AUTO SAR

Specification of Compiler Abstraction

AUTOSAR CP R20-11

Document Title

Specification of Compiler
Abstraction

Document Owner

AUTOSAR

Document Responsibility

AUTOSAR

Document Identification No 51

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R20-11

Document Change History

Date Release |Changed by Change Description

2020-11-30 | R20-11 |AUTOSAR e Editorial changes
Release
Management

2019-11-28 | R19-11 |AUTOSAR e No content changes
Release e Changed Document Status from
Management Final to published

2018-10-31 440 |AUTOSAR e Editorial changes
Release
Management

2017-12-08 4.3.1 |AUTOSAR e Editorial changes
Release e Clarification regarding module
Management specific memory classes and global

memory classes

2016-11-30 4.3.0 |AUTOSAR e Removed chapter 'Variants'
Release e Removed obsolete elements
Management

2015-07-31 4.2.2 |AUTOSAR e Cleanup the requirements
Release traceability
Management e Clarify the list of compiler symbols

1 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

Document Change History

Date Release |Changed by Change Description

2014-10-31 4.2.1 |AUTOSAR e The compiler symbol definitions are
Release not allowed to contain any value
Management behind the symbol

e Rework the document structure in
order to follow TMPS_SRS SWS
and replace hardcoded diagrams
with artifacts

e Remove all MISRA/ C/ C++ related
statements and references

e Correct the unresolved references
that point in SRS_BSWGeneral

2013-10-31 4.1.2 |AUTOSAR e Editorial changes
Release e Removed chapter(s) on change
Management documentation

2013-03-15 4.1.1 |AUTOSAR e Added abstraction macro
Administration CONSTP2FUNC for a constant

pointer to a function
e Improved consistency to Memory
Mapping (several MemMap.h files)
e Reworked Configuration

Specification
2011-12-22 4.0.3 |AUTOSAR e Added macros ,FUNC_P2CONST’
Administration and ‘FUNC_P2VAR’

e Added pointer class ‘REGSPACFE’
(for register access)
e Updated the compiler symbols list

2010-09-30 3.1.5 |AUTOSAR e Put more emphasize on

Administration SwComponentType’s name in
SWS_COMPILER_00054,
COMPILERO044

e Corrected compiler used in the
example (chapter 7.1.5)

e Corrected include structure in the
example (chapter 7.1.5)

2 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction

AUTOSAR CP R20-11

Document Change History

Date

Release

Changed by

Change Description

2010-02-02

3.14

AUTOSAR
Administration

Compiler Abstraction has been
extended to be suitable for Software
Components

"STATIC" declaration keyword has
been removed

The declaration keyword
"LOCAL_INLINE" has been added
for implementation of "static inline"-
functions

Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

Keyword " _STATIC_" has been
renamed to "STATIC"

Keyword "_INLINE_" has been
renamed to "INLINE"

Keyword "TYPEDEF" has been
added as empty memory qualifier
for use in type definitions
Document meta information
extended

Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

Add: COMPILERO58

Add: COMPILERO57

Change: SWS_COMPILER_00040
Legal disclaimer revised

Release Notes added

“Advice for users” revised
“Revision Information” added

2006-05-16

2.0

AUTOSAR
Administration

Initial Release

3 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

Table of Contents

1 Introduction and functional OVErVIEWccooeeiiiiiiiiicr e 7
2 Acronyms and abbreViatiONS.........iii i i e 8
3 Related dOCUMENTALIONuuiiiiiiiiiieeeeeeeeeeeee e 9
3.1 INPUL AOCUMENTS ...eeiiiiiiiiiiite ettt e e e e e e e e e e e e anees 9
3.2 Related SpeCifiCatioN............ciiiiiiiiiiiiiieisr e 10

4 Constraints and aSSUMIPLIONS.uuuuuriiiriiiiiiiiiiiiieereeeeeeaeeaaaaaaaaaeaaaaaasaaaeaaaanaaaannnns 11
O I 01 = 11 0] PSSP 11
4.2 Applicability t0 Car dOMAINSuuuriiiiiiiiiiiiiiiieieere e 11
4.3 Applicability to safety related environmentscccceeeiiiiiiee e, 11

5 Dependencies to other modules ... 12
5.1 FlE@ SITUCTUIE ...ttt 12

6 Requirements traceability ... 14
7 Functional SpPeCIfiCation............cuuiviiiiiiiiiii e 23
7.1 General DENAVIONuuuiiiiiiiiiiiiiee e 23
7.1.1 List of Compiler SYMDOISooouiiiiiiiie e 23
7.1.2 Requirements on implementations using compiler abstraction 23
7.1.3 Contents of COMPIIEI.N 27
7.1.4 Contents of Compiler_Cfg.N ..o 29
7.1.5 Comprehensive example..........cccueiiiiiiiiiii e 29
7.1.6 PrOPOSEU PrOCESS. .. .uuuuuiuiiiiiiiiiiireereereeee et e et eeaaaaaaaaaaaaaaaaaaaaea s e ea s e s aaeaaanes 31

7.2 Error ClasSifICAtIONS........ueiiiiiiieiiieeeeee e 32
7.2.1 DeVelOPMENT EFTOIS.......uiiiiieiiiiiiiiee e 32
7.2.2 RUNTIME EITOIS ..ot e et e e e e e e e e e e e eeeaeneaes 32
7.2.3 Transient FaUItS...........eevviiiiiiiiiiieee e 32
7.24 ProdUCHION EITOIS......uuiiiiiiiiiiiiiiiiiiieiieeeeeeee ettt 32
7.2.5 Extended ProducCtion EITOISuueeiiiiiiiiiiiieieeeeeeeeee e 32

AR TV = o o I o =X USSP 32
7.4 Support for DEBUGQING......uuviiiiiiiiiiiiiieee e 32

8 API SPECITICALION.....cciiiic e ——— 33
S 0 R [0 oY ¢ (=0 I8 Y =2 USSP 33
S Y/ - Tl o o = 11 0111 £ USSP 33
8.2.1 General defiNitioNS.......cccccc e 33
8.2.1.1 Memory class AUTOMATICccoiiiiiiieie e 33
8.2.1.2 Memory Class TYPEDEF ... 33
8.2.1.3 NULL _PTR .ot a e e e e 34

8.2. 1.4 INLINEitii ittt ettt e e e e e a e e e e e nneees 34
8.2.1.5 LOCAL_INLINE.....ctttii ittt ettt e e e e e e e e e e e e e e e 34

8.2.2 FUNCLION defiNItiONS........uuiiiiiiiiiiieeeeeeeeeeee s 34
8.2.2.1 FUNC identification infOrmation............cccccevveviiiiieeeeeiee e 36
8.2.2.2 FUNC_P2CONST ..oiiieiiiiitiiiiee ettt re e e e e e e 37
8.2.2.3 FUNC _P2VAR ..ottt a e e 38

5 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

8.2.3 Pointer definitioNSeviiiiii e 38
8.2.3.1 P2VAR oottt 43
8.2.3.2 P2CONST .ttt 44
8.2.3.3 CONSTP2VAR ...ttt e e e e e e e e e 45
8.2.3.4 CONSTP2CONST ..oiieiiiiiiiiiiiee ettt e e 45
8.2.3.5 P2FUNC ...ttt 46
8.2.3.6 CONSTP2FUNCciiiiiiiiiiiiiiiie ettt a e e e e nneees 47

8.24 Constant defiNitioNSccccceiiiiiiiiie e 47
B.2.4.1 CONST .ottt e e e e e e e e e e nneees 47

8.2.5 Variable definitioNScuiiiiiiiiii s 48
B.2.5.1 VA R ..t a e e 48

8.3 TYPE AefiNItIONS....cciiiiiiiiiii e 49
8.4 FUNCHON defiNItIONS ... e 49
8.5 Call-back NOtIfICAtIONSceeiiiiiiiiiiiiiie e 49
8.6 Scheduled fUNCLIONSuuiiiiiiiiiiiiiiiiie e 49
8.7 EXpected INTEITACESuviiieiieiiiieiee e 49

8.7.1 Mandatory INtErfaCeS..........uuuuuiiiiiiiiiiiiiieeeeee e, 49

8.7.2 Optional INtErfaCesSevveeiiiiiiiiiieiee e 49

8.7.3 Configurable interfacesuviiiiiiii e 49

8.8 SErVICE INTEITACESuveiiiiiiiiiiiiieiee ettt 50

8.8.1 Scope of this Chapter...........cuuuuiiiiiiiiiiiiiiieeeeeeeee e 50

8.8.2 OVEBIVIEBW ...t e ettt ettt e e e e e st e e e e e e e bbb e e e e e e e ans 50

8.8.3 Specification of the Ports and Port Interfaces...........ccccceeevvvivviviiniennnn. 50
8.8.3.1 General APProach........ooocuiiiiiiiiiii 50
8.8.3.2 DaAla TYPES .. ittt ettt 50
8.8.3.3 POrt INEIfACEeveeiiiie i 50

8.84 Definition Of the SEIrVICEuuuiiiiiiiiiiiiiieie e 50

8.8.5 Configuration Of the DETccooiiiiiiiiiie e 50

S BT = To [T=T g Tot 30 = To | = g 1SS 51
10 Configuration SPECIfICALIONuuiiiiiiiiii s 52
10.1 How to read this chapter...........ccocooiiiiiiiiii 52
10.2 Containers and configuration parametersccccuvvvrrreeeieeieeieereeeeeeeeeeeeaeens 52
10.2.1 Module-Specific Memory CIasSES.........ccuuuuviiiiiiiiieeeeeeeeeiire e 52
10.2.2 Global MemMOry CIaSSEScccvieieeeeeee et 52
10.3 Published INfOrmationooooiiiiiii it 53
11 Not applicable reqUIrEMENTScooiiiiiiiiiiiie e 54

6 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

1 Introduction and functional overview

This document specifies macros for the abstraction of compiler specific keywords
used for addressing data and code within declarations and definitions.

