
SOME/IP Protocol Specification
AUTOSAR FO R20-11

Document Title SOME/IP Protocol Specification
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 696

Document Status published

Part of AUTOSAR Standard Foundation

Part of Standard Release R20-11

Document Change History
Date Release Changed by Description

2020-11-30 R20-11
AUTOSAR
Release
Management

• Removed Draft Status from TLV
Requirements
• Fixed discrepancies between SWS

and PRS
• Clarified usage of length field
• Restricted alignment of variable

length arrays to 8, 16, 32, 64, 128 or
256 Bits
• Editorial Changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Added
– Support for unit64 / sint64
– Error-Codes for E2E-Protection

• Clarify
– Serialization of fixed length

array data
– Support for Data Accumulation

feature
– Contradicting requirements

• Introduce
implementsLegacyStringSerialization
tag (as successor of
implementsSOMEIPStringHandling)
• Editorial Changes
• Changed Document Status from

Final to published

2019-03-29 1.5.1
AUTOSAR
Release
Management

• No content changes

1 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

2018-10-31 1.5.0
AUTOSAR
Release
Management

• Backward-incompatibility statement
removed
• Some statements improved

2018-03-29 1.4.0
AUTOSAR
Release
Management

• Improved traceability

2017-12-08 1.3.0
AUTOSAR
Release
Management

• No content changes

2017-10-27 1.2.0
AUTOSAR
Release
Management

• Editorial changes

2017-03-31 1.1.0
AUTOSAR
Release
Management

• Serialization of Structured Datatypes
and Arguments with Identifier and
optional members

2016-11-30 1.0.0
AUTOSAR
Release
Management

Initial Release

2 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Table of Contents

1 Introduction and overview 6

1.1 Protocol purpose and objectives . 6
1.2 Applicability of the protocol . 6

1.2.1 Constraints and assumptions 6
1.2.2 Limitations . 7

1.3 Dependencies . 7
1.4 Document Structure . 7

2 Protocol Requirements 8

2.1 Requirements Traceability . 8

3 Acronyms and Abbreviations 16

4 Protocol specification 18

4.1 Specification of SOME/IP Message Format (Serialization) 18
4.1.1 Limitation . 18
4.1.2 Header . 18

4.1.2.1 Message ID [32 Bit] 20
4.1.2.2 Method ID [15 Bit] 20
4.1.2.3 Event ID [15 Bit] . 20
4.1.2.4 Length [32 Bit] . 21
4.1.2.5 Request ID [32 Bit] 21
4.1.2.6 Protocol Version [8 Bit] 23
4.1.2.7 Interface Version [8 Bit] 23
4.1.2.8 Message Type [8 Bit] 23
4.1.2.9 Return Code [8 Bit] 24
4.1.2.10 Payload [variable size] 25

4.1.3 Endianess . 25
4.1.4 Serialization of Data Structures 25

4.1.4.1 Basic Datatypes . 27
4.1.4.2 Structured Datatypes (structs) 27
4.1.4.3 Structured Datatypes and Arguments with Identifier

and optional members 28
4.1.4.4 Strings . 36
4.1.4.5 Arrays . 38
4.1.4.6 Enumeration . 42
4.1.4.7 Bitfield . 42
4.1.4.8 Union / Variant . 42

4.2 Specification of SOME/IP Protocol . 44
4.2.1 Transport Protocol Bindings 44

4.2.1.1 UDP Binding . 45
4.2.1.2 TCP Binding . 46
4.2.1.3 Multiple Service-Instances 48

4 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

4.2.1.4 Transporting large SOME/IP messages of UDP
(SOME/IP-TP) . 49

4.2.2 Request/Response Communication 55
4.2.3 Fire&Forget Communication 56
4.2.4 Notification Events . 57

4.2.4.1 Strategy for sending notifications 58
4.2.5 Fields . 58
4.2.6 Error Handling . 59

4.2.6.1 Return Code . 59
4.2.6.2 Error Message . 60
4.2.6.3 Error Processing Overview 61
4.2.6.4 Communication Errors and Handling of Communica-

tion Errors . 63
4.3 Compatibility Rules for Interface Version 63

5 Configuration Parameters 67

6 Protocol usage and guidelines 68

6.1 Choosing the transport protocol . 68
6.2 Transporting CAN and FlexRay Frames 68
6.3 Insert Padding for structs . 69

7 References 70

5 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

1 Introduction and overview

This protocol specification specifies the format, message sequences and seman-
tics of the AUTOSAR Protocol "Scalable service-Oriented MiddlewarE over IP
(SOME/IP)".

SOME/IP is an automotive/embedded communication protocol which supports remote
procedure calls, event notifications and the underlying serialization/wire format. The
only valid abbreviation is SOME/IP. Other abbreviations (e.g. Some/IP) are wrong and
shall not be used.

1.1 Protocol purpose and objectives

The basic motivation to specify "Yet another RPC-Mechanism" instead of using an
existing infrastructure/technology is the goal to have a technology that:

• Fulfills the hard requirements regarding resource consumption in an embedded
world

• Is compatible through as many use-cases and communication partners as possi-
ble

• compatible with AUTOSAR at least on the wire-format level; i.e. can commu-
nicate with PDUs AUTOSAR can receive and send without modification to the
AUTOSAR standard. The mappings within AUTOSAR shall be chosen according
to the SOME/IP specification.

• Provides the features required by automotive use-cases

• Is scalable from tiny to large platforms

1.2 Applicability of the protocol

SOME/IP shall be implemented on different operating system (i.e. AUTOSAR, GENIVI,
and OSEK) and even embedded devices without operating system. SOME/IP shall be
used for inter-ECU Client/Server Serialization. An implementation of SOME/IP allows
AUTOSAR to parse the RPC PDUs and transport the signals to the application.

1.2.1 Constraints and assumptions

The "Support for serialization of extensible data structs" has been introduced - which
SOME/IP serializers based on AUTOSAR Foundation Standard 1.0.0 (AUTOSAR
Classic Standard 4.3.0) cannot process. To indicate this interoperability issue

6 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00220] requires to increase the major interface version of the respec-
tive serialized data.

1.2.2 Limitations

This document gives a holistic overview over SOME/IP but doesn’t state any require-
ments towards any implementation of BSW modules.

Please be aware that not all parts of SOME/IP may be implemented in AUTOSAR.

1.3 Dependencies

There are no dependencides to AUTOSAR SWS modules.

1.4 Document Structure

The SOME/IP PRS will describe the following two aspects of SOME/IP.

Specification of SOME/IP on wire-format (Serialization)

• Structure of Header Format

• How the different data types are serialized as per SOME/IP

Specification of Protocol for Event and RPC-based communication

• Transport Protocol

• Rules that govern the RPC for SOME/IP

7 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

2 Protocol Requirements

2.1 Requirements Traceability

Feature Description Satisfied by
[RS_SOMEIP_00002] SOME/IP protocol shall provide

service-based communication
[PRS_SOMEIP_00043]
[PRS_SOMEIP_00703]
[PRS_SOMEIP_00909]

[RS_SOMEIP_00003] SOME/IP protocol shall provide
support of multiple versions of a
service interface

[PRS_SOMEIP_00053]
[PRS_SOMEIP_00937]
[PRS_SOMEIP_00938]

[RS_SOMEIP_00004] SOME/IP protocol shall support
event communication

[PRS_SOMEIP_00925]
[PRS_SOMEIP_00926]

[RS_SOMEIP_00005] SOME/IP protocol shall support
different strategies for event
communication

[PRS_SOMEIP_00183]

[RS_SOMEIP_00006] SOME/IP protocol shall support
uni-directional RPC communication

[PRS_SOMEIP_00171]
[PRS_SOMEIP_00924]

[RS_SOMEIP_00007] SOME/IP protocol shall support
bi-directional RPC communication

[PRS_SOMEIP_00920]
[PRS_SOMEIP_00921]
[PRS_SOMEIP_00922]
[PRS_SOMEIP_00923]
[PRS_SOMEIP_00927]
[PRS_SOMEIP_00928]

[RS_SOMEIP_00008] SOME/IP protocol shall support
error handling of RPC
communication

[PRS_SOMEIP_00055]
[PRS_SOMEIP_00058]
[PRS_SOMEIP_00187]
[PRS_SOMEIP_00188]
[PRS_SOMEIP_00189]
[PRS_SOMEIP_00190]
[PRS_SOMEIP_00191]
[PRS_SOMEIP_00195]
[PRS_SOMEIP_00537]
[PRS_SOMEIP_00539]
[PRS_SOMEIP_00576]
[PRS_SOMEIP_00614]
[PRS_SOMEIP_00701]
[PRS_SOMEIP_00901]
[PRS_SOMEIP_00902]
[PRS_SOMEIP_00903]
[PRS_SOMEIP_00904]
[PRS_SOMEIP_00905]
[PRS_SOMEIP_00910]

[RS_SOMEIP_00009] SOME/IP protocol shall support
field communication

[PRS_SOMEIP_00179]
[PRS_SOMEIP_00180]
[PRS_SOMEIP_00181]
[PRS_SOMEIP_00182]
[PRS_SOMEIP_00183]
[PRS_SOMEIP_00909]

8 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[RS_SOMEIP_00010] SOME/IP protocol shall support
different transport protocols
underneath

[PRS_SOMEIP_00137]
[PRS_SOMEIP_00139]
[PRS_SOMEIP_00140]
[PRS_SOMEIP_00141]
[PRS_SOMEIP_00142]
[PRS_SOMEIP_00154]
[PRS_SOMEIP_00160]
[PRS_SOMEIP_00535]
[PRS_SOMEIP_00706]
[PRS_SOMEIP_00707]
[PRS_SOMEIP_00708]
[PRS_SOMEIP_00709]
[PRS_SOMEIP_00710]
[PRS_SOMEIP_00711]
[PRS_SOMEIP_00720]
[PRS_SOMEIP_00721]
[PRS_SOMEIP_00722]
[PRS_SOMEIP_00723]
[PRS_SOMEIP_00724]
[PRS_SOMEIP_00725]
[PRS_SOMEIP_00726]
[PRS_SOMEIP_00727]
[PRS_SOMEIP_00728]
[PRS_SOMEIP_00729]
[PRS_SOMEIP_00730]
[PRS_SOMEIP_00731]
[PRS_SOMEIP_00732]
[PRS_SOMEIP_00733]
[PRS_SOMEIP_00734]
[PRS_SOMEIP_00735]
[PRS_SOMEIP_00736]
[PRS_SOMEIP_00738]
[PRS_SOMEIP_00740]
[PRS_SOMEIP_00741]
[PRS_SOMEIP_00742]
[PRS_SOMEIP_00743]
[PRS_SOMEIP_00744]
[PRS_SOMEIP_00745]
[PRS_SOMEIP_00746]
[PRS_SOMEIP_00747]
[PRS_SOMEIP_00749]
[PRS_SOMEIP_00750]
[PRS_SOMEIP_00751]
[PRS_SOMEIP_00752]
[PRS_SOMEIP_00753]
[PRS_SOMEIP_00754]
[PRS_SOMEIP_00940]
[PRS_SOMEIP_00942]
[PRS_SOMEIP_00943]

[RS_SOMEIP_00011] SOME/IP protocol shall support
messages of different lengths

[PRS_SOMEIP_00722]

9 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[RS_SOMEIP_00012] SOME/IP protocol shall support
session handling

[PRS_SOMEIP_00521]
[PRS_SOMEIP_00533]
[PRS_SOMEIP_00720]
[PRS_SOMEIP_00721]
[PRS_SOMEIP_00739]
[PRS_SOMEIP_00935]
[PRS_SOMEIP_00936]

[RS_SOMEIP_00014] SOME/IP protocol shall support
handling of protocol errors on
receiver side

[PRS_SOMEIP_00195]
[PRS_SOMEIP_00576]
[PRS_SOMEIP_00614]
[PRS_SOMEIP_00910]

[RS_SOMEIP_00015] SOME/IP protocol shall support
multiple instances of a service

[PRS_SOMEIP_00138]
[PRS_SOMEIP_00162]
[PRS_SOMEIP_00163]

[RS_SOMEIP_00016] SOME/IP protocol shall support
combining multiple RPC methods,
events and fields in one service

[PRS_SOMEIP_00040]
[PRS_SOMEIP_00366]

[RS_SOMEIP_00017] SOME/IP protocol shall support
grouping events into eventgroups

[PRS_SOMEIP_00365]
[PRS_SOMEIP_00366]

[RS_SOMEIP_00018] SOME/IP protocol shall support
grouping fields in eventgroups

[PRS_SOMEIP_00366]

[RS_SOMEIP_00021] SOME/IP protocol shall identify
RPC methods of services using
unique identifiers

[PRS_SOMEIP_00034]

[RS_SOMEIP_00022] SOME/IP protocol shall identify
events of services using unique
identifiers

[PRS_SOMEIP_00034]

[RS_SOMEIP_00023] SOME/IP protocol shall identify
event groups of services using
unique identifiers

[PRS_SOMEIP_00034]

[RS_SOMEIP_00024] SOME/IP protocol shall define
reserved identifiers

[PRS_SOMEIP_00191]
[PRS_SOMEIP_00907]

[RS_SOMEIP_00025] SOME/IP protocol shall support the
identification of callers of an RPC
using unique identifiers

[PRS_SOMEIP_00043]
[PRS_SOMEIP_00044]
[PRS_SOMEIP_00532]
[PRS_SOMEIP_00702]
[PRS_SOMEIP_00703]

[RS_SOMEIP_00026] SOME/IP protocol shall define the
endianness of header and payload

[PRS_SOMEIP_00368]
[PRS_SOMEIP_00369]

10 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[RS_SOMEIP_00027] SOME/IP protocol shall define the
header layout of messages

