
General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

Document Title General Requirements specific to
Adaptive Platform

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 714

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R20-11

Document Change History
Date Release Changed by Description

2020-11-30 R20-11
AUTOSAR
Release
Management

• More design guidelines for special
member functions added
• Support of C++ 14 added

2019-11-28 R19-11
AUTOSAR
Release
Management

• More design guidelines added
• Changed Document Status from

Final to published

2019-03-29 19-03
AUTOSAR
Release
Management

• No content changes.

1 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

2018-10-31 18-10
AUTOSAR
Release
Management

• More details to clause 1 Scope of
document given
• Former chapter 4.3 on Design

requirements putted below chapter
4.2 Non-functional requirements
• Following requirements have been

revised: [RS_AP_00111],
[RS_AP_00113], [RS_AP_00114],
[RS_AP_00115], [RS_AP_00122],
[RS_AP_00120], [RS_AP_00121],
[RS_AP_00124], [RS_AP_00125]
• Following requirements have been

deleted: [RS_AP_00117],
[RS_AP_00118]
• Following requirements have been

added: [RS_AP_00127],
[RS_AP_00128], [RS_AP_00129],
[RS_AP_00130], [RS_AP_00131],
[RS_AP_00132], [RS_AP_00134]

2018-03-29 18-03
AUTOSAR
Release
Management

• Text entry for Supporting Material for
[RS_AP_00111]
• Text entry for Supporting Material for

[RS_AP_00114] only refers now to
ISO/IEC 14882
• Description of [RS_AP_00115]

revised
• Description of [RS_AP_00116],

[RS_AP_00117], [RS_AP_00118],
[RS_AP_00120], [RS_AP_00121],
[RS_AP_00124], [RS_AP_00125]
revised (in general "all ara libraries"
changed to "all functional clusters").

2017-10-27 17-10
AUTOSAR
Release
Management

• Minor fixes

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

2 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

Table of Contents

1 Scope of this document 5

2 Conventions to be used 6

3 Acronyms and Abbreviations 7

4 Requirements Specification 8

4.1 Functional overview . 8
4.2 Non-functional Requirements . 8

4.2.1 Design Requirements . 9

5 Requirements Tracing 21

6 References 23

7 Change History of this Document 24

7.1 Change History of this document according to AUTOSAR Release 19-11 24
7.1.1 Added Traceables in 19-11 24
7.1.2 Changed Traceables in 19-11 24
7.1.3 Deleted Traceables in 19-11 25

7.2 Change History of this document according to AUTOSAR Release 20-11 25
7.2.1 Added Traceables in R20-11 25
7.2.2 Changed Traceables in R20-11 25
7.2.3 Deleted Traceables in R20-11 25

4 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

1 Scope of this document

The goal of this document is to define a common set of basic requirements that apply
to all SWS documents of the Adaptive Platform. Adaptive applications and functional
cluster internals does not need to comply to these requirements.

5 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

2 Conventions to be used

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see Standardization Template, chapter Support for Traceability
([1]).

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see Standardization Template, chapter Support for
Traceability ([1]).

6 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

3 Acronyms and Abbreviations

There are no acronyms and abbreviations relevant within this document that are not
included in the [2, AUTOSAR glossary].

7 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

4 Requirements Specification

4.1 Functional overview

4.2 Non-functional Requirements

[RS_AP_00111] The AUTOSAR Adaptive Platform shall support source code
portability for AUTOSAR Adaptive applications. d

Type: valid

Description: The AUTOSAR Adaptive platform shall support source code portability.

Rationale: Ensure reuse of existing IPs.

Dependencies: –

Use Case:
Integration of Adaptive Applications developed on different implementations of
Adaptive Platform.

