
Specification of EEPROM Driver
AUTOSAR CP R20-11

1 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Document Change History
Date Release Changed by Change Description

2020-11-30 R20-11 AUTOSAR

Release

Management

 Editorial Changes

2019-11-28 R19-11 AUTOSAR

Release

Management

 MCAL Multicore Disctribution

concept is changed from draft to

Final

 Changed Document Status from

Final to published

2018-10-31 4.4.0 AUTOSAR

Release

Management

 MCAL Multicore Distribution

2017-12-08 4.3.1 AUTOSAR

Release

Management

 Changed EEP_E_TIMEOUT and

EEP_E_BUSY from Development

error to Runtime error

 Changed description of

ECUC_Eep_00189

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Obsolete chapter "7.11 Support for

Debugging" and sub chapter "10.2.1

Variants" are removed

 Byte-wise read/write/erase access

adaptation

 Alignment of DataBuffers passed to

functions

2015-07-31 4.2.2 AUTOSAR

Release

Management

 DET renaming and adaptation

 Chapter 7 adaptation for error

classification

Document Title Specification of EEPROM
Driver

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 21

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R20-11

Specification of EEPROM Driver
AUTOSAR CP R20-11

2 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Document Change History
Date Release Changed by Change Description

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Added pass/fail criteria and

additional attributes for extended

production errors

 Removed redundant SWS IDs with

respect to NULL_PTR check for

Eep_Init()

2014-03-31 4.1.3 AUTOSAR

Release

Management

 Corrected formatting of

requirements SWS_Eep_00102,

SWS_Eep_00068 and

SWS_Eep_00137

2013-10-31 4.1.2 AUTOSAR

Release

Management

 Removed the 'Timing' row from the

Eep_MainFunction API table

 Editorial changes

 Removed chapter(s) on change

documentation

2013-03-15 4.1.1 AUTOSAR

Administration

 MemMap.h changed to

Eep_MemMap.h

 Added Extended Production Errors

2011-12-22 4.0.3 AUTOSAR

Administration

 Min max values of FloatParamDef

parameters added for EEP178 &

EEP185

 Replaced Module short name by

module abbreviation

2010-09-30 3.1.5 AUTOSAR

Administration

 Added DET errors

EEP_E_PARAM_POINTER,

EEP_E_TIMEOUT

 Version check section (section 7.10)

modified

Specification of EEPROM Driver
AUTOSAR CP R20-11

3 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Document Change History
Date Release Changed by Change Description

2010-02-02 3.1.4 AUTOSAR

Administration

 Made hidden text visible in

SWS_Eep_00003,

SWS_Eep_00030,

SWS_Eep_00128

 Clarified optional callback

notifications

 Reworked external SPI EEPROM

configuration example

 Support VARIANT-POST-BUILD

instead of VARIANT-LINK-TIME

 Clarified synchronous behavior of

Eep_Cancel()

 Added support for debugging

 Added DEM error codes for HW

failure, removed SPI error

 Changed job result to

MEMIF_BLOCK_INCONSISTENT

for differing data compare job

 Replaced Gpt_Init() with Eep_Init()

 Made Dem_ReportErrorStatus()a

mandatory interface

 Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR

Administration

 Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR

Administration

 Minor rewording of requirement

(SWS_Eep_00005).

 Introduction of new requirements

(SWS_Eep_00161 and

SWS_Eep_00162) for NULL_PTR

check.

 Updates to SWS_Eep_00028 and

Figure 4 to correct spelling of

MEMIF_JOB_CANCELLED

 Document meta information

extended

 Small layout adaptations made

Specification of EEPROM Driver
AUTOSAR CP R20-11

4 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Document Change History
Date Release Changed by Change Description

2007-01-24 2.1.15 AUTOSAR

Administration

 Constant name correction

 Limitation of erase cycles

 Link-time configuration versus config

pointer check

 Job result for compare jobs is not

specified



 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

2006-05-16 2.0 AUTOSAR

Administration

 Document structure adapted to

common Release 2.0 SWS

Template.

 adaptation to the new memory

abstraction architecture

 cancel function now asynchronous

 deletion of two specifications

elements that could lead to a

misinterpretation of the described

"write-cycle-reduction" functionality

2005-05-31 1.0 AUTOSAR

Administration

 Initial Release

Specification of EEPROM Driver
AUTOSAR CP R20-11

5 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Specification of EEPROM Driver
AUTOSAR CP R20-11

6 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Table of Contents

1 Introduction and functional overview ... 8

2 Acronyms and abbreviations.. 9

3 Related documentation .. 10

3.1 Input documents ... 10

3.2 Related specification ... 10

4 Constraints and assumptions ... 12

4.1 Limitations ... 12

4.2 Applicability to car domains .. 12

4.3 Applicability to safety related environments ... 12

5 Dependencies to other modules .. 13

5.1 File structure ... 13

6 Requirements traceability .. 14

7 Functional specification .. 19

7.1 General behavior .. 19

7.2 Error classification .. 19

7.2.1 Development Errors... 20

7.2.2 Runtime Errors .. 20

7.2.3 Transient Faults ... 20

7.2.4 Production Errors ... 20

7.2.5 Extended Production Errors .. 20

7.3 Error detection .. 22

7.3.1 API parameter checking .. 23

7.3.2 EEPROM state checking ... 23

7.3.3 EEPROM job encounters Hardware Failure ... 23

7.3.4 Timeout Supervision .. 24

7.4 Error notification .. 24

7.5 Processing of jobs – general requirements .. 24

7.6 Processing of read jobs .. 25

7.7 Processing of write jobs .. 26

7.8 Processing of erase jobs .. 28

7.9 Processing of compare jobs ... 28

7.10 Version check ... 29

8 API specification ... 30

8.1 Imported types .. 30

8.2 Type definitions ... 30

8.2.1 Eep_ConfigType .. 30

8.2.2 Eep_AddressType ... 30

8.2.3 Eep_LengthType ... 31

8.3 Function definitions ... 31

8.3.1 Eep_Init .. 31

8.3.2 Eep_SetMode .. 32

8.3.3 Eep_Read .. 33

8.3.4 Eep_Write .. 34

Specification of EEPROM Driver
AUTOSAR CP R20-11

7 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

8.3.5 Eep_Erase ... 35

8.3.6 Eep_Compare ... 36

8.3.7 Eep_Cancel ... 38

8.3.8 Eep_GetStatus .. 39

8.3.9 Eep_GetJobResult .. 40

8.3.10 Eep_GetVersionInfo .. 40

8.4 Callback notifications .. 41

8.5 Scheduled functions ... 41

8.5.1 Eep_MainFunction ... 41

8.6 Expected Interfaces .. 43

8.6.1 Mandatory Interfaces ... 43

8.6.2 Optional Interfaces .. 44

8.6.3 Configurable interfaces ... 44

9 Sequence diagrams ... 47

9.1 Initialization ... 47

9.2 Read/write/erase/compare ... 47

9.3 Cancelation of a running job ... 49

10 Configuration specification ... 50

10.1 How to read this chapter ... 50

10.2 Containers and configuration parameters .. 51

10.2.1 Eep... 51

10.2.2 EepGeneral.. 51

10.2.3 EepInitConfiguration .. 53

10.2.4 EepDemEventParameterRefs ... 57

10.2.5 EepExternalDriver ... 58

10.2.6 SPI specific extension ... 59

10.3 Published parameters ... 59

10.3.1 Basic subset .. 59

10.3.2 SPI specific extension ... 60

10.3.3 EepPublishedInformation .. 60

10.4 Configuration example—external SPI EEPROM device 63

10.4.1 External SPI EEPROM device usage scenario..................................... 63

10.4.2 Configuration of SPI parameters ... 64

10.4.3 Generation of SPI configuration data .. 65

10.4.4 SPI API usage ... 65

11 Not applicable requirements .. 67

Specification of EEPROM Driver
AUTOSAR CP R20-11

8 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

1 Introduction and functional overview

This specification describes the functionality and API for an EEPROM driver. This
specification is applicable to drivers for both internal and external EEPROMs.

The EEPROM driver provides services for reading, writing, erasing to/from an
EEPROM. It also provides a service for comparing a data block in the EEPROM with
a data block in the memory (e.g. RAM).

The behaviour of those services is asynchronous.

A driver for an internal EEPROM accesses the microcontroller hardware directly and
is located in the Microcontroller Abstraction Layer. A driver for an external EEPROM
uses handlers (SPI in most cases) or drivers to access the external EEPROM device.
It is located in the ECU Abstraction Layer.

The functional requirements and the functional scope are the same for both types of
drivers. Hence the API is semantically identical.

Specification of EEPROM Driver
AUTOSAR CP R20-11

9 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

2 Acronyms and abbreviations

Acronyms and abbreviations which have a local scope and therefore are not
contained in the AUTOSAR glossary must appear in a local glossary.

Acronym: Description:

Data block A data block may contain 1..n bytes and is used within the API of the EEPROM
driver.
Data blocks are passed with

 Address offset in EEPROM

 Pointer to memory location

 Length
to the EEPROM driver.

Data unit The smallest data entity in EEPROM. The entities may differ for read/write/erase
operation.

Example 1: Motorola STAR12
Read: 1 byte
Write: 2 bytes
Erase: 4 bytes

Example 2: external SPI EEPROM device
Read/Write/Erase: 1 byte

Normal mode
Burst mode

Some external SPI EEPROM devices provide the possibility of different access
modes:

 Normal mode:
The data exchange with the EEPROM device via SPI is performed byte
wise. This allows for cooperative SPI usage together with other SPI devices
like I/O ASICs, external watchdogs etc.

 Burst mode:
The data exchange with the EEPROM device via SPI is performed block
wise. The block size depends on the EEPROM properties, an example is 64
bytes. Because large blocks are transferred, the SPI is blocked by the
EEPROM access in burst mode. This mode is used during ECU start-up
and shut-down phases where fast reading/writing of data is required.

EEPROM cell Smallest physical unit of an EEPROM device that holds the data. Usually 1 byte.

Abbreviation: Description:

EEPROM Electrically Erasable and Programmable Read Only Memory

NVRAM Non Volatile Random Access Memory

NvM Module name of NVRAM Manager

EcuM Module name of ECU State Manager

DEM Module name of Diagnostic Event Manager

DET Module name of Default Error Tracer

Specification of EEPROM Driver
AUTOSAR CP R20-11

10 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[3] Specification of Memory Abstraction Interface
AUTOSAR_SWS_MemoryAbstractionInterface.pdf

[4] Specification of SPI Handler/Driver
AUTOSAR_SWS_SPIHandlerDriver.pdf

[5] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[6] Requirements on EEPROM Driver
AUTOSAR_SRS_EEPROMDriver.pdf

[7] Specification of Default Error Tracer
AUTOSAR_SWS_DefaultErrorTracer.pdf

[8] Specification of Diagnostics Event Manager
AUTOSAR_SWS_DiagnosticEventManager.pdf

[9] AUTOSAR Glossary
AUTOSAR_TR_Glossary.pdf

[10] Specification of MCU Driver
AUTOSAR_SWS_MCUDriver.pdf

[11] Basic Software Module Description Template
 AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[12] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[13] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related specification

Specification of EEPROM Driver
AUTOSAR CP R20-11

11 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

AUTOSAR provides a General Specification on Basic Software modules [13] (SWS
BSW General), which is also valid for EEPROM Driver.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for EEPROM Driver.

Specification of EEPROM Driver
AUTOSAR CP R20-11

12 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

4 Constraints and assumptions

4.1 Limitations

The EEPROM driver does not provide mechanisms for providing data integrity (e.g.
checksums, redundant storage, etc.).
The setting of the EEPROM write protection is not provided.

4.2 Applicability to car domains

No restrictions.

4.3 Applicability to safety related environments

This module can be used within safety relevant systems if the upper layer software
provides following mechanisms for safety related data:

 Checksum protection

 Checking integrity before using data

 Redundant storage

 Verification of data after it has been written to EEPROM. For this, the compare
function of the EEPROM driver can be used

Specification of EEPROM Driver
AUTOSAR CP R20-11

13 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

5 Dependencies to other modules

There are two classes of EEPROM drivers:

1. EEPROM drivers for onchip EEPROM.
 These are part of the Microcontroller Abstraction Layer.
2. EEPROM drivers for external EEPROM devices.
 These are part of the ECU Abstraction Layer.