[PRS_SOMEIP_00030]
[PRS_SOMEIP_00031]
[PRS_SOMEIP_00034]
[PRS_SOMEIP_00038]
[PRS_SOMEIP_00040]
[PRS_SOMEIP_00042]
[PRS_SOMEIP_00043]
[PRS_SOMEIP_00046]
[PRS_SOMEIP_00050]
[PRS_SOMEIP_00051]
[PRS_SOMEIP_00052]
[PRS_SOMEIP_00053]
[PRS_SOMEIP_00055]
[PRS_SOMEIP_00058]
[PRS_SOMEIP_00141]
[PRS_SOMEIP_00365]
[PRS_SOMEIP_00366]
[PRS_SOMEIP_00367]
[PRS_SOMEIP_00521]
[PRS_SOMEIP_00532]
[PRS_SOMEIP_00533]
[PRS_SOMEIP_00701]
[PRS_SOMEIP_00702]
[PRS_SOMEIP_00703]
[PRS_SOMEIP_00704]
[PRS_SOMEIP_00723]
[PRS_SOMEIP_00724]
[PRS_SOMEIP_00725]
[PRS_SOMEIP_00726]
[PRS_SOMEIP_00727]
[PRS_SOMEIP_00728]
[PRS_SOMEIP_00739]
[PRS_SOMEIP_00931]
[PRS_SOMEIP_00932]
[PRS_SOMEIP_00933]
[PRS_SOMEIP_00934]
[PRS_SOMEIP_00935]
[PRS_SOMEIP_00936]
[PRS_SOMEIP_00940]
[PRS_SOMEIP_00941]

11 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[RS_SOMEIP_00028] SOME/IP protocol shall specify the
serialization algorithm for data

[PRS_SOMEIP_00101]
[PRS_SOMEIP_00130]
[PRS_SOMEIP_00210]
[PRS_SOMEIP_00211]
[PRS_SOMEIP_00212]
[PRS_SOMEIP_00213]
[PRS_SOMEIP_00214]
[PRS_SOMEIP_00216]
[PRS_SOMEIP_00220]
[PRS_SOMEIP_00569]
[PRS_SOMEIP_00611]
[PRS_SOMEIP_00612]
[PRS_SOMEIP_00613]
[PRS_SOMEIP_00712]
[PRS_SOMEIP_00921]
[PRS_SOMEIP_00923]

[RS_SOMEIP_00029] SOME/IP protocol shall specify how
data in the payload are aligned

[PRS_SOMEIP_00222]
[PRS_SOMEIP_00569]
[PRS_SOMEIP_00611]
[PRS_SOMEIP_00612]
[PRS_SOMEIP_00613]
[PRS_SOMEIP_00730]

[RS_SOMEIP_00030] SOME/IP protocol shall support
transporting integer data types

[PRS_SOMEIP_00065]
[PRS_SOMEIP_00300]
[PRS_SOMEIP_00615]
[PRS_SOMEIP_00705]

[RS_SOMEIP_00031] SOME/IP protocol shall support
transporting boolean data type

[PRS_SOMEIP_00065]
[PRS_SOMEIP_00615]

[RS_SOMEIP_00032] SOME/IP protocol shall support
transporting float data types

[PRS_SOMEIP_00065]
[PRS_SOMEIP_00615]

[RS_SOMEIP_00033] SOME/IP protocol shall support
transporting structured data types

[PRS_SOMEIP_00077]
[PRS_SOMEIP_00079]
[PRS_SOMEIP_00300]
[PRS_SOMEIP_00370]
[PRS_SOMEIP_00371]
[PRS_SOMEIP_00705]
[PRS_SOMEIP_00712]
[PRS_SOMEIP_00900]

[RS_SOMEIP_00034] SOME/IP protocol shall support
transporting union data types

[PRS_SOMEIP_00118]
[PRS_SOMEIP_00119]
[PRS_SOMEIP_00121]
[PRS_SOMEIP_00122]
[PRS_SOMEIP_00123]
[PRS_SOMEIP_00126]
[PRS_SOMEIP_00127]
[PRS_SOMEIP_00129]
[PRS_SOMEIP_00130]
[PRS_SOMEIP_00906]
[PRS_SOMEIP_00907]
[PRS_SOMEIP_00908]
[PRS_SOMEIP_00915]
[PRS_SOMEIP_00916]

12 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[RS_SOMEIP_00035] SOME/IP protocol shall support
transporting one-dimensional and
multi-dimensional array data types

[PRS_SOMEIP_00099]
[PRS_SOMEIP_00101]

[RS_SOMEIP_00036] SOME/IP protocol shall support
transporting array data types with a
fixed length

[PRS_SOMEIP_00099]
[PRS_SOMEIP_00101]
[PRS_SOMEIP_00917]
[PRS_SOMEIP_00918]
[PRS_SOMEIP_00944]

[RS_SOMEIP_00037] SOME/IP protocol shall support
transporting array data types with
flexible length

[PRS_SOMEIP_00107]
[PRS_SOMEIP_00114]
[PRS_SOMEIP_00375]
[PRS_SOMEIP_00376]
[PRS_SOMEIP_00377]
[PRS_SOMEIP_00919]
[PRS_SOMEIP_00945]

[RS_SOMEIP_00038] SOME/IP protocol shall support
transporting string types with a fixed
length

[PRS_SOMEIP_00084]
[PRS_SOMEIP_00085]
[PRS_SOMEIP_00086]
[PRS_SOMEIP_00087]
[PRS_SOMEIP_00372]
[PRS_SOMEIP_00373]
[PRS_SOMEIP_00374]
[PRS_SOMEIP_00911]
[PRS_SOMEIP_00912]
[PRS_SOMEIP_00913]

[RS_SOMEIP_00039] SOME/IP protocol shall support
transporting string data types with
flexible length

[PRS_SOMEIP_00089]
[PRS_SOMEIP_00090]
[PRS_SOMEIP_00091]
[PRS_SOMEIP_00092]
[PRS_SOMEIP_00093]
[PRS_SOMEIP_00094]
[PRS_SOMEIP_00095]
[PRS_SOMEIP_00914]

[RS_SOMEIP_00040] SOME/IP protocol shall support
providing the length of a serialized
data element in the payload

[PRS_SOMEIP_00042]
[PRS_SOMEIP_00079]
[PRS_SOMEIP_00094]
[PRS_SOMEIP_00208]
[PRS_SOMEIP_00221]
[PRS_SOMEIP_00370]
[PRS_SOMEIP_00945]

[RS_SOMEIP_00041] SOME/IP protocol shall provide
support of multiple versions of the
protocol

[PRS_SOMEIP_00050]
[PRS_SOMEIP_00051]
[PRS_SOMEIP_00052]

[RS_SOMEIP_00042] SOME/IP protocol shall support
unicast and multicast based event
communication

[PRS_SOMEIP_00930]

13 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[RS_SOMEIP_00050] SOME/IP protocol shall support
serialization of extensible data
structs

[PRS_SOMEIP_00201]
[PRS_SOMEIP_00202]
[PRS_SOMEIP_00203]
[PRS_SOMEIP_00204]
[PRS_SOMEIP_00205]
[PRS_SOMEIP_00206]
[PRS_SOMEIP_00208]
[PRS_SOMEIP_00210]
[PRS_SOMEIP_00211]
[PRS_SOMEIP_00212]
[PRS_SOMEIP_00213]
[PRS_SOMEIP_00214]
[PRS_SOMEIP_00216]
[PRS_SOMEIP_00217]
[PRS_SOMEIP_00218]
[PRS_SOMEIP_00220]
[PRS_SOMEIP_00221]
[PRS_SOMEIP_00222]
[PRS_SOMEIP_00223]
[PRS_SOMEIP_00224]
[PRS_SOMEIP_00225]
[PRS_SOMEIP_00226]
[PRS_SOMEIP_00227]
[PRS_SOMEIP_00228]
[PRS_SOMEIP_00229]
[PRS_SOMEIP_00230]
[PRS_SOMEIP_00231]
[PRS_SOMEIP_00241]
[PRS_SOMEIP_00242]
[PRS_SOMEIP_00243]
[PRS_SOMEIP_00244]

14 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[RS_SOMEIP_00051] SOME/IP protocol shall provide
support for segmented transmission
of large data

[PRS_SOMEIP_00367]
[PRS_SOMEIP_00729]
[PRS_SOMEIP_00730]
[PRS_SOMEIP_00731]
[PRS_SOMEIP_00732]
[PRS_SOMEIP_00733]
[PRS_SOMEIP_00734]
[PRS_SOMEIP_00735]
[PRS_SOMEIP_00736]
[PRS_SOMEIP_00738]
[PRS_SOMEIP_00740]
[PRS_SOMEIP_00741]
[PRS_SOMEIP_00742]
[PRS_SOMEIP_00743]
[PRS_SOMEIP_00744]
[PRS_SOMEIP_00745]
[PRS_SOMEIP_00746]
[PRS_SOMEIP_00747]
[PRS_SOMEIP_00749]
[PRS_SOMEIP_00750]
[PRS_SOMEIP_00751]
[PRS_SOMEIP_00752]
[PRS_SOMEIP_00753]
[PRS_SOMEIP_00754]

15 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

3 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the SOME/IP
specification that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Byte Order Mark
The byte order mark (BOM) is a Unicode character, U+FEFF byte
order mark (BOM), whose appearance as a magic number at the
start of a text stream is used to indicate the used encoding.

Method A method, procedure, function, or subroutine that is called/in-
voked.

Parameters input, output, or input/output arguments of a method or an event

Remote Procedure Call (RPC) A method call from one ECU to another that is transmitted using
messages

Request a message of the client to the server invoking a method

Response a message of the server to the client transporting results of a
method invocation

Request/Response communica-
tion a RPC that consists of request and response

Event
A uni-directional data transmission that is only invoked on
changes or cyclically and is sent from the producer of data to
the consumers.

Field A field does represent a status and thus has an valid value at all
times on which getter, setter and notifier act upon.

Notification Event An event message of the notifier of a field.
Getter A Request/Response call that allows read access to a field.
Setter A Request/Response call that allows write access to a field.

Notifier Sends out event message with a new value on change of the
value of the field.

Service A logical combination of zero or more methods, zero or more
events, and zero or more fields.

Service Interface the formal specification of the service including its methods,
events, and fields

Eventgroup A logical grouping of events and notification events of fields inside
a service in order to allow subscription

Service Instance Implementation of a service, which can exist more than once in
the vehicle and more than once on an ECU

Server The ECU offering a service instance shall be called server in the
context of this service instance.

Client The ECU using the service instance of a server shall be called
client in the context of this service instance.

Fire and Forget Requests without response message are called fire&forget.

User Datagram Protocol A standard network protocol using a simple connectionless com-
munication model.

Union A data structure that dynamically assumes different data types.

non-extensible (standard) struct
A struct which is serialized without tags. At most, new members
can be added in a compatible way at the end of the struct and
optional members are not possible.

16 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Abbreviation / Acronym: Description:

extensible struct

A struct which is serialized with tags. New members can be
added in a compatible way at arbitrary positions and optional
members are possible.

Table 3.1: Acronyms and Abbreviations

17 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

4 Protocol specification

SOME/IP provides service oriented communication over a network. It is based on
service definitions that list the functionality that the service provides. A service can
consist of combinations of zero or multiple events, methods and fields.

Events provide data that are sent cyclically or on change from the provider to the sub-
scriber.

Methods provide the possibility to the subscriber to issue remote procedure calls which
are executed on provider side.

Fields are combinations of one or more of the following three

• a notifier which sends data on change from the provider to the subscribers

• a getter which can be called by the subscriber to explicitly query the provider for
the value

• a setter which can be called by the subscriber when it wants to change the value
on provider side

The major difference between the notifier of a field and an event is that events are
only sent on change, the notifier of a field additionally sends the data directly after
subscription.

4.1 Specification of SOME/IP Message Format (Serialization)

Serialization describes the way data is represented in protocol data units (PDUs) as
payload of either UDP or TCP messages, transported over an IP-based automotive
in-vehicle network.

4.1.1 Limitation

Reordering of out-of-order segments of a SOME/IP message is not supported.

4.1.2 Header

[PRS_SOMEIP_00030] dThe structure of header layout shall consist of

• Message ID (Service ID/Method ID) [32 Bits]

• Length [32 Bits]

• Request ID (Client ID/Session ID) [32 Bits]

• Protocol Version [8Bits]

18 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

• Interface Version [8 Bits]

• Message Type [8 Bits]

• Return Code [8 Bits]

c(RS_SOMEIP_00027)

[PRS_SOMEIP_00030] is shown in the Figure 4.1.

Figure 4.1: SOME/IP Header Format

[PRS_SOMEIP_00941] dIn case of E2E communication protection being applied, the
E2E header is placed after Return Code, depending on the chosen Offset value for
the E2E header. The default Offset value is 64 bit, which puts the E2E header exactly
between Return Code and Payload.c(RS_SOMEIP_00027)

[PRS_SOMEIP_00941] ss shown in the Figure 4.2.

Figure 4.2: SOME/IP Header and E2E header Format

19 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00031] dFor interoperability reasons the header layout shall be identi-
cal for all implementations of SOME/IP. The fields are presented in transmission order
i.e. the fields on the top left are transmitted first.c(RS_SOMEIP_00027)

4.1.2.1 Message ID [32 Bit]

[PRS_SOMEIP_00034] dThe Message ID shall be a 32 Bit identifier that is used to
identify

• the RPC call to a method of an application

• or to identify an event.

c(RS_SOMEIP_00021, RS_SOMEIP_00022, RS_SOMEIP_00023, RS_SOMEIP_-
00027)

Note: The assignment of the Message ID is up to the user / system designer. However,
the Message ID is assumed be unique for the whole system (i.e. the vehicle).

4.1.2.2 Method ID [15 Bit]

[PRS_SOMEIP_00038] dMessage IDs of method calls shall be structured in the ID
with 216 services with 215 methods as shown in Table 4.1

c(RS_SOMEIP_00027)

Service ID [16 Bit] 0 [1 Bit] Method ID [last 15 Bit]

Table 4.1: Structure of ID

4.1.2.3 Event ID [15 Bit]

Eventgroup is a logical grouping of events and notification events of fields inside a
service in order to allow subscription.

