AUTOSAR

Document Title | Specification of Log and Trace
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 853
Document Status published
Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R20-11
Document Change History
Date Release | Changed by Description
e Introduced Non-modeled
messages and Modeled
AUTOSAR messages to Chapter 7.3 Log
2020-11-30 | R20-11 | Release Messages |
Management e Introduced Logger: :WithLevel ()
API, to log messages and pass the
LogLevel as an APl parameter
e Refactoring and editorial changes
e Removed Class LogManager. Moved
remoteClientState () to Chapter
8.2 Function definitions (logging.h)
e Added Functional Cluster shutdown
AUTOSAR behavior. Added Funtional Cluster
2019-11-28 | R19-11 | Release initialization via
Management ara::core::Initialize ()
e Removed TSYNC related spec items
from Chapter 7.4
e Refactoring and editorial changes
e Changed Document Status from
Final to published
AUTOSAR e Changed APIs (Logstream,
2019-03-29 | 19-03 Release Logmanager, Loggmg)
Management e Refactoring and editorial changes
AUTOSAR e Changed initialization APIs
2018-10-31 | 18-10 Release e Improved references
Management | o Log file definition

AUTOSAR

2018-03-29

18-03

AUTOSAR
Release
Management

e Refactoring and editorial changes
e Log and Trace extensions added

2017-10-27

17-10

AUTOSAR
Release
Management

No content changes

2017-03-31

17-03

AUTOSAR
Release
Management

Initial release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

1 Introduction and functional overview

2 Acronyms and Abbreviations

3 Input documents & related standards and norms

3.1
3.2

Input documents .
Further applicable specification

4 Constraints and assumptions

41
4.2

Known limitations .
Applicability to cardomains L

5 Dependencies to other Functional Clusters

5.1

Platform dependencies

6 Requirements Tracing

7 Functional specification

7.1

7.2

7.3

7.4
7.5
7.6

Functional Cluster Lifecyle

711
7.1.2

Startup .
Shutdown

Necessary Parameters and Initialization
ApplicationID
7.2.1.1 Application Description L.
Default Log Level

7.21

7.2.2
7.2.3

7.2.4
7.2.5
7.2.6

Log
7.3.1
7.3.2

Log Mode

7.2.3.1 LogFilePath

Context ID

Context Description oL
Initialization of the Logging framework

Messages e
Non-modeled messages
Modeled messages,

7.3.2.1 APlprinciples

7.3.2.2 Logmessagemodel

7.3.2.3 Usage

Conversion Functions
Logand Trace Timestamp
Log and Trace data loss prevention

8 API specification

8.1

APl CommonData Types,

8.1.1
8.1.2
8.1.3

LoglLevel
LogMode
LogHex8

© o © (o]

10
10

11
11
12

AUTOSAR

8.2

8.3

8.1.4 LogHex16 30
8.1.5 LogHex32 30
8.1.6 LogHex64 31
8.1.7 LogBin8 31
8.1.8 LogBin16 31
8.1.9 LogBin32 31
8.1.10 LogBin64 32
8.1.11 ClientState 32
Function definitions L Lo 33
8.2.1 CreateLogger 33
8.2.2 HexFormat (uint8) 33
8.2.3 HexFormat (int8) 34
8.2.4 HexFormat (uint16) 34
8.2.5 HexFormat (int16) 34
8.2.6 HexFormat (uint32) 35
8.2.7 HexFormat (int32) 35
8.2.8 HexFormat (uint64) 36
8.2.9 HexFormat (int64) 36
8.2.10 BinFormat (uint8) oL 37
8.2.11 BinFormat (int8) 37
8.2.12 BinFormat (uint16) 38
8.2.13 BinFormat (int16) 38
8.2.14 BinFormat (uint32) o 39
8.2.15 BinFormat (int82) 39
8.2.16 BinFormat (uinté4) oL 40
8.2.17 BinFormat (int64) 40
8.2.18 remoteClientState 41
8.2.19 Wrapper objectcreator L oo, 41
8.2.20 Logger of an argument with attributes 41
8.2.21 Logger of modeledmessage 42
Class definitions 43
8.3.1 Class LogStream 43
8.3.1.1 Extending the Logging API to understand custom types 43
8.3.1.2 LogStream::Flush. 45
8.3.1.3 Built-in operators for natively supported types 45
8.3.1.4 Built-in operators for conversiontypes 49
8.3.1.5 Built-in operators for extratypes. 52
8.3.2 ClassLogger o i 56
8.3.2.1 Logger:iLogFatal 56
8.3.2.2 Logger::LogError 56
8.3.2.3 Logger::LogWarn L. 57
8.3.2.4 Logger:Loginfo L 57
8.3.2.5 Logger::iLogDebug 58
8.3.2.6 Logger::LogVerbose 58
8.3.2.7 Logger:lsEnabled L. 58

8.3.2.8 Logger::WithLevel 59

AUTOSAR

A Mentioned Manifest Elements

B History of Constraints and Specification Items

B.1 Constraint and Specification ltem History of this document according
to AUTOSAR Releaseyy-mm

60
74

AUTOSAR

1 Introduction and functional overview

This specification specifies the functionality of the AUTOSAR Adaptive Platform
Log and Trace.

The Log and Trace provides interfaces for Adaptive Applications to forward
logging information onto the communication bus, the console, or to the file system.
Each of the provided logging information has its own severity level. For each severity
level, a separate method is provided to be used by applications or Adaptive Plat-
form Services, e.g. ara::com. In addition, utility methods are provided to convert
decimal values into the hexadecimal numeral system, or into the binary numeral sys-
tem.

To pack the provided logging information into a standardized delivery and presentation
format, a protocol is needed. For this purpose, the LT protocol can be used, which
is standardized within the AUTOSAR consortium.

The LT protocol can add additional information to the provided logging informa-
tion. This information can be used by a Logging client to relate, sort or filter the
received logging frames.

Detailed information regarding the use cases and the LT protocol itself are provided
by the PRS Log and Trace protocol specification. For more information regarding the
LT protocol referto [1].

Adaptive Adaptive
Application Application

SWS

Logging APIs

Logging and Tracing Functional Cluster ara::com

Log and Trace backend

GENIVI DLT GENIVI DLT Client

| LT Protocol

Figure 1.1: Architecture overview

Furthermore, this document introduces additional specification extensions for the
AUTOSAR Adaptive Platform Log and Trace.

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Log and Trace
module that are not included in the [2, AUTOSAR glossary].

Abbreviation / | Description:

Acronym:

Log and Trace The official Functional Cluster name that manages the logging

L&T Acronym for Log and Trace

LT protocol Original name of the protocol itself (Log and Trace), specified in the
PRS document [1]

Logging API The main logging interface towards user applications as a library

Logging back-end
Logging Client

Implementation of the LT protocol, e.g. DLT

An external tool which can remotely interact with the Logging frame-
work

Implementation of the software solution used for logging purposes

The class that enables the logging functionality and handles a single
logging context

Log message, including message header(s)

Meta information about the severity of a passed logging information
Diagnostics Log and Trace - a GENIVI Log and Trace daemon imple-
mentation of the LT protocol

An executable instance (process) that is running on a Machine

Logging framework
Logging instance

Log message
Log severity level
DLT

Application process

The following technical terms used throughout this document are defined in the official
[2] AUTOSAR Gilossary or [3] TPS Manifest Specification — they are repeated here for

tracing purposes.

Term

Description

Adaptive Application

see [2] AUTOSAR Gilossary

Application

see [2] AUTOSAR Gilossary

AUTOSAR Adaptive Platform

see [2] AUTOSAR Gilossary

Adaptive Platform Foundation

see [2] AUTOSAR Glossary

Manifest

see [2] AUTOSAR Gilossary

Executable

see [2] AUTOSAR Gilossary

Functional Cluster

see [2] AUTOSAR Gilossary

Adaptive Platform Service

see [2] AUTOSAR Gilossary

Machine

see [2] AUTOSAR Gilossary

Service

see [2] AUTOSAR Gilossary

Service Interface

see [2] AUTOSAR Gilossary

Service Discovery

see [2] AUTOSAR Gilossary

Table 2.1: Glossary-defined Technical Terms

AUTOSAR

3 Input documents & related standards and norms

3.1 Input documents

[1] Log and Trace Protocol Specification
AUTOSAR_PRS_LogAndTraceProtocol

[2] Glossary
AUTOSAR_TR_Glossary

[3] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[4] Specification of the Adaptive Core
AUTOSAR_SWS_AdaptiveCore

[5] Requirements on Log and Trace
AUTOSAR_RS_LogAndTrace

[6] Specification of Time Synchronization for Adaptive Platform
AUTOSAR_SWS_TimeSync

3.2 Further applicable specification

AUTOSAR provides a core specification [4, SWS AdaptiveCore] which is also applica-
ble for Log and Trace. The chapter "General requirements for all Functional Clus-
ters" of this specification shall be considered as an additional and required specification
for implementation of Log and Trace.

AUTOSAR

4 Constraints and assumptions

4.1 Known limitations

The provided Logging framework API is designed to be independent from the un-
derlying Logging back-end implementation and as such doesn’t impose limitations.

4.2 Applicability to car domains

No restrictions to applicability.

AUTOSAR

5 Dependencies to other Functional Clusters

There are no dependencies to other Functional Clusters.

5.1 Platform dependencies

This specification is part of the AUTOSAR AUTOSAR Adaptive Platform and
therefore depends on it.

AUTO SAR

6 Requirements Tracing

The following table references the requirements specified in RS Log And Trace [5] and
links to the fulfillment of these. Please note that if column “Satisfied by” is empty for a
specific requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_LT_00003] Applications shall [SWS_LOG_00001] [SWS_LOG_00002]
have the possibility to | [SWS_LOG_00004] [SWS_LOG_00005]
send log or trace [SWS_LOG_00006] [SWS_LOG_00007]
messages to the LT [SWS_LOG_00008] [SWS_LOG_00009]
module. [SWS_LOG_00010] [SWS_LOG_00011]

[SWS_LOG_00012] [SWS_LOG_00013]
[SWS_LOG_00015] [SWS_LOG_00016]
[SWS_LOG_00017] [SWS_LOG_00018]
[SWS_LOG_00019] [SWS_LOG_00021]
[SWS_LOG_00022] [SWS_LOG_00023]
[SWS_LOG_00024] [SWS_LOG_00025]
[SWS_LOG_00026] [SWS_LOG_00027]
[SWS_LOG_00028] [SWS_LOG_00029]
[SWS_LOG_00030] [SWS_LOG_00031]
[SWS_LOG_00032] [SWS_LOG_00033]
[SWS_LOG_00034] [SWS_LOG_00035]
[SWS_LOG_00036] [SWS_LOG_00037]
[SWS_LOG_00039] [SWS_LOG_00040]
[SWS_LOG_00041] [SWS_LOG_00042]
[SWS_LOG_00043] [SWS_LOG_00044]
[SWS_LOG_00045] [SWS_LOG_00046]
[SWS_LOG_00047] [SWS_LOG_00048]
[SWS_LOG_00049] [SWS_LOG_00050]
[SWS_LOG_00051] [SWS_LOG_00053]
[SWS_LOG_00054] [SWS_LOG_00055]
[SWS_LOG_00056] [SWS_LOG_00057]
[SWS_LOG_00058] [SWS_LOG_00059]
[SWS_LOG_00060] [SWS_LOG_00062]
[SWS_LOG_00063] [SWS_LOG_00064]
[SWS_LOG_00065] [SWS_LOG_00066]
[SWS_LOG_00067] [SWS_LOG_00068]
[SWS_LOG_00069] [SWS_LOG_00070]
[SWS_LOG_00082] [SWS_LOG_00083]
[SWS_LOG_00091] [SWS_LOG_00095]
[SWS_LOG_00098] [SWS_LOG_00101]
[SWS_LOG_00108] [SWS_LOG_00109]
[SWS_LOG_00110] [SWS_LOG_00111]
[SWS_LOG_00112] [SWS_LOG_00113]
[SWS_LOG 00114] [SWS_LOG_00115]
[SWS_LOG_00120] [SWS_LOG_00122]
[SWS_LOG_00123] [SWS_LOG_00124]
[SWS_LOG_00128] [SWS_LOG_00129]
[SWS_LOG_00130] [SWS_LOG_00131]
[SWS_LOG_00201] [SWS_LOG_00203]
[SWS_LOG_00204]

AUTO SAR

Requirement

Description

Satisfied by

[RS_LT_00017]

Each log and trace
message shall contain
a timestamp, which
will be added to the
message during
reception of the
message in the LT
module.

