AUTOSAR

Document Title

Guldelines for the use of the
C++14 language in critical and

safety-related systems

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 839
Document Status Final

Part of AUTOSAR Standard

Adaptive Platform

Part of Standard Release

19-03

Document Change History

Date Release | Changed by Description
AUTOSAR
2019-03-29 19-03 | Release Added the obsolete statement
Management
Added traceability for ISO 26262
(B.6)
New rules resulting from continued
AUTOSAR analysis of the C++ Core Guideline
2018-10-31 | 18-10 Release Finished addressing MISRA review
Management comments of the 2017-03 release
Improvements of already existing
rules, more details in the Changelog
(D.3)
Marked the specification as obsolete
New rules resulting from the analysis
of JSF, HIC, CERT, C++ Core
Guideline
AUTOSAR Improvements of already existing
2018-03-29 | 18-03 Release rules, more details in the Changelog
Management (D.2)
Covered smart pointers usage
Reworked checked/unchecked
exception definitions and rules
Updated traceability for HIC, CERT,
AUTOSAR C++ Core Guideline
2017-10-27 | 17-10 Release Partially included MISRA review of
Management the 2017-03 release

Changes and fixes for existing rules,
more details in the Changelog (D.1)

AUTOSAR

2017-03-31

17-03

AUTOSAR
RM

Initial release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in it,
as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTOSAR

Contents
1 Background 9
2 The vision 10
2.1 Rationale for the production of AUTOSAR C++14 10
2.2 Objectives of AUTOSARC++14 10
3 Scope 12
3.1 Allowed features of C++language 12
3.2 Limitationso 14
4 Using AUTOSAR C++14 16
5 Introduction to the rules 17
5.1 Rule classification 17
51.1 Rule classification according to compatibility with MISRA .. 17
51.2 Rule classification according to obligation level 17
5.1.3 Rule classification according to enforcement by static analysis 17
5.1.4 Rule classification according to allocated target 18
5.2 Organizationofrules............................ 18
5.3 Exceptionstotherules................. 18
5.4 Redundancyintherules.......................... 18
5.5 Presentationofrules................ 19
5.6 Understanding the issue references 19
5.7 Scopeofrules...... 19
6 AUTOSAR C++14 coding rules 20
6.0 Language independentissues 20
6.0.1 Unnecessary constructs 20
6.0.2 Storage 29
6.0.3 Runtimefailures 29
6.0.4 Arithmetic 30
6.1 General 33
6.1.1 SCOPE . .. 33
6.1.2 Normative references 36
6.1.4 Implementation compliance 36
6.2 Lexical conventions 37
6.2.3 Charactersets, 37
6.2.5 Alternative tokens 38
6.2.7 Comments 40
6.2.8 Headernames............ 43
6.2.10 Identifiers 44
6.2.11 Keywords 49
6.2.13 Literals 49

6.3 Basicconcepts 54

AUTOSAR

6.4

6.5

6.6

6.7

6.8

6.9

6.3.1
6.3.2
6.3.3
6.3.4
6.3.8
6.3.9

6.4.5
6.4.7
6.4.10
Expressions
6.5.0
6.5.1
6.5.2
6.5.3
6.5.5
6.5.6
6.5.8
6.5.10
6.5.14
6.5.16
6.5.18
6.5.19
6.5.20

6.6.2
6.6.3
6.6.4
6.6.5
6.6.6

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6

6.8.0
6.8.2
6.8.3
6.8.4
6.8.5

6.9.3
6.9.5

Declarations and definitions 54
One DefinitionRule 59
SCOPE . .ttt 60

Name lookup, 64
Object lifetime 64
TYPES . oo 67
Standard conversions 68
Integral promotions 68
Integral conversion, 71
Pointer conversions00, 73
................................. 74
General 74
Primary expressioncoo.... 87
Postfix expressions 95
Unary expressionso ii i 104
Pointer-to-member 108
Multiplicative operators 110
Shiftoperators 111
Equality operators L 111
Logical AND operator 112
Conditional operator 112
Assignment and compound assignment operation 113
Commaoperator, 113
Constantexpression, 113
Statements 113
Expression statement 113
Compound statementor block 117
Selection statements 118
Iteration statements 120
Jumpstatements 125
Declaration 127
Specifiers 127
Enumeration declaration 137
Namespaces 142

The asmdeclaration 145
Linkage specification 147
Attributes 151
Declarators i, 152
General 152
Ambiguity resolution 152
Meaning of declarators 153
Function definitions 153
Initializers 171
Classes 179
Member function 179
Unions i 182

AUTOSAR

6.9.6 Bit-fields
6.10 DerivedClasses
6.10.0 General
6.10.1 Multiple base Classes
6.10.2 Member name lookup
6.10.3 Virtual functions
6.10.4 AbstractClasses
6.11 Memberaccesscontrol,
6.11.0 General
6.11.3 Friends
6.12 Special member functions
6.12.0 General
6.12.1 Constructors
6.12.4 Destructors
6.12.6 Initialization
6.12.7 Construction and destructions
6.12.8 Copying and moving class objects
6.13 Overloadingt
6.13.1 Overloadable declarations
6.13.2 Declaration matching
6.13.3 Overload resolution
6.13.5 Overloaded operators
6.13.6 Build-inoperators
6.14 Templates
6.14.0 General
6.14.1 Template parameters
6.14.5 Template declarations
6.14.6 Nameresolution.........................
6.14.7 Template instantiation and specialization
6.14.8 Function template specializations
6.15 Exceptionhandling
6.15.0 General
6.15.1 Throwing an exception
6.15.2 Constructors and destructors
6.15.3 Handling an exception
6.15.4 Exception specifications
6.15.5 Special functions
6.16 Preprocessing directives
6.16.0 General
6.16.1 Conditional inclusion
6.16.2 Sourcefileinclusion
6.16.3 Macro replacement
6.16.6 Errordirective
6.16.7 Pragmadirective

6.17
6.17.1

Library introduction -

General

partial,

AUTOSAR

6.18

6.19

6.20

6.21

6.23

6.25

6.27

6.17.2
6.17.3
6.17.6

6.18.0
6.18.1
6.18.2
6.18.5
6.18.9
6.19.4
6.20.8
6.21.8
6.23.1
6.25.1
6.25.4
6.26.5

6.27.1

7 References

The Cstandard library
Definitions i
Library-wide requirements
Language support library - partial
General

TYPES . oo
Implementation properties
Dynamic memory management
Other runtime support
Diagnostics library -partial
Errornumbers

General utilities library - partial
Smartpointers.
Stringslibrary
Null-terminated sequence utilities
Containers library - partial
General

Algorithms library
General

Sorting and related operations
Random number generation
Input/output library - partial
General

A Allocation of rules to work products

Al
A2
A3
A4
A5
A.6
A7
A.8
A9

Rules allocated to architecture
Rules allocatedtodesign
Rules allocated totoolchain
Rules allocated to infrastructure
Rules allocatedtoanalysis
Rules allocatedtohardware
Rules allocated to management
Rules allocated to verification
Rules allocated to implementation

B Traceability to existing standards

B.1
B.2
B.3
B.4
B.5
B.6

C Glossary

Traceability to MISRAC++:2008
Traceability to HIC++v4.0
Traceability to JSF
Traceabilityto SEICERT C++
Traceability to C++ Core Guidelines
Traceability to ISO 26262

385

385
386
387
388
388
388
388
388
388

400

401
420
432
450
462
495

503

AUTOSAR

D Changelog

D.1 Release 17-10
D.2 Release 18-03
D.3 Release 18-10

AUTOSAR

1 Background

See chapter 1. Background"” in MISRA C++:2008, which is applicable for this
document as well.

This document specifies coding guidelines for the usage of the C++14 language as
defined by ISO/IEC 14882:2014 [3], in the safety-related and critical systems. The
main application sector is automotive, but it can be used in other embedded
application sectors.

This document is defined as an update of MISRA C++:2008 [7]. The rules that are
adopted from MISRA C++ without modifications, are only referred in this document
by ID and rule text, without repeating their complete contents. Therefore, MISRA
C++:2008 is required prerequisite for the readers of this document. MISRA C++:2008
can be purchased over MISRA web store. The reference to the adopted MISRA
C++:2008 rules is not considered as a reproduction of a part of MISRA C++:2008.

Most of the rules are automatically enforceable by static analysis. Some are patrtially
enforceable or even non-enforceable and they need to be enforced by a manual
code review.

Most of the rules are typical coding guidelines i.e. how to write code. However, for
the sake of completeness and due to the fact that some rules are relaxed with
respect to MISRA C+++:2008 (e.g. exceptions and dynamic memory is allowed),
there are also some rules related to compiler toolchain and process-related rules
concerning e.g. analysis or testing.

This document is not about the style of code in a sense of naming conventions,
layout or indentation. But as there are several C++ code examples, they need some
form of style guide convention. Therefore, the code examples are written in a similar
way like the MISRA C++:2008 code examples.

AUTOSAR

2 Thevision

2.1 Rationale for the production of AUTOSAR C++14

Currently, no appropriate coding standards for C++14 or C++11 exist for the use in
critical and safety-related software. Existing standards are incomplete, covering old
C++ versions or not applicable for critical/safety-related. In particular, MISRA
C++:2008 does not cover C++11/14. Therefore this document is to cover this gap.

MISRA C++:2008 is covering the C++03 language, which is 13 years old at the time
of writing this document. In the meantime, the market evolved, by:

1. substantial evolution/improvement of C++ language

2. more widespread use of object-oriented languages in safety-related and critical
environments

3. availability of better compilers
4. availability of better testing, verification and analysis tools appropriate for C++

5. availability of better development methodologies (e.g. continuous integration)
that allow to detect/handle errors earlier

6. higher acceptance of object-oriented languages by safety engineers and
7. strong needs of development teams for a powerful C++ language features

8. creation of ISO 26262 safety standard, which HIC++, JSF++, CERT C++, C++
Core Guidelines

As a result, MISRA C++:2008 requires an update. This document is therefore an
add-on on MISRA and it specifies:

1. which MISRA rules are obsolete and do not need to be followed

2. a number of updated MISRA rules (for rules that only needed some
improvements)

3. several additional rules.

Moreover, at the time of writing, MISRA C++:2008 was already not complete / fully
appropriate. For example, it completely disallows dynamic memory, standard libraries
are not fully covered, security is not covered.

2.2 Objectives of AUTOSAR C++14

This document specifies coding guidelines for the usage of the C++14 language, in the
safety-related and critical environments, as an update of MISRA C++:2008, based on
other leading coding standards and the research/analysis done by AUTOSAR. The

AUTOSAR

main application sector is automotive, but it can be used in other embedded
application sectors.

The AUTOSAR C++14 Coding Guidelines addresses high-end embedded micro-
controllers that provide efficient and full C++14 language support, on 32 and 64 bit
micro-controllers, using POSIX or similar operating systems.

For the ISO 26262 clauses allocated to software architecture, unit design and
implementation, the document provides an interpretation of how these clauses apply
specifically to C++.

AUTOSAR

3 Scope

This specification is obsolete and will be removed from the standard in an upcoming
release. The work has been handed over to MISRA and will no longer be maintained
by AUTOSAR.

See also chapter "3. Scope" in MISRA C++:2008, which is applicable for this
document as well.

This document specifies coding guidelines for the usage of the C++14 language as
defined by ISO/IEC 14882:2014 [3], in the safety-related and critical environments,
as an update of MISRA C++:2008. The main application sector is automotive, but it
can be used in other embedded application sectors.

The document is built using the MISRA C++:2008 document structure, document
logic and convention and formatting. Each rule is specified using the MISRA
C++:2008 pattern and style.

Several rules from MISRA C++:2008 were adopted without modifications. See B.1 for
the comparison. The adopted MISRA rules are only referenced by ID and title,
without providing the full contents. The inclusion of ID and of the rule title for the
adopted rules is considered not be a "reproduction”.

Several other coding standards and resources are referenced in this document or
used as a basis of the rules in this document:

1. Joint Strike Fighter Air Vehicle C++ Coding Standards [8]
2. High Integrity C++ Coding Standard Version 4.0 [9]

3. CERT C++ Coding Standard [10]

4. C++ Core Guidelines [11]

5. Google C++ Style Guide [12]

3.1 Allowed features of C++ language

This document allows most of C++ language features, but with detailed restrictions,
as expressed by the rules. This has an important impact on the compiler toolchains,
as well as other software development tools, as these tools need to provide a full
support of the C++ features (as long as these features are used in accordance to the
coding guidelines).

The document allows in particular the usage of dynamic memory, exceptions,
templates, inheritance and virtual functions. On the other side, the compiler toolchain
needs to provide them correctly. In most cases, this requires a tool qualification.

The explanatory summary table 3.1 lists features introduced in C++11 and C++14
and it also summarizes pre-C++11 features, together with their support by the coding
standard.

— AUTOSAR CONFIDENTIAL —

AUTOSAR

Category: Feature: Since: | May be Shall not
used: be used:
6.0 Language independent
issues
Dynamic memory management | - X
Floating-point arithmetic - X
6.1 General
Operators new and delete - X
malloc and free functions - X
Sized deallocation C++11 | X
6.2 Lexical conventions
Namespaces - X
6.3 Basic Concepts
Fixed width integer types C++11 | X
6.4 Standard Conversions
Nullptr pointer literal C++11 | X
6.5 Expressions
C-style casts - X
const_cast conversion - X
dynamic_cast conversion - X
reinterpret_cast conversion - X
static_cast conversion - X
Lambda expressions C++11 | X
Binary literals C++14 | X
6.6 Statements
Range-based for loops C++11 | X
goto statement - X
6.7 Declaration
constexpr specifier C++11 | X
auto specifier C++11 | X
decltype specifier C++11 | X
Generic lambda expressions C++14 | X
Trailing return type syntax C++11 | X
Return type deduction C++14 X
typedef specifier - X
using specifier C++11 | X
Scoped enumerations C++11 | X
std::initializer_list C++11 | X
asm declaration - X
6.8 Declarators
Default arguments - X
Variadic arguments - X

AUTOSAR

List initialization C++11 [X
6.9 Classes

Unions -

Bit-fields - X
6.10 Derived Classes

Inheritance - X

Multiple inheritance -

Virtual functions - X

override specifier C++11 | X

final specifier C++11 | X
6.11 Member Access Control

friend declaration -
6.12 Special Member Functions

Defaulted and deleted functions | C++11 | X

Delegating constructors C++11 | X

Member initializer lists - X

Non-static data member| C++11 | X

initializer

explicit specifier - X

Move semantics C++11 | X
6.13 Overloading

User-defined literals C++11 | X

Digit sequences separators ’ C++14 | X
6.14 Templates

Variadic templates C++11 | X

Variable templates C++14 | X
6.15 Exception Handling

Exceptions - X

Function-try-blocks -

Dynamic exception specification | -

noexcept specifier C++11 | X
6.16 Preprocessing Directives

Static assertion C++11 | X

Implementation defined| -
behavior control (#pragma
directive)

3.2 Limitations

Table 3.1: C++14 features

In the current release, the following are known limitations:

1. The rule set for parallel computing is not provided

AUTOSAR

2. The rule set for security (as long as it is not common to critical software or
safety-related software) is not provided

3. The rule set for C++ standard libraries is partial (incomplete)

4. All remaining non-analyzed rules from CERT and HIC++ are
concurrency/security related

5. The traceability to C++ Core Guidelines contains some non-analyzed rules
The limitations will be addressed in future versions of this document.

If the user of this document uses parallel computing, C++ standard libraries or

develops security-related software, then they are responsible to apply their own
guidelines for these topics.

Further analysis of the following rules will be made for a future release: A2-10-1, A5-
1-8, A7-1-3, A7-1-5, A12-1-1, A12-1-2, A12-1-3, Al12-4-1, A12-4-2, A13-5-3, Al14-7-1,
A16-0-1, A16-2-2, A16-7-1, A17-1-1, A18-9-2, A27-0-2, A27-0-4.

AUTOSAR

4 Using AUTOSAR C++14

See chapter "4. Using MISRA C++" in MISRA C++:2008, which is applicable for this
document as well.

AUTOSAR

5 Introduction to the rules

5.1 Rule classification

5.1.1 Rule classification according to compatibility with MISRA

The rules in this document are defined as a “delta” to MISRA C++:2008. Therefore,
the rules are of two types from this perspective:

5.1.2 Rule classification according to obligation level

The rules are classified according to obligation level:

required: These are mandatory requirements placed on the code. C++ code
that is claimed to conform to AUTOSAR C++14 shall comply with every
“Required” rule. Formal deviations must be raised where this is not the case.

advisory: These are requirements placed on the code that should normally be
followed. However they do not have the mandatory status of “Required” rules.
Note that the status of “Advisory” does not mean that these items can be
ignored, but that they should be followed as far as is reasonably practical.
Formal deviations are not necessary for “Advisory” rules, but may be raised if it
is considered appropriate.

5.1.3 Rule classification according to enforcement by static analysis

The rules are classified according to enforcement by static code analysis tools:

automated: These are rules that are automatically enforceable by means of
static analysis.

partially automated: These are the rules that can be supported by static code
analysis, e.g. by heuristic or by covering some error scenarios, as a support for
a manual code review.

non-automated: These are the rules where the static analysis cannot provide
any reasonable support by a static code analysis and they require other means,
e.g. manual code review or other tools.

Most of the rules are automatically enforceable by a static analysis. A static code
analysis tool that claims a full compliance to this standard shall fully check all
“‘enforceable static analysis” rules and it shall check the rules that are “partially
enforceable by static analysis” to the extent that is possible/reasonable.

The compliance to all rules that are not “enforceable by static analysis” shall be
ensured by means of manual activities like review, analyses.

AUTOSAR

5.1.4 Rule classification according to allocated target

Finally, the rules are classified according to the target:

implementation: These are the rules that apply to the implementation of the
project (code and to software design and architecture).

verification: These are the rules that apply to the verification activities (e.g. code
review, analysis, testing).

toolchain: These are the rules that apply to the toolchain (preprocessor,
compiler, linker, compiler libraries).

infrastructure: These are the rules that apply to the operating system and the
hardware.

5.2 Organization of rules

The rules are organized in chapter 6, similar to the structure of ISO/IEC 14882:2014
document. In addition, rules that do not fit to this structure are defined in chapter 6.0.

5.3 Exceptions to the rules

Some rules contain an Exception section that lists one or more exceptional
conditions under which the rule need not be followed. These exceptions effectively
modify the headline rule.

5.4 Redundancy in the rules

There are a few cases within this document where rules are partially overlapping
(redundant). This is intentional.

Firstly, this approach brings often more clarity and completeness. Secondly, it is
because several redundant rules are reused from MISRA C++:2008. Third, it may be
that the developer chooses to raise a deviation against one of the partially
overlapping rules, but not against others.

For example, goto statement is prohibited by rule A6-6-1 and the usage of goto is
restricted by rules M6-6-1 and M6-6-2 that are overlapping to A6-6-1. So if the developer
decides to deviate from A6-6-1, they can still comply to M6-6-1 and M6-6-2.

