
Specification of Operating System
AUTOSAR CP R20-11

1 of 342 Document ID 34: AUTOSAR_SWS_OS

Document Change History
Date Release Changed by Change Description

2020-11-30 R20-11 AUTOSAR

Release

Management

 Updates to ARTI description and

configuration

 Ioc: correction regarding N:M

communication

 Minor correction / clarification /

editorial changes

2019-11-28 R19-11 AUTOSAR

Release

Management

 Various updates for ARTI

 Enhanced memory mapping for IOC

 Some type improvements for multi-

core

 Minor correction / clarification /

editorial changes

 Changed Document Status from

Final to published

2018-10-31 4.4.0 AUTOSAR

Release

Management

 New asynchronous services

 ARTI support (DRAFT)

 Editorial changes / clarifications

2017-12-08 4.3.1 AUTOSAR

Release

Management

 minor corrections / clarifications /

editorial changes; For details please

refer to the ChangeDocumentation

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Added new API for peripheral

access

 Added new API for interrupt

handling

 Minor updates/clarification of

descriptions

 Editorial changes

Document Title Specification of Operating
System

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 34

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R20-11

Specification of Operating System
AUTOSAR CP R20-11

2 of 342 Document ID 34: AUTOSAR_SWS_OS

Document Change History
Date Release Changed by Change Description

2015-07-31 4.2.2 AUTOSAR

Release

Management

 Allow calls to ControlIdle from all

cores

 Minor updates/clarification of

descriptions

 Editorial changes

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Add support for AsilQmProtection

 Minor updates/clarification of

descriptions

 Editorial changes

2014-03-31 4.1.3 AUTOSAR

Release

Management

 Changed multiplicity of attributes in

IocSender/ReceiverProperties

 Minor updates/clarification of

descriptions

 Editorial changes

2013-10-31 4.1.2 AUTOSAR

Release

Management

 Clarification on

E_OS_NESTING_DEADLOCK

 Update of table 2

 Corrected multiplicity of

ECUC_Os_00393

 Minor updates/clarification of

descriptions

 Editorial changes

 Removed chapter(s) on change

documentation

2013-03-15 4.1.1 AUTOSAR

Administration

 Add support for ECU degradation

 Changed service interface

description to a formal format

 Several minor changes and

clarifications

2011-12-22 4.0.3 AUTOSAR

Administration

 Included Multi-Core support from

former “Specification of Multi-Core

OS Architecture”

2010-09-30 3.1.5 AUTOSAR

Administration

 Clarification in 7.8.1 (meaning of "do

nothing") and 7.1.2.1 ("OSEK

declarations")

 Minor changes as typos and

rewording

Specification of Operating System
AUTOSAR CP R20-11

3 of 342 Document ID 34: AUTOSAR_SWS_OS

Document Change History
Date Release Changed by Change Description

2010-02-02 3.1.4 AUTOSAR

Administration

 Extension of services (Chapter 12)

 States in OS- Applications

 Active termination of other OS-

Applications in possible (Chapter8)

 Legal disclaimer revised

 Chapter 10.4 revised

2009-02-04 3.1.2 AUTOSAR

Administration

 Changes in OS configuration:

 removed "OsAppModeId" Parameter

from OsAppModeContainer

 added optional references from

OsAppModeContainer to OsAlarm,

OsTask and OsScheduleTable

2008-08-13 3.1.1 AUTOSAR

Administration

 Legal Disclaimer revised

2008-02-01 3.0.2 AUTOSAR

Administration

 Added “OsScheduleTableDuration”

parameter to configuration

specification chapter

2007-12-21 3.0.1 AUTOSAR

Administration

 Changed methods for timing

protection

 Moved configuration from OIL to

AUTOSAR XML

 Clarrified description for

synchronization and schedule tables

 Document meta information

extended

 Small layout adaptations made

2007-01-24 2.1.15 AUTOSAR

Administration

 Added support for

SoftwareFreeRunningTimer

(SWFRT) incl. 2 new APIs

 Added API to start a schedule table

synchron

 Misc. Corrections, Clarification and

further explanations

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

Specification of Operating System
AUTOSAR CP R20-11

4 of 342 Document ID 34: AUTOSAR_SWS_OS

Document Change History
Date Release Changed by Change Description

2006-05-16 2.0 AUTOSAR

Administration

 Document structure adapted to

common Release 2.0 SWS

Template.

 Major changes in chapter 10

 Structure of document changed

partly

 Other changes see chapter 14

2005-05-31 1.0 AUTOSAR

Administration

 Initial Release

Specification of Operating System
AUTOSAR CP R20-11

5 of 342 Document ID 34: AUTOSAR_SWS_OS

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Specification of Operating System
AUTOSAR CP R20-11

6 of 342 Document ID 34: AUTOSAR_SWS_OS

Table of Content

1 Introduction and functional overview ... 13

2 Acronyms and abbreviations.. 14

2.1 Glossary of Terms .. 14

3 Related documentation .. 19

3.1 Input documents ... 19

3.2 Related standards and norms .. 20

3.2.1 ISO 17356 .. 20

3.3 Company Reports, Academic Work, etc. ... 20

3.4 Related specification ... 20

4 Constraints and assumptions ... 21

4.1 Existing Standards .. 21

4.2 Terminology .. 21

4.3 Interaction with the RTE ... 21

4.4 Operating System Abstraction Layer (OSAL) .. 22

4.5 Multi-Core Hardware assumptions ... 22

4.5.1 CPU Core features .. 22

4.5.2 Memory features .. 23

4.5.3 Multi-Core Limitations .. 23

4.6 Limitations ... 24

4.6.1 Hardware ... 24

4.6.2 Programming Language .. 24

4.6.3 Miscellaneous .. 25

4.7 Applicability to car domains .. 25

5 Dependencies to other modules .. 26

5.1 File structure ... 26

5.1.1 Code file structure ... 26

5.1.2 Header file structure .. 26

5.1.3 ARTI File Structure .. 26

6 Requirements Traceability ... 27

7 Functional specification .. 37

7.1 Core OS .. 37

7.1.1 Background & Rationale .. 37

7.1.2 Requirements .. 37

7.2 Software Free Running Timer .. 40

7.3 Schedule Tables ... 41

7.3.1 Background & Rationale .. 41

7.3.2 Requirements .. 41

7.4 Schedule Table Synchronization .. 48

7.4.1 Background & Rationale .. 48

7.4.2 Requirements .. 50

7.5 Stack Monitoring Facilities .. 57

7.5.1 Background & Rationale .. 57

7.5.2 Requirements .. 57

Specification of Operating System
AUTOSAR CP R20-11

7 of 342 Document ID 34: AUTOSAR_SWS_OS

7.6 OS-Application .. 57

7.6.1 Background & Rationale .. 58

7.6.2 Requirements .. 60

7.7 Protection Facilities ... 62

7.7.1 Memory Protection .. 62

7.7.2 Timing Protection ... 65

7.7.3 Service Protection ... 71

7.7.4 Protecting the Hardware used by the OS ... 77

7.7.5 Providing »Trusted Functions« ... 78

7.8 Protection Error Handling ... 79

7.8.1 Background & Rationale .. 79

7.8.2 Requirements .. 80

7.9 Operating System for Multi-Core .. 82

7.9.1 Background & Rationale .. 82

7.9.2 Scheduling ... 83

7.9.3 Locatable entities (LE) ... 84

7.9.4 Multi-Core start-up concept ... 85

7.9.5 Cores under control of the AUTOSAR OS .. 87

7.9.6 Cores which are not controlled by the AUTOSAR OS 88

7.9.7 Multi-Core shutdown concept .. 88

7.9.8 OS service functionality (overview) ... 90

7.9.9 GetTaskID .. 92

7.9.10 Interrupt disabling .. 92

7.9.11 TASK activation ... 93

7.9.12 TASK Chaining .. 94

7.9.13 EVENT setting ... 94

7.9.14 Activating additional cores ... 94

7.9.15 Start of the OS ... 95

7.9.16 TASK termination .. 96

7.9.17 Termination of OS-Applications .. 96

7.9.18 Shutdown of the OS .. 96

7.9.19 Waiting for EVENTs... 97

7.9.20 Calling trusted functions .. 98

7.9.21 Invoking reschedule... 98

7.9.22 RESOURCE occupation .. 98

7.9.23 The CoreID .. 99

7.9.24 COUNTERs, background & rationale .. 99

7.9.25 Multi-Core restrictions on COUNTERs.. 100

7.9.26 Synchronization of COUNTERs .. 101

7.9.27 ALARMs ... 101

7.9.28 Schedule tables ... 102

7.9.29 The spinlock mechanism ... 103

7.9.30 Offline checks .. 106

7.9.31 Auto start Objects .. 107

7.10 Inter-OS-Application Communicator (IOC) ... 108

7.10.1 Background & Rationale .. 108

7.10.2 IOC - General purpose .. 110

7.10.3 IOC functionality .. 111

7.10.4 IOC interface ... 112

7.10.5 IOC internal structure .. 113

Specification of Operating System
AUTOSAR CP R20-11

8 of 342 Document ID 34: AUTOSAR_SWS_OS

7.10.6 IOC configuration and generation ... 113

7.10.7 IOC integration examples .. 115

7.10.8 Future extensions .. 118

7.11 System Scalability ... 118

7.11.1 Background & Rationale .. 118

7.11.2 Requirements .. 119

7.12 Hook Functions ... 121

7.12.1 Background & Rationale .. 121

7.12.2 Requirements .. 121

7.13 Hardware peripheral access ... 122

7.13.1 Background & Rationale .. 122

7.13.2 Requirements .. 123

7.14 Interrupt source API .. 123

7.14.1 Background & Rationale .. 123

7.14.2 Requirements .. 124

7.15 Error classification .. 125

7.16 ARTI Debug Information ... 126

7.16.1 OS ARTI Objects ... 126

7.17 ARTI Hook Macros ... 127

7.17.1 Class AR_CP_OS_APPLICATION ... 128

7.17.2 Class AR_CP_OS_TASK .. 129

7.17.3 Class AR_CP_OS_CAT2ISR .. 131

7.17.4 Class AR_CP_OS_SERVICECALLS .. 133

7.17.5 Class AR_CP_OS_SPINLOCK ... 135

7.17.6 class AR_CP_OS_PROTECTIONHOOK ... 136

8 API specification ... 138

8.1 Constants .. 138

8.1.1 Error codes of type StatusType ... 138

8.2 Macros .. 138

8.3 Type definitions ... 139

8.3.1 ApplicationType (for OS-Applications) .. 139

8.3.2 ApplicationStateType .. 139

8.3.3 ApplicationStateRefType ... 140

8.3.4 TrustedFunctionIndexType .. 140

8.3.5 TrustedFunctionParameterRefType .. 140

8.3.6 AccessType ... 141

8.3.7 ObjectAccessType ... 141

8.3.8 ObjectTypeType .. 141

8.3.9 MemoryStartAddressType ... 142

8.3.10 MemorySizeType ... 142

8.3.11 ISRType ... 143

8.3.12 ScheduleTableType... 143

8.3.13 ScheduleTableStatusType .. 143

8.3.14 ScheduleTableStatusRefType... 144

8.3.15 ProtectionReturnType ... 144

8.3.16 RestartType ... 145

8.3.17 PhysicalTimeType ... 145

8.3.18 CoreIdType .. 146

8.3.19 SpinlockIdType .. 146

Specification of Operating System
AUTOSAR CP R20-11

9 of 342 Document ID 34: AUTOSAR_SWS_OS

8.3.20 TryToGetSpinlockType .. 147

8.3.21 IdleModeType .. 147

8.3.22 AreaIdType .. 147

8.4 Function definitions ... 148

8.4.1 GetApplicationID .. 148

8.4.2 GetCurrentApplicationID ... 149

8.4.3 GetISRID ... 150

8.4.4 CallTrustedFunction .. 150

8.4.5 CheckISRMemoryAccess .. 153

8.4.6 CheckTaskMemoryAccess .. 154

8.4.7 CheckObjectAccess .. 155

8.4.8 CheckObjectOwnership ... 156

8.4.9 StartScheduleTableRel ... 157

8.4.10 StartScheduleTableAbs ... 158

8.4.11 StopScheduleTable ... 160

8.4.12 NextScheduleTable ... 161

8.4.13 StartScheduleTableSynchron ... 163

8.4.14 SyncScheduleTable... 164

8.4.15 SetScheduleTableAsync ... 165

8.4.16 GetScheduleTableStatus .. 166

8.4.17 IncrementCounter .. 168

8.4.18 GetCounterValue ... 169

8.4.19 GetElapsedValue ... 170

8.4.20 TerminateApplication ... 171

8.4.21 AllowAccess... 173

8.4.22 GetApplicationState ... 174

8.4.23 GetNumberOfActivatedCores.. 175

8.4.24 GetCoreID .. 176

8.4.25 StartCore ... 176

8.4.26 StartNonAutosarCore .. 178

8.4.27 GetSpinlock ... 178

8.4.28 ReleaseSpinlock .. 180

8.4.29 TryToGetSpinlock .. 181

8.4.30 ShutdownAllCores ... 183

8.4.31 ControlIdle ... 184

8.4.32 ReadPeripheralX ... 185

8.4.33 WritePeripheralX ... 187

8.4.34 ModifyPeripheralX ... 189

8.4.35 EnableInterruptSource .. 192

8.4.36 DisableInterruptSource .. 192

8.4.37 ClearPendingInterrupt ... 193

8.4.38 ActivateTaskAsyn .. 194

8.4.39 SetEventAsyn .. 195

8.5 IOC .. 195

8.5.1 Imported types ... 195

8.5.2 Type definitions ... 196

8.5.3 Constants ... 196

8.5.4 Function definitions .. 197

8.6 Expected Interfaces .. 211

8.6.1 Mandatory Interfaces ... 211

Specification of Operating System
AUTOSAR CP R20-11

10 of 342 Document ID 34: AUTOSAR_SWS_OS

8.6.2 Optional Interfaces .. 211

8.7 Hook functions .. 213

8.7.1 Protection Hook ... 213

8.7.2 Application specific StartupHook ... 214

8.7.3 Application specific ErrorHook .. 215

8.7.4 Application specific ShutdownHook .. 215

8.8 Service Interfaces ... 216

8.8.1 Port interface of Os .. 216

8.8.2 Client-Server-Interfaces .. 216

9 Sequence diagrams ... 219

9.1 Sequence chart for calling trusted functions .. 219

9.2 Sequence chart for usage of ErrorHook ... 220

9.3 Sequence chart for ProtectionHook ... 221

9.4 Sequence chart for StartupHook .. 222

9.5 Sequence chart for ShutdownHook .. 223

9.6 Sequence diagrams of Sender Receiver communication over the IOC 223

9.6.1 LastIsBest communication .. 223

9.6.2 Queued communication without pull callback 224

9.6.3 Queued communication with pull callback .. 226

10 Configuration Specification... 227

10.1 How to read this chapter ... 227

10.1.1 Rules for paramters ... 227

10.2 Containers and configuration parameters .. 227

10.2.1 Os .. 227

10.2.2 OsAlarmSetEvent .. 230

10.2.3 OsAlarm ... 230

10.2.4 OsAlarmAction ... 232

10.2.5 OsAlarmActivateTask .. 233

10.2.6 OsAlarmAutostart .. 233

10.2.7 OsAlarmCallback ... 234

10.2.8 OsAlarmIncrementCounter .. 235

10.2.9 OsApplication .. 235

10.2.10 OsApplicationHooks .. 240

10.2.11 OsApplicationTrustedFunction .. 242

10.2.12 OsAppMode ... 243

10.2.13 OsCounter .. 243

10.2.14 OsEvent ... 246

10.2.15 OsDriver ... 247

10.2.16 OsHooks .. 248

10.2.17 OsIsr ... 251

10.2.18 OsIsrResourceLock ... 253

10.2.19 OsIsrTimingProtection ... 254

10.2.20 OsOS ... 256

10.2.21 OsPeripheralArea .. 260

10.2.22 OsResource ... 261

10.2.23 OsScheduleTable .. 263

10.2.24 OsScheduleTableAutostart .. 265

10.2.25 OsScheduleTableEventSetting .. 267

Specification of Operating System
AUTOSAR CP R20-11

11 of 342 Document ID 34: AUTOSAR_SWS_OS

10.2.26 OsScheduleTableExpiryPoint .. 267

10.2.27 OsScheduleTableTaskActivation ... 268

10.2.28 OsScheduleTblAdjustableExpPoint ... 268

10.2.29 OsScheduleTableSync .. 269

10.2.30 OsSpinlock ... 270

10.2.31 OsTask ... 272

10.2.32 OsTaskAutostart .. 276

10.2.33 OsTaskResourceLock ... 277

10.2.34 OsTaskTimingProtection ... 278

10.2.35 OsTimeConstant .. 279

10.3 Containers and configuration parameter extensions of the IOC 280

10.3.1 OsIoc ... 281

10.3.2 OsIocCommunication .. 282

10.3.3 OsIocSenderProperties ... 283

10.3.4 OsIocReceiverProperties .. 284

10.3.5 OsIocDataProperties ... 286

10.4 Containers and configuration parameters for ARTI 288

10.4.1 ArtiHardware .. 288

10.4.2 ArtiHardwareCoreClass ... 289

10.4.3 ArtiHardwareCoreInstance .. 292

10.4.4 ArtiOs ... 295

10.4.5 ArtiOsAlarmClass .. 297

10.4.6 ArtiOsAlarmInstance.. 298

10.4.7 ArtiOsClass .. 301

10.4.8 ArtiOsContextClass ... 302

10.4.9 ArtiOsContextInstance .. 303

10.4.10 ArtiOsInstance ... 304

10.4.11 ArtiOsIsrClass .. 307

10.4.12 ArtiOsIsrInstance ... 308

10.4.13 ArtiOsMessageContainerClass ... 310

10.4.14 ArtiOsMessageContainerInstance ... 311

10.4.15 ArtiOsResourceClass .. 313

10.4.16 ArtiOsResourceInstance .. 315

10.4.17 ArtiOsStackClass ... 317

10.4.18 ArtiOsStackInstance .. 318

10.4.19 ArtiOsTaskClass .. 320

10.4.20 ArtiOsTaskInstance ... 323

10.5 Published Information ... 326

11 Generation of the OS ... 328

11.1 Read in configuration .. 328

11.2 Consistency check .. 328

11.3 Generating operating system ... 330

12 Application Notes .. 331

12.1 Hooks .. 331

12.2 Providing Trusted Functions ... 331

12.3 Software Components and OS-Applications .. 333

12.4 Global Time Synchronization .. 334

12.5 Working with FlexRay ... 334

Specification of Operating System
AUTOSAR CP R20-11

12 of 342 Document ID 34: AUTOSAR_SWS_OS

12.6 Migration from OIL to XML ... 335

12.7 Migrating RES_SCHEDULER in AUTOSAR OS 336

12.8 Debug support .. 336

12.9 Integration hints for peripheral protection ... 337

12.10 Termination of OSApplications ... 338

13 AUTOSAR Service implemented by the OS .. 340

13.1 Scope of this Chapter ... 340

13.1.1 Package ... 340

13.2 Overview ... 340

13.3 Specification of the Ports and Port Interfaces .. 340

14 Outlook on Memory Protection Configuration .. 341

14.1 Configuration Approach .. 341

15 Not applicable requirements .. 342

Specification of Operating System
AUTOSAR CP R20-11

13 of 342 Document ID 34: AUTOSAR_SWS_OS

1 Introduction and functional overview

This document describes the essential requirements on the AUTOSAR Operating
System to satisfy the top-level requirements presented in the AUTOSAR SRS [2].

In general, operating systems can be split up in different groups according to their
characteristics, e.g. statically configured vs. dynamically managed. To classify the
AUTOSAR OS, here are the basic features: the OS

 is configured and scaled statically

 is amenable to reasoning of real-time performance

 provides a priority-based scheduling policy

 provides protective functions (memory, timing etc.) at run-time

 is hostable on low-end controllers and without external resources

This feature set defines the type of OS commonly used in the current generation of
automotive ECUs, except for Telematic/Infotainment systems. It is assumed that
Telematic/Infotainment systems will continue to use proprietary Oss under the
AUTOSAR framework (e.g. Windows CE, VxWorks, QNX, etc.). In the case where
AUTOSAR components are needed to run on these proprietary Oss, the interfaces
defined in this document should be provided as an Operating System Abstraction
Layer (OSAL).

This document uses the industry standard [16] (ISO 17356-3) as the basis for the
AUTOSAR OS. The reader should be familiar with this standard before reading this
document.

This document describes extensions to, and restrictions of [16].

Specification of Operating System
AUTOSAR CP R20-11

14 of 342 Document ID 34: AUTOSAR_SWS_OS

2 Acronyms and abbreviations

Abbreviation Description

API Application Programming Interface

AR AUTOSAR

ARTI AUTOSAR Run-time interface

BSW Basic Software

BSWMD Basic Software Module Description

CDD Complex Driver

COM Communication

ECC Extended Conformance Class

ECU Electronic Control Unit

HW Hardware

ID Identifier

IOC Inter OS-Application communicator

ISR Interrupt Service Routine

LE A locatable entity is a distinct piece of software that has the same effect regardless of
which core it is located.

MC Multi-Core

MCU Microcontroller Unit

ME Mutual exclusion

MPU Memory Protection Unit

NMI Non maskable interrupt

OIL OSEK Implementation Language

OS Operating System

OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug

RTE Run-Time Environment

RTOS Real Time Operating System

SC Single-Core

SLA Software Layered Architecture

SW Software

SWC Software Component

SWFRT Software FreeRunningTimer

2.1 Glossary of Terms

Term: Definition

Access Right An indication that an object (e.g. Task, ISR, hook function) of an OS-Application
has the permission of access or manipulation with respect to memory, OS
services or (set of) OS objects.

Cardinality The number of items in a set.

Counter An operating system object that registers a count in ticks. There are two types of
counters:

Hardware Counter A counter that is advanced by hardware (e.g. timer).
The count value is maintained by the peripheral “in
hardware”.

Software Counter A counter which is incremented by making the

IncrementCounter() API call (see

SWS_Os_00399). The count value is maintained by
the operating system “in software”.

Deadline The time at which a Task/Category 2 ISR must reach a certain point during its
execution defined by system design relative to the stimulus that triggered

activation. See Figure 2.1

Delay The number of ticks between two adjacent expiry points on a schedule table.

Specification of Operating System
AUTOSAR CP R20-11

15 of 342 Document ID 34: AUTOSAR_SWS_OS

A pair of expiry points X and Y are said to be adjacent when:

 There is no expiry point Z such that X.Offset < Z.Offset < Y.Offset. In this
case the Delay = Y.Offset-X.Offset

 X and Y are the Final Expiry Point and the Initial Expiry Point
respectively. In this case Delay = (Duration-X.Offset)+Y.Offset

When used in the text, Delay is a relative number of ticks measured from a
specified expiry point. For example: X.Delay is the delay from X to the next expiry
point.

Deviation The minimum number of ticks between the current position on an explicitly
synchronized schedule table and the value of the synchronization count modulo
the duration of the schedule table.

Duration The number of ticks from a notional zero at which a schedule table wraps.

Execution Time Tasks:

The net time a task spends in the RUNNING state without entering the

SUSPENDED or WAITING state excluding all preemptions due to ISRs

which preempt the task. An extended task executing the WaitEvent()

API call to wait on an event which is already set notionally enters the

WAITING state. For multiple activated basic tasks the net time is per

activation of a task.

ISRs:
The net time from the first to the last instruction of the user provided
Category 2 interrupt handler excluding all preemptions due to higher
priority ISRs executing in preference.

Execution time includes the time spent in the error, pretask and posttask hooks
and the time spent making OS service calls.

Execution Budget Maximum permitted execution time for a Task/ISR.

Expiry Point The offset on a Schedule Table, measured from zero, at which the OS activates
tasks and/or sets events.

Initial Expiry Point The expiry point with the smallest offset

Final Expiry Point The expiry point with the largest offset

Hook Function A Hook function is implemented by the user and invoked by the operating system
in the case of certain incidents. In order to react to these on system or application
level, there are two kinds of hook functions

Application-specific Hook functions within the scope of an individual OS-
Application.

System-specific Hook functions within the scope of the complete
system (in general provided by the integrator).

Initial Offset The smallest expiry point offset on a schedule table. This can be zero.

Interarrival Time Basic Tasks

The time between successively entering the READY state from the

SUSPENDED state. Activation of a task always represents a new arrival.

This applies in the case of multiple activations, even if an existing

instance of the task is in the RUNNING or READY state.

Extended Tasks:

The time between successively entering the READY state from the

SUSPENDED or WAITING states. Setting an event for a task in the

WAITING state represents a new arrival if the task is waiting on the

event. Waiting for an event in the RUNNING state which is already set

represents a new arrival.

ISRs:
The time between successive occurrences of an interrupt.

See Figure 2.1.

Interrupt Lock Time The time for which a Task/ISR executes with Category 1 interrupts
disabled/suspended and/or Category 2 interrupts disabled/suspended .

Specification of Operating System
AUTOSAR CP R20-11

16 of 342 Document ID 34: AUTOSAR_SWS_OS

Interrupt Source
Enable

The switch which enables a specific interrupt source in the hardware.

Interrupt Vector
Table

Conceptually, the interrupt vector table contains the mapping from hardware
interrupt requests to (software) interrupt service routines. The real content of the
Interrupt Vector Table is very hardware specific, e.g. it can contain the start
addresses of the interrupt service routines.

Final Delay The difference between the Final Expiry Point offset and the duration on a
schedule table in ticks. This value defines the delay from the Final Expiry Point to
the logical end of the schedule table for single-shot and “nexted” schedule tables.

Forced OS-
Application
Termination

The operating system frees all system objects, e.g. forcibly terminates Tasks,
disables interrupts, etc., which are associated to the OS-Application. OS-
Application and internal variables are potentially left in an undefined state.

Forced
Termination

The OS terminates the Task/Category 2 ISR and does ”unlock” it’s held
resources. For details see SWS_Os_00108 and SWS_Os_00109.

Linker File File containing linking settings for the linker. The syntax of the linker file depends
on the specific linker and, consequently, definitions are stored “linker-specific” in
the linker file.

Lock Budget Maximum permitted Interrupt Lock Time or Resource Lock Time.

Master core A master core is a core from which the AUTOSAR system is bootstrapped.

Memory Protection
Unit

A Memory Protection Unit (MPU) enables memory partitioning with individual
protection attributes. This is distinct from a Memory Management Unit (MMU)
that provides a mapping between virtual addresses and physical memory
locations at runtime.
Note that some devices may realize the functionality of an MPU in an MMU.

Mode Describes the permissions available on a processor.

Privileged In general, in »privileged mode« unrestricted access is
available to memory as well as the underlying hardware.

Non-privileged In »non-privileged mode« access is restricted.

Modulus The number of ticks required to complete a full wrap of an OSEK counter. This is

equal to OsCounterMaxAllowedValue +1 ticks of the counter.

OS-Application A collection of OS objects

Trusted An OS-Application that may be executed in privileged mode and
may have unrestricted access to the API and hardware
resources. Only trusted applications can provide trusted
functions.

Non-trusted An OS-Application that is executed in non-privileged mode has
restricted access to the API and hardware resources.

OS object Object that belongs to a single OS-Application: Task, ISR, Alarm, Event,
Schedule Table, Resource, Trusted Function, Counter, Application-specific hook.

OS Service OS services are the API of the operating system.

Protection Error Systematic error in the software of an OS-Application.

Memory access
violation

A protection error caused by access to an address in a
manner for which no access right exists.

Timing fault A protection error that violates the timing protection.

Illegal service A protection error that violates the service protection, e.g.
unauthorized call to OS service.

Hardware exception division by zero, illegal instruction etc.

Resource Lock
Time

The time an OSEK resource is held by a Task/ISR (excluding the preemptions of
the Task/ISR by higher prior Tasks/ISRs).

Response Time The time between a Task/ISR being made ready to execute and generating a

specified response. The time includes all preemptions. See Figure 2.1

Restart an OS-
Application

An OS-Application can be restarted after self-termination or being forcibly
terminated because of a protection error. When an OS-Application is restarted,

the OS activates the configured OsRestartTask.

Scalability Class The features of the OS (e.g. Memory Protection or Timing Protection), described
by this document, can be grouped together to customize the operating system to
the needs of the application. There are 4 defined groups of features which are

Specification of Operating System
AUTOSAR CP R20-11

17 of 342 Document ID 34: AUTOSAR_SWS_OS

named scalability classes. For details see Chapter 7.11

Schedule Table Encapsulation of a statically defined set of expiry points.

Section Part of an object file in which instructions or data are combined to form a unit
(contiguous address space in memory allocated for data or code). A section in an
object file (object file format) has a name and a size.
From the linker perspective, two different sides can be distinguished:

Input section memory section in an input object file of the linker.

Output section memory section in an output object file of the linker.

Set (of OS objects) This document uses the term set, indicating a collection of the same type of OS
objects, in the strict mathematical sense, i.e.:
- a set contains zero or more OS objects (this means a set can be empty)
- the OS objects in the set are unique (this means there cannot be duplicate OS
objects in the set)

Spinlock A spinlock is a locking mechanism where the TASK waits in a loop ("spins")
repeatedly checking for a shared variable to become a certain value.
The value indicates whether the lock is free or not. In Multi-Core systems the
comparison and changing of the variable typically requires an atomic operation.
As the TASK remains active but is not doing anything useful, a spinlock is a busy
waiting mechanism

Spinlock variable A spinlock variable is a shared variable used by a spinlock to indicate whether a
spinlock is free or occupied.

Symbol Address label that can be imported/used by software modules and resolved by
the linker. The precise syntax of the labels is linker-specific. Here, these address
labels are used to identify the start and end of memory sections.

Start symbol Tags the start of a memory section

End symbol Tags the end of a memory section

Synchronization of
schedule tables
with a
synchronization
counter

Synchronization with a synchronization counter is achieved, if the expiry points of
the schedule table are processed within an absolute deviation from the
synchronization counter that is smaller than or equal to a precision threshold.

Synchronization
Counter

The “Synchronization Counter”, distinct from an OS counter object, is an external
counter, external to the OS, against which expiry points of a schedule table are
synchronized

Task A Task is the object which executes (user) code and which is managed by the
OS. E.g. the OS switches between different Tasks (“schedules”). There are 2
types of Tasks; for more details see [16].

Basic Task A Task which cannot block by itself. This means that it cannot
wait for (OS) event(s).

Extended Task A Task which can block by itself and wait for (OS) event(s).

Time Frame The minimum inter-arrival time for a Task/ISR.

Trusted Function A service provided by a trusted OS-Application that can be used by other OS-
Applications (trusted or non-trusted).

Worst case
execution time
(WCET)

The longest possible execution time.

Write access Storing a value in a register or memory location. All memory accesses that have
the consequence of writing (e.g. reads that have the side effect of writing to a
memory location) are treated as write accesses.

Specification of Operating System
AUTOSAR CP R20-11

18 of 342 Document ID 34: AUTOSAR_SWS_OS

12 13 14 152 3 4 5 6 7 8 9 10 110 1

High

16 17 18

High

Low Low

LOW’s Response Time

LOW’s Deadline

LOW’s Inter-arrival time

Low

19 20 21 22 23 24

Low

LOW’s Execution Time

High

Low

Task HIGH and Task

LOW activated
Task LOW terminates

Task LOW activated

again

Figure 2.1: Definition of Timing Terminology

Specification of Operating System
AUTOSAR CP R20-11

19 of 342 Document ID 34: AUTOSAR_SWS_OS

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] Requirements on Operating System
AUTOSAR_SRS_OS.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of the Virtual Functional Bus
AUTOSAR_EXP_VFB.pdf

[5] Requirements on Software FreeRunningTimer
AUTOSAR_SRS_FreeRunningTimer.pdf

[6] Specification of GPT Driver
AUTOSAR_SWS_GPTDriver.pdf

[7] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[8] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

[9] Specification of RTE
AUTOSAR_SWS_RTE.pdf

[10] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[11] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[12] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[13] Specification of RTE
AUTOSAR_SWS_RTE.pdf

[14] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

[15] Specification of AUTOSAR Run-Time Interface
SWS_ClassicPlatformARTI.pdf

Specification of Operating System
AUTOSAR CP R20-11

20 of 342 Document ID 34: AUTOSAR_SWS_OS

3.2 Related standards and norms

3.2.1 ISO 17356

The ISO 17356 (“Road vehicles -- Open interface for embedded automotive
applications”) is a standard which was previously published by the OSEK/VDX
organization.

[16] ISO 17356-3: 2005: Road vehicles -- Open interface for embedded automotive
applications -- Part 3: OSEK/VDX Operating System (OS)

[17] ISO 17356-6:2006: Road vehicles -- Open interface for embedded automotive
applications -- Part 6: OSEK/VDX Implementation Language (OIL)

3.3 Company Reports, Academic Work, etc.

[18] Extensions of OSEK OS for Protected Applications

OSEK Support Project DC058_02
DaimlerChrysler AG

3.4 Related specification

AUTOSAR provides a General Specification on Basic Software modules [14] (SWS
BSW General), which is also valid for Operating System.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for Operating System.

Specification of Operating System
AUTOSAR CP R20-11

21 of 342 Document ID 34: AUTOSAR_SWS_OS

4 Constraints and assumptions

4.1 Existing Standards

This document makes the following assumptions about the referenced related
standards and norms:

 [16] provides a sufficiently flexible scheduling policy to schedule AUTOSAR
systems.

 [16] is a mature specification and implementations are used in millions of ECUs
worldwide.

 [16] does not provide enough support for isolating multi-source software
components at runtime.

 [16] does not provide enough runtime support for demonstrating the absence of
some classes of fault propagation in a safety-case.

4.2 Terminology

The specification uses the following operators when requirements specify multiple
terms:

NOT : negation of a single term e.g. NOT Weekend
AND : conjunction of two terms e.g. Weekend AND Saturday
OR : disjunction of two terms e.g. Monday OR Tuesday

A requirement comprising multiple terms is evaluated left to right.

The precedence rules are:

Highest Precedence NOT
Lowest Precedence AND OR

The expression NOT X AND Y means (NOT X) AND (Y)

Where operators of the same precedence are used in the same sentence, commas
are used to disambiguate. The expression X AND Y, OR Z means (X AND Y) OR Z.

4.3 Interaction with the RTE

The configuration of an AUTOSAR system [4] maps the »runnables« of a »software
component« to (one or more) tasks that are scheduled by the operating system. All
runnables in a task share the same protection boundary. In AUTOSAR, a software
component must not include an interrupt handler. A software component is therefore
implemented as runnables executing within the body of a task, or set of tasks, only.

Runnables get access to hardware-sourced data through the AUTOSAR RTE. The
RTE provides the runtime interface between runnables and the basic software
modules. The basic software modules also comprise a number of tasks and ISRs
that are scheduled by the operating system.

Specification of Operating System
AUTOSAR CP R20-11

22 of 342 Document ID 34: AUTOSAR_SWS_OS

It is assumed that the software component templates and the description of the basic
software modules provide sufficient information about the required runtime behavior
to be able to specify the attributes of tasks required to configure the OS.

4.4 Operating System Abstraction Layer (OSAL)

Systems that do not use the OS defined in AUTOSAR can provide a platform for the
execution of AUTOSAR software components using an Operating System
Abstraction Layer. The interface to the OSAL is exactly that defined for the
AUTOSAR OS.

4.5 Multi-Core Hardware assumptions

There are currently several existing and suggested HW-architectures1 for Multi-Core

microprocessors. There is considerable variation in the features offered by these
architectures. Therefore this section attempts to capture a common set of
architectural features required for Multi-Core.
Hardware assumptions shall remain assumptions and shall not become official
AUTOSAR requirements.

4.5.1 CPU Core features

1. More than one core on the same piece of silicon.

2. The HW offers a method that can be used by the SW to identify a core.

3. The hardware supports atomic read and atomic write operations for a fixed
word length depending on the hardware.

4. The hardware supports some atomic Test-And-Set functionality or similar
functionalities that can be used to build a critical section shared between
cores. Additional atomic operations may exist.

5. The cores may have the same instruction set; at least a common basic
instruction set is available on all cores. Core specific add-ons may exist, but
they are not considered.

6. The cores have the same data representation. For example, the same size of
integer, same byte and bit order, etc.

7. If per-core caches exist, AUTOSAR requires support for RAM - cache
coherency in HW or in SW. In software means that the cache-controller can be
programmed by the SW in a way that it invalidates cache lines or excludes
certain memory regions from caching.

8. In case of an exception (such as an illegal memory reference or divide by
zero) the exception occurs on the core that introduced the exception.

1 In this context “architecture” encompasses: the connections between cores and memory, and to peripherals and how interrupts

work.

Specification of Operating System
AUTOSAR CP R20-11

23 of 342 Document ID 34: AUTOSAR_SWS_OS

9. For notification purposes, it is possible to trigger an interrupt/trap on any core.

4.5.2 Memory features

 Shared RAM is available to all cores; at least all cores can share a substantial
part of the memory.

 Flash shall be shared between all cores at least. However, performance can
be improved if Flash/RAM can be partitioned so that there are separate pathways
from cores to Flash.

 A single address space is assumed, at least in the shared parts of the memory
address space.

 The AUTOSAR Multi-Core architecture shall be capable to run on systems
that do and do not support memory protection. If memory protection exists, all cores
are covered by a hardware-based memory protection.

4.5.3 Multi-Core Limitations

 In AUTOSAR R4.0, it is not supported to activate additional cores under
control of AUTOSAR after the Operating System was started.

 The scheduling algorithm does not assign TASKs dynamically to cores.

 The AUTOSAR OS RESOURCE algorithm is not supported across cores.
RESOURCES can be used locally, between TASKs that are bound to the
same core but not between TASKs/ISRs which are bound to different cores.

Specification of Operating System
AUTOSAR CP R20-11

24 of 342 Document ID 34: AUTOSAR_SWS_OS

4.6 Limitations

4.6.1 Hardware

The core AUTOSAR operating system assumes free access to hardware resources,
which are managed by the OS itself. This includes, but is not limited to, the following
hardware:

 interrupt control registers

 processor status words

 stack pointer(s)

Specific (extended) features of the core operating system extend the requirements
on hardware resource. The following list outlines the features that have requirements
on the hardware. Systems that do not use these OS features do not have these
hardware requirements.

 Memory Protection: A hardware memory protection unit is required. All memory
accesses that have the consequence of writing (e.g. reads that have the side
effect of writing to a memory location) shall be treated as writes.

 Time Protection: Timer Hardware for monitoring execution times and arrival rates.

 »Privileged« and »non-privileged« modes on the MCU: to protect the OS against
internal corruption caused by writes to OS controlled registers. This mode must
not allow OS-Applications to circumvent protection (e.g. write registers which
govern memory protection, write to processor status word etc.). The privileged
mode must be under full control of the protected OS which uses the mode
internally and to transfer control back and forth from a non-trusted OS-Application
to a trusted OS-Application. The microprocessor must support a controlled means
which moves a processor into this privileged mode.

 Local/Global Time Synchronization: A global time source is needed.

In general hardware failures in the processor are not detected by the operating
system. In the event of hardware failure, correct operation of the OS cannot be
guaranteed.

The resources managed by a specific OS implementation have to be defined within
the appropriate configuration file of the OS.

4.6.2 Programming Language

The API of the operating system is defined as C function calls or macros. If other
languages are used, they must adapt to the C interface.

Specification of Operating System
AUTOSAR CP R20-11

25 of 342 Document ID 34: AUTOSAR_SWS_OS

4.6.3 Miscellaneous

The operating system does not provide services for dynamic memory management.

4.7 Applicability to car domains

The operating system has the same design constraints regarding size and scalability
under which [16] was designed. The immediate domain of applicability is therefore
currently body, chassis and power train ECUs. However, there is no reason that the
OS cannot be used to implement ECUs for infotainment applications.

Specification of Operating System
AUTOSAR CP R20-11

26 of 342 Document ID 34: AUTOSAR_SWS_OS

5 Dependencies to other modules

There are no forced dependencies on other modules, however:

o It is assumed that the operating system may use timer units directly to drive
counters.

o If the user needs to drive scheduling directly from global time, then a global
time interrupt is required.

o If the user needs to synchronize the processing of a schedule table to a global
time, the operating system needs to be told the global time using the
SyncScheduleTable() service.

o The IOC described in this document provides communication between OS-
Applications. The IOC generation is based on configuration information which
is generated by the RTE generator. On the other hand the RTE uses functions
generated by the IOC to transmit data.

5.1 File structure

5.1.1 Code file structure

The code file structure of the Operating system module is not fixed, besides the
requirements in the General SRS.

5.1.2 Header file structure

The IOC generator generates an additional header file Ioc.h. Users of the Ioc.h shall
include the Ioc.h file. If an implementation of the IOC requires additional header files,
it is free to include them. The header files are self-contained, that means they will
include all other header files, which they require.

5.1.3 ARTI File Structure

To support ARTI based debugging and tracing, all source files with ARTI hook
macros shall include an “arti.h” file. This file (along with the corresponding arti.c file)
will be provided by the ARTI hook implementer, i.e. the tracing tool. When building
the final executable, the linker will pull in the compiled arti.c file, too.
The usage of the ARTI hook macros is configurable. If the OS is configured to not
use ARTI, the inclusion of “arti.h” may be omitted, and the ARTI hooks macros may
be expanded to empty macros (“nothing”).

Specification of Operating System
AUTOSAR CP R20-11

27 of 342 Document ID 34: AUTOSAR_SWS_OS

6 Requirements Traceability

This chapter contains references to requirements of other AUTOSAR documents.

Requirement Description Satisfied by

SRS_BSW_00003 All software modules shall
provide version and
identification information

SWS_Os_00767

SRS_BSW_00006 The source code of software
modules above the µC
Abstraction Layer (MCAL)
shall not be processor and
compiler dependent.

SWS_Os_00767

SRS_BSW_00007 All Basic SW Modules written
in C language shall conform to
the MISRA C 2012 Standard.

SWS_Os_00767

SRS_BSW_00009 All Basic SW Modules shall be
documented according to a
common standard.

SWS_Os_00767

SRS_BSW_00010 The memory consumption of
all Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

SWS_Os_00767

SRS_BSW_00161 The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which
provides a standardized
interface to higher software
layers

SWS_Os_00767

SRS_BSW_00162 The AUTOSAR Basic Software
shall provide a hardware
abstraction layer

SWS_Os_00767

SRS_BSW_00168 SW components shall be
tested by a function defined in
a common API in the Basis-
SW

SWS_Os_00767

SRS_BSW_00170 The AUTOSAR SW
Components shall provide
information about their
dependency from faults, signal
qualities, driver demands

SWS_Os_00767

SRS_BSW_00172 The scheduling strategy that is
built inside the Basic Software
Modules shall be compatible
with the strategy used in the
system

SWS_Os_00767

SRS_BSW_00301 All AUTOSAR Basic Software
Modules shall only import the
necessary information

SWS_Os_00767

SRS_BSW_00302 All AUTOSAR Basic Software
Modules shall only export

SWS_Os_00767

Specification of Operating System
AUTOSAR CP R20-11

28 of 342 Document ID 34: AUTOSAR_SWS_OS

information needed by other
modules

SRS_BSW_00305 Data types naming convention SWS_Os_00767

SRS_BSW_00306 AUTOSAR Basic Software
Modules shall be compiler and
platform independent

SWS_Os_00767

SRS_BSW_00307 Global variables naming
convention

SWS_Os_00767

SRS_BSW_00308 AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

SWS_Os_00767

SRS_BSW_00309 All AUTOSAR Basic Software
Modules shall indicate all
global data with read-only
purposes by explicitly
assigning the const keyword

SWS_Os_00767

SRS_BSW_00310 API naming convention SWS_Os_00767

SRS_BSW_00312 Shared code shall be reentrant SWS_Os_00767

SRS_BSW_00314 All internal driver modules
shall separate the interrupt
frame definition from the
service routine

SWS_Os_00767

SRS_BSW_00318 Each AUTOSAR Basic
Software Module file shall
provide version numbers in the
header file

SWS_Os_00767

SRS_BSW_00321 The version numbers of
AUTOSAR Basic Software
Modules shall be enumerated
according specific rules

SWS_Os_00767

SRS_BSW_00325 The runtime of interrupt
service routines and functions
that are running in interrupt
context shall be kept short

SWS_Os_00767

SRS_BSW_00327 Error values naming
convention

SWS_Os_00767

SRS_BSW_00328 All AUTOSAR Basic Software
Modules shall avoid the
duplication of code

SWS_Os_00767

SRS_BSW_00330 It shall be allowed to use
macros instead of functions
where source code is used
and runtime is critical

SWS_Os_00767

SRS_BSW_00333 For each callback function it
shall be specified if it is called
from interrupt context or not

SWS_Os_00767

SRS_BSW_00334 All Basic Software Modules
shall provide an XML file that
contains the meta data

SWS_Os_00767

SRS_BSW_00335 Status values naming SWS_Os_00767

Specification of Operating System
AUTOSAR CP R20-11

29 of 342 Document ID 34: AUTOSAR_SWS_OS

convention

SRS_BSW_00337 Classification of development
errors

SWS_Os_00767

SRS_BSW_00339 Reporting of production
relevant error status

SWS_Os_00767

SRS_BSW_00342 It shall be possible to create an
AUTOSAR ECU out of
modules provided as source
code and modules provided as
object code, even mixed

SWS_Os_00767

SRS_BSW_00344 BSW Modules shall support
link-time configuration

SWS_Os_00767

SRS_BSW_00347 A Naming seperation of
different instances of BSW
drivers shall be in place

SWS_Os_00767

SRS_BSW_00350 All AUTOSAR Basic Software
Modules shall allow the
enabling/disabling of detection
and reporting of development
errors.

SWS_Os_00767

SRS_BSW_00351 Encapsulation of compiler
specific methods to map
objects

SWS_Os_00815

SRS_BSW_00357 For success/failure of an API
call a standard return type
shall be defined

SWS_Os_00767

SRS_BSW_00358 The return type of init()
functions implemented by
AUTOSAR Basic Software
Modules shall be void

SWS_Os_00767

SRS_BSW_00361 All mappings of not
standardized keywords of
compiler specific scope shall
be placed and organized in a
compiler specific type and
keyword header

SWS_Os_00767

SRS_BSW_00369 All AUTOSAR Basic Software
Modules shall not return
specific development error
codes via the API

SWS_Os_00767

SRS_BSW_00373 The main processing function
of each AUTOSAR Basic
Software Module shall be
named according the defined
convention

SWS_Os_00767

SRS_BSW_00374 All Basic Software Modules
shall provide a readable
module vendor identification

SWS_Os_00767

SRS_BSW_00375 Basic Software Modules shall
report wake-up reasons

SWS_Os_00767

SRS_BSW_00377 A Basic Software Module can
return a module specific types

SWS_Os_00767

Specification of Operating System
AUTOSAR CP R20-11

30 of 342 Document ID 34: AUTOSAR_SWS_OS

SRS_BSW_00378 AUTOSAR shall provide a
boolean type

SWS_Os_00767

SRS_BSW_00379 All software modules shall
provide a module identifier in
the header file and in the
module XML description file.

SWS_Os_00767

SRS_BSW_00383 The Basic Software Module
specifications shall specify
which other configuration files
from other modules they use at
least in the description

SWS_Os_00767

SRS_BSW_00384 The Basic Software Module
specifications shall specify at
least in the description which
other modules they require

SWS_Os_00767

SRS_BSW_00385 List possible error notifications SWS_Os_00767

SRS_BSW_00386 The BSW shall specify the
configuration for detecting an
error

SWS_Os_00767

SRS_BSW_00401 Documentation of multiple
instances of configuration
parameters shall be available

SWS_Os_00767

SRS_BSW_00404 BSW Modules shall support
post-build configuration

SWS_Os_00767

SRS_BSW_00405 BSW Modules shall support
multiple configuration sets

SWS_Os_00767

SRS_BSW_00406 A static status variable
denoting if a BSW module is
initialized shall be initialized
with value 0 before any APIs of
the BSW module is called

SWS_Os_00767

SRS_BSW_00407 Each BSW module shall
provide a function to read out
the version information of a
dedicated module
implementation

SWS_Os_00767

SRS_BSW_00409 All production code error ID
symbols are defined by the
Dem module and shall be
retrieved by the other BSW
modules from Dem
configuration

SWS_Os_00767

SRS_BSW_00410 Compiler switches shall have
defined values

SWS_Os_00767

SRS_BSW_00411 All AUTOSAR Basic Software
Modules shall apply a naming
rule for enabling/disabling the
existence of the API

SWS_Os_00767

SRS_BSW_00413 An index-based accessing of
the instances of BSW modules
shall be done

SWS_Os_00767

SRS_BSW_00414 Init functions shall have a SWS_Os_00767

Specification of Operating System
AUTOSAR CP R20-11

31 of 342 Document ID 34: AUTOSAR_SWS_OS

pointer to a configuration
structure as single parameter

SRS_BSW_00415 Interfaces which are provided
exclusively for one module
shall be separated into a
dedicated header file

SWS_Os_00767

SRS_BSW_00417 Software which is not part of
the SW-C shall report error
events only after the DEM is
fully operational.

SWS_Os_00767

SRS_BSW_00419 If a pre-compile time
configuration parameter is
implemented as "const" it
should be placed into a
separate c-file

SWS_Os_00767

SRS_BSW_00422 Pre-de-bouncing of error
status information is done
within the DEM

SWS_Os_00767

SRS_BSW_00423 BSW modules with AUTOSAR
interfaces shall be describable
with the means of the SW-C
Template

SWS_Os_00767

SRS_BSW_00437 Memory mapping shall provide
the possibility to define RAM
segments which are not to be
initialized during startup

SWS_Os_00767

SRS_BSW_00439 Enable BSW modules to
handle interrupts

SWS_Os_00767

SRS_BSW_00440 The callback function
invocation by the BSW module
shall follow the signature
provided by RTE to invoke
servers via Rte_Call API

SWS_Os_00767

SRS_BSW_00441 Naming convention for type,
macro and function

SWS_Os_00767

SRS_Frt_00020 The configuration and
initialization shall be performed
by the module providing the
SWFRT functionality (OS) if
the GPT Timer is not used .

SWS_Os_00374

SRS_Frt_00022 It shall be possible to state
which HW Timer is used

SWS_Os_00370

SRS_Frt_00025 Access methods to time
information shall be provided
for different users.

SWS_Os_00383, SWS_Os_00392

SRS_Frt_00030 The read - out value shall start
with Zero

SWS_Os_00384

SRS_Frt_00031 The SWFRT shall increment
i.e.

SWS_Os_00384

SRS_Frt_00032 Wrap around shall work
without software interaction.

SWS_Os_00767

Specification of Operating System
AUTOSAR CP R20-11

32 of 342 Document ID 34: AUTOSAR_SWS_OS

SRS_Frt_00033 There shall be a function to
achieve an atomic read the of
the timer's value.

SWS_Os_00377

SRS_Frt_00034 The module shall provide
functionality to calculate the
ticks elapsed between a
previously stored value
(passed as a parameter) and
the current timer value.

SWS_Os_00382

SRS_Frt_00047 The SWFRT shall provide a
"user" dependent API (function
/ macro) to convert ticks to
time.

SWS_Os_00393

SRS_Os_00097 The OS shall provide an API
that is backward compatible to
the API of OSEK OS

SWS_Os_00001

SRS_Os_00098 The Operating System shall
provide statically configurable
schedule tables based on time
tables as an optional service

SWS_Os_00002, SWS_Os_00007

SRS_Os_00099 The Operating System shall
provide a mechanism which
allows switching between
different schedule tables

SWS_Os_00191

SRS_Os_11000 The OS may offer support to
protect the memory sections of
an OS-Application against
read accesses by all other OS-
Applications

SWS_Os_00026

SRS_Os_11001 The OS shall provide partitions
which allow for fault isolation
and fault recovery capabilities

SWS_Os_00056

SRS_Os_11002 The operating system shall
provide the ability to
synchronize the processing of
schedule tables with a global
system time base

SWS_Os_00013, SWS_Os_00199,
SWS_Os_00201, SWS_Os_00206,
SWS_Os_00227

SRS_Os_11003 The operating system shall be
able to monitor stack usage
and check for a stack overflow
on a per executable object
basis

SWS_Os_00067, SWS_Os_00068

SRS_Os_11005 The operating system shall
prevent an OS-Application
from modifying the memory of
other OS-Applications

SWS_Os_00195, SWS_Os_00207,
SWS_Os_00208, SWS_Os_00795,
SWS_Os_00806, SWS_Os_00807,
SWS_Os_91010, SWS_Os_91011,
SWS_Os_91012, SWS_Os_91013,
SWS_Os_91014, SWS_Os_91015,
SWS_Os_91016, SWS_Os_91017,
SWS_Os_91018

SRS_Os_11006 The operating system shall
allow tasks and ISRs within an
OS-Application to exchange
data

SWS_Os_00086, SWS_Os_00087,
SWS_Os_00196

Specification of Operating System
AUTOSAR CP R20-11

33 of 342 Document ID 34: AUTOSAR_SWS_OS

SRS_Os_11007 The operating system shall
allow OS-Applications to
execute shared code

SWS_Os_00081

SRS_Os_11008 The OS shall not allow a timing
fault in any OS-Application to
propagate

SWS_Os_00028, SWS_Os_00033,
SWS_Os_00037, SWS_Os_00048,
SWS_Os_00064, SWS_Os_00089,
SWS_Os_00465, SWS_Os_00469,
SWS_Os_00470, SWS_Os_00471,
SWS_Os_00472, SWS_Os_00473,
SWS_Os_00474

SRS_Os_11009 The operating system shall
prevent the corruption of the
OS by any call of a system
service

SWS_Os_00051, SWS_Os_00052,
SWS_Os_00069, SWS_Os_00070,
SWS_Os_00088, SWS_Os_00092,
SWS_Os_00093

SRS_Os_11010 The operating system shall
prevent an OS-Application
modifying OS objects that are
not owned by that OS-
Application

SWS_Os_00056

SRS_Os_11011 The OS shall protect itself
against OS-Applications
attempting to modify control
registers directly which are
managed by the OS

SWS_Os_00096, SWS_Os_00245,
SWS_Os_00808, SWS_Os_00809,
SWS_Os_00810, SWS_Os_00811,
SWS_Os_00812, SWS_Os_00813,
SWS_Os_00814, SWS_Os_91019,
SWS_Os_91020, SWS_Os_91021

SRS_Os_11012 The OS shall provide
scalability for its protection
features

SWS_Os_00240, SWS_Os_00241

SRS_Os_11013 The OS shall be capable of
notifying the occurrence of a
protection error at runtime

SWS_Os_00033, SWS_Os_00037,
SWS_Os_00044, SWS_Os_00051,
SWS_Os_00056, SWS_Os_00064,
SWS_Os_00068, SWS_Os_00070,
SWS_Os_00088, SWS_Os_00093,
SWS_Os_00210, SWS_Os_00246

SRS_Os_11014 In case of a protection error,
the OS shall provide an action
for recovery on OS-, OS-
Application and task/ISR-level

SWS_Os_00033, SWS_Os_00037,
SWS_Os_00106, SWS_Os_00107,
SWS_Os_00108, SWS_Os_00109,
SWS_Os_00110, SWS_Os_00243,
SWS_Os_00244

SRS_Os_11016 The OS implementation shall
offer scalability which is
configurable by a generation
tool

SWS_Os_00240, SWS_Os_00241

SRS_Os_11018 The OS shall provide interrupt
mask functions

SWS_Os_00299

SRS_Os_11019 The AUTOSAR OS generation
tool shall create the interrupt
vector table

SWS_Os_00336

SRS_Os_11020 The OS shall provide a
standard interface to tick a
software counter

SWS_Os_00286

SRS_Os_11021 The OS shall provide a
mechanism to cascade

SWS_Os_00301

Specification of Operating System
AUTOSAR CP R20-11

34 of 342 Document ID 34: AUTOSAR_SWS_OS

multiple software counters
from a single hardware
counter.

SRS_Os_80001 The OS shall be able to
manage multiple closely
coupled CPU Cores

SWS_Os_00568, SWS_Os_00569,
SWS_Os_00579, SWS_Os_00583,
SWS_Os_00596, SWS_Os_00600,
SWS_Os_00606, SWS_Os_00616,
SWS_Os_00626, SWS_Os_00627,
SWS_Os_00628, SWS_Os_00672,
SWS_Os_00673, SWS_Os_00674,
SWS_Os_00675

SRS_Os_80003 The multi core extension shall
provide the same degree of
predictability as the single core

SWS_Os_00570, SWS_Os_00571,
SWS_Os_00573

SRS_Os_80005 OsApplications and as a result
TASKS and OsISRs shall be
assigned statically to cores

SWS_Os_00570, SWS_Os_00571,
SWS_Os_00572, SWS_Os_00573,
SWS_Os_00667, SWS_Os_00826

SRS_Os_80006 Initialization/Start-up of the
system shall be synchronized

SWS_Os_00572, SWS_Os_00574,
SWS_Os_00575, SWS_Os_00576,
SWS_Os_00577, SWS_Os_00578,
SWS_Os_00579, SWS_Os_00580,
SWS_Os_00581, SWS_Os_00582,
SWS_Os_00584, SWS_Os_00585,
SWS_Os_00607, SWS_Os_00608,
SWS_Os_00609, SWS_Os_00610,
SWS_Os_00625, SWS_Os_00668,
SWS_Os_00669, SWS_Os_00670,
SWS_Os_00676, SWS_Os_00677,
SWS_Os_00678, SWS_Os_00679,
SWS_Os_00680, SWS_Os_00681,
SWS_Os_00682, SWS_Os_00683,
SWS_Os_00684, SWS_Os_00685

SRS_Os_80007 Shutdown procedure shall be
triggered by any core

SWS_Os_00586, SWS_Os_00587,
SWS_Os_00588, SWS_Os_00616,
SWS_Os_00617, SWS_Os_00621,
SWS_Os_00713, SWS_Os_00714,
SWS_Os_00715, SWS_Os_00716

SRS_Os_80008 It shall be a common OS
configuration across multiple
cores

SWS_Os_00567, SWS_Os_00582

SRS_Os_80011 The number of cores that the
operating system manages
shall be configurable offline

SWS_Os_00583, SWS_Os_00825

SRS_Os_80013 The behaviour of services shall
be identical to single core
systems

SWS_Os_00569, SWS_Os_00589,
SWS_Os_00590, SWS_Os_00591,
SWS_Os_00592, SWS_Os_00593,
SWS_Os_00594, SWS_Os_00595,
SWS_Os_00607, SWS_Os_00618,
SWS_Os_00619, SWS_Os_00623,
SWS_Os_00629, SWS_Os_00630,
SWS_Os_00631, SWS_Os_00635,
SWS_Os_00636, SWS_Os_00637,
SWS_Os_00638, SWS_Os_00639,
SWS_Os_00640, SWS_Os_00643,
SWS_Os_00645, SWS_Os_00646,
SWS_Os_00647, SWS_Os_00663,

Specification of Operating System
AUTOSAR CP R20-11

35 of 342 Document ID 34: AUTOSAR_SWS_OS

SWS_Os_00664, SWS_Os_00665

SRS_Os_80015 The MC extensions shall
provide a mechanism to
activate tasks on different
cores

SWS_Os_00596, SWS_Os_00598,
SWS_Os_00599, SWS_Os_00600,
SWS_Os_00816, SWS_Os_00818,
SWS_Os_00819, SWS_Os_91022,
SWS_Os_91023

SRS_Os_80016 Event mechanism shall work
across cores

SWS_Os_00602, SWS_Os_00604,
SWS_Os_00605, SWS_Os_00817

SRS_Os_80018 A method to synchronize tasks
on more than one core shall be
provided

SWS_Os_00632, SWS_Os_00633,
SWS_Os_00634, SWS_Os_00641,
SWS_Os_00642, SWS_Os_00644,
SWS_Os_00648, SWS_Os_00649,
SWS_Os_00650, SWS_Os_00652,
SWS_Os_00653, SWS_Os_00654,
SWS_Os_00655, SWS_Os_00656,
SWS_Os_00657, SWS_Os_00658,
SWS_Os_00659, SWS_Os_00660,
SWS_Os_00661

SRS_Os_80020 A data exchange mechanism
shall be provided

SWS_Os_00611, SWS_Os_00671,
SWS_Os_00718, SWS_Os_00719,
SWS_Os_00720, SWS_Os_00721,
SWS_Os_00722, SWS_Os_00723,
SWS_Os_00724, SWS_Os_00725,
SWS_Os_00726, SWS_Os_00727,
SWS_Os_00728, SWS_Os_00729,
SWS_Os_00730, SWS_Os_00731,
SWS_Os_00732, SWS_Os_00733,
SWS_Os_00734, SWS_Os_00735,
SWS_Os_00736, SWS_Os_00737,
SWS_Os_00738, SWS_Os_00739,
SWS_Os_00740, SWS_Os_00741,
SWS_Os_00742, SWS_Os_00743,
SWS_Os_00744, SWS_Os_00745,
SWS_Os_00746, SWS_Os_00747,
SWS_Os_00748, SWS_Os_00749,
SWS_Os_00750, SWS_Os_00751,
SWS_Os_00752, SWS_Os_00753,
SWS_Os_00754, SWS_Os_00755,
SWS_Os_00756, SWS_Os_00757,
SWS_Os_00758, SWS_Os_00759,
SWS_Os_00760, SWS_Os_00761,
SWS_Os_00803, SWS_Os_00805,
SWS_Os_00827, SWS_Os_00828,
SWS_Os_00830, SWS_Os_00831,
SWS_Os_00832, SWS_Os_00833,
SWS_Os_00834, SWS_Os_00835

SRS_Os_80021 The MC extension of the
AUTOSAR environment shall
support a mutual exclusion
mechanism between cores
that shall not cause deadlocks

SWS_Os_00612, SWS_Os_00613,
SWS_Os_00614, SWS_Os_00615,
SWS_Os_00620, SWS_Os_00622,
SWS_Os_00624, SWS_Os_00648,
SWS_Os_00649, SWS_Os_00650,
SWS_Os_00651, SWS_Os_00652,
SWS_Os_00653, SWS_Os_00654,
SWS_Os_00655, SWS_Os_00656,
SWS_Os_00657, SWS_Os_00658,
SWS_Os_00659, SWS_Os_00660,
SWS_Os_00661, SWS_Os_00666,

Specification of Operating System
AUTOSAR CP R20-11

36 of 342 Document ID 34: AUTOSAR_SWS_OS

SWS_Os_00686, SWS_Os_00687,
SWS_Os_00688, SWS_Os_00689,
SWS_Os_00690, SWS_Os_00691,
SWS_Os_00692, SWS_Os_00693,
SWS_Os_00694, SWS_Os_00695,
SWS_Os_00696, SWS_Os_00697,
SWS_Os_00698, SWS_Os_00699,
SWS_Os_00700, SWS_Os_00701,
SWS_Os_00703, SWS_Os_00704,
SWS_Os_00705, SWS_Os_00706,
SWS_Os_00707, SWS_Os_00708,
SWS_Os_00709, SWS_Os_00710,
SWS_Os_00711, SWS_Os_00712,
SWS_Os_00792, SWS_Os_00801

SRS_Os_80023 The OS shall execute an
operation which can be
selected at runtime, in case no
task is going to be scheduled
on a specific core

SWS_Os_00770, SWS_Os_00771,
SWS_Os_00802

SRS_Os_80026 It shall be possible to start any
of the cores in a multi core
system

SWS_Os_00574, SWS_Os_00575,
SWS_Os_00576, SWS_Os_00577,
SWS_Os_00584, SWS_Os_00585,
SWS_Os_00676, SWS_Os_00677,
SWS_Os_00678, SWS_Os_00679,
SWS_Os_00680, SWS_Os_00681,
SWS_Os_00682, SWS_Os_00683,
SWS_Os_00684, SWS_Os_00685

SRS_Os_80027 It shall be possible to initialize
any of the cores in a multi core
system

SWS_Os_00574, SWS_Os_00575,
SWS_Os_00576, SWS_Os_00577,
SWS_Os_00584, SWS_Os_00585,
SWS_Os_00676, SWS_Os_00677,
SWS_Os_00678, SWS_Os_00679,
SWS_Os_00680, SWS_Os_00681,
SWS_Os_00682, SWS_Os_00683,
SWS_Os_00684, SWS_Os_00685

Specification of Operating System
AUTOSAR CP R20-11

37 of 342 Document ID 34: AUTOSAR_SWS_OS

7 Functional specification

7.1 Core OS

7.1.1 Background & Rationale

The OSEK/VDX Operating System [16] is widely used in the automotive industry and
has been proven in use in all classes of ECUs found in modern vehicles. The
concepts that OSEK OS has introduced are widely understood and the automotive
industry has many years of collective experience in engineering OSEK OS based
systems.