[SWS_LOG_00082] [SWS_LOG_00083]
[SWS_LOG_00091]

[RS_LT_00030]

Logging shall be able
to monitor and shape
the amount of LT log

and trace events.

[SWS_LOG_00095]

[RS_LT_00045]

Logging shall enable
applications to check
the current severity
level.

[SWS_LOG_00007]

[RS_LT_00046]

Logging shall provide
conversion functions

for hexadecimal and

binary values.

[SWS_LOG_00015] [SWS_LOG_00016]
[SWS_LOG_00017] [SWS_LOG_00120]

[RS_LT_00047]

Logging shall support
initialization and
registration.

[SWS_LOG_00004]

[RS_LT_00048]

Logging shall enable
applications to provide
meta information.

[SWS_LOG_00004]

[RS_LT_00049]

Logging shall enable
applications to provide
Logging Information.

[SWS_LOG_00008] [SWS_LOG_00009]
[SWS_LOG_00010] [SWS_LOG_00011]
[SWS_LOG_00012] [SWS_LOG_00013]
[SWS_LOG_00125] [SWS_LOG_00126]
[SWS_LOG_00130]

[RS_LT_00050]

Logging shall support
grouping of Logging
Information.

[SWS_LOG_00005] [SWS_LOG_00006]

[RS_LT_00052]

Logging shall provide

early logging
capabilities.

[SWS_LOG_00001]

AUTOSAR

7 Functional specification

This specification defines the usage of the defined C++ Logging API for the Log
and Trace. Adaptive Applications can use these functions to forward Log
messages to various sinks, for example the network, a serial bus, the console or the
file system.

The following functionalities are provided:
1) Methods for initializing the Logging framework (see 7.3)

2) Utility methods to convert decimal values into hexadecimal or binary values (see
7.4)

3) Automatic timestamping of Log messages (see 7.5)
4) Log and trace network bandwith limitation (see chapter 7.6)

Adaptive Applications and Functional Clusters can startup (see 7.1.1)
and shutdown (see 7.1.2) all Functional Clusters with direct ARA interfaces
(e.9. the Logging framework), by calling ara::core::Initialize() or
ara::core::Deinitialize ().

7.1 Functional Cluster Lifecyle
7.1.1 Startup

In order to initialize the Logging framework, mandatory information needs to be pro-
vided to the Logging framework. These information are extracted from the appli-
cation execution manifest and the AUTOSAR Meta-Model. The execution manifest pa-
rameter Executable.loggingBehavior defines if the logging functionality should
be initialized. Initialization of the Logging framework (via ara: :core::Initialize)
is mandatory before usage of any ara: : 1og API. Failure to do so will result in unde-
fined behavior.

[SWS_LOG_00001] [Log message logged before the Logging framework is able
to process them (e.g. daemon communication is not established) shall be queued.
The queue size is defined by LogAndTraceInstantiation.queueSize. If this size
is exceeded the oldest entries shall be discarded. | (RS_LT_00003, RS_LT_00052)

7.1.2 Shutdown

[SWS_LOG_00122]{DRAFT} [When ara::core::Deinitialize() is called, the Logging
framework shall make sure, that no new client connections can be established. | (RS_-
LT_00003)

AUTOSAR

[SWS_LOG_00123]{DRAFT} [When ara::core::Deinitialize() is called, the Logging
framework shall take care that all remaining messages in the buffer can be collected,
if a client is connected. | (RS_LT_00003)

7.2 Necessary Parameters and Initialization

The concept of identifying the user application:

To be able to distinguish the logs of different application instances within a system (e.qg.
an ECU or even the whole vehicle), every Application process, in that system,
has to get a particular ID and a description.

The concept of log contexts:

In order to be able to distinguish the logs from different logical groups within an App1i-
cation process, for every context within an Application process a particular
ID and a description has to be assigned. Every Application process can have an
arbitrary amount of contexts, but at least one — the default context.

Machine-specific configuration settings for the Log and Trace functional cluster are
collected in LogAndTraceInstantiation. The Application processes using
the Logging framework need to supply the following configuration through the ap-
plication execution manifest:

e Application ID
e Application description

e The default log level, if not set through the manifest a default predefined value is
set

e The log mode
e The log file path, in case of a specific log mode that indicates logging to a file

The Application process using the Logging framework creates a Logging
instance per context. The context is defined at creation of the Logging instance
and the following information should be provided:

e Context ID
e Context description

e The default log level, if not set through the manifest a default predefined value is
set

7.2.1 Application ID

The Application ID is an identifier that allows to associate generated logging informa-
tion with its user application. The Application ID is passed as a string value. Depend-
ing on the Logging framework actual implementation, i.e. Logging back-end,

AUTOSAR

the length of the Application ID might be limited. To be able to unambiguously as-
sociate the received logging information to the origin, it is recommended to assign
unique Application IDs within one ECU. There is no need for uniqueness of Application
IDs across ECUs as the ECU ID will be the differentiator. The system integrator has
the overall responsibility to ensure that each Application process instance has
a unique Application ID. By having this value defined in the manifest the integrator is
able to perform consistency checks. The applicationId in the D1tLogChannel
identifies the application instance and is put as ApplicationId into the log and trace
message.

Note:
The Application IDs are unique IDs per Application process, meaning if the same
Application process is started multiple times it shall have an own ID per instance.

7.2.1.1 Application Description

Since the length of the Application ID can be quite short, an additional descriptive text
can be provided. This description is passed as a string and the maximum length is im-
plementation dependent. The applicationDescription inthe Dl1tLogChannel
is an optional setting that allows to describe the applicationId as descriptive text.

7.2.2 Default Log Level

The Log severity level represents the severity of the log messages. Severity lev-
els are defined in chapter 7.3. logTraceDefaultLogLevel inthe D1tLogChannel
defines the initial log reporting level for the application instance.

Each initiated log message is qualified with such a severity level. The default Log
severity level is set through the application configuration per Application
process. The Log severity level acts as a reporting filter. Only log messages
having a higher or the same severity will be processed by the Logging framework,
while the others are ignored.

The default Log severity level is the initially configured log reporting level for a
certain Application process, though it can be overriden per context.

The Application process wide log reporting level shall be adjustable during run-
time. The realization is an implementation detail of the underlying back-end. E.g.
remotely via a Logging client for example DLT Viewer. The same applies for the
context reporting level.

The design rationale for providing an initial default Log severity level application
wide against having per context default Log severity levelsis the following:

¢ |t simplifies the APl usage. Otherwise the user will have to define a context default
Log severity level for each group before using the API.

AUTOSAR
e The context separation of Log messages is possible during runtime.

7.2.3 Log Mode

Depending on the Logging framework implementation, the passed logging infor-
mation can be processed in different ways. The destination (the Log message sink)
can be the console output, a file on the file system or the communication bus. The sys-
tem integrator is responsible to populate this information in the machine manifest. A
direct API for dynamically changing this value for development purposes is provided. In
the AUTOSAR Meta-Model the 1ogTracelLogMode is equivalent to the log mode de-
scribed here, for more information see [3]. 1ogTraceLogMode in the D1tLogChan-
nel of the LogAndTraceInstantiation defines the destination to which the log
messages will be forwarded.

Execution Manifest Execution Manifest Machine Manifest
- LogMode - LogMode - Network, LogStorage, etc.

Adaptive Adaptive
Application Application

SWS
Logging APIs

Logging and Tracing Functional Cluster b (e e

File - Development Purposes Console File - LogStorage Network - LT Log Viewer

Figure 7.1: Log mode

As shown in the diagram, once the log mode is set to use the Logging back-end
the configuration is of that back-end is centralized in the Machine manifest configu-
ration. For example, the Logging back-end can be configured to store the logging
information locally and that configuration would be kept in the Machine-specific man-
ifest. Furthermore, the output channel on Ethernet for Log messages is configured
with the P1at formModuleEthernetEndpointConfiguration thatis aggregated
by the LogAndTraceInstantiation via D1tLogChannel in the role endpoint-
Configuration.

AUTOSAR

7.2.3.1 Log File Path

In case the log mode is set to log to a file, a destination directory path needs to be
provided. logTraceFilePath in the D1tLogChannel defines the destination file
to which the logging information is passed. This option is provided for development,
integration and prototyping purposes and is not suitable for production.

7.2.4 ContextID

The Context ID is an identifier that is used to logically group logging information within
the scope of an Application process. The Context ID is passed as a string value.
Depending on the actual implementation of the Logging back-end, the length of the
Context ID might be limited. Context ID is unique in the scope of an Application
process and as such the developer is responsible for assigning it and this informa-
tion is not modeled in the manifest. There is no need for uniqueness of Context IDs
across multiple different Application processes as the Application ID will be the
differentiator.

Note:

Special attention should be paid to library components. The libraries are meant to
be used by Application processes and therefore are running within the App1i-
cation process’ scope. Logging executed from those libraries will end up inside
the scope of the parent Application process. In order to distinguish the internal
library logs from the Application process logs or from other library logs within
same process, each library might need to reserve its own Context IDs system wide —
at least when it shall be used by more than one Application process.

7.2.5 Context Description

Since the length of the Context ID can be quite short, an additional descriptive text must
be provided. This Context description is passed as a string. The maximum length of
the Context description is implementation dependent.

7.2.6 Initialization of the Logging framework

The Application ID and description are used to identify and to associate the provided
logging information with the exact process. The log mode and sink information defines
where the logging information is routed. Possible destinations are the console, the file
system or the communication bus.

From the Application process’ perspective, the Logging framework is intial-
ized and a logger instance is created when an Application process decides to
register a logging context. These contexts are used to logically cluster logging infor-
mation.

AUTOSAR

[SWS_LOG_00002]{DRAFT} [In case of any errors occurring inside the Logging
framework or underlying system, it is intended to not bother the Application pro-
cess and silently discard the function calls. For this purpose, the relevant interfaces
neither specify return values nor throw exceptions.|(RS_LT_00003)

[SWS_LOG_00004]{DRAFT} [The application execution manifest should provide the
following information for the Logging framework to be initialized:

- A unique application 1D

An application description

The default Log severity level

The log mode
- The directory path (only necessary if LogMode: : kFile is given as log mode)
|(RS_LT_00003, RS_LT_00047, RS_LT_00048)

Note:
Depending on the Logging framework implementation not all of the features might
be supported, hence not all of the properties will be used.

[SWS_LOG_00005] [The function CreateLogger () shall create a logger context in-
stance internally inside the Logging framework and return it as reference to the
using application. Before a Log message can be processed, at least one logger con-
text shall be available. | (RS _LT_00003, RS_LT_00050)

Note:

This strong ownership relationship of contexts to the Logging framework ensure
correct housekeeping of the involved resources. The design rationale is, once a
context is registered against the Logging back-end, its lifetime must be ensured
until the end of the Application process.

[SWS_LOG_00006] [By calling CreateLogger (), the following parameters need to
be provided:

- The context ID
- The context description

- The Log severity level (as an optional parameter, defaults to
LogLevel: :kWarn)

|(RS_LT_00003, RS_LT_00050)

[SWS_LOG_00007] [Application processes should be able to check if a desired
Log severity level is configured through the function IsLogEnabled (). This
mechanism conserves CPU and memory resources that are used during preparation of

AUTOSAR

logging information, as this logging information is filtered by the Logging framework
later on.| (RS_LT_00003, RS_LT _00045)

AUTOSAR

7.3 Log Messages

Log messages can generally be output to different targets. The Log and Trace Func-
tional Cluster supports these logging targets:

- the console
- afile on a local file system
- a network

Most of the discussion in this section assumes that messages are being output to a
network, as this use case requires the additional consideration of minimizing network
load.