Supporting
Material:

Any implementation of the Adaptive Platform shall allow successful compilation
and linking of an Adaptive Application that uses ARA only as specified in the
standard. No changes to the source code, and no conditional compilation
constructs shall be necessary for this, if the application only uses constructs
from the designated minimum C++ language version.
The implementation may provide proprietary, non-ARA interfaces, as long as
they are not contradicting with the AP standard. However, an implementation
shall not add declarations or definitions that are not specified in an SWS to the
namespace ara or any of its sub-namespaces.

c(RS_Main_00150)

[RS_AP_00130] AUTOSAR Adaptive Platform shall represent a rich and modern
programming environment. d

Type: valid

Description: AUTOSAR Adaptive Platform shall represent a rich and modern programming
environment

Rationale:
Programmer productivity is an important aspect of any software framework. By
providing and using advanced types and APIs, productivity is improved, and the
platform’s attractiveness increases.

Dependencies: –

Use Case:
Some of these advanced types and APIs might be originally designed by
AUTOSAR, whereas others might be back-ported from more recent C++
standards than defined by [RS_AP_00114].

Supporting
Material:

–

c(RS_Main_00420)

8 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

4.2.1 Design Requirements

[RS_AP_00114] C++ interface shall be compatible with C++14. d

Type: valid

Description: The interface of AUTOSAR Adaptive Platform shall be compatible with C++14.

Rationale:

The interface of AUTOSAR Adaptive platform is designed to be compatible with
C++14 due to high availability of C++14 compiler for embedded devices.
Nevertheless projects are free to use newer C++ version like C++17. Adaptive
Platform vendors may restrict their package to a newer C++ version (e.g. to
support newer build systems).

Dependencies: RS_Main_00513

Use Case:

To manage the complexity of the application development, the Adaptive
platform shall support object-oriented programming. C++ is the programming
language which supports object-oriented programming and is best suited for
performance-critical and real-time applications.

Supporting
Material:

ISO/IEC 14882

c(RS_Main_00513)

9 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00115] Namespaces. d

Type: valid

Description:

The namespace of Adaptive Platform in global scope shall be "ara". Within
"ara" namespace each Functional Cluster shall have exactly one own
namespace with its shortname (defined in [3]). No other namespaces directly
below "ara" are allowed. All names shall use lower-case only. Underscores may
be used.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00500, RS_Main_00150)

[RS_AP_00116] Header file name. d

Type: valid

Description:

All Functional Clusters shall provide a self-contained header file for each public
class (except scoped enum and exceptions). The header file name shall be
derived from the class name.

All header file names shall have the extensions .h.
Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

Google C++ Style Guide:
https://google.github.io/styleguide/cppguide.html

c(RS_Main_00500, RS_Main_00150)

10 of 25 Document ID 714: AUTOSAR_RS_General

https://google.github.io/styleguide/cppguide.html

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00122] Type names. d

Type: valid

Description:

For all Functional Clusters the name of their public types - classes, structs, type
aliases, and type template parameters
• shall be standardized in upper camel case.

• underscores shall not be used. Except for fixed width integer types,
postfix _t shall not be used.

• capitalized acronyms shall be used as single words.

Further the following exception is given:

exception: all requirements and expectations that the C++ language standard
or the C++ standard library place on the naming of certain symbols shall be
heeded for all types and functions. Examples: nested type definitions that help
with template metaprogramming such as value_type, size_type etc.

Rationale: –
Dependencies: –

Use Case: Harmonized look and feel.

Supporting
Material:

CamelCase: see [4]

STL: see [5]

Google C++ Style Guide: see [6]

c(RS_Main_00500, RS_Main_00150)

11 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00120] Method and Function names. d

Type: valid

Description:

For all Functional Clusters, the name of their public methods and functions shall
use upper camel case. Further underscores shall not be used. Capitalized
acronyms shall be used as single words.

Further the following exceptions are given:
exception 1: any function that fundamentally replicates a function which has

been defined by an external standard (including, but not limited to, the
C++ standard) shall keep that external standard’s naming rules for that
function, and for all symbols associated with it, including any external
functions that are highly integrated with it.

exception 2: all requirements and expectations that the C++ language
standard or the C++ standard library place on the naming of certain
symbols shall be heeded for all functions.

