
Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Document Title Specification of Update and
Configuration Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 888

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R20-11

Document Change History
Date Release Changed by Description

2020-11-30 R20-11
AUTOSAR
Release
Management

• Classic Plaftorm update specification
for UCM Master
• Refactored UCM Master API
• Simplified UCM Master State

Machine
• Detailed campaign history

information

2019-11-28 R19-11
AUTOSAR
Release
Management

• Introduced UCM Master concept
• Software Package state machine

updated for processing while
streaming
• Reviewed UCM State Machine
• Added new security analysis

appendix
• Changed Document Status from

Final to published

2019-03-29 19-03
AUTOSAR
Release
Management

• Updating Package Management
state machine
• New requirements for robustness

against reset
• Improving specification item atomicity
• Fixing errors in chapter Service

Interfaces

1 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

2018-10-31 18-10
AUTOSAR
Release
Management

• Updated interaction other functional
clusters like PER and EMO/SM
• Introduction of vehicle package

distribution

2018-03-29 18-03
AUTOSAR
Release
Management

• Extended and updated service
interface
• Introduction of Software Package
• Introduction to securing update

process

2017-10-27 17-10
AUTOSAR
Release
Management

• Initial release

2 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Table of Contents

1 Introduction and functional overview 8

2 Acronyms and abbreviations 9

3 Related documentation 10

3.1 Input documents & related standards and norms 10
3.2 Related specification . 10
3.3 Further applicable specification . 11

4 Constraints and assumptions 12

4.1 Known Limitations . 12
4.2 Applicability to car domains . 12

5 Dependencies to other functional clusters 13

5.1 Interfaces to Adaptive State Management 13
5.2 UCM service over ara::com . 13
5.3 Interfaces to Adaptive Crypto Interface 13
5.4 Interfaces to Identity and Access Management 14

6 Requirements Tracing 15

7 Functional specification 26

7.1 UCM . 26
7.1.1 Software Cluster lifecycle . 26
7.1.2 Technical Overview . 27

7.1.2.1 Software Package Management 28
7.1.2.2 Runtime dependencies 31
7.1.2.3 Update scope and State Management 31

7.1.3 Transferring Software Packages 32
7.1.4 Processing of Software Packages from a stream 37
7.1.5 Processing Software Packages 38
7.1.6 Activation and Rollback . 41

7.1.6.1 Activation . 41
7.1.6.2 Rollback . 42
7.1.6.3 Boot options . 43
7.1.6.4 Finishing activation 43

7.1.7 Status Reporting . 44
7.1.8 Robustness against reset . 48

7.1.8.1 Boot monitoring . 48
7.1.9 History . 48
7.1.10 Version Reporting . 49
7.1.11 Securing Software Updates 49
7.1.12 Functional cluster lifecycle 50

7.1.12.1 Shutdown behaviour 50
7.2 UCM Master . 51

4 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.2.1 UCM Master Functional Cluster lifecycle 51
7.2.2 Technical Overview . 51
7.2.3 UCM Master general behaviour 52
7.2.4 UCM identification . 53
7.2.5 UCM Master Software Packages transfer or streaming 53
7.2.6 Adaptive Applications interacting with UCM Master 55

7.2.6.1 OTA Client . 55
7.2.6.2 Vehicle Driver Interface 56
7.2.6.3 Vehicle State Manager 57
7.2.6.4 Flashing Adapter . 58

7.2.7 Non Adaptive Platform update 59
7.2.7.1 D-PDU API implementation support 59
7.2.7.2 Not required D-PDU API concepts 60
7.2.7.3 Not required D-PDU API functions 60

7.2.8 Status reporting . 62
7.2.8.1 States . 63
7.2.8.2 States Transitions . 65

7.2.9 Campaign Reporting . 67
7.2.10 Content of Vehicle Package 68
7.2.11 Vehicle update security and confidentiality 70

8 API specification 71

9 Service Interfaces 72

9.1 Type definitions . 72
9.1.1 UCMIdentifierType . 72
9.1.2 TransferIdType . 72
9.1.3 SwNameType . 72
9.1.4 SwNameVectorType . 73
9.1.5 StrongRevisionLabelString 73
9.1.6 SwNameVersionType . 73
9.1.7 SwNameVersionVectorType 73
9.1.8 ByteVectorType . 74
9.1.9 SwPackageStateType . 74
9.1.10 SwPackageInfoType . 74
9.1.11 SwPackageInfoVectorType 75
9.1.12 SwDescType . 75
9.1.13 SwDescVectorType . 76
9.1.14 SwClusterStateType . 76
9.1.15 SwClusterInfoType . 76
9.1.16 SwClusterInfoVectorType . 77
9.1.17 PackageManagerStatusType 77
9.1.18 ActionType . 78
9.1.19 ResultType . 78
9.1.20 GetHistoryType . 78
9.1.21 GetHistoryVectorType . 79
9.1.22 CampaignHistoryType . 79

5 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

9.1.23 CampaignErrorType . 79
9.1.24 CampaignFailureType . 80
9.1.25 UCMStepErrorType . 80
9.1.26 SoftwarePackageStepType 81
9.1.27 HistoryVectorType . 81
9.1.28 CampaignStateType . 81
9.1.29 TransferStateType . 82
9.1.30 SafetyPolicyType . 82

9.2 Provided Service Interfaces . 83
9.2.1 Package Management . 83
9.2.2 Vehicle Package Management 90
9.2.3 Vehicle Driver Application Interface 97
9.2.4 Vehicle State Manager . 101

9.3 Required Interface . 102
9.3.1 State Management Update Request 102

9.4 Application Errors . 102
9.4.1 Application Error Domain . 102

9.4.1.1 UCMErrorDomain 102

10 Sequence diagrams 104

10.1 Update process . 104
10.2 Data transmission . 105
10.3 Package processing . 107
10.4 Activation . 108
10.5 Failing activation . 109
10.6 UCM Master simplified vehicle update 110

A Mentioned Manifest Elements 111

B Interfaces to other Functional Clusters (informative) 118

B.1 Overview . 118
B.2 Interfaces Tables . 118

B.2.1 UCM update notification . 118

C Packages distribution within vehicle detailed sequence examples 119

C.1 Collect information of present Software Clusters in vehicle 119
C.2 Action computation . 119

C.2.1 Pull package from Backend into vehicle 120
C.2.2 Push package from backend into vehicle 120

C.3 Packages transfer from backend into targeted UCM 122
C.4 Package processing . 123
C.5 Package activation . 124
C.6 Package rollback . 125
C.7 Campaign reporting . 126

D Security Analysis of Installation and Update 127

D.1 Securing Software Package . 127

6 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

D.2 Securing Calls to UCM . 127
D.3 Suppressing Call to UCM . 128
D.4 Resource Starvation . 128
D.5 Zombie Sessions . 128

E History of Constraints and Specification Items 130

E.1 Constraint and Specification Item History of this document according
to AUTOSAR Release R19-11. 130

E.1.1 Added Traceables in R19-11 130
E.1.2 Changed Traceables in R19-11 133
E.1.3 Deleted Traceables in R19-11 133
E.1.4 Added Constraints in R19-11 134
E.1.5 Changed Constraints in R19-11 134
E.1.6 Deleted Constraints in R19-11 134

7 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

1 Introduction and functional overview

This software specification contains the functional description and interfaces of the
functional cluster Update and Configuration Management which belongs to the
AUTOSAR Adaptive Platform Services. Update and Configuration Man-
agement has the responsibility of installing, updating and removing software on an
AUTOSAR Adaptive Platform in a safe and secure way while not sacrificing the
dynamic nature of the AUTOSAR Adaptive Platform.

The Update and Configuration Management functional cluster is responsible
for:

• Version reporting of the software present in the AUTOSAR Adaptive Platform

• Receiving and buffering software updates

• Checking that enough resources are available to ensure a software update

• Performing software updates and providing log messages and progress informa-
tion

• Validating the outcome of a software update

• Providing rollback functionality to restore a known functional state in case of fail-
ure

In addition to updating and changing software on the AUTOSAR Adaptive Plat-
form, the Update and Configuration Management is also responsible for up-
dates and changes to the AUTOSAR Adaptive Platform itself, including all func-
tional clusters, the underlying POSIX OS and its kernel with the responsibilities defined
above.

In order to allow flexibility in how Update and Configuration Management is
used, it will expose its functionality via ara::com service interfaces, not direct APIs.
This ensures that the user of the functional cluster Update and Configuration
Management does not have to be located on the same ECU.

8 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

2 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to the UCM module
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
DM AUTOSAR Adaptive Diagnostic Management
UCM Update and Configuration Management
UCM Master UCM Master is distributing packages and coordinating an update

campaign in a vehicle
Backend Backend is a server hosting Software Packages
OTA Client OTA Client is an Adaptive Application in communication with

Backend Over The Air
Application Error Errors returned by UCM
Boot options Boot Manager Configuration
VCI Vehicle Communication Interface
MVCI Modular Vehicle Communication Interface
D-PDU API Diagnostic Protocol Data Unit Application Programming Interface
RDF Root Description File
MDF Module Description File

Some technical terms used in this document are already defined in the corresponding
document mentioned in the table below. This is to avoid duplicate definition of the
technical term. And to refer to the correct document.

Term Description

Adaptive Application see [1] AUTOSAR Glossary
Application see [1] AUTOSAR Glossary
AUTOSAR Adaptive Platform see [1] AUTOSAR Glossary
AUTOSAR Classic Platform see [1] AUTOSAR Glossary
Electronic Control Unit see [1] AUTOSAR Glossary
Adaptive Platform Foundation see [1] AUTOSAR Glossary
Adaptive Platform Services see [1] AUTOSAR Glossary
Manifest see [1] AUTOSAR Glossary
Executable see [1] AUTOSAR Glossary
Functional Cluster see [1] AUTOSAR Glossary
Machine see [1] AUTOSAR Glossary
Service see [1] AUTOSAR Glossary
Service Interface see [1] AUTOSAR Glossary
Service Discovery see [1] AUTOSAR Glossary
Execution Management see [2] AUTOSAR Execution Management
MachineFG see [2] AUTOSAR Execution Management
State Management see [3] AUTOSAR State Management
Function Group see [3] AUTOSAR State Management
Communication Management see [4] AUTOSAR Communication Management
Software Cluster see [1] AUTOSAR Glossary
Software Package see [1] AUTOSAR Glossary
Vehicle Package see [1] AUTOSAR Glossary

Table 2.1: Reference to Technical Terms

9 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of Execution Management
AUTOSAR_SWS_ExecutionManagement

[3] Specification of State Management
AUTOSAR_SWS_StateManagement

[4] Specification of Communication Management
AUTOSAR_SWS_CommunicationManagement

[5] General Requirements specific to Adaptive Platform
AUTOSAR_RS_General

[6] Specification of Cryptography for Adaptive Platform
AUTOSAR_SWS_Cryptography

[7] Specification of Identity and Access Management
AUTOSAR_SWS_IdentityAndAccessManagement

[8] Requirements on Update and Configuration Management
AUTOSAR_RS_UpdateAndConfigManagement

[9] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[10] Explanation of Adaptive Platform Design
AUTOSAR_EXP_PlatformDesign

[11] Specification of Persistency
AUTOSAR_SWS_Persistency

[12] Specification of Platform Health Management for Adaptive Platform
AUTOSAR_SWS_PlatformHealthManagement

3.2 Related specification

See chapter 3.1.

10 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

3.3 Further applicable specification

AUTOSAR provides a general specification [5] which is also applicable for UCM. The
specification RS General shall be considered as additional and required specification
for implementation of UCM.

11 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4 Constraints and assumptions

4.1 Known Limitations

UCM is not responsible to initiate the update process. UCM realizes a service interface
to achieve this operation. The user of this service interface is responsible to verify that
the vehicle is in a updatable state before executing a software update procedure on
demand. It is also in the responsibility of the user to communicate with other AUTOSAR
Adaptive Platforms or AUTOSAR Classic Platforms within the vehicle.

The UCM receives a locally available software package for processing. The software
package is usually downloaded from the OEM backend. The download of the software
packages has to be done by another application, i.e. UCM does not manage the connec-
tion to the OEM backend. Prior to triggering their processing, the software packages
have to be transferred to UCM by using the provided ara::com interface.

The UCM update process is designed to cover updates on use case with single
AUTOSAR Adaptive Platform. UCM can update Adaptive Applications, the
AUTOSAR Adaptive Platform itself, including all functional clusters and the under-
lying OS.

The UCM is not responsible for enforcing authentication and access control to the pro-
vided interfaces. The document currently does not provide any mechanism for the
confidentiality protection as well as measures against denial of service attacks. The
assumption is that the platform preserves the integrity of parameters exchanged be-
tween UCM and its user.

The UCM do not support update of ECUs not supporting ARA::COM or UDS with aligned
diagnostic flash sequence support.

4.2 Applicability to car domains

No restrictions to applicability.

12 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

5 Dependencies to other functional clusters

The UCM functional cluster expose services to client applications via the ara::com
middleware.

Software Package A

Signed container

Software Package
Manifest

SoftwareClusterExecutables

Data

Manifests

Authentication tag

UCM Client

ara::com

Dependencies to Functional Clusters

Identity & Access Management

Persistency

Crypto API

State Management

Posix

Figure 5.1: UCM dependencies to other Functional Clusters.

5.1 Interfaces to Adaptive State Management

UCM relies on State Management and its provided UpdateRequest Service Inter-
face to perform the necessary Function Group state changes needed to activate
the newly installed, updated or removed software.

Certain applications can conflict with the update process or the newly updated pack-
age, and they need to be stopped during the update process. This could be achieved
by putting the machine to a safe Machine state, by activating a combination of suit-
able Function Groups and its states. It is the responsibility of the platform integrator
to define this state or Function Groups. The Adaptive Application accessing the
UCM, should make sure that the platform is switched to this state (using interfaces from
State Management), before starting the update.

5.2 UCM service over ara::com

The UCM shall provide a service interface over ara::com using methods and fields.

5.3 Interfaces to Adaptive Crypto Interface

UCM uses Crypto Interface for AUTOSAR Adaptive Platform [6] to verify package
integrity and authenticity and to decrypt confidential update data.

13 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

5.4 Interfaces to Identity and Access Management

Identity and Access Management [7] controls the UCM’s Clients access to UCM’s service
interface PackageManagement.

14 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

6 Requirements Tracing

The following tables reference the requirements specified in [8] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_EM_00014] Execution Management shall

support a Trusted Platform.
[SWS_UCM_00202]

[RS_SM_00001] State Management shall
coordinate and control multiple
sets of Applications.

[SWS_UCM_00242]

[RS_UCM_00001] UCM shall support installing new
software on AUTOSAR
Adaptive Platform

[SWS_UCM_00001]
[SWS_UCM_00017]
[SWS_UCM_00073]
[SWS_UCM_00099]
[SWS_UCM_00131]
[SWS_UCM_00137]
[SWS_UCM_00165]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_00240]

[RS_UCM_00002] UCM shall support reporting
version information for an
AUTOSAR Adaptive
Platform

[SWS_UCM_00004]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00071]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00112]
[SWS_UCM_00130]
[SWS_UCM_00131]
[SWS_UCM_00174]
[SWS_UCM_00175]
[SWS_UCM_00176]
[SWS_UCM_00177]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_00185]
[SWS_UCM_00186]
[SWS_UCM_00187]
[SWS_UCM_00190]
[SWS_UCM_01114]
[SWS_UCM_CONSTR_00001]
[SWS_UCM_CONSTR_00002]

[RS_UCM_00003] UCM shall support updating
installed software on Adaptive
Platform

[SWS_UCM_00017]
[SWS_UCM_00165]
[SWS_UCM_00257]

15 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_UCM_00004] UCM shall support uninstalling

software on AUTOSAR
Adaptive Platform

[SWS_UCM_00001]
[SWS_UCM_00137]
[SWS_UCM_00165]
[SWS_UCM_00184]

[RS_UCM_00005] UCM shall make sure that
persistent data owned by
uninstalled software is deleted

[SWS_UCM_00001]
[SWS_UCM_00137]

[RS_UCM_00006] UCM shall verify Software
Package authenticity and
integrity using strong
cryptographic techniques

[SWS_UCM_00028]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00136]
[SWS_UCM_00200]
[SWS_UCM_00209]
[SWS_UCM_00230]
[SWS_UCM_00250]

[RS_UCM_00007] UCM shall check that software
dependencies are fulfilled

[SWS_UCM_00026]
[SWS_UCM_00027]
[SWS_UCM_00120]
[SWS_UCM_00136]
[SWS_UCM_00161]
[SWS_UCM_00201]
[SWS_UCM_00231]
[SWS_UCM_00232]
[SWS_UCM_00260]

[RS_UCM_00008] UCM shall support a recovery
mechanism in case of failed
update process

[SWS_UCM_00005]
[SWS_UCM_00024]
[SWS_UCM_00107]
[SWS_UCM_00110]
[SWS_UCM_00111]
[SWS_UCM_00126]
[SWS_UCM_00127]
[SWS_UCM_00131]
[SWS_UCM_00146]
[SWS_UCM_00155]
[SWS_UCM_00162]
[SWS_UCM_00163]
[SWS_UCM_00164]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_00264]

16 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_UCM_00010] UCM shall support reporting of

Software Packages
downloaded for AUTOSAR
Adaptive Platform

[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00069]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_CONSTR_00001]
[SWS_UCM_CONSTR_00002]

[RS_UCM_00011] UCM shall support reporting
software versions which have
been installed and will be
activated when new versions are
activated

[SWS_UCM_00030]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_00185]
[SWS_UCM_00186]
[SWS_UCM_00187]
[SWS_UCM_00191]
[SWS_UCM_00192]
[SWS_UCM_00193]
[SWS_UCM_00194]
[SWS_UCM_00195]
[SWS_UCM_00196]
[SWS_UCM_00197]
[SWS_UCM_00198]
[SWS_UCM_00199]
[SWS_UCM_CONSTR_00001]
[SWS_UCM_CONSTR_00002]

[RS_UCM_00012] UCM shall check the consistency
of transferred Software
Package

[SWS_UCM_00029]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00104]
[SWS_UCM_00136]
[SWS_UCM_00207]
[SWS_UCM_00209]
[SWS_UCM_00213]
[SWS_UCM_01306]

17 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_UCM_00013] UCM shall check that it has

enough resources to receive,
process and store the
Software Package and
associated data

[SWS_UCM_00007]
[SWS_UCM_00008]
[SWS_UCM_00010]
[SWS_UCM_00087]
[SWS_UCM_00088]
[SWS_UCM_00092]
[SWS_UCM_00098]
[SWS_UCM_00136]
[SWS_UCM_00140]
[SWS_UCM_00145]
[SWS_UCM_00206]
[SWS_UCM_00217]
[SWS_UCM_00243]
[SWS_UCM_01011]
[SWS_UCM_01012]

[RS_UCM_00014] UCM shall check that correct
amount of data has been
transferred for the Software
Package

[SWS_UCM_00136]
[SWS_UCM_00204]
[SWS_UCM_00205]
[SWS_UCM_00211]
[SWS_UCM_00243]

[RS_UCM_00015] UCM shall remove all unneeded
data after Software Package
processing has finished

[SWS_UCM_00020]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

[RS_UCM_00017] UCM shall support installing and
updating the persistent data
storage for an Adaptive
Application

[SWS_UCM_00184]

[RS_UCM_00018] UCM shall announce when an
application has been installed,
updated or uninstalled

[SWS_UCM_00021]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_00259]

18 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_UCM_00019] UCM shall support simultaneous

transfers multiple Software
Packages

[SWS_UCM_00007]
[SWS_UCM_00008]
[SWS_UCM_00010]
[SWS_UCM_00031]
[SWS_UCM_00075]
[SWS_UCM_00087]
[SWS_UCM_00088]
[SWS_UCM_00092]
[SWS_UCM_00093]
[SWS_UCM_00098]
[SWS_UCM_00140]
[SWS_UCM_00145]
[SWS_UCM_00148]
[SWS_UCM_00203]
[SWS_UCM_00204]
[SWS_UCM_00205]
[SWS_UCM_00206]
[SWS_UCM_00208]
[SWS_UCM_00212]
[SWS_UCM_00214]
[SWS_UCM_00215]
[SWS_UCM_00216]

[RS_UCM_00020] UCM shall support cancellation of
an update or install operation

[SWS_UCM_00003]
[SWS_UCM_00167]
[SWS_UCM_00233]
[SWS_UCM_00234]
[SWS_UCM_00235]
[SWS_UCM_00236]
[SWS_UCM_00237]
[SWS_UCM_00238]
[SWS_UCM_00239]

[RS_UCM_00021] UCM shall support atomic
activation of installed or updated
Software Clusters

[SWS_UCM_00022]
[SWS_UCM_00025]
[SWS_UCM_00094]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_00241]
[SWS_UCM_00259]
[SWS_UCM_00260]

[RS_UCM_00022] UCM shall support logging of the
update or installation process

[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

[RS_UCM_00023] UCM shall provide an interface to
read progress of the update

[SWS_UCM_00018]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_00220]

19 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_UCM_00024] UCM shall provide an interface to

read the state of UCM
[SWS_UCM_00019]
[SWS_UCM_00044]
[SWS_UCM_00080]
[SWS_UCM_00081]
[SWS_UCM_00083]
[SWS_UCM_00084]
[SWS_UCM_00085]
[SWS_UCM_00086]
[SWS_UCM_00131]
[SWS_UCM_00147]
[SWS_UCM_00149]
[SWS_UCM_00150]
[SWS_UCM_00151]
[SWS_UCM_00152]
[SWS_UCM_00153]
[SWS_UCM_00154]
[SWS_UCM_00166]
[SWS_UCM_00168]
[SWS_UCM_00169]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_00258]

[RS_UCM_00025] UCM shall support receiving of
Software Package data

[SWS_UCM_00007]
[SWS_UCM_00008]
[SWS_UCM_00010]
[SWS_UCM_00031]
[SWS_UCM_00032]
[SWS_UCM_00087]
[SWS_UCM_00088]
[SWS_UCM_00092]
[SWS_UCM_00098]
[SWS_UCM_00131]
[SWS_UCM_00140]
[SWS_UCM_00145]
[SWS_UCM_00165]
[SWS_UCM_00166]
[SWS_UCM_00167]
[SWS_UCM_00168]
[SWS_UCM_00169]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_00217]
[SWS_UCM_00219]
[SWS_UCM_00243]

20 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_UCM_00026] UCM shall process installation of

new Software Packages,
updates and removal of existing
Software Packages sequentially

[SWS_UCM_00017]
[SWS_UCM_00044]
[SWS_UCM_00122]
[SWS_UCM_00184]
[SWS_UCM_00218]
[SWS_UCM_00219]
[SWS_UCM_00240]
[SWS_UCM_00257]
[SWS_UCM_00258]
[SWS_UCM_00261]
[SWS_UCM_00262]
[SWS_UCM_00263]

[RS_UCM_00027] UCM shall be able to safely
recover from unexpected
interruption.