The Log And Trace Functional Cluster offers two principal “classes” of log messages:
Modeled and Non-Modeled messages. Both these support adding one or more “argu-
ments” to a log message. A log message without any arguments serves no purpose
and is discarded.

Non-Modeled messages are the traditional way of composing log messages: All ar-
guments of the message are added to an internal message buffer and then eventually
serialized for output, either to a console/file, or via network. All parts of the messages
will be sent via network. In the DLT protocol, these messages are called “verbose”
messages.

Modeled messages are designed to reduce traffic on the network, by omitting certain
static (i.e. unchanging) parts of a message from the network. As the name suggests,
these parts are instead added to the application ARXML model. In the DLT protocol,
these messages are called “non-verbose” messages. A log message viewer applica-
tion is able to display the full message by combining the static parts from the model
with the dynamic parts from the received message.

Non-modeled messages are mainly used during development, as the information re-
quired for the modeled messages may not be available at that time. However, non-
modeled messages can impose a high load on the network, making modeled mes-
sages usually the preferred choice in production systems.

The ara: : 1og Functional Cluster supports defining and using both modeled and non-
modeled messages in a single application at the same time.

7.3.1 Non-modeled messages

The ara: :1og Functional Cluster defines a “Builder’-pattern inspired set of APIs for
constructing non-modeled messages. The ara::1og: :Logger: :WithLevel mem-
ber function is used for creating a ara: : log: : LogStream object which is then sub-
sequently filled with message content (i.e. message arguments). Alternatively to
ara::log::Logger: :WithLevel, there are also separate member functions for
creatinga ara: :1log: : LogStream object, one per supported log level.

AUTOSAR

Arguments are added to a verbose message by calling an appropriate operator<<
overload for the desired argument:

logger.WithLevel (LogLevel::kInfo) << "text" << 4.2;

The ara: :1og Functional Cluster defines such operator<< overloads for all C++
arithmetic types, for bool, for string types, and for a number of ara: :core types.
Application-defined data types can be logged as well, by providing suitable opera-
tor<< overloads for them.

As the application model allows “annotating” arguments with attributes, the ara: : 1og
API for non-modeled messages also supports this. Arguments of certain types can be
annotated with a “name” and possibly also a “unit” attribute. For instance:
logger.WithLevel (LogLevel: :kInfo)

<< Arg("text", "identifier")
<< Arg (4.2, "velocity", "m/s");

The string argument “text” is annotated with a “name” attribute called “identifier”. The
double argument 4.2 is annotated with a “name” attribute “velocity” and a “unit” of “m/s”.
These attributes can only be set for some of the built-in types that the ara: :10g API
supports, i.e. all arithmetic types, bool, strings, and raw data blobs.

Non-modeled messages can also contain information about the location of the log
message call in source code. For this purpose, the member function ara::log::-
LogStream: :WithLocation is called with the filename and line number of the call
site. These should usually come from the compiler-defined __FILE__and __ LINE___
symbols:

logger
.WithLevel (LogLevel: :kInfo)
.WithLocation(__FILE__, _ LINE_) << ...;

These are easiest set via a macro-based frontend for ara: : 1og, but no such macro
has yet been defined in the Adaptive Platform.

7.3.2 Modeled messages
7.3.2.1 API principles

The ara: :1og Functional Cluster defines a single member function ara::1og::-
Logger: :Log for sending modeled messages. Unlike the non-modeled message
APls, it represents a single-call interface, i.e. a single function call passes all argu-
ments to the Logger instance and performs all necessary actions to generate and
send the message.

This has the advantage that the runtime cost for a modeled message that is eventually
not being output (because the message’s log level does not reach the configured log
level threshold) can be made very small: after parameter passing and function call, a
single if clause checks the log level threshold and immediately returns if the threshold

AUTOSAR

is not reached. This contrasts with the non-modeled message APIs, where multiple
function calls are performed for constructing a message object, even if that is then
eventually discarded.

7.3.2.2 Log message model

All modeled messages are defined as D1tMessages, which are aggregated by a
DltMessageCollectionSet that is referenced by the System. Each DltMes-
sage contains a messageId, which needs to be unique within an ECU, and the
messageTypeInfo denoting the log level, and optionally the messageSourceFile
and messageLineNumber. The D1tMessage aggregates an ordered list of D1tAr-
guments, which in turn refer to an swbatabefProps inthe role networkRepresen—
tation. The name of a log message argument is taken from the shortName of the
D1tArgument, while the type and unit are taken from the SswbatabDefProps.

At design time, the D1tMessages are allocated to a D1tLogChannelDesign, which
is mapped to the application using a D1tLogChannelDesignToProcessDesign—
Mapping t0o @ ProcessDesign, which in turn refers to the Executable.

At deployment time, the D1tLogChannelDesign is referenced by a D1tLogChan-—
nel, which inherits the D1tMessages from the design phase. The D1tLogChannel
is mapped to the application using a D1tLogChannelToProcessMapping referenc-
ing a Process of the Executable. All D1tLogChannels are aggregated by the
LogAndTracelInstantiation of the ECU, that carries the d1tEcuId and queue-
Size, and with sessionIdSupport the information whether session IDs are used.
A DltLogChannel contains the applicationId and contextId and the corre-
sponding applicationDescription and contextDescription. It may refer to
a ServicelInstanceToPortPrototypeMapping, in which case the log messages
from this port will use the contextId of the D1tLogChannel. A Dl1tLogChannel
also contains the sessionId, and with nonvVerboseMode the information whether
modeled messages will be sent as verbose messages as if they were non-modeled
messages. And finally, a D1tLogChannel contains a logTraceDefaultLogLevel
giving the initial threshold for log messages, 1ogTraceLogMode configuring the des-
tination of log messages, and the 1ogTraceFilePath when the destination is file.

7.3.2.3 Usage

The C++ APl assumes the existence of a tool that scans source code for modeled log
message call sites and generates the expected symbols with unique IDs on-demand.

The framework is required to scan all source code for invocations of the ara: :1og: -
:Logger: : Log member function, and generate a symbol that matches the first argu-
ment of that member function call.

For instance, if the ARXML representation of the manifest contains the following:
<DLT-MESSAGE-COLLECTION-SET>

AUTOSAR

<SHORT-NAME>D1tMessages</SHORT-NAME>
<DLT-MESSAGES>
<DLT-MESSAGE>

<SHORT-NAME>SpeedMsg</SHORT-NAME >

</DLT-MESSAGE>
</DLT-MESSAGES>
</DLT-MESSAGE-COLLECTION-SET>

and the source code contains this code sequence:

Logger& logger = ...
logger.Log (SpeedMsg, 4.2);

then the framework will define a global constexpr variable called speedMsg of an
implementation-defined type. This variable contains knowledge about the message’s
modeled aspects, such as parameter types and log level, allowing the ara: :1og im-
plementation to verify that the number of types of parameters given to ara: :1og: : -
Logger: : Log matches the model of the particular message.

The message variable definitions will be made available via ara/log/logger.h.

Store LogStream objects in a variable:

It is also possible to use the Logging APT in an alternative way by storing a ara: : -
log: :LogStream object locally in some named variable. The difference to the tem-
porary object is that it won’t go out of scope already at the end of the statement, but
stays valid and re-usable as long as the variable exists. Hence, it can be fed with
data distributed over multiple lines of code. To get the message buffer processed by
the Logging framework, the ara::1og::LogStream: :Flush method needs to
be called, otherwise the buffer will be processed when the object dies, i.e. when the
variable goes out of scope, at the end of the function block.

Performance remark:

Due to the fact that a ara: : 1og: : LogStream is no longer created per message but
rather could be re-used for multiple messages, the costs for this object creation is paid
only once — per log level. How much this really influences the actual performance
depends on the Logging framework implementation. However the main goal of this
alternative usage of the Logging APTI is to get the multi-line builder functionality.

Note:

It is highly advised NOT to hold global ara::1og::LogStream objects in multi-
threaded Applications, because then concurrent access protection will no longer
be covered by the Logging APT.

Usage examples:

Logger& ctx0 = Createlogger ("CTX0", "Context Description CTXO0");
ctx0.LogInfo() << "Some log information" << 123;

// Locally stored LogStream object will process the arguments

// until either Flush() is called or it goes out of scope from
// the block is was created

Logger& ctxl = Createlogger ("CTX1", "Context Description CTX1");

AUTOSAR

LogStream locallogInfo = ctxl.LogInfo();
localLogInfo << "Some log information" << 123;
localLogInfo << "Some other information";
localLogInfo.Flush{();

locallogInfo << "a new message..." << 456;

Exception safety: All Logx () interfaces are designed to guarantee no-throw behav-
ior. This applies for the whole Logging APT.

New line: Because of convenience purposes the Logging framework automatically
appends a newline to the Log message.

Multiple payload arguments: When one message consists of more than one payload
argument, payload arguments a separated by single whitespaces for console output.

[SWS_LOG_00008]{DRAFT} [To initiate a Log message with the Log level Fatal,
the APl ara::1log: :Logger: :LogFatal shall be called. This APl returns a ara: -
:1og: :LogStream object that has to be used by passing arguments via the insert
stream operator<<.|(RS_LT_00003, RS _LT_00049)

[SWS_LOG_00009]{DRAFT} [To initiate a Log message with the Log level Error,
the APl ara::1log: :Logger: :LogError shall be called. This APl returns a ara: -
:1og: :LogStream object that has to be used by passing arguments via the insert
stream operator<<.|(RS_LT_00003, RS _LT_00049)

[SWS_LOG_00010]{DRAFT} [To initiate a Log message with the Log level warn-
ing, the APl ara::1log::Logger::LogWarn shall be called. This API returns a
ara::log::LogStream object that has to be used by passing arguments via the
insert stream operator<<.|(RS_LT_00003, RS_LT_00049)

[SWS_LOG_00011]{DRAFT} [To initiate a Log message with the Log level Info,
the APl ara::1log: :Logger: :LogInfo shall be called. This API returns a ara: -
:1og: :LogStream object that has to be used by passing arguments via the insert
stream operator<<.|(RS_LT_00003, RS _LT_00049)

[SWS_LOG_00012]{DRAFT} [To initiate a Log message with the Log level Debug,
the APl ara::1og: :Logger: : LogDebug shall be called. This APl returns a ara: -
:1log: :LogStream object that has to be used by passing arguments via the insert
stream operator<<.|(RS_LT_00003, RS _LT_00049)

[SWS_LOG_00013]{DRAFT} [To initiate a Log message with the Log level ver-
bose, the APl ara::1og: :Logger: :LogVerbose shall be called. This API returns
a ara::log::LogStream object that has to be used by passing arguments via the
insert stream operator<<.|(RS_LT_00003, RS_LT_00049)

[SWS_LOG_00130]{DRAFT} |[To write a Log message with a programmatically deter-
mined log level, the API Logger::WithLevel(LogLevel logLevel) shall be called.|(RS_-
LT_00003, RS_LT_00049)

AUTOSAR

7.4 Conversion Functions

Sometimes it makes sense to represent integer numbers in hexadecimal or binary
format instead of decimal format.

For this purpose, the following functions are defined to convert provided decimal
numbers into the hexadecimal or binary system.