AUTOSAR

5.5 Presentation of rules

The individual rules are presented in the format similar to the format of MISRA
C++:2008.

5.6 Understanding the issue references

In this document release, references to C++ Language Standard are not provided.

5.7 Scope of rules

While the majority of rules can be applied within a single translation unit, all rules
shall be applied with the widest possible interpretation.

In general, the intent is that all the rules shall be applied to templates. However,
some rules are only meaningful for instantiated templates.

Unless otherwise specified, all rules shall apply to implicitly-declared or implicitly-
defined special member functions (e.g. default constructor, copy constructor, copy
assignment operator and destructor).

AUTOSAR
6 AUTOSAR C++14 coding rules

This chapter contains the specification of AUTOSAR C++14 coding rules.

6.0 Language independent issues

6.0.1 Unnecessary constructs

Rule M0-1-1 (required, implementation, automated)
A project shall not contain unreachable code.

See MISRA C++ 2008 [7]

Rule M0-1-2 (required, implementation, automated)
A project shall not contain infeasible paths.

See MISRA C++ 2008 [7]

Note: A path can also be infeasible because of a call to constexpr function which
returned value, known statically, will never fulfill the condition of a condition statement.

Rule M0-1-3 (required, implementation, automated)
A project shall not contain unused variables.

See MISRA C++ 2008 [7]

Rule M0-1-4 (required, implementation, automated)
A project shall not contain non-volatile POD variables having only one use.

See MISRA C++ 2008 [7]

Rule A0-1-1 (required, implementation, automated)
A project shall not contain instances of non-volatile variables being
given values that are not subsequently used.

Rationale

Known as a DU dataflow anomaly, this is a process whereby there is a data flow in which
a variable is given a value that is not subsequently used. At best this is inefficient,

11

12

14

15

16

17

[N

8

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

a1

42

AUTO©SAR

but may indicate a genuine problem. Often the presence of these constructs is due to
the wrong choice of statement aggregates such as loops.

See: DU-Anomaly.

Exception

Loop control variables (see Section 6.6.5) are exempt from this rule.

Example

/% $Id: AO-1-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <array>
#include <cstdint>
std::uint8_t Fnl(std::uint8_t param) noexcept
{

std::int32_t x{

0}; // Non-compliant - DU data flow anomaly; Variable defined,
/l but not used
if (param > 0)
{

return 1;

return O;

}
std::int32_t Fn2() noexcept

{
std::int8_t x{10U}; // Compliant - variable defined and will be used
std::int8_t y{20U}; // Compliant - variable defined and will be used
std::intl6_tresult=x +y; // x and y variables used

x =0; // Non-compliant - DU data flow anomaly; Variable defined, but x is
/I not subsequently used and goes out of scope
y = 0; // Non-compliant - DU data flow anomaly; Variable defined, buty is
/I not subsequently used and goes out of scope
return result;
}
std::int32_t Fn3(std::int32_t param) noexcept
{
std::int32_t x{param +
1}; // Compliant - variable defined, and will be used in
/I one of the branches
/I However, scope of x variable could be reduced
if (param > 20)
{

return x;

}

return O;

}
std::int32_t Fn4(std::int32_t param) noexcept

43

a4

45

46

48

49

50

52

53

54

56

57

58

59

[}

0

AUTO©SAR

std::int32_t x{param +
1}; /I Compliant - variable defined, and will be used in
/I some of the branches
if (param > 20)
{
return x + 1;
}

else if (param > 10)

{

return x;

return O;

}

}

void Fn5() noexcept

{
std::array<std::int32_t, 100> arr{};
arr.fill(1);

constexpr std::uint8_t limit{100U};
std::int8_t x{0};
for (std::uint8_t i{OU}; i < limit; ++i) // Compliant by exception - on the
/I final loop, value of i defined will
/l not be used
{
arr[i] = arr[x];
++x; // Non-compliant - DU data flow anomaly on the final loop, value
/I defined and not used

}

See also

MISRAC++2008: 0-1-6 A project shall not contain instances of non-volatile
variables being given values that are never subsequently used.

Rule A0-1-2 (required, implementation, automated)
The value returned by a function having a non-void return type that is not
an overloaded operator shall be used.

Rationale

A called function may provide essential information about its process status and
result through return statement. Calling a function without using the return value
should be a warning that incorrect assumptions about the process were made.

Overloaded operators are excluded, as they should behave in the same way as built-
in operators.

© o N o g A W N R

[S = T S e =
© ® N o O M ®W b = O
R

N
o

AUTO©SAR

Exception

The return value of a function call may be discarded by use of a static_cast<void>

cast, so intentions of a programmer are explicitly stated.

Example

// $1d: A0-1-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <algorithm>

#include <cstdint>

#include <vector>

std::uint8_t Fn1() noexcept

{
return OU;

}

void Fn2() noexcept

{
std::uint8_t x = Fn1(); /I Compliant
Fnl1(); /I Non-compliant
static_cast<void>(Fn1()); // Compliant by exception

}

void Fn3()

{
std::vector<std::int8_t>v{0,0, 1,1, 2, 2, 3, 3, 4, 4, 5, 5};
std::unique(v.begin(), v.end()); / Non-compliant
v.erase(std::unique(v.begin(), v.end()), v.end()); // Compliant

}

See also

MISRA C++ 2008 [7]: Rule 0-1-7 The value returned by a function having a
non-void return type that is not an overloaded operator shall always be used.

HIC++ v4.0 [9]: 17.5.1 Do not ignore the result of std::remove, std::remove_if or
std::unique.

Rule M0-1-8 (required, implementation, automated)
All functions with void return type shall have external side effect(s).

See MISRA C++ 2008 [7]

Rule M0-1-9 (required, implementation, automated)
There shall be no dead code.

See MISRA C++ 2008 [7]

See also

JSF December 2005 [8]: AV Rule 181: Redundant explicit casts will not be used.

http://www.codingstandard.com/section/17-5-algorithms-library/

© o N o o A~ W N R

=
=)

.
]

13

AUTO©SAR

Rule M0-1-10 (advisory, implementation, automated)
Every defined function should be called at least once.

See MISRA C++ 2008 [7]

Note: This rule enforces developers to statically and explicitly use every function in
the source code. A function does not necessarily need to be called at run-time. Rule
MO-1-1 detects all unreachable code occurrences.

Rule A0-1-3 (required, implementation, automated)
Every function defined in an anonymous namespace, or static function
with internal linkage, or private member function shall be used.

Rationale

Functions which are not callable from outside the compilation unit in which they are
defined, or from outside the class implementation to which they pertain, and which
are not used may be symptomatic of serious problems, such as poor software design
or missing paths in flow control.

This rule enforces developers to statically and explicitly use every such function in
the source code. A function does not necessarily need to be called at run-time. Rule
MO-1-1 detects all unreachable code occurrences.

Note that this rule applies equally to static and non-static private member functions.

Example

11% $1d: A0-1-3.cpp 291350 2017-10-17 14:31:34Z jan.babst $
#include <cstdint>

static void F1() // Compliant

{

}

namespace

{

void F2() // Non-compliant, defined function never used
{
}

}

class C

{
public:

CO :x(0) {

void M1(std::int32_t i) // Compliant, member function is used

{
X =i

}

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

AUTO©SAR

void M2(std::int32_t i,
std::int32_t j) // Compliant, never used but declared

/I as public
{
x=(@0>)?i:j;
}
protected:

void M1Protectedimpl(std::int32_t j) // Compliant, never used but declared
Il as protected

private:
std::int32_t x;
void M1Privatelmpl(
std::int32_tj) // Non-compliant, private member function never used

{
X=}
}
b
int main(int, charxx)
{
F10);
Cc;
c.M1(2);
return O;
}
See also

MISRA C++ 2008 [7]: Rule 0-1-10 Every defined function shall be called at least
once.

HIC++ v4.0 [9]: 1.2.2 Ensure that no expression or sub-expression is redundant.

Rule AO-1-4 (required, implementation, automated)
There shall be no unused named parameters in non-virtual functions.

Rationale

Unused named parameters are often a result of a design changes and can lead to
mismatched parameter lists.

Note: This rule does not apply to unnamed parameters, as they are widely used in
SFINAE and concept compliance.

Example

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

42

43

a4

45

46

a7

48

49

AUTO©SAR

/% $Id: AO-1-4.cpp 305588 2018-01-29 11:07:35Z michal.szczepankiewicz $

#include <type_traits>
#include <string>

/ILogger.hpp
class Logger

{
public:
struct console_t {};
struct file_t {};
constexpr static console_t console = console_t();
constexpr static file_t file = file_t();
void init(console_t);
void init(file_t, const std::string& prefix);
2
/ILogger.cpp
void Logger::init(console_t)
{
/linitialization for a console logger
}
void Logger::init(file_t, const std::string& prefix)
{
/linitialization for a file logger for a given prefix path
}

/IMessage.h
struct MessagePolicy {};
struct WriteMessagePolicy final : public MessagePolicy { };

template <typename T> struct is_mutable : std::false_type {};
template <> struct is_mutable<WriteMessagePolicy> : std::true_type {};

template <typename T, typename Policy = MessagePolicy>
class Message

{
public:

static_assert(std::is_base_of<MessagePolicy, Policy>::value == true, "Given parameter is not

derived from MessagePolicy");
using value_type = T;

template<typename U = void>

void set(T&& u, typename std::enable_if<is_mutable<Policy>::value, U>::type*
= O)

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

10

11

12

13

14

AUTO©SAR

private:
value_type v;

2

int main(int, char+)

{
Logger log;
log.init(Logger::console);
log.init(Logger::file, std::string("/tmp/"));
Message<uint8_t> read,;
Message<uint8_t, WriteMessagePolicy> write;
/lread.set(uint8_t(12)); Compilation error
write.set(uint8_t(12));
return O;

}

See also

C++ Core Guidelines [11]: F.9: Unused parameters should be unnamed

Rule A0-1-5 (required, implementation, automated)
There shall be no unused named parameters in the set of parameters for
a virtual function and all the functions that override it.

Rationale

Unused named parameters are often a result of a design changes and can lead to
mismatched parameter lists.

Note: This rule does not apply to unnamed parameters, as overridden methods for
some subclasses may need additional parameters.

Example
/1% $1d: AO-1-5.cpp 305588 2018-01-29 11:07:35Z michal.szczepankiewicz $

#include <cstdint>
#include <vector>

/[Compressor.h
class Compressor

{
public:
using raw_memory_type = std::vector<uint8_t>;

raw_memory_type Compress(const raw_memory_type& in, uint8_t ratio);

private:

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unused

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

a1

42

43

a4

45

46

a7

48

49

50

51

52

AUTO©SAR

virtual raw_memory_type _ Compress(const raw_memory_type& in, uint8_t ratio)
= O,
I8

//[Compressor.cpp

Compressor::raw_memory_type Compressor::Compress(const raw_memory_type& in, uint8_t
ratio)

{

return __Compress(in, ratio);

}

[IJPEGCompressor.h
class JPEGCompressor : public Compressor

{

private:
raw_memory_type __ Compress(const raw_memory_type& in, uint8_t ratio) override

h

/IJPEGCompressor.cpp

JPEGCompressor::raw_memory_type JPEGCompressor:;:__Compress(const raw_memory_type& in,
uint8_t ratio)

{
raw_memory_type ret;
/ljpeg compression, ratio used
return ret;

}

/[HuffmanCompressor.h
class HuffmanCompressor : public Compressor

{

private:
raw_memory_type _ Compress(const raw_memory_type& in, uint8_t) override;

h

/IJPEGCompressor.cpp

HuffmanCompressor::raw_memory_type HuffmanCompressor::__Compress(const
raw_memory_type& in, uint8_t)

{
raw_memory_type ret;
//Huffman compression, no ratio parameter available in the algorithm
return ret;

}

See also

C++ Core Guidelines [11]: F.9: Unused parameters should be unnamed

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unused

® ~N o a b~ W

AUTOSAR

Rule A0-1-6 (advisory, implementation, automated)
There should be no unused type declarations.

Rationale

Unused type declarations make code unnecessary more complex and complicate

review process. Unused types can be redundant or be unused by mistake.

Note: Libraries development require introduction new types not used internally.

Example
// $ld: AD-1-6.cpp$
#include <cstdint>

std::uint32_t Fn() noexcept
{

using LocalUIntPtr = std::uint32_tx;
return OU,

}

See also

MISRA C++ 2008 [7]: Rule 0-1-5 reclassified from required to advisory.

6.0.2 Storage

Rule M0-2-1 (required, implementation, automated)
An object shall not be assigned to an overlapping object.

See MISRA C++ 2008 [7]

6.0.3 Runtime failures

Rule M0-3-1 (required, implementation / verification, non-automated)
Minimization of run-time failures shall be ensured by the use of at least
one of: (a) static analysis tools/techniques; (b) dynamic analysis
tools/techniques; (c) explicit coding of checks to handle run-time faults.

See MISRA C++ 2008 [7]

AUTOSAR

Rule M0-3-2 (required, implementation, non-automated)
If a function generates error information, then that error information shall
be tested.

See MISRA C++ 2008 [7]

Note: This rule does not cover exceptions due to different behavior. Exception
handling is described in chapter 6.15.

6.0.4 Arithmetic

Rule M0-4-1 (required, implementation, non-automated)
Use of scaled-integer or fixed-point arithmetic shall be documented.

See MISRA C++ 2008 [7]

Rule M0-4-2 (required, implementation, non-automated)
Use of floating-point arithmetic shall be documented.

See MISRA C++ 2008 [7]

Rule A0-4-1 (required, infrastructure / toolchain, non-automated)
Floating-point implementation shall comply with IEEE 754 standard.

Rationale

Floating-point arithmetic has a range of problems associated with it. Some of these
can be overcome by using an implementation that conforms to IEEE 754 (IEEE
Standard for Floating-Point Arithmetic).

Note that the rule implies that toolchain, hardware, C++ Standard Library and C++
built-in types (i.e. float, double) will provide full compliance to IEEE 754 standard in
order to use floating-points in the project.

Also, see: A0-4-2.

Example

/1% $1d: A0-4-1.cpp 271389 2017-03-21 14:41:05Z piotr.tanski $
#include <limits>
static_assert(

std::numeric_limits<float>::is_iec559,

"Type float does not comply with IEEE 754 single precision format");
static_assert(

10

11

12

13

14

15

AUTOSAR

std::numeric_limits<float>::digits == 24,
"Type float does not comply with IEEE 754 single precision format");

static_assert(

std::numeric_limits<double>::is_iec559,

"type double does not comply with IEEE 754 double precision format");
static_assert(

std::numeric_limits<double>::digits == 53,

"Type double does not comply with IEEE 754 double precision format");

See also

MISRA C++ 2008 [7]: Rule 0-4-3 Floating-point implementations shall comply
with a defined floating-point standard.

JSF December 2005 [8]: AV Rule 146 Floating point implementations shall
comply with a defined floating point standard.

Rule A0-4-2 (required, implementation, automated)
Type long double shall not be used.

Rationale

The width of long double type, and therefore width of the significand, is
implementation-defined.

The width of long double type can be either:

64 bits, as the C++14 Language Standard allows long double to provide at least
as much precision as type double does, or

80 bits, as the IEEE 754 standard allows extended precision formats (see:
Extended-Precision-Format), or

128 bits, as the IEEE 754 standard defines quadruple precision format

Example

/1% $1d: A0-4-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
void Fn() noexcept

{
float f1{0.1F}; /I Compliant
double f2{0.1}; /I Compliant
long double f3{0.1L}; // Non-compliant

}

See also

none

AUTOSAR

Rule A0-4-3 (required, toolchain, automated)
The implementations in the chosen compiler shall strictly comply with
the C++14 Language Standard.

Rationale

It is important to determine whether implementations provided by the chosen
compiler strictly follow the ISO/IEC 14882:2014 C++ Language Standard.

Example

Since the ISO/IEC 14882:2014 C++ Language Standard, the integer division and
modulo operator results are no longer implementation-defined. The sentence “if both
operands are nonnegative then the remainder is nonnegative; if not, the sign of the
remainder is implementation-defined” from ISO/IEC 14882:2003 is no longer present
in the standard since ISO/IEC 14882:2011. Note that this rule also covers the modulo
operator as it is defined in terms of integer division.

Deducing the type of an auto variable initialized using auto x{<value>} is
implemented differently depending on the language standard. In C++11 and C++14,
x will be a std::initializer_list, whereas in C++17, x will be a type deduced from the
specified <value>. Furthermore, some compilers may already implement the C++17
behavior even when operated in C++14 mode.

Note: Rule A8-5-3 forbids initializing an auto variable with the curly braces ({}) syntax.

Other features provided by the chosen compiler also should follow the ISO/IEC
14882:2014 C++ Language Standard.

See also

MISRA C++ 2008 [7]: Rule 1-0-3 The implementation of integer division in the
chosen compiler shall be determined and documented.

C++ Core Guidelines [11]: F.46: int is the return type for main().

Rule AO-4-4 (required, implementation, partially automated)
Range, domain and pole errors shall be checked when using
math functions.

Rationale

The C Standard defines the following types of error related to math functions
specifically:

domain error — input arguments are outside a domain of a mathematical
function definition

pole error — for finite input arguments a function gives an exact infinite result

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-main

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

AUTO©SAR

range error — a result of a mathematical function cannot be represented by the
return type limitations

Domain and pole errors require that bounds are checked for input parameters before
calling a mathematical function. Range errors in most cases cannot be prevented, as
their occurrence mostly depend on the implementation of floating-point numbers (see
A0-4-1).

Checking for range errors for multi-threaded applications require that floating-point
exception state is in a per-thread basis.

Example
/% $lId: A0-4-4.cpp 305588 2018-01-29 11:07:35Z michal.szczepankiewicz $

#include <cmath>
#include <cfenv>

float Foo(float val)

{
/Inon-compliant, domain error for negative values
return std::sqrt(val);

}

float Bar(float val)

{
/Inon-compliant
/ldomain error for val < 0
/Ipole error for val==0

return std::log(val);
}

/[\return true, if a range error occurred
bool DetectRangeErr()

{
return ((math_errhandling & MATH_ERREXCEPT) &&
(fetestexcept(FE_INEXACT | FE_OVERFLOW | FE_UNDERFLOW) != 0));
}
See also

SEI CERT C++ Coding Standard [10]: FLP32-C: Prevent or detect domain and
range errors in math functions

6.1 General

6.1.1 Scope

https://wiki.sei.cmu.edu/confluence/display/c/FLP32-C.+Prevent+or+detect+domain+and+range+errors+in+math+functions
https://wiki.sei.cmu.edu/confluence/display/c/FLP32-C.+Prevent+or+detect+domain+and+range+errors+in+math+functions

© o N o a A W N R

NONNN R R R R R R s p b
Ww N P O © O N oo o b~ w N B O

N
iN

AUTO©SAR

Rule Al-1-1 (required, implementation, automated)
All code shall conform to ISO/IEC 14882:2014 - Programming Language
C++ and shall not use deprecated features.

Rationale

The current version of the C++ language is as defined by the ISO International
Standard ISO/IEC 14822:2014(E) "Information technology - Programming languages
- C++".

