
Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Document Title Explanation of Adaptive Platform
Software Architecture

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 982

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R21-11

Document Change History
Date Release Changed by Description

2021-11-25 R21-11
AUTOSAR
Release
Management

• Applied a more fine-grained
description schema for functional
clusters and interfaces in the
Building Block View.
• Removed functional cluster RESTful

Communication
• Added functional cluster Adaptive

Intrusion Detection System Manager
• Added section for clarification of

diagnostic deployment options

2020-11-30 R20-11
AUTOSAR
Release
Management

• Initial release

1 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Table of Contents

1 Introduction 6

1.1 Objectives . 6
1.2 Scope . 6
1.3 Document Structure . 7

2 Definition of Terms and Acronyms 8

2.1 Acronyms and Abbreviations . 8
2.2 Definition of Terms . 8

3 Related Documentation 9

4 Overview and Goals 10

4.1 Requirements Overview . 10
4.2 Quality Goals . 12
4.3 Stakeholders . 12

5 Architecture Constraints 13

5.1 Internal Interfaces . 13
5.2 Distributed Work . 14

6 Quality Requirements 15

6.1 Quality Attributes . 15
6.1.1 AUTOSAR Adaptive Platform Standard 15
6.1.2 AUTOSAR Adaptive Platform Stack 18
6.1.3 AUTOSAR Adaptive Application 18

6.2 Quality Scenarios . 19

7 System Scope and Context 20

7.1 Adaptive Application . 20
7.2 Dependencies . 20

7.2.1 Crypto Provider . 20
7.2.2 Operating System . 21
7.2.3 Watchdog . 21

7.3 External Systems . 21
7.3.1 AUTOSAR Adaptive Application 21
7.3.2 AUTOSAR Classic Platform 22
7.3.3 Third-party Platform . 22
7.3.4 Diagnostic Client . 22
7.3.5 Backend . 22

8 Solution Strategy 23

8.1 Architectural Approach . 23
8.2 Decomposition Strategy . 23
8.3 UML Profile . 24
8.4 Technology . 25

3 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

8.4.1 Implementation Language 25
8.4.2 Parallel Processing . 26

8.5 Design Principles . 26
8.5.1 Leveraging existing standards 26
8.5.2 SOLID principles . 26
8.5.3 Acyclic Dependencies Principle 27

8.6 Deployment . 27
8.7 Verification and Validation . 28

9 Building Block View 29

9.1 Overview . 29
9.1.1 Description pattern . 29

9.2 Runtime . 30
9.2.1 Execution Management . 30
9.2.2 State Management . 37
9.2.3 Log and Trace . 43
9.2.4 Core . 47
9.2.5 Operating System Interface 49

9.3 Communication . 51
9.3.1 Communication Management 51
9.3.2 Network Management . 57
9.3.3 Time Synchronization . 59

9.4 Storage . 66
9.4.1 Persistency . 66

9.5 Security . 74
9.5.1 Cryptography . 75
9.5.2 Identity and Access Management 107
9.5.3 Adaptive Intrusion Detection System Manager 110

9.6 Safety . 112
9.6.1 Platform Health Management 113

9.7 Configuration . 117
9.7.1 Update and Configuration Management 118
9.7.2 Registry . 127

9.8 Diagnostics . 129
9.8.1 Diagnostic Management . 129

10 Runtime View 150

10.1 Overview . 150
10.2 AUTOSAR Runtime for Adaptive Applications Lifecycle 150

10.2.1 Machine Startup . 150
10.2.2 Machine Shutdown . 151
10.2.3 Function Group State Transition 152
10.2.4 Failure Recovery . 153

10.3 Communication . 154
10.4 Update and Configuration Management 155

10.4.1 Update of an Adaptive Application 155

4 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

11 Deployment View 157

11.1 Vehicle Software Deployment . 157

12 Cross-cutting Concepts 158

12.1 Overview of Platform Entities . 158
12.2 Function Group . 159
12.3 Function Group State . 159
12.4 Software Cluster . 159
12.5 Machine . 162
12.6 Manifest . 162
12.7 Application Design . 163
12.8 Execution Manifest . 164
12.9 Service Instance Manifest . 164
12.10 Machine Manifest . 165
12.11 Diagnostics deployment . 165
12.12 Error Handling . 167
12.13 Trusted Platform . 167
12.14 Secure Communication . 168

13 Risks and Technical Debt 169

13.1 Risks . 169
13.1.1 Risk Assessment . 169
13.1.2 Risk List . 170

13.2 Technical Debt . 170

5 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

1 Introduction

This explanatory document provides an overview of the software architecture of the
AUTOSAR Adaptive Platform standard.

1.1 Objectives

This document is an architecture description of the AUTOSAR Adaptive Platform in
accordance to [1, ISO/IEC 42010] and has the following main objectives:

• Identify the stakeholders of the AUTOSAR Adaptive Platform and their con-
cerns.

• Identify the system scope and provide overview information of the AUTOSAR
Adaptive Platform.

• Provide definitions for all used architecture viewpoints and a mapping of all
stakeholder concerns to those viewpoints.

• Provide an architecture view and its architecture models for each architecture
viewpoint used in this architecture description.

• Provide correspondence rules and correspondences among the contents of
this architecture description.

• Provide an architecture rationale (explanation, justification, reasoning for de-
cisions made) on a high level. A more in-depth documentation of decisions is
provided in [2, EXP_SWArchitecturalDecisions].

• Provide a record of known inconsistencies among the architecture description.

Please note that the AUTOSAR Adaptive Platform standard is defined by means of
requirements and software specification documents. Those documents deliberately
lack specifications of dependencies and interfaces between the building blocks of the
AUTOSAR Adaptive Platform to provide more degrees of freedom for stack vendors in
their solution design. This document describes the original architectural design of the
AUTOSAR Adaptive Platform including details how the building blocks should interact
with each other. It is an example how an implementation of the standard should work
internally. However, a stack vendor is free to choose another design as long as it
complies with the binding AUTOSAR Adaptive Platform standard.

1.2 Scope

This explanatory document applies to the AUTOSAR Adaptive Platform. It is recom-
mended to get an overview of the AUTOSAR Adaptive Platform for all members of the
working groups, stack vendors, and application developers.

6 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

1.3 Document Structure

This document is organized as follows. Section 4 provides an overview of the main
requirements for the AUTOSAR Adaptive Platform, the top quality goals of its architec-
ture, and a list of stakeholders that are affected by it. Section 5 lists requirements that
constrain design and implementation decisions or decisions about the development
process.

Section 6 is the base for discovering trade-offs and sensitivity points in the architecture
of the AUTOSAR Adaptive Platform by introducing a quality attribute tree followed by
the most important quality scenarios. The system context in which the AUTOSAR
Adaptive Platform is intended to be used is outlined in section 7. Section 8 summarizes
the fundamental decisions and solution strategies, that shape the architecture of the
AUTOSAR Adaptive Platform such as technology decisions or architectural patterns to
be used.

Sections 9 to 11 explain the software architecture from different view points. First, sec-
tion 9 explains the decomposition of the AUTOSAR Adaptive Platform into Functional
Clusters and their interdependencies. Then, section 10 demonstrates how the main
use cases are realized using the Functional Clusters in the AUTOSAR Adaptive Plat-
form. Section 11 shows different scenarios how applications based on the AUTOSAR
Adaptive Platform may be deployed.

Section 12 provides an overview of concepts and patterns used by the AUTOSAR
Adaptive Platform. Section 13 lists and rates risks associated with the architecture of
the AUTOSAR Adaptive Platform and technical debt.

7 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

2 Definition of Terms and Acronyms

2.1 Acronyms and Abbreviations

Abbreviation / Acronym Description
DoIP Diagnostics over Internet Protocol
POSIX Portable Operating System Interface
SecOC AUTOSAR Secure Onboard Communication
TLS Transport Layer Security
UML Unified Modeling Language

2.2 Definition of Terms

This section lists terms that are specific to this document. A list of general terms for
AUTOSAR is provided in the [3, glossary].

Term Description
Functional Cluster A logical group of functionality within the AUTOSAR Adaptive

Platform. Functional Clusters are the second level of ab-
straction in the building block view (cf. Chapter 9). They are also
subject of the individual specification documents that make up
the AUTOSAR Adaptive Platform standard.

Function Group A set of modeled Processes. See Section 12.2 for details.
Thread The smallest sequence of instructions the can be managed in-

dependently by a scheduler. Multiple Threads can be exe-
cuted concurrently within one Process sharing resources such
as memory.

Watchdog An external component that supervises execution of the AU-
TOSAR Adaptive Platform. See Section 7.2.3 for details.

8 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

3 Related Documentation

This document provides a high-level overview of the AUTOSAR Adaptive Platform ar-
chitecture. It is closely related to general requirements for AUTOSAR Adaptive Plat-
form specified in [4, RS_Main] and [5, RS_General], and the architectural decisions
documented in [2, EXP_SWArchitecturalDecisions].

The individual building blocks of the architecture (Functional Clusters) are spec-
ified in separate documents. Each Functional Cluster defines one or more
requirements specification(s) (RS document), one or more software specification(s)
(SWS document) and one or more explanatory document(s) (EXP document). Please
refer to these documents for any details on the AUTOSAR Adaptive Platform standard.

9 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4 Overview and Goals

In conventional automotive systems ECUs are used to replace or augment electro-
mechanical systems. Those resource constrained,deeply-embedded ECUs typically
perform basic control functions by creating electrical output signals (e.g. for actors)
based on input signals (e.g. from sensors) and information from other ECUs con-
nected to the vehicle network. Much of the control software is specifically designed
and implemented for the target vehicle and does not change significantly during vehi-
cle lifetime. The AUTOSAR Classic Platform standard addresses the needs of these
deeply-embedded systems.

Recent and future vehicle functions, such as highly automated driving, will introduce
complex and computing resource demanding software that shall fulfill strict safety, in-
tegrity and security requirements. Such software performs for example, environment
perception and behavior planning, and interacts with external backend and infrastruc-
ture systems. The software in the vehicle regularly needs to be updated during the
life-cycle of the vehicle, due to evolving external systems, improved or added function-
ality, or security problems. The AUTOSAR Classic Platform standard cannot fulfill the
needs of such systems. Therefore, AUTOSAR specifies a second software platform,
the AUTOSAR Adaptive Platform. It provides high-performance computing and com-
munication mechanisms as well as a flexible software configuration, for example, to
support software update over-the-air. Features that are specifically defined for the AU-
TOSAR Classic Platform, such as access to electrical signals and automotive specific
bus systems, can be integrated into the AUTOSAR Adaptive Platform but is not in the
focus of standardization.

4.1 Requirements Overview

This section provides an overview of the basic requirements for the AUTOSAR Adap-
tive Platform that impact its architecture. The corresponding requirement identifiers are
provided in square brackets. Please refer to [4, RS_Main] and [5, RS_General] for any
details, rationale or intended use-cases of these requirements.

Support of state-of-the-art Technology

The AUTOSAR Adaptive Platform aims to support resource-intensive (memory, cpu)
applications on state-of-the-art hardware. Therefore, the AUTOSAR Adaptive Platform
shall support high performance computing platforms [RS_Main_00002] as well as vir-
tualized environments [RS_Main_00511]. The AUTOSAR Adaptive Platform shall be
able to run multiple applications in parallel [RS_Main_00049], each with concurrent
application internal control flows [RS_Main_00050].

10 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Software Update and Configuration

The AUTOSAR Adaptive Platform shall support a flexible (configuration) data and soft-
ware update. Hereby, AUTOSAR Adaptive Platform shall support up- and download of
such update packages [RS_Main_00650] and change of communication and applica-
tion software at runtime [RS_Main_00503].

AUTOSAR shall provide a unified way to describe software systems deployed to
Adaptive and / or Classic platforms [RS_Main_00161]. That kind of description
shall also support the deployment and reallocation of AUTOSAR Application Software
[RS_Main_00150], and shall provide means to describe interfaces of the entire system
[RS_Main_00160].

Security

The AUTOSAR Adaptive Platform shall support the development of secure systems
[RS_Main_00514] with secure access to ECU data and services [RS_Main_00170],
and secure onboard communication [RS_Main_00510].

Safety

The AUTOSAR Adaptive Platform shall support the development of safety related
systems [RS_Main_00010] that are reliable [RS_Main_00011] and highly available
[RS_Main_00012]. The AUTOSAR Adaptive Platform specifications shall be analyz-
able and support methods to demonstrate the achievement of safety related properties
accordingly [RS_Main_00350].

Reuse and Interoperability

The AUTOSAR Adaptive Platform shall support standardized interoperability with
non-AUTOSAR software [RS_Main_00190] as well as (source code) portability for
AUTOSAR Adaptive Applications across different implementations of the platform
[RS_AP_00111]. Hereby, the AUTOSAR Adaptive Platform shall provide means to
describe a component model for application software [RS_Main_00080], and support
bindings for different programming languages [RS_Main_00513].

Communication

The AUTOSAR Adaptive Platform shall support standardized automotive communica-
tion protocols [RS_Main_00280] for intra ECU communication [RS_Main_01001] with
different network topologies [RS_Main_00230].

11 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Diagnostics

The AUTOSAR Adaptive Platform shall provide diagnostics means during runtime for
production and services purposes [RS_Main_00260].

4.2 Quality Goals

This section will list the top quality goals for the architecture whose fulfillment is of
highest importance to the major stakeholders in a future version of this document.
Please refer to the currently un-prioritized list of Quality Attributes in Section 6.1.

4.3 Stakeholders

This section lists the stakeholders of the AUTOSAR Adaptive Platform architecture and
their main expectations.

Role Expectation
Project Leader Overview of technical risks and technical debt in the AUTOSAR

Adaptive Platform.
Working Group Architecture Concise yet thorough documentation of the goals and driving

forces of the AUTOSAR Adaptive Platform. Documentation of
the original architectural design of the AUTOSAR Adaptive Plat-
form standard. Documentation of identified technical risks and
technical debt in the AUTOSAR Adaptive Platform.

Working Group Consolidated overview of the AUTOSAR Adaptive Platform ar-
chitecture. Realization of use-cases that span multiple Func-
tional Clusters. Usage of interfaces within the AUTOSAR
Adaptive Platform. Guidelines and patterns for Functional
Cluster and interface design.

Stack Developer Consolidated overview of the original architectural design of the
AUTOSAR Adaptive Platform. Realization of use-cases that span
multiple Functional Clusters. Usage of interfaces within the
AUTOSAR Adaptive Platform.

Application Developer Overview of the building blocks of the AUTOSAR Adaptive Plat-
form and their purpose and provided functionality. Explanation of
the concepts used in the AUTOSAR Adaptive Platform.

Integrator Overview and explanation of the original architectural design of
the AUTOSAR Adaptive Platform. Overview of extension points
of the AUTOSAR Adaptive Platform.

Table 4.1: Stakeholder table with roles and expectations

12 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

5 Architecture Constraints

AUTOSAR is a worldwide development partnership of vehicle manufacturers, suppli-
ers, service providers and companies from the automotive electronics, semiconductor
and software industry. AUTOSAR standardizes the AUTOSAR Adaptive Platform au-
tomotive middleware. The AUTOSAR Adaptive Platform is not a concrete implemen-
tation. The AUTOSAR Adaptive Platform standard leaves a certain degree of freedom
to implementers of the standard, as most standards do. On the one hand, more free-
dom enables competition among the different implementations and a broader choice
of properties for users of the AUTOSAR Adaptive Platform. On the other hand, a more
strict standardization makes the different implementations compatible and exchange-
able (within the standardized scope). Naturally, those attributes are in conflict. It is
usually a choice of the standardization organization to evaluate the attributes and de-
fine the desired level of strictness.

The AUTOSAR Classic Platform is rather strict in that sense by specifying a detailed
layered software architecture imposing many constraints on its implementations. The
AUTOSAR Adaptive Platform launched with a less strict approach. That less strict
approach puts constraints on the AUTOSAR Adaptive Platform architecture as outlined
below.

5.1 Internal Interfaces

An important architectural constraint is that only interfaces that are intended to be
used by applications or interfaces that are used to extend the functionality of the
AUTOSAR Adaptive Platform shall be standardized. Internal interfaces between the
building blocks of the AUTOSAR Adaptive Platform shall not be standardized. This
approach leaves a lot of freedom to design and optimize the internals of an AUTOSAR
Adaptive Platform stack. However, it also imposes constraints on how the AUTOSAR
Adaptive Platform architecture can be defined and described in this document. Also,
this means that it might not be possible to use different functional clusters from different
AUTOSAR Adaptive Platform stack vendors.

First, the existence of internal interfaces and their usage by other building blocks is in
most cases a recommendation and reflects the original design approach of the authors
of the standard. The same applies to any interactions described in this document that
make use of such internal interfaces.

Second, some quality attributes may be hard to ensure in general by the architec-
ture of the standard. Additional measures like security or safety considerations lack
well-defined inputs such as data flows or specifications of interdependencies. Con-
sequently, a more thorough design phase is required when an AUTOSAR Adaptive
Platform stack is implemented.

13 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

5.2 Distributed Work

Standardization of the AUTOSAR Adaptive Platform is a worldwide distributed effort.
The individual building blocks are specified by dedicated working groups in separate
documents to be able to scale in that distributed setup. This impacts the way the
AUTOSAR Adaptive Platform architecture is described in this document.

First, this document shows interfaces on an architectural level only. This document
does not specify details of interfaces such as individual operations. This keeps redun-
dancies and thus dependencies between this document and the documents actually
specifying the individual building blocks manageable. Another consequence is that the
interactions shown in this document are not based on actual operations specified in the
interfaces but rather on an architectural level as well.

Second, this document aims to provide guidance for the working groups in specify-
ing the individual building blocks by defining patterns and concepts to solve common
problems. This guidance should help to build a uniform and consistent standard from
ground up.

14 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

6 Quality Requirements

Quality requirements define the expectations of AUTOSAR Adaptive Platform stake-
holders for the quality and the attributes of the AUTOSAR Adaptive Platform standard
that indicate whether the quality factors are satisfied or not. Section 6.1 starts by list-
ing the quality attributes that, in the end, are used to assess whether the AUTOSAR
Adaptive Platform and its software architecture satisfies the expected quality factors or
not. Section 6.2 then provides quality scenarios that operationalize quality attributes
and turn them into measurable quantities by describing the reaction of the system to a
stimulus in a certain situation.

6.1 Quality Attributes

The AUTOSAR Adaptive Platform has many stakeholders with different concerns.
Thus, this document uses the following three quality attribute categories that corre-
spond to the three main stakeholder groups in order to make the requirements and
their impact on the architecture more comprehensible:

• AUTOSAR Adaptive Platform Standard: Quality requirements for the AU-
TOSAR standard itself. These requirements may directly affect the architecture
of the AUTOSAR Adaptive Platform.

• AUTOSAR Adaptive Platform Stack: Quality requirements for an implementa-
tion of the AUTOSAR standard as an AUTOSAR stack. These requirements may
indirectly affect the architecture of the AUTOSAR Adaptive Platform.

• AUTOSAR Adaptive Application: Quality requirements for an application based
on an AUTOSAR stack. These requirements may transitively affect the architec-
ture of the AUTOSAR Adaptive Platform.

The quality attributes are organized according to the Architecture Tradeoff Analysis
Method (ATAM) [6] as a tree, one for each of the quality attribute categories. The leafs
of those trees are the individual quality attributes.

6.1.1 AUTOSAR Adaptive Platform Standard

• Functional suitability

– The software architecture shall reflect the project objectives (POs) and be
the consistent source for all specifications (here: completeness with respect
to the PO; see also usability below).

– The standard shall not contain elements that are not traceable to POs,
change requests (CRs), or concepts.

15 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

– The standard shall contain at least one element derived from each PO, CR,
or concept.

• Performance efficiency

– The specification shall allow for a run-time efficient implementation. Run-
time efficiency refers to all resource consumption, CPU, RAM, ROM.

• Compatibility

– The standard shall retain older versions of its elements in the face of change.

– The standard shall be interoperable with pre-existing standards, especially
the AUTOSAR Classic Platform. Pre-existing standards means network pro-
tocols and the like.

– The standard shall adopt new versions of pre-existing standards only after
an impact analysis.

• Usability

– The use of the standard shall be as easy as possible for suppliers and appli-
cation developers. Easy means: not much material and resources required.

– The holistic approach shall not be broken (avoid different approaches in one
standard).

– The standard shall contain application sample code for all its elements.

– The standard shall contain documentation of the use cases for its elements.

– The standard shall document the semantics of its elements.

– The standard shall document its decisions, consequences, and implemen-
tation restrictions (both for stack & apps) including their rationale.

– The standards elements shall be easy to use and hard to misuse.

– The standard shall stick to pre-existing standards, as far as no functional
requirements are compromised.

– The standard shall be as stable as possible.

– AUTOSAR standards shall not change disruptive but rather evolve evolution-
ary (for example, backward-compatibility can be a help).

– The software architecture shall reflect the PO and be the consistent source
for all specifications (here: consistency; see also functional suitability
above).

• Reliability

– The standard shall classify its elements with respect to safety relevance (that
is, functional clusters shall be marked if they participate in safety critical
operations of the platform).

16 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

– The standard shall specify control flow restrictions between its elements in
order to achieve freedom from interference.

– The standard shall contain use case driven argumentation for safety sce-
narios that can be used to build a safety case. (This should help the stack
implementers in getting a certification, if they follow the standard.)

• Security

– The standard shall specify data flow restrictions between its elements, and
between applications.

– The standard shall classify its elements with respect to security sensitivity
(that is, functional clusters shall be marked if they handle sensitive data.)

– The standard shall contain use case driven argumentation for security sce-
narios that can be used to build a security case. (This should help the stack
implementers in getting a certification, if they follow the standard.)

• Maintainability

– It shall be possible in an efficient way to maintain AUTOSAR Adaptive Plat-
form without preventing the introduction of new technologies (efficient in
terms of effort on the modification of the standard).

– The impact set of a change shall be available.

– The standard shall be structured in a way that minimizes change impact.

– It shall be possible to drop/deprecate elements of the standard.

– It shall be easy to add new features/needs without breaking the maintain-
ability or the need to redesign the software architecture. Easy means quick,
with low effort, local changes only and no heavy side effects.

– The maturity of parts of the standard shall be visible.

– The process shall enforce an architectural impact analysis in a very early
stage of the change process.

– The process shall enforce minimizing changes, that is not adding similar
functionality multiple times.

• Portability

– Applications shall be portable between different stack implementations and
different machines.

– It shall be possible to scale the software architecture to the given project
needs.

17 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

6.1.2 AUTOSAR Adaptive Platform Stack

• Compatibility

– An AUTOSAR Adaptive Platform stack implementation shall be capable to
offer multiple versions of the same service.

– An instance of an AUTOSAR Adaptive Platform stack implementation shall
be able to co-exist with other instances on different machines, within the
same vehicle.

• Usability

– An AUTOSAR Adaptive Platform stack implementation shall explicitly doc-
ument restrictions on the application development that go beyond the stan-
dard.

• Maintainability

– An AUTOSAR Adaptive Platform stack implementation shall be traceable to
the contents of the standard.

– An AUTOSAR Adaptive Platform stack implementation shall support multiple
versions of the same service.

• Portability

– An AUTOSAR Adaptive Platform stack shall be portable to a different custom
hardware.

– An AUTOSAR Adaptive Platform stack shall provide mechanisms to replace
parts.

6.1.3 AUTOSAR Adaptive Application

• Usability

– No Goal: An application developer shall be able to supply custom implemen-
tation for pre-defined platform functionality.

• Maintainability

– An application shall explicitly state which parts of the standard it uses.

• Portability

– An application entirely based on AUTOSAR Adaptive Platform (i.e. with-
out custom extensions) shall be portable to another AUTOSAR Adaptive
Platform stack of the same version without modifications to the application
source code itself (source code compatibility).

18 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

6.2 Quality Scenarios

There are currently no quality scenarios defined for the AUTOSAR Adaptive Platform.

19 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

7 System Scope and Context

This chapter provides an overview of the AUTOSAR Adaptive Platform system context
by separating the AUTOSAR Adaptive Platform and its communication partners (e.g.,
external systems). Considering Figure 7.1, there are three categories of communica-
tion partners for the AUTOSAR Adaptive Platform.

Operating System

Adaptive Application

Watchdog

«aapInternal»
Multi-Process

System Interface

«aapInternal»
TCP/IP Stack

«aapNativeInterf...
Platform Health
Management::

WatchdogInterface

«aapInternal»
Non-volatile Storage

AUTOSAR Adaptive Platform

«aapInternal»
Single-Process POSIX

API

«use»

«use»

«use» «use»«use» «use»

Figure 7.1: Overview of AUTOSAR Adaptive Platform and its context

The AUTOSAR Adaptive Platform is conceptually a middleware. AUTOSAR Adaptive
Platform provides services to Adaptive Applications (cf. Section 7.1) beyond
those available from the underlying operating system, drivers, and extensions (cf. Sec-
tion 7.2). Section 7.3 describes the third category that are external systems communi-
cating with (an Adaptive Application via) AUTOSAR Adaptive Platform.

7.1 Adaptive Application

Adaptive Applications are built on the functionality provided by the AUTOSAR
Adaptive Platform. They directly use the various interfaces provided by the individual
building blocks of AUTOSAR Adaptive Platform described in more detail in chapter 9.

7.2 Dependencies

7.2.1 Crypto Provider

Crypto Provider is a component that provides implementations of cryptographic
routines and hash functions to the AUTOSAR Adaptive Platform.

20 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

7.2.2 Operating System

The Operating System is the main component that AUTOSAR Adaptive Plat-
form uses to provide its services. The Operating System controls processes and
threads, and provides inter-process communication facilities. The Operating Sys-
tem also provides access to network interfaces, protocols like TCP/IP, and access to
non-volatile storage.

7.2.3 Watchdog

The Watchdog is a component to control the hardware watchdog of the machine an
AUTOSAR Adaptive Platform runs on.

7.3 External Systems

AUTOSAR Classic
Platform

Backend

Diagnostic Client

Third-party Platform

AUTOSAR Adaptive Platform

Adaptive
Application

«flow»

«flow»

«flow»

«flow»

«flow»

Figure 7.2: Overview of the AUTOSAR Adaptive Platform and external systems

The AUTOSAR Adaptive Platform supports applications that are operated in heteroge-
neous environments. This section lists the external systems that AUTOSAR Adaptive
Platform is intended to interface.

7.3.1 AUTOSAR Adaptive Application

There may be many Adaptive Applications deployed in a vehicle on different Ma-
chines. An Adaptive Application that does not run on the current instance of the
AUTOSAR Adaptive Platform is therefore an external system to the AUTOSAR Adap-
tive Platform. Such Adaptive Applications may exchange data such as sensor
or status information. During a software update of the entire vehicle, the update of the
individual AUTOSAR Adaptive Platforms could be coordinated by a central Adaptive
Application that makes use of the UCM Master addon to UCM.

21 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

7.3.2 AUTOSAR Classic Platform

The AUTOSAR Classic Platform is the main platform for deeply-embedded applications
such as sensor/actor systems. Adaptive Applications may require access for
example to sensor data provided by an AUTOSAR Classic Platform ECU and vice
versa.

7.3.3 Third-party Platform

Besides the both platforms (AUTOSAR Adaptive Platform and AUTOSAR Classic Plat-
form) provided by AUTOSAR, there may be ECUs in a vehicle and other systems that
are built on different platforms that need to communicate with an Adaptive Appli-
cation via AUTOSAR Adaptive Platform.

7.3.4 Diagnostic Client

A Diagnostic Client uses the diagnostic services provided by the AUTOSAR
Adaptive Platform.

7.3.5 Backend

A Backend system provides Software Packages for download and controls the
update process via Update and Configuration Management.

22 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

8 Solution Strategy

The AUTOSAR Adaptive Platform is a standard for an automotive middleware. It is
not a concrete implementation. The AUTOSAR Adaptive Platform standard leaves a
certain degree of freedom to its implementers by defining requirements and software
specifications that need to be fulfilled without specifying how.

8.1 Architectural Approach

To support the complex applications, while allowing maximum flexibility and scalabil-
ity in processing distribution and compute resource allocations, AUTOSAR Adaptive
Platform follows the concept of a service-oriented architecture (SOA). In a service-
oriented architecture a system consists of a set of services, in which one may use
another in turn, and applications that use one or more of the services depending on
its needs. Often service-oriented architectures exhibit system-of-system characteris-
tics, which AUTOSAR Adaptive Platform also has. A service, for instance, may reside
on a local ECU that an application also runs, or it can be on a remote ECU, which is
also running another instance of AP. The application code is the same in both cases -
the communication infrastructure will take care of the difference providing transparent
communication. Another way to look at this architecture is that of distributed comput-
ing, communicating over some form of message passing. At large, all these represent
the same concept. This message passing, communication-based architecture can also
benefit from the rise of fast and high-bandwidth communication such as Ethernet.

