is also used
to specify the sending and receiving connections to Ecu
Ports.

iPduPort IPduPort * ref References to the IPduPort on every ECU of the system
which sends and/or receives the I-PDU.

References for both the sender and the receiver side
shall be included when the system is completely defined.

iSignal
Triggering

ISignalTriggering * ref This reference provides the relationship to the ISignal
Triggerings that are implemented by the PduTriggering.
The reference is optional since no ISignalTriggering can
be defined for DCM and Multiplexed Pdus.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

secOcCrypto
Mapping

SecOcCryptoService
Mapping

0..1 ref This reference identifies the crypto profile applicable to
the usage (send, receive) of the also referenced Secured
IPdu.

Obviously, this reference is only applicable if the
Pdutriggering also references a SecuredIPdu in the role i
Pdu.

triggerIPduSend
Condition

TriggerIPduSend
Condition

* aggr Defines the trigger for the Com_TriggerIPDUSend API
call. Only if all defined TriggerIPduSendConditions
evaluate to true (AND associated) the Com_Trigger
IPDUSend API shall be called.

Table A.72: PduTriggering

403 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class PortInterface (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Abstract base class for an interface that is either provided or required by a port of a software component.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AbstractRawDataStreamInterface, AbstractSynchronizedTimeBaseInterface, ClientServerInterface,
CryptoInterface, DataInterface, DiagnosticPortInterface, LogAndTraceInterface, ModeSwitchInterface,
PersistencyInterface, PlatformHealthManagementInterface, SecurityEventReportInterface, Service
Interface, TriggerInterface

Attribute Type Mult. Kind Note

namespace
(ordered)

SymbolProps * aggr This represents the SymbolProps used for the definition
of a hierarchical namespace applicable for the generation
of code artifacts out of the definition of a ServiceInterface.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=namespace.shortName
atp.Status=draft

Table A.73: PortInterface

Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class provides information required to execute the referenced executable.

Tags:
atp.Status=draft
atp.recommendedPackage=Processes

Base ARElement , ARObject , AbstractExecutionContext , AtpClassifier , CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.

Tags:atp.Status=draft

deterministic
Client

DeterministicClient 0..1 ref This reference adds further execution characteristics for
deterministic clients.

Tags:atp.Status=draft

executable Executable 0..1 ref Reference to executable that is executed in the process.

Stereotypes: atpUriDef
Tags:atp.Status=draft

functionCluster
Affiliation

String 0..1 attr This attribute specifies which functional cluster the
process is affiliated with.

Tags:atp.Status=draft

numberOf
RestartAttempts

PositiveInteger 0..1 attr This attribute defines how often a process shall be
restarted if the start fails.

numberOfRestartAttempts = "0" OR Attribute not existing,
start once

numberOfRestartAttempts = "1", start a second time

Tags:atp.Status=draft

preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.

Tags:atp.Status=draft

5

404 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class Process

processState
Machine

ModeDeclarationGroup
Prototype

0..1 aggr Set of Process States that are defined for the process.

Tags:atp.Status=draft

securityEvent SecurityEventDefinition * ref The reference identifies the collection of SecurityEvents
that can be reported by the enclosing SoftwareCluster.

Stereotypes: atpSplitable; atpUriDef
Tags:
atp.Splitkey=securityEvent
atp.Status=draft

stateDependent
StartupConfig

StateDependentStartup
Config

* aggr Applicable startup configurations.

Tags:atp.Status=draft

Table A.74: Process

Class ProvidedApServiceInstance (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a provided service
instance in an abstract way.

Tags:atp.Status=draft

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Subclasses DdsProvidedServiceInstance, ProvidedSomeipServiceInstance, ProvidedUserDefinedServiceInstance

Attribute Type Mult. Kind Note

– – – – –

Table A.75: ProvidedApServiceInstance

Class ProvidedSomeipServiceInstance

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a provided service
instance in a concrete implementation on top of SOME/IP.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , ProvidedApServiceInstance, Referrable, Uploadable
PackageElement

Attribute Type Mult. Kind Note

capability
Record
(ordered)

TagWithOptionalValue * aggr A sequence of records to store arbitrary name/value pairs
conveying additional information about the named
service.

Tags:atp.Status=draft

eventProps SomeipEventProps * aggr Configuration settings for individual events that are
provided by the ServiceInstance.

Tags:atp.Status=draft

5

405 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ProvidedSomeipServiceInstance

loadBalancing
Priority

PositiveInteger 0..1 attr This attribute is used to specify the priority in the load
balancing option of SOME/IP that is added to the Offer
Service.

When a client searches for all service instances of a
service, the client shall choose the service instance with
highest priority if one is defined.

Tags:atp.Status=draft

loadBalancing
Weight

PositiveInteger 0..1 attr This attribute is used to specify the weight in the load
balancing option of SOME/IP that is added to the Offer
Service.

When a client searches for all service instances of a
service, the client shall choose the service instance with
highest priority if one is defined. If several service
instances exist with the highest priority the service
instance shall be chosen based on the weights of the
service instances.

Tags:atp.Status=draft

method
ResponseProps

SomeipMethodProps * aggr Configuration settings for individual methods that are
provided by the ServiceInstance.

Tags:atp.Status=draft

priority PositiveInteger 0..1 attr This attribute defines the VLAN frame priority for SOME/
IP messages that are resulting from this ProvidedSomeip
ServiceInstance (Method and Event communication).
Values from 0 (best effort) to 7 (highest) are allowed.

Tags:atp.Status=draft

providedEvent
Group

SomeipProvidedEvent
Group

* aggr List of EventGroups that are provided by the Service
Instance.

Tags:atp.Status=draft

sdServerConfig SomeipSdServer
ServiceInstanceConfig

1 ref Server specific configuration settings relevant for the
SOME/IP service discovery.

Tags:atp.Status=draft

serviceInstance
Id

PositiveInteger 1 attr Identification number that is used by SOME/IP service
discovery to identify the instance of the service.

The value 65535 for service instance id is reserved and
should not be used.

Tags:atp.Status=draft

Table A.76: ProvidedSomeipServiceInstance

Class ProvidedUserDefinedServiceInstance
Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a provided service
instance in a concrete implementation that is not standardized by AUTOSAR.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , ProvidedApServiceInstance, Referrable, Uploadable
PackageElement

Attribute Type Mult. Kind Note

– – – – –

Table A.77: ProvidedUserDefinedServiceInstance

406 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class RawDataStreamClientInterface
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the necessary capabilities for raw data streaming on the client side, i.e. the
streaming of data that do not undergo any serialization. Each RawDataStreamClientInterface supports
the following capabilities without further modeling:

• connect: set up the communication channel

• shutdown: close the communication channel

• write: send data down the communication channel

• read: access incoming data on the communication channel

Tags:
atp.Status=draft
atp.recommendedPackage=RawDataStreamInterfaces

Base ARElement , ARObject , AbstractRawDataStreamInterface, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , PortInterface,
Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.78: RawDataStreamClientInterface

Class RawDataStreamEthernetTcpUdpCredentials

Package M2::AUTOSARTemplates::AdaptivePlatform::RawDataStreamMapping

Note This-meta-class represents the ability to create a configuration of network credentials for a raw data
stream connection over TCP and UDP (inherited from base class).

Tags:atp.Status=draft

Base ARObject , AbstractRawDataStreamEthernetCredentials, Describable

Attribute Type Mult. Kind Note

tcpPort PositiveInteger 0..1 attr This attribute represents the configuration of a TCP port
number.

Tags:atp.Status=draft

Table A.79: RawDataStreamEthernetTcpUdpCredentials

Class RawDataStreamEthernetUdpCredentials

Package M2::AUTOSARTemplates::AdaptivePlatform::RawDataStreamMapping

Note This-meta-class represents the ability to create a configuration of network credentials for a raw data
stream connection over UDP.

Tags:atp.Status=draft

Base ARObject , AbstractRawDataStreamEthernetCredentials, Describable

Attribute Type Mult. Kind Note

– – – – –

Table A.80: RawDataStreamEthernetUdpCredentials

Class RawDataStreamGrant (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

5

407 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class RawDataStreamGrant (abstract)

Note This abstract meta-class represents the ability to define the IAM configuration for a RawDataStream on
deployment level.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Grant , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses EthernetRawDataStreamGrant

Attribute Type Mult. Kind Note

design RawDataStreamGrant
Design

0..1 ref This reference identifies the RawDataStreamGrantDesign
that the enclosing RawDataStreamEventGrant was
created from.

Stereotypes: atpUriDef
Tags:atp.Status=draft

Table A.81: RawDataStreamGrant

Class RawDataStreamMapping (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::RawDataStreamMapping

Note This meta-class acts as an abstract base class for mapping raw data streams to the application software.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Subclasses EthernetRawDataStreamMapping

Attribute Type Mult. Kind Note

deployment RawDataStream
Deployment

0..1 ref This reference identifies the applicable RawDataStream
Deployment.

Tags:atp.Status=draft

portPrototype RPortPrototype 0..1 iref Reference to a specific PortPrototype that represents the
raw data stream to the application.

Tags:atp.Status=draft
InstanceRef implemented by:RPortPrototypeIn
ExecutableInstanceRef

process Process 0..1 ref Reference to the Process in which the Executable that
contains the SoftwareComponent and the referenced Port
Prototype is executed.

Tags:atp.Status=draft

Table A.82: RawDataStreamMapping

Class RawDataStreamServerInterface
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

5

408 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class RawDataStreamServerInterface
Note This meta-class represents the necessary capabilities for raw data streaming on the server side, i.e. the

streaming of data that do not undergo any serialization.

Each RawDataStreamServerInterface supports the following capabilities without further modeling:

• waitForConnection: wait until a communication channel is set up.

• shutdown: close the communication channel

• write: send data down the communication channel

• read: access incoming data on the communication channel

Tags:
atp.Status=draft
atp.recommendedPackage=RawDataStreamInterfaces

Base ARElement , ARObject , AbstractRawDataStreamInterface, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , PortInterface,
Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.83: RawDataStreamServerInterface

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, CppImplementationDataTypeContextTarget ,
DiagnosticEnvModeElement , EthernetPriorityRegeneration, ExclusiveAreaNestingOrder, HwDescription
Entity , ImplementationProps, ModeTransition, MultilanguageReferrable, NmNetworkHandle, Pnc
MappingIdent, SingleLanguageReferrable, SoConIPduIdentifier, SocketConnectionBundle, Someip
RequiredEventGroup, TimeSyncServerConfiguration, TpConnectionIdent

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags:xml.sequenceOffset=-90

Table A.84: Referrable

Class RequestResponseDelay

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::ServiceInstances

Note Time to wait before answering the query.

Base ARObject

Attribute Type Mult. Kind Note

maxValue TimeValue 1 attr Maximum allowable response delay to entries received by
multicast in seconds.

5

409 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class RequestResponseDelay

minValue TimeValue 1 attr Minimum allowable response delay to entries received by
multicast in seconds.

Table A.85: RequestResponseDelay

Class RequiredApServiceInstance (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a required service
instance in an abstract way.

Tags:atp.Status=draft

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Subclasses DdsRequiredServiceInstance, RequiredSomeipServiceInstance, RequiredUserDefinedServiceInstance

Attribute Type Mult. Kind Note

– – – – –

Table A.86: RequiredApServiceInstance

Class RequiredSomeipServiceInstance

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a required service
instance in a concrete implementation on top of SOME/IP.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, RequiredApServiceInstance, Uploadable
PackageElement

Attribute Type Mult. Kind Note

blacklisted
Version

SomeipServiceVersion * aggr Collection of blacklisted versions.

Tags:atp.Status=draft

capability
Record
(ordered)

TagWithOptionalValue * aggr A sequence of records to store arbitrary name/value pairs
conveying additional information about the named
service.

Tags:atp.Status=draft

methodRequest
Props

SomeipMethodProps * aggr Configuration settings for individual methods that are
requested by the ServiceInstance.

Tags:atp.Status=draft

requiredEvent
Group

SomeipRequiredEvent
Group

* aggr List of EventGroups that are used by the RequiredService
Instance.

Tags:atp.Status=draft

requiredMinor
Version

AnyVersionString 0..1 attr This attribute is used to configure for which minor version
of the SomeIp ServiceInterface the Service Discovery will
search. Value can be set to a number that represents the
Minor Version of the searched service or to ANY.

Tags:atp.Status=draft

requiredService
InstanceId

AnyServiceInstanceId 0..1 attr This attribute represents the ability to describe the
required service instance ID.

Tags:atp.Status=draft

5

410 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class RequiredSomeipServiceInstance

sdClientConfig SomeipSdClientService
InstanceConfig

1 ref Client specific configuration settings relevant for the
SOME/IP service discovery.

Tags:atp.Status=draft

versionDriven
FindBehavior

ServiceVersion
AcceptanceKindEnum

0..1 attr Defines the service discovery find behavior.

Tags:atp.Status=draft

Table A.87: RequiredSomeipServiceInstance

Class RequiredUserDefinedServiceInstance

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a required service
instance in a concrete implementation that is not standardized by AUTOSAR.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, RequiredApServiceInstance, Uploadable
PackageElement

Attribute Type Mult. Kind Note

– – – – –

Table A.88: RequiredUserDefinedServiceInstance

Enumeration SOMEIPTransformerSessionHandlingEnum

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note Enables or disable session handling for SOME/IP transformer

Literal Description

sessionHandling
Active

The SOME/IP Transformer shall use session handling

Tags:atp.EnumerationLiteralIndex=0

sessionHandling
Inactive

The SOME/IP Transformer doesn’t use session handling

Tags:atp.EnumerationLiteralIndex=1

Table A.89: SOMEIPTransformerSessionHandlingEnum

Class SecOcSecureComProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::SecureCommunication

Note Configuration of AUTOSAR SecOC.

Tags:
atp.Status=draft
atp.recommendedPackage=SecureComProps

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, SecureComProps

Attribute Type Mult. Kind Note

authAlgorithm String 0..1 attr This attribute defines the authentication algorithm used
for MAC generation and verification.

Tags:atp.Status=draft

5

411 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class SecOcSecureComProps

authInfoTx
Length

PositiveInteger 0..1 attr This attribute defines the length in bits of the
authentication code to be included in the payload of the
authenticated Message.

Tags:atp.Status=draft

freshnessValue
Length

PositiveInteger 0..1 attr This attribute defines the complete length in bits of the
Freshness Value.

Tags:atp.Status=draft

freshnessValue
TxLength

PositiveInteger 0..1 attr This attribute defines the length in bits of the Freshness
Value to be included in the payload of the secured
message. In other words this attribute defines the length
of the authenticated Message.

Tags:atp.Status=draft

jobRequirement SecOcJobRequirement * aggr Collection of cryptographic job requirements.

Tags:atp.Status=draft

Table A.90: SecOcSecureComProps

Class SecureComProps (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::SecureCommunication

Note This meta-class defines a communication security protocol and its configuration settings.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses DdsSecureComProps, SecOcSecureComProps, TlsSecureComProps

Attribute Type Mult. Kind Note

– – – – –

Table A.91: SecureComProps

Class SecureCommunicationAuthenticationProps

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note Authentication properties used to configure SecuredIPdus.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

authInfoTx
Length

PositiveInteger 0..1 attr This attribute defines the length in bits of the
authentication code to be included in the payload of the
authenticated Pdu.

Table A.92: SecureCommunicationAuthenticationProps

Class SecureCommunicationFreshnessProps

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note Freshness properties used to configure SecuredIPdus.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

5

412 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class SecureCommunicationFreshnessProps

freshness
CounterSync
Attempts

PositiveInteger 0..1 attr This attribute defines the number of Freshness Counter
re-synchronization attempts when a verification failed for
a Secured I-PDU. If the value is zero, there will be no
additional verification attempt to synchronize with a
potentially better fitting Freshness Counter value. This
attribute is only applicable if useFreshnessTimestamp is
FALSE.

freshness
TimestampTime
PeriodFactor

PositiveInteger 0..1 attr This attribute defines a factor that specifies the time
period for the Freshness Timestamp. It holds a
multiplication factor that specifies the concrete meaning
of a Freshness Timestamp increment by one on basis of
microseconds.

freshnessValue
Length

PositiveInteger 0..1 attr This attribute defines the complete length in bits of the
Freshness Value. As long as the key doesn’t change the
counter shall not overflow. The length of the counter shall
be determined based on the expected life time of the
corresponding key and frequency of usage of the counter.

freshnessValue
TxLength

PositiveInteger 0..1 attr This attribute defines the length in bits of the Freshness
Value to be included in the payload of the Secured I-PDU.
This length is specific to the least significant bits of the
complete Freshness Counter. If the attribute is 0 no
Freshness Value is included in the Secured I-PDU.

useFreshness
Timestamp

Boolean 0..1 attr This attribute specifies whether the Freshness Value is
generated through individual Freshness Counters or by a
Timestamps. The value is set to TRUE when Timestamps
are used.

Table A.93: SecureCommunicationFreshnessProps

Class SecureCommunicationProps

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note This meta-class contains configuration settings that are specific for an individual SecuredIPdu.

Base ARObject

Attribute Type Mult. Kind Note

authData
Freshness
Length

PositiveInteger 0..1 attr This attribute defines the length in bits of the authentic
PDU data that is passed to the SWC that verifies and
generates the Freshness.

authData
FreshnessStart
Position

PositiveInteger 0..1 attr This value determines the start position in bits of the
Authentic PDU that shall be passed on to the SWC that
verifies and generates the Freshness. The bit counting is
done according to TPS_SYST_01068.

authentication
BuildAttempts

PositiveInteger 0..1 attr This attribute specifies the number of authentication build
attempts.

authentication
Retries

PositiveInteger 1 attr This attribute defines the additional number of
authentication attempts that are to be carried out when
the generation of the authentication information failed for
a given SecuredIPdu. If zero is set than only one
authentication attempt is done.

dataId PositiveInteger 1 attr This attribute defines a numerical identifier for the
Secured I-PDU.

freshnessValue
Id

PositiveInteger 0..1 attr This attribute defines the Id of the Freshness Value. The
Freshness Value might be a normal counter or a time
value.

5

413 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class SecureCommunicationProps

messageLink
Length

PositiveInteger 0..1 attr SecOC links an AuthenticIPdu and CryptographicIPdu
together by repeating a specific part (Message Linker) of
the AuthenticIPdu in the CryptographicIPdu. This attribute
defines the length in bits of the messageLinker.

messageLink
Position

PositiveInteger 0..1 attr SecOC links an AuthenticIPdu and CryptographicIPdu
together by repeating a specific part (Message Linker) of
the AuthenticIPdu in the CryptographicIPdu. This attribute
defines the startPosition in bits of the messageLinker.

secondary
FreshnessValue
Id

PositiveInteger 0..1 attr This attribute defines the Id of the Secondary Freshness
Value. The Secondary Freshness Value might be a
normal counter or a time value. Please note that this
attribute is for documentation only to allow the
configuration of required freshness value manager and no
upstream mapping is defined for it.

securedArea
Length

PositiveInteger 0..1 attr This attribute defines the length in bytes of the area within
the payload Pdu which will be secured.

securedArea
Offset

PositiveInteger 0..1 attr This attribute defines the start position (offset in byte) of
the area within the payload Pdu which will be secured.

Table A.94: SecureCommunicationProps

Class SecuredIPdu
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note If useAsCryptographicPdu is not set or set to false this IPdu contains the payload of an Authentic IPdu
supplemented by additional Authentication Information (Freshness Counter and an Authenticator).

If useAsCryptographicPdu is set to true this IPdu contains the Authenticator for a payload that is
transported in a separate message. The separate Authentic IPdu is described by the Pdu that is
referenced with the payload reference from this SecuredIPdu.

Tags:atp.recommendedPackage=Pdus

Base ARObject , CollectableElement , FibexElement , IPdu, Identifiable, MultilanguageReferrable, Packageable
Element , Pdu, Referrable

Attribute Type Mult. Kind Note

authentication
Props

SecureCommunication
AuthenticationProps

0..1 ref Reference to authentication properties that are valid for
this SecuredIPdu.

freshnessProps SecureCommunication
FreshnessProps

0..1 ref Reference to freshness properties that are valid for this
SecuredIPdu.

payload PduTriggering 1 ref Reference to a Pdu that will be protected against
unauthorized manipulation and replay attacks.

secure
Communication
Props

SecureCommunication
Props

1 aggr Specific configuration properties for this SecuredIPdu.

useAs
Cryptographic
IPdu

Boolean 0..1 attr If this attribute is set to true the SecuredIPdu contains the
Authentication Information for an AuthenticIPdu that is
transmitted in a separate message. The AuthenticIPdu
contains the original payload, i.e. the secured data.

If this attribute is set to false this SecuredIPdu contains
the payload of an Authentic IPdu supplemented by
additional Authentication Information.

useSecuredPdu
Header

SecuredPduHeader
Enum

0..1 attr This attribute defines the size of the header which is
inserted into the SecuredIPdu. If this attribute is set to
anything but noHeader, the SecuredIPdu contains the
Secured I-PDU Header to indicate the length of the
AuthenticIPdu. The AuthenticIPdu contains the original
payload, i.e. the secured data.

Table A.95: SecuredIPdu

414 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Enumeration SerializationTechnologyEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note This enumeration allows to choose a Serialization Technology.

Tags:atp.Status=draft

Literal Description

signalBased Signal-Based serializer.

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

someip SOME/IP Serializer

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

Table A.96: SerializationTechnologyEnum

Class ServiceEventDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note This abstract meta-class represents the ability to specify a deployment of an Event to a middleware
transport layer.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses DdsEventDeployment, SomeipEventDeployment, UserDefinedEventDeployment

Attribute Type Mult. Kind Note

event VariableDataPrototype 0..1 ref Reference to an Event that is deployed to a middleware
transport layer.

Stereotypes: atpUriDef
Tags:atp.Status=draft

trigger Trigger 0..1 ref Reference to a Trigger that is deployed to a middleware
transport layer.

Stereotypes: atpUriDef
Tags:atp.Status=draft

Table A.97: ServiceEventDeployment

Class ServiceFieldDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note This abstract meta-class represents the ability to specify a deployment of a Field to a middleware
transport layer.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses DdsFieldDeployment, SomeipFieldDeployment, UserDefinedFieldDeployment

Attribute Type Mult. Kind Note

field Field 1 ref Reference to a Field that is deployed to a middleware
transport layer.

Stereotypes: atpUriDef
Tags:atp.Status=draft

Table A.98: ServiceFieldDeployment

415 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class ServiceInstanceToMachineMapping (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceMapping

Note This meta-class represents the ability to map one or several AdaptivePlatformServiceInstances to a
CommunicationConnector of a Machine.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Subclasses DdsServiceInstanceToMachineMapping, SomeipServiceInstanceToMachineMapping, UserDefined
ServiceInstanceToMachineMapping

Attribute Type Mult. Kind Note

communication
Connector

Communication
Connector

0..1 ref Reference to the Machine to which the ServiceInstance is
mapped.

Tags:atp.Status=draft

secOcCom
PropsFor
Multicast

SecOcSecureCom
Props

* ref Reference to communication security configuration
settings that are valid for the udp multicast endpoint (Port
+ Multicast IP Address) defined by the ServiceInstanceTo
MachineMapping.

Tags:atp.Status=draft

secureCom
PropsForTcp

SecureComProps 0..1 ref Reference to communication security configuration
settings that are valid for the tcp unicast endpoint (Tcp
Port + Unicast IP Address) defined by the Service
InstanceToMachineMapping.

Tags:atp.Status=draft

secureCom
PropsForUdp

SecureComProps 0..1 ref Reference to communication security configuration
settings that are valid for the udp unicast endpoint (Udp
Port + Unicast IP Address) defined by the Service
InstanceToMachineMapping.

Tags:atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

* ref Reference to a ServiceInstance that is mapped to the
Machine.

Tags:atp.Status=draft

Table A.99: ServiceInstanceToMachineMapping

Class ServiceInstanceToPortPrototypeMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceMapping

Note This meta-class represents the ability to assign a transport layer dependent ServiceInstance to a Port
Prototype.

With this mapping it is possible to define how specific PortPrototypes are represented in the middleware
in terms of service configuration.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInstanceToPortPrototypeMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

portPrototype PortPrototype 0..1 iref Reference to a specific PortPrototype that represents the
ServiceInstance.

Tags:atp.Status=draft
InstanceRef implemented by:PortPrototypeIn
ExecutableInstanceRef

5

416 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ServiceInstanceToPortPrototypeMapping

process Process 0..1 ref Reference to the Process in which the enclosing Service
InstanceToPortPrototypeMapping is executed.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=process
atp.Status=draft

processDesign ProcessDesign 0..1 ref Reference to the ProcessDesign in which the Executable
that contains the SoftwareComponent and the referenced
PortPrototype is executed.

Stereotypes: atpUriDef
Tags:atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

0..1 ref Reference to a ServiceInstance that is represented in the
Software Component by the mapped group of Port
Prototypes.

Tags:atp.Status=draft

Table A.100: ServiceInstanceToPortPrototypeMapping

Class ServiceInstanceToSignalMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::SignalBasedCommunication

Note This meta-class is defined for a specific ServiceInstance and contains the mappings of elements of a
ServiceInterface for which the ServiceInstance is defined to individual ISignalTriggerings.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInstanceToSignalMapping

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

eventElement
Mapping

SignalBasedEvent
ElementToISignal
TriggeringMapping

* aggr Mapping of an event or an element inside of the event to
an ISignalTriggering.