[PRS_SOMEIP_00040] dEvents and notifications are transported using RPC, Events
shall be structured as shown in Table 4.2

c(RS_SOMEIP_00016, RS_SOMEIP_00027)

Service ID [16 Bit] 1 [1 Bit] Event ID [last 15 Bit]

Table 4.2: Structure of Event ID

[PRS_SOMEIP_00365] dEmpty eventgroups shall not be used.c(RS_SOMEIP_00027,
RS_SOMEIP_00017)

20 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00366] dEvents as well as field notifiers are mapped to at least one
eventgroup.c(RS_SOMEIP_00027, RS_SOMEIP_00016, RS_SOMEIP_00017, RS_-
SOMEIP_00018)

4.1.2.4 Length [32 Bit]

[PRS_SOMEIP_00042] dLength field shall contain the length in Byte starting from Re-
quest ID/Client ID until the end of the SOME/IP message.c(RS_SOMEIP_00027, RS_-
SOMEIP_00040)

4.1.2.5 Request ID [32 Bit]

The Request ID allows a provider and subscriber to differentiate multiple parallel uses
of the same method, event, getter or setter.

[PRS_SOMEIP_00043] dThe Request ID shall be unique for a provider- and
subscriber-combination (i.e. one subscription) only.c(RS_SOMEIP_00002, RS_-
SOMEIP_00025, RS_SOMEIP_00027)

[PRS_SOMEIP_00704] dWhen generating a response message, the provider shall
copy the Request ID from the request to the response message.c(RS_SOMEIP_-
00027) Note:
This allows the subscriber to map a response to the issued request even with more
than one request outstanding.

[PRS_SOMEIP_00044] dRequest IDs must not be reused until the response has ar-
rived or is not expected to arrive anymore (timeout).c(RS_SOMEIP_00025)

Structure of the Request ID

[PRS_SOMEIP_00046] dIn AUTOSAR the Request ID shall be constructed of the
Client ID and Session ID as shown in Table 4.3

c(RS_SOMEIP_00027)

Client ID [16 Bits] Session ID [16 Bits]

Table 4.3: Structure of Request ID

Note:
This means that the implementer of an ECU can define the Client-IDs as required by
his implementation and the provider does not need to know this layout or definitions
because he just copies the complete Request-ID in the response.

21 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00702] dThe Client ID is the unique identifier for the calling client in-
side the ECU. The Client ID allows an ECU to differentiate calls from multiple clients to
the same method.c(RS_SOMEIP_00025, RS_SOMEIP_00027)

[PRS_SOMEIP_00703] dThe Session ID is a unique identifier that allows to distinguish
sequential messages or requests originating from the same sender from each other.c
(RS_SOMEIP_00002, RS_SOMEIP_00025, RS_SOMEIP_00027)

[PRS_SOMEIP_00532] dThe Client ID shall also support being unique in the over-
all vehicle by having a configurable prefix or fixed value (e.g. the most significant
byte of Client ID being the diagnostics address or a configured Client ID for a given
application/SW-C).c(RS_SOMEIP_00025, RS_SOMEIP_00027)

For example:

Client ID Prefix [8
Bits]

Client ID [8 Bits] Session ID [16 Bits]

Table 4.4: Example of Client ID

[PRS_SOMEIP_00932] dIn case Session Handling is not active, the Session ID shall
be set to 0x00.c(RS_SOMEIP_00027)

[PRS_SOMEIP_00933] dIn case Session Handling is active, the Session ID shall be
set to a value within the range [0x1, 0xFFFF].c(RS_SOMEIP_00027)

[PRS_SOMEIP_00934] dIn case Session Handling is active, the Session ID shall be in-
cremented according to the respective use case (detailed information about dedicated
use cases is contained in separate specification items (e.g., [PRS_SOMEIP_00533]).c
(RS_SOMEIP_00027)

[PRS_SOMEIP_00533] dRequest/Response methods shall use session handling with
Session IDs. Session ID should be incremented after each call.c(RS_SOMEIP_00012,
RS_SOMEIP_00027)

[PRS_SOMEIP_00521] dWhen the Session ID reaches 0xFFFF, it shall wrap around
and start again with 0x01c(RS_SOMEIP_00012, RS_SOMEIP_00027)

[PRS_SOMEIP_00739] dFor request/response methods, a subscriber has to ignore
a response if the Session ID of the response does not match the Session ID of the
requestc(RS_SOMEIP_00012, RS_SOMEIP_00027)

[PRS_SOMEIP_00935] dFor notification messages, a receiver shall ignore the Session
ID in case Session Handling is not active.c(RS_SOMEIP_00012, RS_SOMEIP_00027)

[PRS_SOMEIP_00936] dFor notification messages, a receiver shall treat the Session
ID according to the respective use case (detailed information about dedicated use
cases is contained in separate specification items (e.g., [PRS_SOMEIP_00741]) in
case Session Handling is active.c(RS_SOMEIP_00012, RS_SOMEIP_00027)

22 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

4.1.2.6 Protocol Version [8 Bit]

The Protocol Version identifies the used SOME/IP Header format (not including the
Payload format).

[PRS_SOMEIP_00052] dProtocol Version shall be an 8 Bit field containing the
SOME/IP protocol version.c(RS_SOMEIP_00027, RS_SOMEIP_00041)

[PRS_SOMEIP_00050] dThe Protocol Version shall be increased, for all incompatible
changes in the SOME/IP header. A change is incompatible if a receiver that is based
on an older Protocol Version would not discard the message and process it incorrectly.c
(RS_SOMEIP_00027, RS_SOMEIP_00041)

Note:
Message processing and error handling is defined in chapter 4.2.6.3 (error processing
overview)

Note:
The Protocol Version itself is part of the SOME/IP Header, therefore the position of the
protocol version in the header shall not be changed.

Note:
The Protocol Version shall not be increased for changes that only affect the Payload
format.

[PRS_SOMEIP_00051] dThe Protocol Version shall be 1.c(RS_SOMEIP_00027, RS_-
SOMEIP_00041)

4.1.2.7 Interface Version [8 Bit]

[PRS_SOMEIP_00053] dInterface Version shall be an 8 Bit field that contains the Major
Version of the Service Interface.c(RS_SOMEIP_00003, RS_SOMEIP_00027)

4.1.2.8 Message Type [8 Bit]

[PRS_SOMEIP_00055] dThe Message Type field is used to differentiate different types
of messages and shall contain the following values as shown in Table 4.5

c(RS_SOMEIP_00008, RS_SOMEIP_00027)

Number Value Description
0x00 REQUEST A request expecting a response (even

void)
0x01 REQUEST_NO_RETURN A fire&forget request
0x02 NOTIFICATION A request of a notification/event callback

expecting no response
0x80 RESPONSE The response message
0x81 ERROR The response containing an error

23 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

0x20 TP_REQUEST A TP request expecting a response (even
void)

0x21 TP_REQUEST_NO_RETURN A TP fire&forget request
0x22 TP_NOTIFICATION A TP request of a notification/event call-

back expecting no response
0xa0 TP_RESPONSE The TP response message
0xa1 TP_ERROR The TP response containing an error

Table 4.5: Message Types

[PRS_SOMEIP_00701] dRegular request (message type 0x00) shall be answered by
a response (message type 0x80), when no error occurred. If errors occur an error
message (message type 0x81) shall be sent.c(RS_SOMEIP_00008, RS_SOMEIP_-
00027)

It is also possible to send a request that does not have a response message (mes-
sage type 0x01). For updating values through notification a callback interface exists
(message type 0x02).

[PRS_SOMEIP_00367] dThe 3rd highest bit of the Message Type (=0x20) shall be
called TP-Flag and shall be set to 1 to signal that the current SOME/IP message is
a segment. The other bits of the Message Type are set as specified in this Section.c
(RS_SOMEIP_00027, RS_SOMEIP_00051) Note:
Segments of the Message Type Request (0x00) have the Message Type (0x20), seg-
ments of the Message Type Response (0x80) have the Message Type (0xa0), and so
on. For details see (Chapter 4.2.1.4)

4.1.2.9 Return Code [8 Bit]

[PRS_SOMEIP_00058] dThe Return Code shall be used to signal whether a request
was successfully processed. For simplification of the header layout, every message
transports the field Return Code. The allowed Return Codes for specific message
types are shown in Table 4.6c(RS_SOMEIP_00008, RS_SOMEIP_00027)

Message Type Allowed Return Codes
REQUEST N/A set to 0x00 (E_OK)
REQUEST_NO_RETURN N/A set to 0x00 (E_OK)
NOTIFICATION N/A set to 0x00 (E_OK)
RESPONSE See Return Codes in [PRS_SOMEIP_00191]
ERROR See Return Codes in [PRS_SOMEIP_00191]. Shall not be

0x00 (E_OK).

Table 4.6: Allowed Return Codes for spcific Message Types

24 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

4.1.2.10 Payload [variable size]

In the payload field the parameters are carried. The serialization of the parameters will
be specified in the following section.

The size of the SOME/IP payload field depends on the transport protocol used. With
UDP the SOME/IP payload shall be between 0 and 1400 Bytes. The limitation to 1400
Bytes is needed in order to allow for future changes to protocol stack (e.g. changing to
IPv6 or adding security means). Since TCP supports segmentation of payloads, larger
sizes are automatically supported.

Payload might consists of data elements for events or parameters for methods.

4.1.3 Endianess

[PRS_SOMEIP_00368] dSOME/IP Header shall be encoded in network byte order (big
endian).c(RS_SOMEIP_00026)

[PRS_SOMEIP_00369] dThe byte order of the parameters inside the payload shall be
defined by configuration.c(RS_SOMEIP_00026)

4.1.4 Serialization of Data Structures

The serialization is based on the parameter list defined by the interface specification.
The interface specification defines the exact position of all data structures in the PDU
and has to consider the memory alignment.

Alignment is used to align the beginning of data by inserting padding elements after
the data in order to ensure that the aligned data starts at certain memory addresses.

There are processor architectures which can access data more efficiently (i.e. master)
when they start at addresses which are multiples of a certain number (e.g multiples of
32 Bit).

[PRS_SOMEIP_00611] dAlignment of data shall be realized by inserting padding ele-
ments after the variable size data if the variable size data is not the last element in the
serialized data stream.c(RS_SOMEIP_00028, RS_SOMEIP_00029)

Note:
Please note that the padding value is not defined.

25 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Figure 4.3: SOME/IP Padding Example 01

Figure 4.4: SOME/IP Padding Example 02

[PRS_SOMEIP_00569] dAlignment shall always be calculated from start of SOME/IP
message.c(RS_SOMEIP_00028, RS_SOMEIP_00029)

[PRS_SOMEIP_00612] dThere shall be no padding behind fixed length data elements
to ensure alignment of the following data.c(RS_SOMEIP_00028, RS_SOMEIP_00029)

26 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Note:
If data behind fixed length data elements shall be padded, this has to be explicitly
considered in the data type definition.

[PRS_SOMEIP_00613] dThe alignment of data behind variable length data elements
shall be 8, 16, 32, 64, 128 or 256. Bits.c(RS_SOMEIP_00028, RS_SOMEIP_00029)

4.1.4.1 Basic Datatypes

[PRS_SOMEIP_00065] dThe following basic datatypes as shown in Table 4.7 shall be
supported:

c(RS_SOMEIP_00030, RS_SOMEIP_00031, RS_SOMEIP_00032)

Type Description Size [bit] Remark
boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)
uint8 unsigned Integer 8
uint16 unsigned Integer 16
uint32 unsigned Integer 32
uint64 unsigned Integer 64
sint8 signed Integer 8
sint16 signed Integer 16
sint32 signed Integer 32
sint64 signed Integer 64
float32 floating point number 32 IEEE 754 binary32 (Single Preci-

sion)
float64 floating point number 64 IEEE 754 binary64 (Double Preci-

sion)

Table 4.7: Supported basic Data Types

The Byte Order is specified for each parameter by configuration.

[PRS_SOMEIP_00615] dFor the evaluation of a Boolean value only the lowest bit of
the uint8 is interpreted and the rest is ignored.c(RS_SOMEIP_00030, RS_SOMEIP_-
00031, RS_SOMEIP_00032)

4.1.4.2 Structured Datatypes (structs)

The serialization of a struct shall be close to the in-memory layout. This means, only
the parameters shall be serialized sequentially into the buffer. Especially for structs it
is important to consider the correct memory alignment.

27 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Example:

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint32 a

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

Figure 4.5: Serialization of Structs

[PRS_SOMEIP_00077] dThe SOME/IP implementation shall not automatically insert
dummy/padding data.c(RS_SOMEIP_00033)

[PRS_SOMEIP_00079] dAn optional length field of 8, 16 or 32 Bit may be inserted
in front of the Struct depending on the configuration.c(RS_SOMEIP_00033, RS_-
SOMEIP_00040)

[PRS_SOMEIP_00370] dThe length field of the struct shall describe the number
of bytes this struct occupies for SOME/IP transport.c(RS_SOMEIP_00033, RS_-
SOMEIP_00040)

[PRS_SOMEIP_00371] dIf the length is greater than the length of the struct as spec-
ified in the data type definition only the bytes specified in the data type shall be inter-
preted and the other bytes shall be skipped based on the length field.c(RS_SOMEIP_-
00033)

[PRS_SOMEIP_00900] dIf the length is less than the sum of the lengths of all struct
members and no substitution for the missing data can be provided locally by the re-
ceiver, the deserialization shall be aborted and the message shall be treated as mal-
formed.c(RS_SOMEIP_00033)

[PRS_SOMEIP_00712] dThe serialization of structs shall follow the depth-first-
traversal of the structured data type.c(RS_SOMEIP_00028, RS_SOMEIP_00033)

4.1.4.3 Structured Datatypes and Arguments with Identifier and optional mem-
bers

To achieve enhanced forward and backward compatibility, an additional Data ID can
be added in front of struct members or method arguments. The receiver then can
skip unknown members/arguments, i.e. where the Data ID is unknown. New member-

28 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

s/arguments can be added at arbitrary positions when Data IDs are transferred in the
serialized byte stream.