8.2 Decomposition Strategy

The building blocks of the AUTOSAR Adaptive Platform architecture are refined step-
by-step in this document according to the model depicted in figure 8.1. The top-level
categories are chosen to give an overview from a users perspective what kind of func-
tionality the AUTOSAR Adaptive Platform provides. A category contains one or more
Functional Clusters. The Functional Clusters of the AUTOSAR Adaptive
Platform are defined to group a specific coherent technical functionality. Functional
Clusters themselves specify a set of interfaces and components to provide and real-
ize that technical functionality. The building block view also contains information of the
Functional Clusters interdependencies based on interfaces from other Func-
tional Clusters they use. However, note that these interdependencies are recom-
mendations rather than strict specifications because they would constrain implementa-
tions.

23 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Category

Functional Cluster

Interface Component

1..*1..*

1..*

Figure 8.1: Type model of building blocks

8.3 UML Profile

The UML diagrams presented in this document use a UML profile to provide a more
precise semantics of the elements and relationships. Table 8.1 provides an overview
of the stereotypes in that profile and their semantics. The names of all stereotypes that
are specific to the AUTOSAR architecture are prefixed with aap (short for AUTOSAR
Architecture Profile) to make them easily distinguishable from standard UML stereo-
types and keywords.

Stereotype Metaclass Semantics
aapInternal Interface Internal interfaces shall be used only by

Functional Clusters within the platform. In-
ternal interfaces shall be realized by compo-
nents that are part of the respective stack im-
plementation (i.e., another Functional Cluster,
additional middleware, drivers, or the operat-
ing system).

aapPlatformExtension Interface Platform extension interfaces shall be used
only by Functional Clusters within the plat-
form. Platform extension interfaces shall
be realized either by third-party components
(including application-level components) or
components are part of the respective stack
implementation (i.e., another Functional Clus-
ter, additional middleware, drivers, or the op-
erating system).

aapAPI Interface An interface of the public API of the plat-
form. Such interfaces may be used by Adap-
tive Applications and other Functional Clus-
ters within the platform.

aapNativeInterface Interface An interface defined in the respective pro-
gramming language of the stack implemen-
tation.

24 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Stereotype Metaclass Semantics
aapPortInterface Interface An aapPortInterface relates to an ele-

ment in the Manifest using the Instance-
Specifier pattern. Such interfaces are ei-
ther defined in the respective programming
language of the stack implementation or they
are generated in that language by the stack
tooling. The property Generated specifies if
they are generated.

aapAraComServiceInterface Interface An ara::com service interface defined and
configured in the Manifest. The tooling of
the stack implementation will generate stub
and skeleton implementations of these in-
terfaces in the respective programming lan-
guage.

aapFunctionalCluster Component A functional cluster of the AUTOSAR Adap-
tive Platform.

aapServiceMethod Operation A method specified as part of an ara::com
service interface.

aapCallbackMethod Operation A method that acts as a callback.
aapServiceField Attribute A field specified as part of an ara::com ser-

vice interface.
aapServiceEvent Attribute An event specified as part of an ara::com ser-

vice interface.
aapProvidedPort Usage, Realiza-

tion
Denotes that the underlying relationship is
configured in the Manifest using a provided
port.

aapRequiredPort Usage, Realiza-
tion

Denotes that the underlying relationship is
configured in the Manifest using a required
port.

Table 8.1: Overview of Stereotypes

8.4 Technology

8.4.1 Implementation Language

C++ is the programming language of choice for the AUTOSAR Adaptive Platform and
Adaptive Applications. C++ was chosen due to its safer programming model
(compared to C) and availability of certified compilers that produce highly optimized
machine code. Such properties are especially important for safety- and performance-
critical, real-time applications (such as typical Adaptive Applications) where C++
has become more and more popular in the software industry and academics.

25 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

8.4.2 Parallel Processing

Although the design for AUTOSAR Adaptive Platform as a service-oriented architecture
inherently leverages parallel processing, the advancement of (heterogeneous) many-
core processors offers additional opportunities. The AUTOSAR Adaptive Platform is
designed to scale its functionality and performance as (heterogeneous) many-core
technologies advance. Hardware and platform interface specifications are one part
of that equation. However, advancements in operating system and hypervisor tech-
nologies as well as development tools (for example automatic parallelization) are also
crucial and are to be fulfilled by AUTOSAR Adaptive Platform providers, the software
industry, and academics.

8.5 Design Principles

The architecture of the AUTOSAR Adaptive Platform is based on several design prin-
ciples that are outlined below.

8.5.1 Leveraging existing standards

AUTOSAR Adaptive Platform aims to leverage existing standards and specifications
wherever possible. For example, AUTOSAR Adaptive Platform ist built on the existing
and open C++ standard (cf. Section 8.4.1) to facilitate a faster development of the
AUTOSAR Adaptive Platform itself and benefiting from the eco-systems of such stan-
dards. It is, therefore, a critical focus in developing the AUTOSAR Adaptive Platform
specification not to casually introduce a new replacement functionality that an existing
standard already offers. For instance, no new interfaces are casually introduced just
because an existing standard provides the functionality required but the interface is
superficially hard to understand.

8.5.2 SOLID principles

The SOLID principles [7] are a central part of the design principles of AUTOSAR. While
these five principles are all valid, only the Single-responsibility Principle, the Interface
Segregation Principle and the Dependency Inversion Principle are relevant on the ab-
straction level of this document. Therefore, they are elaborated in the following.

8.5.2.1 Single-responsibility Principle

The single-responsibility principle (SRP,SWEBOK3) [7] states that a component or class
should be responsible for a single part of the overall functionality provided by the soft-
ware. That responsibility should be encapsulated by the component or class. The

26 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

services provided by the component or class (via its interface(s)) should be closely
aligned with its responsibility.

The single-responsibility principle minimizes the reasons (i.e. a change to the single
responsibility) that require a change to its interface. Thus, it minimizes impact on clients
of such an interface and leads to a more maintainable architecture (or code).

8.5.2.2 Interface Segregation Principle

The interface segregation principle (ISP) [7], [8] states that clients should not be forced
to depend on methods that they don’t use. As a consequence of the interface segre-
gation principle, interfaces should be split up to reflect different roles of clients.

Similar to the single-responsibility principle, the segregation of interfaces reduce the
impact of a change to an interface to the clients and suppliers of an segregated inter-
face.

8.5.2.3 Dependency Inversion Principle

The dependency inversion principle (DIP) [7], [8] states that high-level building blocks
should not depend on low-level building blocks. Both should depend on abstractions
(e.g. interfaces). Furthermore, the dependency inversion principle states that abstrac-
tions (e.g. interfaces) should not depend on details. Details (e.g. a concrete imple-
mentation) should depend on abstractions.

The dependency inversion principle results in a decoupling of the implementations of
building blocks. This is important to scale implementation efforts (cf. Section 5.2) and
to perform proper integration tests.

8.5.3 Acyclic Dependencies Principle

The acyclic dependencies principle (ADP) [7], [8] states that dependencies between
building blocks should form a directed acyclic graph.

The acyclic dependencies principle helps to identify participating building blocks and
reason about error propagation and freedom from interference. In general, it also re-
duces the extend of building blocks to consider during activities such as test, build and
deployment.

8.6 Deployment

The AUTOSAR Adaptive Platform supports the incremental deployment of applica-
tions, where resources and communications are managed dynamically to reduce the

27 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

effort for software development and integration, enabling short iteration cycles. Incre-
mental deployment also supports explorative software development phases. For prod-
uct delivery, the AUTOSAR Adaptive Platform allows the system integrator to carefully
limit dynamic behavior to reduce the risk of unwanted or adverse effects allowing safety
qualification. Dynamic behavior of an application will be limited by constraints stated
in the Execution Manifest (cf. Section 12.8), for example, dynamic allocation of
resources and communication paths are only possible in defined ways, within config-
ured ranges. Implementations of an AUTOSAR Adaptive Platform may further remove
dynamic capabilities from the software configuration for production use. Examples of
reduced behavioral dynamics might be:

• Pre-determination of the service discovery process

• Restriction of dynamic memory allocation to the startup phase only

• Fair scheduling policy in addition to priority-based scheduling

• Fixed allocation of processes to CPU cores

• Access to pre-existing files in the file-system only

• Constraints for AUTOSAR Adaptive Platform API usage by applications

• Execution of authenticated code only

8.7 Verification and Validation

The AUTOSAR Adaptive Platform standard uses a dedicated implementation of the
standard (AUTOSAR Adaptive Platform Demonstrator) to validate the requirements
and to verify the (still abstract) software design imposed by the individual software
specifications.

28 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9 Building Block View

This chapter provides an overview of the static structure of the AUTOSAR Adaptive
Platform by describing the high-level building blocks and their inter-dependencies.
Please note that the use of interfaces between Functional Clusters in the AU-
TOSAR Adaptive Platform is currently not standardized. Some aspects, for example,
access management, are also not yet fully incorporated and standardized in all Func-
tional Clusters.

9.1 Overview

Figure 9.1 provides an overview of the different categories of building blocks available
in the AUTOSAR Adaptive Platform. The categories are explained in more detail in the
subsequent sections.

AUTOSAR Adaptive Platform

Runtime Communication Storage

Security Safety Configuration

Diagnostics

Figure 9.1: Overview of the AUTOSAR Adaptive Platform and its building block cate-
gories

9.1.1 Description pattern

The description of all building blocks (FunctionalClusters) in this section uses
the same pattern. Each FunctionalCluster is described in a separate section of
the document. Such a section starts with an overview of the responsibilities of the
FunctionalCluster followed by a sub-section called "Defined interfaces". The sub-
section "Defined interfaces" lists all architectural interfaces specified in the namespace
of the FunctionalCluster. Each interface is detailed in a separate table.

29 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

The subsection "Provided interfaces" then lists all interfaces provided by the Func-
tionalCluster (i.e. it is fully implemented by the FunctionalCluster) to other
FunctionalClusters.

The last subsection "Required interfaces" lists all interfaces required by the Func-
tionalCluster from other FunctionalClusters and external components like
the operating system.

9.2 Runtime

State ManagementExecution Management Log and Trace Core

Operating System Interface

Figure 9.2: Overview of Runtime and its building blocks

9.2.1 Execution Management

Name: Execution Management

Short name: exec
Category: Runtime

Daemon-based: Yes
Responsibili-
ties:

Execution Management is responsible to control Processes of the
AUTOSAR Adaptive Platform and Adaptive Applications. That is, it
starts, configures, and stops Processes as configured in Function Group
States using interfaces of the Operating System. The Operating
System is responsible for runtime scheduling of those Process. The
configuration of Processes that Execution Management performs includes
limiting their resource consumption (CPU time, memory) using Resource
Groups provided by the Operating System.

Execution Management is the entry point of AUTOSAR Adaptive Platform
and is started by the Operating System during system boot. Execution
Management then controls the startup and shutdown of the AUTOSAR
Adaptive Platform (see Section 10.2.1 for details). Execution Management

5

5

30 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
4

optionally supports authenticated startup where it maintains the chain of trust
when starting from a Trust Anchor. During authenticated startup
Execution Management validates the authenticity and integrity of
Processes and shall prevent their execution if violations are detected. Through
these mechanisms, a trusted platform can be established (cf. Section 12.13).

9.2.1.1 Defined interfaces

The interfaces of Execution Management are categorized into interfaces for state
reporting (see Section 9.2.1.1.1), interfaces for the deterministic execution (see Section
9.2.1.1.2), and interfaces for State Management (see Section 9.2.1.1.3).

9.2.1.1.1 Interfaces for state reporting

All processes started by Execution Management (i.e. all processes of the AU-
TOSAR Adaptive Platform and all processes of Adaptive Applications) shall report their
execution state back to Execution Management via the ExecutionClient interface
(cf. Figure 9.3).

«aapFunctionalCluster»
Execution Management

daemon-based

«aapAPI,aapNativeInterface»
ExecutionClient

+ ReportExecutionState(ExecutionState): Result

Adaptive Application

«use»

Figure 9.3: Interfaces for state reporting

Name: ExecutionClient
Technology: Native interface

Usage: Public API

Description: This interface provides functionality for a Process to report its execution state
to Execution Management.

Operations: ReportExecutionState Report the internal state of a Process to
Execution Management.

31 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.2.1.1.2 Interfaces for deterministic execution

The DeterministicClient API (cf. Figure 9.4) provides operations to perform determin-
istic execution of tasks.

«aapFunctionalCluster»
Execution Managementdaemon-based

«aapAPI,aapNativeInterface»
DeterministicClient

+ GetActivationTime()
+ GetNextActivationTime()
+ GetRandom()
+ RunWorkerPool()
+ SetRandomSeed()
+ WaitForActivation()

«aapAPI,aapNativeInterface»
WorkerRunnable

+ Run(ValueType, WorkerThread)

«aapAPI,aapNativeInterface»
WorkerThread

+ GetRandom()

Adaptive Application

«use»

«use»«use»

Figure 9.4: Interfaces for deterministic execution

Name: DeterministicClient
Technology: Native interface

Usage: Public API

Description: This interface provides the functionality for an application to run a cyclic
deterministic execution. Each modelled Process which needs support for
cyclic deterministic execution has to instantiate this interface.

GetActivationTime Get the timestamp of the activation point.

GetNextActivationTime Get the timestamp of the next activation
point.

GetRandom Returns a deterministic sequence of random
numbers.

RunWorkerPool Runs tasks in a deterministic worker pool.

SetRandomSeed Seed the random number generator used for
redundantly executed deterministic clients.

Operations:

WaitForActivation Blocks and returns with a process control
value when the next activation is triggered by
the runtime.

Name: WorkerRunnable
Technology: Native interface

Usage: Public API
5

32 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Description: This interface is used to implement worker runnables for the DeterministicClient.

Operations: Run Runs the deterministic client worker
runnable.

Name: WorkerThread
Technology: Native interface

Usage: Public API

Description: This interface is used to implement worker threads for the DeterministicClient.

Operations: GetRandom Returns a deterministic pseudo-random
number which is unique for each container
element in the worker pool.

9.2.1.1.3 Interfaces for State Management

The StateClient API (cf. Figure 9.5) provides operations to control FunctionGroups and
their FunctionGroupStates.

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapNativeInterface»
StateClient

+ GetExecutionError()
+ GetInitialMachineStateTransitionResult()
+ SetState(FunctionGroupState): Future
+ StateClient(function)

«aapAPI,aapPortInterface»
FunctionGroup

«aapAPI,aapPortInterface»
FunctionGroupState

«use» «use»
«aapProvidedPort»

«use»
«aapProvidedPort»

«aapRequiredPort»«aapRequiredPort»

Figure 9.5: Interfaces for State Management

Name: StateClient
Technology: Native interface

Usage: Public API

Description: This interface provides the functionality to request FunctionGroupState
transitions and to perform error detection and error handling.

5

33 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
GetExecutionError Returns the execution error which changed

the given FunctionGroup to an undefined
FunctionGroupState.

GetInitialMachineStateTransi-
tionResult

Retrieve the result of Machine State initial
transition to Startup state.

SetState Request a FunctionGroupState transition for
a single FunctionGroup.

Operations:

StateClient Constructor of this interface. It requires a
callback to be invoked if a FunctionGroup
changes its state unexpectedly to an
undefined FunctionGroupState, i.e. without
previous request by SetState(). The affected
FunctionGroup is provided as an argument
to the callback.

Name: FunctionGroupState

Technology: Port interface

Generated: No
Meta-model
interface type:

ModeDeclaration

Usage: Public API

Description: Represents a Function Group State defined in the Manifest.

Name: FunctionGroup

Technology: Port interface

Generated: No
Meta-model
interface type:

ModeDeclarationGroup

Usage: Public API

Description: Represents a Function Group defined in the Manifest.

34 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.2.1.2 Provided interfaces

«aapFunctionalCluster»
Execution Management

daemon-based

«aapAPI,aapNativeInterface»
ExecutionClient

+ ReportExecutionState(ExecutionState): Result

«aapFunctionalClust...
State Management

daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalClust...
Platform Health

Management

daemon-based

«aapFunctionalClust...
Update and Configuration

Management

daemon-based

«aapFunctionalClust...
Time Synchronization

daemon-based

«use» «use»«use» «use»«use»

Figure 9.6: Users of the ExecutionClient interface

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapNativeInterface»
StateClient

+ GetExecutionError()
+ GetInitialMachineStateTransitionResult()
+ SetState(FunctionGroupState): Future
+ StateClient(function)

«aapAPI,aapPortInterface»
FunctionGroup

«aapAPI,aapPortInterface»
FunctionGroupState

«use» «use»
«aapProvidedPort»

«use»
«aapProvidedPort»

«aapRequiredPort»«aapRequiredPort»

Figure 9.7: Users of the State Management interfaces

Interface Requiring functional clusters

Diagnostic Management (see Section 9.8.1)

Platform Health Management (see Section 9.6.1)

State Management (see Section 9.2.2)

Time Synchronization (see Section 9.3.3)

ExecutionClient

Update and Configuration Management (see Section
9.7.1)

FunctionGroup State Management (see Section 9.2.2)

FunctionGroupState State Management (see Section 9.2.2)

StateClient State Management (see Section 9.2.2)

Table 9.1: Interfaces provided by Execution Management to other Functional Clusters

35 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.2.1.3 Required interfaces

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalClust...
Log and Trace

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapAPI,aapPortInterface»
SynchronizedTimeBaseConsumer

+ GetCurrentTime()
+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapInternal»
Multi-Process System Interface

+ SetProcessConfiguration()
+ StartProcess()
+ TerminateProcess()

Operating System

«aapAPI,aapPortInterface»
SupervisedEntity

+ ReportCheckpoint()

«aapFunctionalClust...
Platform Health

Management
daemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use» «use»

Figure 9.8: Interfaces required by Execution Management

Interface Purpose

n/a Execution Management should use this interface to
read/write persistent data.

KeyValueStorage Execution Management should use this interface to
read/write persistent data.

Logger Execution Management shall use this interface to log
standardized messages.

Manifest Accessor Execution Management shall use this interface to read
the configuration of its DeterministcClient and information
about Function Groups and Processes from the
Manifests.

Multi-Process System Interface Execution Management shall use this interface to start,
configure and control os-level processes.

SupervisedEntity Execution Management shall use this interface to
enable supervision of its process(es) by Platform
Health Management.

SynchronizedTimeBaseConsumer The DeterministicClient implementation in Execution
Management should use this interface to synchronize
execution of DeterministicClients.

WorkerRunnable Execution Management shall use this interface to
execute WorkerRunnables using its DeterministicClient
implementation.

Table 9.2: Interfaces required by Execution Management

36 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.2.2 State Management

Name: State Management

Short name: sm
Category: Runtime

Daemon-based: Yes
Responsibili-
ties:

State Management determines the desired target state of the AUTOSAR
Runtime for Adaptive Applications based on various application-specific inputs.
That target state is the set of active Function Group States of all
Function Groups running on the AUTOSAR Runtime for Adaptive
Applications. State Management delegates to Execution Management to
switch the individual Function Groups to the respective Function Group
States.

State Management is a unique component in the AUTOSAR Adaptive
Platform because it is not part of an AUTOSAR Adaptive Platform stack. The
logic of State Management currently needs to be implemented as
application-specific code and then configured and integrated with an AUTOSAR
Adaptive Platform stack.

9.2.2.1 Defined interfaces

The interfaces of State Management are categorized into interfaces for triggering
state changes (see Section 9.2.2.1.1), interfaces for diagnostic reset (see Section
9.2.2.1.2), interfaces for requesting a Power Mode (see Section 9.2.2.1.3), and inter-
faces for interaction with Update and Configuration Management (see Section
9.2.2.1.4).

9.2.2.1.1 Interfaces for triggering state changes

State Management provides several interface blueprints to get and set its internal
state (cf. Figure 9.9).

«aapFunctionalCluster»
State Management

daemon-based

«aapAraComServiceInterface,aapAPI»
TriggerIn_{StateGroup}

«aapAccessControlled, aapServiceFie...
+ Trigger

«aapAraComServiceInterface,aapAPI»
TriggerOut_{StateGroup}

«aapAccessControlled, aapServiceFie...
+ Notifier

«aapAraComServiceInterface,aapAPI»
TriggerInOut_{StateGroup}

«aapAccessControlled, aapServiceField»
+ Notifier
+ Trigger

Adaptive Application

«use»
«aapRequiredPort»

«aapProvidedPort»«aapProvidedPort»

«use»
«aapRequiredPort»

«aapProvidedPort»

«use»
«aapRequiredPort»

Figure 9.9: Interfaces for triggering state changes

37 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: TriggerIn_{StateGroup}

Technology: ara::com service interface

Usage: Public API

Description: This interface is to be used by Adaptive Applications to trigger State
Management to change its internal state.

Fields: Trigger A value to be evaluated by State
Management in a project-specific way.

Name: TriggerOut_{StateGroup}

Technology: ara::com service interface

Usage: Public API

Description: This interface is to be used by Adaptive Applications to be informed when
State Management has changed its internal state.

Fields: Notifier To be set by State Management in a
project-specific way to inform Adaptive
Applications about changes within
State Management.

Name: TriggerInOut_{StateGroup}

Technology: ara::com service interface

Usage: Public API

Description: This interface is to be used by Adaptive Applications to trigger State
Management to change its internal state and to get information when it is
carried out.
Notifier To be set by State Management in a

project-specific way to inform Adaptive
Applications about changes within
State Management.

Fields:

Trigger A value to be evaluated by State
Management in a project-specific way.

9.2.2.1.2 Interfaces for requesting a diagnostic reset

The DiagnosticReset interface propagates a diagnostic reset request (DiagnosticRe-
set::message()) to all affected Processes. These Processes then shall answer the
diagnostic reset request by calling DiagnosticReset::event().

38 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapAraComServiceInterface»
DiagnosticReset

«aapAccessControlled, aapServiceMethod»
+ event(DiagnosticResetRespMsg*)
+ message(DiagnosticResetMsg*)

Adaptive Application «aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapProvidedPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.10: Interface for handling a diagnostic reset

Name: DiagnosticReset

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality to handle diagnostic reset requests.

event All Processes which got a diagnostic reset
request shall call this method to provide an
answer to State Management.

Operations:

message Sends a diagnostic reset message to all
affected Processes.

9.2.2.1.3 Interfaces for requesting a Power Mode

The PowerMode interface propagates a diagnostic Power Mode request (Power-
Mode::message()) to all running Processes. These Processes then shall answer
the Power Mode request by calling PowerMode::event().

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapAraComServiceInterfa...
PowerMode

«aapAccessControlled, aapService...
+ event(PowerModeRespMsg*)
+ message(PowerModeMsg*)

Adaptive Application

«aapProvidedPort»

«use»
«aapRequiredPort»

Figure 9.11: Interface for handling a Power Mode request

39 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: PowerMode
Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality to handle Power Mode requests.

event All Processes which have received a Power
Mode request shall call this method to
provide an answer to State Management.

Operations:

message Sends a Power Mode request to all running
Processes.

9.2.2.1.4 Interfaces for interaction with Update and Configuration Management

«aapFunctionalCluster»
State Management

daemon-based

UCM Subordinate

«aapAraComServiceInterface,aapInte...
UpdateRequest

«aapAccessControlled, aapServiceMe...
+ PrepareRollback()
+ PrepareUpdate()
+ RequestUpdateSession()
+ ResetMachine()
+ StopUpdateSession()
+ VerifyUpdate()

«use»
«aapRequiredPort»

«aapProvidedPort»

Figure 9.12: Interface for software update handling

Name: UpdateRequest

Technology: ara::com service interface

Usage: Internal

Description: This interface is intended to be used by Update and Configuration
Management to interact with State Management to perform updates
(including installation and removal) of Software Clusters.

PrepareRollback Prepares the affected Function Groups
for a rollback.

Operations:

PrepareUpdate Prepares the affected Function Groups
for an update.

5

40 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
RequestUpdateSession Requests an update session. State

Management might decline this request
when the Machine is not in a state to be
updated.

ResetMachine Requests an orderly reset of the Machine.
Before the reset is performed all information
within the Machine shall be persisted.

StopUpdateSession Ends an update session.

VerifyUpdate Verifies the affected Function Groups
after an update.

9.2.2.2 Provided interfaces

«aapFunctionalCluster»
State Management

daemon-based

«aapFunctionalCluster»
Diagnostic Management

daemon-based

UCM Subordinate

«aapPortInterface,aapAPI»
EcuResetRequest

+ EnableRapidShutdown()
+ ExecuteReset()
+ Offer()
+ RequestReset()
+ StopOffer()

«aapAraComServiceInterface,aapInte...
UpdateRequest

«aapAccessControlled, aapServiceMe...
+ PrepareRollback()
+ PrepareUpdate()
+ RequestUpdateSession()
+ ResetMachine()
+ StopUpdateSession()
+ VerifyUpdate()

«aapPortInterface,aapAPI»
RecoveryAction

+ GetGlobalSupervisionStatus()
+ Offer()
+ StopOffer()

«aapCallbackMethod»
+ RecoveryHandler()

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapAPI,aapAraComServiceInter...
DiagnosticReset

«aapAccessControlled, aapServic...
+ event(DiagnosticResetRespMsg*)
+ message(DiagnosticResetMsg*)

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«aapProvidedPort» «aapProvidedPort»«aapProvidedPort»

«use»
«aapRequiredPort»

«use»

Figure 9.13: Users of the State Management interfaces

Interface Requiring functional clusters

CommunicationControl Diagnostic Management (see Section 9.8.1)

DiagnosticReset Diagnostic Management (see Section 9.8.1)

EcuResetRequest Diagnostic Management (see Section 9.8.1)

RecoveryAction Platform Health Management (see Section 9.6.1)

UpdateRequest Update and Configuration Management (see Section
9.7.1)

Table 9.3: Interfaces provided by State Management to other Functional Clusters

41 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.2.2.3 Required interfaces

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapPortInterface»
SupervisedEntity

+ ReportCheckpoint()

«aapAraComServiceInterface,aapAPI»
NetworkState_{NetworkHandle}

«aapAccessControlled, aapServiceField»
+ NetworkCurrentState
+ NetworkRequestedState

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalCluster»
Network Management

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapFunctionalClust...
Persistency

«aapPortInterface,aapAPI»
CommunicationControl

+ CommCtrlRequest()
+ Offer()
+ StopOffer()

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»

«aapProvidedPort»
«use»

«aapRequiredPort»

Figure 9.14: Interfaces required by State Management

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapNativeInterface»
Execution Management::StateClient

+ GetExecutionError()
+ GetInitialMachineStateTransitionResult()
+ SetState(FunctionGroupState): Future
+ StateClient(function)

«aapAPI,aapPortInterface»
Execution Management::

FunctionGroupState

«aapAPI,aapPortInterface»
Execution Management::

FunctionGroup

«use» «use»
«aapProvidedPort»

«use»
«aapProvidedPort»

«aapRequiredPort»«aapRequiredPort»

Figure 9.15: Interfaces of Execution Management required by State Management

Interface Purpose

n/a This interface should be used to persist information (e.g.
update session).

ExecutionClient This interface shall be used to report the state of the
StateManagement process(es).

FunctionGroup This interface shall be used to request
FunctionGroupState transitions and to check their
status.

FunctionGroupState This interface shall be used to request
FunctionGroupState transitions and to check their
status.

5

42 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
KeyValueStorage This interface should be used to persist information (e.g.

update session).

Logger State Management shall use this interface to log
standardized messages.

NetworkState_{NetworkHandle} This interface shall be used to retrieve information about
the network status of a NetworkHandle.

StateClient This interface shall be used to request
FunctionGroupState transitions.

SupervisedEntity State Management shall use this interface to enable
supervision of its process(es) by Platform Health
Management.

Table 9.4: Interfaces required by State Management

9.2.3 Log and Trace

Name: Log and Trace

Short name: log

Category: Runtime

Daemon-based: No
Responsibili-
ties:

Log and Trace provides functionality to build and log messages of different
severity. An Adaptive Application can be configured to forward log
messages to various sinks, for example to a network, a serial bus, the console,
and to non-volatile storage.

9.2.3.1 Defined interfaces

The entry point to the Log and Trace framework is the CreateLogger() operation
that constructs a new Logger context. Afterwards, new messages can be constructed
using the LogStream that is returned by the operations in Logger, for example LogInfo
().