Tags:atp.Status=draft

fieldMapping SignalBasedFieldToI
SignalTriggering
Mapping

* aggr Mapping of a field to ISignalTriggerings.

Tags:atp.Status=draft

methodMapping SignalBasedMethodToI
SignalTriggering
Mapping

0..1 aggr Mapping of a method to ISignalTriggerings.

Tags:atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

0..1 ref Reference to a ServiceInstance from which the
corresponding ServiceInterface elements will be
transported in the signal-based way over a
communication medium.

Tags:atp.Status=draft

triggerMapping SignalBasedTriggerToI
SignalTriggering
Mapping

* aggr Mapping of a trigger to an ISignalTriggering.

Tags:atp.Status=draft

Table A.101: ServiceInstanceToSignalMapping

Class ServiceInterface
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

5

417 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ServiceInterface
Note This represents the ability to define a PortInterface that consists of a heterogeneous collection of

methods, events and fields.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mult. Kind Note

event VariableDataPrototype * aggr This represents the collection of events defined in the
context of a ServiceInterface.

Stereotypes: atpVariation
Tags:
atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

field Field * aggr This represents the collection of fields defined in the
context of a ServiceInterface.

Stereotypes: atpVariation
Tags:
atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=40

majorVersion PositiveInteger 0..1 attr Major version of the service contract.

Tags:
atp.Status=draft
xml.sequenceOffset=10

method ClientServerOperation * aggr This represents the collection of methods defined in the
context of a ServiceInterface.

Stereotypes: atpVariation
Tags:
atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=50

minorVersion PositiveInteger 0..1 attr Minor version of the service contract.

Tags:
atp.Status=draft
xml.sequenceOffset=20

trigger Trigger * aggr This represents the collection of triggers defined in the
context of a ServiceInterface.

Stereotypes: atpVariation
Tags:
atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=60

Table A.102: ServiceInterface

Class ServiceInterfaceDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note Middleware transport layer specific configuration settings for the ServiceInterface and all contained
ServiceInterface elements.

Tags:atp.Status=draft

5

418 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ServiceInterfaceDeployment (abstract)

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Subclasses DdsServiceInterfaceDeployment, SomeipServiceInterfaceDeployment, UserDefinedServiceInterface
Deployment

Attribute Type Mult. Kind Note

event
Deployment

ServiceEvent
Deployment

* aggr Middleware transport layer specific configuration settings
for an Event that is defined in the ServiceInterface.

Tags:atp.Status=draft

fieldDeployment ServiceField
Deployment

* aggr Middleware transport layer specific configuration settings
for a Field that is defined in the ServiceInterface.

Tags:atp.Status=draft

method
Deployment

ServiceMethod
Deployment

* aggr Middleware transport layer specific configuration settings
for a method that is defined in the ServiceInterface.

Tags:atp.Status=draft

serviceInterface ServiceInterface 0..1 ref Reference to a ServiceInterface that is deployed to a
middleware transport layer.

Stereotypes: atpUriDef
Tags:atp.Status=draft

Table A.103: ServiceInterfaceDeployment

Class ServiceInterfaceElementSecureComConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::SecureCommunication

Note This element allows to secure the communication of the referenced ServiceInterface element.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

dataId PositiveInteger 0..1 attr This attribute defines a unique numerical identifier for the
referenced ServiceInterface element.

Tags:atp.Status=draft

event ServiceEvent
Deployment

0..1 ref Reference to an event that is protected by a security
protocol.

Tags:atp.Status=draft

fieldNotifier ServiceField
Deployment

0..1 ref Reference to a field notifier that is protected by a security
protocol.

Tags:atp.Status=draft

freshnessValue
Id

PositiveInteger 0..1 attr This attribute defines the Id of the Freshness Value.

Tags:atp.Status=draft

getterCall ServiceField
Deployment

0..1 ref Reference to a field getter call message that is protected
by a security protocol.

Tags:atp.Status=draft

getterReturn ServiceField
Deployment

0..1 ref Reference to a field getter return message that is
protected by a security protocol.

Tags:atp.Status=draft

methodCall ServiceMethod
Deployment

0..1 ref Reference to a method call message that is protected by
a security protocol.

Tags:atp.Status=draft

5

419 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class ServiceInterfaceElementSecureComConfig

methodReturn ServiceMethod
Deployment

0..1 ref Reference to a method return message that is protected
by a security protocol.

Tags:atp.Status=draft

setterCall ServiceField
Deployment

0..1 ref Reference to a field setter call message that is protected
by a security protocol.

Tags:atp.Status=draft

setterReturn ServiceField
Deployment

0..1 ref Reference to a field setter return message that is
protected by a security protocol.

Tags:atp.Status=draft

Table A.104: ServiceInterfaceElementSecureComConfig

Class ServiceMethodDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note This abstract meta-class represents the ability to specify a deployment of a Method to a middleware
transport layer.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses SomeipMethodDeployment, UserDefinedMethodDeployment

Attribute Type Mult. Kind Note

method ClientServerOperation 0..1 ref Reference to a method that is deployed to a middleware
transport layer.

Stereotypes: atpUriDef
Tags:atp.Status=draft

Table A.105: ServiceMethodDeployment

Enumeration ServiceVersionAcceptanceKindEnum

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::ServiceInstances

Note Defined the possible acceptance kinds for required service instances.

Tags:atp.Status=draft

Literal Description

exactOrAnyMinor
Version

Search for ANY or specific minor version service instance and select either ALL returned service
instances (in case of ANY) or exactly the specific minor version service instances defined in required
MinorVersion.

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

minimumMinor
Version

Search for ANY minor version service instance and select only those service instances which have
an equal or greater minor version than given in requiredMinorVersion.

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

Table A.106: ServiceVersionAcceptanceKindEnum

420 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class SomeipCollectionProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Collection of attributes that are configurable for an event that is provided by a ServiceInstance or for a
method that is provided or requested by a ServiceInstance.

Tags:atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

udpCollection
BufferTimeout

TimeValue 0..1 attr Maximum time, an outgoing message (event, method call
or method response) may be delayed, due to data
collection.

Tags:atp.Status=draft

udpCollection
Trigger

UdpCollectionTrigger
Enum

0..1 attr Defines whether the ServiceInterface element (event or
method) contributes to the triggering of the udp data
transmission if data collection is enabled.

Tags:atp.Status=draft

Table A.107: SomeipCollectionProps

Class SomeipDataPrototypeTransformationProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::SerializationProperties

Note This meta-class represents the ability to define data transformation props specifically for a SOME/IP
serialization for a given DataPrototype.

Tags:
atp.Status=draft
atp.recommendedPackage=SomeipDataPrototypeTransformationPropss

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

dataPrototype DataPrototypeInService
InterfaceRef

* aggr Collection of DataPrototypes for which the settings in
SomeipDataPrototypeTransformationProps are valid. For
reuse reasons the SomeipDataPrototypeTransformation
Props is able to aggregate several DataPrototypes.

Tags:atp.Status=draft

network
Representation

SwDataDefProps 0..1 aggr Optional specification of the actual network
representation for the referenced primitive DataPrototype.
If a network representation is provided then the baseType
available in the SwDataDefProps shall be used as input
for the serialization/deserialization. If the network
Representation is not provided then the baseType of the
AbstractImplementationDataType shall be used for the
serialization/deserialization.

Tags:atp.Status=draft

someip
Transformation
Props

ApSomeip
TransformationProps

0..1 ref This reference represents the ability to define data
transformation props specifically for a SOME/IP
serialization.

Tags:atp.Status=draft

Table A.108: SomeipDataPrototypeTransformationProps

Class SomeipEventDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

5

421 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class SomeipEventDeployment

Note SOME/IP configuration settings for an Event.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceEventDeployment

Attribute Type Mult. Kind Note

burstSize PositiveInteger 0..1 attr Specifies the number of segments that shall be
transmitted in a burst ignoring separationTime.
SeparationTime will then only be applied between bursts.
If not configured, SeparationTime will be applied between
all frames.

Tags:atp.Status=draft

eventId PositiveInteger 1 attr Unique Identifier within a ServiceInterface that identifies
the Event in SOME/IP. This Identifier is sent as part of the
Message ID in SOME/IP messages.

Tags:atp.Status=draft

maximum
SegmentLength

PositiveInteger 0..1 attr This attribute describes the length in bytes of the SOME/
IP segment. This includes 8 bytes for the Request ID,
Protocol Version, Interface Version, Message Type and
Return Code and 4 additional SOME/IP TP bytes.

If this attribute is set to a value and the data length is
larger than maximumSegmentLength then the
corresponding SOME/IP message will be segmented into
smaller parts that are transmitted over the network.

Tags:atp.Status=draft

separationTime TimeValue 0..1 attr Sets the duration of the minimum time in seconds SOME/
IP shall wait between the transmissions of segments.

Tags:atp.Status=draft

serializer SerializationTechnology
Enum

0..1 attr Defines which serialization technology shall be used.

Tags:atp.Status=draft

transport
Protocol

TransportLayerProtocol
Enum

1 attr This attribute defines over which Transport Layer Protocol
this event is intended to be sent.

Tags:atp.Status=draft

Table A.109: SomeipEventDeployment

Class SomeipEventGroup

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note Grouping of events and notification events inside a ServiceInterface in order to allow subscriptions.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

event SomeipEvent
Deployment

* ref Reference to an event that is part of the EventGroup.

Tags:atp.Status=draft

eventGroupId PositiveInteger 1 attr Unique Identifier that identifies the EventGroup in SOME/
IP. This Identifier is sent as Eventgroup ID in SOME/IP
Service Discovery messages.

Tags:atp.Status=draft

Table A.110: SomeipEventGroup

422 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class SomeipEventProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class allows to set configuration options for an event in the provided service instance.

Tags:atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

collectionProps SomeipCollectionProps 0..1 aggr Collection of timing attributes configurable for an event
that is provided by a Service Instance.

Tags:atp.Status=draft

event SomeipEvent
Deployment

0..1 ref Reference to the event for which the SomeipEventProps
are applicable.

Tags:atp.Status=draft

Table A.111: SomeipEventProps

Class SomeipFieldDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note SOME/IP configuration settings for a Field.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceFieldDeployment

Attribute Type Mult. Kind Note

get SomeipMethod
Deployment

0..1 aggr This aggregation represents the setting of the get method.

Tags:atp.Status=draft

notifier SomeipEvent
Deployment

0..1 aggr This aggregation represents the settings of the notifier.

Tags:atp.Status=draft

set SomeipMethod
Deployment

0..1 aggr This aggregation represents the settings of the set
method

Tags:atp.Status=draft

Table A.112: SomeipFieldDeployment

Class SomeipMethodDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note SOME/IP configuration settings for a Method.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceMethodDeployment

Attribute Type Mult. Kind Note

burstSize
Request

PositiveInteger 0..1 attr Specifies the number of segments for the Method Call
that shall be transmitted in a burst ignoring separation
Time. SeparationTime will then only be applied between
bursts. If not configured, SeparationTime will be applied
between all frames.

Tags:atp.Status=draft

5

423 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class SomeipMethodDeployment

burstSize
Response

PositiveInteger 0..1 attr Specifies the number of segments for the Method
Response that shall be transmitted in a burst ignoring
separationTime. SeparationTime will then only be applied
between bursts. If not configured, SeparationTime will be
applied between all frames.

Tags:atp.Status=draft

maximum
SegmentLength
Request

PositiveInteger 0..1 attr This attribute describes the length in bytes of one SOME/
IP segment into which the Method Call Message will be
divided. This length field includes 8 bytes for the Request
ID, Protocol Version, Interface Version, Message Type
and Return Code and 4 additional SOME/IP TP bytes.

If this attribute is set to a value and the data length is
larger than maximumSegmentLengthRequest then the
corresponding SOME/IP message will be segmented into
smaller parts that are transmitted over the network.

Tags:atp.Status=draft

maximum
SegmentLength
Response

PositiveInteger 0..1 attr This attribute describes the length in bytes of one SOME/
IP segment into which the Method Return Message will be
divided. This length field includes 8 bytes for the Request
ID, Protocol Version, Interface Version, Message Type
and Return Code and 4 additional SOME/IP TP bytes.

If this attribute is set to a value and the data length is
larger than maximumSegmentLengthResponse then the
corresponding SOME/IP message will be segmented into
smaller parts that are transmitted over the network.

Tags:atp.Status=draft

methodId PositiveInteger 1 attr Unique Identifier within a ServiceInterface that identifies
the Method in SOME/IP. This Identifier is sent as part of
the Message ID in SOME/IP messages.

Tags:atp.Status=draft

separationTime
Request

TimeValue 0..1 attr Sets the duration of the minimum time in seconds SOME/
IP shall wait between the transmissions of segments into
which the Method Call Message will be divided.

Tags:atp.Status=draft

separationTime
Response

TimeValue 0..1 attr Sets the duration of the minimum time in seconds SOME/
IP shall wait between the transmissions of segments into
which the Method Return Message will be divided.

Tags:atp.Status=draft

transport
Protocol

TransportLayerProtocol
Enum

1 attr This attribute defines over which Transport Layer Protocol
this method is intended to be sent.

Tags:atp.Status=draft

Table A.113: SomeipMethodDeployment

Class SomeipMethodProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class allows to set configuration options for a method in the service instance.

Tags:atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

5

424 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class SomeipMethodProps

collectionProps SomeipCollectionProps 0..1 aggr Collection of timing attributes configurable for a method
that is provided or requested by a Service Instance.

Tags:atp.Status=draft

method SomeipMethod
Deployment

0..1 ref Reference to the method for which the SomeipMethod
Props are applicable.

Tags:atp.Status=draft

Table A.114: SomeipMethodProps

Class SomeipProvidedEventGroup

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note The meta-class represents the ability to configure ServiceInstance related communication settings on the
provided side for each EventGroup separately.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

eventGroup SomeipEventGroup 0..1 ref Reference to the SomeipEventGroup in the System
Manifest for which the ServiceInstance related Event
Group settings are valid.

Tags:atp.Status=draft

eventMulticast
UdpPort

PositiveInteger 0..1 attr UdpPort configuration that is used for Event
communication in the IP-Multicast case.

During SOME/IP Service Discovery: Send in the
SD-SubscribeEventGroupAck Message to client (answer
to SD-SubscribeEventGroup).

Event: This is the destination-port where the server sends
the multicast event messages if the multicastThreshold is
exceeded.

Tags:atp.Status=draft

ipv4MulticastIp
Address

Ip4AddressString 0..1 attr Multicast IPv4 Address that is transmitted in the Event
GroupSubscribeAck message.

Tags:atp.Status=draft

ipv6MulticastIp
Address

Ip6AddressString 0..1 attr Multicast IPv6 Address that is transmitted in the Event
GroupSubscribeAck message.

Tags:atp.Status=draft

multicast
Threshold

PositiveInteger 1 attr Specifies the number of subscribed clients that trigger the
server to change the transmission of events to multicast.

Example: If configured to 0 only unicast will be used. If
configured to 1 the first client will be already served by
multicast. If configured to 2 the first client will be served
with unicast and as soon as the 2nd client arrives both will
be served by multicast.

This does not influence the handling of initial events,
which are served using unicast only.

Tags:atp.Status=draft

sdServerEvent
GroupTiming
Config

SomeipSdServerEvent
GroupTimingConfig

0..1 ref Server Timing configuration settings that are EventGroup
specific.

Tags:atp.Status=draft

Table A.115: SomeipProvidedEventGroup

425 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class SomeipRequiredEventGroup

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note The meta-class represents the ability to configure ServiceInstance related communication settings on the
required side for each EventGroup separately.

Tags:atp.Status=draft

Base ARObject , Referrable

Attribute Type Mult. Kind Note

eventGroup SomeipEventGroup 0..1 ref Reference to the SomeipEventGroup in the System
Manifest for which the ServiceInstance related Event
Group settings are valid.

Tags:atp.Status=draft

sdClientEvent
GroupTiming
Config

SomeipSdClientEvent
GroupTimingConfig

1 ref Client Timing configuration settings that are EventGroup
specific.

Tags:atp.Status=draft

Table A.116: SomeipRequiredEventGroup

Class SomeipSdClientEventGroupTimingConfig

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::ServiceInstances

Note This meta-class is used to specify configuration related to service discovery in the context of an event
group on SOME/IP.

Tags:atp.recommendedPackage=SomeipSdTimingConfigs

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

request
ResponseDelay

RequestResponseDelay 0..1 aggr The Service Discovery shall delay answers to unicast
messages triggered by multicast messages (e.g.
Subscribe Eventgroup after Offer Service).

subscribe
Eventgroup
RetryDelay

TimeValue 0..1 attr This attribute defines the interval in seconds to re-trigger
a subscription to a Eventgroup, if a retry to subscribe to a
Eventgroup is configured (subscribeEventgroupRetryMax
> 0).

subscribe
Eventgroup
RetryMax

PositiveInteger 0..1 attr This attribute define the maximum counts of retries to
subscribe to an Eventgroup. If the value is set to 0 no
retry shall be done. If the value is set to 255 the retry
shall be done as along as the Eventgroup is requested
and no SubscribeEventGroupAck was received.

timeToLive PositiveInteger 1 attr Defines the time in seconds the subscription of this event
is expected by the client. this value is sent from the client
to the server in the SD-subscribeEvent message.

Table A.117: SomeipSdClientEventGroupTimingConfig

Class SomeipSdClientServiceInstanceConfig

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::ServiceInstances

Note Client specific settings that are relevant for the configuration of SOME/IP Service-Discovery.

Tags:atp.recommendedPackage=SomeipSdTimingConfigs

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

5

426 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class SomeipSdClientServiceInstanceConfig

initialFind
Behavior

InitialSdDelayConfig 0..1 aggr Controls initial find behavior of clients.

priority PositiveInteger 0..1 attr This attribute defines the VLAN frame priority for Service
Discovery messages that result from RequiredSomeip
ServiceInstances that are referncing this SomeipSdClient
ServiceInstanceConfig (Find, SubscribeEventGroup, Stop
SubscribeEventgroup). Values from 0 (best effort) to 7
(highest) are allowed.

serviceFind
TimeToLive

PositiveInteger 1 attr This attribute represents the ability to define the time in
seconds the service find is valid.

Table A.118: SomeipSdClientServiceInstanceConfig

Class SomeipSdServerServiceInstanceConfig

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::ServiceInstances

Note Server specific settings that are relevant for the configuration of SOME/IP Service-Discovery.

Tags:atp.recommendedPackage=SomeipSdTimingConfigs

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

initialOffer
Behavior

InitialSdDelayConfig 0..1 aggr Controls offer behavior of the server.

offerCyclicDelay TimeValue 0..1 attr Optional attribute to define cyclic offers. Cyclic offer is
active, if the delay is set (in seconds).

priority PositiveInteger 0..1 attr This attribute defines the VLAN frame priority for Service
Discovery messages that result from ProvidedSomeip
ServiceInstances that are referencing the SomeipSd
ServerServiceInstanceConfig (OfferService, StopOffer
Service, SubscribeEventGroupAck). Values from 0 (best
effort) to 7 (highest) are allowed.

request
ResponseDelay

RequestResponseDelay 0..1 aggr Maximum/Minimum allowable response delay to entries
received by multicast in seconds. The Service Discovery
shall delay answers to entries that were transported in a
multicast SOME/IP-SD message (e.g. FindService).

serviceOffer
TimeToLive

PositiveInteger 1 attr Defines the time in seconds the service offer is valid.

Table A.119: SomeipSdServerServiceInstanceConfig

Class SomeipServiceInstanceToMachineMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceMapping

Note This meta-class allows to map SomeipServiceInstances to a CommunicationConnector of a Machine. In
this step the network configuration (IP Address, Transport Protocol, Port Number) for the ServiceInstance
is defined.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInstanceToMachineMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, ServiceInstanceToMachineMapping, UploadablePackageElement

Attribute Type Mult. Kind Note

5

427 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class SomeipServiceInstanceToMachineMapping

tcpPort ApApplicationEndpoint 0..1 ref TcpPort configuration that is used for Method and Event
communication in IP-Unicast case.

During SOME/IP Service Discovery: PortNumber that is
sent in the SD-Offer Message to client (answer on
SD-find) or clients (SD-offer).

Method: This is the destination-port where the server
accepts the method call messages (from the clients). This
is the source-port where the server sends the method
response messages (to the client).

Event: This is the event source-port where the server
sends the event messages to the subscribed clients in
IP-Unicast case.

Tags:atp.Status=draft

udpCollection
BufferSize
Threshold

PositiveInteger 0..1 attr Specifies the amount of data in bytes that shall be
buffered for data transmission over the udp connection
specified by this SomeipServiceInstanceToMachine
Mapping in case data collection is enabled.

Tags:atp.Status=draft

udpPort ApApplicationEndpoint 0..1 ref UdpPort configuration that is used for Method and Event
communication in IP-Unicast case.

During SOME/IP Service Discovery: PortNumber that is
sent in the SD-Offer Message to client (answer on
SD-find) or clients (SD-offer).

Method: This is the destination-port where the server
accepts the method call messages (from the clients). This
is the source-port where the server sends the method
response messages (to the client).

Event: This is the event source-port where the server
sends the event messages to the subscribed clients in
IP-Unicast case.

Tags:atp.Status=draft

Table A.120: SomeipServiceInstanceToMachineMapping

Class SomeipServiceInterfaceDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note SOME/IP configuration settings for a ServiceInterface.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInterfaceDeployments

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, ServiceInterfaceDeployment , UploadablePackageElement

Attribute Type Mult. Kind Note

eventGroup SomeipEventGroup * aggr SOME/IP EventGroups that are defined within the SOME/
IP ServiceClass.

Tags:atp.Status=draft

serviceInterface
Id

PositiveInteger 1 attr Unique Identifier that identifies the ServiceInterface in
SOME/IP. This Identifier is sent as Service ID in SOME/IP
Service Discovery messages.

Tags:atp.Status=draft

5

428 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class SomeipServiceInterfaceDeployment

serviceInterface
Version

SomeipServiceVersion 1 aggr The SOME/IP major and minor Version of the Service.

Tags:atp.Status=draft

Table A.121: SomeipServiceInterfaceDeployment

Class SomeipServiceVersion

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::ServiceInstances

Note This meta-class represents the ability to describe a version of a SOME/IP Service.

Tags:atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

majorVersion PositiveInteger 0..1 attr Major Version of the ServiceInterface.

Tags:
atp.Status=draft
xml.sequenceOffset=10

minorVersion PositiveInteger 1 attr Minor Version of the ServiceInterface.

Tags:
atp.Status=draft
xml.sequenceOffset=20

Table A.122: SomeipServiceVersion

Class StdCppImplementationDataType

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the way to specify a data type definition that is taken as the basis for a C++
language binding to a C++ Standard Library feature.

Tags:
atp.Status=draft
atp.recommendedPackage=CppImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , CppImplementationDataType, CppImplementationData
TypeContextTarget , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.123: StdCppImplementationDataType

Class <<atpVariation>> SwDataDefProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This class is a collection of properties relevant for data objects under various aspects. One could
consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.

SwDataDefProps covers various aspects:

• Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but
also the recordLayouts which specify how such elements are mapped/converted to the Data

5

5

429 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class <<atpVariation>> SwDataDefProps

4
Types in the programming language (or in AUTOSAR). This is mainly expressed by properties
like swRecordLayout and swCalprmAxisSet

• Implementation aspects, mainly expressed by swImplPolicy, swVariableAccessImplPolicy, sw
AddrMethod, swPointerTagetProps, baseType, implementationDataType and additionalNative
TypeQualifier

• Access policy for the MCD system, mainly expressed by swCalibrationAccess

• Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr,
invalidValue

• Code generation policy provided by swRecordLayout

Tags:vh.latestBindingTime=codeGenerationTime

Base ARObject

Attribute Type Mult. Kind Note

additionalNative
TypeQualifier

NativeDeclarationString 0..1 attr This attribute is used to declare native qualifiers of the
programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.

Tags:xml.sequenceOffset=235

annotation Annotation * aggr This aggregation allows to add annotations (yellow pads
...) related to the current data object.

Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

baseType SwBaseType 0..1 ref Base type associated with the containing data object.

Tags:xml.sequenceOffset=50

compuMethod CompuMethod 0..1 ref Computation method associated with the semantics of
this data object.

Tags:xml.sequenceOffset=180

dataConstr DataConstr 0..1 ref Data constraint for this data object.

Tags:xml.sequenceOffset=190

displayFormat DisplayFormatString 0..1 attr This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.

Tags:xml.sequenceOffset=210

display
Presentation

DisplayPresentation
Enum

0..1 attr This attribute controls the presentation of the related data
for measurement and calibration tools.

implementation
DataType

AbstractImplementation
DataType

0..1 ref This association denotes the ImplementationDataType of
a data declaration via its aggregated SwDataDefProps. It
is used whenever a data declaration is not directly
referring to a base type. Especially

• redefinition of an ImplementationDataType via a
"typedef" to another ImplementationDatatype

• the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly

5

5

430 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class <<atpVariation>> SwDataDefProps

4
• the data type of an array or record element within

an ImplementationDataType, if it does not refer to
a base type directly

• the data type of an SwServiceArg, if it does not
refer to a base type directly

Tags:xml.sequenceOffset=215

invalidValue ValueSpecification 0..1 aggr Optional value to express invalidity of the actual data
element.

Tags:xml.sequenceOffset=255

stepSize Float 0..1 attr This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod SwAddrMethod 0..1 ref Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.