OSEK OS is an event-triggered operating system. This provides high flexibility in the
design and maintenance of AUTOSAR based systems. Event triggering gives
freedom for the selection of the events to drive scheduling at runtime, for example
angular rotation, local time source, global time source, error occurrence etc.

For these reasons the core functionality of the AUTOSAR OS shall be based upon
the OSEK OS. In particular OSEK OS provides the following features to support
concepts in AUTOSAR:

fixed priority-based scheduling
facilities for handling interrupts
only interrupts with higher priority than tasks
some protection against incorrect use of OS services

a startup interface through StartOS() and the StartupHook()

a shutdown interface through ShutdownOS() and the ShutdownHook()

OSEK OS provides many features in addition to these. Readers should consult the
specification [16] for details.

Basing AUTOSAR OS on OSEK OS means that legacy applications will be backward
compatible – i.e. applications written for OSEK OS will run on AUTOSAR OS.
However, some of the features introduced by AUTOSAR OS require restrictions on
the use of existing OSEK OS features or extend existing OSEK OS features.

7.1.2 Requirements

[SWS_Os_00001] ⌈The Operating System module shall provide an API that is

backward compatible with the OSEK OS API [16]. ⌋ (SRS_Os_00097)

7.1.2.1 Restrictions on OSEK OS

It is too inefficient to achieve timing and memory protection for alarm callbacks. They
are therefore not allowed in specific scalability classes (SWS_Os_00242)

Specification of Operating System
AUTOSAR CP R20-11

38 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00242] ⌈The Operating System module shall only allow Alarm Callbacks

in Scalability Class 1. ⌋ ()

OSEK OS is required to provide functionality to handle inter-task (internal)
communication according to the OSEK COM specification when internal
communication only is required in the system. In AUTOSAR, internal communication
is provided by the AUTOSAR RTE or by AUTOSAR COM at least one of which will
be present for all AUTOSAR ECUs.

AUTOSAR OS, when used in an AUTOSAR system, therefore does not need to
support internal communication.

An OSEK OS must implement internal communication if the symbol

LOCALMESSAGESONLY is defined. AUTOSAR OS can deprecate the need to

implement OSEK COM functionality and maintain compatibility with OSEK suite of
specifications by ensuring that AUTOSAR OS always exists in an environment where

LOCALMESSAGESONLY is undefined.

OSEK OS has one special resource called RES_SCHEDULER. This resource has 2

specific aspects:
1. It is always present in the system, even if it is not configured. This means that

the RES_SCHEDULER is always known by the OS.

2. It has always the highest Task priority. This means a Task which allocates this
resource cannot be preempted by other Tasks.

Since special cases are always hard to handle (e.g. in this case with respect to timing

protection) AUTOSAR OS handles RES_SCHEDULER as any other resource. This

means that the RES_SCHEDULER is not automatically created. However, a

configuration attribute allows that a resource in AUTOSAR OS can optionally be
assigned the priority of the highest priority task in the system.

For backwards compatibility with OSEK OS systems, see Chapter 12.7 on how to

configure a standard resource called RES_SCHEDULER in a way that make it

compatible with the resource of the same name which is declared automatically in
OSEK OS.

In OSEK OS users must declare Operating System objects with specific macros (e.g.
DeclareTask(), …) An AUTOSAR OS implementation shall not depend on such
declarations and shall (for backwards compatibility) supply macros without
functionality.

7.1.2.2 Undefined Behaviour in OSEK OS

There are a number of cases where the behaviour of OSEK OS is undefined. These
cases represent a barrier to portability. AUTOSAR OS tightens the OSEK OS
specification by defining the required behaviour.

[SWS_Os_00304] ⌈If in a call to SetRelAlarm() the parameter “increment” is set to

zero, the service shall return E_OS_VALUE in standard and extended status . ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

39 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00424] ⌈The first call to StartOS() (for starting the Operating System)

shall not return. ⌋ ()

[SWS_Os_00425] ⌈If ShutdownOS() is called and ShutdownHook() returns then

the Operating System module shall disable all interrupts and enter an endless loop. ⌋
()

7.1.2.3 Extensions to OSEK OS

[SWS_Os_00299] ⌈The Operating System module shall provide the services

DisableAllInterrupts(), EnableAllInterrupts(), SuspendAllInterrupts(),

ResumeAllInterrupts() prior to calling StartOS() and after calling

ShutdownOS().⌋ (SRS_Os_11018)

It is assumed that the static variables of the functions mentioned in SWS_Os_00299
are initialized.

[SWS_Os_00301] ⌈The Operating System module shall provide the ability to

increment a software counter as an alternative action on alarm expiry. ⌋
(SRS_Os_11021)

The Operating System module provides API service IncrementCounter() (see

SWS_Os_00399) to increment a software counter.

[SWS_Os_00476] ⌈The Operating System module shall allow to automatically start

preconfigured absolute alarms during the start of the Operating System. ⌋ ()

SWS_Os_00476 is an extension to OSEK OS which allows this only for relative
alarms.

[SWS_Os_00566] ⌈The Operating System API shall check in extended mode all

pointer arguments for a NULL pointer and return E_OS_PARAM_POINTER in extended

status if such an argument is NULL. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

40 of 342 Document ID 34: AUTOSAR_SWS_OS

7.2 Software Free Running Timer

Due to the fact that the number of timers is often very limited, some functionality and
configuration is added to extend the reuse of timers. E.g. this allows timer
measurements. For more details see also [5] (SWFRT).

[SWS_Os_00374] ⌈The Operating System module shall handle all the initialization
and configuration of timers used directly by the Operating System module and not

handled by the GPT driver. ⌋ (SRS_Frt_00020)

The Operating System module provides API service GetCounterValue() (see

SWS_Os_00383) to read the current count value of a counter (returning either the
hardware timer ticks if counter is driven by hardware or the software ticks when user
drives counter).

The Operating System module provides API service GetElapsedValue() (see

SWS_Os_00392) to get the number of ticks between the current tick value and a
previously read tick value.

[SWS_Os_00384] ⌈The Operating System module shall adjust the read out values of
hardware timers (which drive counters) in such that the lowest value is zero and
consecutive reads return an increasing count value until the timer wraps at its

modulus. ⌋ (SRS_Frt_00030, SRS_Frt_00031)

Specification of Operating System
AUTOSAR CP R20-11

41 of 342 Document ID 34: AUTOSAR_SWS_OS

7.3 Schedule Tables

7.3.1 Background & Rationale

It is possible to implement a statically defined task activation mechanism using an
OSEK counter and a series of auto started alarms. In the simple case, this can be
achieved by specifying that the alarms are not modified once started. Run-time
modifications can only be made if relative synchronization between alarms can be
guaranteed. This typically means modifying the alarms while associated counter tick
interrupts are disabled.

Schedule Tables address the synchronization issue by providing an encapsulation of
a statically defined set of expiry points. Each expiry point defines:

 one or more actions that must occur when it is processed where an action is
the activation of a task or the setting of an event.

 An offset in ticks from the start of the schedule table

Each schedule table has a duration in ticks. The duration is measured from zero and
defines the modulus of the schedule table.

At runtime, the Operating System module will iterate over the schedule table,
processing each expiry point in turn. The iteration is driven by an OSEK counter. It
therefore follows that the properties of the counter have an impact on what is
possible to configure on the schedule table.

7.3.2 Requirements

7.3.2.1 Structure of a Schedule Table

Delay=8 Delay=8

Expiry Point 1

Task Activations

TaskA

TaskB

Event Settings

EventP:TaskC

EventP:TaskD

Offset

4 ticks

Expiry Point 2

Task Activations

<none>

Event Settings

EventP:TaskC

EventP:TaskD

Offset

12 ticks

Expiry Point 3

Task Activations

TaskA

TaskE

Event Settings

<none>

Offset

20 ticks

Expiry Point 4

Task Activations

TaskA

TaskE

Event Settings

EventQ:TaskC

EventQ:TaskE

Offset

32 ticks

Expiry Point 5

Task Activations

TaskB

TaskF

Event Settings

EventP:TaskC

Offset

40 ticks

Delay=12 Delay=8

Delay=InitialOffset+FinalDelay=14

120 3220 40 0

Schedule Table Duration = 50 ticks

4

InitialOffset=4

Initial Expiry

Point

Final Expiry

Point

FinalDelay=10

Figure 7.1: Anatomy of a Schedule Table

Specification of Operating System
AUTOSAR CP R20-11

42 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00401] ⌈A schedule table shall have at least one expiry point. ⌋ ()

[SWS_Os_00402] ⌈An expiry point shall contain a (possibly empty) set of tasks to

activate. ⌋ ()

[SWS_Os_00403] ⌈An expiry point shall contain a (possibly empty) set of events to

set. ⌋ ()

[SWS_Os_00404] ⌈An expiry point shall contain an offset in ticks from the start of

the schedule table. ⌋ ()

7.3.2.2 Constraints on Expiry Points

There is no use case for an empty expiry point, so each one must define at least one
action.

[SWS_Os_00407] ⌈An expiry point shall activate at least one task OR set at least

one event. ⌋ ()

The OS needs to know the order in which expiry points are processed. It is therefore
necessary to ensure that the expiry points on a schedule table can be totally ordered.
This is guaranteed by forcing each expiry point on a schedule table to have a unique
offset.

[SWS_Os_00442] : ⌈Each expiry point on a given schedule table shall have a unique

offset. ⌋ ()

Iteration over expiry points on a schedule table is driven by an OSEK counter. The

characteristics of the counter – OsCounterMinCycle and

OsCounterMaxAllowedValue – place constraints on expiry point offsets.

[SWS_Os_00443] ⌈The Initial Offset shall be zero OR in the range

OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter. ⌋

()

Similarly, constraints apply to the delays between of adjacent expiry points and the
delay to the logical end of the schedule table.

[SWS_Os_00408] ⌈The delay between adjacent expiry points shall be in the range

OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter. ⌋

()

Specification of Operating System
AUTOSAR CP R20-11

43 of 342 Document ID 34: AUTOSAR_SWS_OS

7.3.2.3 Processing Schedule Tables

[SWS_Os_00002] ⌈The Operating System module shall process each expiry point
on a schedule table from the Initial Expiry Point to the Final Expiry Point in order of

increasing offset. ⌋ (SRS_Os_00098)

[SWS_Os_00007] ⌈The Operating System module shall permit multiple schedule

tables to be processed concurrently. ⌋ (SRS_Os_00098)

[SWS_Os_00409] ⌈A schedule table of the Operating System module shall be driven

by exactly one counter. ⌋ ()

[SWS_Os_00410] ⌈The Operating System module shall be able to process at least

one schedule table per counter at any given time. ⌋ ()

[SWS_Os_00411] ⌈The Operating System module shall make use of ticks so that

one tick on the counter corresponds to one tick on the schedule table. ⌋ ()

It is possible to activate a task and set (one or more unique) events for the same task
at the same expiry point. The ordering of task activations and event settings
performed from the expiry point could lead to different implementations exhibiting
different behaviour (for example, activating a suspended task and then setting and
event on the task would succeed but if the ordering was reversed then the event
setting would fail). To prevent such non-determinism, it is necessary to enforce a
strict ordering of actions on the expiry point.

[SWS_Os_00412] ⌈The Operating System module shall process all task activations

on an expiry point first and then set events. ⌋ ()

A schedule table always has a defined state and the following figure illustrates the
different states (for a non-synchronized schedule table) and the transitions between
them.

Specification of Operating System
AUTOSAR CP R20-11

44 of 342 Document ID 34: AUTOSAR_SWS_OS

„previous“ schedule table ends

StopScheduleTable()

StartScheduleTableAbs()

StartScheduleTableRel()

StopScheduleTable()

OR schedule table ends

NextScheduleTable()

SCHEDULETABLE_NEXT

SCHEDULETABLE_RUNNING

SCHEDULETABLE_STOPPED

Figure 7.2: States of a schedule table

If a schedule table is not active – this means that is not processed by the Operating

System – the state is SCHEDULETABLE_STOPPED. After starting a schedule tables

enters the SCHEDULETABLE_RUNNING state where the OS processes the expiry points.

If the service to switch a schedule table is called a schedule table enters the

SCHEDULETABLE_NEXT state and waits until the “current” schedule table ends.

7.3.2.4 Repeated Schedule Table Processing

A schedule table may or may not repeat after the final expiry point is processed. This
allows two types of behaviour:

1. single-shot – the schedule table processes each expiry point in sequence and
then stops at the end. This is useful for triggering a phased sequence of
actions in response to some trigger

2. repeating – the schedule table processes each expiry point in turn, after

processing the final expiry point, it loops back to the initial expire point. This is
useful for building applications that perform repeated processing or system
which need to synchronize processing to a driver source.

A repeating schedule table means that each expiry point is repeated at a period
equal to the schedule table duration.

[SWS_Os_00413] ⌈The schedule table shall be configurable as either single-shot or

repeating. ⌋ ()

[SWS_Os_00009] ⌈If the schedule table is single-shot, the Operating System
module shall stop the processing of the schedule table Final Delay ticks after the

Final Expiry Point is processed. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

45 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00427] ⌈If the schedule table is single-shot, the Operating System

module shall allow a Final Delay between 0 .. OsCounterMaxAllowedValue of the

underlying counter. ⌋ ()

[SWS_Os_00444] ⌈For periodic schedule tables the value of Final Delay shall be in

the range OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying

counter. ⌋ ()

[SWS_Os_00194] ⌈After processing the Final Expiry Point, and if the schedule table
is repeating, the Operating System shall process the next Initial Expiry Point, after

Final Delay plus Initial Offset ticks have elapsed. ⌋ ()

7.3.2.5 Controlling Schedule Table Processing

The application is responsible for starting and stopping the processing of a schedule
table.

The Operating System module provides the service StartScheduleTableAbs()

(see SWS_Os_00358) to start the processing of a schedule table at an absolute
value “Start” on the underlying counter. (The Initial Expiry Point has to be processed
when the value of the underlying counter equals Start + InitialOffset).

The Operating System module provides the service StartScheduleTableRel()

(see SWS_Os_00347) to start the processing of a schedule table at “Offset” relative
to the “Now” value on the underlying counter (The Initial Expiry Point shall be
processed when the value of the underlying counter equals Now + Offset +
InitialOffset).

The figure below illustrates the two different methods for a schedule table driven by a

counter with a modulus of 65536 (i.e. an OsCounterMaxAllowedValue = 65535).

Specification of Operating System
AUTOSAR CP R20-11

46 of 342 Document ID 34: AUTOSAR_SWS_OS

2 3 4 5 6 7 8 90 1

STOPPED RUNNING

StartScheduleTableAbs(Tbl,2);
Process Initial Expiry Point when the Counter = 2 + Initial Offset = 2

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 2 3 40 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 0

Schedule Table Tbl

Initial Offset = 2

Final Delay = 2

Duration = 10

EP1

65535
65534

65533
65532

65531
65530

12 13 14 15 16 17 18 19 20 2110 11 22 23 24 25 26

2 3 4 5 6 7 8 90 1

STOPPED RUNNING

StartScheduleTableRel(Tbl,2);
Process Initial Expiry Point when the Counter = Now + 2 + Initial Offset = 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

65535
65534

65533
65532

65531
65530

12 13 14 15 16 17 18 19 20 2110 11 22 23 24 25 26

EP1 EP2

2 3 4 5 6 70 1

OS Counter

OS Counter

Figure 7.3: Starting a Schedule Table at an Absolute and a Relative Count

The Operating System module provides the service StopScheduleTable() (see

SWS_Os_00006) to cancel the processing of a schedule table immediately at any
point while the schedule table is running.

[SWS_Os_00428] ⌈If schedule table processing has been cancelled before reaching
the Final Expiry Point and is subsequently restarted then
SWS_Os_00358/SWS_Os_00347 means that the re-start occurs from the start of the

schedule table. ⌋ ()

The Operating System module provides the service NextScheduleTable() (see

SWS_Os_00191) to switch the processing from one schedule table to another
schedule table.

Specification of Operating System
AUTOSAR CP R20-11

47 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00414] ⌈When a schedule table switch is requested, the OS shall
continue to process expiry points on the current schedule table. After the Final Expiry
Point there will be a delay equivalent to Final Delay ticks before processing the
switched-to schedule table. The initial expiry point will be processed after initial

offset. ⌋ ()

The Operating System module provides the service GetScheduleTableStatus()

(see SWS_Os_00227) to query the state of a schedule table.

Schedule tables can be configured (see chapter 10) to start automatically during start
of the Operating System module (like Tasks and Alarms in OSEK OS). OSEK OS
defines a specific order: Autostart of Tasks is performed before autostart of alarms.
AUTOSAR OS extends this with schedule tables.

[SWS_Os_00510] ⌈The Operating System module shall perform the autostart of

schedule tables during startup after the autostart of Tasks and Alarms. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

48 of 342 Document ID 34: AUTOSAR_SWS_OS

7.4 Schedule Table Synchronization

7.4.1 Background & Rationale

The absolute time at which the Initial Expiry Point on a schedule table is processed is
under user control. However, if the schedule table repeats then it is not guaranteed
that the absolute count value at which the initial expiry point was first processed is
the same count value at which it is subsequently processed. This is because the
duration of the schedule table need not be equal to the counter modulus.

In many cases it may be important that schedule table expiry points are processed at
specific absolute values of the underlying counter. This is called synchronization.
Typical use-cases include:

 Synchronization of expiry points to degrees of angular rotation for motor
management

 Synchronizing the computation to a global (network) time base. Note that in
AUTOSAR, the Operating System does not provide a global (network) time
source because

1. a global time may not be needed in many cases
2. other AUTOSAR modules, most notably FlexRay, provide this

independently to the Operating System
3. if the Operating System is required to synchronize to multiple global

(network) time sources (for example when building a gateway between two
time-triggered networks) the Operating System cannot be the source of a
unique global time.

AUTOSAR OS provides support for synchronization in two ways:

1. implicit synchronization – the counter driving the schedule table is the counter
with which synchronization is required. This is typically how synchronization
with time-triggered networking technologies (e.g. FlexRay, TTP) is achieved –
the underlying hardware manages network time synchronization and simply
presents time as an output/compare timer interface to the Operating System.
The following figure shows the possible states for schedule tables with implicit
synchronization.

Specification of Operating System
AUTOSAR CP R20-11

49 of 342 Document ID 34: AUTOSAR_SWS_OS

StopScheduleTable()

SCHEDULETABLE_RUNNING_AND

_SYNCHRONOUS

„previous“ ScheduleTable ends

StopScheduleTable()

StartScheduleTableAbs()

NextScheduleTable()

SCHEDULETABLE_NEXT

SCHEDULETABLE_STOPPED

Figure 7.4: States of an implicit synchronized schedule table

2. explicit synchronization – the schedule table is driven by an Operating System

counter which is not the counter with which synchronization is required. The
Operating System provides additional functionality to keep schedule table
processing driven by the Operating System counter synchronized with the
synchronization counter. This is typically how synchronization with periodically
broadcast global times works. The next figure shows the states of such
schedule tables.

StopScheduleTable()
SetScheduleTableAsync() OR

ABS(CounterValue-GlobalValue)>PRECISION

ABS(CounterValue-GlobalValue)<=PRECISION

StartScheduleTableSync()

SyncScheduleTable()

StopScheduleTable()

SCHEDULETABLE_RUNNING_AND

_SYNCHRONOUS

„previous“ ScheduleTable ends

StopScheduleTable()

StartScheduleTableAbs()

StartScheduleTableRel()

StopScheduleTable()

NextScheduleTable()

SCHEDULETABLE_NEXT

SCHEDULETABLE_RUNNING

SCHEDULETABLE_STOPPED

SCHEDULETABLE_WAITING

Specification of Operating System
AUTOSAR CP R20-11

50 of 342 Document ID 34: AUTOSAR_SWS_OS

Figure 7.5: States of an explicit synchronized schedule table (not all conditions for transitions

are shown in the picture)

7.4.2 Requirements

[SWS_Os_00013] ⌈The Operating System module shall provide the ability to

synchronize the processing of schedule table to known counter values. ⌋
(SRS_Os_11002)

7.4.2.1 Implicit Synchronization

The Operating System module does not need to provide any additional support for
implicit synchronization of schedule tables. However, it is necessary to constrain
configuration and runtime control of the schedule table so that ticks on the configured
schedule table can be aligned with ticks on the counter. This requires the range of
the schedule table to be identical to the range of the counter (the equality of tick
resolution of each is guaranteed by the requirements on the schedule table / counter
interaction):

[SWS_Os_00429] ⌈A schedule table of the Operating System module that is

implicitly synchronized shall have a Duration equal to OsCounterMaxAllowedValue

+ 1 of its associated OSEK OS counter. ⌋ ()

To synchronize the processing of the schedule table it must be started at a known
counter value. The implication of this is that a schedule table requiring implicit
synchronization must only be started at an absolute counter value and cannot be
started at a relative count value.

[SWS_Os_00430] ⌈The Operating System module shall prevent a schedule table

that is implicitly synchronized from being started at a relative count value. ⌋ ()

When the schedule table is started at an absolute counter value each expiry point will
be processed when the counter equals the value specified in the service call plus
expiry point’s offset. The common use-case is to ensure that the offsets specified in
the schedule table configuration correspond to absolute values of the underlying

counter. This is achieved trivially using StartScheduleTableAbs(Tbl,0) as shown

below.

Specification of Operating System
AUTOSAR CP R20-11

51 of 342 Document ID 34: AUTOSAR_SWS_OS

2 3 4 5 6 7 8 90 1

STOPPED RUNNING AND SYNCHRONOUS

StartScheduleTableAbs(Tbl,0);
Process Initial Expiry Point when the Counter = 0 + Initial Offset = 2

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 2 3 40 1

EP1

5 6 7 8 94 2 3 4 5 6 7 8 90 1 2 3 40 1

OS Counter

Figure 7.6: Example for implicit synchronized schedule table

7.4.2.2 Explicit Synchronization

An explicitly synchronized schedule table requires additional support from the
Operating System module. The schedule table is driven by an Operating System
module’s counter as normal (termed the “drive counter”) but processing needs to be
synchronized with a different counter (termed the “synchronization counter”) which is
not an Operating System module’s counter object.

The following constraints must be enforced between the schedule table, the
Operating System module’s counter and the synchronization counter:

Constraint1:

[SWS_Os_00431] ⌈A schedule table that is explicitly synchronized shall have

a duration no greater than modulus of the drive counter. ⌋ ()

Constraint2:

[SWS_Os_00462] ⌈A schedule table that is explicitly synchronized shall have

a duration equal to the modulus of the synchronization counter. ⌋ ()

Constraint3:

[SWS_Os_00463] ⌈The synchronization counter shall have the same
resolution as the drive counter associated with the schedule table. This means
that a tick on the schedule table has the same duration as a tick on the

synchronization counter. ⌋ ()

Note that it is in the responsibility of the Operating System module user to verify that
Constraints 2 and 3 are satisfied by their system.

The function of explicit synchronization is for the Operating System module to keep
processing each expiry point at absolute value of the synchronization counter equal

Specification of Operating System
AUTOSAR CP R20-11

52 of 342 Document ID 34: AUTOSAR_SWS_OS

to the expiry point’s offset. This means that explicit synchronization always assumes
that the notional zero of the schedule table has to be synchronized with absolute
value zero on the synchronization counter.

To achieve this, the Operating System module must be told the value of the
synchronization counter by the user. As the modulus of the synchronization counter
and the schedule table are identical, the Operating System module can use this
information to calculate drift. The Operating System module then automatically
adjusts the delay between specially configured expiry points, retarding them or
advancing them as appropriate, to ensure that synchronization is maintained.

7.4.2.2.1 Startup

There are two options for starting an explicitly synchronized schedule table:

1. Asynchronous start: Start the schedule table at an arbitrary value of the
synchronization counter.

2. Synchronous start: Start the schedule table at absolute value zero of the
synchronization counter only after a synchronization count has been provided.
This may mean waiting for first synchronization indefinitely.

Asynchronous start is provided by the existing absolute and relative schedule table
start services. Both of these services set the point at which the initial expiry point is
processed with respect to the driver counter not the synchronization counter. This
allows the schedule table to start running before the value of the synchronization
counter is known.

Synchronous start requires an additional service that starts the schedule table only
after the Operating System module is told the value of the synchronization counter.

The Operating System module provides the service

StartScheduleTableSynchron() (see SWS_Os_00201) to start an explicitly

synchronized schedule table synchronously. The Initial Expiry Point will be processed
after (Duration – Value) + Initial Offset ticks of the driver counter have elapsed where
Value is the absolute value of the synchronization counter provided to the schedule
table.

[SWS_Os_00435] ⌈If an explicitly synchronized schedule table was started
synchronously, then the Operating System module shall guarantee that it has state

“waiting” when the call of service StartScheduleTableSynchron() returns. ⌋ ()

7.4.2.2.2 Providing a Synchronization Count

The Operating System module must be told the value of the synchronization counter.
Since the schedule table duration is equal to the modulus of the synchronization
counter, the Operating System module can use this to determine the drift between
the current count value on the schedule table time and the synchronization count and
decide whether (or not) any action to achieve synchronization is required.

Specification of Operating System
AUTOSAR CP R20-11

53 of 342 Document ID 34: AUTOSAR_SWS_OS

The Operating System module provides the service SyncScheduleTable() (see

SWS_Os_00199) to provide the schedule table with a synchronization count and
start synchronization.

7.4.2.2.3 Specifying Synchronization Bounds

A schedule table defaults to denying adjustment at all expiry points. Adjustment is
allowed only when explicitly configured. The range of adjustment that the Operating
System module can make at an adjustable expiry point is controlled by specifying:

 OsScheduleTableMaxShorten : the maximum value that can be subtracted

from the expiry offset

 OsScheduleTableMaxLengthen: the maximum value that can be added to the

expiry point offset

The following figure illustrates the behaviour depending on

OsScheduleTableMaxShorten and OsScheduleTableMaxLengthen:

Specification of Operating System
AUTOSAR CP R20-11

54 of 342 Document ID 34: AUTOSAR_SWS_OS

Figure 7.7: Adjustment of Expiry Points

[SWS_Os_00415] ⌈An expiry point shall permit the configuration of an

OsScheduleTableMaxShorten that defines the maximum number of ticks that can

be subtracted from expiry point offset. ⌋ ()

[SWS_Os_00416] ⌈An expiry point shall permit the configuration of an

OsScheduleTableMaxLengthen that defines the maximum number of ticks that can

be added to expiry point offset. ⌋ ()

When performing synchronization it is important that the expiry points on the
schedule table are processed according to the total ordering defined by their offsets.

This means that the range of permitted values for OsScheduleTableMaxShorten

and OsScheduleTableMaxLengthen must ensure that the next expiry point is not

retarded into the past or advanced beyond more than one iteration of the schedule
table.

Specification of Operating System
AUTOSAR CP R20-11

55 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00436] ⌈The value of (Offset – OsScheduleTableMaxShorten) of an

expiry point shall be greater than (Offset + OsCounterMinCycle) of the pervious

expiry point. ⌋ ()

[SWS_Os_00559] ⌈The value of OsScheduleTableMaxLengthen shall be smaller

than the duration of the schedule table. ⌋ ()

[SWS_Os_00437] ⌈The value of (OsScheduleTableMaxLengthen +

delay_from_previous_EP) of an expiry point shall be less than the

OsCounterMaxAllowedValue of the underlying counter. ⌋ ()

Explicitly synchronized schedule tables allow the tolerance of some drift between the
schedule table value and the synchronization counter value. This tolerance can be
zero, indicating that the schedule table is not considered synchronized unless the
values are identical.

[SWS_Os_00438] ⌈A schedule table shall define a precision bound with a value in

the range 0 to duration. ⌋ ()

7.4.2.3 Performing Synchronization

The Operating System module uses the synchronization count to support
(re-)synchronization of a schedule table at each expiry point by calculating an
adjustment to the delay to the next expiry point. This provides faster re-
synchronization of the schedule table than doing the action on the final expiry point.

[SWS_Os_00206] ⌈When a new synchronization count is provided, the Operating
System module shall calculate the current deviation between the explicitly

synchronized scheduled table and the synchronization count. ⌋ (SRS_Os_11002)

It is meaningless to try and synchronize an explicitly synchronized schedule table
before a synchronization count is provided.

[SWS_Os_00417] ⌈The Operating System module shall start to synchronize an
explicitly synchronized schedule table after a synchronization count is provided AND

shall continue to adjust expiry points until synchronized. ⌋ ()

[SWS_Os_00418] ⌈The Operating System module shall set the state of an explicitly
synchronized schedule table to “running and synchronous” if the deviation is less

than or equal to the configured OsScheduleTblExplicitPrecision threshold. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

56 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00419] ⌈The Operating System module shall set the state of an explicitly
synchronized schedule table to “running” if the deviation is greater than the

configured OsScheduleTblExplicitPrecision threshold. ⌋ ()

[SWS_Os_00420] ⌈IF the deviation is non-zero AND the next expiry point is
adjustable AND the table is behind the sync counter
(TableTicksAheadOfSyncCounter <= TableTicksBehindOfSyncCounter) THEN the
OS shall set the next EP to expire delay - min(MaxShorten, Deviation) ticks from the

current expiry. ⌋ ()

[SWS_Os_00421] ⌈IF the deviation is non-zero AND the next expiry point is
adjustable AND the table is ahead of the sync counter
(TableTicksAheadOfSyncCounter > TableTicksBehindOfSyncCounter) THEN the OS
shall set the next EP to expire delay + min(MaxLengthen, Deviation) ticks from the

current expiry. ⌋ ()

Figure 7.8: shows explicit synchronization of a schedule table. It assumes the
following:

 EP1-3 have OsScheduleTableMaxLengthen=2

 EP1-3 have OsScheduleTableMaxShorten =1

Figure 7.8: Explicit Schedule Table Synchronization

The Operating System module provides the service SetScheduleTableAsync()

(see SWS_Os_00422) to cancel synchronization being performed at adjustable
expiry points on a schedule table.

Specification of Operating System
AUTOSAR CP R20-11

57 of 342 Document ID 34: AUTOSAR_SWS_OS

The Operating System module provides the service GetScheduleTableStatus()

(see SWS_Os_00227) to query the state of a schedule table also with respect to
synchronization.

7.5 Stack Monitoring Facilities

7.5.1 Background & Rationale

On processors that do not provide any memory protection hardware it may still be
necessary to provide a “best effort with available resources” scheme for detectable
classes of memory faults. Stack monitoring will identify where a task or ISR has
exceeded a specified stack usage at context switch time. This may mean that there is
considerable time between the system being in error and that fault being detected.
Similarly, the error may have been cleared at the point the fault is notified (the stack
may be less than the specified size when the context switch occurs).

It is not usually sufficient to simply monitor the entire stack space for the system
because it is not necessarily the Task/ISR that was executing that used more than
stack space than required – it could be a lower priority object that was pre-empted.

Significant debugging time can be saved by letting the Operating System correctly
identify the Task/Category 2 ISR in error.

Note that for systems using an MPU and scalability class 3 or 4 a stack overflow may
cause a memory exception before the stack monitoring is able to detect the fault.

7.5.2 Requirements

[SWS_Os_00067] ⌈The Operating System module shall provide a stack monitoring

which detects possible stack faults of Task(s)/Category 2 ISR(s). ⌋ (SRS_Os_11003)

[SWS_Os_00068] ⌈If a stack fault is detected by stack monitoring AND no

ProtectionHook() is configured, the Operating System module shall call the

ShutdownOS() service with the status E_OS_STACKFAULT. ⌋ (SRS_Os_11003,

SRS_Os_11013)

[SWS_Os_00396] ⌈If a stack fault is detected by stack monitoring AND a

ProtectionHook() is configured the Operating System module shall call the

ProtectionHook() with the status E_OS_STACKFAULT. ⌋ ()

7.6 OS-Application

Specification of Operating System
AUTOSAR CP R20-11

58 of 342 Document ID 34: AUTOSAR_SWS_OS

7.6.1 Background & Rationale

An AUTOSAR OS must be capable of supporting a collection of Operating System
objects (Tasks, ISRs, Alarms, Schedule tables, Counters) that form a cohesive
functional unit. This collection of objects is termed an OS-Application.

The Operating System module is responsible for scheduling the available processing
resource between the OS-Applications that share the processor. If OS-Application(s)
are used, all Tasks, ISRs, Counters, Alarms and Schedule tables must belong to an
OS-Application. All objects which belong to the same OS-Application have access to
each other. The right to access objects from other OS-Applications may be granted
during configuration. An event is accessible if the task for which the event can be set
is accessible. Access means that these Operating System objects are allowed as
parameters to API services.

There are two classes of OS-Application:

(1) Trusted OS-Applications are allowed to run with monitoring or protection
features disabled at runtime. They may have unrestricted access to memory,
the Operating System module’s API, and need not have their timing behaviour
enforced at runtime. They are allowed to run in privileged mode when
supported by the processor. The Operating System module assumes that
trusted OS-Applications (and trusted functions) do not cause a memory
related protection fault. If such a fault happens the system stability is likely
gone and a shutdown may be the only option.

(2) Non-Trusted OS-Applications are not allowed to run with monitoring or

protection features disabled at runtime. They have restricted access to
memory, restricted access to the Operating System module’s API and have
their timing behaviour enforced at runtime. They are not allowed to run in
privileged mode when supported by the processor.

It is assumed that the Operating System module itself is trusted.

There are services offered by the AUTOSAR OS which give the caller information
about the access rights and the membership of objects. These services are intended
to be used in case of an inter-OS-Application call for checking access rights and
arguments.

Note that Resource objects do not belong to any OS-Application, but access to them
must be explicitly granted. (The same principle applies to spinlocks in Multi-Core
systems)

The running OS-Application is defined as the OS-Application to which the currently
running Task or ISR belongs. In case of a hook routine the Task or ISR which caused
the call of the hook routine defines the running OS-Application.

Specification of Operating System
AUTOSAR CP R20-11

59 of 342 Document ID 34: AUTOSAR_SWS_OS

class OS-Application Model

{XOR}

OS-Application

trusted

OS-Application

constraints

{privileged mode}

non-trusted

OS-Application

constraints

{non-privileged mode}

TASK

- EVENTs (of the TASK)

- One optional restart TASK

ISR

TRUSTED_FUNCTION

Hook

ShutdownHook_<Appl>

Hook

StartupHook_<Appl>

Hook

ErrorHook_<Appl>

SCHEDULETABLE

ALARM

COUNTER

An OS-Application may acces OS

objects of other OS-Application (e.g.

starting an Alarm or setting an Event

to anothers OS-Application Task) if

their configuration allows this.

#itsCounter

* 1

#itsAlarm

* 1

#itsISR

*1

#itsTask

*

1

#itsSchedule

*
1

#itsErrorHook

0..11

#itsStartupHook

0..11

#itsShutdownHook

0..11

«realize»«realize»

1

+itsProvidedServices

0..*

Figure 7.9: UML-model of OS-Application

OS-Applications have a state which defines the scope of accessibility of its Operating
System objects from other OS-Applications. Each OS-Application is always in one of
the following states:

 Active and accessible (APPLICATION_ACCESSIBLE): Operating System objects
may be accessed from other OS-Applications. This is the default state at startup.

 Currently in restart phase (APPLICATION_RESTART). Operating System objects
cannot be accessed from other OS-Applications. State is valid until the OS-
Application calls AllowAccess().

 Terminated and not accessible (APPLICATION_TERMINATED): Operating
System objects cannot be accessed from other OS-Applications. State will not
change.

The following figure shows the states and the possible transitions:

Specification of Operating System
AUTOSAR CP R20-11

60 of 342 Document ID 34: AUTOSAR_SWS_OS

APPLICATION_RESTARTING

APPLICATION_ACCESSIBLE APPLICATION_TERMINATED

ProtectionHook with RESTART

OR

TerminateApplication with

RESTART

After StartOS and

before StartupHooks()

AllowAccess()

ProtectionHook without RESTART

OR

TerminateApplication without

RESTART

Figure 7.13: States of OS-Applications

7.6.2 Requirements

[SWS_Os_00445] ⌈The Operating System module shall support OS-Applications
which are a configurable selection of Trusted Functions, Tasks, ISRs, Alarms,

Schedule tables, Counters, hooks (for startup, error and shutdown). ⌋ ()

[SWS_Os_00446] ⌈The Operating System module shall support the notion of trusted

and non-trusted OS-Applications. ⌋ ()

[SWS_Os_00464] ⌈Trusted OS-Applications may offer services (“trusted services”)

to other (even non-trusted) OS-Applications. ⌋ ()

The Operating System module provides the services GetApplicationID() and

GetCurrentApplicationID() (see SWS_Os_00016) to determine the configured

resp. currently executing OS-Application (a unique identifier shall be allocated to
each application).

The Operating System module provides the service CheckObjectOwnership() (see

SWS_Os_00017) to determine to which OS-Application a given Task, ISR, Counter,
Alarm or Schedule Table belongs.

Specification of Operating System
AUTOSAR CP R20-11

61 of 342 Document ID 34: AUTOSAR_SWS_OS

The Operating System module provides the service CheckObjectAccess() (see

SWS_Os_00256) to determine which OS-Applications are allowed to use the IDs of a
Task, Resource, Counter, Alarm or Schedule Table in API calls.

The Operating System module provides the service TerminateApplication() (see

SWS_Os_00258) to terminate the OS-Application to which the calling Task/Category
2 ISR/application specific error hook belongs. (This is an OS-Application level variant

of the TerminateTask() service)

The Operating System provides the service TerminateApplication() (see

SWS_Os_00258) to terminate another OS-Application AND calls to this service shall
be ignored if the caller does not belong to a trusted OS-Application.

[SWS_Os_00447] ⌈If the Operating System module terminates an OS-Application,
then it shall:
 terminate all running, ready and waiting Tasks/ISRs of the OS-Application
AND
 disable all interrupts of the OS-Application AND
 stop all active alarms of the OS-Applications AND

 stop all schedule tables of the OS-Application. ⌋ ()

[SWS_Os_00448] ⌈The Operating System module shall prevent access of OS-
Applications, trusted or non-trusted, to objects not belonging to this OS-Application,

except access rights for such objects are explicitly granted by configuration. ⌋ ()

The Operating System provides the service GetApplicationState() (see

SWS_Os_00499) to request the current state of an OS-Application.

[SWS_Os_00500] ⌈The Operating System module shall set the state of all OS-

Applications after the call of StartOS() and before any StartupHook is called to

APPLICATION_ACCESSIBE. ⌋ ()

The Operating System module provides the service AllowAccess() (see

SWS_Os_00501) to set the own state of an OS-Application from

APPLICATION_RESTARTING to APPLICATION_ACCESSIBLE.

[SWS_Os_00502] ⌈If an OS-Application is terminated (e.g. through a service call or
via protection hook) and no restart is requested, then the Operating System module

shall set the state of this OS-Application to APPLICATION_TERMINATED. ⌋ ()

[SWS_Os_00503] ⌈If an OS-Application is terminated (e.g. through a service call or
via protection hook) and a restart is requested, then the Operating System module

shall set the state of this OS-Application to APPLICATION_RESTARTING. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

62 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00504] ⌈The Operating System module shall deny access to Operating
System objects from other OS-Applications to an OS-Application which is not in state

APPLICATION_ACCESSIBLE. ⌋ ()

[SWS_Os_00509] ⌈If a service call is made on an Operating System object that is

owned by another OS-Application without state APPLICATION_ACCESSIBLE, then the

Operating System module shall return E_OS_ACCESS. ⌋ ()

An example for SWS_Os_00509 is a call to ActivateTask() for a task in an OS-
Application that is restarting.

7.7 Protection Facilities

Protection is only possible for Operating System managed objects. This means that:

 It is not possible to provide protection during runtime of Category 1 ISRs,
because the operating system is not aware of any Category 1 ISRs being
invoked. Therefore, if any protection is required, Category 1 ISRs have to be
avoided. If Category 1 interrupts AND OS-Applications are used together then
all Category 1 ISR must belong to a trusted OS-Application.

 It is not possible to provide protection between functions called from the body
of the same Task/Category 2 ISR.

7.7.1 Memory Protection

7.7.1.1 Background & Rationale

Memory protection will only be possible on processors that provide hardware support
for memory protection.

The memory protection scheme is based on the (data, code and stack) sections of
the executable program.

Stack: An OS-Application comprises a number of Tasks and ISRs. The stack for
these objects, by definition, belongs only to the owner object and there is therefore
no need to share stack data between objects, even if those objects belong to the
same OS-Application.
Memory protection for the stacks of Tasks and ISRs is useful mainly for two reasons:

(1) Provide a more immediate detection of stack overflow and
underflow for the Task or ISR than can be achieved with stack
monitoring

(2) Provide protection between constituent parts of and OS-Application,
for example to satisfy some safety constraints.

Specification of Operating System
AUTOSAR CP R20-11

63 of 342 Document ID 34: AUTOSAR_SWS_OS

Data: OS-Applications can have private data sections and Tasks/ISRs can have
private data sections. OS-Application’s private data sections are shared by all
Tasks/ISRs belonging to that OS-Application.

Code: Code sections are either private to an OS-Application or can be shared
between all OS-Applications (to use shared libraries). In the case where code
protection is not used, executing incorrect code will eventually result in a memory,
timing or service violation.

7.7.1.2 Requirements

Data Sections and Stack

[SWS_Os_00198] ⌈The Operating System module shall prevent write access to its

own data sections and its own stack from non-trusted OS-Applications. ⌋ ()

[SWS_Os_00795] ⌈The OS shall offer the possibility to restrict write access of
trusted OS-Applications in the same way as it is done for non-trusted OS-

Applications.” ⌋(SRS_Os_11005)

This can be configured with the OsTrustedApplicationWithProtection.

Private data of an OS-Application

[SWS_Os_00026] ⌈The Operating System module may prevent read access to an

OS-Application’s data section attempted by other non-trusted OS-Applications. ⌋
(SRS_Os_11000)

[SWS_Os_00086] ⌈The Operating System module shall permit an OS-Application

read and write access to that OS-Application’s own private data sections. ⌋
(SRS_Os_11006)

[SWS_Os_00207] ⌈The Operating System module shall prevent write access to the

OS-Application’s private data sections from other non-trusted OS-Applications. ⌋
(SRS_Os_11005)

Private Stack of Task/ISR

[SWS_Os_00196] ⌈The Operating System module shall permit a Task/Category 2

ISR read and write access to that Task’s/Category 2 ISR’s own private stack. ⌋
(SRS_Os_11006)

Specification of Operating System
AUTOSAR CP R20-11

64 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00208] ⌈The Operating System module may prevent write access to the
private stack of Tasks/Category 2 ISRs of a non-trusted application from all other

Tasks/ISRs in the same OS-Application. ⌋ (SRS_Os_11005)

[SWS_Os_00355] ⌈The Operating System module shall prevent write access to all
private stacks of Tasks/Category 2 ISRs of an OS-Application from other non-trusted

OS-Applications. ⌋ ()

Private data of a Task/ISR

[SWS_Os_00087] ⌈The Operating System module shall permit a Task/Category 2
ISR read and write access to that Task’s/Category 2 ISR’s own private data sections.

⌋ (SRS_Os_11006)

[SWS_Os_00195] ⌈The Operating System module may prevent write access to the
private data sections of a Task/Category 2 ISR of a non-trusted application from all

other Tasks/ISRs in the same OS-Application. ⌋ (SRS_Os_11005)

[SWS_Os_00356] ⌈The Operating System module shall prevent write access to all
private data sections of a Task/Category 2 ISR of an OS-Application from other non-

trusted OS-Applications. ⌋ ()

Code Sections

[SWS_Os_00027] ⌈The Operating System module may provide an OS-Application
the ability to protect its code sections against executing by non-trusted OS-

Applications. ⌋ ()

[SWS_Os_00081] ⌈The Operating System module shall provide the ability to provide

shared library code in sections that are executable by all OS-Applications. ⌋
(SRS_Os_11007)

Peripherals

[SWS_Os_00209] ⌈If OsTrustedApplicationWithProtection == FALSE

then the Operating System module shall permit trusted OS-Applications read and write

access to peripherals. ⌋ ()

[SWS_Os_00083] ⌈The Operating System module shall allow non-trusted OS-
Applications to write to their assigned peripherals only (incl. reads that have the side

effect of writing to a memory location). ⌋ ()

Memory Access Violation

Specification of Operating System
AUTOSAR CP R20-11

65 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00044] ⌈If a memory access violation is detected, the Operating System

module shall call the Protection Hook with status code E_OS_PROTECTION_MEMORY. ⌋

(SRS_Os_11013)

7.7.2 Timing Protection

7.7.2.1 Background & Rationale

A timing fault in a real-time system occurs when a task or interrupt misses its
deadline at runtime.

AUTOSAR OS does not offer deadline monitoring for timing protection. Deadline
monitoring is insufficient to correctly identify the Task/ISR causing a timing fault in an
AUTOSAR system. When a deadline is violated this may be due to a timing fault
introduced by an unrelated Task/ISR that interferes/blocks for too long. The fault in
this case lies with the unrelated Task/ISR and this will propagate through the system
until a Task/ISR misses its deadline. The Task/ISR that misses a deadline is
therefore not necessarily the Task/ISR that has failed at runtime, it is simply the
earliest point that a timing fault is detected.

If action is taken based on a missed deadline identified with deadline monitoring this
would potentially use false evidence of error to terminate a correct OS-Application in
favor of allowing an incorrect OS-Application to continue running. The problem is
best illustrated by example. Consider a system with the following configuration:

TaskID Priority Execution Time Deadline (=Period)

A High 1 5

B Medium 3 10

C Low 5 15

Assuming that all tasks are ready to run at time zero, the following execution trace
would be expected and all tasks would meet their respective deadlines.

.

Specification of Operating System
AUTOSAR CP R20-11

66 of 342 Document ID 34: AUTOSAR_SWS_OS

Figure 7.10: Example execution trace

Now consider the case when tasks A and B behave incorrectly. The figure below
shows both task A and task B executing for longer than specified and task B arriving
2 ticks earlier than specified. Both tasks A and B meet their deadlines. Task C
however, behaves correctly but it fails to meet its deadline because of the incorrect
execution of Tasks A and B. This is fault propagation – a fault in an unrelated part of
the system is causing a correctly functioning part of the system to fail.

12 13 14 152 3 4 5 6 7 8 9 10 110 1

A

B

A A

C

B

C

Task A executes for too long

Task A meets its deadline

Task B executes for too long

Task B meets its deadline

Task B arrives too early (at 8 rather than at 10)

Task B executes as expected otherwise

Task B meets its deadline

!

Task C has executed within specification.

Task C misses its deadline 4 ticks into its

execution with 1 tick of execution

remaining

B

C

16 17

Figure 7.11: Insufficiency of Deadline Monitoring

Whether a task or ISR meets its deadline in a fixed priority preemptive operating
system like AUTOSAR OS is determined by the following factors:

 the execution time of Task/ISRs in the system

 the blocking time that Task/ISRs suffers from lower priority Tasks/ISRs locking
shared resources or disabling interrupts

 the interarrival rate of Task/ISRs in the system

For safe and accurate timing protection it is necessary for the operating system to
control these factors at runtime to ensure that Tasks/ISRs can meet their respective
deadlines.

AUTOSAR OS prevents timing errors from (1) by using execution time protection to
guarantee a statically configured upper bound, called the Execution Budget, on the
execution time of:
 Tasks
 Category 2 ISRs

Specification of Operating System
AUTOSAR CP R20-11

67 of 342 Document ID 34: AUTOSAR_SWS_OS

AUTOSAR OS prevents timing errors from (2) by using locking time protection to
guarantee a statically configured upper bound, called the Lock Budget, on the time
that:
 Resources are held by Tasks/Category 2 ISRs
 OS interrupts are suspended by Tasks/Category 2 ISRs
 ALL interrupts are suspended/disabled by Tasks/Category 2 ISRs

AUTOSAR OS prevents timing errors from (3) by using inter-arrival time protection to
guarantee a statically configured lower bound, called the Time Frame, on the time
between:

 A task being permitted to transition into the READY state due to:

o Activation (the transition from the SUSPENDED to the READY state)

o Release (the transition from the WAITING to the READY state)

 A Category 2 ISR arriving
An arrival occurs when the Category 2 ISR is recognized by the OS

Inter-arrival time protection for basic tasks controls the time between successive
activations, irrespective of whether activations are queued or not. In the case of

queued activations, activating a basic task which is in the READY or RUNNING state is

a new activation because it represents the activation of a new instance of the task.
Inter-arrival time protection therefore interacts with queued activation to control the
rate at which the queue is filled.

Inter-arrival time protection for extended tasks controls the time between successive

activations and releases. When a task is in the WAITING state and multiple events are

set with a single call to SetEvent() this represents a single release. When a task

waits for one or more events which are already set this represents a notional
Wait/Release/Start transition and therefore is considered as a new release.

The following figure shows how execution time protection and inter-arrival time
protection interact with the task state transition model for AUTOSAR OS.

Specification of Operating System
AUTOSAR CP R20-11

68 of 342 Document ID 34: AUTOSAR_SWS_OS

Wait
OsTaskExecutionBudget reset

Terminate
OsTaskExecutionBudget reset

Preempt
OsTaskExecutionBudget stopped

Start
OsTaskExecutionBudget started

Activate
OsTaskTimeFrame started

Release
OsTaskTimeFrame started

Successful activation of a task already in the READY

state marks the start of a new OsTaskTimeFrame

A task that waits on an event which is already set

notionally transitions into the WAITING state

Successful activation of a task already in the RUNNING

state marks the start of a new OsTaskTimeFrame

SUSPENDED

READY

WAITING

RUNNING

Figure 7.12: Time protection interaction with the task state transition model

Notes:

1. Inter-arrival time enforcement on Category 2 ISRs can be used to protect an
ECU from a “babbling idiot” source of interrupts (e.g. a CAN controller taking
an interrupt each time a frame is received from another ECU on the network).

2. Timing protection only applies to Tasks or Category 2 ISRs. There is no
protection for Category 1 ISRs. If timing protection error occurs during a
category 1 ISR, consistency of the Operating System module cannot be
guaranteed. Therefore we discourage timing protection in systems with
category 1 interrupts.

3. Timing protection does not apply before the Operating System module is
started.

4. In the case of trusted OS-Applications it is essential that all timing information
is correct, otherwise the system may fail at run-time. For a non-trusted OS-
Application, timing protection can be used to enforce timing boundaries
between executable objects.

7.7.2.2 Requirements

[SWS_Os_00028] ⌈In a non-trusted OS-Application, the Operating System module
shall apply timing protection to every Task/Category 2 ISR of this non-trusted OS-

Application. ⌋ (SRS_Os_11008)

Specification of Operating System
AUTOSAR CP R20-11

69 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00089] ⌈In a trusted OS-Application, the Operating System module shall
provide the ability to apply timing protection to Tasks/Category 2 ISRs of this OS-

Application. ⌋ (SRS_Os_11008)

[SWS_Os_00397] ⌈If no OS-Application is configured, the Operating System module

shall be able to apply timing protection to Tasks/Category 2 ISRs. ⌋ ()

Timing Protection: Tasks

[SWS_Os_00064] ⌈If a task’s OsTaskExecutionBudget is reached then the

Operating System module shall call the ProtectionHook() with

E_OS_PROTECTION_TIME. ⌋ (SRS_Os_11008, SRS_Os_11013)

[SWS_Os_00473] ⌈The Operating System module shall reset a task’s

OsTaskExecutionBudget on a transition to the SUSPENDED or WAITING states. ⌋

(SRS_Os_11008)

[SWS_Os_00465] ⌈The Operating System module shall limit the inter-arrival time of

tasks to one per OsTaskTimeFrame. ⌋ (SRS_Os_11008)

[SWS_Os_00469] ⌈The Operating System module shall start an OsTaskTimeFrame

when a task is activated successfully. ⌋ (SRS_Os_11008)

[SWS_Os_00472] ⌈The Operating System module shall start an OsTaskTimeFrame

when a task is released successfully. ⌋ (SRS_Os_11008)

[SWS_Os_00466] ⌈If an attempt is made to activate a task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the

activation AND shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL. ⌋

()

[SWS_Os_00467] ⌈If an attempt is made to release a task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the release

AND shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL AND the

event shall be set. ⌋ ()

Timing Protection: ISRs

[SWS_Os_00210] ⌈If a Category 2 ISR’s OsIsrExecutionBudget is reached then the

Operating System module shall call the ProtectionHook() with

E_OS_PROTECTION_TIME. ⌋ (SRS_Os_11013)

Specification of Operating System
AUTOSAR CP R20-11

70 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00474] ⌈The Operating System module shall reset an ISR’s

OsIsrExecutionBudget when the ISR returns control to the OS or terminates. ⌋
(SRS_Os_11008)

[SWS_Os_00470] ⌈The Operating System module shall limit the inter-arrival time of

Category 2 ISRs to one per OsIsrTimeFrame. ⌋ (SRS_Os_11008)

[SWS_Os_00471] ⌈The Operating System module shall measure the start of an
OsIsrTimeFrame from the point at which it recognizes the interrupt (i.e. in the

Operating System interrupt wrapper). ⌋ (SRS_Os_11008)

[SWS_Os_00048] ⌈If Category 2 interrupt occurs before the end of the
OsIsrTimeFrame then the Operating System module shall not execute the user

provided ISR AND shall call the ProtectionHook() with

E_OS_PROTECTION_ARRIVAL. ⌋ (SRS_Os_11008)

Timing Protection: Resource Locking and Interrupt Disabling

[SWS_Os_00033] ⌈If a Task/Category 2 ISR holds an OSEK Resource and exceeds
the Os[Task|Isr]ResourceLockBudget, the Operating System module shall call the

ProtectionHook() with E_OS_PROTECTION_LOCKED. ⌋ (SRS_Os_11008, SRS_Os_11013,

SRS_Os_11014)

[SWS_Os_00037] ⌈If a Task/Category 2 ISR disables interrupts (via

Suspend/Disable|All/OS|Interrupts()) and exceeds the configured

Os[Task|Isr][All|OS]InterruptLockBudget, the Operating System module shall call the

ProtectionHook() with E_OS_PROTECTION_LOCKED. ⌋ (SRS_Os_11008,

SRS_Os_11013, SRS_Os_11014)

7.7.2.3 Implementation Notes

Execution time enforcement requires hardware support, e.g. a timing enforcement
interrupt. If an interrupt is used to implement the time enforcement, the priority of this
interrupt has to be high enough to “interrupt” the supervised tasks or ISRs.

Depending on the real hardware support this could mean that DisableAllInterrupts
and SuspendAllInterrupts disable not all interrupts (e.g. all interrupts except of the
interrupt used for timing protection) or that the usage of Category 1 ISRs – which
bypass the Operating System (and also the timing protection) – is limited somehow.

The implementation has to document such implementation specific behaviour (e.g.
the limitations when timing protection is used).

Specification of Operating System
AUTOSAR CP R20-11

71 of 342 Document ID 34: AUTOSAR_SWS_OS

7.7.3 Service Protection

Background & Rationale

As OS-Applications can interact with the Operating System module through services,
it is essential that the service calls will not corrupt the Operating System module
itself. Service Protection guards against such corruption at runtime.

There are a number of cases to consider with Service Protection: An OS-Application
makes an API call

(1) with an invalid handle or out of range value.

(2) in the wrong context, e.g. calling ActivateTask() in the StartupHook().

(3) or fails to make an API call that results in the OSEK OS being left in an
undefined state, e.g. it terminates without a ReleaseResource() call

(4) that impacts on the behaviour of every other OS-Application in the system,
e.g. ShutdownOS()

(5) to manipulate Operating System objects that belong to another OS-Application
(to which it does not have the necessary permissions), e.g. an OS-Application

tries to execute ActivateTask() on a task it does not own.

The OSEK OS already provides some service protection through the status codes
returned from service calls and this will provide the basis for service protection. This
means that service protection will only apply for the extended status of OSEK OS.

However, OSEK OS does not cover all the cases outlined above. The following
sections describe – besides the mandatory extended status – the additional
protection requirements to be applied in each of these cases.

7.7.3.1 Invalid Object Parameter or Out of Range Value

7.7.3.1.1 Background & Rationale

The current OSEK OS’ service calls already return E_OS_ID on invalid objects (i.e.

objects not defined in the OIL file) and E_OS_VALUE for out of range values (e.g.

setting an alarm cycle time less than OsCounterMinCycle).

7.7.3.1.2 Requirements

[SWS_Os_00051] ⌈If an invalid address (address is not writable by this OS-
Application) is passed as an out-parameter to an Operating System service, the

Operating System module shall return the status code E_OS_ILLEGAL_ADDRESS. ⌋

(SRS_Os_11009, SRS_Os_11013)

Specification of Operating System
AUTOSAR CP R20-11

72 of 342 Document ID 34: AUTOSAR_SWS_OS

7.7.3.2 Service Calls Made from Wrong Context

7.7.3.2.1 Background & Rationale

The current OSEK OS defines the valid calling context for service calls (see [16]),
however protects against only a small set of these invalid calls, e.g. calling

TerminateTask() from a Category 2 ISR.

Service T
a
s
k

C
a
t1

 I
S

R

C
a
t2

 I
S

R

E
rr

o
r

H
o

o
k

P
re

T
a
s

k
 H

o
o

k

P
o

s
tT

a
s
k
 H

o
o

k

S
ta

rt
u

p
 H

o
o

k

S
h

u
td

o
w

n
 H

o
o

k

A
la

rm
 C

a
ll
b

a
c
k

P
ro

te
c
ti

o
n

 H
o

o
k

ActivateTask

ActivateTaskAsyn

TerminateTask C

ChainTask C

Schedule C

GetTaskID

GetTaskState

DisableAllInterrupts

EnableAllInterrupts

SuspendAllInterrupts

ResumeAllInterrupts

SuspendOSInterrupts

ResumeOSInterrupts

GetResource

ReleaseResource

SetEvent

SetEventAsyn

ClearEvent C

GetEvent

WaitEvent C

GetAlarmBase

GetAlarm

SetRelAlarm

SetAbsAlarm

CancelAlarm

GetActiveApplicationMode

StartOS

ShutdownOS

GetApplicationID

GetISRID

CallTrustedFunction

CheckISRMemoryAccess

CheckTaskMemoryAccess

CheckObjectAccess

CheckObjectOwnership

StartScheduleTableRel

StartScheduleTableAbs

Specification of Operating System
AUTOSAR CP R20-11

73 of 342 Document ID 34: AUTOSAR_SWS_OS

Service T
a
s
k

C
a
t1

 I
S

R

C
a
t2

 I
S

R

E
rr

o
r

H
o

o
k

P
re

T
a
s

k
 H

o
o

k

P
o

s
tT

a
s
k
 H

o
o

k

S
ta

rt
u

p
 H

o
o

k

S
h

u
td

o
w

n
 H

o
o

k

A
la

rm
 C

a
ll
b

a
c
k

P
ro

te
c
ti

o
n

 H
o

o
k

StopScheduleTable

NextScheduleTable

StartScheduleTableSynchron

SyncScheduleTable

GetScheduleTableStatus

SetScheduleTableAsync

IncrementCounter

GetCounterValue

GetElapsedValue

TerminateApplication
2

AllowAccess

GetApplicationState

ControlIdle

GetCurrentApplicationID

ReadPeripheral8

ReadPeripheral16

ReadPeripheral32

WritePeripheral8

WritePeripheral16

WritePeripheral32

ModifyPeripheral8

ModifyPeripheral16

ModifyPeripheral32

DisableInterruptSource

EnableInterruptSource

ClearPendingInterrupt

Tab. 1: Allowed Calling Context for OS Service Calls

In the table above “C” indicates that validity is only “Checked in Extended status by

E_OS_CALLEVEL” .

7.7.3.2.2 Requirements

[SWS_Os_00088] ⌈If an OS-Application makes a service call from the wrong context
AND is currently not inside a Category 1 ISR the Operating System module shall not
perform the requested action (the service call shall have no effect) and return

E_OS_CALLEVEL or the “invalid value” of the service. ⌋ (SRS_Os_11009, SRS_Os_11013)

2 Only in case of self termination.

Specification of Operating System
AUTOSAR CP R20-11

74 of 342 Document ID 34: AUTOSAR_SWS_OS

7.7.3.3 Services with Undefined Behaviour

7.7.3.3.1 Background & Rationale

There are a number of situations where the behaviour of OSEK OS is undefined in
extended status. This is unacceptable when protection is required as it would allow
the Operating System module to be corrupted through its own service calls. The
implementation of service protection for the Operating System module must therefore
describe and implement a behaviour that does not jeopardize the integrity of the
system or of any OS-Application which did not cause the specific error.

7.7.3.3.2 Requirements

Tasks ends without calling a TerminateTask() or ChainTask()

[SWS_Os_00052] ⌈If a task returns from its entry function without making a

TerminateTask() or ChainTask() call, the Operating System module shall

terminate the task (and call the PostTaskHook() if configured). ⌋ (SRS_Os_11009)

[SWS_Os_00069] ⌈If a task returns from its entry function without making a

TerminateTask() or ChainTask() call AND the error hook is configured, the

Operating System module shall call the ErrorHook() (this is done regardless of

whether the task causes other errors, e.g. E_OS_RESOURCE) with status

E_OS_MISSINGEND before the task leaves the RUNNING state. ⌋ (SRS_Os_11009)

[SWS_Os_00070] ⌈If a task returns from the entry function without making a

TerminateTask() or ChainTask() call and still holds OSEK Resources, the

Operating System module shall release them. ⌋ (SRS_Os_11009, SRS_Os_11013)

[SWS_Os_00239] ⌈If a task returns from the entry function without making a

TerminateTask() or ChainTask() call and interrupts are still disabled, the

Operating System module shall enable them. ⌋ ()

Category 2 ISR ends with locked interrupts or allocated resources

[SWS_Os_00368] ⌈If a Category 2 ISR calls DisableAllInterupts() /

SuspendAllInterrupts() / SuspendOSInterrupts() and ends (returns) without

calling the corresponding EnableAllInterrupts() / ResumeAllInterrupts() /

ResumeOSInterrupts(), the Operating System module shall perform the missing

Specification of Operating System
AUTOSAR CP R20-11

75 of 342 Document ID 34: AUTOSAR_SWS_OS

service and shall call the ErrorHook() (if configured) with the status

E_OS_DISABLEDINT. ⌋ ()

[SWS_Os_00369] ⌈If a Category 2 ISR calls GetResource() and ends (returns)

without calling the corresponding ReleaseResource(), the Operating System

module shall perform the ReleaseResource() call and shall call the ErrorHook() (if

configured) with the status E_OS_RESOURCE (see [12], section 13.1). ⌋ ()

PostTaskHook called during ShutdownOS()

[SWS_Os_00071] ⌈If the PostTaskHook() is configured, the Operating System

module shall not call the hook if ShutdownOS() is called. ⌋ ()

Tasks/ISRs calls EnableAllInterrupts/ResumeAllInterrupts/ResumeOSInterrupts
without a corresponding disable

[SWS_Os_00092] ⌈If EnableAllInterrupts() / ResumeAllInterrupts() /

ResumeOSInterrupts() are called and no corresponding DisableAllInterupts()

/ SuspendAllInterrupts() / SuspendOSInterrupts() was done before, the

Operating System module shall not perform this Operating System service. ⌋
(SRS_Os_11009)

Tasks/ISRs calling OS services when
DisableAllInterupts/SuspendAllInterrupts/SuspendOSInterrupts called

[SWS_Os_00093] ⌈If interrupts are disabled/suspended by a Task/ISR/Hook and the
Task/ISR/Hook calls any Operating System service (excluding the interrupt services)
then the Operating System module shall ignore the service AND shall return

E_OS_DISABLEDINT if the service returns a StatusType value. ⌋ (SRS_Os_11009,

SRS_Os_11013)

7.7.3.4 Service Restrictions for Non-Trusted OS-Applications

7.7.3.4.1 Background & Rationale

The Operating System service calls available are restricted according to the calling
context (see Section 7.7.3.2). In a protected system, additional constraints need to
be placed to prevent non-trusted OS-Applications executing API calls that can have a
global effect on the system. Each level of restriction is a proper subset of the
previous level as shown in the figure below.