Moreover, the usage of Data IDs allows describing structs and methods with optional
members/arguments. Whether a member/argument is optional or not, is defined in the
data definition.

Whether an optional member/argument is actually present in the struct/method or not,
must be determined during runtime. How this is realized depends on the used pro-
gramming language or software platform (e.g. using a special available flag, using a
special method, using pointers which might be null, ...).

[PRS_SOMEIP_00201] dA Data ID shall be unique within the direct members of a
struct or arguments of a method.c(RS_SOMEIP_00050)

Note:
Please note that a Data ID does not need to be unique across different structs or
methods.

Note:
Please note that neither the AUTOSAR Methodology nor AUTOSAR CP RTE, nor
AUTOSAR AP ara::com support the definition or usage of optional method arguments
at the time being.

[PRS_SOMEIP_00230] dA Data ID shall be defined either for all members of the same
hierarchical level of a struct or for none of them.c(RS_SOMEIP_00050)

[PRS_SOMEIP_00231] dA Data ID shall be defined either for all arguments of a
method or for none of them.c(RS_SOMEIP_00050)

In addition to the Data ID, a wire type encodes the datatype of the following member.
Data ID and wire type are encoded in a so-called tag.

[PRS_SOMEIP_00202] dThe length of a tag shall be two bytes.c(RS_SOMEIP_00050)

[PRS_SOMEIP_00203] dThe tag shall consist of

• reserved (Bit 7 of the first byte)

• wire type (Bit 6-4 of the first byte)

• Data ID (Bit 3-0 of the first byte and bit 7-0 of the second byte)

c(RS_SOMEIP_00050)

Refer to the Figure 4.6 for the layout of the tag. Bit 7 is the highest significant bit of a
byte, bit 0 is the lowest significant bit of a byte.

Wire Type
Data ID (Higher

Sig. Part)
Data ID (Lower Sig. Part) Length Field (8/16/32 bit) Member Data ...

Byte n Byte n + 1 Byte n + 2 ...

7 0 7 0 7/15/31 0

re
s
e
rv

e
d

Figure 4.6: Tag Layout

29 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00204] dThe lower significant part of the Data ID of the member shall
be encoded in bits 7-0 of the second byte of the tag. The higher significant part of the
Data ID of the member shall be encoded in bits 3-0 of the first byte.c(RS_SOMEIP_-
00050)

Example:
The Data ID of the member is 0x04F2. Then bits 3-0 of the first byte are set to 0x4.
The second byte is set to 0xF2.

[PRS_SOMEIP_00205] dThe wire type shall determine the type of the following data
of the member. The value shall be assigned as shown in Table 4.8.c(RS_SOMEIP_-
00050)

Wire Type Following Data
0 8 Bit Data Base data type
1 16 Bit Data Base data type
2 32 Bit Data Base data type
3 64 Bit Data Base data type
4 Complex Data Type: Array, Struct,

String, Union with length field of
static size (configured in data defi-
nition)

5 Complex Data Type: Array, Struct,
String, Union with length field size 1
byte (ignore static definition)

6 Complex Data Type: Array, Struct,
String, Union with length field size 2
byte (ignore static definition)

7 Complex Data Type: Array, Struct,
String, Union with length field size 4
byte (ignore static definition)

Table 4.8: Message Types

Note:
wire type 4 ensures the compatibility with the current approach where the size of length
fields is statically configured. This approach has the drawback that changing the size
of the length field during evolution of interfaces is always incompatible. Thus, wire
types 5, 6 and 7 allow to encode the size of the used length field in the transferred byte
stream. A serializer may use this, if the statically configured size of the length field is
not sufficient to hold the current size of the data struct.

[PRS_SOMEIP_00206] dIf the wire type is set to 5, 6 or 7, the size of the length field
defined in the data definition shall be ignored and the size of the length field shall be
selected according to the wire type.c(RS_SOMEIP_00050)

If a Data ID is configured for a member of a struct/argument of a method, a tag shall
be inserted in the serialized byte stream.

30 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Note:
regarding the existence of Data IDs, refer to [PRS_SOMEIP_00230] and
[PRS_SOMEIP_00231].

[PRS_SOMEIP_00212] dIf the datatype of the serialized member/argument is a basic
datatype (wire types 0-3) and a Data ID is configured, the tag shall be inserted directly
in front of the member/argument. No length field shall be inserted into the serialized
stream.c(RS_SOMEIP_00028, RS_SOMEIP_00050)

[PRS_SOMEIP_00213] dIf the datatype of the serialized member/argument is not a
basic datatype (wire type 4-7) and a Data ID is configured, the tag shall be inserted in
front of the length field.c(RS_SOMEIP_00028, RS_SOMEIP_00050)

[PRS_SOMEIP_00214] dIf the datatype of the serialized member/argument is not a
basic datatype and a Data ID is configured, a length field shall always be inserted in
front of the member/argument.c(RS_SOMEIP_00028, RS_SOMEIP_00050)

Rationale:
The length field is required to skip unknown members/arguments during deserializa-
tion.

[PRS_SOMEIP_00221] dThe length field shall always contain the length up to the next
tag of the struct.c(RS_SOMEIP_00040, RS_SOMEIP_00050)

[PRS_SOMEIP_00208] dIf the member itself is of type struct, there shall be
exactly one length field. The length field is added according to require-
ments [PRS_SOMEIP_00079] and [PRS_SOMEIP_00370].c(RS_SOMEIP_00040,
RS_SOMEIP_00050)

[PRS_SOMEIP_00225] dIf the member itself is of type dynamic length string, there
shall be exactly one length field. The length field is added according to re-
quirements [PRS_SOMEIP_00089], [PRS_SOMEIP_00090], [PRS_SOMEIP_00093],
[PRS_SOMEIP_00094] and [PRS_SOMEIP_00095].c(RS_SOMEIP_00050)

[PRS_SOMEIP_00224] dIf the member itself is of type fixed length string, there shall
be exactly one length field corresponding to dynamic length strings.c(RS_SOMEIP_-
00050)

Note:
when serialized without tag, fixed length strings do not have a length field. For the
serialization with tag, a length field is also required for fixed length strings in the same
way as for dynamic length strings.

[PRS_SOMEIP_00227] dIf the member itself is of type dynamic length array, there
shall be exactly one length field. The length field is added according to requirements
[PRS_SOMEIP_00376], [PRS_SOMEIP_00107], [PRS_SOMEIP_00377] with a size
of 8, 16 or 32 bit.c(RS_SOMEIP_00050)

[PRS_SOMEIP_00226] dIf the member itself is of type fixed length array, there shall
be exactly one length field corresponding to dynamic length arrays.c(RS_SOMEIP_-
00050)

31 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00228] dIf the member itself is of type union, there shall be ex-
actly one length field. The length field is added according to requirements
[PRS_SOMEIP_00119], [PRS_SOMEIP_00121] with a size of 8,16 or 32 bit.c(RS_-
SOMEIP_00050)

[PRS_SOMEIP_00229] dIf the member itself is of type union, the length field shall
cover the size of the type field, data and padding bytes.c(RS_SOMEIP_00050)

Note:
For the serialization without tags, the length field of unions does not cover the type
field (see [PRS_SOMEIP_00126]). For the serialization with tags, it is required that the
complete content of the serialized union is covered by the length field.

[PRS_SOMEIP_00210] dA member of a non-extensible (standard) struct which is of
type extensible struct, shall be serialized according to the requirements for extensible
structs.c(RS_SOMEIP_00028, RS_SOMEIP_00050)

[PRS_SOMEIP_00211] dA member of an extensible struct which is of type non-
extensible (standard) struct, shall be serialized according to the requirements for stan-
dard structs.c(RS_SOMEIP_00028, RS_SOMEIP_00050)

[PRS_SOMEIP_00222] dThe alignment of variable length data according to
[PRS_SOMEIP_00611] shall always be 8 bit.c(RS_SOMEIP_00029, RS_SOMEIP_-
00050)

Rationale:
When alignment greater 8 bits is used, the serializer may add padding bytes after
variable length data. The padding bytes are not covered by the length field. If the
receiver does not know the Data ID of the member, it also does not know that it is
variable length data and that there might be padding bytes.

[PRS_SOMEIP_00241] dThe size of the length field for arrays, structs, unions and
string shall be greater than 0 in the configuration.c(RS_SOMEIP_00050)

Rationale:
The TLV serialization requires the usage of length fields. When wire type 4 is used, the
length field size must be statically configured. When wire types 5-7 (dynamic length
field size) are used, the static configuration of the length field size must also be present
since not all length fields are preceded by a tag, e.g. structs contained in an array or
the top-level struct contained in a SOME/IP event. Not using length fields here would
result in ambiguities.

[PRS_SOMEIP_00242] dThe configured size of the length field for arrays, structs,
unions and strings shall be identical.c(RS_SOMEIP_00050)

Rationale:
In case of an unknown member or argument, the deserializer cannot determine the
actual datatype of the member/argument when wire type 4 is used.

[PRS_SOMEIP_00243] dThe size of the length field shall be configured for the top-
level struct or method request/response. All arrays, unions, structs and strings used

32 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

within a struct or all arguments within a method shall inherit the size of the length field
from the top-level definition.c(RS_SOMEIP_00050)

Rationale:
In case of an unknown member or argument, the deserializer needs to know the size of
the length field when wire type 4 is used. The easiest way is that the size of the length
field is then only defined at the top-level element.

[PRS_SOMEIP_00244] dOverriding the size of the length field at a subordinate array,
union, struct or string or at an individual method argument shall not be allowed.c(RS_-
SOMEIP_00050)

[PRS_SOMEIP_00216] dThe serializer shall not include optional members/arguments
in the serialized byte stream if they are marked as not available.c(RS_SOMEIP_00028,
RS_SOMEIP_00050)

[PRS_SOMEIP_00223] dThe deserializer shall ignore optional members/arguments
which are not available in the serialized byte stream.c(RS_SOMEIP_00050)

[PRS_SOMEIP_00217] dIf the deserializer reads an unknown Data ID (i.e. not con-
tained in its data definition), it shall skip the unknown member/argument by using the
information of the wire type and length field.c(RS_SOMEIP_00050)

[PRS_SOMEIP_00218] dIf the deserializer cannot find a required (i.e. non-optional)
member/argument defined in its data definition in the serialized byte stream, the de-
serialization shall be aborted and the message shall be treated as malformed.c(RS_-
SOMEIP_00050)

[PRS_SOMEIP_00220] dIf the serialization with tags will be introduced for an existing
service interface where tags have not been used, the major interface version shall be
incremented and used to indicate this.c(RS_SOMEIP_00028, RS_SOMEIP_00050)

Note:
The receiver only handles received messages that match all configured val-
ues of Message ID, Protocol Version, Interface Version and Message-Type (see
[PRS_SOMEIP_00195]).

33 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Example for serializing structures with tags

struct myStruct

 unit8 a /* Data ID = 0 */

 uint8 b /* Data ID = 1 */

 struct c /* Data ID = 2 */

 uint8 c1

 uint8 c2

 struct c3

 uint8 c31

 struct c32

 uint8 c321

 uint8[] c322

 uint8 c323

 uint8 c33

 uint8[]c4

 uint8 c5

 uint8 d /* Data ID = 3 */

 struct e /* Data ID = 4 */

 uint8 e1

 uint8 e2

 uint8 f /* Data ID = 5 */

 uint8 g /* Data ID = 6 */

myStruct_length

a_tag = 0x0000

a

b_tag = 0x0001

b

c_tag = 0x4002

c_length

c1

c2

c3_length

c31

c32_length

c321

c322_length

c322

…

c323

c33

c4_length

c4

…

c5

d_tag = 0x0003

d

e_tag = 0x4004

e_length

e1

e2

f_tag = 0x0005

f

g_tag = 0x0006

g

Figure 4.7: Example 01 for serializing structures with tags

34 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

struct myStruct

 unit8 a

 uint8 b

 struct c

 uint8 c1

 uint8 c2

 struct c3

 uint8 c31 /* Data ID = 0 */

 struct c32 /* Data ID = 2 */

 uint8 c321

uint8[] c322

uint8 c323

 uint8 c33 /* Data ID = 1 */

 uint8[]c4

 uint8 c5

 uint8 d

 struct e

 uint8 e1

 uint8 e2

 uint8 f

 uint8 g

myStruct_length

a

b

c_length

c1

c2

c3_length

c31_tag = 0x0000
c31

c32_tag = 0x4002
c32_length

c321

c322_length

c322

…

c323

c33_tag = 0x0001
c33

c4_length

c4

…

c5

d

e_length

e1

e2

f

g

Figure 4.8: Example 02 for serializing structures with tags

struct myStruct

 unit8 a

 uint8 b

 struct c

 uint8 c1

 uint8 c2

 struct c3

 uint8 c31

 struct c32

 uint8 c321 /* Data ID = 2 */

uint8[] c322 /* Data ID = 1 */

uint8 c323 /* Data ID = 0 */

 uint8 c33

 uint8[]c4

 uint8 c5

 uint8 d

 struct e

 uint8 e1

 uint8 e2

 uint8 f

 uint8 g

myStruct_length

a

b

c_length

c1

c2

c3_length

c31

c32_length

c321_tag = 0x0002
c321

c322_tag = 0x4001
c322_length

c322

…

c323_tag = 0x0000
c323

c33

c4_length

c4

…

c5

d

e_length

e1

e2

f

g

Figure 4.9: Example 03 for serializing structures with tags

Note:
In the examples Figure 4.7, Figure 4.8 and Figure 4.9 the top-level struct has a length
field because it is assumed that the size of the length field is statically configured.

35 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

According to [PRS_SOMEIP_00243], the size of length field is configured for the top-
level struct and is passed on to the sub elements. Thus, the top-level struct itself has a
length field due to [PRS_SOMEIP_00925] and [PRS_SOMEIP_00926].