[SWS_LOG_00120]{DRAFT} [Dedicated conversion functions are provided for con-
version of positive decimal numbers into a string with hexadecimal or binary represen-
tation. | (RS_LT_00003, RS_LT_00046)

[SWS_LOG_00015]{DRAFT} [Dedicated conversion functions are provided for con-
version of decimal numbers into a string with hexadecimal or binary representation,
where the most significant bit shall be set to '1’ for negative numbers. | (RS_LT_00003,
RS LT _00046)

[SWS_LOG_00016]{DRAFT} [Function HexFormat () shall provide functionality to
convert an integer decimal number into a string with hexadecimal representation. |
(RS_LT_00003, RS_LT _00046)

[SWS_LOG_00017]{DRAFT} [Function BinFormat () shall provide functionality to
convert an integer decimal number into a string with binary representation.|(RS_LT_-
00003, RS_LT _00046)

AUTOSAR

7.5 Log and Trace Timestamp

The Log and Trace information is transmitted by means of the LT protocol
which is bus agnostic.

This protocol offers the possibility to include a timestamp in each sent message,
as long as such messages are sent with an extended header (refer to [5] for more
information).

The synchronized time base is supplied by the Time Synchronization Functional
Cluster. The now () method is used by the Adaptive Applications in order to
retrieve the current time from the TS (refer to [6] for more information).

According to the requirement [TPS_MANI_03162], the reference time base is derived
from the machine manifest t imeBaseResource.

[SWS_LOG_00082] [L.og and Trace should have accesss to a synchronized time
base. The attribute t imeBaseResource in LogAndTraceInstantiation shall be
used to identify the time base.|(RS_LT_00003, RS_LT_00017)

[SWS_LOG_00083] [In case there is no time base resource referenced by the Log
and Trace module in the manifest configuration, no timestamp information shall be
transmitted. | (RS_LT_00003, RS_LT_00017)

[SWS_LOG_00091]{DRAFT} [When the CreateLogger () function is called, Log
and Trace shall send a message, "local time base used" in case the used time base
is a local time base or "global time base used" in case the used time base is a globally
synchronized time base.

|(RS_LT 00003, RS_LT 00017)

AUTOSAR

7.6 Log and Trace data loss prevention

[SWS_LOG_00095]{DRAFT} [When Log and Trace receives simultaneously a
high load of trace information generated by multiple Adaptive Applications, it
shall buffer this data internally to prevent the data loss during its continuous transmis-
sion.|(RS_LT_00003, RS_LT_00030)

AUTOSAR

8 API specification

8.1 API Common Data Types

8.1.1 LoglLevel

[SWS_LOG_00018]{DRAFT} |

Kind: enumeration
Symbol: LogLevel
Scope: namespace ara::log
Underlying type: uint8_t
Syntax: enum class LogLevel : uint8_t {...};
Values: kOff= 0x00 No logging.
kFatal= 0x01 Fatal error, not recoverable.
kError= 0x02 Error with impact to correct functionality.
kWarn= 0x03 Warning if correct behavior cannot be ensured.
kinfo= 0x04 Informational, providing high level understanding.
kDebug= 0x05 Detailed information for programmers.
kVerbose= 0x06 Extra-verbose debug messages (highest grade of
information)
Header file: #include "ara/log/common.h"
Description: List of possible severity levels .
|(RS_LT _00003)
8.1.2 LogMode
[SWS_LOG_00019]{DRAFT} [
Kind: enumeration
Symbol: LogMode
Scope: namespace ara::log
Underlying type: uint8_t
Syntax: enum class LogMode : wuint8_t {...};
Values: kRemote= 0x01 Sent remotely.
kFile= 0x02 Save to file.
kConsole= 0x04 Forward to console.
Header file: #include "ara/log/common.h"
Description: Log mode. Flags, used to configure the sink for log messages.
Notes: In order to combine flags, at least the OR and AND operators needs to be provided for this type.

|(RS_LT _00003)

AUTO SAR

8.1.3 LogHex8

[SWS_LOG_00108]{DRAFT} [

Kind: struct

Symbol: LogHex8

Scope: namespace ara::log

Syntax: struct LogHex8 {...};

Header file: #include "ara/log/log_stream.h"

Description: Represents a 8 bit hexadecimal value data type .
Helper struct that is utilized as custom type. Holds an integer value that will be logged with a
special format.

|(RS_LT_00003)

8.1.4 LogHex16

[SWS_LOG_00109]{DRAFT} |

Kind: struct

Symbol: LogHex16

Scope: namespace ara::log

Syntax: struct LogHex16 {...};

Header file: #include "ara/log/log_stream.h"

Description: Represents a 16 bit hexadecimal value data type .

|(RS_LT _00003)

8.1.5 LogHex32

[SWS_LOG_00110]{DRAFT} |

Kind: struct

Symbol: LogHex32

Scope: namespace ara::log

Syntax: struct LogHex32 {...};

Header file: #include "ara/log/log_stream.h"

Description: Represents a 32 bit hexadecimal value data type .

|(RS_LT_00003)

AUTO SAR

8.1.6 LogHex64

[SWS_LOG_00111]{DRAFT} |

Kind: struct

Symbol: LogHex64

Scope: namespace ara::log

Syntax: struct LogHex64 {...};

Header file: #include "ara/log/log_stream.h"

Description: Represents a 64 bit hexadecimal value data type .

|(RS_LT 00003)

8.1.7 LogBin8

[SWS_LOG_00112]{DRAFT} [

Kind: struct

Symbol: LogBin8

Scope: namespace ara::log

Syntax: struct LogBin8 {...};
Header file: #include "ara/log/log_stream.h"
Description: Represents a 8 bit binary data type .

|(RS_LT 00003)

8.1.8 LogBin16

[SWS_LOG_00113]{DRAFT} |

Kind: struct

Symbol: LogBin16

Scope: namespace ara::log

Syntax: struct LogBinlé {...};
Header file: #include "ara/log/log_stream.h"
Description: Represents a 16 bit binary data type .

|(RS_LT_00003)

8.1.9 LogBin32

[SWS_LOG_00114]{DRAFT} [

AUTO SAR

Kind: struct

Symbol: LogBin32

Scope: namespace ara::log

Syntax: struct LogBin32 {...};
Header file: #include "ara/log/log_stream.h"
Description: Represents a 32 bit binary data type .

|(RS_LT_00003)

8.1.10 LogBin64

[SWS_LOG_00115]{DRAFT} |

Kind: struct

Symbol: LogBin64

Scope: namespace ara::log

Syntax: struct LogBin64 {...};
Header file: #include "ara/log/log_stream.h"
Description: Represents a 64 bit binary data type .

|(RS_LT 00003)

8.1.11

ClientState

[SWS_LOG_00098]{DRAFT} [

Kind: enumeration
Symbol: ClientState
Scope: namespace ara::log
Underlying type: int8_t
Syntax: enum class ClientState : int8_t {...};
Values: kUnknown= -1 -
kNotConnected -
kConnected -
Header file: #include "ara/log/common.h"
Description: Client state representing the connection state of an external client. .

|(RS_LT _00003)

AUTOSAR

8.2 Function definitions

8.2.1 CreateLogger

[SWS_LOG_00021]{DRAFT} |

Kind: function

Symbol: CreatelLogger(ara::core::StringView ctxld, ara::core::StringView ctxDescription, LogLevel ctxDef
LoglLevel=LogLevel::kWarn)

Scope: namespace ara::log

SynMMT Logger& CreatelLogger (ara::core::StringView ctxId, ara::core::String

View ctxDescription, LogLevel ctxDefLogLevel=LogLevel::kWarn)
noexcept;

Parameters (in): ctxld The context ID.
ctxDescription The description of the provided context ID.
ctxDefLogLevel The default log level, set to Warning severity if not
explicitly specified.

Return value: Logger & Reference to the internal managed instance of a
Logger object. Ownership stays within the Logging
framework

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Creates a Logger object, holding the context which is registered in the Logging framework.

|(RS_LT 00003)

8.2.2 HexFormat (uint8)

[SWS_LOG_00022]{DRAFT} |

Kind: function

Symbol: HexFormat(uint8_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex8 HexFormat (uint8_t wvalue) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex8 LogHex8 type that has a built-in stream handler.
Exception Safety: noexcept
Header file: #include "ara/log/logger.h"
Description: Conversion of a uint8 into a hexadecimal value.
Negatives are represented in 2's complement. The number of represented digits depends on
the overloaded parameter type length.
Notes: Logs decimal numbers in hexadecimal format.

|(RS_LT _00003)

AUTO SAR

8.2.3 HexFormat (int8)

[SWS_LOG_00023]{DRAFT} [

Kind: function

Symbol: HexFormat(int8_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex8 HexFormat (int8_t value) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex8 LogHex8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a int8 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format. Negatives are represented in 2’'s complement.

|(RS_LT 00003)

8.2.4 HexFormat (uint16)

[SWS_LOG_00024]{DRAFT} [

Kind: function

Symbol: HexFormat(uint16_t value)

Scope: namespace ara::log

Syntax: constexpr LogHexl6 HexFormat (uintl6_t value) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex16 LogHex16 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a uint16 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format.

|(RS_LT _00003)

8.2.5 HexFormat (int16)

[SWS_LOG_00025]{DRAFT} [

AUTO SAR

Kind: function

Symbol: HexFormat(int16_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex16 HexFormat (intl6_t wvalue) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex16 LogHex16 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a int16 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format. Negatives are represented in 2’s complement.

|(RS_LT 00003)

8.2.6 HexFormat (uint32)

[SWS_LOG_00026]{DRAFT} |

Kind: function

Symbol: HexFormat(uint32_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex32 HexFormat (uint32_t value) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex32 LogHex32 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a uint32 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format.

|(RS_LT 00003)

8.2.7 HexFormat (int32)

[SWS_LOG_00027]{DRAFT} |

AUTO SAR

Kind: function

Symbol: HexFormat(int32_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex32 HexFormat (int32_t wvalue) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex32 LogHex32 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a int32 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format. Negatives are represented in 2’s complement.

|(RS_LT 00003)

8.2.8 HexFormat (uint64)

[SWS_LOG_00028]{DRAFT} |

Kind: function

Symbol: HexFormat(uint64_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex64 HexFormat (uint64_t value) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex64 LogHex64 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a uint64 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format.

|(RS_LT 00003)

8.2.9 HexFormat (int64)

[SWS_LOG_00029]{DRAFT} |

AUTO SAR

Kind: function

Symbol: HexFormat(int64_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex64 HexFormat (int64_t wvalue) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex64 LogHex64 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a int64 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format. Negatives are represented in 2’s complement.

|(RS_LT 00003)

8.2.10 BinFormat (uint8)

[SWS_LOG_00030]{DRAFT} [

Kind: function

Symbol: BinFormat(uint8_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin8 BinFormat (uint8_t wvalue) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin8 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a uint8 into a binary value.

Notes: Logs decimal numbers in binary format.

|(RS_LT 00003)

8.2.11 BinFormat (int8)

[SWS_LOG_00031]{DRAFT} [

Kind: function
Symbol: BinFormat(int8_t value)
Scope: namespace ara::log

AUTO SAR

A
Syntax: constexpr LogBin8 BinFormat (int8_t value) noexcept;
Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin8 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept
Thread Safety: reentrant
Header file: #include "ara/log/logger.h"
Description: Conversion of a int8 into a binary value.
Notes: Logs decimal numbers in binary format. Negatives are represented in 2's complement.

|(RS_LT_00003)

8.2.12 BinFormat (uint16)

[SWS_LOG_00032]{DRAFT} [

Kind: function

Symbol: BinFormat(uint16_t value)

Scope: namespace ara::log

Syntax: constexpr LogBinlé BinFormat (uintl6_t value) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin16 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a uint16 into a binary value.

Notes: Logs decimal numbers in binary format.

|(RS_LT 00003)

8.2.13 BinFormat (int16)

[SWS_LOG_00033]{DRAFT} [

Kind: function

Symbol: BinFormat(int16_t value)

Scope: namespace ara::log

Syntax: constexpr LogBinlé BinFormat (intl6_t wvalue) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin16 LogBin8 type that has a built-in stream handler.