[SWS_UCM_00157]
[SWS_UCM_00158]

[RS_UCM_00028] UCM shall support updating
Functional Clusters

[SWS_UCM_00100]
[SWS_UCM_00245]

[RS_UCM_00029] UCM shall support updating the
underlying Operating System

[SWS_UCM_00101]
[SWS_UCM_00245]

[RS_UCM_00030] UCM shall be able to verify the
updated software during
activation

[SWS_UCM_00107]
[SWS_UCM_00111]
[SWS_UCM_00126]
[SWS_UCM_00127]
[SWS_UCM_00146]
[SWS_UCM_00155]
[SWS_UCM_00162]
[SWS_UCM_00163]
[SWS_UCM_00164]
[SWS_UCM_00260]
[SWS_UCM_00264]

[RS_UCM_00031] UCM shall prevent installation of
arbitrary previous version of an
Adaptive Application or the
Adaptive Platform

[SWS_UCM_00103]

[RS_UCM_00032] UCM shall provide an interface to
return UCM’s action history

[SWS_UCM_00115]
[SWS_UCM_00131]
[SWS_UCM_00132]
[SWS_UCM_00133]
[SWS_UCM_00134]
[SWS_UCM_00135]
[SWS_UCM_00160]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_00190]
[SWS_UCM_01177]
[SWS_UCM_01178]

[RS_UCM_00033] UCM Master shall support
reporting version information of
a complete vehicle

[SWS_UCM_01101]
[SWS_UCM_01102]
[SWS_UCM_01103]
[SWS_UCM_01120]
[SWS_UCM_01218]
[SWS_UCM_01304]

21 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_UCM_00034] UCM Master shall record all

UCM Master’s action history
[SWS_UCM_00251]
[SWS_UCM_00252]
[SWS_UCM_00253]
[SWS_UCM_00254]
[SWS_UCM_00255]
[SWS_UCM_00256]
[SWS_UCM_01247]
[SWS_UCM_01248]
[SWS_UCM_01266]
[SWS_UCM_01267]
[SWS_UCM_01268]
[SWS_UCM_01269]

[RS_UCM_00035] UCM Master shall coordinate
software update in a vehicle
across multiple Electronic
Control Units

[SWS_UCM_00178]
[SWS_UCM_00210]
[SWS_UCM_01006]
[SWS_UCM_01007]
[SWS_UCM_01008]
[SWS_UCM_01009]
[SWS_UCM_01013]
[SWS_UCM_01119]
[SWS_UCM_01121]
[SWS_UCM_01122]
[SWS_UCM_01123]
[SWS_UCM_01124]
[SWS_UCM_01125]
[SWS_UCM_01126]
[SWS_UCM_01127]
[SWS_UCM_01128]
[SWS_UCM_01129]
[SWS_UCM_01130]
[SWS_UCM_01131]
[SWS_UCM_01132]
[SWS_UCM_01133]
[SWS_UCM_01134]
[SWS_UCM_01204]
[SWS_UCM_01205]

22 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Requirement Description Satisfied by
[SWS_UCM_01207]
[SWS_UCM_01209]
[SWS_UCM_01212]
[SWS_UCM_01213]
[SWS_UCM_01214]
[SWS_UCM_01215]
[SWS_UCM_01216]
[SWS_UCM_01217]
[SWS_UCM_01218]
[SWS_UCM_01219]
[SWS_UCM_01220]
[SWS_UCM_01221]
[SWS_UCM_01222]
[SWS_UCM_01227]
[SWS_UCM_01228]
[SWS_UCM_01229]
[SWS_UCM_01234]
[SWS_UCM_01236]
[SWS_UCM_01239]
[SWS_UCM_01240]
[SWS_UCM_01241]
[SWS_UCM_01242]
[SWS_UCM_01243]
[SWS_UCM_01244]
[SWS_UCM_01245]
[SWS_UCM_01246]
[SWS_UCM_01270]
[SWS_UCM_01271]
[SWS_UCM_01303]
[SWS_UCM_01305]
[SWS_UCM_CONSTR_00003]
[SWS_UCM_CONSTR_00005]
[SWS_UCM_CONSTR_00006]
[SWS_UCM_CONSTR_00009]
[SWS_UCM_CONSTR_00010]
[SWS_UCM_CONSTR_00011]

[RS_UCM_00036] UCM Master shall use platform
communication services for
interacting with UCM
subordinates

[SWS_UCM_00009]
[SWS_UCM_00173]
[SWS_UCM_01005]
[SWS_UCM_01007]
[SWS_UCM_01008]
[SWS_UCM_01009]
[SWS_UCM_01010]
[SWS_UCM_01015]
[SWS_UCM_01016]

23 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_UCM_00037] UCM Master shall ensure it is

safe to perform any modification
to the vehicle

[SWS_UCM_00179]
[SWS_UCM_01004]
[SWS_UCM_01109]
[SWS_UCM_01110]
[SWS_UCM_01117]
[SWS_UCM_01222]
[SWS_UCM_01228]
[SWS_UCM_01229]
[SWS_UCM_01234]
[SWS_UCM_01240]
[SWS_UCM_01244]
[SWS_UCM_01245]
[SWS_UCM_01246]
[SWS_UCM_CONSTR_00003]
[SWS_UCM_CONSTR_00004]
[SWS_UCM_CONSTR_00005]
[SWS_UCM_CONSTR_00006]
[SWS_UCM_CONSTR_00007]
[SWS_UCM_CONSTR_00008]
[SWS_UCM_CONSTR_00009]

[RS_UCM_00038] UCM Master shall interact with
driver

[SWS_UCM_00180]
[SWS_UCM_01105]
[SWS_UCM_01107]
[SWS_UCM_01117]
[SWS_UCM_01118]
[SWS_UCM_01120]
[SWS_UCM_01222]
[SWS_UCM_01228]
[SWS_UCM_01234]

[RS_UCM_00039] UCM Master shall prevent
processing of compromised
Vehicle Packages

[SWS_UCM_00200]
[SWS_UCM_01001]
[SWS_UCM_01221]
[SWS_UCM_01301]
[SWS_UCM_01302]

[RS_UCM_00042] UCM Master shall provide an
interface to read the state of an
update campaign

[SWS_UCM_01017]
[SWS_UCM_01203]
[SWS_UCM_01205]
[SWS_UCM_01265]

24 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_UCM_00043] UCM Master shall orchestrate a

software update campaign
according to the Vehicle
Package’s Manifest

[SWS_UCM_00179]
[SWS_UCM_00180]
[SWS_UCM_00210]
[SWS_UCM_01001]
[SWS_UCM_01003]
[SWS_UCM_01006]
[SWS_UCM_01014]
[SWS_UCM_01015]
[SWS_UCM_01016]
[SWS_UCM_01201]
[SWS_UCM_01207]
[SWS_UCM_01209]
[SWS_UCM_01212]
[SWS_UCM_01228]
[SWS_UCM_01301]
[SWS_UCM_01302]
[SWS_UCM_01303]
[SWS_UCM_01305]

25 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7 Functional specification

7.1 UCM

7.1.1 Software Cluster lifecycle

Initi al

ADDED PRESENT

UPDATED

REMOVED

Final

RevertProcessedSwPackages,Finish
(from ROLLED-BACK)

Finish (from ACTIVATED)

P rocessSwPackage
P rocessSwPackage

RevertProcessedSwPackages,Finish (from ROLLED-BACK)

Finish (from
ACTIVATED)

Finish

P rocessSwPackage

RevertProcessedSwPackages

Figure 7.1: State Machine for a Software Cluster

The state machine in Fig. 7.1 describes the life-cycle states of a Software Cluster.
These states are reported with GetSwClusterInfo method.

[SWS_UCM_00191]{DRAFT} Software Cluster life-cycle state kAdded dA
Software Cluster state shall be kAdded after the Software Cluster is success-
fully processed with ProcessSwPackage method call on the AUTOSAR Adaptive
Platform and if it was not previously present in the AUTOSAR Adaptive Plat-
form.c(RS_UCM_00011)

[SWS_UCM_00192]{DRAFT} Software Cluster life-cycle state transition from
kAdded to kPresent dA Software Cluster state shall change from kAdded to
kPresent after a successful activation of a newly added Software Cluster with
Finish method call.c(RS_UCM_00011)

[SWS_UCM_00193]{DRAFT} Software Cluster life-cycle state transition from
kUpdated to kPresent dA Software Cluster state shall change from kUpdated
to kPresent after a successful activation of the updated Software Cluster with
Finish method call.c(RS_UCM_00011)

[SWS_UCM_00194]{DRAFT} Software Cluster life-cycle state transition from
kRemoved to kPresent dA Software Cluster state shall change from kRemoved
to kPresent after a successful call to RevertProcessedSwPackages method (in
case the Software Cluster was previously requested to be removed by Pro-
cessSwPackage method call) or Finish method (in case a Software Cluster
being removed has to be rolled back after a failing activation).c(RS_UCM_00011)

26 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00195]{DRAFT} Software Cluster life-cycle state kUpdated dA
Software Cluster state shall be kUpdated after a successful processing of the
updated Software Cluster with ProcessSwPackage method call.c(RS_UCM_-
00011)

[SWS_UCM_00196]{DRAFT} Software Cluster life-cycle state kRemoved dA
Software Cluster state shall be kRemoved after successful completion of method
ProcessSwPackage which involves the removal of the existed Software Clus-
ter.c(RS_UCM_00011)

[SWS_UCM_00197]{DRAFT} End of Software Cluster life-cycle state from
state kAdded dA Software Cluster shall reach the end of its life-cycle from
kAdded after a successful removal of a newly added Software Cluster with Re-
vertProcessedSwPackages method call (in case the Software Cluster was
previously requested to be added by ProcessSwPackage method call) or Finish
method call (in case the newly added Software Cluster has to be rolled back after
a failing activation).c(RS_UCM_00011)

[SWS_UCM_00198]{DRAFT} End of Software Cluster life-cycle state from
state kRemoved dA Software Cluster shall reach the end of its life-cycle if it is
successfully removed with a Finish method call and the Software Cluster is in
state kRemoved.c(RS_UCM_00011)

[SWS_UCM_00199]{DRAFT} Reporting of Software Cluster reaching end of
life-cycle dAny Software Cluster reaching the end of its life-cycle shall not be
reported by UCM any more.c(RS_UCM_00011)

7.1.2 Technical Overview

One of the declared goals of AUTOSAR Adaptive Platform is the ability to flexibly
update the software and its configuration through over-the-air updates. During the life-
cycle of an AUTOSAR Adaptive Platform, UCM is responsible to perform software
modifications on the machine and to retain consistency of the whole system.

The UCM Functional Cluster provides a service interface that exposes its func-
tionality to retrieve AUTOSAR Adaptive Platform software information and consis-
tently execute software updates. Since ara::com is used, the client using the UCM
service interface can be located on the same AUTOSAR Adaptive Platform, but
also remote clients are possible.

The service interface has been primarily designed with the goal to make it possible to
use standard diagnostic services for downloading and installing software updates for
the AUTOSAR Adaptive Platform. However, the methods and fields in the service
interface are designed in such a way that they can be used in principle by any Adaptive
Application. UCM does not impose any specific protocol on how data is transferred to
the AUTOSAR Adaptive Platform and how package processing is controlled. In
particular UCM does not expose diagnostic services.

27 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

As shown in Figure 7.2, wether the use case is an over-the-air update or garage update
done through diagnostics, it is not visible to the UCM. The UCM Client abstracts the use
case from the UCM and forwards the data stream and sequence control commands
to the UCM. Later in this document the term UCM Client is used to cover both roles:
Diagnostic Application and OTA Client.

Vehicle

«device»

Adaptive ECU

AUTOSAR Adaptive Platform Services + Foundation

DoIP socketDiagnostic

Manager (DM)

DoIP socket«ServiceProvider»

UCM

AUTOSAR Adaptive Application Layer

App B App ...App A

Diagnostic Application /

OTA Client

Server

Diagnostic Client

«optional»

«optional»

Cloud

Figure 7.2: Architecture overview for diagnostic use case

7.1.2.1 Software Package Management

The UCM update sequence consists three different phases:

• Software Package transfer: A phase in which, one or several Software
Packages are transferred from the UCM’s Client Application to the internal buffer
of the UCM. For further information see chapter 7.1.3.

• Software Package processing: A phase in which the UCM performs the oper-
ation (kInstall, kUpdate, kRemove) on the relevant SoftwareCluster. For
further information see chapter 7.1.5.

• Activation: A phase in which the UCM checks the dependencies of the Soft-
wareClusters that have been involved in the operation, then activates them
and finally check that all the SoftwareClusters can be executed properly (via
State Management) prior to finishing the update. For further information see
chapter 7.1.6

28 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.1.2.1.1 Software Package

[SWS_UCM_00122] Software Package utilization dThe unit for deployment that
the UCM shall take as input is called Software Package, see [1]. Each Software
Package shall address a single SoftwareCluster.c(RS_UCM_00026)

A SoftwareCluster can act in two roles:

• ‘Sub’-SoftwareCluster : It is a SoftwareCluster without diagnostic target
address, containing processes, executables and further elements

• ‘Root’-SoftwareCluster : It is a SoftwareCluster with a diagnostic target
address that may reference several other ‘Sub’-SoftwareClusters, which thus
form a logical group.

A SoftwareCluster can be of the following categories expressed by the attribute
SoftwareCluster.category :

• APPLICATION_LAYER: the SoftwareCluster can be removed by UCM

• PLATFORM_CORE: the SoftwareCluster cannot be removed as it would break
the system.

• PLATFORM: the SoftwareCluster is part of the platform software and can be
removed

[SWS_UCM_00245]{DRAFT} Software Cluster category dUCM shall not remove a
SoftwareCluster that has category set to PLATFORM_CORE.c(RS_UCM_00028,
RS_UCM_00029)

A Software Package has to be modelled as a so-called SoftwareCluster which
describes the content of a Software Package that is downloaded or uploaded to the
AUTOSAR Adaptive Platform, see [9].

The term Software Package is used for the "physical", uploadable Software
Package that is processed by UCM whereas the term SoftwareCluster is used
for the modeling element. In the model, the content of a SoftwareCluster is de-
fine by references to all required model elements. The SoftwareCluster and the
related model elements define the content of the manifest that is part of the Software
Package. The Software Package format and the update scope are described in
chapter "Content of a Software Package" as well as in [10].

7.1.2.1.2 Content of a Software Package

Each Software Package addresses a single SoftwareCluster and contains
manifests, executables and further data (depending on the role of the SoftwareClus-
ter) as the example sketched in Figure 7.3.

29 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Software Package A

Signed container

Software Package
Manifest

SoftwareClusterExecutables

Data

Manifests

Authentication tag

Figure 7.3: Software Package content description

A single Software Package is designed in a way that it could contain one or several
executables of Adaptive Applications, kernel or firmware updates, or updated
configuration and calibration data to be deployed on the AUTOSAR Adaptive Plat-
form. An exemplary implementation of the adaptive workflow with Software Pack-
ages can be seen in chapter Methodology and Manifest in [10]. For more details on
the Software Package class, you can refer to SoftwarePackage

[SWS_UCM_00112] Software Cluster and version dSoftwareCluster’s mani-
fest shall include a name and a version following description of StrongRevisionLa-
belString.c(RS_UCM_00002)

[SWS_UCM_CONSTR_00001] dIf any content (for instance an executable or persis-
tent data) of an already installed SoftwareCluster is modified by an incoming
Software Package, then the version number of the incoming SoftwareCluster
indicated in the Software Package shall be higher than the version number of the al-
ready installed SoftwareCluster.c(RS_UCM_00002, RS_UCM_00010, RS_UCM_-
00011)

If the constraint is violated, an error will be raised according to [SWS_UCM_00103].

A higher version number is achieved by an increment of the MajorVersion, the Mi-
norVersion, or the PatchVersion.

If there is a need to downgrade a failing SoftwareCluster (for instance, malfunction
in the field that was not detected at activation), it will therefore be needed to repackage
the same old SoftwareCluster that was properly working with an higher version
number.

[SWS_UCM_00190]{DRAFT} Reinstallation of older Software Cluster version
than previously removed dNew Software Clusters getting installed shall be com-
pared with the history of all installed Software Clusters to prevent installation of

30 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

a Software Cluster with a lower or equal version than previously installed.c(RS_-
UCM_00002, RS_UCM_00032)

[SWS_UCM_00130] Software Cluster and version error dIf SoftwareClus-
ter’s manifest does not contain any SoftwareCluster.version as specified in
[SWS_UCM_00112] [SWS_UCM_00190], UCM shall raise the ApplicationError
InvalidPackageManifest.c(RS_UCM_00002)

7.1.2.1.3 Applications Persisted Data

Updating and rolling back of persisted data is handled completely by the application
using persistency without involvement of UCM. A detailed explanation can be found in
the Persistency Specification [11]. An exception here is the removal of persistent data
after a SoftwareCluster is removed.

[SWS_UCM_00184]{DRAFT} Persistent data clean-up after Software Cluster re-
moval dUCM shall remove persistent data of a removed SoftwareCluster by ag-
gregating the information given in the application manifest, namely PersistencyKeyVal-
ueStorage.uri and PersistencyFileStorage.uri, in order to leave the AUTOSAR Adap-
tive Platform and the file system clean.c(RS_UCM_00026, RS_UCM_00017,
RS_UCM_00004)

For more details, please refer to [SWS_PER_00397] in Persistency Specification [11].

7.1.2.2 Runtime dependencies

Processes within a SoftwareCluster can have functional dependencies toward
other SoftwareClusters.

Dependencies are described in the SoftwareCluster metamodel, see [9].

[SWS_UCM_00120]{DRAFT} Runtime dependencies check dUCM shall check run-
time dependencies before the activation of the new software version. This action is
done in the context of Activate.c(RS_UCM_00007)

The rationale is, if UCM has to process several Software Packages, then execu-
tion dependencies may not be fulfilled at all times during the Software Packages
process but must be fulfilled before changes can be activated.

7.1.2.3 Update scope and State Management

Software Package processed by UCM can contain Adaptive Applications, up-
dates to AUTOSAR Adaptive Platform itself or to the underlying OS. Update type
depends on the content of the Software Package.

31 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00099]{DRAFT} Update of Adaptive Application dUCM shall be
able to update Adaptive Applicationsc(RS_UCM_00001)

[SWS_UCM_00100]{DRAFT} Update of Functional Clusters dUCM shall be
able to update all Functional Clusters, including UCM itself.c(RS_UCM_00028)

[SWS_UCM_00101]{DRAFT} Update of Host dUCM shall be able to update the un-
derlying OS hosting the AUTOSAR Adaptive Platform.c(RS_UCM_00029)

Definition of an updatable state with respect to the system setup is the OEM respon-
sibility. Based on the system setup and the application, the system might need to be
switched into a predefined state, to free resource to speed up the update, to block nor-
mal usage of software which might cause interruptions to update process and to block
using functionality which might be interrupted by the update sequence.

[SWS_UCM_00257]{DRAFT} Update session dTo confirm the system is in an up-
datable state, UCM shall start an update session by calling State Management Up-
dateRequest Service Interface StartUpdateSessionmethod after its dependency
check triggered by Activate method call.c(RS_UCM_00026, RS_UCM_00003)

[SWS_UCM_00258]{DRAFT} Update session rejected dIf State Management
UpdateRequest Service Interface StartUpdateSession method call raises er-
ror kRejected, UCM shall transition from kActivating to kReady states and Ac-
tivate method call shall return ApplicationError UpdateSessionRejected.c
(RS_UCM_00026, RS_UCM_00024)

If update session could be recurrently rejected, it is up to implementer to cache the
dependency check result in order to avoid unnecessary computation and compute it
only once.

During the update session, the minimum applications required for the Update process
should be executed. This way system is more robust, more resources are free and
user is blocked from using applications, of which failure could cause safety risk to the
user.

Update of some components require a Machine reset to be performed. These com-
ponents should be configured to be part of Function Group MachineFG, as the
update sequence of Function Group MachineFG includes a Machine reset. Ex-
ecution Management, State Management, Communication Management and
UCM itself are good examples which probably require a Machine reset to activate the up-
date. Other such components could be applications involved in the update sequence
or applications involved in safety monitoring. Further details on Function Group
MachineFG can be found in State Management.

7.1.3 Transferring Software Packages

To speed up the overall data transmission time, the package transfer is decoupled
from the processing and activation process. This section describes requirements for
initiation of a data transfer, the data transmission and ending of the data transmission.

32 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Each Software Package gets its own state as soon as it is being transferred to
UCM. The state machines in Fig. 7.4 and Fig. 7.5 specify the lifecycle of a Software
Package that is transferred to and processed by UCM. During this lifecycle, a Soft-
ware Package is uniquely identified with an id that UCM provides to the client.

The UCM has the possibility to keep the Software Package in kTransferred states
in case it failed and retry later: transferring Software Package can be costly, if
it is authenticated, there could be no reason to delete it if the update has not been
successfully finished.

TRANSFERRING TRANSFERRED PROCESSING

PROCESSED

Initi al

Final

PROCESSING_STREAM

P rocessSwPackage
TransferData

Cancel,
RevertProcessedSwPackages

D eleteTransfer

TransferExit

Cancel, ProcessingError,
RevertProcessedSwPackages

TransferStart

TransferData,
TransferExit

Finish,
RevertProcessedSwPackages

D eleteTransfer

ProcessSw
Package

[ProcessSw
PackageD

one]

D
eleteTransfer

[ProcessSwPackageDone]

Figure 7.4: State Machine representing Software Packages lifecycle, with storing op-
tion

33 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

TRANSFERRING TRANSFERRED PROCESSING

PROCESSED

Initial

Final

PROCESSING_STREAM

RevertProcessedSwPackages

TransferData

TransferExit

Finish,
RevertProcessedSwPackages,
D eleteTransfer

[ProcessSw
PackageD

one]

DeleteTransfer

TransferStart

P rocessSwPackage

ProcessSw
Package

TransferData,
TransferExit

Cancel,
ProcessingError

D
eleteTransfer

Cancel,
RevertProcessedSwPackages

[ProcessSwPackageDone]

Figure 7.5: State Machine representing Software Packages lifecycle, without storing
option

[SWS_UCM_00007] Data transfer at any time dUCM shall provide support to trans-
fer Software Packages at any time when UCM is running. Transferring is decou-
pled from the UCM Package Management states.c(RS_UCM_00013, RS_UCM_00019,
RS_UCM_00025)

[SWS_UCM_00088] Preparation of data transfer dData transfer shall be prepared
with the method TransferStart. In the preparation step the number of bytes to
be transferred is provided by the client and UCM assigns an id for the Software
Package to be transferred.c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00140] UCM insufficient memory dTransferStart method shall raise
the ApplicationError InsufficientMemory if the UCM buffer has not enough
resources to store the corresponding Software Package.c(RS_UCM_00013, RS_-
UCM_00019, RS_UCM_00025)

While a Software Package is being transferred, if UCM receives a subsequent
TransferStart call targeting another Software Package, UCM should make sure
that the sum of the size of both Software Packages (the one being transferred and
the one requested to be transferred) does not exceed the size of the UCM buffer. Oth-
erwise, the TransferStart should raise the ApplicationError Insufficient-
Memory and the newly requested transmission should be rejected as described above.

34 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00008] Executing the data transfer dAfter preparing of the data transfer,
the transmission of the Software Package block-wise shall be supported by the
method TransferData.c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00243]{DRAFT} Too big block size received by UCM dIn the case the
received block size with TransferData exceeds the block size returned by Trans-
ferStart for the same TransferId, UCM shall raise the ApplicationError Incor-
rectBlockSize.c(RS_UCM_00013, RS_UCM_00014, RS_UCM_00025)

[SWS_UCM_00203]{DRAFT} TransferData InvalidTransferId dTransferData shall
raise the error ApplicationError InvalidTransferId in case an invalid Trans-
ferId (An ID that was not initiated by TransferStart or marked invalid by DeleteTransfer
or RevertProcessedSwPackages) is sent by the client.c(RS_UCM_00019)

[SWS_UCM_00145] Sequential order of data transfer dThe method Transfer-
Data shall support the parameter blockCounter that shall start with 0x01 and be
incremented by one for each subsequent block.c(RS_UCM_00013, RS_UCM_00019,
RS_UCM_00025)

[SWS_UCM_00204]{DRAFT} TransferData IncorrectBlock dTransferData shall
raise ApplicationError IncorrectBlock upon receipt of a block counter value
that is successfully transmitted to UCM before or upon receipt of an unexpected block
counter value.c(RS_UCM_00014, RS_UCM_00019)

[SWS_UCM_00205]{DRAFT} TransferData IncorrectSize dIn case the trans-
ferred Software package size exceeds the provided size in TransferStart, Trans-
ferData shall raise ApplicationError IncorrectSizec(RS_UCM_00014, RS_-
UCM_00019)

[SWS_UCM_00206]{DRAFT} TransferData InsufficientMemory dTransferData
shall raise the error ApplicationError InsufficientMemory if resources to
store the Software Package ceased to exist during the transfer operation.c(RS_-
UCM_00013, RS_UCM_00019)

[SWS_UCM_00207]{DRAFT} TransferData BlockInconsistent dTransferData
shall raise the error ApplicationError BlockInconsistent in case Consistency
check for transferred block fails.c(RS_UCM_00012)

[SWS_UCM_00010] End of data transfer dAfter transmission of a Software Pack-
age is completed, the transmission can be finished with method TransferExit.c
(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00208]{DRAFT} TransferData OperationNotPermitted dCalling
TransferData after calling TransferExit for a specific TransferId shall raise the error
ApplicationError OperationNotPermittedc(RS_UCM_00019)

[SWS_UCM_00087] Insufficient amount of data transferred dDuring Transfer-
Exit UCM shall check if all blocks of the Software Package have been transferred
according to the size parameter of TransferStart. If not UCM shall return Ap-
plicationError InsufficientData.c(RS_UCM_00013, RS_UCM_00019, RS_-
UCM_00025)

35 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00209]{DRAFT} TransferData PackageInconsistent dTransferData
shall raise the error ApplicationError PackageInconsistent in case the Soft-
ware Package integrity check fails.c(RS_UCM_00006, RS_UCM_00012)

[SWS_UCM_00092] Software Package integrity dDuring TransferExit UCM shall
raise the ApplicationError PackageInconsistent if the Software Package in-
tegrity check fails. This Software Package integrity check may be realized by the UCM
via a Software Package Checksum check or via other mechanisms.c(RS_UCM_00013,
RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00028]{DRAFT} Software Package Authentication dUCM shall
check authentication of the Software Package or the transferred block before pro-
cessing it.c(RS_UCM_00006)

[SWS_UCM_00250]{DRAFT} TransferData AuthenticationFailed dTransferData
shall raise the error ApplicationError AuthenticationFailed in case the au-
thentication of the Software Package fails.c(RS_UCM_00006)

Software Package contains authentication and integrity tags, which are used during
the transfer sequence to authenticate the content of the Software Package.

[SWS_UCM_00098]{DRAFT} Software Package Authentication failure dUCM
shall raise the ApplicationError AuthenticationFailed, if the Software
Package authentication check fails.c(RS_UCM_00013, RS_UCM_00019, RS_UCM_-
00025)

[SWS_UCM_00075] Multiple data transfers in parallel dHandling of multiple data
transfers in parallel shall be supported by UCM.c(RS_UCM_00019)

If UCM provide enough buffering resources for Software Packages, several pack-
ages could be transferred (in parallel) before they are processed one after the other.
The processing (i.e. unpacking and actually applying changes to the AUTOSAR Adap-
tive Platform) of Software Packages described by the state kProcessing is
further detailed in Sect. 7.1.5.

[SWS_UCM_00021] Deleting transferred Software Packages dUCM shall provide
a method DeleteTransfer that shall delete the targeted Software Package and
free the resources reserved to store that Software Package.c(RS_UCM_00018)

[SWS_UCM_00093]{OBSOLETE} Transfer sequence dFor each Software Pack-
age UCM shall ensure that TransferStart, TransferData and TransferExit
had been used.c(RS_UCM_00019)

[SWS_UCM_00148] Transfer sequence order dCalling TransferExit without call-
ing TransferData at least once or after TransferExit is called for a specific Trans-
ferID, shall raise the ApplicationError OperationNotPermitted.c(RS_UCM_-
00019)

[SWS_UCM_00211]{DRAFT} TransferData TransferInterrupted dTransferData
shall raise the error ApplicationError TransferInterrupted if transfer has
been interrupted with a higher priority protocol.c(RS_UCM_00014)

36 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00212]{DRAFT} TransferExit InvalidTransferId dTransferExit shall
raise the error ApplicationError InvalidTransferId in case an invalid Trans-
ferId is sent by the client.c(RS_UCM_00019)

[SWS_UCM_00069]{DRAFT} Report information on Software Packages dUCM
shall provide a method GetSwPackages of the interface service PackageManage-
ment to provide the Software Packages’ identifiers, names, versions, states, con-
secutive bytes received and consecutive blocks received.c(RS_UCM_00010)

If Software Package is in kTransferring state, it is not possible to get versions
or names as manifest could not be complete or accessible, therefore method GetSw-
Packages should return empty values except for TransferID, ConsecutiveBytesRe-
ceived and ConsecutiveBlocksReceived at this particular state.