43 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Log and Trace

«aapAPI,aapNativeInterf...
Log and Trace::Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

Adaptive Application

«aapAPI,aapNativeInt...
Log and Trace

+ Arg()
+ BinFormat()
+ CreateLogger(): Logger
+ HexFormat()
+ remoteClientState()

«aapAPI,aapNativeInterface»
Log and Trace::LogStream

+ Flush(): void
+ operator<<(): void
+ WithLocation(): void

«use»«use»«use»

Figure 9.16: Interfaces of Log and Trace

Name: Logger

Technology: Native interface

Usage: Public API

Description: This interface represents a logger context. The logging framework defines
contexts which can be seen as logger instances within one application process
or process scope. A context will be automatically registered against the Logging
back-end during creation phase, as well as automatically deregistered during
process shutdown phase.

IsEnabled Check if the provided log level is enabled in
the current configured log level.

Log Logs a message modeled in the Manifest.

LogDebug Creates a LogStream object with Debug
severity.

LogError Creates a LogStream object with Error
severity.

LogFatal Creates a LogStream object with Fatal
severity.

LogInfo Creates a LogStream object with Info
severity.

LogVerbose Creates a LogStream object with Verbose
severity.

LogWarn Creates a LogStream object with Warn
severity.

Operations:

WithLevel Creates a LogStream object with the
provided log level.

44 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: n/a
Technology: Native interface

Usage: Public API

Description: This interface provides access to the logging framework and utility operations to
control the format of value printed to the log output.

Arg Create a wrapper object. The wrapper object
holds a value and an optional name and unit
of the value.

BinFormat Conversion of an integer into a binary value.
Negatives are represented in 2’s
complement. The number of represented
digits depends on the overloaded parameter
type length.

CreateLogger Creates a Logger object, holding the context
which is registered in the logging framework.

HexFormat Conversion of an integer into a hexadecimal
value. Negatives are represented in 2’s
complement. The number of represented
digits depends on the overloaded parameter
type length.

Operations:

remoteClientState Fetches the connection state from the DLT
back-end of a possibly available remote
client.

Name: LogStream

Technology: Native interface

Usage: Public API

Description: This interface provides functionality to construct a single log message by
appending data using stream operators.

Flush Sends out the current log buffer and initiates
a new message stream. Calling this
operation is only necessary if the LogStream
is intended to be reused within the same
scope.

WithLocation Add source file location into the message.

Operations:

operator« Writes a value into the log message. Several
overloads exist to control the output format.

45 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.2.3.2 Provided interfaces

«aapFunctionalClust...
Log and Trace

«aapAPI,aapNativeInterface»
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalClust...
Execution Management

daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalCluster»
Communication Management

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

«aapFunctionalCluster»
Persistency

«aapFunctionalCluster»
Adaptive Intrusion Detection System

Managerdaemon-based

«aapFunctionalClust...
Time Synchronization

daemon-based

«aapFunctionalClust...
State Management

daemon-based

«aapFunctionalClust...
Network Management

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapFunctionalClust...
Cryptography

daemon-based

«aapFunctionalClust...
Identity and Access

Management

«use»«use» «use»«use» «use» «use»

«use» «use»

«use» «use» «use»

«use»

Figure 9.17: Users of the Log and Trace interfaces

Interface Requiring functional clusters

Adaptive Intrusion Detection System Manager (see
Section 9.5.3)

Communication Management (see Section 9.3.1)

Cryptography (see Section 9.5.1)

Diagnostic Management (see Section 9.8.1)

Execution Management (see Section 9.2.1)

Identity and Access Management (see Section 9.5.2)

Network Management (see Section 9.3.2)

Persistency (see Section 9.4.1)

Platform Health Management (see Section 9.6.1)

State Management (see Section 9.2.2)

Time Synchronization (see Section 9.3.3)

Logger

Update and Configuration Management (see Section
9.7.1)

Table 9.5: Interfaces provided by Log and Trace to other Functional Clusters

46 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.2.3.3 Required interfaces

«aapFunctionalCluster»
Log and Trace

«aapFunctionalCluster»
Time Synchronizationdaemon-based

«aapAPI,aapPortInterface»
Time Synchronization::SynchronizedTimeBaseConsumer

+ GetCurrentTime()
+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapInternal»
TCP/IP Stack

«aapInternal»
Non-volati le Storage

Operating System

«use» «use»«use»
«aapRequiredPort»

Figure 9.18: Interfaces required by LogAndTrace

Interface Purpose

Manifest Accessor Log and Trace shall use this interface to read
information about modeled messages from the
Manifests.

Non-volatile Storage Log and Trace should use this interface to write log
messages to a non-volatile storage, e.g., a file in a
filesystem.

SynchronizedTimeBaseConsumer Log and Trace shall use this interface to determine the
timestamps that are associated with log messages.

TCP/IP Stack Log and Trace shall use this interface to write log
messages to an IP-based network stream.

Table 9.6: Interfaces required by Log and Trace

9.2.4 Core

Name: Core
Short name: core
Category: Runtime

Daemon-based: No
5

47 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Responsibili-
ties:

Core provides functionality for initialization and de-initialization of the
AUTOSAR Runtime for Adaptive Applications as well as termination of
Processes.

9.2.4.1 Defined interfaces

«aapFunctionalCluster»
Core

«aapAPI,aapNativeInterf...
Core

+ Deinitialize()
+ Initialize()

«aapAPI,aapNativeInterface»
Core

+ Abort()
+ SetAbortHandler()

Figure 9.19: Interfaces of Core

9.2.4.1.1 Interfaces for initialization and de-initialization

The AUTOSAR Adaptive Platform for Applications needs to be initialized by an appli-
cation before it is used (using Initialize()) and de-initialized after it is no longer used
(using Deinitialize()).

Name: n/a
Technology: Native interface

Usage: Public API

Description: This interface provides global initialization and shutdown functions that initialize
respectively deinitialize data structures and threads of the AUTOSAR Runtime
for Adaptive Applications.

Deinitialize Destroy all data structures and threads of the
AUTOSAR Adaptive Runtime for
Applications. After this call, no interaction
with the AUTOSAR Adaptive Runtime for
Applications is possible.

Operations:

Initialize Initializes data structures and threads of the
AUTOSAR Adaptive Runtime for
Applications. Prior to this call, no interaction
with the AUTOSAR Adaptive Runtime for
Applications is possible.

48 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.2.4.1.2 Interfaces for process termination

The AUTOSAR Adaptive Platform for Applications provides an explicit abnormal termi-
nation facility using Abort().

Name: n/a
Technology: Native interface

Usage: Public API

Description: This interface provides operation for abnormal termination of processes.

Abort Abort the current process. This function will
never return to its caller.

Operations:

SetAbortHandler Set a custom global abort handler function
and return the previously installed one.

9.2.4.2 Provided interfaces

Core currently provides no interfaces to other Functional Clusters.

9.2.4.3 Required interfaces

Core currently requires no interfaces.

9.2.5 Operating System Interface

Name: Operating System Interface

Short name: n/a
Category: Runtime

Daemon-based: No
Responsibili-
ties:

The Operating System Interface provides functionality for implementing
multi-threaded real-time embedded applications and corresponds to the [9,
POSIX PSE51 profile]. That profile provides support to create Threads that
may be executed in parallel on modern multi-core processors and to control
their properties such as stack memory or their scheduling. In addition,
primitives for shared resource access are provided such as Semaphores or
memory locking. Asynchronous (real-time) signals and message passing
enable inter-process communication. High resolution timers and clocks are
provided to control real-time behavior precisely. Some input/output functions
are provided as well but no file system APIs.

5

5

49 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
4

POSIX PSE51 and the Operating System Interface do not provide any
means to execute and control Processes. Processes (of the AUTOSAR
Adaptive Platform) are entirely controlled by Execution Management via
interfaces that are implementation specific.

Note that a typical AUTOSAR Adaptive Platform stack will not provide an actual
implementation of the Operating System Interface because all
functionality is already provided by standard libraries of the programming
language (e.g. Standard C++ Library).

9.2.5.1 Defined interfaces

«aapFunctionalCluster»
Operating System Interface

«aapAPI,aapNativeInterface»
OperatingSystemInterface

Adaptive Application

«use»

Figure 9.20: Interfaces defined by Operating System Interface

Name: OperatingSystemInterface

Technology: Native interface

Usage: Public API

Description: This interface represents the [9, POSIX PSE51 profile] API. The API is not
detailed in this document.

9.2.5.2 Provided interfaces

Operating System Interface currently provides no interfaces to other Func-
tional Clusters.

50 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.2.5.3 Required interfaces

«aapFunctionalCluster»
Operating System Interface

Operating System

«aapInternal»
Single-Process POSIX API

«use»

Figure 9.21: Interfaces required by Operating System Interface

Interface Purpose

Single-Process POSIX API Operating System Interface uses this interface to
provide the functionality of the [9, POSIX PSE51 profile],
e.g. Threads. Usually the whole [9, POSIX PSE51 profile]
API will already be provided by the underlying operating
system. In this case, the Operating System
Interface will not have an implementation in the
Adaptive Platform stack.

Table 9.7: Interfaces required by Operating System Interface

9.3 Communication

Communication Management Network Management Time Synchronization

Figure 9.22: Overview of Communication and its building blocks

9.3.1 Communication Management

Name: Communication Management

Short name: com
Category: Communication

5

51 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Daemon-based: No
Responsibili-
ties:

Communication Management is responsible for all levels of service-oriented
and raw communication between applications in a distributed real-time
embedded environment. That is, intra-process communication, inter-process
communication and inter-machine communication. The latter is also possible
with AUTOSAR Classic Platforms and third-party platforms. Communication
paths can be established at design-, start-up-, and run-time. Communication
Management consists of a generic part that handles brokering and
configuration as well as (potentially generated) skeletons for service providers
and respective proxies for service consumers.

9.3.1.1 Defined interfaces

The interfaces of Communication Management are categorized into interfaces for
raw data streams (see Section 9.3.1.1.1), interfaces for SecOC (see Section 9.3.1.1.2),
and interfaces freshness value management (see Section 9.3.1.1.3). Please note
that a implementation of Communication Management will generate additional inter-
faces for each modeled Service, e.g. a Proxy and a Skeleton interface. However,
these generated interfaces are not covered in this document.

9.3.1.1.1 Interfaces for raw data streams

«aapFunctionalCluster»
Communication Management

«aapAPI,aapPortInterface»
RawDataStreamClient

+ Connect()
+ ReadData()
+ Shutdown()
+ WriteData()

«aapAPI,aapPortInterface»
RawDataStreamServer

+ ReadData()
+ Shutdown()
+ WaitForConnection()
+ WriteData()

Adaptive Application

«aapProvidedPort»

«use» «use»

«aapProvidedPort»

Figure 9.23: Interfaces for raw data streams

Name: RawDataStreamClient
Technology: Port interface

Generated: No
Meta-model
interface type:

RawDataStreamClientInterface

5

52 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Usage: Public API

Description: This interface provides functionality for a client reading and writing binary data
streams over a network connection.
Connect Sets up a socket connection for the raw data

stream defined by the instance, and
establish a connection to the TCP server.

ReadData Requests to read a number of bytes of data
from the socket connection for the raw data
stream defined by the instance.

Shutdown Closes the socket connection for the raw
data stream defined by the instance. Both,
the receiving and the sending part of the
socket connection shall be shut down.

Operations:

WriteData Requests to write of a number of bytes to the
socket connection for the raw data stream
defined by the instance.

Name: RawDataStreamServer
Technology: Port interface

Generated: No
Meta-model
interface type:

RawDataStreamServerInterface

Usage: Public API

Description: This interface provides functionality for a server reading and writing binary data
streams over a network connection.
ReadData Requests to read a number of bytes of data

from the socket connection for the raw data
stream defined by the instance.

Shutdown Closes the socket connection for the raw
data stream defined by the instance. Both
the receiving and the sending part of the
socket connection shall be shut down.

WaitForConnection Initializes the socket and prepare the
RawDataStreamServer instance for
incoming connections.

Operations:

WriteData Requests to write of a number of bytes to the
socket connection for the raw data stream
defined by the instance.

53 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.3.1.1.2 Interfaces for SecOC

«aapFunctionalCluster»
Communication Management

«aapAraComServiceInterface,aapAPI»
VerificationStatusConfigurationByDataId

«aapAccessControlled, aapServiceMeth...
+ VerifyStatusOverride()

«aapAraComServiceInterface,aapA...
VerificationStatus

«aapAccessControlled, aapServiceE...
+ VerificationStatus

«aapAraComServiceInterface,aapAPI»
VerificationStatusConfigurationByFreshnessId

«aapAccessControlled, aapServiceMethod»
+ VerifyStatusOverride()

Adaptive Application

«aapProvidedPort»

«use»
«aapRequiredPort»

«aapProvidedPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«aapProvidedPort»

Figure 9.24: Interfaces for SecOC

Name: VerificationStatus
Technology: ara::com service interface

Usage: Public API

Description: This interface provides an event to informed about the verification status of
messages.

Events: VerificationStatus This event is fired for each verification and
holds the verification status.

Name: VerificationStatusConfigurationByDataId

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality to control the verification status of
messages.

Operations: VerifyStatusOverride This service method provides the ability to
force to accept or to drop a message with or
without performing the verification of
authenticator or independent of the
authenticator verification result, and to force
a specific result allowing additional fault
handling in the application.

Name: VerificationStatusConfigurationByFreshnessId

Technology: ara::com service interface
5

54 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Usage: Public API

Description: This interface provides functionality to control the verification status of
messages.

Operations: VerifyStatusOverride This service method provides the ability to
force to accept or to drop a message with or
without performing the verification of
authenticator or independent of the
authenticator verification result, and to force
a specific result allowing additional fault
handling in the application.

9.3.1.1.3 Interfaces for freshness value management

«aapFunctionalCluster»
Communication Management

«aapNativeInterface,aapPlatformExtension»
FVM

+ GetRxFreshness()
+ GetTxFreshness()
+ Initial ize()

«use»

Figure 9.25: Interfaces for freshness value management

Name: FVM
Technology: Native interface

Usage: Platform extension

Description: This interface provides functionality for freshness value management.

GetRxFreshness Obtain the current freshness value for
received messages.

GetTxFreshness Obtain the current freshness value for
transmitted messages.

Operations:

Initialize Initializes freshness value manager plugin
implementation.

9.3.1.2 Provided interfaces

CommunicationManagement currently provides no interfaces to other Functional
Clusters.

55 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.3.1.3 Required interfaces

«aapFunctionalCluster»
Communication Management

«aapFunctionalClust...
Log and Trace

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapInternal»
TCP/IP Stack

Operating System«aapFunctionalClust...
Identity and Access

Management

«aapInternal,aapNativeI...
PolicyDecisionPoint

+ CheckAccess()

«aapInternal,aapNativeI...
Manifest Accessor

«aapFunctionalClust...
Registry

«aapFunctionalClust...
Cryptography

daemon-based

«aapAPI,aapNativeInterf...
CryptoStack

«use» «use»«use» «use»«use»

Figure 9.26: Interfaces required by Communication Management

Interface Purpose

CryptoStack Communication Management shall use this interface to
establish encrypted connections and generate / verify
checksums (MAC).

EventReporter This interface should be used to report security events.

FVM Communication Management shall use this interface to
get freshness values.

Logger Communication Management shall use this interface to
log standardized messages.

Manifest Accessor Communication Management shall use this interface to
read service information from the Manifests.

OperatingSystemInterface Communication Management should use this interface
to create and control Threads used by the
implementation.

PolicyDecisionPoint Communication Management shall use this interface to
check access to ara::com service methods, fields, and
events.

TCP/IP Stack Communication Management shall use this interface to
establish and control TCP/IP-based network connections.

Table 9.8: Interfaces required by Communication Management

56 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.3.2 Network Management

Name: Network Management

Short name: nm
Category: Communication

Daemon-based: No
Responsibili-
ties:

Network Management provides functionality to request and query the
network states for logical network handles, Such network handles can be
mapped to physical or partial networks.

9.3.2.1 Defined interfaces

«aapFunctionalCluster»
State Management

daemon-based

«aapAraComServiceInterface,aapAPI»
NetworkState_{NetworkHandle}

«aapAccessControlled, aapServiceField»
+ NetworkCurrentState
+ NetworkRequestedState

«aapFunctionalCluster»
Network Management

«use»
«aapRequiredPort»

«aapProvidedPort»

Figure 9.27: Interfaces for time base providers

Name: NetworkState_{NetworkHandle}

Technology: ara::com service interface

Usage: Public API

Description: This interface provides information about network status per
NetworkHandle.This interface is intended to be used by StateManagement
only.

NetworkCurrentState Indicates if a PNC / VLAN / Physical Network
is currently active or not.

Fields:

NetworkRequestedState Request a PNC / VLAN / Physical Network to
get active or to release it.

57 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.3.2.2 Provided interfaces

«aapFunctionalCluster»
State Management

daemon-based

«aapAraComServiceInterface,aapAPI»
NetworkState_{NetworkHandle}

«aapAccessControlled, aapServiceField»
+ NetworkCurrentState
+ NetworkRequestedState

«aapFunctionalCluster»
Network Management

«use»
«aapRequiredPort»

«aapProvidedPort»

Figure 9.28: Users of Network Management interfaces

Interface Requiring functional clusters

NetworkState_{NetworkHandle} State Management (see Section 9.2.2)

Table 9.9: Interfaces provided by Network Management to other Functional Clusters

9.3.2.3 Required interfaces

«aapFunctionalCluster»
Network Management

«aapInternal»
TCP/IP Stack

«aapAPI,aapNativeInterface»
Log and Trace::Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalCluster»
Log and Trace

Operating System

«use» «use»

Figure 9.29: Interfaces required by Network Management

58 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Interface Purpose
Logger Network Management shall use this interface to log

standardized messages.

Manifest Accessor Network Management shall use this interface to read
information about NmNetworkHandles from the
Manifests.

TCP/IP Stack Network Management should use this interface to set
and to determine the status of IP-based networks.

Table 9.10: Interfaces required by Network Management

9.3.3 Time Synchronization

Name: Time Synchronization

Short name: tsync

Category: Communication

Daemon-based: Yes
Responsibili-
ties:

Time Synchronization provides synchronized time information in
distributed applications. Synchronized time information between different
applications and/or Machines is of paramount importance when the correlation
of different events across a distributed system is needed, either to be able to
track such events in time or to trigger them at an accurate point in time.

9.3.3.1 Defined interfaces

The interfaces of Time Synchronization are categorized into interfaces for provid-
ing time information (see Section 9.3.3.1.1) and interfaces for consuming time informa-
tion (see Section 9.3.3.1.2).

9.3.3.1.1 Interfaces for time base providers

Time Synchronization defines the SynchronizedTimeBaseProvider and Offset-
TimeBaseProvider interfaces to provide time information for a synchronized time base.

59 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Time Synchronizationdaemon-based

«aapAPI,aapPortInterface»
Time Synchronization::

SynchronizedTimeBaseProvider

+ GetCurrentTime()
+ GetRateCorrection()
+ GetUserData()
+ RegisterTimeValidationNotification()
+ SetRateCorrection()
+ SetTime()
+ SetUserData()
+ UnregisterTimeValidationNotification()
+ UpdateTime()

Adaptive Application

«aapPortInterface,aapAPI»
Time Synchronization::
OffsetTimeBaseProvider

+ GetCurrentTime()
+ GetRateCorrection()
+ GetUserData()
+ RegisterTimeValidationNotification()
+ SetOffsetTime()
+ SetRateCorrection()
+ SetUserData()
+ UnregisterTimeValidationNotification()

«use»
«aapProvidedPort»

«use»
«aapProvidedPort»

Figure 9.30: Interfaces for time base providers

Name: SynchronizedTimeBaseProvider

Technology: Port interface

Generated: No
Meta-model
interface type:

SynchronizedTimeBaseProviderInterface

Usage: Public API

Description: Provides access to a synchronized time base. It allows to get the current time
point, the rate deviation, the current status and the received user data.

GetCurrentTime Obtain the current time (regardless of the
current sync status).

GetRateCorrection Obtain the current rate deviation of the clock.
GetUserData Get the user defined data of the time base.
RegisterTimeValidationNotifi-
cation

Used by time provider applications to receive
time sync parameters. A maximum of one
notifier can be registered. Every further
registration overwrites the current
registration.

SetRateCorrection Set the rate correction that will be applied to
time values.

SetTime Set a new time value for the clock. Setting a
new time also triggers transmission on the
bus.

SetUserData Set the user data of the time base.
UnregisterTimeValidationNotifi-
cation

Used by time provider applications to receive
time sync parameters.

Operations:

UpdateTime Set a new time value for the clock. The clock
value is only updated locally, transmission on
the bus will happen in the next cycle.

60 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: OffsetTimeBaseProvider
Technology: Port interface

Generated: No
Meta-model
interface type:

SynchronizedTimeBaseProviderInterface

Usage: Public API

Description: Provides access to the offset time base. It allows to get the current time point,
the rate deviation, the current status and the received user data.
GetCurrentTime Get the current time (regardless of the

current sync status).

GetRateCorrection Obtain the current rate deviation of the clock.
GetUserData Get the user defined data of the time base.
RegisterTimeValidationNotifi-
cation

Used by time provider applications to receive
time sync parameters. A maximum of one
notifier can be registered. Every further
registration overwrites the current
registration.

SetOffsetTime Set a new offset time value for the clock.
Setting a new time also triggers transmission
on the bus.

SetRateCorrection Set the rate correction that will be applied to
time values.

SetUserData Set the user data of the time base.

Operations:

UnregisterTimeValidationNotifi-
cation

Used by time provider applications to receive
time sync parameters.

9.3.3.1.2 Interfaces for time base consumers

Time Synchronization defines the SynchronizedTimeBaseConsumer interface to
retrieve time information for a synchronized time base. SynchronizedTimeBaseStatus
is used to determine the status of a synchronized time base.

61 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Time Synchronizationdaemon-based

«aapAPI,aapPortInterface»
Time Synchronization::

SynchronizedTimeBaseConsumer

+ GetCurrentTime()
+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

Adaptive Application

«aapAPI,aapNativeInterface»
Time Synchronization::

SynchronizedTimeBaseStatus

+ GetCreationTime()
+ GetLeapJump()
+ GetSynchronizationStatus()
+ GetUserData()

«use»
«aapRequiredPort» «use»

Figure 9.31: Interfaces for time base consumers

Name: SynchronizedTimeBaseConsumer

Technology: Port interface

Generated: No
Meta-model
interface type:

SynchronizedTimeBaseConsumerInterface

Usage: Public API

Description: Provides access to the synchronized time base. It allows to get the current time
point, the rate deviation, the current status and the received user data.

GetCurrentTime Obtain the current time (regardless of the
current sync status).

GetRateDeviation Obtain the current rate deviation of the clock.
GetTimeWithStatus Obtain a snapshot of the current state of the

clock. This includes status flags, clock
configuration and the actual time value of the
created status object.

RegisterStatusChangeNotifier Register a notifier function which is called if a
status flag is changed (i.e. synchronization
state, time leap or userdata). A maximum of
one notifier can be registered. Every further
registration overwrites the current
registration.

Operations:

RegisterSynchronizationState-
ChangeNotifier

Register a notifier function which is called if a
synchronization state is changed. A
maximum of one notifier can be registered.
Every further registration overwrites the
current registration.

5

62 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
RegisterTimeLeapNotifier Register a notifier function which is called if a

time leap happened. A maximum of one
notifier can be registered. Every further
registration overwrites the current
registration.

RegisterTimePrecisionMea-
surementNotifier

Register a notifier function which is called if a
new time precision snapshot is available. A
maximum of one notifier can be registered.
Every further registration overwrites the
current registration. Time
Synchronization will not do any queuing.
If needed it has to be done within the notifier.

RegisterTimeValidationNotifi-
cation

Used by time consumer applications to
receive time sync parameters. A maximum
of one notifier can be registered. Every
further registration overwrites the current
registration.

UnregisterStatusChangeNotifier
Unregister a notifier function which is called
if a status flag is changed (i.e.
synchronization state, time leap or userdata).

UnregisterSynchronizationStat-
eChangeNotifier

Unregister a notifier function which is called
if a synchronization state is changed.

UnregisterTimeLeapNotifier Unregister a notifier function which is called
if a time leap happened.

UnregisterTimePrecisionMea-
surementNotifier

Unregister a notifier function which is called
if a new time precision snapshot is available.

UnregisterTimeValidationNotifi-
cation

Unregister a notifier function for receiving
time sync parameters.

Name: SynchronizedTimeBaseStatus

Technology: Native interface

Usage: Public API

Description: Represents a snapshot of a time point including its states.

GetCreationTime Obtain the creation time of this object.

GetLeapJump Determine the direction of a leap jump. Only
the jump until the previous object creation is
included.

GetSynchronizationStatus Returns the synchronization state when the
object was created.

Operations:

GetUserData Returns the user defined data of the time
base.

63 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.3.3.2 Provided interfaces

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapFunctionalClust...
Persistency

«aapFunctionalClust...
Log and Trace

«aapAPI,aapPortInterface»
SynchronizedTimeBaseConsumer

+ GetCurrentTime()
+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapFunctionalClust...
Execution Management

daemon-based

«aapFunctionalCluster»
Adaptive Intrusion Detection System

Managerdaemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.32: Users of Time Synchronization interfaces

Interface Requiring functional clusters

Adaptive Intrusion Detection System Manager (see
Section 9.5.3)

Execution Management (see Section 9.2.1)

Log and Trace (see Section 9.2.3)

SynchronizedTimeBaseConsumer

Persistency (see Section 9.4.1)

Table 9.11: Interfaces provided by Time Synchronization to other Functional Clusters

64 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.3.3.3 Required interfaces

Operating
System

«aapInternal»
Raw Socket API

«aapFunctionalCluster»
Time Synchronizationdaemon-based

«aapAPI,aapNativeInterf...
Log and Trace::Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapAPI,aapPortInterface»
Persistency::KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapFunctionalClust...
Persistency

«aapFunctionalClust...
Log and Trace

«use»«use» «use»

Figure 9.33: Interfaces required by Time Synchronization

Interface Purpose

n/a Time Synchronization should use this interface to
persist the last received timestamp to enable a faster
startup.

ExecutionClient Time Synchronization shall use this interface to
report the state of its daemon process.

KeyValueStorage Time Synchronization should use this interface to
persist the last received timestamp to enable a faster
startup.

Logger Time Synchronization shall use this interface to log
standardized messages.

Manifest Accessor Time Synchronization shall use this interface to read
information about TimeBaseResources as well as their
providers and consumers from the Manifests.

Raw Socket API Time Synchronization should use this interface to
send and receive raw ethernet packets as required by the
time synchronization protocol.

SupervisedEntity Time Synchronization should use this interface to
enable supervision of its daemon process by Platform
Health Management

Table 9.12: Interfaces required by Time Synchronization

65 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.4 Storage

Persistency

Figure 9.34: Overview of Storage and its building blocks

9.4.1 Persistency

Name: Persistency

Short name: per

Category: Storage

Daemon-based: No
Responsibili-
ties:

Persistency provides functionality to store and retrieve information to/from
non-volatile storage of a Machine.

Persistent data is always private to one Process and is persisted across boot
and ignition cycles. There is no mechanism available to share data between
different Processes using Persistency to prevent a second path of data
exchange besides Communication Management. However, Persistency
supports concurrent access from multiple threads of the same application
running in the context of the same Process.

Persistency offers integrity of the stored data and provides error detection
and correction schemes. Persistency also offers confidentiality of the stored
data using encryption.

Persistency provides statistics, for example, the number of used resources.

9.4.1.1 Defined interfaces

The interfaces of Persistency are categorized into interfaces for file access (see
Section 9.4.1.1.1), interfaces for a key-value-based data access (see Section 9.4.1.1.2)
and interfaces for general management of persistent data (see Section 9.4.1.1.3).

9.4.1.1.1 Interfaces for file storage

Persistency provides read and write access to plain files by means of a FileStor-
age (cf. Figure 9.35). A FileStorage has to be opened using OpenFileStorage. A
FileStorage then provides access to several files using their name.

66 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Persistency

«aapAPI,aapPortInterface»
Persistency::FileStorage

+ DeleteFile()
+ FileExists()
+ GetAllFileNames()
+ GetCurrentFileSize()
+ GetFileInfo()
+ OpenFileReadOnly(): ReadAccessor
+ OpenFileReadWrite(): ReadWriteAccessor
+ OpenFileWriteOnly(): ReadWriteAccessor
+ RecoverFile()
+ ResetFile()

«aapAPI,aapNativeInterface»
Persistency::ReadAccessor

+ GetByte()
+ GetChar()
+ GetPosition()
+ GetSize()
+ IsEof()
+ MovePosition()
+ PeekByte()
+ PeekChar()
+ ReadBinary()
+ ReadLine()
+ ReadText()
+ SetPosition()

«aapAPI,aapNativeInterface»
Persistency::ReadWriteAccessor

+ operator<<()
+ SetFileSize()
+ SyncToFile()
+ WriteBinary()
+ WriteText()

«aapAPI,aapNativeInterface»
Persistency

+ GetCurrentFileStorageSize()
+ OpenFileStorage(): FileStorage
+ RecoverAllFiles()
+ ResetAllFiles()

Adaptive Application

«use» «use»«use»«use»

Figure 9.35: Interfaces for file storage

Name: n/a
Technology: Native interface

Usage: Public API

Description: This interface provides functions to open and manage FileStorages.