[SWS_Eep_00082] ⌈The source code of external EEPROM drivers shall be

independent of the microcontroller platform.⌋ ()

The internal EEPROM may depend on the system clock, prescaler(s) and PLL. Thus,
changes of the system clock (e.g. PLL on  PLL off) may also affect the clock
settings of the EEPROM hardware. Module EEPROM Driver do not take care of
setting the registers which configure the clock, prescaler(s) and PLL in its init
function. This has to be done by the MCU module [10].

A driver for an external EEPROM depends on the API and capabilities of the used
onboard communication handler (e.g. SPI Handler/Driver).

EEPROM driver is part of Memory Abstraction Architecture and for this reason some
types depend on Memory Interface (MemIf) module.

5.1 File structure

[SWS_Eep_00228] ⌈If the module implementation uses custom interrupt processing,

the interrupt service routines shall be placed in Eep_Irq.c⌋ ()

Specification of EEPROM Driver
AUTOSAR CP R20-11

14 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

6 Requirements traceability

Requirement Description Satisfied by

SRS_BSW_00005 Modules of the µC Abstraction Layer (MCAL)
may not have hard coded horizontal
interfaces

SWS_Eep_00241

SRS_BSW_00006 The source code of software modules above
the µC Abstraction Layer (MCAL) shall not be
processor and compiler dependent.

SWS_Eep_00241

SRS_BSW_00007 All Basic SW Modules written in C language
shall conform to the MISRA C 2012 Standard.

SWS_Eep_00241

SRS_BSW_00009 All Basic SW Modules shall be documented
according to a common standard.

SWS_Eep_00241

SRS_BSW_00010 The memory consumption of all Basic SW
Modules shall be documented for a defined
configuration for all supported platforms.

SWS_Eep_00241

SRS_BSW_00101 The Basic Software Module shall be able to
initialize variables and hardware in a separate
initialization function

SWS_Eep_00004

SRS_BSW_00161 The AUTOSAR Basic Software shall provide
a microcontroller abstraction layer which
provides a standardized interface to higher
software layers

SWS_Eep_00241

SRS_BSW_00162 The AUTOSAR Basic Software shall provide
a hardware abstraction layer

SWS_Eep_00241

SRS_BSW_00164 The Implementation of interrupt service
routines shall be done by the Operating
System, complex drivers or modules

SWS_Eep_00241

SRS_BSW_00168 SW components shall be tested by a function
defined in a common API in the Basis-SW

SWS_Eep_00241

SRS_BSW_00170 The AUTOSAR SW Components shall
provide information about their dependency
from faults, signal qualities, driver demands

SWS_Eep_00241

SRS_BSW_00172 The scheduling strategy that is built inside the
Basic Software Modules shall be compatible
with the strategy used in the system

SWS_Eep_00241

SRS_BSW_00301 All AUTOSAR Basic Software Modules shall
only import the necessary information

SWS_Eep_00241

SRS_BSW_00302 All AUTOSAR Basic Software Modules shall
only export information needed by other
modules

SWS_Eep_00241

SRS_BSW_00306 AUTOSAR Basic Software Modules shall be
compiler and platform independent

SWS_Eep_00241

SRS_BSW_00307 Global variables naming convention SWS_Eep_00241

SRS_BSW_00308 AUTOSAR Basic Software Modules shall not
define global data in their header files, but in
the C file

SWS_Eep_00241

SRS_BSW_00309 All AUTOSAR Basic Software Modules shall
indicate all global data with read-only

SWS_Eep_00241

Specification of EEPROM Driver
AUTOSAR CP R20-11

15 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

purposes by explicitly assigning the const
keyword

SRS_BSW_00312 Shared code shall be reentrant SWS_Eep_00241

SRS_BSW_00323 All AUTOSAR Basic Software Modules shall
check passed API parameters for validity

SWS_Eep_00016,
SWS_Eep_00017,
SWS_Eep_00018

SRS_BSW_00325 The runtime of interrupt service routines and
functions that are running in interrupt context
shall be kept short

SWS_Eep_00241

SRS_BSW_00328 All AUTOSAR Basic Software Modules shall
avoid the duplication of code

SWS_Eep_00241

SRS_BSW_00330 It shall be allowed to use macros instead of
functions where source code is used and
runtime is critical

SWS_Eep_00241

SRS_BSW_00331 All Basic Software Modules shall strictly
separate error and status information

SWS_Eep_00241

SRS_BSW_00334 All Basic Software Modules shall provide an
XML file that contains the meta data

SWS_Eep_00241

SRS_BSW_00335 Status values naming convention SWS_Eep_00138

SRS_BSW_00336 Basic SW module shall be able to shutdown SWS_Eep_00241

SRS_BSW_00337 Classification of development errors SWS_Eep_00000,
SWS_Eep_00200,
SWS_Eep_00201,
SWS_Eep_00202,
SWS_Eep_00203

SRS_BSW_00341 Module documentation shall contains all
needed informations

SWS_Eep_00241

SRS_BSW_00342 It shall be possible to create an AUTOSAR
ECU out of modules provided as source code
and modules provided as object code, even
mixed

SWS_Eep_00241

SRS_BSW_00343 The unit of time for specification and
configuration of Basic SW modules shall be
preferably in physical time unit

SWS_Eep_00241

SRS_BSW_00347 A Naming seperation of different instances of
BSW drivers shall be in place

SWS_Eep_00241

SRS_BSW_00357 For success/failure of an API call a standard
return type shall be defined

SWS_Eep_00138

SRS_BSW_00369 All AUTOSAR Basic Software Modules shall
not return specific development error codes
via the API

SWS_Eep_00033

SRS_BSW_00375 Basic Software Modules shall report wake-up
reasons

SWS_Eep_00241

SRS_BSW_00377 A Basic Software Module can return a module
specific types

SWS_Eep_00138

SRS_BSW_00378 AUTOSAR shall provide a boolean type SWS_Eep_00241

SRS_BSW_00385 List possible error notifications SWS_Eep_00000

SRS_BSW_00390 Parameter content shall be unique within the
module

SWS_Eep_00094,
SWS_Eep_00095

Specification of EEPROM Driver
AUTOSAR CP R20-11

16 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

SRS_BSW_00398 The link-time configuration is achieved on
object code basis in the stage after compiling
and before linking

SWS_Eep_00094

SRS_BSW_00399 Parameter-sets shall be located in a separate
segment and shall be loaded after the code

SWS_Eep_00241

SRS_BSW_00400 Parameter shall be selected from multiple
sets of parameters after code has been
loaded and started

SWS_Eep_00241

SRS_BSW_00401 Documentation of multiple instances of
configuration parameters shall be available

SWS_Eep_00241

SRS_BSW_00402 Each module shall provide version information SWS_Eep_00095

SRS_BSW_00406 A static status variable denoting if a BSW
module is initialized shall be initialized with
value 0 before any APIs of the BSW module
is called

SWS_Eep_00006,
SWS_Eep_00033

SRS_BSW_00413 An index-based accessing of the instances of
BSW modules shall be done

SWS_Eep_00241

SRS_BSW_00416 The sequence of modules to be initialized
shall be configurable

SWS_Eep_00241

SRS_BSW_00417 Software which is not part of the SW-C shall
report error events only after the DEM is fully
operational.

SWS_Eep_00241

SRS_BSW_00422 Pre-de-bouncing of error status information is
done within the DEM

SWS_Eep_00241

SRS_BSW_00423 BSW modules with AUTOSAR interfaces shall
be describable with the means of the SW-C
Template

SWS_Eep_00241

SRS_BSW_00424 BSW module main processing functions shall
not be allowed to enter a wait state

SWS_Eep_00241

SRS_BSW_00426 BSW Modules shall ensure data consistency
of data which is shared between BSW
modules

SWS_Eep_00241

SRS_BSW_00427 ISR functions shall be defined and
documented in the BSW module description
template

SWS_Eep_00241

SRS_BSW_00428 A BSW module shall state if its main
processing function(s) has to be executed in a
specific order or sequence

SWS_Eep_00241

SRS_BSW_00429 Access to OS is restricted SWS_Eep_00241

SRS_BSW_00432 Modules should have separate main
processing functions for read/receive and
write/transmit data path

SWS_Eep_00241

SRS_BSW_00433 Main processing functions are only allowed to
be called from task bodies provided by the
BSW Scheduler

SWS_Eep_00241

SRS_Eep_00087 The EEPROM driver shall provide an
asynchronous read function

SWS_Eep_00009,
SWS_Eep_00013,
SWS_Eep_00256

SRS_Eep_00088 The EEPROM driver shall provide an
asynchronous write function

SWS_Eep_00014,
SWS_Eep_00015,

Specification of EEPROM Driver
AUTOSAR CP R20-11

17 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

SWS_Eep_00063,
SWS_Eep_00090,
SWS_Eep_00256

SRS_Eep_00089 The EEPROM driver shall provide an
asynchronous erase function

SWS_Eep_00019,
SWS_Eep_00020,
SWS_Eep_00070,
SWS_Eep_00072

SRS_Eep_00090 The EEPROM driver shall provide a
synchronous cancel function

SWS_Eep_00021,
SWS_Eep_00027,
SWS_Eep_00028,
SWS_Eep_00215,
SWS_Eep_00216

SRS_Eep_00091 The EEPROM driver shall provide a
synchronous function which returns the job
processing status

SWS_Eep_00029

SRS_Eep_00092 The EEPROM driver shall only write data if at
least one data value of the affected erasable
block is different from the data value to be
written

SWS_Eep_00060,
SWS_Eep_00064

SRS_Eep_00094 The EEPROM driver shall handle the
EEPROM memory segmentation

SWS_Eep_00063,
SWS_Eep_00070,
SWS_Eep_00072,
SWS_Eep_00090

SRS_Eep_00095 The EEPROM driver shall handle only one job
at the same time

SWS_Eep_00033,
SWS_Eep_00036

SRS_Eep_12047 The EEPROM driver shall provide a function
that has to be called for job processin

SWS_Eep_00030,
SWS_Eep_00032

SRS_Eep_12050 The job processing function of the EEPROM
driver shall process only as much data as the
EEPROM hardware can handle

SWS_Eep_00051,
SWS_Eep_00054,
SWS_Eep_00057,
SWS_Eep_00069

SRS_Eep_12051 The same requirements shall apply for an
external and internal EEPROM driver

SWS_Eep_00088

SRS_Eep_12072 In fast mode, one cycle of the job processing
function of the EEPROM driver shall limit the
block size that is read from EEPROM to the
configured maximum block size

SWS_Eep_00054,
SWS_Eep_00055,
SWS_Eep_00073

SRS_Eep_12091 The EEPROM driver shall provide an
asynchronous compare function

SWS_Eep_00025,
SWS_Eep_00026,
SWS_Eep_00256

SRS_Eep_12124 The EEPROM driver for an external SPI
EEPROM device shall access the SPI
depending on the current EEPROM mode

SWS_Eep_00052,
SWS_Eep_00053,
SWS_Eep_00055,
SWS_Eep_00073

SRS_Eep_12156 The EEPROM driver shall provide a
synchronous selection function

SWS_Eep_00042,
SWS_Eep_00130,
SWS_Eep_00132

SRS_Eep_12157 In normal mode, one cycle of the job
processing function of the EEPROM driver
shall limit the block size that is read from
EEPROM to the configured default block size

SWS_Eep_00051,
SWS_Eep_00052,
SWS_Eep_00053

SRS_SPAL_00157 All drivers and handlers of the AUTOSAR SWS_Eep_00024,

Specification of EEPROM Driver
AUTOSAR CP R20-11

18 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Basic Software shall implement notification
mechanisms of drivers and handlers

SWS_Eep_00029,
SWS_Eep_00045,
SWS_Eep_00046,
SWS_Eep_00047

SRS_SPAL_12056 All driver modules shall allow the static
configuration of notification mechanism

SWS_Eep_00047,
SWS_Eep_00049

SRS_SPAL_12057 All driver modules shall implement an
interface for initialization