[SWS_UCM_00213]{DRAFT} TransferExit InvalidPackageManifest
dTransferExit shall raise the error ApplicationError InvalidPackageMan-
ifest upon receival of an invalid manifest.c(RS_UCM_00012)

[SWS_UCM_00214]{DRAFT} DeleteTransfer InvalidTransferId dDeleteTransfer
shall raise the error ApplicationError InvalidTransferId in case an invalid
TransferId is sent by the client.c(RS_UCM_00019)

[SWS_UCM_00215]{DRAFT} DeleteTransfer OperationNotPermitted dCalling
DeleteTransfer during processing or during the processing stream shall raise the er-
ror ApplicationError OperationNotPermitted.c(RS_UCM_00019)

[SWS_UCM_00216]{DRAFT} Validity of TransferId dThe TransferId of a Software
Package shall be invalidated for further use when it reaches final lifecycle state.c(RS_-
UCM_00019)

[SWS_UCM_CONSTR_00010]{DRAFT} UCM Client update sequence dAny UCM
Client should confirm that UCM is in kIdle CurrentStatus state before starting any
update (transfer/process/activate).c(RS_UCM_00035)

7.1.4 Processing of Software Packages from a stream

It is also possible to process a Software Package while the transfer is still ongoing.
The following requirements apply for this use case.

[SWS_UCM_00165]{DRAFT} Processing from stream dThe UCM may support call-
ing ProcessSwPackage directly from stream without waiting to receive the Soft-
ware Package completely.c(RS_UCM_00001, RS_UCM_00003, RS_UCM_00004,
RS_UCM_00025)

[SWS_UCM_00166]{DRAFT} Processing from stream state dIf UCM supports pro-
cessing from stream and is in state kIdle or kReady, the method ProcessSwPack-
age for a Software Package in state kTransferring shall set this Software
Package to state kProcessingStream.c(RS_UCM_00024, RS_UCM_00025)

37 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00167]{DRAFT} Cancelling streamed packages dAll temporary and
processed data of a Software Package in state kProcessingStream shall be re-
moved if Cancel is called.c(RS_UCM_00020, RS_UCM_00025)

[SWS_UCM_00168]{DRAFT} Transferring while processing from stream dSoft-
ware Package state shall remain in kProcessingStream when TransferData is
called.c(RS_UCM_00024, RS_UCM_00025)

[SWS_UCM_00169]{DRAFT} Finishing transfer while processing from stream d
Software Package state shall be set to kProcessed when TransferExit is
called and the Software Package is completely processed.c(RS_UCM_00024,
RS_UCM_00025)

[SWS_UCM_00200]{DRAFT} Failing authentication dUCM shall delete the Soft-
ware Package if authentication is failing at TransferExit or ProcessSwPackage
call.c(RS_UCM_00039, RS_UCM_00006)

7.1.5 Processing Software Packages

In contrast to package transmission, only one Software Package can be processed
at the same time to ensure consistency of the system. In the following, a software
or package processing can involve any combination of an installation, update or re-
moval of applications, configuration data, calibration data or manifests. It is up to the
vendor-specific metadata inside a Software Package to describe the tasks UCM has
to perform for its processing. For a removal, this might involve metadata describing
which data needs to be deleted. Nevertheless, the communication sequence between
the triggering application of the software modification and UCM is the same in any case.
For an update of an existing application, the Software Package can contain only
partial data, e.g. just an updated version of the execution manifest.

[SWS_UCM_00001] Starting the package processing dUCM shall provide a method
ProcessSwPackage to process transferred Software Package. id corresponding
to Software Package shall be provided for this method.c(RS_UCM_00001, RS_-
UCM_00004, RS_UCM_00005)

[SWS_UCM_00137] Processing several update Software Packages dUCM shall
support processing of several Software Packages, not in parallel, by calling
method ProcessSwPackage several times in sequence.c(RS_UCM_00001, RS_-
UCM_00004, RS_UCM_00005)

[SWS_UCM_00217]{DRAFT} ProcessSwPackage InsufficientMemory dPro-
cessSwPackage method shall raise the ApplicationError InsufficientMem-
ory if the UCM buffer has not enough resources to process the corresponding Soft-
ware Package.c(RS_UCM_00013, RS_UCM_00025)

[SWS_UCM_00218]{DRAFT} ProcessSwPackage InvalidTransferId dProcessS-
wPackage shall raise the error ApplicationError InvalidTransferId in case
an invalid TransferId is sent by the client.c(RS_UCM_00026)

38 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00219]{DRAFT} ProcessSwPackage OperationNotPermitted dPro-
cessSwPackage shall raise the error ApplicationError OperationNotPermit-
ted in case the processing of the specified Software Package is already done, or in
case the processed Software Package action is update or removal of a non-existing
software cluster or in case streaming is not possible.c(RS_UCM_00025, RS_UCM_-
00026)

During package processing, the progress is provided.

[SWS_UCM_00018] Providing Progress Information dUCM shall provide a method
GetSwProcessProgress to query the progress of executing the ProcessSwPack-
age method call for provided TransferId. Parameter progress shall be set to a value
representing the progress between 0% and 100% (0x00 ... 0x64).c(RS_UCM_00023)

[SWS_UCM_00220]{DRAFT} GetSwProcessProgress InvalidTransferId
dGetSwProcessProgress shall raise the error ApplicationError Invalid-
TransferId in case an invalid TransferId is sent by the client.c(RS_UCM_00023)

[SWS_UCM_00029] Consistency Check of Manifest dUCM shall validate the content
of the manifest against the schema defined for the meta-data(eg: for missing parameter
or for value out of range of the parameter) and shall raise the ApplicationError
InvalidPackageManifest if it finds discrepancies there.c(RS_UCM_00012)

[SWS_UCM_00104] Consistency Check of processed Package dUCM shall raise
the ApplicationError ProcessedSoftwarePackageInconsistent if integrity
check of the processed Software Packages fails. This operation is realized by the
UCM to verify that it did not corrupt any files during the processing. This integrity check
may be realized by the UCM by checking the payload Checksum or by any other mech-
anisms.c(RS_UCM_00012)

[SWS_UCM_00230]{DRAFT} ProcessSwPackage AuthenticationFailed
dProcessSwPackage shall raise the error ApplicationError Authentica-
tionFailed in case the authentication of the Software Package fails.c(RS_-
UCM_00006)

When AuthenticationFailed error is raised it is up to client to decide if a deleteTransfer
will be called or not. The behavior may vary depending on the life cycle meaning R&D
phase or on the field phase.

[SWS_UCM_00231]{DRAFT} ProcessSwPackage IncompatibleDelta
dProcessSwPackage shall raise the error ApplicationError Incompati-
bleDelta if delta package dependency fails at processing.c(RS_UCM_00007)

[SWS_UCM_00232]{DRAFT} ProcessSwPackage dIf ApplicationError In-
compatibleDelta is raised, UCM shall terminate the processing and shall delete the
software package blocks that has been transferred.c(RS_UCM_00007)

[SWS_UCM_00003] Cancelling the package processing dUCM shall provide a
method Cancel to cancel the running package processing. UCM shall then abort the
current package processing task, undo any changes and free any reserved resources.c
(RS_UCM_00020)

39 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00233]{DRAFT} Cancel Operation CancelFailed dCancel shall raise
the error ApplicationError CancelFailed in case cancelling of processing of a
Software Package fails.c(RS_UCM_00020)

[SWS_UCM_00234]{DRAFT} Cancel OperationNotPermitted dCancel shall raise
the error ApplicationError OperationNotPermitted in case the targeted
Software Package processing has not yet started or has been already finished.c
(RS_UCM_00020)

[SWS_UCM_00235]{DRAFT} Cancel InvalidTransferId dCancel shall raise the error
ApplicationError InvalidTransferId in case an invalid TransferId is sent by
the client.c(RS_UCM_00020)

[SWS_UCM_00024] Revert all processed Software Packages dUCM shall pro-
vide a method RevertProcessedSwPackages to revert all changes done with Pro-
cessSwPackage.c(RS_UCM_00008)

The main difference between a RevertProcessedSwPackages and a Rollback is
that the former can only be performed before the successful activation of the targeted
Software Package(s) while the latter can only be performed after such activation.

[SWS_UCM_00236]{DRAFT} RevertProcessedSwPackages NotAbleToRevert-
Packages dRevertProcessedSwPackages shall raise the error Application-
Error NotAbleToRevertPackages in case reverting of processed Software
Packages have failed.c(RS_UCM_00020)

[SWS_UCM_00237]{DRAFT} RevertProcessedSwPackages OperationNotPer-
mitted dRevertProcessedSwPackages method call shall raise the error Applica-
tionError OperationNotPermitted in case the processed Software Pack-
ages are successfully activated or it is called at other states than kReady (Soft-
ware Package(s) are finished being processed) or kProcessing states.c(RS_-
UCM_00020)

Depending on the capabilities of UCM and of the updated target, Cancel and Revert-
ProcessedSwPackages is used to revert all the changes that have been applied by
ProcessSwPackage. For example, if an application with large resource files is up-
dated “in place” (i.e. in the same partition) then it might not be feasible to revert the
update. In this case, to perform a rollback the triggering application could download a
Software Package to restore a stable version of the application.

[SWS_UCM_00161] Check Software Package version compatibility against UCM
version dAt ProcessSwPackage, TransferData or TransferExit calls, UCM shall raise
ApplicationError IncompatiblePackageVersion if the version for the Soft-
ware Package transferred or to be processed is not compatible with the current ver-
sion of UCMc(RS_UCM_00007)

The Software Package is generated by a tooling including a packager which version
could not match with the UCM version, leading to manifest interpretation issues for
instance.

40 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.1.6 Activation and Rollback

UCM should notify the activation or rollback of Software Packages to other Func-
tional Clusters of the AUTOSAR Adaptive Platform. Vendor specific solution
dictates to which modules this information is available, in which form and if this is done
directly when change is done or when change is executed.

7.1.6.1 Activation

The SoftwareCluster state kPresent does not express whether a Soft-
wareCluster is currently executed or not.

[SWS_UCM_00107] Activated state dUCM state kActivated shall express that new
version of updated SoftwareCluster is verified.c(RS_UCM_00008, RS_UCM_-
00030)

The state management on the level of execution is handled by the UCM’s client control-
ling the update process.

UCM has to be able to update several SoftwareClusters for an update campaign.
However, these SoftwareClusters could have dependencies not satisfied if updates
are processed and activated one by one. Therefore, UCM splits the activation action
from the general package processing.

[SWS_UCM_00026] Dependency Check dAt activation (i.e. after Activate method
is called), UCM shall perform a dependency check to ensure that all the Software
Packages having dependencies toward each other have been processed successfully,
otherwise return ApplicationError MissingDependencies.c(RS_UCM_00007)

[SWS_UCM_00027] Delta Package activation dApplicable version of Soft-
wareCluster on which to apply delta shall be included into related SoftwarePack-
age’s deltaPackageApplicableVersion attribute.c(RS_UCM_00007)

[SWS_UCM_00201]{DRAFT} Delta Package dependency error dThe Activate
method of the service interface shall raise the error IncompatibleDelta if ver-
sion present in SoftwarePackage’s deltaPackageApplicableVersion attribute does
not correspond to the version already present in the AUTOSAR Adaptive Plat-
form.c(RS_UCM_00007)

[SWS_UCM_00025] Activation of SoftwareClusters dUCM shall offer method Ac-
tivate to enable execution of any pending changes from the previously processed
Software Packages.c(RS_UCM_00021)

After Activate, the new set of SoftwareClusters can be started. Activation covers
all the processed Software Packages for all the clients.

[SWS_UCM_00022] Shared Activation of Software Packages dUCM shall acti-
vate all the processed Software Packages when Activate is called.c(RS_UCM_-
00021)

41 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

The activation method could lead to a full system reset. When Software Package
updates underlying OS, AUTOSAR Adaptive Platform or any Adaptive Appli-
cation which is configured to be part of Function Group MachineFG, the execu-
tion of updated software occurs through system reset by calling State Management
UpdateRequest Service Interface ResetMachine method. Meta-data of Software
Package defines the activation method.

The UCM does not trigger the restart of processed software. This needs to be performed
by the client application. This is due to the fact that such restart might need to be syn-
chronized between several Platforms/ECUs (e.g. during an update campaign where
several dependent Software Packages from several ECUs have to be updated).

In principle, it is possible to activate multiple versions of the same SoftwareCluster
in one activation step. This could be useful for example with delta package updates
but does not apply to firmware updates. The specification does not prohibit to create
this kind of chained updates. The decision to use chained updates should be based on
safety aspects and the applicability of the underlying update technology, if the update
is for a classic or an adaptive platform, if a file system is involved or if the used platform
even support it.

[SWS_UCM_00241]{DRAFT} Activate OperationNotPermitted dActivate shall
raise the error ApplicationError OperationNotPermitted in case the UCM
state is not kReady.c(RS_UCM_00021)

[SWS_UCM_00242]{DRAFT} Activate PreActivationFailed dActivate shall raise
the error ApplicationError PreActivationFailed in case of activation state
transition failure from State Management side.c(RS_SM_00001)

7.1.6.2 Rollback

[SWS_UCM_00005] Rollback to the software prior to Finish the update process d
UCM shall provide a method Rollback to recover from an activation that went wrong.c
(RS_UCM_00008)

Rollback can be called in the case of A/B partitions or UCM uses some other solution to
maintain backups of updated or removed Software Packages.

[SWS_UCM_00110] Rolling-back the software update dAt kRolling-Back state,
UCM shall disable the changes done by the software update by calling State Manage-
ment UpdateRequest Service Interface PrepareRollback method for each Func-
tion Group of the processed Software Cluster in the update session. Then
UCM shall call State Management UpdateRequest Service Interface ResetMa-
chine method if any Software Cluster requires a machine reboot to be rolled
back.c(RS_UCM_00008)

[SWS_UCM_00238]{DRAFT} Rollback NotAbleToRollback dRollback shall raise
the error ApplicationError NotAbleToRollback in case failure has occurred
during Rollback.c(RS_UCM_00020)

42 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00239]{DRAFT} Rollback OperationNotPermitted dRollback shall
raise the error ApplicationError OperationNotPermitted in case UCM current
state is not kActivated nor kVerifying.c(RS_UCM_00020)

7.1.6.3 Boot options

During update process the executed software is switched from original software to
updated software and in case of rollback, from updated software to original version.
Which version of software is executed is dependent on the UCM state and this is man-
aged by the UCM. In case of platform and OS update the switch between software
versions occurs through system reset and depending on the system design the Exe-
cution Management [2] might be started before UCM. In this case there can’t be direct
interface between UCM and Execution Management [2] to define which versions of soft-
ware would be executed. Instead this would be controlled through persistent controls
which are referred as Boot options in this document.

[SWS_UCM_00094] Management of executable software dUCM shall manage which
version of software is available for the Execution Management [2] to launch.c(RS_-
UCM_00021)

During the kActivating state UCM modifies the Boot options so that in the next
restart for the updated software the new versions will be executed. In the kRolling-
Back state, UCM modifies the Boot options so that in the next restart of the updated
software the original versions will be executed.

7.1.6.4 Finishing activation

[SWS_UCM_00259]{DRAFT} Ending the update session dUCM shall call State
Management UpdateRequest Service Interface StopUpdateSession method
when UCM is entering the kCleaning-up state.c(RS_UCM_00021, RS_UCM_00018)

[SWS_UCM_00020]{DRAFT} Finishing the packages activation dUCM shall provide
a method Finish to commit all the changes and clean up all temporary data of the
packages processed.c(RS_UCM_00015)

UCM should also remove Software Packages, logs or any older versions of changed
software to save storage space. It is up to implementer to remove or not the Software
Packages.

[SWS_UCM_00240]{DRAFT} Finish OperationNotPermitted dFinish shall raise
the error ApplicationError OperationNotPermitted in case there are no acti-
vated nor rolled-back Software Packages pending finalization (i.e UCM state is not
kActivated nor kRolledBack.c(RS_UCM_00001, RS_UCM_00026)

For UCM to be able to free all unneeded resources while processing the Finish re-
quest, it is up to the vendor and platform specific implementation to make sure that
obsolete versions of changed SoftwareClusters aren’t executed anymore.

43 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.1.7 Status Reporting

Once Software Packages are transferred to UCM, they are ready to be processed
to finally apply changes to the AUTOSAR Adaptive Platform. In contrast to the
transmission, the processing and activation tasks have to happen in a strict sequential
order.

To give an overview of the update sequence, the global state of UCM is described in
this section. The details of the processing and activation phases and the methods are
specified in the 7.1.5 and 7.1.6.

The global state of UCM can be queried using the field CurrentStatus. The state
machine for CurrentStatus is shown in Fig. 7.6.

[SWS_UCM_00019] Status Field of Package Management dThe global state of UCM
shall be provided using the field CurrentStatusc(RS_UCM_00024)

Figure 7.6: State Machine for the package processing using service interface: Package-
Management

UCM supported method calls for each value of field CurrentStatus are shown in Fig.
7.6.

[SWS_UCM_00086] Unsupported method calls dUnsupported method calls shall
raise the ApplicationError OperationNotPermitted.c(RS_UCM_00024)

44 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00080] Idle state of Package Management dkIdle shall be the default
state.c(RS_UCM_00024)

[SWS_UCM_00150] Cancellation of a Software Package processing dProcessS-
wPackage method shall raise the ApplicationError ProcessSwPackageCan-
celled if the Cancel method has been called during the processing of a Software
Package.c(RS_UCM_00024)

[SWS_UCM_00149] Return to the Idle state from Processing state dkIdle state
shall be set when ProcessSwPackage returns with error code ProcessSwPackage-
Cancelled and if no other Software Packages were previously processed during
this processing operation.c(RS_UCM_00024)

[SWS_UCM_00151] Entering the Ready state of Package Management after a
Cancel call dIf ProcessSwPackage has been cancelled, it shall return error code
ProcessSwPackageCancelled and set state to kReady only if at least one other
Software Package was previously processed during this processing operation.c
(RS_UCM_00024)

[SWS_UCM_00081] Processing state of Package Management dkProcessing
state shall be set only if ProcessSwPackage has been called. This shall only be
possible, if CurrentStatus is reported as kIdle or kReady.c(RS_UCM_00024)

[SWS_UCM_00017] Sequential Software Package Processing dOnce method
ProcessSwPackage has been called by a client, further calls to the same method
shall be rejected with ApplicationError ServiceBusy as long as CurrentSta-
tus is different than kIdle or kReady.c(RS_UCM_00001, RS_UCM_00003, RS_-
UCM_00026)

[SWS_UCM_00083] Entering the Ready state of Package Management after a
successful processing operation dkReady state shall be set after a Software
Package processing has been completed successfully.c(RS_UCM_00024)

[SWS_UCM_00152] Entering the Ready state of Package Management after a
missing dependency dkReady state shall be set when Activate fails due to an
ApplicationError MissingDependencies.c(RS_UCM_00024)

[SWS_UCM_00084]{DRAFT} Entering the kActivating state of Package Manage-
ment dkActivating shall be set when Activate is called. This triggers the depen-
dency check and returns ApplicationError MissingDependencies if this check
fails.c(RS_UCM_00024)

[SWS_UCM_00153]{DRAFT} Action in kActivating state of Package Management
dWhen kActivating is set and after the State Management UpdateRequest
Service Interface StartUpdateSession method call by UCM, the UCM shall call the
State Management UpdateRequest Service Interface PrepareUpdate method
for each Function Groups to eventually stop them.c(RS_UCM_00024)

[SWS_UCM_00260]{DRAFT} PrepareUpdate, VerifyUpdate and PrepareRollback
orders dUCM shall compute the order of the State Management UpdateRequest
Service Interface PrepareUpdate, VerifyUpdate and PrepareRollback method

45 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

calls from the dependency model included in the Software Cluster manifests.c
(RS_UCM_00007, RS_UCM_00021, RS_UCM_00030)

[SWS_UCM_00261]{DRAFT} PrepareUpdate, VerifyUpdate and PrepareRollback
synchronous calls dCalls to State Management UpdateRequest Service Inter-
face PrepareUpdate, VerifyUpdate and PrepareRollback methods shall not
be concurrent.c(RS_UCM_00026)

[SWS_UCM_00262]{DRAFT} Update preparation rejected dIf any one of the State
Management UpdateRequest Service Interface PrepareUpdate method call re-
turns error kRejected too many times or for too long (implementation specific thresh-
olds), UCM shall transition from kActivating to kReady states.c(RS_UCM_00026)

[SWS_UCM_00263]{DRAFT} Update preparation failure dIf any one of the State
Management UpdateRequest Service Interface PrepareUpdate method returns
error kPrepareFailed, UCM shall transition from kActivating to kReady states.c
(RS_UCM_00026)

[SWS_UCM_00154]{DRAFT} Entering the Verifying state of Package Manage-
ment dkVerifying shall be set when the dependency check have been performed
successfully (all dependencies are satisfied) and that the preparation of the Soft-
ware Clusters by the State Management has been successfully performed.c
(RS_UCM_00024)

The machine could most likely be restarted in case a A/B partition is used. In case
the A/B partition is not used, all affected Function Groups or the platform could be
restarted. Immediately after the processed Software Package has been restarted,
a system check has to be performed in order to make sure the machine is able to start
up as expected. With this check it is verified that other safety relevant software like
Functional Cluster Platform Health Manager [12] is running and user can
be protected from any issues caused by the update after the update has finished.

An update could most likely require to reparse the manifests if a machine reset is not
needed. It is up to implementer to define if the most suitable timing is after performing
the atomic activation of the Software Clusters (switching A/B partition, changing
symlinks, etc.) or being triggered by the State Management after the first call of
State Management UpdateRequest Service Interface VerifyUpdate method.

[SWS_UCM_00085]{DRAFT} Entering the kActivated state of Package Manage-
ment dkActivated state shall be set when the machine or all impacted Function
Groups (the ones related to the processed Software Package) have been suc-
cessfully restarted and verified indicated by successful return of State Management
UpdateRequest Service Interface VerifyUpdate method calls.c(RS_UCM_00024)

kVerifying state gives the client controlling the update process a chance to perform
verification test by calling State Management UpdateRequest Service Interface
[SWS_SM_91017] VerifyUpdate method, though functionality in verify state can
be limited. Client can also coordinate the results over several AUTOSAR Adaptive
Platforms and still perform a Rollback if verification indicates the need for it.

46 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

If the system check is successful, the client can decide either to Rollback the current
active processing so that the previous processed working software gets started, or to
perform Finish so that the changes of processed software become permanent. By
calling Finish a clean-up is initiated and in case of A/B partition, a swap between
the partitions happens and the newly inactive partition becomes a copy of the newly
active partition. In case Finish succeeds (including the clean-up), the current Cur-
rentStatus changes to kIdle.

For Rollback the update software needs to be deactivated and possibly reactivated
from original version, e.g. self-update of UCM. For this reason Rollback is also
performed through two states, similarly as activation. Calling Rollback sets UCM
into kRollingBack state where original software version is made executable and
where original software is activated by the State Management. This is started by
calling State Management UpdateRequest Service Interface [SWS_SM_91017]
PrepareRollback method for each Software Cluster. On success, UCM goes to
kRolled-Back state. In this state all the changes introduced during update process
have been deactivated and can be cleaned by calling Finish.

[SWS_UCM_00126]{DRAFT} Entering the kRolling-Back state after a Rollback
call dThe state kRolling-Back shall be set when Rollback is called.c(RS_UCM_-
00008, RS_UCM_00030)

[SWS_UCM_00155]{DRAFT} Entering the kRolling-Back state after a failure in
the kVerifying state dThe state kRolling-Back shall be set if any of the State
Management UpdateRequest Service Interface VerifyUpdate method calls re-
turns the result kVerifyFailed, indicating an internal error in UCM.c(RS_UCM_-
00008, RS_UCM_00030)

[SWS_UCM_00264]{DRAFT} Update verification rejected dIf any one of the State
Management UpdateRequest Service Interface VerifyUpdate returns error kRe-
jected too many times or for too long (implementation specific thresholds), UCM shall
transition to kRolling-Back state.c(RS_UCM_00030, RS_UCM_00008)

[SWS_UCM_00111]{DRAFT} Entering the kRolled-Back state dThe state
kRolled-Back shall be set after all calls to State Management UpdateRequest
Service Interface PrepareRollback have returned successfully.c(RS_UCM_00008,
RS_UCM_00030)

[SWS_UCM_00146] Entering the Cleaning-up state after a Finish call dThe state
kCleaning-up shall be set when Finish is called and the UCM starts to perform
cleanup actions.c(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00162] Entering the Cleaning-up state after a RevertProcessedSw-
Packages call dThe state kCleaning-up shall be set when RevertProcessedSw-
Packages is called in kProcessing or kReady states and the UCM starts to perform
cleanup actions.c(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00163] Action in Cleaning-up state dWhen kCleaning-up state is set,
the UCM shall clean up all data of the processed packages that are not needed any-
more.c(RS_UCM_00008, RS_UCM_00030)

47 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_00164] Cleaning up of Software Packages dIn kCleaning-up state,
the UCM may remove (from the UCM buffer for instance) the "physical" Software Pack-
age (e.g. zip file) that was used to transport the the SoftwareCluster to the UCM.c
(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00127] Finishing update sequence dkIdle shall be set when Finish
is called and the clean-up has been successfully performed. This finishes the update
sequence and next sequence can be started.c(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00147] Return to the Idle state from Cleaning-up state dkIdle state
shall be set when the Clean-up operation has been completed successfully.c(RS_-
UCM_00024)

7.1.8 Robustness against reset

Failure during over-the-air updates could lead into corrupted or inconsistent software
configuration and further updates might be blocked. For this reason UCM needs to be
robust against interruptions like power downs.