GetCurrentFileStorageSize Returns the space in bytes currently
occupied by a FileStorage.

OpenFileStorage Opens a FileStorage.

RecoverAllFiles Recovers a FileStorage including all files.

Operations:

ResetAllFiles Resets a FileStorage including all files.

Name: FileStorage

Technology: Port interface

Generated: No
Meta-model
interface type:

PersistencyFileStorageInterface

Usage: Public API

Description: This interface provides functions to open and manage files.

DeleteFile Deletes a file from this FileStorage.

FileExists Checks if a file exists in this FileStorage.

Operations:

GetAllFileNames Returns a list of all currently available files of
this FileStorage.

5

67 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
GetCurrentFileSize Returns the space in bytes currently

occupied by the content of a file of this
FileStorage.

GetFileInfo Returns additional information on a file of
this FileStorage.

OpenFileReadOnly Opens a file of this FileStorage for reading.

OpenFileReadWrite Opens a file of this FileStorage for reading
and writing.

OpenFileWriteOnly Opens a file of this FileStorage for writing.

RecoverFile Recovers a file of this FileStorage.

ResetFile Resets a file of this FileStorage to its initial
content.

Name: ReadAccessor
Technology: Native interface

Usage: Public API

Description: This interface provides functions to read text and binary data from a file.

GetByte Returns the byte at the current position of
the file, advancing the current position.

GetChar Returns the character at the current position
of the file, advancing the current position.

GetPosition Returns the current position relative to the
beginning of the file.

GetSize Returns the current size of a file in bytes.

IsEof Checks if the current position is at end of file.

MovePosition Moves the current position in the file relative
to the origin.

PeekByte Returns the byte at the current position of
the file.

PeekChar Returns the character at the current position
of the file.

ReadBinary Reads all remaining bytes into a Vector of
Byte, starting from the current position.

ReadLine Reads a complete line of characters into a
String, advancing the current position
accordingly.

ReadText Reads all remaining characters into a String,
starting from the current position.

Operations:

SetPosition Sets the current position relative to the
beginning of the file.

68 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: ReadWriteAccessor
Extended
interface:

ReadAccessor

Technology: Native interface

Usage: Public API

Description: This interface provides functions to read and write text and binary data from / to
a file.
SetFileSize Reduces the size of the file to ’size’,

effectively removing the current content of
the file beyond this size.

SyncToFile Triggers flushing of the current file content to
the physical storage.

WriteBinary Writes binary data to the file.

WriteText Writes a string to the file.

Operations:

operator« Writes a string to the file.

9.4.1.1.2 Interfaces for key-value storage

Persistency provides read and write access to data structured as key-value pairs
by means of the KeyValueStorage API (cf. Figure 9.36). A KeyValueStorage has to be
created by calling OpenKeyValueStorage. A KeyValueStorage then provides access to
data stored for individual keys using the GetValue and SetValue operations.

«aapFunctionalCluster»
Persistency

«aapAPI,aapPortInterface»
Persistency::KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapAPI,aapNativeInterface»
Persistency

+ GetCurrentKeyValueStorageSize()
+ OpenKeyValueStorage(): KeyValueStorage
+ RecoverKeyValueStorage()
+ ResetKeyValueStorage()

Adaptive Application

«use»«use»

Figure 9.36: Interfaces for key-value-based data storage

69 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: n/a
Technology: Native interface

Usage: Public API

Description: This interface provides functions to open and manage KeyValueStorages.

GetCurrentKeyValueStorage-
Size

Returns the space in bytes currently
occupied by a KeyValueStorage.

OpenKeyValueStorage Opens a KeyValueStorage.

RecoverKeyValueStorage Recovers a KeyValueStorage.

Operations:

ResetKeyValueStorage Resets a KeyValueStorage to the initial state.

Name: KeyValueStorage

Technology: Port interface

Generated: No
Meta-model
interface type:

PersistencyKeyValueStorageInterface

Usage: Public API

Description: This interface provides functions to access values associated with keys.

DiscardPendingChanges Discards changed key-value pairs of the
KeyValueStorage an re-reads them from the
physical storage.

GetAllKeys Returns a list of all currently available keys of
this KeyValueStorage.

GetValue Returns the value assigned to a key of this
KeyValueStorage.

KeyExists Checks if a key exists in this
KeyValueStorage.

RecoverKey Recovers a single key of this
KeyValueStorage.

RemoveAllKeys Removes all keys and associated values
from this KeyValueStorage.

RemoveKey Removes a key and the associated value
from this KeyValueStorage.

ResetKey Resets a key of this KeyValueStorage to its
initial value.

SetValue Stores a key in this KeyValueStorage.

Operations:

SyncToStorage Triggers flushing of changed key-value pairs
of the KeyValueStorage to the physical
storage.

70 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.4.1.1.3 Interfaces for general persistency handling

Persistency provides operations for handling and recovery of persistent data of a
Process (cf. Figure 9.37).

«aapFunctionalCluster»
Persistency

«aapAPI,aapNativeInterface»
Persistency

+ RegisterApplicationDataUpdateCallback()
+ RegisterRecoveryReportCallback()
+ ResetPersistency()
+ UpdatePersistency()

Adaptive Application

«use»

Figure 9.37: Interfaces for general persistency handling

Name: n/a
Technology: Native interface

Usage: Public API

Description: This interface provides operations manage persistent data.

RegisterApplicationDataUp-
dateCallback

Registers an application data update
callback with Persistency.

RegisterRecoveryReportCall-
back

Register a recovery reporting callback with
Persistency.

ResetPersistency Resets all FileStorages and
KeyValueStorages by entirely removing their
content.

Operations:

UpdatePersistency Updates all FileStorages and
KeyValueStorages after a new manifest was
installed.

71 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.4.1.2 Provided interfaces

«aapFunctionalCluster»
Persistency

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapAPI,aapPortInterface»
Persistency::FileStorage

+ DeleteFile()
+ FileExists()
+ GetAllFileNames()
+ GetCurrentFileSize()
+ GetFileInfo()
+ OpenFileReadOnly(): ReadAccessor
+ OpenFileReadWrite(): ReadWriteAccessor
+ OpenFileWriteOnly(): ReadWriteAccessor
+ RecoverFile()
+ ResetFile()

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.38: Users of the FileStorage interfaces

«aapFunctionalCluster»
Persistency

«aapFunctionalClust...
Time Synchronization

daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalClust...
State Management

daemon-based

«aapFunctionalClust...
Execution Management

daemon-based

«aapAPI,aapPortInterface»
Persistency::KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapFunctionalClust...
Update and Configuration

Management

daemon-based

«use» «use»«use»«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.39: Users of the KeyValueStorage interfaces

Interface Requiring functional clusters

Diagnostic Management (see Section 9.8.1)n/a

Update and Configuration Management (see Section
9.7.1)

Diagnostic Management (see Section 9.8.1)n/a

Execution Management (see Section 9.2.1)
5

72 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
State Management (see Section 9.2.2)

Time Synchronization (see Section 9.3.3)

Update and Configuration Management (see Section
9.7.1)

Diagnostic Management (see Section 9.8.1)n/a

Update and Configuration Management (see Section
9.7.1)

Diagnostic Management (see Section 9.8.1)FileStorage

Update and Configuration Management (see Section
9.7.1)

Diagnostic Management (see Section 9.8.1)

Execution Management (see Section 9.2.1)

State Management (see Section 9.2.2)

Time Synchronization (see Section 9.3.3)

KeyValueStorage

Update and Configuration Management (see Section
9.7.1)

Diagnostic Management (see Section 9.8.1)ReadAccessor

Update and Configuration Management (see Section
9.7.1)

Diagnostic Management (see Section 9.8.1)ReadWriteAccessor

Update and Configuration Management (see Section
9.7.1)

Table 9.13: Interfaces provided by Persistency to other Functional Clusters

73 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.4.1.3 Required interfaces

«aapFunctionalCluster»
Persistency

«aapAPI,aapNativeInterf...
Cryptography::CryptoStack

«aapInternal»
Non-volati le Storage

«aapFunctionalClust...
Cryptography

daemon-based

Operating System

«aapAPI,aapNativeInterf...
Log and Trace::Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalClust...
Log and Trace

«aapAPI,aapPortInterface»
Time Synchronization::SynchronizedTimeBaseConsumer

+ GetCurrentTime()
+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapFunctionalCluster»
Time Synchronization

daemon-based

«use»
«use»

«aapRequiredPort»
«use» «use»

Figure 9.40: Interfaces required by Persistency

Interface Purpose

CryptoStack Persistency uses this interface to ensure confidentiality
and integrity of the persisted data.

Logger Persistency shall use this interface to log standardized
messages.

Manifest Accessor Persistency shall use this interface to read its
configuration information from the Manifests.

Non-volatile Storage Persistency uses this interface to access the
non-volatile storage provided by the underlying operating
system, for example, a file system.

SynchronizedTimeBaseConsumer Persistency should use this interface to determine
timestamps included in the meta-information of files, e.g.,
modification timestamp.

Table 9.14: Interfaces required by Persistency

9.5 Security

Cryptography Identity and Access Management Adaptive Intrusion Detection System Manager

Figure 9.41: Overview of Security and its building blocks

74 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.5.1 Cryptography

Name: Cryptography

Short name: crypto

Category: Security

Daemon-based: Yes
Responsibili-
ties:

Cryptography provides various cryptographic routines to ensure
confidentiality of data, to ensure integrity of data (e.g., using hashes), and
auxiliary functions for example key management and random number
generation. Cryptography is designed to support encapsulation of
security-sensitive operations and decisions in a separate component, such as a
Hardware Security Module (HSM). Additional protection of keys and key usage
can be provided by constraining keys to particular usages (e.g., decrypt-only),
or limiting the availability of keys to individual applications as reported by
Identity and Access Management.

Depending on application support, Cryptography can also be used to protect
session keys and intermediate secrets when processing cryptographic
protocols such as TLS and SecOC.

9.5.1.1 Defined interfaces

9.5.1.1.1 Common interfaces

The main entry point for using the Cryptography API are the factory functions Load-
CryptoProvider() for using cryptographic routines, LoadKeyStorageProvider() for ac-
cess to the key store, and LoadX509Provider() for X.509 certificate handling.

«aapAPI,aapNativeInterface»

+ GenerateRandomData()
+ GetSecureCounter()
+ LoadCryptoProvider()
+ LoadKeyStorageProvider()
+ LoadX509Provider()

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativeInt...
IOInterface

+ GetAllowedUsage()
+ GetCapacity()
+ GetCryptoObjectType()
+ GetObjectId()
+ GetPayloadSize()
+ GetPrimitiveId()
+ GetTypeRestriction()
+ IsObjectExportable()
+ IsObjectSession()
+ IsValid()
+ IsVolatile()
+ IsWritable()

«aapAPI,aapNativeInt...
Serial izable

+ ExportPublicly()

«aapAPI,aapNativeInt...
Volati leTrustedContainer

+ GetIOInterface()

Adaptive Application

«use» «use»«use» «use»

Figure 9.42: Common Interfaces of Cryptography

75 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: n/a
Technology: Native interface

Usage: Public API

Description: This interface provides the main entry points for using the Cryptograhy API.

GenerateRandomData Generate random data of the requested size.

GetSecureCounter Get current value of 128 bit SecureCounter
supported by the Crypto Stack.

LoadCryptoProvider Factory that creates or returns existing single
instance of a specific CryptoProvider.

LoadKeyStorageProvider Factory that creates or returns an existing
single instance of the KeyStorageProvider.

Operations:

LoadX509Provider Factory that creates or returns an existing
single instance of the X509Provider.

Name: IOInterface
Technology: Native interface

Usage: Public API

Description: Interface for saving and loading of security objects.

GetAllowedUsage Return actual allowed key/seed usage flags
defined by the key slot prototype for this
"Actor" and current content of the container.

GetCapacity Return capacity of the underlying resource.

GetCryptoObjectType Return the type of the object referenced by
this IOInterface.

GetObjectId Return an ID of an object stored to this
IOInterface.

GetPayloadSize Return size of an object payload stored in
the underlying buffer.

GetPrimitiveId Get vendor specific ID of the primitive.

GetTypeRestriction Return content type restriction.

IsObjectExportable Return the exportable attribute of an
object stored to the container.

IsObjectSession Return the session (or temporary)
attribute of an object as set.

IsValid Get whether the underlying KeySlot is valid.

IsVolatile Return volatility of the underlying buffer.

Operations:

IsWritable Get whether the underlying KeySlot is
writable.

76 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: Serializable
Technology: Native interface

Usage: Public API

Description: Serializable object interface.

Operations: ExportPublicly Serialize itself publicly.

Name: VolatileTrustedContainer
Technology: Native interface

Usage: Public API

Description: This interface is used for buffering Cryptography API objects in RAM.

Operations: GetIOInterface Retrieve the IOInterface used for
importing/exporting objects into this
container.

9.5.1.1.2 General cryptography interfaces

The CryptoProvider interface provides access to various cryptographic routines. Each
of those routines is managed by specializations of the CryptoContext interface.

77 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativeInterface»
CryptoContext

+ GetCryptoPrimitiveId()
+ IsInitial ized()
+ MyProvider()

«aapAPI,aapNativeInterface»
CryptoProvider

+ AllocVolati leContainer()
+ ConvertToAlgId()
+ ConvertToAlgName()
+ CreateAuthCipherCtx()
+ CreateDecryptorPrivateCtx()
+ CreateEncryptorPublicCtx()
+ CreateHashDigest()
+ CreateHashFunctionCtx()
+ CreateKeyAgreementPrivateCtx()
+ CreateKeyDecapsulatorPrivateCtx()
+ CreateKeyDerivationFunctionCtx()
+ CreateKeyEncapsulatorPublicCtx()
+ CreateMessageAuthCodeCtx()
+ CreateMsgRecoveryPublicCtx()
+ CreateRandomGeneratorCtx()
+ CreateSigEncodePrivateCtx()
+ CreateSignature()
+ CreateSignerPrivateCtx()
+ CreateStreamCipherCtx()
+ CreateSymmetricBlockCipherCtx()
+ CreateSymmetricKeyWrapperCtx()
+ CreateVerifierPublicCtx()
+ ExportPublicObject()
+ ExportSecuredObject()
+ GeneratePrivateKey()
+ GenerateSeed()
+ GenerateSymmetricKey()
+ GetPayloadStorageSize()
+ GetSerial izedSize()
+ ImportPublicObject()
+ ImportSecuredObject()
+ LoadObject()
+ LoadPrivateKey()
+ LoadPublicKey()
+ LoadSecretSeed()
+ LoadSymmetricKey()

Adaptive Application

«use» «use»

Figure 9.43: General Cryptography Interfaces

Name: CryptoProvider

Technology: Native interface

Usage: Public API

Description: This is a "factory" interface of all supported crypto primitives and a "trusted
environment" for internal communications between them.
AllocVolatileContainer Allocate a VolativeTrustedContainer

according to directly specified capacity.

ConvertToAlgId Convert a common name of crypto algorithm
to a correspondent vendor specific binary
algorithm ID.

Operations:

ConvertToAlgName Convert a vendor specific binary algorithm ID
to a correspondent common name of the
crypto algorithm.

5

78 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
CreateAuthCipherCtx Create a symmetric authenticated cipher

context.
CreateDecryptorPrivateCtx Create a decryption private key context.

CreateEncryptorPublicCtx Create an encryption public key context.

CreateHashDigest Construct signature object from directly
provided components of a hash digest.

CreateHashFunctionCtx Create a hash function context.

CreateKeyAgreementPrivateCtx
Create a key-agreement private key context.

CreateKeyDecapsulatorPriva-
teCtx

Create a key-decapsulator private key
context of a key encapsulation mechanism.

CreateKeyDerivationFunc-
tionCtx

Create a key derivation function context.

CreateKeyEncapsulatorPublic-
Ctx

Create a key-encapsulator public key context
of a key encapsulation mechanism.

CreateMessageAuthCodeCtx Create a symmetric message authentication
code context.

CreateMsgRecoveryPublicCtx Create a message recovery public key
context.

CreateRandomGeneratorCtx Create a random number generator context.

CreateSigEncodePrivateCtx Create a signature encoding private key
context.

CreateSignature Construct a signature object from directly
provided components of a digital
signature/MAC or authenticated encryption
(AE/AEAD).

CreateSignerPrivateCtx Create a signature private key context.

CreateStreamCipherCtx Create a symmetric stream cipher context.

CreateSymmetricBlockCi-
pherCtx

Create a symmetric block cipher context.

CreateSymmetricKeyWrap-
perCtx

Create a symmetric key-wrap algorithm
context.

CreateVerifierPublicCtx Create a signature verification public key
context.

ExportPublicObject Export publicly an object.

ExportSecuredObject Export a crypto object in a secure manner.

GeneratePrivateKey Allocate a new private key context of
correspondent type and generates the key
value randomly.

GenerateSeed Generate a random Secret Seed object of
requested algorithm.

GenerateSymmetricKey Allocate a new symmetric key object and fill
it by a new randomly generated value.

5

79 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
GetPayloadStorageSize Return minimally required capacity of a key

slot for saving of the object’s payload.

GetSerializedSize Return required buffer size for serialization of
an object in specific format.

ImportPublicObject Import publicly serialized object to a storage
location.

ImportSecuredObject Import securely serialized object to the
persistent or volatile storage.

LoadObject Load any crypto object from the IOInterface
provided.

LoadPrivateKey Load a PrivateKey from the IOInterface
provided.

LoadPublicKey Load a PublicKey from the IOInterface
provided.

LoadSecretSeed Load a SecretSeed from the IOInterface
provided.

LoadSymmetricKey Load a SymmetricKey from the IOInterface
provided.

Name: CryptoContext

Technology: Native interface

Usage: Public API

Description: A common interface of a mutable cryptographic context, i.e. that is not bound to
a single crypto object.

GetCryptoPrimitiveId Returns a CryptoPrimitiveId instance
containing instance identification.

IsInitialized Check if the crypto context is already
initialized and ready to use.

Operations:

MyProvider Get a reference to the CryptoProvider of this
context.

80 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.5.1.1.3 Cryptography context interfaces

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterface»
StreamCipherCtx

+ CountBytesInCache()
+ EstimateMaxInputSize()
+ EstimateRequiredCapacity()
+ FinishBytes()
+ GetBlockService()
+ GetTransformation()
+ IsBytewiseMode()
+ IsSeekableMode()
+ ProcessBlocks()
+ ProcessBytes()
+ Reset()
+ Seek()
+ SetKey()
+ Start()

ExtensionService

«aapAPI,aapNativeInterface»
BlockService

+ GetActualIvBitLength()
+ GetBlockSize()
+ GetIvSize()
+ IsValidIvSize()

Adaptive Application

«use» «use»

Figure 9.44: BlockService and CryptoContext Interfaces

Name: BlockService
Extended
interface:

ExtensionService

Technology: Native interface

Usage: Public API

Description: Extension meta-information service for block cipher contexts.

GetActualIvBitLength Get the actual bit-length of an initialization
vector loaded to the context.

GetBlockSize Get the block (or internal buffer) size of the
base algorithm.

GetIvSize Get default expected size of the initialization
vector or nonce.

Operations:

IsValidIvSize Verify validity of specific initialization vector
length.

Name: StreamCipherCtx

Extended
interface:

CryptoContext

5

81 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Technology: Native interface

Usage: Public API

Description: Generalized stream cipher context interface covering all modes of operation.

CountBytesInCache Count number of bytes now kept in the
context cache.

EstimateMaxInputSize Estimate maximal number of input bytes that
may be processed for filling of an output
buffer without overflow.

EstimateRequiredCapacity Estimate minimal required capacity of the
output buffer, which is enough for saving a
result of input data processing.

FinishBytes Process the final part of message (that may
be not aligned to the block-size boundary).

GetBlockService Get the BlockService instance.
GetTransformation Get the kind of transformation configured for

this context: Encrypt or Decrypt.

IsBytewiseMode Check the operation mode for the byte-wise
property.

IsSeekableMode Check if the seek operation is supported in
the current mode.

ProcessBlocks Process initial parts of message aligned to
the block-size boundary.

ProcessBytes Process a non-final part of message (that is
not aligned to the block-size boundary).

Reset Clear the crypto context.

Seek Set the position of the next byte within the
stream of the encryption/decryption gamma.

SetKey Set (deploy) a key to the stream cihper
algorithm context.

Operations:

Start Initialize the context for a new data stream
processing or generation (depending from
the primitive).

82 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterface»
DecryptorPrivateCtx

+ GetCryptoService()
+ ProcessBlock()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInterface»
EncryptorPrivateCtx

+ GetCryptoService()
+ ProcessBlock()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInterface»
SymmetricBlockCipherCtx

+ GetCryptoService()
+ GetTransformation()
+ ProcessBlock()
+ ProcessBlocks()
+ Reset()
+ SetKey()

ExtensionService

«aapAPI,aapNativeInterface»
CryptoService

+ GetBlockSize()
+ GetMaxInputSize()
+ GetMaxOutputSize()

Adaptive Application

«use» «use» «use» «use»

Figure 9.45: CryptoService and CryptoContext Interfaces

Name: CryptoService

Extended
interface:

ExtensionService

Technology: Native interface

Usage: Public API

Description: Extension meta-information service for cryptographic contexts.

GetBlockSize Get block (or internal buffer) size of the base
algorithm.

GetMaxInputSize Get maximum expected size of the input
data block.

Operations:

GetMaxOutputSize Get maximum possible size of the output
data block.

Name: EncryptorPrivateCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Asymmetric decryption private key context interface.

GetCryptoService Get the CryptoService instance.

ProcessBlock Encrypt an input block according to the
encryptor configuration.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the decryptor private
algorithm context.

83 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: DecryptorPrivateCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Asymmetric decryption private key context interface.

GetCryptoService Get the CryptoService instance.

ProcessBlock Decrypt an input block according to the
decryptor configuration.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the decryptor private
algorithm context.

Name: SymmetricBlockCipherCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Interface of a symmetric block cipher context with padding.

GetCryptoService Get the CryptoService instance.

GetTransformation Get the kind of transformation configured for
this context: Encrypt or Decrypt.

ProcessBlock Process (encrypt / decrypt) an input block
according to the configuration.

ProcessBlocks Process (encrypt / decrypt) input blocks
according to the configuration.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the symmetric
algorithm context.

84 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterface»
AuthCipherCtx

+ Check()
+ GetDigest()
+ GetDigestService()
+ GetMaxAssociatedDataSize()
+ GetTransformation()
+ ProcessConfidentialData()
+ Reset()
+ SetKey()
+ Start()
+ UpdateAssociatedData()

CryptoContext

«aapAPI,aapNativeInterface»
HashFunctionCtx

+ Finish()
+ GetDigest()
+ GetDigestService()
+ Start()
+ Update()

CryptoContext

«aapAPI,aapNativeInterface»
MessageAuthnCodeCtx

+ Check()
+ Finish()
+ GetDigest()
+ GetDigestService()
+ Reset()
+ SetKey()
+ Start()
+ Update()

Adaptive Application

BlockService

«aapAPI,aapNativeInterface»
DigestService

+ Compare()
+ GetDigestSize()
+ IsFinished()
+ IsStarted()

«use»«use» «use»«use»

Figure 9.46: DigestService and CryptoContext Interfaces

Name: DigestService

Extended
interface:

BlockService

Technology: Native interface

Usage: Public API

Description: Extension meta-information service for digest producing contexts.

Compare Compare the calculated digest against an
expected value.

GetDigestSize Get the output digest size.

IsFinished Check current status of the stream
processing: finished or not.

Operations:

IsStarted Check current status of the stream
processing: started or not.

Name: AuthCipherCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Generalized authenticated cipher context interface.

Operations: Check Check the calculated digest against an
expected signature object.

5

85 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
GetDigest Retrieve the calculated digest.

GetDigestService Get the DigestService instance.

GetMaxAssociatedDataSize Get maximal supported size of associated
public data.

GetTransformation Get the kind of transformation configured for
this context: Encrypt or Decrypt.

ProcessConfidentialData Process confidential data and return the
result.

Reset Clear the crypto context.

SetKey Set (deploy) a key to the authenticated
cipher symmetric algorithm context.

Start Initialize the context for a new data
processing or generation (depending from
the primitive).

UpdateAssociatedData Update the digest calculation by the
specified data.

Name: HashFunctionCtx
Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Hash function interface.

Finish Finish the digest calculation and optionally
produce the "signature" object.

GetDigest Get requested part of calculated digest.

GetDigestService Get the DigestService instance.

Start Initialize the context for a new data stream
processing or generation (depending on the
primitive).

Operations:

Update Update the digest calculation context by a
new part of the message.

Name: MessageAuthnCodeCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API
5

86 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Description: Keyed message authentication code context interface definition (MAC/HMAC).

Check Check the calculated digest against an
expected "signature" object.

Finish Finish the digest calculation and optionally
produce the "signature" object.

GetDigest Get requested part of calculated digest to
existing memory buffer.

GetDigestService Get the DigestService instance.

Reset Clear the crypto context.

SetKey Set (deploy) a key to the message authn
code algorithm context.

Start Initialize the context for a new data stream
processing or generation (depending from
the primitive).

Operations:

Update Update the digest calculation context by a
new part of the message.

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterf...
KeyDecapsulatorPrivateCtx

+ DecapsulateKey()
+ DecapsulateSeed()
+ GetEncapsulatedSize()
+ GetExtensionService()
+ GetKekEntropy()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInterf...
KeyEncapsulatorPublicCtx

+ AddKeyingData()
+ Encapsulate()
+ GetEncapsulatedSize()
+ GetExtensionService()
+ GetKekEntropy()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInt...
RandomGeneratorCtx

+ AddEntropy()
+ Generate()
+ GetExtensionService()
+ Seed()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInterface»
SymmetricKeyWrapperCtx

+ CalculateWrappedKeySize()
+ GetExtensionService()
+ GetMaxTargetKeyLength()
+ GetTargetKeyGranularity()
+ Reset()
+ SetKey()
+ UnwrapConcreteKey()
+ UnwrapKey()
+ UnwrapSeed()
+ WrapKeyMaterial()

«aapAPI,aapNativeInterf...
ExtensionService

+ GetActualKeyBitLength()
+ GetActualKeyCOUID()
+ GetAllowedUsage()
+ GetMaxKeyBitLength()
+ GetMinKeyBitLength()
+ IsKeyAvailable()
+ IsKeyBitLengthSupported()

Adaptive Application

«use»«use»«use» «use» «use»

Figure 9.47: ExtensionService and CryptoContext Interfaces (1 of 2)

Name: ExtensionService
Technology: Native interface

Usage: Public API

Description: Basic meta-information service for all contexts.

Operations: GetActualKeyBitLength Get actual bit-length of a key loaded to the
context.

5

87 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
GetActualKeyCOUID Get the CryptoObjectUid of the key deployed

to the context this extension service is
attached to.

GetAllowedUsage Get allowed usages of this context
(according to the key object attributes loaded
to this context).

GetMaxKeyBitLength Get maximum supported key length in bits.

GetMinKeyBitLength Get minimal supported key length in bits.

IsKeyAvailable Check if a key has been set to this context.

IsKeyBitLengthSupported Verify if the specific key length is supported
by the context.

Name: KeyEncapsulatorPublicCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Asymmetric key encapsulation mechanism public key context interface.

AddKeyingData Add the content to be encapsulated
(payload) according to RFC 5990 ("keying
data").

Encapsulate Encapsulate the last set keying-data.

GetEncapsulatedSize Get fixed size of the encapsulated data
block.

GetExtensionService Get the ExtensionService instance.
GetKekEntropy Get entropy (bit-length) of the key encryption

key (KEK) material.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the key encapsulator
public algorithm context.

Name: KeyDecapsulatorPrivateCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Asymmetric key encapsulation mechanism private key context interface.
5

88 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
DecapsulateKey Decapsulate the keying data to be used for

subsequent processing (e.g. secure
communication).

DecapsulateSeed Decapsulate key material.

GetEncapsulatedSize Get fixed size of the encapsulated data
block.

GetExtensionService Get the ExtensionService instance.
GetKekEntropy Get entropy (bit-length) of the key encryption

key (KEK) material.

Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the key decapsulator
private algorithm context.

Name: SymmetricKeyWrapperCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Context of a symmetric key wrap algorithm (for AES it should be compatible with
RFC3394 or RFC5649).