Mainly compilers for 16-bit platforms (e.g. Cosmic and Metrowerks for S12X or
Tasking for ST10) are using special keywords to cope with properties of the
microcontroller architecture caused by the limited 16 bit addressing range. Features
like paging and extended addressing (to reach memory beyond the 64k border) are
not chosen automatically by the compiler, if the memory model is not adjusted to
‘large’ or ‘huge’. The location of data and code has to be selected explicitly by special
keywords. Those keywords, if directly used within the source code, would make it
necessary to port the software to each new microcontroller family and would prohibit
the requirement of platform independency of source code.

If the memory model is switched to ‘large’ or ‘huge’ by default (to circumvent these
problems) the project will suffer from an increased code size.

This document specifies a three-step concept:

1. The file Compiler.h provides macros for the encapsulation of definitions and
declarations.

2. Each single module has to distinguish between at least the following different
memory classes and pointer classes. Each of these classes is represented by
a define.

3. The file Compiler_Cfg.h allows to configure these defines with the appropriate
compiler specific keywords according to the modules description and memory
set-up of the build scenario.

7 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction

AUTOSAR CP R20-11

2 Acronyms and abbreviations

Acronyms and abbreviations that have a local scope are not contained in the
AUTOSAR glossary. These must appear in a local glossary.

Acronym: Description:

Large, huge Memory model configuration of the microcontroller’'s compiler. By default, all access
mechanisms are using extended/paged addressing.
Some compilers are using the term ‘huge’ instead of ‘far’.

Tiny, small Memory model configuration of the microcontroller's compiler. By default, all access
mechanisms are using normal addressing.
Only data and code within the addressing range of the platform’s architecture is
reachable (e.g. 64k on a 16 hit architecture).

far Compiler keyword for extended/paged addressing scheme (for data and code that
may be outside the normal addressing scheme of the platform’s architecture).

near Compiler keyword for normal addressing scheme (for data and code that is within

the addressing range of the platform’s architecture).

8 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction

AUTOSAR CP R20-11

3 Related documentation

3.1
[1]

2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

9 of 54

Input documents

List of Basic Software Modules,
AUTOSAR_TR_BSWModuleList.pdf

General Requirements on Basic Software Modules,
AUTOSAR_SRS_BSWGeneral.pdf

Layered Software Architecture,
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

Specification of ECU Configuration,
AUTOSAR_TPS_ ECUConfiguration.pdf

Cosmic C Cross Compiler User’s Guide for Motorola MC68HC12,V4.5
ARM ADS compiler manual

GreenHills MULTI for V850 V4.0.5:
Building Applications for Embedded V800, V4.0, 30.1.2004

TASKING for ST10 V8.5:

C166/ST10 v8.5 C Cross-Compiler User's Manual, V5.16

C166/ST10 v8.5 C Cross-Assembler, Linker/Locator, Utilities User's Manual,
V5.16

Wind River (Diab Data) for PowerPC Version 5.2.1:
Wind River Compiler for Power PC - Getting Started, Edition 2, 8.5.2004
Wind River Compiler for Power PC - User's Guide, Edition 2, 11.5.2004

TASKING for TriCore TC1796 V2.0R1:
TriCore v2.0 C Cross-Compiler, Assembler, Linker User's Guide, V1.2

Metrowerks CodeWarrior 4.0 for Freescale HC9S12X/XGATE (V5.0.25):
Motorola HC12 Assembler, 2.6.2004

Motorola HC12 Compiler, 2.6.2004

Smart Linker, 2.4.2004

General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral.pdf

Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [12] (SWS
BSW General), which is also valid for Compiler Abstraction.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for Compiler Abstraction.

10 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

4 Constraints and assumptions

4.1 Limitations

During specification of abstraction and validation of concept, the compilers listed in
chapter 3.1 has been considered. If any other compiler requires keywords that
cannot be mapped to the mechanisms described in this specification this compiler
will not be supported by AUTOSAR. In this case, the compiler vendor has to adapt its
compiler.

If the physically existing memory is larger than the logically addressable memory in
either code space or data space and more than the logically addressable space is

used, logical addresses have to be re-used. The C language (and other languages
as well) cannot cope with this situation.

4.2 Applicability to car domains

No restrictions.
4.3 Applicability to safety related environments

No restrictions. The compiler abstraction file does not implement any functionality,
only symbols and macros.

11 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

5 Dependencies to other modules

[SWS_COMPILER_00048] I The SWS Compiler Abstraction is applicable for each

AUTOSAR basic software module and application software components. Therefore,
the implementation of the memory class (memclass) and pointer class (ptrclass)
macro parameters (see SWS_COMPILER _00040) shall fulfill the implementation and
configuration specific needs of each software module in a specific build scenario.

| (SRS_BSW_00328, SRS_BSW _00384)

5.1 File structure

«header» D «header»
Compiler.h <————————- Std_Types.h
«includes»

«includes»
|

I
I
V
«header»
Compiler_Cfg.h

Figure 1: Include structure of Compiler.h

The following notes shall describe the connections to modules, which are indirectly
linked to each other.

Note 1: The compiler abstraction is used to configure the reachability of elements
(pointers, variables, function etc.).

Note 2: The memory mapping is used to perform the sectioning of memory. The user
can define sections for optimizing the source code.

12 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

Note 3: The linker settings are responsible with the classification which elements are
assigned to which memory section.

13 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

6 Requirements traceability

Specification of Compiler Abstraction
AUTOSAR CP R20-11

The requirements above are derived from SRS_BSWGeneral.

Requirement

Description

Satisfied by

SRS_BSW_00003

All software modules shall
provide version and
identification information

SWS_COMPILER_00001

SRS_BSW_00004

All Basic SW Modules shall
perform a pre-processor check
of the versions of all imported
include files

SWS_COMPILER_00999

SRS_BSW_00005

Modules of the uC Abstraction
Layer (MCAL) may not have
hard coded horizontal
interfaces

SWS_COMPILER_00999

SRS_BSW_00006

The source code of software
modules above the pC
Abstraction Layer (MCAL) shall
not be processor and compiler
dependent.

SWS_COMPILER_00010,
SWS_COMPILER_00035,
SWS_COMPILER_00036

SRS_BSW_00007

All Basic SW Modules written
in C language shall conform to
the MISRA C 2012 Standard.

SWS_COMPILER_00999

SRS_BSW_00009

All Basic SW Modules shall be
documented according to a
common standard.

SWS_COMPILER_00999

SRS_BSW_00010

The memory consumption of
all Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

SWS_COMPILER_00999

SRS_BSW_00158

SWS_COMPILER_00999

SRS_BSW_00161

The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which
provides a standardized
interface to higher software
layers

SWS_COMPILER_00999

SRS_BSW_00162

The AUTOSAR Basic Software
shall provide a hardware
abstraction layer

SWS_COMPILER_00999

SRS_BSW_00164

The Implementation of
interrupt service routines shall
be done by the Operating
System, complex drivers or
modules

SWS_COMPILER_00999

SRS_BSW_00167

All AUTOSAR Basic Software
Modules shall provide
configuration rules and
constraints to enable

SWS_COMPILER_00999

14 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

plausibility checks

SRS_BSW_00168

SW components shall be
tested by a function defined in
a common API in the Basis-
SW

SWS_COMPILER_00999

SRS_BSW_00170

The AUTOSAR SW
Components shall provide
information about their
dependency from faults, signal
qualities, driver demands

SWS_COMPILER_00999

SRS_BSW_00171

Optional functionality of a
Basic-SW component that is
not required in the ECU shall
be configurable at pre-compile-
time

SWS_COMPILER_00999

SRS_BSW_00172

The scheduling strategy that is
built inside the Basic Software
Modules shall be compatible
with the strategy used in the
system

SWS_COMPILER_00999

SRS_BSW_00300

All AUTOSAR Basic Software
Modules shall be identified by
an unambiguous name

SWS_COMPILER_00999

SRS_BSW_00301

All AUTOSAR Basic Software
Modules shall only import the
necessary information

SWS_COMPILER_00999

SRS_BSW_00302

All AUTOSAR Basic Software
Modules shall only export
information needed by other
modules

SWS_COMPILER_00999

SRS_BSW_00305

Data types naming convention

SWS_COMPILER_00999

SRS_BSW_00306

AUTOSAR Basic Software
Modules shall be compiler and
platform independent

SWS_COMPILER_00010,
SWS_COMPILER_00035,
SWS_COMPILER_00036,
SWS_COMPILER_00058

SRS_BSW_00307

Global variables naming
convention

SWS_COMPILER_00999

SRS_BSW_00308

AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

SWS_COMPILER_00999

SRS_BSW_00309

All AUTOSAR Basic Software
Modules shall indicate all
global data with read-only
purposes by explicitly
assigning the const keyword

SWS_COMPILER_00023,
SWS_COMPILER_00999

SRS_BSW_00310

APl naming convention

SWS_COMPILER_00999

SRS_BSW_00312

Shared code shall be reentrant

SWS_COMPILER_00999

SRS_BSW_00314

All internal driver modules shall
separate the interrupt frame
definition from the service
routine

SWS_COMPILER_00999

15 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

SRS_BSW_00323

All AUTOSAR Basic Software
Modules shall check passed
API parameters for validity

SWS_COMPILER_00999

SRS_BSW_00325

The runtime of interrupt service
routines and functions that are
running in interrupt context
shall be kept short

SWS_COMPILER_00999

SRS_BSW_00327

Error values naming
convention

SWS_COMPILER_00999

SRS_BSW_00328

All AUTOSAR Basic Software
Modules shall avoid the
duplication of code

SWS_COMPILER_00048

SRS_BSW_00330

It shall be allowed to use
macros instead of functions
where source code is used and
runtime is critical

SWS_COMPILER_00999

SRS_BSW_00331

All Basic Software Modules
shall strictly separate error and
status information

SWS_COMPILER_00999

SRS_BSW_00333

For each callback function it
shall be specified if it is called
from interrupt context or not