Rationale:

For the exceptions mentioned above the following rationals are given:
Rational for exception 2: Certain special member functions and types cannot

adopt the principal AUTOSAR naming rules, because their naming is
defined by the C++ standard. Amongst these are: all operator functions,
begin()/end() and all their variations, and virtual functions inherited from
base classes of the C++ standard library.

Dependencies: –

Use Case: –

Supporting
Material:

CamelCase: see [4]

STL: see [5]

Google C++ Style Guide: see [6]

c(RS_Main_00500, RS_Main_00150)

[RS_AP_00121] Parameter names. d

Type: valid

Description:
For all Functional Clusters, the name of parameters in public methods shall use
lower camel case. Further underscores shall not be used. Capitalized
acronyms shall be used as single words.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

CamelCase: see [4]

c(RS_Main_00500, RS_Main_00150)

12 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00124] Variable names. d

Type: valid

Description:

For all Functional Clusters, the name of their public variables (like Common
Variable names, Class Data Members and Struct Data Members) shall use
lower camel case. Further underscores shall not be used. Capitalized
acronyms shall be used as single words.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

CamelCase: see [4]

c(RS_Main_00500, RS_Main_00150)

[RS_AP_00125] Enumerator and constant names. d

Type: valid

Description:

For all Functional Clusters, the name of public enumerations shall use upper
camel case. The individual enumerators and constants shall be written with a
leading "k" followed by upper camel case. Further underscores shall not be
used. Capitalized acronyms shall be used as single words.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

CamelCase: see [4]

c(RS_Main_00500, RS_Main_00150)

[RS_AP_00141] Usage of out parameters. d

Type: valid

Description: Out parameters can be used for inplace modifications but shall not be used for
returning values.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

C++ Core Guidelines [7]: F.20: For "out" output values, prefer return values to
output parameters.

c(RS_Main_00150)

13 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00119] Return values / application errors. d

Type: valid

Description:

All API function specifications shall give the exact list of errors (linked to the
ErrorDomains which define them) that can originate from them, and which
situations can cause which of those errors. Furthermore, for return values
(especially integral, floating-point, enumeration, and string), the exact range of
possible values shall be specified.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00150)

[RS_AP_00138] Return type of asynchronous function calls. d

Type: valid

Description: Asynchronous function calls that need to return a value, or that can potentially
fail should use ara::core::Future as return type.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00150)

[RS_AP_00139] Return type of synchronous function calls. d

Type: valid

Description: Synchronous function calls that can potentially fail should use ara::core::Result
as return type and use it for returning both values and errors.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00150)

14 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00142] Handling of unsuccessful operations. d

Type: valid

Description: Functional Clusters shall differentiate recoverable unsuccessful operations from
non-recoverable ones.

Rationale: –
Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00010, RS_Main_00011)

[RS_AP_00128] Error reporting. d

Type: valid

Description: Interfaces shall be designed to report recoverable errors via a suitable return
type, such as ara::core::Result or ara::core::Future.

Rationale: Few compilers in the market allows to use exceptions in safety related projects.

Dependencies: –

Use Case: Safety-related projects

Supporting
Material:

–

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00132] noexcept behavior of API functions d

Type: valid

Description: Each library function having a wide contract that cannot throw or shall never
throw should be marked as unconditionally noexcept.

Rationale: –
Dependencies: –

Use Case: Safety-related projects

Supporting
Material:

A function has a “wide contract” if it does not specify any undefined behavior. It
therefore does not put any additional runtime constraints on its arguments, any
object state, or any global state. The opposite of a “wide contract” is called a
“narrow contract”.

An example of a function with a wide contract would be
ara::core::Vector<T>::size(). An example of a function with a narrow
contract would be ara::core::Vector<T>::front(), because it has the
precondition that the container must not be empty.

This requirement is based on the “Adopted Guidelines” from the document
N3279: see [8]

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

15 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00134] noexcept behavior of class destructors d

Type: valid

Description: No class destructor should throw. They should use an explicitly supplied
“noexcept” specifier.