Tags:xml.sequenceOffset=30

swAlignment AlignmentType 0..1 attr The attribute describes the intended typical alignment of
the DataPrototype. If the attribute is not defined the
alignment is determined by the swBaseType size and the
memoryAllocationKeywordPolicy of the referenced Sw
AddrMethod.

Tags:xml.sequenceOffset=33

swBit
Representation

SwBitRepresentation 0..1 aggr Description of the binary representation in case of a bit
variable.

Tags:xml.sequenceOffset=60

swCalibration
Access

SwCalibrationAccess
Enum

0..1 attr Specifies the read or write access by MCD tools for this
data object.

Tags:xml.sequenceOffset=70

swCalprmAxis
Set

SwCalprmAxisSet 0..1 aggr This specifies the properties of the axes in case of a
curve or map etc. This is mainly applicable to calibration
parameters.

Tags:xml.sequenceOffset=90

swComparison
Variable

SwVariableRefProxy * aggr Variables used for comparison in an MCD process.

Tags:
xml.sequenceOffset=170
xml.typeElement=false

swData
Dependency

SwDataDependency 0..1 aggr Describes how the value of the data object has to be
calculated from the value of another data object (by the
MCD system).

Tags:xml.sequenceOffset=200

swHostVariable SwVariableRefProxy 0..1 aggr Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.

Tags:
xml.sequenceOffset=220
xml.typeElement=false

swImplPolicy SwImplPolicyEnum 0..1 attr Implementation policy for this data object.

Tags:xml.sequenceOffset=230

5

431 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class <<atpVariation>> SwDataDefProps

swIntended
Resolution

Numerical 0..1 attr The purpose of this element is to describe the requested
quantization of data objects early on in the design
process.

The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).

In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swIntendedResolution.

The resolution is specified in the physical domain
according to the property "unit".

Tags:xml.sequenceOffset=240

swInterpolation
Method

Identifier 0..1 attr This is a keyword identifying the mathematical method to
be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.

Tags:xml.sequenceOffset=250

swIsVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects
do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .

Tags:xml.sequenceOffset=260

swPointerTarget
Props

SwPointerTargetProps 0..1 aggr Specifies that the containing data object is a pointer to
another data object.

Tags:xml.sequenceOffset=280

swRecord
Layout

SwRecordLayout 0..1 ref Record layout for this data object.

Tags:xml.sequenceOffset=290

swRefresh
Timing

MultidimensionalTime 0..1 aggr This element specifies the frequency in which the object
involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.

So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.

Tags:xml.sequenceOffset=300

swTextProps SwTextProps 0..1 aggr the specific properties if the data object is a text object.

Tags:xml.sequenceOffset=120

swValueBlock
Size

Numerical 0..1 attr This represents the size of a Value Block

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

5

432 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class <<atpVariation>> SwDataDefProps

swValueBlock
SizeMult
(ordered)

Numerical * attr This attribute is used to specify the dimensions of a value
block (VAL_BLK) for the case that that value block has
more than one dimension.

The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
second entry represents the second dimension, and so
on.

For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

unit Unit 0..1 ref Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.

Tags:xml.sequenceOffset=350

valueAxisData
Type

ApplicationPrimitive
DataType

0..1 ref The referenced ApplicationPrimitiveDataType represents
the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.

Tags:xml.sequenceOffset=355

Table A.124: SwDataDefProps

Class SwTextProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This meta-class expresses particular properties applicable to strings in variables or calibration
parameters.

Base ARObject

Attribute Type Mult. Kind Note

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls the semantics of the arraysize for
the array representing the string in an Implementation
DataType.

It is there to support a safe conversion between
ApplicationDatatype and ImplementationDatatype, even
for variable length strings as required e.g. for Support of
SAE J1939.

baseType SwBaseType 0..1 ref This is the base type of one character in the string. In
particular this baseType denotes the intended encoding of
the characters in the string on level of ApplicationData
Type.

Tags:xml.sequenceOffset=30

swFillCharacter Integer 0..1 attr Filler character for text parameter to pad up to the
maximum length swMaxTextSize.

The value will be interpreted according to the encoding
specified in the associated base type of the data object,
e.g. 0x30 (hex) represents the ASCII character zero as
filler character and 0 (dec) represents an end of string as
filler character.

The usage of the fill character depends on the arraySize
Semantics.

Tags:xml.sequenceOffset=40

5

433 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class SwTextProps

swMaxTextSize Integer 0..1 attr Specifies the maximum text size in characters. Note the
size in bytes depends on the encoding in the
corresponding baseType.

Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Table A.125: SwTextProps

Class SymbolProps

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This meta-class represents the ability to contribute a part of a namespace.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.126: SymbolProps

Class TlsIamRemoteSubject

Package M2::AUTOSARTemplates::AdaptivePlatform::SCREIAM

Note This meta-class defines the proxy information about the remote node in case of TLS.

Tags:
atp.Status=draft
atp.recommendedPackage=IamRemoteSubjects

Base ARElement , ARObject , AbstractIamRemoteSubject , CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

acceptedCrypto
CipherSuiteWith
Psk

TlsCryptoCipherSuite * ref This reference is used to identify a remote node by
means of the preshared Key.

Tags:atp.Status=draft

accepted
Remote
Certificate

CryptoService
Certificate

* ref This reference is used to identify a remote node by
means of the certificate.

Tags:atp.Status=draft

certCommon
Name

String 0..1 attr This attribute defines the common name (CN) of the
certificate of the remote peer.

Tags:atp.Status=draft

derived
Certificate
Accepted

Boolean 0..1 attr This attribute defines whether a derivedCertificate is
accepted (true) or not (false).

Tags:atp.Status=draft

iamRelevantTls
SecureCom
Props

TlsSecureComProps * ref This reference defines the local TlsSecureComProps that
are relevant for IAM.

Tags:atp.Status=draft

Table A.127: TlsIamRemoteSubject

434 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Class TlsSecureComProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::SecureCommunication

Note Configuration of the Transport Layer Security protocol (TLS).

Tags:
atp.Status=draft
atp.recommendedPackage=SecureComProps

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, SecureComProps

Attribute Type Mult. Kind Note

keyExchange CryptoServicePrimitive * ref This reference identifies the shared (i.e. applicable for
each of the aggregated cipher suites) crypto service
primitive for the execution of key exchange during the
handshake phase.

Tags:atp.Status=draft

tlsCipherSuite TlsCryptoCipherSuite * aggr Collection of supported cipher suites that are used to
negotiate the security settings for a network connection
defined by the ServiceInstanceToMachineMapping.

Tags:atp.Status=draft

Table A.128: TlsSecureComProps

Class TlvDataIdDefinition
Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note This meta-class represents the ability to define the tlvDataId.

Base ARObject

Attribute Type Mult. Kind Note

id PositiveInteger 1 attr This attribute represents the definition of the value of the
TlvDataId

Stereotypes: atpIdentityContributor

tlvArgument ArgumentDataPrototype 0..1 ref This reference assigns a tlvDataId to a given argument of
a ClientServerOperation.

tlv
Implementation
DataType
Element

AbstractImplementation
DataTypeElement

0..1 ref This reference associates the definition of a TLV data id
with a given AbstractImplementationDataTypeElement.

tlvRecord
Element

ApplicationRecord
Element

0..1 ref This reference associates the definition of a TLV data id
with a given ApplicationRecordElement.

Table A.129: TlvDataIdDefinition

Class TransformationPropsToServiceInterfaceElementMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This meta-class represents the ability to associate a ServiceInterface element with TransformationProps.
The referenced elements of the Service Interface will be serialized according to the settings defined in
the TransformationProps.

Tags:
atp.Status=draft
atp.recommendedPackage=TransformationPropsToServiceInterfaceElementMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

5

435 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Class TransformationPropsToServiceInterfaceElementMapping

event VariableDataPrototype * ref This represents the reference to one or several events of
one ServiceInterface.

Tags:atp.Status=draft

field Field * ref This represents the reference to one or several fields of
one ServiceInterface.

Tags:atp.Status=draft

method ClientServerOperation * ref This represents the reference to one or several methods
of one ServiceInterface.

Tags:atp.Status=draft

tlvDataId
Definition

TlvDataIdDefinitionSet * ref This reference identifies the TlvDataIdDefinitions relevant
for the enclosing TransformationPropsToServiceInterface
Mapping.

Tags:atp.Status=draft

transformation
Props

TransformationProps 0..1 ref This represents the reference to the applicable
Serialization properties.

Tags:atp.Status=draft

trigger Trigger * ref This represents the reference to one or several triggers of
one ServiceInterface.

Tags:atp.Status=draft

Table A.130: TransformationPropsToServiceInterfaceElementMapping

Enumeration TransportLayerProtocolEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This enumeration allows to choose a TCP/IP transport layer protocol.

Tags:atp.Status=draft

Literal Description

tcp Transmission control protocol

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

udp User datagram protocol

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

Table A.131: TransportLayerProtocolEnum

Class Trigger

Package M2::AUTOSARTemplates::CommonStructure::TriggerDeclaration

Note The Trigger represents a special kind of an event (without data) at which occurrence the Service
Consumer shall react in a particular manner.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.132: Trigger

436 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Enumeration UdpCollectionTriggerEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Defines whether the ServiceInterface element (event or method) contributes to the triggering of the
udp data transmission if data collection is enabled.

Tags:atp.Status=draft

Literal Description

always ServiceInterface element will trigger the transmission of the data.

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

never ServiceInterface element will be buffered and will not trigger the transmission of the data.

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

Table A.133: UdpCollectionTriggerEnum

Class UserDefinedServiceInterfaceDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note UserDefined configuration settings for a ServiceInterface.

Tags:
atp.Status=draft
atp.recommendedPackage=ServiceInterfaceDeployments

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, ServiceInterfaceDeployment , UploadablePackageElement

Attribute Type Mult. Kind Note

– – – – –

Table A.134: UserDefinedServiceInterfaceDeployment

Class VariableDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a
VariableDataPrototype allocates "static" memory on the ECU. In some cases optimization strategies
might lead to a situation where the memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used
executes.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mult. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table A.135: VariableDataPrototype

B Platform Extension API (normative)

The focus of the APIs in this section are for OEM-specific platform extensions. The
abstraction of the interfaces is lower which could lead to a higher machine dependency

437 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

B.1 Freshness Value Management(FVM) Library API

The following section provides the Freshness Value Management Library API as de-
fined in fvm.h header file which is part of the ara::com:secoc namespace.

B.1.1 Library API Reference

[SWS_CM_11287]{DRAFT} d

Kind: class

Symbol: FVM

Scope: namespace ara::com::secoc

Syntax: class FVM {...};

Header file: #include "ara/com/secoc/fvm.h"

Description: A freshness value management interface to be implmented by the OEM/stack vendor.

Notes: To be used by the freshness value management library implementer either OEM or stack
vendor. The class will have a single instance in the CM.

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

[SWS_CM_11288]{DRAFT} d

Kind: function

Symbol: GetRxFreshness(std::uint16_t SecOCFreshnessValueID, const FVContainer &Sec
OCTruncatedFreshnessValue, std::uint16_t SecOCAuthVerifyAttempts)

Scope: class ara::com::secoc::FVM

Syntax: ara::core::Result<FVContainer, SecOcFvmErrc> GetRxFreshness
(std::uint16_t SecOCFreshnessValueID, const FVContainer &Sec
OCTruncatedFreshnessValue, std::uint16_t SecOCAuthVerifyAttempts)
noexcept;

SecOCFreshnessValueID the identifier of the freshness value.

SecOCTruncatedFreshnessValue the freshness value container with the values from
the received Secured I-PDU/ message

Parameters (in):

SecOCAuthVerifyAttempts the number of authentication verify attempts of this
I-PDU/message since the last reception. The value
is 0 for the first attempt and incremented on every
unsuccessful verification attempt.

Return value: ara::core::Result< FVContainer, SecOc
FvmErrc >

freshness value container that holds the freshness
value to be used for the calculation of the the
authenticator by the SecOC or recoverable error.

Exception Safety: noexcept

Header file: #include "ara/com/secoc/fvm.h"

Description: This method is used by the SecOC to obtain the current freshness value.

Notes: synchronous, reentrant

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

[SWS_CM_11289]{DRAFT} d

438 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

Kind: function

Symbol: GetTxFreshness(std::uint16_t SecOCFreshnessValueID)

Scope: class ara::com::secoc::FVM

Syntax: ara::core::Result<FVContainer, SecOcFvmErrc> GetTxFreshness
(std::uint16_t SecOCFreshnessValueID) noexcept;

Parameters (in): SecOCFreshnessValueID the identifier of the freshness value.

Return value: ara::core::Result< FVContainer, SecOc
FvmErrc >

freshness value container that holds the freshness
value to be used for the calculation of the
authenticator by the SecOC or recoverable error.

Exception Safety: noexcept

Header file: #include "ara/com/secoc/fvm.h"

Description: This method is used by the SecOC to obtain the current freshness value.

Notes: synchronous, reentrant

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

[SWS_CM_11290]{DRAFT} d

Kind: function

Symbol: Initialize()

Scope: class ara::com::secoc::FVM

Syntax: ara::core::Result<void> Initialize () noexcept;

Return value: ara::core::Result< void > no return value in case of success, kFVInitialize
Failed otherwise.

Exception Safety: noexcept

Header file: #include "ara/com/secoc/fvm.h"

Description: This method initializes FVM plugin implementation.

Notes: synchronous, non-reentrant

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

[SWS_CM_11286]{DRAFT} d

Kind: struct

Symbol: FVContainer

Scope: namespace ara::com::secoc

Syntax: struct FVContainer {...};

Header file: #include "ara/com/secoc/fvm.h"

Description: A freshness value container to hold the length of freshness value in bits and the freshness
value itself as an ara::core::Vector .

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

[SWS_CM_11344]{DRAFT} d

Kind: variable

Symbol: length

5

439 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Scope: struct ara::com::secoc::FVContainer

Type: std::uint64_t

Syntax: std::uint64_t length;

Header file: #include "ara/com/secoc/fvm.h"

Description: length in bits of the freshness value passed in FVContainer

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

[SWS_CM_11345]{DRAFT} d

Kind: variable

Symbol: value

Scope: struct ara::com::secoc::FVContainer

Type: ara::core::Vector< std::uint8_t >

Syntax: ara::core::Vector<std::uint8_t> value;

Header file: #include "ara/com/secoc/fvm.h"

Description: vector of bytes containing the freshness value

Notes: depends if the container is used as an input or returning value by the method it will contain
either the full freshness or truncated values

c(RS_SEC_04001, RS_SEC_04002, RS_SEC_04003, RS_SEC_04004)

B.1.2 Error Types

[SWS_CM_11340]{DRAFT} Definition general ara::com::secoc errors dGeneral
ara::com::secoc errors shall be defined in the error domain ara::com::secoc::-
SecOcFvmErrorDomain in accordance with [16].c(RS_AP_00130)

[SWS_CM_11342]{DRAFT} d

Kind: enumeration

Symbol: SecOcFvmErrc

Scope: namespace ara::com::secoc

Underlying type: ara::core::ErrorDomain::CodeType

Syntax: enum class SecOcFvmErrc : ara::core::ErrorDomain::CodeType {...};

kFVNotAvailable= 1 Recoverable Error meaning the Freshness Value not
available.

Values:

kFVInitializeFailed= 2 Unrecoverable Error meaning the Freshness Value
Manager could not be used.

Header file: #include "ara/com/secoc/fvm_error_domain.h"

Description: The enumeration class defines the error codes for the SecOcFvmErrorDomain .

c(RS_AP_00130)

440 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

[SWS_CM_11341]{DRAFT} SecOcFvm errors domain dError domain to describe
ara::com errors related to the Freshness Value Management Library API ara::com:-
:secoc::SecOcFvmErrorDomain shall be defined. It shall have the shortname Sec-
OcFvm and the identifier 0x8000’0000’0000’1271.c(RS_AP_00130)

441 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

C History of Specification Items

C.1 Constraint and Specification Item History of this document
according to AUTOSAR Release R17-10

C.1.1 Added Traceables in 17-10

Number Heading

[SWS_CM_00002] Service skeleton Event class
[SWS_CM_00007] Service skeleton Field class
[SWS_CM_00112] Method to get the value of a field

[SWS_CM_00113] Method to set the value of a field
[SWS_CM_00114] Registering Getters

[SWS_CM_00115] Existence of RegisterGetHandler method

[SWS_CM_00116] Registering Setters

[SWS_CM_00117] Existence of the RegisterSetHandler method

[SWS_CM_00119] Update Function

[SWS_CM_00120] Provision of an update notification event for a Field

[SWS_CM_00128] Ensuring the existence of valid Field values

[SWS_CM_00129] Ensuring existence of SetHandler

[SWS_CM_00132] Existence of getter method

[SWS_CM_00133] Existence of the set method
[SWS_CM_00182] Event Receive Handler call serialization
[SWS_CM_00183] Disable service event trigger

[SWS_CM_00252]

[SWS_CM_00253]

[SWS_CM_00254]

[SWS_CM_00255]

[SWS_CM_00256]

[SWS_CM_00257]

[SWS_CM_00258]

[SWS_CM_00259]

[SWS_CM_00260]

[SWS_CM_00262]

[SWS_CM_00263]

[SWS_CM_00264]

[SWS_CM_00265]

[SWS_CM_00266] FilterFunction for incoming event filtering

[SWS_CM_00427] String Data Type with baseTypeSize of 16
5

442 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00428] Element specification typed by String Data Type with baseTypeSize of 16

[SWS_CM_01031] Service fields namespace

[SWS_CM_10268]

[SWS_CM_10269]

[SWS_CM_10270]

[SWS_CM_10271]

[SWS_CM_10272]

[SWS_CM_10273]

[SWS_CM_10274]

[SWS_CM_10275]

[SWS_CM_10276]

[SWS_CM_10277]

[SWS_CM_10278]

[SWS_CM_10279]

[SWS_CM_10280]

[SWS_CM_10281]

[SWS_CM_10282]

[SWS_CM_10283]

[SWS_CM_10284]

[SWS_CM_10285] Responsibility of proper string encoding

[SWS_CM_10286] Encoding mismatch in input configurations

[SWS_CM_10287] Conditions for sending of a SOME/IP event message

[SWS_CM_10288] Transport protocol for sending of a SOME/IP event message

[SWS_CM_10289] Source of a SOME/IP event message

[SWS_CM_10290] Destination of a SOME/IP event message

[SWS_CM_10291] Content of the SOME/IP event message

[SWS_CM_10292] Checks for a received SOME/IP event message

[SWS_CM_10293] Identifying the right event

[SWS_CM_10294] Deserializing the payload

[SWS_CM_10295] Store the received event data
[SWS_CM_10296] Invoke receive handler
[SWS_CM_10297] Conditions for sending of a SOME/IP request message

[SWS_CM_10298] Transport protocol for sending of a SOME/IP request message

[SWS_CM_10299] Source of a SOME/IP request message

[SWS_CM_10300] Destination of a SOME/IP request message

[SWS_CM_10301] Content of the SOME/IP request message

[SWS_CM_10302] Checks for a received SOME/IP request message

[SWS_CM_10303] Identifying the right method
5

443 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10304] Deserializing the payload

[SWS_CM_10305] Store the received method data
[SWS_CM_10306] Invoke the method - event driven
[SWS_CM_10307] Invoke the method - polling

[SWS_CM_10308] Conditions for sending of a SOME/IP response message

[SWS_CM_10309] Transport protocol for sending of a SOME/IP response message

[SWS_CM_10310] Source of a SOME/IP response message

[SWS_CM_10311] Destination of a SOME/IP response message

[SWS_CM_10312] Content of the SOME/IP response message

[SWS_CM_10313] Checks for a received SOME/IP response message

[SWS_CM_10314] Identifying the right method

[SWS_CM_10315] Discarding orphaned responses

[SWS_CM_10316] Deserializing the payload - response mesages

[SWS_CM_10317] Making the Future ready

[SWS_CM_10318] Invoke the notification function
[SWS_CM_10319] Conditions for sending of a SOME/IP event message

[SWS_CM_10320] Transport protocol for sending of a SOME/IP event message

[SWS_CM_10321] Source of a SOME/IP event message

[SWS_CM_10322] Destination of a SOME/IP event message

[SWS_CM_10323] Content of the SOME/IP event message

[SWS_CM_10324] Checks for a received SOME/IP event message

[SWS_CM_10325] Identifying the right event

[SWS_CM_10326] Deserializing the payload

[SWS_CM_10327] Store the received event data
[SWS_CM_10328] Invoke receive handler
[SWS_CM_10329] Conditions for sending of a SOME/IP request message

[SWS_CM_10330] Transport protocol for sending of a SOME/IP request message

[SWS_CM_10331] Source of a SOME/IP request message

[SWS_CM_10332] Destination of a SOME/IP request message

[SWS_CM_10333] Content of the SOME/IP request message

[SWS_CM_10334] Checks for a received SOME/IP request message

[SWS_CM_10335] Identifying the right method

[SWS_CM_10336] Deserializing the payload

[SWS_CM_10337] Store the received method data
[SWS_CM_10338] Invoke the registered set/get handlers - event driven

[SWS_CM_10339] Invoke the registered set/get handlers - polling

[SWS_CM_10340] Conditions for sending of a SOME/IP response message

[SWS_CM_10341] Transport protocol for sending of a SOME/IP response message
5

444 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10342] Source of a SOME/IP response message

[SWS_CM_10343] Destination of a SOME/IP response message

[SWS_CM_10344] Content of the SOME/IP response message

[SWS_CM_10345] Checks for a received SOME/IP response message

[SWS_CM_10346] Identifying the right method

[SWS_CM_10347] Discarding orphaned responses

[SWS_CM_10348] Deserializing the payload

[SWS_CM_10349] Making the Future ready

[SWS_CM_10350] Invoke the notification function
[SWS_CM_10351] Service application errors

[SWS_CM_10352] Definition of ServiceNotAvailableException

[SWS_CM_10353] Use of ServiceNotAvailableException

[SWS_CM_10354] Definition of ApplicationErrorException

[SWS_CM_10355] Use of ApplicationErrorException

[SWS_CM_10356] Definition of sub-classes of ApplicationErrorException

[SWS_CM_10357] Distinguishing errors from normal responses

[SWS_CM_10358] Identifying the right application error

[SWS_CM_10359] Deserializing the payload - error response mesages

[SWS_CM_10361]

[SWS_CM_10362] Raising checked exceptions for application errors

[SWS_CM_10370] Data Type definitions for Application Errors in Common header file

[SWS_CM_10371] Context of thrown checked exceptions

[SWS_CM_11262]

[SWS_CM_11263]

[SWS_CM_90101] Secure channel creation
[SWS_CM_90102] Using secure channels

[SWS_CM_90103] TLS secure channel for methods using reliable transport

[SWS_CM_90104] DTLS secure channel for methods using unreliable transport

[SWS_CM_90105] TLS secure channel for events using reliable transport

[SWS_CM_90106] DTLS secure channel for events using unreliable transport

[SWS_CM_90107] TLS secure channel for fields
[SWS_CM_90108] SecOC secure channel for methods
[SWS_CM_90109] SecOC secure channel for events
[SWS_CM_90110] SecOC secure channel for fields
[SWS_CM_90401]

[SWS_CM_90402]

[SWS_CM_90403]

[SWS_CM_90404]

[SWS_CM_90405]
5

445 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_90406]

[SWS_CM_90407]

[SWS_CM_90408]

[SWS_CM_90409]

[SWS_CM_90410]

[SWS_CM_90411]

[SWS_CM_90412]

[SWS_CM_90413]

[SWS_CM_90414]

[SWS_CM_90415]

[SWS_CM_90416]

[SWS_CM_90417]

[SWS_CM_90418]

[SWS_CM_90419]

[SWS_CM_90420] E2ECheckStatus of a sample

[SWS_CM_90421] ara::com:state_machine::E2E check status

[SWS_CM_90422] ara::com:state_machine::State

[SWS_CM_90423] E2EResult
[SWS_CM_90424] Provide E2E Result
[SWS_CM_90425] Namespace of Sample Pointer

[SWS_CM_90430]

[SWS_CM_90431]

[SWS_CM_90432] Functionality of Sample Pointer

Table C.1: Added Traceables in 17-10

C.1.2 Changed Traceables in 17-10

Number Heading

[SWS_CM_00122] Find service with immediately returned request

[SWS_CM_00123] Find service with handler registration

[SWS_CM_00124] Find service handler behavior
[SWS_CM_00171] Receive a service event using polling

[SWS_CM_00181] Enable service event trigger

[SWS_CM_00195] Retrieving results of the method call

[SWS_CM_00202] SOME/IP FindService message

[SWS_CM_00203] SOME/IP OfferService message

[SWS_CM_00205] SOME/IP SubscribeEventgroup message
5

446 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message

[SWS_CM_00300] Event Cache Update Policy

[SWS_CM_00302] Instance Identifier Class
[SWS_CM_00303] Find Service Handle
[SWS_CM_00304] Service Handle Container
[SWS_CM_00305] Find Service Handler
[SWS_CM_00306] Sample Pointer

[SWS_CM_00307] Sample Container

[SWS_CM_00308] Sample Allocatee Pointer

[SWS_CM_00309] Event Receive Handler
[SWS_CM_00310] Subscription State

[SWS_CM_00312] Handle Type Class

[SWS_CM_00346] Promise::set_value, forwarding reference version

[SWS_CM_00406] String Data Type with baseTypeSize of 8

[SWS_CM_00409] Associative Map Data Type

[SWS_CM_00420] Element specification typed by String Data Type with baseTypeSize of 8

[SWS_CM_01010] Service Identifier and Service Version Classes
[SWS_CM_01016] Data Type definitions for AUTOSAR Data Types in Common header file

[SWS_CM_01019] Data Type declarations in Types header file

[SWS_CM_10017]

[SWS_CM_10034]

[SWS_CM_10059]

[SWS_CM_10242] UTF-8 Strings

[SWS_CM_10243] UTF-16 Strings

[SWS_CM_10245] Serialization of strings

[SWS_CM_10247] Deserialization of strings

[SWS_CM_10252]

[SWS_CM_10253]

[SWS_CM_10256]

[SWS_CM_10257]

[SWS_CM_10258]

[SWS_CM_10260]

[SWS_CM_10262] Insertion of an associative map length field

[SWS_CM_10264] Size of the associative map length field

[SWS_CM_10267] Insertion of an associative map length field

Table C.2: Changed Traceables in 17-10

447 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

C.1.3 Deleted Traceables in 17-10

Number Heading

[SWS_CM_01003] Inclusion protection

Table C.3: Deleted Traceables in 17-10

C.2 Constraint and Specification Item History of this document
according to AUTOSAR Release R18-03

C.2.1 Added Traceables in 18-03

Number Heading

[SWS_CM_00008] Service proxy Field class

[SWS_CM_00172] Method to update the event cache

[SWS_CM_00173] Method to get the cached samples

[SWS_CM_00174] Method to clean-up the event cache

[SWS_CM_00313] Call SubscriptionStateChangeHandler with kSubscriptionPending

[SWS_CM_00314] Call SubscriptionStateChangeHandler with kSubscribed

[SWS_CM_00315] Re-establishing an active subscription

[SWS_CM_00316] Query Subscription State

[SWS_CM_00383] Extended Find Service Handler
[SWS_CM_00412] Union Data Type

[SWS_CM_00417] Element specification typed by Union

[SWS_CM_00448] Element specification typed by Variant

[SWS_CM_00449] Variant Data Type

[SWS_CM_00450] Maximum size of allocated vector memory

[SWS_CM_00451] Namespace specification for an ImplementationDataType of category VEC-
TOR

[SWS_CM_01032]
Accessing optional record elements inside a Structure Cpp Implemen-
tation Data Type that are serialized with the Tag-Length-Value principle.