Specification of Operating System
AUTOSAR CP R20-11

76 of 342 Document ID 34: AUTOSAR_SWS_OS

Figure 7.13: API Restrictions

There are two defined integrity levels:

1. Trusted
2. Non-Trusted

that correspond exactly with trusted and non-trusted OS-Applications.

7.7.3.4.2 Requirements

[SWS_Os_00054] ⌈The Operating System module shall ignore calls to

ShutdownOS() from non-trusted OS-Applications. ⌋ ()

7.7.3.5 Service Calls on Objects in Different OS-Applications

7.7.3.5.1 Background

Section 7.7.3.1 stated that E_OS_ID is returned by OSEK OS service calls when the

object is invalid. Under the protection scheme a service call can be invalid because
the caller does not have valid permissions for the object (a new meaning for multi-
OS-Application systems).
This is a similar case to an object not being accessible in OSEK OS (for example,
when a task tries to get a resource which exists in the system but has not been
configured as used by the task).

Specification of Operating System
AUTOSAR CP R20-11

77 of 342 Document ID 34: AUTOSAR_SWS_OS

7.7.3.5.2 Requirements

[SWS_Os_00056] ⌈If an OS-object identifier is the parameter of an Operating
System module’s system service, and no sufficient access rights have been assigned

to this OS-object at configuration time (Parameter Os[...]AccessingApplication)

to the calling Task/Category 2 ISR, the Operating System module’s system service

shall return E_OS_ACCESS. ⌋ (SRS_Os_11001, SRS_Os_11010, SRS_Os_11013)

[SWS_Os_00449] ⌈CheckTaskMemoryAccess and CheckIsrMemoryAccess check
the memory access. Memory access checking is possible for all OS-Applications and

from all OS-Applications and does not need granted rights. ⌋ ()

SWS_Os_00449 is an exception to SWS_Os_00056.

[SWS_Os_00450] ⌈CheckObjectAccess checks the access rights for Operating
System objects. Checking object access is possible for all OS-Applications and from

all OS-Applications and does not need granted rights. ⌋ ()

SWS_Os_00450 is an exception to SWS_Os_00056.

7.7.4 Protecting the Hardware used by the OS

7.7.4.1 Background & Rationale

Where a processor supports privileged and non-privileged mode it is usually the case
that certain registers, and the instructions to modify those registers, are inaccessible
outside the privileged mode.

On such hardware, executing the Operating System module in privileged mode and
Tasks/ISRs in non-privileged mode protects the registers fundamental to Operating
System module operation from inadvertent corruption by the objects executing in
non-privileged mode. The Operating System module’s services will need to execute
in privileged mode as they will need to modify the registers that are protected outside
this mode.

The Operating System module can use the control registers of the MPU, timer
unit(s), interrupt controller, etc. and therefore it is necessary to protect those registers
against non-trusted OS-Applications.

7.7.4.2 Requirements

[SWS_Os_00058] ⌈If supported by hardware, the Operating System module shall

execute non-trusted OS-Applications in non-privileged mode. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

78 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00096] ⌈As far as supported by hardware, the Operating System module
shall not allow non-trusted OS-Applications to access control registers managed by

the Operating System module. ⌋ (SRS_Os_11011)

[SWS_Os_00245] ⌈If an instruction exception occurs (e.g. division by zero) the
Operating System module shall call the protection hook with

E_OS_PROTECTION_EXCEPTION. ⌋ (SRS_Os_11011)

7.7.4.3 Implementation Notes

When the Operating System module is running non-trusted OS-Applications, the
Operating System module’s treatment of interrupt entry and hook routines must be
carefully managed.

Interrupt handling: Where the MCU supports different modes (as discussed in this

section) ISRs will require the Operating System module to do extra work in the ISR()

wrapper. ISRs will typically be entered in privileged mode. If the handler is part of a

non-trusted OS-Application then the ISR() wrapper must make sure that a switch to

non-privileged mode occurs before the handler executes.

7.7.5 Providing »Trusted Functions«

7.7.5.1 Background & Rationale

An OS-Application can invoke a Trusted Function provided by (another) trusted OS-
Application. That can require a switch from non-privileged to privileged mode. This is
typically achieved by these operations:

 Each trusted OS-Application may export services which are callable from other
OS-Applications.
 During configuration these trusted services must be configured to be called
from a non-trusted OS-Application.
 The call from the non-trusted OS-Application to the trusted service is using a
mechanism (e.g. trap/software interrupt) provided by the Operating System. The
service is passed as an identifier that is used to determine, in the trusted
environment, if the service can be called.
 The Operating System offers services to check if a memory region is
write/read/execute accessible from an OS-Application. It also returns information if
the memory region is part of the stack space.

The Operating System software specification does not provide support for »non-
trusted services«.

Specification of Operating System
AUTOSAR CP R20-11

79 of 342 Document ID 34: AUTOSAR_SWS_OS

7.7.5.2 Requirements

[SWS_Os_00451] ⌈The Operating System module shall allow exporting services

from trusted OS-Applications. ⌋ ()

The Operating System module provides the service CallTrustedFunction() (see

SWS_Os_00097) to call a trusted function from a (trusted or non-trusted) OS-
Application.

[SWS_Os_00100] ⌈If CallTrustedFunction() is called and the called trusted

function is not configured the Operating System module shall call the ErrorHook with

E_OS_SERVICEID. ⌋ ()

The Operating System module provides the services CheckISRMemoryAccess() and

CheckTaskMemoryAccess() (see SWS_Os_00512 and SWS_Os_00513) for OS-

Applications to check if a memory region is write/read/execute accessible from a
Task/Category 2 ISR and also return information if the memory region is part of the
stack space.

7.8 Protection Error Handling

7.8.1 Background & Rationale

The Operating System can detect protection errors based on statically configured
information on what the constituent parts of an OS-Application can do at runtime.
See Section 7.7.

Unlike monitoring, protection facilities will trap the erroneous state at the point the
error occurs, resulting in the shortest possible time between transition into an
erroneous state and detection of the fault. The different kinds of protection errors are
described in the glossary. If a protection error occurs before the Operating System
module is started the behaviour is not defined. If a protection error happens during
shutdown, e.g. in the application-specific shutdown hook, an endless loop between
the shutdown service and the protection hook may occur.

In the case of a protection error, the Operating System module calls a user provided
Protection Hook for the notification of protection errors at runtime. The Protection
Hook runs in the context of the Operating System module and must therefore be
trusted code.

The Operating System module itself needs only to detect an error and provide the
ability to act. The Protection Hook can select one out of four options the Operating
System module provides, which will be performed after returning from the Protection
Hook, depending on the return value of the Protection Hook. The options are:

1. do nothing

Specification of Operating System
AUTOSAR CP R20-11

80 of 342 Document ID 34: AUTOSAR_SWS_OS

2. forcibly terminate the faulty Task/Category 2 ISR
3. forcibly terminate all tasks and ISRs in the faulty OS-Application

a. without restart of the OS-Application
b. with restart of the OS-Application

4. shutdown the Operating System module.

Requirements SWS_Os_00243 and SWS_Os_00244 define the order of the default
reaction if no faulty Task/Category 2 ISR or OS-Application can be found, e.g. in the
system specific hook routines. Also OS-Applications are only mandatory in Scalability
Classes 3 and 4, therefore in other Scalability Classes OS-Applications need not be
defined.

Note that forcibly terminating interrupts is handled differently in “forcibly terminate the
faulty ISR” and “forcibly terminate the OS-Application”. If a faulty ISR is forcibly
terminated, the current invocation of the ISR is terminated. A subsequent invocation
is allowed. If the OS-Application is forcibly terminated, then the interrupt source is
also disabled, preventing subsequent interrupts.

Notes regarding the return value PRO_IGNORE

The meaning of "do nothing" (PRO_IGNORE) means that the error reaction is

ignored. The PRO_IGNORE is only allowed in specific situations (currently: arrival rate

errors). After the error is detected (e.g. as specified in SWS_Os_00466 or

SWS_Os_00467) the protection hook is called. If the hook returns with PRO_IGNORE

the OS does continue its normal operation. If a service call was the root cause of the

violation (e.g. an ActivateTask()) and protection hook returns PRO_IGNORE the

service call shall continue its operation (e.g. to activate a Task) and return E_OK (if

successful and possible).

Example 1: A task calls ActivateTask(B) and causes an arrival rate violation. The

activation is not performed (SWS_Os_00466) and protection hook is called. When

returning PRO_IGNORE the OS continues and the ActivateTask() service

activates B and returns E_OK.

Example 2: A task A calls SetEvent() for task B (which currently waits for the

event). The OS detects (SWS_Os_00467) an arrival rate violation and performs a

call of the protection hook. When the call returns with PRO_IGNORE, the SetEvent()

service continues and sets the event. Task B changes to READY state and a

rescheduling might happen. The SetEvent() service call will return E_OK to task A.

7.8.2 Requirements

[SWS_Os_00211] ⌈The Operating System module shall execute the

ProtectionHook() with the same permissions as the Operating System module. ⌋ (

)

Specification of Operating System
AUTOSAR CP R20-11

81 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00107] ⌈If no ProtectionHook() is configured and a protection error

occurs, the Operating System module shall call ShutdownOS().⌋ (SRS_Os_11014)

[SWS_Os_00106] ⌈If the ProtectionHook() returns PRO_IGNORE and was called

with E_OS_PROTECTION_ARRIVAL the Operating System module shall return control

to the user application. ⌋ (SRS_Os_11014)

[SWS_Os_00553] ⌈If the ProtectionHook() returns PRO_TERMINATETASKISR the

Operating System module shall forcibly terminate the faulty Task/Category 2 ISR. ⌋ (
)

[SWS_Os_00554] ⌈If the ProtectionHook() returns PRO_TERMINATEAPPL the

Operating System module shall forcibly terminate the faulty OS-Application. ⌋ ()

[SWS_Os_00555] ⌈If the ProtectionHook() returns PRO_TERMINATEAPPL_RESTART

the Operating System module shall forcibly terminate the faulty OS-Application and

afterwards restart the OS-Application. ⌋ ()

[SWS_Os_00556] ⌈If the ProtectionHook() returns PRO_SHUTDOWN the Operating

System module shall call the ShutdownOS().⌋ ()

[SWS_Os_00506] ⌈If the ProtectionHook() is called with

E_OS_PROTECTION_ARRIVAL the only valid return values are PRO_IGNORE or

PRO_SHUTDOWN 3. Returning other values will result in a call to ShutdownOS().⌋ ()

[SWS_Os_00475] ⌈If the ProtectionHook() returns PRO_IGNORE and the

ProtectionHook() was not called with E_OS_PROTECTION_ARRIVAL then the

Operating System module shall call ShutdownOS().⌋ ()

[SWS_Os_00243] ⌈If the ProtectionHook() returns PRO_TERMINATETASKISR and

no Task or ISR can be associated with the error, the running OS-Application is
forcibly terminated by the Operating System module. If even no OS-Application can

be assigned, ShutdownOS() is called. ⌋ (SRS_Os_11014)

[SWS_Os_00244] ⌈If the ProtectionHook() returns PRO_TERMINATEAPPL or

PRO_TERMINATEAPPL_RESTART and no OS-Application can be assigned,

ShutdownOS() is called. ⌋ (SRS_Os_11014)

[SWS_Os_00557] ⌈If the ProtectionHook() returns PRO_TERMINATEAPPL_RESTART

and no OsRestartTask was configured for the faulty OS-Application, ShutdownOS()

is called. ⌋ ()

3 The reason for this case is that the Task which is supervised is not necessary active (and can not be e.g. terminated) and it

can be that the caller of the activation is the real problem.

Specification of Operating System
AUTOSAR CP R20-11

82 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00108] ⌈If the Operating System module forcibly terminates a task, it
terminates the task, releases all allocated OSEK resources and calls

EnableAllInterrupts()/ ResumeOSInterrupts() / ResumeAllInterrupts() if

the Task called DisableAllInterrupts() / SuspendOSInterrupts() /

SuspendAllInterrupts() before without the corresponding

EnableAllInterrupts()/ ResumeOSInterrupts() / ResumeAllInterrupts() call.

⌋ (SRS_Os_11014)

[SWS_Os_00109] ⌈If the Operating System module forcibly terminates an interrupt
service routine, it clears the interrupt request, aborts the interrupt service routine
(The interrupt source stays in the current state.) and releases all OSEK resources the

interrupt service routine has allocated and calls EnableAllInterrupts() /

ResumeOSInterrupts() / ResumeAllInterrupts() if the interrupt called

DisableAllInterrupts() / SuspendOSInterrupts() /

SuspendAllInterrupts() before without the corresponding

EnableAllInterrupts()/ ResumeOSInterrupts() / ResumeAllInterrupts() call.

⌋ (SRS_Os_11014)

[SWS_Os_00110] ⌈If the Operating System module shall forcibly terminate an OS-
Application, it: shall

o forcibly terminate all Tasks/ISRs of the OS-Application AND
o cancel all alarms of the OS-Application AND
o stop schedule tables of the OS-Application AND

o disable interrupt sources of Category 2 ISRs belonging to the OS-Application⌋
(SRS_Os_11014)

[SWS_Os_00111] ⌈When the Operating System module restarts an OS-Application,

it shall activate the configured OsRestartTask. ⌋ ()

7.9 Operating System for Multi-Core

This chapter specifies some extensions that allow to use an AUTOSAR system on
Multi-Core micro-processors. It describes the main philosophy as well as additional
extensions to the existing OS functionality regarding Multi-Core. The following
chapter contains a specification of a new mechanism within the OS called IOC (Inter
OS-Application Communicator) that supports the communication between OS-
Applications located on the same or on different cores

7.9.1 Background & Rationale

The existing AUTOSAR-OS is based on the OSEK/VDX Operating system which is
widely used in the automotive industry. The AUTOSAR Multi-Core OS is derived from
the existing AUTOSAR OS.

Specification of Operating System
AUTOSAR CP R20-11

83 of 342 Document ID 34: AUTOSAR_SWS_OS

The Multi-Core OS in AUTOSAR is not a virtual ECU concept, instead it shall be
understood as an OS that shares the same configuration and most of the code but
operates on different data structures for each core.
To reduce the memory footprint all cores should use the same code base.
Sometimes it can be beneficial to spend some more ROM/Flash, e.g. to use a local
ROM, and "double" parts of the code to get faster ROM/Flash access.

7.9.1.1 Requirements

[SWS_Os_00567] ⌈The generated part of the OS is derived from a single
configuration that contains the relevant information for all cores. This implies, that IDs
(e.g. TASKID, RESOURCEID, …) are unique across cores. Every ID shall refer
exactly to one entity independent from the core on which the entity is accessed. This

applies also to objects that cannot be shared between cores. ⌋ (SRS_Os_80008)

7.9.2 Scheduling

The priority of the TASKs drives the scheduling. Since multiple cores run truly
parallel, several TASKs can execute at the same time.

Figure 2: Priorities are assigned to TASKS. The cores schedule independently from each other.
The TASKS T2, T3 and T5 are executed in true parallelism. TASKs with the same priority on the

same core will be executed in order of activation; TASKs with the same priority on different
cores may not be executed in the order of activation, since the cores schedule independent

from each other.

The OS can be entered on each core in parallel. This optimizes scalability towards
multiple cores. The cores schedule independently. This implies that the schedule on
one core does not consider the scheduling on the other cores4. A low priority TASK

on one core may run in parallel with a high priority TASK on another core.
TASKs and ISRs cannot dynamically change cores by means of the scheduling
algorithm.

4 This also applies to TASKs with the same priority, bound to different cores. It also means that non-preemptive tasks cannot be

preempted on the core they are running, but tasks on other cores can run in parallel.

Specification of Operating System
AUTOSAR CP R20-11

84 of 342 Document ID 34: AUTOSAR_SWS_OS

7.9.2.1 Requirements

[SWS_Os_00568] ⌈Implementations shall be able to independently execute a TASK

or an ISR on each started AUTOSAR OS core in parallel. ⌋ (SRS_Os_80001)

[SWS_Os_00569] ⌈The scheduling strategy as defined in AUTOSAR OS shall apply
for each individual core in a Multi-Core system, for the TASKs and ISR assigned to

the core. ⌋ (SRS_Os_80001, SRS_Os_80013)

7.9.3 Locatable entities (LE)

A locatable entity is an entity that has to be located entirely on one core. The
assignment of LEs to cores is defined at configuration time

(OsApplicationCoreRef).

In this release of the AUTOSAR standard OS-Applications shall be the LEs. Because
every TASK has to run on some core, the usage of OS-Applications becomes
obligatory in AUTOSAR R4.0 for Multi-Core systems. BSW modules are not allowed
to ignore OS-Applications, even if they do not use any protection mechanisms. This
is independent from the SC class.

As is stated in the AUTOSAR Specification of the Operating System, if OS-
Applications are used, all Tasks, ISR etc. must belong to an OS-Application. This
implies, that no AUTOSAR software exists outside of an OS-Application in Multi-Core
systems.

On single-core systems OS-Applications are available only for SC3 and SC4
because the mechanism is used to support memory protection and implies the usage
of extended mode. In Multi-core systems OS-Applications are always available
independent of memory protection and on SC1 standard mode shall be possible.

7.9.3.1 Requirements

[SWS_Os_00570] ⌈All TASKs that are assigned to the same OS-Application shall

execute on the same core. ⌋ (SRS_Os_80003, SRS_Os_80005)

[SWS_Os_00571] ⌈All ISRs that are assigned to the same OS-Application shall

execute on the same core. ⌋ (SRS_Os_80003, SRS_Os_80005)

[SWS_Os_00572] ⌈ISR balancing (if supported by the HW) shall be switched off at

boot time by the OS. ⌋ (SRS_Os_80005, SRS_Os_80006)

[SWS_Os_00764] ⌈The OS module shall support OS-Applications in case of Multi-

Core also for SC1 and SC2. ⌋ ()

[SWS_Os_00763] ⌈In an SC1 system standard mode shall be possible. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

85 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00573] ⌈The binding of OS-Applications to cores shall be configured

within the OS-Application container. ⌋ (SRS_Os_80003, SRS_Os_80005)

A new configuration item: OsApplicationCoreRef within the OS-Application

container shall be used to define the core to which the OS-Application is bound. The
OS generator will map the configuration parameter “CORE” to a certain core, so that
all OS-Applications with the same configuration parameter reside on the same core.

7.9.4 Multi-Core start-up concept

The way cores are started depends heavily on the hardware. Typically the hardware
only starts one core, referred as the master core, while the other cores (slaves)
remain in halt state until they are activated by the software.

In contrast to such a master-slave system other boot concepts with cores that start
independently from each other are conceivable. However it is possible to emulate
master-slave behavior on such systems by software.

The AUTOSAR Multi-Core OS specification requires a system with master-slave
start-up behavior, either supported directly by the hardware or emulated in software.
The master core is defined to be the core that requires no software activation,
whereas a slave core requires activation by software.

In Multi-Core configurations, each slave core that is used by AUTOSAR must be

activated before StartOS is entered on the core. Depending on the hardware, it may

be possible to only activate a subset of the available cores from the master. The

slave cores might activate additional cores before calling StartOS. All cores that

belong to the AUTOSAR system have to be activated by the designated AUTOSAR

API function. Additionally, the StartOS function has to be called on all these cores.

If a core is activated it executes some HW and compiler specific operations, before

the "main" function is called. In case the same "main" function is executed on

each core, the cores have to be differentiated by their specific core Id within the
function.

Example:
void main ()

{

 StatusType rv;

 […]

 switch (GetCoreID())

 {

 case OS_CORE_ID_MASTER:

 […]

 StartCore(OS_CORE_ID_0, &rv);

 StartOS(OSDEFAULTAPPMODE);

 break;

 case OS_CORE_ID_0:

Specification of Operating System
AUTOSAR CP R20-11

86 of 342 Document ID 34: AUTOSAR_SWS_OS

 […]

 StartCore(OS_CORE_ID_1, &rv);

 StartOS(DONOTCARE);

 break;

 otherwise:

 StartOS(DONOTCARE);

 }

}

StartOS synchronizes all cores twice. The first synchronization point is located

before the StartupHooks are executed, the second after the OS-Application specific
StartupHooks have finished and before the scheduler is started. The exact point
where the second synchronization occurs depends on the implementation, but it shall
be before the scheduling is started. This release of the AUTOSAR specification does
not support timeouts during the synchronization phase. Cores that are activated with

StartCore but do not call StartOS may cause the system to hang. It is in the

responsibility of the integrator to avoid such behavior.

As shown in Figure 3, the StartUpHook is called on every core right after the first

synchronization. However, there is only one StartUpHook in the system. If, for

example, core-individual functionality must be executed during StartupHook the

GetCoreID function can be used to discriminate the individual cores. After the global

StartUpHook has finished each core performs the StartUpHooks of its OS-
Applications . Since OS-Applications are bound to cores the OS-Application specific
StartUpHooks are executed only on the core to which the corresponding OS-
Application is bound.

Figure 3: This figure shows an example of an initialization process with 4 cores.

7.9.4.1 Requirements

[SWS_Os_00574] ⌈The master core shall be able to activate cores. ⌋ (SRS_Os_80006,

SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00575] ⌈Any slave core shall be able to activate cores. ⌋ (SRS_Os_80006,

SRS_Os_80026, SRS_Os_80027)

Specification of Operating System
AUTOSAR CP R20-11

87 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00576] ⌈It shall be allowed to use only a subset of the cores available on

a µC for the AUTOSAR system. ⌋ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00577] ⌈The cores shall boot in master-slave mode. If this is not
supported by the hardware, it shall be that the cores boot in parallel and emulate the

behavior of a master-slave system. ⌋ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00578] ⌈In case of an emulation a slave core (CoreS), which is controlled
by the AUTOSAR OS (AUTOSAR core), shall not enter the main function before

another core has activated the slave core by means of StartCore(CoreS). ⌋

(SRS_Os_80006)

[SWS_Os_00579] ⌈All cores that belong to the AUTOSAR system shall be

synchronized within the StartOS function before the scheduling is started and after

the global StartupHook is called. ⌋ (SRS_Os_80001, SRS_Os_80006)

[SWS_Os_00580] ⌈All cores that belong to the AUTOSAR system shall be

synchronized within the StartOS before the global StartupHook is called. ⌋

(SRS_Os_80006)

[SWS_Os_00581] ⌈The global StartupHook shall be called on all cores

immediately after the first synchronization point. ⌋ (SRS_Os_80006)

[SWS_Os_00582] ⌈The OS-Application-specific StartupHooks shall be called after

the global StartupHook but only on the cores to which the OS-Application is bound.

⌋ (SRS_Os_80006, SRS_Os_80008)

7.9.5 Cores under control of the AUTOSAR OS

The AUTOSAR OS controls several cores as stated above. It need not control all
cores of a µC, however. The maximum number of controlled cores shall be
configured within the “OsOS” section of the configuration.

The AUTOSAR OS API provides a StartCore function to start the cores under its

control. The StartCore function takes a scalar value parameter of type

CoreIdType, specifying the core that shall be started. StartCore can be called

more than once on the master core and also on slave cores. Each core can only be
started once, however. For example:

StartusType rv1, rv2;

StartCore(OS_CORE_ID_1, &rv1);

StartCore(OS_CORE_ID_2, &rv2);

if (rv1 != E_OK) || (rv2 != E_OK)

Specification of Operating System
AUTOSAR CP R20-11

88 of 342 Document ID 34: AUTOSAR_SWS_OS

 EnterPanicMode();

StartOS(OSDEFAULTAPPMODE);

The StartOS function shall be called on all cores that have been activated by

StartCore. It is not allowed to call StartCore from a core that has already called

StartOS.

Cores that belong to the AUTOSAR system shall be started by the designated

AUTOSAR OS API service StartCore.

7.9.5.1 Requirements

[SWS_Os_00583] ⌈The number of cores that can be controlled by the AUTOSAR
OS shall be configured offline.

A new configuration item (OsNumberOfCores) within the “OsOS” container is used

to specify the maximum number of cores that are controlled by the AUTOSAR OS. If

no value for (OsNumberOfCores) has been specified the number of cores shall be

one. ⌋ (SRS_Os_80001, SRS_Os_80011)

7.9.6 Cores which are not controlled by the AUTOSAR OS

The function StartNonAutosarCore can be used both before and after StartOS.

It is provided to activate cores that are controlled by another OS or no OS at all,
AUTOSAR functions shall not be called on these cores, otherwise the behavior is
unspecified.

7.9.6.1 Requirements

[SWS_Os_00584] ⌈The AUTOSAR OS shall provide a function called

StartNonAutosarCore that can be used to start cores, which are not controlled by

the AUTOSAR OS. ⌋ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00585] ⌈It shall be possible to activate cores that are not controlled by the

AUTOSAR OS before and after calling StartOS. ⌋ (SRS_Os_80006, SRS_Os_80026,

SRS_Os_80027)

7.9.7 Multi-Core shutdown concept

AUTOSAR supports two shutdown concepts, the synchronized shutdown and the
individual shutdown concept. While the synchronized shutdown is triggered by the

new API function ShutdownAllCores(), the individual shutdown is invoked by the

existing API function ShutdownOS().

Specification of Operating System
AUTOSAR CP R20-11

89 of 342 Document ID 34: AUTOSAR_SWS_OS

7.9.7.1 Synchronized shutdown concept

If a TASK with the proper rights calls “ShutdownAllCores”, a signal is sent to all

other cores to induce the shutdown procedure. Once the shutdown procedure has
started on a core, interrupts and TASKs are not further processed, and no scheduling
will take place, therefore it makes no sense to activate any TASK, however no error
will be generated. It is in the responsibility of the application developer/system
integrator to make sure that any preparations for shutdown on application and basic

software level are completed before calling “ShutdownAllCores”. (e.g. by means of

the ECU state manager).

During the shutdown procedure every core executes its OS-Application specific

ShutdownHook functions, followed by a synchronization point. After all cores have

reached the synchronization point the global ShutdownHook function is executed by

all cores in parallel.

Figure 4: Example of a shutdown procedure.

[SWS_Os_00586] ⌈During the shutdown, the OS-Application specific

ShutdownHook shall be called on the core on which the corresponding OS-

Application is bound. ⌋ (SRS_Os_80007)

[SWS_Os_00587] ⌈Before calling the global ShutdownHook, all cores shall be

synchronized. ⌋ (SRS_Os_80007)

[SWS_Os_00588] ⌈The global ShutdownHook shall be called on all cores. ⌋

(SRS_Os_80007)

7.9.7.2 Individual shutdown concept

If a TASK calls ShutdownOS the OS will be shut down on the core on which

ShutdownOS has been called. Every core shall be able to invoke ShutdownOS.

Similar to StartOS this function will shutdown the individual core. To shutdown the

whole ECU ShutdownOS has to be called on every core. The function will not return.

Specification of Operating System
AUTOSAR CP R20-11

90 of 342 Document ID 34: AUTOSAR_SWS_OS

Individual shutdown is not supported in AUTOSAR R4.x (AUTOSAR mode
management will not use it).

7.9.7.3 Shutdown in case of fatal internal errors
In multicore systems it can happen that a fatal internal OS error is detected only on
one core. In such cases a local shutdown of that core does not make sense.

[SWS_Os_00762] ⌈In cases where the OS detects a fatal internal error all cores

shall be shut down. ⌋ ()

7.9.8 OS service functionality (overview)

Within this chapter we describe which existing single core AUTOSAR OS
functionality has been extended. The following table gives an overview of all standard
OS API functions. The column “Multi-Core support” contains one of the following
values:

 Extended: The function that has been extended substantially to support
special Multi-Core functionality.

 Adapted: the function required some minor changes but basically remains
unchanged.

 Unchanged: the behavior of the function has not changed.

 New: the function is a new AUTOSAR OS API-function.

Service Multi-Core support Annotation
ActivateTask Extended Cross core use shall be

supported.

AllowAccess Unchanged Works only on the same core

CallTrustedFunction Adapted Function must be bound to the

same core

CancelAlarm Extended Cross core use shall be

supported

ChainTask Extended Cross core use shall be

supported.

CheckISRMemoryAccess Unchanged

CheckObjectAccess Unchanged

CheckObjectOwnership Unchanged

CheckTASKMemoryAccess Unchanged

ClearEvent Unchanged

ControlIdle Unchanged Is allowed to be called from

any core

DisableAllInterrupts Unchanged Works only on the same core

EnableAllInterrupts Unchanged Works only on the same core

GetActiveApplicationMode Unchanged

GetAlarm Extended Cross core use shall be

supported

GetAlarmBase Extended Cross core use shall be

supported

GetApplicationID Unchanged

GetApplicationState Extended Cross core use shall be

supported

GetCoreID New ID of the current core

GetCounterValue Adapted Cross core is not allowed.

GetElapsedValue Adapted Cross core is not allowed.

Specification of Operating System
AUTOSAR CP R20-11

91 of 342 Document ID 34: AUTOSAR_SWS_OS

GetEvent Unchanged

GetISRID Unchanged

GetNumberOfActivatedCores New Number of cores activated

during startup.

GetResource Adapted Nestable with spinlocks

GetScheduleTableStatus Extended Cross core use shall be

supported.

GetSpinlock New Occupy a spinlock

GetTaskID Unchanged Works only on the same core

GetTaskState Extended Cross core use shall be

supported

IncrementCounter Adapted Cross core is not allowed.

NextScheduleTable Unchanged

ReleaseResource Adapted Nestable with spinlocks

ReleaseSpinlock New Release a spinlock

ResumeAllInterrupts Unchanged Works only on the same core

ResumeOSInterrupts Unchanged Works only on the same core

Schedule Adapted Check for unreleased

spinlocks

SetAbsAlarm Extended Cross core use shall be

supported

SetEvent Extended Cross core use shall be

supported.

SetRelAlarm Extended Cross core use shall be

supported

SetScheduleTableAsync Unchanged

ShutdownAllCores New Synchronized shutdown.

ShutdownOS Extended Support for MC systems

StartCore New Start additional core

StartOS Extended Support for MC systems

StartNonAutosarCore New Start additional core

StartScheduleTableAbs Extended Cross core use shall be

supported.

StartScheduleTableRel Extended Cross core use shall be

supported.

StartScheduleTableSynchron Unchanged

StopScheduleTable Extended Cross core use shall be

supported.

SuspendAllInterrupts Unchanged Works only on the same core

SuspendOSInterrupts Unchanged Works only on the same core

SyncScheduleTable Unchanged

TerminateApplication Extended Check for unreleased

spinlocks. Cross core use

shall be supported.

TerminateTask Adapted Check for unreleased

spinlocks

TryToGetSpinlock New Try to occupy a spinlock

WaitEvent Adapted Check for unreleased

spinlocks

Tab. 2: gives an overview of changes to the OS Service Calles

Specification of Operating System
AUTOSAR CP R20-11

92 of 342 Document ID 34: AUTOSAR_SWS_OS

Service
 T

a
s
k

C
a
t1

 I
S

R

C
a
t2

 I
S

R

E
rr

o
r

H
o

o
k

P
re

T
a
s

k
 H

o
o

k

P
o

s
tT

a
s
k
 H

o
o

k

S
ta

rt
u

p
 H

o
o

k

S
h

u
td

o
w

n
 H

o
o

k

A
la

rm
 C

a
ll
b

a
c
k

P
ro

te
c
ti

o
n

 H
o

o
k

GetNumberOfActivatedCores

GetCoreID
StartCore
StartNonAutosarCore
GetSpinlock
ReleaseSpinlock
TryToGetSpinlock
ShutdownAllCores

Tab. 3: Allowed Calling Context for OS Service Calls

[SWS_Os_00589] ⌈All functions that are not allowed to operate cross core shall
return E_OS_CORE in extended status if called with parameters that require a cross

core operation. ⌋ (SRS_Os_80013)

7.9.9 GetTaskID

GetTaskID can be called both from TASK and ISR2 level. When called from an

interrupt routine, on Single-Core systems, GetTaskID returns either the interrupted

TASK or indicates that no TASK is running. On Multi-Core systems it

1. indicates that no TASK is running on the core or,
2. returns the ID of the interrupted TASK on the core.

7.9.10 Interrupt disabling

Note: All types of interrupts can only be disabled on the local core. This implies that
the interrupt flags on other cores remain in their current state. Scheduling continues
on the other cores. Running ISRs on other cores continue executing.

7.9.10.1 Requirements

[SWS_Os_00590] ⌈The OS service “DisableAllInterrupts” shall only affect

the core on which it is called. ⌋ (SRS_Os_80013)

[SWS_Os_00591] ⌈The OS service “EnableAllInterrupts” shall only affect the

core on which it is called. ⌋ (SRS_Os_80013)

Specification of Operating System
AUTOSAR CP R20-11

93 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00592] ⌈The OS service “SuspendAllInterrupts” shall only affect

the core on which it is called. ⌋ (SRS_Os_80013)

[SWS_Os_00593] ⌈The OS service “ResumeAllInterrupts” shall only affect

the core on which it is called. ⌋ (SRS_Os_80013)

[SWS_Os_00594] ⌈The OS service “SuspendOSInterrupts” shall only affect the

core on which it is called. ⌋ (SRS_Os_80013)

[SWS_Os_00595] ⌈The OS service “ResumeOSInterrupts” shall only affect the

core on which it is called. ⌋ (SRS_Os_80013)

7.9.11 TASK activation

TASK activation shall be extended to work across cores. This document will not
specify any implementation details. This functions timing behavior can be slower
when working across cores. If a TASK has to be activated on another core, a
scheduling decision is necessary on that core. If the core has not been started an
error is generated.

7.9.11.1 Requirements

[SWS_Os_00596] ⌈It shall be possible to activate a TASK that is part of an OS-

Application located on another core, as long as the assigned access rights allow it. ⌋
(SRS_Os_80001, SRS_Os_80015)

[SWS_Os_00598] ⌈The call of ActivateTask across cores shall behave

synchronously, i.e. a call returns after the task has been activated or an error has
been detected. It shall not be possible to continue execution on the calling core

before ActivateTask is accomplished on the remote core. ⌋ (SRS_Os_80015)

[SWS_Os_00599] ⌈In case of an error when calling ActivateTask across cores,

the error handler shall be called on the core on which ActivateTask was originally

called. ⌋ (SRS_Os_80015)

[SWS_Os_00816]⌈ The operating system shall provide an asynchronous version of

ActivateTask which does not return errors to the caller, but only calls the (global)

error hook (if configured). The function name shall be ActivateTaskAsyn.

⌋ (SRS_Os_80015)

Specification of Operating System
AUTOSAR CP R20-11

94 of 342 Document ID 34: AUTOSAR_SWS_OS

7.9.12 TASK Chaining

TASK chaining shall be extended to work across cores. This document will not
specify any implementation details. This function’s timing behavior can be slower
when working across cores. If a TASK has to be activated on another core, a
scheduling decision is necessary on that core. If the core has not been activated, an
error is generated.

7.9.12.1 Requirements

[SWS_Os_00600] ⌈It shall be possible to chain a TASK that is part of an OS-

Application located on another core, as long as the assigned access rights allow it. ⌋
(SRS_Os_80001, SRS_Os_80015)

7.9.13 EVENT setting

SetEvent shall be extended to work across cores. This document will not specify

any implementation details. This function’s timing behavior can be slower when
working across cores. If the core has not been activated, an error is generated.

7.9.13.1 Requirements

[SWS_Os_00602] ⌈It shall be possible to set an EVENT that is part of an OS-

Application located on another core, as long as the assigned access rights allow it. ⌋
(SRS_Os_80016)

[SWS_Os_00604] ⌈The call of SetEvent across cores shall behave synchronously,

i.e. a call returns after the Event has been set or an error has been detected. It shall

not be possible to continue execution on the calling core before SetEvent is

accomplished on the remote core. ⌋ (SRS_Os_80016)

[SWS_Os_00605] ⌈In case of an error when calling SetEvent across cores, the

error handler shall be called on the core on which SetEvent was originally called. ⌋

(SRS_Os_80016)

[SWS_Os_00817]⌈ The operating system shall provide an asynchronous version of

SetEvent which does not return errors to the caller, but only calls the (global) error

hook (if configured). The function name shall be SetEventAsyn.

⌋ (SRS_Os_80016)

7.9.14 Activating additional cores

The mechanism by which additional cores can be activated as described in section
7.9.5

Specification of Operating System
AUTOSAR CP R20-11

95 of 342 Document ID 34: AUTOSAR_SWS_OS

7.9.15 Start of the OS

It is necessary to extend the functionality of StartOS. This is because StartOS is

called once on each core. The user provides the so called application mode5 to the

Operating System through the call parameter of StartOS(AppMode).The

application mode defines which of the configured (startup) objects (Tasks, Alarms,
ScheduleTables) the OS automatically starts.

On a Multi-Core system all cores shall run in the same application mode. If StartOS

is called with the Appmode DONOTCARE, the AppMode of the other cores is used. At

least one core has to define an AppMode other than DONOTCARE.

If the application mode is the same on all cores, StartOS will proceed its

task. More details can be found in chapter 7.9.4.

7.9.15.1 Requirements

[SWS_Os_00606] ⌈The AUTOSAR specification does not support the activation of

AUTOSAR cores after calling StartOS on that core. If StartCore is called after

StartOS it shall return with E_OS_ACCESS in extended status. ⌋ (SRS_Os_80001)

[SWS_Os_00607] ⌈StartOS shall start the OS on the core on which it is called. ⌋

(SRS_Os_80006, SRS_Os_80013)

[SWS_Os_00608] ⌈If more than one core calls StartOS with an AppMode other

than “DONOTCARE”, the AppModes shall be the same. StartOS shall check this at

the first synchronization point. In case of violation, StartOS shall not start the

scheduling, shall not call any StartupHooks, and shall enter an endless loop on

every core. ⌋ (SRS_Os_80006)

[SWS_Os_00609] ⌈If StartOS is called with the AppMode “DONOTCARE” the

application mode of the other core(s) (differing from “DONOTCARE”) shall be used. ⌋

(SRS_Os_80006)

[SWS_Os_00610] ⌈At least one core shall define an AppMode other than

“DONOTCARE”. ⌋ (SRS_Os_80006)

[SWS_Os_00611] ⌈If the IOC is configured, StartOS shall initialize the data

structures of the IOC. ⌋ (SRS_Os_80020)

[SWS_Os_00830] DRAFT ⌈If the IOC is configured and the OS Generator is invoked
in "Default mode", StartOS shall invoke the IocInit (See SWS_Os_00835) to initialize
the data structures of the IOC. ⌋ (SRS_Os_80020)

5 This is the application mode of the Operating System and shall not be confused by other application modes defined in the

AUTOSAR mode management.

Specification of Operating System
AUTOSAR CP R20-11

96 of 342 Document ID 34: AUTOSAR_SWS_OS

7.9.16 TASK termination

The termination of TASKs requires an additional check: It is not allowed to terminate

a TASK while a spinlock is occupied. If TerminateTask / ChainTask is called with

an occupied spinlock an error is returned.

7.9.16.1 Requirements

If TerminateTask (or ChainTask) is called while the calling TASK holds a

spinlock, the behavior is undefined in standard status.

[SWS_Os_00612] ⌈In extended status TerminateTask / ChainTask shall

return with an error (E_OS_SPINLOCK), which can be evaluated in the application. ⌋

(SRS_Os_80021)

[SWS_Os_00613] ⌈Spinlocks occupied by TASKS that are terminated in response to
a protection hook shall be automatically released. This applies also to the case in

which an OS-Application is terminated. ⌋ (SRS_Os_80021)

7.9.17 Termination of OS-Applications

Similar to TASKs an OS-Application cannot be terminated while any of its TASKs
occupy a spinlock. In such cases, the lock is automatically released. To avoid an
avalanche of error handling, no calls to the ErrorHook are made.

It might be possible that TerminateApplication(A) is called in parallel from

different cores. The implementation has to support such a call pattern by executing

the first arriving call of TerminateApplication(A)and ignoring any subsequent

calls until the termination is completed.

7.9.17.1 Requirements

[SWS_Os_00614] ⌈TerminateApplication shall check if any of the TASKs in the

OS-Application have occupied a spinlock. If so, the spinlocks shall be released. ⌋
(SRS_Os_80021)

[SWS_Os_00615] ⌈If TerminateApplication(A) is called in parallel from

different cores, the OsApplication “A” is terminated by the first call, any subsequent
calls will return with 'E_OK' in standard and extended status without doing anything,

until the termination is completed. ⌋ (SRS_Os_80021)

7.9.18 Shutdown of the OS

Every core shall be able to invoke shutdown by using the ShutdownOS function. By

calling ShutdownOS only the calling core will enter the shutdown procedure.

Specification of Operating System
AUTOSAR CP R20-11

97 of 342 Document ID 34: AUTOSAR_SWS_OS

If the user wants to shutdown all cores (more or less in parallel)

ShutdownAllCores shall be used.

ShutdownOS and ShutdownAllCores will not return.

The OS service ShutdownOS is not used by the AUTOSAR mode management in

AUTOSAR R4.0. The function is offered for users that run the OS on cores without
RTE and without mode management.

7.9.18.1 Requirements

[SWS_Os_00616] ⌈ShutdownOS shall be callable from each core running an

AUTOSAR OS. ⌋ (SRS_Os_80001, SRS_Os_80007)

[SWS_Os_00617] ⌈ShutdownOS shall shutdown the core on which it was called. ⌋

(SRS_Os_80007)

[SWS_Os_00618] ⌈The OS shall not start TASKs of an OS-Application once the

shutdown procedure has been entered on a particular core. ⌋ (SRS_Os_80013)

[SWS_Os_00619] ⌈The AUTOSAR OS function ShutdownOS shall be callable in

parallel on multiple cores. ⌋ (SRS_Os_80013)

[SWS_Os_00620] ⌈ShutdownOS shall release all spinlocks which are occupied by

the calling core. ⌋ (SRS_Os_80021)

[SWS_Os_00621] ⌈ShutdownAllCores shall be callable from each core running

an AUTOSAR OS. ⌋ (SRS_Os_80007)

7.9.19 Waiting for EVENTs

The EVENT waiting mechanism must be adapted to the new Multi-Core spinlock
functionality:

A TASK might be de-scheduled when calling WaitEvent, in which case it would not

be able to release the spinlock. WaitEvent must therefore check if the calling TASK

holds a spinlock. As with RESOURCES, spinlocks cannot be occupied by TASKs in
wait state.

7.9.19.1 Requirements

[SWS_Os_00622] ⌈The AUTOSAR Operating System WaitEvent API service shall

check if it has been called while the calling TASK has occupied a spinlock. In

extended status an error E_OS_SPINLOCK shall be returned and the TASK shall not

enter the wait state. ⌋ (SRS_Os_80021)

Specification of Operating System
AUTOSAR CP R20-11

98 of 342 Document ID 34: AUTOSAR_SWS_OS

7.9.20 Calling trusted functions

Functions can be declared as trusted as part of an OS-Application. They can then

only be executed through the CallTrustedFunction API function. Assuming that

the access rights are configured accordingly, a TASK from OS-Application A can call
a trusted function from OS-Application B.

On a Multi-Core system, these trusted function calls from one OS-Application to
another are limited to the same core.

7.9.20.1 Requirements

[SWS_Os_00623] ⌈The OS API function CallTrustedFunction shall return

E_OS_ACCESS in extended status if the target trusted function is part of an OS-

Application on another core. ⌋ (SRS_Os_80013)

7.9.21 Invoking reschedule

The Schedule API service must be adapted to the new Multi-Core spinlock

functionality in the same manner as WaitEvent.

A TASK shall not actively force a de-scheduling while it occupies spinlocks.

7.9.21.1 Requirements

[SWS_Os_00624] ⌈The AUTOSAR Operating System Schedule API service shall

check if it has been called while the calling TASK has occupied a spinlock. In

extended status an error E_OS_SPINLOCK shall be returned and the scheduler shall

not be called. ⌋ (SRS_Os_80021)

7.9.22 RESOURCE occupation

The GetResource function allows mutual exclusion between TASKs on the same

core. The OS generator shall check offline that the TASKs are not on different

cores.(see 7.9.30) and the GetResource function will check this requirement online.

The priority ceiling protocol (used by GetResource) temporarily changes the priority

of a TASK. Such an approach fails on Multi-Core systems as the priorities are local to
each core. Therefore the ceiling protocol is not sufficient to protect a critical section
against access from different cores.

[SWS_Os_00801]⌈ If Spinlocks and Resources are locked by a Task/ISR they have

to be unlocked in strict LIFO order. ReleaseResource() shall return E_OS_NOFUNC

if the unlock order is violated. No other functionality shall be performed.⌋ (

SRS_Os_80021)

Specification of Operating System
AUTOSAR CP R20-11

99 of 342 Document ID 34: AUTOSAR_SWS_OS

7.9.23 The CoreID

Every HW assigns a unique physical Id to a core. The physical core Id is the only
way to distinguish between cores. The physical core Ids of a µC are not necessarily
consecutive and do not necessarily start with zero.

The SW requires a mechanism to identify a core, e.g. to use core specific variables.
Because the physical core Id usually cannot be used as a direct array index for core
specific variables, a logical CoreID is necessary to map physical core Ids to array
indexes. In the SW it is not necessary to know the physical core Id, the logical
CoreID is sufficient.

The mapping of OSApplications and other SW objects to cores is specified in the
configuration files. All such mappings shall be HW independent and therefore shall
not be based on the physical core Id but on the logical CoreID.

The function GetCoreID internally maps the physical core Id to the logical CoreID.
The mapping is implementation specific. GetCoreID can be either a C function or a
macro.

7.9.23.1 Requirements

[SWS_Os_00625] ⌈The AUTOSAR Operating System API function GetCoreID shall

be callable before StartOS. ⌋ (SRS_Os_80006)

[SWS_Os_00626] ⌈An implementation shall offer a function

GetNumberOfActivatedCores that returns the number of cores running the

AUTOSAR OS. ⌋ (SRS_Os_80001)

[SWS_Os_00627] ⌈An implementation shall define a set of constants

OS_CORE_ID_<No> of the type CoreIdType with <No> a value from 0 to

“OsNumberOfCores -1. ⌋ (SRS_Os_80001)

[SWS_Os_00628] ⌈An implementation shall offer a constant OS_CORE_ID_MASTER

of the type CoreIdType that refers to the master core. ⌋ (SRS_Os_80001)

7.9.24 COUNTERs, background & rationale

A COUNTER is represented by a COUNTER value, measured in “ticks”, and some
COUNTER-specific constants.

Similarly to Single-Core situation, each operating system (on each core) offers at
least one COUNTER that is derived from a timer. Therefore, it is possible to define
several COUNTERs which belong to different OS-Applications and either resides on
the same or different cores.

Specification of Operating System
AUTOSAR CP R20-11

100 of 342 Document ID 34: AUTOSAR_SWS_OS

Figure 5: Examples of allowed configurations for COUNTERs, ALARMs, Schedule-tables and
ISRs.

7.9.25 Multi-Core restrictions on COUNTERs

The AUTOSAR OS can only increment COUNTERSs on the core on which it resides.
A COUNTER which is assigned to an OS-Application X cannot be incremented by an
OS-Application Y if X and Y are assigned to different cores.

7.9.25.1 Requirements

[SWS_Os_00629] ⌈A COUNTER belonging to an OS-Application shall be
incremented by the core on which the OS-Application resides. The COUNTER shall

not be incremented by other cores. ⌋ (SRS_Os_80013)

[SWS_Os_00630] ⌈It shall not be allowed to drive a schedule table from a

COUNTER, which is assigned to a different core. ⌋ (SRS_Os_80013)

[SWS_Os_00631] ⌈It shall not be allowed to drive an ALARM from a COUNTER,

which is assigned to a different core. ⌋ (SRS_Os_80013)

There are two different reasons for these restrictions:

1. Race conditions can occur when cross-core modification of COUNTER is
allowed (one core waits for a COUNTER to be modified by another core).

2. The core which is incrementing the COUNTER has to check if ALARMs which
are based on the COUNTER have expired. Handling of expired ALARMs is
more complex when different cores manipulate the same ALARMs, because
mutual exclusion becomes necessary.

Specification of Operating System
AUTOSAR CP R20-11

101 of 342 Document ID 34: AUTOSAR_SWS_OS

Figure 6: Example of disallowed configurations for COUNTERs, ALARMs, Schedule-tables and
Call-backs.

7.9.26 Synchronization of COUNTERs

COUNTERs are used to drive ALARMs and schedule tables. To synchronize
ALARMs and schedule tables that reside on different cores, the corresponding
COUNTERs have to be synchronized.

For example, if the hardware supports this, it is possible that corresponding
free running hardware counters on different cores use the same timer (same
counter value maintained by the peripheral) and therefor provide the same
timebase on different cores. Software COUNTERs can then get advanced by alarms
attached to these core local corresponding hardware counters, e.g. to drive
synchronized schedule tables on different cores.

The quality of the synchronicity depends on the hardware architecture and on the
system configuration. .

7.9.27 ALARMs

The ALARM mechanism of the AUTOSAR Operating System provides services to
activate TASKs, set EVENTs, increment COUNTERs, or call an ALARM-call-back.

As stated above, ALARMS can only be bound to a COUNTER which resides on the
same core. TASKs can be activated and EVENTs can be set with an ALARM action
regardless of the core to which the TASK is bound. The access rights defined by OS-
Applications have to be respected, however. Additionally it shall be allowed to
manipulate ALARMS when they are bound to other cores. The API-services

SetRelAlarm, SetAbsAlarm, and CancelAlarm can be used to manipulate

parameters of ALARMs on other cores.

Specification of Operating System
AUTOSAR CP R20-11

102 of 342 Document ID 34: AUTOSAR_SWS_OS

7.9.27.1 Requirements

[SWS_Os_00632] ⌈If an ALARM expires, it shall be allowed to activate a TASK on a

different core. ⌋ (SRS_Os_80018)

[SWS_Os_00633] ⌈If an ALARM expires, it shall be allowed to set an EVENT on a

different core. ⌋ (SRS_Os_80018)

[SWS_Os_00634] ⌈The AUTOSAR Operating System shall process an ALARM on

the core on which its corresponding OS-Application resides. ⌋ (SRS_Os_80018)

[SWS_Os_00635] ⌈ALARM callbacks shall be executed on the core to which the
ALARM is bound. This is only applicable to SC1 systems, because otherwise Alarm

Callback are not allowed (SWS_Os_00242). ⌋ (SRS_Os_80013)

[SWS_Os_00636] ⌈SetRelAlarm shall also work on an ALARM that is bound to

another core. ⌋ (SRS_Os_80013)

[SWS_Os_00637] ⌈SetAbsAlarm shall also work on an ALARM that is bound to

another core. ⌋ (SRS_Os_80013)

[SWS_Os_00638] ⌈CancelAlarm shall also work on an ALARM that is bound to

another core. ⌋ (SRS_Os_80013)

[SWS_Os_00639] ⌈GetAlarmBase shall also work on an ALARM that is bound to

another core. ⌋ (SRS_Os_80013)

[SWS_Os_00640] ⌈GetAlarm shall also work on an ALARM that is bound to

another core. ⌋ (SRS_Os_80013)

7.9.28 Schedule tables

Similarly to ALARMs, schedule tables can be used to activate TASKs and set
EVENTs. As with ALARMs, a schedule table can only be bound to a COUNTER
which resides on the same core.

To simplify system startup, it should be possible to start schedule tables on other
cores. The system designer is responsible for the correct handling of schedule
tables. For example, schedule tables can be controlled from one core.

7.9.28.1 Requirements

[SWS_Os_00641] ⌈A schedule table shall be able to activate a TASK bound on a

core other than the one upon which the schedule tables resides. ⌋ (SRS_Os_80018)

Specification of Operating System
AUTOSAR CP R20-11

103 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00642] ⌈A schedule table shall be able to set an EVENT on a core other

than the one upon which the schedule tables resides⌋ (SRS_Os_80018)

[SWS_Os_00643] ⌈The AUTOSAR Operating System shall process a schedule table

on the core on which its corresponding OS-Application resides. ⌋ (SRS_Os_80013)

[SWS_Os_00644] ⌈The API call “StartScheduleTableAbs” shall be able to start

schedule tables of OS-Applications residing on other cores. ⌋ (SRS_Os_80018)

[SWS_Os_00645] ⌈The API call “StartScheduleTableRel” shall be able to start

schedule tables of OS-Applications residing on other cores. ⌋ (SRS_Os_80013)

[SWS_Os_00646] ⌈The API call “StopScheduleTable” shall be able to stop

schedule tables of OS-Applications residing on other cores. ⌋ (SRS_Os_80013)

[SWS_Os_00647] ⌈The API service “GetScheduleTableStatus” shall be able to

get the status of a schedule table that is part of an OS-Application residing on a

different core. ⌋ (SRS_Os_80013)

7.9.29 The spinlock mechanism

With the Multi-Core concept, a new mechanism is needed to support mutual
exclusion for TASKS on different cores. This new mechanism shall not be used
between TASKs on the same core because it makes no sense. In such cases the
AUTOSAR Operating System returns an error.

A “SpinlockType”, which is similar to OSEK’s “ResourceType”, shall be used.

Spinlocks are configured offline.

A spinlock is a busy waiting mechanism that polls a (lock) variable until it becomes
available. Typically, this requires an atomic “test and set” functionality, the details of
which are implementation specific.

Once a lock variable is occupied by a TASK/ISR2, other TASKs/ISR2s on other
cores shall be unable to occupy the lock variable. The spinlock mechanism will not
de-schedule these other TASKs while they poll the lock variable. However it might
happen that a TASK/ISR with a higher priority becomes ready while the lock variable
is being polled. In such cases the spinning TASK will be interfered. This is illustrated
in Figure 7.

Specification of Operating System
AUTOSAR CP R20-11

104 of 342 Document ID 34: AUTOSAR_SWS_OS

Figure 7: A deadlock situation caused by interference, the high priority TASK spins indefinitely
because the low priority TASK has occupied the spinlock. In such cases the second

GetSpinlock call will return with an error

A user can protect a TASK against such a situation by, for example, rapping

the spinlock with SuspendAllInterrupts, so that it cannot be interfered by

other TASKS. The OS can do this automatically for the caller see configuration
parameter OsSpinlockLockMethod (on page 104).
A second deadlock situation can be created by nested spinlocks calls, as illustrated
in Figure 8.

Figure 8: This figure shows a typical deadlock caused by two spinlocks taken in different order
by TASKS on two different cores.

To avoid deadlocks it is not allowed to nest different spinlocks. Optionally if spinlocks
shall be nested, a unique order has to be defined. Spinlocks can only be taken in this
order whereas it is allowed to skip individual spinlocks. Cycles are not allowed within
the defined order. This is illustrated in Figure 9.

Specification of Operating System
AUTOSAR CP R20-11

105 of 342 Document ID 34: AUTOSAR_SWS_OS

Figure 9: This figure shows an example in which two TASKS have access to a set of spinlocks
S1 -- S6. It is allowed to occupy the spinlocks in the predefined order and it is allowed to skip
spinlocks. If multiple spinlocks are occupied at the same time, locking and unlocking has to

occur in strict LIFO order.

The spinlock mechanism is not deadlock free by itself. The order in which spinlocks
from Tasks/ISRs are requested has to be mentioned in the configuration description.
If a task occupies a spinlock, scheduling shall be restricted.

Note: AUTOSAR does not prescribe which algorithms are used to implement
spinlocks. Since users may want to analyze the timing behavior (e.g. lock times) an
implementation shall document the real behavior.

7.9.29.1 Requirements

[SWS_Os_00648] ⌈The AUTOSAR Operating System shall provide a spinlock

mechanism that works across cores. ⌋ (SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00649] ⌈The AUTOSAR Operating System shall provide a GetSpinlock

function which occupies a spinlock. If the spinlock is already occupied,

GetSpinlock shall keep on trying to occupy the spinlock until it succeeds. ⌋

(SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00650] ⌈GetSpinlock shall be callable from TASK level. ⌋

(SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00651] ⌈GetSpinlock shall be callable from ISR2 level. ⌋

(SRS_Os_80021)

The behavior of GetSpinlock is undefined if called from a category 1 ISR

[SWS_Os_00652] ⌈The AUTOSAR Operating System shall provide a

TryToGetSpinlock function which occupies a spinlock. If the spinlock is already

occupied by a TASK, TryToGetSpinlock shall return. ⌋ (SRS_Os_80018,

SRS_Os_80021)

Specification of Operating System
AUTOSAR CP R20-11

106 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00653] ⌈TryToGetSpinlock shall be callable from TASK level. ⌋

(SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00654] ⌈ TryToGetSpinlock shall be callable from ISR2 level. ⌋

(SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00655] ⌈The AUTOSAR Operating System shall provide a

ReleaseSpinlock function which releases an occupied spinlock. If the spinlock is

not occupied an error shall be returned. ⌋ (SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00656] ⌈ReleaseSpinlock shall be callable from TASK level. ⌋

(SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00657] ⌈ReleaseSpinlock shall be callable from ISR2 level. ⌋

(SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00658] ⌈The AUTOSAR Operating System shall generate an error if a
TASK tries to occupy a spinlock that is assigned to a TASK/ISR2 on the same core

(including itself). ⌋ (SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00659] ⌈The AUTOSAR Operating System shall generate an error if an

ISR2 tries to occupy a spinlock that is assigned to a TASK/ISR2 on the same core. ⌋
(SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00660] ⌈A unique order in which multiple spinlocks can be occupied by a
TASK/ISR2 on one core should be configurable in the AUTOSAR Operating System.
This might be realized by the configuration item

(OsSpinlockSuccessor{NEXT_SPINLOCK}) where “NEXT_SPINLOCK” refers to

the consecutive spinlock. (See page 227) ⌋ (SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00661] ⌈The AUTOSAR Operating System shall generate an error if a
TASK/ISR2 on a core, where the same or a different TASK/ISR already holds a
spinlock, tries to seize another spinlock that has not been configured as a direct or
indirect successor of the latest acquired spinlock (by means of the

OsSpinlockSuccessor configuration parameter) or if no successor is configured. ⌋

(SRS_Os_80018, SRS_Os_80021)

7.9.30 Offline checks

AUTOSAR RESOURCES cannot be shared between TASKs/ISRs on different cores.
The OS generator has to check if a user tries to assign a RESOURCE to TASKs on
different cores and stop the generation process with an error.

COUNTERS cannot be accessed from OS-Applications on different cores. The OS
generator has to reject configurations that violate this rule.

Specification of Operating System
AUTOSAR CP R20-11

107 of 342 Document ID 34: AUTOSAR_SWS_OS

The linked list of spinlocks must be free of cycles to allow correct nesting of spinlocks
in order to prevent deadlocks.

The OS generator tool must check that an OSApplication does not get assigned to a
non-existing core. Additional checks at configuration time, e.g. by an AUTOSAR
description editor are recommended.

7.9.30.1 Requirements

[SWS_Os_00662] The OS generator tool shall return with an error if it detects a
RESOURCE referred to by any TASKs or ISRs assigned to different cores.

⌋ (SRS_Os_80021)

[SWS_Os_00663] ⌈The OS generator tool shall return with an error if an ALARM is

assigned to a COUNTER on a different core. ⌋ (SRS_Os_80013)

[SWS_Os_00664] ⌈The OS generator tool shall return with an error if a COUNTER

on a different core shall be incremented as an ALARM action. ⌋ (SRS_Os_80013)

[SWS_Os_00665] ⌈The OS generator tool shall return with an error if a schedule

table is assigned to a COUNTER on a different core. ⌋ (SRS_Os_80013)

[SWS_Os_00666] ⌈The OS generator tool shall return with an error if the linked list

of spinlocks is not free of cycles. ⌋ (SRS_Os_80021)

[SWS_Os_00667] ⌈The OS generator tool shall check the assignment of
OsApplications (including the tasks assigned to the OsApplication) to cores and

return an error in case any of these cores does not exist. ⌋ (SRS_Os_80005)

7.9.31 Auto start Objects

Before scheduling starts the AUTOSAR Operating System6 activates all auto-start

objects that are configured. This mechanism shall work similar on a Multi-Core
system. Before scheduling starts, the Multi-Core OS shall activate all configured
auto-start objects on the respective core. Due to the fact that OS-Applications are
defined as the locatable entity no further configuration container is required. Auto-
start objects are already configured as part of an OS-Application.

6 StartOS

Specification of Operating System
AUTOSAR CP R20-11

108 of 342 Document ID 34: AUTOSAR_SWS_OS

7.9.31.1 Requirements

[SWS_Os_00668] ⌈The AUTOSAR Operating System shall automatically activate all
auto-start TASKs configured for the current AppMode, with respect to the core,

before the initial start of the scheduling. ⌋ (SRS_Os_80006)

[SWS_Os_00669] ⌈The AUTOSAR Operating System shall automatically activate all
auto-start ALARMs configured for the current AppMode, with respect to the core,

before the initial start of the scheduling. ⌋ (SRS_Os_80006)

[SWS_Os_00670] ⌈The AUTOSAR Operating System shall automatically activate all
auto-start schedule tables configured for the current AppMode, with respect to the

core, before the initial start of the scheduling. ⌋ (SRS_Os_80006)

7.10 Inter-OS-Application Communicator (IOC)

7.10.1 Background & Rationale

IOC stands for Inter OS-Application Communicator.

The "IOC" is responsible for the communication between OS-Applications and in
particular for the communication crossing core or memory protection boundaries. Its
internal functionality is closely connected to the Operating System.

There are use cases where 1 to N IOC code instances needs to be generated on top
of the OS code which is used by multiple different Software Clusters. As those

Specification of Operating System
AUTOSAR CP R20-11

109 of 342 Document ID 34: AUTOSAR_SWS_OS

Software Clusters use different IOC configurations, as a consequence the OS code
shall not include any code depending on a specific IOC configuration.
To ensure compatibility between IOC and OS code, there is still a dependency in that
it is necessary to use the same OS configuration for the generation of the different
IOC code Instances. Furthermore, the OS and IOC code should be generated from
an OS Generator coming from the same vendor.

[SWS_Os_00671] ⌈The IOC implementation shall be part of the Operating System

The IOC is a third type of communication, in addition to
 Intra OS-Application communication: Always handled within the RTE
 Inter ECU communication: Already available via well-defined interfaces to the

communication stack (COM) ⌋ (SRS_Os_80020)

IOC mode: This is the mode where the OS generator is invoked with a configuration
parameter to generate the IOC code only.
OS mode: This is the mode where the OS generator is invoked with a configuration
parameter to generate the OS code only.
Default mode: This is the current behavior where the IOC code is generated along
with OS code.

[SWS_Os_00831] DRAFT ⌈ The OS Generator shall provide configuration
parameters allowing IOC communication code ("IOC mode") to be generated

separately from OS code (("OS mode").⌋(SRS_Os_80020)

SWS_Os_00831 means that the OS Generator shall be able to produce only OS
code or only IOC code in a single invocation.

[SWS_Os_00832] DRAFT ⌈ The Operating System in the Host Software Cluster shall
be able to handle multiple IOC code Instances related to different Software

Clusters.⌋(SRS_Os_80020)

[SWS_Os_00833] DRAFT ⌈ When the OS generator is invoked in “OS mode” it shall
only generate the OS code. Thereby the OS code shall not include any code that
depends on a specific IOC configuration, because different Clusters will use different
IOC configurations with the same OS code.⌋(SRS_Os_80020)

Please note that it is mandatory to use the same OS configuration for the generation
of the different IOC instances to ensure compatibility between the IOC and OS code.

[SWS_Os_00834] DRAFT ⌈ When the OS generator is invoked in “IOC mode” it shall
only generate the IOC code. Thereby the name of the C module containing the
generated IOC code shall be Ioc.c and the name of the header file containing the
generated IOC APIs shall be Ioc.h.⌋(SRS_Os_80020)

Requirements SWS_Os_00833 and SWS_Os_00834 ensure that OS and IOC can
be generated independently from each other but linked together while building the
ECU instance /Machine. ()

Specification of Operating System
AUTOSAR CP R20-11

110 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00835] DRAFT ⌈ If the IOC is configured, there shall be a function IocInit
responsible for the initialization of the data structures of the IOC.⌋(SRS_Os_80020)

Memory protection boundaries are a characteristic of OS-Applications and special
communication mechanisms are needed to cross them. Multi-Core systems may also
need additional measures to make communication between cores safe.

