
Specification of Persistency
AUTOSAR AP R20-11

Document Title Specification of Persistency
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 858

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R20-11

Document Change History
Date Release Changed by Description

2020-11-30 R20-11
AUTOSAR
Release
Management

• Replaced POSIX based file access
API and improved error handling and
symmetry of other APIs
• Full support for encryption and

redundancy by hashes using Crypto
API
• Added information to application

about safety related problems
• Improved installation/update and

redundancy

2019-11-28 R19-11
AUTOSAR
Release
Management

• Introduced reset and restore of
storages
• Introduced storage statistics
• Improved compliance with general

AUTOSAR concepts
• Improved naming and consistency of

classes / methods / functions /
constants
• Changed Document Status from

Final to published

2019-03-29 19-03
AUTOSAR
Release
Management

• Improved naming of classes /
methods / functions
• Reworked installation/update
• Support for parallel execution in

multiple threads
• Cleaned up usage of ara::core

concepts

1 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

2018-10-31 18-10
AUTOSAR
Release
Management

• Introduction of ara::core types and
switch to exceptionless API
• Rework of redundancy approach
• Support for resource limitation
• Improvements and harmonization of

KeyValueStorage and FileProxy API

2018-03-29 18-03
AUTOSAR
Release
Management

• Installation / update of persistent
data
• Data types supported by

KeyValueStorage API

2017-10-27 17-10
AUTOSAR
Release
Management

• Introduction of AUTOSAR model
• Security added
• Redundancy added
• Rework of FileProxy / Stream API

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

2 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Table of Contents

1 Introduction and Functional Overview 9

2 Acronyms and Abbreviations 10

3 Related Documentation 11

3.1 Input Documents & Related Standards and Norms 11
3.2 Further Applicable Specifications . 11

4 Constraints and Assumptions 12

4.1 Known Limitations . 12
4.2 Constraints on Configuration . 12
4.3 Direct Access to Storage Hardware . 12

5 Dependencies to Other Functional Clusters 13

5.1 Protocol Layer Dependencies . 13

6 Requirements Tracing 14

7 Functional Specification 23

7.1 The Architecture of Persistency . 23
7.1.1 Persistency in the Manifest 23
7.1.2 Key-Value Storages in the Manifest 24
7.1.3 File Storages in the Manifest 25

7.2 Functional Cluster Lifecycle . 26
7.2.1 Initialization and Shutdown of Persistency 26

7.3 Parallel Access to Persistent Data . 27
7.4 Security Concepts . 29
7.5 Redundancy Concepts . 31

7.5.1 Redundancy Types . 31
7.6 Installation and Update of Persistent Data 34

7.6.1 Installation of Persistent Data 36
7.6.1.1 Installation of Key-Value Storage 36
7.6.1.2 Installation of File Storage 37

7.6.2 Update of Persistent Data . 38
7.6.2.1 Update of Key-Value Storage 39
7.6.2.2 Update of File Storage 40

7.6.3 Finalization of Persistent Data after Successful Update . . . 41
7.6.4 Roll-Back of Persistent Data after Failed Update 41
7.6.5 Removal of Persistent Data 41

7.7 Resource Management Concepts . 42
7.8 Supported Data Types in Key-Value Storages 43
7.9 Access to Additional Information about Files 44

8 API Specification 45

8.1 ara::core Types . 45

4 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.2 Key-Value Storage . 46
8.2.1 OpenKeyValueStorage . 46
8.2.2 RecoverKeyValueStorage . 47
8.2.3 ResetKeyValueStorage . 48
8.2.4 GetCurrentKeyValueStorageSize 48
8.2.5 KeyValueStorage Class . 49

8.2.5.1 KeyValueStorage::KeyValueStorage 50
8.2.5.2 KeyValueStorage::operator= 50
8.2.5.3 KeyValueStorage::~KeyValueStorage 51
8.2.5.4 KeyValueStorage::GetAllKeys 51
8.2.5.5 KeyValueStorage::KeyExists 52
8.2.5.6 KeyValueStorage::GetValue 53
8.2.5.7 KeyValueStorage::SetValue 54
8.2.5.8 KeyValueStorage::RemoveKey 54
8.2.5.9 KeyValueStorage::RecoverKey 55
8.2.5.10 KeyValueStorage::ResetKey 56
8.2.5.11 KeyValueStorage::RemoveAllKeys 57
8.2.5.12 KeyValueStorage::SyncToStorage 58
8.2.5.13 KeyValueStorage::DiscardPendingChanges 58

8.3 File Storage . 60
8.3.1 OpenFileStorage . 60
8.3.2 RecoverAllFiles . 61
8.3.3 ResetAllFiles . 62
8.3.4 GetCurrentFileStorageSize 63
8.3.5 OpenMode . 63
8.3.6 operator| for FileStorage::OpenMode 64
8.3.7 operator|= for FileStorage::OpenMode 64
8.3.8 FileCreationState . 65
8.3.9 FileModificationState . 65
8.3.10 FileInfo . 66

8.3.10.1 FileInfo.creationTime 66
8.3.10.2 FileInfo.modificationTime 67
8.3.10.3 FileInfo.accessTime 67
8.3.10.4 FileInfo.fileCreationState 67
8.3.10.5 FileInfo.fileModificationState 68

8.3.11 FileStorage Class . 68
8.3.11.1 FileStorage::FileStorage 68
8.3.11.2 FileStorage::operator= 69
8.3.11.3 FileStorage::~FileStorage 70
8.3.11.4 FileStorage::GetAllFileNames 70
8.3.11.5 FileStorage::DeleteFile 71
8.3.11.6 FileStorage::FileExists 71
8.3.11.7 FileStorage::RecoverFile 72
8.3.11.8 FileStorage::ResetFile 73
8.3.11.9 FileStorage::GetCurrentFileSize 74
8.3.11.10 FileStorage::GetFileInfo 74

5 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.3.11.11 FileStorage::OpenFileReadWrite 75
8.3.11.12 FileStorage::OpenFileReadOnly 78
8.3.11.13 FileStorage::OpenFileWriteOnly 81

8.3.12 Origin . 84
8.3.13 ReadAccessor Class . 84

8.3.13.1 ReadAccessor::ReadAccessor 85
8.3.13.2 ReadAccessor::operator= 85
8.3.13.3 ReadAccessor::~ReadAccessor 86
8.3.13.4 ReadAccessor::PeekChar 86
8.3.13.5 ReadAccessor::PeekByte 87
8.3.13.6 ReadAccessor::GetChar 88
8.3.13.7 ReadAccessor::GetByte 88
8.3.13.8 ReadAccessor::ReadText 89
8.3.13.9 ReadAccessor::ReadBinary 90
8.3.13.10 ReadAccessor::ReadLine 92
8.3.13.11 ReadAccessor::GetSize 93
8.3.13.12 ReadAccessor::GetPosition 93
8.3.13.13 ReadAccessor::SetPosition 93
8.3.13.14 ReadAccessor::MovePosition 94
8.3.13.15 ReadAccessor::IsEof 95

8.3.14 ReadWriteAccessor Class 95
8.3.14.1 ReadWriteAccessor::SyncToFile 96
8.3.14.2 ReadWriteAccessor::SetFileSize 96
8.3.14.3 ReadWriteAccessor::WriteText 97
8.3.14.4 ReadWriteAccessor::WriteBinary 98
8.3.14.5 ReadWriteAccessor::operator<< 99

8.4 Update and Removal of Persistent Data 100
8.4.1 RegisterApplicationDataUpdateCallback 100
8.4.2 UpdatePersistency . 100
8.4.3 ResetPersistency . 101

8.5 Redundancy Handling . 103
8.5.1 RecoveryReportKind . 103
8.5.2 RegisterRecoveryReportCallback 104

8.6 Handle Classes . 106
8.6.1 SharedHandle Class . 106

8.6.1.1 SharedHandle::SharedHandle 106
8.6.1.2 SharedHandle::operator= 107
8.6.1.3 SharedHandle::operator bool 108
8.6.1.4 SharedHandle::Operator-> 108
8.6.1.5 SharedHandle::Operator* 109

8.6.2 UniqueHandle Class . 110
8.6.2.1 UniqueHandle::UniqueHandle 110
8.6.2.2 UniqueHandle::operator= 111
8.6.2.3 UniqueHandle::operator bool 112
8.6.2.4 UniqueHandle::Operator-> 112
8.6.2.5 UniqueHandle::Operator* 113

6 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.7 Errors . 115
8.7.1 PerErrc . 115
8.7.2 GetPerDomain . 116
8.7.3 MakeErrorCode . 116
8.7.4 PerException Class . 117

8.7.4.1 PerException::PerException 117
8.7.5 PerErrorDomain Class . 117

8.7.5.1 PerErrorDomain::Errc 118
8.7.5.2 PerErrorDomain::Exception 118
8.7.5.3 PerErrorDomain::PerErrorDomain 119
8.7.5.4 PerErrorDomain::Name 119
8.7.5.5 PerErrorDomain::Message 119
8.7.5.6 PerErrorDomain::ThrowAsException 120

9 Service Interfaces 121

A Mentioned Class Tables 122

B Platform Extension API (normative) 141

C Interfaces to Other Functional Clusters (informative) 142

D History of Constraints and Specification Items 143

D.1 Constraint and Specification Item History of this Document According
to AUTOSAR Release 17-03 . 143

D.1.1 Added Traceables in 17-03 143
D.1.2 Changed Traceables in 17-03 143
D.1.3 Deleted Traceables in 17-03 143

D.2 Constraint and Specification Item History of this Document According
to AUTOSAR Release 17-10 . 144

D.2.1 Added Traceables in 17-10 144
D.2.2 Changed Traceables in 17-10 144
D.2.3 Deleted Traceables in 17-10 144

D.3 Constraint and Specification Item History of this Document According
to AUTOSAR Release 18-03 . 145

D.3.1 Added Traceables in 18-03 145
D.3.2 Changed Traceables in 18-03 145
D.3.3 Deleted Traceables in 18-03 145

D.4 Constraint and Specification Item History of this Document According
to AUTOSAR Release 18-10 . 146

D.4.1 Added Traceables in 18-10 146
D.4.2 Changed Traceables in 18-10 146
D.4.3 Deleted Traceables in 18-10 146

D.5 Constraint and Specification Item History of this Document According
to AUTOSAR Release 19-03 . 147

D.5.1 Added Traceables in 19-03 147
D.5.2 Changed Traceables in 19-03 147

7 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

D.5.3 Deleted Traceables in 19-03 147
D.6 Constraint and Specification Item History of this Document According

to AUTOSAR Release R19-11 . 148
D.6.1 Added Traceables in R19-11 148
D.6.2 Changed Traceables in R19-11 148
D.6.3 Deleted Traceables in R19-11 148

D.7 Constraint and Specification Item History of this Document According
to AUTOSAR Release R20-11 . 148

D.7.1 Added Traceables in R20-11 148
D.7.2 Changed Traceables in R20-11 149
D.7.3 Deleted Traceables in R20-11 149

E Not Applicable Requirements 150

8 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

1 Introduction and Functional Overview

This document is the software specification of the Persistency functional cluster
within the Adaptive Platform.

Persistency offers mechanisms to Adaptive Applications to store information
in the non-volatile memory of a machine. The data is available over boot and ignition
cycles.

The Persistency functional cluster will typically be implemented as a library that runs
within a Process of an Adaptive Application, with the rights of that Process.

9 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Persis-
tency that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym Description
KVS Key-Value Storage

Terms Description
File Storage A set of files that are stored persistently.
Key-Value Pair A key with an associated value, to be stored in a Key-Value

Storage together with the type of the value.
Key-Value Storage A set of key-value pairs that are stored persistently.
Persistency The functional cluster described in this document, which han-

dles persistent data of AUTOSAR Adaptive Applica-
tions and other functional clusters in File Storages and
Key-Value Storages.

Persistent Data Data that is stored in the persistent memory that can be accessed
by one Process.
Persistency supports different mechanisms to access data in
persistent memory. Concurrent access to the data by several
Processes is not supported as the data is owned exclusively by
one Process.

Integrity Persistency distinguishes data integrity, which is ensured by
the configured redundancy, from structural integrity, i.e. the
readability of the structure of a Key-Value Storage or File
Storage.

Redundancy Redundancy is used by Persistency to ensure the in-
tegrity of stored data. It can be configured to use replication
of stored data, CRCs, or Hashes. Typically, only replication will
allow to repair corrupted data.

10 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

3 Related Documentation

3.1 Input Documents & Related Standards and Norms

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of the Adaptive Core
AUTOSAR_SWS_AdaptiveCore

[3] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[4] Requirements on Persistency
AUTOSAR_RS_Persistency

[5] General Requirements specific to Adaptive Platform
AUTOSAR_RS_General

[6] Specification of Update and Configuration Management
AUTOSAR_SWS_UpdateAndConfigManagement

[7] Explanation of Adaptive Platform Design
AUTOSAR_EXP_PlatformDesign

[8] Specification of Cryptography for Adaptive Platform
AUTOSAR_SWS_Cryptography

[9] Specification of Platform Types for Adaptive Platform
AUTOSAR_SWS_AdaptivePlatformTypes

3.2 Further Applicable Specifications

AUTOSAR provides a core specification [2] which is also applicable for the Persis-
tency. The chapter “General requirements for all FunctionalClusters” of this specifica-
tion shall be considered as an additional and required specification for implementation
of the Persistency.

11 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4 Constraints and Assumptions

4.1 Known Limitations

• Although a Key-Value Storage and File Storage can be configured as
write-only, the current API always allows read access. Read access is even pos-
sible when a file has been opened with ara::per::FileStorage::Open-
FileWriteOnly.

4.2 Constraints on Configuration

There are several constraints on the Persistency configuration that need to be ob-
served by the tooling which creates/processes this part of the Execution Manifest.
These constraints are defined in [3].

4.3 Direct Access to Storage Hardware

Modern embedded controllers use flash memory and similar hardware to store data.
These devices have the intrinsic problem that the signal that can be read from each
memory cell is reduced over time, mainly influenced by the number of write accesses.
In the end, the cell will produce arbitrary values on each read access.

Unfortunately, the distribution of write accesses in typical systems is very uneven.
Some parameters might be updated a few times a second, while some code may stay
untouched for the whole life time of the ECU. To avoid early read errors, wear leveling
should be deployed, such that frequent updates of single data elements are distributed
over the whole memory area.

On the other hand, most operating systems include a file system or at least a flash
driver that takes care of wear leveling, such that a typical implementation of the Per-
sistency will not have to care about the wear leveling. This use case is therefore not
described in any detail in this specification.

12 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

5 Dependencies to Other Functional Clusters

5.1 Protocol Layer Dependencies

The Persistency is (at least partially) compiled as part of an Executable of an
Adaptive Application, and therefore also executed as part of a Process, which
creates an implicit dependency on the Execution Management.

For the implementation of redundancy and security purposes, the Persistency ac-
cesses services of the Adaptive Crypto Interface.

For the installation, update, and deletion of persisted data, the Persistency interacts
with the Update and Configuration Management (UCM).

13 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

6 Requirements Tracing

The following table references the requirements specified in the AUTOSAR RS Per-
sistency [4] and the AUTOSAR RS General [5], and links to the fulfillments of these.
Please note that if column “Satisfied by” is empty for a specific requirement, this means
that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_AP_00111] The AUTOSAR Adaptive

Platform shall support source
code portability for AUTOSAR
Adaptive applications.

[SWS_PER_NA]

[RS_AP_00114] C++ interface shall be
compatible with C++14.

[SWS_PER_NA]

[RS_AP_00115] Namespaces. [SWS_PER_00002]
[RS_AP_00116] Header file name. [SWS_PER_NA]
[RS_AP_00119] Return values / application

errors.
[SWS_PER_00042] [SWS_PER_00043]
[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00052] [SWS_PER_00107]
[SWS_PER_00110] [SWS_PER_00111]
[SWS_PER_00112] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115]
[SWS_PER_00116] [SWS_PER_00119]
[SWS_PER_00122] [SWS_PER_00125]
[SWS_PER_00144] [SWS_PER_00162]
[SWS_PER_00163] [SWS_PER_00164]
[SWS_PER_00165] [SWS_PER_00166]
[SWS_PER_00167] [SWS_PER_00168]
[SWS_PER_00313] [SWS_PER_00314]
[SWS_PER_00315] [SWS_PER_00323]
[SWS_PER_00325] [SWS_PER_00327]
[SWS_PER_00329] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00351] [SWS_PER_00352]
[SWS_PER_00357] [SWS_PER_00358]
[SWS_PER_00360] [SWS_PER_00361]
[SWS_PER_00363] [SWS_PER_00364]
[SWS_PER_00365] [SWS_PER_00368]
[SWS_PER_00370] [SWS_PER_00372]
[SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00398]
[SWS_PER_00399] [SWS_PER_00400]
[SWS_PER_00401] [SWS_PER_00402]
[SWS_PER_00403] [SWS_PER_00405]
[SWS_PER_00406] [SWS_PER_00407]
[SWS_PER_00414] [SWS_PER_00416]
[SWS_PER_00418] [SWS_PER_00419]
[SWS_PER_00420] [SWS_PER_00421]
[SWS_PER_00422] [SWS_PER_00423]

14 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Requirement Description Satisfied by
[SWS_PER_00424] [SWS_PER_00426]
[SWS_PER_00427] [SWS_PER_00428]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00434]
[SWS_PER_00438]

[RS_AP_00120] Method and Function names. [SWS_PER_00042] [SWS_PER_00043]
[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00050] [SWS_PER_00052]
[SWS_PER_00107] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122]
[SWS_PER_00125] [SWS_PER_00144]
[SWS_PER_00162] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00167]
[SWS_PER_00168] [SWS_PER_00313]
[SWS_PER_00314] [SWS_PER_00315]
[SWS_PER_00322] [SWS_PER_00323]
[SWS_PER_00324] [SWS_PER_00325]
[SWS_PER_00326] [SWS_PER_00327]
[SWS_PER_00328] [SWS_PER_00329]
[SWS_PER_00330] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00350] [SWS_PER_00351]
[SWS_PER_00352] [SWS_PER_00355]
[SWS_PER_00356] [SWS_PER_00357]
[SWS_PER_00358] [SWS_PER_00365]
[SWS_PER_00367] [SWS_PER_00368]
[SWS_PER_00369] [SWS_PER_00370]
[SWS_PER_00371] [SWS_PER_00372]
[SWS_PER_00373] [SWS_PER_00374]
[SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00405]
[SWS_PER_00406] [SWS_PER_00407]
[SWS_PER_00413] [SWS_PER_00414]
[SWS_PER_00415] [SWS_PER_00416]
[SWS_PER_00417] [SWS_PER_00418]
[SWS_PER_00419] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00428] [SWS_PER_00429]
[SWS_PER_00430] [SWS_PER_00431]
[SWS_PER_00433] [SWS_PER_00434]
[SWS_PER_00438]

15 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_AP_00121] Parameter names. [SWS_PER_00043] [SWS_PER_00046]

[SWS_PER_00047] [SWS_PER_00052]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00125]
[SWS_PER_00144] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00315]
[SWS_PER_00322] [SWS_PER_00323]
[SWS_PER_00326] [SWS_PER_00327]
[SWS_PER_00332] [SWS_PER_00333]
[SWS_PER_00334] [SWS_PER_00335]
[SWS_PER_00336] [SWS_PER_00337]
[SWS_PER_00338] [SWS_PER_00350]
[SWS_PER_00351] [SWS_PER_00355]
[SWS_PER_00356] [SWS_PER_00367]
[SWS_PER_00368] [SWS_PER_00369]
[SWS_PER_00370] [SWS_PER_00371]
[SWS_PER_00372] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00405] [SWS_PER_00406]
[SWS_PER_00407] [SWS_PER_00413]
[SWS_PER_00414] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00433]
[SWS_PER_00434] [SWS_PER_00438]

[RS_AP_00122] Type names. [SWS_PER_00146] [SWS_PER_00147]
[SWS_PER_00311] [SWS_PER_00312]
[SWS_PER_00339] [SWS_PER_00340]
[SWS_PER_00342] [SWS_PER_00343]
[SWS_PER_00354] [SWS_PER_00359]
[SWS_PER_00362] [SWS_PER_00411]
[SWS_PER_00412] [SWS_PER_00432]
[SWS_PER_00435] [SWS_PER_00436]
[SWS_PER_00437]

[RS_AP_00124] Variable names. [SWS_PER_NA]
[RS_AP_00127] Usage of ara::core types. [SWS_PER_00042] [SWS_PER_00043]

[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00052] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122]
[SWS_PER_00125] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00311]
[SWS_PER_00312] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]

16 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Requirement Description Satisfied by
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00354] [SWS_PER_00356]
[SWS_PER_00357] [SWS_PER_00358]
[SWS_PER_00365] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00405] [SWS_PER_00406]
[SWS_PER_00407] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00428] [SWS_PER_00429]
[SWS_PER_00430] [SWS_PER_00431]
[SWS_PER_00433] [SWS_PER_00438]

[RS_AP_00128] Error reporting. [SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00052] [SWS_PER_00111]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00122] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00357] [SWS_PER_00358]
[SWS_PER_00365] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00405] [SWS_PER_00406]
[SWS_PER_00407] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00428] [SWS_PER_00429]
[SWS_PER_00430] [SWS_PER_00431]
[SWS_PER_00438]

[RS_AP_00129] Public types defined by
functional clusters shall be
designed to allow
implementation without dynamic
memory allocation.

[SWS_PER_00042] [SWS_PER_00046]
[SWS_PER_00047] [SWS_PER_00048]
[SWS_PER_00049] [SWS_PER_00050]
[SWS_PER_00052] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115]
[SWS_PER_00116] [SWS_PER_00119]
[SWS_PER_00122] [SWS_PER_00322]
[SWS_PER_00326] [SWS_PER_00330]
[SWS_PER_00332] [SWS_PER_00333]
[SWS_PER_00334] [SWS_PER_00335]
[SWS_PER_00336] [SWS_PER_00337]

17 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Requirement Description Satisfied by
[SWS_PER_00338] [SWS_PER_00360]
[SWS_PER_00361] [SWS_PER_00363]
[SWS_PER_00364] [SWS_PER_00365]
[SWS_PER_00367] [SWS_PER_00369]
[SWS_PER_00371] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00398] [SWS_PER_00399]
[SWS_PER_00400] [SWS_PER_00401]
[SWS_PER_00402] [SWS_PER_00403]
[SWS_PER_00405] [SWS_PER_00406]
[SWS_PER_00407] [SWS_PER_00413]
[SWS_PER_00417] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00428] [SWS_PER_00429]
[SWS_PER_00430] [SWS_PER_00431]
[SWS_PER_00438]

[RS_AP_00130] AUTOSAR Adaptive Platform
shall represent a rich and
modern programming
environment.