[SWS_CM_01033] Optional Class Template

[SWS_CM_01034] Optional default constructor

[SWS_CM_01035] Optional move constructor

[SWS_CM_01036] Optional copy constructor

[SWS_CM_01037] Optional destructor

[SWS_CM_01038] Optional move assignment operator

[SWS_CM_01039] Optional default copy assignment operator

[SWS_CM_01040] Optional function to get contained value
5

448 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_01041] Optional function to check availability of contained value

[SWS_CM_01042] Optional bool operator

[SWS_CM_01043] Optional reset function

[SWS_CM_01044]

[SWS_CM_01045]
Every record element inside a struct that contains at least one optional record
element shall be serialized based on the Tag-Length-Value principle.

[SWS_CM_01046] Regarding the definition of tlvDataId see [TPS_MANI_01097] and [con-
str_1532] for details.

[SWS_CM_01047] Every record element shall have a wire type assigned when the optionality
is used for at least one record element inside the struct.

[SWS_CM_01048] Every record element shall have a tag assigned when the optionality is used
for at least one record element inside the struct.

[SWS_CM_01049] The tlvDataIds shall be synchronized between the interacting proxy and
skeleton instances.

[SWS_CM_01050] Variant Class Template

[SWS_CM_01051] Variant default constructor
[SWS_CM_01052] Variant move constructor
[SWS_CM_01053] Variant copy constructor

[SWS_CM_01054] Variant destructor
[SWS_CM_01055] Variant move assignment operator

[SWS_CM_01056] Variant default copy assignment operator

[SWS_CM_01057] Variant function to return the zero-based index of the alternative
[SWS_CM_01058] Variant function to check if the Variant is in invalid state
[SWS_CM_10040]

[SWS_CM_10235]

[SWS_CM_10244] UTF-16LE Strings

[SWS_CM_10372] Inclusion of Implementation Types header files

[SWS_CM_10373] Implementation Types header files existence

[SWS_CM_10374] Data Type definitions for AUTOSAR Data Types in Implementation Types
header files

[SWS_CM_10375] Implementation Types header file namespace

[SWS_CM_10376] Skip CompuScales with non-point range

[SWS_CM_10377] Sending SOME/IP SubscribeEventgroup messages - initial

[SWS_CM_10378] Sending SOME/IP StopSubscribeEventgroup messages

[SWS_CM_10379] Silently discarding SOME/IP event messages for unsubscribed events

[SWS_CM_10380] Silently discarding SOME/IP event messages for unsubscribed events

[SWS_CM_10381] Sending SOME/IP SubscribeEventgroup messages - renewal

[SWS_CM_10382] Calling stop find service for already stopped finds

[SWS_CM_10384] Change of Service Interface Deployment

[SWS_CM_10385] Change of Service Instance Deployment
5

449 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10386] Change of Network Configuration

[SWS_CM_10387] Data accumulation for UDP data transmission
[SWS_CM_10388] Enabling of data accumulation for UDP data transmission

[SWS_CM_10389] Configuration of a data accumulation on a ProvidedServiceInstance for
transmission over UDP

[SWS_CM_10390] Configuration of a data accumulation on a RequiredSomeipServiceIn-
stance for transmission over UDP

[SWS_CM_11000]

[SWS_CM_11001] Mapping of OfferService method

[SWS_CM_11002] Assigning a DDS DomainParticipant to a Service Instance

[SWS_CM_11003] Assigning a DDS Topic and a DDS DataWriter to every Event in the Servi-
ceInterface

[SWS_CM_11004] Adding Service and Service Instance IDs to the DDS Domain Participant’s
USER_DATA QoS Policy

[SWS_CM_11005] Mapping of StopOfferService method

[SWS_CM_11006] Mapping of FindService method

[SWS_CM_11007] Finding a DDS DomainParticipant suitable for performing client-side opera-
tions

[SWS_CM_11008] Creating a DDS DomainParticipant suitable for performing client-side opera-
tions

[SWS_CM_11009] Discovering remote Service Instances through DDS DomainParticipants

[SWS_CM_11010] Mapping of StartFindService method

[SWS_CM_11011] Defining a DDS BuiltinParticipantListener

[SWS_CM_11012] Binding a BuiltinParticipantListener to a DDS DomainParticipant

[SWS_CM_11013] Mapping of StopFindService method

[SWS_CM_11014] Unbinding a BuiltinParticipantListener from a DDS DomainParticipant

[SWS_CM_11015] Mapping Events to DDS Topics

[SWS_CM_11016] DDS Topic datatype definition

[SWS_CM_11017] Mapping of Send method

[SWS_CM_11018] Mapping of Subscribe method

[SWS_CM_11019] Creating a DDS DataReader for event subscription

[SWS_CM_11020] Defining a DDS DataReaderListener

[SWS_CM_11021] Mapping of Unsubscribe method

[SWS_CM_11022] Mapping of GetSubscriptionState method

[SWS_CM_11023] Mapping of Update method

[SWS_CM_11024] Mapping of GetCachedSamples method

[SWS_CM_11025] Mapping of SetReceiveHandler method

[SWS_CM_11026] Mapping of UnsetReceiveHandler method

[SWS_CM_11027] Mapping of SetSubscriptionStateHandler method

[SWS_CM_11028] Mapping of UnsetSubscriptionStateHandler method
5

450 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_11041]

[SWS_CM_11042]

[SWS_CM_11043]

[SWS_CM_11044] Serialization of Strings of baseTypeSize 8

[SWS_CM_11045] Serialization of Strings of baseTypeSize 16

[SWS_CM_11046] Serialization of ImplementationDataType of category VECTOR

[SWS_CM_11047] Serialization of ImplementationDataType of category ARRAY

[SWS_CM_11048]

[SWS_CM_90001] Restrictions on executing methods

[SWS_CM_90002] Restrictions on sending events

[SWS_CM_90003] Restrictions on receiving events

[SWS_CM_90004] Process separation of network and language binding for access control

[SWS_CM_90433]

[SWS_CM_90434] Provision of a Fire and Forget method

[SWS_CM_90435] Initiate a Fire and Forget method call

[SWS_CM_90436] No checked exceptions thrown for Fire and Forget method calls

[SWS_CM_90437] Send event where Communication Management is responsible for the data

[SWS_CM_90438] Allocating data for event transfer

Table C.4: Added Traceables in 18-03

C.2.2 Changed Traceables in 18-03

Number Heading

[SWS_CM_00002] Service skeleton class
[SWS_CM_00003] Service skeleton Event class
[SWS_CM_00004] Service proxy class

[SWS_CM_00005] Service proxy Event class

[SWS_CM_00006] Service proxy Method class

[SWS_CM_00007] Service skeleton Field class
[SWS_CM_00102] Uniqueness of offered service

[SWS_CM_00120] Provision of an update notification event for a Field

[SWS_CM_00123] Find service with handler registration

[SWS_CM_00124] Find service handler behavior
[SWS_CM_00141] Method to subscribe to a service event
[SWS_CM_00162] Send event where application is responsible for the data

[SWS_CM_00201] Start of service discovery protocol on Server side

[SWS_CM_00202] SOME/IP FindService message
5

451 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00203] SOME/IP OfferService message

[SWS_CM_00204] SOME/IP StopOffer message

[SWS_CM_00205] Content of SOME/IP SubscribeEventgroup message

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message

[SWS_CM_00207] Content of SOME/IP StopSubscribeEventgroup message

[SWS_CM_00208] SOME/IP SubscribeEventgroupNack message

[SWS_CM_00209] Start of service discovery protocol on Client side

[SWS_CM_00252]

[SWS_CM_00253]

[SWS_CM_00254]

[SWS_CM_00255]

[SWS_CM_00256]

[SWS_CM_00257]

[SWS_CM_00258]

[SWS_CM_00259]

[SWS_CM_00260]

[SWS_CM_00262]

[SWS_CM_00263]

[SWS_CM_00264]

[SWS_CM_00265]

[SWS_CM_00302] Instance Identifier Class
[SWS_CM_00303] Find Service Handle
[SWS_CM_00306] Sample Pointer

[SWS_CM_00310] Subscription State

[SWS_CM_00311] Subscription State Changed Handler

[SWS_CM_00312] Handle Type Class

[SWS_CM_00400] Naming of data types by short name

[SWS_CM_00401] Naming of data types by symbol

[SWS_CM_00402] Primitive Data Type

[SWS_CM_00403] Array Data Type with one dimension

[SWS_CM_00404] Array Data Type with more than one dimension

[SWS_CM_00405] Structure Data Type

[SWS_CM_00406] String Data Type with baseTypeSize of 8

[SWS_CM_00407] Vector Data Type with one dimension

[SWS_CM_00408] Vector Data Type with more than one dimension

[SWS_CM_00409] Associative Map Data Type

[SWS_CM_00410] Data Type redefinition

[SWS_CM_00411] Avoid Data Type redeclaration

[SWS_CM_00413] Element specification typed by Base Type
5

452 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00414] Element specification typed by Implementation Data Type

[SWS_CM_00415] Element specification typed by Array

[SWS_CM_00416] Element specification typed by Structure

[SWS_CM_00418] Element specification typed by Vector

[SWS_CM_00419] Element specification typed by Map

[SWS_CM_00420] Element specification typed by String Data Type with baseTypeSize of 8

[SWS_CM_00421] Provide data type definitions

[SWS_CM_00422] Reject data type definitions

[SWS_CM_00423] Data Type Mapping

[SWS_CM_00424] Enumeration Data Type

[SWS_CM_00425] Definition of enumerators
[SWS_CM_00426] Reject incomplete Enumeration Data Types

[SWS_CM_00427] String Data Type with baseTypeSize of 16

[SWS_CM_00428] Element specification typed by String Data Type with baseTypeSize of 16

[SWS_CM_01005] Namespace of Service header files

[SWS_CM_01008] Common header file namespace

[SWS_CM_01010] Service Identifier and Service Version Classes
[SWS_CM_01015] Service methods namespace

[SWS_CM_01017] Service Identifier Type definitions in Common header file

[SWS_CM_01020] Folder structure
[SWS_CM_01031] Service fields namespace

[SWS_CM_10013]

[SWS_CM_10016]

[SWS_CM_10017]

[SWS_CM_10034]

[SWS_CM_10036]

[SWS_CM_10037]

[SWS_CM_10042]

[SWS_CM_10053]

[SWS_CM_10054]

[SWS_CM_10055]

[SWS_CM_10056]

[SWS_CM_10057]

[SWS_CM_10058]

[SWS_CM_10059]

[SWS_CM_10060]

[SWS_CM_10070]

[SWS_CM_10072]

[SWS_CM_10076]
5

453 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10169]

[SWS_CM_10172]

[SWS_CM_10218]

[SWS_CM_10219]

[SWS_CM_10222]

[SWS_CM_10234]

[SWS_CM_10242] UTF-8 Strings

[SWS_CM_10243] UTF-16BE Strings

[SWS_CM_10245] Serialization of strings

[SWS_CM_10247] Deserialization of strings

[SWS_CM_10248]

[SWS_CM_10252]

[SWS_CM_10253]

[SWS_CM_10256]

[SWS_CM_10257]

[SWS_CM_10258]

[SWS_CM_10259]

[SWS_CM_10260]

[SWS_CM_10261] Serialization of an associative map

[SWS_CM_10262] Insertion of an associative map length field

[SWS_CM_10264] Size of the associative map length field

[SWS_CM_10265] Serialization of associative map elements

[SWS_CM_10266] Applicability of mandatory padding after variable length data elements

[SWS_CM_10267] Insertion of an associative map length field

[SWS_CM_10268]

[SWS_CM_10269]

[SWS_CM_10270]

[SWS_CM_10271]

[SWS_CM_10272]

[SWS_CM_10273]

[SWS_CM_10274]

[SWS_CM_10275]

[SWS_CM_10276]

[SWS_CM_10277]

[SWS_CM_10278]

[SWS_CM_10279]

[SWS_CM_10280]

[SWS_CM_10281]

[SWS_CM_10282]
5

454 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10283]

[SWS_CM_10284]

[SWS_CM_10285] Responsibility of proper string encoding

[SWS_CM_10286] Encoding mismatch in input configurations

[SWS_CM_10287] Conditions for sending of a SOME/IP event message

[SWS_CM_10288] Transport protocol for sending of a SOME/IP event message

[SWS_CM_10289] Source of a SOME/IP event message

[SWS_CM_10290] Destination of a SOME/IP event message

[SWS_CM_10291] Content of the SOME/IP event message

[SWS_CM_10292] Checks for a received SOME/IP event message

[SWS_CM_10293] Identifying the right event

[SWS_CM_10294] Deserializing the payload

[SWS_CM_10295] Store the received event data
[SWS_CM_10296] Invoke receive handler
[SWS_CM_10297] Conditions for sending of a SOME/IP request message

[SWS_CM_10298] Transport protocol for sending of a SOME/IP request message

[SWS_CM_10299] Source of a SOME/IP request message

[SWS_CM_10300] Destination of a SOME/IP request message

[SWS_CM_10301] Content of the SOME/IP request message

[SWS_CM_10302] Checks for a received SOME/IP request message

[SWS_CM_10303] Identifying the right method

[SWS_CM_10304] Deserializing the payload

[SWS_CM_10305] Store the received method data
[SWS_CM_10306] Invoke the method - event driven
[SWS_CM_10307] Invoke the method - polling

[SWS_CM_10308] Conditions for sending of a SOME/IP response message

[SWS_CM_10309] Transport protocol for sending of a SOME/IP response message

[SWS_CM_10310] Source of a SOME/IP response message

[SWS_CM_10311] Destination of a SOME/IP response message

[SWS_CM_10312] Content of the SOME/IP response message

[SWS_CM_10313] Checks for a received SOME/IP response message

[SWS_CM_10314] Identifying the right method

[SWS_CM_10315] Discarding orphaned responses

[SWS_CM_10316] Deserializing the payload - response messages

[SWS_CM_10317] Making the Future ready

[SWS_CM_10318] Invoke the notification function
[SWS_CM_10319] Conditions for sending of a SOME/IP event message

[SWS_CM_10320] Transport protocol for sending of a SOME/IP event message
5

455 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10321] Source of a SOME/IP event message

[SWS_CM_10322] Destination of a SOME/IP event message

[SWS_CM_10323] Content of the SOME/IP event message

[SWS_CM_10324] Checks for a received SOME/IP event message

[SWS_CM_10325] Identifying the right event

[SWS_CM_10326] Deserializing the payload

[SWS_CM_10327] Store the received event data
[SWS_CM_10328] Invoke receive handler
[SWS_CM_10329] Conditions for sending of a SOME/IP request message

[SWS_CM_10330] Transport protocol for sending of a SOME/IP request message

[SWS_CM_10331] Source of a SOME/IP request message

[SWS_CM_10332] Destination of a SOME/IP request message

[SWS_CM_10333] Content of the SOME/IP request message

[SWS_CM_10334] Checks for a received SOME/IP request message

[SWS_CM_10335] Identifying the right method

[SWS_CM_10336] Deserializing the payload

[SWS_CM_10337] Store the received method data
[SWS_CM_10338] Invoke the registered set/get handlers - event driven

[SWS_CM_10339] Invoke the registered set/get handlers - polling

[SWS_CM_10340] Conditions for sending of a SOME/IP response message

[SWS_CM_10341] Transport protocol for sending of a SOME/IP response message

[SWS_CM_10342] Source of a SOME/IP response message

[SWS_CM_10343] Destination of a SOME/IP response message

[SWS_CM_10344] Content of the SOME/IP response message

[SWS_CM_10345] Checks for a received SOME/IP response message

[SWS_CM_10346] Identifying the right method

[SWS_CM_10347] Discarding orphaned responses

[SWS_CM_10348] Deserializing the payload

[SWS_CM_10349] Making the Future ready

[SWS_CM_10350] Invoke the notification function
[SWS_CM_10356] Definition of sub-classes of ApplicationErrorException

[SWS_CM_10357] Distinguishing errors from normal responses

[SWS_CM_10358] Identifying the right application error

[SWS_CM_10359] Deserializing the payload - error response mesages

[SWS_CM_10361]

[SWS_CM_11262]

[SWS_CM_11263]

[SWS_CM_90103] TLS secure channel for methods using reliable transport
5

456 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_90104] DTLS secure channel for methods using unreliable transport

[SWS_CM_90105] TLS secure channel for events using reliable transport

[SWS_CM_90106] DTLS secure channel for events using unreliable transport

[SWS_CM_90401]

[SWS_CM_90402]

[SWS_CM_90403]

[SWS_CM_90404]

[SWS_CM_90405]

[SWS_CM_90406]

[SWS_CM_90407]

[SWS_CM_90408]

[SWS_CM_90409]

[SWS_CM_90410]

[SWS_CM_90411]

[SWS_CM_90412]

[SWS_CM_90413]

[SWS_CM_90414]

[SWS_CM_90416]

[SWS_CM_90417]

[SWS_CM_90418]

[SWS_CM_90419]

[SWS_CM_90420] E2ECheckStatus of a sample

[SWS_CM_90421] ara::com:E2E_state_machine::E2Echeckstatus

[SWS_CM_90422] ara::com:E2E_state_machine::E2EState

[SWS_CM_90423] E2EResult
[SWS_CM_90424] Provide E2E Result
[SWS_CM_90430]

[SWS_CM_90431]

Table C.5: Changed Traceables in 18-03

C.2.3 Deleted Traceables in 18-03

Number Heading

[SWS_CM_00121] Method to find a service
[SWS_CM_00161] Method to send a service event
[SWS_CM_00163] Send event where Communication Management is responsible for the data

5

457 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00171] Receive a service event using polling

[SWS_CM_01014] No memory allocation in header files

[SWS_CM_01016] Data Type definitions for AUTOSAR Data Types in Common header file

[SWS_CM_90425] Namespace of Sample Pointer

Table C.6: Deleted Traceables in 18-03

C.3 Constraint and Specification Item History of this document
according to AUTOSAR Release R18-10

C.3.1 Added Traceables in 18-10

Number Heading

[SWS_CM_00118] Method Instance Specifier Translation

[SWS_CM_00134] Copy semantics of service skeleton class

[SWS_CM_00135] Move semantics of service skeleton class
[SWS_CM_00136] Copy semantics of service proxy class

[SWS_CM_00137] Move semantics of service proxy class

[SWS_CM_00152] Creation of service skeleton using Instance Spec

[SWS_CM_00153] Creation of service skeleton using Instance ID Container

[SWS_CM_00317] Copy semantics of handle Type Class

[SWS_CM_00318] Move semantics of handle Type Class

[SWS_CM_00333] Set Subscription State change handler

[SWS_CM_00334] Unset Subscription State change handler

[SWS_CM_00350] Instance Specifier Class

[SWS_CM_00452] Usage of attribute arraySize of an CppImplementationDataType with
category VECTOR

[SWS_CM_00502] CustomCppImplementationDataType of category ARRAY

[SWS_CM_00503] StdCppImplementationDataType of category VECTOR with one di-
mension defined with an Allocator

[SWS_CM_00504] Supported Primitive Cpp Implementation Data Types

[SWS_CM_00505] StdCppImplementationDataType with category ASSOCIATIVE_MAP
defined with an Allocator

[SWS_CM_00506] CustomCppImplementationDataType of category ASSOCIATIVE_MAP

[SWS_CM_00507] CustomCppImplementationDataType of category VECTOR

[SWS_CM_00508] CustomCppImplementationDataType of category VARIANT

[SWS_CM_00509] StdCppImplementationDataType with the category STRING with a de-
fined Allocator

[SWS_CM_00622] Find service with immediately returned request using Instance Specifier
5

458 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00623] Find service with handler registration using Instance Specifier

[SWS_CM_01059] Variant destructor
[SWS_CM_01060] Variant move assignment operator

[SWS_CM_01061] Variant default copy assignment operator

[SWS_CM_01062] Variant converting assignment operator

[SWS_CM_01063] Variant function to return the zero-based index of the alternative
[SWS_CM_01064] Variant function to check if the Variant is in invalid state
[SWS_CM_01065] Variant function to swap two Variants

[SWS_CM_01066] Variant function to create a new value in-place, in an existing Variant object

[SWS_CM_01067] Variant function to create a new value in-place, in an existing Variant object
using an initializer list

[SWS_CM_01068] Variant function to create a new value in-place, in an existing Variant object
by destoying and initializing the contained value

[SWS_CM_01069] Variant function to create a new value in-place, in an existing Variant object
by destoying and initializing the contained value using an initializer list

[SWS_CM_10088]

[SWS_CM_10098]

[SWS_CM_10099]

[SWS_CM_10174] Mix of signal-based and SOME/IP communication

[SWS_CM_10226]

[SWS_CM_10227]

[SWS_CM_10250]

[SWS_CM_10251]

[SWS_CM_10254]

[SWS_CM_10255]

[SWS_CM_10383] GetHandle function to return the proxy instance creation handle

[SWS_CM_10391]

[SWS_CM_10392] ScaleLinearAndTexttable Class Template

[SWS_CM_10393] ScaleLinearAndTexttable static assertion
[SWS_CM_10394] ScaleLinearAndTexttable underlying type deduction

[SWS_CM_10395] ScaleLinearAndTexttable default constructor
[SWS_CM_10396] ScaleLinearAndTexttable copy constructor

[SWS_CM_10397] ScaleLinearAndTexttable constructor with enum class argument

[SWS_CM_10398] ScaleLinearAndTexttable constructor with underlying type argument

[SWS_CM_10399] ScaleLinearAndTexttable copy assignment operator

[SWS_CM_10400] ScaleLinearAndTexttable assignment operator with enum class argur-
ment

[SWS_CM_10401]
ScaleLinearAndTexttable assignment operator with underlying type ar-
gument

[SWS_CM_10402] ScaleLinearAndTexttable cast operator to the underlying type
5

459 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10403] Equal to operator between twoScaleLinearAndTexttable objects

[SWS_CM_10404] Equal to operators betweenScaleLinearAndTexttable and an underlying
type

[SWS_CM_10405] Equal to operators between ScaleLinearAndTexttable and an enum
class

[SWS_CM_10406] Not equal to operator between twoScaleLinearAndTexttable objects

[SWS_CM_10407]
Not equal to operators betweenScaleLinearAndTexttable and an under-
lying type

[SWS_CM_10408] Not equal to operators between ScaleLinearAndTexttable and an enum
class

[SWS_CM_10409] Scale Linear And Textable type definition

[SWS_CM_10410] InstanceIdentifier check during the creation of service skeleton

[SWS_CM_10411] Service method processing modes

[SWS_CM_10412] Invoking GetHandlers

[SWS_CM_10413] Invoking SetHandlers

[SWS_CM_10414] Initiate a method call
[SWS_CM_10415] Notify the Field value after a call to the SetHandler function

[SWS_CM_10428] payload representing application error

[SWS_CM_10429] Identifying the right application error in a message with Message Type set to
ERROR (0x81)

[SWS_CM_10430] Handling invalid messages with Message Type set to RESPONSE (0x81)

[SWS_CM_10431] Mapping of ara::core::ErrorCode

[SWS_CM_10432]