CalculateWrappedKeySize Calculate size of the wrapped key in bytes
from original key length in bits.

GetExtensionService Get the ExtensionService instance.
GetMaxTargetKeyLength Get maximum length of the target key

supported by the implementation.

GetTargetKeyGranularity Get expected granularity of the target key
(block size).

Reset Clear the crypto context.

SetKey Set (deploy) a key to the symmetric key
wrapper algorithm context.

UnwrapConcreteKey Execute the "key unwrap" operation for the
provided BLOB and produce a key object of
the expected type.

UnwrapKey Execute the "key unwrap" operation for the
provided BLOB and produce a key object.

UnwrapSeed Execute the "key unwrap" operation for the
provided BLOB and produce a SecretSeed
object.

Operations:

WrapKeyMaterial Execute the "key wrap" operation for the
provided key material.

89 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: RandomGeneratorCtx
Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Interface of a random number generator context.

AddEntropy Update the internal state of the RNG by
mixing it with the provided additional entropy.

Generate Return an allocated buffer with a generated
random sequence of the requested size.

GetExtensionService Get the ExtensionService instance.
Seed Set the internal state of the RNG using the

provided seed.

Operations:

SetKey Set the internal state of the RNG using the
provided seed.

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterf...
KeyAgreementPrivateCtx

+ AgreeKey()
+ AgreeSeed()
+ GetExtensionService()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInterface»
KeyDerivationFunctionCtx

+ AddSalt()
+ AddSecretSalt()
+ ConfigIterations()
+ DeriveKey()
+ DeriveSeed()
+ GetExtensionService()
+ GetKeyIdSize()
+ GetTargetAlgId()
+ GetTargetAllowedUsage()
+ GetTargetKeyBitLength()
+ Init()
+ Reset()
+ SetSourceKeyMaterial()

CryptoContext

«aapAPI,aapNativeInt...
MsgRecoveryPublicCtx

+ DecodeAndVerify()
+ GetExtensionService()
+ GetMaxInputSize()
+ GetMaxOutputSize()
+ Reset()
+ SetKey()

CryptoContext

«aapAPI,aapNativeInt...
SigEncodePrivateCtx

+ GetExtensionService()
+ GetMaxInputSize()
+ GetMaxOutputSize()
+ Reset()
+ SetKey()
+ SignAndEncode()

«aapAPI,aapNativeInterf...
ExtensionService

+ GetActualKeyBitLength()
+ GetActualKeyCOUID()
+ GetAllowedUsage()
+ GetMaxKeyBitLength()
+ GetMinKeyBitLength()
+ IsKeyAvailable()
+ IsKeyBitLengthSupported()

Adaptive Application

«use» «use»«use»«use» «use»

Figure 9.48: ExtensionService and CryptoContext Interfaces (2 of 2)

Name: KeyDerivationFunctionCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Key derivation function interface.
5

90 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
AddSalt Add a salt value stored in a non-secret

memory region.

AddSecretSalt Add a secret salt value stored in a
SecretSeed object.

ConfigIterations Configure the number of iterations that will
be applied by default.

DeriveKey Derive a symmetric key from the provided
key material and provided context
configuration.

DeriveSeed Derive key material (secret seed) from the
provided "master" key material and the
provided context configuration.

GetExtensionService Get the ExtensionService instance.
GetKeyIdSize Get the fixed size of the target key ID

required by diversification algorithm.

GetTargetAlgId Get the symmetric algorithm ID of target key.

GetTargetAllowedUsage Get allowed key usage of target key.

GetTargetKeyBitLength Get the bit-length of target (diversified) keys.

Init Initialize this context by setting at least the
target key ID.

Reset Clear the crypto context.

Operations:

SetSourceKeyMaterial Set (deploy) key-material to the key
derivation algorithm context.

Name: KeyAgreementPrivateCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Key agreement private key context interface (Diffie Hellman or conceptually
similar).

AgreeKey Produce a common symmetric key via
execution of the key-agreement algorithm
between this private key.

AgreeSeed Produce a common secret seed via
execution of the key-agreement algorithm
between this private key.

GetExtensionService Get the ExtensionService instance.
Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the key agreement
private algorithm context.

91 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: MsgRecoveryPublicCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: A public key context for asymmetric recovery of a short message and its
signature verification (RSA-like).

DecodeAndVerify Process (encrypt / decrypt) an input block
according to the cryptor configuration.

GetExtensionService Get the ExtensionService instance.
GetMaxInputSize Get maximum expected size of the input

data block.
GetMaxOutputSize Get maximum possible size of the output

data block.
Reset Clear the crypto context.

Operations:

SetKey Set (deploy) a key to the msg recovery public
algorithm context.

Name: SigEncodePrivateCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: A private key context for asymmetric signature calculation and short message
encoding (RSA-like).

GetExtensionService Get the ExtensionService instance.
GetMaxInputSize Get maximum expected size of the input

data block.
GetMaxOutputSize Get maximum possible size of the output

data block.
Reset Clear the crypto context.

SetKey Set (deploy) a key to the sig encode private
algorithm context.

Operations:

SignAndEncode Process (encrypt / decrypt) an input block
according to the cryptor configuration.

92 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Cryptography

daemon-based

CryptoContext

«aapAPI,aapNativeInterface»
SignerPrivateCtx

+ GetSignatureService()
+ Reset()
+ SetKey()
+ Sign()
+ SignPreHashed()

CryptoContext

«aapAPI,aapNativeInterface»
VerifierPublicCtx

+ GetSignatureService()
+ Verify()
+ VerifyPrehashed()

ExtensionService

«aapAPI,aapNativeInterface»
SignatureService

+ GetRequiredHashAlgId()
+ GetRequiredHashSize()
+ GetSignatureSize()

Adaptive Application

«use»«use» «use»

Figure 9.49: SignatureService and CryptoContext Interfaces

Name: SignatureService

Extended
interface:

ExtensionService

Technology: Native interface

Usage: Public API

Description: Extension meta-information service for signature contexts.

GetRequiredHashAlgId Get an ID of hash algorithm required by
current signature algorithm.

GetRequiredHashSize Get the hash size required by current
signature algorithm.

Operations:

GetSignatureSize Get size of the signature value produced and
required by the current algorithm.

Name: SignerPrivateCtx

Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Signature private key context interface.

GetSignatureService Get the SignatureService instance.

Reset Clear the crypto context.

SetKey Set (deploy) a key to the signer private
algorithm context.

Operations:

Sign Sign a directly provided hash or message
value.

5

93 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
SignPreHashed Sign a provided digest value stored in the

hash-function context.

Name: VerifierPublicCtx
Extended
interface:

CryptoContext

Technology: Native interface

Usage: Public API

Description: Signature verification public key context interface.

GetSignatureService Get the SignatureService instance.

Verify Verify signature BLOB by a directly provided
hash or message value.

Operations:

VerifyPrehashed Verify a signature by a digest value stored in
the hash-function context.

9.5.1.1.4 Cryptographic object interfaces

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativ...
CryptoPrimitiveId

+ GetPrimitiveId()
+ GetPrimitiveName()

RestrictedUseObject

«aapAPI,aapNativ...
PrivateKey

+ GetPublicKey()

RestrictedUseObject
Serializable

«aapAPI,aapNativ...
PublicKey

+ CheckKey()
+ HashPublicKey()

RestrictedUseObject

«aapAPI,aapNat...
SecretSeed

+ Clone()
+ Jump()
+ JumpFrom()
+ Next()
+ operator ^=()

CryptoObject
Serial izable

«aapAPI,aapNativeInt...
Signature

+ GetHashAlgId()
+ GetRequiredHashSize()

RestrictedUseObject

«aapAPI,aapNat...
SymmetricKey

Adaptive Application

«use»«use» «use» «use»«use» «use»

Figure 9.50: Cryptographic Object Interfaces

94 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapAPI,aapNativeInterf...
CryptoObject

«aapAPI,aapNativeInterf...
RestrictedUseObject

«aapAPI,aapNativeInterf...
PrivateKey

«aapAPI,aapNativeInterf...
PublicKey

«aapAPI,aapNativeInterf...
SecretSeed

«aapAPI,aapNativeInterf...
Signature

«aapAPI,aapNativeInterface»
Serial izable

«aapAPI,aapNativeInterf...
SymmetricKey

Figure 9.51: Taxonomy of Cryptographic Object Interfaces

Name: CryptoObject

Technology: Native interface

Usage: Public API

Description: A common interface for all cryptographic objects recognizable by the
CryptoProvider.

GetCryptoPrimitiveId Return the CryptoPrimitiveId of this object.

GetObjectId Return the object’s COIdentifier, which
includes the object’s type and UID.

GetPayloadSize Return actual size of the object’s payload.

HasDependence Return the COIdentifier of the object that this
object depends on.

IsExportable Get the exportability attribute of the
crypto object.

IsSession Return the session (or temporary)
attribute of the object.

Operations:

Save Save itself to provided IOInterface

Name: RestrictedUseObject

Extended
interface:

CryptoObject

Technology: Native interface

Usage: Public API

Description: A common interface for all objects supporting the usage restriction.

Operations: GetAllowedUsage Get allowed usages of this object.

95 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: CryptoPrimitiveId

Technology: Native interface

Usage: Public API

Description: Common interface for identification of all CryptoPrimitives and their keys &
parameters.

GetPrimitiveId Get vendor specific ID of the primitive.Operations:

GetPrimitiveName Get a unified name of the primitive.

Name: SecretSeed
Extended
interface:

RestrictedUseObject

Technology: Native interface

Usage: Public API

Description: Secret seed object contains a raw bit sequence of specific length (without any
filtering of allowed/disallowed values)!

Clone Clone this object to new session object.

Jump Set value of this seed object as a "jump"
from it’s current state to specified number of
steps, according to "counting" expression
defined by a cryptographic algorithm
associated with this object.

JumpFrom et value of this seed object as a "jump" from
an initial state to specified number of steps,
according to "counting" expression defined
by a cryptographic algorithm associated with
this object.

Next Set next value of the secret seed according
to "counting" expression defined by a
cryptographic algorithm associated with this
object.

Operations:

operator ˆ= XOR value of this seed object with another
one and save result to this object. If seed
sizes in this object and in the source
argument are different then only
correspondent number of leading bytes in
this seed object shall be updated.

Name: SymmetricKey

Extended
interface:

RestrictedUseObject

Technology: Native interface
5

96 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Usage: Public API

Description: Symmetric Key interface.

Name: PublicKey

Extended
interface:

RestrictedUseObject Serializable

Technology: Native interface

Usage: Public API

Description: General asymmetric public key interface.

CheckKey Check the key for its correctness.Operations:

HashPublicKey Calculate hash of the public key value.

Name: PrivateKey

Extended
interface:

RestrictedUseObject

Technology: Native interface

Usage: Public API

Description: Generalized asymmetric private key interface.

Operations: GetPublicKey Get the public key correspondent to this
private key.

Name: Signature

Extended
interface:

CryptoObject Serializable

Technology: Native interface

Usage: Public API

Description: This interface is applicable for keeping the Digital Signature, Hash Digest,
(Hash-based) Message Authentication Code (MAC/HMAC).

GetHashAlgId Get an ID of hash algorithm used for this
signature object production.

Operations:

GetRequiredHashSize Get the hash size required by current
signature algorithm.

97 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.5.1.1.5 Cryptographic key handling interfaces

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativeInterface»
KeyStorageProvider

+ BeginTransaction()
+ CommitTransaction()
+ GetRegisteredObserver()
+ LoadKeySlot()
+ RegisterObserver()
+ RollbackTransaction()
+ UnsubscribeObserver()

«aapAPI,aapPortInterface»
KeySlot

+ Clear()
+ GetContentProps()
+ GetPrototypedProps()
+ IsEmpty()
+ MyProvider()
+ Open()
+ SaveCopy()

«aapAPI,aapNativeInterface»
UpdatesObserver

«aapCallbackMethod»
+ OnUpdate()

Adaptive Application

«use»
«use»

«aapRequiredPort»

«use»

Figure 9.52: Cryptographic Key Handling Interfaces

Name: KeyStorageProvider

Technology: Native interface

Usage: Public API

Description: Key Storage Provider interface.

BeginTransaction Begin new transaction for key slots update.

CommitTransaction Commit changes of the transaction to
storage.

GetRegisteredObserver Get the currently registered
UpdatesObserver for key slots.

LoadKeySlot Load a key slot.

RegisterObserver Register an UpdatesObserver for key slots.

RollbackTransaction Rollback all changes executed during the
transaction in storage.

Operations:

UnsubscribeObserver Unregister an UpdatesObserver from key
slots.

Name: KeySlot

Technology: Port interface

Generated: No
Meta-model
interface type:

CryptoKeySlot

Usage: Public API
5

98 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Description: Key slot interface enables access to a physical key-slot.

Clear Clear the content of this key slot.

GetContentProps Get an actual properties of a content in the
key slot.

GetPrototypedProps Get the prototyped properties of the key slot.

IsEmpty Check the slot for emptiness.

MyProvider Retrieve the instance of the CryptoProvider
that owns this KeySlot.

Open Open this key slot and return an IOInterface
to its content.

Operations:

SaveCopy Save the content of a provided source
IOInterface to this key slot.

Name: UpdatesObserver

Technology: Native interface

Usage: Public API

Description: Interface for observing updates on key slots.

Operations: OnUpdate This method is called if the content of the
specified slots was changed.

99 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.5.1.1.6 X.509 certificate handling interfaces

«aapFunctionalCluster»
Cryptography

daemon-based

«aapAPI,aapNativeInterface»
X509CustomExtensionsParser

+ OnBitString()
+ OnBool()
+ OnGeneralizedTime()
+ OnIa5String()
+ OnInteger()
+ OnNull()
+ OnOctetString()
+ OnOid()
+ OnParsingEnd()
+ OnPrintableString()
+ OnSequenceEnd()
+ OnSequenceStart()
+ OnSetEnd()
+ OnSetStart()
+ OnUtcTime()
+ OnUtf8String()

«aapAPI,aapNativeInterface»
X509Provider

+ BuildDn()
+ CheckCertStatus()
+ CheckCertStatusOnline()
+ CleanupVolati leStorage()
+ CountCertsInChain()
+ CreateCertSignRequest()
+ CreateEmptyDn()
+ CreateEmptyExtensions()
+ CreateOcspRequest()
+ DecodeDn()
+ FindCertByDn()
+ FindCertByKeyIds()
+ FindCertBySn()
+ Import()
+ ImportCrl()
+ LoadCertificate()
+ ParseCert()
+ ParseCertChain()
+ ParseCertSignRequest()
+ ParseCustomCertExtensions()
+ ParseOcspResponse()
+ Remove()
+ SendRequest()
+ SetAsRootOfTrust()
+ SetPendingStatus()
+ UpdateCrlOnline()
+ VerifyCert()
+ VerifyCertChain()

Adaptive Application

«use»

«use»

Figure 9.53: X.509 Certificate Handling Interfaces

Name: X509Provider
Technology: Native interface

Usage: Public API

Description: X.509 Provider interface supporting two internal storage types: volatile (or
session) and persistent.

BuildDn Create completed X.500 Distinguished
Name structure from the provided string
representation.

CheckCertStatus Check certificate status by directly provided
OCSP response.

CheckCertStatusOnline Check certificate status via On-line
Certificate Status Protocol (OCSP).

Operations:

CleanupVolatileStorage Cleanup the volatile certificates storage.
5

100 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
CountCertsInChain Count number of certificates in a serialized

certificate chain represented by a single
BLOB.

CreateCertSignRequest Create certification request for a private key
loaded to the context.

CreateEmptyDn Create an empty X.500 Distinguished Name
(DN) structure.

CreateEmptyExtensions Create an empty X.509 Extensions structure.

CreateOcspRequest Create OCSP request for specified
certificate(s).

DecodeDn Decode X.500 Distinguished Name structure
from the provided serialized format.

FindCertByDn Find a certificate by the subject and issuer
Distinguished Names (DN).

FindCertByKeyIds Find a certificate by its SKID & AKID.

FindCertBySn Find a certificate by its serial number and
issue DN.

Import Import the certificate to volatile or persistent
storage.

ImportCrl Import Certificate Revocation List (CRL) or
Delta CRL from a memory BLOB.

LoadCertificate Load a certificate from the persistent
certificate storage.

ParseCert Parse a serialized representation of the
certificate and create its instance.

ParseCertChain Parse a serialized representation of the
certificate chain and create their instances.

ParseCertSignRequest Parse a certificate signing request (CSR)
provided by the user.

ParseCustomCertExtensions Parse the custom X.509 extensions.
ParseOcspResponse Parse serialized OCSP response and create

correspondent interface instance.

Remove Remove specified certificate from the
storage (volatile or persistent) and destroy it.

SendRequest Send prepared certificate request to CA and
save it to volatile or persistent storage.

SetAsRootOfTrust Set specified CA certificate as a "root of
trust".

SetPendingStatus Set the "pending" status associated to the
CSR that means that the CSR already sent
to CA.

UpdateCrlOnline Get Certificate Revocation List (CRL) or
Delta CRL via on-line connection.

VerifyCert Verify status of the provided certificate by
locally stored CA certificates and CRLs only.

5

101 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
VerifyCertChain Verify status of the provided certification

chain by locally stored CA certificates and
CRLs only.

Name: X509CustomExtensionsParser
Technology: Native interface

Usage: Public API

Description: X.509 custom extensions parser. This callback interface is to be implemented
by an application.

OnBitString Called when a bit string is encountered.

OnBool Called when a boolean is encountered.
OnGeneralizedTime Called when a generalized time is

encountered.
OnIa5String Called when an IA5 string is encountered.

OnInteger Called when an integer is encountered.

OnNull Called when a NULL is encountered.
OnOctetString Called when an octet string is encountered.

OnOid Called when an oid is encountered.
OnParsingEnd Called when the parsing is completed.

OnPrintableString Called when a printable string is
encountered.

OnSequenceEnd Called when a sequence ends.

OnSequenceStart Called when a sequence starts.

OnSetEnd Called when a set ends.
OnSetStart Called when a set starts.
OnUtcTime Called when a UTC time is encountered.

Operations:

OnUtf8String Called when an UTF8 string is encountered.

102 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Cryptography

daemon-based

BasicCertInfo

«aapAPI,aapNativeInterface»
CertSignRequest

+ ExportASN1CertSignRequest()
+ GetSignature()
+ Verify()
+ Version()

BasicCertInfo

«aapAPI,aap...
Certificate

+ AuthorityKeyId()
+ EndTime()
+ GetFingerprint()
+ GetStatus()
+ IsRoot()
+ IssuerDn()
+ SerialNumber()
+ StartTime()
+ SubjectKeyId()
+ VerifyMe()
+ X509Version()

X509Object

«aapAPI,...
OcspRequest

+ Version()

X509Object

«aapAPI,...
OcspResponse

+ Version()

X509Object

«aapAPI,aa...
X509DN

+ GetAttribute()
+ GetDnString()
+ SetAttribute()
+ SetDn()

X509Object

«aapAPI,aa...
X509Extensions

+ Count()

Serializable

«aapAPI,aapNativeInt...
X509PublicKeyInfo

+ GetAlgorithmId()
+ GetPublicKey()
+ GetRequiredHashAlgId()
+ GetRequiredHashSize()
+ GetSignatureSize()
+ IsSameKey()

Adaptive Application

«use»«use» «use»«use» «use» «use»«use»

Figure 9.54: X.509 Certificate Object Interfaces

«aapAPI,aapNativeI...
X509Object

«aapAPI,aapNativeI...
BasicCertInfo

«aapAPI,aapNativeI...
CertSignRequest

«aapAPI,aapPortInt...
Certificate

«aapAPI,aapNativeI...
OcspRequest

«aapAPI,aapNativeI...
OcspResponse

«aapAPI,aapNativeI...
X509DN

«aapAPI,aapNativeI...
X509Extensions

«aapAPI,aapNativeI...
Serial izable

«aapAPI,aapNativeI...
X509PublicKeyInfo

Figure 9.55: Taxonomy of X.509 Certificate Object Interfaces

Name: OcspRequest

Extended
interface:

X509Object

Technology: Native interface

Usage: Public API

Description: On-line Certificate Status Protocol Request.
5

103 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Operations: Version Get version of the OCSP request format.

Name: OcspResponse

Extended
interface:

X509Object

Technology: Native interface

Usage: Public API

Description: On-line Certificate Status Protocol Response.

Operations: Version Get version of the OCSP response format.

Name: Certificate
Extended
interface:

BasicCertInfo

Technology: Port interface

Generated: No
Meta-model
interface type:

CryptoCertificate

Usage: Public API

Description: X.509 Certificate interface.

AuthorityKeyId Get the DER encoded
AuthorityKeyIdentifier of this
certificate.

EndTime Get the NotAfter of the certificate.
GetFingerprint Calculate a fingerprint from the whole

certificate.
GetStatus Return last verification status of the

certificate.
IsRoot Check whether this certificate belongs to a

root CA.
IssuerDn Get the issuer certificate DN.
SerialNumber Get the serial number of this certificate.
StartTime Get the NotBefore of the certificate.
SubjectKeyId Get the DER encoded

SubjectKeyIdentifier of this certificate.

VerifyMe Verify signature of the certificate.

Operations:

X509Version Get the X.509 version of this certificate
object.

104 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: CertSignRequest

Extended
interface:

BasicCertInfo

Technology: Native interface

Usage: Public API

Description: Certificate Signing Request (CSR) object interface.

ExportASN1CertSignRequest Export this certificate signing request in DER
encoded ASN1 format.

GetSignature Return signature object of the request.

Verify Verifies self-signed signature of the
certificate request.

Operations:

Version Return format version of the certificate
request.

Name: X509Extensions
Extended
interface:

X509Object

Technology: Native interface

Usage: Public API

Description: Interface of X.509 Extensions.

Operations: Count Count number of elements in the sequence.

Name: X509DN
Extended
interface:

X509Object

Technology: Native interface

Usage: Public API

Description: Interface of X.509 Distinguished Name (DN).

GetAttribute Get a DN attribute.
GetDnString Get the whole Distinguished Name (DN) as a

single string.

SetAttribute Set a DN attribute.

Operations:

SetDn Set whole Distinguished Name (DN) from a
single string.

105 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: X509PublicKeyInfo

Extended
interface:

Serializable

Technology: Native interface

Usage: Public API

Description: X.509 Public Key Information interface.

GetAlgorithmId Get the CryptoPrimitiveId instance of this
class.

GetPublicKey Get public key object of the subject.

GetRequiredHashAlgId Get an ID of hash algorithm required by
current signature algorithm.

GetRequiredHashSize Get the hash size required by current
signature algorithm.

GetSignatureSize Get size of the signature value produced and
required by the current algorithm.

Operations:

IsSameKey Verify the sameness of the provided and kept
public keys.

9.5.1.2 Provided interfaces

«aapAPI,aapNativeInterface»
CryptoStack

«aapFunctionalCluster»
Cryptography

daemon-based

«aapFunctionalCluster»
Persistency

«aapFunctionalClust...
Communication

Management

UCM Subordinate

«use» «use»«use»

Figure 9.56: Users of the Cryptography interfaces

Interface Requiring functional clusters

Communication Management (see Section 9.3.1)

Persistency (see Section 9.4.1)

CryptoStack

Update and Configuration Management (see Section
9.7.1)

Table 9.15: Interfaces provided by Cryptography to other Functional Clusters

106 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.5.1.3 Required interfaces

«aapFunctionalCluster»
Cryptography

daemon-based

«aapFunctionalCluster»
Identity and Access

Management

«aapInternal,aapNativeInterf...
PolicyDecisionPoint

+ CheckAccess()

«aapFunctionalClust...
Log and Trace

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapAPI,aapPortInterf...
SupervisedEntity

+ ReportCheckpoint()

«aapFunctionalCl...
Platform Health

Management
daemon-based

«use» «use»
«aapRequiredPort»

«use»

Figure 9.57: Interfaces required by Cryptography

Interface Purpose
EventReporter This interface should be used to e.g., report attempts to

change root certificates.

Logger Cryptography shall use this interface to log standardized
messages.

Manifest Accessor Cryptography shall use this interface to read its
configuration information from the Manifests.

PolicyDecisionPoint Cryptography shall use this interface to check access to
certificates.

SupervisedEntity Cryptography should use this interface for supervision
of its daemon process(es).

UpdatesObserver Cryptography uses this interface to notify when a key
has been updated.

X509CustomExtensionsParser Cryptography uses this interface for propagating parser
events.

Table 9.16: Interfaces required by Cryptography

9.5.2 Identity and Access Management

Name: Identity and Access Management

Short name: iam
5

107 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Category: Security

Daemon-based: No
Responsibili-
ties:

Identity and Access Management checks access to resources of the
AUTOSAR Adaptive Platform, for example, on Service Interfaces and
Functional Clusters. Identity and Access Management hereby
introduces access control for Adaptive Applications and protection
against privilege escalation in case of attacks. In addition, Identity and
Access Management enables integrators to verify access on resources
requested by Adaptive Applications in advance during deployment.

9.5.2.1 Defined interfaces

«aapFunctionalCluster»
Identity and Access Management

«aapInternal,aapNativeInterface»
PolicyDecisionPoint

+ CheckAccess()

Figure 9.58: Interfaces of Identity and Access Management

Name: PolicyDecisionPoint

Technology: Native interface

Usage: Internal

Description: This interface serves Policy Enforcement Points with authorization decisions.

Operations: CheckAccess Evaluates an access request against the
authorization policies (Grant) before issuing
an access decision.

108 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.5.2.2 Provided interfaces

«aapFunctionalCluster»
Identity and Access Management

«aapInternal,aapNativeInterface»
PolicyDecisionPoint

+ CheckAccess()

«aapFunctionalClust...
Cryptography

daemon-based

«aapFunctionalClust...
Communication

Management

«aapFunctionalClust...
Diagnostic Management

daemon-based

«use» «use»«use»

Figure 9.59: Users of the Identity and Access Management interfaces

Interface Requiring functional clusters

Communication Management (see Section 9.3.1)

Cryptography (see Section 9.5.1)

PolicyDecisionPoint

Diagnostic Management (see Section 9.8.1)

Table 9.17: Interfaces provided by Identity and Access Management to other Functional
Clusters

9.5.2.3 Required interfaces

«aapFunctionalCluster»
Identity and Access Management

«aapInternal,aapNativeI...
Manifest Accessor

«aapFunctionalClust...
Registry

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalClust...
Log and Trace

«use» «use»

Figure 9.60: Interfaces required by Identity and Access Management

109 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Interface Purpose
EventReporter This interface should be used to e.g., report denied

access.
Logger Identity and Access Management shall use this

interface to log standardized messages.

Manifest Accessor Identity and Access Management should use this
interface to access Grant information modeled in the
Manifests.

Table 9.18: Interfaces required by Identity and Access Management

9.5.3 Adaptive Intrusion Detection System Manager

Name: Adaptive Intrusion Detection System Manager

Short name: idsm
Category: Security

Daemon-based: Yes
Responsibili-
ties:

Adaptive Intrusion Detection System Manager provides
functionality to report security events.

9.5.3.1 Defined interfaces

«aapFunctionalCluster»
Adaptive Intrusion Detection System Manager

daemon-based

«aapPortInterface,aapAPI»
EventReporter

+ ReportEvent()

«aapNativeInterface,aapAPI»

+ RegisterTimestampProvider()

Adaptive Application

«use» «use»

Figure 9.61: Interfaces of Adaptive Intrusion Detection System Manager

Name: EventReporter

Technology: Port interface

Generated: No
Meta-model
interface type:

SecurityEventDefinition

5

110 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Usage: Public API

Description: This interface is used to report security events to the Adaptive Intrustion
Detection System Manager.

Operations: ReportEvent Create a new security event at the
Adaptive Intrustion Detection
System Manager.

Name: n/a
Technology: Native interface

Usage: Public API

Description: Provides functionality to register a timestamp provider with the Adaptive
Intrustion Detection System Manager.

Operations: RegisterTimestampProvider Register a callback for providing timestamps
to the Adaptive Intrustion
Detection System Manager.