Rationale: –
Dependencies: –

Use Case: Safety-related projects

Supporting
Material:

N3279: see [8]

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00133] noexcept behavior of move and swap operations d

Type: valid

Description:

If a library swap function, move-constructor, or move-assignment operator is
conditionally-wide (i.e. can be proven to not throw by applying the noexcept
operator) then it should be marked as conditionally noexcept. No other function
should use a conditional noexcept specification.

Rationale: –
Dependencies: –

Use Case: Safety-related projects

Supporting
Material:

N3279: see [8]

c()

[RS_AP_00144] Availability of a named constructor. d

Type: valid

Description:

If the construction of an object can fail in a way that is recoverable by the caller,
the class shall have named constructors returning a Result in addition to its
regular constructors. Unless other considerations apply, the name of a named
constructor should be Create, and its arguments shall be the same as those of
the corresponding regular constructor.

Rationale: All objects should be valid after their construction.

Dependencies: –

Use Case: –
Supporting
Material:

C++ Core Guidelines [7]: C.42: If a constructor cannot construct a valid object,
throw an exception.

c()

16 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00145] Availability of special member functions. d

Type: valid

Description:

The rule of five shall apply. If it is necessary to define or =delete any copy,
move, or destructor function, define or =delete them all. It is necessary to
define own constructors, if the default (or implicit created) constructors will not
create valid and fully initialized object.

Rationale: Consistency.

Dependencies: –

Use Case: –

Supporting
Material:

C++ Core Guidelines [7]:
• C.21: If you define or =delete any copy, move, or destructor function,

define or =delete them all

• C.41: A constructor should create a fully initialized object

c()

[RS_AP_00146] Classes whose construction requires interaction by the ARA
framework. d

Type: valid

Description:
A class which is not intended to be constructible by application shall d̄elete the
default constructor. Rationale: To show the intent that this class is not intended
to be constructible by the application.

Rationale: –
Dependencies: –

Use Case: –
Supporting
Material:

–

c()

[RS_AP_00147] Classes which are created by an InstanceSpecifer shall not be
copyable, but at most movable. d

Type: valid

Description: Classes which are created by an InstanceSpecifer shall not be copyable, but
may be non-throwing movable (noexcept).

Rationale: To only have one way to construct the object and register the internals.

Dependencies: –

Use Case: –
Supporting
Material:

–

c()

17 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00127] Usage of ara::core types. d

Type: valid

Description: ARA interface shall use ara::core types instead of C++ standard types if
ara::core provides the equivalent types.

Rationale: –
Dependencies: –

Use Case:
The ara::core types shall define common types in AP. Furthermore, it allows
platform vendors to e.g. make use of own allocators for safety related projects.

Supporting
Material:

–

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00143] Use 32-bit integral types by default. d

Type: valid

Description: Type aliases to integral types, and scoped enum base types should prefer
32-bit types over 16-bit or 8-bit ones.

Rationale: Many CPUs lack instructions to handle such types efficiently.

Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00002, RS_Main_00513)

[RS_AP_00129] Public types defined by functional clusters shall be designed to
allow implementation without dynamic memory allocation. d

Type: valid

Description:
Public types defined by functional clusters shall be designed to allow
implementation without dynamic memory allocation after the init-phase (i.e.
after reaching Execution State Running of Execution Management).

Rationale:

Memory allocator used in the project needs to guarantee that memory
allocation and deallocation are executed within defined time constraints that are
appropriate for the response time constraints defined for the real-time system
and its programs.

Dependencies: –

Use Case: Safety related projects

Supporting
Material:

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

18 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00135] Avoidance of shared ownership. d

Type: valid

Description:

APIs shall be designed in a way that the ownership of each data is unique. This
is achieved either by transferring ownership between caller and callee (e.g. by
means of std::move) or by creating a copy of data at the receiver. In case of
ownership transfer usage of unique_ptr instead of shared_ptr shall be used. In
case of asynchronous operations the type ara::core::Future shall be used to
avoid introduction of own shared states.