[SWS_PER_NA]

[RS_AP_00132] noexcept behavior of API
functions

[SWS_PER_00042] [SWS_PER_00043]
[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00050] [SWS_PER_00052]
[SWS_PER_00107] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122]
[SWS_PER_00125] [SWS_PER_00162]
[SWS_PER_00163] [SWS_PER_00164]
[SWS_PER_00165] [SWS_PER_00166]
[SWS_PER_00167] [SWS_PER_00168]
[SWS_PER_00313] [SWS_PER_00314]
[SWS_PER_00315] [SWS_PER_00322]
[SWS_PER_00323] [SWS_PER_00326]
[SWS_PER_00327] [SWS_PER_00330]
[SWS_PER_00332] [SWS_PER_00333]
[SWS_PER_00334] [SWS_PER_00335]
[SWS_PER_00336] [SWS_PER_00337]
[SWS_PER_00338] [SWS_PER_00351]
[SWS_PER_00352] [SWS_PER_00355]
[SWS_PER_00356] [SWS_PER_00357]
[SWS_PER_00358] [SWS_PER_00360]

18 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Requirement Description Satisfied by
[SWS_PER_00361] [SWS_PER_00363]
[SWS_PER_00364] [SWS_PER_00365]
[SWS_PER_00367] [SWS_PER_00368]
[SWS_PER_00369] [SWS_PER_00370]
[SWS_PER_00371] [SWS_PER_00372]
[SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00398]
[SWS_PER_00399] [SWS_PER_00400]
[SWS_PER_00401] [SWS_PER_00402]
[SWS_PER_00403] [SWS_PER_00405]
[SWS_PER_00406] [SWS_PER_00407]
[SWS_PER_00413] [SWS_PER_00414]
[SWS_PER_00417] [SWS_PER_00418]
[SWS_PER_00419] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00424]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00428] [SWS_PER_00429]
[SWS_PER_00430] [SWS_PER_00431]
[SWS_PER_00433] [SWS_PER_00438]

[RS_AP_00134] noexcept behavior of class
destructors

[SWS_PER_00050] [SWS_PER_00330]
[SWS_PER_00417]

[RS_PER_00001] Persistency shall support
storage of persistent data

[SWS_PER_00107] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122]
[SWS_PER_00125] [SWS_PER_00144]
[SWS_PER_00162] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00167]
[SWS_PER_00168] [SWS_PER_00302]
[SWS_PER_00303] [SWS_PER_00304]
[SWS_PER_00309] [SWS_PER_00335]
[SWS_PER_00336] [SWS_PER_00337]
[SWS_PER_00338] [SWS_PER_00353]
[SWS_PER_00360] [SWS_PER_00361]
[SWS_PER_00363] [SWS_PER_00364]
[SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00398]
[SWS_PER_00399] [SWS_PER_00400]
[SWS_PER_00401] [SWS_PER_00402]
[SWS_PER_00403] [SWS_PER_00418]
[SWS_PER_00419] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00425]
[SWS_PER_00428] [SWS_PER_00429]
[SWS_PER_00430] [SWS_PER_00431]
[SWS_PER_00434]

19 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Requirement Description Satisfied by
[RS_PER_00002] Persistency shall support to

retrieve data that has been
persistently stored on a platform
instance

[SWS_PER_00049] [SWS_PER_00050]
[SWS_PER_00322] [SWS_PER_00323]
[SWS_PER_00324] [SWS_PER_00325]
[SWS_PER_00339] [SWS_PER_00359]
[SWS_PER_00360] [SWS_PER_00361]
[SWS_PER_00362] [SWS_PER_00363]
[SWS_PER_00364] [SWS_PER_00365]
[SWS_PER_00371] [SWS_PER_00372]
[SWS_PER_00373] [SWS_PER_00374]
[SWS_PER_00398] [SWS_PER_00399]
[SWS_PER_00400] [SWS_PER_00401]
[SWS_PER_00402] [SWS_PER_00403]

[RS_PER_00003] Persistency shall support
identification of data using a
unique identifier

[SWS_PER_00042] [SWS_PER_00043]
[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00052]
[SWS_PER_00146] [SWS_PER_00147]
[SWS_PER_00331] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00360] [SWS_PER_00361]
[SWS_PER_00363] [SWS_PER_00364]
[SWS_PER_00398] [SWS_PER_00399]
[SWS_PER_00400] [SWS_PER_00401]
[SWS_PER_00402] [SWS_PER_00403]
[SWS_PER_00426] [SWS_PER_00427]

[RS_PER_00004] Persistency shall support access
to file-like structures

[SWS_PER_00107] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00119] [SWS_PER_00122]
[SWS_PER_00125] [SWS_PER_00144]
[SWS_PER_00162] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00167]
[SWS_PER_00168] [SWS_PER_00326]
[SWS_PER_00327] [SWS_PER_00328]
[SWS_PER_00329] [SWS_PER_00330]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00340] [SWS_PER_00342]
[SWS_PER_00343] [SWS_PER_00367]
[SWS_PER_00368] [SWS_PER_00369]
[SWS_PER_00370] [SWS_PER_00375]
[SWS_PER_00376] [SWS_PER_00377]
[SWS_PER_00413] [SWS_PER_00414]
[SWS_PER_00415] [SWS_PER_00416]
[SWS_PER_00417] [SWS_PER_00418]
[SWS_PER_00419] [SWS_PER_00420]
[SWS_PER_00421] [SWS_PER_00422]

20 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Requirement Description Satisfied by
[SWS_PER_00423] [SWS_PER_00428]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00434]
[SWS_PER_00435] [SWS_PER_00436]
[SWS_PER_00437] [SWS_PER_00438]
[SWS_PER_00440] [SWS_PER_00441]
[SWS_PER_00442] [SWS_PER_00443]
[SWS_PER_00444] [SWS_PER_00445]

[RS_PER_00005] Persistency shall support
encryption/decryption of
persistent data

[SWS_PER_00210] [SWS_PER_00211]
[SWS_PER_00449] [SWS_PER_00450]
[SWS_PER_00451]

[RS_PER_00008] Persistency shall support
detection of data corruption in
persistent memory

[SWS_PER_00221] [SWS_PER_00317]
[SWS_PER_00318] [SWS_PER_00319]
[SWS_PER_00432] [SWS_PER_00433]
[SWS_PER_00439] [SWS_PER_00447]
[SWS_PER_00448]

[RS_PER_00009] Persistency shall support data
recovery mechanisms if
persistent data was corrupted

[SWS_PER_00222] [SWS_PER_00317]
[SWS_PER_00318] [SWS_PER_00319]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00358] [SWS_PER_00426]
[SWS_PER_00427] [SWS_PER_00439]
[SWS_PER_00447] [SWS_PER_00448]

[RS_PER_00010] The layout of persistent data
shall be configurable

[SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00052]
[SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116]
[SWS_PER_00210] [SWS_PER_00211]
[SWS_PER_00251] [SWS_PER_00252]
[SWS_PER_00253] [SWS_PER_00254]
[SWS_PER_00265] [SWS_PER_00266]
[SWS_PER_00267] [SWS_PER_00275]
[SWS_PER_00277] [SWS_PER_00281]
[SWS_PER_00283] [SWS_PER_00304]
[SWS_PER_00317] [SWS_PER_00318]
[SWS_PER_00319] [SWS_PER_00320]
[SWS_PER_00321] [SWS_PER_00332]
[SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336]
[SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00378]
[SWS_PER_00379] [SWS_PER_00380]
[SWS_PER_00382] [SWS_PER_00383]
[SWS_PER_00384] [SWS_PER_00385]
[SWS_PER_00386] [SWS_PER_00387]
[SWS_PER_00388] [SWS_PER_00389]
[SWS_PER_00390] [SWS_PER_00391]

21 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Requirement Description Satisfied by
[SWS_PER_00392] [SWS_PER_00393]
[SWS_PER_00394] [SWS_PER_00395]
[SWS_PER_00426] [SWS_PER_00427]
[SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00439]
[SWS_PER_00447] [SWS_PER_00448]
[SWS_PER_00449] [SWS_PER_00450]
[SWS_PER_00451]
[SWS_PER_CONSTR_00003]
[SWS_PER_CONSTR_00004]

[RS_PER_00011] Persistency shall be able to
ensure and limit the amount of
storage used by persisted data

[SWS_PER_00320] [SWS_PER_00321]

[RS_PER_00012] Persistency shall support
installation of persistent data

[SWS_PER_00251] [SWS_PER_00252]
[SWS_PER_00253] [SWS_PER_00254]
[SWS_PER_00265] [SWS_PER_00266]
[SWS_PER_00267] [SWS_PER_00379]
[SWS_PER_00380] [SWS_PER_00382]
[SWS_PER_00383] [SWS_PER_00384]
[SWS_PER_00385]
[SWS_PER_CONSTR_00003]
[SWS_PER_CONSTR_00004]

[RS_PER_00013] Persistency shall support update
of persistent data

[SWS_PER_00251] [SWS_PER_00275]
[SWS_PER_00277] [SWS_PER_00281]
[SWS_PER_00283] [SWS_PER_00356]
[SWS_PER_00357] [SWS_PER_00378]
[SWS_PER_00379] [SWS_PER_00380]
[SWS_PER_00386] [SWS_PER_00387]
[SWS_PER_00388] [SWS_PER_00389]
[SWS_PER_00390] [SWS_PER_00391]
[SWS_PER_00392] [SWS_PER_00393]
[SWS_PER_00394] [SWS_PER_00395]
[SWS_PER_00446]

[RS_PER_00014] Persistency shall support
roll-back of persistent data

[SWS_PER_00378] [SWS_PER_00396]

[RS_PER_00015] Persistency shall support
removal of persistent data

[SWS_PER_00358] [SWS_PER_00397]

[RS_PER_00017] Persistency shall be able to
report the amount of currently
used storage

[SWS_PER_00405] [SWS_PER_00406]
[SWS_PER_00407] [SWS_PER_00424]

[RS_PER_00018] Persistency shall support central
initialization and shutdown

[SWS_PER_00408] [SWS_PER_00409]
[SWS_PER_00410]

22 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7 Functional Specification

7.1 The Architecture of Persistency

The functional cluster Persistency offers two different mechanisms to access per-
sistent memory: Key-Value Storages offer access to a set of keys with associated
values (similar to a database), while File Storages offer access to a set of files
(similar to a directory of a file system).

The typical usage of the Persistency within an Adaptive Application is de-
picted in Figure 7.1. As shown there, an Adaptive Application can use a combi-
nation of multiple Key-Value Storages and multiple File Storages.

Figure 7.1: Typical usage of Persistency within an Adaptive Application

7.1.1 Persistency in the Manifest

The Persistency usage of an Adaptive Application is modeled in the Exe-
cution Manifest (furtheron simply referred to as the “manifest”) as part of the
AdaptiveApplicationSwComponentTypes of an Executable. The model has
two principal parts: The application design information, aggregated by the Persis-
tencyKeyValueStorageInterface and the PersistencyFileStorageInter-
face, and the deployment information, aggregated by the PersistencyKeyVal-
ueStorage and the PersistencyFileStorage.

23 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

The API specification holds the classes ara::per::KeyValueStorage and ara:-
:per::FileStorage for access to a Key-Value Storage or a File Storage,
respectively. The global functions of these classes receive the identifier (the fully quali-
fied shortName path) of a PortPrototype typed by a PersistencyInterface as
an ara::core::InstanceSpecifier input parameter (see 8.2.1 and 8.3.1). De-
pending on the nature of the PortPrototype, the Key-Value Storage or File
Storage will be accessible as:

Read Only if the PortPrototype is instantiated as RPortPrototype, or

Read/Write if the PortPrototype is instantiated as PRPortPrototype, or

Write Only if the PortPrototype is instantiated as PPortPrototype.

The manifest contains separate deployment data for each Process that references
the Executable. The Process is bound to the deployment data by specialization of
the class PersistencyPortPrototypeToDeploymentMapping, which refers to a
PortPrototype typed by a PersistencyInterface, a PersistencyDeploy-
ment, and the Process.

Usage of base classes in the manifest
For simplification reasons, the information that applies to both the Key-Value Stor-
ages and the File Storages is collected in base classes in the manifest, namely
in PersistencyInterface for PersistencyKeyValueStorageInterface and
PersistencyFileStorageInterface, and in PersistencyDeployment for
PersistencyKeyValueStorage and PersistencyFileStorage.
Likewise, the common information about keys and files is collected in Persistency-
InterfaceElement for PersistencyDataElement and PersistencyFileEle-
ment, and in PersistencyDeploymentElement for PersistencyKeyValue-
Pair and PersistencyFile.
And the link between application design and deployment information, represented by
PersistencyPortPrototypeToDeploymentMapping, is specialized as Persis-
tencyPortPrototypeToKeyValueStorageMapping and PersistencyPort-
PrototypeToFileStorageMapping.

7.1.2 Key-Value Storages in the Manifest

Every Key-Value Storage is represented by a PortPrototype typed by a Per-
sistencyKeyValueStorageInterface in the application design for the respec-
tive AdaptiveApplicationSwComponentType, and by a PersistencyKeyVal-
ueStorage containing deployment information. Every Key-Value Storage can
hold multiple Key-Value Pairs. Key-Value Pairs can be added and removed at
run-time by the Adaptive Application using the Persistency API (see 8.2.5.7
and 8.2.5.8).

24 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

A Key-Value Storage with predefined Key-Value Pairs can be deployed with
default data during installation or update of an Adaptive Application. This oper-
ation is (indirectly) triggered by the UCM module (see [6]) during installation or update
using the deployment information and data provided by the software package of
the Adaptive Application. See section 7.6.

The link between application design and deployment information of a Key-Value
Storage is represented by PersistencyPortPrototypeToKeyValueStor-
ageMapping, which refers to a PortPrototype typed by a PersistencyKeyVal-
ueStorageInterface, the corresponding PersistencyKeyValueStorage, and
a Process.

7.1.3 File Storages in the Manifest

Every File Storage is represented by a PortPrototype typed by a Persis-
tencyFileStorageInterface in the application design for the respective Adap-
tiveApplicationSwComponentType, and by a PersistencyFileStorage con-
taining deployment information. Every File Storage can hold multiple files as de-
scribed in [3]. Similar to the Key-Value Pairs mentioned above, files can be created
and deleted at run-time by the Adaptive Application using the Persistency
API (see 8.3.11.11, 8.3.11.13, and 8.3.11.5).

A File Storage with predefined files with initial content can be deployed during in-
stallation or update. This operation is also (indirectly) triggered by the UCM module. All
needed deployment information and files come with the software package of the
Adaptive Application. See section 7.6.

The link between application design and deployment information of a File Storage
is represented by PersistencyPortPrototypeToFileStorageMapping, which
refers to a PortPrototype typed by a PersistencyFileStorageInterface, the
corresponding PersistencyFileStorage, and a Process.

25 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.2 Functional Cluster Lifecycle

7.2.1 Initialization and Shutdown of Persistency

Using ara::core::Initialize and ara::core::Deinitialize, the applica-
tion can start and shut down all functional clusters with direct ARA interfaces (i.e. the
Adaptive Platform Foundation).

[SWS_PER_00408] dWhen ara::core::Initialize is called, the Persistency
shall read in the manifest information and prepare the access structures to all
Key-Value Storages and File Storages that are defined in the manifest.c(RS_-
PER_00018)

[SWS_PER_00409] dWhen ara::core::Deinitialize is called, the Persis-
tency shall implicitly ensure that all open files of all File Storages are persisted
as though ara::per::ReadWriteAccessor::SyncToFile was called and closed
as though the ara::per::UniqueHandles were destructed, and that not persisted
values in all Key-Value Storages are dropped as though ara::per::KeyVal-
ueStorage::DiscardPendingChanges was called. Afterwards, all access struc-
tures shall be freed.c(RS_PER_00018)

The application is expected not to call any API of Persistency before ara::core:-
:Initialize or after ara::core::Deinitialize, but Persistency needs to
protect itself against such eventualities.

[SWS_PER_00410]{DRAFT} dAll functions of Persistency and all methods of its
classes shall return the error kNotInitialized when they are called after static
initialization but before ara::core::Initialize was called or after ara::core:-
:Deinitialize was called.c(RS_PER_00018)

26 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.3 Parallel Access to Persistent Data

According to [7], the persistent data is local to one Process. Therefore, Persis-
tency will never share persistent data between two (or more) Processes, even
of the same Executable. The background of this decision is that Persistency
should not provide an additional communication path for applications besides the
mechanisms provided by the functional cluster Communication Management (e.g. us-
ing ara::com).

[SWS_PER_00309] dPersistent data shall always be local to one Process.c
(RS_PER_00001)

If persistent data needs to be accessed by multiple Processes (of the same or
different applications), it is the duty of the application designer to provide Service
Interfaces for communication.

Persistency is, on the other hand, prepared to handle concurrent access from mul-
tiple threads of the same application, running in the context of the same Process.
To create shared access to a Key-Value Storage or File Storage, either the
ara::per::SharedHandle returned by ara::per::OpenKeyValueStorage and
ara::per::OpenFileStorage can be passed on (i.e. copied) to another thread, or
ara::per::OpenKeyValueStorage and ara::per::OpenFileStorage can be
called in independent threads for the same Key-Value Storage or File Storage,
respectively. All operations of the Key-Value Storage and File Storage support
concurrent access from multiple threads, though operations like ara::per::Recov-
erKeyValueStorage and ara::per::ResetKeyValueStorage or ara::per:-
:RecoverAllFiles and ara::per::ResetAllFiles will only succeed when the
corresponding Key-Value Storage or File Storage is not opened.

Access to single keys of a Key-Value Storage is possible from multiple threads
at the same time, because the operation of ara::per::KeyValueStorage::Get-
Value and ara::per::KeyValueStorage::SetValue are atomic, as are those
of ara::per::KeyValueStorage::RemoveKey, ara::per::KeyValueStor-
age::RemoveAllKeys, ara::per::KeyValueStorage::SyncToStorage, and
ara::per::KeyValueStorage::DiscardPendingChanges.

Access to single files of a File Storage cannot be shared between multiple threads,
because it would be impossible to synchronize read and write accesses and the corre-
sponding change of the seek position in a file. Accordingly, the ara::per::Unique-
Handle returned by the OpenFile* APIs can only be moved to another thread, and
trying to open an already opened file will fail. Likewise, operations like ara::per:-
:FileStorage::DeleteFile, ara::per::FileStorage::RecoverFile, and
ara::per::FileStorage::ResetFile will also not possible on open files.

Files are implicitly closed when their ara::per::UniqueHandle goes out of scope,
or when the File Storage to which they belong is closed.

27 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

[SWS_PER_00425] dWhen a File Storage is closed, because all related ara::-
per::SharedHandles go out of scope, any files which are still open are also closed.c
(RS_PER_00001)

Accessing a ara::per::UniqueHandle of a file of a closed File Storage will
result in undefined behavior.

28 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.4 Security Concepts

The Persistency supports encryption and authentication of data stored in a
Key-Value Storage or File Storage. Whether encryption and/or authentication
is applied, is decided at deployment time. The application is not aware of this fact.

In general, a Key-Value Storage, a key of a Key-Value Storage, a File
Storage, or a file of a File Storage are encrypted after the creation of the stor-
age and when the storage is saved, and are decrypted when a storage is opened. The
signed hash used for the authentication of a storage is likewise verified when opening
a storage, and calculated during installation or when saving a Key-Value Storage
or File Storage.

In case of a read-only Key-Value Storage or File Storage, encryption is
done only once during installation. A signed hash used for authentication of a
read-only Key-Value Storage or File Storage (or a key or file therein) is ei-
ther provided as PersistencyDeploymentToCryptoKeySlotMapping.verifi-
cationHash or PersistencyDeploymentElementToCryptoKeySlotMapping.
verificationHash in the manifest, or calculated during installation.

[SWS_PER_00210]{DRAFT} dIf a PersistencyDeploymentToCryptoKeySlot-
Mapping or PersistencyDeploymentElementToCryptoKeySlotMapping
exists in the manifest, and PersistencyDeploymentToCryptoKeySlotMapping.
keySlotUsage or PersistencyDeploymentElementToCryptoKeySlot-
Mapping.keySlotUsage is set to encryption, the Persistency cluster shall
encrypt the related data before storing it to the persistent memory.c(RS_PER_00005,
RS_PER_00010)

[SWS_PER_00211]{DRAFT} dIf a PersistencyDeploymentToCryptoKeySlot-
Mapping or PersistencyDeploymentElementToCryptoKeySlotMapping
exists in the manifest, and PersistencyDeploymentToCryptoKeySlotMapping.
keySlotUsage or PersistencyDeploymentElementToCryptoKeySlot-
Mapping.keySlotUsage is set to encryption, the Persistency cluster shall
decrypt the related data after reading it from persistent memory.c(RS_PER_00005,
RS_PER_00010)

[SWS_PER_00449]{DRAFT} dIf a PersistencyDeploymentToCryptoKeySlot-
Mapping or PersistencyDeploymentElementToCryptoKeySlotMapping
exists in the manifest, and PersistencyDeploymentToCryptoKeySlotMapping.
keySlotUsage or PersistencyDeploymentElementToCryptoKeySlot-
Mapping.keySlotUsage is set to verification, the Persistency cluster shall
sign the related data before storing it to the persistent memory.c(RS_PER_00005,
RS_PER_00010)

[SWS_PER_00450]{DRAFT} dIf a PersistencyDeploymentToCryptoKeySlot-
Mapping or PersistencyDeploymentElementToCryptoKeySlotMapping
exists in the manifest, and PersistencyDeploymentToCryptoKeySlotMapping.
keySlotUsage or PersistencyDeploymentElementToCryptoKeySlot-
Mapping.keySlotUsage is set to verification, the Persistency cluster shall

29 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

verify the signature of the related data after reading it from persistent memory.c
(RS_PER_00005, RS_PER_00010)

[SWS_PER_00451]{DRAFT} dIf PersistencyDeploymentToCryptoKeySlot-
Mapping.verificationHash or PersistencyDeploymentElementToCrypto-
KeySlotMapping.verificationHash is available, the Persistency cluster shall
use this hash to verify the related data.c(RS_PER_00005, RS_PER_00010)

The Persistency functional cluster shall use the services of the Crypto
API for encryption and decryption and for creating and verifying signed
hashes. It shall derive the algorithms and keys to be used from the Cryp-
toKeySlot referenced by PersistencyDeploymentToCryptoKeySlotMapping
or PersistencyDeploymentElementToCryptoKeySlotMapping, and use them
for the access to the Crypto API (refer to [8] for details).

30 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.5 Redundancy Concepts

The Persistency functional cluster shall take care of the integrity of the stored data.
This can be achieved by calculating CRCs or hash values of the stored data, and by
creating redundant copies. All these measures effectively create some redundancy for
the stored data. The concrete measures to be taken are configurable: The application
designer can use PersistencyInterface.redundancy to request redundancy, or
use PersistencyInterface.redundancyHandling to preselect the actual mea-
sures to be taken. During deployment, the integrator can define the actual measures
taken to ensure data integrity using PersistencyDeployment.redundancyHan-
dling. If PersistencyInterface.redundancyHandling is configured, the inte-
grator shall use it as a guidance, but may also choose other, more appropriate mea-
sures based on superior knowledge of the final system.

[SWS_PER_00317] dThe Persistency cluster shall store redundant information for
every Key-Value Storage and every File Storage represented by a PortPro-
totype typed by a PersistencyInterface where PersistencyInterface.re-
dundancy is set to redundant or redundantPerElement, or where Persisten-
cyInterface.redundancyHandling is configured (see also [SWS_PER_00318],
[SWS_PER_00319], and [SWS_PER_00447]).c(RS_PER_00008, RS_PER_00009,
RS_PER_00010)

[SWS_PER_00221] dThe Persistency cluster shall use the redundant information
to detect data corruption in the persistent memory.c(RS_PER_00008)

[SWS_PER_00222] dThe Persistency cluster shall use the redundant information
to recover corrupted data if possible.c(RS_PER_00009)

If data is corrupted that cannot be restored using the redundant information, Persis-
tency will fail with kValidationFailed.

The application can then choose to use ara::per::RecoverKeyValueStor-
age, ara::per::KeyValueStorage::RecoverKey, ara::per::RecoverAll-
Files, or ara::per::FileStorage::RecoverFile to recover as much as possi-
ble and set the corresponding Key-Value Storage or File Storage again into
a consistent state. Of course the application has to validate the restored data in
this case. Or it can use ara::per::ResetKeyValueStorage, ara::per::-
KeyValueStorage::ResetKey, ara::per::ResetAllFiles, or ara::per::-
FileStorage::ResetFile to reset the corrupted item to the initial state according
to the current manifest.

7.5.1 Redundancy Types

The type of redundancy that is applied by the Persistency functional cluster is
defined by the set of PersistencyRedundancyHandling classes aggregated as
PersistencyDeployment.redundancyHandling. The level to which redundancy
is applied is defined by the possible values of the PersistencyRedundancyHan-

31 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

dlingScopeEnum, which are persistencyRedundancyHandlingScopeStorage
and persistencyRedundancyHandlingScopeElement for a Key-Value Stor-
age and its keys, or a File Storage and its files, respectively.

[SWS_PER_00318] dIn case a PersistencyRedundancyHandling aggregated
as PersistencyDeployment.redundancyHandling is derived as Persisten-
cyRedundancyCrc, the Persistency cluster shall calculate a CRC value when
persisting the Key-Value Storage, a key in the Key-Value Storage, the File
Storage, or a file in the File Storage (depending on PersistencyDeployment.
redundancyHandling.scope), and shall use this CRC to check the Key-Value
Storage, the key in the Key-Value Storage, the File Storage, or the file in the
File Storage when it is read back.c(RS_PER_00008, RS_PER_00009, RS_PER_-
00010)

[SWS_PER_00439] dPersistency shall calculate the CRC value using the al-
gorithm defined by PersistencyRedundancyCrc.algorithmFamily with the bit
width defined by PersistencyRedundancyCrc.length.c(RS_PER_00008, RS_-
PER_00009, RS_PER_00010)

[SWS_PER_00319] dIn case a PersistencyRedundancyHandling aggregated
as PersistencyDeployment.redundancyHandling is derived as Persisten-
cyRedundancyMOutOfN, the Persistency cluster shall store N copies when per-
sisting the Key-Value Storage, a key in the Key-Value Storage, the File
Storage, or a file in the File Storage (depending on PersistencyDeployment.
redundancyHandling.scope), and shall check that at least M of the N copies of the
Key-Value Storage, the key in the Key-Value Storage, the File Storage, or
the file in the File Storage are identical when it is read back. N is defined by n, and
M is defined by m.c(RS_PER_00008, RS_PER_00009, RS_PER_00010)

[SWS_PER_00447]{DRAFT} dIn case a PersistencyRedundancyHandling ag-
gregated as PersistencyDeployment.redundancyHandling is derived as Per-
sistencyRedundancyHash, the Persistency cluster shall calculate a hash value
when persisting the Key-Value Storage, a key in the Key-Value Storage, the
File Storage, or a file in the File Storage (depending on PersistencyDe-
ployment.redundancyHandling.scope), and shall use this hash value to check
the Key-Value Storage, the key in the Key-Value Storage, the File Stor-
age, or the file in the File Storage when it is read back.c(RS_PER_00008, RS_-
PER_00009, RS_PER_00010)

[SWS_PER_00448]{DRAFT} dPersistency shall calculate the hash value using
the algorithm defined by PersistencyRedundancyHash.algorithmFamily with
the bit width defined by PersistencyRedundancyHash.length. If Persisten-
cyRedundancyHash.initializationVectorLength is configured, an initializa-
tion vector of this length shall be calculated containing random data and passed to the
hash algorithm.c(RS_PER_00008, RS_PER_00009, RS_PER_00010)

A possible approach to calculate the hash value and the random data would be to
use the Crypto API (see [8]). The integration will have to take care that the con-

32 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

figured PersistencyRedundancyHash.length and PersistencyRedundancy-
Hash.initializationVectorLength are supported by the configured Persis-
tencyRedundancyHash.algorithmFamily.

33 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.6 Installation and Update of Persistent Data

The Update and Configuration Management handles the life cycle of Adap-
tive Applications with the following phases:

• Installation of new software

• Update of already installed software

• Finalization of updated software after the update succeeded

• Roll-back of updated software after the update failed

• Removal of installed software

For all these phases, persistent data needs to be handled alongside the appli-
cation. The Adaptive Application may trigger this handling explicitly by calling
ara::per::UpdatePersistency during the verification phase that follows the in-
stallation or update, or rely on the Persistency cluster to do this implicitly when per-
sistent data is accessed (ara::per::OpenKeyValueStorage/ara::per::-
OpenFileStorage). In both cases, the Persistency cluster will compare the stored
manifest version against the current manifest version, and perform the required action.

[SWS_PER_00378] dPersistency shall extract the Executable.version and
the SoftwareCluster.version of the SoftwareCluster that contains the Persis-
tency deployment data from the manifest, and store them persistently alongside the
Key-Value Storages and File Storages.c(RS_PER_00010, RS_PER_00013,
RS_PER_00014)

The Executable.version is used by Persistency to detect a change of the ap-
plication (see [SWS_PER_00387]), while the SoftwareCluster.version is used
to detect a change of the deployed persistent data (see [SWS_PER_00386] and
[SWS_PER_00396]).

According to [SWS_UCM_CONSTR_00001], the SoftwareCluster.version is al-
ways increased when the Executable.version is increased.

The SoftwareCluster.version and Executable.version are StrongRevi-
sionLabelStrings. These strings consists of a MajorVersion, a MinorVersion,
a PatchVersion, and additional labels for pre-release version and build metadata. It
is assumed that the first three will be incremented when the version is changed, while
the last might be arbitrary.

After installation of the Adaptive Application, the Persistency cluster will in-
stall pre-defined persistent data from the manifest. There are different possibili-
ties how this persistent data can be defined in the manifest:

• Persistent data can be defined by an application designer within
PersistencyKeyValueStorageInterface or PersistencyFileStor-
ageInterface.