[SWS_UCM_00157] Detection of reset dAt start up UCM shall identify if uncontrolled
reset occurred.c(RS_UCM_00027)

[SWS_UCM_00158] Cleanup of interrupted actions dAfter an uncontrolled reset,
UCM shall check non volatile memory integrity, recover processed artifacts in case it
is corrupted and resume interrupted actions in order to return the system into a state
from where UCM can continue serving its Clients.c(RS_UCM_00027)

7.1.8.1 Boot monitoring

Activation failure during OS and Platform-self updates can lead to a state in which the
system is not able to reach a point where UCM and the client are able to function as
expected and thus not able to execute the rollback. For these cases the system should
include component which is responsible to monitor that the OS and platform will start
up correctly. In case of failure, the Boot monitoring component should trigger a reset
or modify the boot options to trigger a rollback.

7.1.9 History

[SWS_UCM_00115]{DRAFT} History dUCM shall provide a method GetHistory to
retrieve all actions that have been performed by UCM when exiting kVerifying state
from a specific time window input parameter.c(RS_UCM_00032)

[SWS_UCM_00160]{DRAFT} Processing results records dUCM shall save activation
time and activation result of processed Software Packages in the history.c(RS_-
UCM_00032)

48 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.1.10 Version Reporting

[SWS_UCM_00004] Report software information dUCM shall provide a method
GetSwClusterInfo of the interface service PackageManagement to provide the
identifiers and versions of the SoftwareClusters that are in state kPresent.c(RS_-
UCM_00002)

[SWS_UCM_00030] Report changes dUCM shall provide a method GetSwCluster-
ChangeInfo of the interface service PackageManagement to provide the identifiers
and versions of the SoftwareCluster that are in state kAdded, kUpdated or kRe-
moved.c(RS_UCM_00011)

[SWS_UCM_00185]{DRAFT} Provide Software Cluster general information d
UCM shall provide a method GetSwClusterDescription to return the version, type
approval, license and release notes of the SoftwareCluster that are in state kPre-
sent.c(RS_UCM_00002, RS_UCM_00011)

7.1.11 Securing Software Updates

UCM provides service interface using ara::com. There is no authentication of the
client in UCM’s update sequence.

For authentication of the Software Package, you can refer to 7.1.3

[SWS_UCM_00103]{DRAFT} Update to older Software Cluster version than
currently present dIn order to avoid an attacker to install an old Software Clus-
ter version having known security flaws, UCM shall prohibit its processing. In case
of such attempt, UCM TransferExit shall raise the ApplicationError OldVer-
sion, keep within history this tentative and delete old Software Package.c(RS_-
UCM_00031)

[SWS_UCM_CONSTR_00002]{DRAFT} UCM confidential information handling
dThe methods GetSwClusterInfo, GetSwClusterChangeInfo, GetHistory,
GetSwClusterDescription and GetSwPackages shall only be mapped via ara:-
:com to a secure endpoint using secure communication channel providing confiden-
tiality protection.c(RS_UCM_00002, RS_UCM_00010, RS_UCM_00011)

[SWS_UCM_00202]{DRAFT} Trusted Platform compliance dUCM shall ensure that
after provisioning updates, all the necessary changes to maintain the Trusted Platform
are carried out.c(RS_EM_00014)

The authentication tag of the Trusted Platform corresponding to the updated/re-
moved/added executable files should also be updated/removed/added. See also Chap-
ter 7.10 of the Execution Management [2] for details on the Trusted Platform.

49 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.1.12 Functional cluster lifecycle

7.1.12.1 Shutdown behaviour

There are no requirements of shutdown behaviour from UCM functional cluster.

50 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.2 UCM Master

7.2.1 UCM Master Functional Cluster lifecycle

[SWS_UCM_01205]{DRAFT} UCM Master internal state persistency dUCM Mas-
ter shall persist its state to be able to resume on-going update campaign after an
intended or unintended reboot.c(RS_UCM_00035, RS_UCM_00042)

7.2.2 Technical Overview

UCM Master objective is to provide a standard Adaptive Autosar solution to safely and
securely update a complete vehicle Over The Air or by a Diagnostic Tester.

UCM Master receives packages from Backend or Diagnostic tool, parses and inter-
prets the Vehicle Package, transfers or streams Software Packages to suitable
targets (UCM subordinate or Diagnostic Application) and orchestrates the processing,
activations and eventual rollbacks. All these actions are what is called a campaign
which UCM Master is coordinating. The UCM of the machines in the same network of
a UCM Master, candidates target of a campaign, are referred to as UCM subordinates.

Figure 7.7: Example of UCM Master architecture overview within a vehicle

The UCM Master could be considered as a set of add-on features that could enrich
any UCM instance. Therefore, as per the UCM APIs, the UCM Master APIs are part of
the Adaptive Platform Services. UCM and UCM Master have separate service
instances.

The OTA Client establishes a communication between Backend and UCM Master
so that they can exchange information of the installed Software Clusters in the

51 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

vehicle and the Software Clusters available in the Backend. This communica-
tion could be triggered by OTA Client with a scheduler and UCM Master to request
the updates in case of newly available Software Clusters (pull case) or by Back-
end to push, for instance, an important security update to a fleet of vehicles (push
case). The computation to find new Software Clusters versions and resolution of
dependencies between Software Clusters can be either done at UCM Master or
Backend.

Vehicle Driver interface Adaptive Application is required if it is needed during an
update campaign to interact with vehicle human driver through for instance Human-
Machine Interface. Download of packages from a Backend could have various finan-
cial costs for the driver depending of communication types, so consent from driver
could be suitable.

Vehicle State Manager Adaptive Application is required if it is needed during an
update campaign to control the vehicle state for safety purposes. For instance, it could
be required for safety to have standing still vehicle, shut-off engine, closed doors, etc.
before starting an UCM activation or during its processing.

7.2.3 UCM Master general behaviour

The UCM Master acts as a client of the service interface offered by the UCM subordi-
nates, already specified in UCM. However, the UCM Master also offers three different
service interfaces to OTA Client, Vehicle Driver interface and Vehicle State Man-
ager respectively. UCM Master aggregates UCM subordinates states and can report
its status field to a Backend through its OTA Client.

An UCM Master receives a Vehicle Package and transfers or streams Software
Package(s) to the UCM subordinates for an AUTOSAR Adaptive Platform Soft-
ware Cluster update. A Vehicle Package contains instructions for orchestrating
updates between ECUs. The UCM Master provides information about ECUs in the
vehicle, installed software and update campaign resolution.

[SWS_UCM_01001]{DRAFT} UCM Master processes Vehicle Package dAn UCM
Master shall receive a Vehicle Package and transfers corresponding Software
Package(s) to its UCM subordinates.c(RS_UCM_00039, RS_UCM_00043).

[SWS_UCM_01003]{DRAFT} UCM Master checks states of UCM subordinates dAn
UCM Master shall check the status of its UCM subordinates to make sure no interfering
update is currently ongoing.c(RS_UCM_00043)

UCM Master should for instance make sure that there is no ongoing diagnostic up-
dates before starting an update campaign by checking the reported state(s) of the UCM
subordinate(s) to be idle.

[SWS_UCM_01004]{DRAFT} Only one UCM Master shall be active per network
domain dAs UCM Master is distributing Software Packages and coordinating UCM
subordinates, no other UCM Master shall be active within a network domain in order

52 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

to avoid any interferences and guaranty success of an update campaign.c(RS_UCM_-
00037)

7.2.4 UCM identification

For UCM Master to distribute Software Packages to other UCM subordinates, UCM
Master has to identify UCM subordinates in vehicle. This identification could be at boot
or later but at least before any communication with Backend are engaged. Each UCM
has a unique identifier in Vehicle Package ucmModuleInstantiation called
identifier to help UCM Master transferring packages to targeted UCMs. To get such
identifier, UCM Master will perform first a service discovery through ara::com to get all
UCMs service instances available. Then UCM Master will call GetId method for each
UCM subordinates returning each corresponding ucmModuleInstantiation identifiers.

[SWS_UCM_00009]{DRAFT} UCM exposing its identifier dUCM shall provide a
method GetId returning its ucmModuleInstantiation identifier.c(RS_UCM_00036)

If an ECU hosting UCM subordinate is replaced physically, it will register its services
to the registry at boot up and UCM Master will be able to communicate with UCM
subordinate(s).

[SWS_UCM_01005]{DRAFT} UCM Master is discovering UCMs in vehicle dUCM
Master shall continuously look for UCM service instances (use of StartFindService()
call).c(RS_UCM_00036)

If a UCM Master is failing, another inactive UCM Master could be used or activated
by OTA Client.

Default (at boot) Master/Subordinate hierarchy or priority could be optionally overwrit-
ten for each campaign based on Vehicle Package content at the condition OTA
Client could properly parse Vehicle Packages.

7.2.5 UCM Master Software Packages transfer or streaming

UCM Master has generally same transfer API as UCM in order to simplify implementa-
tion and reuse code as much as possible (could be shared library between UCM and
UCM Master).

[SWS_UCM_01006]{DRAFT} Start transfer of a Vehicle Package to UCM Mas-
ter dUCM Master shall provide method TransferVehiclePackage via ARA::COM
to OTA Client.c(RS_UCM_00035, RS_UCM_00043) It is necessary to distinguish
Vehicle Package (UCM Master specific) from Software Packages transfer.

[SWS_UCM_01011]{DRAFT} TransferVehiclePackage InsufficientMemory d
TransferVehiclePackage method shall raise the ApplicationError Insuf-
ficientMemory if the UCM buffer has not enough resources to process the corre-
sponding Vehicle Package.c(RS_UCM_00013)

53 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_01012]{DRAFT} TransferVehiclePackage InsufficientComputa-
tionPower dTransferVehiclePackage method shall raise the error Applica-
tionError InsufficientComputationPower if there is no enough computational
resources to initiate the transfer.c(RS_UCM_00013)

[SWS_UCM_01007]{DRAFT} Start transfer of a Software Package to UCM Mas-
ter dUCM Master shall provide method TransferStart via ARA::COM to OTA
Client.c(RS_UCM_00035, RS_UCM_00036)

[SWS_UCM_01014]{DRAFT} Packages transferring sequence dTransferStart
method shall raise the ApplicationError UnexpectedPackage if the Software
Package name parameter was not a value of the RequestedPackage field.c(RS_-
UCM_00043)

[SWS_UCM_01008]{DRAFT} Transfer data of a Vehicle Package or Software
Package to UCM Master dUCM Master shall provide method TransferData via
ARA::COM to OTA Client.c(RS_UCM_00035, RS_UCM_00036)

[SWS_UCM_01013]{DRAFT} Too big block size received by UCM Master dIn the
case the received block size with TransferData exceeds the block size returned
by TransferStart or TransferVehiclePackage for the same TransferId, UCM
Master shall raise the ApplicationError IncorrectBlockSize.c(RS_UCM_-
00035)

[SWS_UCM_01009]{DRAFT} Exit the transfer of a Vehicle Package or Soft-
ware Package to UCM Master dUCM Master shall provide method TransferExit
via ARA::COM to OTA Client.c(RS_UCM_00035, RS_UCM_00036)

[SWS_UCM_01015]{DRAFT} Invalid Vehicle Package manifest dTransferExit
shall raise the error InvalidPackageManifest when a Vehicle Package manifest is
not compliant with the Autosar schema.c(RS_UCM_00036, RS_UCM_00043)

[SWS_UCM_01016]{DRAFT} Invalid Package Manifest dUCM Master shall raise
the error InvalidPackageManifest in case a manifest file is not compliant with the
AUTOSAR schema.c(RS_UCM_00036, RS_UCM_00043)

[SWS_UCM_01010]{DRAFT} Delete a Vehicle Package transferred to UCM
Master dUCM Master shall provide method DeleteTransfer via ARA::COM to
OTA Client.c(RS_UCM_00036)

[SWS_UCM_01017]{DRAFT} RequestedPackage field dUCM Master shall provide
the field RequestedPackage containing the requested Software Package name
and version as defined in update campaign. Changing this field is a notification for
the OTA Client to start transfer of the requested Software Package.c(RS_UCM_-
00042)

OTA Client does not know what Software Packages should be transferred in a
given campaign contained in a Vehicle Package. OTA Client can know what
Software Package is expected to be transferred by subscribing to UCM Master’s
RequestedPackage field. Version is added to support campaigns which need an up-
date path for a Software Package requiring an intermediate update to a transitional

54 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

version. In this case the version parameter makes it unambiguous which package
version shall be transferred as both have the same name assigned.

7.2.6 Adaptive Applications interacting with UCM Master

In order to have interoperability between several vendors platforms, Adaptive Ap-
plications interacting with UCM Master via ara::com like OTA Client, Vehicle
State Manager or Vehicle Driver Interface have their APIs specified. However, their
detailed behaviours are out of scope for this specification document.

7.2.6.1 OTA Client

OTA Client is an Adaptive Application that sets communication channel be-
tween Backend and UCM Master. It uses the UCM Master as a service provider via
ARA::COM. The communication between Backend and OTA Client is abstracted
and details like protocol are out of scope for this specification document. OTA Client
shall make sure Backend is providing the right information and packages to the vehicle
by identifying the vehicle, by for instance sending VIN to Backend.

[SWS_UCM_01101]{DRAFT} Provide information of installed Software Clus-
ters in vehicle dUCM Master shall provide a method GetSwClusterInfo to return
information of all Software Cluster present in the vehicle.c(RS_UCM_00033)

UCM Master can aggregate Software Cluster information from several UCMs
within a vehicle and returns the result to a Backend which can compute if there is
any new Software Cluster available and decide to send to UCM Master through
OTA Client a Vehicle Package.

[SWS_UCM_01102]{DRAFT} Get information of available Software Clusters
in Backend dUCM Master shall provide a method SwPackageInventory which ar-
gument contains information about Software Clusters present in Backend for the
vehicle.c(RS_UCM_00033)

[SWS_UCM_01103]{DRAFT} Inform Backend of needed Software Clusters
for an update dOn SwPackageInventory call, UCM Master shall compare the sup-
plied list of available Software Clusters in the Backend for the vehicle to its own
internal information of present Software Clusters in the vehicle and return the list
of Software Clusters selected for update.c(RS_UCM_00033)

The OTA Client uses this returned Software Clusters list to request the selected
packages to the Backend.

[SWS_UCM_01119]{DRAFT} Report information of Software Packages dUCM
Master shall provide a method GetSwPackages to return the identifiers, names,
versions, Consecutive Bytes Received, Consecutive Blocks Received and states of
Software Packages.c(RS_UCM_00035)

55 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.2.6.2 Vehicle Driver Interface

Vehicle driver interface could be required by legal constrains or communication cost
consideration. To support mandatory safety and security critical updates, driver inter-
action can be used for:

• Requesting transfer, processing or activation permission from vehicle driver

• Notifying vehicle driver of safety and security measures he has to apply to the
vehicle in order to proceed to next step into the update campaign

[SWS_UCM_01105]{DRAFT} Interaction of UCM Master with Vehicle Driver dUCM
Master shall provide a method DriverApproval in order to receive the confirmation
of the vehicle driver’s approval.c(RS_UCM_00038)

The Vehicle Driver Interface Adaptive Application could adapt its notification
content related to safety by subscribing to the UCM Master’s SafetyPolicy field.

[SWS_UCM_01117]{DRAFT} UCM Master SafetyState field dUCM Master shall
provide to vehicle driver interface the SafetyState field.c(RS_UCM_00038, RS_-
UCM_00037)

UCM Master can notify vehicle driver with SafetyState field if the vehicle safety is
breached during the update, by for instance popping-up a message.

[SWS_UCM_01118]{DRAFT} UCM Master waiting for vehicle driver approval
dIn the case approval from driver is requested as configured in VehiclePack-
age, UCM Master shall wait for DriverApproval method with parameter Ap-
proval=True before transitioning state from kVehiclePackageTransferring
to kSoftwarePackage_Transferring, kSoftwarePackage_Transferring to
kProcessing or kProcessing to kActivating.c(RS_UCM_00038)

[SWS_UCM_CONSTR_00003]{DRAFT} Exclusive use of Vehicle Driver Interface
dSoftware Integrator shall ensure that only one Adaptive Application is using the
UCM Master’s Vehicle Driver Interface.c(RS_UCM_00035, RS_UCM_00037)

For example, the integrator may restrict the access of Vehicle Driver Interface from
UCM Master by configuring the Identity and Access Management functional cluster
accordingly.

[SWS_UCM_01107]{DRAFT} UCM Master provides progress information to Ve-
hicle Driver dUCM Master shall provide to Vehicle Driver Interface Adaptive Ap-
plication methods GetSwTransferProgress and GetSwProcessProgress in
order for UCM Master to inform progress of respectively update campaign’s transfer
and processing.c(RS_UCM_00038)

[SWS_UCM_CONSTR_00004]{DRAFT} Unsupported safety policy by Vehicle
driver interface dIn the case SafetyPolicy field is not a supported safety pol-
icy Vehicle driver interface, it shall call the method DriverApproval with param-
eter SafeToUpdate=False and SafetyPolicy=’notSupportedSafetyPolicy’.c(RS_-
UCM_00037)

56 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_01120]{DRAFT} Provide Software Packages general information d
UCM Master shall provide a method GetSwPackageDescription to return the de-
scription of each Software Packages that are part of current campaign and that are
contained in Vehicle Package.c(RS_UCM_00033, RS_UCM_00038)

7.2.6.3 Vehicle State Manager

Vehicle State Manager is collecting states from the several vehicle ECUs and informs
UCM Master when the safety state computed based on the safety policy referred in
the Vehicle Package is changing. If the safety policy is not met, the UCM Master
can for instance decide to:

• Inform vehicle driver that the safety conditions are not met to continue the update

• postpone, pause or cancel the update until policy is met

[SWS_UCM_01109]{DRAFT} UCM Master provides a safety policy interface dUCM
Master shall provide a field SafetyPolicy for which values are available in Vehi-
clePackage.c(RS_UCM_00037)

[SWS_UCM_01110]{DRAFT} UCM Master SafetyState method dUCM Master
shall provide a method SafetyState to get informed of vehicle state changes.c(RS_-
UCM_00037)

[SWS_UCM_CONSTR_00005]{DRAFT} Safety state change dVehicle State Man-
ager Adaptive Application shall call SafetyState method provided by UCM Master
when the safety state is changing.c(RS_UCM_00035, RS_UCM_00037)

[SWS_UCM_CONSTR_00009]{DRAFT} Safety policy change dVehicle State Man-
ager Adaptive Application shall call SafetyState method provided by UCM Master
when the field SafetyPolicy is changing.c(RS_UCM_00035, RS_UCM_00037)

[SWS_UCM_CONSTR_00006]{DRAFT} Exclusive use of Vehicle State Manager
dSystem Integrator shall ensure that Vehicle State Manager is the exclusive user of the
SafetyState method.c(RS_UCM_00035, RS_UCM_00037)

For example, the integrator may restrict the access to Vehicle State Manager in config-
uring the Identity and Access Management functional cluster accordingly.

[SWS_UCM_CONSTR_00007]{DRAFT} Unsupported safety policy by Vehicle
State Manager dIn the case the requested SafetyPolicy field is not supported by
Vehicle State Manager, it shall call SafetyState method with parameter SafeToUp-
date=False and SafetyPolicy=’notSupportedSafetyPolicy’.c(RS_UCM_00037)

[SWS_UCM_CONSTR_00008]{DRAFT} Switching vehicle into update mode
dVehicle State Manager shall change vehicle’s state and its ECUs in the right update
mode in order to avoid any timeout issues during update.c(RS_UCM_00037)

This vehicle state change could be triggered based on UCM Master State Machine.

57 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.2.6.4 Flashing Adapter

Flashing Adapter is an application that is used in the case UCM Master is updating a
AUTOSAR Classic Platform or any platform that can be flashed using diagnostic.
It contains OEM specific diagnostic sequences and communicates via ara::com with
the UCM Master and the AUTOSAR Adaptive Platform, and uses an implemen-
tation of diagnostic protocol data unit application programming interface (D-PDU API)
to communicate with Classic ECUs over the Vehicle Bus.

[SWS_UCM_CONSTR_00011]{DRAFT} Flashing Adapter provided interface
dFlashing Adapter shall provide the same ara::com service interface as UCM
([SWS_UCM_00131]).c(RS_UCM_00035)

58 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.2.7 Non Adaptive Platform update

[SWS_UCM_01121]{DRAFT} Adaptive Platform interface provided for Flashing
Adapter dThe interface provided by the AUTOSAR Adaptive Platform in order to
update non AUTOSAR Platform should comply with ISO 22900-2:2017 (D-PDU API)
but as this standard’s coverage is wide, it is allowed to implement a reduced API that is
needed to update for instance a AUTOSAR Classic Platform.c(RS_UCM_00035)

The implementation of the D-PDU API is processing binary data from the Flashing
Adapter and do all of the required session, transport and network layer handling to
send and receive the data on the physical vehicle bus with respect to the underlying
protocols. The reason of using ISO 22900-2:2017 is to ensure that the specific Flashing
Adapter from any vehicle or tool manufacturer can operate on a common software
interface and can easily exchange MVCI (Modular Vehicle Communication Interface)
protocol module implementations.

In the case the targeted ECU by an update does not have the capability to switch
between current and new Software Cluster, the vehicle package campaign should
foresee to download not only the new version but also the currently installed version
of the Software Cluster to be updated in order to make possible a rollback from the
new version to the old version of the Software Cluster. The location to store the
current Software Package could be the Flashing Adapter but ultimately it has to be
available to Flashing Adapter in order to flash it in case of a rollback.

7.2.7.1 D-PDU API implementation support

[SWS_UCM_01122]{DRAFT} Supported physical layers by D-PDU API imple-
mentation dISO_11898_2_DWCAN (Dual Wire CAN), ISO_11898_3_DWFTCAN
(Dual Wire CAN Fault tolerant), SAE_J2411_SWCAN (Single Wire CAN) and
IEEE_802_3(Ethernet) physical layers shall be supported if their respective physical
vehicle bus is available inside the ECU, all other physical layers present in D-PDU API
are optional.c(RS_UCM_00035)

[SWS_UCM_01123]{DRAFT} Supported application layers by D-PDU API imple-
mentation dISO_15765_3 (Unified diagnostic services, UDS on CAN, ISO withdrawn
UDS), ISO_14229_3 (Unified diagnostic services on CAN implementation, UDSon-
CAN) and ISO_14229_5 (Unified diagnostic services on Internet Protocol implemen-
tation, UDSonIP) application layers shall be supported if their respective application
layer is available inside the ECU, all other application layers present in D-PDU API are
optional.c(RS_UCM_00035)

[SWS_UCM_01124]{DRAFT} Supported protocols by D-PDU API implementa-
tion dISO UDS on CAN with Application layer ISO_15765_3, ISO UDS on CAN with
Application layer ISO_14229_3 (UDSonCAN) and ISO UDS on DoIP with Application
layer ISO_14229_5 (UDSonIP) protocols shall be supported, all other protocols are
optional.c(RS_UCM_00035)

59 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

These protocols are present in ’Table B.2 - Standard protocol combination list’ of ISO
22900-2:2017(E).

7.2.7.2 Not required D-PDU API concepts

Dynamic Link Libraries for Windows operating system are not required. The Windows
installation process out of ISO 22900-2:2017(E) chapter 8.7.2 is not applicable to the
AUTOSAR Adaptive Platform which is using POSIX Operating System.

[SWS_UCM_01125]{DRAFT} Separation of D-PDU API-Software with the MVCI
protocol module firmware dA D-PDU API implementation may be split at OSI-Layer
4 into a D-PDU API implementation on OSI-Layer 5 (usually in the PC itself) and the
VCI-Module on OSI-Layers 3 and 4 (usually the VCI itself).c(RS_UCM_00035)

[SWS_UCM_01126]{DRAFT} Root description file (RDF) dWithin an AUTOSAR
Adaptive Platform, only one D-PDU API implementation is required for UCM,
therefore the D-PDU API implementation may not use the D-PDU API root descrip-
tion file (RDF).c(RS_UCM_00035)

The only instance of the D-PDU API within a Software Cluster can be statically
linked with the Flashing Adapter.

[SWS_UCM_01127]{DRAFT} Module Description File (MDF) dThe D-PDU API im-
plementation should not implement a protocol description file.c(RS_UCM_00035)

The supported protocol module types are fixed in the UCM use case.

[SWS_UCM_01128]{DRAFT} Symbolic names and IDs dThe Flashing Adapter may
operate the D-PDU API without using symbolic names and IDs during runtime. If the
use case excludes frequent changes to the MDFs, simple Flashing Adapter may even
hardcode (e.g. in a header file) all necessary IDs and operate the D-PDU API without
symbolic names.c(RS_UCM_00035)

[SWS_UCM_01129]{DRAFT} SAE J2534-1 and RP 1210a compatibility dD-PDU
API implementation may not be compatible to SAE J2534-1 and RP 1210a.c(RS_-
UCM_00035)

The Adaptive Platform does not need any migration path.

[SWS_UCM_01130]{DRAFT} ComPrimitives in RawMode dD-PDU API implemen-
tation may not implement the IOCTL filter data structure.c(RS_UCM_00035)

7.2.7.3 Not required D-PDU API functions

PDULockResource() and PDUUnlockResource() are used to lock and unlock exclusive
access to a ComLogicalLink in case of parallel usage of the D-PDU API implemen-
tation by multiple applications on the same physical communication link. Flashing of

60 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

a Classic ECU always requires some exclusive access and should be handled in the
AUTOSAR Adaptive Platform itself.