[SWS_CM_10433] Declaration of Construction Token
[SWS_CM_10434] Creation of a Construction Token
[SWS_CM_10435] Exception-less creation of service skeleton using Instance ID

[SWS_CM_10436] Exception-less creation of service skeleton using Instance Spec

[SWS_CM_10437] Exception-less creation of service skeleton using Instance ID Container

[SWS_CM_10438] Exception-less creation of service proxy

[SWS_CM_10450] InstanceSpecifier check during the creation of service skeleton

[SWS_CM_10451] InstanceIdentifierContainer check during the creation of service
skeleton

[SWS_CM_10452] InstanceSpecifier translation to InstanceIdentifiers

[SWS_CM_10590] Abstract Network Protocol Binding

[SWS_CM_11029] Assigning a DDS Request and Reply Topic, and DataWriters and DataRead-
ers, to the Methods in the ServiceInterface

[SWS_CM_11030] Assigning a DDS Topic and a DDS DataWriter to every Field in the ServiceIn-
terface with its hasNotifier attribute equal to true

[SWS_CM_11031] Assigning a DDS Request and Reply Topic, and DataWriters and DataRead-
ers, to the Field Getters/Setters in the ServiceInterface

[SWS_CM_11040] DDS standard serialization rules
5

460 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_11049] DDS serialization of CppImplementationDataType of category ASSO-
CIATIVE_MAP

[SWS_CM_11050] DDS serialization of CppImplementationDataType of category VARI-
ANT

[SWS_CM_11100] Mapping Methods to DDS Service Methods and Topics

[SWS_CM_11101] DDS Service Request Topic data type definition

[SWS_CM_11102] DDS Service Reply Topic data type definition

[SWS_CM_11103] Creating a DataWriter to handle method requests on the client side

[SWS_CM_11104] Creating a DataReader to handle method responses on the client side

[SWS_CM_11105] Creating a DataReader to handle method requests on the server side

[SWS_CM_11106] Creating a DataWriter to handle method responses on the server side

[SWS_CM_11107] Calling a service method from the client side

[SWS_CM_11108] Notifying the client of a response to a method call

[SWS_CM_11109] Processing a method call on the server side (event driven)

[SWS_CM_11110] Creating a DataReaderListener to process asynchronous requests on the
server side

[SWS_CM_11111] Processing a method call on the server side (polling)

[SWS_CM_11112] Sending a method call response from the server side

[SWS_CM_11130] Mapping Fields with hasNotifier attribute to DDS Topics

[SWS_CM_11131] Field Notifier DDS Topic data type definition

[SWS_CM_11132] Mapping of Send method

[SWS_CM_11133] Mapping of Subscribe method

[SWS_CM_11134] Creating a DDS DataReader for field subscription

[SWS_CM_11135] Creating a DDS DataReaderListener for field subscription

[SWS_CM_11136] Mapping of Unsubscribe method

[SWS_CM_11137] Mapping of GetSubscriptionState method

[SWS_CM_11138] Mapping of Update method

[SWS_CM_11139] Mapping of GetCachedSamples method

[SWS_CM_11140] Mapping of SetReceiveHandler method

[SWS_CM_11141] Mapping of UnsetReceiveHandler method

[SWS_CM_11142] Mapping of SetSubscriptionStateHandler method

[SWS_CM_11143] Mapping of UnsetSubscriptionStateHandler method

[SWS_CM_11144] Mapping of Field Get/Set methods to DDS Service Methods and Topics

[SWS_CM_11145] DDS Service Request Topic data type definition for Field getter and setter
operations

[SWS_CM_11146] DDS Service Reply Topic data type definition for Field getter and setter oper-
ations

[SWS_CM_11147] Creating a DataWriter to handle get/set requests on the client side

[SWS_CM_11148] Creating a DataReader to handle get/set responses on the client side

[SWS_CM_11149] Creating a DataReader to handle get/set requests on the server side
5

461 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_11150] Creating a DataWriter to handle get/set responses on the server side

[SWS_CM_11151] Calling get/set method associated with a field from the client side

[SWS_CM_11152] Notifying the client of the response to the get/set method call

[SWS_CM_11153] Processing a get/set method call associated with a field on the server side
(event driven)

[SWS_CM_11154] Creating a DataReaderListener to process asynchronous requests for field
getters and setters on the server side

[SWS_CM_11155] Processing a get/set method call associated with a field on the server side
(polling)

[SWS_CM_11156] Sending a response for a get/set method call associated with a field from the
server side

[SWS_CM_11264] Definition general ara::com errors

[SWS_CM_11265] Use of general ara::com errors

[SWS_CM_11266] Definition of Application Errors

[SWS_CM_90005] Restrictions on offering services

[SWS_CM_90006] Restrictions on using services

[SWS_CM_90111] Behavior of a ServiceProxy over TLS before successful completion of the
handshake

[SWS_CM_90112] Behavior of a ServiceProxy over DTLS before successful completion of the
handshake

[SWS_CM_90113] Behavior of a ServiceSkeleton over TLS before successful completion of the
handshake

[SWS_CM_90114] Behavior of a ServiceSkeleton over DTLS before successful completion of the
handshake

[SWS_CM_90115] SecOC secure channel for methods using unreliable transport

[SWS_CM_90116] SecOC secure channel for events using unreliable transport

[SWS_CM_90117] IPsec secure channel between communication nodes
[SWS_CM_90118] Transport of Service communication over an IPsec security association

[SWS_CM_90119] Behavior of a creating ServiceProxy over TLS or DTLS

[SWS_CM_90120] TLS client role of a Proxy

[SWS_CM_90121] TLS server role of a Skeleton
[SWS_CM_90201] Secure channel creation
[SWS_CM_90202] Using secure channels

[SWS_CM_90203] TLS secure channel for methods using reliable transport

[SWS_CM_90204] DTLS secure channel for methods using unreliable transport

[SWS_CM_90205] TLS secure channel for events using reliable transport

[SWS_CM_90206] DTLS secure channel for events using unreliable transport

[SWS_CM_90207] TLS secure channel for fields

[SWS_CM_90209] IPsec secure channel between communication nodes and Transport of Ser-
vice communication over an IPsec security association

[SWS_CM_90210] Using the DDS Security standard plug-ins in the Adaptive Platform

Table C.7: Added Traceables in 18-10

462 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

C.3.2 Changed Traceables in 18-10

Number Heading

[SWS_CM_00102] Uniqueness of offered service

[SWS_CM_00103] Protocol where a service is offered
[SWS_CM_00112] Method to get the value of a field

[SWS_CM_00113] Method to set the value of a field
[SWS_CM_00114] Registering Getters

[SWS_CM_00116] Registering Setters

[SWS_CM_00120] Provision of an update notification event for a Field

[SWS_CM_00122] Find service with immediately returned request using Instance ID

[SWS_CM_00123] Find service with handler registration using Instance ID

[SWS_CM_00124] Find service handler behavior
[SWS_CM_00128] Ensuring the existence of valid Field values

[SWS_CM_00129] Ensuring the existence of SetHandler

[SWS_CM_00130] Creation of service skeleton using Instance ID

[SWS_CM_00131] Creation of service proxy

[SWS_CM_00172] Method to update the event cache

[SWS_CM_00191] Provision of method
[SWS_CM_00192] Synchronous behavior of method call

[SWS_CM_00193] Asynchronous behavior of method call with polling

[SWS_CM_00194] Cancel the method call
[SWS_CM_00195] Retrieving results of the method call

[SWS_CM_00196] Initiate a method call
[SWS_CM_00197] Asynchronous behavior of method call with notification

[SWS_CM_00198] Set service method processing mode

[SWS_CM_00199] Process Service method invocation
[SWS_CM_00202] SOME/IP FindService message

[SWS_CM_00203] SOME/IP OfferService message

[SWS_CM_00205] Content of SOME/IP SubscribeEventgroup message

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message

[SWS_CM_00207] Content of SOME/IP StopSubscribeEventgroup message

[SWS_CM_00208] SOME/IP SubscribeEventgroupNack message

[SWS_CM_00257]

[SWS_CM_00258]

[SWS_CM_00264]

[SWS_CM_00302] Instance Identifier Class
[SWS_CM_00304] Service Handle Container
[SWS_CM_00306] Sample Pointer

[SWS_CM_00307] Sample Container
5

463 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00312] Handle Type Class

[SWS_CM_00314] Call SubscriptionStateChangeHandler with kSubscribed

[SWS_CM_00315] Re-establishing an active subscription

[SWS_CM_00316] Query Subscription State

[SWS_CM_00383] Find Service Handler
[SWS_CM_00400] Naming of data types by short name

[SWS_CM_00402] Primitive fixed width integer types

[SWS_CM_00403] StdCppImplementationDataType of category ARRAY with one dimension

[SWS_CM_00404] Array Data Type with more than one dimension

[SWS_CM_00405] Structure Data Type

[SWS_CM_00406] StdCppImplementationDataType with the category STRING

[SWS_CM_00407] StdCppImplementationDataType of category VECTOR with one di-
mension defined without an Allocator

[SWS_CM_00408] Vector Data Type with more than one dimension

[SWS_CM_00409] StdCppImplementationDataType with category ASSOCIATIVE_MAP
defined without an Allocator

[SWS_CM_00410] Data Type redefinition

[SWS_CM_00411] Avoid Data Type redeclaration

[SWS_CM_00414] Element specification typed by CppImplementationDataType

[SWS_CM_00421] Provide data type definitions

[SWS_CM_00423] Data Type Mapping

[SWS_CM_00424] Enumeration Data Type

[SWS_CM_00425] Definition of enumerators
[SWS_CM_00426] Reject incompleteEnumeration Data Types

[SWS_CM_00449] Variant Data Type

[SWS_CM_00450] Define the maximum size of allocated vector memory

[SWS_CM_01004] Inclusion of common header file
[SWS_CM_01008] Namespace for Service Identifier Type definitions

[SWS_CM_01010] Service Identifier and Service Version Classes
[SWS_CM_01015] Service methods namespace

[SWS_CM_01019] Data Type declarations in Types header file

[SWS_CM_01020] Folder structure

[SWS_CM_01032]
Accessing optional record elements inside aStructure Cpp Implemen-
tation Data Type that are serialized with the Tag-Length-Value principle.

[SWS_CM_01045] Use cases for the definition oftlvDataId
[SWS_CM_01046] Definition oftlvDataId

[SWS_CM_01049] Synchronization oftlvDataIds between the interacting proxy and skeleton
instances.

[SWS_CM_01050] Variant Class Template

[SWS_CM_01054] Variant converting constructor
5

464 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_01055] Variant explicit converting constructor with specified alternative

[SWS_CM_01056] Variant explicit converting constructor with specified alternative and initial-
izer list

[SWS_CM_01057] Variant explicit converting constructor with alternative specified by index

[SWS_CM_01058] Variant explicit converting constructor with alternative specified by index
and initializer list

[SWS_CM_10017]

[SWS_CM_10036]

[SWS_CM_10042]

[SWS_CM_10059]

[SWS_CM_10070]

[SWS_CM_10234]

[SWS_CM_10235]

[SWS_CM_10242] Model representation of UTF-8 Strings

[SWS_CM_10245] Serialization of strings

[SWS_CM_10247] Deserialization of strings

[SWS_CM_10253]

[SWS_CM_10262] Insertion of an associative map length field

[SWS_CM_10265] Serialization of associative map elements

[SWS_CM_10285] Responsibility of proper string encoding

[SWS_CM_10291] Content of the SOME/IP event message

[SWS_CM_10292] Checks for a received SOME/IP event message

[SWS_CM_10294] Deserializing the payload

[SWS_CM_10301] Content of the SOME/IP request message

[SWS_CM_10302] Checks for a received SOME/IP request message

[SWS_CM_10304] Deserializing the payload

[SWS_CM_10308] Conditions for sending of a SOME/IP response message

[SWS_CM_10312] Content of the SOME/IP response message

[SWS_CM_10313] Checks for a received SOME/IP response message

[SWS_CM_10316] Deserializing the payload - normal response messages

[SWS_CM_10317] Making the Future ready

[SWS_CM_10323] Content of the SOME/IP event message

[SWS_CM_10324] Checks for a received SOME/IP event message

[SWS_CM_10326] Deserializing the payload

[SWS_CM_10333] Content of the SOME/IP request message

[SWS_CM_10334] Checks for a received SOME/IP request message

[SWS_CM_10336] Deserializing the payload

[SWS_CM_10339] Invoke the registered set/get handlers - polling

[SWS_CM_10344] Content of the SOME/IP response message
5

465 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10345] Checks for a received SOME/IP response message

[SWS_CM_10348] Deserializing the payload

[SWS_CM_10349] Making the Future ready

[SWS_CM_10357] Distinguishing errors from normal responses

[SWS_CM_10358] Identifying the right application error in a message with Message Type set to
RESPONSE (0x80)

[SWS_CM_10361]

[SWS_CM_10362] Raising checked errors for application errors

[SWS_CM_10370] Common header file for Application Errors

[SWS_CM_10371] Context of return checked errors
[SWS_CM_10372] Inclusion of Implementation Types header files

[SWS_CM_10373] Implementation Types header files existence

[SWS_CM_10374] Data Type definitions for AUTOSAR Data Types in Implementation Types
header files

[SWS_CM_10375] Implementation Types header file namespace

[SWS_CM_10382] Calling stop find service for already stopped finds

[SWS_CM_10388] Enabling of data accumulation for UDP data transmission

[SWS_CM_10389] Configuration of a data accumulation on a ProvidedServiceInstance for
transmission over UDP

[SWS_CM_10390] Configuration of a data accumulation on a RequiredSomeipServiceIn-
stance for transmission over UDP

[SWS_CM_11001] Mapping of OfferService method

[SWS_CM_11002] Assigning a DDS DomainParticipant to a Service Instance

[SWS_CM_11003] Assigning a DDS Topic and a DDS DataWriter to every Event in the Servi-
ceInterface

[SWS_CM_11004] Adding Service and Service Instance IDs to the DDS DomainParticipant’s
USER_DATA QoS Policy

[SWS_CM_11005] Mapping of StopOfferService method

[SWS_CM_11006] Mapping of FindService method

[SWS_CM_11007] Finding a DDS DomainParticipant suitable for performing client-side opera-
tions

[SWS_CM_11009] Discovering remote Service Instances through DDS DomainParticipants

[SWS_CM_11010] Mapping of StartFindService method

[SWS_CM_11011] Defining a DDS BuiltinParticipantListener

[SWS_CM_11012] Binding a BuiltinParticipantListener to a DDS DomainParticipant

[SWS_CM_11014] Unbinding a BuiltinParticipantListener from a DDS DomainParticipant

[SWS_CM_11015] Mapping Events to DDS Topics

[SWS_CM_11016] DDS Topic data type definition

[SWS_CM_11017] Mapping of Send method

[SWS_CM_11018] Mapping of Subscribe method

[SWS_CM_11019] Creating a DDS DataReader for event subscription
5

466 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_11020] Defining a DDS DataReaderListener

[SWS_CM_11021] Mapping of Unsubscribe method

[SWS_CM_11022] Mapping of GetSubscriptionState method

[SWS_CM_11023] Mapping of Update method

[SWS_CM_11025] Mapping of SetReceiveHandler method

[SWS_CM_11026] Mapping of UnsetReceiveHandler method

[SWS_CM_11027] Mapping of SetSubscriptionStateHandler method

[SWS_CM_11028] Mapping of UnsetSubscriptionStateHandler method

[SWS_CM_11041] DDS serialization of StdCppImplementationDataType of cate-
goryVALUE

[SWS_CM_11042] DDS serialization of enumeration data types

[SWS_CM_11043] DDS serialization of StdCppImplementationDataType of cate-
gorySTRUCTURE

[SWS_CM_11044] DDS serialization of StdCppImplementationDataType of cate-
gorySTRING with string shortName

[SWS_CM_11046] Encoding Format and Endianness of Strings in DDS

[SWS_CM_11047] DDS serialization of CppImplementationDataType of categoryVECTOR

[SWS_CM_11048] DDS serialization of CppImplementationDataType of categoryARRAY

[SWS_CM_90001] Restrictions on executing methods

[SWS_CM_90101] Secure UDP and TCP channel creation for TLS, DTLS and SecOC

[SWS_CM_90102] Using secure TLS, DTLS and SecOC channels

[SWS_CM_90103] TLS secure channel for methods using reliable transport

[SWS_CM_90104] DTLS secure channel for methods using unreliable transport

[SWS_CM_90105] TLS secure channel for events using reliable transport

[SWS_CM_90106] DTLS secure channel for events using unreliable transport

[SWS_CM_90108] SecOC secure channel for methods using reliable transport

[SWS_CM_90109] SecOC secure channel for events using reliable transport

[SWS_CM_90110] SecOC secure channel for fields
[SWS_CM_90401]

[SWS_CM_90404]

[SWS_CM_90420] E2ECheckStatus of a sample

[SWS_CM_90421] ara::com:E2E_state_machine::E2Echeckstatus

[SWS_CM_90422] ara::com:E2E_state_machine::E2EState

[SWS_CM_90430]

[SWS_CM_90436] No checked errors for Fire and Forget method calls

Table C.8: Changed Traceables in 18-10

467 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

C.3.3 Deleted Traceables in 18-10

Number Heading

[SWS_CM_00262]

[SWS_CM_00263]

[SWS_CM_00305] Find Service Handler
[SWS_CM_00320] FutureStatus

[SWS_CM_00321] Future Class Template

[SWS_CM_00322] Future default constructor
[SWS_CM_00323] Future move constructor
[SWS_CM_00324] Future unwrapping constructor

[SWS_CM_00325] Move assignment operator

[SWS_CM_00326] Future::get

[SWS_CM_00327] Future::valid

[SWS_CM_00328] Future::wait

[SWS_CM_00329] Future::wait_for

[SWS_CM_00330] Future::wait_until

[SWS_CM_00331] Future::then

[SWS_CM_00332] Future::is_ready

[SWS_CM_00340] Promise Class Template

[SWS_CM_00341] Promise default constructor
[SWS_CM_00342] Promise move constructor
[SWS_CM_00343] Promise move assignment operator

[SWS_CM_00344] Promise::get_future

[SWS_CM_00345] Promise::set_value

[SWS_CM_00346] Promise::set_value, forwarding reference version

[SWS_CM_00347] Promise::set_exception

[SWS_CM_00348] Promise::set_future_dtor_handler

[SWS_CM_00401] Naming of data types by symbol

[SWS_CM_00412] Union Data Type

[SWS_CM_00413] Element specification typed by Base Type

[SWS_CM_00415] Element specification typed by Array

[SWS_CM_00416] Element specification typed by Structure

[SWS_CM_00417] Element specification typed by Union

[SWS_CM_00418] Element specification typed by Vector

[SWS_CM_00419] Element specification typed by Map

[SWS_CM_00420] Element specification typed by String Data Type with baseTypeSize of 8

[SWS_CM_00422] Reject data type definitions

[SWS_CM_00427] String Data Type with baseTypeSize of 16

[SWS_CM_00428] Element specification typed by String Data Type with baseTypeSize of 16
5

468 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00448] Element specification typed by Variant

[SWS_CM_00451] Namespace specification for an ImplementationDataType of category VEC-
TOR

[SWS_CM_01033] Optional Class Template

[SWS_CM_01034] Optional default constructor

[SWS_CM_01035] Optional move constructor

[SWS_CM_01036] Optional copy constructor

[SWS_CM_01037] Optional destructor

[SWS_CM_01038] Optional move assignment operator

[SWS_CM_01039] Optional default copy assignment operator

[SWS_CM_01040] Optional function to get contained value

[SWS_CM_01041] Optional function to check availability of contained value

[SWS_CM_01042] Optional bool operator

[SWS_CM_01043] Optional reset function

[SWS_CM_01044]

[SWS_CM_10040]

[SWS_CM_10243] UTF-16BE Strings

[SWS_CM_10244] UTF-16LE Strings

[SWS_CM_10286] Encoding mismatch in input configurations

[SWS_CM_10351] Service application errors

[SWS_CM_10352] Definition of ServiceNotAvailableException

[SWS_CM_10353] Use of ServiceNotAvailableException

[SWS_CM_10354] Definition of ApplicationErrorException

[SWS_CM_10355] Use of ApplicationErrorException

[SWS_CM_10356] Definition of sub-classes of ApplicationErrorException

[SWS_CM_10359] Deserializing the payload - error response mesages

[SWS_CM_11045] Serialization of Strings of baseTypeSize 16

[SWS_CM_90432] Functionality of Sample Pointer

Table C.9: Deleted Traceables in 18-10

C.4 Constraint and Specification Item History of this document
according to AUTOSAR Release R19-03

C.4.1 Added Traceables in 19-03

none

469 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

C.4.2 Changed Traceables in 19-03

none

C.4.3 Deleted Traceables in 19-03

none

C.5 Constraint and Specification Item History of this document
according to AUTOSAR Release R19-11

C.5.1 Added Traceables in R19-11

Number Heading

[SWS_CM_00700] Ensure memory allocation of maxSampleCount samples

[SWS_CM_00701] Method to update the event cache

[SWS_CM_00702] Signature of Callable f

[SWS_CM_00703] Sequence of actions in GetNewSamples

[SWS_CM_00704] Return Value
[SWS_CM_00705] Query Free Sample Slots

[SWS_CM_00706] Return Value of GetFreeSampleCount

[SWS_CM_00707] Calculation of Free Sample Count

[SWS_CM_00709] FIFO semantics
[SWS_CM_00710] No implicit context switches

[SWS_CM_00711]

[SWS_CM_00714] Reentrancy

[SWS_CM_09004] Adding Service IDs, Service Instance IDs, and ServiceInterface Contract Ver-
sions to the DDS DomainParticipant’s USER_DATA QoS Policy

[SWS_CM_10202] Version blacklist
[SWS_CM_10416] Reception of a malformed message

[SWS_CM_10440] Aborting method calls in case of locally detected failures

[SWS_CM_10441] Failures in sending of a SOME/IP request message

[SWS_CM_10442] Failures during deserialization of response messages

[SWS_CM_10443] Failures in sending of a SOME/IP request message

[SWS_CM_10444] Failures during deserialization of response messages

[SWS_CM_10446] Destruction of service proxy

[SWS_CM_10453] Implementation of invalidValue

[SWS_CM_10454]
5

470 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10455]

[SWS_CM_10456]

[SWS_CM_10457]

[SWS_CM_10458] Handling of an ServiceInterface that does not contain any events, methods,
or fields

[SWS_CM_10459]

[SWS_CM_10460]

[SWS_CM_10461]

[SWS_CM_10462]

[SWS_CM_10463]

[SWS_CM_10464]

[SWS_CM_10465]

[SWS_CM_10466]

[SWS_CM_10467]

[SWS_CM_10468]

[SWS_CM_10469]

[SWS_CM_10470]

[SWS_CM_10471] E2E Error Handler
[SWS_CM_10472] E2E Error Response

[SWS_CM_10473] E2E Error Response

[SWS_CM_10475]

[SWS_CM_10476] Defining a RawDataStream

[SWS_CM_10477] Connect stream link
[SWS_CM_10478] Shutdown stream link
[SWS_CM_10479] Read data from stream
[SWS_CM_10480] Write data to stream
[SWS_CM_10481] Class RawDataStream
[SWS_CM_10482] RawDataStream Constructor
[SWS_CM_10483] RawDataStream Destructor
[SWS_CM_10484] Method Connect
[SWS_CM_10485] Method Shutdown
[SWS_CM_10486] Method ReadData
[SWS_CM_10487] Method WriteData
[SWS_CM_10488] Raw data stream header file existence
[SWS_CM_10489] Raw data stream header file namespace

[SWS_CM_10490] Data Type declarations in Raw data stream header file

[SWS_CM_11267] General errors domain
[SWS_CM_11268] Definition general ara::com::raw errors

[SWS_CM_12367]
5

471 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_80001]

[SWS_CM_80002]

[SWS_CM_80003] Byte order for signal-based network binding with SOME/IP serialization

[SWS_CM_80004] Byte order for signal-based network binding with signal-based serialization

[SWS_CM_80005] Start of service discovery protocol on Server side

[SWS_CM_80006] Start of service discovery protocol on Client side

[SWS_CM_80007] SOME/IP FindService message

[SWS_CM_80008] SOME/IP OfferService message

[SWS_CM_80009] SOME/IP StopOffer message

[SWS_CM_80010] Sending SOME/IP SubscribeEventgroup messages - initial

[SWS_CM_80011] Sending SOME/IP SubscribeEventgroup messages - renewal

[SWS_CM_80012] Content of SOME/IP SubscribeEventgroup message

[SWS_CM_80013] SOME/IP SubscribeEventgroupAck message

[SWS_CM_80014] SOME/IP SubscribeEventgroupNack message

[SWS_CM_80015] Sending SOME/IP StopSubscribeEventgroup messages

[SWS_CM_80016] Content of SOME/IP StopSubscribeEventgroup message

[SWS_CM_80017] Data accumulation for UDP data transmission
[SWS_CM_80018] Enabling of data accumulation for UDP data transmission

[SWS_CM_80019] Configuration of a data accumulation on a ProvidedServiceInstance for
transmission over UDP

[SWS_CM_80020] Configuration of a data accumulation on a RequiredSomeipServiceIn-
stance for transmission over UDP