34 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

• Persistent data that was defined by an application designer can be changed
by an integrator within PersistencyKeyValueStorage or Persistency-
FileStorage.

• Persistent data can be directly defined by an integrator within Persisten-
cyKeyValueStorage or PersistencyFileStorage.

[SWS_PER_00379] dElements defined in the deployment data (PersistencyKey-
ValueStorage and PersistencyFileStorage and associated classes) shall
always be preferred over elements defined in the application design (Persisten-
cyKeyValueStorageInterface and PersistencyFileStorageInterface
and associated classes). The latter shall only be used if the former does not exist.c
(RS_PER_00010, RS_PER_00012, RS_PER_00013)

After an update of the Adaptive Application or the manifest, the Persistency
cluster will create a backup of the persistent data, and then update the existing
persistent data using one of the following strategies:

• Existing persistent data is kept unchanged (keepExisting).

• Existing persistent data is replaced (overwrite).

• Existing persistent data is removed (delete).

• New persistent data is added (keepExisting and overwrite).

The update strategy can be set during application design or deployment, and can be
defined for the whole Key-Value Storage or File Storage (PersistencyCol-
lectionLevelUpdateStrategyEnum – keepExisting or delete) and for a sin-
gle key or file (PersistencyElementLevelUpdateStrategyEnum – keepExist-
ing, overwrite, or delete).

[SWS_PER_00251] dAn update strategy defined in the deployment data (Persis-
tencyDeployment.updateStrategy, PersistencyDeploymentElement.up-
dateStrategy) shall always be preferred over the update strategy defined in the ap-
plication design (PersistencyInterface.updateStrategy, PersistencyIn-
terfaceElement.updateStrategy). The latter shall only be used if the former
does not exist.c(RS_PER_00010, RS_PER_00012, RS_PER_00013)

[SWS_PER_00380] dAn update strategy defined for a single key or file (Persisten-
cyDeploymentElement.updateStrategy, PersistencyInterfaceElement.
updateStrategy) shall always be preferred over the update strategy defined for the
enclosing Key-Value Storage or File Storage (PersistencyDeployment.
updateStrategy, PersistencyInterface.updateStrategy). The latter shall
only be used if the former does not exist.c(RS_PER_00010, RS_PER_00012, RS_-
PER_00013)

When the update succeeded, the Update and Configuration Management will
finalize the new Adaptive Application. The Persistency cluster is not required
to do anything, though it could free the resources allocated by the last backup.

35 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

When the update failed, the Update and Configuration Management will revert
to the old Adaptive Application and/or manifest. The Persistency cluster will
then replace the currently used persistent data by the backup created during the
update.

Finally, to remove persistent data before the Adaptive Application is re-
moved, the Adaptive Application needs to call ara::per::ResetPersis-
tency.

7.6.1 Installation of Persistent Data

[SWS_PER_00382] dWhen a Key-Value Storage or File Storage is opened by
the application using ara::per::OpenKeyValueStorage or ara::per::Open-
FileStorage, or when ara::per::UpdatePersistency is called, the Persis-
tency shall check for the existence of stored data. If no persistent data is
found, the Persistency shall initialize the persistent data.c(RS_PER_00010,
RS_PER_00012)

Initialization of persistent data is described in sections 7.6.1.1 and 7.6.1.2.

7.6.1.1 Installation of Key-Value Storage

[SWS_PER_00383] dPersistency shall create a Key-Value Storage for each
PortPrototype typed by a PersistencyKeyValueStorageInterface that is
found in the manifest of a newly installed Adaptive Application. The Key-Value
Storage shall be identified at run-time by the shortName path of the PortPro-
totype, passed as ara::core::InstanceSpecifier to ara::per::OpenKey-
ValueStorage.c(RS_PER_00010, RS_PER_00012)

[SWS_PER_00252] dPersistency shall create an entry in the Key-Value Stor-
age for each PersistencyKeyValueStorageInterface.dataElement and
PersistencyKeyValueStorage.keyValuePair that is found in the manifest of a
newly installed or updated Adaptive Application, and for which the update strat-
egy is keepExisting or overwrite.c(RS_PER_00010, RS_PER_00012)

Key-Value Storage entries are identified by the key. An entry with identi-
cal key might be defined both in the PersistencyKeyValueStorageInterface
and the PersistencyKeyValueStorage, in which case [SWS_PER_00379] ap-
plies. The update strategy is determined according to [SWS_PER_00251] and
[SWS_PER_00380].

[SWS_PER_00253] dEntries in the Key-Value Storage shall use the shortName
of the PersistencyDataElement and/or PersistencyKeyValuePair as key.c
(RS_PER_00010, RS_PER_00012)

[SWS_PER_00254] dEntries in the Key-Value Storage shall be created with
the data type defined by the CppImplementationDataType which types the

36 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

PersistencyDataElement and/or by the CppImplementationDataType refer-
enced as PersistencyKeyValuePair.valueDataType.c(RS_PER_00010, RS_-
PER_00012)

[SWS_PER_00384] dEntries in the Key-Value Storage shall be created with the
value taken from the PersistencyKeyValuePair.initValue or, if that does
not exist, from the PersistencyDataRequiredComSpec.initValue.c(RS_PER_-
00010, RS_PER_00012)

[SWS_PER_CONSTR_00003] dA manifest is not valid if the value or data type of
any PersistencyKeyValuePair or PersistencyDataElement cannot be deter-
mined, or if the determined data types are conflicting.c(RS_PER_00010, RS_PER_-
00012)

Invalid manifests should be rejected by the tooling.

7.6.1.2 Installation of File Storage

[SWS_PER_00385] dPersistency shall create a File Storage for each Port-
Prototype typed by a PersistencyFileStorageInterface that is found in the
manifest of a newly installed Adaptive Application. The File Storage shall
be identified at run-time by the shortName path of the PortPrototype, passed
as ara::core::InstanceSpecifier to ara::per::OpenFileStorage.c(RS_-
PER_00010, RS_PER_00012)

[SWS_PER_00265] dPersistency shall create a file in the File Storage for
each PersistencyFileStorageInterface.fileElement and Persistency-
FileStorage.file that is found in the manifest of a newly installed or updated
Adaptive Application, and for which the update strategy is keepExisting or
overwrite.c(RS_PER_00010, RS_PER_00012)

The files within a File Storage are identified by their name. A file with the same
name might be defined both in the PersistencyFileStorageInterface and the
PersistencyFileStorage, in which case [SWS_PER_00379] applies. The update
strategy is determined according to [SWS_PER_00251] and [SWS_PER_00380].

[SWS_PER_00266] dFiles in the File Storage shall use the name identified
by PersistencyFileElement.fileName and/or PersistencyFile.fileName.c
(RS_PER_00010, RS_PER_00012)

[SWS_PER_00267] dFiles in the File Storage shall be created with the content
taken from the resource (within the installed SoftwarePackage) that is addressed
by PersistencyFile.contentUri or, if that does not exist, by Persistency-
FileElement.contentUri. If that does not exist either, and empty file shall be
created.c(RS_PER_00010, RS_PER_00012)

37 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

[SWS_PER_CONSTR_00004] dA manifest is invalid if the shortNames of a Per-
sistencyFileElement and a PersistencyFile with the same file name differs.c
(RS_PER_00010, RS_PER_00012)

Invalid manifests should be rejected by the tooling.

7.6.2 Update of Persistent Data

[SWS_PER_00386] dWhen a Key-Value Storage or File Storage is opened by
the application using ara::per::OpenKeyValueStorage or ara::per::Open-
FileStorage, or when ara::per::UpdatePersistency is called, the Persis-
tency shall compare the SoftwareCluster.version in the manifest against the
stored version. If the version in the manifest is higher than the stored version, the
Persistency shall first create a backup of the persistent data and then update
the data.c(RS_PER_00010, RS_PER_00013)

Only one set of backup data needs to be kept at any time. When a new update is
performed, old backup data could be overwritten. Update of persistent data is
described in sections 7.6.2.1 and 7.6.2.2.

[SWS_PER_00387] dWhen a Key-Value Storage or File Storage is opened by
the application using ara::per::OpenKeyValueStorage or ara::per::Open-
FileStorage, or when ara::per::UpdatePersistency is called, the Persis-
tency shall compare the Executable.version in the manifest against the stored
version. If the version in the manifest is higher than the stored version, the Persis-
tency shall call the function registered by the application using ara::per::Regis-
terApplicationDataUpdateCallback for each Key-Value Storage and File
Storage that was updated according to [SWS_PER_00386].c(RS_PER_00010, RS_-
PER_00013)

The function registered by the application using ara::per::RegisterApplica-
tionDataUpdateCallback can be used by the application to update Key-Value
Pairs of a Key-Value Storage or files of a File Storage manually. The
Key-Value Storage or File Storage is identified by the ara::core::In-
stanceSpecifier provided to this function. The application might then, based on
the Executable.version of the stored data provided as second argument to the
function, read in the stored data in the old format or with the old type, convert the data,
and store it again with the new format or new type expected by the current version.

Example: Version 1 of the application stored the maximum speed in mph as uint8,
but version 2 expects the maximum speed in km/h as uint16. The update callback
function will then see that a Key-Value Storage from version 1 of the Executable
has been updated to the current version, and can read in the old maximum speed
by ara::per::KeyValueStorage::GetValue as uint8, convert it, and store it
as uint16 with ara::per::KeyValueStorage::SetValue after removing the old
value with ara::per::KeyValueStorage::RemoveKey.

38 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.6.2.1 Update of Key-Value Storage

[SWS_PER_00388] dWhen a new PortPrototype typed by a PersistencyKey-
ValueStorageInterface is detected in an updated manifest, the Persistency
shall create a Key-Value Storage as specified in [SWS_PER_00383].c(RS_PER_-
00010, RS_PER_00013)

[SWS_PER_00389] dWhen a PortPrototype typed by a PersistencyKeyVal-
ueStorageInterface is missing in an updated manifest, the Persistency shall re-
move the corresponding Key-Value Storage.c(RS_PER_00010, RS_PER_00013)

[SWS_PER_00390] dWhen a PersistencyKeyValueStorageInterface.
dataElement and/or a PersistencyKeyValueStorage.keyValuePair with a
new key is detected in an updated manifest, the Persistency shall create a new entry
in the Key-Value Storage as specified in [SWS_PER_00252], [SWS_PER_00253],
[SWS_PER_00254], and [SWS_PER_00384].c(RS_PER_00010, RS_PER_00013)

[SWS_PER_00391] dWhen an existing key of a Key-Value Storage cannot be as-
sociated with any PersistencyKeyValueStorageInterface.dataElement or
PersistencyKeyValueStorage.keyValuePair in an updated manifest, and the
update strategy of the PersistencyKeyValueStorage or PersistencyKeyVal-
ueStorageInterface corresponding to the Key-Value Storage is delete, the
Persistency shall remove the entry for that key from the Key-Value Storage.c
(RS_PER_00010, RS_PER_00013)

The update strategy is determined according to [SWS_PER_00251].

[SWS_PER_00275] dWhen an existing key of a Key-Value Storage can be asso-
ciated with a PersistencyKeyValueStorageInterface.dataElement or Per-
sistencyKeyValueStorage.keyValuePair in an updated manifest, and the up-
date strategy is overwrite, the Persistency shall replace the entry in the
Key-Value Storage with the new type and value as specified in [SWS_PER_00254]
and [SWS_PER_00384].c(RS_PER_00010, RS_PER_00013)

An entry with identical key might be defined both in the PersistencyKeyVal-
ueStorageInterface and the PersistencyKeyValueStorage, in which case
[SWS_PER_00379] applies. The update strategy is determined according to
[SWS_PER_00251] and [SWS_PER_00380].

[SWS_PER_00277] dWhen an existing key of a Key-Value Storage can be asso-
ciated with a PersistencyKeyValueStorageInterface.dataElement or Per-
sistencyKeyValueStorage.keyValuePair in an updated manifest, and the up-
date strategy is delete, the Persistency shall remove the entry for that key from
the Key-Value Storage.c(RS_PER_00010, RS_PER_00013)

Updated keys with the update strategy keepExisting will not be touched during an
update. Persistency will neither check the value nor the type of the existing entry.

39 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.6.2.2 Update of File Storage

[SWS_PER_00392] dWhen a new PortPrototype typed by a Persistency-
FileStorageInterface is detected in an updated manifest, the Persistency
shall create a File Storage as specified in [SWS_PER_00385].c(RS_PER_00010,
RS_PER_00013)

[SWS_PER_00393] dWhen a PortPrototype typed by a PersistencyFileStor-
ageInterface is missing in an updated manifest, the Persistency shall remove
the corresponding File Storage.c(RS_PER_00010, RS_PER_00013)

[SWS_PER_00394] dWhen a PersistencyFileStorageInterface.fileEle-
ment and/or PersistencyFileStorage.file with a new file name is detected in an
updated manifest, the Persistency shall create a new file in the File Storage as
specified in [SWS_PER_00265], [SWS_PER_00266], and [SWS_PER_00267].c(RS_-
PER_00010, RS_PER_00013)

[SWS_PER_00395] dWhen an existing file of a File Storage cannot be associated
with any PersistencyFileStorageInterface.fileElement or Persistency-
FileStorage.file in an updated manifest, and the update strategy of the Persis-
tencyFileStorage or PersistencyFileStorageInterface corresponding to
the File Storage is delete, the Persistency shall remove the file from the File
Storage.c(RS_PER_00010, RS_PER_00013)

The update strategy is determined according to [SWS_PER_00251].

[SWS_PER_00281] dWhen an existing file of a File Storage can be associated
with a PersistencyFileStorageInterface.fileElement or Persistency-
FileStorage.file in an updated manifest, and the update strategy is overwrite,
the Persistency shall replace the content of the file in the File Storage with the
new content as specified in [SWS_PER_00267].c(RS_PER_00010, RS_PER_00013)

A file with the same name might be defined both in the Persistency-
FileStorageInterface and the PersistencyFileStorage, in which case
[SWS_PER_00379] applies. The update strategy is determined according to
[SWS_PER_00251] and [SWS_PER_00380].

[SWS_PER_00283] dWhen an existing file of a File Storage can be associated
with a PersistencyFileStorageInterface.fileElement or Persistency-
FileStorage.file in an updated manifest, and the update strategy is delete, the
Persistency shall remove the file from the File Storage.c(RS_PER_00010, RS_-
PER_00013)

Updated files with the update strategy keepExisting will not be touched during an
update. Persistency will not check the content of the existing file.

40 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.6.3 Finalization of Persistent Data after Successful Update

After installation and update, Persistency will usually be called with ara::per:-
:UpdatePersistency within the verification phase of the application. When this
succeeded, the application will be finalized by UCM and then started again in normal
execution mode. In this case, Persistency should remove any backups that were
created during a preceding update.

[SWS_PER_00446]{DRAFT} dWhen a Key-Value Storage or File Storage is
opened by the application using ara::per::OpenKeyValueStorage or ara::-
per::OpenFileStorage, and ara::per::UpdatePersistency has not been
called since Persistency was initialized, the Persistency shall compare the
SoftwareCluster.version in the manifest against the stored version. If the two
versions are identical, the Persistency shall remove all backup data.c(RS_PER_-
00013)

Update of persistent data is described in section 7.6.2.

7.6.4 Roll-Back of Persistent Data after Failed Update

[SWS_PER_00396] dWhen a Key-Value Storage or File Storage is opened by
the application using ara::per::OpenKeyValueStorage or ara::per::Open-
FileStorage, or when ara::per::UpdatePersistency is called, the Persis-
tency shall compare the SoftwareCluster.version in the manifest against the
stored version. If the version in the manifest is lower than the stored version, the
Persistency shall compare the version in the manifest against the version stored in
backup data. If the versions match, the Persistency shall restore the backup. Other-
wise, it shall remove all Key-Value Storages and File Storages, and re-install
the persistent data from the manifest.c(RS_PER_00014)

Initialization of persistent data is described in section 7.6.1.

7.6.5 Removal of Persistent Data

[SWS_PER_00397] dWhen ara::per::ResetPersistency is called, the Per-
sistency shall remove all Key-Value Storages and File Storages.c(RS_-
PER_00015)

41 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.7 Resource Management Concepts

The Persistency cluster supports configuration of both an upper and a lower limit
for the resources used by a Key-Value Storage or a File Storage.

The lower limit may already be defined by the application developer using Persis-
tencyInterface.minimumSustainedSize.

During deployment, the integrator may update the lower limit using PersistencyDe-
ployment.minimumSustainedSize and add an upper limit using Persistency-
Deployment.maximumAllowedSize.

[SWS_PER_00320] dThe Persistency cluster shall ensure that the space con-
figured by PersistencyDeployment.minimumSustainedSize is always avail-
able for the Key-Value Storage or File Storage.c(RS_PER_00010, RS_PER_-
00011)

One possibility to achieve this would be to initially allocate the minimum size during
deployment, and never reduce the size below this value when persistent data is
removed. But the implementation of the Persistency cluster is free to chose other
appropriate measures.

[SWS_PER_00321] dThe Persistency cluster shall ensure that the space actu-
ally allocated by a Key-Value Storage or File Storage never surpasses the
amount configured by PersistencyDeployment.maximumAllowedSize.c(RS_-
PER_00010, RS_PER_00011)

This could be ensured by supervising all write accesses to persistent data. But
again, the implementation of the Persistency cluster is free to chose other appropri-
ate measures.

The application can also poll the amount of storage currently occupied by a complete
Key-Value Storage or File Storage by using ara::per::GetCurrentKey-
ValueStorageSize or ara::per::GetCurrentFileStorageSize, respectively.
Naturally, the returned values will not drop below a configured minimum size (Persis-
tencyDeployment.minimumSustainedSize) or rise above a configured maximum
size (PersistencyDeployment.maximumAllowedSize). In addition, the applica-
tion can poll the amount of storage currently occupied by a single file using ara::-
per::FileStorage::GetCurrentFileSize of an open File Storage.

42 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.8 Supported Data Types in Key-Value Storages

The Persistency cluster supports the following classes of data types in the functions
ara::per::KeyValueStorage::GetValue (templated via T) and ara::per::-
KeyValueStorage::SetValue (templated via T) of a Key-Value Storage.

[SWS_PER_00302] dThe Persistency cluster shall be able to store all data types
described in [9] in a Key-Value Storage.c(RS_PER_00001)

[SWS_PER_00303] dThe Persistency cluster shall be able to store serialized binary
data in a Key-Value Storage. Serialized binary data has to be presented as ara:-
:core::Vector of ara::core::Byte.c(RS_PER_00001)

This allows the application to store custom data types.

[SWS_PER_00304] dThe Persistency cluster shall be able to store all CppIm-
plementationDataTypes referred via PersistencyKeyValueStorageInter-
face.dataTypeForSerialization or via PersistencyKeyValueStorageIn-
terface.dataElement in the application design of a PersistencyKeyVal-
ueStorage in the corresponding Key-Value Storage. See [3].c(RS_PER_00001,
RS_PER_00010)

43 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

7.9 Access to Additional Information about Files

To gain information about stored files, the Persistency cluster provides the method
ara::per::FileStorage::GetFileInfo. This method returns information about
the time the file was created (creationTime), last modified (modificationTime),
and last accessed (accessTime), and how and by whom it was created (fileCre-
ationState) and last modified (fileModificationState).

[SWS_PER_00440] dThe method ara::per::FileStorage::GetFileInfo shall
gather the required information into a ara::per::FileInfo struct and return it to
the application.c(RS_PER_00004)

In case the Persistency cluster uses a file system of the underlying OS, part of that
information (like the creation or access time) can be obtained from the file system. This
information will then only be accurate if the file is not currently open.

44 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8 API Specification

The APIs for accessing File Storages and Key-Value Storage are completely
separate, and therefore divided into separate sections. Additional sections describe
common functionality.

[SWS_PER_00002] dAll specified classes within the Persistency specification shall
reside within the C++ namespace ara::per.c(RS_AP_00115)

The API of Persistency is designed around the ara::per::SharedHandle and
ara::per::UniqueHandle, which are returned by factory functions like ara:-
:per::OpenKeyValueStorage or ara::per::FileStorage::OpenFileRead-
Write. The classes defined in this chapter cannot be constructed directly by the
Adaptive Application, and consequently the default constructors are considered
to be not publicly accessible (i.e. to be deleted, private, or protected).

8.1 ara::core Types

The ara::per API is based heavily on the ara::core types defined in [2].

ara::core::Result is used wherever possible, and because of this, most methods
are defined as noexcept.

Consequently, in situations where memory cannot be allocated for new objects, the
Persistency shall terminate the process by calling ara::core::Abort (see [2]).

45 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.2 Key-Value Storage

This section lists all functions and classes that are required to operate a Key-Value
Storage.

The following functions are used to get access to a Key-Value Storage, to recover
as much as possible after it was corrupted, to reset it to the deployed defaults, and to
get the amount of storage allocated to the Key-Value Storage.

8.2.1 OpenKeyValueStorage

[SWS_PER_00052] d

Kind: function

Symbol: OpenKeyValueStorage(const ara::core::InstanceSpecifier &kvs)

Scope: namespace ara::per

Syntax: ara::core::Result<SharedHandle<KeyValueStorage> > OpenKeyValueStorage
(const ara::core::InstanceSpecifier &kvs) noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueStorageInterface.

Return value: ara::core::Result< SharedHandle< Key
ValueStorage > >

A Result containing a SharedHandle for the Key
ValueStorage. In case of an error, it contains any of
the errors defined below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyKeyValueStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if RecoverKeyValue
Storage or ResetKeyValueStorage is currently being
executed for the same Key-Value Storage.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated values.

Errors:

PerErrc::kNotInitialized Returned if this function is called before
ara::core::Initialize or after ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Opens a Key-Value Storage.

OpenKeyValueStorage will fail with kResourceBusy when the Key-Value Storage is currently
being modified by a call from another thread to UpdatePersistency, ResetPersistency, Recover
KeyValueStorage, or ResetKeyValueStorage.

5
5

46 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
4

Because multiple threads can access the same Key-Value Storage concurrently, the Key-Value
Storage might not be closed when the SharedHandle returned by this function goes out of
scope. It will only be closed when all SharedHandles that refer to the same Key-Value Storage
went out of scope.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.2 RecoverKeyValueStorage

[SWS_PER_00333] d

Kind: function

Symbol: RecoverKeyValueStorage(const ara::core::InstanceSpecifier &kvs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> RecoverKeyValueStorage (const
ara::core::InstanceSpecifier &kvs) noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueStorageInterface.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyKeyValueStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if ResetKeyValue
Storage is currently being executed for the same
Key-Value Storage, or a SharedHandle of the same
Key-Value Storage is currently in use.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated values.

Errors:

PerErrc::kNotInitialized Returned if this function is called before
ara::core::Initialize or after ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Recovers a Key-ValueStorage.

RecoverKeyValueStorage allows to recover a key-value storage when the redundancy checks
fail.

It will fail with kResourceBusy when the Key-Value Storage is currently open, or when it is
modified by a call from another thread to UpdatePersistency, ResetPersistency, RecoverKey
ValueStorage, or ResetKeyValueStorage.

This method does a best-effort recovery of all keys. After recovery, keys might show outdated
or initial value, or might be lost.

47 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

c(RS_PER_00003, RS_PER_00009, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.2.3 ResetKeyValueStorage

[SWS_PER_00334] d

Kind: function

Symbol: ResetKeyValueStorage(const ara::core::InstanceSpecifier &kvs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> ResetKeyValueStorage (const
ara::core::InstanceSpecifier &kvs) noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueStorageInterface.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyKeyValueStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if RecoverKeyValue
Storage is currently being executed for the same
Key-Value Storage, or a SharedHandle of the same
Key-Value Storage is currently in use.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated values.

Errors:

PerErrc::kNotInitialized Returned if this function is called before
ara::core::Initialize or after ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Resets a Key-Value Storage to the initial state.

ResetKeyValueStorage allows to reset a Key-Value Storage to the initial state, containing only
keys which were deployed from the manifest, with their initial values.

It will fail with kResourceBusy when the Key-Value Storage is currently open, or when it is
modified by a call from another thread to UpdatePersistency, ResetPersistency, RecoverKey
ValueStorage, or ResetKeyValueStorage.

c(RS_PER_00003, RS_PER_00009, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.2.4 GetCurrentKeyValueStorageSize

[SWS_PER_00405] d

48 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: GetCurrentKeyValueStorageSize(const ara::core::InstanceSpecifier &kvs)

Scope: namespace ara::per

Syntax: ara::core::Result<uint64_t> GetCurrentKeyValueStorageSize (const
ara::core::InstanceSpecifier &kvs) const noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueStorageInterface.

Return value: ara::core::Result< uint64_t > A Result containing the occupied space in bytes. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyKeyValueStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

Errors:

PerErrc::kNotInitialized Returned if this function is called before
ara::core::Initialize or after ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Returns the space in bytes currently occupied by a Key-Value Storage.

The returned size includes all meta data and the space used for redundancy and backups.

The returned size is only accurate if no other operation on the Key-Value Storage takes place at
the same time.

c(RS_PER_00017, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.5 KeyValueStorage Class

This section shows the methods available for a ara::per::KeyValueStorage ob-
ject obtained from a call to 8.2.1.

[SWS_PER_00331] dOperations that modify a Key-Value Storage shall only be
executed temporarily, such that following operations are aware of the change. The
actual storage shall only be updated when ara::per::KeyValueStorage::Sync-
ToStorage is called.c(RS_PER_00003)

Therefore, if the Key-Value Storage is just destructed (also implicitly when the
Process terminates), the Key-Value Storage is not updated, and the next time
the Key-Value Storage is accessed, the application will see the last saved state.
The last saved state can also be restored using ara::per::KeyValueStorage::-
DiscardPendingChanges.

Please note: Threads that access a KVS in parallel need to be aware that changes
done by other threads will become visible immediately, and that the effect of ara:-
:per::KeyValueStorage::SyncToStorage and ara::per::KeyValueStor-
age::DiscardPendingChanges affects all threads.