All AUTOSAR software, both BSW and software components, must belong to an OS-
Application (s. 7.9.3), but not necessarily to the same one. It is expected that the
BSW will be trusted code, but it shall be defined as one or more OS-Applications.

The IOC provides communication services between OS-Applications and in particular
over core boundaries in Multi-Core systems. Because the cross-core communication
is always an inter-OS-Application communication, the two mechanisms are
combined. An inter OS-Application communication may not necessarily require a
cross core communication, however.

Communication between OS-Applications is expected to be more frequent than inter
ECU communication. This would be the case when existing; closely related Software
Components and their runnable entities are distributed to two or more cores to
increase system performance. Meeting timing constraints is expected to become
more difficult, when runnables which have been designed to run on a single core are
distributed over several cores.

In systems with only one core, the IOC can be omitted completely, if just one OS-
Application is available, or if no OS-Application uses memory protection
mechanisms.

The IOC does not provide standardized support for measurement of IOC channels.

7.10.2 IOC - General purpose

The IOC provides communication services which can be accessed by clients which
need to communicate across OS-Application boundaries on the same ECU or
Software Cluster.
The RTE uses IOC services to communicate across such boundaries. All
communication must be routed through the RTE on sender (or client) and on receiver
(or server) side.

Direct access to IOC services by clients other than the RTE is currently not
supported, but possible, if the client (e.g. a CDD) provides a hand written or
generated IOC Configuration Description as specified and specific callback functions
if necessary. Only sender/receiver communication is supported however by the IOC.

Software Components and/or BSW modules located in the same OS-Application
(and hence on the same core) should not communicate by invoking IOC services.
This would be less efficient than communication via RTE only. However, in case of

Specification of Operating System
AUTOSAR CP R20-11

111 of 342 Document ID 34: AUTOSAR_SWS_OS

IOC supported N:1 communication, if not all of the senders and the receiver are in
the same OS-Application the IOC must be used.

To keep the RTE as hardware independent as possible, all inter OS-Application and
inter core communication mechanisms and implementation variants are
encapsulated in the IOC. The IOC internal functionality is dependent on hardware
architecture properties, in particular on the memory architecture.

The IOC has to guarantee data consistency in inter OS-Application and inter core
(Multi-Core systems) communication, this means in particular:

- In queued communication the sequential order of communication
operations shall remain unchanged. In the N:1 communication case, the
order of the messages from the different sources is a property of the
implementation.

- The content of all data sent in one communication operation shall remain
unchanged, i.e. each communication operation shall be treated as atomic
operation.

- The lock mechanism (interrupt locks; spinlocks; lock free implementation;
...) which is used by the IOC to guarantee the data consistency is not
standardized.

7.10.3 IOC functionality

7.10.3.1 Communication

The IOC provides sender-receiver (signal passing) communication only. The RTE (or
adapted BSW modules in a future release of this specification) translates Client-
Server invocations and response transmissions into Sender-Receiver
communication.

 1:1, N:1 and N:M (unqueued only) communication are supported by the IOC.

The IOC allows the transfer of one data item per atomic communication operation. A
data item can either be a value for atomic basic data types or a reference for
complex data structures. The data structure must be implemented as a single
memory block, however. This way the data item can be transmitted in one piece. The
IOC does not need to know the internal data structure. The basic memory address
and length (which can be calculated from the type of the data item) is sufficient. The
IOC does, e.g., not support a conversion of endianness between cores.

Transferring more than one data item in one operation is also supported for 1:1
communication only. In this case several types and memory addresses have to be
used by the IOC function. The advantage compared to sequential IOC calls is that
mechanisms to open memory protection boundaries and to notify the receiver have
to be executed just once. Additionally, all data items are guaranteed to be consistent,
because they are transferred in one atomic operation.

The IOC provides both, unqueued (Last-is-Best, data semantics) or queued (First-In-
First-Out, event semantics) communication operations. If present, the IOC internal
queue has a configurable length.

Specification of Operating System
AUTOSAR CP R20-11

112 of 342 Document ID 34: AUTOSAR_SWS_OS

Each atomic communication operation gets specified individually by its own
description block in a Configuration Description with regard to sender, receiver, data
type(s), notification, and queuing.

7.10.3.2 Notification

The IOC optionally notifies the receiver as soon as the transferred data is available
for access on the receiver side, by calling a configured callback function which gets
provided by the user of the communication.

A possible implementation is to trigger an interrupt (Cat. 2) mechanism to invoke the
callback function from the ISR on receiver side, or to use a microcontroller supplied
trap. The callback function shall be efficient and compact, because it is called from
within the ISR.

In certain cases, it might not be necessary to trigger an ISR to notify the receiver.
The IOC generator can then select the appropriate IOC internal notification method
based on the hardware architecture and other constraints. This might be more
efficient than an ISR for communication between OsApplications on the same core.

The notification might be handled completely by the client of the IOC, e.g. when the
RTE calls the IOC send function, and then notifies the receiver side RTE that new
data are available from the IOC. In this case, the IOC is not affected at all by the
details of the notification mechanism.

In case such alternative solutions prove to be more efficient, the IOC internal
notification might get removed in future AUTOSAR releases.

7.10.4 IOC interface

The interface between RTE and IOC shall be similar to the interface between
Software Components and the RTE, i.e. by generating specific interfaces for each
communication operation instead of providing a generic API.

This supports optimization methods (like function inlining or replacing function calls
by macros) much better than standardized interfaces. Most of the optimization can be
performed offline at code generation time instead of consuming valuable real-time
resources.

There is a unique set of IOC service APIs (at least to send and receive data) for each
data communication specified in the IOC Configuration Description. Each service API
gets generated and can be identified by a unique Id for each data communication. In
case of N:1 communication, each sender must use its own API.

The same IOC service API and hence the same 1:1 communication can get used by
more than one runnable inside the same SWC both on sender and on receiver side.
However, the IOC functions are not reentrant, because otherwise e.g. spinlock errors
could occur in case the IOC uses spinlocks in Multi-Core systems. The same IOC
API must therefore only be called sequentially. This is no problem, if all runnable

Specification of Operating System
AUTOSAR CP R20-11

113 of 342 Document ID 34: AUTOSAR_SWS_OS

entities are scheduled within the same TASK, otherwise the caller is responsible to
guarantee that the same IOC API is not called again before it returns from a different
invocation.

Software Components may access the IOC only via RTE. Only the RTE decides
which communication services to use to support the communication needs of
Software Components.

Direct access to IOC services by BSW modules is not supported, but allowed for
CDDs and other modules, if unavoidable. The clients have to provides a hand written
or generated IOC Configuration Description as specified. In case of notification of the
receiver, a specific callback function has to be specified and provided by the client.
Only sender/receiver communication is supported however by the IOC.

7.10.5 IOC internal structure

This section gives some hints on possible IOC implementation options.

The IOC may enter the privileged mode to cross the protection boundaries between
OS-Applications. The IOC therefore has to be part of the OS. Note that functionality
that is placed in the kernel context might be non-interruptible by TASKs or ISR2. The
functionality can be interrupted by Cat1 ISRs, however.

The IOC send service writes data into a buffer located in a memory area which is
shared with the receiving communication partners (This is one possible
implementation example using shared memory). Depending on the hardware
architecture and other constraints, different implementation options might be
available within the IOC. These options shall be transparent to the client (RTE),
however.

The IOC ensures data consistency, i.e. there is a protection against concurrent
access to the same data from all senders and the receiver for protection against
inconsistent behavior and data corruption. The implementation can be hardware
dependent.

In systems with shared memory, there can be a specific communication buffer for
each data item in a memory section which is shared between the sending and
receiving OS-Applications.

If an IOC communication with event semantics (queued) is configured the length of
the queue shall be defined.

7.10.6 IOC configuration and generation

Data element specific interfaces between RTE and IOC require extensive code
generation. Instead of generating the IOC together with the RTE, a sequential code
generation process is used, to separate generic RTE code generation and hardware
dependent IOC code generation as much as possible. The following steps shall be
performed:

Specification of Operating System
AUTOSAR CP R20-11

114 of 342 Document ID 34: AUTOSAR_SWS_OS

- Step 1: Specify all information about the allocation of Software
Components to OS-Applications and cores in the ECU Configuration
Description file.

- Step 2: Generate the RTE. The RTE generator creates data element
specific IOC services calls and the corresponding IOC Configuration
Description blocks (XML format) to specify the communication relations for
each data element.

- Step 3: Generate the IOC code, according to the IOC Configuration
Description (Step 2) while considering the hardware description files.
Additionally, generate a header file (Ioc.h) for inclusion in RTE.c to provide
definitions, function prototypes and macros.

Each atomic communication has to be specified in the IOC Configuration Description
in a standardized XML format. There is one description block per communication
operation specifying:

- Unique identifier
- Data type(s)
- Sender properties
- Receiver properties
- Name of callback function on receiver side in case of notification.
- Whether communication is queued or unqueued (last is best)
- In case of queued communication: Length of the queue

For details see Chapter 10.3

For each inter-OS-Application communication, the RTE generator creates one or
more calls to an IOC function to send or receive data, and adds a corresponding
description block to the IOC Configuration Description.

There are possibly multiple sources which contribute to the IOC configuration (e.g.,
RTE, CDD). The main input will come from the RTE generator. Other sources for the
IOC Configuration Description (not supported in this specification revision) might be
BSW module configuration tools or non-AUTOSAR components, which are allowed
to use BSW services.

In ECUs or Software Clusters with only one OS-Application, the IOC Configuration
Description can be omitted.

[SWS_Os_00824]⌈ All the data allocated by the OS for the IOC communication

shall be wrapped with the memory allocation keywords mechanism
#define OS_<IE>_START_SEC_<sadm>

#include "Os_MemMap.h"

<IOC buffers>

#define OS_<IE>_STOP_SEC_<sadm>

#include "Os_MemMap.h"

where <IE> is the shortName of the sending OsApplication configured in

OsIocSendingOsApplicationRef of the respective OsIocCommunication

channel, and <sadm> is the shortName of the referred swAddrMethod, if

Specification of Operating System
AUTOSAR CP R20-11

115 of 342 Document ID 34: AUTOSAR_SWS_OS

configured in OsMemoryMappingCodeLocationRef of the respective

OsIocDataProperties within the OsIocCommunication channel. If the

OsMemoryMappingCodeLocationRef is not defined the OS is permitted to select

an appropriate swAddrMethod. ⌋ ()

7.10.7 IOC integration examples

This section describes two typical use cases that show how the IOC can support
communication between OS-Applications. In both examples the OS-Applications are
located on different cores of a Multi-Core system.

7.10.7.1 Example 1 - 1:1 sender/receiver communication without
notification

One Software Component sends data items in "EVENT" semantics (queued) to
another Software Component located on a different core. A runnable entity on the
receiver side is invoked periodically (e.g. by an ALARM) and receives the data via
RTE (see Figure 10).

Because the communication crosses core boundaries, the RTE invokes the IOC to
transfer the data from core 0 to core 1.

On the sending side, the
 Rte_Send_<port>_<item> (..., <data>)

call is mapped to an
 IocSend_<Id> (<data>)

call.

Specification of Operating System
AUTOSAR CP R20-11

116 of 342 Document ID 34: AUTOSAR_SWS_OS

RTERTE

Software Component

Core 1

IOC

RE

Software Component

RE

Core 0

I
o
c
R
e
c
e
i
v
e
_
<
I
D
>

SW-C

Function or

macro

Function call

Buffering

mechanism

Data flow

1 2

1

1

2

2

I
o
c
S
e
n
d
_
<
I
D
>

2
Part of

Task 2

Io
c
S

e
n
d
_

<
ID

>

Io
c
R

e
c
e

iv
e
_

<
ID

>

Rte_Receive_...Rte_Receive_...Rte_Send_...Rte_Send_...

Buffer

OS

Figure 10: IOC without notification

In this example, the IocSend service writes the data into a buffer, located in a shared
memory area which can get read by the receiver via the IOC.

On the receiving side, the receiving runnable gets invoked periodically. The
 Rte_Receive_<port>_<item> (..., <data>)

call is mapped to an
 IocReceive_<Id> (<data>)

call to read data from the IOC internal queue. An additional queue within the RTE is
not necessary for 1:1 communication.

The IOC generator generates all the send and receive functions. The functions might
be defined as macros for optimization purposes.

This kind of port to port communication without notification is suitable for:

- Sender/receiver communication
- Queued or unqueued communication
- 1:1 communication.

7.10.7.2 Example 2 - N:1 client/server communication with receiver
notification by RTE

One Software Component invokes a service operation that is provided by another
Software Component located on a different core. A runnable entity on the receiver
side is activated to calculate the result (see Figure 11).

Specification of Operating System
AUTOSAR CP R20-11

117 of 342 Document ID 34: AUTOSAR_SWS_OS

The RTE realizes the service on client side by mapping the client/server call to a
sender/receiver communication. Because the communication crosses core
boundaries, the RTE uses the IOC to transfer the data from Core 0 to Core 1.

On the sending side, the
 Rte_Call_<port>_<op> (..., <data>)

call is mapped to a
 IocSend_<Id> (<data>)

call to transmit the parameters over the IOC to the core hosting the server runnable.

RTERTE

Software Component

Core 1

OS

RE

Software Component

RE

Core 0

Io
cS

end
_
<
ID

>

I
o
c
R
e
c
e
i
v
e
_
<
I
D
>

Rte_Call_...

IOC

SW-C

Function or

macro

Function call

Buffering

mechanism

Data flow

2
Part of

Task 2

1

1

1

Task

aktivation

Notification

2

2

Rte_Call_...

Io
c
S

e
n
d
_
<

ID
>

Io
c
R

e
c
e
iv

e
_
<

ID
>

Buffer

Stack

2

RE(...<data>)

Figure 11: IOC with notification by RTE

After writing the data into the IOC internal queue buffer, the Rte_Call function uses
an OS call to notify the receiver by activating the server TASK on the receiving core.
This TASK is provided by the RTE. This TASK body is responsible for reading the
data from the IOC buffer by calling IocReceive function and for forwarding the data to
the server runnable. Depending on the return value of the IOC function, the
IocReceive and server runnable calls might be repeated several times to empty the
IOC internal queued buffer (if specified).

The result of the service on Core 1 is transferred back to the client on Core 0 in a
similar way. The communication path of the result is not displayed in Figure 11.

This kind of port to port communication with notification by the RTE is suitable for:

- Sender/receiver communication with notification

Specification of Operating System
AUTOSAR CP R20-11

118 of 342 Document ID 34: AUTOSAR_SWS_OS

- Client/server communication. In this case the RTE has to provide services
to map the server call into 1:1 sender/receiver communication for the
server call and another sender/receiver communication to return the result
to the client

- Queued or unqueued communication
- 1:1 communication, if the receiver does not poll for data periodically (In this

case, the solution in example 1 might have been more suitable)
- N:1 communication.

7.10.8 Future extensions

Some features are not supported by the first release of this specification, but might
get added in a later release:

 In the future, the IOC will handle direct and efficient communication among
BSW modules or between BSW modules and Software Components (via the
RTE) located in different OS applications. Additional support of direct access
from BSW modules to IOC services will be added.

 Other notification options (like activation of a specified TASK on receiver side)
might be added later to the IOC.

7.11 System Scalability

7.11.1 Background & Rationale

In order to customize the operating system to the needs of the user and to take full
advantage of the processor features the operating system can be scaled according to
the following scalability classes

Feature D
e
s
c
ri

b
e
d

 i
n

 S
e

c
ti

o
n

S
c
a
la

b
il
it

y
 C

la
s
s
 1

S
c
a
la

b
il
it

y
 C

la
s
s
 2

S
c
a
la

b
il
it

y
 C

la
s
s
 3

S
c
a
la

b
il
it

y
 C

la
s
s
 4

Hardware requirements
OSEK OS (all
conformance classes)

7.1

Specification of Operating System
AUTOSAR CP R20-11

119 of 342 Document ID 34: AUTOSAR_SWS_OS

Counter Interface 8.4.17

SWFRT Interface 8.4.18,
8.4.19

Schedule Tables 7.3

Stack Monitoring 7.5

ProtectionHook 7.8

Timing Protection 7.7.2 Timer(s) with high priority
interrupt

Global Time
/Synchronization Support

7.4 Global time source

Memory Protection 7.7.1,
7.7.4

 MPU

OS-Applications 7.6, 7.12

Service Protection 7.7.3

CallTrustedFunction 7.7.5 (Non-)privileged Modes

Tab. 4: Scalability classes

Feature S
c
a
la

b
il
it

y

C

la
s
s

 1

S
c
a
la

b
il
it

y

C

la
s
s

 2

S
c
a
la

b
il
it

y

C

la
s
s

 3

S
c
a
la

b
il
it

y

C

la
s
s

 4

Minimum number of Schedule
Tables supported

2 8 2 8

Minimum number of OS-
Applications supported

0 0 2 2

Minimum number of software
Counters supported

8 8 8 8

Tab. 5: Minimum requirements of scalability classes

7.11.2 Requirements

[SWS_Os_00240] ⌈If an implementation of a lower scalability class supports features
of higher classes then the interfaces for the features must comply with this Operating

System software specification. ⌋ (SRS_Os_11012, SRS_Os_11016)

[SWS_Os_00241] ⌈The Operating System module shall support the features

according to the configured scalability class. (See Tab. 4) ⌋ (SRS_Os_11012,

SRS_Os_11016)

Specification of Operating System
AUTOSAR CP R20-11

120 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00327] ⌈The Operating System module shall always use extended status

in Scalability Class 3 and 4. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

121 of 342 Document ID 34: AUTOSAR_SWS_OS

7.12 Hook Functions

7.12.1 Background & Rationale

Hook routines as defined in OSEK OS run at the level of the Operating System
module and therefore can only belong to the trusted environment. Furthermore, these
hook routines are global to the system (system-specific) and will probably be
supplied by the ECU integrator.

In AUTOSAR however, each OS-Application may have the need to execute
application specific code e.g. initialize some hardware in its own additional
(application-specific) startup hook. These are called application specific hook
routines. In general the application specific hooks have the same properties as the
hook routines described in the OSEK OS specification. Differences are described
below.

7.12.2 Requirements

[SWS_Os_00439] ⌈The Operating System module shall provide the OSEK error

macros (OSError…()) to all configured error hooks AND there shall be two (like in

OIL) global configuration parameters to switch these macros on or off. ⌋ ()

StartupHook

[SWS_Os_00060] ⌈If an application-specific startup hook is configured for an OS-

Application <App>, the Operating System module shall call StartupHook_<App> on

startup of the Operating System module. ⌋ ()

[SWS_Os_00226] ⌈The Operating System module shall execute an application-

specific startup hook with the access rights of the associated OS-Application. ⌋ ()

[SWS_Os_00236] ⌈If both a system-specific and one (or more) application specific
startup hook(s) are configured, the Operating System module shall call the system-

specific startup hook before the application-specific startup hook(s). ⌋ ()

ShutdownHook

[SWS_Os_00112] ⌈If an application-specific shutdown hook is configured for an OS-

Application <App>, the Operating System module shall call ShutdownHook_<App> on

shutdown of the OS. ⌋ ()

[SWS_Os_00225] ⌈The Operating System module shall execute an application-

specific shutdown hook with the access rights of the associated OS-Application. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

122 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00237] ⌈If both a system-specific and one (or more) application specific
shutdown hook(s) are configured, the Operating System module shall call the

system-specific shutdown hook after the application-specific shutdown hook(s). ⌋ ()

Error Hook

[SWS_Os_00246] ⌈When an error occurs AND an application-specific error hook is

configured for the faulty OS-Application <App>, the Operating System module shall

call that application-specific error hook ErrorHook_<App> after the system specific

error hook is called (if configured). ⌋ (SRS_Os_11013)

[SWS_Os_00085] ⌈The Operating System module shall execute an application-

specific error hook with the access rights of the associated OS-Application. ⌋ ()

[SWS_Os_00367] ⌈Operating System module’s services which do not return a

StatusType - except ActivateTaskAsyn and SetEventAsyn - shall not raise the

error hook(s). ⌋ ()

7.13 Hardware peripheral access

7.13.1 Background & Rationale

On some MCU architectures, there are memory mapped hardware registers
(peripheral area), which are only accessible in specific modes (e.g. in privileged
mode). As long as a Tasks/ISRs is running with full hardware access they can
directly access these registers. If memory protection is used by the Operating
System, Task/ISRs of non-trusted Os-Applications cannot access such registers
directly because this would be recognized as a memory violation by the Operating
System.

To allow access to such registers even from non-trusted applications the Operating
Systems offers the following APIs to read, write and modify registers:

 StatusType ReadPeripheral8 (AreaIdType Area, const uint8

* Address, uint8 * ReadValue)

 StatusType ReadPeripheral16(AreaIdType Area, const uint16

* Address, uint16 * ReadValue)

 StatusType ReadPeripheral32(AreaIdType Area, const uint32

* Address, uint32 * ReadValue)

 StatusType WritePeripheral8 (AreaIdType Area, uint8 *

Address, uint8 WriteValue)

 StatusType WritePeripheral16(AreaIdType Area, uint16 *

Address, uint16 WriteValue)

Specification of Operating System
AUTOSAR CP R20-11

123 of 342 Document ID 34: AUTOSAR_SWS_OS

 StatusType WritePeripheral32(AreaIdType Area, uint32 *

Address, uint32 WriteValue)

 StatusType ModifyPeripheral8 (AreaIdType Area, uint8 *

Address, uint8 Clearmask, uint8 Setmask)

 StatusType ModifyPeripheral16(AreaIdType Area, uint16 *

Address, uint16 Clearmask, uint16 Setmask)

 StatusType ModifyPeripheral32(AreaIdType Area, uint32 *

Address, uint32 Clearmask, uint32 Setmask)

In order to control the access to the registers the access has to be configured for
each OsApplication. By this the Os can check during run-time if a caller has sufficient
rights.

7.13.2 Requirements

[SWS_Os_00806]⌈ Check access to peripheral registers

The Operating System shall only execute access to peripheral registers via APIs
ReadPeripheralX, WritePeripheralX and ModifyPeripheralX if :

1. parameter Address is in range of OsPeripheralAreaStartAddress and
OsPeripheralAreaEndAddress

2. parameter Area is valid
3. the caller is configured to have sufficient rights

(OsPeripheralAreaAccessingApplication).

⌋ (SRS_Os_11005)

[SWS_Os_00807]⌈ Error handling of peripheral access API

If the Operating System detects an error (see [SWS_Os_00806]) while executing a
ReadPeripheralX, WritePeripheralX and ModifyPeripheralX the OS shall return the

appropriate StatusType and call the ErrorHook(). Otherwise E_OK shall be

returned.⌋ (SRS_Os_11005)

7.14 Interrupt source API

7.14.1 Background & Rationale

The Operating System needs to guarantee the scheduling, wherefore it needs to be
the only component which accesses the interrupt controller. Therefore it provides to
other BSW/CDD components the interfaces DisableInterruptSource,
EnableInterruptSource and ClearPendingInterrupt to give access to the interrupt
control registers of category 2 ISRs.

The pair of DisableInterruptSource/EnableInterruptSource may be used for two
different purposes:

Specification of Operating System
AUTOSAR CP R20-11

124 of 342 Document ID 34: AUTOSAR_SWS_OS

1. A specific interrupt should be masked for a short time (potentially to avoid data
consistency problems). A masked request shall be served afterwards, once the
interrupt source gets enabled again.
2. Interrupt requests of a specific source should be ignored for a specific time
(potentially a longer time e.g. while the CAN driver sleeps). After enabling the source,
only new requests should be considered.

7.14.2 Requirements

[SWS_Os_00808]⌈ The Operating System shall provide for each category 2

interrupt source (OsIsrCategory == CATEGORY_2) the APIs

DisableInterruptSource, EnableInterruptSource and ClearPendingInterrupt.

⌋ (SRS_Os_11011)

DisableInterruptSource/EnableInterruptSource does not support nested calls.

[SWS_Os_00809]⌈ Nested calls of interrupt source control API

The Operating System shall return E_OS_NOFUNC (in EXTENDED status) in case
DisableInterruptSource is called for an interrupt source which is already disabled or
EnableInterruptSource is called for an interrupt source which is already enabled.

⌋ (SRS_Os_11011)

[SWS_Os_00810]⌈ Error handling of interrupt source control API

If the Operating System detects an error while executing a DisableInterruptSource,
EnableInterruptSource and ClearPendingInterrupt the OS shall return the appropriate

StatusType and call the ErrorHook(). Otherwise E_OK shall be returned.

⌋ (SRS_Os_11011)

[SWS_Os_00811]⌈ A call of EnableInterruptSource shall enable the requested

interrupt source by modifying the interrupt controller registers. Additionally it shall

clear the interrupt pending flag.⌋ (SRS_Os_11011)

[SWS_Os_00812]⌈ A call of DisableInterruptSource shall disable the requested

interrupt source by modifying the interrupt controller registers.⌋ (SRS_Os_11011)

[SWS_Os_00813]⌈ A call of ClearPendingInterrupt shall clear the interrupt pending

flag by modifying the respective interrupt controller registers.⌋ (SRS_Os_11011)

[SWS_Os_00814]⌈ Clearing of pending interrupts shall be restricted to clearing the

pending flag in the interrupt controller.⌋ (SRS_Os_11011)

Specification of Operating System
AUTOSAR CP R20-11

125 of 342 Document ID 34: AUTOSAR_SWS_OS

Note: This does not necessarily guarantee that the interrupt request is cleared
successfully, i.e. the ISR may still be serviced afterwards. (This may happen due to
racing conditions or as the request needs to be cleared in the requesting hardware
unit also.)

7.15 Error classification

AUTOSAR BSW modules normally report their errors to Det (development errors) or
Dem (production errors). The OS handles errors differently (see also [16]) and does
not report its errors to Dem/Det. If a reporting of errors to Dem/Det is needed the

user can perform these actions in the ErrorHook().

The following table contains all error codes which might be reported from the OS
(besides those already defined in [16])

[SWS_Os_91025]⌈

Type of error Related error code Error value

An invalid address is given as a parameter
to a service.

E_OS_ILLEGAL_ADDRESS
Assigned by
implementation

A memory access violation occurred
E_OS_PROTECTION_
MEMORY

Assigned by
implementation

A stack fault detected via stack monitoring
by the OS

E_OS_STACKFAULT
Assigned by
implementation

Core is not available E_OS_CORE
Assigned by
implementation

Potential deadlock due to wrong nesting
E_OS_NESTING_
DEADLOCK

Assigned by
implementation

Tasks terminates without a Terminate
Task() or ChainTask() call.

E_OS_MISSINGEND
Assigned by
implementation

A Task/Category 2 ISR blocks for too long
E_OS_PROTECTION_
LOCKED

Assigned by
implementation

De-scheduling with occupied spinlock E_OS_SPINLOCK
Assigned by
implementation

A null pointer was given as argument E_OS_PARAM_POINTER
Assigned by
implementation

Service cannot be called. E_OS_SERVICEID
Assigned by
implementation

A trap occurred
E_OS_PROTECTION_
EXCEPTION

Assigned by
implementation

Deadlock situation due to interference
E_OS_INTERFERENCE_
DEADLOCK

Assigned by
implementation

A Task or Category 2 ISR exceeds its
execution time budget

E_OS_PROTECTION_TIME
Assigned by
implementation

Specification of Operating System
AUTOSAR CP R20-11

126 of 342 Document ID 34: AUTOSAR_SWS_OS

A service of the OS is called inside an
interrupt disable/enable pair.

E_OS_DISABLEDINT
Assigned by
implementation

A Task/Category 2 ISR arrives before its
timeframe has expired

E_OS_PROTECTION_
ARRIVAL

Assigned by
implementation

⌋()

7.16 ARTI Debug Information

[SWS_Os_00829] ARTI module description file shall support all ORTI containers.
(SRS_Os_12003)

The ARTI Debug Information intends to enable the attached tool to evaluate and
display information about the operating system, its state, its performance, the
different task states, the different operating system objects etc.

Additionally the ARTI Debug Information contains dynamic information as a set of
attributes that are represented by formulas to access corresponding dynamic values.
Formulas for dynamic data access are comprised of constants, operations, and
symbolic names within the target file. To obtain internal values of the required OS
objects, the debug tool can then evaluate the given formula.

7.16.1 OS ARTI Objects

It describes a set of attributes for system objects and a method for interpreting the
data obtained. The types defined in the section are specified to allow the debugger to
determine the target memory access method as well as the best way of displaying
the retrieved data. In most cases the information that the user will require to see is a
textual description of an attribute rather than the actual value read from the variable.

An example of this is as follows; when a user requests the current state of a task he
will expect to see something like RUNNING, WAITING, READY or SUSPENDED,
instead of the actual numeric value that is used by the OS to represent this
information internally. For this reason a mapping is specified, which allows a kernel
manufacturer to describe how an internal OS value must be mapped to a descriptive
value.

 ArtiOs

 ArtiHwCore

 ArtiOsAlarm

 ArtiOsContext

 ArtiOsIsr

 ArtiOsResource

 ArtiOsMessageContainer

 ArtiOsStack

Specification of Operating System
AUTOSAR CP R20-11

127 of 342 Document ID 34: AUTOSAR_SWS_OS

 ArtiOsTask

These objects are declared in Arti containers with definitions named “*Class”. The
instances of these objects are placed in the same Arti container with definitions
named “*Instance”.

7.17 ARTI Hook Macros

The OS shall incorporate special macros that can be used by an ARTI trace tool to
insert tracing functionality of any kind.
The hooks for an AUTOSAR CP OS do follow the general structure of ARTI macros:

ARTI_TRACE(_contextName, _className, _instanceName, instanceParameter,

_eventName, eventParameter);

Some of the parameters are using literal text (Token) rather than a symbolic
identifier. This allows a macro definition concatenating these parameters to more
specific macros. Passing and evaluating all parameters at run-time would be very
costly especially by means of run-time consumption.
Here is a possible implementation of the generic ARTI_TRACE macro as it could be
defined by a ARTI trace tool vendor to match the interface of his trace tool:

#define ARTI_TRACE(_contextName, _className, _instanceName,

instanceParameter, _eventName, eventParameter) \

 ARTI_TRACE ## _ ## _className ## _ ## _eventName ## _ ## _instanceName

_ ## _contextName ((instanceParameter), (eventParameter))

Such an implementation will generate one hook for all the possible combinations of

_className, _eventName and _contextName and pass only parameters

instance_id and event_value at run-time.

The parameters’ meanings are described in the following.

 _contextName Token, literal text, name of the context. One of the following:

o NOSUSP indicating that the hook gets called in a context where
interrupts are disabled

o SPRVSR indicating that the called hook may disable interrupts

o USER indicating the called hook cannot disable interrupts

 _className Token, literal text, name of the class of macros. Predefined
classes for an AUTOSAR OS are:

o AR_CP_OS_APPLICATION starts and stops the application

o AR_CP_OS_TASK schedules tasks

o AR_CP_OS_CAT2ISR dispatches CAT2 interrupts

o AR_CP_OS_SERVICECALLS calls service routines

o AR_CP_OS_SPINLOCK calls spinlocks

o AR_CP_OS_PROTECTIONHOOK calls ProtectionHook()

 _instanceName Short name of the OS instance as defined in the ARXML.

Specification of Operating System
AUTOSAR CP R20-11

128 of 342 Document ID 34: AUTOSAR_SWS_OS

 instanceParameter Index [uint32] 0..4294967295 of the CPU core as seen by
the OS (<Core Index>). Should always start with 0 and count up
consecutively. This might be equal to the index of the physical core, but
doesn’t have to be.

 _eventName Token, literal text, name of the event as defined for a particular
class.

 eventParameter A [uint32] 0..4294967295 value as an argument to an event.

Therefore all ARTI macros for an AUTOSAR OS do compile the following template:

ARTI_TRACE(_contextName, <AR OS Class Name>, <OS Short Name>, <Core Index>,

<Event Name>, <Event Parameter>)

Example of hook call in OS:

ARTI_TRACE(NOSUSP, AR_CP_OS_TASK, OS1, (uint32)GetCoreID(),

OsTask_Activation, (uint32)GetTaskID());

Example of preprocessed output:

ARTI_TRACE_NOSUSP_AR_CP_OS_TASK_OS1_OsTask_Activation((uint32)GetCoreID(),

(uint32)GetTaskID());

7.17.1 Class AR_CP_OS_APPLICATION

The class AR_CP_OS_APPLICATION contains events allowing the tracing of OS
applications as defined for the AUTOSAR Classic Platform.

The states used by ARTI are based on the states of OS-Applications, see figure 7.13
in chapter Background & Rationale7.6.1 for details.

States used by ARTI:

ARTI OS

Initial -

Accessible APPLICATION_ACCESSIBLE

Restarting APPLICATION_RESTARTING

Terminated APPLICATION_TERMINATED

Transitions used by ARTI:

Name Transition Event Name

Start Initial -> Accessible OsApplication_Start

Restart Accessible -> Restarting OsApplication_Restart

AllowAccess Restarting -> Accessible OsApplication_AllowAccess

Terminate Accessible -> Terminated OsApplication_Terminate

ARTI macros of the class AR_CP_OS_APPLICATION do compile the following
template:

ARTI_TRACE(_contextName, AR_CP_OS_APPLICATION, <OS Short

Name>, <Core ID>, <Event Name>, <Application ID>)

Specification of Operating System
AUTOSAR CP R20-11

129 of 342 Document ID 34: AUTOSAR_SWS_OS

The <Core ID> for any event shall represent the core id where the corresponding

application is running on.

The <Event Name> should follow the transition table above.

The <Application ID> shall be a numeric identifier of the OS Application.

7.17.2 Class AR_CP_OS_TASK

ARTI needs to trace all task states and all state transitions within the OS. For some
timing parameters (e.g. the "runtime" of a task, which goes from started to
terminated), the simple "ready" state of the OS is not enough. Tools evaluating the
timings need to reconstruct a more complex state diagram by calculating the
transitions from history. To be compatible to the pure OS state diagram,
AR_CP_OS_TASK refers to this state model, knowing that tools need to postprocess
the event flow to get all relevant information. However, if an OS implementation can
provide a more detailed state diagram, ARTI allows to define more events that won't
need postprocessing and allow earlier synchronization of the trace if it is truncated
(limited trace buffers). This state diagram is then handled with the class
"AR_CP_OSARTI_TASK". If possible, the second state machine is to be preferred.

AR_CP_OS_TASK

The class AR_CP_OS_TASK contains events allowing the tracing of OS tasks as
defined for the AUTOSAR Classic Platform.

The following state diagram shows the states and transitions as defined by the OS:

Transitions used by ARTI:

Name Transition Event Name

Activate Suspended -> Ready OsTask_Activate

Start Ready -> Running OsTask_Start

Preempt Running -> Ready OsTask_Preempt

Specification of Operating System
AUTOSAR CP R20-11

130 of 342 Document ID 34: AUTOSAR_SWS_OS

Wait Running -> Waiting OsTask_Wait

Release Waiting -> Ready OsTask_Release

Terminate Running -> Suspended OsTask_Terminate

AR_CP_OSARTI_TASK

The class AR_CP_OSARTI_TASK contains events allowing the tracing of OS tasks
with an enhanced state model.

The following states diagram shows the state machine as used by ARTI:

States used by ARTI:

ARTI OS

Suspended SUSPENDED

Activated READY

Running RUNNING

Preempted READY

Waiting WAITING

Released READY

Specification of Operating System
AUTOSAR CP R20-11

131 of 342 Document ID 34: AUTOSAR_SWS_OS

Transitions used by ARTI:

Name Transition Event Name

Activate Suspended -> Activated OsTask_Activate

Start Activated -> Running OsTask_Start

Preempt Running -> Preempted OsTask_Preempt

Resume Preempted -> Running OsTask_Resume

Wait Running -> Waiting OsTask_Wait

Release Waiting -> Released OsTask_Release

Continue Released -> Running OsTask_Continue

Terminate Running -> Suspended OsTask_Terminate

ARTI macros of the classes AR_CP_OS_TASK and AR_CP_OSARTI_TASK do
compile the following templates:

ARTI_TRACE(_contextName, AR_CP_OS_TASK, <OS Short Name>, <Core ID>, <Event

Name>, <Task ID>)
ARTI_TRACE(_contextName, AR_CP_OSARTI_TASK, <OS Short Name>, <Core ID>,

<Event Name>, <Task ID>)

The <Core ID> for any event shall represent the core id where the corresponding

task is scheduled on.

The <Event Name> should follow the transition table above.

The <Task ID> shall be a numeric identifier of the OS Task.

7.17.3 Class AR_CP_OS_CAT2ISR

ARTI needs to trace all states of Cat2Isrs and all state transitions within the OS
("Cat2Isr" refers to a category 2 interrupt service routine). For some timing
parameters (e.g. the interrupt pending time), the simple Cat2Isr start/stop of the OS
is not enough. Tools evaluating the timings need to reconstruct a more complex state
diagram by calculating the transitions from history. To be compatible to the OS,
AR_CP_OS_CAT2ISR refers to this state model, knowing that tools need to
postprocess the event flow to get all relevant information. However, if an OS
implementation can provide a more detailed state diagram, ARTI allows to define
more events that won't need postprocessing and allow earlier synchronization of the
trace if it is truncated (limited trace buffers). This state diagram is then handled with
the class "AR_CP_OSARTI_CAT2ISR". If possible, the second state machine is to
be preferred.

Specification of Operating System
AUTOSAR CP R20-11

132 of 342 Document ID 34: AUTOSAR_SWS_OS

AR_CP_OS_CAT2ISR

The class AR_CP_OS_CAT2ISR contains events allowing the tracing of Cat2Isrs as
defined for the AUTOSAR Classic Platform.

The following state diagram shows the states and transitions as defined by the OS:

Transitions used by ARTI:

Name Transition Event Name

Start Inactive -> Running OsCat2Isr_Start

Stop Running -> Inactive OsCat2Isr_Stop

AR_CP_OSARTI_CAT2ISR

The class AR_CP_OSARTI_CAT2ISR contains events allowing the tracing of
Cat2Isrs with an enhanced state model.

The following state diagram shows the state machine as used by ARTI:

States used by ARTI:

ARTI OS

Inactive Inactive

Specification of Operating System
AUTOSAR CP R20-11

133 of 342 Document ID 34: AUTOSAR_SWS_OS

Activated Inactive

Running Running

Preempted Running

Transitions used by ARTI:

Name Transition Event Name

Activate Inactive-> Activated OsCat2Isr_Activate

Start Activated -> Running OsCat2Isr_Start

Preempt Running -> Preempted OsCat2Isr_Preempt

Resume Preempted -> Running OsCat2Isr_Resume

Stop Running -> Inactive OsCat2Isr_Stop

ARTI macros of the classes AR_CP_OS_CAT2ISR and AR_CP_OSARTI_CAT2ISR
do compile the following template:

ARTI_TRACE(_contextName, AR_CP_OS_CAT2ISR, <OS Short Name>, <Core Index>,

<Event Name>, <Cat2Isr Index>)
ARTI_TRACE(_contextName, AR_CP_OSARTI_CAT2ISR, <OS Short Name>, <Core

Index>, <Event Name>, <Cat2Isr Index>)

The <Core Index> for any event shall represent the core index where the
corresponding Cat2Isr is scheduled on.

The <Event Name> should follow the transition table above.

The <Cat2Isr Index> shall be a numeric identifier of the Cat2Isr.

7.17.4 Class AR_CP_OS_SERVICECALLS

The class AR_CP_OS_SERVICECALLS contains events allowing the tracing of OS
service calls, both for entering and exiting the service call.

These hooks shall only be called, if the service call is called from an application
context. It shall not be called, if the service call is used within the OS context.

The events apply only to the entries and exits of the service calls, not to the objects
(and their states) handled by the service call.

 ARTI macros of the class AR_CP_OS_SERVICECALLS do compile the following
template:

ARTI_TRACE(_contextName, AR_CP_OS_SERVICECALLS, <OS Short Name>, <Core

Index>, <eventName>, <eventParameter>)

Specification of Operating System
AUTOSAR CP R20-11

134 of 342 Document ID 34: AUTOSAR_SWS_OS

The <Core Index> for any event in the following table shall represent the core id
where the corresponding service call is called.

The <eventName> is a string literal composed of a prefix "OsServiceCall", the service

call name and "_Start" or "_Return" for the entry or exit of the service call. E.g. when

ActivateTask() is called, the event names on entry and exit are

OsServiceCall_ActivateTask_Start rsp. OsServiceCall_ActivateTask_Return.

The <eventParamter> is an uint32 representation of either one of the function
parameters or the return value. It depends on the service call and is listed in the
following table:

OS Service Call From eventParameter on

Start
on Return

ActivateTask OSEK TaskID (StatusType) returnValue

TerminateTask OSEK TaskID (StatusType) returnValue

ChainTask OSEK TaskID (StatusType) returnValue

Schedule OSEK 0 (StatusType) returnValue

GetTaskID OSEK 0 (TaskType) *TaskID

GetTaskState OSEK TaskID (TaskStateType) *State

EnableAllInterrupts OSEK 0 0

DisableAllInterrupts OSEK 0 0

ResumeAllInterrupts OSEK 0 0

SuspendAllInterrupts OSEK 0 0

ResumeOSInterrupts OSEK 0 0

SuspendOSInterrupts OSEK 0 0

GetResource OSEK ResID (StatusType) returnValue

ReleaseResource OSEK ResID (StatusType) returnValue

SetEvent OSEK Mask (StatusType) returnValue

ClearEvent OSEK Mask (StatusType) returnValue

GetEvent OSEK TaskID (EventMaskType) *Event

WaitEvent OSEK Mask (StatusType) returnValue

GetAlarmBase OSEK AlarmID (AlarmBaseType) *Info

GetAlarm OSEK AlarmID (TickType) *Tick

SetRelAlarm OSEK AlarmID (StatusType) returnValue

SetAbsAlarm OSEK AlarmID (StatusType) returnValue

CancelAlarm OSEK AlarmID (StatusType) returnValue

GetActiveApplicationMode OSEK 0 (AppModeType) returnValue

StartOS OSEK Mode not applicable

ShutdownOS OSEK Error not applicable

ErrorHook OSEK Error 0

PreTaskHook OSEK 0 0

PostTaskHook OSEK 0 0

StartupHook OSEK 0 0

ShutdownHook OSEK Error 0

GetApplicationID AUTOSAR 0 (ApplicationType) returnValue

GetCurrentApplicationID AUTOSAR 0 (ApplicationType) returnValue

GetISRID AUTOSAR 0 (ISRType) returnValue

CallTrustedFunction AUTOSAR FunctionIndex (StatusType) returnValue

Specification of Operating System
AUTOSAR CP R20-11

135 of 342 Document ID 34: AUTOSAR_SWS_OS

CheckISRMemoryAccess AUTOSAR ISRID (AccessType) returnValue

CheckTaskMemoryAccess AUTOSAR TaskID (AccessType) returnValue

CheckObjectAccess AUTOSAR ApplID (ObjectAccessType) returnValue

CheckObjectOwnership AUTOSAR ObjectType (ApplicationType) returnValue

StartScheduleTableRel AUTOSAR ScheduleTableID (StatusType) returnValue

StartScheduleTableAbs AUTOSAR ScheduleTableID (StatusType) returnValue

StopScheduleTable AUTOSAR ScheduleTableID (StatusType) returnValue

NextScheduleTable AUTOSAR ScheduleTableID_To (StatusType) returnValue

StartScheduleTableSynchron AUTOSAR ScheduleTableID (StatusType) returnValue

SyncScheduleTable AUTOSAR ScheduleTableID (StatusType) returnValue

SetScheduletableAsync AUTOSAR ScheduleTableID (StatusType) returnValue

GetScheduleTableStatus AUTOSAR ScheduleTableID (ScheduleTableStatusType)
*ScheduleStatus

IncrementCounter AUTOSAR CounterID (StatusType) returnValue

GetCounterValue AUTOSAR CounterID (TickType) *Value

GetElapsedValue AUTOSAR CounterID (TickType) *ElapsedValue

TerminateApplication AUTOSAR Application (StatusType) returnValue

AllowAccess AUTOSAR 0 (StatusType) returnValue

GetApplicationState AUTOSAR Application (ApplicationStateType) *Value

GetNumberOfActivatedCores AUTOSAR 0 (uint32) returnValue

GetCoreID AUTOSAR 0 (CoreIdType) returnValue

StartCore AUTOSAR CoreID (StatusType) *Status

StartNonAutosarCore AUTOSAR CoreID (StatusType) *Status

GetSpinlock AUTOSAR SpinlockId (StatusType) returnValue

ReleaseSpinlock AUTOSAR SpinlockId (StatusType) returnValue

TryToGetSpinlock AUTOSAR SpinlockId (TryToGetSpinlockType) *Success

ShutdownAllCores AUTOSAR Error 0

ControlIdle AUTOSAR IdleMode (StatusType) returnValue

ReadPeripheral8 AUTOSAR Address (uint8) *ReadValue

ReadPeripheral16 AUTOSAR Address (uint16) *ReadValue

ReadPeripheral32 AUTOSAR Address (uint32) *ReadValue

WritePeripheral8 AUTOSAR Address (StatusType) returnValue

WritePeripheral16 AUTOSAR Address (StatusType) returnValue

WritePeripheral32 AUTOSAR Address (StatusType) returnValue

ModifyPeripheral8 AUTOSAR Address (StatusType) returnValue

ModifyPeripheral16 AUTOSAR Address (StatusType) returnValue

ModifyPeripheral32 AUTOSAR Address (StatusType) returnValue

EnableInterruptSource AUTOSAR ISRID (StatusType) returnValue

DisableInterruptSource AUTOSAR ISRID (StatusType) returnValue

ClearPendingInterrupt AUTOSAR ISRID (StatusType) returnValue

ActivateTaskAsyn AUTOSAR id 0

SetEventAsyn AUTOSAR id 0

7.17.5 Class AR_CP_OS_SPINLOCK

The class AR_CP_OS_SPINLOCK contains events allowing the tracing of state
changes of spinlocks.

Specification of Operating System
AUTOSAR CP R20-11

136 of 342 Document ID 34: AUTOSAR_SWS_OS

These macros mark an event of an actual state change, not the OS service call. (E.g.
getting a spinlock may happen later than requesting it; a request to release may not
cause a release if it is already released.)

ARTI macros of the class AR_CP_OS_SPINLOCK do compile the following template:

ARTI_TRACE(_contextName, AR_CP_OS_SPINLOCK, <OS Short Name>, <Core Index>,

<_eventName>, <eventParameter>)

The <Core Index> for any event in the following table shall represent the core id

where the corresponding service call is called.

The following events are part of the class AR_CP_OS_SPINLOCK:

Event description State transition _eventName eventParameter

Locking Spinlock Released -> Locked OsSpinlock_Locked SpinlockId

Releasing Spinlock Locked -> Released OsSpinlock_Released SpinlockId

7.17.6 class AR_CP_OS_PROTECTIONHOOK

The class AR_CP_OS_PROTECTIONHOOK allows to trace the error handling
resulting in an OS protection hook call. The ARTI hook shall be called by the OS after
the Returntype was checked according to the Requriements described in chapter
7.8.2. (see [SWS_Os_00506], [SWS_Os_00475], [SWS_Os_00243],
[SWS_Os_00244], [SWS_Os_00557]). The parameter of the ARTI hook shall reflect
the action, which is taken by the OS, resulting from the return value of the protection
hook.
Using the ARTI protection hook makros helps to identify, the detection of Fatal Os
errors, for example the termination of a task or OS Application resulting from an
forcible termination.

ARTI Hook Macros parameters:

_contextName NOSUSP, SPRVSR, USER

_className AR_CP_OS_PROTECTIONHOOK

_instanceName short name of the OS

instanceParameter CoreId

_eventName ProtectionHookStart / ProtectionHookReturn

eventParameter Fatalerror / ReturnValue

Example Hook Implementation

ARTI_TRACE(NOSUSP, AR_CP_OS_PROTECTIONHOOK, OsOs, CoreID(),

ProtectionHookStart, Fatalerror)

Specification of Operating System
AUTOSAR CP R20-11

137 of 342 Document ID 34: AUTOSAR_SWS_OS

ARTI_TRACE(NOSUSP, AR_CP_OS_PROTECTIONHOOK, OsOs, CoreID(),

ProtectionHookReturn, ReturnValue)

Specification of Operating System
AUTOSAR CP R20-11

138 of 342 Document ID 34: AUTOSAR_SWS_OS

8 API specification

This chapter contains the APIs offered by the operating system. Note that not all
services are available in all scalability classes, and that the behavior of some
services is extended for specific scalability classes. For example, API to relatively
start a schedule table has an additional check if the schedule table allows implicit
synchronization. This check is only performed in SC2 and SC4 where
synchronization of schedule tables is supported.

8.1 Constants

8.1.1 Error codes of type StatusType

The following constants are available in a multi-core environment.

[SWS_Os_91007]⌈

Name AppModeType

Kind Enumeration

Range DONOTCARE -- --

Description AppMode of the core shall be inherited from another core.

Available via Os.h

⌋()

[SWS_Os_91002]⌈

Name TotalNumberOfCores

Kind Type

Derived from scalar

Range 1..65535 -- --

Description The total number of cores

Available via Os.h

⌋()

Additional constants are in section 7.15 and [16].

8.2 Macros

OSMEMORY_IS_READABLE(<AccessType>)

OSMEMORY_IS_WRITEABLE(<AccessType>)

OSMEMORY_IS_EXECUTABLE(<AccessType>)

OSMEMORY_IS_STACKSPACE(<AccessType>)

Specification of Operating System
AUTOSAR CP R20-11

139 of 342 Document ID 34: AUTOSAR_SWS_OS

These macros return a value not equal to zero if the memory is readable / writable /
executable or stack space. The argument of the macros must be of type
AccessType. Typically the return value of the service

Check[Task|ISR]MemoryAccess() is used as argument for these macros.

8.3 Type definitions

8.3.1 ApplicationType (for OS-Applications)

[SWS_Os_00772]⌈

Name ApplicationType

Kind Type

Derived from uint32

Range INVALID_OSAPPLICATION -- --

Description This data type identifies the OS-Application.

Available via Os.h

⌋()

[SWS_Os_00826]⌈ The range of valid OS-Applications described by

ApplicationType shall be zero-based and consecutive. The Value of

INVALID_OSAPPLICATION shall lie outside the range of valid OS-Application

IDs.⌋ (SRS_Os_80005)

Note: The OS may use other representations internally for a performance optimal
implementation.

8.3.2 ApplicationStateType

[SWS_Os_00773]⌈

Name ApplicationStateType

Kind Type

Derived from scalar

Range

APPLICATION_ACCESSIBLE -- --

APPLICATION_RESTARTING -- --

APPLICATION_TERMINATED -- --

Description This data type identifies the state of an OS-Application.

Specification of Operating System
AUTOSAR CP R20-11

140 of 342 Document ID 34: AUTOSAR_SWS_OS

Available via Os.h

⌋()

8.3.3 ApplicationStateRefType

[SWS_Os_00774]⌈

Name ApplicationStateRefType

Kind Type

Derived from pointer

Description This data type points to location where a ApplicationStateType can be stored.

Available via Os.h

⌋()

8.3.4 TrustedFunctionIndexType

[SWS_Os_00775]⌈

Name TrustedFunctionIndexType

Kind Type

Derived from scalar

Description This data type identifies a trusted function.

Available via Os.h

⌋()

8.3.5 TrustedFunctionParameterRefType

[SWS_Os_00776]⌈

Name TrustedFunctionParameterRefType

Kind Type

Derived
from

pointer

Specification of Operating System
AUTOSAR CP R20-11

141 of 342 Document ID 34: AUTOSAR_SWS_OS

Description
This data type points to a structure which holds the arguments for a call to a trusted
function.

Available via Os.h

⌋()

8.3.6 AccessType

[SWS_Os_00777]⌈

Name AccessType

Kind Type

Derived from integral

Description This type holds information how a specific memory region can be accessed.

Available via Os.h

⌋()

8.3.7 ObjectAccessType

[SWS_Os_00778]⌈

Name ObjectAccessType

Kind Type

Derived from implementation_specific

Range
ACCESS -- --

NO_ACCESS -- --

Description This data type identifies if an OS-Application has access to an object.

Available via Os.h

⌋()

8.3.8 ObjectTypeType

[SWS_Os_00779]⌈

Specification of Operating System
AUTOSAR CP R20-11

142 of 342 Document ID 34: AUTOSAR_SWS_OS

Name ObjectTypeType

Kind Type

Derived from implementation_specific

Range

OBJECT_TASK -- --

OBJECT_ISR -- --

OBJECT_ALARM -- --

OBJECT_RESOURCE -- --

OBJECT_COUNTER -- --

OBJECT_SCHEDULETABLE -- --

Description This data type identifies an object.

Available via Os.h

⌋()

8.3.9 MemoryStartAddressType

[SWS_Os_00780]⌈

Name MemoryStartAddressType

Kind Pointer

Type void*

Description
This data type is a pointer which is able to point to any location in the MCU address
space.

Available
via

Os.h

⌋()

8.3.10 MemorySizeType

[SWS_Os_00781]⌈

Name MemorySizeType

Kind Type

Derived from implementation_specific

Specification of Operating System
AUTOSAR CP R20-11

143 of 342 Document ID 34: AUTOSAR_SWS_OS

Description This data type holds the size (in bytes) of a memory region.

Available via Os.h

⌋()

8.3.11 ISRType

[SWS_Os_00782]⌈

Name ISRType

Kind Type

Derived from implementation_specific

Range INVALID_ISR -- --

Description This data type identifies an interrupt service routine (ISR).

Available via Os.h

⌋()

8.3.12 ScheduleTableType

[SWS_Os_00783]⌈

Name ScheduleTableType

Kind Type

Derived from implementation_specific

Description This data type identifies a schedule table.

Available via Os.h

⌋()

8.3.13 ScheduleTableStatusType

[SWS_Os_00784]⌈

Name ScheduleTableStatusType

Kind Type

Specification of Operating System
AUTOSAR CP R20-11

144 of 342 Document ID 34: AUTOSAR_SWS_OS

Derived
from

implementation_specific

Range

SCHEDULETABLE_STOPPED -- --

SCHEDULETABLE_NEXT -- --

SCHEDULETABLE_WAITING -- --

SCHEDULETABLE_RUNNING -- --

SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS -- --

Description

This type describes the status of a schedule. The status can be one of the following: o
The schedule table is not started (SCHEDULETABLE_STOPPED) o The schedule
table will be started after the end of currently running schedule table (schedule table
was used in NextScheduleTable() service) (SCHEDULETABLE_NEXT) o The
schedule table uses explicit synchronization, has been started and is waiting for the
global time. (SCHEDULETABLE_WAITING) o The schedule table is running, but is
currently not synchronous to a global time source (SCHEDULETABLE_RUNNING) o
The schedule table is running and is synchronous to a global time source
(SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS)

Available
via

Os.h

⌋()

8.3.14 ScheduleTableStatusRefType

[SWS_Os_00785]⌈

Name ScheduleTableStatusRefType

Kind Pointer

Type ScheduleTableStatusType*

Description This data type points to a variable of the data type ScheduleTableStatusType.

Available via Os.h

⌋()

8.3.15 ProtectionReturnType

[SWS_Os_00787]⌈

Name ProtectionReturnType

Kind Type

Derived
from

implementation_specific

Specification of Operating System
AUTOSAR CP R20-11

145 of 342 Document ID 34: AUTOSAR_SWS_OS

Range

PRO_IGNORE -- --

PRO_TERMINATETASKISR -- --

PRO_TERMINATEAPPL -- --

PRO_TERMINATEAPPL_RESTART -- --

PRO_SHUTDOWN -- --

Description
This data type identifies a value which controls further actions of the OS on return
from the protection hook.

Available
via

Os.h

⌋()

8.3.16 RestartType

[SWS_Os_00788]⌈

Name RestartType

Kind Type

Derived from implementation_specific

Range
RESTART -- --

NO_RESTART -- --

Description This data type defines the use of a Restart Task after terminating an OS-Application.

Available via Os.h

⌋()

8.3.17 PhysicalTimeType

[SWS_Os_00789]⌈

Name PhysicalTimeType

Kind Type

Derived
from

implementation_specific

Description
This data type is used for values returned by the conversion macro (see SWS_
Os_00393) OS_TICKS2<Unit>_<Counter>().

Specification of Operating System
AUTOSAR CP R20-11

146 of 342 Document ID 34: AUTOSAR_SWS_OS

Available
via

Os.h

⌋()

8.3.18 CoreIdType

[SWS_Os_00790]⌈

Name CoreIdType

Kind Type

Derived
from

scalar

Range

OS_CORE_ID_MASTER --
refers to the master core, may be an alias for
OS_CORE_ID_<x>

OS_CORE_ID_0..OS_CORE_
ID_65533

-- refers to logical core 0, core 1 etc.

Description
CoreIdType is a scalar that allows identifying a single core. The CoreIdType shall
represent the logical CoreID

Available
via

Os.h

⌋()

[SWS_Os_00825]⌈ The range of valid Core-IDs described by CoreIdType shall be

zero-based and consecutive.⌋ (SRS_Os_80011)

8.3.19 SpinlockIdType

[SWS_Os_00791]⌈

Name SpinlockIdType

Kind Type

Derived
from

scalar

Range
1..65535 -- 0x01, 0x02, ...: identifies a spinlock instance

INVALID_SPINLOCK 0 represents an invalid spinlock instance

Description
SpinlockIdType identifies a spinlock instance and is used by the API functions: Get
Spinlock, ReleaseSpinlock and TryToGetSpinlock.

Available
via

Os.h

Specification of Operating System
AUTOSAR CP R20-11

147 of 342 Document ID 34: AUTOSAR_SWS_OS

⌋()

8.3.20 TryToGetSpinlockType

[SWS_Os_00792]⌈

Name TryToGetSpinlockType

Kind Enumeration

Range
TRYTOGETSPINLOCK_SUCCESS -- Spinlock successfully occupied

TRYTOGETSPINLOCK_NOSUCCESS -- Unable to occupy the spinlock

Description The TryToGetSpinlockType indicates if the spinlock has been occupied or not.

Available via Os.h

⌋(SRS_Os_80021)

8.3.21 IdleModeType

[SWS_Os_00793]⌈

Name IdleModeType

Kind Type

Derived from scalar

Range IDLE_NO_HALT -- the core does not perform any specific actions during idle time

Description This data type identifies the idle mode behavior.

Available via Os.h

⌋()

8.3.22 AreaIdType

[SWS_Os_91000]⌈

Name AreaIdType

Kind Type

Derived
from

scalar

Range 0..65534 -- identifies a peripheral area

Description
AreaIdType identifies a peripheral area and is used by the API functions: Read
PeripheralX, WritePeripheralX and ModifyPeripheralX

Specification of Operating System
AUTOSAR CP R20-11

148 of 342 Document ID 34: AUTOSAR_SWS_OS

Available
via

Os.h

⌋()

8.4 Function definitions

The availability of the following services is defined in Tab. 4. The use of these services
may be restricted depending on the context they are called from. See
Tab. 1 for details.

8.4.1 GetApplicationID

[SWS_Os_00016]⌈

Service Name GetApplicationID

Syntax

ApplicationType GetApplicationID (

 void

)

Service ID
[hex]

0x00

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

None

Parameters
(inout)

None

Parameters
(out)

None

Return value ApplicationType
<identifier of running OS-Application> or
INVALID_OSAPPLICATION

Description
This service determines the OS-Application (a unique identifier has to be allocated
to each application) where the caller originally belongs to (was configured to).

Available via Os.h

⌋()

[SWS_Os_00261] ⌈ GetApplicationID() shall return the application

identifier to which the executing Task/ISR/hook was configured.

⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

149 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00262] ⌈If no OS-Application is running, GetApplicationID() shall

return INVALID_OSAPPLICATION. ⌋ ()

[SWS_Os_00514] ⌈Availability of GetApplicationID(): Available in Scalability

Classes 3 and 4 and in multi-core systems. ⌋ ()

8.4.2 GetCurrentApplicationID

[SWS_Os_00797]⌈

Service
Name

GetCurrentApplicationID

Syntax

ApplicationType GetCurrentApplicationID (

 void

)

Service ID
[hex]

0x27

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

None

Parameters
(inout)

None

Parameters
(out)

None

Return value ApplicationType
<identifier of the OS-Application> or INVALID_
OSAPPLICATION

Description
This service determines the OS-Application where the caller of the service is
currently executing. Note that if the caller is not within a CallTrustedFunction() call
the value is equal to the result of GetApplicationID().

Available via Os.h

⌋()

[SWS_Os_00798]⌈ GetCurrentApplicationID() shall return the application

identifier in which the current Task/ISR/hook is executed. ⌋ ()

[SWS_Os_00799] ⌈If no OS-Application is running, GetCurrentApplicationID()

shall return INVALID_OSAPPLICATION. ⌋ ()

[SWS_Os_00800] ⌈Availability of GetCurrentApplicationID(): Available in

Scalability Classes 3 and 4. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

150 of 342 Document ID 34: AUTOSAR_SWS_OS

8.4.3 GetISRID

[SWS_Os_00511]⌈

Service Name GetISRID

Syntax

ISRType GetISRID (

 void

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value ISRType
<Identifier of running ISR> or
INVALID_ISR

Description This service returns the identifier of the currently executing ISR.

Available via Os.h

⌋()

[SWS_Os_00263] ⌈If called from category 2 ISR (or Hook routines called inside a

category 2 ISR), GetISRID() shall return the identifier of the currently executing ISR.

⌋ ()

[SWS_Os_00264] ⌈If its caller is not a category 2 ISR (or Hook routines called inside

a category 2 ISR), GetISRID() shall return INVALID_ISR. ⌋ ()

[SWS_Os_00515] ⌈Availability of GetISRID(): Available in all Scalability Classes. ⌋

()

8.4.4 CallTrustedFunction

[SWS_Os_00097]⌈

Service Name CallTrustedFunction

Syntax

StatusType CallTrustedFunction (

 TrustedFunctionIndexType FunctionIndex,

 TrustedFunctionParameterRefType FunctionParams

)

Specification of Operating System
AUTOSAR CP R20-11

151 of 342 Document ID 34: AUTOSAR_SWS_OS

Service ID
[hex]

0x02

Sync/Async
Depends on called function. If called function is synchronous then service is
synchronous. May cause rescheduling.

Reentrancy Reentrant

Parameters
(in)

Function
Index

Index of the function to be called.

Function
Params

Pointer to the parameters for the function - specified by the Function
Index - to be called. If no parameters are provided, a NULL pointer
has to be passed.

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType
E_OK: No Error
E_OS_SERVICEID: No function defined for this index

Description A (trusted or non-trusted) OS-Application uses this service to call a trusted function

Available via Os.h

⌋()

[SWS_Os_00265] ⌈ If <FunctionIndex> is a defined function index,

CallTrustedFunction() shall call the function <FunctionIndex> out of a list of

implementation specific trusted functions with the protection settings of the OS-

Application which provides the trusted function AND shall return E_OK after

completion. ⌋ ()

[SWS_Os_00312] ⌈Caveats of CallTrustedFunction():

 The called trusted function must conform to the following C prototype: void
TRUSTED_<name_of_the_trusted_service>(

TrustedFunctionIndexType,TrustedFunctionParameterRefType);

(The arguments are the same as the arguments of CallTrustedFunction).

 Normally, a user will not directly call this service, but it will be part of some
standard interface, e.g. a standard I/O interface.

 It is the duty of the called trusted function to check rights of passed
parameters, especially if parameters are interpreted as out parameters.

 It should be noted that the CallTrustedFunction() does not disable timing

protection for the task which called the service. This may lead to timing faults

(calls of the ProtectionHook()) even inside of a trusted OS-Application. It is

therefore recommended to use CallTrustedFunction() only for stateless

functions (e.g. functions which do not write or do not have internal states) ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

152 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00266] ⌈When CallTrustedFunction() calls the function <FunctionIndex>,
that function shall be executed with the same processor mode, memory protection
boundaries and the service protection limitations of the OS-Application to which it
belongs. The notion of "current application" shall remain that of the calling Task or
Category 2 ISR. ⌋ ()

Reaction to timing protection can be defined to terminate the OSApplication. If a task
is inside CallTrustedFunction() and task rescheduling takes place within the same
OSApplication, the newly running higher priority task may cause timing protection
and terminate the OSApplication, thus indirectly aborting the trusted function. To
avoid this, the scheduling of other Tasks which belong to the same OS-Application
as the caller needs to be restricted, as well as the availability of interrupts of the
same OS-Application.