[SWS_CM_80021] Conditions for sending of an event message

[SWS_CM_80022] Transport protocol for sending of an event message

[SWS_CM_80023] Source of an event message

[SWS_CM_80024] Destination of an event message

[SWS_CM_80025] Content of the SOME/IP serialized event message

[SWS_CM_80026] Content of the signal-based serialized event message

[SWS_CM_80027] Checks for a received SOME/IP serialized event message

[SWS_CM_80028] Checks for a received signal-based serialized event message

[SWS_CM_80029] Identifying the right event

[SWS_CM_80030] Silently discarding event messages for unsubscribed events

[SWS_CM_80031] Invoke receive handler
[SWS_CM_80032] Deserializing the SOME/IP serialized payload

[SWS_CM_80033] Deserializing the signal-based serialized payload

[SWS_CM_80034] Providing the received event data

[SWS_CM_80035] Conditions for sending of a SOME/IP request message

[SWS_CM_80036] Failures in sending of a SOME/IP request message

[SWS_CM_80037] Transport protocol for sending of a SOME/IP request message
5

472 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_80038] Source of a SOME/IP request message

[SWS_CM_80039] Destination of a SOME/IP request message

[SWS_CM_80040] Content of the SOME/IP request message

[SWS_CM_80041] Checks for a received SOME/IP request message

[SWS_CM_80042] Identifying the right method

[SWS_CM_80043] Deserializing the payload

[SWS_CM_80044] Invoke the method - event driven
[SWS_CM_80045] Invoke the method - polling

[SWS_CM_80046] Conditions for sending of a SOME/IP response message

[SWS_CM_80047] Transport protocol for sending of a SOME/IP response message

[SWS_CM_80048] Source of a SOME/IP response message

[SWS_CM_80049] Destination of a SOME/IP response message

[SWS_CM_80050] Content of the SOME/IP response message

[SWS_CM_80051] payload representing application error

[SWS_CM_80052] Checks for a received SOME/IP response message

[SWS_CM_80053] Identifying the right method

[SWS_CM_80054] Discarding orphaned responses

[SWS_CM_80055] Distinguishing errors from normal responses

[SWS_CM_80056] Deserializing the payload - normal response messages

[SWS_CM_80057] Failures during deserialization of response messages

[SWS_CM_80058] Identifying the right application error in a message with Message Type set to
RESPONSE (0x80)

[SWS_CM_80059] Identifying the right application error in a message with Message Type set to
ERROR (0x81)

[SWS_CM_80060] Handling invalid messages with Message Type set to RESPONSE (0x81)

[SWS_CM_80061] Making the Future ready

[SWS_CM_80062] Invoke the notification function
[SWS_CM_80063] Conditions for sending of an event message

[SWS_CM_80064] Transport protocol for sending of an event message

[SWS_CM_80065] Source of an event message

[SWS_CM_80066] Destination of an event message

[SWS_CM_80067] Content of the SOME/IP serialized event message

[SWS_CM_80068] Content of the signal-based serialized event message

[SWS_CM_80069] Checks for a received SOME/IP serialized event message

[SWS_CM_80070] Checks for a received signal-based event message

[SWS_CM_80071] Identifying the right event

[SWS_CM_80072] Silently discarding event messages for unsubscribed events

[SWS_CM_80073] Invoke receive handler
[SWS_CM_80074] Deserializing the SOME/IP serialized payload

5

473 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_80075] Deserializing the signal-based payload

[SWS_CM_80076] Providing the received event data

[SWS_CM_80077] Conditions for sending of a SOME/IP request message

[SWS_CM_80078] Failures in sending of a SOME/IP request message

[SWS_CM_80079] Transport protocol for sending of a SOME/IP request message

[SWS_CM_80080] Source of a SOME/IP request message

[SWS_CM_80081] Destination of a SOME/IP request message

[SWS_CM_80082] Content of the SOME/IP request message

[SWS_CM_80083] Checks for a received SOME/IP request message

[SWS_CM_80084] Identifying the right method

[SWS_CM_80085] Deserializing the payload

[SWS_CM_80086] Invoke the registered set/get handlers - event driven

[SWS_CM_80087] Invoke the registered set/get handlers - polling

[SWS_CM_80088] Conditions for sending of a SOME/IP response message

[SWS_CM_80089] Transport protocol for sending of a SOME/IP response message

[SWS_CM_80090] Source of a SOME/IP response message

[SWS_CM_80091] Destination of a SOME/IP response message

[SWS_CM_80092] Content of the SOME/IP response message

[SWS_CM_80093] Checks for a received SOME/IP response message

[SWS_CM_80094] Identifying the right method

[SWS_CM_80095] Discarding orphaned responses

[SWS_CM_80096] Deserializing the payload

[SWS_CM_80097] Failures during deserialization of response messages

[SWS_CM_80098] Making the Future ready

[SWS_CM_80099] Invoke the notification function
[SWS_CM_80100] SOME/IP serialization of signal-based network binding

[SWS_CM_80101] ServiceInstanceToSignalMapping input for serialization of signal-
based network binding

[SWS_CM_80102] Ignoring not mapped elements

[SWS_CM_80103] Init value for field elements
[SWS_CM_90007] Restrictions on using RawDataStreams

[SWS_CM_90211] Secure UDP and TCP channel creation for TLS and DTLS
[SWS_CM_90212] Using secure TLS, DTLS channels

[SWS_CM_90213] TLS secure channel for raw data streams using reliable transport

[SWS_CM_90214] DTLS secure channel for methods using unreliable transport

[SWS_CM_90215] IPsec secure channel between communication nodes and Transport of Raw
Data Stream communication over an IPsec security association

[SWS_CM_99003]

Table C.10: Added Traceables in R19-11

474 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

C.5.2 Changed Traceables in R19-11

Number Heading

[SWS_CM_00002] Service skeleton class
[SWS_CM_00003] Service skeleton Event class
[SWS_CM_00004] Service proxy class

[SWS_CM_00005] Service proxy Event class

[SWS_CM_00006] Service proxy Method class

[SWS_CM_00007] Service skeleton Field class
[SWS_CM_00008] Service proxy Field class

[SWS_CM_00101] Method to offer a service
[SWS_CM_00111] Method to stop offering a service

[SWS_CM_00112] Method to get the value of a field

[SWS_CM_00113] Method to set the value of a field
[SWS_CM_00114] Registering Getters

[SWS_CM_00115] Existence of RegisterGetHandler method

[SWS_CM_00116] Registering Setters

[SWS_CM_00117] Existence of the RegisterSetHandler method

[SWS_CM_00118] Method Instance Specifier Translation

[SWS_CM_00119] Update Function

[SWS_CM_00120] Provision of an update notification event for a Field

[SWS_CM_00122] Find service with immediately returned request using Instance ID

[SWS_CM_00123] Find service with handler registration using Instance ID

[SWS_CM_00124] Find service handler invocation
[SWS_CM_00125] Stop find service

[SWS_CM_00130] Creation of service skeleton using Instance ID

[SWS_CM_00131] Creation of service proxy

[SWS_CM_00132] Existence of getter method

[SWS_CM_00133] Existence of the set method
[SWS_CM_00134] Copy semantics of service skeleton class

[SWS_CM_00135] Move semantics of service skeleton class
[SWS_CM_00136] Copy semantics of service proxy class

[SWS_CM_00137] Move semantics of service proxy class

[SWS_CM_00141] Method to subscribe to a service event
[SWS_CM_00151] Method to unsubscribe from a service event
[SWS_CM_00152] Creation of service skeleton using Instance Spec

[SWS_CM_00153] Creation of service skeleton using Instance ID Container

[SWS_CM_00162] Send event where application is responsible for the data

[SWS_CM_00181] Enable service event trigger

[SWS_CM_00183] Disable service event trigger
5

475 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00191] Provision of method
[SWS_CM_00192] Synchronous behavior of method call

[SWS_CM_00193] Asynchronous behavior of method call with polling

[SWS_CM_00194] Cancel the method call
[SWS_CM_00195] Retrieving results of the method call

[SWS_CM_00196] Initiate a method call
[SWS_CM_00197] Asynchronous behavior of method call with notification

[SWS_CM_00198] Set service method processing mode

[SWS_CM_00199] Process Service method invocation
[SWS_CM_00202] SOME/IP FindService message

[SWS_CM_00203] SOME/IP OfferService message

[SWS_CM_00205] Content of SOME/IP SubscribeEventgroup message

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message

[SWS_CM_00209] Start of service discovery protocol on Client side

[SWS_CM_00301] Method Call Processing Mode

[SWS_CM_00302] Instance Identifier Class
[SWS_CM_00303] Find Service Handle
[SWS_CM_00304] Service Handle Container
[SWS_CM_00306] Sample Pointer

[SWS_CM_00308] Sample Allocatee Pointer

[SWS_CM_00309] Event Receive Handler
[SWS_CM_00310] Subscription State

[SWS_CM_00311] Subscription State Changed Handler

[SWS_CM_00312] Handle Type Class

[SWS_CM_00313] Call SubscriptionStateChangeHandler with kSubscriptionPending

[SWS_CM_00314] Call SubscriptionStateChangeHandler with kSubscribed

[SWS_CM_00315] Re-establishing an active subscription

[SWS_CM_00316] Query Subscription State

[SWS_CM_00317] Copy semantics of handle Type Class

[SWS_CM_00318] Move semantics of handle Type Class

[SWS_CM_00319] Instance Identifier Container Class
[SWS_CM_00333] Set Subscription State change handler

[SWS_CM_00334] Unset Subscription State change handler

[SWS_CM_00350] Instance Specifier Class

[SWS_CM_00383] Find Service Handler
[SWS_CM_00402] Primitive fixed width integer types

[SWS_CM_00403] StdCppImplementationDataType of category ARRAY with one dimension

[SWS_CM_00404] Array Data Type with more than one dimension
5

476 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00405] Structure Data Type

[SWS_CM_00406] StdCppImplementationDataType with the category STRING

[SWS_CM_00407] StdCppImplementationDataType of category VECTOR with one di-
mension defined without an Allocator

[SWS_CM_00409] StdCppImplementationDataType with category ASSOCIATIVE_MAP
defined without an Allocator

[SWS_CM_00410] Data Type redefinition

[SWS_CM_00414] Element specification typed by CppImplementationDataType

[SWS_CM_00424] Enumeration Data Type

[SWS_CM_00425] Definition of enumerators
[SWS_CM_00449] Variant Data Type

[SWS_CM_00502] CustomCppImplementationDataType of category ARRAY

[SWS_CM_00503] StdCppImplementationDataType of category VECTOR with one di-
mension defined with an Allocator

[SWS_CM_00504] Supported Primitive Cpp Implementation Data Types

[SWS_CM_00505] StdCppImplementationDataType with category ASSOCIATIVE_MAP
defined with an Allocator

[SWS_CM_00506] CustomCppImplementationDataType of category ASSOCIATIVE_MAP

[SWS_CM_00507] CustomCppImplementationDataType of category VECTOR

[SWS_CM_00508] CustomCppImplementationDataType of category VARIANT

[SWS_CM_00509] StdCppImplementationDataType with the category STRING with a de-
fined Allocator

[SWS_CM_00622] Find service with immediately returned request using Instance Specifier

[SWS_CM_00623] Find service with handler registration using Instance Specifier

[SWS_CM_01001] Inclusion of Types header file

[SWS_CM_01002] Service header files existence
[SWS_CM_01004] Inclusion of common header file
[SWS_CM_01005] Namespace of Service header files

[SWS_CM_01006] Service skeleton namespace

[SWS_CM_01007] Service proxy namespace

[SWS_CM_01009] Service events namespace

[SWS_CM_01010] Service Identifier, Service Version Classes and Service Contract Version

[SWS_CM_01012] Common header file existence
[SWS_CM_01013] Types header file existence

[SWS_CM_01015] Service methods namespace

[SWS_CM_01018] Types header file namespace

[SWS_CM_01019] Data Type declarations in Types header file

[SWS_CM_01020] Folder structure
[SWS_CM_01031] Service fields namespace

[SWS_CM_01032]
Accessing optional record elements inside a Structure Cpp Implemen-
tation Data Type that are serialized with the Tag-Length-Value principle.

5

477 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_01046] Definition of tlvDataIdDefinition
[SWS_CM_01050] Variant Class Template

[SWS_CM_01051] Variant default constructor
[SWS_CM_01052] Variant move constructor
[SWS_CM_01053] Variant copy constructor

[SWS_CM_01054] Variant converting constructor

[SWS_CM_01055] Variant explicit converting constructor with specified alternative

[SWS_CM_01056] Variant explicit converting constructor with specified alternative and initial-
izer list

[SWS_CM_01057] Variant explicit converting constructor with alternative specified by index

[SWS_CM_01058] Variant explicit converting constructor with alternative specified by index
and initializer list

[SWS_CM_01059] Variant destructor
[SWS_CM_01060] Variant move assignment operator

[SWS_CM_01061] Variant default copy assignment operator

[SWS_CM_01062] Variant converting assignment operator

[SWS_CM_01063] Variant function to return the zero-based index of the alternative
[SWS_CM_01064] Variant function to check if the Variant is in invalid state
[SWS_CM_01065] Variant function to swap two Variants

[SWS_CM_01066] Variant function to create a new value in-place, in an existing Variant object

[SWS_CM_01067] Variant function to create a new value in-place, in an existing Variant object
using an initializer list

[SWS_CM_01068] Variant function to create a new value in-place, in an existing Variant object
by destoying and initializing the contained value

[SWS_CM_01069] Variant function to create a new value in-place, in an existing Variant object
by destoying and initializing the contained value using an initializer list

[SWS_CM_10017]

[SWS_CM_10054]

[SWS_CM_10242] Model representation of UTF-8 Strings

[SWS_CM_10245] Serialization of strings

[SWS_CM_10247] Deserialization of strings

[SWS_CM_10266] Applicability of mandatory padding after variable length data elements

[SWS_CM_10285] Responsibility of proper string encoding

[SWS_CM_10291] Content of the SOME/IP event message

[SWS_CM_10292] Checks for a received SOME/IP event message

[SWS_CM_10295] Providing the received event data

[SWS_CM_10299] Source of a SOME/IP request message

[SWS_CM_10301] Content of the SOME/IP request message

[SWS_CM_10302] Checks for a received SOME/IP request message

[SWS_CM_10308] Conditions for sending of a SOME/IP response message
5

478 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10310] Source of a SOME/IP response message

[SWS_CM_10312] Content of the SOME/IP response message

[SWS_CM_10313] Checks for a received SOME/IP response message

[SWS_CM_10317] Making the Future ready

[SWS_CM_10323] Content of the SOME/IP event message

[SWS_CM_10327] Providing the received event data

[SWS_CM_10333] Content of the SOME/IP request message

[SWS_CM_10334] Checks for a received SOME/IP request message

[SWS_CM_10344] Content of the SOME/IP response message

[SWS_CM_10358] Identifying the right application error in a message with Message Type set to
RESPONSE (0x80)

[SWS_CM_10362] Raising checked errors for application errors

[SWS_CM_10372] Inclusion of Implementation Types header files

[SWS_CM_10373] Implementation Types header files existence

[SWS_CM_10375] Implementation Types header file namespace

[SWS_CM_10383] GetHandle function to return the proxy instance creation handle

[SWS_CM_10384] Change of Service Interface Deployment

[SWS_CM_10385] Change of Service Instance Deployment

[SWS_CM_10392] ScaleLinearAndTexttable Class Template

[SWS_CM_10393] ScaleLinearAndTexttable static assertion
[SWS_CM_10394] ScaleLinearAndTexttable underlying type deduction

[SWS_CM_10395] ScaleLinearAndTexttable default constructor
[SWS_CM_10396] ScaleLinearAndTexttable copy constructor

[SWS_CM_10397] ScaleLinearAndTexttable constructor with enum class argument

[SWS_CM_10398] ScaleLinearAndTexttable constructor with underlying type argument

[SWS_CM_10399] ScaleLinearAndTexttable copy assignment operator

[SWS_CM_10400] ScaleLinearAndTexttable assignment operator with enum class argur-
ment

[SWS_CM_10401]
ScaleLinearAndTexttable assignment operator with underlying type ar-
gument

[SWS_CM_10402] ScaleLinearAndTexttable cast operator to the underlying type

[SWS_CM_10403] Equal to operator between two ScaleLinearAndTexttable objects

[SWS_CM_10404]
Equal to operators between ScaleLinearAndTexttable and an underly-
ing type

[SWS_CM_10405] Equal to operators between ScaleLinearAndTexttable and an enum
class

[SWS_CM_10406] Not equal to operator between two ScaleLinearAndTexttable objects

[SWS_CM_10407]
Not equal to operators between ScaleLinearAndTexttable and an un-
derlying type

[SWS_CM_10408] Not equal to operators between ScaleLinearAndTexttable and an enum
class

5

479 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10409] Scale Linear And Textable type definition

[SWS_CM_10414] Initiate a method call
[SWS_CM_10428] payload representing application error

[SWS_CM_10430] Handling invalid messages with Message Type set to RESPONSE (0x80)

[SWS_CM_10431] Mapping of ara::core::ErrorCode

[SWS_CM_10432]

[SWS_CM_10433] Declaration of Construction Token
[SWS_CM_10434] Creation of a Construction Token
[SWS_CM_10435] Exception-less creation of service skeleton using Instance ID

[SWS_CM_10436] Exception-less creation of service skeleton using Instance Spec

[SWS_CM_10437] Exception-less creation of service skeleton using Instance ID Container

[SWS_CM_10438] Exception-less creation of service proxy

[SWS_CM_10450] InstanceSpecifier check during the creation of service skeleton

[SWS_CM_10451] InstanceIdentifierContainer check during the creation of service
skeleton

[SWS_CM_10452] InstanceSpecifier translation to InstanceIdentifiers

[SWS_CM_10590] Abstract Network Protocol Binding

[SWS_CM_11001] Mapping of OfferService method

[SWS_CM_11002] Assigning a DDS DomainParticipant to a Service Instance

[SWS_CM_11006] Mapping of FindService method

[SWS_CM_11009] Discovering remote Service Instances through DDS DomainParticipants

[SWS_CM_11015] Mapping Events to DDS Topics

[SWS_CM_11017] Mapping of Send method

[SWS_CM_11018] Mapping of Subscribe method

[SWS_CM_11019] Creating a DDS DataReader for event subscription

[SWS_CM_11021] Mapping of Unsubscribe method

[SWS_CM_11023] Mapping of GetNewSamples method

[SWS_CM_11024] Mapping of GetFreeSampleCount method

[SWS_CM_11041] DDS serialization of StdCppImplementationDataType of category
VALUE

[SWS_CM_11043] DDS serialization of StdCppImplementationDataType of category
STRUCTURE

[SWS_CM_11044] DDS serialization of StdCppImplementationDataType of category
STRING with string shortName

[SWS_CM_11046] Encoding Format and Endianness of Strings in DDS

[SWS_CM_11047] DDS serialization of CppImplementationDataType of category VECTOR

[SWS_CM_11048] DDS serialization of CppImplementationDataType of category ARRAY

[SWS_CM_11102] DDS Service Reply Topic data type definition

[SWS_CM_11132] Mapping of Update method

[SWS_CM_11133] Mapping of Subscribe method
5

480 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_11134] Creating a DDS DataReader for field subscription

[SWS_CM_11136] Mapping of Unsubscribe method

[SWS_CM_11138] Mapping of GetNewSamples method

[SWS_CM_11139] Mapping of GetFreeSampleCount method

[SWS_CM_11145] DDS Service Request Topic data type definition for Field getter and setter
operations

[SWS_CM_11146] DDS Service Reply Topic data type definition for Field getter and setter oper-
ations

[SWS_CM_11264] Definition general ara::com errors

[SWS_CM_11265] Use of general ara::com errors

[SWS_CM_11266] Definition of Application Errors

[SWS_CM_90001] Restrictions on executing methods

[SWS_CM_90002] Restrictions on sending events

[SWS_CM_90003] Restrictions on receiving events

[SWS_CM_90005] Restrictions on offering services

[SWS_CM_90006] Restrictions on using services

[SWS_CM_90113] Behavior of a ServiceSkeleton over TLS before successful completion of the
handshake

[SWS_CM_90114] Behavior of a ServiceSkeleton over DTLS before successful completion of the
handshake

[SWS_CM_90118] Transport of Service communication over an IPsec security association

[SWS_CM_90401]

[SWS_CM_90402]

[SWS_CM_90403]

[SWS_CM_90404]

[SWS_CM_90405]

[SWS_CM_90406]

[SWS_CM_90407]

[SWS_CM_90408]

[SWS_CM_90410]

[SWS_CM_90411]

[SWS_CM_90412]

[SWS_CM_90413]

[SWS_CM_90415]

[SWS_CM_90416]

[SWS_CM_90417]

[SWS_CM_90420] E2E ProfileCheckStatus of a sample

[SWS_CM_90421] ara::com::e2e::ProfileCheckStatus
[SWS_CM_90422] ara::com:E2E_state_machine::E2EState

[SWS_CM_90424] Provide E2E Result
5

481 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_90430]

[SWS_CM_90431]

[SWS_CM_90433]

[SWS_CM_90434] Provision of a Fire and Forget method

[SWS_CM_90435] Initiate a Fire and Forget method call

[SWS_CM_90436] No checked errors for Fire and Forget method calls

[SWS_CM_90437] Send event where Communication Management is responsible for the data

[SWS_CM_90438] Allocating data for event transfer

[SWS_CM_90443]

[SWS_CM_90444]

[SWS_CM_90445]

[SWS_CM_90446]

[SWS_CM_90451]

[SWS_CM_90452]

Table C.11: Changed Traceables in R19-11

C.5.3 Deleted Traceables in R19-11

Number Heading

[SWS_CM_00172] Method to update the event cache

[SWS_CM_00173] Method to get the cached samples

[SWS_CM_00174] Method to clean-up the event cache

[SWS_CM_00266] FilterFunction for incoming event filtering

[SWS_CM_00300] Event Cache Update Policy

[SWS_CM_00307] Sample Container

[SWS_CM_10305] Store the received method data
[SWS_CM_10337] Store the received method data
[SWS_CM_90409]

[SWS_CM_90414]

[SWS_CM_90418]

[SWS_CM_90419]

[SWS_CM_90423] E2EResult
[SWS_CM_90439]

[SWS_CM_90440]

[SWS_CM_90441]

[SWS_CM_90442]

[SWS_CM_90447]
5

482 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_90448]

[SWS_CM_90449]

[SWS_CM_90450]

[SWS_CM_90453]

[SWS_CM_90454]

[SWS_CM_90455]

[SWS_CM_90456]

[SWS_CM_90457]

[SWS_CM_90458]

[SWS_CM_90459]

[SWS_CM_90460]

[SWS_CM_90461]

[SWS_CM_90462]

[SWS_CM_90463]

[SWS_CM_90464]

[SWS_CM_90465]

[SWS_CM_90466]

Table C.12: Deleted Traceables in R19-11

C.6 Constraint and Specification Item History of this document
according to AUTOSAR Release R20-11

C.6.1 Added Traceables in R20-11

Number Heading

[SWS_CM_00009] Re-entrancy - General

[SWS_CM_00010] Re-entrancy - OfferService

[SWS_CM_00011] Re-entrancy - StopOfferService

[SWS_CM_00012] Re-entrancy - Send

[SWS_CM_00013] Re-entrancy - Allocate

[SWS_CM_00014] Re-entrancy - RegisterGetHandler

[SWS_CM_00015] Re-entrancy - RegisterSetHandler

[SWS_CM_00016] Re-entrancy - Update

[SWS_CM_00017] Re-entrancy - ServiceSkeleton method implementation

[SWS_CM_00018] Re-entrancy - FindService

[SWS_CM_00019] Re-entrancy - StartFindService
5

483 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00020] Re-entrancy - StopFindService

[SWS_CM_00021] Re-entrancy - GetHandle

[SWS_CM_00022] Re-entrancy - Subscribe

[SWS_CM_00023] Re-entrancy - Unsubscribe

[SWS_CM_00024] Re-entrancy - GetSubscriptionState

[SWS_CM_00025] Re-entrancy - SetSubscriptionStateChangeHandler

[SWS_CM_00026] Re-entrancy - UnsetSubscriptionStateChangeHandler

[SWS_CM_00027] Re-entrancy - GetFreeSampleCount

[SWS_CM_00028] Re-entrancy - SetReceiveHandler

[SWS_CM_00029] Re-entrancy - UnsetReceiveHandler

[SWS_CM_00030] Re-entrancy - Get

[SWS_CM_00031] Re-entrancy - Set

[SWS_CM_00032] Re-entrancy - Method call operator

[SWS_CM_10230]

[SWS_CM_10240]

[SWS_CM_10360] Failures in sending a SOME/IP event message

[SWS_CM_10363] Failures in sending a SOME/IP event message

[SWS_CM_10447] Dealing with unmodelled ApApplicationErrors

[SWS_CM_10491] Re-establishing service connection

[SWS_CM_10492] IAM Module Instantiation
[SWS_CM_10493] Local Access Control Activation
[SWS_CM_10494] Remote Access Control Activation
[SWS_CM_10495] TLS-based Authentication
[SWS_CM_10496] IP and IPsec-based Authentication
[SWS_CM_10497] Authentication Failure
[SWS_CM_10498] Remote access control on executing methods