[SWS_PER_00339] d

49 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: class

Symbol: KeyValueStorage

Scope: namespace ara::per

Syntax: class KeyValueStorage final {...};

Header file: #include "ara/per/key_value_storage.h"

Description: The Key-Value Storage contains a set of keys with associated values.

c(RS_PER_00002, RS_AP_00122)

8.2.5.1 KeyValueStorage::KeyValueStorage

[SWS_PER_00322] d

Kind: function

Symbol: KeyValueStorage(KeyValueStorage &&kvs)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage (KeyValueStorage &&kvs) noexcept;

Parameters (in): kvs The KeyValueStorage object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Move constructor for KeyValueStorage.

c(RS_PER_00002, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00324] d

Kind: function

Symbol: KeyValueStorage(const KeyValueStorage &)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage (const KeyValueStorage &)=delete;

Header file: #include "ara/per/key_value_storage.h"

Description: The copy constructor for KeyValueStorage shall not be used.

c(RS_PER_00002, RS_AP_00120)

8.2.5.2 KeyValueStorage::operator=

[SWS_PER_00323] d

50 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: operator=(KeyValueStorage &&kvs)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage& operator= (KeyValueStorage &&kvs) &noexcept;

Parameters (in): kvs The KeyValueStorage object to be moved.

Return value: KeyValueStorage & The moved KeyValueStorage object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Move assignment operator for KeyValueStorage.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00325] d

Kind: function

Symbol: operator=(const KeyValueStorage &)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage& operator= (const KeyValueStorage &)=delete;

Header file: #include "ara/per/key_value_storage.h"

Description: The copy assignment operator for KeyValueStorage shall not be used.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120)

8.2.5.3 KeyValueStorage::~KeyValueStorage

[SWS_PER_00050] d

Kind: function

Symbol: ~KeyValueStorage()

Scope: class ara::per::KeyValueStorage

Syntax: ~KeyValueStorage () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/key_value_storage.h"

Description: Destructor for KeyValueStorage.

c(RS_PER_00002, RS_AP_00120, RS_AP_00129, RS_AP_00132, RS_AP_00134)

8.2.5.4 KeyValueStorage::GetAllKeys

[SWS_PER_00042] d

51 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: GetAllKeys()

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<ara::core::Vector<ara::core::String> > GetAllKeys ()
const noexcept;

Return value: ara::core::Result< ara::core::Vector<
ara::core::String > >

A Result containing a list of available keys. In case
of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Returns a list of all currently available keys of this Key-Value Storage.

The list of keys is only accurate if no key is added or deleted at the same time.

c(RS_PER_00003, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00129,
RS_AP_00132)

8.2.5.5 KeyValueStorage::KeyExists

[SWS_PER_00043] d

Kind: function

Symbol: KeyExists(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<bool> KeyExists (ara::core::StringView key) const
noexcept;

Parameters (in): key The key that shall be checked.

Return value: ara::core::Result< bool > A Result containing true if the key could be located
or false if it couldn’t. In case of an error, it contains
any of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

5

52 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Checks if a key exists in this Key-Value Storage.

The result is only accurate if no key is added or deleted at the same time. E.g. when a key is
removed in another thread directly after this function returned "true", the result is not valid
anymore.

c(RS_PER_00003, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00132)

8.2.5.6 KeyValueStorage::GetValue

[SWS_PER_00332] d

Kind: function

Symbol: GetValue(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: template <class T>
ara::core::Result<T> GetValue (ara::core::StringView key) const
noexcept;

Template param: T The type of the value that shall be retrieved.

Parameters (in): key The key to look up.

Return value: ara::core::Result< T > A Result containing the retrieved value. In case of
an error, it contains any of the errors defined below,
or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kKeyNotFound Returned if the provided key does not exist in the
Key-Value Storage.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kDataTypeMismatch Returned if the data type of stored value does not
match the templated type.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Returns the value assigned to a key of this Key-Value Storage.

GetValue may be delayed by an ongoing call from another thread to RemoveAllKeys or Discard
PendingChanges, or to SetValue, RemoveKey, RecoverKey, or ResetKey for the same key.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

53 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.2.5.7 KeyValueStorage::SetValue

[SWS_PER_00046] d

Kind: function

Symbol: SetValue(ara::core::StringView key, const T &value)

Scope: class ara::per::KeyValueStorage

Syntax: template <class T>
ara::core::Result<void> SetValue (ara::core::StringView key, const T
&value) noexcept;

Template param: T The type of the value that shall be set.

key The key to assign the value to.Parameters (in):

value The value to store.
Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any

of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the Key-Value Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kDataTypeMismatch Returned if the data type of an already stored value
does not match the templated type.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated value.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Stores a key in this Key-Value Storage.

If a value already exists and has the same data type as the new value, it is overwritten. If the
new value has a different data type than the stored value, kDataTypeMismatch is returned.

SetValue may be delayed by an ongoing call from another thread to RemoveAllKeys, SyncTo
Storage, or DiscardPendingChanges, or to SetValue, GetValue, RemoveKey, RecoverKey, or
ResetKey for the same key.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.5.8 KeyValueStorage::RemoveKey

[SWS_PER_00047] d

54 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: RemoveKey(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> RemoveKey (ara::core::StringView key)
noexcept;

Parameters (in): key The key to be removed.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kKeyNotFound Returned if the provided key does not exist in the
Key-Value Storage.

PerErrc::kIllegalWriteAccess Returned if the Key-Value Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Removes a key and the associated value from this Key-Value Storage.

RemoveKey may be delayed by an ongoing call from another thread to RemoveAllKeys, SyncTo
Storage, or DiscardPendingChanges, or to SetValue, GetValue, RemoveKey, RecoverKey, or
ResetKey for the same key.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.5.9 KeyValueStorage::RecoverKey

[SWS_PER_00427] d

Kind: function

Symbol: RecoverKey(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> RecoverKey (ara::core::StringView key)
noexcept;

Parameters (in): key The key to be reset.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

5

55 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
PerErrc::kKeyNotFound Returned if the provided key does not exist in the

Key-Value Storage.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the restored value.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Recovers a single key of this Key Value Storage.

This method allows to recover a single key when the redundancy checks fail.

This method does a best-effort recovery of the key. After recovery, the key might contain
outdated or initial content, or might be lost.

RecoverKey may be delayed by an ongoing call from another thread to RemoveAllKeys, SyncTo
Storage, or DiscardPendingChanges, or to SetValue, GetValue, RemoveKey, RecoverKey, or
ResetKey for the same key.

c(RS_PER_00003, RS_PER_00009, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.2.5.10 KeyValueStorage::ResetKey

[SWS_PER_00426] d

Kind: function

Symbol: ResetKey(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> ResetKey (ara::core::StringView key) noexcept;

Parameters (in): key The key to be reset.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the Key-Value Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

5

56 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
PerErrc::kInitValueNotAvailable Returned if no intitial value was configured for this

key.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the restored value.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Resets a key of this Key-Value Storage to its initial value.

This method allows to reset a single key to its initial value. If the key is currently not available in
the Key-Value Storage, it is re-created.

ResetKey will fail with kInitValueNotAvailable when design and deployment do not define an
initial value for the key.

ResetKey may be delayed by an ongoing call from another thread to RemoveAllKeys, SyncTo
Storage, or DiscardPendingChanges, or to SetValue, GetValue, RemoveKey, RecoverKey, or
ResetKey for the same key.

c(RS_PER_00003, RS_PER_00009, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.2.5.11 KeyValueStorage::RemoveAllKeys

[SWS_PER_00048] d

Kind: function

Symbol: RemoveAllKeys()

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> RemoveAllKeys () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the Key-Value Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Removes all keys and associated values from this Key-Value Storage.

RemoveAllKeys may be delayed by an ongoing call from another thread to RemoveAllKeys,
SyncToStorage, DiscardPendingChanges, SetValue, GetValue, RemoveKey, RecoverKey, or
ResetKey.

57 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.5.12 KeyValueStorage::SyncToStorage

[SWS_PER_00049] d

Kind: function

Symbol: SyncToStorage()

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> SyncToStorage () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the Key-Value Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the added/updated values.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Triggers flushing of changed key-value pairs of the Key-Value Storage to the physical storage.

SyncToStorage may be delayed by an ongoing call from another thread to RemoveAllKeys,
DiscardPendingChanges, SetValue, RemoveKey, RecoverKey, or ResetKey.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00129, RS_AP_00132)

8.2.5.13 KeyValueStorage::DiscardPendingChanges

[SWS_PER_00365] d

Kind: function

Symbol: DiscardPendingChanges()

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> DiscardPendingChanges () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

5

58 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/key_value_storage.h"

Description: Removes all pending changes to this Key-Value Storage since the last call to SyncToStorage()
or since this Key-Value Storage was opened using OpenKeyValueStorage().

DiscardPendingChanges may be delayed by an ongoing call from another thread to RemoveAll
Keys, SyncToStorage, DiscardPendingChanges, SetValue, GetValue, RemoveKey, RecoverKey,
or ResetKey.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00129, RS_AP_00132)

59 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.3 File Storage

This section lists all functions and classes that are required to operate a File Stor-
age.

The following functions are used to get access to a File Storage, to recover as
much as possible after it was corrupted, to reset it to the deployed defaults, and to
get the amount of storage allocated to the File Storage. In addition, operators
are present to combine the ara::per::OpenMode values passed as mode to the
OpenFile* functions.

Persistency itself does not change or interpret the content of a file when accessing
it in text mode. It is assumed, though, that files in the File Storage are encoded
as UTF-8 (see [RS_AP_00136]; this is also in line with the constraint for StdCppIm-
plementationDataType of category STRING in [3], see [constr_1674]). It is also
assumed that line endings are handled according to UNIX conventions, i.e. just LF
("\n").

8.3.1 OpenFileStorage

[SWS_PER_00116] d

Kind: function

Symbol: OpenFileStorage(const ara::core::InstanceSpecifier &fs)

Scope: namespace ara::per

Syntax: ara::core::Result<SharedHandle<FileStorage> > OpenFileStorage (const
ara::core::InstanceSpecifier &fs) noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileStorageInterface.

Return value: ara::core::Result< SharedHandle< File
Storage > >

A Result containing a SharedHandle for the File
Storage. In case of an error, it contains any of the
errors defined below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyFileStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if RecoverAllFiles or
ResetAllFiles is currently being executed for the
same File Storage.

5

60 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
PerErrc::kOutOfStorageSpace Returned if the available storage space is

insufficient for the added/updated files.

PerErrc::kNotInitialized Returned if this function is called before
ara::core::Initialize or after ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

Description: Opens a File Storage.

OpenFileStorage will fail with kResourceBusy when the File Storage is currently being modified
by a call from another thread to UpdatePersistency, ResetPersistency, RecoverAllFiles, or
ResetAllFiles.

Because multiple threads can access the same File Storage concurrently, the File Storage
might not be closed when the SharedHandle returned by this function goes out of scope. It will
only be closed when all SharedHandles that refer to the same File Storage went out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.3.2 RecoverAllFiles

[SWS_PER_00335] d

Kind: function

Symbol: RecoverAllFiles(const ara::core::InstanceSpecifier &fs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> RecoverAllFiles (const ara::core::Instance
Specifier &fs) noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileStorageInterface.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyFileStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if ResetAllFiles is
currently being executed for the same File Storage,
or a SharedHandle of the same File Storage is
currently in use.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the restored files.

Errors:

PerErrc::kNotInitialized Returned if this function is called before
ara::core::Initialize or after ara::core::Deinitialize.

5

61 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Header file: #include "ara/per/file_storage.h"

Description: Recovers a File Storage, including all files.

RecoverAllFiles recovers a File Storage when the redundancy checks fail.

It will fail with kResourceBusy when the File Storage is currently open, or when it is modified by
a call from another thread to UpdatePersistency, ResetPersistency, RecoverAllFiles, or ResetAll
Files.

This method does a best-effort recovery of all files. After recovery, files might show outdated or
initial content, or might be lost.

c(RS_PER_00001, RS_PER_00004, RS_PER_00009, RS_PER_00010, RS_AP_-
00119, RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_-
00129, RS_AP_00132)

8.3.3 ResetAllFiles

[SWS_PER_00336] d

Kind: function

Symbol: ResetAllFiles(const ara::core::InstanceSpecifier &fs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> ResetAllFiles (const ara::core::Instance
Specifier &fs) noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileStorageInterface.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyFileStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

PerErrc::kResourceBusy Returned if UpdatePersistency or ResetPersistency
is currently being executed, or if RecoverAllFiles is
currently being executed for the same File Storage,
or a SharedHandle of the same File Storage is
currently in use.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the restored files.

Errors:

PerErrc::kNotInitialized Returned if this function is called before
ara::core::Initialize or after ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

5

62 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Description: Resets a File Storage, including all files.

ResetAllFiles resets a File Storage to the initial state, containing only the files which were
deployed from the manifest, with their initial content.

It will fail with kResourceBusy when the File Storage is currently open, or when it is modified by
a call from another thread to UpdatePersistency, ResetPersistency, RecoverAllFiles, or ResetAll
Files.

c(RS_PER_00001, RS_PER_00004, RS_PER_00009, RS_PER_00010, RS_AP_-
00119, RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_-
00129, RS_AP_00132)

8.3.4 GetCurrentFileStorageSize

[SWS_PER_00406] d

Kind: function

Symbol: GetCurrentFileStorageSize(const ara::core::InstanceSpecifier &fs)

Scope: namespace ara::per

Syntax: ara::core::Result<uint64_t> GetCurrentFileStorageSize (const
ara::core::InstanceSpecifier &fs) const noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileStorageInterface.

Return value: ara::core::Result< uint64_t > A Result containing the occupied space in bytes. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kStorageNotFound Returned if the passed InstanceSpecifier does not
match any PersistencyFileStorageInterface
configured for this Executable.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

Errors:

PerErrc::kNotInitialized Returned if this function is called before
ara::core::Initialize or after ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

Description: Returns the space in bytes currently occupied by a File Storage.

The returned size includes all meta data and the space used for redundancy and backups.

The returned size is only accurate if no other operation on the File Storage takes place at the
same time.

c(RS_PER_00017, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.3.5 OpenMode

[SWS_PER_00147] d

63 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: enumeration

Symbol: OpenMode

Scope: namespace ara::per

Underlying type: uint32_t

Syntax: enum class OpenMode : uint32_t {...};

kAtTheBeginning= 1 << 0 Sets the seek position to the beginning of the file
when the file is opened. This mode cannot be
combined with kAtTheEnd.

kAtTheEnd= 1 << 1 Sets the seek position to the end of the file when the
file is opened. This mode cannot be combined with
kAtTheBeginning or kTruncate.

kTruncate= 1 << 2 Removes existing content when the file is opened.
This mode cannot be combined with kAtTheEnd.

Values:

kAppend= 1 << 3 Append to the end. Always seeks to the end of the
file before writing.

Header file: #include "ara/per/file_storage.h"

Description: This enumeration defines how a file shall be opened.

The values can be combined (using | and |=) as long as they do not contradict each other.

c(RS_PER_00003, RS_AP_00122)

8.3.6 operator| for FileStorage::OpenMode

[SWS_PER_00144] d

Kind: function

Symbol: operator|(OpenMode left, OpenMode right)

Scope: namespace ara::per

Syntax: constexpr OpenMode operator| (OpenMode left, OpenMode right);

left First OpenMode modifiers.Parameters (in):

right Second OpenMode modifiers.

Return value: OpenMode returns Merged OpenMode modifiers.

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Merges two OpenMode modifiers into one.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_-
00121)

8.3.7 operator|= for FileStorage::OpenMode

[SWS_PER_00434] d

64 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: operator|=(OpenMode &left, const OpenMode &right)

Scope: namespace ara::per

Syntax: OpenMode& operator|= (OpenMode &left, const OpenMode &right);

left Left OpenMode modifiers.Parameters (in):

right Right OpenMode modifiers.

Return value: OpenMode & returns The modified OpenMode.

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Merges an OpenMode modifier into this OpenMode.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_-
00121)

8.3.8 FileCreationState

[SWS_PER_00435] d

Kind: enumeration

Symbol: FileCreationState

Scope: namespace ara::per

Underlying type: uint32_t

Syntax: enum class FileCreationState : uint32_t {...};

kCreatedDuringInstallion= 1 The file was created by Persistency after installation
of the application or after ResetPersistency.

kCreatedDuringUpdate= 2 The file was created by Persistency during an
update.

kCreatedDuringReset= 3 The file was re-created due to a call to ResetFile or
ResetAllFiles.

kCreatedDuringRecovery= 4 The file was re-created by Persistency after a
corruption was detected.

Values:

kCreatedByApplication= 5 The file was created by the application.

Header file: #include "ara/per/file_storage.h"

Description: This enumeration describes how and when a file was created.

c(RS_PER_00004, RS_AP_00122)

8.3.9 FileModificationState

[SWS_PER_00436] d

65 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: enumeration

Symbol: FileModificationState

Scope: namespace ara::per

Underlying type: uint32_t

Syntax: enum class FileModificationState : uint32_t {...};

kModifiedDuringUpdate= 2 The file was last modified by Persistency during an
update.

kModifiedDuringReset= 3 The file was last modified by Persistency due to a
call to ResetFile or ResetAllFiles.

kModifiedDuringRecovery= 4 The file was last modified by Persistency after a
corruption was detected.

Values:

kModifiedByApplication= 5 The file was last modified by the application.

Header file: #include "ara/per/file_storage.h"

Description: This enumeration describes how and when a file was last modified.

c(RS_PER_00004, RS_AP_00122)

8.3.10 FileInfo

[SWS_PER_00437] d

Kind: struct

Symbol: FileInfo

Scope: namespace ara::per

Syntax: struct FileInfo {...};

Header file: #include "ara/per/file_storage.h"

Description: This structure contains additional information on a file returned by GetFileInfo.

c(RS_PER_00004, RS_AP_00122)

8.3.10.1 FileInfo.creationTime

[SWS_PER_00441] d

Kind: variable

Symbol: creationTime

Scope: struct ara::per::FileInfo

Type: uint64_t

Syntax: uint64_t creationTime;

Header file: #include "ara/per/file_storage.h"

Description: Time in nanoseconds since midnight 1970-01-01 UTC at which the file was created.

c(RS_PER_00004)

66 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.3.10.2 FileInfo.modificationTime

[SWS_PER_00442] d

Kind: variable

Symbol: modificationTime

Scope: struct ara::per::FileInfo

Type: uint64_t

Syntax: uint64_t modificationTime;

Header file: #include "ara/per/file_storage.h"

Description: Time in nanoseconds since midnight 1970-01-01 UTC at which the file was last modified.

c(RS_PER_00004)

8.3.10.3 FileInfo.accessTime

[SWS_PER_00443] d

Kind: variable

Symbol: accessTime

Scope: struct ara::per::FileInfo

Type: uint64_t

Syntax: uint64_t accessTime;

Header file: #include "ara/per/file_storage.h"

Description: Time in nanoseconds since midnight 1970-01-01 UTC at which the file was last accessed.

c(RS_PER_00004)

8.3.10.4 FileInfo.fileCreationState

[SWS_PER_00444] d

Kind: variable

Symbol: fileCreationState

Scope: struct ara::per::FileInfo

Type: FileCreationState

Syntax: FileCreationState fileCreationState;

Header file: #include "ara/per/file_storage.h"

Description: Information on how and by whom the file was created.

c(RS_PER_00004)

67 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.3.10.5 FileInfo.fileModificationState

[SWS_PER_00445] d

Kind: variable

Symbol: fileModificationState

Scope: struct ara::per::FileInfo

Type: FileModificationState

Syntax: FileModificationState fileModificationState;

Header file: #include "ara/per/file_storage.h"

Description: Information on how and by whom the file was last modified.

c(RS_PER_00004)

8.3.11 FileStorage Class

This section shows the methods available for a ara::per::FileStorage object
obtained from a call to 8.3.1.

[SWS_PER_00340] d

Kind: class

Symbol: FileStorage

Scope: namespace ara::per

Syntax: class FileStorage final {...};

Header file: #include "ara/per/file_storage.h"

Description: The File Storage contains a set of files identified by their names.

c(RS_PER_00004, RS_AP_00122)

8.3.11.1 FileStorage::FileStorage

[SWS_PER_00326] d

Kind: function

Symbol: FileStorage(FileStorage &&fs)

Scope: class ara::per::FileStorage

Syntax: FileStorage (FileStorage &&fs) noexcept;

Parameters (in): fs The FileStorage object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

5

68 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Header file: #include "ara/per/file_storage.h"

Description: Move constructor for FileStorage.

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00328] d

Kind: function

Symbol: FileStorage(const FileStorage &)

Scope: class ara::per::FileStorage

Syntax: FileStorage (const FileStorage &)=delete;

Header file: #include "ara/per/file_storage.h"

Description: The copy constructor for FileStorage shall not be used.

c(RS_PER_00004, RS_AP_00120)

8.3.11.2 FileStorage::operator=

[SWS_PER_00327] d

Kind: function

Symbol: operator=(FileStorage &&fs)

Scope: class ara::per::FileStorage

Syntax: FileStorage& operator= (FileStorage &&fs) &noexcept;

Parameters (in): fs The FileStorage object to be moved.

Return value: FileStorage & The moved FileStorage object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Move assignment operator for FileStorage.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00329] d

Kind: function

Symbol: operator=(const FileStorage &)

Scope: class ara::per::FileStorage

Syntax: FileStorage& operator= (const FileStorage &)=delete;

Header file: #include "ara/per/file_storage.h"

Description: The copy assignment operator for FileStorage shall not be used.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120)

69 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.3.11.3 FileStorage::~FileStorage

[SWS_PER_00330] d

Kind: function

Symbol: ~FileStorage()

Scope: class ara::per::FileStorage

Syntax: ~FileStorage () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/file_storage.h"

Description: Destructor for FileStorage.

c(RS_PER_00004, RS_AP_00120, RS_AP_00129, RS_AP_00132, RS_AP_00134)

8.3.11.4 FileStorage::GetAllFileNames

[SWS_PER_00110] d

Kind: function

Symbol: GetAllFileNames()

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<ara::core::Vector<ara::core::String> > GetAllFile
Names () const noexcept;

Return value: ara::core::Result< ara::core::Vector<
ara::core::String > >

A Result containing a list of available files. In case of
an error, it contains any of the errors defined below,
or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

Description: Returns a list of all currently available files of this File Storage.

The list of files is only accurate if no file is added or deleted at the same time.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00127,
RS_AP_00129, RS_AP_00132)

70 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.3.11.5 FileStorage::DeleteFile

[SWS_PER_00111] d

Kind: function

Symbol: DeleteFile(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<void> DeleteFile (ara::core::StringView fileName)
noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kResourceBusy Returned if the file is open, or if RecoverFile or
ResetFile with the same file name is currently being
executed.

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

Description: Deletes a file from this File Storage.

This operation will fail with kResourceBusy when the file is currently open.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.3.11.6 FileStorage::FileExists

[SWS_PER_00112] d

Kind: function

Symbol: FileExists(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<bool> FileExists (ara::core::StringView fileName)
const noexcept;

5

71 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Parameters (in): fileName Name of the file. May correspond to the Persistency

File.fileName of a configured file.

Return value: ara::core::Result< bool > A Result containing true if the file could be located
or false if it couldn’t. In case of an error, it contains
any of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

Description: Checks if a file exists in this File Storage.

The result is only accurate if no file is added or deleted at the same time. E.g. when a file is
removed in another thread directly after this function returned "true", the result is not valid
anymore.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.3.11.7 FileStorage::RecoverFile

[SWS_PER_00337] d

Kind: function

Symbol: RecoverFile(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<void> RecoverFile (ara::core::StringView fileName)
noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kResourceBusy Returned if the file is open, or if DeleteFile or Reset
File with the same file name is currently being
executed.

5

72 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
PerErrc::kOutOfStorageSpace Returned if the available storage space is

insufficient for the restored file.

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

Description: Recovers a file of this File Storage.

This method allows to recover a single file when the redundancy checks fail.

It will fail with kResourceBusy when the file is currently open.

This method does a best-effort recovery of the file. After recovery, the file might show outdated
or initial content, or might be lost.

c(RS_PER_00001, RS_PER_00004, RS_PER_00009, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.3.11.8 FileStorage::ResetFile

[SWS_PER_00338] d

Kind: function

Symbol: ResetFile(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<void> ResetFile (ara::core::StringView fileName)
noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kInitValueNotAvailable Returned if no intitial value was configured for this
file.

PerErrc::kResourceBusy Returned if the file is open, or if DeleteFile or
RecoverFile with the same file name is currently
being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is restored.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

5

73 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Header file: #include "ara/per/file_storage.h"

Description: Resets a file of this File Storage to its initial content.

This method allows to reset a single file to its initial content. If the file is currently not available
in the File Storage, it is re-created.

It will fail with kResourceBusy when the file is currently open, and with kInitValueNotAvailable
when deployment does not define an initial content for the file.

c(RS_PER_00001, RS_PER_00004, RS_PER_00009, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.3.11.9 FileStorage::GetCurrentFileSize

[SWS_PER_00407] d

Kind: function

Symbol: GetCurrentFileSize(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<uint64_t> GetCurrentFileSize (ara::core::StringView
fileName) const noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< uint64_t > A Result containing the occupied space in bytes. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be written because
the structural integrity is corrupted.

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

Description: Returns the space in bytes currently occupied by the content of a file of this File Storage.

The returned size is only accurate if no other operation on the file takes place at the same time.

c(RS_PER_00017, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.3.11.10 FileStorage::GetFileInfo

[SWS_PER_00438] d

74 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: GetFileInfo(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<FileInfo> GetFileInfo (ara::core::StringView file
Name) const noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< FileInfo > A Result containing a FileInfo struct. In case of an
error, it contains any of the errors defined below, or
a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

Description: Returns additional information on a file of this File Storage.

The returned FileInfo struct contains information about the times when the file was created, last
modified, and last accessed, and about how and by whom the file was created and last
modified. The modificationTime, accessTime, and fileModificationState returned in the FileInfo
are only accurate if the file is currently not open.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.3.11.11 FileStorage::OpenFileReadWrite

[SWS_PER_00375] d

Kind: function

Symbol: OpenFileReadWrite(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileReadWrite
(ara::core::StringView fileName) noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

Errors: PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

5

75 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading and writing.

The file is opened with the seek position set to the beginning (corresponding to kAtThe
Beginning).

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

[SWS_PER_00113] d

Kind: function

Symbol: OpenFileReadWrite(ara::core::StringView fileName, OpenMode mode)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileReadWrite
(ara::core::StringView fileName, OpenMode mode) noexcept;

fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Parameters (in):

mode Mode with which the file shall be opened.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

5

76 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading and writing with a defined mode.

If not otherwise specified by the provided mode, the file is opened with the seek position set to
the beginning (corresponding to kAtTheBeginning).