SWS_Eep_00004

SRS_SPAL_12063 All driver modules shall only support raw
value mode

SWS_Eep_00241

SRS_SPAL_12064 All driver modules shall raise an error if the
change of the operation mode leads to
degradation of running operations

SWS_Eep_00033

SRS_SPAL_12067 All driver modules shall set their wake-up
conditions depending on the selected
operation mode

SWS_Eep_00241

SRS_SPAL_12068 The modules of the MCAL shall be initialized
in a defined sequence

SWS_Eep_00241

SRS_SPAL_12069 All drivers of the SPAL that wake up from a
wake-up interrupt shall report the wake-up
reason

SWS_Eep_00241

SRS_SPAL_12075 All drivers with random streaming capabilities
shall use application buffers

SWS_Eep_00037

SRS_SPAL_12077 All drivers shall provide a non blocking
implementation

SWS_Eep_00241

SRS_SPAL_12078 The drivers shall be coded in a way that is
most efficient in terms of memory and runtime
resources

SWS_Eep_00241

SRS_SPAL_12092 The driver's API shall be accessed by its
handler or manager

SWS_Eep_00241

SRS_SPAL_12129 The ISRs shall be responsible for resetting
the interrupt flags and calling the according
notification function

SWS_Eep_00241

SRS_SPAL_12163 All driver modules shall implement an
interface for de-initialization

SWS_Eep_00241

SRS_SPAL_12265 Configuration data shall be kept constant SWS_Eep_00241

SRS_SPAL_12267 Wakeup sources shall be initialized by MCAL
drivers and/or the MCU driver

SWS_Eep_00241

SRS_SPAL_12448 All driver modules shall have a specific
behavior after a development error detection

SWS_Eep_00016,
SWS_Eep_00017,
SWS_Eep_00018,
SWS_Eep_00033

Specification of EEPROM Driver
AUTOSAR CP R20-11

19 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

7 Functional specification

7.1 General behavior

[SWS_Eep_00088] ⌈The Eep SWS shall be valid both for internal and external
EEPROMs.

The Eep SWS defines asynchronous services for EEPROM operations

(read/write/erase/compare). ⌋ (SRS_Eep_12051)

[SWS_Eep_00036] ⌈The Eep module shall not buffer jobs. The Eep module shall
accept only one job at a time. During job processing, the Eep module shall accept no

other job. ⌋ (SRS_Eep_00095)

Note: when running in production mode it is assumed that the Eep user will never
issue jobs concurrently; therefore error handling for this requirement is restricted to
development, see SWS_Eep_00033.

[SWS_Eep_00037] ⌈The Eep module shall not buffer data to be read or written. The
Eep module shall use application data buffers that are referenced by a pointer

passed via the API. ⌋ (SRS_SPAL_12075)

[SWS_Eep_00256]⌈ Eep driver shall handle data buffer alignment internally. Instead
of imposing any requirements on a RAM buffers' alignments (as they are uint8*) it

shall handle passed pointers as being just byte-aligned.⌋ (SRS_Eep_00087,

SRS_Eep_00088, SRS_Eep_12091)

7.2 Error classification

This section describes how the Eep module has to manage the several error classes
that may occur during the life cycle of this basic software.

The general requirements document of AUTOSAR [2] specifies that all basic
software modules must distinguish (according to the product life cycle) 3 error types:

 Development errors: These errors should be detected and fixed during
development phase. In most cases, these errors are software errors.

 Runtime errors: These errors are software exceptions that may occur in the
production (i.e. series) code, due to software real time

 Production errors: These errors are hardware errors and software exceptions
that cannot be avoided and are expected to occur in the production (i.e.
series) code.

Specification of EEPROM Driver
AUTOSAR CP R20-11

20 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

7.2.1 Development Errors

[SWS_Eep_00000]⌈

Type of error Related error code Error value

Invalid configuration set selection EEP_E_INIT_FAILED 0x10

Invalid configuration set selection EEP_E_PARAM_ADDRESS 0x11

Invalid configuration set selection EEP_E_PARAM_DATA 0x12

Invalid configuration set selection EEP_E_PARAM_LENGTH 0x13

API service called without module initialization EEP_E_UNINIT 0x20

API service called with a NULL pointer EEP_E_PARAM_POINTER 0x23

⌋(SRS_BSW_00337, SRS_BSW_00385)

7.2.2 Runtime Errors

[SWS_Eep_00251]⌈

Type of error Related error code Error value

API service called while driver still busy EEP_E_BUSY 0x21

Timeout exceeded EEP_E_TIMEOUT 0x22

⌋()

7.2.3 Transient Faults

There are no transient faults.

7.2.4 Production Errors

There are no production errors.

7.2.5 Extended Production Errors

7.2.5.1 EEP_E_ERASE_FAILED
[SWS_Eep_00242]

Error Name: EEP_E_ERASE_FAILED

Short Description: EEPROM erase failed (HW)

Long Description: The Eeprom module reports this error when EEPROM erase
job fails due to a hardware error.

Detection Criteria:
Fail EEPROM erase job failed (see

SWS_Eep_00255).

Specification of EEPROM Driver
AUTOSAR CP R20-11

21 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Pass EEPROM erase job finished successfully (see
SWS_Eep_00244).

Secondary
Parameters:

N/A

Time Required: N/A

Monitor Frequency Implementation specific

[SWS_Eep_00255] ⌈The production error code EEP_E_ERASE_FAILED shall be

reported with FAILED when the Eeprom erase function failed.⌋() (SRS_BSW_00337,

SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_Eep_00244] ⌈The production error code EEP_E_ERASE_FAILED shall be

reported with PASSED when the Eeprom erase function was executed successfully.

 ⌋() (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

7.2.5.2 EEP_E_WRITE_FAILED
[SWS_Eep_00243]

Error Name: EEP_E_WRITE_FAILED

Short Description: EEPROM write failed (HW)

Long Description: The Eeprom module reports this error when EEPROM write
job fails due to a hardware error.

Detection Criteria:

Fail EEPROM write job failed (see
SWS_Eep_00249).

Pass EEPROM write job finished successfully (see
SWS_Eep_00248).

Secondary
Parameters:

N/A

Time Required: N/A

Monitor Frequency Implementation specific

[SWS_Eep_00249] ⌈The production error code EEP_E_ WRITE_FAILED shall be

reported with FAILED when the Eeprom write function failed ⌋() (SRS_BSW_00337,

SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_Eep_00248] ⌈The production error code EEP_E_WRITE_FAILED shall be

reported with PASSED when the Eeprom write function was executed successfully.

⌋() (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

7.2.5.3 EEP_E_READ_FAILED
[SWS_Eep_00244]

Error Name: EEP_E_READ_FAILED

Short Description: EEPROM read failed (HW)

Long Description: The Eeprom module reports this error when EEPROM read

Specification of EEPROM Driver
AUTOSAR CP R20-11

22 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

job fails due to a hardware error.

Detection Criteria:

Fail EEPROM read job failed (see
SWS_Eep_00250).

Pass EEPROM read job finished successfully (see
SWS_Eep_00252).

Secondary
Parameters:

N/A

Time Required: N/A

Monitor Frequency Implementation specific

[SWS_Eep_00250] ⌈The production error code EEP_E_READ_FAILED shall be

reported with FAILED when the Eeprom read function failed.⌋() (SRS_BSW_00337,

SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_Eep_00252] ⌈The production error code EEP_E_READ_FAILED shall be

reported with PASSED when the Eeprom read function was executed successfully.

⌋() (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

7.2.5.4 EEP_E_COMPARE_FAILED
[SWS_Eep_00245]

Error Name: EEP_E_COMPARE_FAILED

Short Description: EEPROM compare failed (HW)

Long Description: The Eeprom module reports this error when EEPROM
compare job fails due to a hardware error.

Detection Criteria:

Fail EEPROM compare job failed (see
SWS_Eep_00253).

Pass EEPROM compare job finished successfully
(see SWS_Eep_00254).

Secondary
Parameters:

N/A

Time Required: N/A

Monitor Frequency Implementation specific

[SWS_Eep_00253] ⌈The production error code EEP_E_COMPARE_FAILED shall

be reported with FAILED when the Eeprom compare function failed.⌋()

(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_Eep_00254] ⌈The production error code EEP_E_COMPARE_FAILED shall

be reported with PASSED when the Eeprom compare function was executed

successfully. ⌋() (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

7.3 Error detection

For details refer to the chapter 7.3 “Error Detection” in SWS_BSWGeneral.

Specification of EEPROM Driver
AUTOSAR CP R20-11

23 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

7.3.1 API parameter checking

[SWS_Eep_00016] ⌈If development error detection for the module Eep is enabled:

the functions Eep_Read(), Eep_Write(), Eep_Compare() and Eep_Erase()

shall check that DataBufferPtr is not NULL. If DataBufferPtr is NULL, they

shall raise development error EEP_E_PARAM_DATA, otherwise (if no development

error detection is enabled) it shall return with E_NOT_OK. ⌋ (SRS_BSW_00323,

SRS_SPAL_12448)

[SWS_Eep_00017] ⌈If development error detection for the module Eep is enabled:

the functions Eep_Read(), Eep_Write(), Eep_Compare() and Eep_Erase()

shall check that EepromAddress is valid. If EepromAddress is not within the valid

EEPROM address range they shall raise development error

EEP_E_PARAM_ADDRESS, otherwise (if no development error detection is enabled) it

shall return with E_NOT_OK. ⌋ (SRS_BSW_00323, SRS_SPAL_12448)

[SWS_Eep_00018] ⌈If development error detection for the module Eep is enabled:

the functions Eep_Read(), Eep_Write(), Eep_Compare() and Eep_Erase()

shall check that the parameter Length is within the specified minimum and

maximum values:
 Min.: 1

 Max.: EepSize – EepromAddress

If the parameter Length is not within the specified minimum and maximum values,

they shall raise development error EEP_E_PARAM_LENGTH, otherwise (if no

development error detection is enabled) it shall return with E_NOT_OK. ⌋

(SRS_BSW_00323, SRS_SPAL_12448)

7.3.2 EEPROM state checking

[SWS_Eep_00033] ⌈The functions Eep_SetMode(), Eep_Read(),

Eep_Write(), Eep_Compare() and Eep_Erase() shall check the EEPROM

state for being MEMIF_IDLE. If the EEPROM state is not MEMIF_IDLE , the called

function shall

 raise the development error EEP_E_UNINIT if the module has not been

initialized yet and if development error detection for the module Eep is enabled

 raise the runtime error EEP_E_BUSY according to the EEPROM state

 reject the service with E_NOT_OK (except Eep_SetMode()because this

service has no return value) ⌋ (SRS_BSW_00406, SRS_BSW_00369,

SRS_SPAL_12064, SRS_SPAL_12448, SRS_Eep_00095)

7.3.3 EEPROM job encounters Hardware Failure

[SWS_Eep_00200] ⌈The production error code EEP_E_ERASE_FAILED shall be

reported when the EEPROM erase function failed. ⌋ (SRS_BSW_00337)

Specification of EEPROM Driver
AUTOSAR CP R20-11

24 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

[SWS_Eep_00201] ⌈The production error code EEP_E_WRITE_FAILED shall be

reported when the EEPROM write function failed. ⌋ (SRS_BSW_00337)

[SWS_Eep_00202] ⌈The production error code EEP_E_READ_FAILED shall be

reported when the EEPROM read function failed. ⌋ (SRS_BSW_00337)

[SWS_Eep_00203] ⌈The production error code EEP_E_COMPARE_FAILED shall be

reported when the EEPROM compare function failed. ⌋ (SRS_BSW_00337)

7.3.4 Timeout Supervision

[SWS_Eep_00234] ⌈The runtime error code EEP_E_TIMEOUT shall be reported when

the timeout supervision of a read, write, erase or compare job failed. ⌋ ()

7.4 Error notification

 For details refer to the chapter 7.2 “Error classification” in SWS_BSWGeneral.

7.5 Processing of jobs – general requirements

[SWS_Eep_00128] ⌈The Eep module shall allow to be configured for interrupt or
polling controlled job processing (if this is supported by the EEPROM hardware)

through the configuration parameter EepUseInterrupts (see ECUC_Eep_00163).