Rationale:
Unique ownership is conceptually simpler and more predictable (responsibility
for destruction) to manage.

Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00136] Usage of string types. d

Type: valid

Description:

The default encoding of any string type (like ara::core::String or
ara::core::StringView) in the ARA interfaces shall be UTF-8. In case the
encoding is deviating from UTF-8, it shall be documented in the API definition
(including the rationale as a note).

Rationale: Harmonized usage

Dependencies: –

Use Case: Compatibility of strings in the platform

Supporting
Material:

UTF-8: ISO/IEC 10646

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00137] Connecting run-time interface with model. d

Type: valid

Description:

Any reference of an API on application level to another element in the model
shall refer to the other element using an ara::core::InstanceSpecifier. Modeling
shall be done with PortPrototypes. No alternative methods of creating
references to other elements in the model, such as FC-defined IDs are allowed.

Rationale: Decoupling of interfaces and harmonized look and feel.

Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00160, RS_Main_00150, RS_Main_00513)

19 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_AP_00140] Usage of "final specifier" in ara types. d

Type: valid

Description: ARA types shall use the "final specifier", unless they are meant to be used as a
base class.

Rationale:
Clear expression of the design (class hierarchy). Avoid problems that arise
when deriving of a type which is not prepared for sub-classing.

Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00010, RS_Main_00012)

20 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

5 Requirements Tracing

The following table references the requirements specified in [9] and links to the fulfill-
ments of these.

Requirement Description Satisfied by
[RS_Main_00002] AUTOSAR shall provide a software platform for

high performance computing platforms
[RS_AP_00143]

[RS_Main_00010] AUTOSAR shall support the development of safety
related systems

[RS_AP_00127]
[RS_AP_00128]
[RS_AP_00129]
[RS_AP_00132]
[RS_AP_00134]
[RS_AP_00135]
[RS_AP_00136]
[RS_AP_00140]
[RS_AP_00142]

[RS_Main_00011] AUTOSAR shall support the development of
reliable systems

[RS_AP_00142]

[RS_Main_00012] AUTOSAR shall provide a software platform to
support the development of highly available
systems

[RS_AP_00127]
[RS_AP_00128]
[RS_AP_00129]
[RS_AP_00132]
[RS_AP_00134]
[RS_AP_00135]
[RS_AP_00136]
[RS_AP_00140]

[RS_Main_00150] AUTOSAR shall support the deployment and
reallocation of AUTOSAR Application Software

[RS_AP_00111]
[RS_AP_00115]
[RS_AP_00116]
[RS_AP_00119]
[RS_AP_00120]
[RS_AP_00121]
[RS_AP_00122]
[RS_AP_00124]
[RS_AP_00125]
[RS_AP_00137]
[RS_AP_00138]
[RS_AP_00139]
[RS_AP_00141]

[RS_Main_00160] AUTOSAR shall provide means to describe
interfaces of the entire system

[RS_AP_00137]

[RS_Main_00350] AUTOSAR specifications shall be analyzable and
support according methods to demonstrate the
achievement of safety related properties

[RS_AP_00127]
[RS_AP_00128]
[RS_AP_00129]
[RS_AP_00132]
[RS_AP_00134]
[RS_AP_00135]
[RS_AP_00136]

[RS_Main_00420] AUTOSAR shall use established software
standards and consolidate de-facto standards for
basic software functionality

[RS_AP_00130]

21 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

[RS_Main_00500] AUTOSAR shall provide naming conventions [RS_AP_00115]
[RS_AP_00116]
[RS_AP_00120]
[RS_AP_00121]
[RS_AP_00122]
[RS_AP_00124]
[RS_AP_00125]

[RS_Main_00513] AUTOSAR shall support language bindings for
different programming languages

[RS_AP_00114]
[RS_AP_00137]
[RS_AP_00143]

22 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

6 References

[1] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[2] Glossary
AUTOSAR_TR_Glossary