[SWS_UCM_01131]{DRAFT} PDUIoCtl(PDU_IOCTL_RESET) dThe parame-
ter PDU_IOCTL_RESET may not be implemented in D-PDU API implementa-
tion so the call of PDUIoCtl(PDU_IOCTL_RESET) shall return the error code
PDU_ERR_ID_NOT_SUPPORTED.c(RS_UCM_00035)

[SWS_UCM_01132]{DRAFT} PDUIoCtl(PDU_IOCTL_START_MSG_FILTER),
PDUIoCtl(PDU_IOCTL_CLEAR_MSG_FILTER), PDUIoCtl(PDU_IOCTL_STOP_MSG_FILTER)
dThe call of PDUIoCtl() with the parameters PDU_IOCTL_START_MSG,
PDU_IOCTL_CLEAR_MSG_FILTER and PDU_IOCTL_CLEAR_MSG_FILTER shall
return the error code PDU_ERR_ID_NOT_SUPPORTED.c(RS_UCM_00035)

The parameters PDU_IOCTL_START_MSG, PDU_IOCTL_CLEAR_MSG_FILTER and
PDU_IOCTL_CLEAR_MSG_FILTER are intended for the PassThru-Mode for com-
primitives and therefore an implementation is not required for the Flashing Adapter.

[SWS_UCM_01133]{DRAFT} PDUIoCtl(PDU_IOCTL_SEND_BREAK)
dThe IOCTL command PDU_IOCTL_SEND_BREAK shall return
PDU_ERR_ID_NOT_SUPPORTED.c(RS_UCM_00035)

The IOCTL command PDU_IOCTL_SEND_BREAK is used to send a break signal on
the ComLogicalLink. A break signal can only be sent on certain physical layers (e.g.
SAE J1850 VPW physical links and UART physical links) which are not supported by
UCM.

[SWS_UCM_01134]{DRAFT} Not used D-PDU API function return codes
dThe return codes PDU_ERR_CABLE_UNKNOWN, PDU_ERR_RSC_LOCKED,
PDU_ERR_RSC_NOT_LOCKED, PDU_ERR_API_SW_OUT_OF_DATE and
PDU_ERR_MODULE_FW_OUT_OF_DATE may not be implemented into the
D-PDU API of the AUTOSAR Adaptive Platform.c(RS_UCM_00035)

There is no cable attached to the ECU and therefore no cable detection return code
PDU_ERR_CABLE_UNKNOWN could occur.

Locking is not required for the Flashing Adapter, therefore PDU_ERR_RSC_LOCKED
and PDU_ERR_RSC_NOT_LOCKED return code could not occur.

There is no separation of D-PDU API-Software with the
MVCI protocol module firmware required in the AUTOSAR Adap-
tive Platform, so PDU_ERR_API_SW_OUT_OF_DATE and
PDU_ERR_MODULE_FW_OUT_OF_DATE return codes could not occur.

61 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.2.8 Status reporting

UCM Master supports a mechanism to provide the state of an update campaign
typically to OTA Client, Vehicle Driver Application and Vehicle State
Manager.stm U CMMaster State Machine

Campaign
start

Campaign
aborted

Transfer
finished

TRANSFERRING

Campaign
start

Campaign
aborted

Transfer
finished

Initi al

IDLE

SYNCING

do / ComputeUpdates

VEHICLEPACKAGE_TRANSFERRING

do / V ehiclePackageReceiving

Campaign failed

U pdate
start

Campaign
successful

UPDATING

Campaign failed

U pdate
start

Campaign
successful

PROCESSING

do / ProcessingSoftwarePackages

ACTIVATING

do / UCM.Activate()

VEHICLE_CHECKING

do / V ehicleSanityCheck

CANCELLING

do / Cancelling

SOFTWAREPACKAGE_TRANSFERRING

do / D istributeSoftwarePackages

Choice

[All CurrentStatus==Idle]

[V ehicleChecksSuccessful &&
All CurrentStatus==Idle]

transferExit()

A ll CurrentStatus == Activated

transferData()

[InvalidManifest |
LackResources |

FailedDependency]
DriverApproval() [not
(InvalidManifest &
LackResources &

FailedDependency)]

SwPackageInventory(),
GetSwClusterInfo()

cancelCampaign(),
ActivationFailure

[SyncingDone]

cancelCampaign()

cancelCampaign(),
U CMMaster.deleteTransfer()

transferData()

transferV ehiclePackage()

All SWPs transferred,
DriverApproval(), Start
Processing first SWP

transferData()

All Packages processed successfully,
DriverApproval() [All

SoftwarePackageStates == kProcessed]

cancelCampaign(),
V ehicleChecksFailed

cancelCampaign()
[InvalidManifest]

Figure 7.8: Campaign State Machine (CampaignState field)

62 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11
stm U CMMaster State Machine for OTA Client

Initi al

IDLE

Campaign failed

U pdate startCampaign
successful

UPDATING

Campaign failed

U pdate startCampaign
successful

CANCELLING

do / Cancelling

Campaign
start

Campaign
aborted

Transfer
finished

TRANSFERRINGCampaign
start

Campaign
aborted

Transfer
finished

SYNCING

do / ComputeUpdates

transferV ehiclePackage()

[A ll CurrentStatus==Idle]

[SyncingDone]SwPackageInventory(),
GetSwClusterInfo()

Figure 7.9: Campaign State Machine for OTA Client (TransferState field)

[SWS_UCM_01201]{DRAFT} Sequential orchestration of campaigns dUCM Mas-
ter shall orchestrate at most a single campaign at any one time.c(RS_UCM_00043)

[SWS_UCM_01265]{DRAFT} TransferState field dUCM Master shall provide the
state of a campaign over the TransferState field of the UCM Master’s VehiclePack-
ageManagement service interface.c(RS_UCM_00042)

[SWS_UCM_01203]{DRAFT} CampaignState field dUCM Master shall provide the
state of a campaign over the CampaignState field of the UCM Master Provided-
Port.c(RS_UCM_00042) There is an overview of the campaign state machine in Fig.
7.8 detailing UCM Master campaign states and transitions.

7.2.8.1 States

[SWS_UCM_01204]{DRAFT} Initial state dkIdle shall be the initial state at UCM
Master startup if no recovery is required.c(RS_UCM_00035)

63 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_01207]{DRAFT} Trigger on kSoftwarePackage_Transferring
state dOn transition to kSoftwarePackage_Transferring state and if all UCM
subordinates part of the campaign are in kIdle state, UCM Master shall start or re-
sume transferring (TransferStart and TransferData as well as TransferExit
if no streaming required) the software packages to the UCM subordinates according to
the campaign orchestration.c(RS_UCM_00035, RS_UCM_00043)

[SWS_UCM_01209]{DRAFT} Trigger on kProcessing state dOn transition to
kProcessing state, UCM Master shall start or resume processing the software pack-
ages (ProcessSwPackage) ready for processing according to the campaign orches-
tration.c(RS_UCM_00035, RS_UCM_00043)

[SWS_UCM_00210]{DRAFT} Transferring of software packages on kProcess-
ing state dIf UCM Master is in kProcessing state, UCM Master shall transfer
Software Packages to the UCM subordinates according to the campaign orches-
tration.c(RS_UCM_00035, RS_UCM_00043)

[SWS_UCM_01212]{DRAFT} Trigger on kActivating state dOn transition to kAc-
tivating state, UCM Master shall activate the software (Activate) according to
the campaign orchestration.c(RS_UCM_00035, RS_UCM_00043)

[SWS_UCM_01213]{DRAFT} Trigger on kVehicleChecking state dOn transition
to kVehicleChecking state, UCM Master shall first perform checks (OEM specific)
to assess the post-activation state of the vehicle.c(RS_UCM_00035)

UCM Master may be responsible for performing post-activation checks, interfacing
with an application performing such checks, confirming backend is still reachable and
further updates are still possible.

[SWS_UCM_01214]{DRAFT} Final action on kVehicleChecking state dIf UCM
Master is in kVehicleChecking state and the post-activation checks (OEM spe-
cific) are successful, UCM Master shall secondly commit (Finish) the software on all
UCM subordinates part of the campaign.c(RS_UCM_00035)

[SWS_UCM_01215]{DRAFT} Trigger on kRollingBack state dOn transition to
kRollingBack state, UCM Master shall first rollback (RollingBack) the software
on all UCM subordinates part of the campaign.c(RS_UCM_00035)

[SWS_UCM_01216]{DRAFT} Final action on kRollingBack state dIf UCM Mas-
ter is in kRollingBack state and the rollback of software on all UCM subordi-
nates is successful (successful RollingBack and transition from kRollingBack to
kRolledBack), UCM Master shall secondly commit (Finish) the software on all
UCM subordinates part of the campaign.c(RS_UCM_00035)

[SWS_UCM_01217]{DRAFT}Monitoring of UCM subordinates dUCM Master shall
monitor the state of the UCM subordinates during a campaign.c(RS_UCM_00035)

64 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.2.8.2 States Transitions

[SWS_UCM_01218]{DRAFT} Transition from kIdle state to kSyncing state dIf
UCM Master is in kIdle state, UCM Master shall enter the kSyncing state on a
request to GetSwClusterInfo or SwPackageInventory.c(RS_UCM_00035, RS_-
UCM_00033)

[SWS_UCM_01219]{DRAFT} Transition from kSyncing state to kIdle state dIf
UCM Master is in kSyncing state, UCM Master shall enter the kIdle state on com-
pletion of GetSwClusterInfo or SwPackageInventory.c(RS_UCM_00035)

[SWS_UCM_01220]{DRAFT} Transition from kIdle state to kVehiclePackage-
Transferring state dIf UCM Master is in kIdle state, UCM Master shall enter the
kVehiclePackageTransferring state on successful completion of TransferVe-
hiclePackage.c(RS_UCM_00035)

[SWS_UCM_01221]{DRAFT} Transition from kVehiclePackageTransferring
state to kIdle state dIf UCM Master is in kVehiclePackageTransferring state,
UCM Master shall enter the kIdle state on unsuccessful completion of Transfer-
Exit (Vehicle Package) or successful completion of DeleteTransfer (Vehicle
Package).c(RS_UCM_00035, RS_UCM_00039)

[SWS_UCM_01222]{DRAFT} Transition from kVehiclePackageTransferring
state to kSoftwarePackage_Transferring state dIf UCM Master is in kVehi-
clePackageTransferring state, UCM Master shall enter the kSoftwarePack-
age_Transferring state on successful completion of TransferExit (Vehicle
Package).c(RS_UCM_00035, RS_UCM_00037, RS_UCM_00038)

[SWS_UCM_01227]{DRAFT} Transition from kSoftwarePackage_Transfer-
ring state to kIdle state dIf UCM Master is in kSoftwarePackage_Transfer-
ring state, UCM Master shall enter the kIdle state on successful cancellation re-
quest (CancelCampaign) and completion.c(RS_UCM_00035)

[SWS_UCM_01228]{DRAFT} Transition from kSoftwarePackage_Transfer-
ring state to kProcessing state dIf UCM Master is in kSoftwarePackage_-
Transferring state, all Software Packages are ready for processing (transfer is
complete without errors) or at least one Software Package started being processed
by ProcessSwPackage call according to the campaign orchestration, UCM Master
shall enter the kProcessing state.c(RS_UCM_00035, RS_UCM_00037, RS_UCM_-
00038, RS_UCM_00043)

[SWS_UCM_01229]{DRAFT} SafetyPolicy while processing stream dIn the case
there is transition from kSoftwarePackage_Transferring state to kProcess-
ing state, the SafetyPolicy for kProcessing state shall apply even though there
are Software Packages transferring.c(RS_UCM_00035, RS_UCM_00037) Integra-
tor should make sure in this use case that safety policy for Processing will also cover
safety approach of transferring.

[SWS_UCM_01234]{DRAFT} Transition from kProcessing state to kActivat-
ing state dIf UCM Master is in kProcessing state and all software packages of the

65 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

campaign have been successfully (successful ProcessSwPackage) processed and
all UCM subordinates part to the campaign are in the kReady state, UCM Master
shall enter the kActivating state.c(RS_UCM_00035, RS_UCM_00037, RS_UCM_-
00038)

[SWS_UCM_01236]{DRAFT} Transition from kProcessing state to kIdle state
dIf UCM Master is in kProcessing state, UCM Master shall enter the kIdle state
on successful cancellation request (CancelCampaign) and completion.c(RS_UCM_-
00035)

[SWS_UCM_01239]{DRAFT} Transition from kActivating state to kCan-
celling state dIf UCM Master is in kActivating state, UCM Master shall enter
the kCancelling state if any UCM subordinates part of the campaign unsuccess-
fully (unsuccessful Activate and transition from kVerifying to kRollingBack)
completed activation.c(RS_UCM_00035)

[SWS_UCM_01240]{DRAFT} Transition from kActivating state to kVehi-
cleChecking state dIf UCM Master is in kActivating state, UCM Master shall
enter the kVehicleChecking state if all UCM subordinates part of the campaign
successfully (successful Activate and transition from kVerifying to kActivated)
completed activation.c(RS_UCM_00035, RS_UCM_00037)

[SWS_UCM_01241]{DRAFT} Transition from kVehicleChecking state to
kRollingBack state dIf UCM Master is in kVehicleChecking state and the
post-activation checks (OEM specific) are unsuccessful, UCM Master shall enter the
kRollingBack state.c(RS_UCM_00035)

[SWS_UCM_01242]{DRAFT} Transition from kVehicleChecking state to kIdle
state dIf UCM Master is in kVehicleChecking state and all UCM subordinates part
of the campaign transitioned from kCleaningUp to kIdle, UCM Master shall enter
the kIdle state.c(RS_UCM_00035)

[SWS_UCM_01243]{DRAFT} Transition from kRollingBack state to kIdle state
dIf UCM Master is in kRollingBack state and all UCM subordinates part of the cam-
paign transitioned from kCleaningUp to kIdle, UCM Master shall enter the kIdle
state.c(RS_UCM_00035)

[SWS_UCM_01244]{DRAFT} Cancellation of an update campaign shall be possi-
ble dUCM Master shall provide method CancelCampaign to any of its client to cancel
from kTransferring or kProcessing.c(RS_UCM_00035, RS_UCM_00037)

CancelCampaign method could be used at garage to unlock a blocked update. De-
tails on action by UCM Master, like cleaning up the several UCMs, changing AUTOSAR
Adaptive Platform states, etc. are implementation specific.

[SWS_UCM_01245]{DRAFT} Cancellation during activation shall be possible d
UCM Master shall provide method CancelCampaign to any of its client to cancel
from kActivating.c(RS_UCM_00035, RS_UCM_00037)

66 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

In case an update campaign was cancelled, a new update campaign could use again
the already transferred Software Packages. UCM Master could list transferred
Software Packages by calling the UCM subordinates with GetSwPackages.

[SWS_UCM_01246]{DRAFT} Unreachable UCM during update campaign dIn case
a UCM is not reachable by UCM Master during an update campaign (from kTrans-
ferring or kUpdating), UCM Master shall cancel and go back to kIdle.c(RS_-
UCM_00035, RS_UCM_00037)

[SWS_UCM_01270]{DRAFT} New campaign disabling dUCM Master shall remain
in kIdle when a CancelCampaign method has been called with DisableCampaign
parameter set.c(RS_UCM_00035)

[SWS_UCM_01271]{DRAFT} New campaign enabling dUCM Master shall provide
a method AllowCampaign to any of its client to reallow new campaign after a
CancelCampaign method was called with DisableCampaign parameter set.c(RS_-
UCM_00035)

7.2.9 Campaign Reporting

After campaign is finished (finish method has been sent to all UCM subordinates),
UCM Master should report to Backend server status of the vehicle, with for instance
updated information of Software Clusters present in vehicle.

[SWS_UCM_01247] Method to read History Report dUCM Master shall provide a
method GetCampaignHistory to retrieve all actions that have been performed by
UCM Masterwhen exiting state kUpdating from a specific time window.c(RS_UCM_-
00034)

[SWS_UCM_01248] Content of History Report dUCM Master shall save activation
time and activation result of processed Vehicle Packages in the history.c(RS_-
UCM_00034)

[SWS_UCM_01266]{DRAFT} Subordinate Not Available On The Network dUCM
Master shall record persistently the error SubordinateNotAvailableOnTheNetwork in
case one of the UCM subordinate involved in the current campaign stops offering its
service interface and later report it with GetCampaignHistory.c(RS_UCM_00034)

[SWS_UCM_01267]{DRAFT} Vehicle State Manager Communication Error dUCM
Master shall record persistently the error VehicleStateManagerCommunicationError
in case the communication with Vehicle State Manager is not possible and later report
it with GetCampaignHistory.c(RS_UCM_00034)

[SWS_UCM_01268]{DRAFT} Vehicle Driver Interface Communication Error dUCM
Master shall record persistently the error VehicleDriverInterfaceCommunicationError
in case the communication with Vehicle Driver Interface is no longer possible and later
report it with GetCampaignHistory.c(RS_UCM_00034)

67 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

[SWS_UCM_01269]{DRAFT} Campaign cancellation history dIf CancelCampaign
method is called, UCM Master shall record persistently this event to later report it with
GetCampaignHistory.c(RS_UCM_00034)

7.2.10 Content of Vehicle Package

Software Package A

Signed container

Software Package B

Signed container

Software Package
Manifest

Vehicle Package

SoftwareClusterExecutables

Data

Software Package
Manifest

SoftwareClusterExecutables

Data

Signed container

OEM authentication tag

Software Package
manifest A

Software Package
manifest B

Vehicle Package manifest

Manifests Manifests

Authentication tag Authentication tag

Figure 7.10: Vehicle package overview

A Vehicle Package is typically assembled by an OEM Backend. A Vehicle
Package has to be modelled as a so-called VehiclePackage which describes the
content of the Vehicle Package. It contains a collection of Software Pack-
age Manifests extracted from Backend packages stored in the Backend database.
These Software Packages have to be modelled as a so-called SoftwarePack-
age which describes the content of the Software Package. A Vehicle Package
contains only one Vehicle Package Manifest.

It is possible that within an update campaign, several Machine or ECUs need to be
updated/installed/removed by groups. Some Software Clusters could require re-
boot of Machine or ECU, some just a restart of Adaptive Application or nothing
(waiting passively for next reboot) to get activated. To optimize a campaign or fulfil
dependencies, it could be required to activate Software Clusters one after the
other or several at once. To support all possible campaigns, the Vehicle Pack-
age includes a model describing this coordination. It also contains a way to identify

68 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

the several involved UCMs for packages distribution within the vehicle and potentially
overwriting default UCM Master for this specific campaign.

You can find below for information purpose a description of the information that must
be contained in Vehicle Package manifest:

• Repository: uri, repository or diagnostic address, for history, tracking and security
purposes

• Vehicle description: vehicle description

• Vehicle Driver notifications: it might be needed to ask vehicle driver if UCM Mas-
ter can start transferring Software Packages, processing it and activating it
but also inform him of the necessary safety requirements if applicable.

• Safety policy: safety policy index to be used as argument to subscribe a field to
vehicle safety manager. With this field, UCM Master will be informed at any time
of campaign if vehicle safety is met or not.

• UCM Master identifiers list: defines backup UCM Masters

• Campaign orchestration: You can refer to [9] for more details. This campaign
model allows to group activation of several UCMs and group Software Pack-
ages processing and transferring.

[SWS_UCM_01301]{DRAFT} Vehicle Package authentication dVehicle
Package shall be authenticated by UCM Master before any transfer of Software
Packages.c(RS_UCM_00039, RS_UCM_00043)

[SWS_UCM_01302]{DRAFT} Vehicle Package authentication failure dIn case
Vehicle Package authentication fails at TransferExit call, UCM Master shall
raise the ApplicationError AuthenticationFailed.c(RS_UCM_00039, RS_-
UCM_00043)

[SWS_UCM_01303]{DRAFT} Dependencies between Software Packages dUCM
Master shall check dependencies based on Vehicle Package Manifests and
Software Packages Manifests before an transfer of Software Packages.c
(RS_UCM_00035, RS_UCM_00043)

[SWS_UCM_01305]{DRAFT} Vehicle Package format dVehicle Package shall
contain Vehicle Packagemanifest and Software Packagesmanifests of ARXML
format.c(RS_UCM_00035, RS_UCM_00043)

[SWS_UCM_01306]{DRAFT} TransferExit Invalid package manifest dTrans-
ferExit shall raise the error ApplicationErrorInvalidPackageManifest
upon receive of an invalid manifest.c(RS_UCM_00012)

69 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

7.2.11 Vehicle update security and confidentiality

The methods GetSwClusterInfo, SwPackageInventory and GetHistory could use pri-
vate or confidential information.

[SWS_UCM_01304]{DRAFT} Confidential information protection dThe methods
GetSwClusterInfo, SwPackageInventory and GetCampaignHistory shall
only be called over secure communication channel providing confidentiality protection.c
(RS_UCM_00033)

70 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

8 API specification

There are no APIs defined in this release.

71 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

9 Service Interfaces

9.1 Type definitions

This chapter lists all types provided by the UCM.

9.1.1 UCMIdentifierType

[SWS_UCM_00173]{DRAFT} d

Name UCMIdentifierType

Kind STRING

Derived from -

Description UCM Module Instantiation Identifier.

c(RS_UCM_00036)

9.1.2 TransferIdType

[SWS_UCM_00031]{DRAFT} d

Name TransferIdType

Kind ARRAY

Array size 16

Subelements uint8_t

Derived from -

Description Represents a handle identifier used to reference a particular transfer request.

c(RS_UCM_00019, RS_UCM_00025)

9.1.3 SwNameType

[SWS_UCM_00071]{DRAFT} d

Name SwNameType

Kind STRING

Derived from -

Description SoftwareCluster or SoftwarePackage shortName attribute inherited from referrable meta
Class.

c(RS_UCM_00002)

72 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

9.1.4 SwNameVectorType

[SWS_UCM_00174]{DRAFT} d

Name SwNameVectorType

Kind VECTOR

Subelements SwNameType

Derived from -

Description Represents a dynamic size array of Software Cluster names.

c(RS_UCM_00002)

9.1.5 StrongRevisionLabelString

[SWS_UCM_00175]{DRAFT} d

Name StrongRevisionLabelString

Kind STRING

Derived from -

Description Primitive type representing SoftwareCluster (SoftwarePackage) version.

c(RS_UCM_00002)

9.1.6 SwNameVersionType

[SWS_UCM_00176]{DRAFT} d

Name SwNameVersionType

Kind STRUCTURE

Subelements Name SwNameType

Version StrongRevisionLabelString

Derived from -

Description Represents the information of a Software Package (Software Cluster) name and version.

c(RS_UCM_00002)

9.1.7 SwNameVersionVectorType

[SWS_UCM_00177]{DRAFT} d

73 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Name SwNameVersionVectorType

Kind VECTOR

Subelements SwNameVersionType

Derived from -

Description Represents a dynamic size array of Software Name and Version

c(RS_UCM_00002)

9.1.8 ByteVectorType

[SWS_UCM_00032]{DRAFT} d

Name ByteVectorType

Kind VECTOR

Subelements uint8_t

Derived from -

Description Byte vector representing raw data.

c(RS_UCM_00025)

9.1.9 SwPackageStateType

[SWS_UCM_00038]{DRAFT} d

Name SwPackageStateType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the state of a Software Package on the Platform.

Range / Symbol Limit Description

kTransferring 0x00 Software package is being transferred, i.e. not completely received.

kTransferred 0x01 Software package is completely transferred and ready to be
processed.

kProcessing 0x02 Software package is currently being processed.

kProcessed 0x03 Software package processing finished.

kProcessingStream 0x04 Software package is being processed from a stream.

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.10 SwPackageInfoType

[SWS_UCM_00039]{DRAFT} d

74 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Name SwPackageInfoType

Kind STRUCTURE

Subelements Name SwNameType

Version StrongRevisionLabelString

TransferID TransferIdType

ConsecutiveBytesReceived uint64_t

ConsecutiveBlocksReceived uint64_t

State SwPackageStateType

Derived from -

Description Represents the information of a Software Package.

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.11 SwPackageInfoVectorType

[SWS_UCM_00040]{DRAFT} d

Name SwPackageInfoVectorType

Kind VECTOR

Subelements SwPackageInfoType

Derived from -

Description Represents a dynamic size array of Software Packages

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.12 SwDescType

[SWS_UCM_00186]{DRAFT} d

Name SwDescType

Kind STRUCTURE

Subelements Name SwNameType

Version StrongRevisionLabelString

TypeApproval string

License string

ReleaseNotes string

Size uint64_t

Derived from -
5

75 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Description Contains general information related to SoftwareCluster that can be used by Vehicle

Driver Application or Human Interface.

c(RS_UCM_00002, RS_UCM_00011)

9.1.13 SwDescVectorType

[SWS_UCM_00187]{DRAFT} d

Name SwDescVectorType

Kind VECTOR

Subelements SwDescType

Derived from -

Description Represents a dynamic size array of SoftwareCluster description

c(RS_UCM_00002, RS_UCM_00011)

9.1.14 SwClusterStateType

[SWS_UCM_00077]{DRAFT} d

Name SwClusterStateType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the state of a SoftwareCluster on the adaptive platform.

Range / Symbol Limit Description

kPresent 0x00 State of a SoftwareCluster that is installed on the adaptive platform
and installation has finished.

kAdded 0x01 State of a SoftwareCluster that has been newly installed.

kUpdated 0x02 State of a SoftwareCluster that has been updated.

kRemoved 0x03 State of a SoftwareCluster that has been removed.

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.15 SwClusterInfoType

[SWS_UCM_00078]{DRAFT} d

76 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Name SwClusterInfoType

Kind STRUCTURE

Subelements Name SwNameType

Version StrongRevisionLabelString

State SwClusterStateType

Derived from -

Description Represents the information of a SoftwareCluster.

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.16 SwClusterInfoVectorType

[SWS_UCM_00079]{DRAFT} d

Name SwClusterInfoVectorType

Kind VECTOR

Subelements SwClusterInfoType

Derived from -

Description Represents a dynamic size array of SoftwareClusters

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.17 PackageManagerStatusType

[SWS_UCM_00044]{DRAFT} d

Name PackageManagerStatusType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the state of UCM.