SWS_COMPILER_00999

SRS_BSW_00334

All Basic Software Modules
shall provide an XML file that
contains the meta data

SWS_COMPILER_00999

SRS_BSW_00335

Status values naming
convention

SWS_COMPILER_00999

SRS_BSW_00336

Basic SW module shall be able
to shutdown

SWS_COMPILER_00999

SRS_BSW_00339

Reporting of production
relevant error status

SWS_COMPILER_00999

SRS_BSW_00341

Module documentation shall
contains all needed
informations

SWS_COMPILER_00999

SRS_BSW_00342

It shall be possible to create an
AUTOSAR ECU out of
modules provided as source
code and modules provided as
object code, even mixed

SWS_COMPILER_00999

SRS_BSW_00343

The unit of time for

specification and configuration
of Basic SW modules shall be
preferably in physical time unit

SWS_COMPILER_00999

SRS_BSW_00344

BSW Modules shall support
link-time configuration

SWS_COMPILER_00999

SRS_BSW_00346

All AUTOSAR Basic Software
Modules shall provide at least
a basic set of module files

SWS_COMPILER_00999

SRS_BSW_00347

A Naming seperation of
different instances of BSW
drivers shall be in place

SWS_COMPILER_00050

16 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

SRS_BSW_00348 | All AUTOSAR standard types
and constants shall be placed
and organized in a standard

type header file

SWS_COMPILER_00003,
SWS_COMPILER_00004

All AUTOSAR Basic Software
Modules shall allow the
enabling/disabling of detection
and reporting of development
errors.

SRS_BSW_00350

SWS_COMPILER_00999

SRS_BSW_00351 | Encapsulation of compiler
specific methods to map

objects

SWS_COMPILER_00999

SRS_BSW_00353 | All integer type definitions of
target and compiler specific
scope shall be placed and
organized in a single type

header

SWS_COMPILER_00999

For success/failure of an API
call a standard return type
shall be defined

SRS_BSW_00357

SWS_COMPILER_00999

SRS _BSW_00358 | The return type of init()
functions implemented by
AUTOSAR Basic Software

Modules shall be void

SWS_COMPILER_00999

SRS_BSW_00359 |All AUTOSAR Basic Software
Modules callback functions
shall avoid return types other

than void if possible

SWS_COMPILER_00999

SRS _BSW_00360 |AUTOSAR Basic Software
Modules callback functions are

allowed to have parameters

SWS_COMPILER_00999

SRS _BSW_00361 | All mappings of not
standardized keywords of
compiler specific scope shall
be placed and organized in a
compiler specific type and

keyword header

SWS_COMPILER_00003,
SWS_COMPILER_00004,
SWS_COMPILER_00006,
SWS_COMPILER_00013,
SWS_COMPILER_00026,
SWS_COMPILER_00031,
SWS_COMPILER_00032,
SWS_COMPILER_00039,
SWS_COMPILER_00040,
SWS_COMPILER_00041,
SWS_COMPILER_00042,
SWS_COMPILER_000486,
SWS_COMPILER_00047,
SWS_COMPILER_00053,
SWS_COMPILER_00055,
SWS_COMPILER_00057,
SWS_COMPILER_00060,
SWS_COMPILER_00061,
SWS_COMPILER_00062,
SWS_COMPILER_00063,
SWS_COMPILER_00064,
SWS_COMPILER_00065

All AUTOSAR Basic Software
Modules shall not return

SRS_BSW_00369

SWS_COMPILER_00999

17 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

specific development error
codes via the API

SRS_BSW_00371

The passing of function
pointers as API parameter is
forbidden for all AUTOSAR
Basic Software Modules

SWS_COMPILER_00999

SRS_BSW_00373

The main processing function
of each AUTOSAR Basic
Software Module shall be
named according the defined
convention

SWS_COMPILER_00999

SRS_BSW_00374

All Basic Software Modules
shall provide a readable
module vendor identification

SWS_COMPILER_00030

SRS_BSW_00375

Basic Software Modules shall
report wake-up reasons

SWS_COMPILER_00999

SRS_BSW_00377

A Basic Software Module can
return a module specific types

SWS_COMPILER_00999

SRS_BSW_00378

AUTOSAR shall provide a
boolean type

SWS_COMPILER_00999

SRS_BSW_00380

Configuration parameters
being stored in memory shall
be placed into separate c-files

SWS_COMPILER_00999

SRS_BSW_00383

The Basic Software Module
specifications shall specify
which other configuration files
from other modules they use at
least in the description

SWS_COMPILER_00999

SRS_BSW_00384

The Basic Software Module
specifications shall specify at
least in the description which
other modules they require

SWS_COMPILER_00048

SRS_BSW_00385

List possible error notifications

SWS_COMPILER_00999

SRS_BSW_00386

The BSW shall specify the
configuration for detecting an
error

SWS_COMPILER_00999

SRS_BSW_00388

Containers shall be used to
group configuration
parameters that are defined for
the same object

SWS_COMPILER_00040,
SWS_COMPILER_00999

SRS_BSW_00389

Containers shall have names

SWS_COMPILER_00999

SRS_BSW_00390

Parameter content shall be
unique within the module

SWS_COMPILER_00999

SRS_BSW_00392

Parameters shall have a type

SWS_COMPILER_00999

SRS_BSW_00393

Parameters shall have a range

SWS_COMPILER_00999

SRS_BSW_00394

The Basic Software Module
specifications shall specify the
scope of the configuration
parameters

SWS_COMPILER_00999

SRS_BSW_00395

The Basic Software Module

SWS_COMPILER_00999

18 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

specifications shall list all
configuration parameter
dependencies

SRS_BSW_00396

The Basic Software Module
specifications shall specify the
supported configuration
classes for changing values
and multiplicities for each
parameter/container

SWS_COMPILER_00999

SRS_BSW_00398

The link-time configuration is
achieved on object code basis
in the stage after compiling
and before linking

SWS_COMPILER_00999

SRS_BSW_00399

Parameter-sets shall be
located in a separate segment
and shall be loaded after the
code

SWS_COMPILER_00999

SRS_BSW_00400

Parameter shall be selected
from multiple sets of
parameters after code has
been loaded and started

SWS_COMPILER_00999

SRS_BSW_00401

Documentation of multiple
instances of configuration
parameters shall be available

SWS_COMPILER_00999

SRS_BSW_00403

The Basic Software Module
specifications shall specify for
each parameter/container
whether it supports different
values or multiplicity in
different configuration sets

SWS_COMPILER_00999

SRS_BSW_00404

BSW Modules shall support
post-build configuration

SWS_COMPILER_00059,
SWS_COMPILER_00999

SRS_BSW_00405

BSW Modules shall support
multiple configuration sets

SWS_COMPILER_00999

SRS_BSW_00406

A static status variable
denoting if a BSW module is
initialized shall be initialized
with value 0 before any APIs of
the BSW module is called

SWS_COMPILER_00999

SRS_BSW_00407

Each BSW module shall
provide a function to read out
the version information of a
dedicated module
implementation

SWS_COMPILER_00999

SRS_BSW_00408

All AUTOSAR Basic Software
Modules configuration
parameters shall be named
according to a specific naming
rule

SWS_COMPILER_00999

SRS_BSW_00409

All production code error ID
symbols are defined by the
Dem module and shall be

retrieved by the other BSW

SWS_COMPILER_00999

19 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

modules from Dem
configuration

SRS_BSW_00410

Compiler switches shall have
defined values

SWS_COMPILER_00999

SRS_BSW_00411

All AUTOSAR Basic Software
Modules shall apply a naming
rule for enabling/disabling the
existence of the API

SWS_COMPILER_00999

SRS_BSW_00412

SWS_COMPILER_00999

SRS_BSW_00413

An index-based accessing of
the instances of BSW modules
shall be done

SWS_COMPILER_00999

SRS_BSW_00414

Init functions shall have a
pointer to a configuration
structure as single parameter

SWS_COMPILER_00999

SRS_BSW_00415

Interfaces which are provided
exclusively for one module
shall be separated into a
dedicated header file

SWS_COMPILER_00999

SRS_BSW_00416

The sequence of modules to
be initialized shall be
configurable

SWS_COMPILER_00999

SRS_BSW_00417

Software which is not part of
the SW-C shall report error
events only after the DEM is
fully operational.

SWS_COMPILER_00999

SRS_BSW_00419

If a pre-compile time
configuration parameter is
implemented as "const" it
should be placed into a
separate c-file

SWS_COMPILER_00999

SRS_BSW_00422

Pre-de-bouncing of error status
information is done within the
DEM

SWS_COMPILER_00999

SRS_BSW_00423

BSW modules with AUTOSAR
interfaces shall be describable
with the means of the SW-C
Template

SWS_COMPILER_00999

SRS_BSW_00424

BSW module main processing
functions shall not be allowed
to enter a wait state

SWS_COMPILER_00999

SRS_BSW_00425

The BSW module description
template shall provide means
to model the defined trigger
conditions of schedulable
objects

SWS_COMPILER_00999

SRS_BSW_00426

BSW Modules shall ensure
data consistency of data which
is shared between BSW
modules

SWS_COMPILER_00999

SRS_BSW_00427

ISR functions shall be defined
and documented in the BSW

SWS_COMPILER_00999

20 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

module description template

SRS_BSW_00428

A BSW module shall state if its
main processing function(s)
has to be executed in a
specific order or sequence

SWS_COMPILER_00999

SRS_BSW_00429

Access to OS is restricted

SWS_COMPILER_00999

SRS_BSW_00432

Modules should have separate
main processing functions for
read/receive and write/transmit
data path

SWS_COMPILER_00999

SRS_BSW_00433

Main processing functions are
only allowed to be called from
task bodies provided by the
BSW Scheduler

SWS_COMPILER_00999

SRS_BSW_00448

Module SWS shall not contain
requirements from Other
Modules

SWS_COMPILER_00999

SRS_BSW_00449

BSW Service APIs used by
Autosar Application Software
shall return a Std_ReturnType

SWS_COMPILER_00999

SRS_BSW_00452

Classification of runtime errors

SWS_COMPILER_00999

SRS_BSW_00453

BSW Modules shall be
harmonized

SWS_COMPILER_00999

SRS_BSW_00454

An alternative interface without
a parameter of category

DATA REFERENCE shall be
available.