[SWS_Os_00565] ⌈ When CallTrustedFunction() is called and the caller of
CallTrustedFunction() is supervised with timing protection, the Operating System
shall delay any timing protection errors until the CallTrustedFunction() returns to a

OsApplication with OsTrustedApplicationDelayTimingViolationCall ==

FALSE.⌋ ()

[SWS_Os_00564] ⌈ If such a violation is detected inside a nested call sequence of
CallTrustedFunction() of a task, the delay shall last until the return of
CallTrustedFunction() to an OsApplication with

OsTrustedApplicationDelayTimingViolationCall == FALSE.⌋ ()

[SWS_Os_00563] ⌈The OperatingSystem shall not schedule any other Tasks which
belong to the same OS-Application as the non-trusted caller of the service. It shall be
done by priority ceiling. Also interrupts of Category 2 which belong to the same OS-

Application shall be disabled during the execution of the service.⌋ ()

[SWS_Os_00364] ⌈If CallTrustedFunction() calls the trusted function from a

Category 2 ISR context, that function shall continue to run on the same interrupt
priority and be allowed to call all system services defined for Category 2 ISR (see

table in chapter 7.7.3.2). ⌋ ()

[SWS_Os_00365] ⌈If CallTrustedFunction() calls the trusted function from a task

context, that function shall continue to run on the same priority and be allowed to call

all system services defined for tasks (see table in chapter 7.7.3.2). ⌋ ()

[SWS_Os_00292] ⌈If the function index <FunctionIndex> in a call of

CallTrustedFunction() is undefined, CallTrustedFunction() shall return

E_OS_SERVICEID. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

153 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00516] ⌈Availability of CallTrustedFunction(): Available in Scalability

Classes 3 and 4. ⌋ ()

8.4.5 CheckISRMemoryAccess

[SWS_Os_00512]⌈

Service Name CheckISRMemoryAccess

Syntax

AccessType CheckISRMemoryAccess (

 ISRType ISRID,

 MemoryStartAddressType Address,

 MemorySizeType Size

)

Service ID
[hex]

0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

ISRID ISR reference

Address Start of memory area

Size Size of memory area

Parameters
(inout)

None

Parameters
(out)

None

Return value AccessType Value which contains the access rights to the memory area.

Description
This service checks if a memory region is write/read/execute accessible and also
returns information if the memory region is part of the stack space.

Available via Os.h

⌋()

[SWS_Os_00267] ⌈If the ISR reference <ISRID> in a call of

CheckISRMemoryAccess() is valid, CheckISRMemoryAccess() shall return the

access rights of the ISR on the specified memory area. ⌋ ()

[SWS_Os_00313] ⌈If an access right (e.g. “read”) is not valid for the whole memory

area specified in a call of CheckISRMemoryAccess(), CheckISRMemoryAccess()

shall yield no access regarding this right. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

154 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00268] ⌈If the ISR reference <ISRID> is not valid,

CheckISRMemoryAccess() shall yield no access rights. ⌋ ()

[SWS_Os_00517] ⌈Availability of CheckISRMemoryAccess(): Available in Scalability

Classes 3 and 4. ⌋ ()

8.4.6 CheckTaskMemoryAccess

[SWS_Os_00513]⌈

Service Name CheckTaskMemoryAccess

Syntax

AccessType CheckTaskMemoryAccess (

 TaskType TaskID,

 MemoryStartAddressType Address,

 MemorySizeType Size

)

Service ID
[hex]

0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

TaskID Task reference

Address Start of memory area

Size Size of memory area

Parameters
(inout)

None

Parameters
(out)

None

Return value AccessType Value which contains the access rights to the memory area.

Description
This service checks if a memory region is write/read/execute accessible and also
returns information if the memory region is part of the stack space.

Available via Os.h

⌋()

[SWS_Os_00269] ⌈If the Task reference <TaskID> in a call of

CheckTaskMemoryAccess() is valid, CheckTaskMemoryAccess() shall return

the access rights of the task on the specified memory area. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

155 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00314] ⌈If an access right (e.g. “read”) is not valid for the whole memory

area specified in a call of CheckTaskMemoryAccess(),

CheckTaskMemoryAccess() shall yield no access regarding this right. ⌋ ()

[SWS_Os_00270] ⌈If the Task reference <TaskID> in a call of

CheckTaskMemoryAccess() is not valid, CheckTaskMemoryAccess() shall

yield no access rights. ⌋ ()

[SWS_Os_00518] ⌈Availability of CheckTaskMemoryAccess(): Available in

Scalability Classes 3 and 4⌋ ()

8.4.7 CheckObjectAccess

[SWS_Os_00256]⌈

Service Name CheckObjectAccess

Syntax

ObjectAccessType CheckObjectAccess (

 ApplicationType ApplID,

 ObjectTypeType ObjectType,

 void ...

)

Service ID
[hex]

0x05

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

ApplID OS-Application identifier

ObjectType Type of the following parameter

... The object to be examined

Parameters
(inout)

None

Parameters
(out)

None

Return value ObjectAccessType
ACCESS if the ApplID has access to the object
NO_ACCESS otherwise

Description
This service determines if the OS-Applications, given by ApplID, is allowed to use
the IDs of a Task, Resource, Counter, Alarm or Schedule Table in API calls.

Available via Os.h

⌋()

Specification of Operating System
AUTOSAR CP R20-11

156 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00271] ⌈If the OS-Application <ApplID> in a call of

CheckObjectAccess() has access to the queried object,

CheckObjectAccess() shall return ACCESS. ⌋ ()

[SWS_Os_00272] ⌈If the OS-Application <ApplID> in a call of

CheckObjectAccess() has no access to the queried object,

CheckObjectAccess() shall return NO_ACCESS. ⌋ ()

[SWS_Os_00423] ⌈If in a call of CheckObjectAccess() the object to be examined

is not a valid object OR <ApplID> is invalid OR <ObjectType> is invalid THEN

CheckObjectAccess() shall return NO_ACCESS. ⌋ ()

[SWS_Os_00519] ⌈Availability of CheckObjectAccess(): Available in Scalability

Classes 3 and 4. ⌋ ()

8.4.8 CheckObjectOwnership

[SWS_Os_00017]⌈

Service Name CheckObjectOwnership

Syntax

ApplicationType CheckObjectOwnership (

 ObjectTypeType ObjectType,

 void ...

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)
ObjectType Type of the following parameter

... The object to be examined

Parameters
(inout)

None

Parameters
(out)

None

Return value
Application-
Type

<OS-Application>: the OS-Application to which the object
ObjectType belongs or
INVALID_OSAPPLICATION if the object does not exists

Description
This service determines to which OS-Application a given Task, ISR, Counter,
Alarm or Schedule Table belongs

Available via Os.h

⌋()

Specification of Operating System
AUTOSAR CP R20-11

157 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00273] ⌈If the object ObjectType specified in a call of

CheckObjectOwnership() exists, CheckObjectOwnership() shall return the

identifier of the OS-Application to which the object belongs. ⌋ ()

[SWS_Os_00274] ⌈If in a call of CheckObjectOwnership() the specified object

ObjectType is invalid OR the argument of the type (the “…”) is invalid OR the object

does not belong to any OS-Application, CheckObjectOwnership() shall return

INVALID_OSAPPLICATION. ⌋ ()

[SWS_Os_00520] ⌈Availability of CheckObjectOwnership():Available in

Scalability Classes 3 and 4 and in multi-core systems. ⌋ ()

8.4.9 StartScheduleTableRel

[SWS_Os_00347]⌈

Service Name StartScheduleTableRel

Syntax

StatusType StartScheduleTableRel (

 ScheduleTableType ScheduleTableID,

 TickType Offset

)

Service ID
[hex]

0x07

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Schedule
TableID

Schedule table to be started

Offset
Number of ticks on the counter before the the schedule table
processing is started

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType

E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not valid.
E_OS_VALUE (only in EXTENDED status): Offset is greater than
(OsCounterMaxAllowedValue - InitialOffset) or is equal to 0.
E_OS_STATE: Schedule table was already started.

Description
This service starts the processing of a schedule table at "Offset" relative to the
"Now" value on the underlying counter.

Available via Os.h

Specification of Operating System
AUTOSAR CP R20-11

158 of 342 Document ID 34: AUTOSAR_SWS_OS

⌋()

[SWS_Os_00275] ⌈If the schedule table <ScheduleTableID> in a call of

StartScheduleTableRel() is not valid, StartScheduleTableRel() shall

return E_OS_ID. ⌋ ()

[SWS_Os_00452] ⌈If the schedule table <ScheduleTableID> in a call of

StartScheduleTableRel() is implicitely synchronized

(OsScheduleTblSyncStrategy = IMPLICIT), StartScheduleTableRel()

shall return E_OS_ID. ⌋ ()

[SWS_Os_00332] ⌈If <Offset> in a call of StartScheduleTableRel() is zero

StartScheduleTableRel() shall return E_OS_VALUE. ⌋ ()

[SWS_Os_00276] ⌈If the offset <Offset>) is greater than

OsCounterMaxAllowedValue of the underlying counter minus the Initial Offset,

StartScheduleTableRel() shall return E_OS_VALUE. ⌋ ()

[SWS_Os_00277] ⌈If the schedule table <ScheduleTableID> in a call of

StartScheduleTableRel() is not in the state SCHEDULETABLE_STOPPED,

StartScheduleTableRel() shall return E_OS_STATE. ⌋ ()

[SWS_Os_00278] ⌈If the input parameters of StartScheduleTableRel() are

valid and the state of schedule table <ScheduleTableID> is

SCHEDULETABLE_STOPPED, then StartScheduleTableRel() shall start the

processing of a schedule table <ScheduleTableID>. The Initial Expiry Point shall be
processed after <Offset> + Initial Offset ticks have elapsed on the underlying counter.

The state of <ScheduleTableID> is set to SCHEDULETABLE_RUNNING before the

service returns to the caller. ⌋ ()

[SWS_Os_00521] ⌈Availability of StartScheduleTableRel(): Available in all

Scalability Classes. ⌋ ()

8.4.10 StartScheduleTableAbs

[SWS_Os_00358]⌈

Service Name StartScheduleTableAbs

Syntax

StatusType StartScheduleTableAbs (

 ScheduleTableType ScheduleTableID,

 TickType Start

)

Specification of Operating System
AUTOSAR CP R20-11

159 of 342 Document ID 34: AUTOSAR_SWS_OS

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)

Schedule
TableID

Schedule table to be started

Start Absolute counter tick value at which the schedule table is started

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType

E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid
E_OS_VALUE (only in EXTENDED status): "Start" is greater
than OsCounterMaxAllowedValue
E_OS_STATE: Schedule table was already started

Description
This service starts the processing of a schedule table at an absolute value "Start"
on the underlying counter.

Available via Os.h

⌋()

[SWS_Os_00348] ⌈If the schedule table <ScheduleTableID> in a call of

StartScheduleTableAbs() is not valid, StartScheduleTableAbs() shall

return E_OS_ID. ⌋ ()

[SWS_Os_00349] ⌈If the <Start> in a call of StartScheduleTableAbs() is

greater than the OsCounterMaxAllowedValue of the underlying counter,

StartScheduleTableAbs() shall return E_OS_VALUE. ⌋ ()

[SWS_Os_00350] ⌈If the schedule table <ScheduleTableID> in a call of

StartScheduleTableAbs() is not in the state SCHEDULETABLE_STOPPED,

StartScheduleTableAbs() shall return E_OS_STATE. ⌋ ()

[SWS_Os_00351] ⌈If the input parameters of StartScheduleTableAbs() are

valid and <ScheduleTableID> is in the state SCHEDULETABLE_STOPPED,

StartScheduleTableAbs() shall start the processing of schedule table

<ScheduleTableID> when the underlying counter next equals <Start> and shall set
the state of <ScheduleTableID> to

- SCHEDULETABLE_RUNNING (for a non-synchronized / Explicitly synchronized

schedule table) OR

- SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS (for implicitly synchronized schedule

table)

Specification of Operating System
AUTOSAR CP R20-11

160 of 342 Document ID 34: AUTOSAR_SWS_OS

before returning to the user. (The Initial Expiry Point will be processed when the

underlying counter next equals <Start>+Initial Offset). ⌋ ()

[SWS_Os_00522] ⌈Availability of StartScheduleTableAbs(): Available in all

Scalability Classes. ⌋ ()

8.4.11 StopScheduleTable

[SWS_Os_00006]⌈

Service Name StopScheduleTable

Syntax

StatusType StopScheduleTable (

 ScheduleTableType ScheduleTableID

)

Service ID [hex] 0x09

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ScheduleTableID Schedule table to be stopped

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType

E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid.
E_OS_NOFUNC: Schedule table was already stopped

Description
This service cancels the processing of a schedule table immediately at any point
while the schedule table is running.

Available via Os.h

⌋()

[SWS_Os_00279] ⌈If the schedule table identifier <ScheduleTableID> in a call of

StopScheduleTable() is not valid, StopScheduleTable() shall return

E_OS_ID. ⌋ ()

[SWS_Os_00280] ⌈If the schedule table with identifier <ScheduleTableID> is in state

SCHEDULETABLE_STOPPED when calling StopScheduleTable(),

StopScheduleTable() shall return E_OS_NOFUNC. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

161 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00281] ⌈If the input parameters of StopScheduleTable() are valid,

StopScheduleTable()shall set the state of <ScheduleTableID> to

SCHEDULETABLE_STOPPED and (stop the schedule table <ScheduleTableID> from

processing any further expiry points and) shall return E_OK. ⌋ ()

[SWS_Os_00523] ⌈Availability of StopScheduleTable(): Available in all

Scalability Classes. ⌋ ()

8.4.12 NextScheduleTable

[SWS_Os_00191]⌈

Service Name NextScheduleTable

Syntax

StatusType NextScheduleTable (

 ScheduleTableType ScheduleTableID_From,

 ScheduleTableType ScheduleTableID_To

)

Service ID [hex] 0x0a

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)

ScheduleTableID_
From

Currently processed schedule table

ScheduleTableID_
To

Schedule table that provides its series of expiry points

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType

E_OK: No error
E_OS_ID (only in EXTENDED status): ScheduleTableID_
From or ScheduleTableID_To
not valid
E_OS_NOFUNC: ScheduleTableID_From not started
E_OS_STATE: ScheduleTableID_To is started or next

Description
This service switches the processing from one schedule table to another
schedule table.

Available via Os.h

⌋(SRS_Os_00099)

[SWS_Os_00282] ⌈If the input parameter <ScheduleTableID_From> or

<ScheduleTableID_To> in a call of NextScheduleTable() is not valid,

NextScheduleTable() shall return E_OS_ID. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

162 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00330] ⌈If in a call of NextScheduleTable() schedule table

<ScheduleTableID_To> is driven by different counter than schedule table

<ScheduleTableID_From> then NextScheduleTable() shall return an error

E_OS_ID. ⌋ ()

[SWS_Os_00283] ⌈If the schedule table <ScheduleTableID_From> in a call of

NextScheduleTable() is in state SCHEDULETABLE_STOPPED OR in state

SCHEDULETABLE_NEXT, NextScheduleTable() shall leave the state of

<ScheduleTable_From> and <ScheduleTable_To> unchanged and return

E_OS_NOFUNC. ⌋ ()

[SWS_Os_00309] ⌈If the schedule table <ScheduleTableID_To> in a call of

NextScheduleTable() is not in state SCHEDULETABLE_STOPPED,

NextScheduleTable() shall leave the state of <ScheduleTable_From> and

<ScheduleTable_To> unchanged and return E_OS_STATE. ⌋ ()

[SWS_Os_00484] ⌈If OsScheduleTblSyncStrategy of <ScheduleTableID_To>

in a call of NextScheduleTable() is not equal to the

OsScheduleTblSyncStrategy of <ScheduleTableID_From> then

NextScheduleTable() shall return E_OS_ID. ⌋ ()

[SWS_Os_00284] ⌈If the input parameters of NextScheduleTable() are valid

then NextScheduleTable() shall start the processing of schedule table

<ScheduleTableID_To> <ScheduleTableID_From>.FinalDelay ticks after the Final

Expiry Point on <ScheduleTableID_From> is processed and shall return E_OK.

NextScheduleTable() shall process the Initial Expiry Point on

<ScheduleTableID_To> at <ScheduleTableID_From>.Final Delay +
<ScheduleTable_To>.Initial Offset ticks after the Final Expiry Point on

<ScheduleTableID_From> is processed . ⌋ ()

[SWS_Os_00324] ⌈If the input parameters of NextScheduleTable() are valid

AND the <ScheduleTableID_From> already has a “next” schedule table then

NextScheduleTable()shall replace the previous “next” schedule table with

<ScheduleTableID_To> and shall change the old “next” schedule table state to

SCHEDULETABLE_STOPPED. ⌋ ()

[SWS_Os_00505] ⌈If OsScheduleTblSyncStrategy of the schedule tables

<ScheduleTableID_From> and <ScheduleTableID_To> in a call of

NextScheduleTable() is EXPLICIT and the Operating System module already

synchronizes <ScheduleTableID_From>, NextScheduleTable() shall continue

synchonization after the start of processing <ScheduleTableID_To>.⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

163 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00453] ⌈If the <ScheduleTableID_From> in a call of

NextScheduleTable() is stopped, NextScheduleTable() shall not start the

“next” schedule table and change its state to SCHEDULETABLE_STOPPED. ⌋ ()

[SWS_Os_00524] ⌈Availability of NextScheduleTable(): Available in all

Scalability Classes. ⌋ ()

8.4.13 StartScheduleTableSynchron

[SWS_Os_00201]⌈

Service Name StartScheduleTableSynchron

Syntax

StatusType StartScheduleTableSynchron (

 ScheduleTableType ScheduleTableID

)

Service ID [hex] 0x0b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)
ScheduleTable
ID

Schedule table to be started

Parameters
(inout)

None

Parameters (out) None

Return value StatusType

E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid
E_OS_STATE: Schedule table was already started

Description This service starts an explicitly synchronized schedule table synchronously.

Available via Os.h

⌋(SRS_Os_11002)

[SWS_Os_00387] ⌈If in a call of StartScheduleTableSynchron() the schedule

table <ScheduleTableID> is not valid OR the schedule table <ScheduleTableID> is

not explicitly synchronized (OsScheduleTblSyncStrategy != EXPLICIT)

StartScheduleTableSynchron() shall return E_OS_ID. ⌋ ()

[SWS_Os_00388] ⌈If the schedule table <ScheduleTableID> in a call of

StartScheduleTableSynchron()is not in the state SCHEDULETABLE_STOPPED,

StartScheduleTableSynchron() shall return E_OS_STATE. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

164 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00389] ⌈If <ScheduleTableID> in a call of

StartScheduleTableSynchron() is valid, StartScheduleTableSynchron()

shall set the state of <ScheduleTableID> to SCHEDULETABLE_WAITING and start the

processing of schedule table <ScheduleTableID> after the synchronization count of

the schedule table is set via SyncScheduleTable(). The Initial Expiry Point shall

be processed when (Duration-SyncValue)+InitialOffset ticks have elapsed on the
synchronization counter where:
 Duration is <ScheduleTableID>.OsScheduleTableDuration

 SyncValue is the <Value> parameter passed to the SyncScheduleTable()

 InitialOffset is the shortest expiry point offset in <ScheduleTableID>⌋ ()

[SWS_Os_00525] ⌈Availability of StartScheduleTableSynchron(): Available in

Scalability Classes 2 and 4. ⌋ ()

8.4.14 SyncScheduleTable

[SWS_Os_00199]⌈

Service Name SyncScheduleTable

Syntax

StatusType SyncScheduleTable (

 ScheduleTableType ScheduleTableID,

 TickType Value

)

Service ID [hex] 0x0c

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)

Schedule
TableID

Schedule table to be synchronized

Value The current value of the synchronization counter

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType

E_OK: No errors
E_OS_ID (only in EXTENDED status): The ScheduleTableID
was not valid or schedule
table can not be synchronized (OsScheduleTblSyncStrategy not
set or
OsScheduleTblSyncStrategy = IMPLICIT)
E_OS_VALUE (only in EXETENDED status): The <Value> is out
of range
E_OS_STATE: The state of schedule table <ScheduleTableID>
is equal to
SCHEDULETABLE_STOPPED

Specification of Operating System
AUTOSAR CP R20-11

165 of 342 Document ID 34: AUTOSAR_SWS_OS

Description
This service provides the schedule table with a synchronization count and start
synchronization.

Available via Os.h

⌋(SRS_Os_11002)

[SWS_Os_00454] ⌈If the <ScheduleTableID> in a call of SyncScheduleTable() is

not valid OR schedule table can not be explicitely synchronized

(OsScheduleTblSyncStrategy is not equal to EXPLICIT)

SyncScheduleTable() shall return E_OS_ID. ⌋ ()

[SWS_Os_00455] ⌈If the <Value> in a call of SyncScheduleTable() is greater or

equal than the OsScheduleTableDuration, SyncScheduleTable() shall return

E_OS_VALUE. ⌋ ()

[SWS_Os_00456] ⌈If the state of the schedule table <ScheduleTableID> in a call of

SyncScheduleTable() is equal to SCHEDULETABLE_STOPPED or

SCHEDULETABLE_NEXT SyncScheduleTable() shall return E_OS_STATE. ⌋ ()

[SWS_Os_00457] ⌈If the parameters in a call of SyncScheduleTable() are valid,

SyncScheduleTable() shall provide the Operating System module with the

current synchronization count for the given schedule table. (It is used to synchronize

the processing of the schedule table to the synchronization counter.) ⌋ ()

[SWS_Os_00526] ⌈Availability of SyncScheduleTable(): Available in Scalability

Classes 2 and 4. ⌋ ()

8.4.15 SetScheduleTableAsync

[SWS_Os_00422]⌈

Service Name SetScheduletableAsync

Syntax

StatusType SetScheduletableAsync (

 ScheduleTableType ScheduleTableID

)

Service ID [hex] 0x0d

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)
ScheduleTable
ID

Schedule table for which status is requested

Parameters None

Specification of Operating System
AUTOSAR CP R20-11

166 of 342 Document ID 34: AUTOSAR_SWS_OS

(inout)

Parameters (out) None

Return value StatusType
E_OK: No Error
E_OS_ID (only in EXTENDED status): Invalid Schedule
TableID

Description This service stops synchronization of a schedule table.

Available via Os.h

⌋()

[SWS_Os_00362] ⌈If SetScheduleTableAsync() is called for a running schedule

table, the Operating System module shall stop further synchronization until a

SyncScheduleTable() call is made. ⌋ ()

[SWS_Os_00323] ⌈If SetScheduleTableAsync() is called for a running schedule

table the Operating System module shall continue to process expiry points on the

schedule table. ⌋ ()

[SWS_Os_00458] ⌈If OsScheduleTblSyncStrategy of <ScheduleTableID> in a call of

SetScheduleTableAsync() is not equal to EXPLICIT OR if <ScheduleTableID> is

invalid then SetScheduleTableAsync() shall return E_OS_ID. ⌋ ()

[SWS_Os_00483] ⌈If the current state of the <ScheduleTableID> in a call of

SetScheduleTableAsync() equals to SCHEDULETABLE_STOPPED,

SCHEDULETABLE_NEXT or SCHEDULETABLE_WAITING then

SetScheduleTableAsync() shall return E_OS_STATE. ⌋ ()

[SWS_Os_00300] ⌈If the current state of <ScheduleTableID> in a call of

SetScheduleTableAsync() equals SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS (or

SCHEDULETABLE_RUNNING) then SetScheduleTableAsync() shall set (or keep in

case of SCHEDULETABLE_RUNNING) the status of <ScheduleTableID> to

SCHEDULETABLE_RUNNING. ⌋ ()

[SWS_Os_00527] ⌈Availability of SetScheduleTableAsync(): Available in

Scalability Classes 2 and 4. ⌋ ()

8.4.16 GetScheduleTableStatus

[SWS_Os_00227]⌈

Service Name GetScheduleTableStatus

Specification of Operating System
AUTOSAR CP R20-11

167 of 342 Document ID 34: AUTOSAR_SWS_OS

Syntax

StatusType GetScheduleTableStatus (

 ScheduleTableType ScheduleTableID,

 ScheduleTableStatusRefType ScheduleStatus

)

Service ID [hex] 0x0e

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)
ScheduleTable
ID

Schedule table for which status is requested

Parameters
(inout)

None

Parameters (out) ScheduleStatus Reference to ScheduleTableStatusType

Return value StatusType
E_OK: No Error
E_OS_ID (only in EXTENDED status): Invalid Schedule
TableID

Description
This service queries the state of a schedule table (also with respect to
synchronization).

Available via Os.h

⌋(SRS_Os_11002)

[SWS_Os_00289] ⌈If the schedule table <ScheduleTableID> in a call of

GetScheduleTableStatus() is NOT started, GetScheduleTableStatus()

shall pass back SCHEDULETABLE_STOPPED via the reference parameter

<ScheduleStatus> AND shall return E_OK. ⌋ ()

[SWS_Os_00353] ⌈If the schedule table <ScheduleTableID> in a call of

GetScheduleTableStatus() was used in a NextScheduleTable() call AND

waits for the end of the current schedule table, GetScheduleTableStatus() shall

return SCHEDULETABLE_NEXT via the reference parameter <ScheduleStatus> AND

shall return E_OK. ⌋ ()

[SWS_Os_00354] ⌈If the schedule table <ScheduleTableID> in a call of

GetScheduleTableStatus() is configured with explicit synchronization AND

<ScheduleTableID> was started with StartScheduleTableSynchron()AND no

synchronization count was provided to the Operating System,

GetScheduleTableStatus() shall return SCHEDULETABLE_WAITING via the

reference parameter <ScheduleStatus> AND shall return E_OK. ⌋ ()

[SWS_Os_00290] ⌈If the schedule table <ScheduleTableID> in a call of

GetScheduleTableStatus() is started AND synchronous,

GetScheduleTableStatus() shall pass back

Specification of Operating System
AUTOSAR CP R20-11

168 of 342 Document ID 34: AUTOSAR_SWS_OS

SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS via the reference parameter

<ScheduleStatus> AND shall return E_OK. ⌋ ()

[SWS_Os_00291] ⌈If the schedule table <ScheduleTableID> in a call of

GetScheduleTableStatus() is started AND NOT synchronous (deviation is not

within the precision interval OR the schedule table has been set asynchronous),

GetScheduleTableStatus() shall pass back SCHEDULETABLE_RUNNING via the

reference parameter ScheduleStatus AND shall return E_OK. ⌋ ()

[SWS_Os_00293] ⌈If the identifier <ScheduleTableID> in a call of

GetScheduleTableStatus() is NOT valid, GetScheduleTableStatus() shall

return E_OS_ID. ⌋ ()

[SWS_Os_00528] ⌈Availability of GetScheduleTableStatus():Available in all

Scalability Classes. ⌋ ()

8.4.17 IncrementCounter

[SWS_Os_00399]⌈

Service Name IncrementCounter

Syntax

StatusType IncrementCounter (

 CounterType CounterID

)

Service ID
[hex]

0x0f

Sync/Async Synchronous, may cause rescheduling

Reentrancy Reentrant

Parameters
(in)

Counter
ID

The Counter to be incremented

Parameters
(inout)

None

Parameters
(out)

None

Return value
Status-
Type

E_OK: No errors
E_OS_ID (only in EXTENDED status): The CounterID was not valid or
counter is implemented in hardware and can not be incremented by
software

Description This service increments a software counter.

Available via Os.h

⌋()

Specification of Operating System
AUTOSAR CP R20-11

169 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00285] ⌈If the input parameter <CounterID> in a call of

IncrementCounter() is not valid OR the counter is a hardware counter,

IncrementCounter() shall return E_OS_ID. ⌋ ()

[SWS_Os_00286] ⌈If the input parameter of IncrementCounter() is valid,

IncrementCounter() shall increment the counter <CounterID> by one (if any

alarm connected to this counter expires, the given action, e.g. task activation, is

done) and shall return E_OK. ⌋ (SRS_Os_11020)

[SWS_Os_00321] ⌈If in a call of IncrementCounter() an error happens during the

execution of an alarm action, e.g. E_OS_LIMIT caused by a task activation,

IncrementCounter() shall call the error hook(s), but the IncrementCounter()

service itself shall return E_OK. ⌋ ()

[SWS_Os_00529] ⌈Caveats of IncrementCounter(): If called from a task,

rescheduling may take place. ⌋ ()

[SWS_Os_00530] ⌈Availability of IncrementCounter(): Available in all Scalability

Classes. ⌋ ()

8.4.18 GetCounterValue

[SWS_Os_00383]⌈

Service Name GetCounterValue

Syntax

StatusType GetCounterValue (

 CounterType CounterID,

 TickRefType Value

)

Service ID
[hex]

0x10

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

CounterID The Counter which tick value should be read

Parameters
(inout)

None

Parameters
(out)

Value Contains the current tick value of the counter

Return value StatusType
E_OK: No errors
E_OS_ID (only in EXTENDED status): The <CounterID> was not

Specification of Operating System
AUTOSAR CP R20-11

170 of 342 Document ID 34: AUTOSAR_SWS_OS

valid

Description
This service reads the current count value of a counter (returning either the
hardware timer ticks if counter is driven by hardware or the software ticks when
user drives counter).

Available via Os.h

⌋(SRS_Frt_00025)

[SWS_Os_00376] ⌈If the input parameter <CounterID> in a call of

GetCounterValue() is not valid, GetCounterValue() shall return E_OS_ID. ⌋ ()

[SWS_Os_00377] ⌈If the input parameter <CounterID> in a call of

GetCounterValue() is valid, GetCounterValue() shall return the current tick

value of the counter via <Value> and return E_OK. ⌋ (SRS_Frt_00033)

[SWS_Os_00531] ⌈Caveats of GetCounterValue(): Note that for counters of

OsCounterType = HARDWARE the real timer value (the – possibly adjusted –

hardware value, see SWS_Os_00384) is returned, whereas for counters of

OsCounterType = SOFTWARE the current “software” tick value is returned. ⌋ ()

[SWS_Os_00532] ⌈Availability of GetCounterValue(): Available in all Scalability

Classes. ⌋ ()

8.4.19 GetElapsedValue

[SWS_Os_00392]⌈

Service Name GetElapsedValue

Syntax

StatusType GetElapsedValue (

 CounterType CounterID,

 TickRefType Value,

 TickRefType ElapsedValue

)

Service ID [hex] 0x11

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) CounterID The Counter to be read

Parameters
(inout)

Value
in: the previously read tick value of the counter out: the current tick
value of the counter

Parameters
(out)

Elapsed
Value

The difference to the previous read value

Specification of Operating System
AUTOSAR CP R20-11

171 of 342 Document ID 34: AUTOSAR_SWS_OS

Return value StatusType

E_OK: No errors
E_OS_ID (only in EXTENDED status): The CounterID was not
valid
E_OS_VALUE (only in EXTENDED status): The given Value was
not valid

Description
This service gets the number of ticks between the current tick value and a
previously read tick value.

Available via Os.h

⌋(SRS_Frt_00025)

[SWS_Os_00381] ⌈If the input parameter <CounterID> in a call of

GetElapsedValue() is not valid GetElapsedValue() shall return E_OS_ID. ⌋ ()

[SWS_Os_00391] ⌈If the <Value> in a call of GetElapsedValue() is larger than the

max allowed value of the <CounterID>, GetElapsedValue() shall return

E_OS_VALUE. ⌋ ()

[SWS_Os_00382] ⌈If the input parameters in a call of GetElapsedValue() are

valid, GetElapsedValue() shall return the number of elapsed ticks since the given

<Value> value via <ElapsedValue> and shall return E_OK. ⌋ (SRS_Frt_00034)

[SWS_Os_00460] ⌈GetElapsedValue() shall return the current tick value of the

counter in the <Value> parameter. ⌋ ()

[SWS_Os_00533] ⌈Caveats of GetElapsedValue():If the timer already passed the

<Value> value a second (or multiple) time, the result returned is wrong. The reason is

that the service can not detect such a relative overflow. ⌋ ()

[SWS_Os_00534] ⌈Availability of GetElapsedValue(): Available in all Scalability

Classes. ⌋ ()

8.4.20 TerminateApplication

[SWS_Os_00258]⌈

Service Name TerminateApplication

Syntax

StatusType TerminateApplication (

 ApplicationType Application,

 RestartType RestartOption

)

Service ID
[hex]

0x12

Specification of Operating System
AUTOSAR CP R20-11

172 of 342 Document ID 34: AUTOSAR_SWS_OS

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Application
The identifier of the OS-Application to be terminated. If the caller
belongs to <Application> the call results in a self termination.

Restart
Option

Either RESTART for doing a restart of the OS-Application or NO_
RESTART if OS-Application shall not be restarted.

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType

E_OK: No errors
E_OS_ID: <Application> was not valid (only in EXTENDED status)
E_OS_VALUE: <RestartOption> was neither RESTART nor NO_
RESTART (only in EXTENDED status)
E_OS_ACCESS: The caller does not have the right to terminate
<Application> (only in EXTENDED status)
E_OS_STATE: The state of <Application> does not allow
terminating <Application>

Description
This service terminates the OS-Application to which the calling Task/Category 2
ISR/application specific error hook belongs.

Available via Os.h

⌋()

[SWS_Os_00493] ⌈If the input parameter <Application> in a call of

TerminateApplication() is not valid TerminateApplication() shall return

E_OS_ID. ⌋ ()

[SWS_Os_00459] ⌈If the <RestartOption> in a call of TerminateApplication() is

invalid, TerminateApplication() shall return E_OS_VALUE. ⌋ ()

[SWS_Os_00494] ⌈If the input parameter <Application> in a call of

TerminateApplication() is valid AND the caller belongs to a non-trusted OS-

Application AND the caller does not belong to <Application>

TerminateApplication() shall return E_OS_ACCESS. ⌋ ()

[SWS_Os_00507] ⌈If the state of <Application> in a call of

TerminateApplication() is APPLICATION_TERMINATED

TerminateApplication() shall return E_OS_STATE. ⌋ ()

[SWS_Os_00508] ⌈If the state of <Application> in a call of

TerminateApplication() is APPLICATION_RESTARTING and the caller does not

Specification of Operating System
AUTOSAR CP R20-11

173 of 342 Document ID 34: AUTOSAR_SWS_OS

belong to the <Application> then TerminateApplication() shall return

E_OS_STATE. ⌋ ()

[SWS_Os_00548] ⌈If the state of <Application> in a call of

TerminateApplication() is APPLICATION_RESTARTING AND the caller does

belong to the <Application> AND the <RestartOption> is equal RESTART then

TerminateApplication() shall return E_OS_STATE. ⌋ ()

[SWS_Os_00287] ⌈If the parameters in a call of TerminateApplication() are

valid and the above criteria are met TerminateApplication() shall terminate

<Application> (i.e. to kill all tasks, disable the interrupt sources of those ISRs which
belong to the OS-Application and free all other OS resources associated with the

application) AND shall activate the configured OsRestartTask of <Application> if

<RestartOption> equals RESTART. If no OsRestartTask is configured, no restart

shall happen. If the <Application> is restarted, its state is set to

APPLICATION_RESTARTING otherwise to APPLICATION_TERMINATED. If the caller

belongs to <Application> TerminateApplication() shall not return, otherwise it

shall return E_OK.⌋ ()

[SWS_Os_00535] ⌈Caveats of TerminateApplication():

 If no applications are configured the implementation shall make sure that this
service is not available.
 Tasks and interrupts that are owned by a trusted application can terminate any
OS-Application. Tasks and interrupts that are owned by a non-trusted application can

only terminate their owning OS-Application. ⌋ ()

Note: Although trusted OS-Application can be forcibly terminated by Tasks/Interrupts
of other trusted OS-Applications it is not recommended. This may have further
impacts, e.g. to users who are currently part of such an OS-Application via a

CallTrustedFunction() call.

[SWS_Os_00536] ⌈Availability of TerminateApplication(): Available in

Scalability Classes 3 and 4. ⌋ ()

8.4.21 AllowAccess

[SWS_Os_00501]⌈

Service Name AllowAccess

Syntax

StatusType AllowAccess (

 void

)

Service ID [hex] 0x13

Sync/Async Synchronous

Specification of Operating System
AUTOSAR CP R20-11

174 of 342 Document ID 34: AUTOSAR_SWS_OS

Reentrancy Reentrant

Parameters (in) None

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType
E_OK: No errors
E_OS_STATE:The OS-Application of the caller is in the wrong
state

Description
This service sets the own state of an OS-Application from APPLICATION_
RESTARTING to APPLICATION_ACCESSIBLE.

Available via Os.h

⌋()

[SWS_Os_00497] ⌈If the state of the OS-Application of the caller of

AllowAccess() is not APPLICATION_RESTARTING AllowAccess() shall return

E_OS_STATE. ⌋ ()

[SWS_Os_00498] ⌈If the state of the OS-Application of the caller of

AllowAccess() is APPLICATION_RESTARTING, AllowAccess() shall set the

state to APPLICATION_ACCESSIBLE and allow other OS-Applications to access the

configured objects of the callers OS-Application. ⌋ ()

[SWS_Os_00547] ⌈Availability of AllowAccess(): Available in Scalability Classes 3

and 4. ⌋ ()

8.4.22 GetApplicationState

[SWS_Os_00499]⌈

Service Name GetApplicationState

Syntax

StatusType GetApplicationState (

 ApplicationType Application,

 ApplicationStateRefType Value

)

Service ID [hex] 0x14

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Application The OS-Application from which the state is requested

Specification of Operating System
AUTOSAR CP R20-11

175 of 342 Document ID 34: AUTOSAR_SWS_OS

Parameters (inout) None

Parameters (out) Value The current state of the application

Return value StatusType
E_OK: No errors
E_OS_ID: <Application> is not valid (only in EXTENDED status)

Description This service returns the current state of an OS-Application.

Available via Os.h

⌋()

[SWS_Os_00495] ⌈If the <Application> in a call of GetApplicationState() is not

valid GetApplicationState() shall return E_OS_ID. ⌋ ()

[SWS_Os_00496] ⌈If the parameters in a call of GetApplicationState() are

valid, GetApplicationState() shall return the state of OS-Application

<Application> in <Value>.⌋ ()

[SWS_Os_00537] ⌈Availability of GetApplicationState(): Available in Scalability

Classes 3 and 4. ⌋ ()

8.4.23 GetNumberOfActivatedCores

[SWS_Os_00672]⌈

Service Name GetNumberOfActivatedCores

Syntax

uint32 GetNumberOfActivatedCores (

 void

)

Service ID [hex] 0x15

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters
(inout)

None

Parameters
(out)

None

Return value uint32 Number of cores activated by the StartCore function (see below)

Description
The function returns the number of cores activated by the StartCore function.
This function might be a macro.

Specification of Operating System
AUTOSAR CP R20-11

176 of 342 Document ID 34: AUTOSAR_SWS_OS

Available via Os.h

⌋(SRS_Os_80001)

The function GetNumberOfActivatedCores shall be callable from within a TASK

and an ISR cat 2. Otherwise the behavior is unspecified.

[SWS_Os_00673] ⌈The return value of GetNumberOfActivatedCores shall be

less or equal to the configured value of “OsNumberOfCores”. ⌋ (SRS_Os_80001)

8.4.24 GetCoreID

[SWS_Os_00674]⌈

Service Name GetCoreID

Syntax

CoreIdType GetCoreID (

 void

)

Service ID [hex] 0x16

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value CoreIdType The return value is the unique ID of the core.

Description The function returns a unique core identifier.

Available via Os.h

⌋(SRS_Os_80001)

[SWS_Os_00675] ⌈The function GetCoreID shall return the unique logical CoreID of
the core on which the function is called. The mapping of physical cores to logical

CoreIDs is implementation specific. ⌋ (SRS_Os_80001)

8.4.25 StartCore

[SWS_Os_00676]⌈

Service
Name

StartCore

Syntax void StartCore (

Specification of Operating System
AUTOSAR CP R20-11

177 of 342 Document ID 34: AUTOSAR_SWS_OS

 CoreIdType CoreID,

 StatusType* Status

)

Service ID
[hex]

0x17

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

CoreID Core identifier

Parameters
(inout)

None

Parameters
(out)

Status

Return value of the function in extended status: E_OK: No Error E_OS_ID:
Core ID is invalid. E_OS_ACCESS: The function was called after starting
the OS. E_OS_STATE: The Core is already activated.
Return value of the function in standard status E_OK: No Error

Return value None

Description

It is not supported to call this function after StartOS(). The function starts the core
specified by the parameter CoreID. The OUT parameter allows the caller to check
whether the operation was successful or not. If a core is started by means of this
function StartOS shall be called on the core.

Available via Os.h

⌋(SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00677] ⌈The function StartCore shall start one core that shall run under

the control of the AUTOSAR OS. ⌋ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00678] ⌈Calls to the StartCore function after StartOS() shall

return with E_OS_ACCESS and the core shall not be started. ⌋ (SRS_Os_80006,

SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00679] ⌈If the parameter CoreIDs refers to a core that was already

started by the function StartCore the related core is ignored and E_OS_STATE

shall be returned. ⌋ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00680] ⌈If the parameter CoreID refers to a core that was already

started by the function StartNonAutosarCore the related core is ignored and

E_OS_STATE shall be returned. ⌋ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00681] ⌈There is no call to the ErrorHook() if an error occurs during

StartCore();⌋ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

Specification of Operating System
AUTOSAR CP R20-11

178 of 342 Document ID 34: AUTOSAR_SWS_OS

8.4.26 StartNonAutosarCore

[SWS_Os_00682]⌈

Service
Name

StartNonAutosarCore

Syntax

void StartNonAutosarCore (

 CoreIdType CoreID,

 StatusType* Status

)

Service ID
[hex]

0x18

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

CoreID Core identifier

Parameters
(inout)

None

Parameters
(out)

Status
Return value of the function in standard status: E_OK: No Error E_OS_
ID: Core ID is invalid. E_OS_STATE: The Core is already activated.
Return value of the function in extended status E_OK: No Error

Return value None

Description

The function starts the core specified by the parameter CoreID. It is allowed to call
this function after StartOS(). The OUT parameter allows the caller to check whether
the operation was successful or not. It is not allowed to call StartOS on cores
activated by StartNonAutosarCore. Otherwise the behaviour is unspecified.

Available via Os.h

⌋(SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00683] ⌈The function StartNonAutosarCore shall start a core that is

not controlled by the AUTOSAR OS. ⌋ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00684] ⌈If the parameter CoreID refers to a core that was already

started by the function StartNonAutosarCore has no effect and sets “Status” to

E_OS_STATE. ⌋ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00685] ⌈If the parameter CoreID refers to an unknown core the function

StartNonAutosarCore has no effect and sets “Status” to E_OS_ID. ⌋

(SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

8.4.27 GetSpinlock

[SWS_Os_00686]⌈

Specification of Operating System
AUTOSAR CP R20-11

179 of 342 Document ID 34: AUTOSAR_SWS_OS

Service
Name

GetSpinlock

Syntax

StatusType GetSpinlock (

 SpinlockIdType SpinlockId

)

Service ID
[hex]

0x19

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Spinlock
Id

The value refers to the spinlock instance that shall be locked.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Status-
Type

E_OK - In standard and extended status : No Error
E_OS_ID - In extended status: The SpinlockId is invalid
E_OS_INTERFERENCE_DEADLOCK - In extended status: A TASK
tries to occupy the spinlock while the lock is already occupied by a
TASK on the same core. This would cause a deadlock.
E_OS_NESTING_DEADLOCK - In extended status: A TASK tries to
occupy the spinlock while a TASK on the same core is holding a
different spinlock in a way that may cause a deadlock.
E_OS_ACCESS - In extended status: The spinlock cannot be accessed.

Description
GetSpinlock tries to occupy a spin-lock variable. If the function returns, either the
lock is successfully taken or an error has occurred. The spinlock mechanism is an
active polling mechanism. The function does not cause a de-scheduling.

Available via Os.h

⌋(SRS_Os_80021)

[SWS_Os_00687] ⌈The function GetSpinlock shall occupy a spinlock. If the

spinlock is already occupied the function shall busy wait until the spinlock becomes

available. ⌋ (SRS_Os_80021)

[SWS_Os_00688] ⌈The function GetSpinlock shall return E_OK if no error was

detected. The spinlock is now occupied by the calling TASK/ISR2 on the calling core.

⌋ (SRS_Os_80021)

[SWS_Os_00689] ⌈The function GetSpinlock shall return E_OS_ID if the

parameter SpinlockID refers to a spinlock that does not exist. ⌋ (SRS_Os_80021)

[SWS_Os_00690] ⌈The function GetSpinlock shall return

E_OS_INTERFERENCE_DEADLOCK if the spinlock referred by the parameter

Specification of Operating System
AUTOSAR CP R20-11

180 of 342 Document ID 34: AUTOSAR_SWS_OS

SpinlockID is already occupied by a TASK/ISR2 on the same core. ⌋

(SRS_Os_80021)

[SWS_Os_00691] ⌈The function GetSpinlock shall return

E_OS_NESTING_DEADLOCK if the sequence by which multiple spinlocks are

occupied at the same time on one core do not comply with the configured order. ⌋
(SRS_Os_80021)

[SWS_Os_00692] ⌈The function GetSpinlock shall return E_OS_ACCESS if the

accessing OS-Application was not listed in the configuration (OsSpinlock). ⌋
(SRS_Os_80021)

[SWS_Os_00693] ⌈It shall be allowed to call the function GetSpinlock while

interrupts are disabled. ⌋ (SRS_Os_80021)

[SWS_Os_00694] ⌈It shall be allowed to call the function GetSpinlock while a

RESOURCE is occupied. ⌋ (SRS_Os_80021)

8.4.28 ReleaseSpinlock

[SWS_Os_00695]⌈

Service
Name

ReleaseSpinlock

Syntax

StatusType ReleaseSpinlock (

 SpinlockIdType SpinlockId

)

Service ID
[hex]

0x1a

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

SpinlockId The value refers to the spinlock instance that shall be locked.

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType

E_OK - In standard and extended status: No Error
E_OS_ID - In extended status: The SpinlockId is invalid.
E_OS_STATE - In extended status: The Spinlock is not occupied by
the TASK
E_OS_ACCESS - In extended status: The Spinlock cannot be
accessed.
E_OS_NOFUNC - In extended status: Attempt to release a spinlock

Specification of Operating System
AUTOSAR CP R20-11

181 of 342 Document ID 34: AUTOSAR_SWS_OS

while another spinlock (or resource) has to be released before.

Description

ReleaseSpinlock releases a spinlock variable that was occupied before. Before
terminating a TASK all spinlock variables that have been occupied with Get
Spinlock() shall be released. Before calling WaitEVENT all Spinlocks shall be
released.

Available via Os.h

⌋(SRS_Os_80021)

[SWS_Os_00696] ⌈The function ReleaseSpinlock shall release a spinlock that

has been occupied by the same (calling) TASK. If the related GetSpinlock call

used configured locks (ECUC_Os_01038) the function shall also perform the undo of

the used lock.⌋ (SRS_Os_80021)

[SWS_Os_00697] ⌈The function ReleaseSpinlock shall return E_OK if no error

was detected. The spinlock is now free and can be occupied by the same or other

TASKs. ⌋ (SRS_Os_80021)

[SWS_Os_00698] ⌈The function ReleaseSpinlock shall return E_OS_ID if the

parameter SpinlockID refers to a spinlock that does not exist. ⌋ (SRS_Os_80021)

[SWS_Os_00699] ⌈The function ReleaseSpinlock shall return E_OS_STATE if the

parameter SpinlockID refers to a spinlock that is not occupied by the calling TASK.

⌋ (SRS_Os_80021)

[SWS_Os_00700] ⌈The function ReleaseSpinlock shall return E_OS_ACCESS if

the TASK has no access to the spinlock referred by the parameter SpinlockID⌋

(SRS_Os_80021)

[SWS_Os_00701] ⌈The function ReleaseSpinlock shall return E_OS_NOFUNC if

the TASK tries to release a spinlock while another spinlock (or resource) has to be

released before. No functionality shall be performed. ⌋ (SRS_Os_80021)

8.4.29 TryToGetSpinlock

[SWS_Os_00703]⌈

Service
Name

TryToGetSpinlock

Syntax

StatusType TryToGetSpinlock (

 SpinlockIdType SpinlockId,

 TryToGetSpinlockType* Success

)

Specification of Operating System
AUTOSAR CP R20-11

182 of 342 Document ID 34: AUTOSAR_SWS_OS

Service ID
[hex]

0x1b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Spinlock
Id

The value refers to the spinlock instance that shall be locked.

Parameters
(inout)

None

Parameters
(out)

Success Returns if the lock has been occupied or not

Return value
Status-
Type

E_OK - In standard and extended status: No Error
E_OS_ID - In extended status: The SpinlockId is invalid.
E_OS_INTERFERENCE_DEADLOCK - In extended status: A TASK
tries to occupy the spinlock while the lock is already occupied by a
TASK on the same core. This would cause a deadlock.
E_OS_NESTING_DEADLOCK - In extended status: A TASK tries to
occupy a spinlock while holding a different spinlock in a way that may
cause a deadlock.
E_OS_ACCESS - In extended status: The spinlock cannot be accessed.

Description
TryToGetSpinlock has the same functionality as GetSpinlock with the difference that
if the spinlock is already occupied by a TASK on a different core the function sets
the OUT parameter "Success" and returns with E_OK.

Available via Os.h

⌋(SRS_Os_80021)

[SWS_Os_00704] ⌈The function TryToGetSpinlock shall atomically test the

availability of the spinlock and if available occupy it. The result of success is returned.

⌋ (SRS_Os_80021)

[SWS_Os_00705] ⌈The function TryToGetSpinlock shall set the OUT parameter

“Success” to TRYTOGETSPINLOCK_SUCCESS if the spinlock was successfully

occupied, and TRYTOGETSPINLOCK_NOSUCCESS if not. In both cases E_OK shall

be returned. ⌋ (SRS_Os_80021)

[SWS_Os_00706] ⌈If the function TryToGetSpinlock does not return E_OK, the

OUT parameter "Success" shall be undefined. ⌋ (SRS_Os_80021)

[SWS_Os_00707] ⌈The function TryToGetSpinlock shall return E_OS_ID if the

parameter SpinlockID refers to a spinlock that does not exist. ⌋ (SRS_Os_80021)

Specification of Operating System
AUTOSAR CP R20-11

183 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00708] ⌈The function TryToGetSpinlock shall return

E_OS_INTERFERENCE_DEADLOCK if the spinlock referred by the parameter

SpinlockID is already occupied by a TASK on the same core. ⌋ (SRS_Os_80021)

[SWS_Os_00709] ⌈The function TryToGetSpinlock shall return

E_OS_NESTING_DEADLOCK if a TASK tries to occupy a spinlock while holding a

different spinlock in a way that may cause a deadlock. ⌋ (SRS_Os_80021)

[SWS_Os_00710] ⌈The function TryToGetSpinlock shall return E_OS_ACCESS if

the TASK has no access to the spinlock referred by the parameter SpinlockID⌋

(SRS_Os_80021)

[SWS_Os_00711] ⌈It shall be allowed to call the function TryToGetSpinlock while

interrupts are disabled. ⌋ (SRS_Os_80021)

[SWS_Os_00712] ⌈It shall be allowed to call the function TryToGetSpinlock while

a RESOURCE is occupied. ⌋ (SRS_Os_80021)

8.4.30 ShutdownAllCores

[SWS_Os_00713]⌈

Service Name ShutdownAllCores

Syntax

void ShutdownAllCores (

 StatusType Error

)

Service ID
[hex]

0x1c

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Error <Error> needs to be a valid error code supported by the AUTOSAR OS.

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
After this service the OS on all AUTOSAR cores is shut down. Allowed at TASK
level and ISR level and also internally by the OS. The function will never return. The
function will force other cores into a shutdown.

Available via Os.h

Specification of Operating System
AUTOSAR CP R20-11

184 of 342 Document ID 34: AUTOSAR_SWS_OS

⌋(SRS_Os_80007)

[SWS_Os_00714] ⌈A Synchronized shutdown shall be triggered by the API function

ShutdownAllCores. ⌋ (SRS_Os_80007)

[SWS_Os_00715] ⌈ShutdownAllCores shall not return. ⌋ (SRS_Os_80007)

[SWS_Os_00716] ⌈If ShutdownAllCores is called from non trusted

code the call shall be ignored. ⌋ (SRS_Os_80007)

8.4.31 ControlIdle

[SWS_Os_00769]⌈

Service
Name

ControlIdle

Syntax

StatusType ControlIdle (

 CoreIdType CoreID,

 IdleModeType IdleMode

)

Service ID
[hex]

0x1d

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

CoreID selects the core which idle mode is set

IdleMode the mode which shall be performed during idle time

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType
E_OK: No Error
E_OS_ID (only EXTENDED status): Invalid core and/or invalid idle
Mode

Description

This API allows the caller to select the idle mode action which is performed during
idle time of the OS (e.g. if no Task/ISR is active). It can be used to implement energy
savings. The real idle modes are hardware dependent and not standardized. The
default idle mode on each core is IDLE_NO_HALT.

Available via Os.h

⌋()

Specification of Operating System
AUTOSAR CP R20-11

185 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00770] ⌈The function ControlIdle shall return E_OK if no error was

detected and the parameters are valid⌋ (SRS_Os_80023)

[SWS_Os_00771] ⌈The function ControlIdle shall return E_OS_ID if the

parameter CoreID or IdleMode is invalid (e.g. refered core does not exist;

idlemode is not known). In single core systems the check of CoreID shall be

omitted.⌋ (SRS_Os_80023)

[SWS_Os_00802]⌈ If the core (given by CoreID) is already in another idle mode

(different to the given IdleMode) the new IdleMode shall become effective the next

time that core enters the idle mode.⌋ (SRS_Os_80023)

8.4.32 ReadPeripheralX

[SWS_Os_91013]⌈

Service Name ReadPeripheral8

Syntax

StatusType ReadPeripheral8 (

 AreaIdType Area,

 const uint8* Address,

 uint8* ReadValue

)

Service ID [hex] 0x28

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)
Area hardware peripheral area reference

Address memory address

Parameters
(inout)

None

Parameters (out)
Read
Value

content of the given memory location (<Address>)

Return value
Status-
Type

E_OK No error
E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description This service returns the content of a given memory location (<Address>).

Available via Os.h

⌋(SRS_Os_11005)

Specification of Operating System
AUTOSAR CP R20-11

186 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_91015]⌈

Service Name ReadPeripheral16

Syntax

StatusType ReadPeripheral16 (

 AreaIdType Area,

 const uint16* Address,

 uint16* ReadValue

)

Service ID [hex] 0x29

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)
Area hardware peripheral area reference

Address memory address

Parameters
(inout)

None

Parameters (out)
Read
Value

content of the given memory location (<Address>)

Return value
Status-
Type

E_OK No error
E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description This service returns the content of a given memory location (<Address>).

Available via Os.h

⌋(SRS_Os_11005)

[SWS_Os_91014]⌈

Service Name ReadPeripheral32

Syntax

StatusType ReadPeripheral32 (

 AreaIdType Area,

 const uint32* Address,

 uint32* ReadValue

)

Service ID [hex] 0x2a

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Area hardware peripheral area reference

Specification of Operating System
AUTOSAR CP R20-11

187 of 342 Document ID 34: AUTOSAR_SWS_OS

Address memory address

Parameters
(inout)

None

Parameters (out)
Read
Value

content of the given memory location (<Address>)

Return value
Status-
Type

E_OK No error
E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description This service returns the content of a given memory location (<Address>).

Available via Os.h

⌋(SRS_Os_11005)

8.4.33 WritePeripheralX

[SWS_Os_91010]⌈

Service Name WritePeripheral8

Syntax

StatusType WritePeripheral8 (

 AreaIdType Area,

 uint8* Address,

 uint8 WriteValue

)

Service ID [hex] 0x2b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)
Area hardware peripheral area reference

Address memory address

Parameters
(inout)

None

Parameters (out)
Write
Value

value to be written at the memory address

Return value
Status-
Type

E_OK No error
E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access

Specification of Operating System
AUTOSAR CP R20-11

188 of 342 Document ID 34: AUTOSAR_SWS_OS

the given

Description
This service writes the <value> to a given memory location (<memory
address>).

Available via Os.h

⌋(SRS_Os_11005)

[SWS_Os_91012]⌈

Service Name WritePeripheral16

Syntax

StatusType WritePeripheral16 (

 AreaIdType Area,

 uint16* Address,

 uint16 WriteValue

)

Service ID [hex] 0x2c

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)
Area hardware peripheral area reference

Address memory address

Parameters
(inout)

None

Parameters (out)
Write
Value

value to be written at the memory address

Return value
Status-
Type

E_OK No error
E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description
This service writes the <value> to a given memory location (<memory
address>).

Available via Os.h

⌋(SRS_Os_11005)

[SWS_Os_91011]⌈

Service Name WritePeripheral32

Syntax

StatusType WritePeripheral32 (

 AreaIdType Area,

 uint32* Address,

 uint32 WriteValue

Specification of Operating System
AUTOSAR CP R20-11

189 of 342 Document ID 34: AUTOSAR_SWS_OS

)

Service ID [hex] 0x2d

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)
Area hardware peripheral area reference

Address memory address

Parameters
(inout)

None

Parameters (out)
Write
Value

content of the given memory location (<Address>)

Return value
Status-
Type

E_OK No error
E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description
This service writes the <value> to a given memory location (<memory
address>).

Available via Os.h

⌋(SRS_Os_11005)

8.4.34 ModifyPeripheralX

[SWS_Os_91016]⌈

Service Name ModifyPeripheral8

Syntax

StatusType ModifyPeripheral8 (

 AreaIdType Area,

 uint8* Address,

 uint8 Clearmask,

 uint8 Setmask

)

Service ID
[hex]

0x2e

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Area hardware peripheral area reference

Address memory address

Specification of Operating System
AUTOSAR CP R20-11

190 of 342 Document ID 34: AUTOSAR_SWS_OS

Clearmask memory address will be modified by an bit-AND

Setmask memory address will be modified by an bit-OR

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType

E_OK No error
E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description
This service modifies a given memory location (<memory address>) with the
formula: *<Address> = ((*<Address> & <clearmask>) | <setmask>)

Available via Os.h

⌋(SRS_Os_11005)

[SWS_Os_91018]⌈

Service Name ModifyPeripheral16

Syntax

StatusType ModifyPeripheral16 (

 AreaIdType Area,

 uint16* Address,

 uint16 Clearmask,

 uint16 Setmask

)

Service ID
[hex]

0x35

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Area hardware peripheral area reference

Address memory address

Clearmask memory address will be modified by an bit-AND

Setmask memory address will be modified by an bit-OR

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType
E_OK No error
E_OS_ID Area id is out of range (EXTENDED status)

Specification of Operating System
AUTOSAR CP R20-11

191 of 342 Document ID 34: AUTOSAR_SWS_OS

E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description
This service modifies a given memory location (<memory address>) with the
formula: *<Address> = ((*<Address> & <clearmask>) | <setmask>)

Available via Os.h

⌋(SRS_Os_11005)

[SWS_Os_91017]⌈

Service Name ModifyPeripheral32

Syntax

StatusType ModifyPeripheral32 (

 AreaIdType Area,

 uint32* Address,

 uint32 Clearmask,

 uint32 Setmask

)

Service ID
[hex]

0x2f

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Area hardware peripheral area reference

Address memory address

Clearmask memory address will be modified by an bit-AND

Setmask memory address will be modified by an bit-OR

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType

E_OK No error
E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description
This service modifies a given memory location (<memory address>) with the
formula: *<Address> = ((*<Address> & <clearmask>) | <setmask>)

Available via Os.h

Specification of Operating System
AUTOSAR CP R20-11

192 of 342 Document ID 34: AUTOSAR_SWS_OS

⌋(SRS_Os_11005)

8.4.35 EnableInterruptSource

[SWS_Os_91020]⌈

Service Name EnableInterruptSource

Syntax

StatusType EnableInterruptSource (

 ISRType ISRID,

 boolean ClearPending

)

Service ID
[hex]

0x31

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)

ISRID The ID of a category 2 ISR.

Clear
Pending

Defines whether the pending flag shall be cleared (TRUE) or not
(FALSE).

Parameters
(inout)

None

Parameters
(out)

None

Return value StatusType

E_OK No error.
E_OS_ID ISRID is not a valid category 2 ISR identifier (EXTENDED
status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling application is not the owner of the ISR
passed in ISRID (Service Protection)

Description
Enables the interrupt source by modifying the interrupt controller registers.
Additionally it may clear the interrupt pending flag

Available via Os.h

⌋(SRS_Os_11011)

8.4.36 DisableInterruptSource

[SWS_Os_91019]⌈

Service Name DisableInterruptSource

Syntax

StatusType DisableInterruptSource (

 ISRType ISRID

)

Specification of Operating System
AUTOSAR CP R20-11

193 of 342 Document ID 34: AUTOSAR_SWS_OS

Service ID [hex] 0x30

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ISRID The ID of a category 2 ISR.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Status-
Type

E_OK No error.
E_OS_ID ISRID is not a valid category 2 ISR identifier (EXTENDED
status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling application is not the owner of the ISR
passed in ISRID (Service Protection)

Description Disables the interrupt source by modifying the interrupt controller registers.

Available via Os.h

⌋(SRS_Os_11011)

8.4.37 ClearPendingInterrupt

[SWS_Os_91021]⌈

Service Name ClearPendingInterrupt

Syntax

StatusType ClearPendingInterrupt (

 ISRType ISRID

)

Service ID [hex] 0x32

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ISRID The ID of a category 2 ISR.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Status-
Type

E_OK No error.
E_OS_ID ISRID is not a valid category 2 ISR identifier (EXTENDED
status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling application is not the owner of the ISR

Specification of Operating System
AUTOSAR CP R20-11

194 of 342 Document ID 34: AUTOSAR_SWS_OS

passed in ISRID (Service Protection)

Description Clears the interrupt pending flag by modifying the interrupt controller registers.

Available via Os.h

⌋(SRS_Os_11011)

8.4.38 ActivateTaskAsyn

[SWS_Os_91022]⌈

Service Name ActivateTaskAsyn

Syntax

void ActivateTaskAsyn (

 TaskType id

)

Service ID
[hex]

0x33

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters
(in)

id The id of the task to be activated

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
Asynchronous version of the ActivateTask() function. Intended to be used for cross
core task activation. Possible errors are not returned to the caller, but may be
reported via error hooks.

Available via Os.h

⌋(SRS_Os_80015)

[SWS_Os_00818]⌈ Availability of ActivateTaskAsyn(): Available in systems

which support OS-Applications. ⌋ (SRS_Os_80015)

Note: If during the task activation an error occurs, and the caller is already gone (e.g.
callers OS-Application is already terminated, OR callers core is shutting down OR ...)
calls to error hooks are dropped and no reporting is done.

Specification of Operating System
AUTOSAR CP R20-11

195 of 342 Document ID 34: AUTOSAR_SWS_OS

8.4.39 SetEventAsyn

[SWS_Os_91023]⌈

Service Name SetEventAsyn

Syntax

void SetEventAsyn (

 TaskType id,

 EventMaskType m

)

Service ID
[hex]

0x34

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters
(in)

id The id of the task to be activated

m Mask of the events to be set

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
Asynchronous version of the SetEvent() function. Intended to be used for cross
core event setting. Possible errors are not returned to the caller, but may be
reported via error hooks.

Available via Os.h

⌋(SRS_Os_80015)

[SWS_Os_00819]⌈ Availability of SetEventAsyn(): Available in systems which

support OS-Applications. ⌋ (SRS_Os_80015)

Note: If during the event setting an error occurs and the caller is already gone (e.g.
callers OS-Application is already terminated, OR callers core is shutting down OR ...)
calls to error hooks are dropped and no reporting is done.