V

AUTO SAR

A
Exception Safety: noexcept
Thread Safety: reentrant
Header file: #include "ara/log/logger.h"
Description: Conversion of a int16 into a binary value.
Notes: Logs decimal numbers in binary format. Negatives are represented in 2's complement.

|(RS_LT 00003)

8.2.14 BinFormat (uint32)

[SWS_LOG_00034]{DRAFT} [

Kind: function

Symbol: BinFormat(uint32_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin32 BinFormat (uint32_t value) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin32 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a uint32 into a binary value.

Notes: Logs decimal numbers in binary format.

|(RS_LT _00003)

8.2.15 BinFormat (int32)

[SWS_LOG_00035]{DRAFT} |

Kind: function

Symbol: BinFormat(int32_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin32 BinFormat (int32_t wvalue) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin32 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Y%

AUTO SAR

A
Description: Conversion of a int32 into a binary value.
Notes: Logs decimal numbers in binary format. Negatives are represented in 2's complement.

|(RS_LT_00003)

8.2.16 BinFormat (uint64)

[SWS_LOG_00036]{DRAFT} [

Kind: function

Symbol: BinFormat(uint64_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin64 BinFormat (uint64_t value) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin64 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a uint64 into a binary value.

Notes: Logs decimal numbers in binary format.

|(RS_LT _00003)

8.2.17 BinFormat (int64)

[SWS_LOG_00037]{DRAFT} |

Kind: function

Symbol: BinFormat(int64_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin64 BinFormat (int64_t wvalue) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin64 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Conversion of a int64 into a binary value.

Notes: Logs decimal numbers in binary format. Negatives are represented in 2's complement.

|(RS_LT_00003)

AUTOSAR

8.2.18 remoteClientState

[SWS_LOG_00101]{DRAFT} [

Kind: function

Symbol: remoteClientState()

Scope: namespace ara::log

Synumv ClientState remoteClientState () noexcept;

Return value: ClientState The current client state.

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logger.h"

Description: Fetches the connection state from the DLT back-end of a possibly available remote client.

|(RS_LT 00003)

8.2.19 Wrapper object creator

[SWS_LOG_00201]{DRAFT} [

Kind: function

Symbol: Arg(T &&arg, const char *name=nullptr, const char *unit=nullptr)
Scope: namespace ara::log

Syntax: template <typename T>

Argument<T> Arg (T &&arg, const char sname=nullptr, const char
sunit=nullptr) noexcept;

Parameters (in): arg an argument payload object
name an optional "name" attribute for arg
unit an optional "unit" attribute for arg
Return value: Argument< T > a wrapper object holding the supplied arguments
Exception Safety: noexcept
Header file: #include "ara/log/logger.h"
Description: Create a wrapper object for the given arguments.

Calling this function shall be ill-formed if any of these conditions are met: T is not an arithmetic
type and not "bool" and not convertible to "ara::core::StringView" and not convertible to
"ara::core::Span<const ara::core::Byte>" T is convertible to "ara::core::StringView" or
convertible to "ara::core::Span<const ara::core::Byte>" or "bool", and "unit" is not "nullptr"

|(RS_LT _00003)

8.2.20 Logger of an argument with attributes

[SWS_LOG_00203]{DRAFT} [

AUTO SAR

Kind: function
Symbol: operator<<(const Argument< T > &arg)
Scope: namespace ara::log
Syntax: template <typename T>
LogStream& operator<< (const Argument< T > &arg) noexcept;
Template param: T the argument payload type
Parameters (in): arg the argument wrapper object
Return value: LogStream & *this
Exception Safety: noexcept
Header file: #include "ara/log/log_stream.h"
Description: Log an argument with attributes.

When output to the console, the value and all its attributes shall be shown as a single argument.

|(RS_LT 00003)

8.2.21 Logger of modeled message

[SWS_LOG_00204]{DRAFT} [

Kind: function
Symbol: Log(const Msgld &id, const Params &... args)
Scope: class ara::log::Logger
Syntax: template <typename MsgId, typename... Params>
void Log (const MsgId &id, const Params &... args) noexcept;
Template param: Msgld the type of the id parameter
Args the types of the args parameters
Parameters (in): id an implementation-defined type identifying the

message object

args the arguments to add to the message
Return value: None
Exception Safety: noexcept
Header file: #include "ara/log/logger.h"
Description: Log a modeled message.

If this function is called with an argument list that does not match the modeled message, the
program is ill-formed.

|(RS_LT 00003)

1
2
3
4
5
6
7
8
9

10
11

AUTOSAR

8.3 Class definitions

8.3.1 Class LogStream

The class ara: :1og::LogStream represents a Log message, allowing stream op-
erators to be used for appending data.

[ID_NOT_DEFINED] [

Kind: class
Symbol: LogStream
Scope: namespace ara::log
Syntax: class LogStream final {...};
Header file: #include "ara/log/log_stream.h"
Description: -

10

Note:

Normally Application processes would not use this class directly. Instead one of
the log methods provided in the main Logging APT shall be used. Those methods
automatically setup a temporary object of this class with the given log severity level.
The only reason to use this class direcitly is, if the user wants to hold a ara: :1log: -
:LogStream object longer than the default one-statement scope. This is useful in
order to create log messages that are distributed over multiple code lines. See the
ara::log::LogStream: :Flush method for further information. Once this tempo-
rary object gets out of scope, its destructor takes care that the message buffer is ready
to be processed by the Logging framework.

8.3.1.1 Extending the Logging API to understand custom types

The ara::log::LogStream class supports natively the formats stated in chapter
8.2, it can be easily extended for other derived types by providing a stream operator
that makes use of already supported types.

Example:

struct MyCustomType {
int8_t foo;
ara::core::String bar;

}i

LogStream& operator<<(LogStreamé& out, const MyCustomTypeé& value) {
return (out << value.foo << value.bar);

}

// Producing the output "42 the answer is."
Logger& ctx0 = CreatelLogger ("CTX0", "Context Description CTXO0");

AUTO SAR

12 ctx0.LogDebug () << MyCustomType{42, " the answer is."};

AUTOSAR

8.3.1.2 LogStream::Flush

[SWS_LOG_00039]{DRAFT} |

Kind: function

Symbol: Flush()

Scope: class ara::log::LogStream

Syntax: void Flush () noexcept;

Return value: None

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Sends out the current log buffer and initiates a new message stream.

|(RS_LT_00003)

Note:

Calling ara::log::LogStream: :Flush is only necessary if the ara::1log::-
LogStream object is going to be re-used within the same scope. Otherwise, if the
object goes out of scope (e.g. end of function block) then the flushing operation will
be done internally by the destructor. It is important to note that the ara::1log::-
LogStream: : Flush command does not empty the buffer, but it forwards the buffer’s

current contents to the L.ogging framework.

8.3.1.3 Built-in operators for natively supported types

[SWS_LOG_00040]{DRAFT} [

Kind: function

Symbol: operator<<(bool value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (bool value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Appends given value to the internal message buffer.

|(RS_LT 00003)

[SWS_LOG_00041]{DRAFT} [

AUTO SAR

Kind: function

Symbol: operator<<(uint8_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (uint8_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes unsigned int 8 bit parameter into message.

|(RS_LT 00003)

[SWS_LOG_00042]{DRAFT} [

Kind: function

Symbol: operator<<(uint16_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (uintlé6_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes unsigned int 16 bit parameter into message.

|(RS_LT 00003)

[SWS_LOG_00043]{DRAFT} [

Kind: function

Symbol: operator<<(uint32_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (uint32_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes unsigned int 32 bit parameter into message.

|(RS_LT 00003)

[SWS_LOG_00044]{DRAFT} [

AUTO SAR

Kind: function

Symbol: operator<<(uint64_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (uinté64_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes unsigned int 64 bit parameter into message.

|(RS_LT 00003)

[SWS_LOG_00045]{DRAFT} |

Kind: function

Symbol: operator<<(int8_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (int8_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes signed int 8 bit parameter into message.

|(RS_LT 00003)

[SWS_LOG_00046]{DRAFT} [

Kind: function

Symbol: operator<<(int16_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (intlé_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes signed int 16 bit parameter into message.

|(RS_LT 00003)

[SWS_LOG_00047]{DRAFT} [

AUTO SAR

Kind: function

Symbol: operator<<(int32_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (int32_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes signed int 32 bit parameter into message.

|(RS_LT 00003)

[SWS_LOG_00048]{DRAFT} |

Kind: function

Symbol: operator<<(int64_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (int64_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes signed int 64 bit parameter into message.

|(RS_LT 00003)

[SWS_LOG_00049]{DRAFT} [

Kind: function

Symbol: operator<<(float value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (float value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Wirites float 32 bit parameter into message.

|(RS_LT 00003)

[SWS_LOG_00050]{DRAFT} [

AUTO SAR

Kind: function

Symbol: operator<<(double value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (double value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes float 64 bit parameter into message.

|(RS_LT _00003)

8.3.1.4 Built-in operators for conversion types

[SWS_LOG_00053]{DRAFT} |

Kind: function

Symbol: operator<<(const LogHex8 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogHex8 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes unsigned int parameter into message, formatted as hexadecimal 8 digits.

|(RS_LT 00003)

[SWS_LOG_00054]{DRAFT} |

Kind: function

Symbol: operator<<(const LogHex16 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogHexl6 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

AUTO SAR

A

Header file:

#include "ara/log/log_stream.h"

Description:

Writes unsigned int parameter into message, formatted as hexadecimal 16 digits.

|(RS_LT _00003)

[SWS_LOG_00055]{DRAFT} [

Kind: function

Symbol: operator<<(const LogHex32 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogHex32 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes unsigned int parameter into message, formatted as hexadecimal 32 digits.

|(RS_LT 00003)

[SWS_LOG_00056]{DRAFT} [

Kind: function

Symbol: operator<<(const LogHex64 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogHex64 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes unsigned int parameter into message, formatted as hexadecimal 64 digits.

|(RS_LT 00003)

[SWS_LOG_00057]{DRAFT} [

Kind: function

Symbol: operator<<(const LogBin8 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogBin8 &value) noexcept;

Parameters (in):

value Value to be appended to the internal message

buffer.
V

AUTO SAR

A
Return value: LogStream & *this
Exception Safety: noexcept
Thread Safety: reentrant
Header file: #include "ara/log/log_stream.h"
Description: Writes unsigned int parameter into message, formatted as binary 8 digits.

|(RS_LT _00003)

[SWS_LOG_00058]{DRAFT} [

Kind: function

Symbol: operator<<(const LogBin16 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogBinl6 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes unsigned int parameter into message, formatted as binary 16 digits.

|(RS_LT 00003)

[SWS_LOG_00059]{DRAFT} [

Kind: function

Symbol: operator<<(const LogBin32 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogBin32 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes unsigned int parameter into message, formatted as binary 32 digits.

|(RS_LT 00003)

[SWS_LOG_00060]{DRAFT} [

AUTO SAR

Kind: function

Symbol: operator<<(const LogBin64 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogBin64 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes unsigned int parameter into message, formatted as binary 64 digits.

|(RS_LT 00003)

8.3.1.5 Built-in operators for extra types

[SWS_LOG_00062]{DRAFT} |

Kind: function

Symbol: operator<<(const ara::core::StringView value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const ara::core::StringView value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/log_stream.h"

Description: Writes ara::core::StringView into message.

|(RS_LT 00003)

[SWS_LOG_00051]{DRAFT} [

Kind: function

Symbol: operator<<(const char *const value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const char xconst value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & *this

Exception Safety: noexcept

Thread Safety: reentrant

AUTO SAR

A

Header file:

#include "ara/log/log_stream.h"

Description:

Writes null terminated UTF8 string into message. (NOT sPECIFIED. WILL BE REMOVED IN
FUTURE!)

|(RS_LT _00003)

[SWS_LOG_00063]{DRAFT} [

Kind: function

Symbol: operator<<(LogStream &out, LogLevel value)

Scope: namespace ara::log

Syntax: LogStream& operator<< (LogStream &out, LogLevel value) noexcept;

Parameters (in):

out LogStream Object which is used to append the
logged LoglLevel (value) to

value LogLevel enum parameter as text to be appended to
the internal message buffer.
Return value: LogStream & *this
Exception Safety: noexcept
Thread Safety: reentrant
Header file: #include "ara/log/log_stream.h"
Description: Appends LogLevel enum parameter as text into message.

|(RS_LT 00003)

[SWS_LOG_00124]{DRAFT} [

Kind: function

Symbol: operator<<(LogStream &out, const core::ErrorCode &ec)

Scope: namespace ara::log

Syntax: LogStream& operator<< (LogStream &out, const core::ErrorCode &ec)
noexcept;

Parameters (in): out the LogStream object into which to add the value
ec the ErrorCode instance to log

Return value: LogStream & out

Exception Safety: noexcept

Header file: #include "ara/log/log_stream.h"

Description: Write a core::ErrorCode instance into the message.