When the size of the length field is not statically configured (i.e. using wire types 5-7),
the top-level struct would not have a length field.

Example for serialization of arguments with tags

SOME/IP Header (Request)

a_tag = 0x0000

a

b_tag = 0x0002

b
c_tag = 0x4003

c_length
c

...

SOME/IP Header (Response)

d_tag = 0x2000

d

e_tag = 0x0001

e

uint8 myFunction (IN uint8 a, IN uint8 b, IN myStruct c, OUT uint32 d, OUT uint8 e)
 /* Data ID = 0 */ /* Data ID = 2 */ /* Data ID = 3 */ /*Data ID = 0 */ /*Data ID = 1 */

Figure 4.10: Example for serialization of arguments with tags

Note:
In the example Figure 4.10 there is no additional length field between the end of the
SOME/IP header and the first tag. This would be redundant to the message length
field in the SOME/IP header.

4.1.4.4 Strings

Following requirements are common for both fixed length and dynamic length strings.

[PRS_SOMEIP_00372] dDifferent Unicode encoding shall be supported including
UTF-8, UTF-16BE and UTF-16LE.c(RS_SOMEIP_00038)

[PRS_SOMEIP_00084] dUTF-16LE and UTF-16BE strings shall be zero terminated
with a "\0" character. This means they shall end with (at least) two 0x00 Bytes.c(RS_-
SOMEIP_00038)

[PRS_SOMEIP_00085] dUTF-16LE and UTF-16BE strings shall have an even length.c
(RS_SOMEIP_00038)

36 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00086] dUTF-16LE and UTF-16BE strings having an odd length the
last byte shall be ignored. The two bytes before shall be 0x00 bytes (termination).c
(RS_SOMEIP_00038)

[PRS_SOMEIP_00087] dAll strings shall always start with a Byte Order Mark (BOM).
The BOM shall be included in fixed-length-strings as well as dynamic-length strings.
BOM allows the possibility to detect the used encoding.c(RS_SOMEIP_00038)

4.1.4.4.1 Strings (fixed length)

[PRS_SOMEIP_00373] dStrings shall be terminated with a "\0"-character despite hav-
ing a fixed length.c(RS_SOMEIP_00038)

[PRS_SOMEIP_00374] dThe length of the string (this includes the "\0") in Bytes has to
be specified in the data type definition. Fill unused space using "\0". BOM is included
in the length.c(RS_SOMEIP_00038)

[PRS_SOMEIP_00911] dIf the length of a string with fixed length is greater than ex-
pected (expectation shall be based on the data type definition), the deserialization shall
be aborted and the message shall be treated as malformed.c(RS_SOMEIP_00038)

[PRS_SOMEIP_00912] dIf the length of a string with fixed length is less than expected
(expectation shall be based on the data type definition) and it is correctly terminated
using "\0", it shall be accepted.c(RS_SOMEIP_00038)

[PRS_SOMEIP_00913] dIf the length of a string with fixed length is less than expected
(expectation shall be based on the data type definition) and it is not correctly terminated
using "\0", the deserialization shall be aborted and the message shall be treated as
malformed.c(RS_SOMEIP_00038)

4.1.4.4.2 Strings (dynamic length)

[PRS_SOMEIP_00089] dStrings with dynamic length shall start with a length field. The
length is measured in Bytes.c(RS_SOMEIP_00039)

[PRS_SOMEIP_00090] dThe length field is placed before the BOM, and the BOM is
included in the length.c(RS_SOMEIP_00039)

[PRS_SOMEIP_00091] dString are terminated with a "\0".c(RS_SOMEIP_00039)

Note:
The maximum number of bytes of the string (including termination with "\0") shall also
be derived from the data type definition.

[PRS_SOMEIP_00092] d[PRS_SOMEIP_00084], [PRS_SOMEIP_00085] and
[PRS_SOMEIP_00086] shall also be valid for strings with dynamic length.c(RS_-
SOMEIP_00039)

37 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00093] dDynamic length strings shall have a length field of 8, 16 or 32
Bits. This shall be determined by configuration.c(RS_SOMEIP_00039)

[PRS_SOMEIP_00094] dIf not configured the length of the length field that is added
in front of the string is 32 Bits (default length of length field).c(RS_SOMEIP_00039,
RS_SOMEIP_00040)

[PRS_SOMEIP_00095] dThe length of the Strings length field is not considered in the
value of the length field; i.e. the length field does not count itself.c(RS_SOMEIP_-
00039)

[PRS_SOMEIP_00914] dIf the length of a string with variable length is greater than
expected (expectation shall be based on the data type definition), the deserialization
shall be aborted and the message shall be treated as malformed.c(RS_SOMEIP_-
00039)

Instead of transferring application strings as SOME/IP strings with BOM and "\0" ter-
mination, strings can also be transported as plain dynamic length arrays without BOM
and "\0" termination (see chapter 4.1.4.5.2). Please note that this requires the full string
handling (e.g. endianness conversion) to be done in the applications.

This can also be achieved by setting the attribute implementsLegacyStringSeri-
alization to true. In CP this attribute is configured in SOMEIPTransformation-
ISignalProps, in AP it is configured in ApSomeipTransformationProps.

NOTE! This attribute is not future safe and will be removed in an upcoming
AUTOSAR release!

Therefore to be forward compatible, plain dynamic length arrays should prefer-
ably be used in this case.

4.1.4.5 Arrays

4.1.4.5.1 Arrays (fixed length)

Fixed length arrays are easier for use in very small devices. Dynamic length arrays
might need more resources on the ECU using them.

[PRS_SOMEIP_00944] dArrays with fixed length may start with an optional length
field.c(RS_SOMEIP_00036)

[PRS_SOMEIP_00917] dIf the length of a fixed length array is greater than expected
(expectation shall be based on the data type definition) only the elements specified in
the data type shall be interpreted and the other bytes shall be skipped based on the
length field.c(RS_SOMEIP_00036)

[PRS_SOMEIP_00918] dIf the length of a fixed length array is less than expected (ex-
pectation shall be based on the data type definition) and no substitution for the missing

38 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

data can be provided locally by the receiver, the deserialization shall be aborted and
the message shall be treated as malformed.c(RS_SOMEIP_00036)

Note: Overruns of fixed-size arrays can only be detected with a length field.

One-dimensional

[PRS_SOMEIP_00099] dThe one-dimensional arrays with fixed length "n" shall carry
exactly "n" elements of the same type. An optional length field may preceed the first
element (see [PRS_SOMEIP_00944].c(RS_SOMEIP_00035, RS_SOMEIP_00036)

Note: If a length field is defined for a specific fixed-length array, then this array is rep-
resented on the bus as a composite of the length field and the collection of n elements
of the same data type.

The layout of [PRS_SOMEIP_00099] is shown in Figure 4.11.

LengthField
(optional)

Element_1 Element_2 Element_n…

LengthField + n*e

element size e

Element_3
1

Static Array [n]

n*e

Figure 4.11: One-dimensional array (fixed length)

Multidimensional

[PRS_SOMEIP_00101] dThe serialization of multidimensional arrays follows the in-
memory layout of multidimensional arrays in the programming language (row-major
order).c(RS_SOMEIP_00028, RS_SOMEIP_00035, RS_SOMEIP_00036)

39 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Note: If a length field is defined for a specific multidimensional fixed-length array, then
this array is represented on the bus as a composite of a length field and n collections
consisting each of a length field and m elements of the same data type.

The layout of [PRS_SOMEIP_00101] is shown in Figure 4.12.

LengthField
(optional)

Element_1

…

LengthField + n*(LengthField + m*e)

e

Static Array [n][m]

n*(LengthField + m*e)

Element_n

LengthField
(optional)

E1,1 E1,m

m*e

Element_2

…
LengthField
(optional)

E2,1 E2,m …

Figure 4.12: Multidimensional array (fixed length)

4.1.4.5.2 Dynamic Length Arrays

[PRS_SOMEIP_00375] dThe layout of arrays with dynamic length shall be based on
the layout of fixed length arrays.c(RS_SOMEIP_00037)

[PRS_SOMEIP_00376] dAn optional length field at the beginning of an array should
be used to specify the length of the array in Bytes.c(RS_SOMEIP_00037)

[PRS_SOMEIP_00107] dThe length field shall have a length of 0, 8, 16 or 32 Bits. This
shall be determined by configuration.c(RS_SOMEIP_00037)

[PRS_SOMEIP_00377] dThe length does not include the size of the length field.c(RS_-
SOMEIP_00037)

Note:
If the length of the length field is set to 0 Bits, the number of elements in the array has
to be fixed; thus, being an array with fixed length.

The layout of dynamic arrays is shown in Figure 4.13 and Figure 4.14.

40 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Figure 4.13: One-dimensional array (dynamic length)

In the one-dimensional array one length field is used, which carries the number of bytes
used for the array.

The number of static length elements can be easily calculated by dividing by the size
of an element.

In the case of dynamical length elements the number of elements cannot be calculated,
but the elements must be parsed sequentially.

Figure 4.14 shows the structure of a Multidimensional Array of dynamic length.

Element_a[1][j…k_1]

L_1 [Bytes]

Length n

32 Bit

E1,1 E1,2 E1,k_1 … L_1

Element_a[2][j…k_2]

E1,1 E1,2 E1,k_2 … L_2

32 Bit

…

L_2 [Bytes]
32 Bit

n [Bytes]

Figure 4.14: Multidimensional array (dynamic length)

[PRS_SOMEIP_00114] dIn multidimensional arrays every sub array of different dimen-
sions shall have its own length field.c(RS_SOMEIP_00037)

If static buffer size allocation is required, the data type definition shall define the maxi-
mum length of each dimension.

41 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Rationale: When measuring the length in Bytes, complex multi-dimensional arrays can
be skipped over in deserialization.

SOME/IP also supports that different length for columns and different length for rows
in the same dimension. See k_1 and k_2 in Figure 4.14. A length indicator needs to
be present in front of every dynamic length array. This applies for both outer and all
inner/nested arrays.

[PRS_SOMEIP_00919] dIf the length of a variable length array is greater than expected
(expectation shall be based on the data type definition) only the elements specified in
the data type shall be interpreted and the other bytes shall be skipped based on the
length field.c(RS_SOMEIP_00037)

[PRS_SOMEIP_00945] dIf not configured the length of the length field that is added
in front of the dynamic length array is 32 Bits (default length of length field).c(RS_-
SOMEIP_00037, RS_SOMEIP_00040)

4.1.4.6 Enumeration

[PRS_SOMEIP_00705] dEnumerations are not considered in SOME/IP. Enumera-
tions shall be transmitted as unsigned integer datatypes.c(RS_SOMEIP_00030, RS_-
SOMEIP_00033)

4.1.4.7 Bitfield

[PRS_SOMEIP_00300] dBitfields shall be transported as unsigned datatypes
uint8/uint16/uint32.c(RS_SOMEIP_00033, RS_SOMEIP_00030)

The data type definition will be able to define the name and values of each bit.

4.1.4.8 Union / Variant

There are use cases for defining data as unions on the network where the payload can
be of different data types.

A union (also called variant) is such a parameter that can contain different types of
data. For example, if one defines a union of type uint8 and type uint16, the union shall
carry data which are a uint8 or a uint16.

Which data type will be transmitted in the payload can only be decided during execu-
tion. In this case, however, it is necessary to not only send the data itself but add an
information about the applicable data type as a form of "meta-data" to the transmission.

By the means of the attached meta-data the sender can identify the applicable data
type of the union and the receiver can accordingly access the data properly.

42 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00118] dA union shall be used to transport data with alternative data
types over the network.c(RS_SOMEIP_00034)

[PRS_SOMEIP_00119] dA union shall consist of a length field, type selector and the
payload as shown in Table 4.9:c(RS_SOMEIP_00034)

Length field [32 bit]
Type field [32 bit]
Data including padding [sizeof(padding) = length - sizeof(data)]

Table 4.9: Default Serialization of Unions

[PRS_SOMEIP_00126] dThe length field shall define the size of the data and padding
in bytes and does not include the size of the length field and type field.c(RS_SOMEIP_-
00034)

Note:
The padding can be used to align following data in the serialized data stream if config-
ured accordingly.

[PRS_SOMEIP_00121] dThe length of the length field shall be defined by configuration
and shall be 32, 16, 8, or 0 bitsc(RS_SOMEIP_00034)

[PRS_SOMEIP_00122] dA length of the length field of 0 Bit means that no length field
will be written to the PDU.c(RS_SOMEIP_00034)

[PRS_SOMEIP_00123] dIf the length of the length field is 0 Bit, all types in the union
shall be of the same length.c(RS_SOMEIP_00034)

[PRS_SOMEIP_00129] dThe type field shall specify the data type of the data.c(RS_-
SOMEIP_00034)

[PRS_SOMEIP_00127] dThe length of the type field shall be defined by configuration
and shall be 32, 16, or 8 bits.c(RS_SOMEIP_00034)

[PRS_SOMEIP_00906] dPossible values of the type field shall be defined by the con-
figuration for each union separately.c(RS_SOMEIP_00034)

[PRS_SOMEIP_00907] dThe value 0 of the type field shall be reserved for the NULL
type.c(RS_SOMEIP_00024, RS_SOMEIP_00034)

Note:
This denotes an empty union.

[PRS_SOMEIP_00908] dWhether NULL is allowed for a union or not shall be defined
by configuration.c(RS_SOMEIP_00034)

[PRS_SOMEIP_00130] dThe payload is serialized depending on the type in the type
field.c(RS_SOMEIP_00028, RS_SOMEIP_00034)

In the following example a length of the length field is specified as 32 Bits. The union
shall support a uint8 and a uint16 as data. Both are padded to the 32 bit boundary
(length=4 Bytes).

43 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

A uint8 will be serialized like shown in Table 4.10.

Length = 4 Bytes
Type = 1
uint8 Padding 0x00 Padding 0x00 Padding 0x00

Table 4.10: Example: uint8

A uint16 will be serialized like shown in Table 4.11.