9.5.3.2 Provided interfaces

«aapFunctionalCluster»
Adaptive Intrusion Detection System Manager

daemon-based

«aapPortInterface,aapAPI»
EventReporter

+ ReportEvent()

«aapFunctionalClust...
Cryptography

daemon-based

«aapFunctionalClust...
Communication

Management

«aapFunctionalClust...
Identity and Access

Management

«use» «use»«use»

Figure 9.62: Users of the Adaptive Intrusion Detection System Manager interfaces

Interface Requiring functional clusters

Communication Management (see Section 9.3.1)

Cryptography (see Section 9.5.1)

EventReporter

Identity and Access Management (see Section 9.5.2)

Table 9.19: Interfaces provided by Adaptive Intrusion Detection System Manager to other
Functional Clusters

111 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.5.3.3 Required interfaces

«aapFunctionalCluster»
Adaptive Intrusion Detection System Manager

daemon-based

«aapAPI,aapPortInterface»
SynchronizedTimeBaseConsumer

+ GetCurrentTime()
+ GetRateDeviation()
+ GetTimeWithStatus(): SynchronizedTimeBaseStatus
+ RegisterStatusChangeNotifier()
+ RegisterSynchronizationStateChangeNotifier()
+ RegisterTimeLeapNotifier()
+ RegisterTimePrecisionMeasurementNotifier()
+ RegisterTimeValidationNotification()
+ UnregisterStatusChangeNotifier()
+ UnregisterSynchronizationStateChangeNotifier()
+ UnregisterTimeLeapNotifier()
+ UnregisterTimePrecisionMeasurementNotifier()
+ UnregisterTimeValidationNotification()

«aapFunctionalCluster»
Time Synchronization

daemon-based

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalClust...
Log and Trace

«aapInternal»
TCP/IP Stack

Operating
System

«use» «use»«use»
«aapRequiredPort»

Figure 9.63: Interfaces required by Adaptive Intrusion Detection System Manager

Interface Purpose
Logger Adaptive Intrusion Detection System Manager

shall use this interface to log standardized messages.

SynchronizedTimeBaseConsumer Adaptive Intrusion Detection System Manager
shall use this interface to determine timestamps of security
events.

TCP/IP Stack Adaptive Intrusion Detection System Manager
shall use this interface to propagate qualified security
events via the IDS protocol.

Table 9.20: Interfaces required by Adaptive Intrusion Detection System Manager

9.6 Safety

Platform Health Management

Figure 9.64: Overview of Safety and its building blocks

112 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.6.1 Platform Health Management

Name: Platform Health Management

Short name: phm

Category: Safety

Daemon-based: Yes
Responsibili-
ties:

Platform Health Management performs (aliveness, logical, and deadline)
supervision of Processes in safety-critical setups and reports failures to
State Management. Platform Health Management also controls the
Watchdog that in turn supervises the Platform Health Management.

An Alive Supervision checks that a supervised entity is not running too
frequently and not too rarely. A Deadline Supervision checks that steps in
a supervised entity are executed within the configured minimum and maximum
time. A Logical Supervision checks that the control flow during execution
matches the designed control flow. All types of supervision can be used
independently and are performed based on reporting of Checkpoints by the
supervised entity.

State Management and Execution Management are the fundamental
Functional Clusters of the AUTOSAR Adaptive Platform and need to run
and work properly in any case. Therefore, Platform Health Management
shall always supervise the corresponding Processes for State Management
and Execution Management. Supervision failures in these Processes shall
be recovered by a reset of the Machine because the normal way of error
recovery (via State Management and Execution Management) is no
longer reliable.

9.6.1.1 Defined interfaces

The interfaces of Platform Health Management are categorized into interfaces
for supervision (see Section 9.6.1.1.1), interfaces for performing recovery actions
(see Section 9.6.1.1.2), and interfaces for hardware watchdog handling (see Section
9.6.1.1.3).

9.6.1.1.1 Interfaces for supervision

Processes that are supervised by Platform Health Management shall report via
the SupervisedEntity interface when they have reached a certain checkpoint in their
control flow (see Figure 9.65). Platform Health Management independently mon-
itors that all checkpoints configured in the Manifest have been reached in time and
in the expected order (depending on the type of supervision).

113 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapAPI,aapPortInterface»
SupervisedEntity

+ ReportCheckpoint()

Adaptive Application

«use»
«aapProvidedPort»

Figure 9.65: Interfaces for supervision

Name: SupervisedEntity

Technology: Port interface

Generated: No
Meta-model
interface type:

PhmSupervisedEntityInterface

Usage: Public API

Description: This interface provides functions to report checkpoints to Platform Health
Management.

Operations: ReportCheckpoint Reports an occurrence of a checkpoint.

9.6.1.1.2 Interfaces for recovery

Platform Health Management defines the RecoveryAction API to trigger a recov-
ery action in case a supervision failed (see Figure 9.66).

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapPortInterface,aapAPI»
Platform Health Management::

RecoveryAction

+ GetGlobalSupervisionStatus()
+ Offer()
+ StopOffer()

«aapCallbackMethod»
+ RecoveryHandler()

«use»

«aapProvidedPort»

Figure 9.66: Interfaces for recovery

114 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: RecoveryAction

Technology: Port interface

Generated: No
Meta-model
interface type:

PhmRecoveryActionInterface

Usage: Public API

Description: This interface provides functions to control triggering of recovery actions, to
determine the status of the supervision and a callback to perform recovery.

GetGlobalSupervisionStatus Returns the status of global supervision that
the supervised entity belongs to.

Offer Enables potential invocations of the callback
RecoveryAction::RecoveryHandler

RecoveryHandler Callback to be invoked by Platform
Health Management upon a supervision
failure. The handler invocation needs to be
enabled before using RecoveryAction::Offer.

Operations:

StopOffer Disables potential invocations of the callback
RecoveryAction::RecoveryHandler

9.6.1.1.3 Interfaces for watchdog handling

Platform Health Management defines the WatchdogInterface extension API to in-
teract with the hardware watchdog (see Figure 9.67).

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapNativeInterface,aapPlatformExtension»
Platform Health Management::WatchdogInterface

+ AliveNotification()
+ FireWatchdogReaction()

Watchdog

«use»

Figure 9.67: Interfaces for watchdog handling

Name: WatchdogInterface

Technology: Native interface

Usage: Platform extension
5

115 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Description: This interface provides functions to control the hardware watchdog.

AliveNotification Called cyclically by Platform Health
Management in configurable cycle time.
Note: This time might differ from the cycle
time of triggering the "real" hardware
watchdog. If Platform Health
Management does not report aliveness in
configured time, WatchdogInterface shall
initiate watchdog reaction.

Operations:

FireWatchdogReaction Initiates an error reaction of the hardware
watchdog.

9.6.1.2 Provided interfaces

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapFunctionalClust...
Execution Management

daemon-based

«aapFunctionalClust...
State Management

daemon-based

«aapAPI,aapPortInterface»
SupervisedEntity

+ ReportCheckpoint()

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalClust...
Time Synchronization

daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalClust...
Cryptography

daemon-based

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.68: Users of the SupervisedEntity interface

Interface Requiring functional clusters

Cryptography (see Section 9.5.1)

Diagnostic Management (see Section 9.8.1)

Execution Management (see Section 9.2.1)

State Management (see Section 9.2.2)

Time Synchronization (see Section 9.3.3)

SupervisedEntity

Update and Configuration Management (see Section
9.7.1)

Table 9.21: Interfaces provided by Platform Health Management to other Functional Clus-
ters

116 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.6.1.3 Required interfaces

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapNativeInterface,aapPlatformExtens...
Platform Health Management::

WatchdogInterface

+ AliveNotification()
+ FireWatchdogReaction()

«aapAPI,aapNativeInterface»
Execution Management::ExecutionClient

+ ReportExecutionState(ExecutionState): Result

«aapFunctionalCluster»
Execution Management

daemon-based

Watchdog

«aapPortInterface,aapAPI»
Platform Health Management::

RecoveryAction

+ GetGlobalSupervisionStatus()
+ Offer()
+ StopOffer()

«aapCallbackMethod»
+ RecoveryHandler()

«aapFunctionalCluster»
State Management

daemon-based

«use» «use»

«aapProvidedPort»

«use»

Figure 9.69: Interfaces required by Platform Health Management

Interface Purpose

ExecutionClient Platform Health Management uses this interface to
report the state of its daemon process to Execution
Management.

Logger Platform Health Management shall use this interface
to log standardized messages.

Manifest Accessor Platform Health Management shall use this interface
to read information about SupervisedEntities from the
Manifests.

RecoveryAction Platform Health Management uses this interface to
trigger failure recovery.

WatchdogInterface Platform Health Management uses this interface to
control the hardware watchdog.

Table 9.22: Interfaces required by Platform Health Management

9.7 Configuration

RegistryUpdate and Configuration Management

Figure 9.70: Overview of Configuration and its building blocks

117 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.7.1 Update and Configuration Management

Name: Update and Configuration Management

Short name: ucm
Category: Configuration

Daemon-based: Yes
Responsibili-
ties:

Update and Configuration Management is responsible for updating,
installing, removing and keeping a record of the software on an AUTOSAR
Adaptive Platform in a safe and secure way. Hereby, Update and
Configuration Management enables to update the software and its
configuration flexibly through over-the-air updates (OTA).

Update and Configuration Management is separated into two main
components UCM Master and UCM Subordinate. UCM Subordinate
controls the update process on the local Adaptive Platform. UCM Master
controls an update of the software in the entire vehicle.

9.7.1.1 Defined interfaces

The interfaces of Update and Configuration Management are categorized into
interfaces for UCM Subordinate (see Section 9.7.1.1.1), interfaces for UCM Master
(see Section 9.7.1.1.2), and interfaces for the D-PDU API (see Section 9.7.1.1.3).

118 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.7.1.1.1 UCM Subordinate

Adaptive Application

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

UCM Subordinate

«aapAPI,aapAraComServiceInterface»
PackageManagement

«aapAccessControlled, aapServiceField»
+ CurrentStatus

«aapAccessControlled, aapServiceMethod»
+ Activate()
+ Cancel()
+ DeleteTransfer()
+ Finish()
+ GetHistory()
+ GetId()
+ GetSwClusterChangeInfo()
+ GetSwClusterDescription()
+ GetSwClusterInfo()
+ GetSwPackages()
+ GetSwProcessProgress()
+ ProcessSwPackage()
+ RevertProcessedSwPackages()
+ Rollback()
+ TransferData()
+ TransferExit()
+ TransferStart()

Diagnostic Application

«use»
«aapRequiredPort»

«aapProvidedPort»

«use»
«aapRequiredPort»

Figure 9.71: Interfaces of UCM Subordinate

Name: PackageManagement

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality for managing and transferring Software
Packages to an UCM.
Activate Activates the processed components.

Cancel Aborts an ongoing processing of a
Software Package.

Operations:

DeleteTransfer Delete a transferred Software Package.
5

119 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Finish Finishes the processing for the current set of

processed Software Packages. It does a
cleanup of all data of the processing
including the sources of the Software
Packages.

GetHistory Retrieve all actions that have been
performed by UCM.

GetId Get the UCM Instance Identifier.
GetSwClusterChangeInfo Get a list of pending changes to the set of

Software Clusters on the Adaptive
Platform. The returned list includes all
Software Clusters that are to be added,
updated or removed. The list of changes is
extended in the course of processing
Software Packages.

GetSwClusterDescription Get the general information of the Software
Clusters present in the platform.

GetSwClusterInfo Get a list of Software Clusters that are
in state kPresent.

GetSwPackages Get the Software Packages that available
in UCM.

GetSwProcessProgress Get the progress of the currently processed
Software Package.

ProcessSwPackage Process a previously transferred Software
Package.

RevertProcessedSwPackages Revert the changes done by processing (by
calling ProcessSwPackage()) of one or
several Software Packages.

Rollback Rollback the system to the state before the
packages were processed.

TransferData Block-wise transfer of a Software
Package to UCM.

TransferExit Finish the transfer of a Software Package
to UCM.

TransferStart Start the transfer of a Software Package.
Fields: CurrentStatus The current status of the UCM.

120 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.7.1.1.2 UCM Master

«aapAPI,aapAraComServiceInterface»
VehiclePackageManagement

«aapAccessControlled, aapServiceField»
+ RequestedPackage
+ SafetyState
+ TransferState

«aapAccessControlled, aapServiceMeth...
+ AllowCampaign()
+ CancelCampaign()
+ DeleteTransfer()
+ GetCampaignHistory()
+ GetSwClusterInfo()
+ GetSwPackages()
+ SwPackageInventory()
+ TransferData()
+ TransferExit()
+ TransferStart()
+ TransferVehiclePackage()

«aapAPI,aapAraComServiceInterface»
VehicleDriverApplication

«aapAccessControlled, aapServiceField»
+ ApprovalRequired
+ CampaignState
+ SafetyPolicy
+ SafetyState

«aapAccessControlled, aapServiceMeth...
+ AllowCampaign()
+ CancelCampaign()
+ DriverApproval()
+ GetCampaignHistory()
+ GetSwClusterDescription()
+ GetSwPackageDescription()
+ GetSwProcessProgress()
+ GetSwTransferProgress()

«aapAPI,aapAraComServiceInterface»
VehicleStateManager

«aapAccessControlled, aapServiceField»
+ SafetyPolicy

«aapAccessControlled, aapServiceMeth...
+ SafetyState()

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

UCM Master

Adaptive Application

Vehicle State ManagerVehicle Driver InterfaceOTA Client

«use»
«aapRequiredPort»

«aapProvidedPort»«aapProvidedPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«aapProvidedPort»

Figure 9.72: Interfaces of UCM Master

Name: VehiclePackageManagement

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality for managing and transferring Vehicle
Packages and Software Packages to UCM Master.
AllowCampaign Allows a new campaign to start.

CancelCampaign Aborts an ongoing campaign processing of a
Vehicle Package.

DeleteTransfer Delete a transferred Software Package or
Vehicle Package.

GetCampaignHistory Retrieve all actions that have been
performed by UCM Master.

Operations:

GetSwClusterInfo Get a list of SoftwareClusters that are in
state kPresent.

5

121 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
GetSwPackages Get the Software Packages that are part

of current campaign handled by UCM
Master.

SwPackageInventory Performs an inventory of all Software
Packages.

TransferData Block-wise transfer of a Software
Package or Vehicle Package to UCM
Master.

TransferExit Finish the transfer of a Software Package
or Vehicle Package to UCM Master.

TransferStart Start the transfer of a Software Package
to UCM Master.

TransferVehiclePackage Start the transfer of a Vehicle Package to
UCM Master.

RequestedPackage Software Package to be transferred to
UCM Master.

SafetyState Vehicle state computed by the Vehicle
State Manager Adaptive Application.

Fields:

TransferState The current status of a campaign from an
OTA Client perspective.

Name: VehicleDriverApplication

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality to interact with the vehicle driver, for
example to approve updates.

AllowCampaign Allow a new campaign to start.

CancelCampaign Aborts an ongoing campaign processing of a
Vehicle Package.

DriverApproval Inform UCM Master of the driver’s
notification resolution (approve or reject).

GetCampaignHistory Retrieve all actions that have been
performed by UCM Master.

GetSwClusterDescription Get the general information of the Software
Clusters present in the Adaptive Platform.

GetSwPackageDescription Get the general information of the
Software Packages that are part of
current campaign handled by UCM Master.

GetSwProcessProgress Get the progress of the current package
processing.

Operations:

GetSwTransferProgress Get the progress of the current package
transfer.

5

122 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
ApprovalRequired Flag to inform an Adaptive Application if

approval from a driver is required at current
state based on the Vehicle Package
Manifest.

CampaignState The current status of campaign.

SafetyPolicy Safety policy from the Vehicle Package
to be computed by the Vehicle State
Manager Adaptive Application.

Fields:

SafetyState Vehicle state computed by the Vehicle
State Manager Adaptive Application.

Name: VehicleStateManager

Technology: ara::com service interface

Usage: Public API

Description: This interface provides functionality for a Vehicle State Manager Adaptive
Application to inform UCM Master about the safety state and policy of the
vehicle.

Operations: SafetyState Called by the Vehicle State Manager
Adaptive Application when safety state is
changed.

Fields: SafetyPolicy Safety policy from the Vehicle Package
to be computed by the Vehicle State
Manager Adaptive Application.

123 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.7.1.1.3 D-PDU API

«aapFunctionalCluster»
Update and Configuration

Management

daemon-based

D-PDU API

«aapAPI,aapNativeInterface»
D-PDU API

Adaptive Application

Flashing Adapter

«use»

Figure 9.73: Interfaces of UCM Master

Name: D-PDU API
Technology: Native interface

Usage: Public API

Description: This interface represents the Diagnostic Protocol Data Unit Application
Programming Interface. It is not detailed in this document.

9.7.1.2 Provided interfaces

Update and Configuration Management does not provide any interfaces to
other Functional Clusters.

124 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.7.1.3 Required interfaces

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalClust...
Log and Trace

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

«aapAPI,aapNativeInterface»
ExecutionClient

+ ReportExecutionState(ExecutionState): Result

«aapFunctionalCluster»
Execution Management

daemon-based

«aapAPI,aapPortInterface»
FileStorage

+ DeleteFile()
+ FileExists()
+ GetAllFileNames()
+ GetCurrentFileSize()
+ GetFileInfo()
+ OpenFileReadOnly(): ReadAccessor
+ OpenFileReadWrite(): ReadWriteAccessor
+ OpenFileWriteOnly(): ReadWriteAccessor
+ RecoverFile()
+ ResetFile()

«aapFunctionalCluster»
Persistency

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«use» «use»
«aapRequiredPort»

«use» «use»
«aapRequiredPort»

Figure 9.74: Interfaces required by Update and Configuration Management

«aapFunctionalClust...
Cryptography

daemon-based

«aapAPI,aapNativeInterf...
CryptoStack

«aapFunctionalCluster»
State Management

daemon-based

«aapAraComServiceInterface,aapIn...
UpdateRequest

«aapAccessControlled, aapService...
+ PrepareRollback()
+ PrepareUpdate()
+ RequestUpdateSession()
+ ResetMachine()
+ StopUpdateSession()
+ VerifyUpdate()

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

UCM Subordinate

«use»
«use»

«aapRequiredPort»

«aapProvidedPort»

Figure 9.75: Interfaces required by UCM Subordinate

125 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

UCM SubordinateUCM Master

«aapAPI,aapAraComServiceInterface»
PackageManagement

«aapAccessControlled, aapServiceField»
+ CurrentStatus

«aapAccessControlled, aapServiceMeth...
+ Activate()
+ Cancel()
+ DeleteTransfer()
+ Finish()
+ GetHistory()
+ GetId()
+ GetSwClusterChangeInfo()
+ GetSwClusterDescription()
+ GetSwClusterInfo()
+ GetSwPackages()
+ GetSwProcessProgress()
+ ProcessSwPackage()
+ RevertProcessedSwPackages()
+ Rollback()
+ TransferData()
+ TransferExit()
+ TransferStart()

Adaptive Application

Flashing Adapter

«aapProvidedPort»

«aapProvidedPort»

«use»
«aapRequiredPort»

Figure 9.76: Interfaces required by UCM Master

Interface Purpose

ExecutionClient This interface shall be used by the daemon process(es)
inside Update and Configuration Management to
report their execution state to Execution Management.

FileStorage This interface should be used to store files, for example
downloaded packages.

KeyValueStorage This interface should be used to store internal state of
Update and Configuration Management.

Logger Update and Configuration Management shall use
this interface to log standardized messages.

Manifest Accessor Update and Configuration Management shall use
this interface to read information about its configuration
from the Manifests.

ReadAccessor This interface should be used to store files, for example
downloaded packages.

5

126 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
ReadWriteAccessor This interface should be used to store files, for example

downloaded packages.

SupervisedEntity This interface should be used to supervise the daemon
process(es) of Update and Configuration
Management.

Table 9.23: Interfaces required by Update and Configuration Management

9.7.2 Registry

Name: Registry

Short name: n/a
Category: Configuration

Daemon-based: No
Responsibili-
ties:

The Registry is an internal component of the AUTOSAR Adaptive Platform
that provides access the information stored in Manifests. It is not intended to
be used by Adaptive Applications directly.

9.7.2.1 Defined interfaces

«aapFunctionalCluster»
Registry

«aapInternal,aapNativeInterface»
Manifest Accessor

«aapFunctionalClust...
Communication

Management

«aapFunctionalClust...
Identity and Access

Management

«aapFunctionalClust...
Network Management

«aapFunctionalClust...
Time Synchronization

daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalClust...
Execution Management

daemon-based

«aapFunctionalClust...
Log and Trace

«aapFunctionalClust...
Platform Health

Management
daemon-based

«aapFunctionalClust...
Cryptography

daemon-based

«aapFunctionalClust...
Persistency

«use»

«use»

«use» «use»

«use»

«use»

«use»

«use» «use»«use»«use»

Figure 9.77: Interfaces of Registry

Name: Manifest Accessor
Technology: Native interface

5

127 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Usage: Internal

Description: This interface provides functionality to read information that was modeled in the
Manifest(s). This interface is not detailed in this document.

9.7.2.2 Provided interfaces

«aapFunctionalCluster»
Registry

«aapInternal,aapNativeInterface»
Manifest Accessor

«aapFunctionalClust...
Communication

Management

«aapFunctionalClust...
Identity and Access

Management

«aapFunctionalClust...
Network Management

«aapFunctionalClust...
Time Synchronization

daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapFunctionalClust...
Execution Management

daemon-based

«aapFunctionalClust...
Log and Trace

«aapFunctionalClust...
Platform Health

Management
daemon-based

«aapFunctionalClust...
Cryptography

daemon-based

«aapFunctionalClust...
Persistency

«use»«use» «use»«use»«use»«use»

«use»

«use»

«use»«use»

«use»

Figure 9.78: Users of the Registry interfaces

Interface Requiring functional clusters

Communication Management (see Section 9.3.1)

Cryptography (see Section 9.5.1)

Diagnostic Management (see Section 9.8.1)

Execution Management (see Section 9.2.1)

Identity and Access Management (see Section 9.5.2)

Log and Trace (see Section 9.2.3)

Network Management (see Section 9.3.2)

Persistency (see Section 9.4.1)

Platform Health Management (see Section 9.6.1)

Time Synchronization (see Section 9.3.3)

Manifest Accessor

Update and Configuration Management (see Section
9.7.1)

Table 9.24: Interfaces provided by Registry to other Functional Clusters

128 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.7.2.3 Required interfaces

«aapFunctionalCluster»
Registry

«aapInternal»
Non-volati le Storage

Operating System

«use»

Figure 9.79: Interfaces required by Registry

Interface Purpose

Non-volatile Storage Registry shall use this interface to read the information
from the Manifest(s).

Table 9.25: Interfaces required by Registry

9.8 Diagnostics

Diagnostic Management

Figure 9.80: Overview of Diagnostics and its building blocks

9.8.1 Diagnostic Management

Name: Diagnostic Management

Short name: diag

Category: Diagnostics

Daemon-based: Yes
5

129 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Responsibili-
ties:

Diagnostic Management is responsible for handling diagnostic events
produced by the individual Processes running in an AUTOSAR Runtime for
Adaptive Applications. Diagnostic Management stores such events and the
associated data persistently according to rendition policies. Diagnostic
Management also provides access to diagnostic data for external Diagnostic
Clients via standardized network protocols (ISO 14229-5 (UDSonIP) which is
based on the ISO 14229-1 (UDS) and ISO 13400-2 (DoIP)).

9.8.1.1 Defined interfaces

9.8.1.1.1 Common interfaces

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapNativeInterface,aapAPI»
Conversation

+ GetActivityStatus()
+ GetAllConversations()
+ GetConversation(): Conversation
+ GetConversationIdentifier()
+ GetCurrentActiveConversations()
+ GetDiagnosticSecurityLevel()
+ GetDiagnosticSecurityLevelShortName()
+ GetDiagnosticSession()
+ GetDiagnosticSessionShortName()
+ ResetToDefaultSession()
+ SetActivityNotifier()
+ SetDiagnosticSessionNotifier()
+ SetSecurityLevelNotifier()

«aapAPI,aapNat...
CancellationHandler

+ IsCanceled()
+ SetNotifier()

Adaptive Application

«aapAPI,aap...
MetaInfo

+ GetContext()
+ GetValue()

«aapAPI,aapPortInterface»
DTCInformation

+ Clear()
+ EnableControlDtc()
+ GetControlDTCStatus()
+ GetCurrentStatus()
+ GetEventMemoryOverflow()
+ GetNumberOfStoredEntries()
+ SetControlDtcStatusNotifier()
+ SetDTCStatusChangedNotifier()
+ SetEventMemoryOverflowNotifier()
+ SetNumberOfStoredEntriesNotifier()
+ SetSnapshotRecordUpdatedNotifier()

«use»«use»
«use»

«aapRequiredPort»
«use»

Figure 9.81: Common interfaces of Diagnostic Management

Name: Conversation
Technology: Native interface

Usage: Public API

Description: This interface provides functionality to handle diagnostic conversations.

GetActivityStatus Represents the status of an active
conversation.

GetAllConversations Get all possible conversations.

GetConversation Get one conversation based on given meta
information.

Operations:

GetConversationIdentifier Getter for the current identification properties
of the active conversation.

5

130 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4

GetCurrentActiveConversations
Get all currently active conversations.

GetDiagnosticSecurityLevel Represents the current active diagnostic
SecurityLevel of an active conversation.

GetDiagnosticSecu-
rityLevelShortName

Converts the given diagnostic
SecurityLevel into the ShortName.

GetDiagnosticSession Represents the current active diagnostic
session of an active conversation.

GetDiagnosticSessionShort-
Name

Converts the given diagnostic session into
the ShortName.

ResetToDefaultSession Method to reset the current session to the
default session.

SetActivityNotifier Register a notifier function which is called if
the activity is changed.

SetDiagnosticSessionNotifier Register a notifier function which is called if
the Session is changed.

SetSecurityLevelNotifier Register a notifier function which is called if
the SecurityLevel is changed.

Name: CancellationHandler
Technology: Native interface

Usage: Public API

Description: This interface holds a shared state if the processing should be canceled.

IsCanceled Returns true in if the diagnostic service
execution is canceled.

Operations:

SetNotifier Registers a notifier function which is called if
the diagnostic service execution is canceled.

Name: MetaInfo
Technology: Native interface

Usage: Public API

Description: This interface specifies a mechanism to provide meta information, i.e. from
transport protocol layer, to an interested application.

GetContext Get the context of the invocation.Operations:
GetValue Get the metainfo value for a given key.

131 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: DTCInformation
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticDTCInformationInterface

Usage: Public API

Description: This interface provides operations on DTC information per configured
DiagnosticMemory destination.
Clear Method for Clearing a DTC or a group of

DTCs.
EnableControlDtc Enforce restoring ControlDTCStatus setting

to enabled in case the monitor has some
conditions or states demands to do so.

GetControlDTCStatus Contains the current status of the
ControlDTCStatus.

GetCurrentStatus Retrieves the current UDS DTC status byte
of the given DTC identifier.

GetEventMemoryOverflow Contains the current event memory overflow
status.

GetNumberOfStoredEntries Contains the number of currently stored fault
memory entries.

SetControlDtcStatusNotifier Registers a notifier function which is called if
the control DTC setting is changed.

SetDTCStatusChangedNotifier Register a notifier function which is called if a
UDS DTC status is changed.

SetEventMemoryOverflowNoti-
fier

Register a notifier function which is called if
the current event memory overflow status
changed.

SetNumberOfStoredEntriesNo-
tifier

Register a notifier function which is called if
the number of currently stored fault memory
entries changed.

Operations:

SetSnapshotRecordUpdated-
Notifier

Register a notifier function which is called if
the SnapshotRecord is changed.

132 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.8.1.1.2 Interfaces for request handling

«aapFunctionalCluster»
Diagnostic Management

daemon-based

Adaptive Application

«aapAPI,aapPortI...
Condition

+ GetCondition()
+ SetCondition()

«aapAPI,aapPortInterface»
OperationCycle

+ GetOperationCycle()
+ SetNotifier()
+ SetOperationCycle()

«aapAPI,aapPortI...
Indicator

+ GetIndicator()
+ SetNotifier()

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.82: Interfaces for request handling

Name: Condition
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticConditionInterface

Usage: Public API

Description: This interface provides functionality for condition management.

GetCondition Get the current condition.Operations:
SetCondition Set the current condition.

Name: OperationCycle

Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticOperationCycleInterface

Usage: Public API

Description: This interface provides functionality for handling of operation cycles.

GetOperationCycle Get the current OperationCycle.

SetNotifier Registers a notifier function which is called if
the OperationCycle is changed.

Operations:

SetOperationCycle Set the current OperationCycle.

133 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: Indicator
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticIndicatorInterface

Usage: Public API

Description: This interface provides functionality for handling indicators.

GetIndicator Get current Indicator.Operations:
SetNotifier Register a notifier function which is called if

the indicator is updated.

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapPortInterface,aapAPI»
SecurityAccess

+ CompareKey()
+ GetSeed()
+ Offer()
+ StopOffer()

Adaptive Application

«aapPortInterface,aapAPI»
ServiceValidation

+ Confirmation()
+ Offer()
+ StopOffer()
+ Validate()

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.83: Interfaces for request handling

Name: SecurityAccess

Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticSecurityLevelInterface

Usage: Public API

Description: This interface provides functionality for handling SecurityAccess requests.