The C++14 is the improved version of the C++11. It is also “the state of the art” of
C++ development that is required by ISO 26262 standard [6].

Any reference in this document to “C++ Language Standard” refers to the ISO/IEC
14822:2014 standard.

Note that all of the deprecated features of C++ Language Standard are defined in
ISO/IEC 14882:2014 - Programming Language C++ Annexes C “Compatibility” and
D “Compatibility features”.

Example

/% $Id: A1-1-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <stdexcept>

void F(std::int32_t i)

{
std::int32_tx a = nullptr;
/I __try I/l Non-compliant - __try is a part of Visual Studio extension
try // Compliant - try keyword is a part of C++ Language Standard
{
a = new std::int32_t[i];
...
}
/I __finally // Non-compliant - __finally is a part of Visual Studio
/I extension
catch (
std::exception&) // Compliant - C++ Language Standard does not define
/I finally block, only try and catch blocks
{
delete]] a;
a = nullptr;
}
}
See also

MISRA C++ 2008 [7]: 1-0-1 All code shall conform to ISO/IEC 14882:2003 “The
C++ Standard Incorporating Technical Corrigendum 1”

AUTOSAR

JSF December 2005 [8]: 4.4.1 All code shall conform to ISO/IEC
14882:2002(E) standard C++.

HIC++ v4.0 [9]: 1.1.1 Ensure that code complies with the 2011 ISO C++
Language Standard.

HIC++ v4.0 [9]: 1.3.4 Do not use deprecated STL library features.

Rule M1-0-2 (required, toolchain, non-automated)
Multiple compilers shall only be used if they have a common,
defined interface.

See MISRA C++ 2008 [7]

Rule Al-1-2 (required, implementation / toolchain, non-automated)
A warning level of the compilation process shall be set in compliance
with project policies.

Rationale

If compiler enables the high warning level, then it is able to generate useful warning
messages that point out potential run-time problems during compilation time. The
information can be used to resolve certain errors before they occur at run-time.

Note that it is common practice to turn warnings into errors.

Also, note that enabling the highest compiler warning level may produce numerous
useless messages during compile time. It is important that the valid warning level for
the specific compiler is established in the project.

See also

JSF December 2005 [8]: AV Rule 218 Compiler warning levels will be set in
compliance with project policies.

Rule Al1-1-3 (required, toolchain, non-automated)
An optimization option that disregards strict standard compliance shall
not be turned on in the chosen compiler.

Rationale

Enabling optimizations that disregard compliance with the C++ Language Standard
may create an output program that should strictly comply to the standard no longer
valid.

See also

none

http://www.codingstandard.com/section/1-1-implementation-compliance/

AUTOSAR

6.1.2 Normative references

Rule A1-2-1 (required, toolchain, non-automated)

When using a compiler toolchain (including preprocessor, compiler itself,
linker, C++ standard libraries) in safety-related software, the tool confidence
level (TCL) shall be determined. In case of TCL2 or TCL3, the compiler shall
undergo a “Qualification of a software tool”, as per ISO 26262-8.11.4.6 [6].

Rationale

Vulnerabilities and errors in the compiler toolchain impact the binary that is built.

Example

The following mechanisms could help to increase the Tool error Detection (TD) and
thus allowing to reduce the Tool Confidence Level:

1. Achievement of MC/DC code coverage on generated project assembly code

2. Diverse implementation of safety requirements at software or even at system
level (e.g. two micro-controllers)

3. Usage of diverse compilers or compilation options
4. Diversity at the level of operating system

5. Extensive testing (e.g. equivalence class testing, boundary value testing),
testing at several levels (e.g. unit testing, integration testing)

Note that in most automotive applications, the compiler is evaluated TCL3 or TCL2.
In case of TCL2 or TCL3, the following are typically performed (by compiler vendor or
by a project), see table 4 in ISO 26262-8:

1. Evaluation of the tool development process

2. Validation of the software tool, by performing automatic compiler tests that are
derived from the C++ language specification

See also

ISO 26262-8 [6]: 11 Confidence in the use of software tools.

6.1.4 Implementation compliance

Rule Al-4-1 (required, implementation / verification, non-automated)
Code metrics and their valid boundaries shall be defined and code
shall comply with defined boundaries of code metrics.

AUTOSAR

Rationale

Code metrics that concern i.e. project’s structure, function’s complexity and size of a
source code shall be defined at the project level. It is also important to determine
valid boundaries for each metric to define objectives of the measurement.

Source code metrics needs to be measured for the project and comply with defined
boundaries. This gives valuable information whether the source code is complex,
maintainable and efficient.

See also

HIC++ v4.0 [9]: 8.3.1 Do not write functions with an excessive McCabe
Cyclomatic Complexity.

HIC++ v4.0 [9]: 8.3.2 Do not write functions with a high static program path count.

HIC++ v4.0 [9]: 8.2.2 Do not declare functions with an excessive number of
parameters.

Rule Al1-4-3 (advisory, implementation, automated)
All code should compile free of compiler warnings.

Rationale

Compiler warnings provide the earliest tool-supported indication of potential problems
in source code. Developers should not ignore compiler warnings.

Note: Compiler warnings should be turned on to a level matching (as far as possible)
the rules in this document, in particular A1-1-1. A possible enforcement of this rule is
to turn compiler warnings into errors.

See also

Al-1-1 in section 6.1.1

6.2 Lexical conventions

6.2.3 Character sets

Rule A2-3-1 (required, architecture / design / implementation, automated)
Only those characters specified in the C++ Language Standard basic
source character set shall be used in the source code.

Rationale

“The basic source character set consists of 96 characters: the space character, the
control characters representing horizontal tab, vertical tab, form feed, and new-line,

http://www.codingstandard.com/rule/8-3-1-do-not-write-functions-with-an-excessive-mccabe-cyclomatic-complexity/
http://www.codingstandard.com/rule/8-2-2-do-not-declare-functions-with-an-excessive-number-of-parameters/

© o N o o »~ w N P

[N
o

AW N R

AUTO©SAR

plus the following 91 graphical characters: abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_{}[1#(
)<>% ;. ?2*+-/"N&|~1=\"

” [C++ Language Standard [3]]

Exception

It is permitted to use other characters inside the text of a wide string and a UTF-8
encoded string literal.

It is also permitted to use a character @ inside comments. See rule A2-7-3.

Example

// $1d: A2-3-1.cpp 307578 2018-02-14 14:46:20Z michal.szczepankiewicz $
#include <cstdint>

void Fn() noexcept

{

std::int32_t sum = 0; // Compliant

/1 std::int32_t A£_value = 10; // Non-compliant

Il sum += A£_value; // Non-compliant

/I Variable sum stores A£ pounds // Non-compliant
}
See also

JSF December 2005 [8]: AV Rule 9: Only those characters specified in the C++
basic source character set will be used.

6.2.5 Alternative tokens

Rule A2-5-1 (required, implementation, automated)
Trigraphs shall not be used.

Rationale

Trigraphs are denoted to be a sequence of 2 question marks followed by a specified
third character (e.g. ??’ represents a ~character. They can cause accidental
confusion with other uses of two question marks.

The Trigraphs are: ?7?=, ??/, ??7°, ?7?(, ?7?), 7?1, ?7?<, 77>, ?77-.

Example

/1% $1d: A2-5-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <iostream>
void Fn1()

{

© o N o u

10

11

© o =~ o g A W N R

e = =
w N = o

-
'S

AUTO©SAR

std::cout << "Enter date ??/??/??"; // Non-compliant, ??/??/?? becomes \\??
/I after trigraph translation

}
void Fn2()

{

std::cout << "Enter date dd/mm/yy"; // Compliant

}

See also
MISRA C++2008: Rule 2-3-1 (Required) Trigraphs shall not be used.
JSF December 2005 [8]: AV Rule 11 Trigraphs will not be used.
HIC++ v4.0 [9]: 2.2.1 Do not use digraphs or trigraphs.

Rule A2-5-2 (required, implementation, automated)
Digraphs shall not be used.

Rationale
The digraphs are: <%, %>, <:, :>, %:, %:%:.
The use of digraphs may not meet developer expectations.

Example

/% $Id: A2-5-2.cpp 305382 2018-01-26 06:32:15Z michal.szczepankiewicz $
class A

{

public:

void F2() {}

h
// void fn1(A* a<:10:>) // Non-compliant
Il <%
I a<:0:>->f2();
Il %>
void Fn2(Ax a[10]) // Compliant, equivalent to the above

{
a[0]->F2();

}
See also
MISRA C++ 2008 [7]: advisory 2-5-1 Digraphs should not be used.

JSF December 2005 [8]: 4.4.1 AV Rule 12 The following digraphs will not be
used.

HIC++ v4.0 [9]: 2.2.1 Do not use digraphs or trigraphs.

[N

~N o g A W N

10

11

12

13

14

AUTO©SAR

6.2.7 Comments

Rule M2-7-1 (required, implementation, automated)
The character sequence /* shall not be used within a C-style comment.

See MISRA C++ 2008 [7]

Rule A2-7-1 (required, implementation, automated)
The character \ shall not occur as a last character of a C++ comment.

Rationale

If the last character in a single-line C++ comment is \, then the comment will continue
in the next line. This may lead to sections of code that are unexpectedly commented
out.

Example

/I $1d: A2-7-1.cpp 305382 2018-01-26 06:32:15Z michal.szczepankiewicz $
#include <cstdint>
void Fn() noexcept

{
std::int8_tidx = 0;
/I Incrementing idx before the loop starts // Requirement X.X. X \\
++idx; // Non-compliant - ++idx was unexpectedly commented-out because of \
character occurrence in the end of C++ comment
constexpr std::int8_t limit = 10;
for (; idx <= limit; ++idx)
{
...
}
}
See also
none

Rule A2-7-2 (required, implementation, non-automated)
Sections of code shall not be “commented out”.

Rationale

Comments, using both C-style and C++ comments, should only be used to explain
aspect of the source code. Code that is commented-out may become out of date,
which may lead to confusion while maintaining the code.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

8

9

AUTO©SAR

Additionally, C-style comment markers do not support nesting, and for this purpose
commenting out code is dangerous, see: M2-7-1.

Note that the code that is a part of a comment (e.g. for clarification of the usage of
the function, for specifying function behavior) does not violate this rule. As it is not
possible to determine if a commented block is a textual comment, a code example or
a commented-out piece of code, this rule is not enforceable by static analysis tools.

Example

I/ $1d: A2-7-2.cpp 305382 2018-01-26 06:32:15Z michal.szczepankiewicz $
#include <cstdint>
void Fn1() noexcept

{
std::int32_ti=0;
1 I*
/l * ++i; [* incrementing the variable i */
!
I * /I Non-compliant - C-style comments nesting is not supported,
I compilation error
for (; i < 10; ++i)
{
...
}
}
void Fn2() noexcept
{
std::int32_ti=0;
/I ++i; /I Incrementing the variable i // Non-compliant - code should not
/I be commented-out
for (; i < 10; ++i)
{
...
}
}
void Fn3() noexcept
{
std::int32_ti=0;
++i; // Incrementing the variable i using ++i syntax // Compliant - code
/I is not commented-out, but ++i occurs in a
/I comment too
for (; i < 10; ++i)
{
...
}
}
See also

MISRA C++ 2008 [7]: Rule 2-7-2 Sections of code shall not be “commented
out” using C-style comments.

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

AUTO©SAR

MISRA C++ 2008 [7]: Rule 2-7-3 Sections of code should not be “commented
out” using C++ comments.

Rule A2-7-3 (required, implementation, automated)
All declarations of “user-defined” types, static and non-static data
members, functions and methods shall be preceded by documentation.

Rationale
Every declaration needs to provide a proper documentation.

This is compatible with the C++ standard library documentation. This forces a
programmer to provide a clarification for defined types and its data members
responsibilities, methods and functions usage, their inputs and outputs specification
(e.g. memory management, ownership, valid boundaries), and exceptions that could
be thrown.

Example

/% $Id: A2-7-3.hpp 305382 2018-01-26 06:32:15Z michal.szczepankiewicz $
#include <cstdint>

void F1(std::int32_t) noexcept; // Non-compliant documentation

std::int32_t F2(std::intl6_t inputl,
std::int32_t input2); /I Non-compliant documentation

/Il @brief Function description
1
/Il @param inputl inputl parameter description
/Il @param input2 input2 parameter description
/Il @throw std::runtime_error conditions to runtime_error occur
7
/Il @return return value description
std::int32_t F3(
std::int16_t inputl,
std::int16_t input2) noexcept(false); // Compliant documentation

/Il @brief Class responsibility
class C // Compliant documentation
{
public:
/Il @brief Constructor description
1
/Il @param inputl inputl parameter description
/Il @param input2 input2 parameter description
C(std::int32_t inputl, float input2) : x{inputl}, y{input2} {}

/Il @brief Method description
7

AUTOSAR

/Il @return return value descrption
std::int32_t constx GetX() const noexcept { return &x; }

private:
/Il @brief Data member descpription
std::int32_t x;
/Il @brief Data member descpription
float y;
2

See also

JSF December 2005 [8]: AV Rule 129: Comments in header files should describe
the externally visible behavior of the functions or classes being documented.

none

Rule A2-7-5 (required, implementation, non-automated)
Comments shall not document any actions or sources (e.g. tables,
figures, paragraphs, etc.) that are outside of the file.

Rationale

Commenting only actions and sources that are inside a particular file reduce
dependencies among files. Comments in a file will require changes only when
content of the file reworked.

Note: This rule does not affect valid assumptions or preconditions for entities within
the file.

See also

JSF December 2005 [8]: AV Rule 128: Comments that document actions or
sources (e.g. tables, figures, paragraphs, etc.) outside of the file being
documented will not be allowed.

6.2.8 Header names

Rule A2-8-1 (required, architecture / design /

implementation, non-automated)

A header file name should reflect the logical entity for which it
provides declarations.

Rationale

Naming a header file with a name of a declared type or accordingly to a collection of
free functions or forwarded headers makes include-directives and a project structure
more clear and readable.

AUTOSAR

See also

JSF December 2005 [8]: AV Rule 55: The name of a header file should reflect
the logical entity for which it provides declarations.

Rule A2-8-2 (advisory, architecture / design /

implementation, non-automated)

An implementation file name should reflect the logical entity for which
it provides definitions.

Rationale

Naming an implementation file with a name of a declared type or accordingly to a
collection of free functions makes a project structure more clear and readable.

See also

JSF December 2005 [8]: AV Rule 56: The name of an implementation file

should reflect the logical entity for which it provides definitions and have a
“.cpp” extension (this name will normally be identical to the header file that
provides the corresponding declarations.).

6.2.10 Identifiers

Rule M2-10-1 (required, architecture / design / implementation,
automated) Different identifiers shall be typographically unambiguous.

See MISRA C++ 2008 [7]

Rule A2-10-1 (required, architecture / design / implementation, automated)
An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope.

Rationale

If an identifier is declared in an inner scope and it uses the same name as an
identifier that already exists in an outer scope, then the innermost declaration will
“hide” the outer one. This may lead to developer confusion. The terms outer and
inner scope are defined as follows:

Identifiers that have file scope can be considered as having the outermost
scope. ldentifiers that have block scope have a more inner scope.

Successive, nested blocks, introduce more inner scopes.

10

11

12

14

15

16

17

18

19

20

21

22

24

25

26

27

28

32

33

34

35

36

37

38

AUTO©SAR

Note that declaring identifiers in different named namespaces, classes, structs or
enum classes will not hide other identifiers from outer scope, because they can be
accessed using fully-qualified id.

Exception

An identifier declared within a namespace using the same name as an identifier of
the containing namespace does not violate the rule.

An identifier declared locally inside a lambda expression and not referring to a name
of a captured variable does not violate the rule.

Example

/1% $1d: A2-10-1.cpp 313834 2018-03-27 11:35:19Z michal.szczepankiewicz $
#include <cstdint>
std::int32_t sum = 0;

namespace
{
std::int32_t sum; // Non-compliant, hides sum in outer scope
}
class C1
{
std::int32_t sum; // Compliant, does not hide sum in outer scope
I3
namespace nl
{
std::int32_t sum; // Compliant, does not hide sum in outer scope
namespace n2
{
std::int32_t sum; // Compliant, does not hide sum in outer scope
}
}

std::int32_tidx;
void F1(std::int32_t idx)

{
/INon-compliant, hides idx in outer scope
}
void F2()
{

std::int32_t max = 5;

for (std::int32_t idx = 0; idx < max;
++idx) // Non-compliant, hides idx in outer scope

for (std::int32_t idx = 0; idx < max;
++idx) /I Non-compliant, hides idx in outer scope

41

42

43

a4

45

46

47

48

49

50

o ~N o u

©

10

11

12

13

AUTO©SAR

}
void F3()
{
std::int32_ti=0;
std::int32_tj=0;
auto lambda = [i]() {
std::int32_tj=
10; // Compliant - j was not captured, so it does not hide
/' j in outer scope
returni + j;
h
}
See also

MISRA C++ 2008 [7]: required 2-10-2 Identifiers declared in an inner scope
shall not hide an identifier declared in an outer scope.

JSF December 2005 [8]: 4.15 AV Rule 135 Identifiers in an inner scope shall
not use the same name as an identifier in an outer scope, and therefore hide
that identifier.

HIC++ v4.0 [9]: 3.1.1 Do not hide declarations.

Rule A2-10-6 (required, implementation, automated)
A class or enumeration name shall not be hidden by a variable, function
or enumerator declaration in the same scope.

Rationale

C++ Language Standard [3] defines that a class or enumeration name can be hidden
by an explicit declaration (of the same name) of a variable, data member, function, or
enumerator in the same scope, regardless of the declaration order. Such
declarations can be misleading for a developer and can lead to compilation errors.

Example

/1% $1d: A2-10-6.cpp 313821 2018-03-27 11:16:14Z michal.szczepankiewicz $
#include <cstdint>

namespace NS1 {
class G {};
void G() {} //non-compliant, hides class G

}

namespace NS2 {

enum class H { VALUE=0, };

std::uint8_t H = 17; //non-compliant, hides
/Iscoped enum H

}

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

AUTO©SAR

namespace NS3 {

class J {};

enum H //does not hide NS2::H, but non-compliant to A7-2-3

{
J=0, //non-compliant, hides class J

h

}

int main(void)

{
NS1:G();
/INS1::G a; //compilation error, NS1::G is a function

/[after a name lookup procedure

class NS1::G a{}; //accessing hidden class type name
enum NS2::H b ; //accessing scoped enum NS2::H
NS2::H=7;
class NS3::J cf}; //accessing hidden class type name
std::uint8_t z = NS3::J;

}

See also

ISO/IEC 14882:2014 [3]: 3.3.10.2: [basic.scope.hiding]

MISRA C++ 2008 [7]: 2-10-6: If an identifier refers to a type, it shall not also
refer to an object or a function in the same scope.

HIC++ v4.0 [9]: 3.1.1: Do not hide declarations.

Rule A2-10-4 (required, implementation, automated)
The identifier name of a non-member object with static storage duration
or static function shall not be reused within a namespace.