Length = 4 Bytes
Type = 2
uint16 Padding 0x00 Padding 0x00

Table 4.11: Example: uint16

[PRS_SOMEIP_00915] dIf the length of a union is greater than expected (expectation
shall be based on the data type definition) only the bytes specified in the data type
shall be interpreted and the other bytes shall be skipped based on the length field.c
(RS_SOMEIP_00034)

[PRS_SOMEIP_00916] dIf the length of a union is less than expected (expectation
shall be based on the data type definition) it shall depend on the inner data type
whether valid data can be deserialized or the deserialization shall be aborted and the
message shall be treated as malformed.c(RS_SOMEIP_00034)

4.2 Specification of SOME/IP Protocol

This chapter describes the Remote Procedure Call(RPC), Event Notifications and Error
Handling of SOME/IP.

4.2.1 Transport Protocol Bindings

In order to transport SOME/IP messages different transport protocols may be used.
SOME/IP currently supports UDP and TCP. Their bindings are explained in the follow-
ing sections, while Chapter 6 discusses which transport protocol to choose.

[PRS_SOMEIP_00138] dIf a server runs different instances of the same service, mes-
sages belonging to different service instances shall be mapped to the service instance
by the transport protocol port on the server side.c(RS_SOMEIP_00015)

For details of see Chapter 4.2.1.3

[PRS_SOMEIP_00535] dAll Transport Protocol Bindings shall support transporting
more than one SOME/IP message in a Transport Layer PDU (i.e. UDP packet or TCP
segment).c(RS_SOMEIP_00010)

44 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00142] dThe receiving SOME/IP implementation shall be capable of
receiving unaligned SOME/IP messages transported by UDP or TCP.c(RS_SOMEIP_-
00010)

Rationale:
When transporting multiple SOME/IP payloads in UDP or TCP the alignment of the
payloads can be only guaranteed, if the length of every payloads is a multiple of the
alignment size (e.g. 32 bits).

[PRS_SOMEIP_00140] dThe header format allows transporting more than one
SOME/IP message in a single packet. The SOME/IP implementation shall identify
the end of a SOME/IP message by means of the SOME/IP length field. Based on
the packet length field, SOME/IP shall determine if there are additional SOME/IP mes-
sages in the packet. This shall apply for UDP and TCP transport.c(RS_SOMEIP_-
00010)

[PRS_SOMEIP_00141] dEach SOME/IP payload shall have its own SOME/IP header.c
(RS_SOMEIP_00010, RS_SOMEIP_00027)

[PRS_SOMEIP_00940] dOne Service-Instance can use the following setup for its com-
munication of all the methods, events, and notifications:

• up to one TCP connection

• up to one UDP unicast connection

• up to one UDP multicast connection

c(RS_SOMEIP_00010, RS_SOMEIP_00027)

4.2.1.1 UDP Binding

[PRS_SOMEIP_00139] dThe UDP binding of SOME/IP shall be achieved by transport-
ing SOME/IP messages in UDP packets.c(RS_SOMEIP_00010)

[PRS_SOMEIP_00137] dSOME/IP protocol shall not restrict the usage of UPD frag-
mentation.c(RS_SOMEIP_00010)

[PRS_SOMEIP_00943] dThe client and server shall use a single UDP unicast connec-
tion for all methods, events, and notifications of a Service-Instance which are config-
ured to be communicated using UDP unicast.c(RS_SOMEIP_00010)

[PRS_SOMEIP_00942] dThe client and server shall use a single UDP multicast con-
nection for all events, and notifications of a Service-Instance which are configured to
be communicated using UDP multicast.c(RS_SOMEIP_00010)

45 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

4.2.1.2 TCP Binding

The TCP binding of SOME/IP is heavily based on the UDP binding. In contrast to the
UDP binding, the TCP binding allows much bigger SOME/IP messages and uses the
robustness features of TCP (coping with loss, reorder, duplication, etc.).

In order to lower latency and reaction time, Nagle’s algorithm should be turned off
(TCP_NODELAY).

[PRS_SOMEIP_00706] dWhen the TCP connection is lost, outstanding requests shall
be handled as timeouts.c(RS_SOMEIP_00010) Since TCP handles reliability, addi-
tional means of reliability are not needed.

[PRS_SOMEIP_00707] dThe client and server shall use a single TCP connection for
all methods, events, and notifications of a Service-Instance which are configured to be
communicated using TCP.c(RS_SOMEIP_00010)

[PRS_SOMEIP_00708] dThe TCP connection shall be opened by the client, when the
first method call shall be transported or the client tries to receive the first notifications.c
(RS_SOMEIP_00010)

The client is responsible for reestablishing the TCP connection whenever it fails.

[PRS_SOMEIP_00709] dThe TCP connection shall be closed by the client, when the
TCP connection is not required anymore.c(RS_SOMEIP_00010)

[PRS_SOMEIP_00710] dThe TCP connection shall be closed by the client, when all
Services using the TCP connections are not available anymore (stopped or timed out).c
(RS_SOMEIP_00010)

[PRS_SOMEIP_00711] dThe server shall not stop the TCP connection when stopping
all services. Give the client enough time to process the control data to shutdown the
TCP connection itself.c(RS_SOMEIP_00010)

Rational:
When the server closes the TCP connection before the client recognized that the TCP
is not needed anymore, the client will try to reestablish the TCP connection.

Allowing resync to TCP stream using Magic Cookies

[PRS_SOMEIP_00154] dIn order to allow testing tools to identify the boundaries of
SOME/IP Message transported via TCP, the SOME/IP Magic Cookie Message may be
inserted into the SOME/IP messages over TCP message stream at regular distances.c
(RS_SOMEIP_00010)

[PRS_SOMEIP_00160] dThe layout of the Magic Cookie Messages shall consist of the
followign fields:

• for communincation from Client to Server:

46 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

– Message ID (Service ID/Method ID): 0xFFFF 0000

– Length: 0x0000 0008

– Request ID (Client ID/Session ID): 0xDEAD BEEF

– Protocol Version: 0x01

– Interface Version: 0x01

– Message Type: 0x01

– Return Code: 0x00

• for communincation from Server to Client:

– Message ID (Service ID/Method ID): 0xFFFF 8000

– Length: 0x0000 0008

– Request ID (Client ID/Session ID): 0xDEAD BEEF

– Protocol Version: 0x01

– Interface Version: 0x01

– Message Type: 0x02

– Return Code: 0x00

c(RS_SOMEIP_00010)

The layout of the Magic Cookie Messages is shown in Figure 4.15.

47 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x01

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

= 0xDEAD BEEF

Length [32 bit]

= 0x0000 0008

Message ID (Service ID / Method ID) [32 bit]

(= 0xFFFF 0000)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
o
ve

re
d

b
y

L
e
n
g
th

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x02

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

= 0xDEAD BEEF

Length [32 bit]

= 0x0000 0008

Message ID (Service ID / Method ID) [32 bit]

(= 0xFFFF 8000)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
ov

e
re

d
by

 L
e
n
gt

h

Client � Server:

Server � Client:

Figure 4.15: SOME/IP Magic Cookie Message for SOME/IP

4.2.1.3 Multiple Service-Instances

[PRS_SOMEIP_00162] dService-Instances of the same Service are identified through
different Instance IDs. It shall be supported that multiple Service-Instances reside on
different ECUs as well as multiple Service-Instances of one or more Services reside
on one single ECU.c(RS_SOMEIP_00015)

[PRS_SOMEIP_00163] dWhile several Service-Instances of different Services shall
be able to share the same port number of the transport layer protocol used, multiple
Service-Instances of the same Service on one single ECU shall use different ports per
Service-Instance.c(RS_SOMEIP_00015)

Rationale: While Instance IDs are used for Service Discovery, they are not contained
in the SOME/IP header.

A Service Instance can be identified through the combination of the Service ID com-
bined with the socket (i.e. IP-address, transport protocol (UDP/TCP), and port num-
ber). It is recommended that instances use the same port number for UDP and TCP. If
a service instance uses UDP port x, only this instance of the service and not another
instance of the same service should use exactly TCP port x for its services.

48 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

4.2.1.4 Transporting large SOME/IP messages of UDP (SOME/IP-TP)

The UDP binding of SOME/IP can only transport SOME/IP messages that fit directly
into an IP packet. If larger SOME/IP messages need to be transported over UDP
(e.g. of 32 KB) the SOME/IP Transport Protocol (SOME/IP-TP) shall be used. The
SOME/IP message too big to be transported directly with the UDP binding shall be
called "original" SOME/IP message. The "pieces" of the original SOME/IP message
payload transported in SOME/IP-TP messages shall be called "segments".

Use TCP only if very large chunks of data need to be transported (> 1400 Bytes) and
no hard latency requirements in the case of errors exists

[PRS_SOMEIP_00720] dSOME/IP messages using SOME/IP-TP shall activate Ses-
sion Handling (Session ID must be unique for the original message).c(RS_SOMEIP_-
00010, RS_SOMEIP_00012)

[PRS_SOMEIP_00721] dAll SOME/IP-TP segments shall carry the Session ID of the
original message; thus, they have all the same Session-ID.c(RS_SOMEIP_00010,
RS_SOMEIP_00012)

[PRS_SOMEIP_00722] dSOME/IP-TP segments shall have the TP-Flag of the Mes-
sage Type set to 1.c(RS_SOMEIP_00010, RS_SOMEIP_00011)

[PRS_SOMEIP_00723] dSOME/IP-TP segments shall have a TP header right after the
SOME/IP header (i.e. before the SOME/IP payload) with the following structure (bits
from highest to lowest):

• Offset [28 bits]

• Reserved Flag [1 bit]

• Reserved Flag [1 bit]

• Reserved Flag [1 bit]

• More Segments Flag [1 bit]

c(RS_SOMEIP_00010, RS_SOMEIP_00027)

SOME-IP-TP-Header is as shown in Figure 4.16.

49 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Figure 4.16: SOME/IP TP header

[PRS_SOMEIP_00931] dSOME/IP-TP Header shall be encoded in network byte order
(big endian).c(RS_SOMEIP_00027)

[PRS_SOMEIP_00724] dThe Offset field shall transport the upper 28 bits of a
uint32. The lower 4 bits shall be always interpreted as 0.c(RS_SOMEIP_00010, RS_-
SOMEIP_00027) Note:
This means that the offset field can only transport offset values that are multiples of 16
bytes.

[PRS_SOMEIP_00725] dThe Offset field of the TP header shall be set to the offset
in bytes of the transported segment in the original message.c(RS_SOMEIP_00010,
RS_SOMEIP_00027)

[PRS_SOMEIP_00726] dThe Reserved Flags shall be set to 0 by the sender and shall
be ignored (and not checked) by the receiver.c(RS_SOMEIP_00010, RS_SOMEIP_-
00027)

[PRS_SOMEIP_00727] dThe More Segments Flag shall be set to 1 for all segments
but the last segment. For the last segment it shall be set to 0.c(RS_SOMEIP_00010,
RS_SOMEIP_00027)

[PRS_SOMEIP_00728] dThe SOME/IP length field shall be used as specified before.
This means it covers the first 8 bytes of the SOME/IP header and all bytes after that.c
(RS_SOMEIP_00010, RS_SOMEIP_00027) Note:
This means that for a SOME/IP-TP message transporting a segment, the SOME/IP
length covers 8 bytes of the SOME/IP header, the 4 bytes of the TP header, and the
segment itself.

[PRS_SOMEIP_00729] dThe length of a segment must reflect the alignment of the
next segment based on the offset field. Therefore, all but the last segment shall have
a length that is a multiple of 16 bytes.c(RS_SOMEIP_00010, RS_SOMEIP_00051)

50 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00730] dSince UDP-based SOME/IP messages are limited to 1400
bytes payload, the maximum length of a segment that is correctly aligned is 1392
bytes.c(RS_SOMEIP_00010, RS_SOMEIP_00029, RS_SOMEIP_00051)

[PRS_SOMEIP_00731] dSOME/IP-TP messages shall use the same Message ID (i.e.
Service ID and Method ID), Request ID (i.e. Client ID and Session ID), Protocol Ver-
sion, Interface Version, and Return Code as the original message.c(RS_SOMEIP_-
00010, RS_SOMEIP_00051) Note:
As described above the Length, Message Type, and Payload are adapted by SOME/IP-
TP.

Example

This example describes how an original SOME/IP message of 5880 bytes payload has
to be transmitted. The Length field of this original SOME/IP message is set to 8 + 5880
bytes.

Figure 4.17: Example: Header of Original SOME/IP message

This original SOME/IP message will now be segmented into 5 consecutive SOME/IP
segments. Every payload of these segments carries at most 1392 bytes in this exam-
ple.

For these segments, the SOME/IP TP module adds additional TP fields (marked red).
The Length field of the SOME/IP carries the overall length of the SOME/IP segment
including 8 bytes for the Request ID, Protocol Version, Interface Version, Message Type
and Return Code. Because of the added TP fields (4 bytes), this Length information is
extended by 4 additional SOME/IP TP bytes.

The following figure provides an overview of the relevant SOME/IP header settings for
every SOME/IP segment:

51 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Figure 4.18: Example: Overview of relevant SOME/IP TP headers

Note:
Please be aware that the value provided within the Offset Field is given in units of 16
bytes, i.e.: The Offset Value of 87 correspond to 1392 bytes Payload.

The complete SOME/IP headers of the SOME/IP segments message will look like this
in detail:

• The first 4 segments contain 1392 Payload bytes each with "More Segments
Flag" set to ’1’:

Figure 4.19: Example: Header of the SOME/IP segments

• The last segment (i.e. #5) contains the remaining 312 Payload bytes of the origi-
nal 5880 bytes payload. This last segment is marked with "More Segments flag"
set to ’0’.