[SWS_CM_10499] Remote access control on providing methods

[SWS_CM_10500] Remote access control on providing events

[SWS_CM_10501] Remote access control on consuming events

[SWS_CM_10502] Remote access control on providing field notifiers

[SWS_CM_10503] Remote access control on providing field setters

[SWS_CM_10504] Remote access control on providing field getters

[SWS_CM_10505] Remote access control on consuming field notifiers

[SWS_CM_10506] Remote access control on calling field setters

[SWS_CM_10507] Remote access control on calling field getters

[SWS_CM_11269] Definition of serialization technology

[SWS_CM_11270] Selecting elements of the ServiceInterface for SecOC transmission

[SWS_CM_11271] SecOC secure channel behavior
[SWS_CM_11272] Lifecycle management of FVM

5

484 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_11273] Initialization of the FVM
[SWS_CM_11274] SecOC secure channel sending

[SWS_CM_11275] SecOC secure message build attempts

[SWS_CM_11276] SecOC secure channel reception

[SWS_CM_11277] SecOC secure message verification attempts

[SWS_CM_11278] SecOC verification results
[SWS_CM_11279] SecOc override the verification result
[SWS_CM_11286]

[SWS_CM_11287]

[SWS_CM_11288]

[SWS_CM_11289]

[SWS_CM_11290]

[SWS_CM_11291]

[SWS_CM_11292]

[SWS_CM_11293]

[SWS_CM_11295]

[SWS_CM_11296]

[SWS_CM_11297]

[SWS_CM_11298]

[SWS_CM_11299]

[SWS_CM_11300]

[SWS_CM_11301]

[SWS_CM_11302]

[SWS_CM_11303]

[SWS_CM_11304]

[SWS_CM_11305]

[SWS_CM_11306]

[SWS_CM_11307]

[SWS_CM_11308]

[SWS_CM_11309]

[SWS_CM_11310]

[SWS_CM_11311]

[SWS_CM_11312]

[SWS_CM_11313]

[SWS_CM_11314]

[SWS_CM_11315]

[SWS_CM_11316]

[SWS_CM_11317]

[SWS_CM_11318]
5

485 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_11319]

[SWS_CM_11320]

[SWS_CM_11321]

[SWS_CM_11322]

[SWS_CM_11323]

[SWS_CM_11324]

[SWS_CM_11325]

[SWS_CM_11326] Creation of an object using Named Constructor approach

[SWS_CM_11327]

[SWS_CM_11328]

[SWS_CM_11329]

[SWS_CM_11330]

[SWS_CM_11331]

[SWS_CM_11332]

[SWS_CM_11333]

[SWS_CM_11334]

[SWS_CM_11335]

[SWS_CM_11336]

[SWS_CM_11337]

[SWS_CM_11340] Definition general ara::com::secoc errors

[SWS_CM_11341] SecOcFvm errors domain
[SWS_CM_11342]

[SWS_CM_11344]

[SWS_CM_11345]

[SWS_CM_11346]

[SWS_CM_11350] Execution Context for process service method invocation

[SWS_CM_11351] Error behaviour of provided Execution Context for process service method
invocation

[SWS_CM_11352] Execution Context for finding service with handler registration using Instance
ID

[SWS_CM_11353] Error behavior of provided Execution Context for finding service with handler
registration using Instance ID

[SWS_CM_11354] Execution Context for setting Subscription State change handler

[SWS_CM_11355] Error behaviour of provided Execution Context for setting Subscription State
change handler

[SWS_CM_11356] Execution Context for enabling service event trigger

[SWS_CM_11357] Error behaviour of provided Execution Context for enabling service event
trigger

[SWS_CM_11358] Execution Context to update the event cache

[SWS_CM_11359] Error behaviour of provided Execution Context to update the event cache
5

486 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_11360] Execution Context for registering Getters

[SWS_CM_11361] Error behaviour of provided Execution Context for registering Getters

[SWS_CM_11362] Execution Context for registering Setters

[SWS_CM_11363] Error behaviour of provided Execution Context for registering Setters

[SWS_CM_11364] Minimal behaviour of provided Execution Context

[SWS_CM_90453]

[SWS_CM_90454]

[SWS_CM_90455]

[SWS_CM_90456]

[SWS_CM_90457]

[SWS_CM_90458]

[SWS_CM_90459]

[SWS_CM_90460]

[SWS_CM_90461]

[SWS_CM_90462]

[SWS_CM_90463]

[SWS_CM_90464] E2E Error Handler - Invocation
[SWS_CM_90465] E2E Error Handler - Invocation Arguments

[SWS_CM_90466] Payload of the E2E Error Response

[SWS_CM_90467] Payload of the Normal or Application Error Response

[SWS_CM_90468]

[SWS_CM_90469]

[SWS_CM_90470]

[SWS_CM_90471]

[SWS_CM_90472]

[SWS_CM_90473]

[SWS_CM_90474]

[SWS_CM_90475]

[SWS_CM_90476]

[SWS_CM_90477] E2E Error Return Code
[SWS_CM_90478]

[SWS_CM_90479]

[SWS_CM_90480]

[SWS_CM_90481]

[SWS_CM_90482]

[SWS_CM_90483]

[SWS_CM_90484]

[SWS_CM_90485]

[SWS_CM_90486]
5

487 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_90487]

[SWS_CM_90488]

[SWS_CM_90489]

[SWS_CM_90490]

[SWS_CM_90491]

[SWS_CM_90492]

[SWS_CM_90493]

[SWS_CM_90494]

[SWS_CM_90495]

[SWS_CM_90496]

[SWS_CM_90497]

[SWS_CM_90498]

[SWS_CM_90499]

[SWS_CM_99000] CommunicationGroupServer Service

[SWS_CM_99001] Broadcast method of CommunicationGroupServer Service

[SWS_CM_99002] Peer To Peer Message method of CommunicationGroupServer Service

[SWS_CM_99004] Attributes for the RawDataStream instance
[SWS_CM_99005] Wait for incoming connections

[SWS_CM_99006] Timeout handling

[SWS_CM_99007] CommunicationGroupClient Service

[SWS_CM_99008] Message method of CommunicationGroupClient Service

[SWS_CM_99009] Message Response event of CommunicationGroupClient Service

[SWS_CM_99010] Broadcast task
[SWS_CM_99011] Peer To Peer message task

[SWS_CM_99012] Message Response task

[SWS_CM_99013] List Clients task
[SWS_CM_99014] Message Response event of CommunicationGroupServer Service

[SWS_CM_99015] List Clients method of CommunicationGroupServer Service

[SWS_CM_99016] Connection Status of a Communication Group Server

[SWS_CM_99017] Identifiable.category value COMMUNICATION_GROUP

[SWS_CM_99018] Identifiable.category value COMMUNICATION_GROUP_SERVER

[SWS_CM_99019] Identifiable.category value COMMUNICATION_GROUP_CLIENT

[SWS_CM_99020] Communcation Group template

[SWS_CM_99021] SHORT-NAME value of generated CommunicationGroupServer service

[SWS_CM_99022] SHORT-NAME value of generated CommunicationGroupClient service

[SWS_CM_99023] Definition general ara::com::cg errors

[SWS_CM_99024]

[SWS_CM_99025] Raw errors domain
[SWS_CM_99026] E2E errors domain

5

488 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_99027] Cg errors domain

Table C.13: Added Traceables in R20-11

C.6.2 Changed Traceables in R20-11

Number Heading

[SWS_CM_00101] Method to offer a service
[SWS_CM_00102] Uniqueness of offered service on local machine

[SWS_CM_00114] Registering Getters

[SWS_CM_00116] Registering Setters

[SWS_CM_00118] Method Instance Specifier Translation

[SWS_CM_00119] Update Function

[SWS_CM_00122] Find service with immediately returned request using Instance ID

[SWS_CM_00123] Find service with handler registration using Instance ID

[SWS_CM_00128] Ensuring the existence of valid Field values

[SWS_CM_00129] Ensuring the existence of SetHandler

[SWS_CM_00141] Method to subscribe to a service event
[SWS_CM_00151] Method to unsubscribe from a service event
[SWS_CM_00152] Creation of service skeleton using Instance Spec

[SWS_CM_00162] Send event where application is responsible for the data

[SWS_CM_00181] Enable service event trigger

[SWS_CM_00183] Disable service event trigger

[SWS_CM_00202] SOME/IP FindService message

[SWS_CM_00203] SOME/IP OfferService message

[SWS_CM_00204] SOME/IP StopOffer message

[SWS_CM_00205] Content of SOME/IP SubscribeEventgroup message

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message

[SWS_CM_00207] Content of SOME/IP StopSubscribeEventgroup message

[SWS_CM_00208] SOME/IP SubscribeEventgroupNack message

[SWS_CM_00302] Instance Identifier Class
[SWS_CM_00306] Sample Pointer

[SWS_CM_00333] Set Subscription State change handler

[SWS_CM_00403] StdCppImplementationDataType of category with one dimension

[SWS_CM_00404] Array Data Type with more than one dimension

[SWS_CM_00503] StdCppImplementationDataType of Identifiable.category VECTOR with one
dimension defined with an Allocator

[SWS_CM_00622] Find service with immediately returned request using Instance Specifier
5

489 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00623] Find service with handler registration using Instance Specifier

[SWS_CM_00700] Ensure memory allocation of maxSampleCount samples

[SWS_CM_00704] Return Value
[SWS_CM_00707] Calculation of Free Sample Count

[SWS_CM_01010] Service Identifier, Service Version Classes and Service Contract Version

[SWS_CM_01059] Variant destructor
[SWS_CM_10247] Deserialization of strings

[SWS_CM_10291] Content of the SOME/IP event message

[SWS_CM_10292] Checks for a received SOME/IP event message

[SWS_CM_10301] Content of the SOME/IP request message

[SWS_CM_10302] Checks for a received SOME/IP request message

[SWS_CM_10308] Conditions for sending of a SOME/IP response message

[SWS_CM_10312] Content of the SOME/IP response message

[SWS_CM_10323] Content of the SOME/IP event message

[SWS_CM_10333] Content of the SOME/IP request message

[SWS_CM_10334] Checks for a received SOME/IP request message

[SWS_CM_10344] Content of the SOME/IP response message

[SWS_CM_10357] Distinguishing errors from normal responses

[SWS_CM_10358] Identifying the right application error in a message with Message Type set to
RESPONSE (0x80)

[SWS_CM_10410] InstanceIdentifier check during the creation of service skeleton

[SWS_CM_10429] Identifying the right application error in a message with Message Type set to
ERROR (0x81)

[SWS_CM_10430] Handling invalid messages with Message Type set to ERROR (0x81)

[SWS_CM_10431] Mapping of ara::core::ErrorCode

[SWS_CM_10432]

[SWS_CM_10435] Exception-less creation of service skeleton using Instance ID

[SWS_CM_10436] Exception-less creation of service skeleton using Instance Spec

[SWS_CM_10437] Exception-less creation of service skeleton using Instance ID Container

[SWS_CM_10438] Exception-less creation of service proxy

[SWS_CM_10450] InstanceSpecifier check during the creation of service skeleton

[SWS_CM_10453] Implementation of SwDataDefProps.invalidValue

[SWS_CM_10462]

[SWS_CM_10463]

[SWS_CM_10464]

[SWS_CM_10465]

[SWS_CM_10467]

[SWS_CM_10468]

[SWS_CM_10469]
5

490 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10470] E2E Error Handler - Existence
[SWS_CM_10471] E2E Error Handler - Invocation Arguments

[SWS_CM_10472] E2E Error Response

[SWS_CM_10473] Handling the E2E Error Response

[SWS_CM_10474]

[SWS_CM_10475]

[SWS_CM_10476] Defining a RawDataStream

[SWS_CM_10477] Connect stream link
[SWS_CM_10478] Shutdown stream link
[SWS_CM_10479] Read data from stream
[SWS_CM_10480] Write data to stream
[SWS_CM_10481]

[SWS_CM_10482]

[SWS_CM_10483]

[SWS_CM_10484]

[SWS_CM_10485]

[SWS_CM_10486]

[SWS_CM_10487]

[SWS_CM_11001] Mapping of OfferService method

[SWS_CM_11009] Discovering remote Service Instances through DDS DomainParticipants

[SWS_CM_11016] DDS Topic data type definition

[SWS_CM_11100] Mapping Methods to DDS Service Methods and Topics

[SWS_CM_11103] Creating a DataWriter to handle method requests on the client side

[SWS_CM_11104] Creating a DataReader to handle method responses on the client side

[SWS_CM_11105] Creating a DataReader to handle method requests on the server side

[SWS_CM_11106] Creating a DataWriter to handle method responses on the server side

[SWS_CM_11131] Field Notifier DDS Topic data type definition

[SWS_CM_11144] Mapping of Field Get/Set methods to DDS Service Methods and Topics

[SWS_CM_11268] Definition general ara::com::raw errors

[SWS_CM_12367]

[SWS_CM_80021] Conditions for sending of an event message

[SWS_CM_80023] Source of an event message

[SWS_CM_80024] Destination of an event message

[SWS_CM_80025] Content of the SOME/IP serialized event message

[SWS_CM_80027] Checks for a received SOME/IP serialized event message

[SWS_CM_80030] Silently discarding event messages for unsubscribed events

[SWS_CM_80032] Deserializing the SOME/IP serialized payload

[SWS_CM_80033] Deserializing the signal-based serialized payload
5

491 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_80063] Conditions for sending of an event message

[SWS_CM_80067] Content of the SOME/IP serialized event message

[SWS_CM_80072] Silently discarding event messages for unsubscribed events

[SWS_CM_80074] Deserializing the SOME/IP serialized payload

[SWS_CM_80075] Deserializing the signal-based payload

[SWS_CM_90001] Restrictions on executing methods

[SWS_CM_90002] Restrictions on sending events

[SWS_CM_90003] Restrictions on receiving events

[SWS_CM_90005] Restrictions on offering services

[SWS_CM_90006] Restrictions on using services

[SWS_CM_90007] Restrictions on using RawDataStreams

[SWS_CM_90102] Using secure TLS, DTLS and SecOC channels

[SWS_CM_90103] TLS secure channel for ServiceInterface content using reliable transport

[SWS_CM_90104] DTLS secure channel for ServiceInterface content using unreliable transport

[SWS_CM_90111] Behavior of a ServiceProxy over TLS before successful completion of the
handshake

[SWS_CM_90115] SecOC secure channel for methods using unreliable transport

[SWS_CM_90121] TLS server role of a Skeleton
[SWS_CM_90203] TLS secure channel for methods using reliable transport

[SWS_CM_90204] DTLS secure channel for methods using unreliable transport

[SWS_CM_90401]

[SWS_CM_90403]

[SWS_CM_90404]

[SWS_CM_90408]

[SWS_CM_90410]

[SWS_CM_90411]

[SWS_CM_90412]

[SWS_CM_90413]

[SWS_CM_90415]

[SWS_CM_90416]

[SWS_CM_90417]

[SWS_CM_90421] ara::com::e2e::ProfileCheckStatus
[SWS_CM_90422] ara::com::e2e::SMState
[SWS_CM_90430]

[SWS_CM_90431]

[SWS_CM_90433]

[SWS_CM_90437] Send event where Communication Management is responsible for the data

[SWS_CM_90438] Allocating data for event transfer

Table C.14: Changed Traceables in R20-11

492 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

C.6.3 Deleted Traceables in R20-11

Number Heading

[SWS_CM_00350] Instance Specifier Class

[SWS_CM_10433] Declaration of Construction Token
[SWS_CM_10434] Creation of a Construction Token
[SWS_CM_10461]

[SWS_CM_80002]

[SWS_CM_80005] Start of service discovery protocol on Server side

[SWS_CM_80006] Start of service discovery protocol on Client side

[SWS_CM_80007] SOME/IP FindService message

[SWS_CM_80008] SOME/IP OfferService message

[SWS_CM_80009] SOME/IP StopOffer message

[SWS_CM_80010] Sending SOME/IP SubscribeEventgroup messages - initial

[SWS_CM_80011] Sending SOME/IP SubscribeEventgroup messages - renewal

[SWS_CM_80012] Content of SOME/IP SubscribeEventgroup message

[SWS_CM_80013] SOME/IP SubscribeEventgroupAck message

[SWS_CM_80014] SOME/IP SubscribeEventgroupNack message

[SWS_CM_80015] Sending SOME/IP StopSubscribeEventgroup messages

[SWS_CM_80016] Content of SOME/IP StopSubscribeEventgroup message

[SWS_CM_80018] Enabling of data accumulation for UDP data transmission

[SWS_CM_80029] Identifying the right event

[SWS_CM_80031] Invoke receive handler
[SWS_CM_80034] Providing the received event data

[SWS_CM_80035] Conditions for sending of a SOME/IP request message

[SWS_CM_80036] Failures in sending of a SOME/IP request message

[SWS_CM_80037] Transport protocol for sending of a SOME/IP request message

[SWS_CM_80038] Source of a SOME/IP request message

[SWS_CM_80039] Destination of a SOME/IP request message

[SWS_CM_80040] Content of the SOME/IP request message

[SWS_CM_80041] Checks for a received SOME/IP request message

[SWS_CM_80042] Identifying the right method

[SWS_CM_80043] Deserializing the payload

[SWS_CM_80044] Invoke the method - event driven
[SWS_CM_80045] Invoke the method - polling

[SWS_CM_80046] Conditions for sending of a SOME/IP response message

[SWS_CM_80047] Transport protocol for sending of a SOME/IP response message

[SWS_CM_80048] Source of a SOME/IP response message

[SWS_CM_80049] Destination of a SOME/IP response message
5

493 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_80050] Content of the SOME/IP response message

[SWS_CM_80051] payload representing application error

[SWS_CM_80052] Checks for a received SOME/IP response message

[SWS_CM_80053] Identifying the right method

[SWS_CM_80054] Discarding orphaned responses

[SWS_CM_80055] Distinguishing errors from normal responses

[SWS_CM_80056] Deserializing the payload - normal response messages

[SWS_CM_80057] Failures during deserialization of response messages

[SWS_CM_80058] Identifying the right application error in a message with Message Type set to
RESPONSE (0x80)

[SWS_CM_80059] Identifying the right application error in a message with Message Type set to
ERROR (0x81)

[SWS_CM_80060] Handling invalid messages with Message Type set to RESPONSE (0x81)

[SWS_CM_80061] Making the Future ready

[SWS_CM_80062] Invoke the notification function
[SWS_CM_80071] Identifying the right event

[SWS_CM_80073] Invoke receive handler
[SWS_CM_80076] Providing the received event data

[SWS_CM_80077] Conditions for sending of a SOME/IP request message

[SWS_CM_80078] Failures in sending of a SOME/IP request message

[SWS_CM_80079] Transport protocol for sending of a SOME/IP request message

[SWS_CM_80080] Source of a SOME/IP request message

[SWS_CM_80081] Destination of a SOME/IP request message

[SWS_CM_80082] Content of the SOME/IP request message

[SWS_CM_80083] Checks for a received SOME/IP request message

[SWS_CM_80084] Identifying the right method

[SWS_CM_80085] Deserializing the payload

[SWS_CM_80086] Invoke the registered set/get handlers - event driven

[SWS_CM_80087] Invoke the registered set/get handlers - polling

[SWS_CM_80088] Conditions for sending of a SOME/IP response message

[SWS_CM_80089] Transport protocol for sending of a SOME/IP response message

[SWS_CM_80090] Source of a SOME/IP response message

[SWS_CM_80091] Destination of a SOME/IP response message

[SWS_CM_80092] Content of the SOME/IP response message

[SWS_CM_80093] Checks for a received SOME/IP response message

[SWS_CM_80094] Identifying the right method

[SWS_CM_80095] Discarding orphaned responses

[SWS_CM_80096] Deserializing the payload

[SWS_CM_80097] Failures during deserialization of response messages
5

494 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_80098] Making the Future ready

[SWS_CM_80099] Invoke the notification function
[SWS_CM_90004] Process separation of network and language binding for access control

[SWS_CM_90105] TLS secure channel for events using reliable transport

[SWS_CM_90106] DTLS secure channel for events using unreliable transport

[SWS_CM_90107] TLS secure channel for fields
[SWS_CM_90120] TLS client role of a Proxy

[SWS_CM_90405]

Table C.15: Deleted Traceables in R20-11

C.7 Constraint and Specification Item History of this document
according to AUTOSAR Release R21-11

C.7.1 Added Traceables in R21-11

Number Heading

[SWS_CM_-
CONSTR_00001]

[SWS_CM_00035] Re-entrancy and thread-safety - Unsubscribe

[SWS_CM_00104] StopOfferService

[SWS_CM_00226] Method to update the trigger counter

[SWS_CM_00227] Sequence of actions in GetNewTriggers

[SWS_CM_00228] Return Value
[SWS_CM_00249] Enable service Trigger trigger

[SWS_CM_00351] Trigger Receive Handler

[SWS_CM_00721] Send trigger

[SWS_CM_00722] Re-entrancy and thread-safety - Send

[SWS_CM_00723] Method to subscribe to a service trigger

[SWS_CM_00724] Re-entrancy and thread-safety - Subscribe

[SWS_CM_00810] Method to unsubscribe from a service trigger

[SWS_CM_10445] SomeIpBurstTransmission

[SWS_CM_10511] Conditions for sending of a SOME/IP trigger

[SWS_CM_10512] Content of the SOME/IP trigger

[SWS_CM_10513] Checks for a received SOME/IP trigger

[SWS_CM_10514] Identifying the right trigger

[SWS_CM_10515] Silently discarding SOME/IP triggers for unsubscribed triggers

[SWS_CM_10516] Invoke receive handler
5

495 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10517] Failures in sending a SOME/IP trigger

[SWS_CM_10518] Conditions for sending of a trigger

[SWS_CM_10519] Content of the SOME/IP serialized trigger message

[SWS_CM_10520] Content of the signal-based serialized trigger message

[SWS_CM_10521] Checks for a received SOME/IP serialized trigger message

[SWS_CM_10522] Checks for a received signal-based serialized trigger

[SWS_CM_10523] Silently discarding trigger for unsubscribed triggers

[SWS_CM_10524] Mapping Triggers to DDS Topics

[SWS_CM_10525] DDS Topic data type definition

[SWS_CM_10526] Mapping of Send method

[SWS_CM_10527] Mapping of Subscribe method

[SWS_CM_10528] Creating a DDS DataReader for trigger subscription

[SWS_CM_10529] Defining a DDS DataReaderListener

[SWS_CM_10530] Mapping of Unsubscribe method

[SWS_CM_10531] Mapping of GetSubscriptionState method

[SWS_CM_10532] Mapping of GetNewTriggers method

[SWS_CM_10534] Mapping of SetReceiveHandler method

[SWS_CM_10535] Mapping of UnsetReceiveHandler method

[SWS_CM_10536] Mapping of SetSubscriptionStateHandler method

[SWS_CM_10537] Mapping of UnsetSubscriptionStateHandler method

[SWS_CM_10538] Restrictions on sending triggers

[SWS_CM_10539] Restrictions on receiving triggers

[SWS_CM_10540] Remote access control on providing triggers

[SWS_CM_10541] Remote access control on consuming triggers

[SWS_CM_10550] Assigning a DDS Topic and a DDS DataWriter to every Trigger in the
ServiceInterface

[SWS_CM_11251] Re-entrancy and thread-safety - GetNewTriggers

[SWS_CM_11370] ServiceSkeleton destructor
[SWS_CM_11371] HandleType destructor

[SWS_CM_12000] Implementation types header files directory structure

[SWS_CM_12001] C++ Implementation Data Types files

[SWS_CM_80501] Mapping of Offer Service (Signal-Based Static network binding)

[SWS_CM_80502] Mapping of Find Service (Signal-Based Static network binding)

[SWS_CM_80503] Mapping of Subscribe Service (Signal-Based Static network binding)

[SWS_CM_80504]
Configuration of a data accumulation on a
RequiredUserDefinedServiceInstance for transmission over UDP
(Signal-Based Static network binding)

[SWS_CM_80505] Data accumulation for UDP data transmission (Signal-Based Static network
binding)

5

496 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_80506] Arbitrary Message Header usage for Signal-Based Static network binding
messages

[SWS_CM_80507] No header option for Signal-Based Static network binding messages

[SWS_CM_80508] No method support for Signal-Based Static network binding

[SWS_CM_80509] Only field notifier support for Signal-Based Static network binding

[SWS_CM_80510] Ignoring not mapped elements

[SWS_CM_80511] Deserializing incomplete data belonging to a field

[SWS_CM_80512] Mapping of Stop Offer Service (Signal-Based Static network binding)

[SWS_CM_80513] Mapping of Unsubscribe Service (Signal-Based Static network binding)

[SWS_CM_90216] Socket Options configuration

[SWS_CM_90217] TLS properties configuration

[SWS_CM_90218] Enforcement of IAM grants through DDS Security

[SWS_CM_90426] Mapping of ProfileCheckStatus

[SWS_CM_90427] Mapping of SMState

[SWS_CM_90500] Choice of Service Instance discovery protocol

[SWS_CM_90501] Topic naming for Domain Participant USER_DATA QoS - based Service
Instances

[SWS_CM_90502] Mapping of OfferService method

[SWS_CM_90503] Assigning a DDS DomainParticipant to a Service Instance

[SWS_CM_90504] Assigning a DDS Topic and a DDS DataWriter to every Event in the
ServiceInterface

[SWS_CM_90505] Assigning a DDS Request and Reply Topic, and DataWriters and
DataReaders, to the Methods in the ServiceInterface

[SWS_CM_90506] Assigning a DDS Topic and a DDS DataWriter to every Field in the
ServiceInterface with its hasNotifier attribute equal to true