Rationale

No identifier with static storage duration should be re-used in the same namespace
across any source files in the project.

This may lead to the developer or development tool confusing the identifier with
another one.

Example

/1% $1d: A2-10-4.cpp 305382 2018-01-26 06:32:15Z michal.szczepankiewicz $
#include <cstdint>

Il f1.cpp

namespace nsl

{

http://www.codingstandard.com/rule/3-1-1-do-not-hide-declarations/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

AUTO©SAR

static std::int32_t globalvariable = 0;
}

Il f2.cpp
namespace nsl

{

/I static std::int32_t globalvariable = 0; // Non-compliant - identifier reused
/l'in ns1 namespace in fl.cpp

}

namespace ns2

{
static std::int32_t globalvariable =
0; /I Compliant - identifier reused, but in another namespace

}

Il f3.cpp
static std::int32_t globalvariable =
0; // Compliant - identifier reused, but in another namespace

See also

MISRA C++ 2008 [7]: advisory 2-10-5 The identifier name of a non-member
object or function with static storage duration should not be reused.

Rule A2-10-5 (advisory, design / implementation, automated) An
identifier name of a function with static storage duration or a
non-member object with external or internal linkage should not be reused.

Rationale

Regardless of scope, no identifier with static storage duration should be re-used
across any source files in the project. This includes objects or functions with external
linkage and any objects or functions with static storage class specifier. While the
compiler can understand this, the possibility exists for the developer or development

tool to incorrectly associate unrelated variables with the same name.

Note: This rule does not apply to objects without linkage, e.g. function local static

objects.

Example

/1% $1d: A2-10-5.cpp 305382 2018-01-26 06:32:15Z michal.szczepankiewicz $
#include <cstdint>

Il f1.cpp

namespace n_s1

{
static std::int32_t globalvariable = 0;

}
static std::int32_t filevariable = 5; // Compliant - identifier not reused
static void Globalfunction();

10

11

12

13

14

15

16

17

18

19

20

21

22

AUTO©SAR

Il f2.cpp
namespace n_sl

{

/I static std::int32_t globalvariable = 0; // Non-compliant - identifier reused
static std::int16_t modulevariable = 10; // Compliant - identifier not reused

}

namespace n_s2

{

static std::int16_t modulevariable2 = 20;

}

static void Globalfunction(); /I Non-compliant - identifier reused
static std::int16_t modulevariable2 = 15; // Non-compliant - identifier reused

See also

MISRA C++ 2008 [7]: advisory 2-10-5 The identifier name of a non-member
object or function with static storage duration should not be reused.

6.2.11 Keywords

Rule A2-11-1 (required, design / implementation, automated)
Volatile keyword shall not be used.

Rationale

The volatile keyword disables compiler optimizations for a particular variable or object’s
value in case those values may change in ways not specified by the language (e.g.
object representing a hardware register). It is error prone and often misused by
developers, as they expect this is equal to variable or object’s value being atomic.

Note: The main intention of this rule is to eliminate incorrect usages of volatile
keyword and force developers to precisely document each usage of volatile keyword.

See also

JSF December 2005 [8]: AV Rule 205: The volatile keyword shall not be used
unless directly interfacing with hardware.

HIC++ v4.0 [9]: 18.2.3: Do not share volatile data between threads.
C++ Core Guidelines [11]: CP.8: Don'’t try to use volatile for synchronization.

C++ Core Guidelines [11]: CP.200: Use volatile only to talk to non-C++ memory.

6.2.13 Literals

http://www.codingstandard.com/rule/18-2-3-do-not-share-volatile-data-between-threads/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#cp8-dont-try-to-use-volatile-for-synchronization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#cp200-use-volatile-only-to-talk-to-non-c-memory

AW NP

© o ~N o O A

AUTOSAR

Rule A2-13-1 (required, architecture / design / implementation,
automated) Only those escape sequences that are defined in ISO/IEC
14882:2014 shall be used.

{

Rationale

The use of an undefined escape sequence leads to undefined behavior. The defined
escape sequences (ISO/IEC 14882:2014) are: V', \",\?, \\, \a, \b, \f, \n, \r, \t, \v, \<Octal
Number>, \x<Hexadecimal Number>.

Note: Universal-character-names (\u hex-quad and \U hex-quad hex-quad) are also
allowed in character and string literals (although they look similar to escape
sequences, they are handled in a different way by the C++ language, see A2-13-6).

Example

1% $1d: A2-13-1.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
#include <string>

void F()
const std::string a= "\k" /l Non-compliant
const std::string b ="\n" /I Compliant
const std::string c ="\U0001f34c"; /I Compliant

}

See also

MISRA C++ 2008 [7]: required 2-13-1 Only those escape sequences that are
defined in ISO/IEC14882:2003 shall be used.

Rule A2-13-6 (required, architecture / design / implementation,
automated) Universal character names shall be used only inside
character or string literals.

Rationale

Using universal-character-names to define a language identifier can be confusing for
a developer and may be troublesome to use this identifier in the source code.

Example

/1% $1d: A2-13-6.cpp 307578 2018-02-14 14:46:20Z michal.szczepankiewicz $
#include <string>
void F()

{
const std::string ¢ = "\U0001f34c"; // Compliant

}

/Inon-compliant
void \U0001f615()

10

11

12

© o N o g o~ W N R

10

12

AUTO©SAR

1

Rule A2-13-5 (advisory, implementation, automated)
Hexadecimal constants should be upper case.

Rationale

Using upper case literals for hexadecimal constants makes the source code
consistent in this matter and removes a potential developer confusion.
Example

/1% $1d: A2-13-5.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $

#include <cstdint>

int main(void)

{
std::int16_t a = OxOfOf; //non-compliant

std::int16_t b = OxOfOF; //non-compliant
std::int16_t ¢ = OXOFOF; //compliant

return O;

See also

JSF December 2005 [8]: AV Rule 150: Hexadecimal constants will be
represented using all uppercase letters.

Rule M2-13-2 (required, architecture / design / implementation,
automated) Octal constants (other than zero) and octal escape
sequences (other than “\0”) shall not be used.

See MISRA C++ 2008 [7]

Rule M2-13-3 (required, architecture / design / implementation,
automated) A “U” suffix shall be applied to all octal or hexadecimal
integer literals of unsigned type.

See MISRA C++ 2008 [7]

© O N o o A~ W N R

Bk e e e =
© N O = = W N kB O
SN

.
©

20

AUTO©SAR

Rule M2-13-4 (required, architecture / design / implementation,
automated) Literal suffixes shall be upper case.

See MISRA C++ 2008 [7]

Rule A2-13-2 (required, implementation, automated)
String literals with different encoding prefixes shall not be concatenated.

Rationale
Concatenation of wide and narrow string literals leads to undefined behavior.

“In translation phase 6 (2.2), adjacent string-literals are concatenated. If both string-
literals have the same encoding-prefix, the resulting concatenated string literal has
that encoding-prefix. If one string-literal has no encoding-prefix, it is treated as a
string-literal of the same encoding-prefix as the other operand. If a UTF-8 string literal
token is adjacent to a wide string literal token, the program is ill-formed. Any other
concatenations are conditionally-supported with implementation-defined behavior. |
Note: This concatenation is an interpretation, not a conversion. Because the
interpretation happens in translation phase 6 (after each character from a literal has
been translated into a value from the appropriate character set), a string-literal’s
initial rawness has no effect on the interpretation or well-formedness of the
concatenation. -end note]’ [C++14 Language Standard] [3]

Example
/1% $1d: A2-13-2.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $

charl6_t nArray[] =
u"Hello"
u"World"; // Compliant, "u" stands for char16_t type

char32_t nArray2[] =
U"Hello"
U"World"; // Compliant, "U" stands for char32_t type

wchar_t wArray[] =
L"Hello"
L"World"; // Compliant, "L" stands for wchar_t type - violates A2-13-3
Il rule.

wchar_t mixedl[] =
"Hello"
L"World"; // Compliant

char32_t mixed2[] =
"Hello"
U"World"; // Compliant

23

24

25

26

27

28

29

30

A W N P

AUTO©SAR

charl6_t mixed3[] =
"Hello"
u"World"; // Compliant

/l wehar_t mixed1[] = u"Hello" L"World"; // Non-compliant - compilation error
/I char32_t mixed2[] = u"Hello" U"World"; // Non-compliant - compilation error

See also

MISRA C++ 2008 [7]: required 2-13-5 Narrow and wide string literals shall not
be concatenated.

HIC++ v4.0 [9]: 2.5.1 Do not concatenate strings with different encoding prefixes

Rule A2-13-3 (required, architecture / design / implementation,
automated) Type wchar_t shall not be used.

Rationale
Width of wchar_t type is implementation-defined.

Types charl6_t and char32_t should be used instead.

Example

1% $1d: A2-13-3.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
charl6_t stringl[] = u"ABC"; // Compliant

char32_t string2[] = U'DEF"; // Compliant

wchar_t string3[] = L"GHI"; /I Non-compliant

See also

none

Rule A2-13-4 (required, architecture / design / implementation,
automated) String literals shall not be assigned to non-constant pointers.

Rationale

Since C++0x, there was a change in subclause 2.13.5 for string literals. To prevent
from calling an inappropriate function that might modify its argument, the type of a
string literal was changed from “array of char” to “array of const char”.

Such a usage is deprecated by the Standard and reported by a compiler as a
warning. This rule is deliberately redundant, in case rules Al-1-1 and Al-4-3 are
disabled in a project.

Example

10

11

12

13

14

15

1

2

3

AUTO©SAR

/% $Id: A2-13-4.cpp 307578 2018-02-14 14:46:20Z michal.szczepankiewicz $

int main(void)

{
char* ncl = "AUTOSAR"; /Inon-compliant
char nc2[] = "AUTOSAR"; //compliant with A2-13-4, non-compliant with A18 -1-1
char nc3[8] = "AUTOSAR"; //compliant with A2-13-4, non-compliant with A18 -1-1
ncl[3] =’a’; // undefined behaviour
const charx c1 = "AUTOSAR"; /lcompliant
const char c2[] = "AUTOSAR"; //compliant with A2-13-4, non-compliant with A18-1-1
const char c3[8] = "AUTOSAR"; //lcompliant with A2-13-4, non-compliant with A18-1-1
/[c1[3] =’a’; /lcompilation error
return O;

}

See also

JSF December 2005 [8]: AV Rule 151.1: A string literal shall not be modified.

6.3 Basic concepts

6.3.1 Declarations and definitions

Rule A3-1-1 (required, architecture / design / implementation,
automated) It shall be possible to include any header file in multiple
translation units without violating the One Definition Rule.

Rationale

A header file is a file that holds declarations used in more than one translation unit
and acts as an interface between separately compiled parts of a program. A header
file often contains classes, object declarations, enums, functions, inline functions,
templates, typedefs, type aliases and macros.

In particular, a header file is not supposed to contain or produce definitions of global
objects or functions that occupy storage, especially objects that are not declared
“extern” or definitions of functions that are not declared “inline”.

Example

/1% $1d: A3-1-1.hpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
void F1(); /I Compliant

— AUTOSAR CONFIDENTIAL —

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

AUTO©SAR

extern void F2(); // Compliant
void F3()

{

} /I Non-compliant

static inline void F4()

{

} /I Compliant

template <typename T>

void F5(T)

{

} // Compliant

std::int32_t a; /I Non-compliant
extern std::int32_t b; /I Compliant

constexpr static std::int32_t ¢ = 10; // Compliant
namespace ns

{

constexpr static std::int32_t d = 100; // Compliant

const static std::int32_t e = 50; /I Compliant

static std:int32_t f; /I Non-compliant
static void F6() noexcept; /I Non-compliant
}

See also

MISRA C++ 2008 [7]: Rule 3-1-1 It shall be possible to include any header file
in multiple translation units without violating the One Definition Rule.

Rule A3-1-2 (required, architecture / design / implementation,
automated) Header files, that are defined locally in the project, shall
have a file name extension of one of: ".h", ".hpp" or ".hxx".

Rationale

This is consistent with developer expectations to provide header files with one of the
standard file name extensions.

Example
/1% $1d: A3-1-2.cpp 266557 2017-02-07 13:08:19Z piotr.tanski $
/[#include <h3.h> /I Compliant

/l#include <hl.hpp> // Compliant

/#include <h2.hxx> // Compliant

/[#include <h4.cpp> // Non-compliant
[l#include <h5.c> /I Non-compliant
II#include <h6.hdr> // Non-compliant
I#include <h7.inc> // Non-compliant

See also

JSF December 2005 [8]: 4.9.2 AV Rule 53 Header files will always have a file
name extension of ".h".

A w N e

AUTOSAR

Rule A3-1-3 (advisory, architecture / design / implementation,
automated) Implementation files, that are defined locally in the project,
should have a file name extension of ".cpp”.

Rationale

This is consistent with developer expectations to provide C++ implementation files
with the standard file name extension.

Note that compilers support various file name extensions for C++ implementation files.

See also

JSF December 2005 [8]: 4.9.2 AV Rule 54 Implementation files will always have
a file name extension of ".cpp"”.

Rule M3-1-2 (required, implementation, automated)
Functions shall not be declared at block scope.

See MISRA C++ 2008 [7]

Rule A3-1-4 (required, design / implementation, automated)
When an array with external linkage is declared, its size shall be
stated explicitly.

Rationale

Although it is possible to declare an array of incomplete type and access its
elements, it is safer to do so when the size of the array can be explicitly determined.

Example

/1% $1d: A3-1-4.hpp 271687 2017-03-23 08:57:35Z piotr.tanski $
#include <cstdint>

extern std::int32_t arrayl[]; // Non-compliant
extern std::int32_t array2[42]; // Compliant

See also

MISRA C++ 2008 [7]: Rule 3-1-3 When an array is declared, its size shall either
be stated explicitly or defined implicitly by initialization.

Rule A3-1-5 (required, design, partially-automated)

A function definition shall only be placed in a class definition if (1) the
function is intended to be inlined (2) it is a member function template (3)
itis a member function of a class template.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

AUTO©SAR

Rationale

Merging the implementation into the declaration instructs a compiler to inline the
method which may save both time and space for short functions. For templates, it
allows to reduce repetitions of template syntax elements (e.g. parameter list), which
makes code less difficult to read and maintain.

Example

/% $lId: A3-1-5.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
#include <cstdint>
#include <iostream>

class A

{

public:
/lcompliant with (2)
template <typename T>
void Foo(T&& t)

{

std::cout << __PRETTY_FUNCTION___ << " defined inside with param: " <<t
<< std::endl;
}

/Inon-compliant with (2)
template <typename T>
void Bar(T&& t);

/lcompliant with (1)
std::uint32_t GetVal() const noexcept

{

return val;

/Inon-compliant with (1)
std::uint32_t GetVal2() const noexcept;

private:
std::uint32_t val = 5;
h

template <typename T>
void A::Bar(T&& t)

{
std::cout << __ PRETTY_FUNCTION__ << " defined outside with param: " <<t << std::endl;

std::uint32_t A::GetVal2() const noexcept
{

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

AUTO©SAR

return val;

}

template <typename T>
class B
{
public:
B(const T& x) : t(x) {}

/lcompliant with (3)
void display() const noexcept

{

std::cout << t << std::endl;

}

/Inon-compliant with (3)
void display2() const noexcept;

private:
Tt;
b

template <typename T>
void B<T>::display2() const noexcept

{
std::cout <<t << std::endl;
}
int main(void)
{
std::uint32_t tmp = 5;
Aa;
a.Foo(3.14f);
a.Bar(5);
std::cout << a.GetVal() << std::endl;
B<std::int32_t> b(7);
b.display();
return O;
}
See also

JSF December 2005 [8]: AV Rule 109: A function definition should not be
placed in a class specification unless the function is intended to be inlined.

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

AUTO©SAR

Rule A3-1-6 (advisory, design, automated)
Trivial accessor and mutator functions should be inlined.

Rationale

Inlining trivial accessors and mutators saves time and space, as it reduces multiple
syntax elements that has to be repeated.

Example

/% $Id: A3-1-6.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
#include <cstdint>

class A
{
public:
A(std::int32_t) noexcept : limit{l} {}
/lcompliant
std::int32_t Limit() const noexcept { return limit; }
/lcompliant
void SetLimit(std::int32_t 1) {limit=1; }

/Inon-compliant
/Istd::int32_t Limit() const noexcept
1K
/lopen file, read data, close file
/Ireturn value
I
/Inon-compliant
/Ivoid SetLimit(std::int32_t I)
1K
/lopen file, write data, close file
I}

private:

std::int32_t limit;
b
See also

JSF December 2005 [8]: AV Rule 122: Trivial accessor and mutator functions
should be inlined.

6.3.2 One Definition Rule

Rule M3-2-1 (required, implementation, automated)
All declarations of an object or function shall have compatible types.

See MISRA C++ 2008 [7]

4

AUTOSAR

Rule M3-2-2 (required, implementation, automated)
The One Definition Rule shall not be violated.

See MISRA C++ 2008 [7]

Rule M3-2-3 (required, implementation, automated)
A type, object or function that is used in multiple translation units shall
be declared in one and only one file.

See MISRA C++ 2008 [7]

Rule M3-2-4 (required, implementation, automated)
An identifier with external linkage shall have exactly one definition.

See MISRA C++ 2008 [7]

6.3.3 Scope

Rule A3-3-1 (required, implementation, automated)
Objects or functions with external linkage (including members of
named namespaces) shall be declared in a header file.

Rationale

Placing the declarations of objects and functions with external linkage in a header file
means that they are intended to be accessible from other translation units.

If external linkage is not needed, then the object or function is supposed to be either
declared in an unnamed namespace or declared static in the implementation file.
This reduces the visibility of objects and functions, which allows to reach a higher
encapsulation and isolation.

Note that members of named namespace are by default external linkage objects.

Exception

This rule does not apply to main, or to members of unnamed namespaces.

Example

/1% $1d: A3-3-1.hpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

extern std::int32_t al;

extern void F4();

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

AUTO©SAR

namespace n

{
void F2();

std::int32_t ab; // Compliant, external linkage

}

/% $Id: A3-3-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include "A3-3-1.hpp"

; std:int32_t al = O /I Compliant, external linkage

std::int32_t a2 = 0 /I Non-compliant, static keyword not used
static std::int32_t a3 = 0; // Compliant, internal linkage

namespace

{

std::int32_t a4 = 0; // Compliant by exception

void F1() /I Compliant by exception

{

}

}

namespace n

{

void F2() // Compliant, external linkage

{

}

std::int32_t a6 = 0; // Non-compliant, external linkage

}

extern std::int32_t a7; // Non-compliant, extern object declared in .cpp file
static void F3()// Compliant, static keyword used

{
}
void F4() // Compliant, external linkage
{
al=1,
a2 =1,
a3=1;
ad =1,
n:ab=1;
n:a6 =1;
ar =1,
}
void F5() // Non-compliant, static keyword not used
{
al=2;
a2=2;
a3 =2;
a4 = 2;
n::ab =2;
n::.a6 = 2;
a7’ =2;
}
int main(int, charx*) // Compliant by exception
{

F10;

47

48

49

50

51

AUTO©SAR

n::F2();
F30);
F4();
F5();

See also

MISRA C++ 2008 [7]: Rule 3-3-1 Objects or functions with external linkage shall
be declared in a header file.