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

[SWS_PER_00429] d

Kind: function

Symbol: OpenFileReadWrite(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileReadWrite
(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer) noexcept;

fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

mode Mode with which the file shall be opened.

Parameters (in):

buffer Memory to be used for block-wise reading/writing.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

5

77 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading and writing with a user provided buffer.

If not otherwise specified by the provided mode, the file is opened with the seek position set to
the beginning (corresponding to kAtTheBeginning).

The provided buffer will be used by the ReadWriteAccessor to implement block-wise reading
and writing to speed up multiple small accesses to the file.

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.3.11.12 FileStorage::OpenFileReadOnly

[SWS_PER_00376] d

Kind: function

Symbol: OpenFileReadOnly(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadAccessor> > OpenFileReadOnly
(ara::core::StringView fileName) noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< UniqueHandle<
ReadAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

5

78 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading.

The file is opened with the seek position set to the beginning (corresponding to kAtThe
Beginning).

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

[SWS_PER_00114] d

Kind: function

Symbol: OpenFileReadOnly(ara::core::StringView fileName, OpenMode mode)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadAccessor> > OpenFileReadOnly
(ara::core::StringView fileName, OpenMode mode) noexcept;

fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Parameters (in):

mode Mode with which the file shall be opened.

Return value: ara::core::Result< UniqueHandle<
ReadAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

5

79 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Header file: #include "ara/per/file_storage.h"

Description: Opens a file of this File Storage for reading with a defined mode.

If not otherwise specified by the provided mode, the file is opened with the seek position set to
the beginning (corresponding to kAtTheBeginning).

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

[SWS_PER_00430] d

Kind: function

Symbol: OpenFileReadOnly(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadAccessor> > OpenFileReadOnly
(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer) noexcept;

fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

mode Mode with which the file shall be opened.

Parameters (in):

buffer Memory to be used for block-wise reading.

Return value: ara::core::Result< UniqueHandle<
ReadAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kFileNotFound Returned if the provided file does not exist in the File
Storage.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

5

80 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Description: Opens a file of this File Storage for reading with a user provided buffer.

If not otherwise specified by the provided mode, the file is opened with the seek position set to
the beginning (corresponding to kAtTheBeginning).

The provided buffer will be used by the ReadAccessor to implement block-wise reading to
speed up multiple small accesses to the file.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.3.11.13 FileStorage::OpenFileWriteOnly

[SWS_PER_00377] d

Kind: function

Symbol: OpenFileWriteOnly(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileWriteOnly
(ara::core::StringView fileName) noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/file_storage.h"

5

81 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Description: Opens a file of this File Storage for writing.

The file is truncated (corresponding to kTruncate).

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

[SWS_PER_00115] d

Kind: function

Symbol: OpenFileWriteOnly(ara::core::StringView fileName, OpenMode mode)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileWriteOnly
(ara::core::StringView fileName, OpenMode mode) noexcept;

fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Parameters (in):

mode Mode with which the file shall be opened.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

5

82 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Description: Opens a file of this File Storage for writing with a defined mode.

If not otherwise specified by the provided mode, the file is truncated (corresponding to k
Truncate).

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

[SWS_PER_00431] d

Kind: function

Symbol: OpenFileWriteOnly(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileWriteOnly
(ara::core::StringView fileName, OpenMode mode, ara::core::Span<
ara::core::Byte > buffer) noexcept;

fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

mode Mode with which the file shall be opened.

Parameters (in):

buffer Memory to be used for block-wise writing.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result containing a UniqueHandle for the file. In
case of an error, it contains any of the errors defined
below, or a vendor specific error.

Exception Safety: noexcept

Thread Safety: re-entrant

PerErrc::kIllegalWriteAccess Returned if the File Storage is configured as
read-only.

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kResourceBusy Returned if the file is already open, or if DeleteFile,
RecoverFile, or ResetFile with the same file name is
currently being executed.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient or the number of files would get larger
than the configured maxNumberOfFiles when the
file is created.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kInvalidOpenMode Returned if the passed mode contains an invalid
combination of modes.

Header file: #include "ara/per/file_storage.h"

5

83 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Description: Opens a file of this File Storage for writing with a user provided buffer.

If not otherwise specified by the provided mode, the file is truncated (corresponding to k
Truncate).

The provided buffer will be used by the ReadWriteAccessor to implement block-wise writing to
speed up multiple small accesses to the file.

If the file does not exist, it is created.

The file will be closed when the returned UniqueHandle goes out of scope.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119, RS_AP_-
00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00132)

8.3.12 Origin

[SWS_PER_00146] d

Kind: enumeration

Symbol: Origin

Scope: namespace ara::per

Underlying type: uint32_t

Syntax: enum class Origin : uint32_t {...};

kBeginning= 0 Seek from the beginning of the file.

kCurrent= 1 Seek from the current position.

Values:

kEnd= 2 Seek from the end of the file.

Header file: #include "ara/per/read_accessor.h"

Description: Specification of origin used in MovePosition.

c(RS_PER_00003, RS_AP_00122)

8.3.13 ReadAccessor Class

This section shows the methods available for a ara::per::ReadAccessor object
obtained from a call to 8.3.11.12, and for the inheriting ara::per::ReadWriteAc-
cessor object obtained from a call to 8.3.11.13 or 8.3.11.11.

[SWS_PER_00342] d

Kind: class

Symbol: ReadAccessor

Scope: namespace ara::per

5

84 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Syntax: class ReadAccessor {...};

Header file: #include "ara/per/read_accessor.h"

Description: ReadAccessor is used to read file data.

It provides binary and text mode methods for checking or getting the current byte/character
(PeekByte/PeekChar, GetByte/GetChar) methods for reading a section of a binary/text file
(ReadBinary/ReadText), a method to read a line of text (ReadLine), and methods for checking
and setting the current position in the file (GetPosition, SetPosition, MovePosition, IsEof) and
for checking the current size of the file (GetSize).

c(RS_PER_00004, RS_AP_00122)

8.3.13.1 ReadAccessor::ReadAccessor

[SWS_PER_00413] d

Kind: function

Symbol: ReadAccessor(ReadAccessor &&ra)

Scope: class ara::per::ReadAccessor

Syntax: ReadAccessor (ReadAccessor &&ra) noexcept;

Parameters (in): ra The ReadAccessor object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/read_accessor.h"

Description: Move constructor for ReadAccessor.

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00415] d

Kind: function

Symbol: ReadAccessor(const ReadAccessor &)

Scope: class ara::per::ReadAccessor

Syntax: ReadAccessor (const ReadAccessor &)=delete;

Header file: #include "ara/per/read_accessor.h"

Description: The copy constructor for ReadAccessor shall not be used.

c(RS_PER_00004, RS_AP_00120)

8.3.13.2 ReadAccessor::operator=

[SWS_PER_00414] d

85 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: operator=(ReadAccessor &&ra)

Scope: class ara::per::ReadAccessor

Syntax: ReadAccessor& operator= (ReadAccessor &&ra) &noexcept;

Parameters (in): ra The ReadAccessor object to be moved.

Return value: ReadAccessor & The moved ReadAccessor object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/read_accessor.h"

Description: Move assignment operator for ReadAccessor.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00416] d

Kind: function

Symbol: operator=(const ReadAccessor &)

Scope: class ara::per::ReadAccessor

Syntax: ReadAccessor& operator= (const ReadAccessor &)=delete;

Header file: #include "ara/per/read_accessor.h"

Description: The copy assignment operator for ReadAccessor shall not be used.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120)

8.3.13.3 ReadAccessor::~ReadAccessor

[SWS_PER_00417] d

Kind: function

Symbol: ~ReadAccessor()

Scope: class ara::per::ReadAccessor

Syntax: ~ReadAccessor () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Destructor for ReadAccessor.

c(RS_PER_00004, RS_AP_00120, RS_AP_00129, RS_AP_00132, RS_AP_00134)

8.3.13.4 ReadAccessor::PeekChar

[SWS_PER_00167] d

86 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: PeekChar()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<char> PeekChar () const noexcept;

Return value: ara::core::Result< char > A Result containing a character. In case of an error,
it contains any of the errors defined below, or a
vendor specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Returns the character at the current position of the file.

The current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_-
00132)

8.3.13.5 ReadAccessor::PeekByte

[SWS_PER_00418] d

Kind: function

Symbol: PeekByte()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::Byte> PeekByte () const noexcept;

Return value: ara::core::Result< ara::core::Byte > A Result containing a byte. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

5

87 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Header file: #include "ara/per/read_accessor.h"

Description: Returns the byte at the current position of the file.

The current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_-
00132)

8.3.13.6 ReadAccessor::GetChar

[SWS_PER_00168] d

Kind: function

Symbol: GetChar()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<char> GetChar () noexcept;

Return value: ara::core::Result< char > A Result containing a character. In case of an error,
it contains any of the errors defined below, or a
vendor specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Returns the character at the current position of the file, advancing the current position.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_-
00132)

8.3.13.7 ReadAccessor::GetByte

[SWS_PER_00419] d

88 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: GetByte()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::Byte> GetByte () noexcept;

Return value: ara::core::Result< ara::core::Byte > A Result containing a byte. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Returns the byte at the current position of the file, advancing the current position.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_-
00132)

8.3.13.8 ReadAccessor::ReadText

[SWS_PER_00420] d

Kind: function

Symbol: ReadText()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::String> ReadText () noexcept;

Return value: ara::core::Result< ara::core::String > A Result containing a String. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

5

89 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Header file: #include "ara/per/read_accessor.h"

Description: Reads all remaining characters into a String, starting from the current position.

The current position is set to the end of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

[SWS_PER_00165] d

Kind: function

Symbol: ReadText(uint64_t n)

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::String> ReadText (uint64_t n) noexcept;

Parameters (in): n Number of characters to read.

Return value: ara::core::Result< ara::core::String > A Result containing a String. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Reads a number of characters into a String, starting from the current position.

The current position is advanced accordingly.

If the end of the file is reached, the number of returned characters can be less than the
requested number, and the current position is set to the end of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.3.13.9 ReadAccessor::ReadBinary

[SWS_PER_00421] d

90 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: ReadBinary()

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::Vector<ara::core::Byte> > ReadBinary ()
noexcept;

Return value: ara::core::Result< ara::core::Vector<
ara::core::Byte > >

A Result containing a Vector of Byte. In case of an
error, it contains any of the errors defined below, or
a vendor specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Reads all remaining bytes into a Vector of Byte, starting from the current position.

The current position is set to the end of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

[SWS_PER_00422] d

Kind: function

Symbol: ReadBinary(uint64_t n)

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::Vector<ara::core::Byte> > ReadBinary
(uint64_t n) noexcept;

Parameters (in): n Number of bytes to read.

Return value: ara::core::Result< ara::core::Vector<
ara::core::Byte > >

A Result containing a Vector of Byte. In case of an
error, it contains any of the errors defined below, or
a vendor specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

5

91 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Header file: #include "ara/per/read_accessor.h"

Description: Reads a number of bytes into a Vector of Byte, starting from the current position.

The current position is advanced accordingly.

If the end of the file is reached, the number of returned bytes can be less than the requested
number, and the current position is set to the end of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.3.13.10 ReadAccessor::ReadLine

[SWS_PER_00119] d

Kind: function

Symbol: ReadLine(char delimiter=’\n’)

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<ara::core::String> ReadLine (char delimiter=’\n’)
noexcept;

Parameters (in): delimiter The character that is used as delimiter.

Return value: ara::core::Result< ara::core::String > A Result containing a String. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the decryption of stored data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kIsEof Returned if the current position is at the end of the
file or if the file is empty.

Header file: #include "ara/per/read_accessor.h"

Description: Reads a complete line of characters into a String, advancing the current position accordingly.

The end of the line is demarcated by the delimiter, or by "\\n" (ASCII 0x10) if that parameter is
omitted. The delimiter itself is not included in the returned String.

If the end of the file is reached, the remaining characters are returned and the current position
is set to the end of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00129, RS_AP_00132)

92 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.3.13.11 ReadAccessor::GetSize

[SWS_PER_00424] d

Kind: function

Symbol: GetSize()

Scope: class ara::per::ReadAccessor

Syntax: uint64_t GetSize () const noexcept;

Return value: uint64_t The current size of the file in bytes.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Returns the current size of a file in bytes.

c(RS_PER_00017, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.3.13.12 ReadAccessor::GetPosition

[SWS_PER_00162] d

Kind: function

Symbol: GetPosition()

Scope: class ara::per::ReadAccessor

Syntax: uint64_t GetPosition () const noexcept;

Return value: uint64_t The current position in the file in bytes from the
beginning of the file.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Returns the current position relative to the beginning of the file.

The returned position may be at the end of the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_-
00132)

8.3.13.13 ReadAccessor::SetPosition

[SWS_PER_00163] d

93 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: SetPosition(uint64_t position)

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<void> SetPosition (uint64_t position) noexcept;

Parameters (in): position Current position in the file in bytes from the
beginning of the file.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kInvalidPosition Returned if the given position is beyond the end of
the file.

Header file: #include "ara/per/read_accessor.h"

Description: Sets the current position relative to the beginning of the file.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00132)

8.3.13.14 ReadAccessor::MovePosition

[SWS_PER_00164] d

Kind: function

Symbol: MovePosition(Origin origin, int64_t offset)

Scope: class ara::per::ReadAccessor

Syntax: ara::core::Result<uint64_t> MovePosition (Origin origin, int64_t
offset) noexcept;

origin Starting point from which to move ’offset’ bytes.Parameters (in):

offset Offset in bytes relative to ’origin’. Can be positive in
case of kBeginning and kCurrent and negative in
case of kCurrent and kEnd. In case of kCurrent, an
offset of zero will not change the current position. In
case of kEnd, an offset of zero will set the position to
the end of the file.

Return value: ara::core::Result< uint64_t > A Result containing the new position in bytes from
the beginning of the file. In case of an error, it
contains any of the errors defined below, or a vendor
specific error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kInvalidPosition Returned if the resulting position is lower than zero
or beyond the end of the file.

5

94 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Header file: #include "ara/per/read_accessor.h"

Description: Moves the current position in the file relative to the Origin.

In case of an error, the current position is not changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00132)

8.3.13.15 ReadAccessor::IsEof

[SWS_PER_00107] d

Kind: function

Symbol: IsEof()

Scope: class ara::per::ReadAccessor

Syntax: bool IsEof () const noexcept;

Return value: bool True if the current position is at the end of the file,
false otherwise.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Checks if the current position is at end of file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_-
00132)

8.3.14 ReadWriteAccessor Class

This section shows the methods available for a ara::per::ReadWriteAccessor
object obtained from a call to 8.3.11.13 or 8.3.11.11.

[SWS_PER_00343] d

Kind: class

Symbol: ReadWriteAccessor

Scope: namespace ara::per

Base class: ReadAccessor

Syntax: class ReadWriteAccessor : public ReadAccessor {...};

Header file: #include "ara/per/read_write_accessor.h"

5

95 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Description: ReadWriteAccessor is used to read and write file data.

It provides the WriteBinary and WriteText methods featuring a Result for controlled,
unformatted writing, and the operator<< method for simple formatted writing. It also provides
SyncToFile() to flush the buffer of the operating system to the storage.

c(RS_PER_00004, RS_AP_00122)

8.3.14.1 ReadWriteAccessor::SyncToFile

[SWS_PER_00122] d

Kind: function

Symbol: SyncToFile()

Scope: class ara::per::ReadWriteAccessor

Syntax: ara::core::Result<void> SyncToFile () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption of stored data fails.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the updated file size.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/read_write_accessor.h"

Description: Triggers flushing of the current file content to the physical storage.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00128,
RS_AP_00127, RS_AP_00129, RS_AP_00132)

8.3.14.2 ReadWriteAccessor::SetFileSize

[SWS_PER_00428] d

Kind: function

Symbol: SetFileSize(uint64_t size)

Scope: class ara::per::ReadWriteAccessor

Syntax: ara::core::Result<void> SetFileSize (uint64_t size) noexcept;

Parameters (in): size New size of the file.

5

96 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any

of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Errors:

PerErrc::kInvalidSize Returned if the new size is larger than the current
size.

Header file: #include "ara/per/read_write_accessor.h"

Description: Reduces the size of the file to ’size’, effectively removing the current content of the file beyond
this size.

The current file position is unchanged if it is lower than ’size’, or set to the last valid position in
the file otherwise. If ’size’ is 0, the current file position will also be set to 0.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00128,
RS_AP_00127, RS_AP_00129, RS_AP_00132)

8.3.14.3 ReadWriteAccessor::WriteText

[SWS_PER_00166] d

Kind: function

Symbol: WriteText(ara::core::StringView s)

Scope: class ara::per::ReadWriteAccessor

Syntax: ara::core::Result<void> WriteText (ara::core::StringView s) noexcept;

Parameters (in): s A StringView containing the characters to be written.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the updated file size.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/read_write_accessor.h"

5

97 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Description: Writes the content of a StringView to the file.

The time when the content is persisted depends on the implementation of Persistency. SyncTo
File can be used to force Persistency to persist the file content.

In case of an error, the file content might be corrupted, and the current position might or might
not have changed.

The expected state of the file for each supported error can be expected to be as follows: k
PhysicalStorageFailure: The state of the file is unknown. It could have been entirely destroyed.
kEncryptionFailed: The content of the file and the current position will have been updated, but
could not be persisted. The persisted file will reflect an older version of the file. kOutOfStorage
Space: The content of the file will have been updated, but the part of the operation that
exceeded the quota will have been discarded. The current position will be at the end of the file.
kNotInitialized: The content of the file and the current position have not been changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.3.14.4 ReadWriteAccessor::WriteBinary

[SWS_PER_00423] d

Kind: function

Symbol: WriteBinary(ara::core::Span< const ara::core::Byte > b)

Scope: class ara::per::ReadWriteAccessor

Syntax: ara::core::Result<void> WriteBinary (ara::core::Span< const
ara::core::Byte > b) noexcept;

Parameters (in): b A Span of Byte containing the bytes to be written.

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the updated file size.

Errors:

PerErrc::kNotInitialized Returned if this method is called after
ara::core::Deinitialize.

Header file: #include "ara/per/read_write_accessor.h"

Description: Writes the content of a Span of Byte to the file.

The time when the content is persisted depends on the implementation of Persistency. SyncTo
File can be used to force Persistency to persist the file content.

In case of an error, the file content might be corrupted, and the current position might or might
not have changed.

The expected state of the file for each supported error can be expected to be as follows: k
PhysicalStorageFailure: The state of the file is unknown. It could have been entirely destroyed.

5
5

98 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
4

kEncryptionFailed: The content of the file and the current position will have been updated, but
could not be persisted. The persisted file will reflect an older version of the file. kOutOfStorage
Space: The content of the file will have been updated, but the part of the operation that
exceeded the quota will have been discarded. The current position will be at the end of the file.
kNotInitialized: The content of the file and the current position have not been changed.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.3.14.5 ReadWriteAccessor::operator<<

[SWS_PER_00125] d

Kind: function

Symbol: operator<<(ara::core::StringView s)

Scope: class ara::per::ReadWriteAccessor

Syntax: ReadWriteAccessor& operator<< (ara::core::StringView s) noexcept;

Parameters (in): s The StringView containing the characters to be
written.

Return value: ReadWriteAccessor & The ReadWriteAccessor object.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_write_accessor.h"

Description: Writes the content of a StringView to the file.

This operator is just a comfort feature for non-safety critical applications. If an error occurs
during this operation, it is silently ignored.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

99 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.4 Update and Removal of Persistent Data

The Persistency cluster allows for updating and resetting/removing all installed
Key-Value Storages and File Storages. And the application may also register
a callback function that is called after the update of any Key-Value Storage and
File Storage.

8.4.1 RegisterApplicationDataUpdateCallback

[SWS_PER_00356] d

Kind: function

Symbol: RegisterApplicationDataUpdateCallback(std::function< void(const ara::core::InstanceSpecifier
&storage, ara::core::String version)> appDataUpdateCallback)

Scope: namespace ara::per

Syntax: void RegisterApplicationDataUpdateCallback (std::function< void(const
ara::core::InstanceSpecifier &storage, ara::core::String version)> app
DataUpdateCallback) noexcept;

Parameters (in): appDataUpdateCallback The callback function to be called by Persistency
after an update of persistent data took place. The
function will be called with the shortName path of an
updated Key-Value Storage or File Storage, and with
the Executable version with which the Persistency
was last accessed.

Return value: None

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/update.h"

Description: Registers an application data update callback with Persistency.

The provided callback function will be called by Persistency if an update of stored application
data might be necessary. This decision is based on the Executable versions.

The version that last accessed Persistency is provided as an argument to the callback, as well
as the InstanceSpecifier referring to the updated Key-Value Storage or File Storage. Based on
this information, the application can decide which updates are actually necessary, e.g. a
migration from any older version could be supported, with different steps required for each of
these.

The provided function will be called from the context of UpdatePersistency(), OpenKeyValue
Storage(), or OpenFileStorage().

c(RS_PER_00013, RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00132)

8.4.2 UpdatePersistency

[SWS_PER_00357] d

100 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: UpdatePersistency()

Scope: namespace ara::per

Syntax: ara::core::Result<void> UpdatePersistency () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails during the
update operation.

PerErrc::kIntegrityCorrupted Returned if stored data cannot be read because the
structural integrity is corrupted.

PerErrc::kValidationFailed Returned if the validity of stored data cannot be
ensured.

PerErrc::kEncryptionFailed Returned if the encryption or decryption of stored
data fails during the update operation.

PerErrc::kResourceBusy Returned if ResetPersistency is currently being
executed, or if RecoverKeyValueStorage or Reset
KeyValueStorage is currently being executed for any
Key-Value Storage, or if RecoverAllFiles or ResetAll
Files is currently being executed for any File
Storage, or a SharedHandle of a Key-Value Storage
or a File Storage is currently in use.

PerErrc::kOutOfStorageSpace Returned if the available storage space is
insufficient for the update.

Errors:

PerErrc::kNotInitialized Returned if this function is called before
ara::core::Initialize or after ara::core::Deinitialize.

Header file: #include "ara/per/update.h"

Description: Updates all Persistency File Storages and Key-Value Storages after a new manifest was
installed.

This method can be used to update the persistent data of the application during verification
phase.

c(RS_PER_00013, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00132)

8.4.3 ResetPersistency

[SWS_PER_00358] d

Kind: function

Symbol: ResetPersistency()

Scope: namespace ara::per

Syntax: ara::core::Result<void> ResetPersistency () noexcept;

Return value: ara::core::Result< void > A Result of void. In case of an error, it contains any
of the errors defined below, or a vendor specific
error.

5

101 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Exception Safety: noexcept

Thread Safety: no

PerErrc::kPhysicalStorageFailure Returned if access to the storage fails during the
reset operation.

PerErrc::kResourceBusy Returned if UpdatePersistency is currently being
executed, or if RecoverKeyValueStorage or Reset
KeyValueStorage is currently being executed for any
Key-Value Storage, or if RecoverAllFiles or ResetAll
Files is currently being executed for any File
Storage, or a SharedHandle of a Key-Value Storage
or a File Storage is currently in use.

Errors:

PerErrc::kNotInitialized Returned if this function is called before
ara::core::Initialize or after ara::core::Deinitialize.

Header file: #include "ara/per/update.h"

Description: Resets all File Storages and Key-Value Storages by entirely removing their content.

The File Storages and Key-Value Storages will be re-created when OpenFileStorage or Open
KeyValueStorage is called next time.

c(RS_PER_00009, RS_PER_00015, RS_AP_00119, RS_AP_00120, RS_AP_00127,
RS_AP_00128, RS_AP_00132)

102 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.5 Redundancy Handling

The Persistency supports redundant storage of Key-Value Storages, File
Storages, and the Key-Value Pairs and files contained in these. An error in
the stored data that can be fixed using the redundantly stored data will be implicitly
fixed when the Key-Value Storage or File Storage is accessed, an error is only
returned by Persistency when the redundancy fails. To be able to track whether
storage errors have been fixed using the available redundancy, the application can
register the following callback function.

8.5.1 RecoveryReportKind

[SWS_PER_00432] d

Kind: enumeration

Symbol: RecoveryReportKind

Scope: namespace ara::per

Underlying type: uint32_t

Syntax: enum class RecoveryReportKind : uint32_t {...};

kKeyValueStorageRecoveryFailed= 1 A Key-Value Storage was corrupted, an insufficient
number of valid copies existed. storage contains the
short-name path of the Key-Value Storage, reported
Elements is empty, reportedInstances contains the
indices of the affected Key-Value Storage copies.

kKeyValueStorageRecovered= 2 A Key-Value Storage was corrupted, but a sufficient
number of valid copies existed. storage contains the
short-name path of the Key-Value Storage, reported
Elements is empty, reportedInstances contains the
indices of the affected Key-Value Storage copies.

kKeyRecoveryFailed= 3 A set of Key-Value Pairs was corrupted, an
insufficient number of valid copies existed. storage
contains the short-name path of the Key-Value
Storage, reportedElements contains the list of
affected keys, reportedInstances contains the
indices of the affected Key-Value Storage or key
copies.

kKeyRecovered= 4 A set of Key-Value Pairs was corrupted, but a
sufficient number of valid copies existed. storage
contains the short-name path of the Key-Value
Storage, reportedElements contains the list of
affected keys, reportedInstances contains the
indices of the affected Key-Value Storage or key
copies.

kFileStorageRecoveryFailed= 5 A File Storage was corrupted, an insufficient number
of valid copies existed. storage contains the
short-name path of the File Storage, reported
Elements is empty, reportedInstances contains the
indices of the affected File Storage copies.

5

103 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
kFileStorageRecovered= 6 A File Storage was corrupted, but a sufficient

number of valid copies existed. storage contains the
short-name path of the File Storage, reported
Elements is empty, reportedInstances contains the
indices of the affected File Storage copies.

kFileRecoveryFailed= 7 A set of files was corrupted, an insufficient number
of valid copies existed. storage contains the
short-name path of the File Storage, reported
Elements contains the list of affected file names,
reportedInstances contains the indices of the
affected File Storage or file copies.

kFileRecovered= 8 A set of files was corrupted, but a sufficient number
of valid copies existed. storage contains the
short-name path of the File Storage, reported
Elements contains the list of affected file names,
reportedInstances contains the indices of the
affected File Storage or file copies.