SWS_COMPILER_00999

SRS_BSW_00456

A Header file shall be defined
in order to harmonize BSW
Modules

SWS_COMPILER_00054,
SWS_COMPILER_00999

SRS_BSW_00457

Callback functions of
Application software
components shall be invoked
by the Basis SW

SWS_COMPILER_00999

SRS_BSW_00458

Classification of production
errors

SWS_COMPILER_00999

SRS_BSW_00459

It shall be possible to
concurrently execute a service
offered by a BSW module in
different partitions

SWS_COMPILER_00999

SRS_BSW_00461

Modules called by generic
modules shall satisfy all
interfaces requested by the
generic module

SWS_COMPILER_00999

SRS_BSW_00462

All Standardized Autosar
Interfaces shall have unique
requirement Id / number

SWS_COMPILER_00999

SRS_BSW_00464

File names shall be considered
case sensitive regardless of
the filesystem in which they
are used

SWS_COMPILER_00004,
SWS_COMPILER_00055

21 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

SRS_BSW_00466

Classification of extended
production errors

SWS_COMPILER_00999

SRS_BSW_00469

Fault detection and healing of
production errors and
extended production errors

SWS_COMPILER_00999

SRS_BSW_00470

Execution frequency of
production error detection

SWS_COMPILER_00999

SRS_BSW_00471

Do not cause dead-locks on
detection of production errors -
the ability to heal from
previously detected production
errors

SWS_COMPILER_00999

SRS_BSW_00472

Avoid detection of two
production errors with the
same root cause.

SWS_COMPILER_00999

SRS_BSW_00473

Classification of transient faults

SWS_COMPILER_00999

SRS_BSW_00478

Timing limits of main functions

SWS_COMPILER_00999

SRS_BSW_00479

Interfaces for handling request
from external devices

SWS_COMPILER_00999

SRS_BSW_00480

NullPointer Errors shall follow
a naming rule

SWS_COMPILER_00051,
SWS_COMPILER_00999

SRS_BSW_00481

Invalid configuration set
selection errors shall follow a
naming rule

SWS_COMPILER_00999

SRS_BSW_00482

Get Version
Informationfunction shall follow
a naming rule

SWS_COMPILER_00999

SRS_BSW_00483

BSW Modules shall handle
buffer alignments internally

SWS_COMPILER_00999

22 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

7 Functional specification

7.1 General behavior

[SWS_COMPILER_00003] T
abstraction has to be provided. ;| (SRS_BSW_00348, SRS_BSW_00361)

7.1.1 List of Compiler symbols

The following table defines

Specification of Compiler Abstraction
AUTOSAR CP R20-11

For each compiler and platform an own compiler

target compiler symbols according to

SWS COMPILER _00010. This table contains only examples and is not listing all the

possible compilers supported by AUTOSAR!

Platform Compiler Compiler symbol

S12X Code Watrrior _CODEWARRIOR C S12X

S12X Cosmic _COSMIC C S12X

TC1796/ Tasking _TASKING C TRICORE
TC1766

ST10 Tasking _TASKING C ST10

ST30 ARM Developer Suite _ADS C ST30_

V850 Greenhills _ GREENHILLS C V850
MPC5554 Diab Data _DIABDATA C ESYS

TMS470 Texas Instruments _TEXAS INSTRUMENTS C TMS470
ARM Texas Instruments _ TEXAS INSTRUMENTS C ARM

Note: In order to avoid incompatibilities and/ or inconsistencies, the compiler symbol
definitions are not allowed to contain any value behind the symbol.

7.1.2 Requirements on implementations using compiler abstraction

[SWS_COMPILER_00040] I Each AUTOSAR software module and application
software component shall support the distinction of at least the following different
memory classes and pointer classes. | (SRS _BSW_00361, SRS BSW_00388)

It is allowed to add module specific memory classes and pointer classes as they are
mapped and thus are configurable within the Compiler_Cfg.h file.

23 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

<PREFIX> is

e composed according <snp>[_<vi>_<ai>] for basic software modules where
o <snp> is the Section

Specification of Compiler Abstraction
AUTOSAR CP R20-11

Name Prefix which shall

be the

BswModuleDescription’s shortName converted in upper case
letters if no SectionNamePrefix is defined for the MemorySection in the
Description or Software Component

Basic Software Module

Description.

o <snp> shall be the symbol of the Section NamePrefix associated to the
MemorySection if a SectionNamePrefix is defined

MemorySection.

o <vi>isthe vendorId of the BSW module
o <ai>isthe vendorApiInfix of the BSW module

The sub part in squared brackets [<vi>_<ai>] is omitted

for the

if no

vendorApiInfix is defined for the Basic Software Module which
indicates that it does not use multiple instantiation.
e the shortName of the software component type for software components

(case sensitive)

<INIT_POLICY> is the initialization policy of variables. Possible values are:
¢ NO_INIT: Used for variables that are never cleared and never initialized.

e CLEARED: Used for variables that are cleared to zero after every reset.

¢ POWER_ON_CLEARED: Used for variables that are cleared to zero only after
power on reset.

e INIT: Used for variables that are initialized with values after every reset.

e POWER_ON_INIT: Used for variables that are initialized with values only after
power on reset.

Memory
type

Syntax of memory class
(memclass) and pointer class
(ptrclass) macro parameter

Comments

Located in

Code

<PREFIX> CODE[<PERIOD>]

To be used for code.

PERIOD is the typical period time value
and unit of the ExecutableEntitys in this
MemorySection. The name part

[<PERIOD>] is optional.

units are:

US microseconds
MS milli second
S second

For example: 100US, 400US, 1MS, 5MS,
10MS, 20MS, 100MS, 1S

Please note that deviations from this
typical period time are possible due to
integration decisions (e.g. RTEEvent To
Task Mapping). Further, in special modes
of the ECU the code may be scheduled
with a higher or lower period.

Compiler_
Cfg.h

24 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

Memory
type

Syntax of memory class
(memclass) and pointer class
(ptrclass) macro parameter

Comments

Located in

Code

<PREFIX> <CN> CODE

To be used for callout code.

<CN-> is the callback name (including
module reference) written in uppercase
letters.

Code

<PREFIX> CODE_ FAST

To be used for code that shall go into fast
code memory segments.

The FAST sections should be used when
the execution does not happen in a well-
defined period time but with the
knowledge of high frequent access and
/or high execution time, for example, a
callback for a frequent notification.

Code

<PREFIX> CODE_SLOW

To be used for code that shall go into
slow code memory segments.

The SLOW sections should be used
when the execution does not happen in a
well-defined period time but with the
knowledge of low frequent access, for
example, a callback in case of seldom
error.

Constants

<PREFIX> CONST

To be used for global or static constants.

Constants

<PREFIX> CALIB

To be used for calibration constants.

Constants

<PREFIX> CONFIG DATA

To be used for module configuration
constants.

Constants

<PREFIX> CONST_ SAVED RECOV
ERY ZONE<X>

To be used for ROM buffers of variables
saved in non-volatile memory. X shall be
replaced with the number of bytes (i.e.
8,16 or 32).

Pointer

<PREFIX> APPL DATA

To be used for references on application
data (expected to be in RAM or ROM)
passed via API

Pointer

<PREFIX> APPL_CONST

To be used for references on application
constants (expected to be certainly in
ROM, for instance pointer of Init-function)
passed via API

Pointer

REGSPACE

To be used for pointers to registers (e.g.
static volatile

CONSTP2VAR (uintl6, PWM CONST,
REGSPACE)).

Variables

<PREFIX> VAR <INIT POLICY>

To be used for all global or static
variables.

25 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

Syntax of memory class

L\/Iergory (memclass) and pointer class Comments Located in
yp (ptrclass) macro parameter
To be used for all global or static
variables that have at least one of the
following properties:
e accessed bitwise
o frequently used
. <PREFIX> VAR FAST <INIT P i i
Variables _VAR_FAST_ _PO | e high number of accesses in source
LICY> code
Some platforms allow the use of bit
instructions for variables located in this
specific RAM area as well as shorter
addressing instructions. This saves code
and runtime.
. <PREFIX> VAR SLOW_<INIT_ PO |To be used for all infrequently accessed
Variables : :
LICY> global or static variables.
_ <PREFIX> INTERNAL VAR <INT To_be used for glc_JbaI or static v_anat?les
Variables T POLICYS - = which are accessible from a calibration
- tool.
To be used for RAM buffers of variables
Variables | <PREFIX> VAR SAVED ZONE<X> saved in nqn-volatne memory. X shgll be
- = - replaced with the number of bytes (i.e.
8,16 or 32).
Variables | AUTOMATIC To be used for local non static variables | Compiler.h
Typ_e_ _ TYPEDEF To be used in _type deflnltlons! yvhere no Compiler.h
Definitions memory qualifier can be specified.

For the memory classes that have the form <PREFIX>_<NAME>, one can specify
the part <NAME> in the the MemorySections of a Basic Software Module Description

or Software Component Description as follows. This is especially required for

generated code:
e <NAME> is the shortName (case sensitive) of the SwAddrMethod referred
from the MemorySection if if the MemorySection has no memClassSymbol
attribute defined.

e Only for Basic Software: <NAME> is the memClassSymbol (case sensitive) of
the MemorySection if this attribute is defined.