⌋ ()

[SWS_Eep_00129] ⌈If interrupt controlled job processing is supported and enabled,

the external interrupt service routine located in Eep_Irq.c shall call an additional

job processing function. ⌋ ()

Hint:

The function Eep_MainFunction is still required for processing of jobs without

hardware interrupt support (e.g. for read and compare jobs) and for timeout
supervision.

[SWS_Eep_00246]⌈If the underlying EEPROM technology requires a certain

alignment of the read address or length information and if the address and/or length
parameter for a read or compare Job are not correctly aligned, the function
Eep_MainFunction shall internally compensate for this missing alignment, that is the
function Eep_MainFunction shall provide byte-wise read access to the flash memory,

regardless of any alignment restrictions imposed by the Hardware.⌋()

Additional general requirements only applicable for SPI EEPROM drivers:

Specification of EEPROM Driver
AUTOSAR CP R20-11

25 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

[SWS_Eep_00056] ⌈For an Eep module driving an external EEPROM through SPI: If
the SPI access fails, the Eep module shall behave as specified in SWS_Eep_00068.

⌋ ()

[SWS_Eep_00052] ⌈For an Eep module driving an external EEPROM through SPI:
In normal EEPROM mode, the Eep module shall access the external EEPROM by

usage of SPI channels that are configured for normal access to the SPI EEPROM. ⌋
(SRS_Eep_12157, SRS_Eep_12124)

[SWS_Eep_00053] ⌈For an Eep module driving an external EEPROM through SPI:
The Eep’s configuration shall be such that the value of the configuration parameter

EepNormalReadBlockSize fits to the number of bytes that are readable in normal

SPI mode. ⌋ (SRS_Eep_12157, SRS_Eep_12124)

[SWS_Eep_00055] ⌈For an Eep module driving an external EEPROM through SPI:
In fast EEPROM mode, the Eep module shall access the external EEPROM by

usage of SPI channels that are configured for burst access to the SPI EEPROM. ⌋
(SRS_Eep_12072, SRS_Eep_12124)

[SWS_Eep_00073] ⌈For an Eep module driving an external EEPROM through SPI:
The Eep’s configuration shall be such that the value of the configuration parameter

EepFastReadBlockSize fits to the number of bytes that are readable in burst SPI

mode. ⌋ (SRS_Eep_12072, SRS_Eep_12124)

7.6 Processing of read jobs

[SWS_Eep_00130] ⌈The Eep module shall provide two different read modes:

 normal mode

 fast mode⌋ (SRS_Eep_12156)

[SWS_Eep_00132] ⌈For an Eep module driving an external EEPROM: in case the
external EEPROM does not support the burst mode, the Eep module shall accept a
selection of fast read mode, but shall behave the same as in normal mode (don’t care

of mode parameter). ⌋ (SRS_Eep_12156)

[SWS_Eep_00051] ⌈In normal EEPROM mode, the Eep module shall read within
one job processing cycle a number of bytes specified by the parameter

EepNormalReadBlockSize. ⌋ (SRS_Eep_12157, SRS_Eep_12050)

Example:

 EepNormalReadBlockSize = 4

 Number of bytes to read: 21

 Required number of job processing cycles: 6

Specification of EEPROM Driver
AUTOSAR CP R20-11

26 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

 Resulting read pattern: 4-4-4-4-4-1

[SWS_Eep_00054] ⌈In fast EEPROM mode, the Eep module shall read within one
job processing cycle a number of bytes specified by the parameter

EepFastReadBlockSize. ⌋ (SRS_Eep_12072, SRS_Eep_12050)

Example:

 EepFastReadBlockSize = 32

 Number of bytes to read: 110

 Required number of job processing cycles: 4

 Resulting read pattern: 32-32-32-14

[SWS_Eep_00058] ⌈When a read job is finished successfully, the Eep module shall

set the EEPROM state to MEMIF_IDLE and shall set the job result to

MEMIF_JOB_OK. If configured, the Eep module shall call the notification defined in

the configuration parameter EepJobEndNotification. ⌋ ()

[SWS_Eep_00068] ⌈When an error is detected during read job processing, the Eep

module shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall set

the job result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the

notification defined in the configuration parameter EepJobErrorNotification.⌋()

7.7 Processing of write jobs

[SWS_Eep_00057] ⌈The Eep module shall only write (and erase) as many bytes to
the EEPROM as supported by the EEPROM hardware within one job processing
cycle.

For internal EEPROMs, usually 1 data word can be written per time. Some external
EEPROMs provide a RAM buffer (e.g. page buffer) that allows writing many bytes in

one step. ⌋ (SRS_Eep_12050)

[SWS_Eep_00133] ⌈The Eep module shall provide two different write modes:

 normal mode

 fast mode⌋ ()

[SWS_Eep_00134] ⌈For the case of an Eep module driving an external EEPROM: if
the external EEPROMs does not provide burst mode, the Eep module shall accept a
selection of fast mode, but shall behave the same as in normal mode (don’t care of

mode parameter). ⌋ ()

Specification of EEPROM Driver
AUTOSAR CP R20-11

27 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

[SWS_Eep_00097] ⌈In normal EEPROM mode, the Eep module shall write (and
erase) within one job processing cycle a number of bytes specified by the parameter

EepNormalWriteBlockSize. ⌋ ()

Example:

 EepNormalWriteBlockSize = 1

 Number of bytes to write: 4

 Required number of job processing cycles: 4

 Resulting write pattern: 1-1-1-1

[SWS_Eep_00098] ⌈In fast EEPROM mode, the Eep module shall write (and erase)
within one job processing cycle a number of bytes specified by the parameter

EepFastWriteBlockSize. ⌋ ()

Example:

 EepFastWriteBlockSize = 16

 Number of bytes to write: 55

 Required number of job processing cycles: 4

 Resulting write pattern: 16-16-16-7

[SWS_Eep_00060] ⌈If the value to be written to an EEPROM cell is already
contained in the EEPROM cell, the Eep module should1 skip the programming of that
cell if it is configured to do so through the configuration parameter

EepWriteCycleReduction. ⌋ (SRS_Eep_00092)

[SWS_Eep_00059] ⌈The Eep module shall erase an EEPROM cell before writing to

it if this is not done automatically by the EEPROM hardware. ⌋ ()

[SWS_Eep_00063] ⌈The Eep module shall preserve data of affected EEPROM cells
by performing read – modify – write operations, if the number of bytes to be written

are smaller than the erasable and/or writeable data units. ⌋ (SRS_Eep_00088,

SRS_Eep_00094)

[SWS_Eep_00090] ⌈The Eep module shall preserve data of affected EEPROM cells
by performing read – modify – write operations, if the given parameters

(EepromAddress and Length) do not align with the erasable/writeable data units. ⌋

(SRS_Eep_00088, SRS_Eep_00094)

[SWS_Eep_00064] ⌈The Eep module shall keep the number of read – modify – write

operations during writing a data block as small as possible. ⌋ (SRS_Eep_00092)

[SWS_Eep_00219] ⌈When a write job is finished successfully, the Eep module shall

set the EEPROM state to MEMIF_IDLE and shall set the job result to

1 This feature is not mandatory but it depends on the EEPROM hardware manufacturer specification

Specification of EEPROM Driver
AUTOSAR CP R20-11

28 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

MEMIF_JOB_OK. If configured, the Eep module shall call the notification defined in

the configuration parameter EepJobEndNotification. ⌋ ()

[SWS_Eep_00222] ⌈When an error is detected during write job processing, the Eep

module shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall set

the job result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the

notification defined in the configuration parameter EepJobErrorNotification. ⌋

()

Note: The verification of data written to EEPROM is not done within the write job
processing function. If this is required for a data block, the compare function has to
be called after the write job has been finished. This optimizes write speed, because
data verification (read back and comparing data after writing) is only done where
required.

7.8 Processing of erase jobs

[SWS_Eep_00069] ⌈The Eep module shall erase only as many bytes to the

EEPROM as supported by the EEPROM hardware within one job processing cycle. ⌋
(SRS_Eep_12050)

[SWS_Eep_00070] ⌈The Eep module shall use block erase commands if supported

by the EEPROM hardware and if the given parameters (EepromAddress and

Length) are aligned to erasable blocks. ⌋ (SRS_Eep_00089, SRS_Eep_00094)

[SWS_Eep_00072] ⌈The Eep module shall preserve the contents of affected
EEPROM cells by using read – modify – write operations, if the given erase

parameters (EepromAddress and Length) do not align with the erasable data

units. ⌋ (SRS_Eep_00089, SRS_Eep_00094)

[SWS_Eep_00220] ⌈When an erase job is finished successfully, the Eep module

shall set the EEPROM state to MEMIF_IDLE and shall set the job result to

MEMIF_JOB_OK. If configured, the Eep module shall call the notification defined in

the configuration parameter EepJobEndNotification. ⌋ ()

[SWS_Eep_00223] ⌈When an error is detected during erase job processing, the Eep

module shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall set

the job result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the

notification defined in the configuration parameter EepJobErrorNotification. ⌋

()

7.9 Processing of compare jobs

Specification of EEPROM Driver
AUTOSAR CP R20-11

29 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

For processing of compare jobs, the following EEPROM mode related requirements
are applicable: SWS_Eep_00130, SWS_Eep_00132, SWS_Eep_00051,
SWS_Eep_00054.

[SWS_Eep_00221] ⌈When a compare job is finished successfully, the Eep module

shall set the EEPROM state to MEMIF_IDLE and shall set the job result to

MEMIF_JOB_OK. If configured, the Eep module shall call the notification defined in

the configuration parameter EepJobEndNotification. ⌋ ()

[SWS_Eep_00224] ⌈When an error is detected during compare job processing, the

Eep module shall abort the job, shall set the EEPROM state to MEMIF_IDLE and

shall set the job result to MEMIF_JOB_FAILED. If configured, the Eep module shall

call the notification defined in the configuration parameter

EepJobErrorNotification. ⌋ ()

[SWS_Eep_00075] ⌈When it is detected during compare job processing that the
compared data areas are not equal, the EEPROM driver shall abort the job, set the

EEPROM state to MEMIF_IDLE and the job result to

MEMIF_BLOCK_INCONSISTENT. If configured, the callback function

Eep_JobErrorNotification shall be called. ⌋ ()

Requirements only applicable for SPI EEPROM drivers:
For processing of compare jobs, the following read job requirements are applicable:
SWS_Eep_00052, SWS_Eep_00053, SWS_Eep_00055, SWS_Eep_00073.

7.10 Version check

 For details refer to the chapter 5.1.8 “Version Check” in SWS_BSWGeneral.

Specification of EEPROM Driver
AUTOSAR CP R20-11

30 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

8 API specification

8.1 Imported types

In this chapter all types included from the following modules are listed:

[SWS_Eep_00138]⌈

Module Header File Imported Type

Dem
Rte_Dem_Type.h Dem_EventIdType

Rte_Dem_Type.h Dem_EventStatusType

MemIf

MemIf.h MemIf_JobResultType

MemIf.h MemIf_ModeType

MemIf.h MemIf_StatusType

Std
Std_Types.h Std_ReturnType

Std_Types.h Std_VersionInfoType

⌋(SRS_BSW_00335, SRS_BSW_00357, SRS_BSW_00377)

8.2 Type definitions

8.2.1 Eep_ConfigType

[SWS_Eep_00225]⌈

Name Eep_ConfigType

Kind Structure

Elements

Implementation Specific

Type --

Comment The contents of the initialization data structure are EEPROM specific.

Description
This is the type of the external data structure containing the initialization data for the
EEPROM driver.

Available
via

Eep.h

⌋()

8.2.2 Eep_AddressType

[SWS_Eep_00226]⌈

Name Eep_AddressType

Specification of EEPROM Driver
AUTOSAR CP R20-11

31 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Kind Type

Derived
from

uint

Range 8 / 16 / 32 bits -- Size depends on target platform and EEPROM device.

Description
Used as address offset from the configured EEPROM base address to access a
certain EEPROM memory area.