CompareKey This method is called, when a diagnostic
request has been finished, to notify about the
outcome.

GetSeed Called for any request message.

Offer Enable forwarding of request messages from
Diagnostic Management.

Operations:

StopOffer Disable forwarding of request messages
from Diagnostic Management.

134 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: ServiceValidation
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticServiceValidationInterface

Usage: Public API

Description: This interface provides functionality for handling ServiceValidation
requests.

Confirmation This method is called, when a diagnostic
request has been finished, to notify about the
outcome.

Offer Enable forwarding of request messages from
Diagnostic Management.

StopOffer Disable forwarding of request messages
from Diagnostic Management.

Operations:

Validate Called for any request message.

«aapFunctionalCluster»
Diagnostic Managementdaemon-based

«aapPortInterface,a...
Monitor

+ Offer()
+ ReportMonitorAction()
+ StopOffer()

«aapPortInterface,aap...
GenericUDSService

+ HandleMessage()
+ Offer()
+ StopOffer()

«aapPortInterface,aap...
GenericDataIdentifier

+ Offer()
+ Read()
+ StopOffer()
+ Write()

«aapPortInterface,aap...
GenericRoutine

+ Offer()
+ RequestResults()
+ Start()
+ Stop()
+ StopOffer()

«aapPortInterface,aapAPI»
Event

+ GetDebouncingStatus()
+ GetDTCNumber()
+ GetEventStatus()
+ GetFaultDetectionCounter()
+ GetLatchedWIRStatus()
+ GetTestComplete()
+ SetEventStatusChangedNotifier()
+ SetLatchedWIRStatus()

Adaptive Application

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.84: Interfaces for generic request handling

Name: Monitor
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticMonitorInterface

Usage: Public API

Description: This interface provides functionality to report qualified and unqualified test
results and to control debouncing options.

Operations: Offer Enable forwarding of request messages from
Diagnostic Management.

5

135 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
ReportMonitorAction Report the status information being relevant

for error monitoring paths.

StopOffer Disable forwarding of request messages
from Diagnostic Management.

Name: Event
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticEventInterface

Usage: Public API

Description: This interface defines functionality for diagnostic events.

GetDTCNumber Returns the DTC-ID related to this event
instance.

GetDebouncingStatus Get the current debouncing status.

GetEventStatus Returns the current diagnostic event status.

GetFaultDetectionCounter Returns the current value of Fault Detection
Counter of this event.

GetLatchedWIRStatus Returns the current warning indicator status.

GetTestComplete Get the status if the event has matured to
test completed (corresponds to FDC = -128
or FDC = 127).

SetEventStatusChangedNotifier
Register a notifier function which is called if a
diagnostic event is changed.

Operations:

SetLatchedWIRStatus Set the warning indicator status.

Name: GenericDataIdentifier
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticDataIdentifierGenericInterface

Usage: Public API

Description: Generic interface to handle ReadDataByIdentifier and
WriteDataByIdentifier requests.

Offer Enable forwarding of request messages from
Diagnostic Management.

Operations:

Read Called for a ReadDataByIdentifier
request for this
DiagnosticDataIdentifier.

5

136 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
StopOffer Disable forwarding of request messages

from Diagnostic Management.

Write Called for a WriteDataByIdentifier
request for this
DiagnosticDataIdentifier.

Name: GenericUDSService
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticGenericUdsInterface

Usage: Public API

Description: Generic interface to handle UDS messages.

HandleMessage Handles an UDS request message.

Offer Enable forwarding of request messages from
Diagnostic Management.

Operations:

StopOffer Disable forwarding of request messages
from Diagnostic Management.

Name: GenericRoutine
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticRoutineGenericInterface

Usage: Public API

Description: Generic interface to handle RoutineControl requests.

Offer Enable forwarding of request messages from
Diagnostic Management.

RequestResults Called for RoutineControl with
SubFunction RequestResults request
for this DiagnosticRoutineIdentifier.

Start Called for RoutineControl with
SubFunction Start request for this
DiagnosticRoutineIdentifier.

Stop Called for RoutineControl with
SubFunction Stop request for this
DiagnosticRoutineIdentifier.

Operations:

StopOffer Disable forwarding of request messages
from Diagnostic Management.

137 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

«aapFunctionalCluster»
Diagnostic Managementdaemon-based

«aapPortInterface,aapAPI»
Routine

+ Offer()
+ RequestResults()
+ Start()
+ Stop()
+ StopOffer()

«aapPortInterface,aapAPI»
DataIdentifier

+ Offer()
+ Read()
+ StopOffer()
+ Write()

«aapPortInterface,aapAPI»
DataElement

+ Offer()
+ Read()
+ StopOffer()

Adaptive Application

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.85: Generated interfaces for request handling

Name: DataIdentifier
Technology: Port interface

Generated: Yes
Meta-model
interface type:

DiagnosticDataIdentifierInterface

Usage: Public API

Description: Generated interface to handle ReadDataByIdentifier and
WriteDataByIdentifier requests.

Offer Enable forwarding of request messages from
Diagnostic Management.

Read Called for a ReadDataByIdentifier
request for this
DiagnosticDataIdentifier.

StopOffer Disable forwarding of request messages
from Diagnostic Management.

Operations:

Write Called for a WriteDataByIdentifier
request for this
DiagnosticDataIdentifier.

Name: DataElement
Technology: Port interface

Generated: Yes
Meta-model
interface type:

DiagnosticDataElementInterface

Usage: Public API

Description: Generated interface to handle read requests for DataElements.

Operations: Offer Enable forwarding of request messages from
Diagnostic Management.

5

138 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Read Called for reading a DataElement.

StopOffer Disable forwarding of request messages
from Diagnostic Management.

Name: Routine
Technology: Port interface

Generated: Yes
Meta-model
interface type:

DiagnosticRoutineInterface

Usage: Public API

Description: Generated interface to handle RoutineControl requests.

Offer Enable forwarding of request messages from
Diagnostic Management.

RequestResults Called for RoutineControl with
SubFunction RequestResults request
for this DiagnosticRoutineIdentifier.

Start Called for RoutineControl with
SubFunction Start request for this
DiagnosticRoutineIdentifier.

Stop Called for RoutineControl with
SubFunction Stop request for this
DiagnosticRoutineIdentifier.

Operations:

StopOffer Disable forwarding of request messages
from Diagnostic Management.

139 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.8.1.1.3 Interfaces for Upload and Download

«aapFunctionalCluster»
Diagnostic Managementdaemon-based

«aapPortInterface,aap...
DownloadService

+ DownloadData()
+ Offer()
+ RequestDownload()
+ RequestDownloadExit()
+ StopOffer()

«aapPortInterface,aap...
UploadService

+ Offer()
+ RequestUpload()
+ RequestUploadExit()
+ StopOffer()
+ UploadData()

Adaptive Application

Diagnostic Application

«aapProvidedPort»

«use»

«aapProvidedPort»

«use»

Figure 9.86: Interfaces for Upload and Download

Name: UploadService

Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticUploadInterface

Usage: Public API

Description: Upload service interface.

Offer Enable forwarding of request messages from
Diagnostic Management.

RequestUpload Called for RequestUpload.

RequestUploadExit Called for RequestTransferExit.

StopOffer Disable forwarding of request messages
from Diagnostic Management.

Operations:

UploadData Called for TransferData following a
previous RequestUpload.

Name: DownloadService
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticDownloadInterface

5

140 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Usage: Public API

Description: Download service interface.

DownloadData Called for TransferData following a
previous RequestDownload.

Offer Enable forwarding of request messages from
Diagnostic Management.

RequestDownload Called for RequestDownload.

RequestDownloadExit Called for RequestTransferExit.

Operations:

StopOffer Disable forwarding of request messages
from Diagnostic Management.

9.8.1.1.4 Interfaces for State Management

«aapPortInterface,aapAPI»
CommunicationControl

+ CommCtrlRequest()
+ Offer()
+ StopOffer()

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapPortInterface,aapAPI»
EcuResetRequest

+ EnableRapidShutdown()
+ ExecuteReset()
+ Offer()
+ RequestReset()
+ StopOffer()

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.87: Interfaces for State Management

Name: CommunicationControl
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticComControl

Usage: Public API

Description: This interface provides functionality for CommunicationControl.

CommCtrlRequest Called for CommunicationControl (x028)
with any subfunction as subfunction value is
part of argument list.

Operations:

Offer Enable forwarding of request messages from
Diagnostic Management.

5

141 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
StopOffer Disable forwarding of request messages

from Diagnostic Management.

Name: EcuResetRequest

Technology: Port interface

Generated: Yes
Meta-model
interface type:

DiagnosticEcuResetInterface

Usage: Public API

Description: This interface provides functionality for EcuReset requests.

EnableRapidShutdown Called for subfunction
En-/DisableRapidShutdown.

ExecuteReset Execute the requested reset.

Offer Enable forwarding of request messages from
Diagnostic Management.

RequestReset Called for any EcuReset subfunction, except
En-/DisableRapidShutdown.

Operations:

StopOffer Disable forwarding of request messages
from Diagnostic Management.

9.8.1.1.5 Interfaces for UDS Transportlayer API

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapNativeInterface,aapPl...
UdsMessage

+ AddMetaInfo()
+ GetPayload()
+ GetSa()
+ GetTa()
+ GetTaType()

«aapNativeInterface,aapPl...
UdsTransportProtocolHandler

+ GetHandlerID()
+ GetPeriodicHandler()
+ Initialize()
+ NotifyReestablishment()
+ Start()
+ Stop()
+ Transmit()

«aapNativeInterface,aapPlatf...
UdsTransportProtocolMgr

+ ChannelReestablished()
+ HandleMessage()
+ HandlerStopped()
+ IndicateMessage()
+ NotifyMessageFailure()
+ PeriodicTransmitConfirmation()
+ TransmitConfirmation()

«aapNativeInterface,aapPlatformExte...
UdsTransportProtocolPeriodicHandler

+ GetMaxPayloadLength()
+ GetNumberOfPeriodicMessages()
+ PeriodicTransmit()

UDS Transportlayer Extension

«use» «use»«use» «use»

Figure 9.88: Interfaces for the UDS Transportlayer API

142 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Name: UdsMessage

Technology: Native interface

Usage: Platform extension

Description: Represents an UDS message exchanged between Diagnostic
Management’s generic core (UdsTransportProtocolMgr) and a specific
implementation of UdsTransportProtocolHandler on diagnostic request
reception path or diagnostic response transmission path.

AddMetaInfo Called by the transport plugin to add channel
specific meta-info.

GetPayload Get the UDS message data starting with the
SID (A_Data as per ISO).

GetSa Get the source address of the UDS
message.

GetTa Get the target address of the UDS message.

Operations:

GetTaType Get the target address type (phys/func) of
the UDS message.

Name: UdsTransportProtocolHandler

Technology: Native interface

Usage: Platform extension

Description: This interface provides functionality for general Transport Protocol handling.

GetHandlerID Return the
UdsTransportProtocolHandlerID,
which was given to the implementation
during construction (ctor call).

GetPeriodicHandler Returns the corresponding periodic
Transport Protocol handler.

Initialize Initializes the handler.
NotifyReestablishment Notify the DiagnosticManagement core if

the given channel has been re-established.

Start Start processing the implemented UDS
Transport Protocol.

Stop Indicate that this instance should terminate.

Operations:

Transmit Transmit a UDS message via the underlying
UDS Transport Protocol channel.

Name: UdsTransportProtocolMgr

Technology: Native interface

Usage: Platform extension
5

143 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Description: This interface provides functionality to manage messages and their handling.

ChannelReestablished Notification call from the given transport
channel, that it has been reestablished since
the last (Re)Start from the
UdsTransportProtocolHandler to which this
channel belongs.

HandleMessage Hands over a valid received UDS message
(currently this is only a request type) from
transport layer to session layer.

HandlerStopped Notification from handler, that it has stopped
now (e.g. closed down network connections,
freed resources, etc...)

IndicateMessage Indicates a message start.

NotifyMessageFailure Indicates, that the message indicated via
IndicateMessage() has failure and will not
lead to a final HandleMessage() call.

PeriodicTransmitConfirmation Confirmation of sent messages and number.

Operations:

TransmitConfirmation Notification about the outcome of a transmit
request called by core Diagnostic
Management at the handler via Transmit()

Name: UdsTransportProtocolPeriodicHandler

Technology: Native interface

Usage: Platform extension

Description: This interface provides functionality for Transport Protocol handling of periodic
messages.

GetMaxPayloadLength Reports the maximum payload length
supported for a single periodic transmission
on the channel.

GetNumberOfPeriodicMes-
sages

Reports the Transport Protocol
implementation and connection specific
number of periodic messages.

Operations:

PeriodicTransmit Sends all the messages in the list in the
given order.

144 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.8.1.1.6 Interfaces for DoIP API

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapPortInterface,aap...
DoIPGroupIdentification

+ GetGidStatus()
+ Offer()
+ StopOffer()

«aapPortInterface,aap...
DoIPPowerMode

+ GetDoIPPowerMode()
+ Offer()
+ StopOffer()

«aapPortInterface,aapPlatformEx...
DoIPActivationLine

+ GetActivationLineState()
+ GetNetworkInterfaceId()
+ Offer()
+ StopOffer()
+ UpdateActivationLineState()

«aapPortInterface,aapPlatformExtension»
DoIPTriggerVehicleAnnouncement

+ GetDoIPTriggerVehicleAnnouncement()
+ TriggerVehicleAnnouncement()

DoIP Extension

«use»
«aapRequiredPort»

«use»
«aapProvidedPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.89: Interfaces for the DoIP API

Name: DoIPGroupIdentification

Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticDoIPGroupIdentificationInterface

Usage: Platform extension

Description: This interface provides functionality to get the GID state of the DoIP protocol.

GetGidStatus Called to get the current GID state for the
DoIP protocol.

Offer Enable forwarding of request messages from
Diagnostic Management.

Operations:

StopOffer Disables forwarding of request messages
from Diagnostic Management.

Name: DoIPPowerMode
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticDoIPPowerModeInterface

Usage: Platform extension

Description: This interface provides functionality to control the power mode via DoIP.

Operations: GetDoIPPowerMode Called to get the current Power Mode for the
DoIP protocol.

5

145 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
Offer Enable forwarding of request messages from

Diagnostic Management.

StopOffer Disable forwarding of request messages
from Diagnostic Management.

Name: DoIPActivationLine
Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticDoIPActivationLineInterface

Usage: Platform extension

Description: This interface provides functionality to control the DoIP activation line.

GetActivationLineState Get the current activation line state.
GetNetworkInterfaceId Get the network interface Id for which this

instance is responsible.

Offer Enable provision of the activation line state
to Diagnostic Management.

StopOffer Disable provision of the activation line state
to Diagnostic Management.

Operations:

UpdateActivationLineState Update current activation line state.

Name: DoIPTriggerVehicleAnnouncement

Technology: Port interface

Generated: No
Meta-model
interface type:

DiagnosticDoIPTriggerVehicleAnnouncementInterface

Usage: Platform extension

Description: This interface provides functionality to trigger a vehicle announcement via DoIP.

GetDoIPTriggerVehicleAn-
nouncement

Get the DoIPTriggerVehicleAnnouncement
interface.

Operations:

TriggerVehicleAnnouncement Send out vehicle announcements on the
given network interface Id.

9.8.1.2 Provided interfaces

Diagnostic Management does not provide any interfaces to other Functional Clus-
ters.

146 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

9.8.1.3 Required interfaces

«aapFunctionalCluster»
Diagnostic Managementdaemon-based

«aapAPI,aapPortInterface»
FileStorage

+ DeleteFile()
+ FileExists()
+ GetAllFileNames()
+ GetCurrentFileSize()
+ GetFileInfo()
+ OpenFileReadOnly(): ReadAccessor
+ OpenFileReadWrite(): ReadWriteAccessor
+ OpenFileWriteOnly(): ReadWriteAccessor
+ RecoverFile()
+ ResetFile()

«aapAPI,aapNativeInterf...
Logger

+ IsEnabled()
+ Log(MsgId, Params)
+ LogDebug(): LogStream
+ LogError(): LogStream
+ LogFatal(): LogStream
+ LogInfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

«aapFunctionalCluster»
Persistency

«aapFunctionalClust...
Log and Trace

«aapInternal,aapNativeI...
PolicyDecisionPoint

+ CheckAccess()

«aapFunctionalClust...
Identity and Access

Management

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«use»
«aapRequiredPort»

«use»«use»«use»
«aapRequiredPort»

Figure 9.90: Interfaces required by Diagnostic Management

«aapPortInterface,aapAPI»
CommunicationControl

+ CommCtrlRequest()
+ Offer()
+ StopOffer()

«aapFunctionalCluster»
Diagnostic Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapPortInterface,aapAPI»
EcuResetRequest

+ EnableRapidShutdown()
+ ExecuteReset()
+ Offer()
+ RequestReset()
+ StopOffer()

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 9.91: Interfaces required by Diagnostic Management from State Management

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapInternal»
TCP/IP Stack

Operating System

«use»

Figure 9.92: Interfaces required by Diagnostic Management from external components

147 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Interface Purpose

n/a This interface should be used to persist key-value data.

n/a This interface is used to read and write data to files.
n/a This interface is used for general persistency handling.

CommunicationControl This interface should be used to realize UDS Service 0x28
- CommunicationControl.

DataElement This interface is used to handle read DataElement
requests.

DataIdentifier This interface is used to handle ReadDataByIdentifier
and WriteDataByIdentifier requests.

DiagnosticReset This interface is used to handle diagnostic reset requests.

DoIPActivationLine This interface is used to control a DoIP Transport Layer
implementation.

DoIPGroupIdentification This interface is used to control a DoIP Transport Layer
implementation.

DoIPPowerMode This interface is used to control a DoIP Transport Layer
implementation.

DoIPTriggerVehicleAnnouncement This interface is used to control a DoIP Transport Layer
implementation.

DownloadService This interface is used to handle download requests.

EcuResetRequest This interface is used to handle reset requests.

ExecutionClient This interface is used to report the status of the
Diagnostic Management daemon process(es).

FileStorage This interface is used to read and write data to files.

GenericDataIdentifier This interface is used to handle ReadDataByIdentifier
and WriteDataByIdentifier requests.

GenericRoutine This interface is used to handle RoutineControl
requests.

GenericUDSService This interface is used to handle UDS requests.

KeyValueStorage This interface should be used to persist key-value data.

Logger Diagnostic Management shall use this interface to log
standardized messages.

Manifest Accessor Diagnostic Management shall use this interface to
read its configuration information from the Manifests.

Monitor This interface is used to report qualified and unqualified
test results.

PolicyDecisionPoint Diagnostic Management shall use this interface to
check access from Diagnostic Clients.

ReadAccessor This interface is used to read and write data to files.
ReadWriteAccessor This interface is used to read and write data to files.
Routine This interface is used to handle RoutineControl

requests.

SecurityAccess This interface is used to handle SecurityAccess
requests.

5

148 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

4
ServiceValidation This interface is used to handle ServiceValidation

requests.

SupervisedEntity This interface is used to supervise the Diagnostic
Management daemon process(es).

TCP/IP Stack This interface is used for DoIP Transport Protocols.

UdsMessage This interface is used to access an UDS Transport Layer
implementation.

UdsTransportProtocolHandler This interface is used to access an UDS Transport Layer
implementation.

UdsTransportProtocolMgr This interface is used to access an UDS Transport Layer
implementation.

UdsTransportProtocolPeriodicHandler This interface is used to access an UDS Transport Layer
implementation.

UploadService This interface is used to handle upload requests.

Table 9.26: Interfaces required by Diagnostic Management

149 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

10 Runtime View

This chapter shows the original design approach of the AUTOSAR Adaptive Platform
for implementing selected use cases. The presented use cases currently cover just
a small part of the functionality of the AUTOSAR Adaptive Platform. More use cases
will be added in future versions of this document. Please note that individual imple-
mentations of the AUTOSAR Adaptive Platform may always choose a different design
internally. Thus, interaction partners, the type of messages, and their order may differ.

10.1 Overview

The use cases are categorized in the subsequent sections. Section 10.2 groups the
use cases that control the lifecycle of an AUTOSAR Runtime for Adaptive Applica-
tions. Section 10.3 lists use cases for communication with external systems. Section
10.4 demonstrates how Adaptive Applications can be installed and how they and the
AUTOSAR Runtime for Adaptive Applications can be updated.

10.2 AUTOSAR Runtime for Adaptive Applications Lifecycle

10.2.1 Machine Startup

During the startup of a machine the Operating System performs initialization steps
in an implementation-specific way. These steps include starting any middleware related
to the Operating System, including device-drivers and services handling low-level
middleware. In addition, Execution Management is started as the entry point of
the AUTOSAR Runtime for Adaptive Applications. Execution Management then
controls the startup of the AUTOSAR Runtime for Adaptive Applications by starting
State Management and Platform Health Management Processes.

After State Management and Platform Health Management are started,
State Management takes control over the initialization of the AUTOSAR Adaptive
Platform by requesting a transition to the standardized Machine State Startup
from Execution Management. After the rest of the AUTOSAR Adaptive Plat-
form has been initialized, State Management requests application-specific states
for the other Function Groups on the Machine from Execution Management
in the same way. Platform Health Management always supervises the Pro-
cesses of Execution Management and State Management with a (probably
fixed) implementation-specific set of rules. Platform Health Management itself
is supervised by the Watchdog. In addition, Platform Health Management su-
pervises application Processes according to the configuration in the Machine Man-
ifest.

150 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

:Operating System

«aapFunctionalClust...

:Execution Management

:WatchdogInterface app: Adaptive
Application

«aapFunction...

:State Management

��� �����	
� ���

 ��

�
���	� ����
�	 �� ���

��������� ������ ���
�

�
 ��� �����
� �������
�

�����������

ref
Function Group State Transition(Startup)

�������
� ����������

��������� ��� ����	��	

����� ���������
� ���

������� ������ ���� ��

������� ��� ����� ��� ����

� ��� �
���
��

��
������ �� �������
��

����� ���������� ��	

!
���
�� "��
��

�����������

#� ���
�����
� ���� ��

��� $�����
�%� ������
�

���
�� ����������� ����

��� #	������ &�������

ref
Function Group State Transition(Running)

Enable
()

SetState(Startup):
Future

GetInitialMachineStateTransitionResult
()

SetState(Running):
Future

Figure 10.1: Startup of the AUTOSAR Runtime for Adaptive Applications

10.2.2 Machine Shutdown

A shutdown is requested by State Management after an application-specific event.
First, the application Function Groups may be brought to a corresponding state (not
shown). Afterwards, State Management triggers a transition to the Shutdown Ma-
chine State. The shutdown procedure is controlled by Execution Management.
Execution Management stops all platform Processes. Then, Execution Man-
agement terminates the State Management and Platform Health Manage-
ment Processes and requests a shutdown of the underlying operating system.

151 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

SM: State Management :Operating SystemEM: Execution
Management

PHM: Platform Health
Management

��� ���������	
 �
�

�����	
� �
	������ ����

�� ��
��
����� ���� ��
	�

��	�
 �	
 �
������ ���
�

��� �����
� �����

������	�
� ��
���������

:WatchdogInterface

ref
Function Group State Transition(Shutdown)

Disable
()

ReportExecutionState(terminating):
Result

event()

Shutdown
()

ReportExecutionState(terminating):
Result

TerminateProcess
(PHM)

TerminateProcess
(SM)

Figure 10.2: Shutdown of the AUTOSAR Runtime for Adaptive Applications

10.2.3 Function Group State Transition

A switch to another Function Group State is requested by State Management
based on its inputs and internal state. The transition to the new Function Group
State is controlled by Execution Management. First, all Processes are termi-
nated that are either not active in the target state, or do have a different Startup
Configuration in the target state. The latter may also include different startup de-
pendencies. Then, all Processes are started by Execution Management in the
order imposed by their dependencies. During the state transition, Execution Man-
agement notifies Platform Health Management on any change of the state of the
Processes. Platform Health Management adapts its supervisions accordingly.

152 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

:Execution
Management

:Operating System :State Management :Adaptive
Application

loop all processes of requestedState

loop all running processes

alt

[process not active in requestedFGState]

[process active, but with different startupConfiguration]

opt process not running

SIGTERM
()

TerminateProcess
()

SIGTERM
()

StartProcess
()

PerformDependencyResolution
(requestedState)

SetState
(requestedState)

TerminateProcess
()

Figure 10.3: Transition to another Function Group State

10.2.4 Failure Recovery

In case Platform Health Management detects a failure in an entity it supervises it
informs Execution Management about the supervision failure. Execution Man-
agement maps the supervised Process to the corresponding Function Group and
delegates to State Management to handle that failure in the Function Group and
perform recovery actions. State Management is an application-specific component
that, depending on its various inputs, internal state etc., may decide upon actions to be
taken to recover from a failure. There are two main possibilities:

• recover by switching Function Group State to another Function Group
State (e.g., for degradation)

• recover by re-entering the same Function Group State and essentially
restarting all Processes in the Function Group

• as a last resort, advise Platform Health Management to reset the Machine

153 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

:Platform Health
Management

:State
Management

app1: Adaptive Application

��������	
 �����
�

��

��
�� ���
��	� �����
�

«aapFunction...

:Execution
Management

�
 	��
�
� �� �����
��

�����
��������	
 �� 	�

�����
 � �����

�� ����� �

�����

�� ��
�

SetState(newState):
Future

performRecovery
()

RecoveryHandler
()

ReportCheckpoint
()

evaluateSupervision
()

Offer()

Figure 10.4: Failure recovery scenarios

10.3 Communication

Service-oriented communication in the AUTOSAR Adaptive Platform is guarded by
Identity and Access Management that provides access control. All service-
requests are handled by Communication Management. Communication Man-
agement determines the Adaptive Application Identity (AAID) of the sender
Process using Execution Management. Then, Communication Management
requests an access control decision from Identity and Access Management us-
ing the identity of the sender and information about the called service. Communica-
tion Management enforces the access control decision by forwarding the request to
the service in case the access was granted or dropping the request in case the access
was denied.

154 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

app1: Adaptive Application :Communication Management :Identity and Access Management:Execution Management app2: Adaptive Application

alt

[Access allowed]

[Access denied]

Send(request,
target)

GetAppID():
appID

CheckAccess(appID, target)

Deliver(request,
targetIP)

Drop()

Figure 10.5: Access control in service-oriented communication

10.4 Update and Configuration Management

10.4.1 Update of an Adaptive Application

When an Adaptive Application has to be updated, the new version of the ap-
plication first has to be transferred to the Update and Configuration Manage-
ment instance. The state of the application as well as Update and Configuration
Management are monitored by State Management. Only if there is nothing else run-
ning (state kIdle), the actual update process starts.

Update and Configuration Management then receives the signal to start pro-
cessing the transferred data. After successful processing, the update enters activa-
tion phase and Update and Configuration Management checks dependencies
in the transferred Software Packages. After successful activation, the Adaptive
Application is restarted and after successful restart, running the updated software.

The last step for Update and Configuration Management is to finish the update
process by cleaning up and deleting temporary data, old software version or stored
data which are no longer required for the execution of the Adaptive Application.

155 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

:Backend :UCM Subordinate :Adaptive Application:State Management

cleanup
()

Activate():
ActivateReturnType

:
FinishReturnType

CurrentStatus= :
kActivating

CurrentStatus= :
kIdle

CheckPackageDependencies
()

:
ActivateReturnType

CurrentStatus= :
kVerifying

restart()

CurrentStatus= :
kActivated

Finish():
FinishReturnType CurrentStatus= :

kCleaning-up

TransferData():
TransferId

ProcessSwPackage
(TransferId) CurrentStatus= :

kProcessing

CurrentStatus= :
kIdle

Figure 10.6: Successful update of an Adaptive Application

156 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

11 Deployment View

This chapter provides an overview of exemplary deployment scenarios for an AU-
TOSAR Adaptive Platform. Since the AUTOSAR Adaptive Platform is highly config-
urable in its deployment, this section rather provides constraints on supported deploy-
ments and a selection of relevant deployment scenarios.

11.1 Vehicle Software Deployment

«device»
Vehicle

«device»
machine1: Machine

«executionEnvironment»
:Adaptive Runtime

«device»
gateway: Machine

«executionEnvironment»
:Adaptive Runtime

:Backend System :Diagnostic Client

«executa...
OTA Client
Application

«executa...
Update and

Configuration
Management

«executa...
Update and

Configuration
Management

«device»
ecu1: ECU

«executionEnviron...
:Classic Platform

UCM Master

UCM Subordinate

OTA Client
«manifest»

«manifest»

«manifest»

«manifest»

Figure 11.1: Exemplary vehicle software update scenario

Update and Configuration Management allows to install and update software
on the AUTOSAR Adaptive Platform and AUTOSAR Classic Platform. For the AU-
TOSAR Adaptive Platform, Update and Configuration Management also al-
lows to remove software. The software packages can be received either from a Di-
agnostic Client or from a specific Backend System for over-the-air updates. In
a vehicle, one Adaptive Application takes the role of a master that controls the
update process in the vehicle and distributes individual software packages to the Ma-
chines and ECUs within a vehicle.