Range / Symbol Limit Description

kIdle 0x00 UCM is ready to start processing if software packages are present.

kReady 0x01 UCM has processed one or several packages and waits for additional
packages, activation or reversion of processed packages.

kProcessing 0x02 UCM is currently in the middle of processing a Software Package, i.e.
a client has called ProcessSwPackage.

kActivating 0x03 UCM is performing the dependency check and preparing the activation
of the processed Software packages.

kActivated 0x04 Software changes introduced with processed Software Packages has
been activated and executed.
5

77 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
kRollingBack 0x05 UCM is reverting changes introduced with processed packages.

kRolledBack 0x06 Software changes introduced with processed Software Packages has
been deactivated and original software is executed.

kCleaningUp 0x07 Making sure that the system is in a clean state.

kVerifying 0x08 UCM (via State Management) is checking that the processed
packages have been properly restarted.

c(RS_UCM_00024, RS_UCM_00026)

9.1.18 ActionType

[SWS_UCM_00132]{DRAFT} d

Name ActionType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the UCM action.

Range / Symbol Limit Description

kUpdate 0x00 Update of a SoftwareCluster.

kInstall 0x01 Installation of a new SoftwareCluster.
kRemove 0x02 Removal of a SoftwareCluster.

c(RS_UCM_00032)

9.1.19 ResultType

[SWS_UCM_00133]{DRAFT} d

Name ResultType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the result of UCM action.

Range / Symbol Limit Description

kSuccessfull 0x00 UCM’s action was successful.
kFailed 0x01 UCM’s action failed.

c(RS_UCM_00032)

9.1.20 GetHistoryType

[SWS_UCM_00134]{DRAFT} d

78 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Name GetHistoryType

Kind STRUCTURE

Subelements Time uint64_t

Name SwNameType

Version StrongRevisionLabelString

Action ActionType

Resolution ResultType

Derived from -

Description Time refers to the activation time of the software cluster. It is represented in milliseconds
of UCM’s action resolution since 01.01.1970 (UTC).

c(RS_UCM_00032)

9.1.21 GetHistoryVectorType

[SWS_UCM_00135]{DRAFT} d

Name GetHistoryVectorType

Kind VECTOR

Subelements GetHistoryType

Derived from -

Description Represents a list of UCM actions

c(RS_UCM_00032)

9.1.22 CampaignHistoryType

[SWS_UCM_00251]{DRAFT} d

Name CampaignHistoryType

Kind STRUCTURE

Subelements CampaignError CampaignErrorType

HistoryVector HistoryVectorType

Derived from -

Description Campaign history

c(RS_UCM_00034)

9.1.23 CampaignErrorType

[SWS_UCM_00252]{DRAFT} d

79 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Name CampaignErrorType

Kind STRUCTURE

Subelements CampaignFailure CampaignFailureType

UCMStepError UCMStepErrorType

Derived from -

Description Campaign Error

c(RS_UCM_00034)

9.1.24 CampaignFailureType

[SWS_UCM_00256]{DRAFT} d

Name CampaignFailureType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Campaign failure

Range / Symbol Limit Description

kUCMError 0x01 UCM error
kInvalidVehiclePackage
Manifest

0x02 Vehicle Package manifest is invalid

kSubordinateNotAvailableOn
TheNetwork

0x03 UCM subordinate not reachable

kVehicleStateManager
CommunicationError

0x04 Communication error with Vehicle State Manager

kVehicleDriverInterface
CommunicationError

0x05 Communication error with Vehicle Driver Interface

kCampaignCancelled 0x06 Campaign was cancelled

c(RS_UCM_00034)

9.1.25 UCMStepErrorType

[SWS_UCM_00253]{DRAFT} d

Name UCMStepErrorType

Kind STRUCTURE

Subelements id UCMIdentifierType

SoftwarePackageStep SoftwarePackageStepType

ReturnedError uint8_t

Derived from -

Description UCM Error

c(RS_UCM_00034)

80 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

9.1.26 SoftwarePackageStepType

[SWS_UCM_00255]{DRAFT} d

Name SoftwarePackageStepType

Kind TYPE_REFERENCE

Derived from uint8_t

Description UCM Software Package step at which error occured

Range / Symbol Limit Description

kTransfer 0x00 Software Package transfer

kProcess 0x01 Software Package processing

kPreActivate 0x02 Software Cluster pre activation

kVerify 0x03 Software Cluster verification

c(RS_UCM_00034)

9.1.27 HistoryVectorType

[SWS_UCM_00254]{DRAFT} d

Name HistoryVectorType

Kind STRUCTURE

Subelements id UCMIdentifierType

HistoryVector GetHistoryVectorType

Derived from -

Description History of an UCM

c(RS_UCM_00034)

9.1.28 CampaignStateType

[SWS_UCM_01177]{DRAFT} d

Name CampaignStateType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the status of Campaign.

Range / Symbol Limit Description

kIdle 0x00 UCM Master is ready to start a software update campaign.

kSyncing 0x01 UCM master is providing the list of installed SWCLs (GetSwCluster
Info) or computing the list of SWCLs to install (SwPackageInventory).

5

81 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
kVehiclePackageTransferring 0x02 A vehicle package is being transferred to UCM Master.

kSoftwarePackage_
Transferring

0x03 UCM Master is transferring software packages to the UCM
subordinates.

kProcessing 0x04 The processing of software packages on UCM subordinates is
ongoing. The transferring of software packages may still occur.

kActivating 0x05 The activation of SWCLs on UCM subordinates is ongoing.

kVehicleChecking 0x06 UCM Master is performing post-activation checks (OEM specific).

kCancelling 0x07 UCM Master is rolling-back the activated SWCLs on the UCM
subordinates.

c(RS_UCM_00032)

9.1.29 TransferStateType

[SWS_UCM_01178]{DRAFT} d

Name TransferStateType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the state of an update from OTA Client perspective.

Range / Symbol Limit Description

kIdle 0x00 UCM Master is ready to start a software update campaign.

kTransferring 0x01 Vehicle or Software Packages are being transferred.

kUpdating 0x02 Software Clusters are being updated in the vehicle.

kCancelling 0x03 An error occurred, campaign is being cancelled, reverting changes.

c(RS_UCM_00032)

9.1.30 SafetyPolicyType

[SWS_UCM_01114]{DRAFT} d

Name SafetyPolicyType

Kind STRING

Derived from -

Description The type of the Safety Policy.

c(RS_UCM_00002)

82 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

9.2 Provided Service Interfaces

9.2.1 Package Management

This chapter lists all provided service interfaces of the UCM.

Port

[SWS_UCM_00073]{DRAFT} d

Name PackageManagement

Kind ProvidedPort Interface PackageManagement

Description

Variation

c(RS_UCM_00001)

Service Interface

[SWS_UCM_00131]{DRAFT} d

Name PackageManagement

NameSpace ara::ucm::pkgmgr

Field CurrentStatus

Description The current status of UCM.

Type PackageManagerStatusType

HasGetter true

HasNotifier true

HasSetter false

Method Activate

Description This method activates the processed components.

FireAndForget false

Application
Errors

MissingDe-
pendencies

Activate cannot be performed because of missing dependencies.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

UpdateSes-
sionRejected

Start of an update session was rejected by State Management

Application
Errors

PreActiva-
tionFailed

Error during preActivation step.

Application
Errors

Verifica-
tionFailed

Error during verification step.

83 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Method Cancel

Description This method aborts an ongoing processing of a Software Package.

FireAndForget false

id

Description The Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

CancelFailed Cancel failed.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Method DeleteTransfer

Description Delete a transferred Software Package.

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Method Finish

Description This method finishes the processing for the current set of processed Software Packages. It does a
cleanup of all data of the processing including the sources of the Software Packages.

FireAndForget false

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Method GetHistory

Description Getter method to retrieve all actions that have been performed by UCM.

FireAndForget false

timestampGE

Description Earliest timestamp (inclusive)

5

84 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Type uint64_t

Variation

Direction IN

timestampLT

Description Latest timestamp (exclusive)

Type uint64_t

Variation

Parameter

Direction IN

history

Description The history of all actions that have been performed by UCM.

Type GetHistoryVectorType

Variation

Parameter

Direction OUT

Method GetId

Description Get the UCM Instance Identifier.

FireAndForget false

id

Description UCM Module Instantiation Identifier.

Type UCMIdentifierType

Variation

Parameter

Direction OUT

Method GetSwClusterChangeInfo

Description This method returns a list pending changes to the set of SoftwareClusters on the adaptive platform. The
returned list includes all SoftwareClusters that are to be added, updated or removed. The list of changes
is extended in the course of processing Software Packages.

FireAndForget false

SwInfo

Description List of SoftwareClusters that are in state kAdded,kUpdated or kRemoved.

Type SwClusterInfoVectorType

Variation

Parameter

Direction OUT

85 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Method GetSwClusterDescription

Description This method returns the general information of the Software Clusters present in the platform

FireAndForget false

SwCluster

Description List of SoftwareClusters present in the platform.

Type SwDescVectorType

Variation

Parameter

Direction OUT

Method GetSwClusterInfo

Description This method returns a list of SoftwareClusters that are in state kPresent.

FireAndForget false

SwInfo

Description List of installed SoftwareClusters that are in state kPresent.

Type SwClusterInfoVectorType

Variation

Parameter

Direction OUT

Method GetSwPackages

Description This method returns the Software Packages that available in UCM.

FireAndForget false

Packages

Description List of Software Packages.

Type SwPackageInfoVectorType

Variation

Parameter

Direction OUT

Method GetSwProcessProgress

Description Get the progress (0 - 100%) of the currently processed Software Package.

FireAndForget false

id

Description The Transfer ID of the Software Package.

Type TransferIdType

Variation

Parameter

Direction IN

progress

Description The progress of the current package processing (0% - 100%). 0x00 ... 0x64, 0xFF
for "’No information available"’

5

86 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Type uint8_t

Variation

Direction OUT

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Method ProcessSwPackage

Description Process a previously transferred Software Package.

FireAndForget false

id

Description The Transfer ID of the Software Package which should be processed.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

Authentica-
tionFailed

Package authentication failed.

Application
Errors

Incompati-
bleDelta

Delta package dependency check failed.

Application
Errors

Incompati-
blePackageV-
ersion

The version of the Software or Vehicle Package to be processed is not compatible
with the current version of UCM or UCM Master.

Application
Errors

Insuffi-
cientCompu-
tationPower

Insufficient computation power to perform the requested operation.

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Application
Errors

InvalidPack-
ageManifest

Package manifest could not be read.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

ProcessSw-
PackageCan-
celled

The processing operation has been interrupted by a Cancel() call.

Application
Errors

Processed-
Soft-
warePack-
ageInconsis-
tent

The processed Software Package integrity check has failed.

Application
Errors

ServiceBusy Another processing is already ongoing and therefore the current processing request
has to be rejected.

87 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Method RevertProcessedSwPackages

Description Revert the changes done by processing (ProcessSwPackage) of one or several software packages.

FireAndForget false

Application
Errors

NotAbleToRe-
vertPackages

RevertProcessedSwPackages failed.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Method Rollback

Description Rollback the system to the state before the packages were processed.

FireAndForget false

Application
Errors

NotAble-
ToRollback

Rollback failed.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Method TransferData

Description Block-wise transfer of a Software Package to UCM.

FireAndForget false

id

Description Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

data

Description Data block of the Software Package.

Type ByteVectorType

Variation

Parameter

Direction IN

blockCounter

Description Block counter value of the current block.

Type uint64_t

Variation

Parameter

Direction IN

Application
Errors

Incorrect-
Block

The same block number is received twice.

Application
Errors

Incorrect-
BlockSize

The size of the block exceeds the provided block size from TransferStart or Transfer
VehiclePackage.

Application
Errors

Authentica-
tionFailed

Package authentication failed.

Application
Errors

BlockIncon-
sistent

Consistency check for transferred block failed.

5

88 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Application
Errors

Incompati-
blePackageV-
ersion

The version of the Software or Vehicle Package to be processed is not compatible
with the current version of UCM or UCM Master.

Application
Errors

Incorrect-
Size

The size of the Software or Vehicle Package exceeds the provided size in Transfer
Start.

Application
Errors

Insuffi-
cientCompu-
tationPower

Insufficient computation power to perform the requested operation.

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

PackageIn-
consistent

Package integrity check failed.

Application
Errors

TransferIn-
terrupted

Transfer has been interrupted.

Method TransferExit

Description Finish the transfer of a Software Package to UCM.

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

Authentica-
tionFailed

Package authentication failed.

Application
Errors

Incompati-
blePackageV-
ersion

The version of the Software or Vehicle Package to be processed is not compatible
with the current version of UCM or UCM Master.

Application
Errors

Insuffi-
cientData

TransferExit has been called but total transferred data size does not match expected
data size provided with TransferStart call.

Application
Errors

InvalidPack-
ageManifest

Package manifest could not be read.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

MissingDe-
pendencies

Activate cannot be performed because of missing dependencies.

Application
Errors

OldVersion Software Package version is too old.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

PackageIn-
consistent

Package integrity check failed.

89 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Method TransferStart

Description Start the transfer of a Software Package. The size of the Software Package to be transferred to UCM
must be provided. UCM will generate a Transfer ID for subsequent calls to TransferData, TransferExit,
ProcessSwPackage, DeleteTransfer.

FireAndForget false

size

Description Size (in bytes) of the Software Package to be transferred.

Type uint64_t

Variation

Parameter

Direction IN

id

Description Return TransferId.

Type TransferIdType

Variation

Parameter

Direction OUT

BlockSize

Description Size of the blocks to be received with TransferData method.

Type uint32_t

Variation

Parameter

Direction OUT

Application
Errors

Insuffi-
cientCompu-
tationPower

Insufficient computation power to perform the requested operation.

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

c(RS_UCM_00001, RS_UCM_00002, RS_UCM_00008, RS_UCM_00010, RS_-
UCM_00011, RS_UCM_00015, RS_UCM_00018, RS_UCM_00021, RS_UCM_-
00022, RS_UCM_00023, RS_UCM_00024, RS_UCM_00025, RS_UCM_00032)

9.2.2 Vehicle Package Management

This chapter lists all provided service interfaces of the UCM Master to OTA Client
Adaptive Application.

Port

[SWS_UCM_00178]{DRAFT} d

90 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Name VehiclePackageManagement

Kind ProvidedPort Interface VehiclePackageManagement

Description

Variation

c(RS_UCM_00035)

Service Interface

[SWS_UCM_00181]{DRAFT} d

Name VehiclePackageManagement

NameSpace ara::ucm::pkgmgr

Field TransferState

Description The current status of Campaign from an OTA Client perspective.

Type TransferStateType

HasGetter true

HasNotifier true

HasSetter false

Field RequestedPackage

Description Software Package to be transfered to UCM Master.

Type SwNameVersionType

HasGetter true

HasNotifier true

HasSetter false

Field SafetyState

Description Vehicle state computed by the Vehicle State Manager Adaptive Application.

Type bool

HasGetter true

HasNotifier true

HasSetter false

Method CancelCampaign

Description This method aborts an ongoing campaign processing of a Vehicle Package.

FireAndForget false

DisableCampaign

Description To forbid new campaign

Type bool

5

91 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Variation

Direction IN

Application
Errors

CancelFailed Cancel failed.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Method AllowCampaign

Description To allow a new campaign to start

FireAndForget false

Method DeleteTransfer

Description Delete a transferred Software or Vehicle Package.

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Method GetCampaignHistory

Description Getter method to retrieve all actions that have been performed by UCM Master.

FireAndForget false

timestampGE

Description Earliest timestamp (inclusive)

Type uint64_t

Variation

Parameter

Direction IN

timestampLT

Description Latest timestamp (exclusive)

Type uint64_t

Variation

5

92 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Direction IN

CampaignHistory

Description The history of all actions that have been performed by UCM Master.

Type CampaignHistoryType

Variation

Parameter

Direction OUT

Method GetSwClusterInfo

Description This method returns a list of SoftwareClusters that are in state kPresent.

FireAndForget false

SwInfo

Description List of installed SoftwareClusters that are in state kPresent.

Type SwClusterInfoVectorType

Variation

Parameter

Direction OUT

Method GetSwPackages

Description This method returns the Software Packages that are part of current campaign handled by UCM Master.

FireAndForget false

Packages

Description List of Software Packages.

Type SwPackageInfoVectorType

Variation

Parameter

Direction OUT

Method SwPackageInventory

Description

FireAndForget false

AvailableSoftwarePackages

Description List of available Software Packages in Backend corresponding to VIN.

Type SwNameVersionVectorType

Variation

Parameter

Direction IN

RequiredSoftwarePackages

Description List of Software Packages to be sent to UCM Master.

Type SwNameVersionVectorType

5

93 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Variation

Direction OUT

Method TransferData

Description Block-wise transfer of a Software or Vehicle Package to UCM Master.

FireAndForget false

id

Description Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

data

Description Data block of the Software or Vehicle Package.

Type ByteVectorType

Variation

Parameter

Direction IN

blockCounter

Description Block counter value of the current block.

Type uint64_t

Variation

Parameter

Direction IN

Application
Errors

Incorrect-
Block

The same block number is received twice.

Application
Errors

Incorrect-
BlockSize

The size of the block exceeds the provided block size from TransferStart or Transfer
VehiclePackage.

Application
Errors

Authentica-
tionFailed

Package authentication failed.

Application
Errors

BlockIncon-
sistent

Consistency check for transferred block failed.

Application
Errors

Incompati-
blePackageV-
ersion

The version of the Software or Vehicle Package to be processed is not compatible
with the current version of UCM or UCM Master.

Application
Errors

Incorrect-
Size

The size of the Software or Vehicle Package exceeds the provided size in Transfer
Start.

Application
Errors

Insuffi-
cientCompu-
tationPower

Insufficient computation power to perform the requested operation.

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

5

94 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Application
Errors

PackageIn-
consistent

Package integrity check failed.

Application
Errors

TransferIn-
terrupted

Transfer has been interrupted.

Method TransferExit

Description Finish the transfer of a Software or Vehicle Package to UCM Master.

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

Authentica-
tionFailed

Package authentication failed.

Application
Errors

Incompati-
blePackageV-
ersion

The version of the Software or Vehicle Package to be processed is not compatible
with the current version of UCM or UCM Master.

Application
Errors

Insuffi-
cientData

TransferExit has been called but total transferred data size does not match expected
data size provided with TransferStart call.

Application
Errors

InvalidPack-
ageManifest

Package manifest could not be read.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

MissingDe-
pendencies

Activate cannot be performed because of missing dependencies.

Application
Errors

OldVersion Software Package version is too old.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

PackageIn-
consistent

Package integrity check failed.

Method TransferStart

Description Start the transfer of a Software Package. The name of the Software Package to be transferred to UCM
Master must be provided. UCM Master will generate a Transfer ID for subsequent calls to TransferData,
TransferExit, DeleteTransfer. Size of Software Package to be used to transfer to UCM subordinate is
available in the Vehicle Package and its contained Software Package Manifests.

FireAndForget false

SoftwarePackageName

Description Software Package Short Name of the Software Package to be transferred.

Type SwNameType

Variation

Parameter

Direction IN

Parameter id
5

95 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Description Return TransferId.

Type TransferIdType

Variation

Direction OUT

BlockSize

Description Size of the blocks to be received with TransferData method.

Type uint32_t

Variation

Parameter

Direction OUT

Application
Errors

Unexpected-
Package

The Software Package name does not correspond to the RequestedPackage field
value.

Application
Errors

Insuffi-
cientCompu-
tationPower

Insufficient computation power to perform the requested operation.

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Method TransferVehiclePackage

Description Start the transfer of a Vehicle Package. The size of the Vehicle Package to be transferred to UCM Master
must be provided. UCM Master will generate a Transfer ID for subsequent calls to TransferData, Transfer
Exit, ProcessSwPackage, DeleteTransfer.

FireAndForget false

size

Description Size (in bytes) of the Vehicle Package to be transferred.

Type uint64_t

Variation

Parameter

Direction IN

id

Description Return TransferId.

Type TransferIdType

Variation

Parameter

Direction OUT

BlockSize

Description Size of the blocks to be received with TransferData method.

Type uint32_t

Variation

Parameter

Direction OUT

Application
Errors

NewCam-
paignDis-
abled

New campaigns are disabled, calling AllowCampaign will enable new campaigns.

5

96 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

c(RS_UCM_00001, RS_UCM_00002, RS_UCM_00008, RS_UCM_00010, RS_-
UCM_00011, RS_UCM_00015, RS_UCM_00018, RS_UCM_00021, RS_UCM_-
00022, RS_UCM_00023, RS_UCM_00024, RS_UCM_00025, RS_UCM_00032)

9.2.3 Vehicle Driver Application Interface

This chapter lists all provided service interfaces of the UCM Master to the Vehicle
Driver Adaptive Application.

Port

[SWS_UCM_00180]{DRAFT} d

Name VehicleDriverApplication

Kind ProvidedPort Interface VehicleDriverApplication

Description

Variation

c(RS_UCM_00038, RS_UCM_00043)

Service Interface

[SWS_UCM_00182]{DRAFT} d

Name VehicleDriverApplication

Field ApprovalRequired

Description Flag to inform Adaptive Application if approval from Vehicle Driver is required at current state based on
Vehicle Package Manifest.

Type bool

HasGetter true

HasNotifier true

HasSetter false

Field CampaignState

Description The current status of Campaign.

Type CampaignStateType

5

97 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
HasGetter true

HasNotifier true

HasSetter false

Field SafetyPolicy

Description Safety policy from the Vehicle Package to be computed by the Vehicle State Manager Adaptive
Application.

Type SafetyPolicyType

HasGetter true

HasNotifier true

HasSetter false

Field SafetyState

Description Vehicle state computed by the Vehicle State Manager Adaptive Application.

Type bool

HasGetter true

HasNotifier true

HasSetter false

Method CancelCampaign

Description This method aborts an ongoing campaign processing of a Vehicle Package.

FireAndForget false

DisableCampaign

Description To forbid new campaign

Type bool

Variation

Parameter

Direction IN

Application
Errors

CancelFailed Cancel failed.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Method AllowCampaign

Description To allow a new campaign to start

FireAndForget false

98 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Method DriverApproval

Description Called by Adaptive Application to inform UCM Master of the driver’s notification resolution (approve or
reject)

FireAndForget false

Approval

Description Driver’s notification resolution

Type bool

Variation

Parameter

Direction IN

SafetyPolicy

Description Safety policy computed by the Vehicle State Manager Adaptive Application

Type SafetyPolicyType

Variation

Parameter

Direction IN

Method GetCampaignHistory

Description Getter method to retrieve all actions that have been performed by UCM Master.

FireAndForget false

timestampGE

Description Earliest timestamp (inclusive)

Type uint64_t

Variation

Parameter

Direction IN

timestampLT

Description Latest timestamp (exclusive)

Type uint64_t

Variation

Parameter

Direction IN

history

Description The history of all actions that have been performed by UCM Master.

Type CampaignHistoryType

Variation

Parameter

Direction OUT

99 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Method GetSwClusterDescription

Description This method returns the general information of the Software Clusters present in the Adaptive Platform

FireAndForget false

SoftwareClusterDescriptions

Description List of SoftwareClusters general information

Type SwDescVectorType

Variation

Parameter

Direction OUT

Method GetSwPackageDescription

Description This method returns the general information of the Software Packages that are part of current campaign
handled by UCM Master.

FireAndForget false

Packages

Description List of Software Packages.

Type SwDescVectorType

Variation

Parameter

Direction OUT

Method GetSwProcessProgress

Description Get the progress (0 - 100%) of the currently package processing.

FireAndForget false

progress

Description The progress of the current package processing (0% - 100%). 0x00 ... 0x64, 0xFF
for "’No information available"’

Type uint8_t

Variation

Parameter

Direction OUT

Method GetSwTransferProgress

Description Get the progress (0 - 100%) of the currently package transferring.

FireAndForget false

progress

Description The progress of the current package transferring (0% - 100%). 0x00 ... 0x64, 0xFF
for "’No information available"’

Type uint8_t

Variation

Parameter

Direction OUT

100 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

c(RS_UCM_00001, RS_UCM_00002, RS_UCM_00008, RS_UCM_00010, RS_-
UCM_00011, RS_UCM_00015, RS_UCM_00018, RS_UCM_00021, RS_UCM_-
00022, RS_UCM_00023, RS_UCM_00024, RS_UCM_00025, RS_UCM_00032)

9.2.4 Vehicle State Manager

This chapter lists all provided service interfaces of the UCM Master to the Vehicle
State Manager Adaptive Application.

Port

[SWS_UCM_00179]{DRAFT} d

Name VehicleStateManager

Kind ProvidedPort Interface VehicleStateManager

Description

Variation

c(RS_UCM_00037, RS_UCM_00043)

Service Interface

[SWS_UCM_00183]{DRAFT} d

Name VehicleStateManager

Field SafetyPolicy

Description Safety policy from the Vehicle Package to be computed by the Vehicle State Manager Adaptive
Application.

Type SafetyPolicyType

HasGetter true

HasNotifier true

HasSetter false

Method SafetyState

Description Method called by Vehicle State Manager Adaptive Application when safety state is changed

FireAndForget false

SafetyPolicy

Description Safety policy computed by the Vehicle State Manager Adaptive Application

Type SafetyPolicyType

Variation

5

101 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Direction IN

SafeToUpdate

Description Vehicle safety state

Type bool

Variation

Parameter

Direction OUT

c(RS_UCM_00001, RS_UCM_00002, RS_UCM_00008, RS_UCM_00010, RS_-
UCM_00011, RS_UCM_00015, RS_UCM_00018, RS_UCM_00021, RS_UCM_-
00022, RS_UCM_00023, RS_UCM_00024, RS_UCM_00025, RS_UCM_00032)

9.3 Required Interface

9.3.1 State Management Update Request

UCM requires the UpdateRequest Service Interface [SWS_SM_91017] provided by
State Management

9.4 Application Errors

9.4.1 Application Error Domain

9.4.1.1 UCMErrorDomain

This section lists all application errors of the UCM.