Rule A3-3-2 (required, implementation, automated)
Static and thread-local objects shall be constant-initialized.

Rationale

In general, using non-const global and static variables obscures the true dependencies
of an API, since they can be accessed from any place of the source code. It therefore
makes the code more difficult to maintain, less readable, and significantly less testable.

A particular problem is that the order in which constructors and initializers for static
variables are called is only partially specified by the C++ Language Standard and can
even change from build to build. This can cause issues that are difficult to find or debug.

The compiler performs constant-initialization, if

the object is initialized by a constexpr constructor with only constant expression
as arguments; or

the object is not initialized by a constructor call, but is value-initialized (T
object{};); or

the object is not initialized by a constructor call, but is initialized by an initializer
consisting only of constant expressions.

Constant initialization is guaranteed to occur before any other initialization of static or
thread-local objects and may happen at compile time. Thus it is guaranteed that
problematic dependencies between the initializers of constant-initialized static or
thread-local objects cannot occur.

Note that declaring a static variable as constexpr (static is implied in this case, but
may be added to the declaration), enforces constant initialization by the compiler.

Note that the rule applies to:
global variables (i.e.
extern) static variables

static class member variables

static function-scope variables

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

a7

48

49

50

AUTO©SAR

Example

/] $ld: A3-3-2.cpp 305690 2018-01-29 14:35:00Z jan.babst $
#include <cstdint>
#include <limits>
#include <string>
class A
{
public:

static std::uint8_t instanceld;

static float const pi;

static std::string const separator;

AQ {
/I Implementation...
b
std::uint8_t A:instanceld = 0;// Compliant - constant initialization
float const A::pi = 3.14159265359; // Compliant - constant initialization
std::string const A::separator =

—————————— ; I/ Non-compliant - string c’tor is not constexpr

public:
constexpr C() = default;

h

namespace

{

constexpr std::int32_t maxInt32 =
std::numeric_limits<std::int32_t>::max(); // Compliant - constexpr variable

A instance{}; /I Compliant - constant (value) initialization
constexpr C cf}; // Compliant - constexpr c’tor call

} // namespace

void Fn() noexcept

{

static A a{}; // Non-compliant - A’s default c’tor is not constexpr

static std::int32_t counter{0}; /I Compliant

static std::string border(5, '*’); /I Non-compliant - not a constexpr c’tor
}
class D
{

public:
D() = default;

D(D const&) = default;

D(D&&) = default;

D& operator=(D const&) = default;
D& operator=(D&&) = default;
~D() = default;

AUTO©SAR

51
52 private:
static D* instance;

sa }
D* D::instance = nullptr; // Compliant - initialization by constant expression
See also
cppreference.com [16]: Constant initialization.

HIC++ v4.0 [9]: 3.3.1: Do not use variables with static storage duration.

JSF December 2005 [8]: AV Rule 214: Assuming that non-local static objects,
in separate translation units, are initialized in a special order shall not be done.

SEI CERT C++ Coding Standard [10]: DCL56-CPP: Avoid cycles during
initialization of static objects.

C++ Core Guidelines [11]: 1.22: Avoid complex initialization of global objects.

Google C++ Style Guide [12]: Static and Global Variables.

Rule M3-3-2 (required, implementation, automated)
If a function has internal linkage then all re-declarations shall include
the static storage class specifier.

See MISRA C++ 2008 [7]

Note: Static storage duration class specifier is redundant and does not need to be
specified if a function is placed in an unnamed namespace.

6.3.4 Name lookup

Rule M3-4-1 (required, implementation, automated)
An identifier declared to be an object or type shall be defined in a block
that minimizes its visibility.

See MISRA C++ 2008 [7]

See also

C++ Core Guidelines [11]: ES.21: Don’t introduce a variable (or constant)
before you need to use it.

6.3.8 Object lifetime

http://www.codingstandard.com/section/3-3-storage-duration/
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL56-CPP.+Avoid+cycles+during+initialization+of+static+objects
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL56-CPP.+Avoid+cycles+during+initialization+of+static+objects
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#Ri-global-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es21-dont-introduce-a-variable-or-constant-before-you-need-to-use-it
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es21-dont-introduce-a-variable-or-constant-before-you-need-to-use-it
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es21-dont-introduce-a-variable-or-constant-before-you-need-to-use-it

10

11

12

13

14

15

16

17

18

19

20

21

AUTO©SAR

Rule A3-8-1 (required, implementation, not automated)
An object shall not be accessed outside of its lifetime.

Rationale

Accessing an object outside of its lifetime, i.e. before its initialization or constructor
has completed, or after its non-trivial destructor has finished, is well defined only for a
very restricted number of cases, as laid out by the language standard. Outside of
these cases it leads to undefined behavior.

Note: The AUTOSAR C++14 guidelines contain several other rules which are special
cases of this rule (see references below). This rule was added to provide generic
coverage for all cases not contained in these specialized rules. This also makes it
easier to provide tracing from other standards with a similar generic rule.

Note: The examples given below are not intended to represent a complete list of
situations where violations of this rule can occur.

Example
/% $Id: A3-8-1.cpp 305786 2018-01-30 08:58:33Z michal.szczepankiewicz $

I

/I 1. Pointer to virtual base is passed as function argument after lifetime of
/I object has ended.

I

class B

{
h

class C1 : public virtual B // violates M10-1-1

{
h

class C2 : public virtual B // violates M10-1-1

{
h

class D : public C1, public C2

{
h

void f(B constx b){};

void examplel()

{
D d = new D(); // lifetime of d starts (violates A18-5-2)
/' Use d
delete d; // lifetime of d ends (violates A18-5-2)

32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82

AUTO©SAR

f(d); // Non-compliant - Undefined behavior, even if argument is not used
11 by ().

1
/I 2. Accessing an initializer_list after lifetime of initializing array has
/I ended.

1
class E
{
std::initializer_list<int> Ist;
public:
/I Conceptually, this works as if a temporary array {1, 2, 3} was created
/I and a reference to this array was passed to the initializer_list. The
/I lifetime of the temporary array ends when the constructor finishes.
EQ :Is{1, 2, 3} {}
int first() const { return *Ist.begin(); }
I3
void example2()
{
Ee;
std::out << e.first() << "\n"; // Non-compliant
}
1

/I 3. Exiting main while running tasks depend on static objects
1
void initialize_task()

{
/I start some task (separate thread) which depends on some static object.
...

}

int main()

{

/I static constructors are called

initialize_task();
} // main ends, static destructors are called

/I Non-compliant
/I Task begins to run and accesses destroyed static object.

1

/I 4. Storage reuse without explicit destructor call
1

void example4()

{

AUTO©SAR

std::string str;
new (&a) std::vector<int>{}; // Non-compliant: storage of str reused without
/I calling its non-trivial destructor.
} // Non-compliant: Destructor of str is implicitly called at scope exit, but
/] storage contains object of different type.

See also
ISO/IEC 14882:2014 [3]: 3.8: [basic.life]

JSF December 2005 [8]: AV Rule 70.1: An object shall not be improperly used
before its lifetime begins or after its lifetime ends.

SEI CERT C++ Coding Standard [10]: EXP54-CPP: Do not access an object
outside of its lifetime.

A5-1-4 in section 6.5.1
M7-5-1 in section 6.7.5
M7-5-2 in section 6.7.5
A7-5-1 in section 6.7.5
M12-1-1 in section 6.12.1

6.3.9 Types

Rule M3-9-1 (required, implementation, automated)
The types used for an object, a function return type, or a function parameter
shall be token-for-token identical in all declarations and re-declarations.

See MISRA C++ 2008 [7]

Rule A3-9-1 (required, implementation, automated)
Fixed width integer types from <cstdint>, indicating the size and
signedness, shall be used in place of the basic numerical types.

Rationale

The basic numerical types of char, int, short, long are not supposed to be used,
specific-length types from <cstdint> header need be used instead.

Fixed width integer types are:
std::int8 t
std::intl6 t

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP54-CPP.+Do+not+access+an+object+outside+of+its+lifetime
https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP54-CPP.+Do+not+access+an+object+outside+of+its+lifetime

AUTO©SAR

std::int32_t
std::int64_t
std::uint8 _t
std::uint16 _t
std::uint32_t
std::uint64 _t
Exception

The wchar_t does not need a typedef as it always maps to a type that supports wide
characters.

Example

/1% $1d: A3-9-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

AW ON R

void F()
{
5 std::int32_t il1=5; /I Compliant
6 inti2 = 10; /I Non-compliant
7 std::int64_t i3 = 250; // Compliant
8 long inti4 = 50; // Non-compliant
9 std::int8_t i5=16; /I Compliant
10 char i6 =23; /I Non-compliant
1}
See also

MISRA C++ 2008 [7]: Rule 3-9-2 typedefs that indicate size and signedness
should be used in place of the basic numerical types.

Rule M3-9-3 (required, implementation, automated)
The underlying bit representations of floating-point values shall not
be used.

See MISRA C++ 2008 [7]

6.4 Standard conversions

6.4.5 Integral promotions

Rule M4-5-1 (required, implementation, automated)
Expressions with type bool shall not be used as operands to built-in
operators other than the assignment operator =, the logical operators

© o N o g A W N P

AUTO©SAR

&&, |, !, the equality operators ==and ! =, the unary & operator, and the
conditional operator.

See MISRA C++ 2008 [7]

Rule A4-5-1 (required, implementation, automated)

Expressions with type enum or enum class shall not be used as
operands to built-in and overloaded operators other than the subscript
operator [], the assignment operator =, the equality operators == and ! =,
the unary & operator, and the relational operators <, <=, >, >=,

Rationale

Enumerations, i.e. enums or enum classes, have implementation-defined
representations and they are not supposed to be used in arithmetic contexts.

Note that only enums can be implicitly used as operands to other built-in operators,
like operators +, , , etc. Enum class needs to provide definitions of mentioned
operators in order to be used as operand.

Exception

It is allowed to use the enumeration as operand to all built-in and overloaded
operators if the enumeration satisfies the “BitmaskType” concept [16].

Example

/I $1d: A4-5-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
enum Colour : std::uint8_t
{
Red,
Green,
Blue,
ColoursCount
2
void F1() noexcept(false)
{
Colour colour = Red;
if (colour == Green) // Compliant
{
}

if (colour == (Red + Blue)) // Non-compliant

{
}

if (colour < ColoursCount) // Compliant

{
}

http://en.cppreference.com/w/cpp/concept/BitmaskType
http://en.cppreference.com/w/cpp/concept/BitmaskType

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

AUTO©SAR

/I operator+ provided, no
/I compilation error

}
enum class Car : std::uint8_t
{
Modell,
Model2,
Model3,
ModelsCount
h
void F2() noexcept(false)
{
Car car = Car::Model1;
if (car != Car::Model2) // Compliant
{
}
if (car == Car::Model3) // Compliant
{
}
[if (car == (Car::Modell + Car::Model2)) // Non-compliant -
/I operator+ not provided for Car enum class, compilation error
1K
I}
if (car < Car::ModelsCount) // Compliant
{
}
}
Car operator+(Car |hs, Car rhs)
{
return Car::Model3;
}
void F3() noexcept(false)
{
Car car = Car::Model3;
if (car == (Car::Modell + Car::Model2)) // Non-compliant - overloaded
{
}
}
enum Team : std::uint8_t
{
TeamMemberl =0,
TeamMember2 =1,
TeamMember3 = 2,
TeamMember4 = 3,
TeamMembersStart = TeamMember1,
TeamMembersEnd = TeamMember2,
TeamMembersCount = 4
b

void F4(const char* teamMember)

75

76

77

78

79

80

81

82

83

o g A W N R

AUTO©SAR

{

/I Implementation

}
void F5()

{

const charx team[TeamMembersCount]; // Compliant
...
F4(team[TeamMember2]); // Compliant

See also

MISRA C++ 2008 [7]: Rule 4-5-2 Expressions with type enum shall not be used
as operands to built-in operators other than the subscript operator [], the
assignment operator =, the equality operators == and !=, the unary & operator,
and the relational operators <, <=, >, >=,

Rule M4-5-3 (required, implementation, automated)

Expressions with type (plain) char and wchar_t shall not be used as
operands to built-in operators other than the assignment operator =,
the equality operators == and ! =, and the unary & operator.

See MISRA C++ 2008 [7]

6.4.7 Integral conversion

Rule A4-7-1 (required, implementation, automated)
An integer expression shall not lead to data loss.

Rationale

Implicit conversions, casts and arithmetic expressions may lead to data loss, e.g.
overflows, underflows or wrap-around.

Integral expressions need to be performed on proper integral types that ensure that
the data loss will not occur or appropriate guards should be used to statically detect
or counteract such a data loss.

Example

/I $1d: A4-7-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <stdexcept>

std::int8_t Fnl(std::int8_t x, std::int8_t y) noexcept

{

return (X +Y); // Non-compliant - may lead to overflow

7
8
9

10

11

12

13

14

15

16

17

18

19
20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43
44

45

46

a7

48

49

50

51
52

53

54

55

56

57

AUTO©SAR

}
std::int8_t Fn2(std::int8_t x, std::int8_t y)
{

if (x> 100 || y > 100) // Range check

{

throw std::logic_error("Preconditions check error");
}
return (x +y); // Compliant - ranges of x and y checked before the
/I arithmetic operation

}
std::int16_t Fn3(std::int8_t x, std::int8_t y) noexcept
{

return (static_cast<std::int16_t>(x) + y); // Compliant - std::int16_t type

/l'is enough
/I operation

}
std::uint8_t Fn4(std::uint8_t x, std::uint8_t y) noexcept
{

return (X * y); // Non-compliant - may lead to wrap-around
}
std::int8_t Fn5(std::int16_t x)
{

return static_cast<std::int8_t>(x); // Non-compliant - data loss
}
std::int8_t Fn6(std::intl6_t x)
{

return x; // Non-compliant - data loss by implicit conversion
}
void F()
{

std:int8_tx1 =
Fnl1(5, 10); // Compliant - overflow will not occur for these values
std::int8_t x2 = Fn1(250, 250); // Non-compliant - Overflow occurs

try
{
std::int8_t x3 =
Fn2(250, 250); // Compliant - No overflow, range checks
/I inside fn2() function

}

catch (std::logic_error&)

{

/I Handle an error

}
std::int16_t x4 = Fn3(250, 250); // Compliant - No overflow, arithmetic

for this arithmetic

/I operation underlying type is wider than

/I std::int8_t
std::uint8_t x5 = Fn4(50, 10);// Non-compliant - Wrap-around occurs
std::int8_t x6 = Fn5(100);// Compliant - data loss will not occur
std::int8_t x7 = Fn5(300);// Non-compliant - Data loss occurs
std::int8_t x8 = Fn6(300);// Non-compliant - Data loss occurs

AUTO©SAR

58 std::int8_t x9 = 150;

59 std::int16_t x10 = static_cast<std::int16_t>(x9 + x9); // Non-compliant
60 x10 =x9 + x9; /l Non-compliant
61 x10 =static_cast<std::int16_t>(x9) + x9; /I Compliant
62

63 std::int8_t x11 = x9 << 5; // Non-compliant

64

65 std::int8_t x12 = 127;

66 ++x12; // Non-compliant

67

68 std::uint8_t x13 = 255;

69 ++x13; // Non-compliant

0}

See also

MISRA C++ 2008 [7]: Rule 5-0-6 An implicit integral or floating-point conversion
shall not reduce the size of the underlying type.

MISRA C++ 2008 [7]: Rule 5-0-8 An explicit integral or floating-point conversion
shall not increase the size of the underlying type of a cvalue expression.

HIC++ v4.0 [9]: 4.2.2 Ensure that data loss does not demonstrably occur in an
integral expression.

JSF December 2005 [8]: AV Rule 212: Underflow or overflow functioning shall
not be depended on in any special way.

C++ Core Guidelines [11]: ES.46: Avoid lossy (narrowing, truncating) arithmetic
conversions.

6.4.10 Pointer conversions

Rule M4-10-1 (required, implementation, automated)
NULL shall not be used as an integer value.

See MISRA C++ 2008 [7]

Rule A4-10-1 (required, architecture / design / implementation,
automated) Only nullptr literal shall be used as the null-pointer-constant.

Rationale

In C++, the literal NULL is both the null-pointer-constant and an integer type. To meet
developer expectations, only nullptr pointer literal shall be used as the null-pointer-
constant.

http://www.codingstandard.com/rule/4-2-2-ensure-that-data-loss-does-not-demonstrably-occur-in-an-integral-expression/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-nameres-narrowingaes46-avoid-lossy-narrowing-truncating-arithmetic-conversions

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

AUTO©SAR

Note that, nullptr pointer literal allows parameters forwarding via a template function.

Example

//% $Id: A4-10-1.cpp 298086 2017-11-24 11:13:27Z michal.szczepankiewicz $
#include <cstddef>
#include <cstdint>

void F1(std::int32_t);
void F2(std::int32_tx);
void F3()
{
F1(0);// Compliant
F1(NULL); // Non-compliant - NULL used as an integer,
/I compilable
/I f1(nullptr); // Non-compliant - nullptr used as an integer
/I compilation error
F2(0);// Non-compliant - 0 used as the null pointer constant
F2(NULL); /I Non-compliant - NULL used as the null pointer constant
F2(nullptr); // Compliant
}
void F4(std::int32_t*);
template <class F, class A>
void F5(F f, A a)

{
F4(a);

}

void F6()

{
I/ f5(f4, NULL); // Non-compliant - function f4(std::int32_t) not declared
F5(F4, nullptr); // Compliant

}

See also

HIC++ v4.0 [9]: 2.5.3 Use nullptr for the null pointer constant

Rule M4-10-2 (required, implementation, automated)
Literal zero (0) shall not be used as the null-pointer-constant.

See MISRA C++ 2008 [7]

6.5 Expressions

6.5.0 General

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

AUTO©SAR

Rule A5-0-1 (required, implementation, automated)
The value of an expression shall be the same under any order of
evaluation that the standard permits.

Rationale

Apart from a few operators (notably &<, ||, ?: and ,) the order in which sub-expressions
are evaluated is unspecified and can vary. This means that no reliance can be placed
on the order of evaluation of sub-expressions and, in particular, no reliance can be
placed on the order in which side effects occur. Those points in the evaluation of an
expression at which all previous side effects can be guaranteed to have taken place
are called “sequencing”. Sequencing and side effects are described in Section 1.9(7)
of ISO/IEC 14882:2014 [3].

Note that the “order of evaluation” problem is not solved by the use of parentheses,
as this is not a precedence issue.

Example

/I $1d: A5-0-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <stack>

/I The following notes give some guidance on how dependence on order of
/I evaluation may occur, and therefore may assist in adopting the rule.