52 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Figure 4.20: Example: Header of the last SOME/IP segment

Sender specific behavior

[PRS_SOMEIP_00732] dThe sender shall segment only messages that were config-
ured to be segmented.c(RS_SOMEIP_00010, RS_SOMEIP_00051)

[PRS_SOMEIP_00733] dThe sender shall send segments in ascending order.c(RS_-
SOMEIP_00010, RS_SOMEIP_00051)

[PRS_SOMEIP_00734] dThe sender shall segment in a way that all segments with
the More Segment Flag set to 1 are of the same size.c(RS_SOMEIP_00010, RS_-
SOMEIP_00051)

[PRS_SOMEIP_00735] dThe sender shall try to maximize the size of segments within
limitations imposed by this specification.c(RS_SOMEIP_00010, RS_SOMEIP_00051)

[PRS_SOMEIP_00736] dThe sender shall not send overlapping or duplicated seg-
ments.c(RS_SOMEIP_00010, RS_SOMEIP_00051)

Receiver specific behavior

[PRS_SOMEIP_00738] dThe receiver shall match segments for reassembly based
on the configured values of Message-ID, Protocol-Version, Interface-Version and
Message-Type (w/o TP Flag).c(RS_SOMEIP_00010, RS_SOMEIP_00051)

[PRS_SOMEIP_00740] dIt shall be supported to reassemble multiple messages with
the same Message ID but sent from different clients (difference in Sender IP, Sender

53 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Port, or Client ID) in parallel. This should be controlled by configuration and determines
the amount of "reassembly buffers".c(RS_SOMEIP_00010, RS_SOMEIP_00051)

[PRS_SOMEIP_00741] dThe Session ID shall be used to detect the next original mes-
sage to be reassembled.c(RS_SOMEIP_00010, RS_SOMEIP_00051)

[PRS_SOMEIP_00742] dThe receiver shall start a new reassembly (and may throw
away old segments that were not successfully reassembled), if a new segment with a
different Session-ID is received.c(RS_SOMEIP_00010, RS_SOMEIP_00051)

[PRS_SOMEIP_00743] dThe receiver should only reassemble up to its configured
buffer size and skip the rest of the message.c(RS_SOMEIP_00010, RS_SOMEIP_-
00051)

[PRS_SOMEIP_00744] dOnly correctly reassembled message of up to the configured
size shall be passed to an application.c(RS_SOMEIP_00010, RS_SOMEIP_00051)
Note:
This means that the implementation must make sure that all bytes of the message must
be bytes that were received and reassembled correctly. Counting non-overlapping,
non-duplicated bytes and comparing this to the length could be a valid check.

[PRS_SOMEIP_00745] dThe Return Code of the last segment used for reassembly
shall be used for the reassembled message.c(RS_SOMEIP_00010, RS_SOMEIP_-
00051)

[PRS_SOMEIP_00746] dDuring reassembling the SOME/IP TP segments into a large
unsegmented message, the Message Type shall be adapted, the TP Flag shall be reset
to 0.c(RS_SOMEIP_00010, RS_SOMEIP_00051)

[PRS_SOMEIP_00747] dThe receiver shall support reassembly of segments that are
received in ascending and descending order.c(RS_SOMEIP_00010, RS_SOMEIP_-
00051)

[PRS_SOMEIP_00749] dWhen a missing segment is detected during assembly of a
SOME/IP message, the current assembly process shall be canceled.c(RS_SOMEIP_-
00010, RS_SOMEIP_00051) Note:
This means that reordering is not supported.

[PRS_SOMEIP_00750] dInterleaving of different segmented messages using the
same buffer (e.g. only the Session-ID and payload are different) is not supported.c
(RS_SOMEIP_00010, RS_SOMEIP_00051)

Note:
This prohibits that equal events (same Message-ID, IP-Addresses, ports numbers, and
transport protocol) arrive in the wrong order, when some of their segments get re-
ordered.

[PRS_SOMEIP_00751] dReordering of segments of completely different original mes-
sages (e.g. Message ID is different) is not of concern since those segments go to
different buffers.c(RS_SOMEIP_00010, RS_SOMEIP_00051)

54 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00752] dThe receiver shall correctly reassemble overlapping and du-
plicated segments by overwriting based on the last received segment.c(RS_SOMEIP_-
00010, RS_SOMEIP_00051)

[PRS_SOMEIP_00753] dThe receiver may cancel reassembly, if overlapping or dupli-
cated segments change already written bytes in the buffer, if this feature can be turned
off by configuration.c(RS_SOMEIP_00010, RS_SOMEIP_00051)

[PRS_SOMEIP_00754] dThe receiver shall be able to detect and handle obvious er-
rors gracefully. E.g. cancel reassembly if segment length of a segment with MS=1 is
not a multiple of 16.c(RS_SOMEIP_00010, RS_SOMEIP_00051) Note:
This means that buffer overflows or other malfunction shall be prevented by the receiv-
ing code.

4.2.2 Request/Response Communication

One of the most common communication patterns is the request/response pattern.
One communication partner (Client) sends a request message, which is answered by
another communication partner (Server).

[PRS_SOMEIP_00920] dFor the SOME/IP request message the client has to do the
following for payload and header:

• Construct the payload

• Set the Message ID based on the method the client wants to call

• Set the Length field to 8 bytes (for the part of the SOME/IP header after the length
field) + length of the serialized payload

• Optionally set the Request ID to a unique number (shall be unique for client only)

• Set the Protocol Version according [PRS_SOMEIP_00052]

• Set the Interface Version according to the interface definition

• Set the Message Type to REQUEST (i.e. 0x00)

• Set the Return Code to 0x00

c(RS_SOMEIP_00007)

[PRS_SOMEIP_00921] dTo construct the payload of a request message, all input or
inout arguments of the method shall be serialized according to the order of the argu-
ments within the signature of the method.c(RS_SOMEIP_00028, RS_SOMEIP_00007)

[PRS_SOMEIP_00922] dThe server builds the header of the response based on the
header of the client’s request and does in addition:

• Construct the payload

• take over the Message ID from the corresponding request

55 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

• Set the length to the 8 Bytes + new payload size

• take over the Request ID from the corresponding request

• Set the Message Type to RESPONSE (i.e. 0x80) or ERROR (i.e. 0x81)

• set Return Code to the return code of called method or in case of an Error mes-
sage to a valid error code.

c(RS_SOMEIP_00007)

For the valid retrun codes, see Table 4.12.

[PRS_SOMEIP_00923] dTo construct the payload of a response message, all output
or inout arguments of the method shall be serialized according to the order of the
arguments within the signature of the method.c(RS_SOMEIP_00028, RS_SOMEIP_-
00007)

[PRS_SOMEIP_00927] dA server shall not sent a response message for a request with
a specific Request ID until the corresponding request message has been received.c
(RS_SOMEIP_00007)

[PRS_SOMEIP_00928] dA client shall ignore the reception of a response message
with a specific Request ID, when the corresponding request message has not yet been
sent completely.c(RS_SOMEIP_00007)

4.2.3 Fire&Forget Communication

Requests without response message are called fire&forget.

[PRS_SOMEIP_00924] dFor the SOME/IP request-no-return message the client has
to do the following for payload and header:

• Construct the payload

• Set the Message ID based on the method the client wants to call

• Set the Length field to 8 bytes (for the part of the SOME/IP header after the length
field) + length of the serialized payload

• Optionally set the Request ID to a unique number (shall be unique for client only)

• Set the Protocol Version according [PRS_SOMEIP_00052]

• Set the Interface Version according to the interface definition

• Set the Message Type to REQUEST_NO_RETURN (i.e. 0x01)

• Set the Return Code to 0x00

c(RS_SOMEIP_00006)

56 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00171] dFire & Forget messages shall not return an error. Error han-
dling and return codes shall be implemented by the application when needed.c(RS_-
SOMEIP_00006)

4.2.4 Notification Events

Notifications describe a general Publish/Subscribe-Concept. Usually the server pub-
lishes a service to which a client subscribes. On certain cases the server will send the
client an event, which could be for example an updated value or an event that occurred.

SOME/IP is used only for transporting the updated value and not for the publishing and
subscription mechanisms. These mechanisms are implemented by SOME/IP-SD.

[PRS_SOMEIP_00925] dFor the SOME/IP notification message the server has to do
the following for payload and header:

• Construct the payload

• Set the Message ID based on the event the server wants to send

• Set the Length field to 8 bytes (for the part of the SOME/IP header after the length
field) + length of the serialized payload

• Set the Client ID to 0x00. Set the Session ID according to
[PRS_SOMEIP_00932], [PRS_SOMEIP_00933], and [PRS_SOMEIP_00521].
In case of active Session Handling the Session ID shall be incremented upon
each transmission.

• Set the Protocol Version according [PRS_SOMEIP_00052]

• Set the Interface Version according to the interface definition

• Set the Message Type to NOTIFICATION (i.e. 0x02)

• Set the Return Code to 0x00

c(RS_SOMEIP_00004)

[PRS_SOMEIP_00926] dThe payload of the notification message shall consist of the
serialized data of the event.c(RS_SOMEIP_00004)

[PRS_SOMEIP_00930] dWhen more than one subscribed client on the same ECU
exists, the system shall handle the replication of notifications in order to save transmis-
sions on the communication medium.c(RS_SOMEIP_00042)

This is especially important, when notifications are transported using multicast mes-
sages.

57 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

4.2.4.1 Strategy for sending notifications

For different use cases different strategies for sending notifications are possible. The
following examples are common:

• Cyclic update — send an updated value in a fixed interval (e.g. every 100 ms for
safety relevant messages with Alive)

• Update on change — send an update as soon as a "value" changes (e.g. door
open)

• Epsilon change — only send an update when the difference to the last value is
greater than a certain epsilon. This concept may be adaptive, i.e. the prediction is
based on a history; thus, only when the difference between prediction and current
value is greater than epsilon an update is transmitted.

4.2.5 Fields

A field represents a status and has a valid value. The consumers subscribing for the
field instantly after subscription get the field value as an initial event.

[PRS_SOMEIP_00179] dA field shall be a combination of getter, setter and notification
event.c(RS_SOMEIP_00009)

[PRS_SOMEIP_00180] dA field without a setter and without a getter and without a
notifier shall not exist. The field shall contain at least a getter, a setter, or a notifier.c
(RS_SOMEIP_00009)

[PRS_SOMEIP_00181] dThe getter of a field shall be a request/response call that has
an empty payload in the request message and the value of the field in the payload of
the response message.c(RS_SOMEIP_00009)

[PRS_SOMEIP_00182] dThe setter of a field shall be a request/response call that has
the desired value of the field in the payload of the request message and the value that
was set to the field in the payload of the response message.c(RS_SOMEIP_00009)

Note:
If the value of the request payload was adapted (e.g. because it was out of limits) the
adapted value will be transported in the response payload.

[PRS_SOMEIP_00909] dThe notifier shall send an event message that transports the
value of the field to the client when the client subscribes to the field.c(RS_SOMEIP_-
00002, RS_SOMEIP_00009)

[PRS_SOMEIP_00183] dThe notifier shall send an event message that transports the
value of a field on change and follows the rules for events.c(RS_SOMEIP_00005,
RS_SOMEIP_00009)

58 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

4.2.6 Error Handling

Error handling can be done in the application or the communication layer below. There-
fore SOME/IP supports two different mechanisms:

• Return Codes in the Response Messages of methods

• Explicit Error Messages

Which one of both is used, depends on the configuration.

[PRS_SOMEIP_00901] dReturn Codes in the Response Messages of methods shall
be used to transport application errors and the response data of a method from the
provider to the caller of a method.c(RS_SOMEIP_00008)

Note:
Please be aware that return codes of the Request and Response methods are not
treated as errors from the point of view of SOME/IP. This means that the message type
is still 0x80 if a request/response method exits with a return code not equal to 0x00
(message type is still 0x80 if ApplicationError of AUTOSAR ClientServerOperation is
different from E_OK).

[PRS_SOMEIP_00902] dExplicit Error Messages shall be used to transport application
errors and the response data or generic SOME/IP errors from the provider to the caller
of a method.c(RS_SOMEIP_00008)

[PRS_SOMEIP_00903] dIf more detailed error information need to be transmitted, the
payload of the Error Message (Message Type 0x81) shall be filled with error specific
data, e.g. an exception string. Error Messages shall be sent instead of Response
Messages.c(RS_SOMEIP_00008)

This can be used to handle all different application errors that might occur in the server.
In addition, problems with the communication medium or intermediate components
(e.g. switches) may occur, which have to be handled e.g. by means of reliable trans-
port.

All messages have a return code field in their header. (See chapter 4.1.2)

[PRS_SOMEIP_00904] dOnly responses (Response Messages (message type 0x80)
and Error Messages (message type 0x81) shall use the return code field to carry a
return code to the request (Message Type 0x00) they answer.c(RS_SOMEIP_00008)

[PRS_SOMEIP_00905] dAll other messages than 0x80 and 0x81 shall set this field to
0x00.c(RS_SOMEIP_00008)

For message type see Chapter 4.1.2.8.

4.2.6.1 Return Code

[PRS_SOMEIP_00187] dThe return code shall be UINT8.c(RS_SOMEIP_00008)

59 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00191] dCurrently defined Return Codes are shown in Table 4.12c
(RS_SOMEIP_00008, RS_SOMEIP_00024)

ID Name Description
0x00 E_OK No error occurred
0x01 E_NOT_OK An unspecified error occurred
0x02 E_UNKNOWN_SERVICE The requested Service ID is unknown.
0x03 E_UNKNOWN_METHOD The requested Method ID is unknown. Service ID is

known.
0x04 E_NOT_READY Service ID and Method ID are known. Application

not running.
0x05 E_NOT_REACHABLE System running the service is not reachable (inter-

nal error code only).
0x06 E_TIMEOUT A timeout occurred (internal error code only).
0x07 E_WRONG_PROTOCOL_

VERSION
Version of SOME/IP protocol not supported

0x08 E_WRONG_INTERFACE_
VERSION

Interface version mismatch

0x09 E_MALFORMED_MESSAGE Deserialization error, so that payload cannot be de-
serialized.

0x0a E_WRONG_MESSAGE_TYPE An unexpected message type was received (e.g.
REQUEST_NO_RETURN for a method defined as
REQUEST).