8.5 IOC

8.5.1 Imported types

In this chapter all types included from the following modules are listed:

[]⌈

Module Header File Imported Type

Specification of Operating System
AUTOSAR CP R20-11

196 of 342 Document ID 34: AUTOSAR_SWS_OS

Std Std_Types.h Std_ReturnType

⌋()

[SWS_Os_00827]⌈ If an ImplementationDataType is defined with the typeEmitter

empty or set to RTE and is used for IOC communication, the IOC shall include

Rte_Type.h ⌋ (SRS_Os_80020)

[SWS_Os_00828]⌈ If an ImplementationDataType is defined with the typeEmitter !=

RTE and does end with ".h" and is used for IOC communication, the IOC shall

include specified header file. ⌋ (SRS_Os_80020)

8.5.2 Type definitions

None

8.5.3 Constants

Name Communic
ation

Type Errorname /
Value

Annotation

IOC_E_OK All,
SND/RCV

Std_ReturnType RTE_E_OK / 0

No error occurred

IOC_E_NOK All
SND/RCV

Std_ReturnType RTE_E_NOK / 1 Error occurred. Shall be
used to identify error cases
without error specification.

IOC_E_LIMIT Queued
SND

Std_ReturnType RTE_E_LIMIT /

130
In case of “event” (queued)
semantic, the internal buffer
within the IOC
communication service is
full (Case: Receiver slower
than sender). This error
produces additionally an
Overlayed Error on the
receiver side at the next
data reception.

IOC_E_LOST_D

ATA
Queued
RCV

Std_ReturnType Overlayed Error

RTE_E_LOST_DATA

/ 64

In case of “event” (queued)
semantic, this Overlayed
Error indicates that the IOC
service refuses an IocSend
request due to internal
buffer overflow.

IOC_E_NO_DAT

A
Queued
RCV

Std_ReturnType RTE_E_NO_DATA /

131
In case of “event” (queued)
semantic, no data is
available for reception.

Specification of Operating System
AUTOSAR CP R20-11

197 of 342 Document ID 34: AUTOSAR_SWS_OS

8.5.4 Function definitions

[SWS_Os_00805]:⌈ The optional length parameter of the API shall be generated if

the VariableDataPrototype is of type dynamic and no size indicator is used in the

according ApplicationArrayDataType.⌋ (SRS_Os_80020)

8.5.4.1 IocInit (DRAFT)

[SWS_Os_91026]{DRAFT} ⌈

Service Name IocInit() (draft)

Syntax

void IocInit() (

 void

)

Service ID [hex] 0x35

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description
This service initializes the data structures of the IOC.
Tags:atp.Status=draft

Available via Ioc.h

⌋()

8.5.4.2 IocSend/IocWrite

The IocWrite API call is generated for "data" (unqueued) semantics and the

IocSend API call is generated for "events" (queued) semantics.

[SWS_Os_00718]⌈

Service
Name

IocSend_<IocId>[_<SenderId>]

Syntax

Std_ReturnType IocSend_<IocId>[_<SenderId>] (

 <Data> IN,

 [uint16 numberOfBytesIN]

)

Service ID
[hex]

0x1e

Specification of Operating System
AUTOSAR CP R20-11

198 of 342 Document ID 34: AUTOSAR_SWS_OS

Sync/Async Asynchronous

Reentrancy
This function is generated individually for each sender. The individual function is not
reentrant (if called from different runnable entities that belong to the same sender),
but different functions can be called in parallel.

Parameters
(in)

IN

Data value to be sent over a communication identified by the <IocId>.
The parameter will be passed by value for primitive data elements and
by reference for all other types.
Example: Std_ReturnType IocSend_RTE_25 (const uint32 UI_Value);
Std_ReturnType IocSend_RTE_42 (const TASKParams3 *pStr_Value);

numberOf
BytesIN

(optional) number of bytes to be send

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

IOC_E_OK: The data has been passed successfully to the
communication service.
IOC_E_LIMIT: IOC internal communication buffer is full (Case:
Receiver is slower than sender). This error produces an IOC_E_LOST_
DATA Overlayed Error on the receiver side at the next data reception.
IOC_E_LENGTH: The <numberOfBytesIN> exceeds either the internal
buffer or is equal zero, so no data is send.

Description

Performs an "explicit" sender-receiver transmission of data elements with "event"
semantic for a unidirectional 1:1 or N:1 communication between OS-Applications
located on the same or on different cores.
<IocId> is a unique identifier that references a unidirectional 1:1 or N:1
communication.
<SenderId> is used only in N:1 communication. Together with <IocId>, it uniquely
identifies the sender. It is separated from <IocId> with an underscore. In case of 1:1
communication, it shall be omitted.

Available via Ioc.h

⌋(SRS_Os_80020)

[SWS_Os_91003]⌈

Service
Name

IocWrite_<IocId>[_<SenderId>]

Syntax

Std_ReturnType IocWrite_<IocId>[_<SenderId>] (

 <Data> IN,

 [uint16 numberOfBytesIN]

)

Service ID
[hex]

0x1f

Sync/Async Asynhronous

Reentrancy
This function is generated individually for each sender. The individual function is not
reentrant (if called from different runnable entities that belong to the same sender),

Specification of Operating System
AUTOSAR CP R20-11

199 of 342 Document ID 34: AUTOSAR_SWS_OS

but different functions can be called in parallel.

Parameters
(in)

IN

Data value to be sent over a communication identified by the <IocId>.
The parameter will be passed by value for primitive data elements and
by reference for all other types.
Example: Std_ReturnType IocWrite_RTE_25 (const uint32 UI_Value);
Std_ReturnType IocWrite_RTE_42 (const TASKParams3 *pStr_
Value);

numberOf
BytesIN

(optional) number of bytes to be send

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

IOC_E_OK: The data has been passed successfully to the
communication service.
IOC_E_LENGTH: The <numberOfBytesIN> exceeds either the
internal buffer or is equal zero, so no data is send.

Description

Performs an "explicit" sender-receiver transmission of data elements with "data"
semantic for a unidirectional 1:1 or N:1 communication between OS-Applications
located on the same or on different cores.
<IocId> is a unique identifier that references a unidirectional 1:1 or N:1
communication.
<SenderId> is used only in N:1 communication. Together with <IocId>, it uniquely
identifies the sender. It is separated from <IocId> with an underscore. In case of 1:1
communication, it shall be omitted.
<numberOfBytesIN> specifies the size of the data to be transmitted (in bytes).

Available via Ioc.h

⌋()

General:

[SWS_Os_00719] ⌈IocSend/IocWrite is asynchronous in that way it shall not

have to wait for the reception of the data on the receiving side to return from

execution. ⌋ (SRS_Os_80020)

[SWS_Os_00720] ⌈The IocSend/IocWrite function shall not return until the data

given in parameter have been completely physically sent over the communication
medium.

For example in case of communication over shared RAM, an IocSend/IocWrite

shall return when all data have been copied in the target shared RAM. ⌋

(SRS_Os_80020)

[SWS_Os_00721] ⌈In case of “event” (queued) semantic, the IocSend function

shall guarantee the order of delivery. In case of senders from different cores, the

order in which messages are received will be determined by the implementation. ⌋
(SRS_Os_80020)

Specification of Operating System
AUTOSAR CP R20-11

200 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00722] ⌈The IocSend/IocWrite function shall support mechanism to

guarantee data-Integrity during transmission.

The IocSend/IocWrite function shall solve the crossing of the protection

boundaries of OS-Applications. It has to be generated in case of intra-core and inter-

core communication. ⌋ (SRS_Os_80020)

[SWS_Os_00820]⌈ The IocSend/IocWrite function shall be wrapped with the

memory allocation keywords mechanism
#define OS_<IE>_START_SEC_CODE

#include "Os_MemMap.h"

<IocSend, IocWrite>

#define OS_<IE>_STOP_SEC_CODE

#include "Os_MemMap.h"

where <IE> is the shortName of the sending OsApplication configured in

OsIocSendingOsApplicationRef of the respective OsIocCommunication

channel.⌋ ()

Parameters:

[SWS_Os_00723] ⌈

The IN <Data> parameter of the IocSend/IocWrite function shall be passed

by value for primitive data types, as an pointer to the array base type for arrays and

by reference for all other types. ⌋ (SRS_Os_80020)

[SWS_Os_00724] ⌈
For data passed as an pointer to the array base type or by reference, the

IocSend/IocWrite function shall guarantee upon return that the parameter is safe

for re-use.⌋ (SRS_Os_80020)

Returned values:

[SWS_Os_00725] ⌈The IocSend/IocWrite function shall return IOC_E_OK if the

data was passed successfully to the communication service. ⌋ (SRS_Os_80020)

[SWS_Os_00726] ⌈In case of “event” semantic the IocSend function shall return

IOC_E_LIMIT if an IOC internal transmission buffer became full (Case: Receiver is

slower than sender or/and configured internal IOC buffer size is too small).
If this error occurs the IOC internal buffer could not be filled with the parameter. In
that case this error shall produce an IOC_E_LOST_DATA Overlayed Error on the

receiver side at the next data reception (s. SWS_Os_00745). ⌋ (SRS_Os_80020)

Internal structures:

[SWS_Os_00727] ⌈In case of “event” semantic the IOC shall configure its internal

transmission buffer size with the value of the attribute OsIocBufferLength. ⌋

(SRS_Os_80020)

Specification of Operating System
AUTOSAR CP R20-11

201 of 342 Document ID 34: AUTOSAR_SWS_OS

8.5.4.3 IocSendGroup/IocWriteGroup

The IocWriteGroup API call is generated for "data" (unqueued) semantics and the

IocSendGroup API call is generated for "events" (queued) semantics.

[SWS_Os_00728]⌈

Service
Name

IocSendGroup_<IocId>

Syntax

Std_ReturnType IocSendGroup_<IocId> (

 <Data1> IN1,

 [uint16 numberOfBytesIN1],

 <Data2> IN2,

 [uint16 numberOfBytesIN2],

 ...

)

Service ID
[hex]

0x20

Sync/Async Asynchronous

Reentrancy
This function is generated individually for each sender. The individual function is not
reentrant (if called from different runnable entities that belong to the same sender),
but different functions can be called in parallel.

Parameters
(in)

IN1

List of parameters with data values to be sent over a communication
identified by the <IocId>. The parameters will be passed by value for
simple data elements and by reference for all other types.
Example:
Std_ReturnType IocSendGroup_RTE_G1 (const uint32 UI_Value1,
const uint16 Value2, const uint8 Value3, const uint16 Value4);

numberOf
BytesIN1

(optional) number of bytes for parameter IN1 to be send.

IN2 --

numberOf
BytesIN2

--

--

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

IOC_E_OK: The data has been passed successfully to the
communication service.
IOC_E_LIMIT: IOC internal communication buffer is full (Case:
Receiver is slower than sender). This error produces an IOC_E_
LOST_DATA Overlayed Error on the receiver side at the next data
reception.
IOC_E_LENGTH: Al least one of the <numberOfBytesIN<x>> exceeds
either the internal buffer or is equal zero, so no data is send.

Description Performs an "explicit" sender-receiver transmission of data elements with "event"

Specification of Operating System
AUTOSAR CP R20-11

202 of 342 Document ID 34: AUTOSAR_SWS_OS

semantic for a unidirectional 1:1 communication between OS-Applications located
on the same or on different cores.
This API involves a group of data elements which values are specified in parameter.
<IocId> is a unique identifier that references a unidirectional 1:1 communication
involving many data elements.
The optional parameter <numberOfBytesIN<x>> specifies the size of the data to be
transmitted (in bytes) for parameter <IN<x>>.

Available via Ioc.h

⌋(SRS_Os_80020)

[SWS_Os_91004]⌈

Service
Name

IocWriteGroup_<IocId>

Syntax

Std_ReturnType IocWriteGroup_<IocId> (

 <Data1> IN1,

 [uint16 numberOfBytesIN1],

 <Data2> IN2,

 [uint16 numberOfBytesIN2],

 ...

)

Service ID
[hex]

0x21

Sync/Async Asynchronous

Reentrancy
This function is generated individually for each sender. The individual function is not
reentrant (if called from different runnable entities that belong to the same sender),
but different functions can be called in parallel.

Parameters
(in)

IN1

List of parameters with data values to be sent over a communication
identified by the <IocId>. The parameters will be passed by value for
simple data elements and by reference for all other types.
Example:
Std_ReturnType IocWriteGroup_RTE_G1 (const uint32 UI_Value1,
const uint16 Value2, const uint8 Value3, const uint16 Value4);

numberOf
BytesIN1

(optional) number of bytes for parameter IN1 to be send.

IN2 --

numberOf
BytesIN2

--

--

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-

IOC_E_OK: The data has been passed successfully to the
communication service.

Specification of Operating System
AUTOSAR CP R20-11

203 of 342 Document ID 34: AUTOSAR_SWS_OS

Type IOC_E_LENGTH: Al least one of the <numberOfBytesIN<x>> exceeds
either the internal buffer or is equal zero, so no data is send.

Description

Performs an "explicit" sender-receiver transmission of data elements with "data"
semantic for a unidirectional 1:1 communication between OS-Applications located
on the same or on different cores.
This API involves a group of data elements which values are specified in parameter.
<IocId> is a unique identifier that references a unidirectional 1:1 communication
involving many data elements.
The optional parameter <numberOfBytesIN<x>> specifies the size of the data to be
transmitted (in bytes) for parameter <IN<x>>.

Available via Ioc.h

⌋()

General:

[SWS_Os_00729] ⌈IocSendGroup/IocWriteGroup is asynchronous in that way

it shall not have to wait for the reception of the data on the receiving side to return

from execution. ⌋ (SRS_Os_80020)

[SWS_Os_00730] ⌈The IocSendGroup/IocWriteGroup function shall not return

until the data given in parameter have been completely physically sent over the
communication medium. For example in case of communication over shared RAM,

an IocSendGroup/IocWriteGroup shall return when all data have been copied

in the target shared RAM. ⌋ (SRS_Os_80020)

[SWS_Os_00731] ⌈In case of “event” semantic, the IocSendGroup function shall

guarantee the order of delivery. ⌋ (SRS_Os_80020)

[SWS_Os_00732] ⌈The IocSendGroup/IocWriteGroup function shall support

mechanisms to guarantee data-Integrity during transmission.

The IocSendGroup/IocWriteGroup function shall solve the crossing of the

protection boundaries of OS-Applications. It has to be generated in case of intra-core

and inter-core communication. ⌋ (SRS_Os_80020)

[SWS_Os_00821]⌈ The IocSendGroup/IocWriteGroup function shall be

wrapped with the memory allocation keywords mechanism
#define OS_<IE>_START_SEC_CODE

#include "Os_MemMap.h"

<IocSendGroup, IocWriteGroup>

#define OS_<IE>_STOP_SEC_CODE

#include "Os_MemMap.h"

where <IE> is the shortName of the sending OsApplication configured in

OsIocSendingOsApplicationRef of the respective OsIocCommunication

channel.⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

204 of 342 Document ID 34: AUTOSAR_SWS_OS

Parameters:

[SWS_Os_00733] ⌈
The IN <DataN> parameters of the IocSendGroup/IocWriteGroup function shall

be passed by values for primitive data types, as pointer to the array base type for
arrays and by references for all other types.

⌋ (SRS_Os_80020)

[SWS_Os_00734] ⌈
For data passed as an pointer to the array base type or by reference, the

IocSendGroup/IocWriteGroup function shall guarantee upon return that the

parameter is safe for re-use.

⌋ (SRS_Os_80020)

Returned values:

[SWS_Os_00735] ⌈The IocSendGroup/IocWriteGroup function shall return

IOC_E_OK if the data was passed successfully to the communication service. ⌋

(SRS_Os_80020)

[SWS_Os_00736] ⌈In case of “event” semantic the IocSendGroup function shall

return IOC_E_LIMIT if an IOC internal transmission buffer got full (Case: Receiver

is slower than sender or/and configured internal IOC buffer size is too small).

If this error occurs the IOC Internal buffer could not be filled with the parameter. In
that case this error produces an IOC_E_LOST_DATA Overlayed Error on the

receiver side at the next data reception. ⌋ (SRS_Os_80020)

Internal structures:

[SWS_Os_00737] ⌈In case of “event” semantic the IOC shall configure its internal

transmission buffer size with the value of the attribute OsIocBufferLength. ⌋

(SRS_Os_80020)

8.5.4.4 IocReceive/IocRead

The IocRead API call is generated for "data" and the IocReceive API call is

generated for "events".

[SWS_Os_00738]⌈

Service
Name

IocReceive_<IocId>

Syntax
Std_ReturnType IocReceive_<IocId> (

 <Data> OUT,

Specification of Operating System
AUTOSAR CP R20-11

205 of 342 Document ID 34: AUTOSAR_SWS_OS

 [uint16* numberOfBytesOUT]

)

Service ID
[hex]

0x22

Sync/Async Synchronous

Reentrancy
This function is generated individually for each receiver. The individual function is
not reentrant (if called from different runnable entities that belong to the same
receiver), but different functions can be called in parallel.

Parameters
(in)

None

Parameters
(inout)

None

Parameters
(out)

OUT Data reference to be filled with the received data element.

numberOf
BytesOUT

(optional) data reference to be filled with the length of the received
data element in bytes.

Return value
Std_-
Return-
Type

IOC_E_OK: Data was received successfully
IOC_E_NO_DATA: No data is available for reception.
IOC_E_LOST_DATA: This Overlayed Error indicates that the IOC
communication service refused an IOCSend request from sender due
to an internal buffer overflow. There is no error in the data returned in
parameter.

Description

Performs an "explicit" sender-receiver reception of data elements with "event"
semantic for a unidirectional communication between OS-Applications located on
the same or on different cores..
<IocId> is a unique identifier that references a unidirectional 1:1 or N:1
communication.

Available via Ioc.h

⌋(SRS_Os_80020)

[SWS_Os_91005]⌈

Service
Name

IocRead_<IocId>[_<ReceiverId>]

Syntax

Std_ReturnType IocRead_<IocId>[_<ReceiverId>] (

 <Data> OUT,

 [uint16* numberOfBytesOUT]

)

Service ID
[hex]

0x23

Sync/Async Synchronous

Reentrancy
Non Reentrant This function is generated individually for each receiver. The
individual function is not reentrant (if called from different runnable entities that
belong to the same receiver), but different functions can be called in parallel.

Parameters None

Specification of Operating System
AUTOSAR CP R20-11

206 of 342 Document ID 34: AUTOSAR_SWS_OS

(in)

Parameters
(inout)

None

Parameters
(out)

OUT Data reference to be filled with the received data element.

numberOfBytes
OUT

(optional) data reference to be filled with the length of the
received data element in bytes.

Return value Std_ReturnType IOC_E_OK: Data was received successfully

Description

Performs an "explicit" sender-receiver reception of data elements with "data"
semantic for a unidirectional communication between OS-Applications located on
the same or on different cores.
<IocId> is a unique identifier that references a unidirectional 1:1 or N:1
communication.
<ReceiverId> is used only in N:M communication. Together with <IocId>, it uniquely
identifies the receiver. It is separated from <IocId> with an underscore. If
communication is different from N:M it shall be omitted.

Available via Ioc.h

⌋()

General:

[SWS_Os_00739] ⌈A successful call to the IocReceive/IocRead function

indicates that data has been received successfully in the OUT <Data> given in

parameter.

The IocReceive/IocRead function has to be generated in case of intra-core and

inter-core communication. ⌋ (SRS_Os_80020)

[SWS_Os_00822]⌈ The IocReceive/IocRead function shall be wrapped with the

memory allocation keywords mechanism
#define OS_<IE>_START_SEC_CODE

#include "Os_MemMap.h"

<IocReceive, IocRead>

#define OS_<IE>_STOP_SEC_CODE

#include "Os_MemMap.h"

where <IE> is the shortName of the reading OsApplication configured in

OsIocReceivingOsApplicationRef of the respective OsIocCommunication

channel. ⌋ ()

[SWS_Os_00740] ⌈If the OsIocReceiverPullCB attribute is defined with a

callback function name, the IOC shall call this function on the receiving core for each

data transmission. ⌋ (SRS_Os_80020)

Parameters:

Specification of Operating System
AUTOSAR CP R20-11

207 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00741] ⌈In case of “data” semantic the IocRead function shall always be

able to deliver the last available datum. In case of senders from different cores, the

precision of the order might be limited by the hardware and implementation. ⌋

(SRS_Os_80020)

[SWS_Os_00742] ⌈The IocReceive/IocRead function shall guarantee upon

returning from execution that the reference given in parameter is safe for use. ⌋
(SRS_Os_80020)

[SWS_Os_00803]⌈ The OUT <Data> parameter of the IocReceive/IocRead

function shall be passed as an pointer to the array base type for arrays and by

reference for all other types.⌋ (SRS_Os_80020)

Returned values:

[SWS_Os_00743] ⌈The IocReceive/IocRead function shall return IOC_E_OK if

the data was received successfully in the OUT <Data> parameter. ⌋ (SRS_Os_80020)

[SWS_Os_00744] ⌈In case of “event” semantic and if no data is available the

function IocReceive shall return IOC_E_NO_DATA. ⌋ (SRS_Os_80020)

[SWS_Os_00745] ⌈In case of “event” semantic an IOC_E_LOST_DATA Overlayed

Error shall be returned by the IocReceive function if the IOC communication

service refused an IocSend request from sender due to an internal buffer overflow.

There is no error in the data returned in parameter. ⌋ (SRS_Os_80020)

8.5.4.5 IocReceiveGroup/IocReadGroup

The IocReadGroup API call is generated for "data" and the IocReceiveGroup

API call is generated for "events".

[SWS_Os_00746]⌈

Service
Name

IocReceiveGroup_<IocId>

Syntax

Std_ReturnType IocReceiveGroup_<IocId> (

 <Data1> OUT1,

 [uint16* numberOfBytesOUT1],

 <Data2> OUT2,

 [uint16* numberOfBytesOUT2],

 ...

)

Service ID
[hex]

0x24

Sync/Async Synchronous

Reentrancy
This function is generated individually for each receiver. The individual function is
not reentrant (if called from different runnable entities that belong to the same

Specification of Operating System
AUTOSAR CP R20-11

208 of 342 Document ID 34: AUTOSAR_SWS_OS

receiver), but different functions can be called in parallel.

Parameters
(in)

None

Parameters
(inout)

None

Parameters
(out)

OUT1
List of data references to be filled with the received data elements. The
specified order of the parameter shall match to the specified order in
the corresponding send function.

numberOf
Bytes
OUT1

(optional) data reference to be filled with the length of the received
data element (OUT1) in bytes.

OUT2 --

numberOf
Bytes
OUT2

--

--

Return value
Std_-
Return-
Type

IOC_E_OK: Data was received successfully
IOC_E_NO_DATA: No data is available for reception.
IOC_E_LOST_DATA: This Overlayed Error indicates that the IOC
communication service refused an IOCSend request from sender due
to an internal buffer overflow. There is no error in the data returned in
parameter.

Description

Performs an "explicit" sender-receiver transmission of data elements with "event"
semantic for a unidirectional 1:1 communication between OS-Applications located
on the same or on different cores.
This API involves a group of data elements which values are specified in parameter.
<IocId> is a unique identifier that references a unidirectional 1:1 communication
involving many data elements.

Available via Ioc.h

⌋(SRS_Os_80020)

[SWS_Os_91006]⌈

Service
Name

IocReadGroup_<IocId>

Syntax

Std_ReturnType IocReadGroup_<IocId> (

 <Data1> OUT1,

 [uint16* numberOfBytesOUT1],

 <Data2> OUT2,

 [uint16* numberOfBytesOUT2],

 ...

)

Service ID
[hex]

0x25

Sync/Async Synchronous

Specification of Operating System
AUTOSAR CP R20-11

209 of 342 Document ID 34: AUTOSAR_SWS_OS

Reentrancy
This function is generated individually for each receiver. The individual function is
not reentrant (if called from different runnable entities that belong to the same
receiver), but different functions can be called in parallel.

Parameters
(in)

None

Parameters
(inout)

None

Parameters
(out)

OUT1
List of data references to be filled with the received data elements.
The specified order of the parameter shall match to the specified
order in the corresponding send function.

numberOf
BytesOUT1

(optional) data reference to be filled with the length of the received
data element (OUT1) in bytes.

OUT2 --

numberOf
BytesOUT2

--

--

Return value
Std_Return-
Type

IOC_E_OK: Data was received successfully

Description

Performs an "explicit" sender-receiver transmission of data elements with a "data"
semantic for a unidirectional 1:1 communication between OS-Applications located
on the same or on different cores.
This API involves a group of data elements which values are specified in parameter.
<IocId> is a unique identifier that references a unidirectional 1:1 communication
involving many data elements.

Available via Ioc.h

⌋()

General:

[SWS_Os_00747] ⌈A successful call to the IocReceiveGroup/IocReadGroup

function indicates that data has been received successfully in the given parameters.

The IocReceiveGroup/IocReadGroup function has to be generated in case of

intra-core and inter-core communication. ⌋ (SRS_Os_80020)

[SWS_Os_00823]⌈ The IocReceiveGroup/IocReadGroup function shall be

wrapped with the memory allocation keywords mechanism
#define OS_<IE>_START_SEC_CODE

#include "Os_MemMap.h"

<IocReceiveGroup, IocReadGroup>

#define OS_<IE>_STOP_SEC_CODE

#include "Os_MemMap.h"

where <IE> is the shortName of the reading OsApplication configured in

Specification of Operating System
AUTOSAR CP R20-11

210 of 342 Document ID 34: AUTOSAR_SWS_OS

OsIocReceivingOsApplicationRef of the respective OsIocCommunication

channel. ⌋ ()

[SWS_Os_00748] ⌈If the OsIocReceiverPullCB attribute is defined with a

callback function name, the IOC shall call this function on the receiving core for each

data transmission. ⌋ (SRS_Os_80020)

Parameters:

[SWS_Os_00749] ⌈In case of “data” semantic the IocReadGroup function shall

always be able to deliver the last available datum. ⌋ (SRS_Os_80020)

[SWS_Os_00750] ⌈The IocReceiveGroup/IocReadGroup function shall

guarantee upon returning from execution that the references given in parameters are

safe for use. ⌋ (SRS_Os_80020)

[SWS_Os_00804]⌈ The OUT <DataN> parameters of the IocReceiveGroup/

IocReadGroup function shall be passed as pointer to the array base type for arrays

and by references for all other types.⌋ ()

Returned values:

[SWS_Os_00751] ⌈The IocReceiveGroup/IocReadGroup function shall return

IOC_E_OK if the data was received successfully in the list of references given in

parameter. ⌋ (SRS_Os_80020)

[SWS_Os_00752] ⌈In case of “event” semantic and if no data is available the

function IocReceiveGroup shall return IOC_E_NO_DATA. ⌋ (SRS_Os_80020)

[SWS_Os_00753] ⌈In case of “event” semantic an IOC_E_LOST_DATA Overlayed

Error shall be returned by the IocReceiveGroup function if the IOC communication

service refused an IocSendGroup request from sender due to an internal buffer

overflow. There is no error in the data returned in parameter. ⌋ (SRS_Os_80020)

8.5.4.6 IocEmptyQueue

[SWS_Os_00754]⌈

Service Name IocEmptyQueue_<IocId>

Syntax

Std_ReturnType IocEmptyQueue_<IocId> (

 void

)

Service ID
[hex]

0x26

Sync/Async Synchronous

Specification of Operating System
AUTOSAR CP R20-11

211 of 342 Document ID 34: AUTOSAR_SWS_OS

Reentrancy Non reentrant

Parameters
(in)

None

Parameters
(inout)

None

Parameters
(out)

None

Return value Std_ReturnType IOC_E_OK: Content of the queue was successfully deleted

Description
In case of queued communication identified by the <IocId> in the function name,
the content of the IOC internal communication queue shall be deleted.

Available via Ioc.h

⌋(SRS_Os_80020)

General:

[SWS_Os_00755] ⌈The function IocEmptyQueue_<IocId> shall be present for all

IOC elements with queued semantics. ⌋ (SRS_Os_80020)

[SWS_Os_00756] ⌈The function IocEmptyQueue_<IocId> shall delete all

contents from the associated data queue.

The IocEmptyQueue should be generated in a more efficient way than an iterative

call to an IocReceive function. ⌋ (SRS_Os_80020)

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

There are no mandatory interfaces for the IOC.

8.6.2 Optional Interfaces

8.6.2.1 ReceiverPullCB

[SWS_Os_00757]⌈

Service
Name

<ReceiverPullCB>

Syntax

void <ReceiverPullCB> (

 void

)

Specification of Operating System
AUTOSAR CP R20-11

212 of 342 Document ID 34: AUTOSAR_SWS_OS

Service ID
[hex]

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

None

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description

This callback function can be configured for the receiver of a communication. If
configured, IOC calls this callback on the receiving core for each data reception.
<ReceiverPullCB> is the callback function name configured by the receiver in the Os
IocReceiverPullCB attribute to be called on data reception."

Available via Os.h

⌋(SRS_Os_80020)

[SWS_Os_00758] ⌈The <ReceiverPullCB> function name shall be defined within

a configuration file for each IOC communication in the OsIocReceiverPullCB

attribute. ⌋ (SRS_Os_80020)

[SWS_Os_00759] ⌈The name of the callback shall be unique over the micro
controller. For this purpose the following example can be considered as orientation
for the IOC user:

Example: Rte_IocReceiveCB_<IocId>⌋ (SRS_Os_80020)

[SWS_Os_00760] ⌈The <ReceiverPullCB> function on the receiver side is using

the access rights of the receiving OsApplication. ⌋ (SRS_Os_80020)

Note: This means that such a callback cannot be reused by another OsApplication.

[SWS_Os_00761] ⌈This notification mechanism shall be supported for both queued

and unqueued communication semantic. ⌋ (SRS_Os_80020)

The owner of the <ReceiverPullCB> function shall pay attention that the execution

time of the function shall not last too long. It shall be possible to call this function from
an IOC-ISR.

Specification of Operating System
AUTOSAR CP R20-11

213 of 342 Document ID 34: AUTOSAR_SWS_OS

8.7 Hook functions

Hook functions are called by the operating system if specific conditions are met. They
are provided by the user. Besides the ProtectionHook below, the hooks from [17]
and/or extensions from 7.12 may be called by the OS.

8.7.1 Protection Hook

[SWS_Os_00538]⌈

Service Name ProtectionHook

Syntax

ProtectionReturnType ProtectionHook (

 StatusType Fatalerror

)

Service ID
[hex]

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Fatalerror The error which caused the call to the protection hook

Parameters
(inout)

None

Parameters
(out)

None

Return value
ProtectionReturn-
Type

PRO_IGNORE
PRO_TERMINATETASKISR
PRO_TERMINATEAPPL
PRO_TERMINATEAPPL_RESTART
PRO_SHUTDOWN
The return value defines the action the OS shall take after
the protection hook.

Description
The protection hook is always called if a serious error occurs. E.g. exceeding the
worst case execution time or violating against the memory protection.

Available via Os_Externals.h

⌋()

Depending on the return value the Operating System module will either:

 forcibly terminate the Task/Category 2 ISR which causes the problem OR

 forcibly terminate the OS-Application the Task/Category 2 ISR belong
(optional with restart) OR

 shutdown the system OR

 do nothing
(see 7.8.2)

Specification of Operating System
AUTOSAR CP R20-11

214 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00308] ⌈If ProtectionHook() returns an invalid value, the Operating

System module shall take the same action as if no protection hook is configured. ⌋ ()

[SWS_Os_00542] ⌈Availability of ProtectionHook(): Available in Scalability

Classes 2, 3 and 4. ⌋ ()

8.7.2 Application specific StartupHook

[SWS_Os_00539]⌈

Service Name StartupHook_<App>

Syntax

void StartupHook_<App> (

 void

)

Service ID [hex]

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
The application specific startup hook is called during the start of the OS (after the
user has started the OS via StartOS()).

Available via Os_Externals.h

⌋()

The application specific StartupHook is always called after the standard
StartupHook() (see SWS_Os_00236) . If more than one OS-Application is configured
which use startup hooks, the order of calls to the startup hooks of the different OS-
Applications is not defined.

[SWS_Os_00543] ⌈Availability of StartupHook_<App>(): Available in Scalability

Classes 3 and 4. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

215 of 342 Document ID 34: AUTOSAR_SWS_OS

8.7.3 Application specific ErrorHook

[SWS_Os_00540]⌈

Service Name ErrorHook_<App>

Syntax

void ErrorHook_<App> (

 StatusType Error

)

Service ID
[hex]

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Error The error which caused the call to the error hook

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
The application specific error hook is called whenever a Task or Category 2 ISR
which belongs to the OS-Application causes an error.

Available via Os_Externals.h

⌋()

If the general ErrorHook() is configured, the general ErrorHook() is called

before the application specific error hook is called (see SWS_Os_00246).

[SWS_Os_00544] ⌈Availability of ErrorHook_<App>(): Available in Scalability

Classes 3 and 4. ⌋ ()

8.7.4 Application specific ShutdownHook

[SWS_Os_00541]⌈

Service Name ShutdownHook_<App>

Syntax

void ShutdownHook_<App> (

 StatusType Fatalerror

)

Service ID [hex]

Sync/Async Synchronous

Reentrancy Reentrant

Specification of Operating System
AUTOSAR CP R20-11

216 of 342 Document ID 34: AUTOSAR_SWS_OS

Parameters (in) Fatalerror
The error which caused the action to shut down the operating
system.

Parameters
(inout)

None

Parameters (out) None

Return value None

Description
The application specific shutdown hook is called whenever the system starts the
shut down of itself.

Available via Os_Externals.h

⌋()

If the general ShutdownHook() is configured, the general ShutdownHook() is

called after all application specific shutdown hook(s) are called (see
SWS_Os_00237). If more OS-Applications with an application specific shutdown
hook exist the order of calls to these application specific shutdown hooks is not
defined.

[SWS_Os_00545] ⌈Availability of ShutdownHook_<App>(): Available in Scalability

Classes 3 and 4. ⌋ ()

8.8 Service Interfaces

8.8.1 Port interface of Os

[]⌈

Name OsService

Kind ProvidedPort Interface OsService_{Counter}

Description --

Port Defined Argument Value(s)
Type CounterType

Value {ecuc(Os/OsCounter)}

Variation --

⌋()

8.8.2 Client-Server-Interfaces

8.8.2.1 Os_Service

Specification of Operating System
AUTOSAR CP R20-11

217 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00560]⌈

Name OsService_{Counter}

Comment --

IsService true

Variation
({ecuc(Os/OsCounter/OsSecondsPerTick)} != NULL)
Counter = {ecuc(Os/OsCounter.SHORT-NAME)}

Possible Errors

0 E_OK Operation successful

1 E_OS_ACCESS --

3 E_OS_ID --

7 E_OS_STATE --

8 E_OS_VALUE --

Operation GetCounterValue

Comment
This service reads the current count value of a counter (returning either the hardware
timer ticks if counter is driven by hardware or the software ticks when user drives
counter).

Variation --

Parameters

Value

Type TimeInMicrosecondsType

Direction OUT

Comment Contains the current tick value of the counter

Variation --

Possible
Errors

E_OK
E_OS_ID

Operation GetElapsedValue

Comment
This service gets the number of ticks between the current tick value and a
previously read tick value.

Variation --

Parameters

Value

Type TimeInMicrosecondsType

Direction INOUT

Comment
in: the previously read tick value of the counter
out: the current tick value of the counter

Variation --

Specification of Operating System
AUTOSAR CP R20-11

218 of 342 Document ID 34: AUTOSAR_SWS_OS

ElapsedValue

Type TimeInMicrosecondsType

Direction OUT

Comment The difference to the previous read value

Variation --

Possible
Errors

E_OK
E_OS_ID
E_OS_VALUE

⌋()

8.8.2.2 Implementation Data Types

[SWS_Os_00794]⌈

Name TimeInMicrosecondsType

Kind Type

Derived from uint64

Description --

Variation --

Available via Rte_Os_Type.h

⌋()

[SWS_Os_00786]⌈

Name CounterType

Kind Type

Derived from uint32

Description This data type identifies a counter.

Variation --

Available via Rte_Os_Type.h

⌋()

Specification of Operating System
AUTOSAR CP R20-11

219 of 342 Document ID 34: AUTOSAR_SWS_OS

9 Sequence diagrams

9.1 Sequence chart for calling trusted functions

sd Interactions

calling

OS-Appl.

<trusted

function stub>

operating

system

providing

OS-Appl.

alt Check permission

[denied]

[accepted]

system call

dispatcher

<trusted function stub>

CallTrustedFunction(FunID,FunParPtr)

E_OS_SERVICEID

<trusted function>

<CheckAccess>

<Access Information>

E_OK

<return value>

Figure 9.1: System Call sequence chart

The above sequence describes a call to the CallTrustedFunction service. It starts
with a user who calls a service which requires itself a call to a trusted function. The
service then packs the argument for the trusted function into a structure and calls
CallTrustedFunction with the ID and the pointer as arguments. Afterwards the OS
checks if the access to the requested service is valid. If no access is granted

E_OS_SERVICEID is returned. Otherwise the trusted service itself is called and the

function checks the arguments for access right, etc.

Specification of Operating System
AUTOSAR CP R20-11

220 of 342 Document ID 34: AUTOSAR_SWS_OS

9.2 Sequence chart for usage of ErrorHook

sd Interactions

alt

[condition]

OS-Appl.

<App>

operating

system

condition: <System service> is called outside an Error Hook

AND both the system-/appl,-specific Error Hook are configured

alt

[return != E_OK]

<system service> which returns

a value of type StatusType

ErrorHook (<Error>)

ErrorHook_<App> (<Error>)

StatusType value

Figure 9.2: Error Hook sequence chart

The above sequence chart shows the sequence of error hook calls in case a service

does not return with E_OK. Note that in this case the general error hook and the OS-

Application specific error hook are called.

Specification of Operating System
AUTOSAR CP R20-11

221 of 342 Document ID 34: AUTOSAR_SWS_OS

9.3 Sequence chart for ProtectionHook

sd Interactions

break

[protection error]

alt return

[PRO_TERMINATETASKISR]

[PRO_TERMINATEAPPL]

[PRO_TERMINATEAPPL_RESTART]

[PRO_IGNORE]

[PRO_SHUTDOWN]

OS-Appl. <App> /

Task / Category 2

ISR

Processor operating system

«Exception»

ProtectionHook(Fatalerror)

«forced termination of Task/ISR»

«forced termination of

OS-Application»

«forced termination of OS-

Application»

ActivateTask(RESTARTTASK)

Ignore Exception

ShutdownOS

Figure 9.3: Protection Hook sequence chart

The sequence shows the flow of control if a protection error occurs. Depending on
the return values of the ProtectionHook, either the faulty Task/ISR is forcibly
terminated or the OS-Application is forcibly terminated or the system is shut down. If
the action is to terminate the faulty OS-Application an option is to start afterwards the
restart task, which can do a cleanup, etc.

Specification of Operating System
AUTOSAR CP R20-11

222 of 342 Document ID 34: AUTOSAR_SWS_OS

9.4 Sequence chart for StartupHook

sd Interactions

OS-Appl. <App> operating system

Startup

Normal Operation

Initial

alt

[system-/application-specific Startup Hook are configured]

StartOS(<Mode>)

StartupHook

StartupHook_<App>

Figure 9.4: StartupHook sequence chart

The above sequence shows the flow of control during the startup of the OS. Like in

OSEK OS the user calls the StartOS() service to start the OS. During the startup

the startup hooks are called in the above order. The rest of the startup sequence is
identical to the defined behaviour of OSEK OS.

Specification of Operating System
AUTOSAR CP R20-11

223 of 342 Document ID 34: AUTOSAR_SWS_OS

9.5 Sequence chart for ShutdownHook

The next sequence shows the behaviour in case of a shut down. The flow is the
same as in OSEK OS with the exception that the shut down hooks of the OS-
Applications are called before the general ShutdownHook is called. Note that the
specific shutdown hooks of the application are not allowed to block, they must return
to the caller.

sd Interactions

OS-Appl. <App> operating system

Shutdown

alt

[system-/application-specific Shutdown Hook are configured]

Terminate Terminate

ShutdownHook_<App>(<Error>)

ShutdownHook(<Error>)

Figure 9.5: ShutdownHook sequence chart

9.6 Sequence diagrams of Sender Receiver communication over
the IOC

9.6.1 LastIsBest communication

The figure 11 shows a sequence of successful and failure cases in the interaction
between the IOC and the RTE in case of LastIstBest communication (“data”
semantic).

Specification of Operating System
AUTOSAR CP R20-11

224 of 342 Document ID 34: AUTOSAR_SWS_OS

sd Ioc LastIsBest

«module»

SND Core RTE :Rte

Receiver Application

(RCV Core)

Sender Application

(SND Core)

«module»

Ioc::Ioc

«module»

RCV Core RTE :Rte

The RTE buffer is copied

into an IOC internal buffer.

The IOC reception buffer is

copied into the buffer of the

receiver application.

Rte_Write_<p>_<o>(Std_ReturnType,

Rte_Instance, void)
IocWrite_<IocId>[_<SenderId>](<Data>,

Std_ReturnType)
:IOC_E_OK

:RTE_E_OK

Rte_Read_<p>_<o>(Rte_Instance,

void*)

IocRead_<IocId>(<Data>*,

Std_ReturnType)
:IOC_E_OK

:RTE_E_OK

Figure 12: IOC - LastIsBest communication

9.6.2 Queued communication without pull callback

The figure 12 shows the interaction between IOC and RTE with a focus on the
congestion control for a queued communication.

The defined communication has no callback functionality for data reception, has an
internal buffer size of 2 data elements, no waitpoints are defined and the implicated
OS-Applications are located on different cores.

Specification of Operating System
AUTOSAR CP R20-11

225 of 342 Document ID 34: AUTOSAR_SWS_OS

sd Ioc Queued without Callback

Receiver Application

(RCV Core)

«module»

Ioc::Ioc

Sender Application

(SND Core)

«module»

SND Core RTE :Rte

«module»

RCV Core RTE :Rte

The RTE buffer is copied into

IOC internal buffer.

The IOC internal queue gets

full, last send request is

rejected.

The first queue entry is delivered to

the receiver application. An

overlayed error is delivered on the

receiver side to inform that the

receiver is too slow.

Rte_Send_<p>_<o>(Rte_Instance,

void)
IocSend_<IocId>[_<SenderId>](<Data>,

Std_ReturnType)
:IOC_E_OK

:RTE_E_OK

Compute new buffer

content()

Rte_Send_<p>_<o>(Rte_Instance,

void)
IocSend_<IocId>[_<SenderId>](<Data>,

Std_ReturnType)
:IOC_E_OK

:RTE_E_OK

Compute new buffer

content()

Rte_Send_<p>_<o>(Rte_Instance,

void)

IocSend_<IocId>[_<SenderId>](<Data>,

Std_ReturnType)
:IOC_E_LIMIT

:RTE_E_LIMIT

Rte_Receive_<p>_<o>(Rte_Instance,

void*)
IocReceive_<IocId>(<Data>*,

Std_ReturnType)

:IOC_E_OK and IOC_E_LOST_DATA

:RTE_E_OK and RTE_E_LOST_DATA

Rte_Receive_<p>_<o>(Rte_Instance,

void*)
IocReceive_<IocId>(<Data>*,

Std_ReturnType)

:IOC_E_OK

:RTE_E_OK

Rte_Receive_<p>_<o>(Rte_Instance,

void*)IocReceive_<IocId>(<Data>*,

Std_ReturnType)

:IOC_E_NO_DATA

:RTE_E_NO_DATA

Figure 13: IOC - Queued communication without callback

Specification of Operating System
AUTOSAR CP R20-11

226 of 342 Document ID 34: AUTOSAR_SWS_OS

9.6.3 Queued communication with pull callback

The figure 13 shows the interaction between IOC and RTE in case of a queued
communication with an activated callback functionality. The RTE might handle
notification internally and might therefore not provide any callback functions, but a
similar scenario will occur in case of communication between CDDs on different
cores. The receiving CDD will provide the callback function in this case.

The defined communication has no waitpoints and describes a communication
implicating two OS-Applications located on different cores.

sd Ioc Queued with Callback

Receiver Application

(RCV Core)

«module»

RCV Core RTE :Rte

«module»

SND Core RTE :Rte

Sender Application

(SND Core)

«module»

Ioc :Ioc

In case of N:1 communication the RTE stores

incoming data from different senders in an

internal buffer (on same or different cores)

It is recommended to empty the IOC internal

queues within the pull callback function.

Rte_Send_<p>_<o>(Rte_Instance,

void)

IocSend_<IocId>[_<SenderId>](<Data>,

Std_ReturnType) Inter core notification (e.g. IRQ)

:IOC_E_OK

:RTE_E_OK

RTE_IocPullCB_<IocId>()

IocReceive_<IocId>(<Data>*,

Std_ReturnType)

:IOC_E_OK

IocReceive_<IocId>(<Data>*,

Std_ReturnType)
:IOC_E_NO_DATA

:RTE_E_OK

Rte_Receive_<p>_<o>(Rte_Instance,

void*)
:RTE_E_OK

Figure 14: IOC Queued Communication with callback

Specification of Operating System
AUTOSAR CP R20-11

227 of 342 Document ID 34: AUTOSAR_SWS_OS

10 Configuration Specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Os.

Chapter 10.4 specifies published information of the module Os.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral.

10.1.1 Rules for paramters

Some configuration parameters are configured as floating point values and
sometimes these values must be rounded in order to be used. The following rules
define the rounding of specific parameters:

 Execution times (for the timing protection) are “round down”

 Timeframes are “round down”

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters and their containers.
Background information about the detailed meaning of the parameters can be found
in chapters 7 and 8.

For better readability OIL names of the 2.1 OS specification are given in curly braces
in the namefield of configuration parameters.

10.2.1 Os

SWS Item ECUC_Os_00396 :

Module Name Os

Module Description Configuration of the Os (Operating System) module.

Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

OsAlarm 0..*
An OsAlarm may be used to asynchronously inform or activate
a specific task. It is possible to start alarms automatically at
system start-up depending on the application mode.

OsAppMode 1..* OsAppMode is the object used to define ISO 17356-3

Specification of Operating System
AUTOSAR CP R20-11

228 of 342 Document ID 34: AUTOSAR_SWS_OS

properties for an ISO 17356-3 application mode.
No standard attributes are defined for AppMode.

In a CPU, at least one AppMode object has to be defined.

[source: ISO 17356-6]

An OsAppMode called OSDEFAULTAPPMODE must always
be there for ISO 17356 compatibility.

OsApplication 0..*

An AUTOSAR OS must be capable of supporting a collection
of OS objects (tasks, interrupts, alarms, hooks etc.) that form a
cohesive functional unit. This collection of objects is termed an
OS-Application.
All objects which belong to the same OS-Application have
access to each other. Access means to allow to use these
objects within API services.

Access by other applications can be granted separately.

OsCounter 0..*
Configuration information for the counters that belong to the
OsApplication.

OsEvent 0..*
Representation of OS events in the configuration context.
Adopted from the ISO 17356-6 specification.

OsIoc 0..1 Configuration of the IOC (Inter OS Application Communicator).

OsIsr 0..*
The OsIsr container represents an ISO 17356 interrupt service
routine.

OsOS 1
OS is the object used to define ISO 17356-3 properties for an
ISO 17356 application.
Per CPU exactly one OS object has to be defined.

OsPeripheralArea 0..65534
Container to structure the configuration parameters of one
peripheral area. The container short name can be used to
access this area.

OsResource 0..*

An OsResource object is used to co-ordinate the concurrent
access by tasks and ISRs to a shared resource, e.g. the
scheduler, any program sequence, memory or any hardware
area.

OsScheduleTable 0..*
An OsScheduleTable addresses the synchronization issue by
providing an encapsulation of a statically defined set of alarms
that cannot be modified at runtime.

OsSpinlock 0..*
An OsSpinlock object is used to co-ordinate concurrent access
by TASKs/ISR2s on different cores to a shared resource.

OsTask 0..* This container represents an ISO 17356 task.

Specification of Operating System
AUTOSAR CP R20-11

229 of 342 Document ID 34: AUTOSAR_SWS_OS

Os: EcucModuleDef

upperMultiplicity = 1

lowerMultiplicity = 0 OsApplication:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsOS:

EcucParamConfContainerDef

OsTask:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsScheduleTable:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0
OsResource:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsIsr:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsEvent:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsEventMask:

EcucIntegerParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

OsAppMode:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

OsAlarm:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0
OsCounter:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsSpinlock:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsIoc:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

OsPeripheralArea:

EcucParamConfContainerDef

upperMultiplicity = 65534

lowerMultiplicity = 0

OsPeripheralAreaId:

EcucIntegerParamDef

symbolicNameValue = true

OsPeripheralAreaStartAddress:

EcucIntegerParamDef

min = 0

OsPeripheralAreaEndAddress:

EcucIntegerParamDef

min = 0

OsPeripheralAreaAccessingApplication:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

+container

+container

+reference

+container

+container

+container

+parameter

+destination

+container

+container

+container

+container

+parameter

+container

+container

+parameter

+container

+parameter

+container

Specification of Operating System
AUTOSAR CP R20-11

230 of 342 Document ID 34: AUTOSAR_SWS_OS

10.2.2 OsAlarmSetEvent

SWS Item ECUC_Os_00016 :

Container Name OsAlarmSetEvent

Parent Container OsAlarmAction

Description This container specifies the parameters to set an event

Configuration Parameters

SWS Item ECUC_Os_00017 :

Name

OsAlarmSetEventRef
Parent Container OsAlarmSetEvent

Description Reference to the event that will be set by that alarm action

Multiplicity 1

Type Reference to [OsEvent]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00018 :

Name

OsAlarmSetEventTaskRef
Parent Container OsAlarmSetEvent

Description Reference to the task that will be activated by that event

Multiplicity 1

Type Reference to [OsTask]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.3 OsAlarm

SWS Item ECUC_Os_00003 :

Container Name OsAlarm

Parent Container Os

Description
An OsAlarm may be used to asynchronously inform or activate a specific
task. It is possible to start alarms automatically at system start-up
depending on the application mode.

Configuration Parameters

SWS Item ECUC_Os_00004 :

Name

OsAlarmAccessingApplication
Parent Container OsAlarm

Description Reference to applications which have an access to this object.

Multiplicity 0..*

Type Reference to [OsApplication]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Specification of Operating System
AUTOSAR CP R20-11

231 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item ECUC_Os_00005 :

Name

OsAlarmCounterRef
Parent Container OsAlarm

Description Reference to the assigned counter for that alarm

Multiplicity 1

Type Reference to [OsCounter]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

OsAlarmAction 1
This container defines which type of notification is used when
the alarm expires.

OsAlarmAutostart 0..1
If present this container defines if an alarm is started
automatically at system start-up depending on the application
mode.

Specification of Operating System
AUTOSAR CP R20-11

232 of 342 Document ID 34: AUTOSAR_SWS_OS

OsAlarm:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsAlarmAutostart:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsAlarmAlarmTime:

EcucIntegerParamDef

min = 0

OsAlarmCycleTime:

EcucIntegerParamDef

min = 0

OsAlarmAppModeRef:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 1

OsAppMode:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

OsAlarmCounterRef:

EcucReferenceDef

OsCounter:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsAlarmAction:

EcucChoiceContainerDef

OsAlarmActivateTask:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsAlarmSetEvent:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsAlarmCallback:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsAlarmIncrementCounter:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsAlarmActivateTaskRef:

EcucReferenceDef

OsAlarmSetEventTaskRef:

EcucReferenceDef

OsTask:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsAlarmCallbackName:

EcucFunctionNameDef

OsAlarmSetEventRef:

EcucReferenceDef OsEvent:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsAlarmIncrementCounterRef:

EcucReferenceDef

OsAlarmAccessingApplication:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsApplication:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsAlarmAutostartType:

EcucEnumerationParamDef

ABSOLUTE:

EcucEnumerationLiteralDef

RELATIVE:

EcucEnumerationLiteralDef

+subContainer

+reference

+reference

+reference

+reference

+subContainer

+choice

+parameter

+reference

+reference

+destination

+parameter

+destination

+destination

+choice

+literal

+destination

+literal

+destination

+parameter

+destination

+reference

+destination

+choice

+choice

+parameter

10.2.4 OsAlarmAction

SWS Item ECUC_Os_00006 :

Choice container Name OsAlarmAction

Parent Container OsAlarm

Description
This container defines which type of notification is used when the alarm
expires.

Container Choices

Container Name Multiplicity Scope / Dependency

OsAlarmActivateTask 0..1 This container specifies the parameters to activate a task.

OsAlarmCallback 0..1
This container specifies the parameters to call a callback OS
alarm action.

OsAlarmIncrementCounter 0..1
This container specifies the parameters to increment a
counter.

OsAlarmSetEvent 0..1 This container specifies the parameters to set an event

Specification of Operating System
AUTOSAR CP R20-11

233 of 342 Document ID 34: AUTOSAR_SWS_OS

10.2.5 OsAlarmActivateTask

SWS Item ECUC_Os_00007 :

Container Name OsAlarmActivateTask

Parent Container OsAlarmAction

Description This container specifies the parameters to activate a task.

Configuration Parameters

SWS Item ECUC_Os_00008 :

Name

OsAlarmActivateTaskRef
Parent Container OsAlarmActivateTask

Description Reference to the task that will be activated by that alarm action

Multiplicity 1

Type Reference to [OsTask]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.6 OsAlarmAutostart

SWS Item ECUC_Os_00009 :

Container Name OsAlarmAutostart

Parent Container OsAlarm

Description
If present this container defines if an alarm is started automatically at
system start-up depending on the application mode.

Configuration Parameters

SWS Item ECUC_Os_00010 :

Name

OsAlarmAlarmTime
Parent Container OsAlarmAutostart

Description The relative or absolute tick value when the alarm expires for the first time.
Note that for an alarm which is RELATIVE the value must be at bigger than
0.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00011 :

Name

OsAlarmAutostartType
Parent Container OsAlarmAutostart

Description This specifies the type of autostart for the alarm..

Multiplicity 1

Specification of Operating System
AUTOSAR CP R20-11

234 of 342 Document ID 34: AUTOSAR_SWS_OS

Type EcucEnumerationParamDef

Range ABSOLUTE The alarm is started on startup via
SetAbsAlarm().

RELATIVE The alarm is started on startup via
SetRelAlarm().

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Os_00012 :

Name

OsAlarmCycleTime
Parent Container OsAlarmAutostart

Description Cycle time of a cyclic alarm in ticks. If the value is 0 than the alarm is not
cyclic.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00013 :

Name

OsAlarmAppModeRef
Parent Container OsAlarmAutostart

Description Reference to the application modes for which the AUTOSTART shall be
performed

Multiplicity 1..*

Type Reference to [OsAppMode]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.7 OsAlarmCallback

SWS Item ECUC_Os_00014 :

Container Name OsAlarmCallback

Specification of Operating System
AUTOSAR CP R20-11

235 of 342 Document ID 34: AUTOSAR_SWS_OS

Parent Container OsAlarmAction

Description This container specifies the parameters to call a callback OS alarm action.

Configuration Parameters

SWS Item ECUC_Os_00087 :

Name

OsAlarmCallbackName
Parent Container OsAlarmCallback

Description Name of the function that is called when this alarm callback is triggered.

Multiplicity 1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.8 OsAlarmIncrementCounter

SWS Item ECUC_Os_00302 :

Container Name OsAlarmIncrementCounter

Parent Container OsAlarmAction

Description This container specifies the parameters to increment a counter.

Configuration Parameters

SWS Item ECUC_Os_00015 :

Name

OsAlarmIncrementCounterRef
Parent Container OsAlarmIncrementCounter

Description Reference to the counter that will be incremented by that alarm action

Multiplicity 1

Type Reference to [OsCounter]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.2.9 OsApplication

SWS Item ECUC_Os_00114 :

Container Name OsApplication

Parent Container Os

Specification of Operating System
AUTOSAR CP R20-11

236 of 342 Document ID 34: AUTOSAR_SWS_OS

Description

An AUTOSAR OS must be capable of supporting a collection of OS
objects (tasks, interrupts, alarms, hooks etc.) that form a cohesive
functional unit. This collection of objects is termed an OS-Application.

All objects which belong to the same OS-Application have access to each
other. Access means to allow to use these objects within API services.

Access by other applications can be granted separately.

Configuration Parameters

SWS Item ECUC_Os_00115 :

Name

OsTrusted
Parent Container OsApplication

Description Parameter to specify if an OS-Application is trusted or not.
true: OS-Application is trusted
false: OS-Application is not trusted (default)

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

SWS Item ECUC_Os_00395 :

Name

OsTrustedApplicationDelayTimingViolationCall
Parent Container OsApplication

Description Parameter to specify if a timing violation which occurs within an trusted
OS-Application is raised immediately of if it is delayed until the current task
returns to the calling OS-Application (return of CallTrustedFunction)
true: violation / call to ProtectionHook() is delayed
false: timing violation cause an immediate call to the ProtectionHook().

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00394 :

Name

OsTrustedApplicationWithProtection
Parent Container OsApplication

Description Parameter to specify if a trusted OS-Application is executed with memory
protection or not.
true: OS-Application runs within a protected environment. This means that
write access is limited.
false: OS-Application has full write access (default)

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Specification of Operating System
AUTOSAR CP R20-11

237 of 342 Document ID 34: AUTOSAR_SWS_OS

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00231 :

Name

OsAppAlarmRef
Parent Container OsApplication

Description Specifies the OsAlarms that belong to the OsApplication.

Multiplicity 0..*

Type Reference to [OsAlarm]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00234 :

Name

OsAppCounterRef
Parent Container OsApplication

Description References the OsCounters that belong to the OsApplication.

Multiplicity 0..*

Type Reference to [OsCounter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00392 :

Name

OsAppEcucPartitionRef
Parent Container OsApplication

Description Denotes which "EcucPartition" is implemented by this "OSApplication".

Multiplicity 0..1

Type Reference to [EcucPartition]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item ECUC_Os_00221 :

Name

OsAppIsrRef

Specification of Operating System
AUTOSAR CP R20-11

238 of 342 Document ID 34: AUTOSAR_SWS_OS

Parent Container OsApplication

Description references which OsIsrs belong to the OsApplication

Multiplicity 0..*

Type Reference to [OsIsr]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00393 :

Name

OsApplicationCoreRef
Parent Container OsApplication

Description Reference to the Core Definition in the Ecuc Module where the CoreId is
defined. This reference is used to describe to which Core the
OsApplication is bound.

Multiplicity 0..1

Type Reference to [EcucCoreDefinition]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00230 :

Name

OsAppScheduleTableRef
Parent Container OsApplication

Description References the OsScheduleTables that belong to the OsApplication.

Multiplicity 0..*

Type Reference to [OsScheduleTable]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00116 :

Name

OsAppTaskRef
Parent Container OsApplication

Description references which OsTasks belong to the OsApplication

Multiplicity 0..*

Specification of Operating System
AUTOSAR CP R20-11

239 of 342 Document ID 34: AUTOSAR_SWS_OS

Type Reference to [OsTask]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00120 :

Name

OsRestartTask
Parent Container OsApplication

Description Optionally one task of an OS-Application may be defined as Restart Task.
Multiplicity = 1: Restart Task is activated by the Operating System if the
protection hook requests it.

Multiplicity = 0: No task is automatically started after a protection error
happened.

Multiplicity 0..1

Type Reference to [OsTask]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

Included Containers

Container Name Multiplicity Scope / Dependency

OsApplicationHooks 1 Container to structure the OS-Application-specific hooks

OsApplicationTrustedFunctio
n

0..*
Container to structure the configuration parameters of trusted
functions

Specification of Operating System
AUTOSAR CP R20-11

240 of 342 Document ID 34: AUTOSAR_SWS_OS

OsApplication: EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsScheduleTable:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsAppScheduleTableRef:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsAlarm:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsAppTaskRef: EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsIsr:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsAppAlarmRef:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsTask:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsRestartTask: EcucReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsApplicationHooks:

EcucParamConfContainerDef

OsAppIsrRef: EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsCounter:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsAppCounterRef:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsTrusted: EcucBooleanParamDef

defaultValue = false

OsApplicationTrustedFunction:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsAppEcucPartitionRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcucPartition:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

EcucCoreDefinition:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsApplicationCoreRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

OsTrustedApplicationWithProtection:

EcucBooleanParamDef

defaultValue = false

OsTrustedApplicationDelayTimingViolationCall:

EcucBooleanParamDef

defaultValue = true

+reference

+parameter

+subContainer

+reference

+reference

+reference
+destination

+destination

+destination

+parameter

+reference

+reference

+destination

+parameter

+destination

+reference

+reference

+subContainer

+destination

+destination

+destination

10.2.10 OsApplicationHooks

SWS Item ECUC_Os_00020 :

Container Name OsApplicationHooks

Specification of Operating System
AUTOSAR CP R20-11

241 of 342 Document ID 34: AUTOSAR_SWS_OS

Parent Container OsApplication

Description Container to structure the OS-Application-specific hooks

Configuration Parameters

SWS Item ECUC_Os_00213 :

Name

OsAppErrorHook
Parent Container OsApplicationHooks

Description Select the OS-Application error hook.
true: Hook is called
false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

SWS Item ECUC_Os_00125 :

Name

OsAppShutdownHook
Parent Container OsApplicationHooks

Description Select the OS-Application specific shutdown hook for the OS-Application.
true: Hook is called
false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

SWS Item ECUC_Os_00124 :

Name

OsAppStartupHook
Parent Container OsApplicationHooks

Description Select the OS-Application specific startup hook for the OS-Application.
true: Hook is called
false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

SWS Item ECUC_Os_00402 :

Name

OsMemoryMappingCodeLocationRef
Parent Container OsApplicationHooks

Description Reference to the memory mapping containing details about the section

Specification of Operating System
AUTOSAR CP R20-11

242 of 342 Document ID 34: AUTOSAR_SWS_OS

where the code is placed.

Multiplicity 0..1

Type Foreign reference to [SW-ADDR-METHOD]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

OsApplication:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsApplicationHooks:

EcucParamConfContainerDef

OsAppStartupHook:

EcucBooleanParamDef

OsAppShutdownHook:

EcucBooleanParamDef

OsAppErrorHook:

EcucBooleanParamDef

OsMemoryMappingCodeLocationRef:

EcucForeignReferenceDef

destinationType = SW-ADDR-METHOD

lowerMultiplicity = 0

upperMultiplicity = 1

ARElement

AtpBlueprint

AtpBlueprintable

SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]

+ option: Identifier [0..*]

+ sectionInitializationPolicy: SectionInitializationPolicyType [0..1]

+ sectionType: MemorySectionType [0..1]

+parameter

+subContainer

+reference

+parameter

+parameter

10.2.11 OsApplicationTrustedFunction

SWS Item ECUC_Os_00021 :

Container Name OsApplicationTrustedFunction

Parent Container OsApplication

Description Container to structure the configuration parameters of trusted functions

Configuration Parameters

SWS Item ECUC_Os_00254 :

Name

OsTrustedFunctionName
Parent Container OsApplicationTrustedFunction

Description Trusted function (as part of a trusted OS-Application) available to other
OS-Applications. This also supersedes the ISO 17356-6 attribute
TRUSTED in APPLICATION because the optionality of this parameter is
describing that already.

Multiplicity 1

Type EcucFunctionNameDef

Specification of Operating System
AUTOSAR CP R20-11

243 of 342 Document ID 34: AUTOSAR_SWS_OS

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4 and in trusted OS-
Applications.

No Included Containers

OsApplicationTrustedFunction:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsTrustedFunctionName:

EcucFunctionNameDef

+parameter

10.2.12 OsAppMode

SWS Item ECUC_Os_00022 :

Container Name OsAppMode

Parent Container Os

Description

OsAppMode is the object used to define ISO 17356-3 properties for an
ISO 17356-3 application mode.

No standard attributes are defined for AppMode.

In a CPU, at least one AppMode object has to be defined.

[source: ISO 17356-6]

An OsAppMode called OSDEFAULTAPPMODE must always be there for
ISO 17356 compatibility.

Configuration Parameters

No Included Containers

10.2.13 OsCounter

SWS Item ECUC_Os_00026 :

Container Name OsCounter

Parent Container Os

Description Configuration information for the counters that belong to the OsApplication.

Specification of Operating System
AUTOSAR CP R20-11

244 of 342 Document ID 34: AUTOSAR_SWS_OS

Configuration Parameters

SWS Item ECUC_Os_00027 :

Name

OsCounterMaxAllowedValue
Parent Container OsCounter

Description Maximum possible allowed value of the system counter in ticks.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00028 :

Name

OsCounterMinCycle
Parent Container OsCounter

Description The MINCYCLE attribute specifies the minimum allowed number of
counter ticks for a cyclic alarm linked to the counter.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00029 :

Name

OsCounterTicksPerBase
Parent Container OsCounter

Description The TICKSPERBASE attribute specifies the number of ticks required to
reach a counterspecific unit. The interpretation is implementation-specific.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00255 :

Name

OsCounterType
Parent Container OsCounter

Description This parameter contains the natural type or unit of the counter.