When output to the console, the ErrorCode shall be shown in an implementation-defined way
as a String holding the result of ErrorCode:Domain().Name() (i.e. the ErrorDomain’s
Shortname), and the integral error code number.

|(RS_LT _00003)

[SWS_LOG_00125]{DRAFT} |

AUTO SAR

Kind: function
Symbol: operator<<(LogStream &out, const std::chrono::duration< Rep, Period > &value)
Scope: namespace ara::log
Syntax: template <typename Rep, typename Period>
LogStream& operator<< (LogStream &out, const std::chrono::duration<
Rep, Period > &value) noexcept;
Template param: Rep arithmetic type representing the number of ticks in
this duration
Period a std::ratio type representing the tick period of the
clock, in seconds
Parameters (in): out the LogStream object into which to add the value
value the duration instance to log
Return value: LogStream & out
Exception Safety: noexcept
Header file: #include "ara/log/log_stream.h"
Description: Write a std::chrono::duration instance into the message.

When output to the console, the duration shall be shown as a decimal integer value, together
with the duration’s unit in S| notation, for at least all units in [std::nano, std::micro, std::milli,
std::centi, std::deci, std::ratio<1>].

|(RS_LT _00049)

[SWS_LOG_00126]{DRAFT} |

Kind: function

Symbol: operator<<(LogStream &out, const ara::core::InstanceSpecifier &value)

Scope: namespace ara::log

Synumt LogStream& operator<< (LogStream &out, const ara::core::Instance
Specifier &value) noexcept;

Parameters (in): out the LogStream object into which to add the value
value the InstanceSpecifier to log

Return value: LogStream & out

Exception Safety: noexcept

Header file: #include "ara/log/log_stream.h"

Description: Write a core::InstanceSpecifier into the message.

The InstanceSpecifier shall be shown as the result of calling InstanceSpecifier::ToString.

|(RS_LT _00049)

[SWS_LOG_00128]{DRAFT} |

Kind: function

Symbol: operator<<(core::Span< const core::Byte > data)

Scope: class ara::log::LogStream

Synnmt LogStream& operator<< (core::Span< const core::Byte > data) noexcept;
Parameters (in): data ‘ a Span<const Byte> covering the range to be logged

\Y

AUTO SAR

A
Return value: LogStream & *this
Exception Safety: noexcept
Header file: #include "ara/log/log_stream.h"
Description: Write a byte sequence into message.

This call shall copy the sequence of core::Byte objects as-is into the message.

When output to the console, this byte sequence shall be shown as a sequence of
apostrophe-separated list of hexadecimal octet-pairs, for instance: "48'65’6¢’6¢’6f"

|(RS_LT 00003)

[SWS_LOG_00129]{DRAFT} [

Kind: function
Symbol: WithLocation(core::StringView file, int line)
Scope: class ara::log::LogStream
Syntax: LogStream& WithLocation (core::StringView file, int line) noexcept;
Parameters (in): file the source file identifier
line the source file line number
Return value: LogStream & *this
Exception Safety: noexcept
Header file: #include "ara/log/log_stream.h"
Description: Add source file location into the message.

This function has no effect if another member function that adds content to the current
message has already been called.

|(RS_LT 00003)

AUTOSAR

8.3.2 Class Logger

The class Logger represents a logger context. The Logging framework defines
contexts which can be seen as logger instances within one Application process
Or process scope.

The contexts have the following properties:
1) Context ID
2) Description of the Context ID
3) Default log level

A context will be automatically registered against the Logging back-end during cre-
ation phase, as well as automatically deregistered during process shutdown phase.
So the end user does not care for the objects life time. To ensure such housekeeping
functionality, a strong ownership of the logger instances needs to be ensured towards
the Logging framework. This means that the Application process are not
supposed to call the Logger constructor themselves.

The user is not allowed to create a Logger object by himself. Logger context needs to
be created by the provided API call CreateLogger ().

8.3.2.1 Logger::LogFatal

[SWS_LOG_00064]{DRAFT} [

Kind: function

Symbol: LogFatal()

Scope: class ara::log::Logger

Syntax: LogStream LogFatal () const noexcept;

Return value: LogStream LogStream object of Fatal severity.

Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Creates a LogStream object.
Returned object will accept arguments via the insert stream operator "@c <<".

Notes: In the normal usage scenario, the object’s life time of the created LogStream is scoped within
one statement (ends with ; after last passed argument). If one wants to extend the LogStream
object’s life time, the object might be assigned to a named variable.

|(RS_LT 00003)

8.3.2.2 Logger::LogError

[SWS_LOG_00065]{DRAFT} |

AUTO SAR

Kind: function

Symbol: LogError()

Scope: class ara::log::Logger

Syntax: LogStream LogError () const noexcept;

Return value: LogStream LogStream object of Error severity.
Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Same as Logger::LogFatal().

|(RS_LT _00003)

8.3.2.3 Logger::LogWarn

[SWS_LOG_00066]{DRAFT} |

Kind: function

Symbol: LogWarn()

Scope: class ara::log::Logger

Syntax: LogStream LogWarn () const noexcept;

Return value: LogStream LogStream object of Warn severity.
Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Same as Logger::LogFatal().

|(RS_LT 00003)

8.3.2.4 Logger::Loginfo

[SWS_LOG_00067]{DRAFT} [

Kind: function

Symbol: Loginfo()

Scope: class ara::log::Logger

Syntax: LogStream LogInfo () const noexcept;

Return value: LogStream LogStream object of Info severity.
Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Same as Logger::LogFatal().

|(RS_LT 00003)

AUTO SAR

8.3.2.5 Logger::LogDebug

[SWS_LOG_00068]{DRAFT} [

Kind: function

Symbol: LogDebug()

Scope: class ara::log::Logger

Syntax: LogStream LogDebug () const noexcept;

Return value: LogStream LogStream object of Debug severity.
Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Same as Logger::LogFatal().

|(RS_LT 00003)

8.3.2.6 Logger::LogVerbose

[SWS_LOG_00069]{DRAFT} [

Kind: function

Symbol: LogVerbose()

Scope: class ara::log::Logger

Syntax: LogStream LogVerbose () const noexcept;

Return value: LogStream LogStream object of Verbose severity.
Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Same as Logger::LogFatal().

|(RS_LT _00003)

8.3.2.7 Logger::IsEnabled

[SWS_LOG_00070]{DRAFT} [

Kind: function

Symbol: IsEnabled(LogLevel logLevel)

Scope: class ara::log::Logger

Syntax: bool IsEnabled (LogLevel loglLevel) const noexcept;

Parameters (in): logLevel The to be checked log level.

Return value: bool True if desired log level satisfies the configured

reporting level.

AUTO SAR

A
Exception Safety: noexcept
Header file: #include "ara/log/logger.h"
Description: Check current configured log reporting level.

Applications may want to check the actual configured reporting log level of certain loggers
before doing log data preparation that is runtime intensive.

|(RS_LT_00003)

8.3.2.8 Logger::WithLevel

[SWS_LOG_00131]{DRAFT} [

Kind: function

Symbol: WithLevel(LogLevel logLevel)

Scope: class ara::log::Logger

Syntax: LogStream WithLevel (LogLevel loglLevel) const noexcept;

Parameters (in): logLevel the log level to use for this LogStream instance
Return value: LogStream a new LogStream instance with the given log level
Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Log message with a programmatically determined log level can be written.

|(RS_LT 00003)

AUTO SAR

A Mentioned Manifest Elements

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document.

Class DitArgument
Package M2::AUTOSARTemplates::SystemTemplate::Dlt
Note This element defines an Argument in a DItMessage.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mult. Kind | Note
network SwDataDefProps 0..1 aggr Definition of the networkRepresentation of the DIt
Representation Argument.
Table A.1: DItArgument
Class DitLogChannel
Package M2::AUTOSARTemplates::SystemTemplate::Dlt
Note This element contains the settings for the log/trace message output for a tuple of Applicationld and
Contextld (verbose mode) or a Sessionld (non-verbose mode).
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mult. Kind | Note
application String 0..1 attr This attribute can be used to describe the applicationld
Description that is used in the log and trace message in more detail.
applicationld String 1 attr This attribute identifies the SW-C/BSW module in the log
and trace message.
context String 0..1 attr This attribute can be used to describe the contextld that is
Description used in the log and trace message in more detail.
contextld String 1 attr This attribute is used to group log and trace messages

produced by a SW-C/BSW modules to distinguish
functionality (representing e.g. a library of the adaptive
foundation linked into the application).

dlitLogChannel DltLogChannelDesign 0..1 ref This reference represents the identification of the
Design design-time representation for the DItLogChannel that
owns the reference.

Tags:atp.Status=draft

ditMessage DItMessage * ref Reference to DItMessages that can be transported over
the DltLogChannel in the DItPdu.

endpoint PlatformModule 0..1 ref Network configuration (Protocol, Port, IP Address) for

Configuration EthernetEndpoint transmission of dIt messages on a specific VLAN.

Configuration Tags:atp.Status=draft

logTraceDefault LogTraceDefaultLog 0..1 attr This attribute allows to set the initial log reporting level for
LoglLevel LevelEnum a logTraceProcessld (Applicationld).

Tags:atp.Status=draft

logTraceFile UriString 0..1 attr This attribute defines the destination file to which the
Path logging information is passed.

Tags:atp.Status=draft

logTracelLog LogTraceLogMode * attr This attribute defines the destination of log messages
Mode Enum provided by the process.

Tags:atp.Status=draft

AUT o

©SAR

A
Class DitLogChannel
nonVerbose Boolean 0..1 attr This attribute defines whether this channel supports
Mode non-Verbose DIt messages. If disabled only verbose
mode messages shall be used.
Tags:atp.Status=draft
servicelnstance | ServicelnstanceToPort 0..1 ref Optional reference to a PortPrototype of the monitored
ToPortPrototype | PrototypeMapping Application in case that the communication over this port
Mapping is monitored and defines the Contextld.
Tags:atp.Status=draft
sessionld Positivelnteger 0..1 attr This attribute allows distinguishing log/trace messages
from different instances of the same SW-C. It is required if
sessionldSupport of the aggregating DltConfig is True.
Table A.2: DitLogChannel
Class DitLogChannelDesign
Package M2::AUTOSARTemplates::AdaptivePlatform::SystemDesign
Note This meta-class has the ability to stand in for a DltLogChannel at the time when the DItLogChannel does
not yet exist. But its future existence already needs to be considered during design phase and for that a
dedicated model element is required.
Tags:
atp.Status=draft
atp.recommendedPackage=DltLogChannelDesigns
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Attribute Type Mulit. Kind | Note
ditMessage DltMessage * ref Reference to DItMessages that can be transported over
the DltLogChannel.
Tags:atp.Status=draft
endpoint PlatformModule 0..1 ref Network configuration (Protocol, Port, IP Address) for
Configuration EthernetEndpoint transmission of dIt messages on a specific VLAN.
Configuration Tags:atp.Status=draft

Table A.3: DitLogChannelDesign

Class DitLogChannelDesignToProcessDesignMapping
Package M2::AUTOSARTemplates::AdaptivePlatform::SystemDesign
Note This meta-class represents the ability to assign a Log&Trace Channel in the Design to a ProcessDesign.
Tags:
atp.Status=draft
atp.recommendedPackage=DltLogChannelDesignToProcessDesignMappings
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Attribute Type Mult. Kind | Note
dltLogChannel DltLogChannelDesign 1 ref Reference to the Log&Trace channel that contains the
Design log/trace message output.
Tags:atp.Status=draft

\Y%

AUTO SAR

A
Class DitLogChannelDesignToProcessDesignMapping
processDesign ProcessDesign 0..1 ref Reference to the ProcessDesign that is monitored by the

DitLogChannel.