10

[SWS_COMPILER_00041] T

software component shall wrap declaration and definition of code, variables,

constants and pointer types using the following keyword macros: | (
SRS _BSW_00361)

26 of 54

Each AUTOSAR software module and application

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

For instance:

native C-API:
Std ReturnType Spi SetupBuffers

(

Spi ChannelType Channel,
const Spi DataType *SrcDataBufferPtr,
Spi DataType *DesDataBufferPtr,

Spi NumberOfDataType Length
) i

Is encapsulated:
FUNC (Std ReturnType, SPI CODE) Spi SetupBuffers
(

Spi ChannelType Channel,
P2CONST (Spi DataType, AUTOMATIC, SPI APPL DATA) SrcDataBufferPtr,
PZVAR(Spi_DataType, AUTOMATIC, SPI_APPL DATA,) DesDataBufferPtr,

Spi NumberOfDataType Length

7.1.3 Contents of Compiler.h

[SWS_COMPILER_00004] I The file name of the compiler abstraction shall be
‘Compiler.h’. | (SRS_BSW_00348, SRS _BSW_00361, SRS_BSW_00464)

[SWS_COMPILER_00053] I The file Compiler.h shall contain the definitions and
macros specified in chapter 7.1.5. Those are fix for one specific compiler and
platform. | (SRS_BSW_00361)

[SWS_COMPILER_00005] I' If a compiler does not require or support the usage of

special keywords; the corresponding macros specified by this specification shall be
provided as empty definitions or definitions without effect.

Example:

#define FUNC (type, memclass) type

/* not required for DIABDATA */ |

[SWS_COMPILER_00010] I The compiler abstraction shall define a symbol for the

target compiler according to the following naming convention:
<COMPILERNAME> C<PLATFORMNAME>

27 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

Note 1: In order to avoid incompatibilities and/ or inconsistencies, the compiler
symbol definitions are not allowed to contain any value behind the symbol.

Note 2: These defines can be used to switch between different implementations for
different compilers, e.g.

e inline assembler fragments in drivers

e special pragmas for memory alignment control

e |ocalization of function calls

e adaptions to memory models | (SRS_BSW_00306, SRS _BSW_00006)
List of symbols: see chapter 7.1.1.

[SWS_COMPILER_00030] I “Compiler.n” shall provide information of the
supported compiler vendor and the applicable compiler version.
1 (SRS_BSW_00374)

[SWS_COMPILER_00035] I The macro parameters memclass and ptrclass shall
not be filled with the compiler specific keywords but with one of the configured values
in SWS_COMPILER _00040. | (SRS_BSW_00306, SRS_BSW_00006)

The rationale is that the module’s implementation shall not be affected when
changing a variable’s, a pointer’s or a function’s storage class.

[SWS_COMPILER_00036] I C forbids the use of the far/near-keywords on function

local variables (auto-variables). For this reason when using the macros below to
allocate a pointer on stack, the memclass-parameter shall be set to AUTOMATIC.

| (SRS_BSW_00306, SRS_BSW_00006)

[SWS_COMPILER_00047] I The Compiler.h header file shall protect itself against

multiple inclusions.
For instance:
#ifndef COMPILER H
#define COMPILER H
/* implementation of Compiler.h */

#endif /* COMPILER H */
There may be only comments outside of the ifndef - endif bracket. | (
SRS_BSW_00361)

[SWS_COMPILER_00050] T It is allowed to extend the Compiler Abstraction
header with vendor specific extensions. Vendor specific extended elements shall
contain the AUTOSAR Vendor ID in the name. | (SRS_BSW_00347)

28 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

7.1.4 Contents of Compiler_Cfg.h

[SWS_COMPILER_00055] I The file Compiler_Cfg.h shall contain the

module/component specific parameters (ptrclass and memclass) that are passed
to the macros defined in Compiler.h. See SWS_COMPILER 00040 for memory

types and required syntax. | (SRS_BSW _00361, SRS _BSW_00464)

[SWS_COMPILER_00054] I Module specific extended elements shall contain the

module abbreviation of the BSW module in the name. Application software
component specific extended elements shall contain the Software Component Type’s

name. | (SRS_BSW_00456)

7.1.5 Comprehensive example

This example shows for a single API function where which macro is defined, used
and configured.

Module: Eep

API function: Eep_Read

Platform: S12X

Compiler: Cosmic

File Eep.c:

#include “Std Types.h” /* This includes also Compiler.h */
FUNC (Std ReturnType, EEP CODE) Eep Read
(
Eep AddressType EepromAddress,

P2VAR (uint8, AUTOMATIC, EEP_ APPL DATA) DataBufferPtr,
Eep LengthType Length

File Compiler.h:

#include “Compiler Cfg.h”
#define AUTOMATIC

#define FUNC (rettype, memclass) rettype memclass
#define P2VAR (ptrtype, memclass, ptrclass) ptrclass ptrtype * memclass

File Compiler_Cfg.h:

#define EEP CODE
#define EEP_APPL DATA @far /* RAM blocks of NvM are in banked RAM */

29 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

What are the dependencies?

EEP APPL DATA is defined as ‘far’. This means that the pointers to the RAM blocks
managed by the NVRAM Manager have to be defined as ‘far’ also. The application
can locate RAM mirrors in banked RAM but also in non-banked RAM. The mapping
of the RAM blocks to banked RAM is done in <Mip>_MemMap.h (see [12] for more
information on <Mip>).

Because the pointers are also passed via Memory Interface and EEPROM
Abstraction, their pointer and memory classes must also fit to EEP_ APPL_DATA.

What would be different on a 32-bit platform?

Despite the fact that only the S12X has an internal EEPROM, the only thing that
would change in terms of compiler abstraction are the definitions in Compiler_Cfg.h.
They would change to empty defines:

#define EEP CODE
#define EEP APPL_DATA

30 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

7.1.6 Proposed process

To allow development and integration within a multi supplier environment a certain
delivery process is indispensable. The following description can be seen as proposal:

AUTOSAR Module AUTOSAR
Suppliers Integrator
Step 1:
Delivery of basic files
" .
¢ Implements Source files and documents * Receives and checks packages
¢ Assigns version and vendor numbers Integrates modgles .
¢ Implements module specific part of }ir:;zgiﬁge;g}ﬁ ggg]le”i?ngller:_dg.h
Compiler_Cfg.h and <Mip>_MemMap.h Confi Vi :\3/' _M g.h §
. R * Configures <Mip>_MemMap.h an
Builds package Compiler_Cfg.h
Compiler.h
Std_Types.h
Platform_Types.h |
constructs intearates

Compiler_Cfg.h of
Module A

_B Module

source
Compiler_Cfg.h \ *

-0 x

Compiler_Cfg.h\&
Module B

Step 2:
Delivery of modules /
components

Compiler_Cfg.h

Package
Memory

Documents Compiler_Cfg.h of

Module C

Development Environment Integration Environment

A=
D > ;

Figure 2: Proposal of integration-process

3l of54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

7.2 Error classifications
7.2.1 Development Errors
There are no development errors.

7.2.2 Runtime Errors

There are no runtime errors.

7.2.3 Transient Faults

There are no transient faults.

7.2.4 Production Errors

There are no production errors.

7.2.5 Extended Production Errors

There are no extended production errors.

7.3 Version check

Not applicable.

7.4 Support for Debugging

Not applicable.

32 of 54

Specification of Compiler Abstraction
AUTOSAR CP R20-11

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

8 API specification

8.1 Imported types

Not applicable.

8.2 Macro definitions

These kind of items are the only API applicable to this module.

8.2.1 General definitions

8.2.1.1 Memory class AUTOMATIC
[SWS_COMPILER_00046]r

Define: AUTOMATIC

Range: “empty” -

Description: The memory class AUTOMATIC shall be provided as empty definition, used for
the declaration of local pointers.

Caveats: SWS COMPILER 00040

1(SRS_BSW_00361)

8.2.1.2 Memory class TYPEDEF
SWS COMPILER 00059][

Define: TYPEDEF
Range: “empty” -
Description: The memory class TYPEDEF shall be provided as empty definition. This memory

class shall be used within type definitions, where no memory qualifier can be
specified. This can be necessary for defining pointer types, with e.g. P2VAR,
where the macros require two parameters. First parameter can be specified in the
type definition (distance to the memory location referenced by the pointer), but
the second one (memory allocation of the pointer itself) cannot be defined at this
time. Hence, memory class TYPEDEF shall be applied.

Caveats: SWS COMPILER 00040

J(SRS_BSW_00404)

33 0f54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

8.2.1.3 NULL_PTR
[SWS_COMPILER_00051]r

Define: NULL_PTR
Range: void pointer ((void *)0)
Description: The compiler abstraction shall provide the NULL_PTR define with a void pointer
to zero definition.
Caveats: SWS COMPILER 00040
1(SRS_BSW_00480)
8.2.1.4 INLINE
[SWS_COMPILER_00057]T
Define: INLINE
Range: inline/”empty”
Description: The compiler abstraction shall provide the INLINE define for abstraction of the
keyword inline.
Caveats: SWS COMPILER 00040

J(SRS_BSW_00361)
8.2.1.5 LOCAL_INLINE
[SWS_COMPILER_00060]r

Define: LOCAL_INLINE

Range: static inline/’empty”

Description: The compiler abstraction shall provide the LOCAL_INLINE define for abstraction
of the keyword inline in functions with “static” scope.

Caveats: Different compilers may require a different sequence of the keywords “static” and
“inline” if this is supported at all.

J(SRS_BSW_00361)

8.2.2 Function definitions

The following tables do not contain requirements. They just give an overview of used
function keywords and their syntax within different compilers. This analysis is
required for a correct and complete specification of methods and keywords and as
rationale for those people who doubt the necessity of a compiler abstraction in
AUTOSAR. These tables are not the complete overview of all existing compilers and
platforms and their usage in AUTOSAR. However, the tables show examples that
cover most use cases, from which the concepts are derived.

On platforms with memory exceeding the addressable range of the architecture
(e.g. S12X with 512k of Flash) the compiler needs to know if a called function is
reachable within normal addressing commands (‘near’) or extended/paged
addressing commands (‘far’).