0x0b E_E2E_REPEATED Repeated E2E calculation error
0x0c E_E2E_WRONG_SEQUENCE Wrong E2E sequence error
0x0d E_E2E Not further specified E2E error
0x0e E_E2E_NOT_AVAILABLE E2E not available
0x0f E_E2E_NO_NEW_DATA No new data for E2E calculation present.
0x10 -
0x1f

RESERVED Reserved for generic SOME/IP errors. These errors
will be specified in future versions of this document.

0x20 -
0x5E

RESERVED Reserved for specific errors of services and meth-
ods. These errors are specified by the interface
specification.

Table 4.12: Return Codes

Generation and handling of return codes shall be configurable.

[PRS_SOMEIP_00539] dA SOME/IP error message (i.e. return code 0x01 - 0x1f)
shall not be answered with an error message.c(RS_SOMEIP_00008)

4.2.6.2 Error Message

For more flexible error handling, SOME/IP allows a different message layout specific
for Error Messages instead of using the message layout of Response Messages.

The recommended layout for the exception message is the following:

• Union of specific exceptions. At least a generic exception without fields needs to
exist.

60 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

• Dynamic Length String for exception description.

Rationale: The union gives the flexibility to add new exceptions in the future in a type-
safe manner. The string is used to transport human readable exception descriptions to
ease testing and debugging.

[PRS_SOMEIP_00188] dThe receiver of a SOME/IP message shall not return an error
message for events/notifications.c(RS_SOMEIP_00008)

[PRS_SOMEIP_00189] dThe receiver of a SOME/IP message shall not return an error
message for fire&forget methods.c(RS_SOMEIP_00008)

[PRS_SOMEIP_00537] dThe receiver of a SOME/IP message shall not return an error
message for events/notifications and fire&forget methods if the Message Type is set
incorrectly to Request or Response.c(RS_SOMEIP_00008)

[PRS_SOMEIP_00190] dFor Request/Response methods the error message shall
copy over the fields of the SOME/IP header (i.e. Message ID, Request ID, and In-
terface Version) but not the payload. In addition Message Type and Return Code have
to be set to the appropriate values.c(RS_SOMEIP_00008)

4.2.6.3 Error Processing Overview

[PRS_SOMEIP_00576] dError handling shall be based on the message type received
(e.g. only methods can be answered with a return code) and shall be checked in a
defined order of [PRS_SOMEIP_00195].c(RS_SOMEIP_00008, RS_SOMEIP_00014)

[PRS_SOMEIP_00910] dFor SOME/IP messages received over UDP, the following
shall be checked:

• The UDP datagram size shall be at least 16 Bytes (minimum size of a SOME/IP
message)

• The value of the length field shall be less than or equal to the remaining bytes in
the UDP datagram payload

If one check fails, a malformed error shall be issued.c(RS_SOMEIP_00008, RS_-
SOMEIP_00014)

[PRS_SOMEIP_00195] dSOME/IP messages shall be checked by error processing.
This does not include the application based error handling but just covers the error
handling in messaging and RPC.c(RS_SOMEIP_00008, RS_SOMEIP_00014)

An overview of the error processing is shown in Figure 4.21.

61 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Figure 4.21: Message Validation and Error Handling in SOME/IP

[PRS_SOMEIP_00614] dWhen one of the errors specified in [PRS_SOMEIP_00195]
occurs while receiving SOME/IP messages over TCP, the receiver shall check the TCP
connection and shall restart the TCP connection if needed.c(RS_SOMEIP_00008,
RS_SOMEIP_00014) Rational:
Checking the TCP connection might include the following:

• Checking whether data is received for e.g. other Eventgroups.

• Sending out a Magic Cookie message and waiting for the TCP ACK.

• Reestablishing the TCP connection

62 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

4.2.6.4 Communication Errors and Handling of Communication Errors

When considering the transport of RPC messages different reliability semantics exist:

• Maybe — the message might reach the communication partner

• At least once — the message reaches the communication partner at least once

• Exactly once — the message reaches the communication partner exactly once

When using the above terms, in regard to Request/Response the term applies to both
messages (i.e. request and response or error).

While different implementations may implement different approaches, SOME/IP cur-
rently achieves "maybe" reliability when using the UDP binding and "exactly once" reli-
ability when using the TCP binding. Further error handling is left to the application.

For "maybe" reliability, only a single timeout is needed, when using request/response
communication in combination of UDP as transport protocol. Figure 4.22 shows the
state machines for "maybe" reliability. The client’s SOME/IP implementation has to
wait for the response for a specified timeout. If the timeout occurs SOME/IP shall
signal E_TIMEOUT to the client application.

processing

reqReceived

waitingForResponse

/ sendReq rspReceived

rspTimeout

/ sendRsp

Error: NoResponse

Client

Server

Figure 4.22: State Machines for Reliability "Maybe"

For "exactly once" reliability the TCP binding may be used, since TCP was defined to
allow for reliable communication.

4.3 Compatibility Rules for Interface Version

The Interface Version identifies the Payload format. The Payload format is affected by

• the Service Interface specification

• the serialization configuration (e.g. usage of variable size arrays, size of length
fields, padding, TLV, SOME/IP-TP).

63 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

[PRS_SOMEIP_00937] dThe Interface Version shall be increased for any of the follow-
ing reasons:

• incompatible changes in the Payload format

• incompatible changes in the service behaviour

• required by application design

c(RS_SOMEIP_00003)

Note: The Interface Version shall not be increased for compatible changes in the Pay-
load format.

[PRS_SOMEIP_00938] dThe rules in Table 4.13 shall define the compatibility of
changes of the payload format. For complex data types the rules shall be applied
recursively. X denotes a compatible change, an empty cell denotes an incompatible
change.c(RS_SOMEIP_00003)

Note:
This table is based on the specification of the SOME/IP protocol. As a rule of thumb,
interfaces are compatible if the receiver of data finds all expected information on the
expected locations.

64 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

Classes of Protocol / Serialization Capa-
bilities

S
er

ia
liz

at
io

n
w

ith
ou

tl
en

gt
h

fie
ld

s

S
er

ia
liz

at
io

n
w

ith
le

ng
th

fie
ld

s

S
er

ia
liz

at
io

n
w

ith
TL

V

S
er

ia
liz

at
io

n
w

ith
TL

V
an

d
op

tio
na

lm
em

be
rs

Change of Interface P
ro

vi
de

R
eq

ui
re

P
ro

vi
de

R
eq

ui
re

P
ro

vi
de

R
eq

ui
re

P
ro

vi
de

R
eq

ui
re

Add a struct member not to the end of the struct X X X

Add a struct member to the end of the toplevel struct X X X X X

Add a struct member to the end of a sub-struct X X X X

Remove struct member not from the end of the struct X X X

Remove struct member from the end of the toplevel struct X X X X X

Remove struct member from the end of a sub-struct X X X X

Reorder struct members X X X X

Change the non-highest union member (redefine or remove)

Add a new union member with previously unused type selector X X X X

Remove union member with highest type selector X X X X

Change of data type:

• to a larger one (e.g. uint8 to uint16)

• to a smaller one (e.g. uint16 to uint8

• to a semantically different one (e.g. integer to struct, integer to float,
string to string with different character size)

• byte order

• number of dimensions of arrays

• size of length field of array, struct or union type selector

Add new enumeration values X X X X

Change existing enumeration values

Remove enumeration values X X X X

Change length of fixed size string or array N/A N/A N/A N/A N/A N/A

Decrease maximum length of variable size string N/A N/A X X X

Increase maximum length of variable size string N/A N/A X X X

Change maximum length of variable size array N/A N/A X X X X X X

Add argument not to the end of the argument list of a method request
Remove argument not from the end of the argument list of a method reponse X X X

Add argument to the end of the argument list of a method request
Remove argument from the end of the argument list of a method reponse X X X X X

5

65 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

4
Classes of Protocol / Serialization Capa-
bilities

S
er

ia
liz

at
io

n
w

ith
ou

tl
en

gt
h

fie
ld

s

S
er

ia
liz

at
io

n
w

ith
le

ng
th

fie
ld

s

S
er

ia
liz

at
io

n
w

ith
TL

V

S
er

ia
liz

at
io

n
w

ith
TL

V
an

d
op

tio
na

lm
em

be
rs

Change of Interface P
ro

vi
de

R
eq

ui
re

P
ro

vi
de

R
eq

ui
re

P
ro

vi
de

R
eq

ui
re

P
ro

vi
de

R
eq

ui
re

Remove argument not from the end of the argument list of a method request
Add argument not from the end of the argument list of a method response X X X

Remove argument from the end of the argument list of a method request
Add argument from the end of the argument list of a method response X X X X X

Reorder arguments of methods X X X X

Change optionality of argument N/A N/A N/A N/A N/A N/A

Change the return type of a method (e.g void to uint8)

Add return codes of a method X X X X

Remove return codes of a method X X X X

Change of the name of a service interface, method or event X X X X X X X X

Add event ot eventgroup X X X X

Remove event from eventgroup X X X X

Add setter or getter to a field
Remove notifier from a field X X X X

Remove setter or getter from a field
Add notifier to a field X X X X

Extend service interface by new method, event or field X X X X

Remove method, event or field from a service interface X X X X

Change Method ID or Event ID

Change data ID of argument
Reuse data ID of repviously removed argument N/A N/A N/A N/A

Table 4.13: Payload Compatibility Rules

66 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

5 Configuration Parameters

Configuration Parameters are not handled and described in this document.

67 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

6 Protocol usage and guidelines

6.1 Choosing the transport protocol

SOME/IP supports User Datagram Protocol (UDP) and Transmission Control Protocol
(TCP). While UDP is a very lean transport protocol supporting only the most important
features (multiplexing and error detecting using a checksum), TCP adds additional
features for achieving a reliable communication. TCP not only handles bit errors but
also segmentation, loss, duplication, reordering, and network congestion.

Inside a vehicle many applications requires very short timeout to react quickly. These
requirements are better met using UDP because the application itself can handle the
unlikely event of errors. For example, in use cases with cyclic data it is often the best
approach to just wait for the next data transmission instead of trying to repair the last
one. The major disadvantage of UDP is that it does not handle segmentation. Hence,
only being able to transport smaller chunks of data.

Guideline:

• Use TCP only if very large chunks of data need to be transported (> 1400 Bytes)
and no hard latency requirements in the case of errors exists

• Use UDP if very hard latency requirements (<100ms) in case of errors is needed

• Use UDP together with SOME/IP-TP if very large chunks of data need to be
transported (> 1400 Bytes) and hard latency requirements in the case of errors
exists

• Try using external transport or transfer mechanisms (Network File System, APIX
link, 1722, ...) when they are more suited for the use case. In this case SOME/IP
can transport a file handle or a comparable identifier. This gives the designer
additional freedom (e.g. in regard to caching).

The transport protocol used is specified by the interface specification on a per-message
basis. Methods, Events, and Fields should commonly only use a single transport pro-
tocol.

6.2 Transporting CAN and FlexRay Frames

SOME/IP should allow to tunnel CAN and FlexRay frames. However, the Message ID
space needs to be coordinated between both use cases. The full SOME/IP Header
shall be used for transporting/tunneling CAN/FlexRay.

68 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

6.3 Insert Padding for structs

If padding is necessary, the designer of the interface shall Insert reserved/padding ele-
ments in the the definition of the data types if needed for alignment, since the SOME/IP
implementation shall not automatically add such padding.

69 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

SOME/IP Protocol Specification
AUTOSAR FO R20-11

7 References

References

[1] Glossary
AUTOSAR_TR_Glossary

70 of 70 Document ID 696: AUTOSAR_PRS_SOMEIPProtocol

	1 Introduction and overview
	1.1 Protocol purpose and objectives
	1.2 Applicability of the protocol
	1.2.1 Constraints and assumptions
	1.2.2 Limitations

	1.3 Dependencies
	1.4 Document Structure

	2 Protocol Requirements
	2.1 Requirements Traceability

	3 Acronyms and Abbreviations
	4 Protocol specification
	4.1 Specification of SOME/IP Message Format (Serialization)
	4.1.1 Limitation
	4.1.2 Header
	4.1.2.1 Message ID [32 Bit]
	4.1.2.2 Method ID [15 Bit]
	4.1.2.3 Event ID [15 Bit]
	4.1.2.4 Length [32 Bit]
	4.1.2.5 Request ID [32 Bit]
	4.1.2.6 Protocol Version [8 Bit]
	4.1.2.7 Interface Version [8 Bit]
	4.1.2.8 Message Type [8 Bit]
	4.1.2.9 Return Code [8 Bit]
	4.1.2.10 Payload [variable size]

	4.1.3 Endianess
	4.1.4 Serialization of Data Structures
	4.1.4.1 Basic Datatypes
	4.1.4.2 Structured Datatypes (structs)
	4.1.4.3 Structured Datatypes and Arguments with Identifier and optional members
	4.1.4.4 Strings
	4.1.4.5 Arrays
	4.1.4.6 Enumeration
	4.1.4.7 Bitfield
	4.1.4.8 Union / Variant

	4.2 Specification of SOME/IP Protocol
	4.2.1 Transport Protocol Bindings
	4.2.1.1 UDP Binding
	4.2.1.2 TCP Binding
	4.2.1.3 Multiple Service-Instances
	4.2.1.4 Transporting large SOME/IP messages of UDP (SOME/IP-TP)

	4.2.2 Request/Response Communication
	4.2.3 Fire&Forget Communication
	4.2.4 Notification Events
	4.2.4.1 Strategy for sending notifications

	4.2.5 Fields
	4.2.6 Error Handling
	4.2.6.1 Return Code
	4.2.6.2 Error Message
	4.2.6.3 Error Processing Overview
	4.2.6.4 Communication Errors and Handling of Communication Errors

	4.3 Compatibility Rules for Interface Version

	5 Configuration Parameters
	6 Protocol usage and guidelines
	6.1 Choosing the transport protocol
	6.2 Transporting CAN and FlexRay Frames
	6.3 Insert Padding for structs

	7 References