Tags:atp.Status=draft

Table A.4: DitLogChannelDesignToProcessDesignMapping

Class DitLogChannelToProcessMapping
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::LogAndTrace
Note This meta-class represents the ability to assign a Log&Trace Channel to a Process.
Tags:
atp.Status=draft
atp.recommendedPackage=DltLogChannelToProcessMappings
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadablePackageElement
Attribute Type Mult. Kind | Note
ditLogChannel DltLogChannel 0..1 ref Reference to the Log&Trace channel that contains the
settings for the log/trace message output for a tuple of
Applicationld and Contextld (verbose mode) or a Session
Id (non-verbose mode).
Tags:atp.Status=draft
process Process 0..1 ref Reference to the Process that is monitored by the DltLog
Channel.
Tags:atp.Status=draft
Table A.5: DitLogChannelToProcessMapping
Class DitMessage
Package M2::AUTOSARTemplates::SystemTemplate::Dlt
Note This element defines a DltMessage.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mult. Kind | Note
ditArgument DItArgument * aggr Ordered collection of DItArguments in the DItMessage.
(ordered)
messageld Positivelnteger 1 attr This attribute defines the unique Id for the DltMessage.
messagelLine Positivelnteger 0..1 attr This attribute describes the position in the source file in
Number which this log message was called.
messageSource | String 0..1 attr This attribute describes the source file in which this log
File message was called.
messageType String 1 attr This attribute describes the message Type
Info

Table A.6: DItMessage

AUT o

©SAR

Class DItMessageCollectionSet
Package M2::AUTOSARTemplates::SystemTemplate::Dlt
Note Collection of DItMessages
Tags:atp.recommendedPackage=DItMessageCollectionSets
Base ARObject, CollectableElement, FibexElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Attribute Type Mult. Kind | Note
ditMessage DItMessage * aggr Collection of DItMessages in the DItMessageCollection
Set.
Table A.7: DItMessageCollectionSet
Class Executable
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure
Note This meta-class represents an executable program.
Tags:
atp.Status=draft
atp.recommendedPackage=Executables
Base ARElement, ARObject, AtpClassifier, CollectableElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable
Attribute Type Mult. Kind | Note
buildType BuildTypeEnum 0..1 attr This attribute describes the buildType of a module and/or
platform implementation.
loggingBehavior | LoggingBehaviorEnum 0..1 attr This attribute indicates the intended logging behavior of
the enclosing Executable.
minimumTimer TimeValue 0..1 attr This attribute describes the minimum timer resolution
Granularity (TimeValue of one tick) that is required by the Executable.
Tags:atp.Status=draft
reporting ExecutionState 0..1 attr this attribute controls the execution state reporting
Behavior ReportingBehavior behavior of the enclosing Executable.
Enum
rootSw RootSwComponent 0..1 aggr | This represents the root SwCompositionPrototype of the
Component Prototype Executable. This aggregation is required (in contrast to a
Prototype direct reference of a SwComponentType) in order to
support the definition of instanceRefs in Executable
context.
Tags:atp.Status=draft
version StrongRevisionLabel 0..1 attr Version of the executable.
String Tags:atp.Status=draft
Table A.8: Executable
Class LogAndTracelnstantiation
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::LogAndTrace
Note This meta-class defines the attributes for the Log&Trace configuration on a specific machine.
Tags:atp.Status=draft
Base ARObject, AdaptiveModulelnstantiation, Identifiable, MultilanguageReferrable, NonOsModule
Instantiation, Referrable
Attribute Type | Mult. | Kind | Note

V

AUTO SAR

A
Class LogAndTracelnstantiation
ditEculd String 0..1 attr This attribute defines the name of the ECU for use within
the DIt protocol.
dltLogChannel DltLogChannel * agor DltLogChannels that are configured for the log/trace
message output
Tags:atp.Status=draft
queueSize Positivelnteger 0..1 attr Length of the queue (in which messages can be stored
before processing) in the unit "Log message".
sessionld Boolean 0..1 attr This attribute defines whether the sessionld is used or
Support not.
timeBase TimeBaseResource 0..1 ref This reference is used to describe to which time base the
Resource Log and Trace module has access. From the Time Base
Resource the Log and Trace module gets the needed
information to generate the time stamp.
Tags:atp.Status=draft
Table A.9: LogAndTracelnstantiation
Enumeration LogTraceLogModeEnum
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::LogAndTrace
Note This enum defines the possible destinations of a log&trace message.
Tags:atp.Status=draft
Literal Description
console Destination of log message will be the console output.
Tags:atp.EnumerationLiteralindex=0
file Destination of log message will be a file on the file system.
Tags:atp.EnumerationLiteralindex=1
network Log message will be transmitted over the communication bus.
Tags:atp.EnumerationLiterallndex=2
Table A.10: LogTraceLogModeEnum
Class Machine
Package M2::AUTOSARTemplates::AdaptivePlatform::MachineManifest
Note Machine that represents an Adaptive Autosar Software Stack.
Tags:
atp.Status=draft
atp.recommendedPackage=Machines
Base ARElement, ARObject, AtpClassifier, AtoFeature, AtpStructureElement, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Attribute Type Mult. Kind | Note
default EnterExitTimeout 0..1 aggr | This aggration defines a default timeout in the context of a
Application given Machine with respect to the launching and
Timeout termination of applications.

Tags:atp.Status=draft

AUT o

©SAR

A
Class Machine
environment TagWithOptionalValue * agar This aggregation represents the collection of environment
Variable variables that shall be added to the environment defined
on the level of the enclosing Machine.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=environmentVariable, environment
Variable.variationPoint.shortLabel
atp.Status=draft
machineDesign MachineDesign 1 ref Reference to the MachineDesign this Machine is
implementing.
Tags:atp.Status=draft
module AdaptiveModule * aggr Configuration of Adaptive Autosar module instances that
Instantiation Instantiation are running on the machine.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=modulelnstantiation.shortName
atp.Status=draft
processor Processor 1.* aggr | This represents the collection of processors owned by the
enclosing machine.
Tags:atp.Status=draft
secure SecureCommunication * aggr Deployment of secure communication protocol
Communication Deployment configuration settings to crypto module entities.
Deployment Stereotypes: atpSplitable
Tags:
atp.Splitkey=secureCommunicationDeployment.short
Name
atp.Status=draft
trustedPlatform TrustedPlatform 1 attr This attribute controls the behavior of how authentication
Executable ExecutableLaunch affects the ability to launch for each Executable.
LaunchBehavior | BehaviorEnum
Table A.11: Machine
Class PlatformModuleEthernetEndpointConfiguration
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModule Deployment::AdaptiveModule
Implementation
Note This meta-class defines the attributes for the configuration of a port, protocol type and IP address of the
communication on a VLAN.
Tags:
atp.Status=draft
atp.recommendedPackage=PlatformModuleEndpointConfigurations
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, PlatformModuleEndpointConfiguration, Referrable
Attribute Type Mult. Kind | Note
communication EthernetCommunication 0..1 ref Reference to the CommunicationConnector (VLAN) for
Connector Connector which the network configuration is defined.

Tags:atp.Status=draft

ipv4Multicastlp Ip4AddressString 0..1 attr Multicast IPv4 Address to which the message will be
Address transmitted.
ipv6Multicastlp Ip6AddressString 0..1 attr Multicast IPv6 Address to which the message will be
Address transmitted.

AUTO SAR

A
Class PlatformModuleEthernetEndpointConfiguration
tcpPort Positivelnteger 0..1 attr This attribute allows to configure a tcp port number.
udpPort Positivelnteger 0..1 attr This attribute allows to configure a udp port number.
Table A.12: PlatformModuleEthernetEndpointConfiguration
Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest
Note This meta-class provides information required to execute the referenced executable.
Tags:
atp.Status=draft
atp.recommendedPackage=Processes
Base ARElement, ARObject, AbstractExecutionContext, AtpClassifier, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable, UploadablePackageElement
Attribute Type Mult. Kind | Note
design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.
Tags:atp.Status=draft
deterministic DeterministicClient 0..1 ref This reference adds further execution characteristics for
Client deterministic clients.
Tags:atp.Status=draft
executable Executable 0..1 ref Reference to executable that is executed in the process.
Stereotypes: atpUriDef
Tags:atp.Status=draft
functionCluster String 0..1 attr This attribute specifies which functional cluster the
Affiliation process is affiliated with.
numberOf Positivelnteger 0..1 attr This attribute defines how often a process shall be
RestartAttempts restarted if the start fails.
numberOfRestartAttempts = "0" OR Attribute not existing,
start once
numberOfRestartAttempts = "1", start a second time
preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.
processState ModeDeclarationGroup 0..1 aggr Set of Process States that are defined for the process.
Machine Prototype Tags:atp.Status=draft
securityEvent SecurityEventDefinition * ref The reference identifies the collection of SecurityEvents
that can be reported by the enclosing SoftwareCluster.
Stereotypes: atpSplitable; atpUriDef
Tags:
atp.Splitkey=securityEvent
atp.Status=draft
stateDependent | StateDependentStartup * aggr Applicable startup configurations.
StartupConfig Config Tags:atp.Status=draft

Table A.13: Process

AUT o

©SAR

Class ProcessDesign
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ProcessDesign
Note This meta-class has the ability to stand in for a Process at the time when the Process does not yet exist.
But its future existence already needs to be considered during design phase and for that a dedicated
model element is required..
Tags:
atp.Status=draft
atp.recommendedPackage=ProcessDesigns
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Attribute Type Mult. Kind | Note
deterministic DeterministicClient * aggr This aggregation represents the collection of applicable
ClientResource ResourceNeeds resource needs for the design of deterministic clients.
Needs Tags:atp.Status=draft
executable Executable 0..1 ref Reference to executable that is executed in the process.
Tags:atp.Status=draft
Table A.14: ProcessDesign
Class Referrable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable
Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).
Base ARObject
Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, Cpp/mplementationDataTypeContextTarget,
DiagnosticDebounceAlgorithmProps, DiagnosticEnvModeElement, EthernetPriorityRegeneration, Event
Handler, ExclusiveAreaNestingOrder, HwDescriptionEntity, ImplementationProps, LinSlaveConfigldent,
ModeTransition, MultilanguageReferrable, NmNetworkHandle, PduActivationRoutingGroup, PncMapping
Ident, SingleLanguageReferrable, SoConlPduldentifier, SocketConnectionBundle, SomeipRequired
EventGroup, TimeSyncServerConfiguration, TpConnectionldent
Attribute Type Mulit. Kind | Note
shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100
shortName ShortNameFragment * aggr This specifies how the Referrable.shortName is
Fragment composed of several shortNameFragments.
Tags:xml.sequenceOffset=-90
Table A.15: Referrable
Class ServicelnstanceToPortPrototypeMapping
Package M2::AUTOSARTemplates::AdaptivePlatform::ServicelnstanceManifest::ServicelnstanceMapping

\Y

AUTOSAR

A
Class ServicelnstanceToPortPrototypeMapping
Note This meta-class represents the ability to assign a transport layer dependent Servicelnstance to a Port
Prototype.
With this mapping it is possible to define how specific PortPrototypes are represented in the middleware
in terms of service configuration.
Tags:
atp.Status=draft
atp.recommendedPackage=Servicelnstance ToPortPrototypeMappings
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadablePackageElement
Attribute Type Mulit. Kind | Note
enablesLog Boolean 0..1 attr This attribute enables/disables Log&Trace for the
Trace communication on the referenced Port of the referenced
process. True: Log&Trace is enabled. False: Log&Trace
is disabled.
portPrototype PortPrototype 0..1 iref Reference to a specific PortPrototype that represents the
Servicelnstance.
Tags:atp.Status=draft
InstanceRef implemented by:PortPrototypeln
ExecutablelnstanceRef
process Process 0..1 ref Reference to the Process in which the enclosing Service
Instance ToPortPrototypeMapping is executed.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=process
atp.Status=draft
processDesign ProcessDesign 0..1 ref Reference to the ProcessDesign in which the Executable
that contains the SoftwareComponent and the referenced
PortPrototype is executed.
Stereotypes: atpUriDef
Tags:atp.Status=draft
servicelnstance | AdaptivePlatform 0..1 ref Reference to a Servicelnstance that is represented in the
Servicelnstance Software Component by the mapped group of Port
Prototypes.
Tags:atp.Status=draft

Table A.16: ServicelnstanceToPortPrototypeMapping

Class <<atpVariation>> SwDataDefProps
Package M2::MSR::DataDictionary::DataDefProperties
Note This class is a collection of properties relevant for data objects under various aspects. One could

consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.