34 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Compiler analysis for near functions:

Specification of Compiler Abstraction
AUTOSAR CP R20-11

Compiler Required syntax

Cosmic, S12X @near void MyNearFunction (void) ;

Call of a near function results in a local page call or to a call into
direct page.

Dependent of compiler settings the compiler controls only the
calling convention or allocation and calling convention.

Metrowerks, S12X

void near MyNearFunction (void);
Call of a near function results in a local page call or to a call into
direct page.

IAR, HCS12 C/C++

void non banked MyNearFunction (void);

Tasking, ST10 void near MyNearFunction (void);

_near void MyNearFunction (void);
Call of a near function results in a local segment code access
(relevant in large model).

Tasking, TC1796

void MyNearFunction (void);

(No keywords required)

Greenhills, V850

void MyNearFunction (void);
(No keywords required)

ADS, ST30 void MyNearFunction (void);

(No keywords required)

DIABDATA, MPC5554

void MyNearFunction (void);
(No keywords required)

Compiler analysis for far functions:

Compiler Required syntax

Cosmic, S12X @far void MyFarFunction (void) ;

Dependent of compiler settings the compiler controls only the
calling convention or allocation and calling convention.

Metrowerks, S12X void far MyFarFunction (void);
IAR, HCS12 C/C++ void banked MyFarFunction (void);
Tasking, ST10 void huge MyFarFunction (void);

huge void MyFarFunction (void);

Tasking, TC1796

void MyFarFunction (void);
(No keywords required)

Greenhills, V850

void MyFarFunction (void);

(No keywords required)

ADS, ST30 void MyFarFunction (void);

(No keywords required)

DIABDATA, MPC5554

void MyFarFunction (void);

(No keywords required)

350f54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

8.2.2.1 FUNC identification information
[SWS_COMPILER_00001]r

Macro name: FUNC

Syntax: #define FUNC (rettype, memclass)

Parameters retype return type of the function

(in): memclass classification of the function itself

Parameters None --

(out):

Return value: None -

Description: The compiler abstraction shall define the FUNC macro for the declaration and
definition of functions that ensures correct syntax of function declarations as
required by a specific compiler.

Caveats: -

Configuration: |--

| (SRS_BSW_00003)

Example (Cosmic, S12X):
#define <PREFIX> CODE @near
#define FUNC (rettype, memclass) memclass rettype

Required usage for function declaration and definition:
FUNC (void, <PREFIX> CODE) ExampleFunction (void);

[SWS_COMPILER_00058]I Inthe parameter list of this macro no further Compiler

Abstraction macros shall be nested. Instead, use a previously defined type as return
type or use FUNC_P2CONST/FUNC_P2VAR.

| (SRS_BSW_00306)

Example:

typedef P2VAR (uint8, AUTOMATIC, <PREFIX> VAR) NearDataType;
FUNC (NearDataType, <PREFIX>_CODE)
FarFuncReturnsNearPtr (void) ;

36 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

8.2.2.2 FUNC_P2CONST
[SWS_COMPILER_00061]r

Macro name: FUNC_P2CONST

Syntax: #define FUNC P2CONST (rettype, ptrclass, memclass)

Parameters rettype return type of the function

(in): ptrclass defines the classification of the pointer’s distance
memclass classification of the function itself

Parameters none -

(out):

Return value: none -

Description: The compiler abstraction shall define the FUNC_P2CONST macro for the

declaration and definition of functions returning a pointer to a constant. This shall
ensure the correct syntax of function declarations as required by a specific
compiler.

Caveats: --

Configuration: |--

| (SRS_BSW_00361)

Example (Cosmic, S12X):

#define <PREFIX> PBCFG @far

#define <PREFIX> CODE @near

#define FUNC P2CONST (rettype, ptrclass, memclass)\
const ptrclass rettype * memclass

Required usage for function declaration and definition:
FUNC P2CONST (uintl6, <PREFIX> PBCFG, <PREFIX> CODE)
ExampleFunction (void);

[SWS_COMPILER_00062]I In the parameter list of the FUNC_P2CONST, no
further Compiler Abstraction macros shall be nested.
| (SRS_BSW_00361)

37 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

8.2.2.3 FUNC_P2VAR
[SWS_COMPILER_00063]r

Macro name: FUNC_P2VAR

Syntax: #define FUNC P2VAR (rettype, ptrclass, memclass)

Parameters rettype return type of the function

(in): ptrclass defines the classification of the pointer’s distance
memclass classification of the function itself

Parameters none -

(out):

Return value: none -

Description: The compiler abstraction shall define the FUNC_P2VAR macro for the declaration
and definition of functions returning a pointer to a variable. This shall ensure the
correct syntax of function declarations as required by a specific compiler.

Caveats: --

Configuration: |--

| (SRS_BSW_00361)

Example (Cosmic, S12X):

#define <PREFIX> PBCFG @far

#define <PREFIX> CODE @near

#define FUNC P2VAR (rettype, ptrclass, memclass)\
ptrclass rettype * memclass

Required usage for function declaration and definition:
FUNC P2VAR (uintl6, <PREFIX> PBCFG, <PREFIX> CODE)
ExampleFunction (void);

[SWS_COMPILER_00064]T In the parameter list of the macro FUNC_P2VAR, no
further Compiler Abstraction macros shall be nested.
1 (SRS_BSW_00361)

8.2.3 Pointer definitions

The following tables do not contain requirements. They just give an overview of used
pointer keywords and their syntax within different compilers. This analysis is required
for a correct and complete specification of methods and keywords and as rationale
for those people who doubt the necessity of a compiler abstraction in AUTOSAR.
These tables are not the complete overview of all existing compilers and platforms
and their usage in AUTOSAR. However, the tables show examples that cover most
use cases, from which the concepts are derived.

On platforms with memory exceeding the addressable range of the architecture
(e.g. S12X with 512k of Flash) the compiler needs to know if data referenced by a
pointer is accessible by normal addressing commands (‘near’) or extended/paged
addressing commands (‘far’).

38 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

Compiler analysis for near pointers pointing to variable_data in RAM (use case:
pointer to data buffer where data has to be copied to):

Compiler Required syntax
Cosmic, S12X @near uint8* MyNearPointer;
Metrowerks, S12X uint8* near MyNearPointer;
IAR, HCS12 C/C++ uint8* datal6 MyNearPointer;
Tasking, ST10 _near uint8* MyNearPointer;
Tasking, TC1796 uint8* MyNearPointer;

(No keywords required)
Greenhills, V850 uint8* MyNearPointer

(No keywords required)
ADS, ST30 uint8* MyNearPointer

(No keywords required)
DIABDATA, MPC5554 uint8* MyNearPointer

(No keywords required)

Compiler analysis for far pointers pointing to variable data in RAM:

Compiler Required syntax

Cosmic, S12X @far uint8* MyFarPointer;

Metrowerks, S12X uint8* far MyFarPointer;

IAR, HCS12 C/C++ (Information not available yet)

Tasking, ST10 _far uint8* MyFarPointer; /*14 bit arithmetic*/

_huge uint8* MyFarPointer; /*24 bit arithmetic*/
_shuge uint8* MyFarPointer; /*16 bit arithmetic*/
/* My personal note: CRAZY */

Tasking, TC1796 uint8* MyFarPointer;
(No keywords required)
Greenhills, V850 uint8* MyFarPointer
(No keywords required)
ADS, ST30 uint8* MyFarPointer
(No keywords required)
DIABDATA, MPC5554 uint8* MyFarPointer

(No keywords required)

Compiler analysis for near pointers pointing to constant data in RAM (use case
pointer to data buffer where data has to be read from):

Compiler Required syntax
Cosmic, S12X @near uint8* MyNearPointer;
(Results in access of direct memory area)
Metrowerks, S12X const uint8* near MyNearPointer;
(Results in access of direct memory area)
IAR, HCS12 C/C++ const uint8* MyNearPointer;
(Results in access of direct memory area)
Tasking, ST10 const near uint8* MyNearPointer;
Tasking, TC1796 const near uint8* MyNearPointer;
Greenhills, V850 const uint8* MyNearPointer
(No additional keywords required)
ADS, ST30 const uint8* MyNearPointer
(No additional keywords required)
DIABDATA, MPC5554 const uint8* MyNearPointer
(No additional keywords required)

39 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction

AUTOSAR CP R20-11

Compiler analysis for far pointers pointing to constant data in RAM:

Compiler

Required syntax

Cosmic, S12X

@far uint8* MyFarPointer;

Metrowerks, S12X

const uint8* far MyFarPointer;

IAR, HCS12 C/C++

(Information not available yet)

Tasking, ST10

const far uint8* MyFarPointer;

Tasking, TC1796

uint8* MyFarPointer;
(No keywords required)

Greenhills, V850

const uint8* MyFarPointer
(No additional keywords required)

ADS, ST30

const uint8* MyFarPointer
(No additional keywords required)

DIABDATA, MPC5554

const uint8* MyFarPointer
(No additional keywords required)

Compiler analysis for near pointers pointing to data in ROM (use case pointer to
display data in ROM passed to SPI Driver):

Compiler

Required syntax

Cosmic, S12X

const uint8* MyNearPointer;
(Without near keyword because this is by default near!)

Metrowerks, S12X

const uint8* near MyNearPointer;

IAR, HCS12 C/C++

const uint8* MyNearPointer;
(Without near keyword because this is by default near!)