Available
via

Eep.h

⌋()

[SWS_Eep_00113] ⌈The type Eep_AddressType shall have 0 as lower limit for each

EEPROM device. ⌋ ()

[SWS_Eep_00217] ⌈The EEPROM module shall add a device specific base address

to the address type Eep_AddressType if necessary. ⌋ ()

8.2.3 Eep_LengthType

[SWS_Eep_00227]⌈

Name Eep_LengthType

Kind Type

Derived
from

uint

Range
Same as Eep_
AddressType

--
Is the same type as Eep_AddressType because of arithmetic
operations. Size depends on target platform and EEPROM
device.

Description Specifies the number of bytes to read/write/erase/compare.

Available
via

Eep.h

⌋()

8.3 Function definitions

8.3.1 Eep_Init

[SWS_Eep_00143]⌈

Service Name Eep_Init

Syntax void Eep_Init (

Specification of EEPROM Driver
AUTOSAR CP R20-11

32 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

 const Eep_ConfigType* ConfigPtr

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to configuration set.

Parameters (inout) None

Parameters (out) None

Return value None

Description Service for EEPROM initialization.

Available via Eep.h

⌋()

[SWS_Eep_00004] ⌈The function Eep_Init shall initialize all EEPROM relevant

registers with the values of the structure referenced by the parameter ConfigPtr. ⌋

(SRS_BSW_00101, SRS_SPAL_12057)

[SWS_Eep_00006] ⌈After having finished the module initialization, the function

Eep_Init shall set the EEPROM state to MEMIF_IDLE and shall set the job result to

MEMIF_JOB_OK. ⌋ (SRS_BSW_00406)

[SWS_Eep_00044] ⌈The function Eep_Init shall set the EEPROM mode to the

configured default mode⌋ ()

[SWS_Eep_00115] ⌈The Eep’s user shall not call the function Eep_Init during a

running operation. ⌋ ()

8.3.2 Eep_SetMode

[SWS_Eep_00144]⌈

Service Name Eep_SetMode

Syntax

void Eep_SetMode (

 MemIf_ModeType Mode

)

Service ID
[hex]

0x01

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Mode MEMIF_MODE_SLOW: Slow read access / normal SPI access. MEMIF_

Specification of EEPROM Driver
AUTOSAR CP R20-11

33 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

MODE_FAST: Fast read access / SPI burst access.

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description Sets the mode.

Available via Eep.h

⌋()

[SWS_Eep_00042] ⌈The function Eep_SetMode shall set the EEPROM operation
mode to the given mode parameter.

The function Eep_SetMode checks the EEPROM state according to requirement

SWS_Eep_00033. ⌋ (SRS_Eep_12156)

[SWS_Eep_00116] ⌈The Eep’s user shall not call the function Eep_SetMode during

a running operation. ⌋ ()

8.3.3 Eep_Read

[SWS_Eep_00145]⌈

Service Name Eep_Read

Syntax

Std_ReturnType Eep_Read (

 Eep_AddressType EepromAddress,

 uint8* DataBufferPtr,

 Eep_LengthType Length

)

Service ID [hex] 0x02

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in)

Eeprom
Address

Address offset in EEPROM (will be added to the EEPROM base
address). Min.: 0 Max.: EEP_SIZE - 1

Length
Number of bytes to read Min.: 1 Max.: EEP_SIZE - Eeprom
Address

Parameters
(inout)

None

Parameters
(out)

DataBuffer
Ptr

Pointer to destination data buffer in RAM

Return value Std_Return- E_OK: read command has been accepted

Specification of EEPROM Driver
AUTOSAR CP R20-11

34 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Type E_NOT_OK: read command has not been accepted

Description Reads from EEPROM.

Available via Eep.h

⌋()

[SWS_Eep_00009] ⌈The function Eep_Read shall copy the given parameters, initiate

a read job, set the EEPROM status to MEMIF_BUSY, set the job result to

MEMIF_JOB_PENDING and return. ⌋ (SRS_Eep_00087)

[SWS_Eep_00013] ⌈The Eep module shall execute the read job asynchronously
within the Eep module’s job processing function. During job processing the Eep

module shall read a data block of size Length from EepromAddress + EEPROM

base address to *DataBufferPtr.

The function Eep_Read checks the API parameters according to requirements
SWS_Eep_00016, SWS_Eep_00017, SWS_Eep_00018.

The function Eep_Read checks the EEPROM state according to requirement

SWS_Eep_00033. ⌋ (SRS_Eep_00087)

[SWS_Eep_00117] ⌈The Eep’s user shall only call Eep_Read after the Eep module

has been been initialized. ⌋ ()

[SWS_Eep_00118] ⌈The Eep’s user shall not call the function Eep_Read during a

running Eep module job (read/write/erase/compare). ⌋ ()

8.3.4 Eep_Write

[SWS_Eep_00146]⌈

Service Name Eep_Write

Syntax

Std_ReturnType Eep_Write (

 Eep_AddressType EepromAddress,

 const uint8* DataBufferPtr,

 Eep_LengthType Length

)

Service ID
[hex]

0x03

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in)

Eeprom
Address

Address offset in EEPROM (will be added to the EEPROM base
address). Min.: 0 Max.: EEP_SIZE - 1
This target address will be added to the EEPROM base address.

DataBuffer Pointer to source data

Specification of EEPROM Driver
AUTOSAR CP R20-11

35 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Ptr

Length
Number of bytes to write Min.: 1 Max.: EEP_SIZE - Eeprom
Address

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: write command has been accepted
E_NOT_OK: write command has not been accepted

Description Writes to EEPROM.

Available via Eep.h

⌋()

[SWS_Eep_00014] ⌈The function Eep_Write shall copy the given parameters, initiate
a write job, set the EEPROM status to MEMIF_BUSY, set the job result to

MEMIF_JOB_PENDING and return. ⌋ (SRS_Eep_00088)

[SWS_Eep_00015] ⌈The Eep module shall execute the write job asynchronously
within the Eep module’s job processing function. During job processing the Eep
module shall write a data block of size Length from *DataBufferPtr to EepromAddress
+ EEPROM base address.

The function Eep_Write checks the API parameters according to requirements
SWS_Eep_00016, SWS_Eep_00017, SWS_Eep_00018.

The function Eep_Write checks the EEPROM state according to requirement

SWS_Eep_00033. ⌋ (SRS_Eep_00088)

[SWS_Eep_00119] ⌈The Eep module’s user shall only call the function Eep_Write

after the Eep module has been initialized. ⌋ ()

[SWS_Eep_00120] ⌈The Eep module’s user shall not call the function Eep_Write

during a running Eep module job (read/write/erase/compare). ⌋ ()

8.3.5 Eep_Erase

[SWS_Eep_00147]⌈

Service Name Eep_Erase

Syntax

Std_ReturnType Eep_Erase (

 Eep_AddressType EepromAddress,

 Eep_LengthType Length

)

Service ID [hex] 0x04

Specification of EEPROM Driver
AUTOSAR CP R20-11

36 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in)

Eeprom
Address

Start address in EEPROM Min.: 0 Max.: EEP_SIZE - 1
This address will be added to the EEPROM base address.

Length
Number of bytes to erase Min.: 1 Max.: EEP_SIZE - Eeprom
Address

Parameters
(inout)

None

Parameters (out) None

Return value
Std_Return-
Type

E_OK: erase command has been accepted
E_NOT_OK: erase command has not been accepted

Description Service for erasing EEPROM sections.

Available via Eep.h

⌋()

[SWS_Eep_00019] ⌈The function Eep_Erase shall copy the given parameters,

initiate an erase job, set the EEPROM status to MEMIF_BUSY, set the job result to

MEMIF_JOB_PENDING and return. ⌋ (SRS_Eep_00089)

[SWS_Eep_00020] ⌈The Eep module shall execute the erase job asynchronously
within the Eep module’s job processing function. The Eep module shall erase an

EEPROM block starting from EepromAddress + EEPROM base address of size

Length.

The function Eep_Erase checks the API parameters according to requirements
SWS_Eep_00016, SWS_Eep_00017, SWS_Eep_00018.

The function Eep_Erase checks the EEPROM state according to requirement

SWS_Eep_00033. ⌋ (SRS_Eep_00089)

[SWS_Eep_00121] ⌈The Eep module’s user shall only call the function Eep_Erase

after the Eep module has been initialized. ⌋ ()

[SWS_Eep_00122] ⌈The Eep module’s user shall not call the function Eep_Erase

during a running Eep job (read/write/erase/compare). ⌋ ()

8.3.6 Eep_Compare

[SWS_Eep_00148]⌈

Service Name Eep_Compare

Syntax
Std_ReturnType Eep_Compare (

 Eep_AddressType EepromAddress,

Specification of EEPROM Driver
AUTOSAR CP R20-11

37 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

 const uint8* DataBufferPtr,

 Eep_LengthType Length

)

Service ID
[hex]

0x05

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in)

Eeprom
Address

Address offset in EEPROM (will be added to the EEPROM base
address). Min.: 0 Max.: EEP_SIZE - 1
This target address will be added to the EEPROM base address.

DataBuffer
Ptr

Pointer to data buffer (compare data)

Length
Number of bytes to compare Min.: 1 Max.: EEP_SIZE - Eeprom
Address

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: compare command has been accepted
E_NOT_OK: compare command has not been accepted

Description Compares a data block in EEPROM with an EEPROM block in the memory.

Available via Eep.h

⌋()

[SWS_Eep_00025] ⌈The function Eep_Compare shall copy the given parameters,
initiate a compare job, set the EEPROM status to MEMIF_BUSY, set the job result to

MEMIF_JOB_PENDING and return. ⌋ (SRS_Eep_12091)

[SWS_Eep_00026] ⌈The Eep module shall execute the compare job asynchronously
within the Eep module’s job processing function. During job processing the Eep
module shall compare the EEPROM data block at EepromAddress + EEPROM base
address of size Length with the data block at *DataBufferPtr of the same length.

The service Eep_Compare checks the API parameters according to requirements
SWS_Eep_00016, SWS_Eep_00017, SWS_Eep_00018.

The service Eep_Compare checks the EEPROM state according to requirement

SWS_Eep_00033. ⌋ (SRS_Eep_12091)

[SWS_Eep_00123] ⌈The Eep module’s user shall only call the function

Eep_Compare after the Eep module has been initialized. ⌋ ()

Specification of EEPROM Driver
AUTOSAR CP R20-11

38 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

[SWS_Eep_00124] ⌈The Eep module’s user shall not call the function Eep_Compare

during a running Eep job (read/write/erase/compare). ⌋ ()

8.3.7 Eep_Cancel

[SWS_Eep_00149]⌈

Service Name Eep_Cancel

Syntax

void Eep_Cancel (

 void

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Cancels a running job.

Available via Eep.h

⌋()

[SWS_Eep_00215] ⌈The function Eep_Cancel shall cancel an ongoing EEPROM

read, write, erase or compare job. ⌋ (SRS_Eep_00090)

[SWS_Eep_00021] ⌈The function Eep_Cancel shall abort a running job

synchronously so that directly after returning from this function a new job can be

requested by the upper layer. ⌋ (SRS_Eep_00090)

Note: The function Eep_Cancel is synchronous in its behavior but at the same time

asynchronous w.r.t. the underlying hardware. The job of the Eep_Cancel function

(i.e. make the module ready for a new job request) is finished when it returns to the
caller (hence it is synchronous), but on the other hand e.g. an erase job might still be
ongoing in the hardware device (hence it is asynchronous w.r.t. the hardware).

[SWS_Eep_00027] ⌈The function Eep_Cancel shall set the EEP module state to

MEMIF_IDLE. ⌋ (SRS_Eep_00090)

[SWS_Eep_00216] ⌈If configured, Eep_Cancel shall call the error notification

function defined in EepJobErrorNotification in order to inform the caller about

the cancelation of a job. ⌋ (SRS_Eep_00090)

Specification of EEPROM Driver
AUTOSAR CP R20-11

39 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

[SWS_Eep_00028] ⌈The function Eep_Cancel shall set the job result to

MEMIF_JOB_CANCELED if the job result currently has the value

MEMIF_JOB_PENDING. Otherwise it shall leave the job result unchanged. ⌋

(SRS_Eep_00090)

[SWS_Eep_00136] ⌈The Eep module’s user shall not call the Eep_Cancel()

function during a running Eep_MainFunction() function.