Multiplicity 1

Type EcucEnumerationParamDef

Range HARDWARE This counter is driven by some hardware
e.g. a hardware timer unit.

Specification of Operating System
AUTOSAR CP R20-11

245 of 342 Document ID 34: AUTOSAR_SWS_OS

SOFTWARE The counter is driven by some software
which calls the IncrementCounter service.

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: ECU

SWS Item ECUC_Os_00030 :

Name

OsSecondsPerTick
Parent Container OsCounter

Description Time of one counter tick in seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00031 :

Name

OsCounterAccessingApplication
Parent Container OsCounter

Description Reference to applications which have an access to this object.

Multiplicity 0..*

Type Reference to [OsApplication]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

OsDriver 0..1

This Container contains the information who will drive the
counter.
This configuration is only valid if the counter has
OsCounterType set to HARDWARE.

If the container does not exist (multiplicity=0) the timer is
managed by the OS internally (OSINTERNAL).

Specification of Operating System
AUTOSAR CP R20-11

246 of 342 Document ID 34: AUTOSAR_SWS_OS

If the container exists the OS can use the GPT interface to
manage the timer. The user have to supply the GPT channel.

If the counter is driven by some other (external to the OS)
source (like a TPU for example) this must be described as a
vendor specific extension.

OsTimeConstant 0..*

Allows the user to define constants which can be e.g. used to
compare time values with timer tick values.
A time value will be converted to a timer tick value during
generation and can later on accessed via the OsConstName.
The conversation is done by rounding time values to the
nearest fitting tick value.

OsCounter:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsCounterMinCycle:

EcucIntegerParamDef

min = 1

OsCounterMaxAllowedValue:

EcucIntegerParamDef

min = 1

OsCounterTicksPerBase:

EcucIntegerParamDef

min = 1

max = 4294967295

OsCounterType:

EcucEnumerationParamDef

SOFTWARE:

EcucEnumerationLiteralDef

HARDWARE:

EcucEnumerationLiteralDef

OsApplication:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsDriver:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

OsSecondsPerTick:

EcucFloatParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

max = INF

OsGptChannelRef: EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

GptChannelConfiguration:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

OsTimeConstant:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsTimeValue:

EcucFloatParamDef

min = 0

max = INF

OsCounterAccessingApplication:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

GptChannelId:

EcucIntegerParamDef

min = 0

max = 4294967295

symbolicNameValue = true

+parameter

+parameter

+parameter

+subContainer

+destination

+parameter

+destination

+parameter

+reference

+literal

+parameter

+reference

+subContainer
+parameter

+literal

10.2.14 OsEvent

SWS Item ECUC_Os_00033 :

Container Name OsEvent

Parent Container Os

Specification of Operating System
AUTOSAR CP R20-11

247 of 342 Document ID 34: AUTOSAR_SWS_OS

Description
Representation of OS events in the configuration context. Adopted from
the ISO 17356-6 specification.

Configuration Parameters

SWS Item ECUC_Os_00034 :

Name

OsEventMask
Parent Container OsEvent

Description If event mask would be set to AUTO in OIL, this parameter should be
omitted here.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.15 OsDriver

SWS Item ECUC_Os_00371 :

Container Name OsDriver

Parent Container OsCounter

Description

This Container contains the information who will drive the counter.
This configuration is only valid if the counter has OsCounterType set to
HARDWARE.

If the container does not exist (multiplicity=0) the timer is managed by the
OS internally (OSINTERNAL).

If the container exists the OS can use the GPT interface to manage the
timer. The user have to supply the GPT channel.

If the counter is driven by some other (external to the OS) source (like a
TPU for example) this must be described as a vendor specific extension.

Configuration Parameters

SWS Item ECUC_Os_00032 :

Name

OsGptChannelRef
Parent Container OsDriver

Description Reference to the GPT channel.

Multiplicity 0..1

Type Symbolic name reference to [GptChannelConfiguration]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Specification of Operating System
AUTOSAR CP R20-11

248 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.2.16 OsHooks

SWS Item ECUC_Os_00035 :

Container Name OsHooks

Parent Container OsOS

Description Container to structure all hooks belonging to the OS

Configuration Parameters

SWS Item ECUC_Os_00036 :

Name

OsErrorHook
Parent Container OsHooks

Description Error hook as defined by ISO 17356
true: Hook is called
false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00037 :

Name

OsPostTaskHook
Parent Container OsHooks

Description Post-task hook as defined by ISO 17356
true: Hook is called
false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00038 :

Name

OsPreTaskHook
Parent Container OsHooks

Description Pre-task hook as defined by ISO 17356
true: Hook is called
false: Hook is not called

Specification of Operating System
AUTOSAR CP R20-11

249 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00214 :

Name

OsProtectionHook
Parent Container OsHooks

Description Switch to enable/disable the call to the (user supplied) protection hook.
true: Protection hook is called on protection error
false: Protection hook is not called

Multiplicity 0..1

Type EcucBooleanParamDef

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2,3 and 4

SWS Item ECUC_Os_00039 :

Name

OsShutdownHook
Parent Container OsHooks

Description Shutdown hook as defined by ISO 17356
true: Hook is called
false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00040 :

Name

OsStartupHook
Parent Container OsHooks

Description Startup hook as defined by ISO 17356
true: Hook is called
false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Specification of Operating System
AUTOSAR CP R20-11

250 of 342 Document ID 34: AUTOSAR_SWS_OS

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00402 :

Name

OsMemoryMappingCodeLocationRef
Parent Container OsHooks

Description Reference to the memory mapping containing details about the section
where the code is placed.

Multiplicity 0..1

Type Foreign reference to [SW-ADDR-METHOD]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

OsOS:

EcucParamConfContainerDef

OsHooks:

EcucParamConfContainerDef
OsStartupHook:

EcucBooleanParamDef

OsErrorHook:

EcucBooleanParamDef

OsShutdownHook:

EcucBooleanParamDef

OsPreTaskHook:

EcucBooleanParamDef

OsPostTaskHook:

EcucBooleanParamDef

OsProtectionHook:

EcucBooleanParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsMemoryMappingCodeLocationRef:

EcucForeignReferenceDef

destinationType = SW-ADDR-METHOD

lowerMultiplicity = 0

upperMultiplicity = 1

ARElement

AtpBlueprint

AtpBlueprintable

SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]

+ option: Identifier [0..*]

+ sectionInitializationPolicy: SectionInitializationPolicyType [0..1]

+ sectionType: MemorySectionType [0..1]

+parameter

+parameter

+reference

+parameter

+parameter

+parameter

+parameter

+subContainer

Specification of Operating System
AUTOSAR CP R20-11

251 of 342 Document ID 34: AUTOSAR_SWS_OS

10.2.17 OsIsr

SWS Item ECUC_Os_00041 :

Container Name OsIsr

Parent Container Os

Description The OsIsr container represents an ISO 17356 interrupt service routine.

Configuration Parameters

SWS Item ECUC_Os_00042 :

Name

OsIsrCategory
Parent Container OsIsr

Description This attribute specifies the category of this ISR.

Multiplicity 1

Type EcucEnumerationParamDef

Range CATEGORY_1 Interrupt is of category 1

CATEGORY_2 Interrupt is of category 2

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Os_00403 :

Name

OsIsrPeriod
Parent Container OsIsr

Description This parameter specifies the period in seconds of this ISR in case of a
cyclically triggered interrupt.
If this parameter is not given the interrupt can be activated sporadicly or
cyclically with a unknown period value.

This value is information, e.g. for time base calculations in the RTE in case
TimingEvents are mapped onto this OsIsr. Be aware, that this parameter is
not supposed to be relevant for the OS!
It's the responsibility of the integrator to ensure the activation of the ISR
according the configured period. This information is given as part of the OS
configuration to support configuration work flows using a fixed set of
OsIsrs.

Multiplicity 0..1

Type EcucFloatParamDef

Range [-INF .. INF]

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00043 :

Name

OsIsrResourceRef

Specification of Operating System
AUTOSAR CP R20-11

252 of 342 Document ID 34: AUTOSAR_SWS_OS

Parent Container OsIsr

Description This reference defines the resources accessed by this ISR.

Multiplicity 0..*

Type Reference to [OsResource]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00402 :

Name

OsMemoryMappingCodeLocationRef
Parent Container OsIsr

Description Reference to the memory mapping containing details about the section
where the code is placed.

Multiplicity 0..1

Type Foreign reference to [SW-ADDR-METHOD]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

Included Containers

Container Name Multiplicity Scope / Dependency

OsIsrTimingProtection 0..1

This container contains all parameters which are related to
timing protection
If the container exists, the timing protection is used for this
interrupt. If the container does not exist, the interrupt is not
supervised regarding timing violations.

Specification of Operating System
AUTOSAR CP R20-11

253 of 342 Document ID 34: AUTOSAR_SWS_OS

OsIsr:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsIsrCategory:

EcucEnumerationParamDef

OsResource:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsIsrResourceLock:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsIsrResourceLockResourceRef:

EcucReferenceDef

OsIsrResourceLockBudget:

EcucFloatParamDef

min = 0

max = INF

OsIsrOsInterruptLockBudget:

EcucFloatParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

max = INF

OsIsrResourceRef:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsIsrAllInterruptLockBudget:

EcucFloatParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

max = INF

OsIsrExecutionBudget:

EcucFloatParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

max = INF

OsIsrTimeFrame:

EcucFloatParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

max = INF

CATEGORY_2:

EcucEnumerationLiteralDef

CATEGORY_1:

EcucEnumerationLiteralDef

OsIsrTimingProtection:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

OsMemoryMappingCodeLocationRef:

EcucForeignReferenceDef

destinationType = SW-ADDR-METHOD

lowerMultiplicity = 0

upperMultiplicity = 1

OsIsrPeriod: EcucFloatParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

ARElement

AtpBlueprint

AtpBlueprintable

SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]

+ option: Identifier [0..*]

+ sectionInitializationPolicy: SectionInitializationPolicyType [0..1]

+ sectionType: MemorySectionType [0..1]

+parameter

+destination

+parameter

+subContainer

+literal

+parameter

+parameter

+reference

+parameter

+destination

+literal

+subContainer

+reference

+reference

+parameter

+parameter

10.2.18 OsIsrResourceLock

SWS Item ECUC_Os_00388 :

Container Name OsIsrResourceLock

Parent Container OsIsrTimingProtection

Description This container contains a list of times the interrupt uses resources.

Configuration Parameters

SWS Item ECUC_Os_00389 :

Specification of Operating System
AUTOSAR CP R20-11

254 of 342 Document ID 34: AUTOSAR_SWS_OS

Name

OsIsrResourceLockBudget
Parent Container OsIsrResourceLock

Description This parameter contains the maximum time the interrupt is allowed to hold
the given resource (in seconds).

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

SWS Item ECUC_Os_00390 :

Name

OsIsrResourceLockResourceRef
Parent Container OsIsrResourceLock

Description Reference to the resource the locking time is depending on

Multiplicity 1

Type Reference to [OsResource]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

No Included Containers

10.2.19 OsIsrTimingProtection

SWS Item ECUC_Os_00326 :

Container Name OsIsrTimingProtection

Parent Container OsIsr

Description

This container contains all parameters which are related to timing
protection

If the container exists, the timing protection is used for this interrupt. If the
container does not exist, the interrupt is not supervised regarding timing
violations.

Configuration Parameters

SWS Item ECUC_Os_00229 :

Name

OsIsrAllInterruptLockBudget
Parent Container OsIsrTimingProtection

Description This parameter contains the maximum time for which the ISR is allowed to
lock all interrupts (via SuspendAllInterrupts() or DisableAllInterrupts()) (in
seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant false

Specification of Operating System
AUTOSAR CP R20-11

255 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

SWS Item ECUC_Os_00222 :

Name

OsIsrExecutionBudget
Parent Container OsIsrTimingProtection

Description The parameter contains the maximum allowed execution time of the
interrupt (in seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

SWS Item ECUC_Os_00387 :

Name

OsIsrOsInterruptLockBudget
Parent Container OsIsrTimingProtection

Description This parameter contains the maximum time for which the ISR is allowed to
lock all Category 2 interrupts (via SuspendOSInterrupts()) (in seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

SWS Item ECUC_Os_00223 :

Name

OsIsrTimeFrame
Parent Container OsIsrTimingProtection

Specification of Operating System
AUTOSAR CP R20-11

256 of 342 Document ID 34: AUTOSAR_SWS_OS

Description This parameter contains the minimum inter-arrival time between
successive interrupts (in seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

Included Containers

Container Name Multiplicity Scope / Dependency

OsIsrResourceLock 0..*
This container contains a list of times the interrupt uses
resources.

10.2.20 OsOS

SWS Item ECUC_Os_00044 :

Container Name OsOS

Parent Container Os

Description

OS is the object used to define ISO 17356-3 properties for an ISO 17356
application.

Per CPU exactly one OS object has to be defined.

Configuration Parameters

SWS Item ECUC_Os_01019 :

Name

OsNumberOfCores
Parent Container OsOS

Description Maximum number of cores that are controlled by the OS.
The OS uses the value internally. It depends on the ECU HW.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 1 .. 65535

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Specification of Operating System
AUTOSAR CP R20-11

257 of 342 Document ID 34: AUTOSAR_SWS_OS

SWS Item ECUC_Os_00259 :

Name

OsScalabilityClass
Parent Container OsOS

Description A scalability class for each System Object "OS" has to be selected. In order to
customize the operating system to the needs of the user and to take full advantage
of the processor features the operating system can be scaled according to the
scalability classes.
If the scalability class is omitted this translates to the OIL AUTO mechanism.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range SC1 --

SC2 --

SC3 --

SC4 --

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: ECU

SWS Item ECUC_Os_00307 :

Name

OsStackMonitoring
Parent Container OsOS

Description Select stack monitoring of Tasks/Category 2 ISRs
true: Stacks are monitored
false: Stacks are not monitored

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00046 :

Name

OsStatus
Parent Container OsOS

Description The Status attribute specifies whether a system with standard or extended status
has to be used. Automatic assignment is not supported for this attribute.

Multiplicity 1

Type EcucEnumerationParamDef

Range EXTENDED --

STANDARD --

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Os_00406 :

Specification of Operating System
AUTOSAR CP R20-11

258 of 342 Document ID 34: AUTOSAR_SWS_OS

Name

OsUseArti
Parent Container OsOS

Description The OsUseArti attribute defines whether the OS uses and calls ARTI
hooks. This includes also the generation of related ARTI artifacts by the
generator.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00047 :

Name

OsUseGetServiceId
Parent Container OsOS

Description As defined by ISO 17356

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00048 :

Name

OsUseParameterAccess
Parent Container OsOS

Description As defined by ISO 17356

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00049 :

Name

OsUseResScheduler
Parent Container OsOS

Description The OsUseResScheduler attribute defines whether the resource
RES_SCHEDULER is used within the application.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

Specification of Operating System
AUTOSAR CP R20-11

259 of 342 Document ID 34: AUTOSAR_SWS_OS

OsHooks 1 Container to structure all hooks belonging to the OS

OsOS:

EcucParamConfContainerDef
OsStatus:

EcucEnumerationParamDef

STANDARD:

EcucEnumerationLiteralDef

EXTENDED:

EcucEnumerationLiteralDef

OsScalabilityClass:

EcucEnumerationParamDef

lowerMultiplicity = 0

SC1:

EcucEnumerationLiteralDef

SC2:

EcucEnumerationLiteralDef

SC3:

EcucEnumerationLiteralDef

SC4:

EcucEnumerationLiteralDef

OsUseResScheduler:

EcucBooleanParamDef

defaultValue = true

OsStackMonitoring:

EcucBooleanParamDef

OsHooks:

EcucParamConfContainerDef

OsUseGetServiceId:

EcucBooleanParamDef

OsUseParameterAccess:

EcucBooleanParamDef

Os: EcucModuleDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsUseArti:

EcucBooleanParamDef

OsNumberOfCores:

EcucIntegerParamDef

min = 1

max = 65535

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+parameter

+parameter

+subContainer

+literal

+literal

+parameter

+parameter

+literal

+literal

+literal

+parameter

+parameter

+container

+literal

+parameter

Specification of Operating System
AUTOSAR CP R20-11

260 of 342 Document ID 34: AUTOSAR_SWS_OS

10.2.21 OsPeripheralArea

SWS Item ECUC_Os_00397 :

Container Name OsPeripheralArea

Parent Container Os

Description
Container to structure the configuration parameters of one peripheral area.
The container short name can be used to access this area.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Configuration Parameters

SWS Item ECUC_Os_00400 :

Name

OsPeripheralAreaEndAddress
Parent Container OsPeripheralArea

Description Last valid address of a peripheral area.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00398 :

Name

OsPeripheralAreaId
Parent Container OsPeripheralArea

Description Id of peripheral area.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Scope / Dependency scope: local

SWS Item ECUC_Os_00399 :

Name

OsPeripheralAreaStartAddress
Parent Container OsPeripheralArea

Description First valid address of a peripheral area.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant
Multiplicity

false

Value Configuration Class Pre-compile time X All Variants

Link time --

Specification of Operating System
AUTOSAR CP R20-11

261 of 342 Document ID 34: AUTOSAR_SWS_OS

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00401 :

Name

OsPeripheralAreaAccessingApplication
Parent Container OsPeripheralArea

Description Reference to application which have access to this object.

Multiplicity 0..*

Type Reference to [OsApplication]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Scope / Dependency scope: local

No Included Containers

10.2.22 OsResource

SWS Item ECUC_Os_00252 :

Container Name OsResource

Parent Container Os

Description
An OsResource object is used to co-ordinate the concurrent access by
tasks and ISRs to a shared resource, e.g. the scheduler, any program
sequence, memory or any hardware area.

Configuration Parameters

SWS Item ECUC_Os_00050 :

Name

OsResourceProperty
Parent Container OsResource

Description This specifies the type of the resource.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERNAL The resource is an internal resource.

LINKED The resource is a linked resource (a
second name for a existing resource).

STANDARD The resource is a standard resource.

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Os_00051 :

Name

OsResourceAccessingApplication
Parent Container OsResource

Description Reference to applications which have an access to this object.

Multiplicity 0..*

Type Reference to [OsApplication]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Specification of Operating System
AUTOSAR CP R20-11

262 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00052 :

Name

OsResourceLinkedResourceRef
Parent Container OsResource

Description The link to the resource. Must be valid if OsResourceProperty is LINKED.
If OsResourceProperty is not LINKED the value is ignored.

Multiplicity 0..1

Type Reference to [OsResource]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

OsResource:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsResourceProperty:

EcucEnumerationParamDef

STANDARD:

EcucEnumerationLiteralDef

LINKED:

EcucEnumerationLiteralDef

INTERNAL:

EcucEnumerationLiteralDef

OsResourceLinkedResourceRef:

EcucReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsResourceAccessingApplication:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsApplication:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

+literal

+reference

+literal

+parameter

+reference

+destination

+literal

+destination

Specification of Operating System
AUTOSAR CP R20-11

263 of 342 Document ID 34: AUTOSAR_SWS_OS

10.2.23 OsScheduleTable

SWS Item ECUC_Os_00141 :

Container Name OsScheduleTable

Parent Container Os

Description
An OsScheduleTable addresses the synchronization issue by providing an
encapsulation of a statically defined set of alarms that cannot be modified
at runtime.

Configuration Parameters

SWS Item ECUC_Os_00053 :

Name

OsScheduleTableDuration
Parent Container OsScheduleTable

Description This parameter defines the modulus of the schedule table (in ticks).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00144 :

Name

OsScheduleTableRepeating
Parent Container OsScheduleTable

Description true: first expiry point on the schedule table shall be processed at final
expiry point delay ticks after the final expiry point is processed.
false: the schedule table processing stops when the final expiry point is
processed.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00145 :

Name

OsScheduleTableCounterRef
Parent Container OsScheduleTable

Description This parameter contains a reference to the counter which drives the
schedule table.

Multiplicity 1

Type Reference to [OsCounter]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00054 :

Name

OsSchTblAccessingApplication

Specification of Operating System
AUTOSAR CP R20-11

264 of 342 Document ID 34: AUTOSAR_SWS_OS

Parent Container OsScheduleTable

Description Reference to applications which have an access to this object.

Multiplicity 0..*

Type Reference to [OsApplication]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

OsScheduleTableAutostart 0..1

This container specifies if and how the schedule table is
started on startup of the Operating System. The options to
start a schedule table correspond to the API calls to start
schedule tables during runtime.

OsScheduleTableExpiryPoint 1..*
The point on a Schedule Table at which the OS activates tasks
and/or sets events

OsScheduleTableSync 0..1
This container specifies the synchronization parameters of the
schedule table.

Specification of Operating System
AUTOSAR CP R20-11

265 of 342 Document ID 34: AUTOSAR_SWS_OS

OsScheduleTable:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsScheduleTableRepeating:

EcucBooleanParamDef

OsScheduleTableExpiryPoint:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

OsScheduleTableActivateTaskRef:

EcucReferenceDef

OsEvent:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsScheduleTableSetEventRef:

EcucReferenceDefOsScheduleTableEventSetting:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsScheduleTableTaskActivation:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0
OsTask: EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsScheduleTableSync:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsCounter:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsScheduleTableCounterRef:

EcucReferenceDef

OsScheduleTableAutostart:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsScheduleTableAppModeRef:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 1

OsScheduleTableStartValue:

EcucIntegerParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

OsAppMode:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

OsScheduleTblExpPointOffset:

EcucIntegerParamDef

min = 0

OsScheduleTblAdjustableExpPoint:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1 OsScheduleTableMaxLengthen:

EcucIntegerParamDef

min = 0

OsScheduleTableMaxShorten:

EcucIntegerParamDef

min = 0

OsScheduleTblSyncStrategy:

EcucEnumerationParamDef

defaultValue = NONE

NONE:

EcucEnumerationLiteralDef

EXPLICIT:

EcucEnumerationLiteralDef

IMPLICIT:

EcucEnumerationLiteralDef

OsScheduleTblExplicitPrecision:

EcucIntegerParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

OsSchTblAccessingApplication:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsApplication:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsScheduleTableSetEventTaskRef:

EcucReferenceDef

OsScheduleTableAutostartType:

EcucEnumerationParamDef

ABSOLUTE:

EcucEnumerationLiteralDef

RELATIVE:

EcucEnumerationLiteralDef

SYNCHRON:

EcucEnumerationLiteralDef

OsScheduleTableDuration:

EcucIntegerParamDef

+destination+destination

+reference

+reference

+destination

+parameter

+parameter

+reference

+parameter

+literal

+literal

+subContainer

+literal

+parameter

+subContainer

+literal

+parameter

+destination

+parameter

+reference

+destination

+parameter

+literal

+destination

+subContainer

+subContainer

+literal

+reference

+reference

+parameter

+subContainer

+parameter

+subContainer

10.2.24 OsScheduleTableAutostart

SWS Item ECUC_Os_00335 :

Container Name OsScheduleTableAutostart

Parent Container OsScheduleTable

Description
This container specifies if and how the schedule table is started on startup
of the Operating System. The options to start a schedule table correspond
to the API calls to start schedule tables during runtime.

Configuration Parameters

SWS Item ECUC_Os_00056 :

Name

OsScheduleTableAutostartType
Parent Container OsScheduleTableAutostart

Description This specifies the type of the autostart for the schedule table.

Specification of Operating System
AUTOSAR CP R20-11

266 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity 1

Type EcucEnumerationParamDef

Range ABSOLUTE The schedule table is started during startup
with the StartScheduleTableAbs() service.

RELATIVE The schedule table is started during startup
with the StartScheduleTableRel() service.

SYNCHRON The schedule table is started during startup
with the StartScheduleTableSynchron()
service.

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Os_00057 :

Name

OsScheduleTableStartValue
Parent Container OsScheduleTableAutostart

Description Absolute autostart tick value when the schedule table starts. Only used if
the OsScheduleTableAutostartType is ABSOLUTE.
Relative offset in ticks when the schedule table starts. Only used if the
OsScheduleTableAutostartType is RELATIVE.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00058 :

Name

OsScheduleTableAppModeRef
Parent Container OsScheduleTableAutostart

Description Reference in which application modes the schedule table should be started
during startup

Multiplicity 1..*

Type Reference to [OsAppMode]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Specification of Operating System
AUTOSAR CP R20-11

267 of 342 Document ID 34: AUTOSAR_SWS_OS

Scope / Dependency scope: ECU

No Included Containers

10.2.25 OsScheduleTableEventSetting

SWS Item ECUC_Os_00059 :

Container Name OsScheduleTableEventSetting

Parent Container OsScheduleTableExpiryPoint

Description Event that is triggered by that schedule table.

Configuration Parameters

SWS Item ECUC_Os_00060 :

Name

OsScheduleTableSetEventRef
Parent Container OsScheduleTableEventSetting

Description Reference to event that will be set by action

Multiplicity 1

Type Reference to [OsEvent]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00061 :

Name

OsScheduleTableSetEventTaskRef
Parent Container OsScheduleTableEventSetting

Description --

Multiplicity 1

Type Reference to [OsTask]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.26 OsScheduleTableExpiryPoint

SWS Item ECUC_Os_00143 :

Container Name OsScheduleTableExpiryPoint

Parent Container OsScheduleTable

Description
The point on a Schedule Table at which the OS activates tasks and/or sets
events

Configuration Parameters

SWS Item ECUC_Os_00062 :

Name

OsScheduleTblExpPointOffset
Parent Container OsScheduleTableExpiryPoint

Description The offset from zero (in ticks) at which the expiry point is to be processed.

Specification of Operating System
AUTOSAR CP R20-11

268 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

Included Containers

Container Name Multiplicity Scope / Dependency

OsScheduleTableEventSetting 0..* Event that is triggered by that schedule table.

OsScheduleTableTaskActivation 0..* Task that is triggered by that schedule table.

OsScheduleTblAdjustableExpPoin
t

0..1 Adjustable expiry point

10.2.27 OsScheduleTableTaskActivation

SWS Item ECUC_Os_00066 :

Container Name OsScheduleTableTaskActivation

Parent Container OsScheduleTableExpiryPoint

Description Task that is triggered by that schedule table.

Configuration Parameters

SWS Item ECUC_Os_00067 :

Name

OsScheduleTableActivateTaskRef
Parent Container OsScheduleTableTaskActivation

Description Reference to task that will be activated by action

Multiplicity 1

Type Reference to [OsTask]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.2.28 OsScheduleTblAdjustableExpPoint

SWS Item ECUC_Os_00068 :

Container Name OsScheduleTblAdjustableExpPoint

Parent Container OsScheduleTableExpiryPoint

Description Adjustable expiry point

Configuration Parameters

SWS Item ECUC_Os_00069 :

Name

OsScheduleTableMaxLengthen
Parent Container OsScheduleTblAdjustableExpPoint

Specification of Operating System
AUTOSAR CP R20-11

269 of 342 Document ID 34: AUTOSAR_SWS_OS

Description The maximum positive adjustment that can be made to the expiry point
offset (in ticks).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00070 :

Name

OsScheduleTableMaxShorten
Parent Container OsScheduleTblAdjustableExpPoint

Description The maximum negative adjustment that can be made to the expiry point
offset (in ticks).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.29 OsScheduleTableSync

SWS Item ECUC_Os_00063 :

Container Name OsScheduleTableSync

Parent Container OsScheduleTable

Description
This container specifies the synchronization parameters of the schedule
table.

Configuration Parameters

SWS Item ECUC_Os_00064 :

Name

OsScheduleTblExplicitPrecision
Parent Container OsScheduleTableSync

Description This configuration is only valid if the explicit synchronization is used.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Specification of Operating System
AUTOSAR CP R20-11

270 of 342 Document ID 34: AUTOSAR_SWS_OS

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00065 :

Name

OsScheduleTblSyncStrategy
Parent Container OsScheduleTableSync

Description AUTOSAR OS provides support for synchronization in two ways: explicit and
implicit.

Multiplicity 1

Type EcucEnumerationParamDef

Range EXPLICIT The schedule table is driven by an OS
counter but processing needs to be
synchronized with a different counter
which is not an OS counter object.

IMPLICIT The counter driving the schedule table is
the counter with which synchronisation is
required.

NONE No support for synchronisation.

Default value NONE

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: ECU

No Included Containers

10.2.30 OsSpinlock

SWS Item ECUC_Os_00258 :

Container Name OsSpinlock

Parent Container Os

Description
An OsSpinlock object is used to co-ordinate concurrent access by
TASKs/ISR2s on different cores to a shared resource.

Configuration Parameters

SWS Item ECUC_Os_01038 :

Name

OsSpinlockLockMethod
Parent Container OsSpinlock

Description Lock method which is used when a spinlock is taken. Note that it is possible that a
user (e.g. a Task) might hold more than one spinlock. In this case the last lock
taken is forced to use at least a lock methode which locks as strong as the current
one.

Multiplicity 1

Type EcucEnumerationParamDef

Range LOCK_ALL_INTERRUPTS --

LOCK_CAT2_INTERRUPTS --

LOCK_NOTHING --

LOCK_WITH_RES_SCHEDULER --

Specification of Operating System
AUTOSAR CP R20-11

271 of 342 Document ID 34: AUTOSAR_SWS_OS

Default value LOCK_NOTHING

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Os_01021 :

Name

OsSpinlockAccessingApplication
Parent Container OsSpinlock

Description Reference to OsApplications that have an access to this object.

Multiplicity 1..*

Type Reference to [OsApplication]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_01022 :

Name

OsSpinlockSuccessor
Parent Container OsSpinlock

Description Reference to OsApplications that have an access to this object.
To check whether a spinlock can be occupied (in a nested way) without
any danger of deadlock, a linked list of spinlocks can be defined. A
spinlock can only be occupied in the order of the linked list. It is allowed to
skip a spinlock.

If no linked list is specified, spinlocks cannot be nested.

Multiplicity 0..1

Type Reference to [OsSpinlock]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

Specification of Operating System
AUTOSAR CP R20-11

272 of 342 Document ID 34: AUTOSAR_SWS_OS

OsSpinlock:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsSpinlockAccessingApplication:

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = *

OsSpinlockSuccessor:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

OsApplication:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsSpinlockLockMethod:

EcucEnumerationParamDef

defaultValue = LOCK_NOTHING

LOCK_ALL_INTERRUPTS:

EcucEnumerationLiteralDef

LOCK_CAT2_INTERRUPTS:

EcucEnumerationLiteralDef

LOCK_WITH_RES_SCHEDULER:

EcucEnumerationLiteralDef

LOCK_NOTHING:

EcucEnumerationLiteralDef

+destination

+parameter

+literal

+literal

+reference

+destination

+literal

+literal

+reference

10.2.31 OsTask

SWS Item ECUC_Os_00073 :

Container Name OsTask

Parent Container Os

Description This container represents an ISO 17356 task.

Configuration Parameters

SWS Item ECUC_Os_00074 :

Name

OsTaskActivation
Parent Container OsTask

Description This attribute defines the maximum number of queued activation requests
for the task. A value equal to "1" means that at any time only a single
activation is permitted for this task. Note that the value must be a natural
number starting at 1.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00404 :

Name

OsTaskPeriod
Parent Container OsTask

Specification of Operating System
AUTOSAR CP R20-11

273 of 342 Document ID 34: AUTOSAR_SWS_OS

Description This parameter specifies the period in seconds of this task in case of a
cyclically activated task.
If this parameter is not given the task can be activated sporadicly or
cyclically with a unknown period value.

This value is information, e.g. for time base calculations in the RTE in case
TimingEvents are mapped onto this OsTask.Be aware, that this parameter
is not supposed to be relevant for the OS!
This information is given as part of the OS configuration to support
configuration work flows using a fixed set of OsTasks.

Multiplicity 0..1

Type EcucFloatParamDef

Range [-INF .. INF]

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00075 :

Name

OsTaskPriority
Parent Container OsTask

Description The priority of a task is defined by the value of this attribute. This value has
to be understood as a relative value, i.e. the values show only the relative
ordering of the tasks.
ISO 17356-3 defines the lowest priority as zero (0); larger values
correspond to higher priorities.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00076 :

Name

OsTaskSchedule
Parent Container OsTask

Description The OsTaskSchedule attribute defines the preemptability of the task.
If this attribute is set to NON, no internal resources may be assigned to this task.

Multiplicity 1

Type EcucEnumerationParamDef

Range FULL Task is preemptable.

NON Task is not preemptable.

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Specification of Operating System
AUTOSAR CP R20-11

274 of 342 Document ID 34: AUTOSAR_SWS_OS

Scope /
Dependency

scope: local

SWS Item ECUC_Os_00402 :

Name

OsMemoryMappingCodeLocationRef
Parent Container OsTask

Description Reference to the memory mapping containing details about the section
where the code is placed.

Multiplicity 0..1

Type Foreign reference to [SW-ADDR-METHOD]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_00077 :

Name

OsTaskAccessingApplication
Parent Container OsTask

Description Reference to applications which have an access to this object.

Multiplicity 0..*

Type Reference to [OsApplication]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00078 :

Name

OsTaskEventRef
Parent Container OsTask

Description This reference defines the list of events the extended task may react on.

Multiplicity 0..*

Type Reference to [OsEvent]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00079 :

Name

OsTaskResourceRef
Parent Container OsTask

Description This reference defines a list of resources accessed by this task.

Multiplicity 0..*

Type Reference to [OsResource]

Specification of Operating System
AUTOSAR CP R20-11

275 of 342 Document ID 34: AUTOSAR_SWS_OS

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

OsTaskAutostart 0..1

This container determines whether the task is activated during
the system start-up procedure or not for some specific
application modes.
If the task shall be activated during the system start-up, this
container is present and holds the references to the application
modes in which the task is auto-started.

OsTaskTimingProtection 0..1
This container contains all parameters regarding timing
protection of the task.

Specification of Operating System
AUTOSAR CP R20-11

276 of 342 Document ID 34: AUTOSAR_SWS_OS

OsTask:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsAppMode:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

OsTaskAppModeRef:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 1

OsTaskAutostart:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsTaskPriority:

EcucIntegerParamDef

min = 0

max = 4294967295
OsTaskActivation:

EcucIntegerParamDef

min = 1

max = 4294967295

OsTaskSchedule:

EcucEnumerationParamDef

NON:

EcucEnumerationLiteralDef

FULL: EcucEnumerationLiteralDef

OsTaskEventRef:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsEvent:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsResource:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsTaskResourceRef:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsTaskExecutionBudget:

EcucFloatParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

max = INF

OsTaskTimeFrame:

EcucFloatParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

max = INF

OsTaskResourceLock:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsTaskResourceLockResourceRef:

EcucReferenceDef

OsTaskResourceLockBudget:

EcucFloatParamDef

min = 0

max = INF

OsTaskOsInterruptLockBudget:

EcucFloatParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

max = INF

OsTaskAllInterruptLockBudget:

EcucFloatParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

min = 0

max = INF

OsTaskTimingProtection:

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

OsTaskAccessingApplication:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 0

OsApplication:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsMemoryMappingCodeLocationRef:

EcucForeignReferenceDef

destinationType = SW-ADDR-METHOD

lowerMultiplicity = 0

upperMultiplicity = 1

ARElement

AtpBlueprint

AtpBlueprintable

SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]

+ option: Identifier [0..*]

+ sectionInitializationPolicy: SectionInitializationPolicyType [0..1]

+ sectionType: MemorySectionType [0..1]

OsTaskPeriod:

EcucFloatParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

+destination

+reference

+parameter

+reference

+parameter

+literal

+parameter

+parameter

+reference

+parameter

+reference

+destination+reference
+destination

+parameter

+subContainer

+destination

+parameter

+subContainer

+literal

+reference

+parameter

+subContainer
+destination

+parameter

10.2.32 OsTaskAutostart

SWS Item ECUC_Os_00080 :

Container Name OsTaskAutostart

Parent Container OsTask

Description

This container determines whether the task is activated during the system
start-up procedure or not for some specific application modes.

If the task shall be activated during the system start-up, this container is
present and holds the references to the application modes in which the
task is auto-started.

Configuration Parameters

SWS Item ECUC_Os_00081 :

Name

OsTaskAppModeRef
Parent Container OsTaskAutostart

Specification of Operating System
AUTOSAR CP R20-11

277 of 342 Document ID 34: AUTOSAR_SWS_OS

Description Reference to application modes in which that task is activated on startup of
the OS

Multiplicity 1..*

Type Reference to [OsAppMode]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

No Included Containers

10.2.33 OsTaskResourceLock

SWS Item ECUC_Os_00082 :

Container Name OsTaskResourceLock

Parent Container OsTaskTimingProtection

Description
This container contains the worst case time between getting and releasing
a given resource (in seconds).

Configuration Parameters

SWS Item ECUC_Os_00083 :

Name

OsTaskResourceLockBudget
Parent Container OsTaskResourceLock

Description This parameter contains the maximum time the task is allowed to lock the
resource (in seconds)

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

SWS Item ECUC_Os_00084 :

Name

OsTaskResourceLockResourceRef
Parent Container OsTaskResourceLock

Description Reference to the resource used by the task

Multiplicity 1

Type Reference to [OsResource]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

Specification of Operating System
AUTOSAR CP R20-11

278 of 342 Document ID 34: AUTOSAR_SWS_OS

No Included Containers

10.2.34 OsTaskTimingProtection

SWS Item ECUC_Os_00325 :

Container Name OsTaskTimingProtection

Parent Container OsTask

Description
This container contains all parameters regarding timing protection of the
task.

Configuration Parameters

SWS Item ECUC_Os_00085 :

Name

OsTaskAllInterruptLockBudget
Parent Container OsTaskTimingProtection

Description This parameter contains the maximum time for which the task is allowed to
lock all interrupts (via SuspendAllInterrupts() or DisableAllInterrupts()) (in
seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

SWS Item ECUC_Os_00185 :

Name

OsTaskExecutionBudget
Parent Container OsTaskTimingProtection

Description This parameter contains the maximum allowed execution time of the task
(in seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

Specification of Operating System
AUTOSAR CP R20-11

279 of 342 Document ID 34: AUTOSAR_SWS_OS

SWS Item ECUC_Os_00086 :

Name

OsTaskOsInterruptLockBudget
Parent Container OsTaskTimingProtection

Description This parameter contains the maximum time for which the task is allowed to
lock all Category 2 interrupts (via SuspendOSInterrupts()) (in seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4

SWS Item ECUC_Os_00391 :

Name

OsTaskTimeFrame
Parent Container OsTaskTimingProtection

Description The minimum inter-arrival time between activations and/or releases of a
task (in seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Only available in scalability class 2 and 4

Included Containers

Container Name Multiplicity Scope / Dependency

OsTaskResourceLock 0..*
This container contains the worst case time between getting
and releasing a given resource (in seconds).

10.2.35 OsTimeConstant

SWS Item ECUC_Os_00386 :

Container Name OsTimeConstant

Parent Container OsCounter

Description Allows the user to define constants which can be e.g. used to compare

Specification of Operating System
AUTOSAR CP R20-11

280 of 342 Document ID 34: AUTOSAR_SWS_OS

time values with timer tick values.
A time value will be converted to a timer tick value during generation and
can later on accessed via the OsConstName. The conversation is done by
rounding time values to the nearest fitting tick value.

Configuration Parameters

SWS Item ECUC_Os_00002 :

Name

OsTimeValue
Parent Container OsTimeConstant

Description This parameter contains the value of the constant in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.3 Containers and configuration parameter extensions of the
IOC

This section describes the content of the IOC Configuration Description that is
needed for the generation of the IOC API.

Specification of Operating System
AUTOSAR CP R20-11

281 of 342 Document ID 34: AUTOSAR_SWS_OS

SW Component Template

OsIoc:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

OsIocCommunication:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

OsIocDataTypeRef: EcucForeignReferenceDef

destinationType = IMPLEMENTATION-DATA-TYPE

lowerMultiplicity = 1

upperMultiplicity = 1

OsIocSendingOsApplicationRef:

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

OsIocReceivingOsApplicationRef:

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

OsIocSenderId:

EcucIntegerParamDef

min = 0

max = 255

lowerMultiplicity = 0

upperMultiplicity = 1
OsApplication:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

OsIocBufferLength:

EcucIntegerParamDef

max = 4294967295

upperMultiplicity = 1

lowerMultiplicity = 0

OsIocReceiverPullCB:

EcucFunctionNameDef

lowerMultiplicity = 0

upperMultiplicity = 1

Os: EcucModuleDef

upperMultiplicity = 1

lowerMultiplicity = 0

AbstractImplementationDataType

ImplementationDataType

+ dynamicArraySizeProfile: String [0..1]

+ isStructWithOptionalElement: Boolean [0..1]

+ typeEmitter: NameToken [0..1]

OsIocSenderProperties:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

OsIocReceiverProperties:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

OsIocDataProperties:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

OsIocInitValue:

EcucStringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

OsIocDataPropertyIndex:

EcucIntegerParamDef

max = 255

upperMultiplicity = 1

lowerMultiplicity = 0

FUNCTION:

EcucEnumerationLiteralDef

MACRO:

EcucEnumerationLiteralDef

OsIocFunctionImplementationKind:

EcucEnumerationParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

defaultValue = DO_NOT_CARE

OsMemoryMappingCodeLocationRef:

EcucForeignReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

DO_NOT_CARE:

EcucEnumerationLiteralDef

ARElement

AtpBlueprint

AtpBlueprintable

SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]

+ option: Identifier [0..*]

+ sectionInitializationPolicy: SectionInitializationPolicyType [0..1]

+ sectionType: MemorySectionType [0..1]

OsIocReceiverId:

EcucIntegerParamDef

min = 0

max = 255

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+reference

+literal

+parameter

+subContainer

+reference

+parameter

+parameter

+subContainer

+subContainer

+reference

+reference

+literal

+container

+parameter

+destination

+parameter

+literal

+parameter

+destination

+container

+subContainer

+parameter

10.3.1 OsIoc

SWS Item ECUC_Os_01000 :

Container Name OsIoc

Parent Container Os

Description Configuration of the IOC (Inter OS Application Communicator).

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

OsIocCommunication 0..*

Representation of a 1:1 or N:1 or N:M (unqueued only)
communication between software parts located in different OS-
Applications that are bound to the same or to different cores.
The name shall begin with the name of the sending software
service and be followed by a unique identifier delivered by the
sending software service. In the case of RTE as user attention
shall be paid on the fact that uniqueness for identifier names
has to be reached over ports, data elements, object instances
and maybe additional identification properties (E.g. Case 1:N
mapping to 1:1).
Example:

 <NameSpace>_UniqueID

Specification of Operating System
AUTOSAR CP R20-11

282 of 342 Document ID 34: AUTOSAR_SWS_OS

10.3.2 OsIocCommunication

SWS Item ECUC_Os_01003 :

Container Name OsIocCommunication

Parent Container OsIoc

Description

Representation of a 1:1 or N:1 or N:M (unqueued only) communication
between software parts located in different OS-Applications that are bound
to the same or to different cores.
The name shall begin with the name of the sending software service and
be followed by a unique identifier delivered by the sending software
service. In the case of RTE as user attention shall be paid on the fact that
uniqueness for identifier names has to be reached over ports, data
elements, object instances and maybe additional identification properties
(E.g. Case 1:N mapping to 1:1).
Example:

 <NameSpace>_UniqueID

Configuration Parameters

SWS Item ECUC_Os_01001 :

Name

OsIocBufferLength
Parent Container OsIocCommunication

Description This attribute defines the size of the IOC internal queue to be allocated for
a queued communication.
This configuration information shall allow the optimization of the needed
memory for communications requiring buffers within the RTE and within
the IOC.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

OsIocDataProperties 1..*
Data properties of the data to be transferred on the IOC
communication channel.

OsIocReceiverProperties 1..*

Representation of receiver properties for one communication.
For each OsIocCommunication one (1:1) or many receivers
(N:M) have to be defined. This container should be instantiated
within an OsIocCommunication.

OsIocSenderProperties 1..*

Representation of sender properties for one communication.
For each OsIocCommunication one (1:1) or many senders
(N:1 or N:M) have to be defined. Multiplicity > 1 (N:1 or N:M
communication) is only allowed for Multiplicity of
OsIocDataTypeRef = 1.
This container should be instantiated within an
OsIocCommunication.

Specification of Operating System
AUTOSAR CP R20-11

283 of 342 Document ID 34: AUTOSAR_SWS_OS

10.3.3 OsIocSenderProperties

SWS Item ECUC_Os_01015 :

Container Name OsIocSenderProperties

Parent Container OsIocCommunication

Description

Representation of sender properties for one communication. For each
OsIocCommunication one (1:1) or many senders (N:1 or N:M) have to be
defined. Multiplicity > 1 (N:1 or N:M communication) is only allowed for
Multiplicity of OsIocDataTypeRef = 1.

This container should be instantiated within an OsIocCommunication.

Configuration Parameters

SWS Item ECUC_Os_01036 :

Name

OsIocFunctionImplementationKind
Parent Container OsIocSenderProperties

Description This parameter is used to select whether this communication is implemented as a
macro or as a function.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range DO_NOT_CARE It is not defined whether a macro or a
function is used.

FUNCTION Communication is implemented as a
function

MACRO Communication is implemented as a
macro

Default value DO_NOT_CARE

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Os_01016 :

Name

OsIocSenderId
Parent Container OsIocSenderProperties

Description Representation of a sender in a N:1 or N:M communication to distinguish
between senders.
This parameter does not exist in 1:1 communication.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration Pre-compile time X All Variants

Specification of Operating System
AUTOSAR CP R20-11

284 of 342 Document ID 34: AUTOSAR_SWS_OS

Class Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_01014 :

Name

OsIocSendingOsApplicationRef
Parent Container OsIocSenderProperties

Description This attribute is a reference to the sending OS-Application instance defined
in the configuration file of the OS.
This information shall allows the generator to get additional information
necessary for the code generation like:

 The protection properties of the communicating OS-Applications to
find out which protection boundaries have to be crossed.

 The core identifiers to find out if an intra or an inter core
communication has to be realized

 Interrupt details in case of cross core notification to realize over
IRQs

Multiplicity 1

Type Reference to [OsApplication]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.3.4 OsIocReceiverProperties

SWS Item ECUC_Os_01017 :

Container Name OsIocReceiverProperties

Parent Container OsIocCommunication

Description

Representation of receiver properties for one communication. For each
OsIocCommunication one (1:1) or many receivers (N:M) have to be
defined. This container should be instantiated within an
OsIocCommunication.

Configuration Parameters

SWS Item ECUC_Os_01037 :

Name

OsIocFunctionImplementationKind
Parent Container OsIocReceiverProperties

Description This parameter is used to select whether this communication is implemented as a
macro or as a function.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range DO_NOT_CARE It is not defined whether a macro or a
function is used.

FUNCTION Communication is implemented as a
function

Specification of Operating System
AUTOSAR CP R20-11

285 of 342 Document ID 34: AUTOSAR_SWS_OS

MACRO Communication is implemented as a
macro

Default value DO_NOT_CARE

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_Os_00407 :

Name

OsIocReceiverId
Parent Container OsIocReceiverProperties

Description Representation of a receiver in a N:M communication to distinguish
between receivers.
This parameter does not exist in 1:1 or N:1 communication.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Os_01010 :

Name

OsIocReceiverPullCB
Parent Container OsIocReceiverProperties

Description This attribute defines the name of a callback function that the IOC shall call
on the receiving core for each data reception.
In case of non existence of this attribute no ReceiverPullCB notification
shall be applied by the IOC. The name of the function shall begin with the
name of the receiving module, followed with a callback name and followed
by the IocId.

Example: void RTE_ReceiverPullCB_RTE25 (void).

If this attribute does not exist, it means that no ReceiverPullCB shall be
called (No notification from IOC is required). If this attribute exists the IOC
shall call the callback function on the receiving core.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

Specification of Operating System
AUTOSAR CP R20-11

286 of 342 Document ID 34: AUTOSAR_SWS_OS

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_01012 :

Name

OsIocReceivingOsApplicationRef
Parent Container OsIocReceiverProperties

Description This attribute is a reference to the receiving OsApplication instance defined
in the configuration file of the OS.
This information allows for the generator to get additional information
necessary for the code generation like:

 The protection properties of the communicating OsApplications to
find out which protections have to be crossed

 The core identifiers to find out if an intra or an inter core
communication has to be realized

 Interrupt details in case of cross core notification to realize over
IRQs

Multiplicity 1

Type Reference to [OsApplication]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.3.5 OsIocDataProperties

SWS Item ECUC_Os_01023 :

Container Name OsIocDataProperties

Parent Container OsIocCommunication

Description
Data properties of the data to be transferred on the IOC communication
channel.

Configuration Parameters

SWS Item ECUC_Os_01035 :

Name

OsIocDataPropertyIndex
Parent Container OsIocDataProperties

Description This parameter is used to define in which order the data is send, e.g.
whether IocSendGroup(A,B) or IocSendGroup(B,A) shall be used.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 255

Specification of Operating System
AUTOSAR CP R20-11

287 of 342 Document ID 34: AUTOSAR_SWS_OS

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_01024 :

Name

OsIocInitValue
Parent Container OsIocDataProperties

Description Initial Value for the data to be transferred on the IOC communication
channel.

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_01005 :

Name

OsIocDataTypeRef
Parent Container OsIocDataProperties

Description This is the type of the data to be transferred on the IOC communication
channel. This attribute is necessary to generate the parameter type of the
Ioc functions. Additionally this information should be used to compute the
data size for necessary data copy operations within the Ioc module.
If more than one attribute is defined, the IOC generator should generate an
IocXxxGroup function (Xxx= CHOICE [Send, Receive, Write, Read]).

N:1 or N:M communication (Multiplicity of OsIocSenderProperties > 1) is
only allowed for multiplicity of OsIocDataTypeRef = 1

Multiplicity 1

Type Foreign reference to [IMPLEMENTATION-DATA-TYPE]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Os_00405 :

Name

OsMemoryMappingCodeLocationRef

Specification of Operating System
AUTOSAR CP R20-11

288 of 342 Document ID 34: AUTOSAR_SWS_OS

Parent Container OsIocDataProperties

Description Reference to the memory mapping containing details about the section
where the IOC buffer is placed.

Multiplicity 0..1

Type Foreign reference to []

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.4 Containers and configuration parameters for ARTI

This section describes the structure (containers) and the parameters of ARTI objects
related to the OS configuration. ARTI objects are defined by the MOD_ARTI model.

For a detailed description of the referenced ARTI parameters, please see chapter 10
of SWS_ClassicPlatformARTI 19[15]. Also refer to application note [12.8 Debug
support] of this document.

10.4.1 ArtiHardware

SWS Item ECUC_Arti_00061 :

Container Name ArtiHardware

Parent Container Arti

Description
The ArtiHardware container contains ARTI extensions to the
EcucHardware module.

Post-Build Variant
Multiplicity

true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

ArtiHardwareCoreClass 0..1
Contains the layout of an ARTI "Core" object, extending the
EcucCoreDefinition.

ArtiHardwareCoreInstance 0..*

Description: Represents an instance of an ARTI "Core" object,
extending the EcucCoreDefinition. When using ARTI for
debugging or hardware based tracing, this is mandatory (i.e.
multiplicity 1..*), else optional.

Exemplary values of the ArtiHardware container:

Specification of Operating System
AUTOSAR CP R20-11

289 of 342 Document ID 34: AUTOSAR_SWS_OS

 <ECUC-MODULE-CONFIGURATION-VALUES>

 <SHORT-NAME>Vendor1ArtiHardware</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-MODULE-DEF">

 /AUTOSAR/Arti/ArtiHardware</DEFINITION-REF>

 <CONTAINERS>

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiCoreClass</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

 /AUTOSAR/Arti/ArtiHardware/ArtiHardwareCoreClass</DEFINITION-

REF>

 <...>

 </ECUC-CONTAINER-VALUE>

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiCore0</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

 /AUTOSAR/Arti/ArtiHardware/ArtiHardwareCoreInstance</DEFINITION-

REF>

 <...>

 </ECUC-CONTAINER-VALUE>

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiCore1</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

 /AUTOSAR/Arti/ArtiHardware/ArtiHardwareCoreInstance</DEFINITION-

REF>

 <...>

 </ECUC-CONTAINER-VALUE>

 </CONTAINERS>

 </ECUC-MODULE-CONFIGURATION-VALUES>

10.4.2 ArtiHardwareCoreClass

SWS Item ECUC_Arti_00062 :

Container Name ArtiHardwareCoreClass

Parent Container ArtiHardware

Description
Contains the layout of an ARTI "Core" object, extending the
EcucCoreDefinition.

Post-Build Variant
Multiplicity

true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Configuration Parameters

SWS Item ECUC_Arti_00054 :

Name

ArtiHardwareCoreClassCurrentApplicationRef
Parent Container ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the
ArtiCurrentApplicationInstance parameter.

Multiplicity 1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00056 :

Specification of Operating System
AUTOSAR CP R20-11

290 of 342 Document ID 34: AUTOSAR_SWS_OS

Name

ArtiHardwareCoreClassCurrentIsrRef
Parent Container ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the
ArtiCurrentIsrInstance parameter.

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00058 :

Name

ArtiHardwareCoreClassCurrentTaskRef
Parent Container ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the
ArtiCurrentTaskInstance parameter.

Multiplicity 1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00064 :

Name

ArtiHardwareCoreClassGenericComponentRef
Parent Container ArtiHardwareCoreClass

Description Refers to an ArtiGenericComponentClass that extends the core
description.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentClass]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00066 :

Name

ArtiHardwareCoreClassLastErrorRef
Parent Container ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the
ArtiLastErrorInstance parameter.

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Specification of Operating System
AUTOSAR CP R20-11

291 of 342 Document ID 34: AUTOSAR_SWS_OS

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00094 :

Name

ArtiHardwareCoreClassRunningTaskPriorityRef
Parent Container ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the
ArtiHwCoreInstanceRunningTaskPriority parameter. This attribute
specifies how to evaluate the current priority of the task referred by
RUNNINGTASK. The current priority can be different from the static task
priority as a result of priority ceiling protocol. This attribute differs from
ArtiCurrentTask->ArtiOsTaskClassPriority as here is a single variable while
in multiple tasks there is a single variable per task.

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

No Included Containers

Exemplary value of an ArtiHardwareCoreClass container:

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiCoreClass</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/

 ArtiHardware/ArtiHardwareCoreClass</DEFINITION-REF>

 <REFERENCE-VALUES>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiHardware/ArtiHardwareCoreClass/

 ArtiHardwareCoreClassCurrentApplicationRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1Arti/

 ArtiObjectClassParameter_ArtiHwCore_CurrentApplication

 </VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiHardware/ArtiHardwareCoreClass/

 ArtiHardwareCoreClassCurrentTaskRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1Arti/

 ArtiObjectClassParameter_ArtiHwCore_CurrentTask</VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 </REFERENCE-VALUES>

 </ECUC-CONTAINER-VALUE>

Specification of Operating System
AUTOSAR CP R20-11

292 of 342 Document ID 34: AUTOSAR_SWS_OS

10.4.3 ArtiHardwareCoreInstance

SWS Item ECUC_Arti_00063 :

Container Name ArtiHardwareCoreInstance

Parent Container ArtiHardware

Description
Description: Represents an instance of an ARTI "Core" object, extending
the EcucCoreDefinition. When using ARTI for debugging or hardware
based tracing, this is mandatory (i.e. multiplicity 1..*), else optional.

Post-Build Variant
Multiplicity

true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Configuration Parameters

SWS Item ECUC_Arti_00091 :

Name

ArtiHardwareCoreInstanceCoreId
Parent Container ArtiHardwareCoreInstance

Description This parameter represents the "CoreID" as given by the OS, returned by
GetCoreID().

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00055 :

Name

ArtiHardwareCoreInstanceCurrentApplicationRef
Parent Container ArtiHardwareCoreInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "current application" that is running on this core.

Multiplicity 1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00057 :

Name

ArtiHardwareCoreInstanceCurrentIsrRef
Parent Container ArtiHardwareCoreInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "current ISR" that is running on this core.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Specification of Operating System
AUTOSAR CP R20-11

293 of 342 Document ID 34: AUTOSAR_SWS_OS

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00059 :

Name

ArtiHardwareCoreInstanceCurrentTaskRef
Parent Container ArtiHardwareCoreInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "current task" that is running on this core.

Multiplicity 1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00060 :

Name

ArtiHardwareCoreInstanceEcucCoreRef
Parent Container ArtiHardwareCoreInstance

Description Refers to the EcucCoreDefinition of this core.

Multiplicity 1

Type Reference to [EcucCoreDefinition]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00065 :

Name

ArtiHardwareCoreInstanceGenericComponentRef
Parent Container ArtiHardwareCoreInstance

Description Refers to an ArtiGenericComponentInstance that extends a core.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentInstance]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00067 :

Name

ArtiHardwareCoreInstanceLastErrorRef
Parent Container ArtiHardwareCoreInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "last error" that happened on this core.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant true

Specification of Operating System
AUTOSAR CP R20-11

294 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00095 :

Name

ArtiHardwareCoreInstanceRunningTaskPriorityRef
Parent Container ArtiHardwareCoreInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "running task priority" that is on this core.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00096 :

Name

ArtiHardwareCoreInstanceValidRef
Parent Container ArtiHardwareCoreInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "validity" of this ArtiHwCoreInstance. Every object declaration may
contain a VALID attribute telling the debugger whether the object's
attributes are currently valid. It may have an integer type of any size. Its
possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

Exemplary value of an ArtiHardwareCoreInstance container:

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiCore0</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/

Specification of Operating System
AUTOSAR CP R20-11

295 of 342 Document ID 34: AUTOSAR_SWS_OS

 ArtiHardware/ArtiHardwareCoreInstance</DEFINITION-REF>

 <REFERENCE-VALUES>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiHardware/ArtiHardwareCoreInstance/

 ArtiHardwareCoreInstanceCurrentApplicationRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1Arti/

 ArtiObjectInstanceParameter_CurrentApplicationOnCore0

 </VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiHardware/ArtiHardwareCoreInstance/

 ArtiHardwareInstanceCurrentTaskRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1Arti/

 ArtiObjectInstanceParameter_CurrentTaskOnCore0</VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiHardware/ArtiHardwareCoreInstance/

ArtiHardwareCoreInstanceEcucCoreRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">

/Vendor1/Vendor1EcucEcuC/Hardware/Core0</VALUE-REF>

</ECUC-REFERENCE-VALUE>

 </REFERENCE-VALUES>

 </ECUC-CONTAINER-VALUE>

10.4.4 ArtiOs

SWS Item ECUC_Arti_00071 :

Container Name ArtiOs

Parent Container Arti

Description
The ArtiOs container contains ARTI extensions to the EcucDefs/Os
module.

Post-Build Variant
Multiplicity

true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

ArtiOsAlarmClass 0..1 Contains the layout of an ArtiOsAlarm object.

ArtiOsAlarmInstance 0..*
Represents an instance of an ArtiOsAlarm object,
extending the EcuC OsTaskAlarm.

ArtiOsClass 0..1
Contains the layout of an ARTI "Os" object, extending the
EcuC OsOS.

ArtiOsContextClass 0..1 Contains the layout of an ARTI "OsContext" object.

ArtiOsContextInstance 0..* Represents an instance of an "ArtiContext" object.

ArtiOsInstance 0..1
Represents an instance of an ARTI "Os" object, extending
the EcuC OsOS.

ArtiOsIsrClass 0..1
Contains the layout of an ARTI "OsIsr" object, extending
the EcuC OsIsr.

ArtiOsIsrInstance 0..*
Represents an instance of an ARTI "OsIsr" object,
extending the EcuC OsIsr.

ArtiOsMessageContainerClass 0..1 Contains the layout of an ARTI "OsMessageContainer"

Specification of Operating System
AUTOSAR CP R20-11

296 of 342 Document ID 34: AUTOSAR_SWS_OS

object. The "OsMessageContainer" object represents an
existing combination of OSEK messages.

ArtiOsMessageContainerInstanc
e

0..*
Represents an instance of an "ArtiMessageContainer"
object.

ArtiOsResourceClass 0..1
Contains the layout of an ArtiOsResource object. The
ArtiOsResource object represents an OSEK resource.

ArtiOsResourceInstance 0..* Represents an instance of an ArtiOsResource object.

ArtiOsStackClass 0..1
Contains the layout of an ArtiOsStack object. The
ArtiOsStack object defines the memory area of any stack
in the system.

ArtiOsStackInstance 0..* Represents an instance of an ArtiOsStack object.

ArtiOsTaskClass 0..1
Contains the layout of an ARTI "OsTask" object, extending
the EcuC OsTask.

ArtiOsTaskInstance 0..*
Represents an instance of an ARTI "OsTask" object,
extending the EcuC OsTask.

Exemplary values of the ArtiOs container:

 <ECUC-MODULE-CONFIGURATION-VALUES>

 <SHORT-NAME>Vendor1ArtiOs</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-MODULE-DEF">

 /AUTOSAR/Arti/ArtiOs</DEFINITION-REF>

 <CONTAINERS>

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiOsClass_Conf</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

 /AUTOSAR/Arti/ArtiOs/ArtiOsClass</DEFINITION-REF>

 <...>

 </ECUC-CONTAINER-VALUE>

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiOsInstance_Conf</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

 /AUTOSAR/Arti/ArtiOs/ArtiOsInstance</DEFINITION-REF>

 <...>

 </ECUC-CONTAINER-VALUE>

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiOsTaskClass_Conf</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

 /AUTOSAR/Arti/ArtiOs/ArtiOsTaskClass</DEFINITION-REF>

 </ECUC-CONTAINER-VALUE>

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiOsTaskInstance_TaskHighPriority</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

 /AUTOSAR/Arti/ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>

 <...>

 </ECUC-CONTAINER-VALUE>

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiOsTaskInstance_TaskLowPriority</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

 /AUTOSAR/Arti/ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>

 <...>

 </ECUC-CONTAINER-VALUE>

 </CONTAINERS>

 </ECUC-MODULE-CONFIGURATION-VALUES>

Specification of Operating System
AUTOSAR CP R20-11

297 of 342 Document ID 34: AUTOSAR_SWS_OS

10.4.5 ArtiOsAlarmClass

SWS Item ECUC_Arti_00108 :

Container Name ArtiOsAlarmClass

Parent Container ArtiOs

Description Contains the layout of an ArtiOsAlarm object.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00110 :

Name

ArtiOsAlarmClassGenericComponentClassRef
Parent Container ArtiOsAlarmClass

Description Refers to an ArtiGenericComponentClass that extends the
ArtiOsAlarmClass.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentClass]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00111 :

Name

ArtiOsAlarmClassStateRef
Parent Container ArtiOsAlarmClass

Description Refers to the ArtiObjectClassParameter that declares the attribute
ArtiOsAlarmStateRef in ArtiOsAlarmInstances. This attribute specifies if an
alarm is "RUNNING" or "STOPPED". The refered
ArtiObjectClassParameter does include the mapping from integer to
human readable "RUNNING" or "STOPPED".

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

Specification of Operating System
AUTOSAR CP R20-11

298 of 342 Document ID 34: AUTOSAR_SWS_OS

10.4.6 ArtiOsAlarmInstance

SWS Item ECUC_Arti_00109 :

Container Name ArtiOsAlarmInstance

Parent Container ArtiOs

Description
Represents an instance of an ArtiOsAlarm object, extending the EcuC
OsTaskAlarm.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00112 :

Name

ArtiOsAlarmInstanceAction
Parent Container ArtiOsAlarmInstance

Description This attribute provides a string with a description of the action when the
alarm expires, e.g. "ActivateTask TaskA".

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00113 :

Name

ArtiOsAlarmInstanceCounter
Parent Container ArtiOsAlarmInstance

Description This attribute provides a string containing the name of the counter used by
this alarm.