Tasking, ST10

const near uint8* MyNearPointer;

Tasking, TC1796

const uint8* MyNearPointer;
(No keywords required)

Greenhills, V850

const uint8* MyNearPointer
(No additional keywords required)

ADS, ST30

const uint8* MyNearPointer
(No additional keywords required)

DIABDATA, MPC5554

const uint8* MyNearPointer
(No additional keywords required)

40 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

Compiler analysis for far pointers pointing to constant data in ROM:

Compiler Required syntax

Cosmic, S12X not possible

Metrowerks, S12X const uint8* far MyFarPointer;

IAR, HCS12 C/C++ Access function and the banked constant data are located in the same
bank:

const uint8* MyFarPointer;
but caller shall use the address 24 of macro

Access function is located in non-banked memory:
PPAGE register has to be handled manually

Access function and the banked constant data are located in different

banks:
Not possible
Tasking, ST10 const far uint8* MyFarPointer;
Tasking, TC1796 const uint8* MyFarPointer;
(No keywords required)
Greenhills, V850 const uint8* MyFarPointer
(No additional keywords required)
ADS, ST30 const uint8* MyFarPointer

(No additional keywords required)

DIABDATA, MPC5554 const uint8* MyFarPointer
(No additional keywords required)

The HW architecture of the S12X supports different paging mechanisms with
different limitations e.g. supported instruction set or pointer distance. Therefore the
IAR, HCS12 C/C++ and the Cosmic, S12X compilers are limited in the usage of
generic pointers applicable for the whole memory area because of the expected code
overhead.

Conclusion: These vendors should adapt their compilers, because a generic SW
architecture as described by AUTOSAR cannot be adjusted in every case to the
platform specific optimal solution.

Compiler analysis for pointers, where the symbol of the pointer itself is placed in
near-memory:

Compiler Required syntax
Cosmic, S12X uint8* @near MyPointerInNear;
Metrowerks, S12X __near uint8* MyPointerInNear;
Tasking, ST10 uint8* near MyPointerInNear;
Tasking, TC1796 uint8* MyPointerInNear;

(No keywords required)
Greenhills, V850 uint8* MyPointerInNear

(No keywords required)
ADS, ST30 uint8* MyPointerInNear

(No keywords required)
DIABDATA, MPC5554 uint8* MyPointerInNear

(No keywords required)

41 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

Compiler analysis for pointers, where the symbol of the pointer itself is placed in far-
memory:

Compiler Required syntax
Cosmic, S12X uint8* @far MyPointerInFar;
Metrowerks, S12X ~_ far uint8* MyPointerInFar;
Tasking, ST10 uint8* far MyPointerInFar;
Tasking, TC1796 uint8* MyPointerInFar;

(No keywords required)
Greenhills, V850 uint8* MyPointerInFar

(No keywords required)
ADS, ST30 uint8* MyPointerInFar

(No keywords required)
DIABDATA, MPC5554 uint8* MyPointerInFar

(No keywords required)

The examples above lead to the conclusion, that for definition of a pointer it is not
sufficient to specify only one memory class. Instead, a combination of two memory
classes, one for the pointer’s ‘distance’ and one for the pointer's symbol itself, is
possible, e.g.:

/* Tasking ST10, far-pointer in near memory
* (both content and pointer in RAM)
*/

_far uint8* near MyFarPointerInNear;

Compiler analysis for function pointers:

Compiler Required syntax

Cosmic, S12X @near void (* const Irg InterruptVectorTable[]) (void)
Call of a near function results in an interpage call or to a call into direct
page:

Metrowerks, S12X void (*const near Irg InterruptVectorTable[]) (void)
Call of a near function results in an interpage call or to a call into direct
page:

Near functions and far functions are not compatible because of other ret-
statements:

IAR, HCS12 C/C++ __non_banked void (* const
Irqg InterruptVectorTable[]) (void)

Casting from __non_banked to __banked is performed through zero

extension:
Casting from __banked to __non_banked is an illegal operation.
Tasking, ST10 _far void (*NvM AsyncCbkPtrType)

(NvM ModuleIdType Moduleld,

NvM ServiceIdType Serviceld)
Call of a near function results in a local segment code access (relevant in
large model):

Tasking, TC1796 void (*NvM_AsyncCbkPtrType)
(NvM_ModuleIdType ModuleId,
NvM ServiceIdType Serviceld)
(No additional keywords required)

Greenhills, V850 void (*NvM_ AsyncCbkPtrType)
(NvM ModuleIdType Moduleld,

42 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction

AUTOSAR CP R20-11

Compiler Required syntax
NvM ServicelIdType Serviceld)
(No additional keywords required)
ADS, ST30 void (*NvM AsyncCbkPtrType)
(NvM_ModuleIdType ModuleId,
NvM ServiceIdType Serviceld)
(No additional keywords required)
DIABDATA, MPC5554 void (*NvM AsyncCbkPtrType)
(NvM_ModuleIdType ModuleId,
NvM ServiceldType Serviceld)
(No additional keywords required)
8.2.3.1 P2VAR
[SWS_COMPILER_00006]T
Macro name: P2VAR
Syntax: #define P2VAR (ptrtype, memclass, ptrclass)
Parameters ptrtype type of the referenced variable
(in): memclass classification of the pointer’s variable itself
ptrclass defines the classification of the pointer’s distance
Parameters none -
(out):
Return value: none --
Description: The compiler abstraction shall define the P2VAR macro for the declaration and
definition of pointers in RAM, pointing to variables.
The pointer itself is modifiable (e.g. ExamplePtr++).
The pointer’s target is modifiable (e.g. *ExamplePtr = 5).
Caveats: --

Configuration:

| (SRS_BSW_00361)

Example (Metrowerks, S12X):
#define P2VAR (ptrtype, memclass, ptrclass) \

ptrclass ptrtype * memclass

Required usage for pointer declaration and definition:
#define SPI APPL DATA @far
#define SPI VAR FAST (@near

P2VAR (uint8, SPI VAR FAST, SPI APPL DATA) Spi FastPointerToApplData;

43 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction

AUTOSAR CP R20-11

8.2.3.2 P2CONST
[SWS_COMPILER_00013]r

Macro name: P2CONST
Syntax: #define P2CONST (ptrtype, memclass, ptrclass)
Parameters (in): |ptrtype type of the referenced constant
memclass classification of the pointer’s variable itself
ptrclass defines the classification of the pointer’s distance
Parameters (out): [none -
Return value: none -

Description: The compiler abstraction shall define the P2ZCONST macro for the declaration
and definition of pointers in RAM pointing to constants
The pointer itself is modifiable (e.g. ExamplePtr++).
The pointer’s target is not modifiable (read only).

Caveats: --

Configuration:

1(SRS_BSW_00361)

Example (Metrowerks, S12X):
#define P2CONST (ptrtype, memclass, ptrclass) \

const ptrtype memclass * ptrclass

Example (Cosmic, S12X):
#define P2CONST (ptrtype, memclass, ptrclass) \

const ptrtype ptrclass * memclass

Example (Tasking, ST10):
#define P2CONST (ptrtype, memclass, ptrclass) \

const ptrclass ptrtype * memclass

Required usage for pointer declaration and definition:
#define EEP APPL CONST @far
#define EEP VAR (@near

P2CONST (Eep ConfigType, EEP VAR, EEP APPL CONST) Eep ConfigurationPtr;

44 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

8.2.3.3 CONSTP2VAR
[SWS_COMPILER_00031]r

Macro name: CONSTP2VAR

Syntax: #define CONSTP2VAR (ptrtype, memclass, ptrclass)

Parameters ptrtype type of the referenced variable

(in): memclass classification of the pointer’s constant itself
ptrclass defines the classification of the pointer’s distance

Parameters None --

(out):

Return value: None -

Description: The compiler abstraction shall define the CONSTP2VAR macro for the
declaration and definition of constant pointers accessing variables.
The pointer itself is not modifiable (fix address).
The pointer’s target is modifiable (e.g. *ExamplePtr = 18).

Caveats: --

Configuration: |-

1(SRS_BSW_00361)

Example (Tasking, ST10):

#define CONSTP2VAR

(ptrtype, memclass, ptrclass) \
ptrclass ptrtype * const memclass

Required usage for pointer declaration and definition:
/* constant pointer to application data */
CONSTP2VAR (uints8, NVM VAR, NVM APPL DATA)

NvM PointerToRamMirror =

Appl RamMirror;

8.2.3.4 CONSTP2CONST
[SWS_COMPILER_00032]r

Macro name: CONSTP2CONST
Syntax: #define CONSTP2CONST (ptrtype, memclass, ptrclass)
Parameters ptrtype type of the referenced constant
(in): memclass classification of the pointer’'s constant itself
ptrclass defines the classification of the pointer’s distance
Parameters none -
(out):
Return value: none -
Description: The compiler abstraction shall define the CONSTP2CONST macro for the
declaration and definition of constant pointers accessing constants.
The pointer itself is not modifiable (fix address).
The pointer’s target is not modifiable (read only).
Caveats: --

Configuration:

1(SRS_BSW_00361)

45 of 54

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

Example (Tasking, ST10):
#define CONSTP2CONST (ptrtype, memclass, ptrclass) \
const memclass ptrtype * const ptrclass

Required usage for pointer declaration and definition:
#define CAN PBCFG CONST @gpage
#define CAN CONST @near

/* constant pointer to the constant postbuild configuration
data */

CONSTP2CONST (Can PBCfgType, CAN CONST, CAN PBCEFG CONST)
Can PostbuildCfgData = CanPBCfgDataSet;

8.2.3.5 P2FUNC

[SWS_COMPILER_00039]r

Macro name: P2FUNC

Syntax; #define P2FUNC (rettype, ptrclass, fctname)

Parameters rettype return type of the function

(in): ptrclass defines the classification of the pointer’s distance
fctname function name respectively name of the defined type

Parameters None -

(out):

Return value: None -

Description: The compiler abstraction shall define the P2FUNC macro for the type definition of
pointers to functions.

Caveats: --

Configuration: |--

| (SRS_BSW_00361)

Example (Metrowerks, S12X):
define P2FUNC (rettype, ptrclass, fctname)\
rettype (*ptrclass fctname)

Example (Cosmic, S12X):
#define P2FUNC (rettype, ptrclass, fctname) \
ptrclass rettype (*fctname)

Required usage for pointer type declaration:
#define EEP APPL CONST Qfar
#define EEP VAR (@near

typedef P2FUNC (void, NVM APPL CODE, NvM CbkFncPtrType)
(void) ;

46 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR CP R20-11

8.2.3.6 CONSTP2FUNC
[SWS_COMPILER_00065]"

Macro name: CONSTP2FUNC

Syntax: #define CONSTP2FUNC (rettype, ptrclass, fctname)

Parameters rettype return type of the function

(in): ptrclass defines the classification of the pointer’s distance
fctname function name respectively name of the defined type

Parameters None -

(out):

Return value: None --

Description: The compiler abstraction shall define the CONSTP2FUNC macro for the type
definition of constant pointers to functions.