[SWS_UCM_00136]{DRAFT} d

Name Code Description

NewCampaignDisabled 31 New campaigns are disabled, calling AllowCampaign will enable
new campaigns.

UnexpectedPackage 32 The Software Package name does not correspond to the
RequestedPackage field value.

IncorrectBlock 2 The same block number is received twice.

IncorrectBlockSize 30 The size of the block exceeds the provided block size from Transfer
Start or TransferVehiclePackage.

AuthenticationFailed 8 Package authentication failed.

BlockInconsistent 25 Consistency check for transferred block failed.

CancelFailed 16 Cancel failed.
5

102 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
IncompatibleDelta 29 Delta package dependency check failed.

IncompatiblePackageVersion 24 The version of the Software or Vehicle Package to be processed is
not compatible with the current version of UCM or UCM Master.

IncorrectSize 3 The size of the Software or Vehicle Package exceeds the provided
size in TransferStart.

InsufficientComputationPower 28 Insufficient computation power to perform the requested operation.

InsufficientData 6 TransferExit has been called but total transferred data size does not
match expected data size provided with TransferStart call.

InsufficientMemory 1 Insufficient memory to perform operation.

InvalidPackageManifest 13 Package manifest could not be read.

InvalidTransferId 4 The Transfer ID is invalid.
MissingDependencies 21 Activate cannot be performed because of missing dependencies.

NotAbleToRevertPackages 15 RevertProcessedSwPackages failed.

NotAbleToRollback 18 Rollback failed.

OldVersion 9 Software Package version is too old.

OperationNotPermitted 5 The operation is not supported in the current context.

PackageInconsistent 7 Package integrity check failed.

ProcessSwPackageCancelled 22 The processing operation has been interrupted by a Cancel() call.

ProcessedSoftwarePackageInconsistent 23 The processed Software Package integrity check has failed.

ServiceBusy 12 Another processing is already ongoing and therefore the current
processing request has to be rejected.

TransferInterrupted 26 Transfer has been interrupted.

UpdateSessionRejected 33 Start of an update session was rejected by State Management

PreActivationFailed 19 Error during preActivation step.

VerificationFailed 27 Error during verification step.

c(RS_UCM_00006, RS_UCM_00007, RS_UCM_00012, RS_UCM_00013, RS_-
UCM_00014)

103 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

10 Sequence diagrams

10.1 Update process

sd Update

Diagnostic Application (OEM
specific)

«ServiceProvider»

:UCM

ref
Data transmission

ref
Processing

ref
Activation

Figure 10.1: Sequence diagram showing the update process

104 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

10.2 Data transmission

«ServiceProvi...
:External Reference

Diagnostic Application (OEM
specific)

loop for each Software Package

loop for each segment of a Software Package

:TransferExitReturnType

checkTransferredPackage()

TransferStart(PackageSize)

:TransferDataReturnType

TransferExit(TransferId): TransferExitReturnType

storeData
(byteV ector)

TransferData(TransferId, ByteV ectorType, blockCounter): TransferDataReturnType

:TransferId, BlockSize

Figure 10.2: Sequence diagram showing the data transmission

105 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

106 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

10.3 Package processing

CurrentStatus= :PROCESSING

Figure 10.3: Sequence diagram showing the package processing107 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

10.4 Activation

V erifying

Activated

Ready

Cleaning-up

Activating

U CM master

(from Actors)

UCM sub 1

(from Actors)

SM

(from Actors)

loop for each SoftwareCluster

loop for each SoftwareCluster

alt ReparseManifest

[Reset]

[N o Reset]

Reparsing is draft, to be further specified in next release
Could also be done by Core SM after first Verify() call.

UCM waiting for other UCM subs to get activated,
coordinated by UCM Master with finish()

Machine reset is optional and
defined in SWP Manifest

:Prepared

Reparse
Manifests()

DependencyCheck()

ResetMachine()

:V erified

Symlinks or
A/B switch()

PrepareU pdate(vector<FunctionGroup>)

:Activation success

StopU pdateSession()

Activate()

V erifyU pdate(vector<FunctionGroup>)

StartU pdateSession()

Finish()

:ReadyForU pdate

Figure 10.4: Sequence diagram showing the activation process

108 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

10.5 Failing activation

RollingBack

RolledBack

Cleaning-up

V erifying

Ready

Activating

U CM master

(from Actors)

UCM sub 1

(from Actors)

SM

(from Actors)

loop for each SoftwareCluster

loop for each SoftwareCluster

loop for each SoftwareCluster

alt Machine Reset

[Reset]

[N o Reset]

alt Machine Reset

[Reset]

[N o Reset]

:V erificationFailed

ResetMachine()

Finish()

:Prepared

Reparse
Manifest()

Symlinks or
A/B switch()

DependencyCheck()

:Failed

StopU pdateSession()

PrepareU pdate(vector<FunctionGroup>)

ResetMachine()

Reparse
Manifests()

Activate()

:ReadyForU pdate

Symlinks or
A/B switch()

V erifyU pdate(vector<FunctionGroup>)

StartU pdateSession()

PrepareRollBack(vector<FunctionGroup>)

RollBack()

Figure 10.5: Sequence diagram showing an activation failing

109 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

10.6 UCM Master simplified vehicle update

OTA Client

(from Actors)

U CM master

(from Actors)

Driver Interface

(from Actors)

V ehicle State Manager

(from Actors)

UCM sub 1

(from Actors)

CampaignState = IDLE

:CampaignState=ACTIVATING

:ApprovalRequired

DriverOK and VehicleSafe()

:CampaignState=VEHICLEPACKAGE_TRANSFERRING

Syncing()

:CampaignState=SOFTWAREPACKAGE_TRANSFERRING

Processing()

:CurrentStatus=ACTIVATED|ROLLINBACK

:CampaignState = PROCESSING

:ApprovalRequired

TransferV ehiclePackage()

:SafetyPolicy

SafetyState(SafetyPolicy, State)

SafetyPolicy(SafetyPolicy, State))

DriverApproval(Approval, SafetyPolicy)

transferStart()

transferExit()

:SafetyPolicy

transferExit()

:TransferState = SYNCING

GetCampaignHistory()

:TransferState = IDLE

Dependency check
and Verifying()

:CampaignState = VEHICLE_CHECKING

DriverApproval(Approval, SafetyPolicy)

DriverApproval(Approval, SafetyPolicy)

transferStart()

DriverOK and VehicleSafe()

:TransferState=IDLE

Finish()

:TransferState=TRANSFERRING

:SafetyPolicy

clean-up and vehicle checks()

transferExit()

:TransferState=UPDATING

transferData()

DriverOK and VehicleSafe()

SafetyState(SafetyPolicy, State)

:ApprovalRequired

Activate()

ProcessSwPackage()

:SafetyPolicy

transferData()

:SafetyPolicy

:SafetyPolicy

:RequestedPackage=SWPN ame

:CurrentStatus=READY

Figure 10.6: Sequence diagram showing vehicle update

110 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

A Mentioned Manifest Elements

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Chapter is generated.

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractDoIpLogicAddressProps, AbstractEvent , AbstractImplementationDataTypeElement ,
AbstractSecurityEventFilter , AbstractSecurityIdsmInstanceFilter , AbstractServiceInstance, Abstract
SignalBasedToISignalTriggeringMapping, AdaptiveModuleInstantiation, AdaptiveSwcInternalBehavior,
ApplicationEndpoint, ApplicationError, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpFeature, Autosar
OperationArgumentInstance, AutosarVariableInstance, BuildActionEntity , BuildActionEnvironment,
Chapter, CheckpointTransition, ClassContentConditional, ClientIdDefinition, ClientServerOperation,
Code, CollectableElement , ComManagementMapping, CommConnectorPort , Communication
Connector , CommunicationController , Compiler, ConsistencyNeeds, ConsumedEventGroup, Coupling
Port, CouplingPortStructuralElement , CryptoCertificate, CryptoKeySlot, CryptoProvider, CryptoService
Mapping, DataPrototypeGroup, DataTransformation, DependencyOnArtifact, DeterministicClient
ResourceNeeds, DiagEventDebounceAlgorithm, DiagnosticConnectedIndicator, DiagnosticDataElement,
DiagnosticFunctionInhibitSource, DiagnosticRoutineSubfunction, DltArgument, DltLogChannel, Dlt
Message, DoIpInterface, DoIpLogicAddress, DoIpRoutingActivation, E2EProfileConfiguration, End2End
EventProtectionProps, EndToEndProtection, EthernetWakeupSleepOnDatalineConfig, EventMapping,
ExclusiveArea, ExecutableEntity , ExecutionTime, FMAttributeDef, FMFeatureMapAssertion, FMFeature
MapCondition, FMFeatureMapElement, FMFeatureRelation, FMFeatureRestriction, FMFeatureSelection,
FieldMapping, FireAndForgetMapping, FrameTriggering, GeneralParameter, GlobalSupervision, Global
TimeGateway, GlobalTimeMaster , GlobalTimeSlave, HealthChannel , HeapUsage, HwAttributeDef, Hw
AttributeLiteralDef, HwPin, HwPinGroup, IPSecRule, IPv6ExtHeaderFilterList, ISignalToIPduMapping, I
SignalTriggering, IdentCaption, InterfaceMapping, InternalTriggeringPoint, Keyword, LifeCycleState,
Linker, MacMulticastGroup, McDataInstance, MemorySection, MethodMapping, ModeDeclaration, Mode
DeclarationMapping, ModeSwitchPoint, NetworkEndpoint, NmCluster , NmNode, PackageableElement ,
ParameterAccess, PduToFrameMapping, PduTriggering, PersistencyDeploymentElement , Persistency
InterfaceElement , PhmSupervision, PhysicalChannel , PortGroup, PortInterfaceMapping, PossibleError
Reaction, ProcessDesignToMachineDesignMapping, ProcessToMachineMapping, Processor, Processor
Core, PskIdentityToKeySlotMapping, RecoveryNotification, ResourceConsumption, ResourceGroup,
RestAbstractEndpoint , RestElementDef, RestResourceDef, RootSwClusterDesignComponentPrototype,
RootSwComponentPrototype, RootSwCompositionPrototype, RptComponent, RptContainer, Rpt
ExecutableEntity, RptExecutableEntityEvent, RptExecutionContext, RptProfile, RptServicePoint, Sdg
Attribute, SdgClass, SecOcJobMapping, SecOcJobRequirement, SecureComProps, Secure
CommunicationAuthenticationProps, SecureCommunicationDeployment , SecureCommunication
FreshnessProps, SecurityEventContextProps, ServiceEventDeployment , ServiceFieldDeployment ,
ServiceInstanceToSignalMapping, ServiceInterfaceElementMapping, ServiceInterfaceElementSecure
ComConfig, ServiceInterfaceMapping, ServiceMethodDeployment , ServiceNeeds, SignalService
TranslationEventProps, SignalServiceTranslationProps, SocketAddress, SoftwarePackageStep, Someip
EventGroup, SomeipProvidedEventGroup, SomeipTpChannel, SpecElementReference, StackUsage,
StartupConfig, StaticSocketConnection, StructuredReq, SupervisionCheckpoint, SwGenericAxisParam
Type, SwServiceArg, SwcServiceDependency, SystemMapping, SystemMemoryUsage, TimeBase
Resource, TimingCondition, TimingConstraint , TimingDescription, TimingExtensionResource, Timing
ModeInstance, TlsCryptoCipherSuite, TlsJobMapping, Topic1, TpAddress, TraceableTable, Traceable
Text, TracedFailure, TransformationProps, TransformationPropsToServiceInterfaceElementMapping,
TransformationTechnology, Trigger, UcmDescription, UcmStep, VariableAccess, VariationPointProxy,
VehicleRolloutStep, ViewMap, VlanConfig

Attribute Type Mult. Kind Note

5

111 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Class Identifiable (abstract)

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Tags:xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags:xml.sequenceOffset=-25

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags:xml.sequenceOffset=-50

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags:xml.sequenceOffset=-60

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags:xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.

Tags:xml.attribute=true

Table A.1: Identifiable

Class SoftwareCluster
Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

5

112 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Class SoftwareCluster
Note This meta-class represents the ability to define an uploadable software-package, i.e. the SoftwareCluster

shall contain all software and configuration for a given purpose.

Tags:
atp.Status=draft
atp.recommendedPackage=SoftwareClusters

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

claimed
FunctionGroup

ModeDeclarationGroup
Prototype

* ref Each SoftwareCluster can reserve the usage of a given
functionGroup such that no other SoftwareCluster is
allowed to use it

Tags:atp.Status=draft

conflictsTo SoftwareCluster
DependencyFormula

0..1 aggr This aggregation handles conflicts. If it yields true then
the SoftwareCluster shall not be installed.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=conflictsTo
atp.Status=draft

contained
ARElement

ARElement * ref This reference represents the collection of model
elements that cannot derive from UploadablePackage
Element and that contribute to the completeness of the
definition of the SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=containedARElement
atp.Status=draft

containedFibex
Element

FibexElement * ref This allows for referencing FibexElements that need to be
considered in the context of a SoftwareCluster.

Tags:atp.Status=draft

contained
Package
Element

UploadablePackage
Element

* ref This reference identifies model elements that are required
to complete the manifest content.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=containedPackageElement
atp.Status=draft

contained
Process

Process * ref This reference represent the processes contained in the
enclosing SoftwareCluster.

Tags:atp.Status=draft

dependsOn SoftwareCluster
DependencyFormula

0..1 aggr This aggregation can be taken to identify a dependency
for the enclosing SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=dependsOn
atp.Status=draft

design SoftwareClusterDesign * ref This reference represents the identification of all Software
ClusterDesigns applicable for the enclosing Software
Cluster.

Stereotypes: atpUriDef
Tags:atp.Status=draft

5

113 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Class SoftwareCluster
diagnostic
Address

SoftwareCluster
DiagnosticAddress

* aggr This aggregation represents the collection of diagnostic
addresses that apply for the SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=diagnosticAddress
atp.Status=draft

diagnostic
Extract

DiagnosticContribution
Set

0..1 ref This reference represents the definition of the diagnostic
extract applicable to the referencing SoftwareCluster

Tags:atp.Status=draft

license Documentation * ref This attribute allows for the inclusion of the the full text of
a license of the enclosing SoftwareCluster. In many cases
open source licenses require the inclusion of the full
license text to any software that is released under the
respective license.

Tags:atp.Status=draft

module
Instantiation

AdaptiveModule
Instantiation

* ref This reference identifies AdaptiveModuleInstantiations
that need to be included with the SoftwareCluster in order
to establish infrastructure required for the installation of
the SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=moduleInstantiation
atp.Status=draft

releaseNotes Documentation 0..1 ref This attribute allows for the explanations of changes since
the previous version. The list of changes might require
the creation of multiple paragraphs of test.

Tags:atp.Status=draft

typeApproval String 0..1 attr This attribute carries the homologation information that
may be specific for a given country.

vendorId PositiveInteger 1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list.

vendor
Signature

CryptoService
Certificate

1 ref This reference identifies the certificate that represents the
vendor’s signature.

Tags:atp.Status=draft

version StrongRevisionLabel
String

1 attr This attribute can be used to describe a version
information for the enclosing SoftwareCluster.

Table A.2: SoftwareCluster

Class SoftwarePackage

Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents the ability to formalize the content of a software package.

Tags:
atp.Status=draft
atp.recommendedPackage=SoftwarePackages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

actionType SoftwarePackageAction
TypeEnum

1 attr This attribute defines the action to be taken in the step of
processing the enclosing SoftwarePackage.

5

114 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Class SoftwarePackage

compressed
Software
PackageSize

PositiveInteger 1 attr This size represents the size of the compressed Software
Package.

deltaPackage
Applicable
Version

StrongRevisionLabel
String

0..1 attr This attribute identifies the version of the included
SoftwareCluster for which the enclosing SoftwarePackage
can be used as a delta update

maximum
SupportedUcm
Version

RevisionLabelString 1 attr This attribute identifies the maximum supported version of
the UCM for this SoftwarePackage.

minimum
SupportedUcm
Version

RevisionLabelString 1 attr This attribute identifies the minimum supported version of
the UCM for this SoftwarePackage.

packagerId PositiveInteger 1 attr This attribute identifies Id of the organization that provides
the packager generating the SoftwarePackage.

packager
Signature

CryptoService
Certificate

1 ref This reference identifies the certificate that represents the
packager’s signature.

Tags:atp.Status=draft

postVerification
Reboot

Boolean 1 attr Reboot the platform after the verification of the activated
software.

preActivate
(ordered)

ModeDeclaration * iref The referenced function group states shall be established
for the switch between the already installed and the
activated software.

Tags:atp.Status=draft
InstanceRef implemented by:FunctionGroupStateIn
FunctionGroupSetInstanceRef

preActivation
Reboot

Boolean 1 attr Reboot the platform before the switch to the activated
software.

softwareCluster SoftwareCluster 1 ref This reference identifies the SoftwareCluster that belongs
to the SoftwarePackage. The nature of this relation is
actually more like an aggregation than a reference. But
the relation is still modelled as a reference because two
ARElements cannot aggregate each other.

Tags:atp.Status=draft

uncompressed
SoftwareCluster
Size

PositiveInteger 1 attr This attribute gives an indication about the storage that
has to be available on the target.

verify (ordered) ModeDeclaration * iref The referenced function group states shall be established
for the verification of the activated software.

Tags:atp.Status=draft
InstanceRef implemented by:FunctionGroupStateIn
FunctionGroupSetInstanceRef

Table A.3: SoftwarePackage

Primitive StrongRevisionLabelString

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This primitive represents a revision label which identifies an object under version control. It represents a
pattern which requires three integer numbers separated by a dot, representing from left to right Major
Version, MinorVersion, PatchVersion and additional labels for pre-release version and build metadata.

Legal patterns are for example: 1.0.0-alpha+001 1.0.0+20130313144700 1.0.0-beta+exp.sha.5114f85
5

5

115 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Primitive StrongRevisionLabelString

4
Tags:
atp.Status=draft
xml.xsd.customType=STRONG-REVISION-LABEL-STRING
xml.xsd.pattern=(0|[1-9]\d*)\.(0|[1-9]\d*)\.(0|[1-9]\d*)(-((0|[1-9]\d*|\d*[a-zA-Z-][0-9a-z
A-Z-]*)(\.(0|[1-9]\d*|\d*[a-zA-Z-][0-9a-zA-Z-]*))*))?(\+([0-9a-zA-Z-]+(\.[0-9a-zA-Z-]+)*))?
xml.xsd.type=string

Table A.4: StrongRevisionLabelString

Class VehiclePackage

Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents the ability to define a vehicle package for executing an update campaign.

Tags:
atp.Status=draft
atp.recommendedPackage=VehiclePackages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

driver
Notification

VehicleDriver
Notification

* aggr This aggregation provides the ability to configure the
necessary driver notifications.

Tags:atp.Status=draft

packager
Signature

CryptoService
Certificate

1 ref This reference identifies the certificate that represents the
packager’s signature.

Tags:atp.Status=draft

repository UriString 0..1 attr This attribute identifies the repository where the Vehicle
Package is stored.

rollout
Qualification
(ordered)

VehicleRolloutStep * aggr This represents the rollout qualification.

Tags:atp.Status=draft

ucm UcmDescription * aggr This aggregation represents the UcmDescriptions to be
considered in the context of the VehiclePackage.

Tags:atp.Status=draft

ucmMaster
Fallback
(ordered)

UcmDescription * ref This reference lists the fallback order of Ucms that can
take over the master role if the master goes down.

Tags:atp.Status=draft

vehicle
Description

Documentation 0..1 ref This reference identifies the vehicle description.

Tags:atp.Status=draft

Table A.5: VehiclePackage

Class UcmModuleInstantiation
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Ucm

Note This meta-class represents the ability to define a definition of a UCM instantiation.

Tags:atp.Status=draft

Base ARObject , AdaptiveModuleInstantiation, Identifiable, MultilanguageReferrable, NonOsModule
Instantiation, Referrable

Attribute Type Mult. Kind Note

5

116 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Class UcmModuleInstantiation
identifier String 1 attr This represents the identification of a UCM.

maxNumberOf
Parallel
Transfers

PositiveInteger 0..1 attr This attribute supports the configuration of the maximum
number of parallel transfers that the Ucm on the enclosing
Machine is allowed to create.

Table A.6: UcmModuleInstantiation

117 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

B Interfaces to other Functional Clusters (informative)

B.1 Overview

AUTOSAR decided not to standardize interfaces which are exclusively used between
Functional Clusters (on platform-level only), to allow efficient implementations, which
might depend e.g. on the used Operating System.

This chapter provides informative guidelines how the interaction between Functional
Clusters looks like, by clustering the relevant requirements of this document. In addi-
tion, the standardized public interfaces which are accessible by user space applications
(see chapter 8) can also be used for interaction between Functional Clusters.

The goal is to provide a clear understanding of Functional Cluster boundaries and in-
teraction, without specifying syntactical details. This ensures compatibility between
documents specifying different Functional Clusters and supports parallel implementa-
tion of different Functional Clusters. Details of the interfaces are up to the platform
provider.

B.2 Interfaces Tables

B.2.1 UCM update notification

UCM shall provide the notification to other Functional Clusters that changes have been
done to the software. This enables other functional clusters to check if updated man-
ifests have changes relevant for the concerned Functional Cluster. This can be done
through the field CurrentStatus provided by the UCM service.

118 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

C Packages distribution within vehicle detailed
sequence examples

C.1 Collect information of present Software Clusters in vehicle

From a regular basis, UCM master and UCM can collect information of present Soft-
ware Clusters from the other AUTOSAR Adaptive Platforms of the vehicle in
order to be used later when communicating with Backend and then determine if there
are new actions (update, remove, install) required.

Adaptive platform BAdaptive platform A

sd [U seCase] 1. Determine installed SWCL in vehicle [Determine installed SWCL in vehicle]

U CM master

(from Actors)

UCM slave 1

(from Actors)

Diagnostic tool

(from Actors)

:SwClusterInfoV ector

GetSwClusterInfo()

Figure C.1: Collect information of Software Clusters present in vehicle from several
AUTOSAR Adaptive Platforms

C.2 Action computation

In order to find out if there is a new update available from Backend or the need to install
or remove a Software Cluster, vehicle and Backend have to share their current
status and either Backend or vehicle have to compute what UCM Master actions are
needed.

Backend will have the possibility to push a package into the vehicle when communi-
cation is established, for instance for security purpose.

Communication trial between Backend and UCM master can be done on driver’s re-
quest or from a scheduler.

119 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

C.2.1 Pull package from Backend into vehicle

Case where vehicle is computing the difference between Software Clusters ver-
sions that are present in vehicle and the ones available in Backend.

Adaptive Platform CAdaptive Platform BAdaptive Platform A

sd [U seCase] 2.1 Pull package from backend [2.1 Pull package from backend]

U CM master

(from Actors)

OTA Client

(from Actors)

UCM sub 1

(from Actors)

UCM sub 2

(from Actors)

opt Optional

OTA Client could regularly (scheduler
or diag trigger) establish connection
with backend and update whole
vehicle installed SWCluters

UCM Master computes what
SWCLs should be updated

Backend sends
Vehicle Package

Once connection is set with OTA Client,
Backend is sending its inventory based on
VIN already communicated by OTA client

loop

transferExit(transferId)

:SwN ameV ersionVector

transferData(transferId, block, blockCounter)

:SwClusterInfoVector

:transferExitReturn

:SwClusterInfoVector

:TransferState=Transferring

ComputeU pdates()

ComputeDependencies()

:TransferState=IDLE

:TransferState=IDLE

:transferDataReturn

GetSwClusterInfo()

SwPackageInventory(SwN ameV ersionVector)

:transferId

MergeSwClusterInfoVectors()

TransferV ehiclePackage(Size)

GetSwClusterInfo()

Figure C.2: Pull package from backend

C.2.2 Push package from backend into vehicle

Case where Backend is computing the difference between Software Clusters ver-
sions that are present in vehicle and the ones available in Backend.