SWS_Eep_00136 can be achieved by one of the following scheduling configurations:

 Possibility 1: the job functions of the NVRAM manager and the EEPROM
driver are synchronized (e.g. called sequentially within one task)

 Possibility 2: the task that calls the Eep_MainFunction function cannot be

preempted by another task. ⌋ ()

Note: The states and data of the affected EEPROM cells will be undefined when

canceling an ongoing write or erase job with the function Eep_Cancel.

Only the NVRAM Manager is authorized to use the function Eep_Cancel.

Canceling any job on-going with the service Eep_Cancel in an external EEPROM
device might set this one in a blocking state.

8.3.8 Eep_GetStatus

[SWS_Eep_00150]⌈

Service Name Eep_GetStatus

Syntax

MemIf_StatusType Eep_GetStatus (

 void

)

Service ID [hex] 0x07

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value MemIf_StatusType See document [3]

Description Returns the EEPROM status.

Available via Eep.h

⌋()

Specification of EEPROM Driver
AUTOSAR CP R20-11

40 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

[SWS_Eep_00029] ⌈The function Eep_GetStatus shall return the EEPROM status

synchronously. ⌋ (SRS_SPAL_00157, SRS_Eep_00091)

8.3.9 Eep_GetJobResult

[SWS_Eep_00151]⌈

Service Name Eep_GetJobResult

Syntax

MemIf_JobResultType Eep_GetJobResult (

 void

)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value MemIf_JobResultType See document [3]

Description This service returns the result of the last job.

Available via Eep.h

⌋()

[SWS_Eep_00024] ⌈The function Eep_GetJobResult shall synchronously return the

result of the last job that has been accepted by the Eep module. ⌋ (SRS_SPAL_00157)

The services read/write/compare/erase share the same job status. Only the result of
the last accepted job can be queried. Every new job that has been accepted by the
EEPROM driver overwrites the job result with MEMIF_JOB_PENDING.

8.3.10 Eep_GetVersionInfo

[SWS_Eep_00152]⌈

Service Name Eep_GetVersionInfo

Syntax

void Eep_GetVersionInfo (

 Std_VersionInfoType* versioninfo

)

Service ID [hex] 0x0a

Sync/Async Synchronous

Reentrancy Reentrant

Specification of EEPROM Driver
AUTOSAR CP R20-11

41 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description Service to get the version information of this module.

Available via Eep.h

⌋()

[SWS_Eep_00239] ⌈If development error detection for the module Eep is enabled,
and if the function Eep_GetVersionInfo is called with a NULL Pointer, the function

Eep_GetVersionInfo shall raise the development error EEP_E_PARAM_POINTER,

otherwise (if no development error detection is enabled) it shall return without any

action. ⌋ ()

8.4 Callback notifications

This chapter lists all functions provided by the Eep module to lower layer modules.

The EEPROM Driver is specified for either an internal microcontroller peripheral or
an SPI external device. In the first case, the module belongs to the lowest layer of
AUTOSAR Software Architecture hence this module specification has not identified
any callback functions. In the second case, the module belongs to the ECU
abstraction layer of AUTOSAR Software Architecture hence this module should
provide callback notifications according to the SPI Handler/Driver specification
requirements but those can not be specified here because they depend on module
detailed design. That means, they depend on number of SPI Jobs and SPI
Sequences that will be used.

[SWS_Eep_00137] ⌈In case the Eep module support an SPI external device, the

Eep module shall provide additional callback notifications according to the SPI

Handler/Driver specification requirements.⌋()

8.5 Scheduled functions

This chapter lists all functions provided by the Eep module and called directly by the
Basic Software Module Scheduler.

8.5.1 Eep_MainFunction

[SWS_Eep_00153]⌈

Service Name Eep_MainFunction

Specification of EEPROM Driver
AUTOSAR CP R20-11

42 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Syntax

void Eep_MainFunction (

 void

)

Service ID
[hex]

0x09

Description
Service to perform the processing of the EEPROM jobs (read/write/erase/
compare) .

Available via SchM_Eep.h

⌋()
[SWS_Eep_00030] ⌈The function Eep_MainFunction shall perform the processing

of the EEPROM read, write, erase and compare jobs. ⌋ (SRS_Eep_12047)

[SWS_Eep_00031] ⌈When a job has been initiated, the Eep’s user shall call the

function Eep_MainFunction cyclically until the job is finished. ⌋ ()

Note: The function Eep_MainFunction may also be called cyclically if no job is

currently pending.

[SWS_Eep_00084] ⌈The configuration parameter EepJobCallCycle (see

ECUC_Eep_00170) shall be used for internal timing of the EEPROM driver (deadline
monitoring, write and erase timing etc.) if needed by the implementation and/or the

underlying hardware. ⌋ ()

[SWS_Eep_00032] ⌈The function Eep_MainFunction shall return without action if

no job is pending. ⌋ (SRS_Eep_12047)

[SWS_Eep_00204] ⌈The function Eep_MainFunction shall set the job result to

MEMIF_JOB_FAILED and report the error code EEP_E_ERASE_FAILED to the DEM

if an EEPROM erase job fails due to a hardware error. ⌋ ()

[SWS_Eep_00205] ⌈The function Eep_MainFunction shall set the job result to

MEMIF_JOB_FAILED and report the error code EEP_E_WRITE_FAILED to the DEM

if an EEPROM write job fails due to a hardware error. ⌋ ()

[SWS_Eep_00206] ⌈The function Eep_MainFunction shall set the job result to

MEMIF_JOB_FAILED and report the error code EEP_E_READ_FAILED to the DEM if

an EEPROM read job fails due to a hardware error. ⌋ ()

[SWS_Eep_00207] ⌈The function Eep_MainFunction shall set the job result to

MEMIF_JOB_FAILED and report the error code EEP_E_COMPARE_FAILED to the

DEM if an EEPROM compare job fails due to a hardware error. ⌋ ()

Specification of EEPROM Driver
AUTOSAR CP R20-11

43 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

[SWS_Eep_00235] ⌈The function Eep_MainFunction shall provide a timeout

monitoring for the currently running job. That is it shall supervise the deadline of the

read / compare / erase or write job. ⌋ ()

[SWS_Eep_00236] ⌈The function Eep_MainFunction shall check whether the

configured maximum erase time (see ECUC_Eep_00178 EepEraseTime) has been

exceeded. If this is the case, the function Eep_MainFunction shall raise the

runtime error EEP_E_TIMEOUT. ⌋ ()

[SWS_Eep_00237] ⌈The function Eep_MainFunction shall check whether the

expected maximum write time (see note below) has been exceeded. If this is the

case, the function Eep_MainFunction shall raise the runtime error

EEP_E_TIMEOUT. ⌋ ()

Note: The expected maximum write time depends on the current mode of the Eep
module (see SWS_Eep_00144), the configured number of bytes to write in this mode
(see ECUC_Eep_00174 and ECUC_Eep_00169 respectively), the size of a
EEPROM write data unit (see ECUC_Eep_00186) and last the maximum time to
write one data unit (see ECUC_Eep_00185). The number of bytes to write divided by
the size of one EEPROM data unit yields the number of data units to write in one
cycle. This multiplied with the maximum write time for one EEPROM data unit gives
the expected maximum write time.

[SWS_Eep_00238] ⌈The function Eep_MainFunction shall check whether the

expected maximum read / compare time (see note below) has been exceeded. If this

is the case, the function Eep_MainFunction shall raise the runtime error

EEP_E_TIMEOUT. ⌋ ()

Note: There are currently no published parameters standardized for read / compare
timings; these are difficult to standardize as they mostly depend on whether the
EEPROM device is internal or external e.g. connected via SPI. Depending on the
exact configuration being used, the implementation may use vendor-specific
parameters similar as described for write jobs above. The configured number of
bytes to read (and to compare) is coupled to the expected read / compare times

which should be supervised by the Eep_MainFunction.

8.6 Expected Interfaces

This chapter lists all functions the Eep module requires from other modules.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

Specification of EEPROM Driver
AUTOSAR CP R20-11

44 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

[SWS_Eep_00154]⌈

API Function
Header
File

Description

Dem_Set-
EventStatus

Dem.h
Called by SW-Cs or BSW modules to report monitor status information
to the Dem. BSW modules calling Dem_SetEventStatus can safely
ignore the return value.

Det_Report-
RuntimeError

Det.h
Service to report runtime errors. If a callout has been configured then
this callout shall be called.

⌋()

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of EEPROM Driver module.

[SWS_Eep_00155]⌈

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

⌋()

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The name of these interfaces is not
fixed because they are configurable.

[SWS_Eep_00047] ⌈If a callback function is being configured at post build time, the
initialization data structure Eep_ConfigType shall contain a corresponding function

pointer. ⌋ (SRS_SPAL_12056, SRS_SPAL_00157)

[SWS_Eep_00049] ⌈Notification callback functions are configurable through their
corresponding configuration parameters. If no callback function is configured, there

shall be no asynchronous notification. ⌋ (SRS_SPAL_12056)

Note: The EEP implementation needs to be able to cope with the use case that post
build configuration does not specify a callback, in case no notification is required.
This may internally be realized by setting the callback function pointer in the
initialization data structure to null.

8.6.3.1 End Job Notification

Specification of EEPROM Driver
AUTOSAR CP R20-11

45 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

[SWS_Eep_00045] ⌈The Eep module shall call the callback function defined in the
configuration parameter EepJobEndNotification when a job has been completed with
a positive result:

 Read finished & OK

 Write finished & OK

 Erase finished & OK

 Compare finished & data blocks are equal⌋ (SRS_SPAL_00157)

[SWS_Eep_00157]⌈

Service Name Eep_JobEndNotification

Syntax

void Eep_JobEndNotification (

 void

)

Sync/Async Synchronous

Reentrancy Don't care

Parameters (in) None

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
This callback function provided by the module user is called when a job has been
completed with a positive result.

Available via Eep.h

⌋()

[SWS_Eep_00126] ⌈The callback function defined in the configuration parameter

EepJobEndNotification shall be callable on interrupt level. ⌋ ()

8.6.3.2 Error Job Notification

[SWS_Eep_00046] ⌈The Eep module shall call the callback function defined in the
configuration parameter EepJobErrorNotification when a job has been canceled or
aborted with negative result:

 Read aborted

 Write aborted or failed

 Erase aborted or failed

 Compare aborted or data blocks are not equal. ⌋ (SRS_SPAL_00157)

[SWS_Eep_00158]⌈

Service Name Eep_JobErrorNotification

Specification of EEPROM Driver
AUTOSAR CP R20-11

46 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Syntax

void Eep_JobErrorNotification (

 void

)

Sync/Async Synchronous

Reentrancy Don't care

Parameters (in) None

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
This callback function provided by the module user is called when a job has been
canceled or finished with negative result.

Available via Eep.h

⌋()

[SWS_Eep_00127] ⌈The callback function defined in the configuration parameter

EepJobErrorNotification shall be callable on interrupt level. ⌋ ()

Specification of EEPROM Driver
AUTOSAR CP R20-11

47 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

9 Sequence diagrams

9.1 Initialization

«module»

EcuM

«module»

Eep

Eep_Init(const Eep_ConfigType*)

Eep_Init()

Figure 1

9.2 Read/write/erase/compare

The following sequence diagram shows the write function as an example. The
sequence for read, compare and erase is the same, only the processed block sizes
may vary.

Specification of EEPROM Driver
AUTOSAR CP R20-11

48 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

«module»

NvM

«module»

Eep

BSW Task (OS task

or cyclic call)

«module»

Ea

Description:

Check and store job data.

Set EEPROM state to

MEMIF_BUSY.

Set job result to

MEMIF_JOB_PENDING

Description:

Job processing (writing to

EEPROM) is done

asynchronously.

Data unit by data unit is

written to EEPROM (e.g. 1

byte every 10 ms, both

depending on EEPROM

hardware).

Description:

Writing of data unit n

completed.