Caveats: --

Configuration:

| (SRS_BSW_00361)

Example (PowerPC):

#define CONSTP2FUNC (rettype,

ptrclass, fctname)\

rettype (* const fctname)

Example (CodeWarrior, S12X):

#define CONSTP2FUNC (rettype,

ptrclass, fctname)\

rettype (* const ptrclass fctname)

8.2.4 Constant definitions

8.2.4.1 CONST

[SWS_COMPILER_00023]r

Macro name:

CONST

Syntax: #define CONST (consttype, memclass)

Parameters consttype type of the constant

(in): memclass classification of the constant itself

Parameters none -

(out):

Return value: none -

Description: The compiler abstraction shall define the CONST macro for the declaration and
definition of constants.

Caveats: -

Configuration:

| (SRS_BSW_00309)

Example (Cosmic, S12X):

#define CONST (type,

47 of 54

memclass) memclass const type

Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

Required usage for declaration and definition:
#define NVM CONST @gpage

CONST (uint8, NVM CONST) NvM ConfigurationData;

8.2.5 Variable definitions

8.2.5.1 VAR

[SWS_COMPILER_00026]r

Macro name: VAR

Syntax: #define VAR (vartype, memclass)

Parameters vartype type of the variable

(in): memclass classification of the variable itself
Parameters None --

(out):

Return value: None --

Description: The compiler abstraction shall define the VAR macro for the declaration and

definition of variables.
Caveats: -
Configuration: |-

| (SRS_BSW_00361)
Example (Tasking, ST10):
#fdefine VAR (type, memclass) memclass type

Required usage for declaration and definition:
#define NVM FAST VAR near

VAR (uint8, NVM FAST VAR) NvM VeryFrequentlyUsedState;

48 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

8.3 Type definitions

Not applicable.

8.4 Function definitions

Not applicable.

8.5 Call-back notifications

Not applicable.

8.6 Scheduled functions

Not applicable.

8.7 Expected Interfaces
8.7.1 Mandatory Interfaces
Not applicable.

8.7.2 Optional Interfaces

Not applicable.

8.7.3 Configurable interfaces

Not applicable.

49 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

8.8 Service Interfaces

8.8.1 Scope of this Chapter

Not applicable.

8.8.2 Overview

Not applicable.

8.8.3 Specification of the Ports and Port Interfaces

8.8.3.1 General Approach
Not applicable.

8.8.3.2 Data Types
Not applicable.

8.8.3.3 Port Interface
Not applicable.

8.8.4 Definition of the Service

Not applicable.

8.8.5 Configuration of the DET

Not applicable.

50 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

9 Sequence diagrams

Not applicable.

51 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification, Chapter 10.1 describes
fundamentals. We intend to leave Chapter 10.1 in the specification to guarantee

comprehension. | (SRS_BSW_00389)

Chapter 10.2 specifies the structure (containers) and the parameters of this module.
Chapter 10.3 specifies published information of this module.

The Compiler Abstraction has no separate configuration interface by means of
specifying a separate parameter definition. Instead, configuration of the
Memory Mapping has been extended (see [13]) by the parameters described in
this chapter.

10.1How to read this chapter

In addition to this section, it is highly recommended to read the documents:
Layered Software Architecture [3]
Specification Of ECU Configuration [4]

The following is only a short summary of the topic and it will not replace the ECU
Configuration Specification document.

10.2Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 8 and Chapter 9.

10.2.1 Module-Specific Memory Classes

It is also possible to configure module-specific memory classes. This is done by
using the container 'MemMapAddressingModeSet' and the contained parameter
'‘MemMapCompilerMemClassSymbolimpl'. For detailed information about these
configuration parameters refer to [13].

10.2.2 Global Memory Classes

Furthermore it is possible to configure global memory classes that are valid for all
modules. This is done by using the container 'MemMapGenericCompilerMemClass'
and the contained parameter ‘'MemMapGenericCompilerMemClassSymbollmpl'. For
detailed information about these configuration parameters refer to [13].

52 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUT O SAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

[SWS_COMPILER_00042] I' The file Compiler.h is specific for each build scenario.

Therefore there is no standardized configuration interface specified. | (
SRS _BSW_00361)

10.3Published Information

Not applicable.

53 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

AUTOSAR Specification of Compiler Abstraction
AUTOSAR CP R20-11

11 Not applicable requirements

[SWS_COMPILER_00999] I' These requirements are not applicable to this

specification. | (SRS_BSW_00300, SRS_BSW_00301, SRS_BSW_00302,

SRS_BSW_00305, SRS_BSW_00307, SRS_BSW_00308, SRS_BSW_00309,
SRS_BSW_00310, SRS_BSW_00312, SRS_BSW_00314, SRS_BSW_00323,
SRS_BSW_00325, SRS_BSW_00327, SRS_BSW_00330, SRS_BSW_00331,
SRS _BSW_00333, SRS_BSW_00334, SRS_BSW_00335, SRS_BSW_00336,
SRS_BSW_00339, SRS_BSW_00341, SRS_BSW_00342, SRS_BSW_00343,
SRS _BSW_00344, SRS_BSW_00346, SRS_BSW_00350, SRS_BSW_00353,
SRS_BSW_00357, SRS_BSW_00358, SRS_BSW_00359, SRS_BSW_00360,
SRS _BSW_00369, SRS_BSW 00371, SRS_BSW_00373, SRS_BSW_00375,
SRS_BSW_00377, SRS_BSW_00378, SRS_BSW_00380, SRS_BSW_00385,
SRS_BSW_00386, SRS_BSW_00390, SRS_BSW_00392, SRS_BSW_00393,
SRS_BSW_00394, SRS_BSW_00395, SRS_BSW_00398, SRS_BSW_00399,
SRS_BSW_00004, SRS_BSW_00400, SRS_BSW_00401, SRS_BSW_00404,
SRS_BSW_00405, SRS_BSW_00406, SRS_BSW_00407, SRS_BSW_00408,
SRS_BSW_00409, SRS_BSW_00410, SRS_BSW_00411, SRS_BSW_00413,
SRS_BSW_00414, SRS_BSW_00415, SRS_BSW_00416, SRS_BSW_00417,
SRS_BSW_00419, SRS_BSW_00422, SRS_BSW_00423, SRS_BSW_00424,
SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428,
SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00005,
SRS_BSW_00007, SRS_BSW_00009, SRS_BSW_00010, SRS_BSW_00158,
SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00164, SRS_BSW_00167,
SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00171, SRS_BSW_00172,
SRS _BSW_00351, SRS_BSW_00383, SRS_BSW_00388, SRS_BSW_00389,
SRS_BSW_00396, SRS_BSW_00403, SRS_BSW_00412, SRS_BSW_00448,
SRS _BSW_00449, SRS_BSW_00452, SRS_BSW_00453, SRS_BSW_00454,
SRS_BSW_00456, SRS_BSW_00457, SRS_BSW_00458, SRS_BSW_00459,
SRS_BSW_00461, SRS_BSW_00462, SRS_BSW_00466, SRS_BSW_00469,
SRS_BSW_00470, SRS_BSW_00471, SRS_BSW_00472, SRS_BSW_00473,
SRS _BSW_00478, SRS_BSW_00479, SRS_BSW_00480, SRS_BSW_00481,
SRS_BSW_00482, SRS_BSW_00483)

54 of 54 Document ID 51: AUTOSAR_SWS_CompilerAbstraction

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.1.1 List of Compiler symbols
	7.1.2 Requirements on implementations using compiler abstraction
	7.1.3 Contents of Compiler.h
	7.1.4 Contents of Compiler_Cfg.h
	7.1.5 Comprehensive example
	7.1.6 Proposed process

	7.2 Error classifications
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Transient Faults
	7.2.4 Production Errors
	7.2.5 Extended Production Errors

	7.3 Version check
	7.4 Support for Debugging

	8 API specification
	8.1 Imported types
	8.2 Macro definitions
	8.2.1 General definitions
	8.2.1.1 Memory class AUTOMATIC
	8.2.1.2 Memory class TYPEDEF
	8.2.1.3 NULL_PTR
	8.2.1.4 INLINE
	8.2.1.5 LOCAL_INLINE

	8.2.2 Function definitions
	8.2.2.1 FUNC identification information
	8.2.2.2 FUNC_P2CONST
	8.2.2.3 FUNC_P2VAR

	8.2.3 Pointer definitions
	8.2.3.1 P2VAR
	8.2.3.2 P2CONST
	8.2.3.3 CONSTP2VAR
	8.2.3.4 CONSTP2CONST
	8.2.3.5 P2FUNC
	8.2.3.6 CONSTP2FUNC

	8.2.4 Constant definitions
	8.2.4.1 CONST

	8.2.5 Variable definitions
	8.2.5.1 VAR

	8.3 Type definitions
	8.4 Function definitions
	8.5 Call-back notifications
	8.6 Scheduled functions
	8.7 Expected Interfaces
	8.7.1 Mandatory Interfaces
	8.7.2 Optional Interfaces
	8.7.3 Configurable interfaces

	8.8 Service Interfaces
	8.8.1 Scope of this Chapter
	8.8.2 Overview
	8.8.3 Specification of the Ports and Port Interfaces
	8.8.3.1 General Approach
	8.8.3.2 Data Types
	8.8.3.3 Port Interface

	8.8.4 Definition of the Service
	8.8.5 Configuration of the DET

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Module-Specific Memory Classes
	10.2.2 Global Memory Classes

	10.3 Published Information

	11 Not applicable requirements