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Specification of Operating System
AUTOSAR CP R20-11

299 of 342 Document ID 34: AUTOSAR_SWS_OS

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00156 :

Name

ArtiOsAlarmInstanceAlarmTimeRef
Parent Container ArtiOsAlarmInstance

Description This attribute specifies how to evaluate the time until the alarm expires
next. The time should be represented in seconds.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00114 :

Name

ArtiOsAlarmInstanceCycleTimeRef
Parent Container ArtiOsAlarmInstance

Description This attribute specifies how to evaluate the cycle time for cyclic alarms.
The value of "cycle time" is 0 for non-cyclic alarms. The time should be
represendet in seconds.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00115 :

Name

ArtiOsAlarmInstanceEcuCRef
Parent Container ArtiOsAlarmInstance

Description Refers to an EcuC OsAlarm that is beeing extended.

Multiplicity 0..1

Type Reference to [OsAlarm]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

Specification of Operating System
AUTOSAR CP R20-11

300 of 342 Document ID 34: AUTOSAR_SWS_OS

SWS Item ECUC_Arti_00116 :

Name

ArtiOsAlarmInstanceGenericComponentInstanceRef
Parent Container ArtiOsAlarmInstance

Description Refers to an ArtiGenericComponentInstance that extends the
ArtiOsAlarmInstance.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentInstance]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00117 :

Name

ArtiOsAlarmInstanceStateRef
Parent Container ArtiOsAlarmInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "state" of this alarm. The result then is mapped with the typemap of the
ArtiOsAlarmStateRef of the ArtiOsAlarmClass.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00118 :

Name

ArtiOsAlarmInstanceValidRef
Parent Container ArtiOsAlarmInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "validity" of this alarm. Every object declaration may contain a VALID
attribute telling the debugger whether the object's attributes are currently
valid. It may have an integer type of any size. Its possible values are 0
(invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Specification of Operating System
AUTOSAR CP R20-11

301 of 342 Document ID 34: AUTOSAR_SWS_OS

Scope / Dependency scope: ECU

No Included Containers

10.4.7 ArtiOsClass

SWS Item ECUC_Arti_00074 :

Container Name ArtiOsClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "Os" object, extending the EcuC OsOS.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00072 :

Name

ArtiOsClassAppModeRef
Parent Container ArtiOsClass

Description Refers to the ArtiObjectClassParameter that defines the
ArtiOsAppModeInstance parameter.

Multiplicity 1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00076 :

Name

ArtiOsClassGenericComponentRef
Parent Container ArtiOsClass

Description Refers to an ArtiGenericComponentClass that extends the OS description.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentClass]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00097 :

Name

ArtiOsClassServiceTraceRef
Parent Container ArtiOsClass

Description Refers to the ArtiObjectClassParameter that defines the
ArtiOsInstanceServiceTrace parameter. This attribute indicates the entry or
exit of a service routine and the ID of this service routine. The value of this
attribute must be evaluated from one single memory location.

Specification of Operating System
AUTOSAR CP R20-11

302 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

Exemplary value of an ArtiOsClass container:

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiOsClass_Conf</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsClass</DEFINITION-REF>

 <REFERENCE-VALUES>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsClass/ArtiOsClassAppModeRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1Arti/

 ArtiObjectClassParameter_ArtiOs_OsAppMode</VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 </REFERENCE-VALUES>

 </ECUC-CONTAINER-VALUE>

10.4.8 ArtiOsContextClass

SWS Item ECUC_Arti_00119 :

Container Name ArtiOsContextClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "OsContext" object.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00121 :

Name

ArtiOsContextClassGenericComponentClassRef
Parent Container ArtiOsContextClass

Description Refers to an ArtiGenericComponentClass that extends the
ArtiOsContextClass.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentClass]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Specification of Operating System
AUTOSAR CP R20-11

303 of 342 Document ID 34: AUTOSAR_SWS_OS

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.4.9 ArtiOsContextInstance

SWS Item ECUC_Arti_00120 :

Container Name ArtiOsContextInstance

Parent Container ArtiOs

Description Represents an instance of an "ArtiContext" object.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00122 :

Name

ArtiOsContextInstanceAddressRef
Parent Container ArtiOsContextInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "address" of this context.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00123 :

Name

ArtiOsContextInstanceGenericComponentInstanceRef
Parent Container ArtiOsContextInstance

Description Refers to an ArtiGenericComponentInstance that extends the
ArtiOsContext.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentInstance]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Specification of Operating System
AUTOSAR CP R20-11

304 of 342 Document ID 34: AUTOSAR_SWS_OS

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00124 :

Name

ArtiOsContextInstanceSizeRef
Parent Container ArtiOsContextInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "size" of this context.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00125 :

Name

ArtiOsContextInstanceValidRef
Parent Container ArtiOsContextInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "validity" of this context. Every object declaration may contain a VALID
attribute telling the debugger whether the object's attributes are currently
valid. It may have an integer type of any size. Its possible values are 0
(invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.4.10 ArtiOsInstance

SWS Item ECUC_Arti_00080 :

Container Name ArtiOsInstance

Parent Container ArtiOs

Description
Represents an instance of an ARTI "Os" object, extending the EcuC
OsOS.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration Pre-compile time X VARIANT-PRE-COMPILE

Specification of Operating System
AUTOSAR CP R20-11

305 of 342 Document ID 34: AUTOSAR_SWS_OS

Class Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00073 :

Name

ArtiOsInstanceAppModeRef
Parent Container ArtiOsInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "application mode" of this OS.

Multiplicity 1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00075 :

Name

ArtiOsInstanceEcucRef
Parent Container ArtiOsInstance

Description Refers to the EcucDefs/Os/OsOS of this OS.

Multiplicity 1

Type Reference to [OsOS]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00078 :

Name

ArtiOsInstanceGenericComponentRef
Parent Container ArtiOsInstance

Description Refers to an ArtiGenericComponentInstance that extends the OS.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentInstance]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00079 :

Name

ArtiOsInstanceHookRef
Parent Container ArtiOsInstance

Description Refers to a hook defined in the OS.

Multiplicity 0..*

Type Reference to [ArtiHook]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration Pre-compile time X VARIANT-PRE-COMPILE

Specification of Operating System
AUTOSAR CP R20-11

306 of 342 Document ID 34: AUTOSAR_SWS_OS

Class Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00098 :

Name

ArtiOsInstanceServiceTraceRef
Parent Container ArtiOsInstance

Description Refers to a hook defined in the OS.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00099 :

Name

ArtiOsInstanceValidRef
Parent Container ArtiOsInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "validity" of this ArtiOsInstance. Every object declaration may contain a
VALID attribute telling the debugger whether the object's attributes are
currently valid. It may have an integer type of any size. Its possible values
are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

Exemplary value of an ArtiOsInstance container:

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiOsInstance_Conf</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsInstance</DEFINITION-REF>

 <REFERENCE-VALUES>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsInstance/ArtiOsInstanceAppModeRef</DEFINITION-REF>

Specification of Operating System
AUTOSAR CP R20-11

307 of 342 Document ID 34: AUTOSAR_SWS_OS

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1Arti/

 ArtiObjectInstanceParameter_OsAppMode</VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsInstance/ArtiOsInstanceEcucRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1EcucOs/

 Vendor1Os</VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1Arti/

 ArtiHook_ArtiOs_TaskStart</VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1Arti/

 ArtiHook_ArtiOs_TaskStop</VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 </REFERENCE-VALUES>

 </ECUC-CONTAINER-VALUE>

10.4.11 ArtiOsIsrClass

SWS Item ECUC_Arti_00081 :

Container Name ArtiOsIsrClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "OsIsr" object, extending the EcuC OsIsr.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00084 :

Name

ArtiOsIsrClassGenericComponentRef
Parent Container ArtiOsIsrClass

Description Refers to an optional ArtiGenericComponentClass that extends the OsIsr
with additional parameters.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentClass]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

Specification of Operating System
AUTOSAR CP R20-11

308 of 342 Document ID 34: AUTOSAR_SWS_OS

10.4.12 ArtiOsIsrInstance

SWS Item ECUC_Arti_00086 :

Container Name ArtiOsIsrInstance

Parent Container ArtiOs

Description
Represents an instance of an ARTI "OsIsr" object, extending the EcuC
OsIsr.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00174 :

Name

ArtiOsIsrInstanceCategory
Parent Container ArtiOsIsrInstance

Description Specifies category of this ISR. If omitted the instance is related to a
CATEGORY_2.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CATEGORY_1 --

CATEGORY_2 --

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: ECU

SWS Item ECUC_Arti_00083 :

Name

ArtiOsIsrInstanceFunction
Parent Container ArtiOsIsrInstance

Description This parameter represents the C function name of the ISR routine.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Specification of Operating System
AUTOSAR CP R20-11

309 of 342 Document ID 34: AUTOSAR_SWS_OS

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00093 :

Name

ArtiOsIsrInstanceId
Parent Container ArtiOsIsrInstance

Description This parameter represents the "ISRID" as given by the OS, returned by
GetISRID().

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00082 :

Name

ArtiOsIsrInstanceEcucRef
Parent Container ArtiOsIsrInstance

Description Refers to the EcucDefs/Os/OsIsr of this ISR.

Multiplicity 0..1

Type Reference to [OsIsr]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00085 :

Name

ArtiOsIsrInstanceGenericComponentRef
Parent Container ArtiOsIsrInstance

Description Refers to an optional ArtiGenericComponentInstance that extends this
OsIsr with additional parameters.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentInstance]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00157 :

Specification of Operating System
AUTOSAR CP R20-11

310 of 342 Document ID 34: AUTOSAR_SWS_OS

Name

ArtiOsIsrInstanceValidRef
Parent Container ArtiOsIsrInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "validity" of this ArtiOsIsrInstance. Every object declaration may
contain a VALID attribute telling the debugger whether the object's
attributes are currently valid. It may have an integer type of any size. Its
possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.4.13 ArtiOsMessageContainerClass

SWS Item ECUC_Arti_00126 :

Container Name ArtiOsMessageContainerClass

Parent Container ArtiOs

Description
Contains the layout of an ARTI "OsMessageContainer" object. The
"OsMessageContainer" object represents an existing combination of
OSEK messages.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00128 :

Name

ArtiOsMessageContainerClassGenericComponentClassRef
Parent Container ArtiOsMessageContainerClass

Description Refers to an ArtiGenericComponentClass that extends the
ArtiOsMessageContainerClass.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentClass]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Specification of Operating System
AUTOSAR CP R20-11

311 of 342 Document ID 34: AUTOSAR_SWS_OS

Scope / Dependency scope: ECU

No Included Containers

10.4.14 ArtiOsMessageContainerInstance

SWS Item ECUC_Arti_00127 :

Container Name ArtiOsMessageContainerInstance

Parent Container ArtiOs

Description Represents an instance of an "ArtiMessageContainer" object.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00129 :

Name

ArtiOsMessageContainerInstanceMsgName
Parent Container ArtiOsMessageContainerInstance

Description This attribute provides the name of the message as defined in OIL file.

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00130 :

Name

ArtiOsMessageContainerInstanceMsgType
Parent Container ArtiOsMessageContainerInstance

Description This attribute provides the type of the message.

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Specification of Operating System
AUTOSAR CP R20-11

312 of 342 Document ID 34: AUTOSAR_SWS_OS

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00131 :

Name

ArtiOsMessageContainerInstanceFirstElementRef
Parent Container ArtiOsMessageContainerInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "firstelement" of this "ArtiOsMessageContainer". This attribute provides
the formula for evaluation of address of first valid message. This message
will be received next. If no message is in the queue the value is zero.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00132 :

Name

ArtiOsMessageContainerInstanceGenericComponentInstanceRef
Parent Container ArtiOsMessageContainerInstance

Description Refers to an ArtiGenericComponentInstance that extends the
ArtiOsMessageContainerInstance.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentInstance]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00133 :

Name

ArtiOsMessageContainerInstanceQueueCountRef
Parent Container ArtiOsMessageContainerInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "queuecount" of this "ArtiOsMessageContainer". This attribute provides
the number of valid messages in the queue and "1" for unqueued
messages.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Specification of Operating System
AUTOSAR CP R20-11

313 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00134 :

Name

ArtiOsMessageContainerInstanceQueueSizeRef
Parent Container ArtiOsMessageContainerInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "queuesize" of this "ArtiOsMessageContainer". This attribute provides
the size of the queue for queued messages and "1" for unqueued
messages.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00135 :

Name

ArtiOsMessageContainerInstanceValidRef
Parent Container ArtiOsMessageContainerInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "validity" of this ArtiOsMessageContainerInstance. Every object
declaration may contain a VALID attribute telling the debugger whether the
object's attributes are currently valid. It may have an integer type of any
size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.4.15 ArtiOsResourceClass

SWS Item ECUC_Arti_00136 :

Specification of Operating System
AUTOSAR CP R20-11

314 of 342 Document ID 34: AUTOSAR_SWS_OS

Container Name ArtiOsResourceClass

Parent Container ArtiOs

Description
Contains the layout of an ArtiOsResource object. The ArtiOsResource
object represents an OSEK resource.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00138 :

Name

ArtiOsResourceClassGenericComponentClassRef
Parent Container ArtiOsResourceClass

Description Refers to an ArtiGenericComponentClass that extends the
ArtiOsResourceClass.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentClass]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00139 :

Name

ArtiOsResourceClassLockerRef
Parent Container ArtiOsResourceClass

Description Refers to the ArtiObjectClassParameter that declares the attribute
ArtiOsResourceLockerRef in ArtiOsResourceInstances. This attribute
indicates the locking ArtiOsTaskInstance or ArtiOsIsrInstance.

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00140 :

Name

ArtiOsResourceClassStateRef
Parent Container ArtiOsResourceClass

Description Refers to the ArtiObjectClassParameter that declares the attribute
ArtiOsResourceStateRef in ArtiOsResourceInstances. This attribute
represents the state of a resource ("LOCKED"/"UNLOCKED"). The
ArtiObjectClassParameter does include the mapping from integer to
human readable "LOCKED" or "UNLOCKED".

Specification of Operating System
AUTOSAR CP R20-11

315 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.4.16 ArtiOsResourceInstance

SWS Item ECUC_Arti_00137 :

Container Name ArtiOsResourceInstance

Parent Container ArtiOs

Description Represents an instance of an ArtiOsResource object.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00141 :

Name

ArtiOsResourceInstancePriority
Parent Container ArtiOsResourceInstance

Description This attribute has two components that state: that the RESOURCE is used
by TASKs only or by TASKs and ISRs, and the priority that will be used
when locking the RESOURCE.

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00142 :

Name

ArtiOsResourceInstanceEcuCRef
Parent Container ArtiOsResourceInstance

Specification of Operating System
AUTOSAR CP R20-11

316 of 342 Document ID 34: AUTOSAR_SWS_OS

Description Refers to an EcuC OsResource that is beeing extended.

Multiplicity 0..1

Type Reference to [OsResource]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00143 :

Name

ArtiOsResourceInstanceGenericComponentInstanceRef
Parent Container ArtiOsResourceInstance

Description Refers to an ArtiGenericComponentInstance that extends the
ArtiOsResourceInstance.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentInstance]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00145 :

Name

ArtiOsResourceInstanceLockerRef
Parent Container ArtiOsResourceInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "locker" of this ArtiOsResource.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00144 :

Name

ArtiOsResourceInstanceStateRef
Parent Container ArtiOsResourceInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "state" of this ArtiOsResource.

Multiplicity 0..1

Specification of Operating System
AUTOSAR CP R20-11

317 of 342 Document ID 34: AUTOSAR_SWS_OS

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00146 :

Name

ArtiOsResourceInstanceValidRef
Parent Container ArtiOsResourceInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "validity" of this ArtiOsResourceInstance. Every object declaration may
contain a VALID attribute telling the debugger whether the object's
attributes are currently valid. It may have an integer type of any size. Its
possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.4.17 ArtiOsStackClass

SWS Item ECUC_Arti_00147 :

Container Name ArtiOsStackClass

Parent Container ArtiOs

Description
Contains the layout of an ArtiOsStack object. The ArtiOsStack object
defines the memory area of any stack in the system.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00149 :

Name

ArtiOsStackClassGenericComponentClassRef
Parent Container ArtiOsStackClass

Description Refers to an ArtiGenericComponentClass that extends the
ArtiOsStackClass.

Specification of Operating System
AUTOSAR CP R20-11

318 of 342 Document ID 34: AUTOSAR_SWS_OS

Multiplicity 0..1

Type Reference to [ArtiGenericComponentClass]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.4.18 ArtiOsStackInstance

SWS Item ECUC_Arti_00148 :

Container Name ArtiOsStackInstance

Parent Container ArtiOs

Description Represents an instance of an ArtiOsStack object.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00150 :

Name

ArtiOsStackInstanceDirection
Parent Container ArtiOsStackInstance

Description This attribute specifies the direction of stack growth and may have either
"UP" or "DOWN" as its value. UP means growing from lower to higher
addresses. DOWN means growing from higher addresses to lower
addresses.

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00151 :

Name

ArtiOsStackInstanceBaseAddressRef

Specification of Operating System
AUTOSAR CP R20-11

319 of 342 Document ID 34: AUTOSAR_SWS_OS

Parent Container ArtiOsStackInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "baseaddress" of this ArtiOsStack. This attribute specifies the lowest
address of stack memory area, regardless of the stack direction.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00152 :

Name

ArtiOsStackInstanceFillPatternRef
Parent Container ArtiOsStackInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "fillpattern" of this ArtiOsStack. If the operating system fills the stack
during initialisation, this attribute specifies with which pattern the stack
area is initialised. This allows the debugger to evaluate the maximum stack
usage. For "stackdirection" "DOWN" the pattern starts at "baseaddress".
For "stackdirection" "UP" the pattern starts at "baseaddress" + "size". If no
pattern is used, this attribute must be omitted.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00153 :

Name

ArtiOsStackInstanceGenericComponentInstanceRef
Parent Container ArtiOsStackInstance

Description Refers to an ArtiGenericComponentInstance that extends the
ArtiOsStackInstance.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentInstance]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Specification of Operating System
AUTOSAR CP R20-11

320 of 342 Document ID 34: AUTOSAR_SWS_OS

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00154 :

Name

ArtiOsStackInstanceSizeRef
Parent Container ArtiOsStackInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "size" of this ArtiOsStack. This attribute represents the size (in bytes)
of the memory area allocated for stack.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00155 :

Name

ArtiOsStackInstanceValidRef
Parent Container ArtiOsStackInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "validity" of this ArtiOsStackInstance. Every object declaration may
contain a VALID attribute telling the debugger whether the object's
attributes are currently valid. It may have an integer type of any size. Its
possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.4.19 ArtiOsTaskClass

SWS Item ECUC_Arti_00087 :

Container Name ArtiOsTaskClass

Parent Container ArtiOs

Description
Contains the layout of an ARTI "OsTask" object, extending the EcuC
OsTask.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration Pre-compile time X VARIANT-PRE-COMPILE

Specification of Operating System
AUTOSAR CP R20-11

321 of 342 Document ID 34: AUTOSAR_SWS_OS

Class Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00077 :

Name

ArtiOsTaskClassClassGenericComponentRef
Parent Container ArtiOsTaskClass

Description Refers to an ArtiGenericComponentClass that extends the OsTask.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentClass]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00100 :

Name

ArtiOsTaskClassContextRef
Parent Container ArtiOsTaskClass

Description ArtiOsTaskContextRef in ArtiOsTaskInstances. This attribute contains a
reference to the context object that the task is currently using.

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00068 :

Name

ArtiOsTaskClassCurrentTaskStateRef
Parent Container ArtiOsTaskClass

Description Refers to the ArtiObjectClassParameter that defines the
ArtiCurrentTaskStateInstance parameter including the task state mapping.

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

Specification of Operating System
AUTOSAR CP R20-11

322 of 342 Document ID 34: AUTOSAR_SWS_OS

SWS Item ECUC_Arti_00101 :

Name

ArtiOsTaskClassPriorityRef
Parent Container ArtiOsTaskClass

Description Refers to the ArtiObjectClassParameter that declares the attribute
ArtiOsTaskPriorityRef in ArtiOsTaskInstances. This attribute represents the
current priority of the TASK object. The current priority can be different
from the static task priority as a result of priority ceiling protocol. The
priority displayed is the priority as defined in the OsTask.

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00102 :

Name

ArtiOsTaskClassStackRef
Parent Container ArtiOsTaskClass

Description Refers to the ArtiObjectClassParameter that declares the attribute
ArtiOsTaskStackRef in ArtiOsTaskInstances. This attribute contains a
reference to the stack object that the task is currently using.

Multiplicity 0..1

Type Reference to [ArtiObjectClassParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

Exemplary value of an ArtiOsTaskClass container:

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiOsTaskClass_Conf</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsTaskClass</DEFINITION-REF>

 <REFERENCE-VALUES>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsTaskClass/

 ArtiOsTaskClassGenericComponentRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1ArtiGeneric/

 ArtiGenericComponentClass_Vendor1Task</VALUE-REF>

 </ECUC-REFERENCE-VALUE>

Specification of Operating System
AUTOSAR CP R20-11

323 of 342 Document ID 34: AUTOSAR_SWS_OS

 </REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

10.4.20 ArtiOsTaskInstance

SWS Item ECUC_Arti_00090 :

Container Name ArtiOsTaskInstance

Parent Container ArtiOs

Description
Represents an instance of an ARTI "OsTask" object, extending the EcuC
OsTask.

Post-Build Variant
Multiplicity

false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Configuration Parameters

SWS Item ECUC_Arti_00089 :

Name

ArtiOsTaskInstanceFunction
Parent Container ArtiOsTaskInstance

Description This parameter represents the C function name of the task body.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00092 :

Name

ArtiOsTaskInstanceId
Parent Container ArtiOsTaskInstance

Description This parameter represents the "TaskID" as given by the OSEK OS,
returned by GetTaskID().

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00104 :

Specification of Operating System
AUTOSAR CP R20-11

324 of 342 Document ID 34: AUTOSAR_SWS_OS

Name

ArtiOsTaskInstanceContextRef
Parent Container ArtiOsTaskInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the ArtiOsContext of this ArtiOsTask.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00105 :

Name

ArtiOsTaskInstanceCurrentActivationsRef
Parent Container ArtiOsTaskInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "current activations" of this task. This attribute specifies the number of
current activations for the task.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00069 :

Name

ArtiOsTaskInstanceCurrentTaskStateRef
Parent Container ArtiOsTaskInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "current state" of this task.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00088 :

Name

ArtiOsTaskInstanceEcucRef

Specification of Operating System
AUTOSAR CP R20-11

325 of 342 Document ID 34: AUTOSAR_SWS_OS

Parent Container ArtiOsTaskInstance

Description Refers to an ArtiGenericComponentInstance that extends the OsTask.

Multiplicity 1

Type Reference to [OsTask]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00070 :

Name

ArtiOsTaskInstanceGenericComponentRef
Parent Container ArtiOsTaskInstance

Description Refers to an ArtiGenericComponentInstance that extends the OsTask.

Multiplicity 0..1

Type Reference to [ArtiGenericComponentInstance]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00106 :

Name

ArtiOsTaskInstancePriorityRef
Parent Container ArtiOsTaskInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "task priority" of this task.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00107 :

Name

ArtiOsTaskInstanceStackRef
Parent Container ArtiOsTaskInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the ArtiOsStack of this ArtiOsTask.

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration Pre-compile time X VARIANT-PRE-COMPILE

Specification of Operating System
AUTOSAR CP R20-11

326 of 342 Document ID 34: AUTOSAR_SWS_OS

Class Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Arti_00103 :

Name

ArtiOsTaskInstanceValidRef
Parent Container ArtiOsTaskInstance

Description Refers to the ArtiObjectInstanceParameter that contains the evaluation for
the "validity" of this ArtiOsTaskInstance. Every object declaration may
contain a VALID attribute telling the debugger whether the object's
attributes are currently valid. It may have an integer type of any size. Its
possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to [ArtiObjectInstanceParameter]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

Exemplary value of an ArtiOsTaskInstance container:

 <ECUC-CONTAINER-VALUE>

 <SHORT-NAME>ArtiOsTaskInstance_TaskHighPriority</SHORT-NAME>

 <DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>

 <REFERENCE-VALUES>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsTaskInstance/

 ArtiOsTaskInstanceGenericComponentRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1ArtiGeneric/

 ArtiGenericComponentInstance_TaskHighPriority</VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 <ECUC-REFERENCE-VALUE>

 <DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

 ArtiOs/ArtiOsTaskInstance/

 ArtiOsTaskInstanceEcucRef</DEFINITION-REF>

 <VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendor1/Vendor1EcucOs/

 TaskHighPriority</VALUE-REF>

 </ECUC-REFERENCE-VALUE>

 </REFERENCE-VALUES>

 </ECUC-CONTAINER-VALUE>

10.5 Published Information

Specification of Operating System
AUTOSAR CP R20-11

327 of 342 Document ID 34: AUTOSAR_SWS_OS

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

Specification of Operating System
AUTOSAR CP R20-11

328 of 342 Document ID 34: AUTOSAR_SWS_OS

11 Generation of the OS

Figure 11.1: Generation Activities

11.1 Read in configuration

[SWS_Os_00172] ⌈The generator shall provide the user the ability of reading the

information of a selectable configuration file. ⌋ ()

11.2 Consistency check

The conistency check can issue warnings or errors. Warnings mean that the
generation is completed successfully, only indicating a not advisable configuration.
Errors mean that the generation is not performed.

[SWS_Os_00173] ⌈The generator shall provide the user the ability of performing a

consistency check of the current configuration. ⌋ ()

[SWS_Os_00050] ⌈If service protection is required and OsStatus is not equal to

EXTENDED (all the associated error handling is provided), the consistency check shall

issue an error. ⌋ ()

[SWS_Os_00045] ⌈If timing protection is configured together with OSEK OS

Category 1 interrupts, the consistency check shall issue a warning. ⌋ ()

linker
«binary»

object
file

«executable»
executable
program

linker
file

generator

(input-)

section
(output-)

section

«source»

configuration

file

1..*

1

1..*

1

generates

controls

reads

UML 1.4

operating

system

generates/configures

Specification of Operating System
AUTOSAR CP R20-11

329 of 342 Document ID 34: AUTOSAR_SWS_OS

[SWS_Os_00562] ⌈If timing protection is configured together with Pre- or

PostTaskHook the consistency check shall issue a warning. ⌋ ()

[SWS_Os_00320] ⌈If configured attributes do not match the configured scalability
class (e.g. defining an execution time budget in Tasks or Category 2 ISRs and

selected scalability class is 1) the consistency check shall issue a warning. ⌋ ()

[SWS_Os_00311] ⌈If OsScalabilityClass is SC3 or SC4 AND a Task OR Category

2 ISR OR Counters OR Alarms OR Schedule tables does not belong to exactly one

OS-Application the consistency check shall issue an error. ⌋ ()

[SWS_Os_00361] ⌈If OsScalabilityClass is SC3 or SC4 AND a Category 1 ISR

does not belong to exactly one trusted OS-Application the consistency check shall

issue an error⌋ ()

[SWS_Os_00177] ⌈If OsScalabilityClass is SC3 or SC4 AND an interrupt source

that is used by the OS is assigned to an OS-Application, the consistency check shall

issue an error. ⌋ ()

[SWS_Os_00303] ⌈If OsAlarmIncrementCounter is configured as action on alarm

expiry AND the alarm is driven directly or indirectly (a cyclic chain of alarm actions

with OsAlarmIncrementCounter) by that counter, the consistency check shall issue

a warning.. ⌋ ()

[SWS_Os_00328] ⌈If OsStatus is STANDARD and OsScalabilityClass is SC3 or

SC4 the consistency check shall issue an error. ⌋ ()

[SWS_Os_00343] ⌈If OsScalabilityClass is SC3 or SC4 AND a task is referenced

within a schedule table object AND the OS-Application of the schedule table has no

access to the task, the consistency check shall issue an error. ⌋ ()

[SWS_Os_00344] ⌈If OsScalabilityClass is SC3 or SC4 AND a task is referenced

within an alarm object AND the OS-Application of the alarm has no access to the

task, the consistency check shall issue an error. ⌋ ()

[SWS_Os_00440] ⌈If a schedule table has OsScheduleTblSyncStrategy =

IMPLICIT and the OsCounterMaxAllowedValue+1 of the associated counter is not

equal to the duration of the schedule table then the consitency check shall issue an

error. ⌋ ()

[SWS_Os_00461] ⌈If OsScalabilityClass is SC2, SC3 or SC4 AND Alarm

Callbacks are configured the conistency check shall isuue an error. ⌋ ()

Specification of Operating System
AUTOSAR CP R20-11

330 of 342 Document ID 34: AUTOSAR_SWS_OS

11.3 Generating operating system

[SWS_Os_00179] ⌈If the consistency check of the read-in configuration file has not

run free of errors, the generator shall not generate/configure the operating system. ⌋
()

[SWS_Os_00336] ⌈The generator shall generate a relocatable memory section

containing the interrupt vector table. ⌋ (SRS_Os_11019)

[SWS_Os_00370] ⌈The generator shall print out information about timers used

internally by the OS during generation (e.g. on console, list file). ⌋ (SRS_Frt_00022)

[SWS_Os_00393] ⌈The generator shall create conversation macros to convert
counter ticks (given as argument) into real time. The format of the macro is

OS_TICKS2<Unit>_<Counter>(ticks) whereas <Unit> is one of NS

(nanoseconds), US (microseconds), MS (milliseconds) or SEC (seconds) and

<Counter> is the name of the counter; E.g. OS_TICKS2MS_MyCounter())⌋

(SRS_Frt_00047)

[SWS_Os_00815]⌈ The OS code shall wrap each declaration of Task, ISR and hook

functions with the Memory Mapping Allocation Keywords macros.

1 #define OS_START_SEC_<sadm>

2 #include "Os_MemMap.h"

3

4 <Task, ISR or hook functions declaration>

5

6 #define OS_STOP_SEC_<sadm>

7 #include "Os_MemMap.h"

where <sadm> is the shortName of the SwAddrMethod if configured in

OsMemoryMappingCodeLocationRef.⌋ (SRS_BSW_00351)

Specification of Operating System
AUTOSAR CP R20-11

331 of 342 Document ID 34: AUTOSAR_SWS_OS

12 Application Notes

12.1 Hooks

In OSEK OS, PreTask & PostTask Hooks run at the level of the OS with unrestricted
access rights and therefore must be trusted. It is strongly recommended that these
hook routines are only used during debugging and are not used in a final product.

When an OS-Application is killed the shutdown and startup hooks of the OS-
Application are not called. Cleanup of OS-Application specific data can be done in
the restart task.

All application-specific hook functions (startup, shutdown and error) must return
(blocking or endless loops are not acceptable).

12.2 Providing Trusted Functions

Address checking shall be done before data is accessed. Special care must be taken
if parameters passed by reference point to the stack space of a task or interrupt,
because this address space might no longer belong to the task or interrupt when the
address is used.

The following code fragment shows an example how a trusted function is called and
how the checks should be done.

Specification of Operating System
AUTOSAR CP R20-11

332 of 342 Document ID 34: AUTOSAR_SWS_OS

struct parameter_struct {type1 name1, type2 name2, StatusType

return_value};

/* This service is called by the user and uses a trusted function */

StatusType system_service(

 type1 parameter1,

 type2 parameter2)

{

 /* store parameters in a structure (parameter1 and parameter2) */

 struct parameter_struct local_struct;

 local_struct.name1 = parameter1;

 local_struct.name2 = parameter2;

 /* call CallTrustedFunction with appropriate index and

 * pointer to structure */

 if(CallTrustedFunction(SYSTEM_SERVICE_INDEX, &local_struct) !=

 E_OK)

 return(FUNCTION_DOES_NOT_EXIST);

 return(local_struct.return_value);

}

/* The CallTrustedFunction() service switches to the privileged

* mode. Note that the example is only a fragment! */

StatusType CallTrustedFunction(

 TrustedFunctionIndexType ix,

 TrustedFunctionParameterRefType ref)

{

 /* check for legal service index and return error if necessary */

 if(ix > MAX_SYSTEM_SERVICE)

 return(E_OS_SERVICEID);

 /* some implementation specific magic happens: the processor is

 * set to privileged mode */

 ….

 /* indirectly call target function based on the index */

 (*(system-service_list[ix]))(ix, ref);

 /* some implementation specific magic happens: the processor is

 * set to non-privileged mode */

 ….

 return(E_OK);

}

Specification of Operating System
AUTOSAR CP R20-11

333 of 342 Document ID 34: AUTOSAR_SWS_OS

Note: Since the service of CallTrustedFunction() is very generic, it is needed to

define a stub-interface which does the packing and unpacking of the arguments (as
the example show). Depending on the implementation the stub interface may be
(partly) generated by the generation tool.

12.3 Software Components and OS-Applications

Trusted OS-Applications can be permitted access to IO space. As software
components can not be allowed direct access to the hardware, software components
can not be trusted OS-Applications because this would violate this protection feature.
The configuration process must ensure that this is the case.

/* This part of the system service is called by

 * CallTrustedFunction() */

void TRUSTED_system_service_part2 (TrustedFunctionIndexType a,

parameter_struct *local_struct)

{

 TaskRefType task;

 type1 parameter1;

 type2 parameter2;

 if (GetTaskID(&task) != E_OK)

 task = INVALID_TASK;

 /* get parameters out of the structure (parameter1 and

 * parameter2) */

 parameter1 = local_struct.name1;

 parameter2 = local_struct.name2;

 /* check the parameters if necessary */

 /* example is for parameter1 being an address and parameter2

 * being a size */

 /* example only for system_service called from tasks */

 if(GetISRID()!=INVALID_ISR)

 {

 /* error: not callable from ISR */

 local_struct.return_value = E_OS_ACCESS;

 }

 else if(OSMEMORY_IS_WRITEABLE(CheckTaskMemoryAccess(

 task,parameter1,parameter2)))

 {

 /* system_service_part3() is now the function as it

* would be if directly called in a non-protected

* environment */

 local_struct.return_value =

 system_service_part3(parameter1,parameter2);

 }

 else

 {

 /* error handling */

 local_struct.return_value = E_OS_ACCESS;

 }

}

Specification of Operating System
AUTOSAR CP R20-11

334 of 342 Document ID 34: AUTOSAR_SWS_OS

The AUTOSAR Virtual Function Bus (VFB) specification places no restrictions on
how runnables from software components are mapped to OS tasks. However, the
protection mechanisms in AUTOSAR OS apply only to OS managed objects. This
means that all runnables in a task:

 Are not protected from each other at runtime

 Share the same protection boundary

If runnables need to be protected they must therefore be allocated to different tasks
and those tasks protected accordingly.

A simple rule can suffice:

“When allocating runnables to tasks, only allocate runnables from the same
software component into the same task.”

If multiple software components from the same application are to reside on the same
processor, then, assuming protection is required between applications (or parts
thereof) on the same processor, this rule could be modified to relax the scope of
protection to the application:

“When allocating runnables to tasks, only allocate runnables from the same
application into the same task.”

If an OS-Application is killed and the restart task is activated it can not assume that
the startup of the OS-Application has finished. Maybe the fault happened in the
application startup hook and no task of the application was started so far.

12.4 Global Time Synchronization

The OS currently assumes that the global time synchronization is done by the user
(unless implicit synchronization is used). This allows maximum flexibility regarding
the time source. For synchronization with e.g. FlexRay some glue code may be
necessary which transfer the information from the time source to the OS.

12.5 Working with FlexRay

Schedule tables in the AUTOSAR OS may be synchronized with a global (network)
time provided by FlexRay in essentially two ways:

1. Using the FlexRay interface’s services for controlling timer interrupts related to
global time to provide a “hardware” counter tick source to drive the processing
of a schedule table (implicit synchronization)

2. Using the FlexRay interface’s service for accessing the current global time and
passing this into the OS through the SyncScheduleTable() OS service call

Specification of Operating System
AUTOSAR CP R20-11

335 of 342 Document ID 34: AUTOSAR_SWS_OS

This section looks at the second option only.

In FlexRay time is presented as a tuple of a Cycle and a MacrotickOffset within the
cycle. Cycle is an 8-bit value and MacrotickOffset is a 16-bit value.
In AUTOSAR OS a schedule table is associated with an underlying counter that has
a notion of ticks. It is therefore possible to synchronize with either the Cycle or the
tuple of Cycle/MacrotickOffset to give the resolution of synchronization required by
the application.
If Cycle only resolution is required then an OS COUNTER object should be
configured to have a OsCounterMaxAllowedValue equal to the maximum number of
Cycles. If Cycle/MacrotickOffset is required then an OS COUNTER object should be
configured with a OsCounterMaxAllowedValue of the maximum number of Cycles
multiplied by the MacrotickOffset. This provides the OS with a time base against
which a ScheduleTable can be synchronized.

Synchronization between the OS and an external global time source is provided by
telling the OS the global time through the SyncScheduleTable() service call. This call
takes a scalar parameter of TickType so to interface this to FlexRay’s representation
of time a small conversion needs to be done. The following example assumes a
Cycle of 255 with 65535 Macroticks per Cycle. TickType is at least 24-bits wide.

#define OSTIME(x) (TickType)(x);

FrIf_GetGlobalTime(Controller, &Cycle, &Macrotick);

SyncScheduleTable(Tbl, ((OSTIME(Cycle) << 16)+(OSTIME(Macrotick))));

Telling the ScheduleTable that GlobalTime can be done when the application detects
that the FlexRay controller has lost synchronization with the network (by polling the
controller sync status). The following code indicates how this can be used to force an

associated ScheduleTable into the SCHEDULETABLE_RUNNING state from the

SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS state.

Fr_SyncStateType CurrentSyncStatus;

if (FrIf_GetSyncState(Controller, &CurrentSyncStatus) == E_OK) {

 if (CurrentSyncStatus == FR_ASYNC) {

 SetScheduleTableAsync(Table);

 }

}

Of course, other actions are possible here, like stopping the ScheduleTable, as best
fits user requirements.

12.6 Migration from OIL to XML

This version of the AUTOSAR OS specification does not directly support the
configuration via OIL. The support for OIL was dropped in favour of XML because
XML is the standard configuration language in AUTOSAR and is essential if
configuration data has to be imported / exported from / to other AUTOSAR modules
or between different tools during development.

Specification of Operating System
AUTOSAR CP R20-11

336 of 342 Document ID 34: AUTOSAR_SWS_OS

Since OIL and XML are both ASCII formats a tool vendor may offer a possibility to
import (old) OIL files and to store them as (AUTOSAR OS) XML files. Currently all
known vendors support at least the import of existing OIL configurations.

Note that for showing conformance to the OSEK OS specification, each OSEK OS
vendor must support OIL. This means that practically each AUTOSAR OS vendor will
offer some sort of import of OIL configurations – at least to show the OSEK OS
conformance.

12.7 Migrating RES_SCHEDULER in AUTOSAR OS

As stated in 7.1.2.1 AUTOSAR OS treats RES_SCHEDULER as a normal resource. If

you have legacy code which is migrated to AUTOSAR OS please take care of the
following aspects:

 In OSEK OS there is no need to configure the RES_SCHEDULER in the OIL file. If

you migrate to AUTOSAR OS the configuration is done in XML and each
resource must be properly configured. The easiest way to do this is to configure a

resource RES_SCHEDULER in XML (OsResource) and allow any Task in your

system to use this resource7.

 Avoid that ISRs are using the RES_SCHEDULER. In OSEK OS this is also not

possible.

 Make the RES_SCHEDULER a STANDARD resource (at least not an INTERNAL

resource). The symbol RES_SCHEDULER must be present which is not the case if

the resource is an INTERNAL resource.

 If you are using OS-Applications, the RES_SCHEDULER should belong to a trusted

OS-Application. Tasks of other OS-Applications should be configured to have the
right to access the resource.

12.8 Debug support

For the AUTOSAR OS the following information may be useful for users and should
be considert for debug support (and may be published, e.g. in the BSWMD):

 General information about how to retrieve the current (active) Task or ISR and
their (current) priority and (current) stack.

 For ISRs: Information about the name of interrupts, their mapping to the ISR
identifier, the associated hardware and the used stack(s).

 For Tasks: Information about the name of the Task, its identifier, the task
state, the possible priorities, the event mask (if its an extended task), the OS-
Application to whom the Task belongs (if existant) and the used stack.

 For Resources: Information about the name of the Resource, its mapping to
the identifier, its priority and the current owner (the Task/ISR which currently
holds the Resource)

7 This work can be done automatically by a configuration tool duirng importing an OIL file

Specification of Operating System
AUTOSAR CP R20-11

337 of 342 Document ID 34: AUTOSAR_SWS_OS

 For Alarms: Information about the name of the Alarm, its mapping to the
identifier, the counter to whom it belong, the action which is executed on
expiry and the current state (running or stopped). In running state the next
expiry in ticks and the possible cycle time shall be also published.

 For Counters: Information about the name of the Counter, its mapping to the
identifier, its associated alarms and the current counter value.

 For Schdule Tables: Information about the name of the Schedule Table, its
mapping to the identifier, its current state and the next expiry point (if the table
is running).

 For OS-Applications: Information about the name of the OS-Application, its
mapping to the identifier, its current state and the memory sections assigned
to it (if memory protection is used).

ARTI implements mechanisms to retrieve the described information (see [15]).

User documentation should contain information about the implemeted debug
features.

12.9 Integration hints for peripheral protection

Peripheral protection requires configuration on the core level usually conditioned by a
supervisor access. For this reason the task of the peripheral protection is assigned to
the OS module.

Peripheral protection may be implemented in two ways
 - using MPU
 - using dedicated peripheral protection units of the target MCU.

When using the memory protection unit, it is reasonable if two or more protected
region descriptors are available for peripheral protection mechanism. The region
descriptors shall be programmed to allow access to those peripherals the current
OS-Application shall work with. The defined regions shall cover all memory mapped
configuration registers for the periphiherals to be protected. The advantage of using
the MPU is that the configuration is the same as for memory protection. One of the
disadvantages of this method is that it could be impossilbe to cover all peripheral
control registers with available MPU region descriptors. The number of such
descriptors is typically low.

Beware that using this method may have implication to the linker file of the project
software configuration.

Second method is using a dedicated register protection schema. This method shall
allow to precisely select peripherals for every OS Application. However the number of
peripherals may make the register protection implementation rather bulky. Therefore
it is advisable to reduce the number of protected peripherals to a reasonable value.

For both methods the configuration shall be placed into custom OS Application
properties. The configuration shall be active when a task (or ISR) of a particular OS
Application is running.

Specification of Operating System
AUTOSAR CP R20-11

338 of 342 Document ID 34: AUTOSAR_SWS_OS

12.10 Termination of OSApplications

Inconsistencies may occur when an OsApplication is terminated and restarted,
depending on its state at the termination.
 A notification from an asynchronous job started before the termination of
OsApplication can occur after the restart of OsApplication.
 An asynchronous memory read or write started before the termination of
OsApplication can occur after restart, and cause data inconsistency.
 A requested mode or state to another OsApplication (e.g. from a SW-C to A
BSW) can lead to unsynchronized state machines after an OsApplication restart.

Therefore some measures shall be taken to avoid these inconsistencies and
guaranty a correct behavior.

Integration code shall stop all signals and signalgroups during its OsApplication
restart. This ensures that no late asynchronous notification will occur after the
OsApplication restart. These signals and signalgroups can be then safely restarted if
needed.

A SW-C shall cancel jobs on all its memory blocks with a call to NvM_CancelJobs

during the restart of its OsApplication. As the job might have already been started,

the call to NvM_CancelJobs can return an error; in that case, the OsApplication shall

wait until end of the job to continue. After all jobs are ensured to be cancelled, then
all memory blocks shall be reset to their initial value, in order to avoid inconsistency
of data which might have been written before the cancellation.

Any SW-C having responsible for requesting mode or state to BSW mode managers
shall always request a default mode upon a restart of its OsApplication. Thus the
BSW mode manager would not be stuck into a mode previously requested by the
OsApplication before its termination. To support this task, note that RTE offers
mechanisms to handle partition stop and restart wrt. mode machines. For mode
managers an "error mode" to be set by RTE can be identified. For mode user
partition the behaviour can also be selected. Furthermore an interaction to BswM to
trigger an action list in case of partition restart can be initiated. Refer to RTE
specification for details.

As a global hint, in any non-trusted OsApplication, which could be terminated, there
shall always be a restart task which does the following actions:
 Cancel all jobs which can result in an asynchronous notification or shared
memory, I/O access.
 Reset all shared memory with a default value.
 Reset any mode or state residing in another OsApplication and controlled by
this given OsApplication to a default value.

Please note that some of these actions need to be performed even if an
OSApplication is merely terminated and not restarted. For example, it may still be
necessary to stop all signals and signal groups used by the OSApplication.
Otherwise, it may happen that a bus never goes to sleep.

Specification of Operating System
AUTOSAR CP R20-11

339 of 342 Document ID 34: AUTOSAR_SWS_OS

Consequently, in such a case it is necessary to activate the restart task to perform
the necessary cleanup even if the OSApplication is only terminated and not restarted.

Calling TerminateApplication(<ownappid>,NO_RESTART) in the restart task will

finally set the OSApplication to APPLICATION_TERMINATED.

Specification of Operating System
AUTOSAR CP R20-11

340 of 342 Document ID 34: AUTOSAR_SWS_OS

13 AUTOSAR Service implemented by the OS

13.1 Scope of this Chapter

This chapter is an addition to the specification of the Operating System. Whereas the
other parts of the specification define the behavior and the C-interfaces of the OS
module, this chapter formally specifies the corresponding AUTOSAR Service in
terms of the SWC Template. The interfaces described here will be visible on the VFB
and are used by the RTE generator to create the glue code between the application
software (SWC) and the OS.

13.1.1 Package

The following definitions are interpreted to be in
ARPackage AUTOSAR/Services/Os

13.2 Overview

The AUTOSAR Operating System is normally not used directly by SWCs. Even the
other BSW modules which are below the RTE are using the BSW Scheduler to have
access to OS services. The BSW Scheduler of course uses the OS to implement its
features, e.g. critical sections.

Nevertheless there is one case where it makes sense to allow SWCs access to
services of the OS:

 Timer services
Since the number of timers in an ECU is limited it make sense to share these
units across several SWCs. The functionality of the timer services of the OS
which are offered to the SWCs are:

 A service to get the current value of a – hardware or software – counter

 A service which calculates the time difference between the current timer value
and a given (previouls read) timer value

 Both services will return real time values instead of ticks. This limits the access
to the services to those counters which are counting time. Other counters e.g.
counting errors or angles are not accessible.

13.3 Specification of the Ports and Port Interfaces

The detailed port interface can be found in chapter 8.8.

The notation of possible error codes resulting from server calls follows the approach
in the meta-model. It is a matter of the RTE specification [9], how those error codes
will be passed via the actual API.

Specification of Operating System
AUTOSAR CP R20-11

341 of 342 Document ID 34: AUTOSAR_SWS_OS

14 Outlook on Memory Protection Configuration

As stated before, memory protection configuration is not standardized yet.
Nevertheless it seems helpful to contribute a recommendation in this chapter, how
the configuration might work.

14.1 Configuration Approach

Both, SW-Components and BSW modules, map code and variables to dedicated,
disjoined memory sections (see meta-class»ObjectFileSection« in chapter 7.3 of
»Software Component Template«, Version 2.0.1, and »module specific sections« in
chapter 8.2 of »Specification of Memory Mapping«, Version 1.0.1).

This essential precondition (avoid an inseparable conglomeration of variables in the
default section) can be used to support configuration of memory protection domains:

1. The generator can save for each OS-Application a (processor-specific)
maximum number of output sections for data in a file (to be used in the linker
file).

2. The generator can uniquely identify the address spaces of the data output

sections with symbols using the naming convention (see »memory allocation

keywords« _STOP_SEC_VAR and _START_SEC_VAR for start and stop

symbols) in the specification mentioned above.

The input data sections in the object files of an OS-Application can then be assigned
to the output sections (with potential tool support). Usually, this is one segment for
global data, and one segment for code.

To archieve portability, the user shall group all variables belonging to a private data
section (Task/ISR or OS-Application) in separate files.

Specification of Operating System
AUTOSAR CP R20-11

342 of 342 Document ID 34: AUTOSAR_SWS_OS

15 Not applicable requirements

[SWS_Os_00767] ⌈These requirements are not applicable to this specification.⌋
(SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_00170, SRS_BSW_00419,

SRS_BSW_00383, SRS_BSW_00384, SRS_BSW_00375, SRS_BSW_00406, SRS_BSW_00168,
SRS_BSW_00407, SRS_BSW_00423, SRS_BSW_00337, SRS_BSW_00369, SRS_BSW_00339,
SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_00409, SRS_BSW_00385, SRS_BSW_00386,
SRS_BSW_00437, SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00415, SRS_BSW_00325,
SRS_BSW_00342, SRS_BSW_00007, SRS_BSW_00413, SRS_BSW_00347, SRS_BSW_00441,
SRS_BSW_00305, SRS_BSW_00307, SRS_BSW_00310, SRS_BSW_00373, SRS_BSW_00327,
SRS_BSW_00335, SRS_BSW_00350, SRS_BSW_00410, SRS_BSW_00411, SRS_BSW_00314,
SRS_BSW_00361, SRS_BSW_00301, SRS_BSW_00302, SRS_BSW_00328, SRS_BSW_00312,
SRS_BSW_00006, SRS_BSW_00439, SRS_BSW_00357, SRS_BSW_00377, SRS_BSW_00378,
SRS_BSW_00306, SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00358, SRS_BSW_00414,
SRS_BSW_00440, SRS_BSW_00330, SRS_BSW_00009, SRS_BSW_00401, SRS_BSW_00172,
SRS_BSW_00010, SRS_BSW_00333, SRS_BSW_00374, SRS_BSW_00379, SRS_BSW_00003,

SRS_BSW_00318, SRS_BSW_00321, SRS_BSW_00334, SRS_Frt_00032)

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	2.1 Glossary of Terms

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.2.1 ISO 17356

	3.3 Company Reports, Academic Work, etc.
	3.4 Related specification

	4 Constraints and assumptions
	4.1 Existing Standards
	4.2 Terminology
	4.3 Interaction with the RTE
	4.4 Operating System Abstraction Layer (OSAL)
	4.5 Multi-Core Hardware assumptions
	4.5.1 CPU Core features
	4.5.2 Memory features
	4.5.3 Multi-Core Limitations

	4.6 Limitations
	4.6.1 Hardware
	4.6.2 Programming Language
	4.6.3 Miscellaneous

	4.7 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure
	5.1.3 ARTI File Structure

	6 Requirements Traceability
	7 Functional specification
	7.1 Core OS
	7.1.1 Background & Rationale
	7.1.2 Requirements
	7.1.2.1 Restrictions on OSEK OS
	7.1.2.2 Undefined Behaviour in OSEK OS
	7.1.2.3 Extensions to OSEK OS

	7.2 Software Free Running Timer
	7.3 Schedule Tables
	7.3.1 Background & Rationale
	7.3.2 Requirements
	7.3.2.1 Structure of a Schedule Table
	7.3.2.2 Constraints on Expiry Points
	7.3.2.3 Processing Schedule Tables
	7.3.2.4 Repeated Schedule Table Processing
	7.3.2.5 Controlling Schedule Table Processing

	7.4 Schedule Table Synchronization
	7.4.1 Background & Rationale
	7.4.2 Requirements
	7.4.2.1 Implicit Synchronization
	7.4.2.2 Explicit Synchronization
	7.4.2.2.1 Startup
	7.4.2.2.2 Providing a Synchronization Count
	7.4.2.2.3 Specifying Synchronization Bounds

	7.4.2.3 Performing Synchronization

	7.5 Stack Monitoring Facilities
	7.5.1 Background & Rationale
	7.5.2 Requirements

	7.6 OS-Application
	7.6.1 Background & Rationale
	7.6.2 Requirements

	7.7 Protection Facilities
	7.7.1 Memory Protection
	7.7.1.1 Background & Rationale
	7.7.1.2 Requirements

	7.7.2 Timing Protection
	7.7.2.1 Background & Rationale
	7.7.2.2 Requirements
	7.7.2.3 Implementation Notes

	7.7.3 Service Protection
	7.7.3.1 Invalid Object Parameter or Out of Range Value
	7.7.3.1.1 Background & Rationale
	7.7.3.1.2 Requirements

	7.7.3.2 Service Calls Made from Wrong Context
	7.7.3.2.1 Background & Rationale
	7.7.3.2.2 Requirements

	7.7.3.3 Services with Undefined Behaviour
	7.7.3.3.1 Background & Rationale
	7.7.3.3.2 Requirements

	7.7.3.4 Service Restrictions for Non-Trusted OS-Applications
	7.7.3.4.1 Background & Rationale
	7.7.3.4.2 Requirements

	7.7.3.5 Service Calls on Objects in Different OS-Applications
	7.7.3.5.1 Background
	7.7.3.5.2 Requirements

	7.7.4 Protecting the Hardware used by the OS
	7.7.4.1 Background & Rationale
	7.7.4.2 Requirements
	7.7.4.3 Implementation Notes

	7.7.5 Providing »Trusted Functions«
	7.7.5.1 Background & Rationale
	7.7.5.2 Requirements

	7.8 Protection Error Handling
	7.8.1 Background & Rationale
	7.8.2 Requirements

	7.9 Operating System for Multi-Core
	7.9.1 Background & Rationale
	7.9.1.1 Requirements

	7.9.2 Scheduling
	7.9.2.1 Requirements

	7.9.3 Locatable entities (LE)
	7.9.3.1 Requirements

	7.9.4 Multi-Core start-up concept
	7.9.4.1 Requirements

	7.9.5 Cores under control of the AUTOSAR OS
	7.9.5.1 Requirements

	7.9.6 Cores which are not controlled by the AUTOSAR OS
	7.9.6.1 Requirements

	7.9.7 Multi-Core shutdown concept
	7.9.7.1 Synchronized shutdown concept
	7.9.7.2 Individual shutdown concept
	7.9.7.3 Shutdown in case of fatal internal errors

	7.9.8 OS service functionality (overview)
	7.9.9 GetTaskID
	7.9.10 Interrupt disabling
	7.9.10.1 Requirements

	7.9.11 TASK activation
	7.9.11.1 Requirements

	7.9.12 TASK Chaining
	7.9.12.1 Requirements

	7.9.13 EVENT setting
	7.9.13.1 Requirements

	7.9.14 Activating additional cores
	7.9.15 Start of the OS
	7.9.15.1 Requirements

	7.9.16 TASK termination
	7.9.16.1 Requirements

	7.9.17 Termination of OS-Applications
	7.9.17.1 Requirements

	7.9.18 Shutdown of the OS
	7.9.18.1 Requirements

	7.9.19 Waiting for EVENTs
	7.9.19.1 Requirements

	7.9.20 Calling trusted functions
	7.9.20.1 Requirements

	7.9.21 Invoking reschedule
	7.9.21.1 Requirements

	7.9.22 RESOURCE occupation
	7.9.23 The CoreID
	7.9.23.1 Requirements

	7.9.24 COUNTERs, background & rationale
	7.9.25 Multi-Core restrictions on COUNTERs
	7.9.25.1 Requirements

	7.9.26 Synchronization of COUNTERs
	7.9.27 ALARMs
	7.9.27.1 Requirements

	7.9.28 Schedule tables
	7.9.28.1 Requirements

	7.9.29 The spinlock mechanism
	7.9.29.1 Requirements

	7.9.30 Offline checks
	7.9.30.1 Requirements

	7.9.31 Auto start Objects
	7.9.31.1 Requirements

	7.10 Inter-OS-Application Communicator (IOC)
	7.10.1 Background & Rationale
	7.10.2 IOC - General purpose
	7.10.3 IOC functionality
	7.10.3.1 Communication
	7.10.3.2 Notification

	7.10.4 IOC interface
	7.10.5 IOC internal structure
	7.10.6 IOC configuration and generation
	7.10.7 IOC integration examples
	7.10.7.1 Example 1 - 1:1 sender/receiver communication without notification
	7.10.7.2 Example 2 - N:1 client/server communication with receiver notification by RTE

	7.10.8 Future extensions

	7.11 System Scalability
	7.11.1 Background & Rationale
	7.11.2 Requirements

	7.12 Hook Functions
	7.12.1 Background & Rationale
	7.12.2 Requirements

	7.13 Hardware peripheral access
	7.13.1 Background & Rationale
	7.13.2 Requirements

	7.14 Interrupt source API
	7.14.1 Background & Rationale
	7.14.2 Requirements

	7.15 Error classification
	7.16 ARTI Debug Information
	7.16.1 OS ARTI Objects

	7.17 ARTI Hook Macros
	7.17.1 Class AR_CP_OS_APPLICATION
	7.17.2 Class AR_CP_OS_TASK
	7.17.3 Class AR_CP_OS_CAT2ISR
	7.17.4 Class AR_CP_OS_SERVICECALLS
	7.17.5 Class AR_CP_OS_SPINLOCK
	7.17.6 class AR_CP_OS_PROTECTIONHOOK

	8 API specification
	8.1 Constants
	8.1.1 Error codes of type StatusType

	8.2 Macros
	8.3 Type definitions
	8.3.1 ApplicationType (for OS-Applications)
	8.3.2 ApplicationStateType
	8.3.3 ApplicationStateRefType
	8.3.4 TrustedFunctionIndexType
	8.3.5 TrustedFunctionParameterRefType
	8.3.6 AccessType
	8.3.7 ObjectAccessType
	8.3.8 ObjectTypeType
	8.3.9 MemoryStartAddressType
	8.3.10 MemorySizeType
	8.3.11 ISRType
	8.3.12 ScheduleTableType
	8.3.13 ScheduleTableStatusType
	8.3.14 ScheduleTableStatusRefType
	8.3.15 ProtectionReturnType
	8.3.16 RestartType
	8.3.17 PhysicalTimeType
	8.3.18 CoreIdType
	8.3.19 SpinlockIdType
	8.3.20 TryToGetSpinlockType
	8.3.21 IdleModeType
	8.3.22 AreaIdType

	8.4 Function definitions
	8.4.1 GetApplicationID
	8.4.2 GetCurrentApplicationID
	8.4.3 GetISRID
	8.4.4 CallTrustedFunction
	8.4.5 CheckISRMemoryAccess
	8.4.6 CheckTaskMemoryAccess
	8.4.7 CheckObjectAccess
	8.4.8 CheckObjectOwnership
	8.4.9 StartScheduleTableRel
	8.4.10 StartScheduleTableAbs
	8.4.11 StopScheduleTable
	8.4.12 NextScheduleTable
	8.4.13 StartScheduleTableSynchron
	8.4.14 SyncScheduleTable
	8.4.15 SetScheduleTableAsync
	8.4.16 GetScheduleTableStatus
	8.4.17 IncrementCounter
	8.4.18 GetCounterValue
	8.4.19 GetElapsedValue
	8.4.20 TerminateApplication
	8.4.21 AllowAccess
	8.4.22 GetApplicationState
	8.4.23 GetNumberOfActivatedCores
	8.4.24 GetCoreID
	8.4.25 StartCore
	8.4.26 StartNonAutosarCore
	8.4.27 GetSpinlock
	8.4.28 ReleaseSpinlock
	8.4.29 TryToGetSpinlock
	8.4.30 ShutdownAllCores
	8.4.31 ControlIdle
	8.4.32 ReadPeripheralX
	8.4.33 WritePeripheralX
	8.4.34 ModifyPeripheralX
	8.4.35 EnableInterruptSource
	8.4.36 DisableInterruptSource
	8.4.37 ClearPendingInterrupt
	8.4.38 ActivateTaskAsyn
	8.4.39 SetEventAsyn

	8.5 IOC
	8.5.1 Imported types
	8.5.2 Type definitions
	8.5.3 Constants
	8.5.4 Function definitions
	8.5.4.1 IocInit (DRAFT)
	8.5.4.2 IocSend/IocWrite
	8.5.4.3 IocSendGroup/IocWriteGroup
	8.5.4.4 IocReceive/IocRead
	8.5.4.5 IocReceiveGroup/IocReadGroup
	8.5.4.6 IocEmptyQueue

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.2.1 ReceiverPullCB

	8.7 Hook functions
	8.7.1 Protection Hook
	8.7.2 Application specific StartupHook
	8.7.3 Application specific ErrorHook
	8.7.4 Application specific ShutdownHook

	8.8 Service Interfaces
	8.8.1 Port interface of Os
	8.8.2 Client-Server-Interfaces
	8.8.2.1 Os_Service
	8.8.2.2 Implementation Data Types

	9 Sequence diagrams
	9.1 Sequence chart for calling trusted functions
	9.2 Sequence chart for usage of ErrorHook
	9.3 Sequence chart for ProtectionHook
	9.4 Sequence chart for StartupHook
	9.5 Sequence chart for ShutdownHook
	9.6 Sequence diagrams of Sender Receiver communication over the IOC
	9.6.1 LastIsBest communication
	9.6.2 Queued communication without pull callback
	9.6.3 Queued communication with pull callback

	10 Configuration Specification
	10.1 How to read this chapter
	10.1.1 Rules for paramters

	10.2 Containers and configuration parameters
	10.2.1 Os
	10.2.2 OsAlarmSetEvent
	10.2.3 OsAlarm
	10.2.4 OsAlarmAction
	10.2.5 OsAlarmActivateTask
	10.2.6 OsAlarmAutostart
	10.2.7 OsAlarmCallback
	10.2.8 OsAlarmIncrementCounter
	10.2.9 OsApplication
	10.2.10 OsApplicationHooks
	10.2.11 OsApplicationTrustedFunction
	10.2.12 OsAppMode
	10.2.13 OsCounter
	10.2.14 OsEvent
	10.2.15 OsDriver
	10.2.16 OsHooks
	10.2.17 OsIsr
	10.2.18 OsIsrResourceLock
	10.2.19 OsIsrTimingProtection
	10.2.20 OsOS
	10.2.21 OsPeripheralArea
	10.2.22 OsResource
	10.2.23 OsScheduleTable
	10.2.24 OsScheduleTableAutostart
	10.2.25 OsScheduleTableEventSetting
	10.2.26 OsScheduleTableExpiryPoint
	10.2.27 OsScheduleTableTaskActivation
	10.2.28 OsScheduleTblAdjustableExpPoint
	10.2.29 OsScheduleTableSync
	10.2.30 OsSpinlock
	10.2.31 OsTask
	10.2.32 OsTaskAutostart
	10.2.33 OsTaskResourceLock
	10.2.34 OsTaskTimingProtection
	10.2.35 OsTimeConstant

	10.3 Containers and configuration parameter extensions of the IOC
	10.3.1 OsIoc
	10.3.2 OsIocCommunication
	10.3.3 OsIocSenderProperties
	10.3.4 OsIocReceiverProperties
	10.3.5 OsIocDataProperties

	10.4 Containers and configuration parameters for ARTI
	10.4.1 ArtiHardware
	10.4.2 ArtiHardwareCoreClass
	10.4.3 ArtiHardwareCoreInstance
	10.4.4 ArtiOs
	10.4.5 ArtiOsAlarmClass
	10.4.6 ArtiOsAlarmInstance
	10.4.7 ArtiOsClass
	10.4.8 ArtiOsContextClass
	10.4.9 ArtiOsContextInstance
	10.4.10 ArtiOsInstance
	10.4.11 ArtiOsIsrClass
	10.4.12 ArtiOsIsrInstance
	10.4.13 ArtiOsMessageContainerClass
	10.4.14 ArtiOsMessageContainerInstance
	10.4.15 ArtiOsResourceClass
	10.4.16 ArtiOsResourceInstance
	10.4.17 ArtiOsStackClass
	10.4.18 ArtiOsStackInstance
	10.4.19 ArtiOsTaskClass
	10.4.20 ArtiOsTaskInstance

	10.5 Published Information

	11 Generation of the OS
	11.1 Read in configuration
	11.2 Consistency check
	11.3 Generating operating system

	12 Application Notes
	12.1 Hooks
	12.2 Providing Trusted Functions
	12.3 Software Components and OS-Applications
	12.4 Global Time Synchronization
	12.5 Working with FlexRay
	12.6 Migration from OIL to XML
	12.7 Migrating RES_SCHEDULER in AUTOSAR OS
	12.8 Debug support
	12.9 Integration hints for peripheral protection
	12.10 Termination of OSApplications

	13 AUTOSAR Service implemented by the OS
	13.1 Scope of this Chapter
	13.1.1 Package

	13.2 Overview
	13.3 Specification of the Ports and Port Interfaces

	14 Outlook on Memory Protection Configuration
	14.1 Configuration Approach

	15 Not applicable requirements