SwDataDefProps covers various aspects:

e Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but
also the recordLayouts which specify how such elements are mapped/converted to the Data
Types in the programming language (or in AUTOSAR). This is mainly expressed by properties
like swRecordLayout and swCalprmAxisSet

%

\Y

AUTOSAR

A
Class <<atpVariation>> SwDataDefProps
A
e Implementation aspects, mainly expressed by swimplPolicy, swVariableAccessImplPolicy, sw
AddrMethod, swPointerTagetProps, baseType, implementationDataType and additionalNative
TypeQualifier
e Access policy for the MCD system, mainly expressed by swCalibrationAccess
e Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr,
invalidvalue
e Code generation policy provided by swRecordLayout
Tags:vh.latestBindingTime=codeGenerationTime
Base ARObject
Attribute Type Mult. Kind | Note
additionalNative | NativeDeclarationString 0..1 attr This attribute is used to declare native qualifiers of the
TypeQualifier programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.
Tags:xml.sequenceOffset=235
annotation Annotation * aggr | This aggregation allows to add annotations (yellow pads
...) related to the current data object.
Tags:
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false
baseType SwBaseType 0..1 ref Base type associated with the containing data object.
Tags:xml.sequenceOffset=50
compuMethod CompuMethod 0..1 ref Computation method associated with the semantics of
this data object.
Tags:xml.sequenceOffset=180
dataConstr DataConstr 0..1 ref Data constraint for this data object.
Tags:xml.sequenceOffset=190
displayFormat DisplayFormatString 0..1 attr This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.
Tags:xml.sequenceOffset=210
display DisplayPresentation 0..1 attr This attribute controls the presentation of the related data
Presentation Enum for measurement and calibration tools.
implementation Abstractimplementation 0..1 ref This association denotes the ImplementationDataType of
DataType DataType a data declaration via its aggregated SwDataDefProps. It

is used whenever a data declaration is not directly
referring to a base type. Especially

e redefinition of an ImplementationDataType via a
"typedef" to another ImplementationDatatype

e the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly
v

AUTOSAR

Class

<<atpVariation>> SwDataDefProps

A
o the data type of an array or record element within
an ImplementationDataType, if it does not refer to
a base type directly

o the data type of an SwServiceArg, if it does not
refer to a base type directly

Tags:xml.sequenceOffset=215

invalidValue

ValueSpecification

aggr

Optional value to express invalidity of the actual data
element.

Tags:xml.sequenceOffset=255

stepSize

Float

attr

This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod

SwAddrMethod

ref

Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.

Tags:xml.sequenceOffset=30

swAlignment

AlignmentType

attr

The attribute describes the intended alignment of the
DataPrototype. If the attribute is not defined the alignment
is determined by the swBaseType size and the memory
AllocationKeywordPolicy of the referenced SwAddr
Method.

Tags:xml.sequenceOffset=33

swBit
Representation

SwBitRepresentation

aggr

Description of the binary representation in case of a bit
variable.

Tags:xml.sequenceOffset=60

swCalibration
Access

SwCalibrationAccess
Enum

attr

Specifies the read or write access by MCD tools for this
data object.

Tags:xml.sequenceOffset=70

swCalprmAxis
Set

SwCalprmAxisSet

agaor

This specifies the properties of the axes in case of a
curve or map etc. This is mainly applicable to calibration
parameters.

Tags:xml.sequenceOffset=90

swComparison
Variable

SwVariableRefProxy

aggr

Variables used for comparison in an MCD process.

Tags:
xml.sequenceOffset=170
xml.typeElement=false

swData
Dependency

SwDataDependency

0..1

aggr

Describes how the value of the data object has to be
calculated from the value of another data object (by the
MCD system).

Tags:xml.sequenceOffset=200

swHostVariable

SwVariableRefProxy

agor

Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.

Tags:
xml.sequenceOffset=220
xml.typeElement=false

swimplPolicy

SwimplPolicyEnum

0..1

attr

Implementation policy for this data object.

Tags:xml.sequenceOffset=230

AUTOSAR

A
Class <<atpVariation>> SwDataDefProps
swintended Numerical 0..1 attr The purpose of this element is to describe the requested
Resolution quantization of data objects early on in the design
process.
The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).
In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swintendedResolution.
The resolution is specified in the physical domain
according to the property "unit".
Tags:xml.sequenceOffset=240
swinterpolation Identifier 0..1 attr This is a keyword identifying the mathematical method to
Method be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.
Tags:xml.sequenceOffset=250
swlisVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects
do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .
Tags:xml.sequenceOffset=260
swPointerTarget | SwPointerTargetProps 0..1 aggr Specifies that the containing data object is a pointer to
Props another data object.
Tags:xml.sequenceOffset=280
swRecord SwRecordLayout 0..1 ref Record layout for this data object.
Layout Tags:xml.sequenceOffset=290
swRefresh MultidimensionalTime 0..1 aggr This element specifies the frequency in which the object
Timing involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.
So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.
Tags:xml.sequenceOffset=300
swTextProps SwTextProps 0..1 aggr | the specific properties if the data object is a text object.
Tags:xml.sequenceOffset=120
swValueBlock Numerical 0..1 attr This represents the size of a Value Block
Size Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80
swValueBlock Numerical * attr This attribute is used to specify the dimensions of a value
SizeMult block (VAL_BLK) for the case that that value block has
(ordered) more than one dimension.
The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
v

AUT o

©SAR

A
Class <<atpVariation>> SwDataDefProps
AN

second entry represents the second dimension, and so
on.
For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.
Stereotypes: atpVariation
Tags:vh.latestBindingTime=preCompileTime

unit Unit 0..1 ref Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.
Tags:xml.sequenceOffset=350

valueAxisData ApplicationPrimitive 0..1 ref The referenced ApplicationPrimitiveDataType represents

Type DataType the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.
Tags:xml.sequenceOffset=355

Table A.17: SwDataDefProps

Class System

Package M2::AUTOSARTemplates::SystemTemplate

Note The top level element of the System Description.
Tags:atp.recommendedPackage=Systems

Base ARElement, ARObject, AtpClassifier, AtpFeature, AtpStructureElement, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Attribute Type Mult. Kind | Note

fibexElement

*

FibexElement ref Reference to ASAM FIBEX elements specifying

Communication and Topology.

All Fibex Elements used within a System Description shall
be referenced from the System Element.

atpVariation: In order to describe a product-line, all Fibex
Elements can be optional.

Stereotypes: atpVariation
Tags:vh.latestBindingTime=postBuild

interpolation InterpolationRoutine * ref This reference identifies the InterpolationRoutineMapping
Routine MappingSet Sets that are relevant in the context of the enclosing
MappingSet System.
mapping SystemMapping * aggr Aggregation of all mapping aspects relevant in the
System Description.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=mapping.shortName, mapping.variation
Point.shortLabel
vh.latestBindingTime=postBuild
pncVector Positivelnteger 0..1 attr Length of the partial networking request release
Length information vector (in bytes).
pncVectorOffset | Positivelnteger 0..1 attr Absolute offset (with respect to the NM-PDU) of the

partial networking request release information vector that
is defined in bytes as an index starting with 0.

AUTO SAR

Class System

rootSoftware RootSwComposition 0..1 aggr | Aggregation of the root software composition, containing
Composition Prototype all software components in the System in a hierarchical
structure. This element is not required when the System
description is used for a network-only use-case.

atpVariation: The RootSwCompositionPrototype can vary.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=rootSoftwareComposition.shortName, root
SoftwareComposition.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime

systemVersion RevisionLabelString 1 attr Version number of the System Description.

Table A.18: System

AUTOSAR

B History of Constraints and Specification ltems

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

B.1 Constraint and Specification Iltem History of this document
according to AUTOSAR Release yy-mm

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Input documents & related standards and norms
	3.1 Input documents
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known limitations
	4.2 Applicability to car domains

	5 Dependencies to other Functional Clusters
	5.1 Platform dependencies

	6 Requirements Tracing
	7 Functional specification
	7.1 Functional Cluster Lifecyle
	7.1.1 Startup
	7.1.2 Shutdown

	7.2 Necessary Parameters and Initialization
	7.2.1 Application ID
	7.2.1.1 Application Description

	7.2.2 Default Log Level
	7.2.3 Log Mode
	7.2.3.1 Log File Path

	7.2.4 Context ID
	7.2.5 Context Description
	7.2.6 Initialization of the Logging framework

	7.3 Log Messages
	7.3.1 Non-modeled messages
	7.3.2 Modeled messages
	7.3.2.1 API principles
	7.3.2.2 Log message model
	7.3.2.3 Usage

	7.4 Conversion Functions
	7.5 Log and Trace Timestamp
	7.6 Log and Trace data loss prevention

	8 API specification
	8.1 API Common Data Types
	8.1.1 LogLevel
	8.1.2 LogMode
	8.1.3 LogHex8
	8.1.4 LogHex16
	8.1.5 LogHex32
	8.1.6 LogHex64
	8.1.7 LogBin8
	8.1.8 LogBin16
	8.1.9 LogBin32
	8.1.10 LogBin64
	8.1.11 ClientState

	8.2 Function definitions
	8.2.1 CreateLogger
	8.2.2 HexFormat (uint8)
	8.2.3 HexFormat (int8)
	8.2.4 HexFormat (uint16)
	8.2.5 HexFormat (int16)
	8.2.6 HexFormat (uint32)
	8.2.7 HexFormat (int32)
	8.2.8 HexFormat (uint64)
	8.2.9 HexFormat (int64)
	8.2.10 BinFormat (uint8)
	8.2.11 BinFormat (int8)
	8.2.12 BinFormat (uint16)
	8.2.13 BinFormat (int16)
	8.2.14 BinFormat (uint32)
	8.2.15 BinFormat (int32)
	8.2.16 BinFormat (uint64)
	8.2.17 BinFormat (int64)
	8.2.18 remoteClientState
	8.2.19 Wrapper object creator
	8.2.20 Logger of an argument with attributes
	8.2.21 Logger of modeled message

	8.3 Class definitions
	8.3.1 Class LogStream
	8.3.1.1 Extending the Logging API to understand custom types
	8.3.1.2 LogStream::Flush
	8.3.1.3 Built-in operators for natively supported types
	8.3.1.4 Built-in operators for conversion types
	8.3.1.5 Built-in operators for extra types

	8.3.2 Class Logger
	8.3.2.1 Logger::LogFatal
	8.3.2.2 Logger::LogError
	8.3.2.3 Logger::LogWarn
	8.3.2.4 Logger::LogInfo
	8.3.2.5 Logger::LogDebug
	8.3.2.6 Logger::LogVerbose
	8.3.2.7 Logger::IsEnabled
	8.3.2.8 Logger::WithLevel

	A Mentioned Manifest Elements
	B History of Constraints and Specification Items
	B.1 Constraint and Specification Item History of this document according to AUTOSAR Release yy-mm