[SWS_CM_90507] Assigning a DDS Request and Reply Topic, and DataWriters and
DataReaders, to the Field Getters/Setters in the ServiceInterface

[SWS_CM_90508] Advertising Service IDs, Service Instance IDs, and ServiceInterface Contract
Versions over the ara.com://services/discovery topic

[SWS_CM_90509] Mapping of StopOfferService method

[SWS_CM_90510] Mapping of FindService method

[SWS_CM_90511] Finding a DDS DomainParticipant suitable for performing client-side
operations

[SWS_CM_90512] Creating a DDS DomainParticipant suitable for performing client-side
operations

[SWS_CM_90513] Discovering remote Service Instances through the
ara.com://services/discovery topic

[SWS_CM_90514] Mapping of StartFindService method

[SWS_CM_90515] Mapping of StopFindService method

[SWS_CM_99028] Types of APIs - Communication and Service Discovery APIs

Table C.16: Added Traceables in R21-11

497 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

C.7.2 Changed Traceables in R21-11

Number Heading

[SWS_CM_00009] Re-entrancy and thread-safety - General

[SWS_CM_00010] Re-entrancy and thread-safety - OfferService

[SWS_CM_00011] Re-entrancy and thread-safety- StopOfferService

[SWS_CM_00012] Re-entrancy and thread-safety - Send

[SWS_CM_00013] Re-entrancy and thread-safety - Allocate

[SWS_CM_00014] Re-entrancy and thread-safety - RegisterGetHandler

[SWS_CM_00015] Re-entrancy and thread-safety - RegisterSetHandler

[SWS_CM_00016] Re-entrancy and thread-safety - Update

[SWS_CM_00017] Re-entrancy and thread-safety - ServiceSkeleton method implementation

[SWS_CM_00018] Re-entrancy and thread-safety - FindService

[SWS_CM_00019] Re-entrancy and thread-safety - StartFindService

[SWS_CM_00020] Re-entrancy and thread-safety - StopFindService

[SWS_CM_00021] Re-entrancy and thread-safety - GetHandle

[SWS_CM_00022] Re-entrancy and thread-safety - Subscribe

[SWS_CM_00023] Re-entrancy and thread-safety - Unsubscribe

[SWS_CM_00024] Re-entrancy and thread-safety - GetSubscriptionState

[SWS_CM_00025] Re-entrancy and thread-safety - SetSubscriptionStateChangeHandler

[SWS_CM_00026] Re-entrancy and thread-safety - UnsetSubscriptionStateChangeHandler

[SWS_CM_00027] Re-entrancy and thread-safety - GetFreeSampleCount

[SWS_CM_00028] Re-entrancy and thread-safety - SetReceiveHandler

[SWS_CM_00029] Re-entrancy and thread-safety - UnsetReceiveHandler

[SWS_CM_00030] Re-entrancy and thread-safety - Get

[SWS_CM_00031] Re-entrancy and thread-safety - Set

[SWS_CM_00032] Re-entrancy and thread-safety - Method call operator

[SWS_CM_00102] Uniqueness of offered service on local machine

[SWS_CM_00103] Protocol where a service is offered
[SWS_CM_00119] Update Function

[SWS_CM_00141] Method to subscribe to a service event
[SWS_CM_00162] Send event where application is responsible for the data

[SWS_CM_00191] Provision of method
[SWS_CM_00196] Initiate a method call
[SWS_CM_00199] Process Service method invocation
[SWS_CM_00209] Start of service discovery protocol on Client side

[SWS_CM_00253] Default size of length field for structs

[SWS_CM_00254] Precedence when setting size of length field for structs

[SWS_CM_00255] Default size of length field for structs

[SWS_CM_00256] Default data type for the length field of structs
5

498 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00258] Default size of the length field for arrays

[SWS_CM_00259] Setting size of the length field for arrays

[SWS_CM_00260] Datatype for the length field of arrays

[SWS_CM_00264] Setting the size of the length field for associative maps

[SWS_CM_00265] Datatype for the length field of associative maps

[SWS_CM_00301] Method Call Processing Mode

[SWS_CM_00302] Instance Identifier Class
[SWS_CM_00306] Sample Pointer

[SWS_CM_00310] Subscription State

[SWS_CM_00701] Method to update the event cache

[SWS_CM_00703] Sequence of actions in GetNewSamples

[SWS_CM_00704] Return Value
[SWS_CM_00705] Query Free Sample Slots

[SWS_CM_00710] No implicit context switches

[SWS_CM_00714] Re-entrancy and thread-safety - GetNewSamples

[SWS_CM_01004] Inclusion of common header file
[SWS_CM_01010] Service Identifier and Service Contract Version
[SWS_CM_01020] Common/Service header files directory structure

[SWS_CM_01069] Variant function to create a new value in-place, in an existing Variant object
by destoying and initializing the contained value using an initializer list

[SWS_CM_10258] Default size of the length field for arrays

[SWS_CM_10267] Insertion of an associative map length field

[SWS_CM_10269] Setting the byte order of the length field for structs

[SWS_CM_10270] Default byte order for the length field of structs

[SWS_CM_10273] Size of length field for strings

[SWS_CM_10274] Setting byte order for the length field of strings

[SWS_CM_10275] Default size of length field for strings

[SWS_CM_10276] Default byte order for the length field of strings

[SWS_CM_10278] Data type of the length field for strings

[SWS_CM_10280] Setting the byte order for size of length field for arrays

[SWS_CM_10281] Byte order of length field for arrays

[SWS_CM_10283] Setting the byte order for size of the length field for associative maps

[SWS_CM_10284] Default byte order for size of the length field for associative maps

[SWS_CM_10292] Checks for a received SOME/IP event message

[SWS_CM_10361] Serializing Enumeration Data Type

[SWS_CM_10372] Inclusion of Implementation Types header files

[SWS_CM_10389] Configuration of a data accumulation on a ProvidedSomeipServiceInstance
for transmission over UDP

[SWS_CM_10391] Serializing Scale Linear And Texttable Data Type
5

499 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10432]

[SWS_CM_10451] InstanceIdentifierContainer check during the creation of service skeleton

[SWS_CM_10458] Handling of an ServiceInterface that does not contain any events, methods,
or fields

[SWS_CM_10475]

[SWS_CM_10476] Defining a RawDataStream

[SWS_CM_10477] Connect stream link
[SWS_CM_10482]

[SWS_CM_10484]

[SWS_CM_10485]

[SWS_CM_10486]

[SWS_CM_10487]

[SWS_CM_11001] Mapping of OfferService method

[SWS_CM_11005] Mapping of StopOfferService method

[SWS_CM_11015] Mapping Events to DDS Topics

[SWS_CM_11016] DDS Topic data type definition

[SWS_CM_11019] Creating a DDS DataReader for event subscription

[SWS_CM_11023] Mapping of GetNewSamples method

[SWS_CM_11042] DDS serialization of enumeration data types

[SWS_CM_11100] Mapping Methods to DDS Service Methods and Topics

[SWS_CM_11102] DDS Service Reply Topic data type definition

[SWS_CM_11103] Creating a DataWriter to handle method requests on the client side

[SWS_CM_11104] Creating a DataReader to handle method responses on the client side

[SWS_CM_11105] Creating a DataReader to handle method requests on the server side

[SWS_CM_11106] Creating a DataWriter to handle method responses on the server side

[SWS_CM_11130] Mapping Fields with hasNotifier attribute to DDS Topics

[SWS_CM_11133] Mapping of Subscribe method

[SWS_CM_11134] Creating a DDS DataReader for field subscription

[SWS_CM_11144] Mapping of Field Get/Set methods to DDS Service Methods and Topics

[SWS_CM_11147] Creating a DataWriter to handle get/set requests on the client side

[SWS_CM_11148] Creating a DataReader to handle get/set responses on the client side

[SWS_CM_11149] Creating a DataReader to handle get/set requests on the server side

[SWS_CM_11150] Creating a DataWriter to handle get/set responses on the server side

[SWS_CM_11262] Missing alignment for a variable data length data element

[SWS_CM_11263] Precedence of alignment settings for a variable data length data element

[SWS_CM_11286]

[SWS_CM_11307]

[SWS_CM_11309]

[SWS_CM_11310]
5

500 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_11312]

[SWS_CM_11318]

[SWS_CM_11319]

[SWS_CM_11320]

[SWS_CM_11322]

[SWS_CM_11323]

[SWS_CM_11324]

[SWS_CM_11325]

[SWS_CM_11345]

[SWS_CM_11346]

[SWS_CM_11350] Execution Context for process service method invocation

[SWS_CM_11352] Execution Context for finding service with handler registration using Instance
ID

[SWS_CM_11354] Execution Context for setting Subscription State change handler

[SWS_CM_11356] Execution Context for enabling service event trigger

[SWS_CM_11358] Execution Context to update the event cache

[SWS_CM_11360] Execution Context for registering Getters

[SWS_CM_11362] Execution Context for registering Setters

[SWS_CM_12367]

[SWS_CM_80019] Configuration of a data accumulation on a ProvidedSomeipServiceInstance
for transmission over UDP

[SWS_CM_80027] Checks for a received SOME/IP serialized event message

[SWS_CM_80028] Checks for a received signal-based serialized event message

[SWS_CM_80103] Deserializing incomplete data belonging to a field

[SWS_CM_90109] SecOC secure channel for events and triggers using reliable transport

[SWS_CM_90113] Behavior of a ServiceSkeleton over TLS before successful completion of the
handshake

[SWS_CM_90114] Behavior of a ServiceSkeleton over DTLS before successful completion of
the handshake

[SWS_CM_90116] SecOC secure channel for events and triggers using unreliable transport

[SWS_CM_90213] TLS secure channel for raw data streams using reliable transport

[SWS_CM_90214] DTLS secure channel for methods using unreliable transport

[SWS_CM_90421] ara::com::e2e::ProfileCheckStatus
[SWS_CM_90422] ara::com::e2e::SMState
[SWS_CM_90431]

[SWS_CM_90437] Send event where Communication Management is responsible for the data

[SWS_CM_90443] Wire type for non-dynamic data types

[SWS_CM_90444] Wire type for dynamic data types

[SWS_CM_90445] A deserializer shall always be able to handle the wire types 4, 5, 6 and 7

[SWS_CM_90446] Data ID
5

501 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_90451] Byte order for the length field of serialized structs

[SWS_CM_90452] Default byte order for the length field of structs

[SWS_CM_90483]

[SWS_CM_90484]

[SWS_CM_90486]

[SWS_CM_90487]

[SWS_CM_90488]

[SWS_CM_90489]

[SWS_CM_90490]

[SWS_CM_90491]

[SWS_CM_90492]

[SWS_CM_90493]

[SWS_CM_90494]

[SWS_CM_90495]

[SWS_CM_90496]

[SWS_CM_90497]

[SWS_CM_90498]

[SWS_CM_90499]

[SWS_CM_99004] Ethernet endpoint configuration

[SWS_CM_99005] Wait for incoming connections

[SWS_CM_99006] Timeout handling

Table C.17: Changed Traceables in R21-11

C.7.3 Deleted Traceables in R21-11

Number Heading

[SWS_CM_00400] Naming of data types by short name

[SWS_CM_00402] Primitive fixed width integer types

[SWS_CM_00403] StdCppImplementationDataType of category with one dimension

[SWS_CM_00404] Array Data Type with more than one dimension

[SWS_CM_00405] Structure Data Type

[SWS_CM_00406] StdCppImplementationDataType with the category

[SWS_CM_00407] StdCppImplementationDataType of Identifiable.category VECTOR with one
dimension defined without an Allocator

[SWS_CM_00408] Vector Data Type with more than one dimension

[SWS_CM_00409] StdCppImplementationDataType with Identifiable.category
ASSOCIATIVE_MAP defined without an Allocator

5

502 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_00410] Data Type redefinition

[SWS_CM_00411] Avoid Data Type redeclaration

[SWS_CM_00414] Element specification typed by CppImplementationDataType

[SWS_CM_00421] Provide data type definitions

[SWS_CM_00423] Data Type Mapping

[SWS_CM_00424] Enumeration Data Type

[SWS_CM_00425] Definition of enumerators
[SWS_CM_00426] Reject incomplete Enumeration Data Types

[SWS_CM_00449] Variant Data Type

[SWS_CM_00450] Define the maximum size of allocated vector memory

[SWS_CM_00452] Usage of attribute CppImplementationDataType.arraySize of an
CppImplementationDataType with category

[SWS_CM_00502] CustomCppImplementationDataType of Identifiable.category

[SWS_CM_00503] StdCppImplementationDataType of Identifiable.category VECTOR with one
dimension defined with an Allocator

[SWS_CM_00504] Supported Primitive Cpp Implementation Data Types

[SWS_CM_00505] StdCppImplementationDataType with Identifiable.category
ASSOCIATIVE_MAP defined with an Allocator

[SWS_CM_00506] CustomCppImplementationDataType of category

[SWS_CM_00507] CustomCppImplementationDataType of category

[SWS_CM_00508] CustomCppImplementationDataType of Identifiable.category

[SWS_CM_00509] StdCppImplementationDataType with the category with a defined Allocator

[SWS_CM_01032] Accessing optional record elements inside a Structure Cpp Implementation
Data Type that are serialized with the Tag-Length-Value principle.

[SWS_CM_10373] Implementation Types header files existence

[SWS_CM_10374] Data Type definitions for AUTOSAR Data Types in Implementation Types
header files

[SWS_CM_10375] Implementation Types header file namespace

[SWS_CM_10376] Skip CompuScales with non-point range

[SWS_CM_10392] ScaleLinearAndTexttable Class Template

[SWS_CM_10393] ScaleLinearAndTexttable static assertion
[SWS_CM_10394] ScaleLinearAndTexttable underlying type deduction

[SWS_CM_10395] ScaleLinearAndTexttable default constructor
[SWS_CM_10396] ScaleLinearAndTexttable copy constructor

[SWS_CM_10397] ScaleLinearAndTexttable constructor with enum class argument

[SWS_CM_10398] ScaleLinearAndTexttable constructor with underlying type argument

[SWS_CM_10399] ScaleLinearAndTexttable copy assignment operator

[SWS_CM_10400] ScaleLinearAndTexttable assignment operator with enum class argurment

[SWS_CM_10401] ScaleLinearAndTexttable assignment operator with underlying type
argument

5

503 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP R21-11

4
Number Heading

[SWS_CM_10402] ScaleLinearAndTexttable cast operator to the underlying type

[SWS_CM_10403] Equal to operator between two ScaleLinearAndTexttable objects

[SWS_CM_10404] Equal to operators between ScaleLinearAndTexttable and an underlying type

[SWS_CM_10405] Equal to operators between ScaleLinearAndTexttable and an enum class

[SWS_CM_10406] Not equal to operator between two ScaleLinearAndTexttable objects

[SWS_CM_10407] Not equal to operators between ScaleLinearAndTexttable and an underlying
type

[SWS_CM_10408] Not equal to operators between ScaleLinearAndTexttable and an enum class

[SWS_CM_10409] Scale Linear And Textable type definition

[SWS_CM_11004] Adding Service and Service Instance IDs to the DDS DomainParticipant’s
USER_DATA QoS Policy

[SWS_CM_11308]

[SWS_CM_11321]

[SWS_CM_90210] Using the DDS Security standard plug-ins in the Adaptive Platform

Table C.18: Deleted Traceables in R21-11

504 of 504 Document ID 717: AUTOSAR_SWS_CommunicationManagement

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other functional clusters
	5.1 Platform dependencies

	6 Requirements Tracing
	7 Functional specification
	7.1 General description
	7.1.1 Architectural concepts
	7.1.2 Design decisions
	7.1.3 Communication paradigms
	7.1.4 Service contract versioning

	7.2 End-to-end communication protection for Events
	7.2.1 Limitations
	7.2.2 Publisher
	7.2.3 Subscriber - GetNewSamples
	7.2.3.1 Case 1 - there are one or more serialized samples
	7.2.3.2 Case 2 - there are no serialized samples

	7.2.4 Subscriber - Callable f
	7.2.5 Subscriber - Access to E2E information

	7.3 End-to-end communication protection for Methods
	7.3.1 Limitations
	7.3.2 E2E protection of the service method request (Client)
	7.3.2.1 Serializing the payload
	7.3.2.2 E2E protection of the payload

	7.3.3 E2E checking the service method request (Server)
	7.3.3.1 E2E checking of the payload
	7.3.3.2 Deserializing the payload
	7.3.3.3 E2E error notification

	7.3.4 E2E protection of the service method response (Server))
	7.3.4.1 Serializing the E2E error response payload
	7.3.4.2 Serializing the response payload
	7.3.4.3 E2E protection of the response payload

	7.3.5 E2E checking the service method response (Client)
	7.3.5.1 E2E checking of the payload
	7.3.5.2 Deserializing the payload
	7.3.5.3 E2E error notification

	7.3.6 Timeout supervision

	7.4 End-to-end communication protection for Fields
	7.4.1 Send a GET message
	7.4.2 Receive a GET message
	7.4.3 Receive a response to a GET message
	7.4.4 Send a SET message
	7.4.5 Receive a SET message
	7.4.6 Receive a response to a SET message
	7.4.7 Send an UPDATE message
	7.4.8 Receive an UPDATE message

	7.5 Raw Data Streaming
	7.5.1 Raw Data Streaming Interface
	7.5.1.1 Limitations
	7.5.1.2 Use cases

	7.5.2 Raw Data Streaming

	7.6 Communication Group
	7.6.1 Interfaces
	7.6.1.1 Communication Group Server
	7.6.1.2 Communication Group Client

	7.6.2 Behavior
	7.6.3 Connection
	7.6.3.1 Communication Group Server
	7.6.3.2 Communication Group Client

	7.6.4 Limitations
	7.6.5 Communication Group Model
	7.6.6 Communication Group Creation

	7.7 Optional Execution Context
	7.8 Network binding
	7.8.1 SOME/IP Network binding
	7.8.1.1 Service Discovery
	7.8.1.2 Accumulation of SOME/IP messages
	7.8.1.3 Execution context of message reception actions
	7.8.1.4 Handling Events
	7.8.1.5 Handling Triggers
	7.8.1.6 Handling Method Calls
	7.8.1.7 Handling Fields
	7.8.1.8 Serialization of Payload
	7.8.1.8.1 Basic Data Types
	7.8.1.8.2 Enumeration Data Types
	7.8.1.8.3 Scale Linear And Texttable Data Types
	7.8.1.8.4 Structured Data Types (structs)
	7.8.1.8.5 Structured Datatypes and Arguments with Identifier and optional Members
	7.8.1.8.6 Strings
	7.8.1.8.7 Vectors and arrays
	7.8.1.8.8 Associative Maps
	7.8.1.8.9 Variants
	7.8.1.8.9.1 Example: Variant of uint8/uint16 both padded to 32 bit

	7.8.1.8.10 Segmentation of SOME/IP messages

	7.8.1.9 Marker Interface

	7.8.2 Signal-Based Network binding
	7.8.2.1 Signal-Based SOME/IP Network binding
	7.8.2.1.1 Service Discovery
	7.8.2.1.2 Accumulation of messages
	7.8.2.1.3 Execution context of message reception actions
	7.8.2.1.4 Handling Events
	7.8.2.1.5 Handling Triggers
	7.8.2.1.6 Handling Method Calls
	7.8.2.1.7 Handling Fields
	7.8.2.1.8 Serialization of Payload

	7.8.2.2 Signal-Based Static Network binding
	7.8.2.2.1 Service Discovery
	7.8.2.2.2 Accumulation of messages
	7.8.2.2.3 Execution context of message reception actions
	7.8.2.2.4 Handling Events
	7.8.2.2.5 Handling Method Calls
	7.8.2.2.6 Handling Fields
	7.8.2.2.7 Serialization of Payload

	7.8.3 DDS Network binding
	7.8.3.1 Service Discovery via Domain Participant USER_DATA QoS policy
	7.8.3.2 Service Discovery via Topic
	7.8.3.3 Handling Events
	7.8.3.4 Handling Triggers
	7.8.3.5 Handling Method Calls
	7.8.3.6 Handling Fields
	7.8.3.7 Serialization of Payload
	7.8.3.7.1 Basic Data Types
	7.8.3.7.2 Enumeration Data Types
	7.8.3.7.3 Structured Data Types (structs)
	7.8.3.7.4 Strings
	7.8.3.7.5 Vectors and Arrays
	7.8.3.7.6 Associative Maps
	7.8.3.7.7 Variant

	7.8.3.8 End-to-end communication protection

	7.9 Security
	7.9.1 IAM
	7.9.1.1 Configuration of Access Control
	7.9.1.2 Remote Access Control

	7.9.2 Secure Communication
	7.9.2.1 Creation and use of secure channels
	7.9.2.1.1 SOME/IP and DDS network binding
	7.9.2.1.2 Raw data streaming

	7.9.2.2 (D)TLS
	7.9.2.2.1 SOME/IP Network binding
	7.9.2.2.2 DDS Network Binding (secure transports)
	7.9.2.2.3 Raw Data Streaming

	7.9.2.3 SecOC
	7.9.2.3.1 SOME/IP network binding
	7.9.2.3.2 Signal based network binding

	7.9.2.4 IPsec
	7.9.2.5 DDS Security

	7.10 Communication API
	7.10.1 Offer service
	7.10.2 Service skeleton creation
	7.10.3 Processing of service methods
	7.10.4 Registering get handlers for fields
	7.10.5 Registering set handlers for fields
	7.10.6 Find service
	7.10.7 Receive events
	7.10.7.1 Receive event by polling
	7.10.7.2 Receive event by getting triggered

	7.10.8 Call a service method
	7.10.9 Update notification events for fields
	7.10.10 Instance Specifier Translation
	7.10.11 Invalid Value

	8 Communication API specification
	8.1 C++ language binding
	8.1.1 API Header files
	8.1.1.1 Service header files
	8.1.1.2 Common header file
	8.1.1.3 Types header file
	8.1.1.4 Implementation Types header files
	8.1.1.5 Raw Data Stream header file

	8.1.2 API Data Types
	8.1.2.1 Service Identifier Data Types
	8.1.2.2 Event Related Data Types
	8.1.2.3 Trigger Related Data Types
	8.1.2.4 Method Related Data Types
	8.1.2.5 Generic Data Types
	8.1.2.5.1 Future and Promise
	8.1.2.5.2 Optional Data Types
	8.1.2.5.3 Variant Data Types

	8.1.2.6 Error Types
	8.1.2.7 E2E Related Data Types
	8.1.2.8 Raw Data Stream Data Type

	8.1.3 API Reference
	8.1.3.1 Object Creation via Named Constructor Approach
	8.1.3.2 Offer service
	8.1.3.3 Service skeleton creation
	8.1.3.4 Send event
	8.1.3.5 Send Trigger
	8.1.3.6 Provide a service method
	8.1.3.7 Processing of service methods
	8.1.3.8 Registering get handlers for fields
	8.1.3.9 Registering set handlers for fields
	8.1.3.10 Find service
	8.1.3.11 Service proxy creation
	8.1.3.12 Service proxy destruction
	8.1.3.13 Service event subscription
	8.1.3.14 Receive event
	8.1.3.15 Receive event by getting triggered
	8.1.3.16 Service Trigger subscription
	8.1.3.17 Receive Trigger
	8.1.3.18 Receive trigger by getting triggered
	8.1.3.19 Call a service method
	8.1.3.20 Get method for fields
	8.1.3.21 Set method for fields
	8.1.3.22 Instance Specifier Translation
	8.1.3.23 Raw Data Stream API

	9 Service Interfaces
	9.1 Service Interfaces
	9.2 Data Types

	A Mentioned Class Tables
	B Platform Extension API (normative)
	B.1 Freshness Value Management(FVM) Library API
	B.1.1 Library API Reference
	B.1.2 Error Types

	C History of Specification Items
	C.1 Constraint and Specification Item History of this document according to AUTOSAR Release R17-10
	C.1.1 Added Traceables in 17-10
	C.1.2 Changed Traceables in 17-10
	C.1.3 Deleted Traceables in 17-10

	C.2 Constraint and Specification Item History of this document according to AUTOSAR Release R18-03
	C.2.1 Added Traceables in 18-03
	C.2.2 Changed Traceables in 18-03
	C.2.3 Deleted Traceables in 18-03

	C.3 Constraint and Specification Item History of this document according to AUTOSAR Release R18-10
	C.3.1 Added Traceables in 18-10
	C.3.2 Changed Traceables in 18-10
	C.3.3 Deleted Traceables in 18-10

	C.4 Constraint and Specification Item History of this document according to AUTOSAR Release R19-03
	C.4.1 Added Traceables in 19-03
	C.4.2 Changed Traceables in 19-03
	C.4.3 Deleted Traceables in 19-03

	C.5 Constraint and Specification Item History of this document according to AUTOSAR Release R19-11
	C.5.1 Added Traceables in R19-11
	C.5.2 Changed Traceables in R19-11
	C.5.3 Deleted Traceables in R19-11

	C.6 Constraint and Specification Item History of this document according to AUTOSAR Release R20-11
	C.6.1 Added Traceables in R20-11
	C.6.2 Changed Traceables in R20-11
	C.6.3 Deleted Traceables in R20-11

	C.7 Constraint and Specification Item History of this document according to AUTOSAR Release R21-11
	C.7.1 Added Traceables in R21-11
	C.7.2 Changed Traceables in R21-11
	C.7.3 Deleted Traceables in R21-11