Header file: #include "ara/per/recovery.h"

Description: Defines the reported recovery actions.

c(RS_PER_00008, RS_AP_00122)

8.5.2 RegisterRecoveryReportCallback

[SWS_PER_00433] d

Kind: function

Symbol: RegisterRecoveryReportCallback(std::function< void(const ara::core::InstanceSpecifier
&storage, ara::per::recoveryReportKind recoveryReportKind, ara::core::Vector<
ara::core::String > reportedElements, ara::core::Vector< uint8 > reportedInstances)> recovery
ReportCallback)

Scope: namespace ara::per

Syntax: void RegisterRecoveryReportCallback (std::function< void(const
ara::core::InstanceSpecifier &storage, ara::per::recoveryReportKind
recoveryReportKind, ara::core::Vector< ara::core::String > reported
Elements, ara::core::Vector< uint8 > reportedInstances)> recovery
ReportCallback) noexcept;

Parameters (in): recoveryReportCallback The callback function to be called by Persistency to
report errors in the stored data that were corrected
using the available redundancy. The function will be
called with the shortName path of the affected
Key-Value Storage or File Storage in storage and
information on what has been corrected, placed in
the parameters recoveryReportKind, reported
Elements, and reportedInstances.

Return value: None

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/recovery.h"

5

104 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Description: Register a recovery reporting callback with persistency.

This callback can be used in safety-aware applications to detect actions of the Persistency that
are related to the correctness of the persisted data and the reliability of the storage.

c(RS_PER_00008, RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00132)

105 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.6 Handle Classes

This section contains the definition of the handle classes used in the API of the Per-
sistency cluster. The ara::per::SharedHandle (templated via typenameT) is
used to provide shared access to either a ara::per::KeyValueStorage or a
ara::per::FileStorage, while the ara::per::UniqueHandle (templated via
typenameT) is used to provide non-shared access to either a ara::per::ReadAc-
cessor or a ara::per::ReadWriteAccessor to a File Storage.

8.6.1 SharedHandle Class

[SWS_PER_00362] d

Kind: class

Symbol: SharedHandle

Scope: namespace ara::per

Syntax: template <typename T>
class SharedHandle final {...};

Template param: typename T –

Header file: #include "ara/per/shared_handle.h"

Description: Handle to a File Storage or Key-Value Storage.

A SharedHandle is returned by the functions OpenFileStorage() and OpenKeyValueStorage()
and can be passed between threads as needed.

It provides the abstraction that is necessary to allow thread-safe implementation of OpenFile
Storage() and OpenKeyValueStorage().

c(RS_PER_00002, RS_AP_00122)

8.6.1.1 SharedHandle::SharedHandle

[SWS_PER_00367] d

Kind: function

Symbol: SharedHandle(SharedHandle &&sh)

Scope: class ara::per::SharedHandle

Syntax: SharedHandle (SharedHandle &&sh) noexcept;

Parameters (in): sh The SharedHandle object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

5

106 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Description: Move constructor for SharedHandle.

The source handle object is invalidated and cannot be used anymore.

The operator bool() shall be used to check the state of a handle object before using any other
operators of the handle object.

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00369] d

Kind: function

Symbol: SharedHandle(const SharedHandle &sh)

Scope: class ara::per::SharedHandle

Syntax: SharedHandle (const SharedHandle &sh) noexcept;

Parameters (in): sh The SharedHandle object to be copied.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Copy constructor for SharedHandle.

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

8.6.1.2 SharedHandle::operator=

[SWS_PER_00368] d

Kind: function

Symbol: operator=(SharedHandle &&sh)

Scope: class ara::per::SharedHandle

Syntax: SharedHandle& operator= (SharedHandle &&sh) &noexcept;

Parameters (in): sh The SharedHandle object to be moved.

Return value: SharedHandle & The moved SharedHandle object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Move assignment operator for SharedHandle.

The source handle object is invalidated and cannot be used anymore.

The operator bool() shall be used to check the state of a handle object before using any other
operators of the handle object.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00370] d

107 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: operator=(const SharedHandle &sh)

Scope: class ara::per::SharedHandle

Syntax: SharedHandle& operator= (const SharedHandle &sh) &noexcept;

Parameters (in): sh The SharedHandle object to be copied.

Return value: SharedHandle & The moved SharedHandle object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Copy assignment operator for SharedHandle.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.6.1.3 SharedHandle::operator bool

[SWS_PER_00398] d

Kind: function

Symbol: operator bool()

Scope: class ara::per::SharedHandle

Syntax: explicit operator bool () const noexcept;

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Handle state.

True if the handle represents a valid object of the templated class, False if the handle is empty
(e.g. after a move operation).

Using other operators than bool() of an empty handle will result in undefined behavior.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

8.6.1.4 SharedHandle::Operator->

[SWS_PER_00363] d

Kind: function

Symbol: operator->()

Scope: class ara::per::SharedHandle

Syntax: T* operator-> () noexcept;

5

108 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Return value: T * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Non-constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

[SWS_PER_00364] d

Kind: function

Symbol: operator->()

Scope: class ara::per::SharedHandle

Syntax: const T* operator-> () const noexcept;

Return value: const T * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

8.6.1.5 SharedHandle::Operator*

[SWS_PER_00402] d

Kind: function

Symbol: operator*()

Scope: class ara::per::SharedHandle

Syntax: T& operator* () noexcept;

Return value: T & –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Non-constant dereference operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

[SWS_PER_00403] d

109 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: operator*()

Scope: class ara::per::SharedHandle

Syntax: const T& operator* () const noexcept;

Return value: const T & –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Constant dereference operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

8.6.2 UniqueHandle Class

[SWS_PER_00359] d

Kind: class

Symbol: UniqueHandle

Scope: namespace ara::per

Syntax: template <typename T>
class UniqueHandle final {...};

Template param: typename T –

Header file: #include "ara/per/unique_handle.h"

Description: Handle to a ReadAccessor or ReadWriteAccessor.

A UniqueHandle is returned by the functions OpenFileReadOnly(), OpenFileWriteOnly(), and
OpenFileReadWrite().

c(RS_PER_00002, RS_AP_00122)

8.6.2.1 UniqueHandle::UniqueHandle

[SWS_PER_00371] d

Kind: function

Symbol: UniqueHandle(UniqueHandle &&uh)

Scope: class ara::per::UniqueHandle

Syntax: UniqueHandle (UniqueHandle &&uh) noexcept;

Parameters (in): uh The UniqueHandle object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

5

110 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Header file: #include "ara/per/unique_handle.h"

Description: Move constructor for UniqueHandle.

The source handle object is invalidated and cannot be used anymore.

The operator bool() shall be used to check the state of a handle object before using any other
operators of the handle object.

c(RS_PER_00002, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00373] d

Kind: function

Symbol: UniqueHandle(const UniqueHandle &)

Scope: class ara::per::UniqueHandle

Syntax: UniqueHandle (const UniqueHandle &)=delete;

Header file: #include "ara/per/unique_handle.h"

Description: The copy constructor for UniqueHandle shall not be used.

c(RS_PER_00002, RS_AP_00120)

8.6.2.2 UniqueHandle::operator=

[SWS_PER_00372] d

Kind: function

Symbol: operator=(UniqueHandle &&uh)

Scope: class ara::per::UniqueHandle

Syntax: UniqueHandle& operator= (UniqueHandle &&uh) &noexcept;

Parameters (in): uh The UniqueHandle object to be moved.

Return value: UniqueHandle & The moved UniqueHandle object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Move assignment operator for UniqueHandle.

The source handle object is invalidated and cannot be used anymore.

The operator bool() shall be used to check the state of a handle object before using any other
operators of the handle object.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00374] d

111 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: operator=(const UniqueHandle &)

Scope: class ara::per::UniqueHandle

Syntax: UniqueHandle& operator= (const UniqueHandle &)=delete;

Header file: #include "ara/per/unique_handle.h"

Description: The copy assignment operator for UniqueHandle shall not be used.

c(RS_PER_00002, RS_AP_00120)

8.6.2.3 UniqueHandle::operator bool

[SWS_PER_00399] d

Kind: function

Symbol: operator bool()

Scope: class ara::per::UniqueHandle

Syntax: explicit operator bool () const noexcept;

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Handle state.

True if the handle represents a valid object of the templated class, False if the handle is empty
(e.g. after a move operation).

Using other operators than bool() of an empty handle will result in undefined behavior.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

8.6.2.4 UniqueHandle::Operator->

[SWS_PER_00360] d

Kind: function

Symbol: operator->()

Scope: class ara::per::UniqueHandle

Syntax: T* operator-> () noexcept;

Return value: T * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

5

112 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Description: Non-constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

[SWS_PER_00361] d

Kind: function

Symbol: operator->()

Scope: class ara::per::UniqueHandle

Syntax: const T* operator-> () const noexcept;

Return value: const T * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

8.6.2.5 UniqueHandle::Operator*

[SWS_PER_00400] d

Kind: function

Symbol: operator*()

Scope: class ara::per::UniqueHandle

Syntax: T& operator* () noexcept;

Return value: T & –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Non-constant dereference operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

[SWS_PER_00401] d

113 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Kind: function

Symbol: operator*()

Scope: class ara::per::UniqueHandle

Syntax: const T& operator* () const noexcept;

Return value: const T & –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Constant dereference operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119, RS_AP_-
00129, RS_AP_00132)

114 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.7 Errors

The Persistency cluster implements an error handling based on ara::core::-
Result. The errors supported by the Persistency cluster are listed in section 8.7.1.

8.7.1 PerErrc

[SWS_PER_00311] d

Kind: enumeration

Symbol: PerErrc

Scope: namespace ara::per

Underlying type: ara::core::ErrorDomain::CodeType

Syntax: enum class PerErrc : ara::core::ErrorDomain::CodeType {...};

kStorageNotFound= 1 The requested Key-Value Storage or File Storage is
not configured in the AUTOSAR model.

kKeyNotFound= 2 The provided key cannot be not found in the
Key-Value Storage.

kIllegalWriteAccess= 3 Opening a file for writing or changing, or
synchronizing a key failed, because the storage is
configured read-only.

kPhysicalStorageFailure= 4 An error occurred when accessing the physical
storage, e.g. because of a corrupted file system or
corrupted hardware, or because of insufficient
access rights.

kIntegrityCorrupted= 5 The structural integrity of the storage could not be
established. This can happen when the internal
structure of a Key-Value Storage or the meta data of
a File Storage is corrupted.

kValidationFailed= 6 The validation of redundancy measures failed for a
single key, for the whole Key-Value Storage, for a
single file, or for the whole File Storage.

kEncryptionFailed= 7 The encryption or decryption failed for a single key,
for the whole Key-Value Storage, for a single file, or
for the whole File Storage.

kDataTypeMismatch= 8 The provided data type does not match the stored
data type.

kInitValueNotAvailable= 9 The operation could not be performed because no
initial value is available.

kResourceBusy= 10 The operation could not be performed because the
resource is currently busy.

kOutOfStorageSpace= 12 The allocated storage quota was exceeded.

kFileNotFound= 13 The requested file cannot be not found in the File
Storage.

kNotInitialized= 14 A function of Persistency or a method of one of its
classes was called before ara::core::Initialize() or
after ara::core::Deinitialize().

kInvalidPosition= 15 SetPosition tried to move to a position that is not
reachable (i.e. which is smaller than zero or greater
than the current size of the file).

5

115 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
kIsEof= 16 The application tried to read from the end of the file

or from an empty file.

kInvalidOpenMode= 17 Opening a file failed because the requested
combination of OpenModes is invalid.

kInvalidSize= 18 SetFileSize tried to set a new size that is bigger than
the current file size.

Header file: #include "ara/per/per_error_domain.h"

Description: Defines the errors for Persistency.

The enumeration values 0 - 255 are reserved for AUTOSAR assigned errors, the stack provider
is free to define additional errors starting from 256.

c(RS_AP_00122, RS_AP_00127)

8.7.2 GetPerDomain

[SWS_PER_00352] d

Kind: function

Symbol: GetPerDomain()

Scope: namespace ara::per

Syntax: constexpr const ara::core::ErrorDomain& GetPerDomain () noexcept;

Return value: const ara::core::ErrorDomain & The global PerErrorDomain object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/per_error_domain.h"

Description: Returns the global PerErrorDomain object.

c(RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.7.3 MakeErrorCode

[SWS_PER_00351] d

Kind: function

Symbol: MakeErrorCode(PerErrc code, ara::core::ErrorDomain::SupportDataType data)

Scope: namespace ara::per

Syntax: constexpr ara::core::ErrorCode MakeErrorCode (PerErrc code,
ara::core::ErrorDomain::SupportDataType data) noexcept;

code Error code number.Parameters (in):
data Vendor defined data associated with the error.

Return value: ara::core::ErrorCode An ErrorCode object.

5

116 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/per_error_domain.h"

Description: Creates an error code.

c(RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.7.4 PerException Class

[SWS_PER_00354] d

Kind: class

Symbol: PerException

Scope: namespace ara::per

Base class: ara::core::Exception

Syntax: class PerException : public Exception {...};

Header file: #include "ara/per/per_error_domain.h"

Description: Exception type thrown by Persistency classes.

c(RS_AP_00122, RS_AP_00127)

8.7.4.1 PerException::PerException

[SWS_PER_00355] d

Kind: function

Symbol: PerException(ara::core::ErrorCode errorCode)

Scope: class ara::per::PerException

Syntax: explicit PerException (ara::core::ErrorCode errorCode) noexcept;

Parameters (in): errorCode The error code.

Exception Safety: noexcept

Header file: #include "ara/per/per_error_domain.h"

Description: Construct a new Persistency exception object containing an error code.

c(RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.7.5 PerErrorDomain Class

The error handling requires an ara::core::ErrorDomain, which can be used to
check the errors returned via ara::core::Result.

117 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

[SWS_PER_00312] d

Kind: class

Symbol: PerErrorDomain

Scope: namespace ara::per

Base class: ara::core::ErrorDomain

Syntax: class PerErrorDomain final : public ErrorDomain {...};

Unique ID: 0x8000’0000’0000’0101

Header file: #include "ara/per/per_error_domain.h"

Description: Defines the error domain for Persistency.

c(RS_AP_00122, RS_AP_00127)

8.7.5.1 PerErrorDomain::Errc

[SWS_PER_00411] d

Kind: type alias

Symbol: Errc

Scope: class ara::per::PerErrorDomain

Derived from: PerErrc

Syntax: using Errc = PerErrc;

Header file: #include "ara/per/per_error_domain.h"

Description: Alias for the error code value enumeration.

c(RS_AP_00122)

8.7.5.2 PerErrorDomain::Exception

[SWS_PER_00412] d

Kind: type alias

Symbol: Exception

Scope: class ara::per::PerErrorDomain

Derived from: PerException

Syntax: using Exception = PerException;

Header file: #include "ara/per/per_error_domain.h"

Description: Alias for the exception base class.

c(RS_AP_00122)

118 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

8.7.5.3 PerErrorDomain::PerErrorDomain

[SWS_PER_00313] d

Kind: function

Symbol: PerErrorDomain()

Scope: class ara::per::PerErrorDomain

Syntax: PerErrorDomain () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/per_error_domain.h"

Description: Creates a PerErrorDomain instance.

c(RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.7.5.4 PerErrorDomain::Name

[SWS_PER_00314] d

Kind: function

Symbol: Name()

Scope: class ara::per::PerErrorDomain

Syntax: const char* Name () const noexcept override;

Return value: const char * The name of the error domain.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/per_error_domain.h"

Description: Returns the name of the error domain.

c(RS_AP_00119, RS_AP_00120, RS_AP_00132)

[SWS_PER_00353] dPerErrorDomain::Name shall return the NUL-terminated string
"Per".c(RS_PER_00001)

8.7.5.5 PerErrorDomain::Message

[SWS_PER_00315] d

Kind: function

Symbol: Message(CodeType errorCode)

Scope: class ara::per::PerErrorDomain

5

119 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Syntax: const char* Message (CodeType errorCode) const noexcept override;

Parameters (in): errorCode The error code number.

Return value: const char * The message associated with the error code.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/per_error_domain.h"

Description: Returns the message associated with the error code.

c(RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.7.5.6 PerErrorDomain::ThrowAsException

[SWS_PER_00350] d

Kind: function

Symbol: ThrowAsException(const ara::core::ErrorCode &errorCode)

Scope: class ara::per::PerErrorDomain

Syntax: void ThrowAsException (const ara::core::ErrorCode &errorCode) const
override;

Parameters (in): errorCode The error to throw.

Return value: None

Thread Safety: no

Header file: #include "ara/per/per_error_domain.h"

Description: Throws the exception associated with the error code.

c(RS_AP_00120, RS_AP_00121)

120 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

9 Service Interfaces

The Persistency cluster does not provide any service interfaces via ara::com.

121 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class AdaptiveApplicationSwComponentType

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This meta-class represents the ability to support the formal modeling of application software on the
AUTOSAR adaptive platform. Consequently, it shall only be used on the AUTOSAR adaptive platform.

Tags:
atp.Status=draft
atp.recommendedPackage=AdaptiveApplicationSwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Attribute Type Mult. Kind Note

internalBehavior AdaptiveSwcInternal
Behavior

0..1 aggr This aggregation represents the internal behavior of the
AdaptiveApplicationSwComponentType for the AUTOSAR
adaptive platform.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
atp.Status=draft
vh.latestBindingTime=preCompileTime

Table A.1: AdaptiveApplicationSwComponentType

Class CppImplementationDataType (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the way to specify a reusable data type definition taken as a the basis for a
C++ language binding

Tags:atp.Status=draft

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , CppImplementationDataTypeContextTarget ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses CustomCppImplementationDataType, StdCppImplementationDataType

Attribute Type Mult. Kind Note

arraySize PositiveInteger 0..1 attr This attribute can be used to specify the array size if the
enclosing CppImplementationDataType has array
semantics.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

headerFile String 0..1 attr Configuration of the Header File with the custom class
declaration.

namespace
(ordered)

SymbolProps * aggr This aggregation allows for the definition an own
namespace for the enclosing CppImplementationData
Type.

Tags:atp.Status=draft

5

122 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class CppImplementationDataType (abstract)

subElement
(ordered)

CppImplementation
DataTypeElement

* aggr This represents the collection of sub-elements of the
enclosing CppImplementationDataType

Tags:atp.Status=draft

template
Argument
(ordered)

CppTemplateArgument * aggr This aggreation allows for the specification of properties
of template arguments

Tags:atp.Status=draft

typeEmitter NameToken 0..1 attr This attribute can be taken to control how the respective
CppImplementationDataType is contributed to the
language binding.

typeReference CppImplementation
DataType

0..1 ref This reference shall be defined to define a type reference
(a.k.a. typedef).

Tags:atp.Status=draft

Table A.2: CppImplementationDataType

Class CryptoKeySlot

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This meta-class represents the ability to define a concrete key to be used for a crypto operation.

Tags:
atp.ManifestKind=MachineManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

allocateShadow
Copy

Boolean 0..1 attr This attribute defines whether a shadow copy of this Key
Slot shall be allocated to enable rollback of a failed Key
Slot update campaign (see interface BeginTransaction).

cryptoAlgId String 0..1 attr This attribute defines a crypto algorithm restriction (kAlgId
Any means without restriction). The algorithm can be
specified partially: family & length, mode, padding.

Future Crypto Providers can support some crypto
algorithms that are not well known/ standardized today,
therefore AUTOSAR doesn’t provide a concrete list of
crypto algorithms’ identifiers and doesn’t suppose usage
of numerical identifiers. Instead of this a provider supplier
should provide string names of supported algorithms in
accompanying documentation. The name of a crypto
algorithm shall follow the rules defined in the specification
of cryptography for Adaptive Platform.

cryptoObject
Type

CryptoObjectTypeEnum 0..1 attr Object type that can be stored in the slot. If this field
contains "Undefined" then mSlotCapacity must be
provided and larger then 0.

keySlotAllowed
Modification

CryptoKeySlotAllowed
Modification

0..1 aggr Restricts how this keySlot may be used

Tags:atp.Status=draft

keySlotContent
AllowedUsage

CryptoKeySlotContent
AllowedUsage

* aggr Restriction of allowed usage of a key stored to the slot.

Tags:atp.Status=draft

slotCapacity PositiveInteger 0..1 attr Capacity of the slot in bytes to be reserved by the stack
vendor. One use case is to define this value in case that
the cryptoObjectType is undefined and the slot size can
not be deduced from cryptoObjectType and cryptoAlgId.
"0" means slot size can be deduced from cryptoObject
Type and cryptoAlgId.

5

123 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class CryptoKeySlot

slotType CryptoKeySlotType
Enum

0..1 attr This attribute defines whether the keySlot is exclusively
used by the Application; or whether it is used by Stack
Services and managed by a Key Manager Application.

Table A.3: CryptoKeySlot

Enumeration CryptoKeySlotUsageEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This enum defines the possible roles of the keySlotUsage.

Tags:atp.Status=draft

Literal Description

encryption Key slot usage for enryption

Tags:atp.EnumerationLiteralIndex=1

verification Key slot usage for verification

Tags:atp.EnumerationLiteralIndex=0

Table A.4: CryptoKeySlotUsageEnum

Class Executable
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This meta-class represents an executable program.

Tags:
atp.Status=draft
atp.recommendedPackage=Executables

Base ARElement , ARObject , AtpClassifier , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

buildType BuildTypeEnum 0..1 attr This attribute describes the buildType of a module and/or
platform implementation.

loggingBehavior LoggingBehaviorEnum 0..1 attr This attribute indicates the intended logging behavior of
the enclosing Executable.

minimumTimer
Granularity

TimeValue 0..1 attr This attribute describes the minimum timer resolution
(TimeValue of one tick) that is required by the Executable.

Tags:atp.Status=draft

reporting
Behavior

ExecutionState
ReportingBehavior
Enum

0..1 attr this attribute controls the execution state reporting
behavior of the enclosing Executable.

rootSw
Component
Prototype

RootSwComponent
Prototype

0..1 aggr This represents the root SwCompositionPrototype of the
Executable. This aggregation is required (in contrast to a
direct reference of a SwComponentType) in order to
support the definition of instanceRefs in Executable
context.

Tags:atp.Status=draft

version StrongRevisionLabel
String

0..1 attr Version of the executable.

Tags:atp.Status=draft

Table A.5: Executable

124 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Class PPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port providing a certain port interface.

Base ARObject , AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

provided
Interface

PortInterface 0..1 tref The interface that this port provides.

Stereotypes: isOfType

Table A.6: PPortPrototype

Class PRPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This kind of PortPrototype can take the role of both a required and a provided PortPrototype.

Base ARObject , AbstractProvidedPortPrototype, AbstractRequiredPortPrototype, AtpBlueprintable, Atp
Feature, AtpPrototype, Identifiable, MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

provided
Required
Interface

PortInterface 0..1 tref This represents the PortInterface used to type the PRPort
Prototype

Stereotypes: isOfType

Table A.7: PRPortPrototype

Enumeration PersistencyCollectionLevelUpdateStrategyEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This enumeration provides possible values for the update strategy on interface/storage level.

Tags:atp.Status=draft

Literal Description

delete The update strategy is to delete all values on the level of the respective collection.

Tags:atp.EnumerationLiteralIndex=1

keepExisting The update strategy is to keep the existing values on the level of the respective collection.

Tags:atp.EnumerationLiteralIndex=0

Table A.8: PersistencyCollectionLevelUpdateStrategyEnum

Class PersistencyDataElement

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the ability to formally specify a piece of data that is subject to persistency in
the context of the enclosing PersistencyKeyValueStorageInterface.

PersistencyDataElement represents also a key-value pair of the deployed PersistencyKeyValueStorage
and provides an initial value.

Tags:atp.Status=draft

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, PersistencyInterfaceElement , Referrable

Attribute Type Mult. Kind Note

5

125 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class PersistencyDataElement

– – – – –

Table A.9: PersistencyDataElement

Class PersistencyDataRequiredComSpec

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ComSpec

Note This meta-class represents the ability to define port-specific attributes for supporting use cases of data
persistency on the required side.

Tags:atp.Status=draft

Base ARObject , RPortComSpec

Attribute Type Mult. Kind Note

dataElement PersistencyData
Element

1 ref This refrence represents the PersistencyDataElement for
which the PersistencyDataRequiredComSpec applies.

Tags:atp.Status=draft

initValue ValueSpecification 0..1 aggr This aggregation represents the definition of an initial
value for the PersistencyDataElement referenced by the
enclosing PersistencyDataRequiredComSpec

Tags:atp.Status=draft

Table A.10: PersistencyDataRequiredComSpec

Class PersistencyDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract meta-class serves as a base class for concrete classes representing different aspects of
persistency.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableExclusivePackageElement , UploadablePackageElement

Subclasses PersistencyFileStorage, PersistencyKeyValueStorage

Attribute Type Mult. Kind Note

maximum
AllowedSize

PositiveUnlimitedInteger 0..1 attr The value of this attribute represents the maximum size
allowed at deployment time for the enclosing Persistency
Deployment.

minimum
SustainedSize

PositiveInteger 0..1 attr The value of this attribute represents the minimum size
guaranteed at deployment time for the enclosing
PersistencyDeployment.

redundancy
Handling

PersistencyRedundancy
Handling

* aggr This aggregation represents the chosen approaches to
handle redundancy.

Tags:atp.Status=draft

updateStrategy PersistencyCollection
LevelUpdateStrategy
Enum

1 attr This attribute shall be used to specify the update strategy
of the respective PersistencyDeployment as a whole.

Table A.11: PersistencyDeployment

126 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Class PersistencyDeploymentElement (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract meta-class serves as a base class for concrete classes representing different aspects of
elements of a PersistencyDeployment.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses PersistencyFile, PersistencyKeyValuePair

Attribute Type Mult. Kind Note

updateStrategy PersistencyElement
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyDeploymentElement.

Table A.12: PersistencyDeploymentElement

Class PersistencyDeploymentElementToCryptoKeySlotMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This meta-class represents the ability to define a mapping between the PersistencyDeploymentElement
and a CryptoKeySlot.

Tags:
atp.Status=draft
atp.recommendedPackage=FCInteractions

Base ARElement , ARObject , CollectableElement , FunctionalClusterInteractsWithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

cryptoKeySlot CryptoKeySlot 0..1 ref This reference represents the mapped CryptoKeySlot.

Tags:atp.Status=draft

keySlotUsage CryptoKeySlotUsage
Enum

0..1 attr This attribute defines the role of the keySlot assignment.

persistency
Deployment
Element

PersistencyDeployment
Element

0..1 ref This reference represents the mapped Persistency
Deployment.