/I 1) Increment or decrement operators
/I As an example of what can go wrong, consider
void F1(std::uint8_t (&arr)[10], std::uint8_t idx) noexcept(false)
{
std::uint16_t x = arrfidx] + idx++;
}
/I This will give different results depending on whether arr[idx] is evaluated
/I before idx++ or vice versa. The problem could be avoided by putting the
/I increment operation in a separate statement. For example:
void F2(std::uint8_t (&arr)[10], std::uint8_t idx) noexcept(false)
{
std::uint8_t x = arrfidx] + idx;
idx++;

}

/I 2) Function arguments
/I The order of evaluation of function arguments is unspecified.
extern std::uint8_t Func(std::uint8_t x, std::uint8_ty);
void F3() noexcept(false)
{
std::uint8_ti=0;
std::uint8_t x = Func(i++, i);
}
/I This will give different results depending on which of the functions two
/I parameters is evaluated first.

33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83

AUTO©SAR

/I 3) Function pointers

/I'If a function is called via a function pointer there shall be no

/I dependence

/I on the order in which function-designator and function arguments are
/I evaluated.

struct S
{
void TaskStartFn(S* obj) noexcept(false);
2
void F4(S#* p) noexcept(false)
{
p->TaskStartFn(p++);
}

/I 4) Function calls
/I Functions may have additional effects when they are called (e.g. modifying
/I some global data). Dependence on order of evaluation could be avoided by
/I invoking the function prior to the expression that uses it, making use of a
/I temporary variable for the value. For example:
extern std::uint16_t G(std::uint8_t) noexcept(false);
extern std::uint16_t Z(std::uint8_t) noexcept(false);
void F5(std::uint8_t a) noexcept(false)
{
std::uintl6_t x = G(a) + Z(a);
}
/I could be written as
void F6(std::uint8_t a) noexcept(false)
{
std::uintl6_t x = G(a);
X +=Z(a);

}

/I As an example of what can go wrong, consider an expression to take two values

/I off a stack, subtract the second from the first, and push the result back on
/I the stack:
std::int32_t Pop(std::stack<std::int32_t>& s)

{
std::int32_t ret = s.top();
s.pop();
return ret;
}
void F7(std::stack<std::int32_t>& s)
{
s.push(Pop(s) - Pop(s));
}

/I This will give different results depending on which of the pop() function
/I calls is evaluated first (because pop() has side effects).

/I 5) Nested assignment statements

/I Assignments nested within expressions cause additional side effects. The best

/I way to avoid any possibility of this leading to a dependence on order of
/I evaluation is not to embed assignments within expressions. For example, the

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

AUTOSAR

/Il following is not recommended:
void F8(std::int32_t& x) noexcept(false)
{
std::int32_ty = 4;
x =y =y++; [/ Itis undefined whether the final value of y is 4 or 5
}
/I 6) Accessing a volatile
/I The volatile type qualifier is provided in C++ to denote objects whose value
/I can change independently of the execution of the program (for example an
/I input register). If an object of volatile qualified type is accessed this may
/I change its value. C++ compilers will not optimize out reads of a volatile. In
/[addition, as far as a C++ program is concerned, a read of a volatile has a
/I side effect (changing the value of the volatile). It will usually be
/I necessary to access volatile data as part of an expression, which then means
/l there may be dependence on order of evaluation. Where possible, though, it is
/l recommended that volatiles only be accessed in simple assignment statements,
/I such as the following:
void F9(std::uint16_t& x) noexcept(false)

{
volatile std::uint16_tv;
...
X=V;

}

/I The rule addresses the order of evaluation problem with side effects. Note

/I that there may also be an issue with the number of times a sub-expression is
/I evaluated, which is not covered by this rule. This can be a problem with

/I function invocations where the function is implemented as a macro. For

/I example, consider the following function-like macro and its invocation:
#define MAX(a, b) (((a) > (b)) ? (a) : (b))

I ...
void F10(std::uint32_t& i, std::uint32_t j)
{
std::uint32_t z = MAX(i++, j);
}

/I The definition evaluates the first parameter twice if a > b but only once if
/' a =b. The macro invocation may thus increment i either once or twice,

/I depending on the values of i and j.

/It should be noted that magnitude-dependent effects, such as those due to
/I floating-point rounding, are also not addressed by this rule. Although

I the

/I order in which side effects occur is undefined, the result of an operation is
/I otherwise well-defined and is controlled by the structure of the expression.
/I'In the following example, f1 and f2 are floating-point variables; F3, F4

/I and

/I F5 denote expressions with floating-point types.

I1f1=F3+ (F4+F5);
I1f2=(F3+F4)+F5;

/I The addition operations are, or at least appear to be, performed in the order

AUTOSAR

s I/ determined by the position of the parentheses, i.e. firstly F4 is added to F5

6 I/ then secondly F3 is added to give the value of f1. Provided that F3, F4 and
7 Il F5 contain no side effects, their values are independent of the order in

s I/ which they are evaluated. However, the values assigned to f1 and f2 are not
9 I/l guaranteed to be the same because floating-point rounding following the

140 /[addition operations are dependent on the values being added.

[N
w

[N
w

[N
w

[N
w

[N
w

See also

MISRA C++ 2008 [7]: Rule 5-0-1 The value of an expression shall be the same
under any order of evaluation that the standard permits

HIC++ v4.0 [9]: 5.1.2: Do not rely on the sequence of evaluation within an
expression.

C++ Core Guidelines [11]: ES.40: Avoid complicated expressions

C++ Core Guidelines [11]: ES.43: Avoid expressions with undefined order of
evaluation.

C++ Core Guidelines [11]: ES.44: Don’t depend on order of evaluation of
function arguments.

C++ Core Guidelines [11]: R.13: Perform at most one explicit resource
allocation in a single expression statement.

Rule M5-0-2 (advisory, implementation, partially automated)
Limited dependence should be placed on C++ operator precedence rules
in expressions.

See MISRA C++ 2008 [7]

See also

C++ Core Guidelines [11]: ES.41: If in doubt about operator precedence,
parenthesize

Rule M5-0-3 (required, implementation, automated)
A cvalue expression shall not be implicitly converted to a
different underlying type.

See MISRA C++ 2008 [7]

Rule M5-0-4 (required, implementation, automated)
An implicit integral conversion shall not change the signedness of
the underlying type.

See MISRA C++ 2008 [7]

http://www.codingstandard.com/rule/5-1-2-do-not-rely-on-the-sequence-of-evaluation-within-an-expression/
http://www.codingstandard.com/rule/5-1-2-do-not-rely-on-the-sequence-of-evaluation-within-an-expression/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-complicated
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es43-avoid-expressions-with-undefined-order-of-evaluation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es43-avoid-expressions-with-undefined-order-of-evaluation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es44-dont-depend-on-order-of-evaluation-of-function-arguments
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es44-dont-depend-on-order-of-evaluation-of-function-arguments
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es44-dont-depend-on-order-of-evaluation-of-function-arguments
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r13-perform-at-most-one-explicit-resource-allocation-in-a-single-expression-statement
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r13-perform-at-most-one-explicit-resource-allocation-in-a-single-expression-statement
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r13-perform-at-most-one-explicit-resource-allocation-in-a-single-expression-statement
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es41-if-in-doubt-about-operator-precedence-parenthesize
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es41-if-in-doubt-about-operator-precedence-parenthesize

© o N o g A~ w N P

B
o

-
]

AUTO©SAR

Rule M5-0-5 (required, implementation, automated) There
shall be no implicit floating-integral conversions.

See MISRA C++ 2008 [7]

Rule M5-0-6 (required, implementation, automated)
An implicit integral or floating-point conversion shall not reduce the size
of the underlying type.

See MISRA C++ 2008 [7]

Rule M5-0-7 (required, implementation, automated)
There shall be no explicit floating-integral conversions of a
cvalue expression.

See MISRA C++ 2008 [7]

Note: Standard library functions, i.e. std::floor and std::ceil, return a floating-point
data type:

#include <cmath>
#include <cstdint>

void Fn() noexcept

{
float f = -4.5;
std::int8_t x1 = static_cast<std::int8_t>(f); // Compliant, x1 = -4
std::int8_tx2 =
static_cast<std::int8_t>(std::floor(f)); // Compliant, x2 = -5
std::int8_tx3 =
static_cast<std::int8_t>(std::ceil(f)); // Compliant, x3 = -4
}

Rule M5-0-8 (required, implementation, automated)
An explicit integral or floating-point conversion shall not increase the
size of the underlying type of a cvalue expression.

See MISRA C++ 2008 [7]

Rule M5-0-9 (required, implementation, automated)
An explicit integral conversion shall not change the signedness of
the underlying type of a cvalue expression.

See MISRA C++ 2008 [7]

AUTOSAR

Rule M5-0-10 (required, implementation, automated)

If the bitwise operators ~and << are applied to an operand with an
underlying type of unsigned char or unsigned short, the result shall
be immediately cast to the underlying type of the operand.

See MISRA C++ 2008 [7]

Rule M5-0-11 (required, implementation, automated)
The plain char type shall only be used for the storage and use of
character values.

See MISRA C++ 2008 [7]

Rule M5-0-12 (required, implementation, automated)
Signed char and unsigned char type shall only be used for the storage
and use of numeric values.

See MISRA C++ 2008 [7]

Rule A5-0-2 (required, implementation, automated)
The condition of an if-statement and the condition of an iteration
statement shall have type bool.

Rationale

If an expression with type other than bool is used in the condition of an if-statement
or iteration-statement, then its result will be implicitly converted to bool. The condition
expression shall contain an explicit test (yielding a result of type bool) in order to
clarify the intentions of the developer.

Note that if a type defines an explicit conversion to type bool, then it is said to be
“contextually converted to bool” (Section 4.0(4) of ISO/IEC 14882:2014 [3]) and can
be used as a condition of an if-statement or iteration statement.

Exception

A condition of the form type-specifier-seq declarator is not required to have type bool.
This exception is introduced because alternative mechanisms for achieving the same
effect are cumbersome and error-prone.

Example

/I $1d: A5-0-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
#include <memory>

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

AUTO©SAR

extern std::int32_t* Fn();
extern std::int32_t Fn2();
extern bool Fn3();

void F() noexcept(false)

{

std::int32_t* ptr = nullptr;

while ((ptr = Fn()) != nullptr) // Compliant

{
/I Code

}

/I The following is a cumbersome but compliant example
do

{

std::int32_tx ptr = Fn();

if (nullptr == ptr)

{

break;
}
/I Code

} while (true); // Compliant

std::unique_ptr<std::int32_t> uptr;
if (luptr) // Compliant - std::unique_ptr defines an explicit conversion to
/I type bool.
{
/Il Code

}

while (std::int32_t length = Fn2()) // Compliant by exception
{

/I Code
}
while (bool flag = Fn3()) // Compliant
{
I/l Code
}

if (std::int32_t* ptr = Fn())
; I/ Compliant by exception

if (std::int32_t length = Fn2())
; I/ Compliant by exception

if (bool flag = Fn3())
; I/ Compliant

55

56

57

58

59

60

61

62

63

64

65

66

67

68

AUTO©SAR

std::uint8_tu=8§;

if (u)
; /I Non-compliant

bool booleanl = false;
bool boolean2 = true;

if (u && (booleanl <= boolean2))
; I/ Non-compliant

for (std::int32_t x = 10; X; --X)

; I/ Non-compliant

}

See also

MISRA C++ 2008 [7]: 5-0-13 The condition of an if-statement and the condition

of an iteration statement shall have type bool.

Rule M5-0-14 (required, implementation, automated)
The first operand of a conditional-operator shall have type bool.

See MISRA C++ 2008 [7]

Rule M5-0-15 (required, implementation, automated) Array
indexing shall be the only form of pointer arithmetic.

See MISRA C++ 2008 [7]

Rule M5-0-16 (required, implementation, automated)
A pointer operand and any pointer resulting from pointer arithmetic
using that operand shall both address elements of the same array.

See MISRA C++ 2008 [7]

Note: The next element beyond the end of an array indicates the end of the array.

Rule M5-0-17 (required, implementation, automated)
Subtraction between pointers shall only be applied to pointers that
address elements of the same array.

See MISRA C++ 2008 [7]

o ~N o u ~ W

©

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

AUTO©SAR

Rule A5-0-4 (required, implementation, automated)
Pointer arithmetic shall not be used with pointers to non-final classes.

Rationale

Pointer arithmetic is only well defined if the pointed-to type of the pointer equals the
element type of the array it points into, otherwise the behavior is undefined. This
property can only be guaranteed if the pointer operand is a pointer to non-class type
or a pointer to final class type.

Note: This also applies to the subscripting operator as E1[E2] is defined in terms of
pointer arithmetic as *((E1)+(E2)).

Example

/I $1d: A5-0-4.cpp 309849 2018-03-02 09:36:31Z christof.meerwald $
#include <algorithm>

#include <array>

#include <cstdint>

#include <cstdlib>

#include <memory>

#include <vector>

class Base
{
public:
virtual ~Base() noexcept = 0;
virtual void Do() = 0;

h

class Derived1 final : public Base
{
public:
void Do() final

{
...

}

private:
std::int32_t m_value {0 };
I3

class Derived? final : public Base

{
public:
void Do() final

{
...

}

private:

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

AUTO©SAR

std::string m_value { };

2
void Foo(Base *start, size_t len)
{
/I Non-Compliant: pointer arithmetic on non-final pointer type
for (Base *iter = start; iter != start + len; ++iter)
{
iter->Do();
}
}
void Foo(const std::vector<std::unique_ptr<Base>> &v)
{
/I Compliant: uses std::unique_ptr for polymorphic objects
std::for_each(v.begin(), v.end(),
[(const std::unique_ptr<Base> &ptr) {
ptr->Do();
D
}
void DoOpt(Base *obj)
{
if (obj != nullptr)
{
obj->Do();
}
}
void Bar()
{

std::array<Derivedl, 2> arrl;

Base *basel { arrl.data() };
Foo(basel, arrl.size());

DoOpt(&arrl[1]); /I Compliant: pointer arithmetic on final class
DoOpt(&basel[1]); /I Non-Compliant: pointer arithmetic on base class

std::array<Derived2, 2> arr2;

Base *base2 { arr2.data() };
Foo(base2, arr2.size());

DoOpt(arr2.data() + 1); // Compliant: pointer arithmetic on final class
DoOpt(base2 + 1);// Non-Compliant: pointer arithmetic on base class

std::vector<std::unique_ptr<Base>>v;
v.push_back(std::make_unique<Derived1>()),
v.push_back(std::make_unique<Derived2>());

88

89

9

10

11
12

13

14

15
16

1

=]

18

19

20

AUTO©SAR

Foo(v);

See also

SEI CERT C++ Coding Standard [10]: CTR56-CPP: Do not use pointer
arithmetic on polymorphic objects.

JSF December 2005 [8]: AV Rule 96: Arrays shall not be treated polymorphically.

C++ Core Guidelines [11]: T.82: Do not mix hierarchies and arrays.

Rule M5-0-18 (required, implementation, automated)
>, >=, <, <=shall not be applied to objects of pointer type, except where
they point to the same array.

See MISRA C++ 2008 [7]

Rule A5-0-3 (required, implementation, automated)
The declaration of objects shall contain no more than two levels of
pointer indirection.

Rationale

Use of more than two levels of indirection can seriously impair the ability to
understand the behavior of the code, and therefore should be avoided.

Example

// $1d: A5-0-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
using IntPtr = std::int8_tx;

struct S

{
std::int8_t* s1; /I Compliant
std::int8_t#* s2; /I Compliant
std::int8_tx*x s3; /I Non-compliant

S#* psl; /I Compliant

Sx* ps2; /I Compliant

S+ ps3; // Non-compliant

std::int8_t** (*pfuncl)(); // Compliant

std::int8_txx (**pfunc2)(); // Compliant
std::int8_tx* (x+xpfunc3)(); // Non-compliant

std::int8_tx*x* (*xpfunc4)(); // Non-compliant

void Fn(std::int8_t* parl, /I Compliant

std::int8_t** par2, /I Compliant

https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR56-CPP.+Do+not+use+pointer+arithmetic+on+polymorphic+objects
https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR56-CPP.+Do+not+use+pointer+arithmetic+on+polymorphic+objects
https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR56-CPP.+Do+not+use+pointer+arithmetic+on+polymorphic+objects
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t81-do-not-mix-hierarchies-and-arrays

21

22
23

24

25
26
27
28
29
30
31

32

33
34

35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55

56

AUTOSAR

std::int8_tx+* par3, /I Non-compliant
IntPtr* par4, /I Compliant
IntPtr« const* const par5, /I Non-compliant
std::int8_t* par6[], /I Compliant
{ std::int8_t+* par7[]) /I Non-compliant
std::int8_tx ptrl; /I Compliant
std::int8_t+* ptr2; /I Compliant
std::int8_t+** ptr3; /I Non-compliant
IntPtrx ptrd; /I Compliant
IntPtrx const* const ptr5 = nullptr; /I Non-compliant
std::int8_t* ptr6[10]; /I Compliant
} std::int8_tx* ptr7[10]; /I Compliant

/I Explanation of types

/I 1) parl and ptrl are of type pointer to std::int8_t.

/I 2) par2 and ptr2 are of type pointer to pointer to std::int8_t.

/I 3) par3 and ptr3 are of type pointer to a pointer to a pointer

/I to std::int8_t.

/I This is three levels and is non-compliant.

/I 4) pard and ptr4 are expanded to a type of pointer to a pointer to
/I std::int8_t.

/I'5) par5 and ptr5 are expanded to a type of const pointer to a const
/I pointer

/I to a pointer to std::int8_t. This is three levels and is non-compliant.
/I 6) par6 is of type pointer to pointer to std::int8_t because arrays
/I are converted

/ to a pointer to the initial element of the array.

II'7) ptr6 is of type pointer to array of std::int8_t.

/I 8) par7 is of type pointer to pointer to pointer to

I std::int8_t because arrays are

/I converted to a pointer to the initial element of the array. This is
/I three

/l'levels and is non-compliant.

/1'9) ptr7 is of type array of pointer to pointer to std::int8_t. This
/l'is compliant.

See also

MISRA C++ 2008 [7]: 5-0-19 The declaration of objects shall contain no more

than two levels of pointer indirection.

type.

Rule M5-0-20 (required, implementation, automated) Non-constant
operands to a binary bitwise operator shall have the same underlying

See MISRA C++ 2008 [7]

11

12

13

15

16

17

18

20

21

AUTO©SAR

Rule M5-0-21 (required, implementation, automated)
Bitwise operators shall only be applied to operands of unsigned
underlying type.

See MISRA C++ 2008 [7]

6.5.1 Primary expression

Rule A5-1-1 (required, implementation, partially automated)
Literal values shall not be used apart from type initialization,
otherwise symbolic names shall be used instead.

Rationale

Avoid use of “magic” numbers and strings in expressions in preference to constant
variables with meaningful names. Literal values are supposed to be used only in type
initialization constructs, e.g. assignments and constructors.

The use of named constants improves both the readability and maintainability of the
code.

Exception

It is allowed to use literal values in combination with logging mechanism.