157 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

12 Cross-cutting Concepts

This section provides an overview of cross-cutting concepts and patterns used in the
AUTOSAR Adaptive Platform.

12.1 Overview of Platform Entities

The AUTOSAR Adaptive Platform defines design entities that several Functional
Clusters depend on. Figure 12.1 provides an overview of these entities, their logical
relationships, and the Functional Clusters that depend on them. For the sake of
brevity, this overview uses simplifications and abstractions over the actual specifica-
tions in the [10, manifest specification].

Software Package Software Cluster

- diagnosticConfig [0..1]
- version

Function Group

ProcessExecutable

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

Function Group State

«aapFunctionalCluster»
Platform Health Management

daemon-based

PhmSupervision Supervision Checkpoint

Startup Configuration

- options
- schedulingPriority

Adaptive
Application

«aapFunctionalCluster»
Update and Configuration Management

daemon-based

+state

0..*

2..*

+/requiredCluster
0..*

+process 1

1

0..*

0..*

+executionDependecy
0..*

+executable1

+/checkpoints

1..*

Figure 12.1: Overview of platform entities and their logical relationships

A Software Package is a digitally signed package that can be installed/uninstalled
via Update and Configuration Management. A Software Package contains
exactly one Software Cluster (see Section 12.4 for details). A Software Clus-
ter refers to a set of Executables (and other files). The corresponding executable
file then holds the executable code for the Machine that the AUTOSAR Adaptive Plat-
form runs on.

Additionally, a Software Cluster configuration collects a set of Processes (cf.
Section 12.4) and related entities. A Process refers to an Executable and provides
different Startup Configuration values, for example parameters, a scheduling

158 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

priority, and resource constraints. A Startup Configuration of a Process ap-
plies to one or more Function Group States. Function Group States belong
to a Function Group.

During runtime, State Management requests to enter a Function Group State
from Execution Management. Execution Management then terminates and
starts the Processes accordingly using the underlying Operating System.

For safety-critical systems, Platform Health Management performs supervision
of Processes according to rules (logical sequence, deadlines) defined in PhmSuper-
visions. A PhmSupervision refers to a number of Supervision Checkpoints.
During runtime, a process reports whenever it has reached such a checkpoint in its
control flow.

12.2 Function Group

A Function Group is (logically) made up a set of modeled Processes that provide
a certain functionality. For example, a Function Group could be an application,
or a service. A special Function Group is the Machine State that groups the
Process of the AUTOSAR Adaptive Platform itself. A Function Group contains a
set of Function Group States.

12.3 Function Group State

A Function Group State defines which Processes of a Function Group with
what configuration parameters shall be running or not. The Machine State (that
refers to the Processes of the AUTOSAR Adaptive Platform itself) defines at least the
following Function Group States: Off, Startup, Shutdown, and Restart.

12.4 Software Cluster

A Software Cluster configuration refers to a set of modeled Processes. Those
Processes are (transitively) used by one or more Function Group(s). Hereby, a
Function Group and its associated entities shall be part of only one Software
Cluster. In other words, Function Groups that span several Software Clus-
ters are invalid. A Software Cluster is packaged into one Software Package
- the atomic installable/updateable unit managed by Update and Configuration
Management. A Software Cluster may depend on other Software Clusters.
Such dependencies are expressed by version constraints. A Software Cluster
may also specify structural dependencies to Sub Software Clusters in order to
build larger installable units. The top of such a structural dependency hierarchy is
called a Root Software Cluster. Please note that a Software Cluster is only
used to configure deployment aspects. A Software Cluster is not a runtime entity.

159 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

A Root Software Cluster may specify a diagnostic configuration, in particular, a
diagnostic address. In contrast, a Sub Software Cluster may depend on a diag-
nostic configuration of its Root Software Cluster. The diagnostic configuration
applies to Processes that are (transitively) contained in a Root Software Clus-
ter and its Sub Software Cluster(s). That means, at runtime, any diagnostic
event produced by those Processes will be associated with the diagnostic address.
Please refer to Section 12.11 for further details on the diagnostic deployment.

An exemplary Software Cluster during application design is shown in Figure 12.2.
The application Software Cluster(s) are modeled/configured in the same way as
the platform Software Cluster by defining Function Groups with Function
Group States and associating StartupConfigurations of Processes to them.

A Software Cluster serves as a grouping entity during application design. As a
result, entities within a Software Cluster, in particular the Function Groups, do
not need to have a unique (simple) name within the overall model because their path is
still unique. This allows to design Software Clusters independently, for example,
by external suppliers.

a: Software Cluster

e1: Executable

fg1: Function Group

normal: Function
Group State

off: Function Group
State

degraded: Function
Group State

executionManifest: Manifest

p1: Process

cfg1: Startup
Configuration

platform: Software Cluster

:Manifest

EM: Process

:Startup
Configuration

����� �����	�
 	��
���	
�� ��������

b: Software Cluster

e2: Executable

executionManifest: Manifest

fg2: Function Group

off: Function Group
State

normal: Function
Group State

p2: Process

cfg2: Startup
Configuration

Figure 12.2: Exemplary Software Cluster during application design

160 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

From such a standardized model, an equivalent implementation-specific configura-
tion for Execution Management is derived that is used during runtime (see Figure
12.3). That configuration advises Execution Management to start and configure
processes accordingly when a Function Group State is requested. Hereby, Ex-
ecution Management (logically) merges configurations contributed by all installed
Software Packages. Other Functional Clusters that depend on configuration
provided in the Manifests merge the configurations contributed by all installed Soft-
ware Packages in the same way. Please also note that there is no corresponding
runtime entity for a Software Cluster (see Figure 12.3).

:Execution ManagementPlatform EM
Configuration

fg1 EM
Configuration

����� ���	
�����
��
 �� ���	���
��
 ����

	�����
������
	���
 ��
������
�����
 ��

���
������

fg2 EM
Configuration

e1: Executable

fg1: Function Group

normal: Function
Group State

off: Function Group
State

degraded: Function
Group State

p1: Process

cfg1: Startup
Configuration

e2: Executable

fg2: Function Group

off: Function Group
State

normal: Function
Group State

p2: Process

cfg2: Startup
Configuration

����� ���	
�����
��
 �� ���	���
��
 ����

	�����
������
	���
 ��
������
�����
 ��

���
������

Figure 12.3: Impact of exemplary Software Cluster during runtime

All Processes related to the Functional Clusters of the AUTOSAR Adaptive
Platform should be referenced only in Software Clusters of category PLAT-
FORM_CORE or PLATFORM. This allows for platform-independent development of
Software Clusters of category APPLICATION_LAYER.

In case a Functional Cluster may need multiple logical instances (for example,
Diagnostic Management has a logical instance per diagnostic address), an imple-
mentation of the Functional Cluster should still use a single physical (daemon)
process.

An AUTOSAR Adaptive Platform vendor may deviate from this design guide but should
provide additional countermeasures to keep Adaptive Applications portable.

161 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

12.5 Machine

The AUTOSAR Adaptive Platform regards hardware it runs on as a Machine. The ra-
tionale behind that is to achieve a consistent platform view regardless of any virtualiza-
tion technology which might be used. The Machine might be a real physical machine,
a fully-virtualized machine, a para-virtualized OS, an OS-level-virtualized container or
any other virtualized environment.

On hardware, there can be one or more Machine, and only a single instance of AU-
TOSAR Adaptive Platform runs on a machine. It is generally assumed that this hard-
ware includes a single chip, hosting a single or multiple Machines. However, it is also
possible that multiple chips form a single Machine if the AUTOSAR Adaptive Platform
implementation allows it.

12.6 Manifest

A Manifest represents a piece of AUTOSAR model description that is created to
support the configuration of an AUTOSAR Adaptive Platform product and which is up-
loaded to the AUTOSAR Adaptive Platform product, potentially in combination with
other artifacts (like binary files) that contain executable code to which the Manifest
applies. Please note that a typical Adaptive Application will make use of several
distinct but interrelated Manifests. Hereby, the individual Manifests contribute in-
formation to the complete application model. For example, each Software Cluster
may contribute a self-contained set of Manifests to configure its functionality.

The usage of a Manifest is limited to the AUTOSAR Adaptive Platform. This does
not mean, however, that all ARXML produced in a development project that targets
the AUTOSAR Adaptive Platform is automatically considered a Manifest. In fact,
the AUTOSAR Adaptive Platform is usually not exclusively used in a vehicle project.
A typical vehicle will most likely be also equipped with a number of ECUs developed
on the AUTOSAR Classic Platform and the system design for the entire vehicle will,
therefore, have to cover both, ECUs built on top of the AUTOSAR Classic Platform and
Machines created on top of the AUTOSAR Adaptive Platform.

In principle, the term Manifest could be defined such that there is conceptually just
one "Manifest" and every deployment aspect would be handled in this context. This
does not seem appropriate because it became apparent that Manifest-related model-
elements exist that are relevant in entirely different phases of a typical development
project.

This aspect is taken as the main motivation that next to the application design it is
necessary to subdivide the definition of the term Manifest in three different partitions:

Application Design This kind of description specifies all design-related aspects that
apply to the creation of application software for the AUTOSAR Adaptive Platform. It
is not necessarily required to be deployed to the adaptive platform machine, but the
application design aids the definition of the deployment of application software in the

162 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

Execution Manifest and Service Instance Manifest. See Section 12.7 for
details.

Execution Manifest This kind of Manifest is used to specify the deployment-related
information of applications running on the AUTOSAR Adaptive Platform. An Execu-
tion Manifest is bundled with the actual executable code to support the integration
of the executable code onto the machine. See Section 12.8 for details.

Service Instance Manifest This kind of Manifest is used to specify how service-
oriented communication is configured in terms of the requirements of the underlying
transport protocols. A Service Instance Manifest is bundled with the actual
executable code that implements the respective usage of service-oriented communi-
cation. See Section 12.9 for details.

Machine Manifest This kind of Manifest is supposed to describe deployment-related
content that applies to the configuration of just the underlying machine (i.e. without any
applications running on the machine) that runs an AUTOSAR Adaptive Platform. A
Machine Manifest is bundled with the software taken to establish an instance of
the AUTOSAR Adaptive Platform. See Section 12.10 for details.

The temporal division between the definition (and usage) of different kinds of Mani-
fest leads to the conclusion that in most cases different physical files will be used to
store the content of the three kinds of Manifest. In addition to the Application Design
and the different kinds of Manifest, the AUTOSAR Methodology supports a Sys-
tem Design with the possibility to describe Software Components of both AUTOSAR
Platforms that will be used in a System in one single model. The Software Compo-
nents of the different AUTOSAR platforms may communicate in a service-oriented way
with each other. But it is also possible to describe a mapping of Signals to Services
to create a bridge between the service-oriented communication and the signal-based
communication.

12.7 Application Design

The application design describes all design-related modeling that applies to the cre-
ation of application software for the AUTOSAR AP. Application Design focuses on the
following aspects:

• Data types used to classify information for the software design and implementa-
tion

• Service interfaces as the pivotal element for service-oriented communication

• Definition how service-oriented communication is accessible by the application

• Persistency Interfaces as the pivotal element to access persistent data and files

• Definition how persistent storage is accessible by the application

• Definition how files are accessible by the application

163 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

• Definition how crypto software is accessible by the application

• Definition how the Platform Health Management is accessible by the application

• Definition how Time Bases are accessible by the application

• Serialization properties to define the characteristics of how data is serialized for
the transport on the network

• Description of client and server capabilities

• Grouping of applications in order to ease the deployment of software.

The artifacts defined in the application design are independent of a specific deployment
of the application software and thus ease the reuse of application implementations for
different deployment scenarios.

12.8 Execution Manifest

The purpose of the execution manifest is to provide information that is needed for the
actual deployment of an application onto the AUTOSAR AP. The general idea is to
keep the application software code as independent as possible from the deployment
scenario to increase the odds that the application software can be reused in different
deployment scenarios. With the execution manifest the instantiation of applications is
controlled, thus it is possible to

• instantiate the same application software several times on the same machine, or
to

• deploy the application software to several machines and instantiate the applica-
tion software per machine.

The Execution manifest focuses on the following aspects:

• Startup configuration to define how the application instance shall be started. The
startup includes the definition of startup options and access roles. Each startup
may be dependent on machines states and/or function group states.

• Resource Management, in particular resource group assignments.

12.9 Service Instance Manifest

The implementation of service-oriented communication on the network requires con-
figuration which is specific to the used communication technology (e.g. SOME/IP).
Since the communication infrastructure shall behave the same on the provider and the
requesters of a service, the implementation of the service shall be compatible on both
sides.

The Service Instance Manifest focuses on the following aspects:

164 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

• Service interface deployment to define how a service shall be represented on the
specific communication technology.

• Service instance deployment to define for specific provided and required service
instances the required credentials for the communication technology.

• The configuration of E2E protection

• The configuration of Security protection

• The configuration of Log and Trace

12.10 Machine Manifest

The machine manifest allows to configure the actual adaptive platform instance running
on specific hardware (machine).

The Machine Manifest focuses on the following aspects:

• Configuration of the network connection and defining the basic credentials for the
network technology (e.g. for Ethernet this involves setting of a static IP address
or the definition of DHCP).

• Configuration of the service discovery technology (e.g. for SOME/IP this involves
the definition of the IP port and IP multi-cast address to be used).

• Definition of the used machine states.

• Definition of the used function groups.

• Configuration of the adaptive platform functional cluster implementations (e.g.
the operating system provides a list of OS users with specific rights).

• The configuration of the Crypto platform Module.

• The configuration of Platform Health Management.

• The configuration of Time Synchronization.

• Documentation of available hardware resources (e.g. how much RAM is avail-
able; how many processor cores are available).

12.11 Diagnostics deployment

A diagnostic configuration, in particular a diagnostic address, may only be assigned
to a Root Software Cluster in the Manifest. Nevertheless, the mapped Diag-
nosticContributionSet(s) may be distributed across several Software Clus-
ters. This concept provides a lot of flexibility in assignment of a single diagnostic
address to Software Clusters. For example, in one extreme this allows to use a
single diagnostic address for the whole Machine (see Figure 12.4), in another extreme

165 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

a single diagnostic address per Software Cluster could be used (see Figure 12.5).
Deployment scenarios in between those extremes are also possible.

Shared diagnostic address 0x1234

Platform Core: Software Cluster

- category = PLATFORM_CORE
- diagnosticAddress = 0x1234

Platform: Software Cluster

- category = PLATFORM

������ ��	� 	
�	 ������� �
���
�
��	
��� ��� ��
��
��� 	� 	
� �
�����	
� ����
����	
��
��� ���� ���� ��� ����
	��

app1: Software Cluster

- category = APPLICATION_LAYER

app2Root: Software Cluster

- category = APPLICATION_LAYER

app2Sub1: Software Cluster

- category = APPLICATION_LAYER

app2Sub2: Software Cluster

- category = APPLICATION_LAYER

���� � �
���� ���	 ���	����

����	�� ����
�
�� �� �
�����	
�

�������� �
��� 	
� ���	����

����	��� �
��� 	
� ����

�
�����	
����	�
��	
����	� 	
�

�
�����	
� ������
�

��	���	
����� ��	����� �� 	
�

�	
�� ���	���� ����	����

shared: DiagnosticContributionSet

- DID 0x2314
- DID 0x4321

� �
���� �
�����	
� �������
�

�
���� �� ��� ���	���� ����	���

� 	

� �������� ��� ���	����

����	��� ����� 	� 	
� ����

�
����

�
�����	
����	�
��	
����	

������� � � � ��� ������

��
�	 ���� ���� 	
����
��	 ���

�
�����	
����	�
��	
����	� ���

	
� ���� �
�����	
� ��������

Figure 12.4: Example defining a single diagnostic address for the whole Machine

Diagnostic address 0x4Dinagnostic address 0x3

Shared diagnostic address 0x2Diagnostic address 0x1

Platform Core: Software Cluster

- category = PLATFORM_CORE
- diagnosticAddress = 0x3

Platform: Software Cluster

- category = PLATFORM
- diagnosticAddress = 0x4

������ ��	� 	
�	 ������� �
���
�
��	
��� ��� ��
��
��� 	� 	
� �
�����	
� ����
����	
��

��� ���� ���� ��� ����
	��

app1: Software Cluster

- category = APPLICATION_LAYER
- diagnosticAddress = 0x1

app2Root: Software Cluster

- category = APPLICATION_LAYER
- diagnosticAddress = 0x2

app2Sub1: Software Cluster

- category = APPLICATION_LAYER

app2Sub2: Software Cluster

- category = APPLICATION_LAYER

:DiagnosticContributionSet

- DID 0x1234
- DID 0x2314

�
� ���� ��� ��� �� ���� �� ���	���� ����	��� �
	
 � �
������	 �
�����	
� ��������

:DiagnosticContributionSet

- DID 0x1234

:DiagnosticContributionSet

- DID 0x1234

���
 ���	 ���	���� ����	��

�� �� ��� �
�����	
�

�������
� 	

� ��������

Figure 12.5: Example using one diagnostic address for each Software Cluster

In the case of a distributed DiagnosticContributionSet, each Software Clus-
ter shall include its related diagnostic configuration objects (for example, the Data
Identifier configuration). The merge of such a split DiagnosticContribution-
Set is done internally by the AUTOSAR Adaptive Platform (e.g. during installation or
during start up the Diagnostic Management daemon).

166 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

12.12 Error Handling

Proper handling of errors during runtime is an important aspect to build safe and se-
cure systems. The AUTOSAR Adaptive Platform does provide means for raising and
handling of such errors on different levels in the platform.

Platform Health Management detects errors (errors in the logical control flow,
missed deadlines, and missed liveness reporting) at the level of Processes and
performs recovery actions (for example, degradation) according to rules defined in
the Manifest. Execution Management detects unexpected termination of Pro-
cesses and reports to State Management for handling of such errors.

During execution of a Process of an Adaptive Application, different abnormal
conditions might be detected and need to be handled and/or reported. The follow-
ing types of unsuccessful operations are distinguished within the AUTOSAR Adaptive
Platform:

• An Error is the inability of an AUTOSAR Runtime for Adaptive Applications API
function to fulfill its specified purpose. An Error it is often a consequence of
invalid and/or unexpected input data. An Error is considered to be recoverable
and therefore shall be handled by applications.

• A Violation is the consequence of failed pre- or post-conditions of internal
state of the AUTOSAR Runtime for Adaptive Applications. A Violation is con-
sidered to be non-recoverable.

• A Corruption is the consequence of the corruption of a system resource, e.g.
stack or heap overflow, or a hardware memory flaw (for example, a detected bit
flip). A Corruption is considered to be non-recoverable.

• A failed default allocation is the inability of the AUTOSAR Runtime for
Adaptive Applications’s default memory allocation mechanism to satisfy an allo-
cation request (for example, there is not enough free memory available).

It is expected that a Violation or Corruption will not be experienced by a user of
the AUTOSAR Adaptive Platform (i.e. an application developer), unless there is some-
thing seriously wrong in the overall system. For example, faulty hardware may lead to a
Corruption. A Violation may occur if basic assumptions about resource require-
ments are violated, or the user runs the AUTOSAR Runtime for Adaptive Applications
in a configuration that is not supported by its vendor.

12.13 Trusted Platform

To guarantee the correct function of the system, it is crucial to ensure that the code ex-
ecuted on the AUTOSAR Adaptive Platform is unaltered (integrity) and has legitimate
origin (authenticity). Keeping this property allows the integrator to build a Trusted
Platform. A key property of a system that implements a Trusted Platform is a
Trust Anchor (also called Root of Trust). A Trust Anchor is often realized

167 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

as a public key that is stored in a secure environment, e.g. in non-modifiable persistent
memory or in an Hardware Security Module. A system designer is responsible
to ensure that the system starts beginning with a Trust Anchor and that the chain of
trust is kept until the Execution Management is launched. Depending on the mech-
anism that is chosen by the system designer to establish the chain of trust, the integrity
and authenticity of the entire system (including all executables) may be checked during
system start-up. Alternatively, the system designer might only ensure that the already
executed software has been checked regarding integrity and authenticity and Execu-
tion Management takes over responsibility on continuing the chain of trust when it
takes over control of the system. In the latter case, the system integrator is responsible
to ensure that the Execution Management is configured accordingly.

Passing trust requires that a trusted entity checks (using trusted functionality) that the
entity down the chain is authentic. The Trust Anchor (the first entity in the chain) is
authentic by definition. An example of such a chain of trust could look like this: The
Trust Anchor authenticates the bootloader before the bootloader is being started.
In each subsequent step in the boot process, the to-be-started executable shall be au-
thenticated first, for example by the executable started previously or by some external
entity like an Hardware Security Module. After the relevant parts of the Operat-
ing System have been authentically started, it shall launch Execution Manage-
ment as one of its first processes in the same manner passing trust to the AUTOSAR
Adaptive Platform. Then, Execution Management takes over the responsibility of
authenticating Adaptive Applications before launching them.

As stated above, if authenticity is not checked by the functionality of the Trust An-
chor itself, which is authentic by definition, the functionality that shall be applied to
verify authenticity of an executable has to be authenticated as well before it is applied.
For instance, if the Crypto Functional Cluster shall be used to verify authentic-
ity of executables, the Crypto Functional Cluster itself shall be authenticated by
some trusted entity before it is used.

12.14 Secure Communication

AUTOSAR supports different protocols that provide communication security over a net-
work. Integrity of messages can be ensured by the end-to-end protection offered by the
[11, AUTOSAR E2E library]. End-to-end protection assumes that safety- and security-
related data exchange shall be protected at runtime against the effects of faults within
the communication link. Such faults include random hardware faults (e.g. corrupt regis-
ters of a transceiver), interference (e.g. electromagnetic interference), and systematic
faults in the communication stack. The configuration of end-to-end-protection is done
via Service Instance Manifest on level of Service events, methods, and fields
(notifier, get, and set methods). Confidentiality and authenticity of messages can be
ensured by dedicated configurations for the individual transport protocols (e.g. TLS,
SecOC) in the Service Instance Manifest on level of Service events, meth-
ods, and fields (notifier, get, and set methods).

168 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

13 Risks and Technical Debt

This chapter lists and rates risks associated with the overall architecture of the AU-
TOSAR Adaptive Platform in Section 13.1. These risks usually might cause that some
of the quality attributes of the AUTOSAR Adaptive Platform are not (fully) meat. Sec-
tion 13.2 lists technical debt of the AUTOSAR Adaptive Platform that may impact its
maintainability.

13.1 Risks

13.1.1 Risk Assessment

This document categorizes risks according to their severity. The severity is a function
of the probability and the impact of a risk. The probabilities are categorized as follows:

• very low - probability is less than 1 thousandth

• low - probability is between 1 thousandth and 1 percent

• medium - probability is between 1 percent and 10 percent

• high - probability is between 10 percent and 50 percent

• very high - probability is more than 50 percent

The impact of a risk is categorized as follows:

• very low - at most one quality scenario will take additional significant effort to be
satisfied

• low - more than one quality scenario will take additional significant effort to be
satisfied

• medium - at most one quality scenario is not satisfied with small gaps

• high - at most one quality scenario is not satisfied with big gaps

• very high - more than one quality scenario is not satisfied with big gaps

The final severity of a risk is then calculated according to table 13.1.

Probability
Impact very low low medium high very high
very low low (1) low (2) low (3) medium (4) medium (5)
low low (2) medium (4) medium (6) high (8) high (10)
medium low (3) medium (6) high (9) high (12) high (15)
high medium (4) high (8) high (12) extreme (16) extreme (20)
very high medium (5) high (10) high (15) extreme (20) extreme (25)

Table 13.1: Risk Severity Matrix

169 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

13.1.2 Risk List

No architectural risks were identified yet.

13.2 Technical Debt

No technical debt has been identified yet.

170 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R21-11

References

[1] ISO 42010:2011 – Systems and software engineering – Architecture description
http://www.iso.org

[2] Explanation of Adaptive Platform Software Architectural Decisions
AUTOSAR_EXP_SWArchitecturalDecisions

[3] Glossary
AUTOSAR_TR_Glossary

[4] Main Requirements
AUTOSAR_RS_Main

[5] General Requirements specific to Adaptive Platform
AUTOSAR_RS_General

[6] ATAMSM: Method for Architecture Evaluation
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001
_13706.pdf

[7] Agile Software Development: Principles, Patterns, and Practices

[8] Guide to the Software Engineering Body of Knowledge, Version 3.0
www.swebok.org

[9] API standards for Open Systems
http://www.opengroup.org/austin/papers/wp-apis.txt

[10] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[11] Specification of SW-C End-to-End Communication Protection Library
AUTOSAR_SWS_E2ELibrary

171 of 171 Document ID 982: AUTOSAR_EXP_SWArchitecture

http://www.iso.org
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000\hskip 0em{}_005\hskip 0em{}_001\hskip 0em{}_13706.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000\hskip 0em{}_005\hskip 0em{}_001\hskip 0em{}_13706.pdf
www.swebok.org
http://www.opengroup.org/austin/papers/wp-apis.txt

	1 Introduction
	1.1 Objectives
	1.2 Scope
	1.3 Document Structure

	2 Definition of Terms and Acronyms
	2.1 Acronyms and Abbreviations
	2.2 Definition of Terms

	3 Related Documentation
	4 Overview and Goals
	4.1 Requirements Overview
	4.2 Quality Goals
	4.3 Stakeholders

	5 Architecture Constraints
	5.1 Internal Interfaces
	5.2 Distributed Work

	6 Quality Requirements
	6.1 Quality Attributes
	6.1.1 AUTOSAR Adaptive Platform Standard
	6.1.2 AUTOSAR Adaptive Platform Stack
	6.1.3 AUTOSAR Adaptive Application

	6.2 Quality Scenarios

	7 System Scope and Context
	7.1 Adaptive Application
	7.2 Dependencies
	7.2.1 Crypto Provider
	7.2.2 Operating System
	7.2.3 Watchdog

	7.3 External Systems
	7.3.1 AUTOSAR Adaptive Application
	7.3.2 AUTOSAR Classic Platform
	7.3.3 Third-party Platform
	7.3.4 Diagnostic Client
	7.3.5 Backend

	8 Solution Strategy
	8.1 Architectural Approach
	8.2 Decomposition Strategy
	8.3 UML Profile
	8.4 Technology
	8.4.1 Implementation Language
	8.4.2 Parallel Processing

	8.5 Design Principles
	8.5.1 Leveraging existing standards
	8.5.2 SOLID principles
	8.5.3 Acyclic Dependencies Principle

	8.6 Deployment
	8.7 Verification and Validation

	9 Building Block View
	9.1 Overview
	9.1.1 Description pattern

	9.2 Runtime
	9.2.1 Execution Management
	9.2.2 State Management
	9.2.3 Log and Trace
	9.2.4 Core
	9.2.5 Operating System Interface

	9.3 Communication
	9.3.1 Communication Management
	9.3.2 Network Management
	9.3.3 Time Synchronization

	9.4 Storage
	9.4.1 Persistency

	9.5 Security
	9.5.1 Cryptography
	9.5.2 Identity and Access Management
	9.5.3 Adaptive Intrusion Detection System Manager

	9.6 Safety
	9.6.1 Platform Health Management

	9.7 Configuration
	9.7.1 Update and Configuration Management
	9.7.2 Registry

	9.8 Diagnostics
	9.8.1 Diagnostic Management

	10 Runtime View
	10.1 Overview
	10.2 AUTOSAR Runtime for Adaptive Applications Lifecycle
	10.2.1 Machine Startup
	10.2.2 Machine Shutdown
	10.2.3 Function Group State Transition
	10.2.4 Failure Recovery

	10.3 Communication
	10.4 Update and Configuration Management
	10.4.1 Update of an Adaptive Application

	11 Deployment View
	11.1 Vehicle Software Deployment

	12 Cross-cutting Concepts
	12.1 Overview of Platform Entities
	12.2 Function Group
	12.3 Function Group State
	12.4 Software Cluster
	12.5 Machine
	12.6 Manifest
	12.7 Application Design
	12.8 Execution Manifest
	12.9 Service Instance Manifest
	12.10 Machine Manifest
	12.11 Diagnostics deployment
	12.12 Error Handling
	12.13 Trusted Platform
	12.14 Secure Communication

	13 Risks and Technical Debt
	13.1 Risks
	13.1.1 Risk Assessment
	13.1.2 Risk List

	13.2 Technical Debt