Tags:atp.Status=draft

verificationHash String 0..1 attr This attribute defines the hash of the storage used in
case of verification.

Table A.13: PersistencyDeploymentElementToCryptoKeySlotMapping

Class PersistencyDeploymentToCryptoKeySlotMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::CryptoDeployment

Note This meta-class represents the ability to define a mapping between the PersistencyDeployment and a
CryptoKeySlot.

Tags:
atp.Status=draft
atp.recommendedPackage=FCInteractions

Base ARElement , ARObject , CollectableElement , FunctionalClusterInteractsWithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

cryptoKeySlot CryptoKeySlot 0..1 ref This reference represents the mapped CryptoKeySlot.

Tags:atp.Status=draft

5

127 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class PersistencyDeploymentToCryptoKeySlotMapping

keySlotUsage CryptoKeySlotUsage
Enum

0..1 attr This attribute defines the role of the keySlot assignment.

persistency
Deployment

PersistencyDeployment 1 ref This reference represents the mapped Persistency
Deployment.

Tags:atp.Status=draft

verificationHash String 0..1 attr This attribute defines the hash of the storage used in
case of verification.

Table A.14: PersistencyDeploymentToCryptoKeySlotMapping

Enumeration PersistencyElementLevelUpdateStrategyEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This enumeration provides possible values for the update strategy on element level.

Tags:atp.Status=draft

Literal Description

delete The update strategy is to delete the value of the respective data item.

Tags:atp.EnumerationLiteralIndex=2

keepExisting The update strategy is to keep the existing value of the respective data item.

Tags:atp.EnumerationLiteralIndex=1

overwrite The update strategy is to overwrite the respective data item.

Tags:atp.EnumerationLiteralIndex=0

Table A.15: PersistencyElementLevelUpdateStrategyEnum

Class PersistencyFile

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the model of a file as part of the persistency on deployment level.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyFiles

Base ARObject , Identifiable, MultilanguageReferrable, PersistencyDeploymentElement , Referrable

Attribute Type Mult. Kind Note

contentUri UriString 0..1 attr This attribute represents the URI that identifies the initial
content of the PersistencyFile.

fileName String 1 attr This attribute holds filename part of the storage location
for the PersistencyFile, e.g. file on the file system.

Tags:atp.Status=draft

Table A.16: PersistencyFile

Class PersistencyFileElement

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class has the ability to represent a file at design time such that it is possible to configure the
behavior for accessing the represented file at run-time.

Tags:atp.Status=draft

5

128 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class PersistencyFileElement

Base ARObject , Identifiable, MultilanguageReferrable, PersistencyInterfaceElement , Referrable

Attribute Type Mult. Kind Note

contentUri UriString 1 attr This attribute represents the URI that identifies the initial
content of the PersistencyFile.

fileName String 1 attr This attribute holds filename part of the storage location
for the PersistencyFileProxy, e.g. file on the file system.

Table A.17: PersistencyFileElement

Class PersistencyFileStorage

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class comes with the ability to define a collection of single files (directory) that creates the
deployment-side counterpart to a PortPrototype typed by a PersistencyFileStorageInterface.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyFileStorages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
PersistencyDeployment , Referrable, UploadableExclusivePackageElement , UploadablePackageElement

Attribute Type Mult. Kind Note

file PersistencyFile * aggr This aggregation represents the collection of files
aggregated by the PersistencyFileStorage.

Tags:atp.Status=draft

uri UriString 1 attr This attribute holds the storage location for the
PersistencyFileStorage, e.g. a directory on the file
system.

Table A.18: PersistencyFileStorage

Class PersistencyFileStorageInterface

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the ability to implement a PortInterface for supporting persistency use cases for
files.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyFileStorageInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PersistencyInterface, PortInterface,
Referrable

Attribute Type Mult. Kind Note

fileElement PersistencyFileElement * aggr This aggregation represents the collection of Persistency
FileStorages in the context of the enclosing Persistency
FileStorageInterface.

Tags:atp.Status=draft

maxNumberOf
Files

PositiveInteger 0..1 attr This attribute represents the definition of an upper bound
for the handling of files at run-time in the context of the
enclosing PersistencyFileStorageInterface.

Table A.19: PersistencyFileStorageInterface

129 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Class PersistencyInterface (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the abstract ability to define a PortInterface for the support of persistency use
cases.

Tags:atp.Status=draft

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Subclasses PersistencyFileStorageInterface, PersistencyKeyValueStorageInterface

Attribute Type Mult. Kind Note

minimum
SustainedSize

PositiveInteger 0..1 attr The value of this attribute represents the minimum size
required at design time for the enclosing Persistency
Interface.

redundancy PersistencyRedundancy
Enum

0..1 attr This attribute represents a requirement towards the
redundancy of storage.

redundancy
Handling

PersistencyRedundancy
Handling

* aggr This aggregation represents the chosen approaches to
handle redundancy for the various use cases
implemented by subclasses

Tags:atp.Status=draft

updateStrategy PersistencyCollection
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyInterface as a whole.

Table A.20: PersistencyInterface

Class PersistencyInterfaceElement (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the abstract ability to define an element of a PortInterface for the support of
persistency use cases.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses PersistencyDataElement, PersistencyFileElement

Attribute Type Mult. Kind Note

updateStrategy PersistencyElement
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyInterfaceElement.

Table A.21: PersistencyInterfaceElement

Class PersistencyKeyValuePair

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to formally model a key-value pair in the context of the deployment
of persistency.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, PersistencyDeploymentElement , Referrable

Attribute Type Mult. Kind Note

5

130 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class PersistencyKeyValuePair

initValue ValueSpecification 0..1 aggr This aggregation represents the ability to define an initial
value for the value side of the key-value pair. Please note
that it does not make sense to configure an initial value if
the PersistencyDeploymentElement.updateStrategy is set
to the value delete.

Tags:atp.Status=draft

valueDataType AbstractImplementation
DataType

1 ref This reference represents the data type applicable for the
value of the key-value pair.

Tags:atp.Status=draft

Table A.22: PersistencyKeyValuePair

Class PersistencyKeyValueStorage

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to model a key-value storage on deployment level.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyKeyValueStorages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
PersistencyDeployment , Referrable, UploadableExclusivePackageElement , UploadablePackageElement

Attribute Type Mult. Kind Note

keyValuePair PersistencyKeyValue
Pair

* aggr This aggregation represents the key-value-pairs owned
by the enclosing PersistencyKeyValueStorage.

Tags:atp.Status=draft

uri UriString 0..1 attr This attribute holds the storage location for the
PersistencyKeyValueStorage, e.g. file on the file system.

Table A.23: PersistencyKeyValueStorage

Class PersistencyKeyValueStorageInterface

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the ability to implement a PortInterface for supporting persistency use cases for
data.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyKeyValueStorageInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PersistencyInterface, PortInterface,
Referrable

Attribute Type Mult. Kind Note

dataElement PersistencyData
Element

* aggr This aggregation represents the collection of Persistency
DataElements in the context of the enclosing Persistency
KeyValueStorageInterface.

Tags:atp.Status=draft

dataTypeFor
Serialization

AbstractImplementation
DataType

* ref This reference identifies the AbstractImplementationData
Types that shall be supported for storing in a key-value
storage in addition to the types already determined from
tha aggregation of PersistencyDataElement.

Tags:atp.Status=draft

Table A.24: PersistencyKeyValueStorageInterface

131 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Class PersistencyPortPrototypeToDeploymentMapping (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract bas class implements the shared functionality of all mapping between a PortPrototype, a
Process, and a specific subclass of PersistencyDeployment.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableExclusivePackageElement , UploadablePackageElement

Subclasses PersistencyPortPrototypeToFileStorageMapping, PersistencyPortPrototypeToKeyValueStorageMapping

Attribute Type Mult. Kind Note

portPrototype PortPrototype 0..1 iref This reference represents the mapped PortPrototype.

Tags:atp.Status=draft
InstanceRef implemented by:PortPrototypeIn
ExecutableInstanceRef

process Process 1 ref This reference represents the process required as context
for the mapping.

Tags:atp.Status=draft

Table A.25: PersistencyPortPrototypeToDeploymentMapping

Class PersistencyPortPrototypeToFileStorageMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to define a mapping between a collection of files on deployment
level to a given PortPrototype.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyPortPrototypeToFileStorageMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , PersistencyPortPrototypeToDeploymentMapping, Referrable, UploadableExclusivePackage
Element , UploadablePackageElement

Attribute Type Mult. Kind Note

fileStorage PersistencyFileStorage 1 ref This reference represents the mapped file storage.

Tags:atp.Status=draft

Table A.26: PersistencyPortPrototypeToFileStorageMapping

Class PersistencyPortPrototypeToKeyValueStorageMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to define a mapping between a PortPrototype and a key-value
storage.

Tags:
atp.Status=draft
atp.recommendedPackage=PersistencyPortPrototypeToKeyValueStorageMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , PersistencyPortPrototypeToDeploymentMapping, Referrable, UploadableExclusivePackage
Element , UploadablePackageElement

Attribute Type Mult. Kind Note

keyValue
Storage

PersistencyKeyValue
Storage

1 ref This reference represents the mapped key-value storage.

Tags:atp.Status=draft

Table A.27: PersistencyPortPrototypeToKeyValueStorageMapping

132 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Class PersistencyRedundancyChecksum (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note Abstract class that defines the common attributes for implementations of redundancy.

Tags:atp.Status=draft

Base ARObject , PersistencyRedundancyHandling

Subclasses PersistencyRedundancyCrc, PersistencyRedundancyHash

Attribute Type Mult. Kind Note

algorithmFamily String 1 attr This attribute identifies the algorithm family that is used to
execute the CRC/Hash.

length PositiveInteger 1 attr This attribute describes the length of the CRC/Hash in the
unit bits.

Table A.28: PersistencyRedundancyChecksum

Class PersistencyRedundancyCrc

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class formally describes the usage of a CRC for the implementation of redundancy.

Tags:atp.Status=draft

Base ARObject , PersistencyRedundancyChecksum, PersistencyRedundancyHandling

Attribute Type Mult. Kind Note

– – – – –

Table A.29: PersistencyRedundancyCrc

Enumeration PersistencyRedundancyEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ComSpec

Note This meta-class provides a way to specify in which way redundancy shall be applied on collection
level.

Tags:atp.Status=draft

Literal Description

none This value represents the requirement that redundancy measures are not applied on persistency
storage level.

Tags:atp.EnumerationLiteralIndex=1

redundant This value represents the requirement that redundancy measures are applied on persistency storage
level.

The nature of the redundant persistent storage is not further qualified and subject to integrator
decisions.

Tags:atp.EnumerationLiteralIndex=0

redundantPer
Element

This value represents the requirement that redundancy measures are applied on key-value level of a
key-value storage or on file level of a file storage.

The nature of the redundancy used on the persistent storage is not further qualified and subject to
integrator decisions.

Tags:atp.EnumerationLiteralIndex=2

Table A.30: PersistencyRedundancyEnum

133 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Class PersistencyRedundancyHandling (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract base class represents a formal description of redundancy.

Tags:atp.Status=draft

Base ARObject

Subclasses PersistencyRedundancyChecksum, PersistencyRedundancyMOutOfN

Attribute Type Mult. Kind Note

scope PersistencyRedundancy
HandlingScopeEnum

0..1 attr This attribute controls the scope in which the redundancy
handling is applied.

Table A.31: PersistencyRedundancyHandling

Enumeration PersistencyRedundancyHandlingScopeEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class provides values to control the scope of redundancy measures in the persistency
deployment

Tags:atp.Status=draft

Literal Description

persistency
Redundancy
HandlingScope
Element

The redundancy handling shall be applied on element level (key-value pair and file).

Tags:atp.EnumerationLiteralIndex=0

persistency
Redundancy
HandlingScope
Storage

The redundancy handling shall be applied on storage (key-value storage and file storage) level.

Tags:atp.EnumerationLiteralIndex=1

Table A.32: PersistencyRedundancyHandlingScopeEnum

Class PersistencyRedundancyHash

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class formally describes the usage of a Hash for the implementation of redundancy.

Tags:atp.Status=draft

Base ARObject , PersistencyRedundancyChecksum, PersistencyRedundancyHandling

Attribute Type Mult. Kind Note

initialization
VectorLength

PositiveInteger 0..1 attr Length of the initialization vector.

Table A.33: PersistencyRedundancyHash

Class PersistencyRedundancyMOutOfN

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class provides the ability to describe redundancy via an "M out of N" approach. In this case N
is the number of copies created and M is the minimum number of identical copies to justify a reliable read
access to the data.

Tags:atp.Status=draft

Base ARObject , PersistencyRedundancyHandling

5

134 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class PersistencyRedundancyMOutOfN

Attribute Type Mult. Kind Note

m PositiveInteger 1 attr This attribute represents the "M" coordinate in the "M out
of N" scheme.

n PositiveInteger 1 attr This attribute represents the "N" coordinate in the "M out
of N" scheme.

Table A.34: PersistencyRedundancyMOutOfN

Class PortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Attribute Type Mult. Kind Note

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

portPrototype
Props

PortPrototypeProps 0..1 aggr This attribute allows for the definition of further
qualification of the semantics of a PortPrototype.

Tags:atp.Status=draft

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table A.35: PortPrototype

Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class provides information required to execute the referenced executable.

Tags:
atp.Status=draft
atp.recommendedPackage=Processes

Base ARElement , ARObject , AbstractExecutionContext , AtpClassifier , CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

5

135 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class Process
design ProcessDesign 0..1 ref This reference represents the identification of the

design-time representation for the Process that owns the
reference.

Tags:atp.Status=draft

deterministic
Client

DeterministicClient 0..1 ref This reference adds further execution characteristics for
deterministic clients.

Tags:atp.Status=draft

executable Executable 0..1 ref Reference to executable that is executed in the process.

Stereotypes: atpUriDef
Tags:atp.Status=draft

functionCluster
Affiliation

String 0..1 attr This attribute specifies which functional cluster the
process is affiliated with.

numberOf
RestartAttempts

PositiveInteger 0..1 attr This attribute defines how often a process shall be
restarted if the start fails.

numberOfRestartAttempts = "0" OR Attribute not existing,
start once

numberOfRestartAttempts = "1", start a second time

preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.

processState
Machine

ModeDeclarationGroup
Prototype

0..1 aggr Set of Process States that are defined for the process.

Tags:atp.Status=draft

securityEvent SecurityEventDefinition * ref The reference identifies the collection of SecurityEvents
that can be reported by the enclosing SoftwareCluster.

Stereotypes: atpSplitable; atpUriDef
Tags:
atp.Splitkey=securityEvent
atp.Status=draft

stateDependent
StartupConfig

StateDependentStartup
Config

* aggr Applicable startup configurations.

Tags:atp.Status=draft

Table A.36: Process

Class RPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port requiring a certain port interface.

Base ARObject , AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mult. Kind Note

required
Interface

PortInterface 0..1 tref The interface that this port requires.

Stereotypes: isOfType

Table A.37: RPortPrototype

136 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, CppImplementationDataTypeContextTarget ,
DiagnosticDebounceAlgorithmProps, DiagnosticEnvModeElement , EthernetPriorityRegeneration, Event
Handler, ExclusiveAreaNestingOrder, HwDescriptionEntity , ImplementationProps, LinSlaveConfigIdent,
ModeTransition, MultilanguageReferrable, NmNetworkHandle, PduActivationRoutingGroup, PncMapping
Ident, SingleLanguageReferrable, SoConIPduIdentifier, SocketConnectionBundle, SomeipRequired
EventGroup, TimeSyncServerConfiguration, TpConnectionIdent

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags:xml.sequenceOffset=-90

Table A.38: Referrable

Class SoftwareCluster
Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents the ability to define an uploadable software-package, i.e. the SoftwareCluster
shall contain all software and configuration for a given purpose.

Tags:
atp.Status=draft
atp.recommendedPackage=SoftwareClusters

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

claimed
FunctionGroup

ModeDeclarationGroup
Prototype

* ref Each SoftwareCluster can reserve the usage of a given
functionGroup such that no other SoftwareCluster is
allowed to use it

Tags:atp.Status=draft

conflictsTo SoftwareCluster
DependencyFormula

0..1 aggr This aggregation handles conflicts. If it yields true then
the SoftwareCluster shall not be installed.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=conflictsTo
atp.Status=draft

contained
ARElement

ARElement * ref This reference represents the collection of model
elements that cannot derive from UploadablePackage
Element and that contribute to the completeness of the
definition of the SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=containedARElement
atp.Status=draft

5

137 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class SoftwareCluster
containedFibex
Element

FibexElement * ref This allows for referencing FibexElements that need to be
considered in the context of a SoftwareCluster.

Tags:atp.Status=draft

contained
Package
Element

UploadablePackage
Element

* ref This reference identifies model elements that are required
to complete the manifest content.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=containedPackageElement
atp.Status=draft

contained
Process

Process * ref This reference represent the processes contained in the
enclosing SoftwareCluster.

Tags:atp.Status=draft

dependsOn SoftwareCluster
DependencyFormula

0..1 aggr This aggregation can be taken to identify a dependency
for the enclosing SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=dependsOn
atp.Status=draft

design SoftwareClusterDesign * ref This reference represents the identification of all Software
ClusterDesigns applicable for the enclosing Software
Cluster.

Stereotypes: atpUriDef
Tags:atp.Status=draft

diagnostic
Address

SoftwareCluster
DiagnosticAddress

* aggr This aggregation represents the collection of diagnostic
addresses that apply for the SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=diagnosticAddress
atp.Status=draft

diagnostic
Extract

DiagnosticContribution
Set

0..1 ref This reference represents the definition of the diagnostic
extract applicable to the referencing SoftwareCluster

Tags:atp.Status=draft

license Documentation * ref This attribute allows for the inclusion of the the full text of
a license of the enclosing SoftwareCluster. In many cases
open source licenses require the inclusion of the full
license text to any software that is released under the
respective license.

Tags:atp.Status=draft

module
Instantiation

AdaptiveModule
Instantiation

* ref This reference identifies AdaptiveModuleInstantiations
that need to be included with the SoftwareCluster in order
to establish infrastructure required for the installation of
the SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=moduleInstantiation
atp.Status=draft

releaseNotes Documentation 0..1 ref This attribute allows for the explanations of changes since
the previous version. The list of changes might require
the creation of multiple paragraphs of test.

Tags:atp.Status=draft

typeApproval String 0..1 attr This attribute carries the homologation information that
may be specific for a given country.

5

138 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class SoftwareCluster
vendorId PositiveInteger 1 attr Vendor ID of this Implementation according to the

AUTOSAR vendor list.
vendor
Signature

CryptoService
Certificate

1 ref This reference identifies the certificate that represents the
vendor’s signature.

Tags:atp.Status=draft

version StrongRevisionLabel
String

1 attr This attribute can be used to describe a version
information for the enclosing SoftwareCluster.

Table A.39: SoftwareCluster

Class SoftwarePackage

Package M2::AUTOSARTemplates::AdaptivePlatform::SoftwareDistribution

Note This meta-class represents the ability to formalize the content of a software package.

Tags:
atp.Status=draft
atp.recommendedPackage=SoftwarePackages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

actionType SoftwarePackageAction
TypeEnum

1 attr This attribute defines the action to be taken in the step of
processing the enclosing SoftwarePackage.

compressed
Software
PackageSize

PositiveInteger 1 attr This size represents the size of the compressed Software
Package.

deltaPackage
Applicable
Version

StrongRevisionLabel
String

0..1 attr This attribute identifies the version of the included
SoftwareCluster for which the enclosing SoftwarePackage
can be used as a delta update

maximum
SupportedUcm
Version

RevisionLabelString 1 attr This attribute identifies the maximum supported version of
the UCM for this SoftwarePackage.

minimum
SupportedUcm
Version

RevisionLabelString 1 attr This attribute identifies the minimum supported version of
the UCM for this SoftwarePackage.

packagerId PositiveInteger 1 attr This attribute identifies Id of the organization that provides
the packager generating the SoftwarePackage.

packager
Signature

CryptoService
Certificate

1 ref This reference identifies the certificate that represents the
packager’s signature.

Tags:atp.Status=draft

postVerification
Reboot

Boolean 1 attr Reboot the platform after the verification of the activated
software.

preActivate
(ordered)

ModeDeclaration * iref The referenced function group states shall be established
for the switch between the already installed and the
activated software.

Tags:atp.Status=draft
InstanceRef implemented by:FunctionGroupStateIn
FunctionGroupSetInstanceRef

preActivation
Reboot

Boolean 1 attr Reboot the platform before the switch to the activated
software.

5

139 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

4
Class SoftwarePackage

softwareCluster SoftwareCluster 1 ref This reference identifies the SoftwareCluster that belongs
to the SoftwarePackage. The nature of this relation is
actually more like an aggregation than a reference. But
the relation is still modelled as a reference because two
ARElements cannot aggregate each other.

Tags:atp.Status=draft

uncompressed
SoftwareCluster
Size

PositiveInteger 1 attr This attribute gives an indication about the storage that
has to be available on the target.

verify (ordered) ModeDeclaration * iref The referenced function group states shall be established
for the verification of the activated software.

Tags:atp.Status=draft
InstanceRef implemented by:FunctionGroupStateIn
FunctionGroupSetInstanceRef

Table A.40: SoftwarePackage

Class StdCppImplementationDataType

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the way to specify a data type definition that is taken as the basis for a C++
language binding to a C++ Standard Library feature.

Tags:
atp.Status=draft
atp.recommendedPackage=CppImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , CppImplementationDataType, CppImplementationData
TypeContextTarget , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.41: StdCppImplementationDataType

Primitive StrongRevisionLabelString

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This primitive represents a revision label which identifies an object under version control. It represents a
pattern which requires three integer numbers separated by a dot, representing from left to right Major
Version, MinorVersion, PatchVersion and additional labels for pre-release version and build metadata.

Legal patterns are for example: 1.0.0-alpha+001 1.0.0+20130313144700 1.0.0-beta+exp.sha.5114f85

Tags:
atp.Status=draft
xml.xsd.customType=STRONG-REVISION-LABEL-STRING
xml.xsd.pattern=(0|[1-9]\d*)\.(0|[1-9]\d*)\.(0|[1-9]\d*)(-((0|[1-9]\d*|\d*[a-zA-Z-][0-9a-z
A-Z-]*)(\.(0|[1-9]\d*|\d*[a-zA-Z-][0-9a-zA-Z-]*))*))?(\+([0-9a-zA-Z-]+(\.[0-9a-zA-Z-]+)*))?
xml.xsd.type=string

Table A.42: StrongRevisionLabelString

140 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

B Platform Extension API (normative)

The Persistency cluster does not provide a platform extension API. The latter would
be required to defined a plugin interface for platform specific extensions of the Per-
sistency.

141 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

C Interfaces to Other Functional Clusters
(informative)

The Persistency cluster does not provide any direct interfaces to other functional
clusters. Other functional clusters may use the APIs of Persistency just like the
application.