Example

/I $1d: A5-1-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <array>

#include <cstdint>

#include <iostream>

#include <stdexcept>

namespace
{
const std::int32_t maxlterations = 10; /I Compliant - assignment
const charx const looplterStr = "iter "; // Compliant - assignment
const char separator ="', /[l Compliant - assignment
}
void F1() noexcept
{

for (std::int32_ti = 0; i < 10; ++i) // Non-compliant

{

std::cout << "iter " <<i <<’ <<’\n’; // Compliant by exception
}

for (std::int32_t i = 0; i < maxlterations; ++i) // Compliant

{

std::cout << looplterStr << i << separator << ’\n’; // Compliant

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

AUTO©SAR

for (std::int32_t i = 0; i < maxlterations; ++i) // Compliant
{
std::cout << "iter " << i <<’ <<’\n’; // Compliant by exception
}
}
void F2()
{
...
throw std::logic_error("Logic Error"); // Compliant
/I initialization of exception object

}

class C
{
public:
C(: x(0), y(nullptr) // Compliant - initialization
{
}

C(std::int8_t num, std::int32_t* ptr) : x(num), y(ptr) {}

private:
std::int8_t x;
std::int32_tx y;
I3
static std::int32_t* globalPointer = nullptr; // Compliant - assignment
void F3() noexcept

{
Ccl;
...
C c2(0, globalPointer); // Compliant - initialization of C object
}
std::int32_t F4(std::int32_t x, std::int32_t y) noexcept
{
return X +y;
}
void F5() noexcept
{
std::int32_t ret = F4(2, 5); // Non-compliant
...
std::int32_tx = 2;
std::int32_ty = 5;
ret = F4(x, y); // Compliant
std::array<std::int8_t, 5> arr{{1, 2, 3, 4, 5}}; // Compliant
}
See also

HIC++ v4.0 [9]: 5.1.1 Use symbolic names instead of literal values in code.

AUTO©SAR

Rule A5-1-2 (required, implementation, automated)
Variables shall not be implicitly captured in a lambda expression.

Rationale

Capturing variables explicitly helps document the intention of the author. It also
allows for different variables to be explicitly captured by copy or by reference within

the lambda definition.

Exception

It is allowed to implicitly capture variables with non-automatic storage duration.

Example

// $1d: A5-1-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <algorithm>

#include <cstdint>

#include <vector>

void Fnl(const std::vector<std::int32_t>& v)

{
std::uint64_t sum = 0;
std::for_each(v.begin(), v.end(), [&](std::int32_t Ihs) {
sum += |hs;
»; // Non-compliant
sum = 0;
std::for_each(v.begin(), v.end(), [&sum](std::int32_t Ihs) {
sum += |hs;
}; // Compliant
}
void Fn2()
{
constexpr std::uint8_t n = 10;
static std::int32_tj=0;
[n]O {
std::int32_t array[n]; // Compliant
j+=1; /I Compliant by exception
h
}
See also

HIC++ v4.0 [9]: 5.1.4 Do not capture variables implicitly in a lambda.

C++ Core Guidelines [11]: F.54: If you capture this, capture all variables
explicitly (no default capture).

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f54-if-you-capture-this-capture-all-variables-explicitly-no-default-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f54-if-you-capture-this-capture-all-variables-explicitly-no-default-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f54-if-you-capture-this-capture-all-variables-explicitly-no-default-capture

© o N o g A~ w N P

PP
[=)

-
]

1

2

AUTO©SAR

Rule A5-1-3 (required, implementation, automated)
Parameter list (possibly empty) shall be included in every
lambda expression.

Rationale

The lambda-declarator is optional in a lambda expression and results in a closure
that can be called without any parameters.

To avoid any visual ambiguity with other C++ constructs, it is recommended to
explicitly include (), even though it is not strictly required.
Example

/I $1d: A5-1-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

void Fn()

{
std::int32_ti=0;
std::int32_tj=0;

auto lambdal = [&i, &]] { ++i, ++j; }; // Non-compliant
auto lambda2 = [&i, &j]() {

+4i;

+;
};, // Compliant

See also

HIC++ v4.0 [9]: 5.1.5 Include a (possibly empty) parameter list in every lambda
expression

Rule A5-1-4 (required, implementation, automated)
A lambda expression object shall not outlive any of its reference-
captured objects.

Rationale

When an object is captured by reference in a lambda, lifetime of the object is not tied
to the lifetime of the lambda.

If a lambda object leaves the scope of one of its reference-captured object, the
execution of the lambda expression results in an undefined behavior once the
reference-captured object is accessed.

Example

// $1d: A5-1-4.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

http://www.codingstandard.com/rule/5-1-5-include-a-possibly-empty-parameter-list-in-every-lambda-expression

© o N o 0 9~ w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

A W NP

AUTO©SAR

#include <functional>
std::function<std::int32_t()> F()

{
std::int32_ti=12;
return ([&i]() -> std::int32_t{
i =100;
return i;
}; 1/ Non-compliant
}
std::function<std::int32_t()> G()
{
std::int32_ti=12;
return ([i]() mutable -> std::int32_t { return ++i; }); // Compliant
}
void Fn()
{
auto lambdal = F();
std::int32_t i = lambdal(); // Undefined behavior
auto lambda2 = G();
i = lambda2(); // lambda2() returns 13
}
See also

SEI CERT C++ [10]: EXP61-CPP. A lambda object must not outlive any of its
reference captured objects.

C++ Core Guidelines [11]: F.53: Avoid capturing by reference in lambdas that
will be used nonlocally, including returned, stored on the heap, or passed to
another thread.

Rule A5-1-6 (advisory, implementation, automated)
Return type of a non-void return type lambda expression should
be explicitly specified.

Rationale

If a non-void return type lambda expression does not specify its return type, then it
may be confusing which type it returns. It leads to developers confusion.

Note that, while the return type is specified, implicit conversion between type of
returned value and return type specified in the lambda expression may occur. This
problem should not be ignored.

Example

/I $1d: A5-1-6.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
void Fn() noexcept

{

https://www.securecoding.cert.org/confluence/display/cplusplus/EXP61-CPP.+A+lambda+object+must+not+outlive+any+of+its+reference+captured+objects
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f53-avoid-capturing-by-reference-in-lambdas-that-will-be-used-nonlocally-including-returned-stored-on-the-heap-or-passed-to-another-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f53-avoid-capturing-by-reference-in-lambdas-that-will-be-used-nonlocally-including-returned-stored-on-the-heap-or-passed-to-another-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f53-avoid-capturing-by-reference-in-lambdas-that-will-be-used-nonlocally-including-returned-stored-on-the-heap-or-passed-to-another-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f53-avoid-capturing-by-reference-in-lambdas-that-will-be-used-nonlocally-including-returned-stored-on-the-heap-or-passed-to-another-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f53-avoid-capturing-by-reference-in-lambdas-that-will-be-used-nonlocally-including-returned-stored-on-the-heap-or-passed-to-another-thread

10

11

12

13

14

15

16

10

11

12

13

14

15

16

17

18

19

20

AUTO©SAR

auto lambdal = [J() -> std::uint8_t {
std::uint8_t ret = OU;
...
return ret;
}; // Compliant
auto lambda2 = []() {
...
return OU;
h /I Non-compliant - returned type is not specified
auto x = lambdai(); // Type of x is std::uint8_t
auto y = lambda2(); // What is the type of y?

See also

none

Rule A5-1-7 (required, implementation, automated)
A lambda shall not be an operand to decltype or typeid.

Rationale

“The type of the lambda-expression (which is also the type of the closure object) is a
unique, unnamed non-union class type [...]"” [C++14 Language Standard] [3]

Each lambda expression has a different unique underlying type, and therefore the
type is not to be used as a decltype or typeid argument. It is allowed to use it as a
template parameter and a function argument.

Example

/I $1d: A5-1-7.cpp 289815 2017-10-06 11:19:11Z michal.szczepankiewicz $
#include <cstdint>
#include <functional>
#include <vector>
void Fn()
{
auto lambdal = []() -> std::int8_t { return 1; };
auto lambda2 = []() -> std::int8_t { return 1, };

if (typeid(lambdal) == typeid(lambda2)) // Non-compliant - types of lambdal
/I and lambda2 are different

{
...

}

std::vector<decltype(lambdal)> v; // Non-compliant

/I v.push_back([]() { return 1; }); // Compilation error, type of pushed
/I lambda is different than decltype(lambdal)

/I using mylambda_t = decltype([](){ return 1; }); // Non-compliant -
/I compilation error

AUTO©SAR

2 auto lambda3 = [J() { return 2; };

22 using lambda3_t = decltype(lambda3); // Non-compliant - lambda3_t type can
23 /I not be used for lambda expression
24 /I declarations

25 /I lambda3_t lambda4 = []() { return 2; }; // Conversion error at

26 /I compile-time

27 std::function<std::int32_t()> f1 = [J() { return 3; };

28 std::function<std::int32_t()> f2 = [J() { return 3; };

29

30 if (typeid(f1) == typeid(f2)) // Compliant - types are equal

31 {

32 ...

33 }

34}

35

36 template <typename T>
37 void Foo(T t);

38

39 void Bar()

a0 |
41 Foo([]) {}); // Compliant
a2}

See also

none

Rule A5-1-8 (advisory, implementation, automated)
Lambda expressions should not be defined inside another
lambda expression.

Rationale

Defining lambda expressions inside other lambda expressions reduces readability of
the code.

Example

1 /] $ld: A5-1-8.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
> #include <cstdint>

3 void Fnl()

o |

5 std::intl6_tx = 0;

6 auto f1 = [&X]() {

7

8 auto f2 =[]() {}; // Non-compliant
o f2();

10

11 auto f4 =[]() {}; // Non-compliant

12 f4();

13

14

15

16

17

18

19

20

21

22

23

24

10

11

12

13

14

15

16

17

18

19

20

21

AUTO©SAR

}; /I Non-compliant

f10;
}
void Fn2()
{
auto f5 =[] {
/I Implementation
}; // Compliant
f50;
}
See also
none

Rule A5-1-9 (advisory, implementation, automated)
Identical unnamed lambda expressions shall be replaced with a
named function or a named lambda expression.

Rationale

Code duplication reduces readability and maintainability as it might not be obvious
that the lambda expressions are identical and any changes need to be applied in
more than one place.

Example

// $1d: A5-1-9.cpp 307019 2018-02-09 15:16:47Z christof.meerwald $
#include <algorithm>

#include <cstdint>

#include <vector>

void Fnl(const std::vector<intl6_t> &v)

{
/I Non-compliant: identical unnamed lambda expression
if (std::none_of(v.begin(), v.end(),
[] (int16_ti){returni<0;})
{
...
}
else if (std::all_of(v.begin(), v.end(),
[0 (intl6_ti){returni<0;}))
{
...
}
}

void Fn2(const std::vector<int16_t> &v)

22

23

24

25

26

27

28

29

30

31

32

33

34

AUTO©SAR

/I Compliant: re-using lambda expression
auto is_negative =[] (intl6_ti) {returni<O0; };

if (std::none_of(v.begin(), v.end(), is_negative))

{
...

}

else if (std::all_of(v.begin(), v.end(), is_negative))

{
...

}
}

See also

C++ Core Guidelines [11]: T.141: Use an unnamed lambda if you need a simple
function object in one place only.

6.5.2 Postfix expressions

Rule M5-2-2 (required, implementation, automated)
A pointer to a virtual base class shall only be cast to a pointer to a

derived class by means of dynamic_cast.

See MISRA C++ 2008 [7]

See also

JSF December 2005 [8]: AV Rule 178: Down casting (casting from base to
derived class) shall only be allowed through one of the following mechanism:
Virtual functions that act like dynamic casts (most likely useful in relatively
simple cases); Use of the visitor (or similar) pattern (most likely useful in
complicated cases).

Rule M5-2-3 (advisory, implementation, automated)
Casts from a base class to a derived class should not be performed
on polymorphic types.

See MISRA C++ 2008 [7]

Note: Type is polymorphic if it declares or inherits at least one virtual function.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lambda
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lambda

© o N o g A~ w N P

[N
o

[N
[

12
13

14

16

17

18

19

20

21

22

23

24

25

AUTO©SAR

Rule A5-2-1 (advisory, implementation, automated)
dynamic_cast should not be used.

Rationale

Implementations of dynamic_cast mechanism are unsuitable for use with real-time
systems where low memory usage and determined performance are essential.

If dynamic casting is essential for your program, usage of its custom implementation
should be considered. Also, usage of the dynamic_cast can be replaced with
polymorphism, i.e. virtual functions.

Example

/I $1d: A5-2-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
class A

{
public:
virtual void F() noexcept;
2
class B : public A

{
public:
void F() noexcept override {}
h
void Fn(A* aptr) noexcept

{
...

B* bptr = dynamic_cast<B*>(aptr); // Non-compliant

if (bptr != nullptr)
{

/l Use B class interface

/I Use A class interface

See also

JSF December 2005 [8]: AV Rule 178: Down casting (casting from base to
derived class) shall only be allowed through one of the following mechanism:
Virtual functions that act like dynamic casts (most likely useful in relatively
simple cases); Use of the visitor (or similar) pattern (most likely useful in
complicated cases).

C++ Core Guidelines [11]: C.146: Use dynamic_cast where class hierarchy
navigation is unavoidable.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dynamic_cast

© m N o g A~ w N P

e < =
o A W N B O

[N
o

AUTO©SAR

Journal of Computing Science and Engineering, Damian Dechev, Rabi
Mahapatra, Bjarne Stroustrup: Practical and Verifiable C++ Dynamic Cast for
Hard Real-Time Systems.

Software-Practice and Experience, Michael Gibbs and Bjarne Stroustrup: Fast
dynamic casting.

Rule A5-2-2 (required, implementation, automated)
Traditional C-style casts shall not be used.

Rationale

C-style casts are more dangerous than the C++ named conversion operators. The C-
style casts are difficult to locate in large programs and the intent of the conversion is
not explicit.

Traditional C-style casts raise several concerns:

C-style casts enable most any type to be converted to most any other type
without any indication of the reason for the conversion

C-style cast syntax is difficult to identify for both reviewers and tools.
Consequently, both the location of conversion expressions as well as the
subsequent analysis of the conversion rationale proves difficult for C-style casts

Thus, C++ introduces casts (const_cast, dynamic_cast, reinterpret_cast, and
static_cast) that address these problems. These casts are not only easy to identify,
but they also explicitly communicate the developer’s intent for applying a cast.

Example

/I $1d: A5-2-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
class C
{
public:
explicit C(std::int32_t) {}
virtual void Fn() noexcept {}
b
class D : public C
{
public:
void Fn() noexcept override {}
b
class E
{
3
std::int32_t G() noexcept
{

return 7;

}

http://www.stroustrup.com/fdc_jcse.pdf
http://www.stroustrup.com/fdc_jcse.pdf
http://www.stroustrup.com/fast_dynamic_casting.pdf
http://www.stroustrup.com/fast_dynamic_casting.pdf

N
[y

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

w

4

o

AUTO©SAR

void F() noexcept(false)

{
C al = C{10}; /I Compliant
C* a2 = (C*)(&al); // Non-compliant
const C a3(5);
C* a4 = const_cast<C*>(&a3); /I Compliant - violates another rule
E* d1 = reinterpret_cast<E*>(a4); // Compliant - violates another rule
D+ d2 = dynamic_cast<D*>(a2); /l Compliant - violates another rule
std::intl6_t x1 = 20;
std::int32_t x2 = static_cast<std::int32_t>(x1); // Compliant
std::int32_t x3 = (std::int32_t)x1; /I Non-compliant
std::int32_t x4 = 10;
float fl1 = static_cast<float>(x4); /I Compliant
float f2 = (float)x4; /I Non-compliant
std::int32_t x5 = static_cast<std::int32_t>(f1); // Compliant
std::int32_t x6 = (std::int32_t)f1; // Non-compliant
(void)G(); /I Non-compliant
static_cast<void>(G()); /I Compliant

}

See also

MISRA C++ 2008 [7]: 5-2-4 C-style casts (other than void casts) and functional
notation casts (other than explicit constructor calls) shall not be used.

JSF December 2005 [8]: AV Rule 185 C++ style casts (const_cast,
reinterpret_cast, and static_cast) shall be used instead of the traditional C-style
casts.

Rule A5-2-3 (required, implementation, automated)
A cast shall not remove any const or volatile qualification from the type of
a pointer or reference.

Rationale

Removal of the const or volatile qualification may not meet developer expectations as
it may lead to undefined behavior.

Note that either const_cast and traditional C-style casts that remove const or volatile
gualification shall not be used.

Example

/I $1d: A5-2-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
void F1(const char* str) noexcept(false)
{
*(const_cast<charx>(str)) =
\0’; /I Non-compliant - const qualification removed

— AUTOSAR CONFIDENTIAL —

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

AUTO©SAR

class C
{
public:
explicit C(std::int32_t) {}
2
void F2() noexcept(false)
{
C const al = C(10);
C* a2 = const_cast<C*>(&al); // Non-compliant - const qualification removed
Cx a3 = (Cx)&al; /I Non-compliant - const qualification removed
}

extern volatile std::int32_t* F3() noexcept;
void F4() noexcept

{
volatile std::int32_t* ptrl = F3();
...
std::int32_t* ptr2 = const_cast<std::int32_tx>(
ptrl); // Non-compliant - volatile qualification removed
...
std::int32_tx ptr3 =
(std::int32_t*)ptrl; // Non-compliant - volatile qualification removed
}
See also

MISRA C++ 2008 [7]: 5-2-5 A cast shall not remove any const or volatile
qualification from the type of a pointer or reference.

Rule M5-2-6 (required, implementation, automated)
A cast shall not convert a pointer to a function to any other pointer
type, including a pointer to function type.

See MISRA C++ 2008 [7]

Rule A5-2-4 (required, implementation, automated)
reinterpret_cast shall not be used.

Rationale

Use of reinterpret_cast may violate type safety and cause the program to access a
variable as if it were of another, unrelated type.

Example

/I $1d: A5-2-4.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <string>

void F1() noexcept

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

AUTO©SAR

{
std::string str = "Hello";
std::int32_t* ptr = reinterpret_cast<std::int32_t*>(&str); // Non-compliant
}
struct A
{
std::int32_t x;
std::int32_ty;
2
class B
{
public:
virtual ~B() {}
private:
std::int32_t x;
b
class C : public B
{
2
class D : public B
{
b
void F2(A# ptr) noexcept
{
B* bl = reinterpret_cast<B*>(ptr); // Non-compliant
std::int32_t num = 0;
A* al = reinterpret_cast<A*>(num); // Non-compliant
Ax a2 = (A¥)
num; // Compliant with this rule, but non-compliant with Rule A5-2-2.
B* b2 = reinterpret_cast<B*>(num); // Non-compliant
D d;
C+ c1 = reinterpret_cast<C*>(&d); // Non-compliant - cross cast
C* c2 = (C*)&d; // Compliant with this rule, but non-compliant with Rule
/I A5-2-2. Cross-cast.
B* b3 = &d; // Compliant - class D is a subclass of class B
}
See also

MISRA C++ 2008 [7]: Rule 5-2-7 An object with pointer type shall not be
converted to an unrelated pointer type, either directly or indirectly.