Set EEPROM state to

MEMIF_IDLE.

Set job result to

MEMIF_JOB_OK

Call Job End Notification (if

configured)Ea_JobEndNotification()

Eep_MainFunction()

Eep_MainFunction()

Eep_MainFunction()

NvM_JobEndNotification()

Eep_MainFunction()

Ea_JobEndNotification()

Eep_MainFunction()

Eep_Write()

Eep_MainFunction()

Eep_Write(Std_ReturnType,

Eep_AddressType, const uint8*,

Eep_LengthType)

NvM_JobEndNotification()

Ea_Write(Std_ReturnType, uint16, const

uint8*)

Eep_MainFunction()

Ea_Write()

Eep_MainFunction()

Figure 2

Specification of EEPROM Driver
AUTOSAR CP R20-11

49 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

9.3 Cancelation of a running job

«module»

NvM

«module»

Eep

«module»

Ea

Description:

A read/write/erase/compare job is running

EEPROM state = MEMIF_BUSY

Job result = MEMIF_JOB_PENDING

Description:

The running job is canceled.

The canceling is performed synchronously.

EEPROM state = MEMIF_IDLE

Job result = MEMIF_JOB_CANCELED

Description:

On return from Eep_Cancel(), a new job (e.g.

writing crash data) can be started

Eep_Cancel()

Ea_Cancel()

Ea_Write()

Eep_Cancel()

Ea_Cancel()

Eep_Write()

Eep_Write(Std_ReturnType,

Eep_AddressType, const uint8*,

Eep_LengthType)

Ea_Write(Std_ReturnType, uint16, const

uint8*)

Figure 3

Specification of EEPROM Driver
AUTOSAR CP R20-11

50 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

10 Configuration specification

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral.

Specification of EEPROM Driver
AUTOSAR CP R20-11

51 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters are described in Chapter 7 and Chapter 8. Further
hardware / implementation specific parameters can be added if necessary.

10.2.1 Eep

SWS Item ECUC_Eep_00205 :

Module Name Eep

Module Description

Configuration of the Eep (internal or external EEPROM driver) module.
Its multiplicity describes the number of EEPROM drivers present, so there
will be one container for each EEPROM driver in the ECUC template.
When no EEPROM driver is present then the multiplicity is 0.

Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

EepGeneral 1
Container for general configuration parameters of the
EEPROM driver. These parameters are always pre-compile.

EepInitConfiguration 1
Container for runtime configuration parameters of the
EEPROM driver.
Implementation Type: Eep_ConfigType.

EepPublishedInformation 1

Additional published parameters not covered by
CommonPublishedInformation container.
Note that these parameters do not have any configuration
class setting, since they are published information.

10.2.2 EepGeneral

SWS Item ECUC_Eep_00085 :

Container Name EepGeneral

Parent Container Eep

Description
Container for general configuration parameters of the EEPROM driver.
These parameters are always pre-compile.

Configuration Parameters

SWS Item ECUC_Eep_00188 :

Name

EepDevErrorDetect
Parent Container EepGeneral

Description Switches the development error detection and notification on or off.

 true: detection and notification is enabled.

 false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Specification of EEPROM Driver
AUTOSAR CP R20-11

52 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Eep_00189 :

Name

EepDriverIndex
Parent Container EepGeneral

Description Specifies the InstanceId of this module instance. If only one instance is
present it shall have the Id 0.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 254

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Eep_00163 :

Name

EepUseInterrupts
Parent Container EepGeneral

Description Switches to activate or deactivate interrupt controlled job processing.
true: Interrupt controlled job processing enabled.
false: Interrupt controlled job processing disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: Usually, this is only supported by some internal EEPROM
peripherals.

SWS Item ECUC_Eep_00164 :

Name

EepVersionInfoApi
Parent Container EepGeneral

Description Pre-processor switch to enable / disable the API to read out the modules
version information.
true: Version info API enabled.
false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Eep_00165 :

Name

EepWriteCycleReduction
Parent Container EepGeneral

Description Switches to activate or deactivate write cycle reduction (EEPROM value is

Specification of EEPROM Driver
AUTOSAR CP R20-11

53 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

read and compared before being overwritten).
true: Write cycle reduction enabled.
false: Write cycle reduction disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Eep_00206 :

Name

EepEcucPartitionRef
Parent Container EepGeneral

Description Maps the EEP driver to zero or one ECUC partition to make the driver API
available in this partition.

Multiplicity 0..1

Type Reference to [EcucPartition]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.2.3 EepInitConfiguration

SWS Item ECUC_Eep_00039 :

Container Name EepInitConfiguration

Parent Container Eep

Description
Container for runtime configuration parameters of the EEPROM driver.

Implementation Type: Eep_ConfigType.

Configuration Parameters

SWS Item ECUC_Eep_00166 :

Name

EepBaseAddress
Parent Container EepInitConfiguration

Description This parameter is the EEPROM device base address.
Implementation Type: Eep_AddressType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Specification of EEPROM Driver
AUTOSAR CP R20-11

54 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Eep_00167 :

Name

EepDefaultMode
Parent Container EepInitConfiguration

Description This parameter is the default EEPROM device mode after initialization.
Implementation Type: MemIf_ModeType.

Multiplicity 1

Type EcucEnumerationParamDef

Range MEMIF_MODE_FAST The driver is working in fast mode (fast
read access / SPI burst access).

MEMIF_MODE_SLOW The driver is working in slow mode.

Default value MEMIF_MODE_SLOW

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item ECUC_Eep_00168 :

Name

EepFastReadBlockSize
Parent Container EepInitConfiguration

Description Number of bytes read within one job processing cycle in fast mode. If the
hardware does not support burst mode this parameter shall be set to the
same value as EepNormalReadBlockSize.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Eep_00169 :

Name

EepFastWriteBlockSize
Parent Container EepInitConfiguration

Description Number of bytes written within one job processing cycle in fast mode. If the
hardware does not support burst mode this parameter shall be set to the
same value as EepNormalWriteBlockSize.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Specification of EEPROM Driver
AUTOSAR CP R20-11

55 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

dependency: This parameter is optional and only available if the hardware
allows writing several bytes in one step (e.g. external EEPROMs with burst
mode capability).

SWS Item ECUC_Eep_00170 :

Name

EepJobCallCycle
Parent Container EepInitConfiguration

Description Call cycle time of the EEPROM driver's main function. Unit: [s]

Multiplicity 0..1

Type EcucFloatParamDef

Range]0 .. INF[

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Eep_00171 :

Name

EepJobEndNotification
Parent Container EepInitConfiguration

Description This parameter is a reference to a callback function for positive job result
(see EEP045).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Eep_00172 :

Name

EepJobErrorNotification
Parent Container EepInitConfiguration

Description This parameter is a reference to a callback function for negative job result
(see EEP046).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

Specification of EEPROM Driver
AUTOSAR CP R20-11

56 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Eep_00173 :

Name

EepNormalReadBlockSize
Parent Container EepInitConfiguration

Description Number of bytes read within one job processing cycle in normal mode.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Eep_00174 :

Name

EepNormalWriteBlockSize
Parent Container EepInitConfiguration

Description Number of bytes written within one job processing cycle in normal mode.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: This parameter is optional and only available if the hardware
allows configuration.

SWS Item ECUC_Eep_00175 :

Name

EepSize
Parent Container EepInitConfiguration

Description This parameter is the used size of EEPROM device in bytes.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Specification of EEPROM Driver
AUTOSAR CP R20-11

57 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

EepDemEventParameterRef
s

0..1

Container for the references to DemEventParameter elements
which shall be invoked using the API Dem_SetEventStatus in
case the corresponding error occurs. The EventId is taken
from the referenced DemEventParameter's DemEventId
symbolic value. The standardized errors are provided in this
container and can be extended by vendor-specific error
references.

EepExternalDriver 0..1
This container is present for external EEPROM drivers only.
Internal EEPROM drivers do not use the parameter listed in
this container, hence its multiplicity is 0 for internal drivers.

10.2.4 EepDemEventParameterRefs

SWS Item ECUC_Eep_00200 :

Container Name EepDemEventParameterRefs

Parent Container EepInitConfiguration

Description

Container for the references to DemEventParameter elements which shall
be invoked using the API Dem_SetEventStatus in case the corresponding
error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId symbolic value. The standardized
errors are provided in this container and can be extended by vendor-
specific error references.

Configuration Parameters

SWS Item ECUC_Eep_00204 :

Name

EEP_E_COMPARE_FAILED
Parent Container EepDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the
error "EEPROM compare failed (HW)" has occurred.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Eep_00201 :

Name

EEP_E_ERASE_FAILED
Parent Container EepDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the
error "EEPROM erase failed (HW)" has occurred.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

Post-Build Variant true

Specification of EEPROM Driver
AUTOSAR CP R20-11

58 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Multiplicity

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Eep_00203 :

Name

EEP_E_READ_FAILED
Parent Container EepDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the
error "EEPROM read failed (HW)" has occurred.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Eep_00202 :

Name

EEP_E_WRITE_FAILED
Parent Container EepDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the
error "EEPROM write failed (HW)" has occurred.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.2.5 EepExternalDriver

SWS Item ECUC_Eep_00190 :

Container Name EepExternalDriver

Parent Container EepInitConfiguration

Specification of EEPROM Driver
AUTOSAR CP R20-11

59 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Description
This container is present for external EEPROM drivers only. Internal
EEPROM drivers do not use the parameter listed in this container, hence
its multiplicity is 0 for internal drivers.

Configuration Parameters

SWS Item ECUC_Eep_00176 :

Name

EepSpiReference
Parent Container EepExternalDriver

Description Reference to SPI sequence (required for external EEPROM drivers).

Multiplicity 1..*

Type Symbolic name reference to [SpiSequence]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.2.6 SPI specific extension

[SWS_Eep_00094] ⌈In case of an external SPI EEPROM device, the following
parameters shall also be located or referenced (according to the configuration

methodology) in the external data structure of type Eep_ConfigType (see

ECUC_Eep_00039). They shall be used as API parameters for accessing the SPI
Handler/Driver API services. The symbolic names for those parameters are
published in the module’s description file (see SWS_Eep_00095).

 All required SPI channels

 All required SPI sequences

 All required SPI jobs ⌋ (SRS_BSW_00390, SRS_BSW_00398)

10.3 Published parameters

10.3.1 Basic subset

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

Specification of EEPROM Driver
AUTOSAR CP R20-11

60 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

10.3.2 SPI specific extension

[SWS_Eep_00095] ⌈In case of an external SPI EEPROM device, the following
parameters shall be published additionally in the module’s description file (see
EEP038):

 All SPI channels that are required for EEPROM access (read, write, erase)

 Those channels shall be linked to construct SPI jobs that are linked with chip
selected handling. This depends on the specific EEPROM device.

 Those jobs shall be assigned to SPI sequences to be scheduled for SPI
transfer

A complete list of required parameters is specified in the SPI Handler/Driver Software

Specification. ⌋ (SRS_BSW_00390, SRS_BSW_00402)

10.3.3 EepPublishedInformation

SWS Item ECUC_Eep_00111 :

Container Name EepPublishedInformation

Parent Container Eep

Description

Additional published parameters not covered by
CommonPublishedInformation container.

Note that these parameters do not have any configuration class setting,
since they are published information.