142 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

D History of Constraints and Specification Items

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

D.1 Constraint and Specification Item History of this Document
According to AUTOSAR Release 17-03

D.1.1 Added Traceables in 17-03

[SWS_PER_00002] [SWS_PER_00003] [SWS_PER_00004] [SWS_PER_00005]
[SWS_PER_00006] [SWS_PER_00007] [SWS_PER_00010] [SWS_PER_00011]
[SWS_PER_00012] [SWS_PER_00013] [SWS_PER_00014] [SWS_PER_00015]
[SWS_PER_00016] [SWS_PER_00017] [SWS_PER_00018] [SWS_PER_00019]
[SWS_PER_00020] [SWS_PER_00021] [SWS_PER_00022] [SWS_PER_00023]
[SWS_PER_00024] [SWS_PER_00025] [SWS_PER_00026] [SWS_PER_00027]
[SWS_PER_00028] [SWS_PER_00029] [SWS_PER_00040] [SWS_PER_00041]
[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00044] [SWS_PER_00045]
[SWS_PER_00046] [SWS_PER_00047] [SWS_PER_00048] [SWS_PER_00049]
[SWS_PER_00050] [SWS_PER_00051] [SWS_PER_00052] [SWS_PER_00053]
[SWS_PER_00054] [SWS_PER_00055] [SWS_PER_00056] [SWS_PER_00057]
[SWS_PER_00058] [SWS_PER_00059] [SWS_PER_00060] [SWS_PER_00061]
[SWS_PER_00062] [SWS_PER_00066] [SWS_PER_00069] [SWS_PER_00070]
[SWS_PER_00071] [SWS_PER_00072] [SWS_PER_00073] [SWS_PER_00074]
[SWS_PER_00075] [SWS_PER_00076] [SWS_PER_00077] [SWS_PER_00078]

D.1.2 Changed Traceables in 17-03

none

D.1.3 Deleted Traceables in 17-03

none

143 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

D.2 Constraint and Specification Item History of this Document
According to AUTOSAR Release 17-10

D.2.1 Added Traceables in 17-10

[SWS_PER_00008] [SWS_PER_00100] [SWS_PER_00101] [SWS_PER_00102]
[SWS_PER_00103] [SWS_PER_00104] [SWS_PER_00105] [SWS_PER_00106]
[SWS_PER_00107] [SWS_PER_00108] [SWS_PER_00109] [SWS_PER_00110]
[SWS_PER_00111] [SWS_PER_00112] [SWS_PER_00113] [SWS_PER_00114]
[SWS_PER_00115] [SWS_PER_00116] [SWS_PER_00117] [SWS_PER_00118]
[SWS_PER_00119] [SWS_PER_00120] [SWS_PER_00121] [SWS_PER_00122]
[SWS_PER_00123] [SWS_PER_00124] [SWS_PER_00125] [SWS_PER_00126]
[SWS_PER_00127] [SWS_PER_00128] [SWS_PER_00129] [SWS_PER_00130]
[SWS_PER_00131] [SWS_PER_00132] [SWS_PER_00133] [SWS_PER_00134]
[SWS_PER_00140] [SWS_PER_00141] [SWS_PER_00142] [SWS_PER_00143]
[SWS_PER_00144] [SWS_PER_00145] [SWS_PER_00150] [SWS_PER_00151]
[SWS_PER_00152] [SWS_PER_00153] [SWS_PER_00154] [SWS_PER_00155]
[SWS_PER_00156] [SWS_PER_00157] [SWS_PER_00160] [SWS_PER_00161]
[SWS_PER_00200] [SWS_PER_00201] [SWS_PER_00210] [SWS_PER_00211]
[SWS_PER_00220] [SWS_PER_00221] [SWS_PER_00222] [SWS_PER_00500]

D.2.2 Changed Traceables in 17-10

[SWS_PER_00003] [SWS_PER_00004] [SWS_PER_00010] [SWS_PER_00013]
[SWS_PER_00014] [SWS_PER_00016] [SWS_PER_00017] [SWS_PER_00041]
[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00044] [SWS_PER_00046]
[SWS_PER_00047] [SWS_PER_00048] [SWS_PER_00049] [SWS_PER_00050]
[SWS_PER_00051] [SWS_PER_00060] [SWS_PER_00061] [SWS_PER_00076]

D.2.3 Deleted Traceables in 17-10

[SWS_PER_00011] [SWS_PER_00021] [SWS_PER_00022] [SWS_PER_00023]
[SWS_PER_00024] [SWS_PER_00025] [SWS_PER_00026] [SWS_PER_00027]
[SWS_PER_00028] [SWS_PER_00029] [SWS_PER_00040] [SWS_PER_00045]
[SWS_PER_00053] [SWS_PER_00054] [SWS_PER_00055] [SWS_PER_00056]
[SWS_PER_00057] [SWS_PER_00058] [SWS_PER_00059] [SWS_PER_00062]
[SWS_PER_00066] [SWS_PER_00069] [SWS_PER_00070] [SWS_PER_00071]
[SWS_PER_00072] [SWS_PER_00073] [SWS_PER_00074] [SWS_PER_00075]
[SWS_PER_00077] [SWS_PER_00078]

144 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

D.3 Constraint and Specification Item History of this Document
According to AUTOSAR Release 18-03

D.3.1 Added Traceables in 18-03

[SWS_PER_00080] [SWS_PER_00146] [SWS_PER_00147] [SWS_PER_00148]
[SWS_PER_00162] [SWS_PER_00163] [SWS_PER_00164] [SWS_PER_00165]
[SWS_PER_00166] [SWS_PER_00167] [SWS_PER_00168] [SWS_PER_00169]
[SWS_PER_00170] [SWS_PER_00171] [SWS_PER_00172] [SWS_PER_00173]
[SWS_PER_00174] [SWS_PER_00175] [SWS_PER_00176] [SWS_PER_00180]
[SWS_PER_00181] [SWS_PER_00182] [SWS_PER_00250] [SWS_PER_00251]
[SWS_PER_00252] [SWS_PER_00253] [SWS_PER_00254] [SWS_PER_00255]
[SWS_PER_00256] [SWS_PER_00257] [SWS_PER_00258] [SWS_PER_00259]
[SWS_PER_00260] [SWS_PER_00261] [SWS_PER_00262] [SWS_PER_00264]
[SWS_PER_00265] [SWS_PER_00266] [SWS_PER_00267] [SWS_PER_00268]
[SWS_PER_00269] [SWS_PER_00270] [SWS_PER_00271] [SWS_PER_00272]
[SWS_PER_00273] [SWS_PER_00274] [SWS_PER_00275] [SWS_PER_00276]
[SWS_PER_00277] [SWS_PER_00278] [SWS_PER_00279] [SWS_PER_00280]
[SWS_PER_00281] [SWS_PER_00282] [SWS_PER_00283] [SWS_PER_00284]
[SWS_PER_00285] [SWS_PER_00300] [SWS_PER_00301] [SWS_PER_00302]
[SWS_PER_00303] [SWS_PER_00304] [SWS_PER_UNUSED]

D.3.2 Changed Traceables in 18-03

[SWS_PER_00004] [SWS_PER_00113] [SWS_PER_00114] [SWS_PER_00115]
[SWS_PER_00132] [SWS_PER_00133] [SWS_PER_00134] [SWS_PER_00201]
[SWS_PER_00220] [SWS_PER_00500]

D.3.3 Deleted Traceables in 18-03

[SWS_PER_00003] [SWS_PER_00005] [SWS_PER_00006] [SWS_PER_00007]
[SWS_PER_00008] [SWS_PER_00010] [SWS_PER_00012] [SWS_PER_00013]
[SWS_PER_00014] [SWS_PER_00015] [SWS_PER_00016] [SWS_PER_00017]
[SWS_PER_00018] [SWS_PER_00019] [SWS_PER_00020] [SWS_PER_00051]
[SWS_PER_00060] [SWS_PER_00061] [SWS_PER_00076] [SWS_PER_00100]
[SWS_PER_00101] [SWS_PER_00102] [SWS_PER_00103] [SWS_PER_00104]
[SWS_PER_00105] [SWS_PER_00109] [SWS_PER_00117] [SWS_PER_00118]
[SWS_PER_00120] [SWS_PER_00121] [SWS_PER_00123] [SWS_PER_00150]
[SWS_PER_00151] [SWS_PER_00152] [SWS_PER_00153] [SWS_PER_00154]
[SWS_PER_00155] [SWS_PER_00156] [SWS_PER_00157]

145 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

D.4 Constraint and Specification Item History of this Document
According to AUTOSAR Release 18-10

D.4.1 Added Traceables in 18-10

[SWS_PER_00309] [SWS_PER_00311] [SWS_PER_00312] [SWS_PER_00313]
[SWS_PER_00314] [SWS_PER_00315] [SWS_PER_00316] [SWS_PER_00317]
[SWS_PER_00318] [SWS_PER_00319] [SWS_PER_00320] [SWS_PER_00321]
[SWS_PER_00322] [SWS_PER_00323] [SWS_PER_00324] [SWS_PER_00325]
[SWS_PER_00326] [SWS_PER_00327] [SWS_PER_00328] [SWS_PER_00329]
[SWS_PER_00330] [SWS_PER_00331] [SWS_PER_00332] [SWS_PER_00333]
[SWS_PER_00334] [SWS_PER_00335] [SWS_PER_00336] [SWS_PER_00337]
[SWS_PER_00338] [SWS_PER_00339] [SWS_PER_00340] [SWS_PER_00341]
[SWS_PER_00342] [SWS_PER_00343] [SWS_PER_00344] [SWS_PER_00345]
[SWS_PER_00346] [SWS_PER_00347] [SWS_PER_00348] [SWS_PER_NA]

D.4.2 Changed Traceables in 18-10

[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00044] [SWS_PER_00046]
[SWS_PER_00047] [SWS_PER_00048] [SWS_PER_00049] [SWS_PER_00050]
[SWS_PER_00052] [SWS_PER_00106] [SWS_PER_00107] [SWS_PER_00108]
[SWS_PER_00110] [SWS_PER_00111] [SWS_PER_00112] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115] [SWS_PER_00116] [SWS_PER_00119]
[SWS_PER_00122] [SWS_PER_00124] [SWS_PER_00125] [SWS_PER_00126]
[SWS_PER_00127] [SWS_PER_00128] [SWS_PER_00140] [SWS_PER_00141]
[SWS_PER_00142] [SWS_PER_00143] [SWS_PER_00144] [SWS_PER_00145]
[SWS_PER_00147] [SWS_PER_00160] [SWS_PER_00161] [SWS_PER_00163]
[SWS_PER_00164] [SWS_PER_00165] [SWS_PER_00166] [SWS_PER_00180]
[SWS_PER_00181] [SWS_PER_00182] [SWS_PER_00210] [SWS_PER_00211]

D.4.3 Deleted Traceables in 18-10

[SWS_PER_00004] [SWS_PER_00041] [SWS_PER_00080] [SWS_PER_00129]
[SWS_PER_00130] [SWS_PER_00131] [SWS_PER_00132] [SWS_PER_00133]
[SWS_PER_00134] [SWS_PER_00148] [SWS_PER_00169] [SWS_PER_00170]
[SWS_PER_00171] [SWS_PER_00172] [SWS_PER_00173] [SWS_PER_00174]
[SWS_PER_00175] [SWS_PER_00176] [SWS_PER_00200] [SWS_PER_00201]
[SWS_PER_00220] [SWS_PER_00250] [SWS_PER_00500] [SWS_PER_UNUSED]

146 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

D.5 Constraint and Specification Item History of this Document
According to AUTOSAR Release 19-03

D.5.1 Added Traceables in 19-03

[SWS_PER_00349] [SWS_PER_00350] [SWS_PER_00351] [SWS_PER_00352]
[SWS_PER_00353] [SWS_PER_00354] [SWS_PER_00355] [SWS_PER_00356]
[SWS_PER_00357] [SWS_PER_00358] [SWS_PER_00359] [SWS_PER_00360]
[SWS_PER_00361] [SWS_PER_00362] [SWS_PER_00363] [SWS_PER_00364]
[SWS_PER_00365] [SWS_PER_00366] [SWS_PER_00367] [SWS_PER_00368]
[SWS_PER_00369] [SWS_PER_00370] [SWS_PER_00371] [SWS_PER_00372]
[SWS_PER_00373] [SWS_PER_00374] [SWS_PER_00375] [SWS_PER_00376]
[SWS_PER_00377] [SWS_PER_00378] [SWS_PER_00379] [SWS_PER_00380]
[SWS_PER_00381] [SWS_PER_00382] [SWS_PER_00383] [SWS_PER_00384]
[SWS_PER_00385] [SWS_PER_00386] [SWS_PER_00387] [SWS_PER_00388]
[SWS_PER_00389] [SWS_PER_00390] [SWS_PER_00391] [SWS_PER_00392]
[SWS_PER_00393] [SWS_PER_00394] [SWS_PER_00395] [SWS_PER_00396]
[SWS_PER_00397] [SWS_PER_CONSTR_00001] [SWS_PER_CONSTR_00002]
[SWS_PER_CONSTR_00003] [SWS_PER_CONSTR_00004]

D.5.2 Changed Traceables in 19-03

[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00044] [SWS_PER_00046]
[SWS_PER_00047] [SWS_PER_00048] [SWS_PER_00049] [SWS_PER_00052]
[SWS_PER_00110] [SWS_PER_00111] [SWS_PER_00112] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115] [SWS_PER_00116] [SWS_PER_00119]
[SWS_PER_00127] [SWS_PER_00128] [SWS_PER_00144] [SWS_PER_00145]
[SWS_PER_00251] [SWS_PER_00252] [SWS_PER_00253] [SWS_PER_00254]
[SWS_PER_00265] [SWS_PER_00266] [SWS_PER_00267] [SWS_PER_00275]
[SWS_PER_00277] [SWS_PER_00281] [SWS_PER_00283] [SWS_PER_00304]
[SWS_PER_00311] [SWS_PER_00312] [SWS_PER_00313] [SWS_PER_00314]
[SWS_PER_00315] [SWS_PER_00322] [SWS_PER_00323] [SWS_PER_00326]
[SWS_PER_00327] [SWS_PER_00328] [SWS_PER_00329] [SWS_PER_00330]
[SWS_PER_00332] [SWS_PER_00333] [SWS_PER_00334] [SWS_PER_00335]
[SWS_PER_00336] [SWS_PER_00337] [SWS_PER_00338] [SWS_PER_00340]

D.5.3 Deleted Traceables in 19-03

[SWS_PER_00160] [SWS_PER_00161] [SWS_PER_00255] [SWS_PER_00256]
[SWS_PER_00257] [SWS_PER_00258] [SWS_PER_00259] [SWS_PER_00260]
[SWS_PER_00261] [SWS_PER_00262] [SWS_PER_00264] [SWS_PER_00268]
[SWS_PER_00269] [SWS_PER_00270] [SWS_PER_00271] [SWS_PER_00272]
[SWS_PER_00273] [SWS_PER_00274] [SWS_PER_00276] [SWS_PER_00278]

147 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

[SWS_PER_00279] [SWS_PER_00280] [SWS_PER_00282] [SWS_PER_00284]
[SWS_PER_00285] [SWS_PER_00300] [SWS_PER_00301] [SWS_PER_00316]

D.6 Constraint and Specification Item History of this Document
According to AUTOSAR Release R19-11

D.6.1 Added Traceables in R19-11

[SWS_PER_00398] [SWS_PER_00399] [SWS_PER_00400] [SWS_PER_00401]
[SWS_PER_00402] [SWS_PER_00403] [SWS_PER_00404] [SWS_PER_00405]
[SWS_PER_00406] [SWS_PER_00407] [SWS_PER_00408] [SWS_PER_00409]
[SWS_PER_00410]

D.6.2 Changed Traceables in R19-11

[SWS_PER_00049] [SWS_PER_00113] [SWS_PER_00114] [SWS_PER_00115]
[SWS_PER_00144] [SWS_PER_00145] [SWS_PER_00146] [SWS_PER_00147]
[SWS_PER_00163] [SWS_PER_00164] [SWS_PER_00303] [SWS_PER_00317]
[SWS_PER_00318] [SWS_PER_00319] [SWS_PER_00323] [SWS_PER_00327]
[SWS_PER_00345] [SWS_PER_00351] [SWS_PER_00365] [SWS_PER_00368]
[SWS_PER_00370] [SWS_PER_00372]

D.6.3 Deleted Traceables in R19-11

[SWS_PER_00044] [SWS_PER_CONSTR_00001]

D.7 Constraint and Specification Item History of this Document
According to AUTOSAR Release R20-11

D.7.1 Added Traceables in R20-11

[SWS_PER_00411] [SWS_PER_00412] [SWS_PER_00413] [SWS_PER_00414]
[SWS_PER_00415] [SWS_PER_00416] [SWS_PER_00417] [SWS_PER_00418]
[SWS_PER_00419] [SWS_PER_00420] [SWS_PER_00421] [SWS_PER_00422]
[SWS_PER_00423] [SWS_PER_00424] [SWS_PER_00425] [SWS_PER_00426]
[SWS_PER_00427] [SWS_PER_00428] [SWS_PER_00429] [SWS_PER_00430]
[SWS_PER_00431] [SWS_PER_00432] [SWS_PER_00433] [SWS_PER_00434]
[SWS_PER_00435] [SWS_PER_00436] [SWS_PER_00437] [SWS_PER_00438]
[SWS_PER_00439] [SWS_PER_00440] [SWS_PER_00441] [SWS_PER_00442]
[SWS_PER_00443] [SWS_PER_00444] [SWS_PER_00445] [SWS_PER_00446]

148 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

[SWS_PER_00447] [SWS_PER_00448] [SWS_PER_00449] [SWS_PER_00450]
[SWS_PER_00451]

D.7.2 Changed Traceables in R20-11

[SWS_PER_00042] [SWS_PER_00043] [SWS_PER_00046] [SWS_PER_00047]
[SWS_PER_00048] [SWS_PER_00049] [SWS_PER_00052] [SWS_PER_00107]
[SWS_PER_00110] [SWS_PER_00111] [SWS_PER_00112] [SWS_PER_00113]
[SWS_PER_00114] [SWS_PER_00115] [SWS_PER_00116] [SWS_PER_00119]
[SWS_PER_00122] [SWS_PER_00125] [SWS_PER_00144] [SWS_PER_00146]
[SWS_PER_00147] [SWS_PER_00162] [SWS_PER_00163] [SWS_PER_00164]
[SWS_PER_00165] [SWS_PER_00166] [SWS_PER_00167] [SWS_PER_00168]
[SWS_PER_00210] [SWS_PER_00211] [SWS_PER_00251] [SWS_PER_00252]
[SWS_PER_00265] [SWS_PER_00266] [SWS_PER_00267] [SWS_PER_00275]
[SWS_PER_00277] [SWS_PER_00281] [SWS_PER_00283] [SWS_PER_00304]
[SWS_PER_00311] [SWS_PER_00312] [SWS_PER_00317] [SWS_PER_00318]
[SWS_PER_00319] [SWS_PER_00332] [SWS_PER_00333] [SWS_PER_00334]
[SWS_PER_00335] [SWS_PER_00336] [SWS_PER_00337] [SWS_PER_00338]
[SWS_PER_00339] [SWS_PER_00340] [SWS_PER_00342] [SWS_PER_00343]
[SWS_PER_00356] [SWS_PER_00357] [SWS_PER_00358] [SWS_PER_00365]
[SWS_PER_00375] [SWS_PER_00376] [SWS_PER_00377] [SWS_PER_00378]
[SWS_PER_00379] [SWS_PER_00380] [SWS_PER_00383] [SWS_PER_00385]
[SWS_PER_00388] [SWS_PER_00389] [SWS_PER_00390] [SWS_PER_00391]
[SWS_PER_00392] [SWS_PER_00393] [SWS_PER_00394] [SWS_PER_00395]
[SWS_PER_00396] [SWS_PER_00405] [SWS_PER_00406] [SWS_PER_00407]
[SWS_PER_00409] [SWS_PER_CONSTR_00004]

D.7.3 Deleted Traceables in R20-11

[SWS_PER_00106] [SWS_PER_00108] [SWS_PER_00124] [SWS_PER_00126]
[SWS_PER_00127] [SWS_PER_00128] [SWS_PER_00140] [SWS_PER_00141]
[SWS_PER_00142] [SWS_PER_00143] [SWS_PER_00145] [SWS_PER_00180]
[SWS_PER_00181] [SWS_PER_00182] [SWS_PER_00341] [SWS_PER_00344]
[SWS_PER_00345] [SWS_PER_00346] [SWS_PER_00347] [SWS_PER_00348]
[SWS_PER_00349] [SWS_PER_00366] [SWS_PER_00381] [SWS_PER_00404]
[SWS_PER_CONSTR_00002]

149 of 150 Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP R20-11

E Not Applicable Requirements

[SWS_PER_NA]{DRAFT} dThese requirements are not applicable to this specifi-
cation.c(RS_AP_00111, RS_AP_00114, RS_AP_00116, RS_AP_00124, RS_AP_-
00130)

150 of 150 Document ID 858: AUTOSAR_SWS_Persistency

	1 Introduction and Functional Overview
	2 Acronyms and Abbreviations
	3 Related Documentation
	3.1 Input Documents & Related Standards and Norms
	3.2 Further Applicable Specifications

	4 Constraints and Assumptions
	4.1 Known Limitations
	4.2 Constraints on Configuration
	4.3 Direct Access to Storage Hardware

	5 Dependencies to Other Functional Clusters
	5.1 Protocol Layer Dependencies

	6 Requirements Tracing
	7 Functional Specification
	7.1 The Architecture of Persistency
	7.1.1 Persistency in the Manifest
	7.1.2 Key-Value Storages in the Manifest
	7.1.3 File Storages in the Manifest

	7.2 Functional Cluster Lifecycle
	7.2.1 Initialization and Shutdown of Persistency

	7.3 Parallel Access to Persistent Data
	7.4 Security Concepts
	7.5 Redundancy Concepts
	7.5.1 Redundancy Types

	7.6 Installation and Update of Persistent Data
	7.6.1 Installation of Persistent Data
	7.6.1.1 Installation of Key-Value Storage
	7.6.1.2 Installation of File Storage

	7.6.2 Update of Persistent Data
	7.6.2.1 Update of Key-Value Storage
	7.6.2.2 Update of File Storage

	7.6.3 Finalization of Persistent Data after Successful Update
	7.6.4 Roll-Back of Persistent Data after Failed Update
	7.6.5 Removal of Persistent Data

	7.7 Resource Management Concepts
	7.8 Supported Data Types in Key-Value Storages
	7.9 Access to Additional Information about Files

	8 API Specification
	8.1 ara::core Types
	8.2 Key-Value Storage
	8.2.1 OpenKeyValueStorage
	8.2.2 RecoverKeyValueStorage
	8.2.3 ResetKeyValueStorage
	8.2.4 GetCurrentKeyValueStorageSize
	8.2.5 KeyValueStorage Class
	8.2.5.1 KeyValueStorage::KeyValueStorage
	8.2.5.2 KeyValueStorage::operator=
	8.2.5.3 KeyValueStorage::~KeyValueStorage
	8.2.5.4 KeyValueStorage::GetAllKeys
	8.2.5.5 KeyValueStorage::KeyExists
	8.2.5.6 KeyValueStorage::GetValue
	8.2.5.7 KeyValueStorage::SetValue
	8.2.5.8 KeyValueStorage::RemoveKey
	8.2.5.9 KeyValueStorage::RecoverKey
	8.2.5.10 KeyValueStorage::ResetKey
	8.2.5.11 KeyValueStorage::RemoveAllKeys
	8.2.5.12 KeyValueStorage::SyncToStorage
	8.2.5.13 KeyValueStorage::DiscardPendingChanges

	8.3 File Storage
	8.3.1 OpenFileStorage
	8.3.2 RecoverAllFiles
	8.3.3 ResetAllFiles
	8.3.4 GetCurrentFileStorageSize
	8.3.5 OpenMode
	8.3.6 operator| for FileStorage::OpenMode
	8.3.7 operator|= for FileStorage::OpenMode
	8.3.8 FileCreationState
	8.3.9 FileModificationState
	8.3.10 FileInfo
	8.3.10.1 FileInfo.creationTime
	8.3.10.2 FileInfo.modificationTime
	8.3.10.3 FileInfo.accessTime
	8.3.10.4 FileInfo.fileCreationState
	8.3.10.5 FileInfo.fileModificationState

	8.3.11 FileStorage Class
	8.3.11.1 FileStorage::FileStorage
	8.3.11.2 FileStorage::operator=
	8.3.11.3 FileStorage::~FileStorage
	8.3.11.4 FileStorage::GetAllFileNames
	8.3.11.5 FileStorage::DeleteFile
	8.3.11.6 FileStorage::FileExists
	8.3.11.7 FileStorage::RecoverFile
	8.3.11.8 FileStorage::ResetFile
	8.3.11.9 FileStorage::GetCurrentFileSize
	8.3.11.10 FileStorage::GetFileInfo
	8.3.11.11 FileStorage::OpenFileReadWrite
	8.3.11.12 FileStorage::OpenFileReadOnly
	8.3.11.13 FileStorage::OpenFileWriteOnly

	8.3.12 Origin
	8.3.13 ReadAccessor Class
	8.3.13.1 ReadAccessor::ReadAccessor
	8.3.13.2 ReadAccessor::operator=
	8.3.13.3 ReadAccessor::~ReadAccessor
	8.3.13.4 ReadAccessor::PeekChar
	8.3.13.5 ReadAccessor::PeekByte
	8.3.13.6 ReadAccessor::GetChar
	8.3.13.7 ReadAccessor::GetByte
	8.3.13.8 ReadAccessor::ReadText
	8.3.13.9 ReadAccessor::ReadBinary
	8.3.13.10 ReadAccessor::ReadLine
	8.3.13.11 ReadAccessor::GetSize
	8.3.13.12 ReadAccessor::GetPosition
	8.3.13.13 ReadAccessor::SetPosition
	8.3.13.14 ReadAccessor::MovePosition
	8.3.13.15 ReadAccessor::IsEof

	8.3.14 ReadWriteAccessor Class
	8.3.14.1 ReadWriteAccessor::SyncToFile
	8.3.14.2 ReadWriteAccessor::SetFileSize
	8.3.14.3 ReadWriteAccessor::WriteText
	8.3.14.4 ReadWriteAccessor::WriteBinary
	8.3.14.5 ReadWriteAccessor::operator<<

	8.4 Update and Removal of Persistent Data
	8.4.1 RegisterApplicationDataUpdateCallback
	8.4.2 UpdatePersistency
	8.4.3 ResetPersistency

	8.5 Redundancy Handling
	8.5.1 RecoveryReportKind
	8.5.2 RegisterRecoveryReportCallback

	8.6 Handle Classes
	8.6.1 SharedHandle Class
	8.6.1.1 SharedHandle::SharedHandle
	8.6.1.2 SharedHandle::operator=
	8.6.1.3 SharedHandle::operator bool
	8.6.1.4 SharedHandle::Operator->
	8.6.1.5 SharedHandle::Operator*

	8.6.2 UniqueHandle Class
	8.6.2.1 UniqueHandle::UniqueHandle
	8.6.2.2 UniqueHandle::operator=
	8.6.2.3 UniqueHandle::operator bool
	8.6.2.4 UniqueHandle::Operator->
	8.6.2.5 UniqueHandle::Operator*

	8.7 Errors
	8.7.1 PerErrc
	8.7.2 GetPerDomain
	8.7.3 MakeErrorCode
	8.7.4 PerException Class
	8.7.4.1 PerException::PerException

	8.7.5 PerErrorDomain Class
	8.7.5.1 PerErrorDomain::Errc
	8.7.5.2 PerErrorDomain::Exception
	8.7.5.3 PerErrorDomain::PerErrorDomain
	8.7.5.4 PerErrorDomain::Name
	8.7.5.5 PerErrorDomain::Message
	8.7.5.6 PerErrorDomain::ThrowAsException

	9 Service Interfaces
	A Mentioned Class Tables
	B Platform Extension API (normative)
	C Interfaces to Other Functional Clusters (informative)
	D History of Constraints and Specification Items
	D.1 Constraint and Specification Item History of this Document According to AUTOSAR Release 17-03
	D.1.1 Added Traceables in 17-03
	D.1.2 Changed Traceables in 17-03
	D.1.3 Deleted Traceables in 17-03

	D.2 Constraint and Specification Item History of this Document According to AUTOSAR Release 17-10
	D.2.1 Added Traceables in 17-10
	D.2.2 Changed Traceables in 17-10
	D.2.3 Deleted Traceables in 17-10

	D.3 Constraint and Specification Item History of this Document According to AUTOSAR Release 18-03
	D.3.1 Added Traceables in 18-03
	D.3.2 Changed Traceables in 18-03
	D.3.3 Deleted Traceables in 18-03

	D.4 Constraint and Specification Item History of this Document According to AUTOSAR Release 18-10
	D.4.1 Added Traceables in 18-10
	D.4.2 Changed Traceables in 18-10
	D.4.3 Deleted Traceables in 18-10

	D.5 Constraint and Specification Item History of this Document According to AUTOSAR Release 19-03
	D.5.1 Added Traceables in 19-03
	D.5.2 Changed Traceables in 19-03
	D.5.3 Deleted Traceables in 19-03

	D.6 Constraint and Specification Item History of this Document According to AUTOSAR Release R19-11
	D.6.1 Added Traceables in R19-11
	D.6.2 Changed Traceables in R19-11
	D.6.3 Deleted Traceables in R19-11

	D.7 Constraint and Specification Item History of this Document According to AUTOSAR Release R20-11
	D.7.1 Added Traceables in R20-11
	D.7.2 Changed Traceables in R20-11
	D.7.3 Deleted Traceables in R20-11

	E Not Applicable Requirements