[3] Functional Cluster Shortnames
AUTOSAR_TR_FunctionalClusterShortnames

[4] Camel case
https://en.wikipedia.org/wiki/CamelCase

[5] Standard Template Library
https://en.wikipedia.org/wiki/Standard_Template_Library

[6] Cpp Styleguide
https://google.github.io/styleguide/cppguide.html#Type_Names

[7] C++ Core Guidelines
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

[8] Conservative use of noexcept in the Library
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf

[9] Main Requirements
AUTOSAR_RS_Main

23 of 25 Document ID 714: AUTOSAR_RS_General

https://en.wikipedia.org/wiki/CamelCase
https://en.wikipedia.org/wiki/Standard_Template_Library
https://google.github.io/styleguide/cppguide.html#Type_Names
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

7 Change History of this Document

7.1 Change History of this document according to AUTOSAR Re-
lease 19-11

7.1.1 Added Traceables in 19-11

Number Heading

[RS_AP_00133] noexcept behavior of move and swap operations

[RS_AP_00135] Avoidance of shared ownership.

[RS_AP_00136] Usage of string types.

[RS_AP_00137] Connecting run-time interface with model.

[RS_AP_00138] Return type of asynchronous function calls.

[RS_AP_00139] Return type of synchronous function calls.

[RS_AP_00140] Usage of "final specifier" in ara types.

[RS_AP_00141] Usage of out parameters.

[RS_AP_00142] Handling of unsuccessful operations.

Table 7.1: Added Traceables in 19-11

7.1.2 Changed Traceables in 19-11

Number Heading

[RS_AP_00115] Namespaces.

[RS_AP_00116] Header file name.
[RS_AP_00119] Return values / application errors.

[RS_AP_00122] Type names.

[RS_AP_00127] Usage of ara::core types.

[RS_AP_00128] Error reporting.

[RS_AP_00129] Public types defined by functional clusters shall be designed to allow imple-
mentation without dynamic memory allocation.

[RS_AP_00132] noexcept behavior of API functions

[RS_AP_00134] noexcept behavior of class destructors

Table 7.2: Changed Traceables in 19-11

24 of 25 Document ID 714: AUTOSAR_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R20-11

7.1.3 Deleted Traceables in 19-11

Number Heading

[RS_AP_00113] API specification shall comply with selected coding guidelines.

[RS_AP_00131] Use of verbal forms to express requirement levels.

Table 7.3: Deleted Traceables in 19-11

7.2 Change History of this document according to AUTOSAR Re-
lease 20-11

7.2.1 Added Traceables in R20-11

Number Heading

[RS_AP_00143] Use 32-bit integral types by default.

[RS_AP_00144] Availability of a named constructor.

[RS_AP_00145] Availability of special member functions.

[RS_AP_00146] Classes whose construction requires interaction by the ARA framework.

[RS_AP_00147] Classes which are created by an InstanceSpecifer shall not be copyable, but
at most movable.

Table 7.4: Added Traceables in R20-11

7.2.2 Changed Traceables in R20-11

Number Heading

[RS_AP_00114] C++ interface shall be compatible with C++14.

[RS_AP_00129] Public types defined by functional clusters shall be designed to allow imple-
mentation without dynamic memory allocation.

Table 7.5: Changed Traceables in R20-11

7.2.3 Deleted Traceables in R20-11

none

25 of 25 Document ID 714: AUTOSAR_RS_General

	1 Scope of this document
	2 Conventions to be used
	3 Acronyms and Abbreviations
	4 Requirements Specification
	4.1 Functional overview
	4.2 Non-functional Requirements
	4.2.1 Design Requirements

	5 Requirements Tracing
	6 References
	7 Change History of this Document
	7.1 Change History of this document according to AUTOSAR Release 19-11
	7.1.1 Added Traceables in 19-11
	7.1.2 Changed Traceables in 19-11
	7.1.3 Deleted Traceables in 19-11

	7.2 Change History of this document according to AUTOSAR Release 20-11
	7.2.1 Added Traceables in R20-11
	7.2.2 Changed Traceables in R20-11
	7.2.3 Deleted Traceables in R20-11