120 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11
sd [U seCase] 2.2 pushed package from backend [2.2 pushed package from backend]

U CM master

(from Actors)

OTA Client

(from Actors)

UCM sub 1

(from Actors)

UCM sub 2

(from Actors)

opt Optionnal

Backend is requesting installed
SWClusters in vehicle

Backend sends
Vehicle Package

loop

transferExit(transferId)

:SwClusterInfoVector

:transferDataReturn

transferV ehiclePackage(Size)

GetSwClusterInfo()

:transferId

GetSwClusterInfo()

GetSwClusterInfo()

:TransferState=Transferring

:transferExitReturn

MergeSwClusterInfoVectors()

:TransferState=IDLE

BackendComputeU pdatesAndDependencies()

transferData(transferId, block, blockCounter)

ComputeDependencies()

:SwClusterInfoVector

:SwClusterInfoVector

Figure C.3: Push package from backend

121 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

C.3 Packages transfer from backend into targeted UCM

Adaptive platform CAdpative platform B
Adaptive Platform A

sd [U seCase] 3 D istribute Software packages to UCM slaves [3 Distribute Software packages to UCM slaves]

U CM master

(from Actors)

UCM sub 1

(from Actors)

OTA Client

(from Actors)

UCM sub 2

(from Actors)

Driver Interface

(from Actors)

V ehicle State Manager

(from Actors)

par Transfers

loop Streaming of package A

loop Streaming of package B

opt Driver notification

Counter argument for
efficient resume

loop transfer blocks

opt Progress check

opt Vehicle Safety condition

If upgrade, Check
InstalledVersion <
NewVersion

:transferDataReturn

GetSwTransferProgress()

ManifestAuthentication(Signature)

transferData(transferId, block, blockCounter)

GetSwClusterDescription()

SafetyState(True, SafetyPolicy)

:transferDataReturn

:RequestedPackage == SWCLPackageAName

:transferExitReturn

WaitApproval()

:transferId

:transferExitReturn

:Progress

:transferId2

:TransferState = IDLE

subcribe(SafetyPolicy)

GetSwClusterDescription()

:CampaignState = SoftwarePackage_Transferring

:transferDataReturn

TransferStart(SWCLPackageASize)

transferExit(transferId2)

PackageAuthentication(PackageSignature)

transferExit(transferId1)

:transferId2

:transferDataReturn

:TransferState = Transferring

:CampaignState = V ehiclePackage_Transferring

:ApprovalRequired==True

:SwDescV ectorType

:SwDescV ectorType

transferData(transferId2, Block, BlockCounter)

TransferStart(SWCLPackageAN ame)

PackageAuthentication
(PackageSignature)

ConsistencyCheck(Checksum)

:transferDataReturn

TemporaryStoreV ehiclePackageManifest()

:RequestedPackage == SWCLPackageBName

:transferId

:SwDescV ectorType

GetSwClusterDescription()

transferData(transferId2, Block, BlockCounter)

DriverApproval(Approval, SafetyPolicy)

transferExit(TransferId2)

transferExit(transferId1)

transferData(transferId1, block, blockCounter)

:transferExitReturn

CheckAvailableMemory()

:CampaignState=V ehiclePackage_Transferring

ParseSWCLPackageManisfests(): ((UCM Slave1 Id,
SWCLPackageBSize),(UCM slave2 Id,

SWCLPackageBSize))

Get Metadata from Vehicle Package Manifest()

subscribe(SafetyPolicy)

:CampaignState=Processing

transferExitReturn()

:SwDescV ectorType

TransferStart(SWCLPackageBSize)

checkAvailableMemory()

:transferId1

transferExit(transferId)

TransferStart(SWCLPackageBName)

TransferV ehiclePackage(Size)

GetSwPackagesDescription()

:CampaignState = V ehiclePackage_Transferring

:TransferState=Updating

CheckV ersion
(V ersion,

PreviousV ersion)

:SafetyState=True

:TransferExitReturn

transferData(transferId1, block, BlockCounter)

Figure C.4: Stream packages blocks from backend into targeted UCM

122 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

C.4 Package processing
sd [U seCase] 4 Software packages processing [4 Software packages processing]

U CM master

(from Actors)

UCM sub 1

(from Actors)

Driver Interface

(from Actors)

UCM sub 2

(from Actors)

V ehicle State Manager

(from Actors)

par Processes packages

opt Check on-going processing

opt Check on-going processing

opt Vehicle driver notification for processing

loop Until Progress = 100

loop Until Progress = 100

opt Vehicle safety state

CheckSWCLAvailableMemory
(SWCLPayloadSize)

PackageIntegrityCheck()

Subscribe(CurrentStatus)

subscribe(SafetyPolicy)

:CampaignState = SoftwarePackage_Transferring

SafetyState(False, SafetyPolicy)

ManifestConsistencyCheck()

:progress=100

CheckSWCLAvailableMemory
(SWCLPayloadSize)

:CampaignState = SoftwarePackage_Transferring

GetSwPackages(): SwClusterInfoVectorType

:SafetyState=True

GetProcessProgress(transferId2): ProcessingStatusType

ManifestConsistencyCheck()

:CurrentStatus=ready

:Progress

:SafetyState=False

ProcessSwPackage(transferId2): ProcessSwPackageReturnType

:progress=100

ParseActionFromManifest()

CheckV ehicleSWCLDependencies
(V ehiclePackageDependencies)

Wait for Safe conditions()

WaitApproval()

GetSwPackages(SwInfoN ame2): SwClusterInfoVectorType

ParseActionFromManifest()

ProcessSwPackage(transferId1): ProcessSwPackageReturnType

DriverApproval(True, SafetyPolicy)

GetSwProcessProgress()

:CampaignState = Processing

GetProcessProgress(transferId1): ProcessingStatusType

:CampaignState = Activating

PackageIntegrityCheck()

ParseV ehiclePackageManifest(): CampaignOrchestration,
Dependencies

:ApprovalRequired==True

SafetyState(True, SafetyPolicy)

:ProcessSwPackageReturn

Figure C.5: Packages processing by UCMs

123 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

C.5 Package activation
sd [U seCase] 5 Software packages activation [5 Software packages activation]

U CM master

(from Actors)

UCM sub 1

(from Actors)

Driver Interface

(from Actors)

UCM sub 2

(from Actors)

V ehicle State Manager

(from Actors)

opt Optional Action

par A ctivations could be performed in parallel

Sw restart activation

Partition activation

opt Check Vehicle Safety conditions before/during activation

ApprovalRequired=True()

:CurrentStatus = ACTIVATING

Activate(ActivationMethod)

stopOldSWCLIfNeeded()

:CurrentStatus = CLEANING_UP

WaitApproval()

:CampaignState=Activating

:READY

Finish()

V ehicleChecks()

:CampaignState=IDLE

:CampaignState=Processing

CheckPackageDependencies(SWCLDependencies)

Subscribe(CurrentStatus)

Subscribe(CurrentStatus)

:CurrentStatus = VERIFYING

startN ewSWCLIfNeeded()

:CurrentStatus = IDLE

DefineActivationMethod(Manifest or ActionMethod)

ApplyPolicy(SafetyPolicy): SafeToUpdate

:CurrentStatus = ACTIVATED

:0

:0

:CurrentStatus = IDLE

DriverApproval(True, SafetyPolicy)

Activate(ActivationMethod)

swapPartitionAndSyncThem()

DefineActivationMethod
(Manifest or ActionMethod)

:CurrentStatus = ACTIVATED

:CurrentStatus = VERIFYING

Finish()

:CampaignState=Processing

:SafeToUpdate=True

:READY

:V ehicleState

:CurrentStatus = ACTIVATING

:CampaignState=Vehicle_Checking

CheckPackageDependencies
(SWCLDependencies)

:CurrentStatus = CLEANING_UP

Figure C.6: Packages activation by UCMs

124 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

C.6 Package rollback
sd [U seCase] 5.1 Software clusters rollback [5.1 Software clusters rollback]

U CM master

(from Actors)

UCM sub 1

(from Actors)

Driver Interface

(from Actors)

OTA Client

(from Actors)

Verifying if Failing

CheckPackageDependencies
(SWCLDependencies)

Subscribe(CurrentStatus)

:CurrentStatus = VERIFYING

DefineActivationMethod
(Manifest or ActionMethod)

:CampaignState=IDLE

:CurrentStatus = ROLLED-BACK

:CurrentStatus = ACTIVATING

:CurrentStatus = CLEANING_UP

:CampaignState=Cancelling

:READY

Finish()

:CampaignState=Activating

:TransferState=Idle

:TransferState=Cancelling

:CurrentStatus = ROLLING-BACK

Activate(CampaignOrchestration)

Figure C.7: Packages rollback by UCMs

125 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

C.7 Campaign reporting
sd [U seCase] 6 Campaign reporting [6 Campaign reporting]

OTA Client

(from Actors)

U CM master

(from Actors)

UCM sub 1

(from Actors)

UCM sub 2

(from Actors)

Driver Interface

(from Actors)

par Checking UCM slaves states

opt Optional Action

opt Check UCM state

opt

:CampaignState=IDLE

Subscribe(CurrentStatus)

CampaignAggregation()

:CampaignHistoryType

GetHistory(timeStampGE, timeStampLT)

getCampaignHistory(timeFrom, timeTo)

:IDLE

CampaignJudgement()

:GetHistoryReturnType

:IDLE

:CampaignHistoryType

:GetHistoryReturnType

GetHistory(timeStampGE, timeStampLT)

GetCampaignHistory(timeForm, timeTo)

Subscribe(CurrentStatus)

Figure C.8: Campaign reporting to backend

126 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

D Security Analysis of Installation and Update

This chapter presents a summary for the security analysis of the UCM. Some of the
threats could not be addressed by specifying AUTOSAR requirements. The main rea-
son for not specifying the countermeasures is to allow vendors to flexibly decide on the
solution that fits their setup. Here we aim to raise awareness and provide advice on
the selected topics:

D.1 Securing Software Package

UCM is responsible for applying changes of the platform and applications contained
in the Software Packages it receives. Therefore, integrity and authenticity of Software
Packages are critical to protect system integrity. It shall be ensured that the Software
Packages are neither illegitimately altered nor issued by unauthorized parties. This
can be achieved by applying cryptographic techniques such as digital signatures. The
period that Software Package resides in UCM before being activated shall not be ne-
glected. It provides a window of opportunity for an attacker to tamper with the Software
Package after the authentication is done at TransferExit.

Information disclosure is another security threat category that might be applicable to
Software Packages. Packages that contain sensitive information, such as intellec-
tual properties or cryptographic keys, require confidentiality protection in addition to
integrity and authenticity when being persisted or transmitted over a communication
channel.

Another aspect of protecting Software Update Packages is their freshness. An attacker
may try to manipulate the system by downgrading the software via replaying an authen-
tic but older Software Update Package. In this regard, the platform shall ensure that
only newer packages (i.e. packages that contain newer version of installed SWCL) can
be installed.

D.2 Securing Calls to UCM

UCM provides a very critical functionality in the platform that allows modifying appli-
cations and platform components. In that sense, it is critical to prevent unauthorized
access to UCM, meaning only legitimate callers should be allowed to reach the UCM
service interface. This is primarily enforced in the communication layer supported by
the Identity and Access Management. Additionally, the calls to the UCM interface shall
be protected against altering, e.g. changing API arguments. When the service and
client reside on the same machine, the security relies on the integrity of the operating
system and the platform. In case, the service and the client are running on different
machines, a secure communication, assuring authenticity and integrity of communica-
tion, is additionally required.

127 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

Moreover, some API methods of the UCM interface returns sensitive information about
the platform. This subset (GetSwClusterInfo, GetSwClusterChangeInfo, GetHistory,
GetSwPackages) shall be protected against information disclosure and should only be
reachable over a channel that provides confidentiality.

A similar reasoning is applicable for securing the communication between UCM Master
and its clients. Regarding protection against information disclosure, GetSwClusterInfo,
SwPackageInventory and GetHistory for UCM Master shall only be called over confi-
dential channels.

D.3 Suppressing Call to UCM

Multiple scenarios can be envisioned where an attacker targets suppressing the calls to
UCM. The attack could block the calls to or the response from UCM. In both cases the
caller of the service may assume that UCM is not responding and retries its request.
This would lead to undesired overhead on the system. For such scenarios, it is recom-
mended that both UCM and the UCM Client consider reporting security events when
same calls repeatedly received at UCM or calls repeatedly fail at the caller side. This
information could potentially be picked up by Intrusion Detection Systems or Anomaly
Detection Systems.

D.4 Resource Starvation

According to the current specification, the available resources for transferring a Soft-
ware Package is only checked when TransferStart is called but not reserved. This
means, while the transfer is ongoing, the system storage can be exhausted by other
processes using the same storage media. This scenario is also applicable to UCM
Master when receiving data from its client. A similar case is possible for processing
of Software Package, as the resources are only checked at the beginning but not re-
served. In this regard, a solution could be to reserve the necessary resources for the
Software Package transfer or processing from the beginning to prevent attacks aiming
at such scenarios.

At the same time, reserving the resources might provide opportunity to the attacker
in other scenarios. The specification allows transferring multiple Software Packages
in parallel. Consequently, a misbehaving or compromised client can open unlimited
number of transfer sessions causing UCM to run out of resources. To cope with this
scenario, a threshold for the number of parallel transfer sessions can be defined.

D.5 Zombie Sessions

The AUTOSAR specification does not enforce any expiry time for the established trans-
fer sessions. As a result, the resources that are hold by an ongoing session will not

128 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

be released no matter how long time it takes. At the same time, in certain cases it
may take a long time for larger software packages to be transferred to UCM or UCM
Master, especially when they are received from external sources with weak connec-
tivity on-the-fly. However, a timeout may be considered for such a transfer to prevent
attackers from mounting denial of service attacks by long term allocation of resources.

129 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

E History of Constraints and Specification Items

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

E.1 Constraint and Specification Item History of this document
according to AUTOSAR Release R19-11.

E.1.1 Added Traceables in R19-11

Number Heading

[SWS_UCM_00009] UCM exposing its identifier

[SWS_UCM_00105] UCM confidential information handling

[SWS_UCM_00161] Check Software Package version compatibility against UCM version

[SWS_UCM_00162] Entering the Cleaning-up state after a RevertProcessedSwPackages call

[SWS_UCM_00163] Action in Cleaning-up state

[SWS_UCM_00164] Cleaning up of Software Packages

[SWS_UCM_00165] Processing from stream

[SWS_UCM_00166] Processing from stream state

[SWS_UCM_00167] Cancelling streamed packages

[SWS_UCM_00168] Transferring while processing from stream

[SWS_UCM_00169] Finishing transfer while processing from stream

[SWS_UCM_00170] Log message retrieving

[SWS_UCM_00171] Log level changing

[SWS_UCM_00172] Log messages removing

[SWS_UCM_00173] UCMIdentifierType table

[SWS_UCM_00174] SwNameVectorType table

[SWS_UCM_00175] StrongRevisionLabelString table

[SWS_UCM_00176] SwNameVersionType table

[SWS_UCM_00177] SwNameVersionVectorType table

[SWS_UCM_00178] ProvidedPort VehiclePackageManagement

[SWS_UCM_00179] RequiredPort VehicleStateManager

[SWS_UCM_00180] RequiredPort VehicleDriverApplication

[SWS_UCM_00181] ProvidedInterface VehiclePackageManagement

[SWS_UCM_00182] RequiredInterface VehicleDriverApplication

[SWS_UCM_00183] RequiredInterface VehicleStateManager

[SWS_UCM_00210] Transferring of software packages on kProcessApproving or kProcess-
ing state

5

130 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Number Heading

[SWS_UCM_01001] UCM Master processes Vehicle Package

[SWS_UCM_01002] UCM Master shall provide UCM services

[SWS_UCM_01003] UCM Master checks states of UCM subordinates
[SWS_UCM_01004] Only one UCM Master shall be active per network domain

[SWS_UCM_01005] UCM Master is discovering UCMs in vehicle

[SWS_UCM_01006] Vehicle Package transfer to UCM Master

[SWS_UCM_01007] Start transfer of a Vehicle Package or Software Packageto UCM Mas-
ter

[SWS_UCM_01008] Transfer data of a Vehicle Package to UCM Master

[SWS_UCM_01009] Exit the transfer of a Vehicle Package to UCM Master

[SWS_UCM_01010] Delete a Vehicle Package transferred to UCM Master

[SWS_UCM_01101] Provide information of installed Software Clusters in vehicle
[SWS_UCM_01102] Get information of available Software Clusters in Backend

[SWS_UCM_01103] Inform Backend of needed Software Clusters for an update

[SWS_UCM_01105] Interaction of UCM Master with Vehicle Driver
[SWS_UCM_01106] Exclusive use of Vehicle Driver Interface
[SWS_UCM_01107] UCM Master provides progress information to Vehicle Driver

[SWS_UCM_01108] Unsupported safety policy by Vehicle driver interface

[SWS_UCM_01109] Vehicle State Manager shall provide to UCM Master a safety state

[SWS_UCM_01110] UCM Master shall be able to set the safety policy to be computed by Vehicle
State Manager

[SWS_UCM_01111] Exclusive use of Vehicle State Manager

[SWS_UCM_01112] Unsupported safety policy by Vehicle State Manager

[SWS_UCM_01113] Switching vehicle into update mode

[SWS_UCM_01114] SafetyPolicyType table

[SWS_UCM_01115] VehicleStateManagerErrorDomain

[SWS_UCM_01116] VehicleDriverApplicationErrorDomain

[SWS_UCM_01177] CampaignStateType table

[SWS_UCM_01201] Sequential orchestration of campaigns

[SWS_UCM_01203] CampaignState field

[SWS_UCM_01204] Initial state
[SWS_UCM_01205] UCM Master internal state persistency

[SWS_UCM_01206] Trigger on kTransferApproving state

[SWS_UCM_01207] Trigger on kTransferring state

[SWS_UCM_01208] Trigger on kProcessApproving state

[SWS_UCM_01209] Trigger on kProcessing state

[SWS_UCM_01211] Trigger on kActivateApproving state

[SWS_UCM_01212] Trigger on kActivating state
5

131 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Number Heading

[SWS_UCM_01213] Trigger on kVehicleChecking state

[SWS_UCM_01214] Final action on kVehicleChecking state

[SWS_UCM_01215] Trigger on kRollingBack state

[SWS_UCM_01216] Final action on kRollingBack state

[SWS_UCM_01217] Monitoring of UCM subordinates

[SWS_UCM_01218] Transition from kIdle state to kSyncing state

[SWS_UCM_01219] Transition from kSyncing state to kIdle state

[SWS_UCM_01220] Transition from kIdle state to kVehiclePackageTransferring state

[SWS_UCM_01221] Transition from kVehiclePackageTransferring state to kIdle state

[SWS_UCM_01222] Transition from kVehiclePackageTransferring state to kTransfer-
ring state

[SWS_UCM_01223] Transition from kVehiclePackageTransferring state to kTransferAp-
proving state

[SWS_UCM_01224] Transition from kTransferApproving state to kTransferring state

[SWS_UCM_01225] Transition from kTransferApproving state to kIdle state

[SWS_UCM_01226] Transition from kTransferring state to kTransferApproving state

[SWS_UCM_01227] Transition from kTransferring state to kIdle state

[SWS_UCM_01228] Transition from kTransferring state to kProcessing state

[SWS_UCM_01229] SafetyPolicy while processing stream

[SWS_UCM_01230] Transition from kTransferring state to kProcessApproving state

[SWS_UCM_01231] Transition from kProcessApproving state to kProcessing state

[SWS_UCM_01232] Transition from kProcessApproving state to kIdle state

[SWS_UCM_01233] Transition from kProcessing state to kProcessApproving state

[SWS_UCM_01234] Transition from kProcessing state to kActivating state

[SWS_UCM_01235] Transition from kProcessing state to kActivateApproving state

[SWS_UCM_01236] Transition from kProcessing state to kIdle state

[SWS_UCM_01237] Transition from kActivateApproving state to kActivating state

[SWS_UCM_01238] Transition from kActivateApproving state to kIdle state

[SWS_UCM_01239] Transition from kActivating state to kRollingBack state

[SWS_UCM_01240] Transition from kActivating state to kVehicleChecking state

[SWS_UCM_01241] Transition from kVehicleChecking state to kRollingBack state

[SWS_UCM_01242] Transition from kVehicleChecking state to kIdle state

[SWS_UCM_01243] Transition from kRollingBack state to kIdle state

[SWS_UCM_01244] Cancellation of an update campaign shall be possible

[SWS_UCM_01245] Cancellation during activation shall be possible

[SWS_UCM_01246] Unreachable UCM during update campaign

[SWS_UCM_01247] Method to read History Report

[SWS_UCM_01248] Content of History Report
5

132 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

4
Number Heading

[SWS_UCM_01301] Vehicle Package authentication

[SWS_UCM_01302] Vehicle Package authentication failure

[SWS_UCM_01303] Dependencies between Software Packages

[SWS_UCM_01304] Confidential information protection

[SWS_UCM_CON-
STR_00001]

Table E.1: Added Traceables in R19-11

E.1.2 Changed Traceables in R19-11

Number Heading

[SWS_UCM_00003] Cancelling the package processing

[SWS_UCM_00017] Sequential Software Package Processing

[SWS_UCM_00018] Providing Progress Information

[SWS_UCM_00027] Delta Package activation

[SWS_UCM_00071] SwNameType table

[SWS_UCM_00081] Processing state of Package Management

[SWS_UCM_00082] Exit from Processing state of Package Management

[SWS_UCM_00102] Update state

[SWS_UCM_00103] Update to older Software Cluster version than currently present

[SWS_UCM_00104] Consistency Check of processed Package

[SWS_UCM_00111] Entering the Rolled-back state

[SWS_UCM_00112] Software Cluster and version
[SWS_UCM_00126] Entering the RollingBack state after a Rollback call

[SWS_UCM_00130] Software Cluster and version error
[SWS_UCM_00146] Entering the Cleaning-up state after a Finish call

[SWS_UCM_00149] Return to the Idle state from Processing state

[SWS_UCM_00151] Entering the Ready state of Package Management after a Cancel call

[SWS_UCM_00155] Entering the RollingBack state after a failure in the Verifying state

Table E.2: Changed Traceables in R19-11

E.1.3 Deleted Traceables in R19-11

Number Heading

[SWS_UCM_00012] Log message retrieving

[SWS_UCM_00114] ActivateOptionType table

[SWS_UCM_00144] Log error

Table E.3: Deleted Traceables in R19-11

133 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R20-11

E.1.4 Added Constraints in R19-11

none

E.1.5 Changed Constraints in R19-11

none

E.1.6 Deleted Constraints in R19-11

none

134 of 134 Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification
	3.3 Further applicable specification

	4 Constraints and assumptions
	4.1 Known Limitations
	4.2 Applicability to car domains

	5 Dependencies to other functional clusters
	5.1 Interfaces to Adaptive State Management
	5.2 UCM service over ara::com
	5.3 Interfaces to Adaptive Crypto Interface
	5.4 Interfaces to Identity and Access Management

	6 Requirements Tracing
	7 Functional specification
	7.1 UCM
	7.1.1 Software Cluster lifecycle
	7.1.2 Technical Overview
	7.1.2.1 Software Package Management
	7.1.2.2 Runtime dependencies
	7.1.2.3 Update scope and State Management

	7.1.3 Transferring Software Packages
	7.1.4 Processing of Software Packages from a stream
	7.1.5 Processing Software Packages
	7.1.6 Activation and Rollback
	7.1.6.1 Activation
	7.1.6.2 Rollback
	7.1.6.3 Boot options
	7.1.6.4 Finishing activation

	7.1.7 Status Reporting
	7.1.8 Robustness against reset
	7.1.8.1 Boot monitoring

	7.1.9 History
	7.1.10 Version Reporting
	7.1.11 Securing Software Updates
	7.1.12 Functional cluster lifecycle
	7.1.12.1 Shutdown behaviour

	7.2 UCM Master
	7.2.1 UCM Master Functional Cluster lifecycle
	7.2.2 Technical Overview
	7.2.3 UCM Master general behaviour
	7.2.4 UCM identification
	7.2.5 UCM Master Software Packages transfer or streaming
	7.2.6 Adaptive Applications interacting with UCM Master
	7.2.6.1 OTA Client
	7.2.6.2 Vehicle Driver Interface
	7.2.6.3 Vehicle State Manager
	7.2.6.4 Flashing Adapter

	7.2.7 Non Adaptive Platform update
	7.2.7.1 D-PDU API implementation support
	7.2.7.2 Not required D-PDU API concepts
	7.2.7.3 Not required D-PDU API functions

	7.2.8 Status reporting
	7.2.8.1 States
	7.2.8.2 States Transitions

	7.2.9 Campaign Reporting
	7.2.10 Content of Vehicle Package
	7.2.11 Vehicle update security and confidentiality

	8 API specification
	9 Service Interfaces
	9.1 Type definitions
	9.1.1 UCMIdentifierType
	9.1.2 TransferIdType
	9.1.3 SwNameType
	9.1.4 SwNameVectorType
	9.1.5 StrongRevisionLabelString
	9.1.6 SwNameVersionType
	9.1.7 SwNameVersionVectorType
	9.1.8 ByteVectorType
	9.1.9 SwPackageStateType
	9.1.10 SwPackageInfoType
	9.1.11 SwPackageInfoVectorType
	9.1.12 SwDescType
	9.1.13 SwDescVectorType
	9.1.14 SwClusterStateType
	9.1.15 SwClusterInfoType
	9.1.16 SwClusterInfoVectorType
	9.1.17 PackageManagerStatusType
	9.1.18 ActionType
	9.1.19 ResultType
	9.1.20 GetHistoryType
	9.1.21 GetHistoryVectorType
	9.1.22 CampaignHistoryType
	9.1.23 CampaignErrorType
	9.1.24 CampaignFailureType
	9.1.25 UCMStepErrorType
	9.1.26 SoftwarePackageStepType
	9.1.27 HistoryVectorType
	9.1.28 CampaignStateType
	9.1.29 TransferStateType
	9.1.30 SafetyPolicyType

	9.2 Provided Service Interfaces
	9.2.1 Package Management
	9.2.2 Vehicle Package Management
	9.2.3 Vehicle Driver Application Interface
	9.2.4 Vehicle State Manager

	9.3 Required Interface
	9.3.1 State Management Update Request

	9.4 Application Errors
	9.4.1 Application Error Domain
	9.4.1.1 UCMErrorDomain

	10 Sequence diagrams
	10.1 Update process
	10.2 Data transmission
	10.3 Package processing
	10.4 Activation
	10.5 Failing activation
	10.6 UCM Master simplified vehicle update

	A Mentioned Manifest Elements
	B Interfaces to other Functional Clusters (informative)
	B.1 Overview
	B.2 Interfaces Tables
	B.2.1 UCM update notification

	C Packages distribution within vehicle detailed sequence examples
	C.1 Collect information of present Software Clusters in vehicle
	C.2 Action computation
	C.2.1 Pull package from Backend into vehicle
	C.2.2 Push package from backend into vehicle

	C.3 Packages transfer from backend into targeted UCM
	C.4 Package processing
	C.5 Package activation
	C.6 Package rollback
	C.7 Campaign reporting

	D Security Analysis of Installation and Update
	D.1 Securing Software Package
	D.2 Securing Calls to UCM
	D.3 Suppressing Call to UCM
	D.4 Resource Starvation
	D.5 Zombie Sessions

	E History of Constraints and Specification Items
	E.1 Constraint and Specification Item History of this document according to AUTOSAR Release R19-11.
	E.1.1 Added Traceables in R19-11
	E.1.2 Changed Traceables in R19-11
	E.1.3 Deleted Traceables in R19-11
	E.1.4 Added Constraints in R19-11
	E.1.5 Changed Constraints in R19-11
	E.1.6 Deleted Constraints in R19-11