Configuration Parameters

SWS Item ECUC_Eep_00177 :

Name

EepAllowedWriteCycles
Parent Container EepPublishedInformation

Description Specified maximum number of write cycles under worst case conditions of
specific EEPROM hardware (e.g. +90Â°C)

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Eep_00178 :

Name

EepEraseTime
Parent Container EepPublishedInformation

Description Maximum time for erasing one EEPROM data unit.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Eep_00179 :

Specification of EEPROM Driver
AUTOSAR CP R20-11

61 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Name

EepEraseUnitSize
Parent Container EepPublishedInformation

Description Size of smallest erasable EEPROM data unit in bytes.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Eep_00180 :

Name

EepEraseValue
Parent Container EepPublishedInformation

Description Value of an erased EEPROM cell.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Eep_00181 :

Name

EepMinimumAddressType
Parent Container EepPublishedInformation

Description Minimum expected size of Eep_AddressType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Eep_00182 :

Name

EepMinimumLengthType
Parent Container EepPublishedInformation

Description Minimum expected size of Eep_LengthType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Eep_00183 :

Name

EepReadUnitSize
Parent Container EepPublishedInformation

Description Size of smallest readable EEPROM data unit in bytes.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Specification of EEPROM Driver
AUTOSAR CP R20-11

62 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Eep_00187 :

Name

EepSpecifiedEraseCycles
Parent Container EepPublishedInformation

Description Number of erase cycles specified for the EEP device (usually given in the
device data sheet).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Eep_00184 :

Name

EepTotalSize
Parent Container EepPublishedInformation

Description Total size of EEPROM in bytes.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Eep_00185 :

Name

EepWriteTime
Parent Container EepPublishedInformation

Description Maximum time for writing one EEPROM data unit.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Eep_00186 :

Name

EepWriteUnitSize
Parent Container EepPublishedInformation

Description Size of smallest writeable EEPROM data unit in bytes.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

No Included Containers

Specification of EEPROM Driver
AUTOSAR CP R20-11

63 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

10.4 Configuration example—external SPI EEPROM device

The following chapter shall provide a better understanding of how and where
configuration parameters are defined and used. For the following use case a detailed
implementation and configuration example is given:

Use case

 Implement and configure a driver for operating an external EEPROM device
accessed over SPI.

 Use the AUTOSAR SPI Handler/Driver, utilizing internal buffers (IB) for
command communication and external buffers (EB) for data.

 Configure and perform an SPI read command.

The example assumes a certain fixed format and order of SPI commands to read
from the external EEPROM device. The SPI API functions have been chosen for
operating this exemplary device in order to demonstrate the basic principles of SPI
bus interaction. When implementing a driver for a real-life device, the sequence of
operation will most likely differ. The detailed selection of SPI API functions and
parameters to be used and configured needs to be derived from studying the
device’s data sheet in combination with the SPI handler/driver specification.[4]

Be aware that the use of the SPI API functions is exemplary; their exact signatures
and configuration may change. The valid reference is always the current SPI SWS.

10.4.1 External SPI EEPROM device usage scenario

The following scenario is assumed in this example:

The external EEPROM device is an SPI slave device, the EEPROM driver to be
implemented uses the SPI handler/driver module for the SPI master. The external
device is addressed by a dedicated Chip Select line which will be asserted by the SPI
master whenever a job operating on the device is being executed.

The external EEPROM uses serial op-code processing: After the device is selected
with its Chip Select line going low, the first byte will be transmitted over the device’s
SI line. This byte contains an 8-bit Read-operation op-code (0x03), immediately
followed by an 8-bit address byte. Upon completion, any data on the SI line will be
ignored. The data (D7-D0) at the specified address is then shifted out onto the SO
line. If only one byte is to be read, the CS line shall be driven high after the data
comes out, otherwise the read sequence will be continued, with the address being
automatically incremented and data shifted out on consecutive data.

Whenever the EEPROM driver’s user wants to read data, the EEPROM driver
forwards the read request to the SPI handler/driver via a number of selected SPI API
calls. In order to follow the request/response behavior described above, the SPI
needs to be configured exactly to fit the expected communication protocol. Therefore,
an important development task consists in correctly configuring the SPI driver for

Specification of EEPROM Driver
AUTOSAR CP R20-11

64 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

communication with the external EEPROM device. Based on this configuration, the
actual implementation of the EEPROM driver uses the SPI API functions in
combination with the configured handle IDs for assigning jobs to the SPI
handler/driver:

The EEPROM driver implementation may use a combination of external and internal
SPI buffers for achieving the communication with the SPI handler:

Upon reception of an Eep_Read() request, the EEPROM driver writes the EEPROM
source address in an SPI-channel internal buffer using Spi_WriteIB(). Next, it sets up
an SPI external buffer specifying the requested number of bytes to be read using
Spi_SetupEB(). It then calls Spi_AsyncTransmit() in order to initiate an SPI sequence
EepReadSequence configured to match exactly the hardware access protocol
outlined above.

Once the SPI read sequence has finished, the SPI handler/driver notifies the
EEPROM driver by calling Spi_ SeqEndNotification. The driver can now safely
access the EEPROM data through the assigned external buffer and in turn finish the
EEPROM read job.

10.4.2 Configuration of SPI parameters

In order to use the SPI handler/driver, the EEPROM driver implementer needs to
create an SPI configuration, containing a complete set of SPI configuration
containers such that the required functionality is configured.

Following a top-down view, an SpiSequence EepReadSequence configuration
container handles one complete read sequence. EepReadSequence in turn uses an
SpiJob EepReadJob for handling the details of a read job. This includes a reference
to an SpiExternalDevice representing the EEPROM device with its specified Chip
Select line as well as logic level characteristics like e.g. Baud Rate, Polarity or
DataShiftEdge.

EepReadJob is further broken down into an ordered list of SpiChannels which when
executed in order will perform the required SPI bus communication with the external
device:

1) EepChCommand is used for sending the ReadCommand byte, using a default
data constant for the read op-code.

2) EepChAddress is used for sending the device read address utilizing an
internal buffer.

3) EepChReadData is used for reading the requested EEPROM data into an
externally (to SPI) provided buffer.

Roughly, the work flow of configuring the SPI module for an EEPROM read
command contains the following steps:

1. In the EcuConfiguration for Spi, create a container EepDriver of type SpiDriver

representing the external EEPROM driver. It will hold sub containers of type

Specification of EEPROM Driver
AUTOSAR CP R20-11

65 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

SpiExternalDevice, SpiChannel, SpiJob and SpiSequence to be created in the
steps below.

2. Look up the external device’s SPI characteristics in its data sheet and set up a
container EepDevice of type SpiExternalDevice accordingly. Specify the Chip
Select line to be used in EepDevice.

3. Look up the details of the SPI read command sequence in the device’s data
sheet.

4. Within EepDriver, define one SpiChannel each for transmitting the Read
command opcode, the EEPROM source address and for receiving the data
transmitted by the device in response to the request, e.g.

a. EepChCommand
b. EepChAddress
c. EepChReadData

5. Define SPI Channel attributes for each channel based on the communication
sequence described in the device data sheet. In particular, configure buffers, i.e
EepChAddress to use an internal buffer and EepChReadData to use an external
buffer. For the fixed read-command opcode, SpiDefaultData can be used.

6. Define the SpiJob EepReadJob and set it up to work on EepDevice. Specify the
ordered list of SpiJobs to be executed for performing the read job. In this
example, the job consists of the channel list EepChCommand, EepChAddress,
EepChReadData.

7. Define the SpiSequence EepReadSequence containing the list of SpiJobs
required to perform the desired functionality. In this example, EepReadSequence
contains only one job, EepReadJob. Fill in the callback function symbols to be
provided by the EEPROM driver, e.g. Eep_ReadSequenceEndNotification.

8. Publish all defined attributes for SPI usage in the EEPROM driver as an XML
description file according to SPI SWS.

10.4.3 Generation of SPI configuration data

As part of the SPI configuration described above, each SpiSequence, SpiJob and
SpiChannel has been assigned a handle ID. Based on the XML file, an SPI include
file will be generated which publishes this information.

#define Spi_EepReadSequence 10

#define Spi_EepReadJob 20

#define Spi_EepChCommand 31

#define Spi_EepChAddress 32

#define Spi_EepChReadData 33

10.4.4 SPI API usage

Upon receiving an Eep_Read() request, the EEPROM driver first needs to transfer
the necessary information for executing the read command to the SPI handler/driver.
It uses the Spi_WriteIB() function to set the device read address in the internal buffer
allocated to the EepChAddress channel:

Spi_WriteIB(Spi_EepChAddress, &EepromAddress);

Next, the external buffer is set up for reading the EEPROM device data to:

Specification of EEPROM Driver
AUTOSAR CP R20-11

66 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

Spi_SetupEB(Spi_EepChReadData, NULL, buf_data, length);

Finally, the Read sequence is initiated by calling Spi_AsyncTransmit:

Spi_AsyncTransmit(Spi_EepReadSequence);

After initiating the transfer, Eep_Read() returns.

The rest of the transfer is autonomously handled by the SPI handler/driver. Once the
SPI sequence has finished, the SPI handler will notify the EEPROM driver using the
callback Spi_SeqEndNotification. The EEPROM driver main function should ensure
that either the sequence has finished successfully and in turn finish up the

Eep_Read() request accordingly by signaling EepJobEndNotification; or upon

reception of an error it should trigger an EepJobErrorNotification and report

an EEP_E_READ_FAILED production error to the DEM.

Specification of EEPROM Driver
AUTOSAR CP R20-11

67 of 67 Document ID 21: AUTOSAR_SWS_EEPROMDriver

11 Not applicable requirements

[SWS_Eep_00241] ⌈ These requirements are not applicable to this specification.⌋

(SRS_BSW_00170, SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00375, SRS_BSW_00416,

SRS_BSW_00168, SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00426, SRS_BSW_00427,
SRS_BSW_00428, SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00336,
SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00005,
SRS_BSW_00164, SRS_BSW_00325, SRS_BSW_00342, SRS_BSW_00343, SRS_BSW_00007,
SRS_BSW_00413, SRS_BSW_00347, SRS_BSW_00307, SRS_BSW_00301, SRS_BSW_00302,
SRS_BSW_00328, SRS_BSW_00312, SRS_BSW_00006, SRS_BSW_00378, SRS_BSW_00306,
SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00330, SRS_BSW_00331, SRS_BSW_00009,
SRS_BSW_00401, SRS_BSW_00172, SRS_BSW_00010, SRS_BSW_00341, SRS_BSW_00334,
SRS_SPAL_12267, SRS_SPAL_12163, SRS_SPAL_12068, SRS_SPAL_12069, SRS_SPAL_12063,
SRS_SPAL_12129, SRS_SPAL_12067, SRS_SPAL_12077, SRS_SPAL_12078, SRS_SPAL_12092,

SRS_SPAL_12265)

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.2 Error classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Transient Faults
	7.2.4 Production Errors
	7.2.5 Extended Production Errors
	7.2.5.1 EEP_E_ERASE_FAILED
	7.2.5.2 EEP_E_WRITE_FAILED
	7.2.5.3 EEP_E_READ_FAILED
	7.2.5.4 EEP_E_COMPARE_FAILED

	7.3 Error detection
	7.3.1 API parameter checking
	7.3.2 EEPROM state checking
	7.3.3 EEPROM job encounters Hardware Failure
	7.3.4 Timeout Supervision

	7.4 Error notification
	7.5 Processing of jobs – general requirements
	7.6 Processing of read jobs
	7.7 Processing of write jobs
	7.8 Processing of erase jobs
	7.9 Processing of compare jobs
	7.10 Version check

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Eep_ConfigType
	8.2.2 Eep_AddressType
	8.2.3 Eep_LengthType

	8.3 Function definitions
	8.3.1 Eep_Init
	8.3.2 Eep_SetMode
	8.3.3 Eep_Read
	8.3.4 Eep_Write
	8.3.5 Eep_Erase
	8.3.6 Eep_Compare
	8.3.7 Eep_Cancel
	8.3.8 Eep_GetStatus
	8.3.9 Eep_GetJobResult
	8.3.10 Eep_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Eep_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 End Job Notification
	8.6.3.2 Error Job Notification

	9 Sequence diagrams
	9.1 Initialization
	9.2 Read/write/erase/compare
	9.3 Cancelation of a running job

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Eep
	10.2.2 EepGeneral
	10.2.3 EepInitConfiguration
	10.2.4 EepDemEventParameterRefs
	10.2.5 EepExternalDriver
	10.2.6 SPI specific extension

	10.3 Published parameters
	10.3.1 Basic subset
	10.3.2 SPI specific extension
	10.3.3 EepPublishedInformation

	10.4 Configuration example—external SPI EEPROM device
	10.4.1 External SPI EEPROM device usage scenario
	10.4.2 Configuration of SPI parameters
	10.4.3 Generation of SPI configuration data
	10.4.4 SPI API usage

	11 Not applicable requirements