C++ Core Guidelines [11]: Type.1: Don’t use reinterpret_cast.

Rule A5-2-6 (required, implementation, automated)
The operands of alogical && or \ shall be parenthesized if the operands
contain binary operators.

© o N o g o~ W N P

I N T T i v = =
SO © o ~N o o A~ W N kB O

N
[y

AUTO©SAR

Rationale

Parentheses are required to add clarity in logical expressions making code easier to
review versus code based only C++ operator precedence rules.

Example
I $1d: A5-2-6.cpp$

#include <cstdint>

void Fn(std::int32_t value) noexcept

{

if (value > 0 && value < 3) // Non-compliant

{

/I do some work

}
else if ((value > 1) && (value < 2)) // Compliant

{

/I do some work

/l do some work

}

return;

}

See also

MISRA C++ 2008 [7]: M5-2-1: Each operand of a logical && or || shall be a
postfix expression.

JSF December 2005 [8]: AV Rule 158: The operands of a logical && or \\ shall
be parenthesized if the operands contain binary operators.

C++ Core Guidelines [11]: ES.41: If in doubt about operator precedence,
parenthesize

Rule M5-2-8 (required, implementation, automated)
An object with integer type or pointer to void type shall not be converted
to an object with pointer type.

See MISRA C++ 2008 [7]

Rule M5-2-9 (required, implementation, automated)
A cast shall not convert a pointer type to an integral type.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es41-if-in-doubt-about-operator-precedence-parenthesize
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es41-if-in-doubt-about-operator-precedence-parenthesize

5

(<))

AUTOSAR

See MISRA C++ 2008 [7]

Note: Obligation level changed.

Rule M5-2-10 (required, implementation, automated)
The increment (++) and decrement () operators shall not be mixed with
other operators in an expression.

See MISRA C++ 2008 [7]

Note: Obligation level changed.

Rule M5-2-11 (required, implementation, automated)
The comma operator, && operator and the || operator shall not be
overloaded.

See MISRA C++ 2008 [7]

Rule A5-2-5 (required, implementation, automated)
An array or container shall not be accessed beyond its range.

Rationale

To avoid undefined behavior, range checks should be coded to ensure that container
access via iterator arithmetic or subscript operator is within defined bounds. This
could also be achieved by accessing an array via a subscript operator with constant
indices only.

When copying data via standard library algorithms (such as std::copy or
std::transform), the target destination must be guaranteed to be large enough to hold
the data.

Note: This rule applies to C-style arrays and all other containers (including
std::basic_string) that access their elements via iterators or via an index. The term
iterator includes pointers.

Note: Calculating an iterator one past the last element of the array is well defined, but
dereferencing such an iterator is not.

Example

I/ $1d: A5-2-5.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <array>

#include <cstdint>

#include <iostream>

void Fnl() noexcept

{

AUTO©SAR

7 constexpr std::int32_t arraySize = 16;
8 std::int32_t array[arraySize]{0};
9
10 std::int32_t eleml =
11 array[0]; // Compliant - access with constant literal that
12 /l'is less than ArraySize
13 std::int32_t elem2 =
14 array[12]; // Compliant - access with constant literal that
15 Il is less than ArraySize
16 for (std::int32_t idx = 0; idx < 20; ++idx)
17 {
18 std::int32_t elem3 =
19 array[idx]; // Non-compliant - access beyond ArraySize
20 /I bounds, which has 16 elements
21 }
22
23 std::int32_t shift = 25;
24 std::int32_t elem4 =
25 *(array + shift); // Non-compliant - access beyond ArraySize bounds
26
27 std::int32_t index = 0;
28 std::cin >> index;
29 std::int32_t elem5 =
30 array[index]; // Non-compliant - index may exceed the ArraySize bounds
31 if (index < arraySize)
32 {
33 std::int32_t elem6 = array[index]; // Compliant - range check coded
34 }
35}
36 void Fn2() noexcept
a7 {
38 constexpr std::int32_t arraySize = 32;
39 std::array<std::int32_t, arraySize> array;
40 array.fill(0);
41
42 std::int32_t eleml =
43 array[10]; // Compliant - access with constant literal that
44 /l'is less than ArraySize
45 std::int32_t index = 40;
46 std::int32_t elem2 =
47 array[index]; // Non-compliant - access beyond ArraySize bounds
48 try
49 {
50 std::int32_t elem3 =
51 array.at(50); // Compliant - at() method provides a
52 /I range check, throwing an exception if
53 /I input exceeds the bounds
54 }
55 catch (std::out_of_range&)
56 {

57 /I Handle an error

58

59

60

61

62

63

64

65

AUTO©SAR

}

for (auto&& e : array) // The std::array provides a possibility to iterate
/I over its elements with range-based loop

{

/I lterate over all elements

}
}

See also

HIC++ v4.0 [9]: 5.2.1: Ensure that pointer or array access is demonstrably
within bounds of a valid object.

Rule M5-2-12 (required, implementation, automated)
An identifier with array type passed as a function argument shall not

decay to a pointer.

See MISRA C++ 2008 [7]

See also

C++ Core Guidelines [11]: C.152: Never assign a pointer to an array of derived
class objects to a pointer to its base.

C++ Core Guidelines [11]: R.2: In interfaces, use raw pointers to denote
individual objects (only).

C++ Core Guidelines [11]: 1.13: Do not pass an array as a single pointer.

6.5.3 Unary expressions

Rule M5-3-1 (required, implementation, automated)
Each operand of the ! operator, the logical && oOr the logical || Operators
shall have type bool.

See MISRA C++ 2008 [7]

Rule M5-3-2 (required, implementation, automated)
The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

See MISRA C++ 2008 [7]

http://www.codingstandard.com/rule/5-2-1-ensure-that-pointer-or-array-access-is-demonstrably-within-bounds-of-a-valid-object/
http://www.codingstandard.com/rule/5-2-1-ensure-that-pointer-or-array-access-is-demonstrably-within-bounds-of-a-valid-object/
http://www.codingstandard.com/rule/5-2-1-ensure-that-pointer-or-array-access-is-demonstrably-within-bounds-of-a-valid-object/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c152-never-assign-a-pointer-to-an-array-of-derived-class-objects-to-a-pointer-to-its-base
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c152-never-assign-a-pointer-to-an-array-of-derived-class-objects-to-a-pointer-to-its-base
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r2-in-interfaces-use-raw-pointers-to-denote-individual-objects-only
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r2-in-interfaces-use-raw-pointers-to-denote-individual-objects-only
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i13-do-not-pass-an-array-as-a-single-pointer

© o N o g A W N P

=
N P O

[N
w

14

15

17

18

AUTO©SAR

Rule M5-3-3 (required, implementation, automated)
The unary & operator shall not be overloaded.

See MISRA C++ 2008 [7]

Rule M5-3-4 (required, implementation, automated)
Evaluation of the operand to the sizeof operator shall not contain
side effects.

See MISRA C++ 2008 [7]

Rule A5-3-1 (required, implementation, non-automated)
Evaluation of the operand to the typeid operator shall not contain
side effects.

Rationale

The operand of typeid operator is evaluated only if it is a function call which returns a
reference to a polymorphic type.

Providing side effects to typeid operator, which takes place only under special
circumstances, makes the code more difficult to maintain.

Example

/I $1d: A5-3-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <typeinfo>
bool SideEffects() noexcept
{
/I Implementation
return true;

}

class A
{
public:
static A& F1() noexcept { return a; }
virtual ~A() {}

private:
static A a;
2
AA:a;
void F2() noexcept(false)
{
typeid(SideEffects()); // Non-compliant - sideEffects() function not called
typeid(A::F1()); // Non-compliant - A::f1() functions called to determine
Il the polymorphic type

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

AUTO©SAR

See also

HIC++ v4.0 [9]: 5.1.6 Do not code side effects into the right-hand operands of:
&&, ||, sizeof, typeid or a function passed to condition_variable::wait.

Rule A5-3-2 (required, implementation, partially automated)
Null pointers shall not be dereferenced.

Rationale
Dereferencing a NULL pointer leads to undefined behavior.

Note: It is required requires that a pointer is checked for non-NULL status before de-
referencing occurs.

Example

/I $1d: A5-3-2.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
#include <iostream>

#include <memory>

#include <cstdint>

class A

{
public:
A(std::uint32_t a) : a(a) {}
std::uint32_t GetA() const noexcept { return a; }

private:
std::uint32_t a;
h

bool Sum(const A* |hs, const A* rhs)

{

/Inon-compliant, not checking if pointer is invalid
return lhs->GetA() + rhs->GetA();

int main(void)

{
auto | = std::make_shared<A>(3);
decltype(l) r;
auto sum = Sum(l.get(), r.get());
std::cout << sum << std::endl;
return O;

}

See also

http://www.codingstandard.com/rule/5-1-6-do-not-code-side-effects-into-the-right-hand-operands-of-sizeof-typeid-or-a-function-passed-to-condition_variablewait/

N o g0 b~ W N R

©

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

AUTO©SAR

JSF December 2005 [8]: AV Rule 174: The null pointer shall not be de-
referenced.

SEI CERT C++ Coding Standard [10]: EXP34-C: Do not dereference null
pointers.

C++ Core Guidelines [11]: ES.65: Don’t dereference an invalid pointer.

Rule A5-3-3 (required, implementation, automated)
Pointers to incomplete class types shall not be deleted.

Rationale

Incomplete class types are forward declared class types, for which the compiler has
not yet seen a definition. It is undefined behavior if a pointer to an incomplete class
type is deleted, and the class has a non-trivial destructor or a deallocation function.
This rule prohibits deletion of such a pointer even in the harmless case of a trivially
destructible class type without a deallocation function, since a non-trivial destructor or
a deallocation function may be added later as the code evolves.

Example
/ $1d: A5-3-3.cpp 309184 2018-02-26 20:38:28Z jan.babst $

/I Non-compliant: At the point of deletion, pimpl points
/l to an incomplete class type.
class Bad
{
class Impl;
Impl* pimpl;

public:
...
~Bad() { delete pimpl; } // violates A18-5-2

h

/I Compliant: At the point of deletion, pimpl points to
/Il a complete class type.

/I In a header file ...
class Good
{
class Impl;
Impl* pimpl;

public:
...
~Good();

https://wiki.sei.cmu.edu/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointers
https://wiki.sei.cmu.edu/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointers
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es65-dont-dereference-an-invalid-pointer

29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68

AUTO©SAR

/I In an implementation file ...
class Good::Impl
{
...
I8

/I Good::Impl is a complete type now

Good::~Good()
{
delete pimpl; // violates A18-5-2

}

/I Compliant: Contemporary solution using std::unique_ptr

/I and conforming to A18-5-2.

/I Note that std::unique_ptr<Impl> requires Impl to be a complete type

/Il at the point where pimpl is deleted and thus automatically enforces

/I A5-3-3. This is the reason why the destructor of Better must be defined in an
/I implementation file when Better::Impl is a complete type, even if the

/I definition is just the default one.

/I In a header file ...
#include <memory>
class Better

{
class Impl;
std::unique_ptr<Impl> pimpl;
public:
...
~Better();
2

/I In an implementation file ...
class Better::Impl

{
...

h

I/ Better::Impl is a complete type now

Better::~Better() = default;

See also

ISO/IEC 14882:2014 [3]: 5.3.5: [expr.delete]

SEI CERT C++ Coding Standard [10]: EXP57-CPP: Do not cast or delete

pointers to incomplete classes.

6.5.5 Pointer-to-member

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP57-CPP.+Do+not+cast+or+delete+pointers+to+incomplete+classes
https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP57-CPP.+Do+not+cast+or+delete+pointers+to+incomplete+classes
https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP57-CPP.+Do+not+cast+or+delete+pointers+to+incomplete+classes

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

35

36

37

AUTO©SAR

Rule A5-5-1 (required, implementation, automated)
A pointer to member shall not access non-existent class members.

Rationale

Usage of a pointer-to-member expression leads to undefined behavior in the
following cases:

The pointer to member is a null pointer.

The dynamic type of the object does not contain the member to which the
called pointer to member refers.

Example
// $1d: A5-5-1.cpp 302200 2017-12-20 17:17:08Z michal.szczepankiewicz $

class A
{
public:
virtual ~A() = default;
b
class AA : public A
{
public:
virtual ~AA() = default;
virtual void foo() {}
using ptr = void (AA::*)();
2
class B
{
public:
static AA::ptr foo_ptr2;
2

AA::ptr B::foo_ptr2;

int main(void)
{
Ax a =new A();
void (A::*xfoo_ptrl)() = static_cast<void(A::*)()>(&AA::foo);
(a->*foo_ptrl1)(); // non-compliant
delete a;

AAx aa = new AA();
(aa->*B::foo_ptr2)(); // non-compliant, not explicitly initialized

delete aa;

return O;

38

10

11

12

14

15

16

17

18

19

20

21

22

23

24

AUTO©SAR

See also

SEI CERT C++ Coding Standard [10]: OOP55-CPP: Do not use pointer-to-
member operators to access nonexistent members

6.5.6 Multiplicative operators

Rule A5-6-1 (required, implementation, automated)
The right hand operand of the integer division or remainder operators
shall not be equal to zero.

Rationale

The result is undefined if the right hand operand of the integer division or the
remainder operator is zero.

Example

/I $1d: A5-6-1.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
#include <cstdint>

#include <stdexcept>

std::int32_t Division1(std::int32_t a, std::int32_t b) noexcept

{

return (a/b); // Non-compliant - value of b could be zero
}
std::int32_t Division2(std::int32_t a, std::int32_t b)
{

if (b ==0)

{

throw std::runtime_error("Division by zero error");

}

return (a / b); // Compliant - value of b checked before division
}
double Fn()
{

std::int32_t x =20/ 0; // Non-compliant - undefined behavior

x = Division1(20, 0); /I Undefined behavior

x = Division2(20,

0); // Preconditions check will throw a runtime_error from
/I division2() function

std::int32_t remainder = 20 % 0; // Non-compliant - undefined behavior
}
See also

HIC++ v4.0 [9]: 5.5.1 Ensure that the right hand operand of the division or
remainder operators is demonstrably non-zero.

https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP55-CPP.+Do+not+use+pointer-to-member+operators+to+access+nonexistent+members
https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP55-CPP.+Do+not+use+pointer-to-member+operators+to+access+nonexistent+members
https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP55-CPP.+Do+not+use+pointer-to-member+operators+to+access+nonexistent+members
http://www.codingstandard.com/section/5-5-multiplicative-operators/

© o N o 0 9~ w

10

11

12

13

14

15

16

17

18

AUTO©SAR

C++ Core Guidelines [11]: ES.105: Don’t divide by zero.

6.5.8 Shift operators

Rule M5-8-1 (required, implementation, partially automated)
The right hand operand of a shift operator shall lie between zero and one
less than the width in bits of the underlying type of the left hand operand.

See MISRA C++ 2008 [7]

6.5.10 Equality operators

Rule A5-10-1 (required, implementation, automated)
A pointer to member virtual function shall only be tested for equality
with null-pointer-constant.

Rationale

The result of equality comparison between pointer to member virtual function and
anything other than null-pointer-constant (i.e. nullptr, see: A4-10-1) is unspecified.

Example

/I $1d: A5-10-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
class A
{
public:

virtual ~A() = default;

void F1() noexcept {}

void F2() noexcept {}

virtual void F3() noexcept {}

h
void Fn()
{
bool bl = (&A::F1 == &A::F2); /I Compliant
bool b2 = (&A::F1 == nullptr); // Compliant
bool b3 = (&A::F3 == nullptr); // Compliant
bool b4 = (&A::F3 !'= nullptr); // Compliant
bool b5 = (&A::F3 == &A::F1); /I Non-compliant
}
See also

HIC++ v4.0 [9]: 5.7.2 Ensure that a pointer to member that is a virtual function
is only compared (==) with nullptr.

http://www.codingstandard.com/rule/5-7-2-ensure-that-a-pointer-to-member-that-is-a-virtual-function-is-only-compared-with-nullptr/
http://www.codingstandard.com/rule/5-7-2-ensure-that-a-pointer-to-member-that-is-a-virtual-function-is-only-compared-with-nullptr/

© o N o g A W N P

N B B B
© kB B N O B B = N B O
© o™ o B w

AUTO©SAR

JSF December 2005 [8]: AV Rule 97.1 Neither operand of an equality operator
(== or =) shall be a pointer to a virtual member function.

6.5.14 Logical AND operator

Rule M5-14-1 (required, implementation, automated)
The right hand operand of a logical &&, || operators shall not contain side
effects.

See MISRA C++ 2008 [7]

6.5.16 Conditional operator

Rule A5-16-1 (required, implementation, automated)
The ternary conditional operator shall not be used as a sub-expression.

Rationale

Using the result of the ternary conditional operator as an operand or nesting
conditional operators makes the code less readable and more difficult to maintain.

Example

/I $1d: A5-16-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
constexpr bool Fnl(std::int32_t x)

{
return (x > 0); // Compliant
}
std::int32_t Fn2(std::int32_t x)
{
std::int32_ti=(x>=07? x:0); // Compliant
std::int32_tj =
X+ (i==07?(x>=07?x:-X):i); // Non-compliant - nested
/I conditional operator
/I andusedas a
/I sub-expression
return (
i>0
?2(>0?i+j:i)
:(>07?j:0)); // Non-compliant - nested conditional operator
}

See also

AUTOSAR

HIC++ v4.0 [9]: 5.8.1 Do not use the conditional operator (?:) as a sub-
expression.

6.5.18 Assignment and compound assignment operation

Rule M5-17-1 (required, implementation, non-automated)
The semantic equivalence between a binary operator and its
assignment operator form shall be preserved.

See MISRA C++ 2008 [7]

6.5.19 Comma operator

Rule M5-18-1 (required, implementation, automated)
The comma operator shall not be used.

See MISRA C++ 2008 [7]

6.5.20 Constant expression

Rule M5-19-1 (required, implementation, automated)
Evaluation of constant unsigned integer expressions shall not lead
to wrap-around.

See MISRA C++ 2008 [7]
Note: Obligation level changed

Note: This rule applies to bit-fields, too.

6.6 Statements

6.6.2 Expression statement

Rule M6-2-1 (required, implementation, automated)
Assignment operators shall not be used in sub-expressions.

See MISRA C++ 2008 [7]

http://www.codingstandard.com/rule/5-8-1-do-not-use-the-conditional-operator-as-a-sub-expression/

© o N o g A W N R

=
o

[N
[

12
13

14

AUTO©SAR

Exception

It is allowed that a condition of the form type-specifier-seq declarator uses an
assignment operator. This exception is introduced because alternative mechanisms
for achieving the same effect are cumbersome and error-prone.

Rule A6-2-1 (required, implementation, automated)
Move and copy assignment operators shall either move or respectively
copy base classes and data members of a class, without any side effects.

Rationale

It is expected behavior that the move/copy assigned operator are only used to
move/copy the object of the class type and possibly set moved-from object to a valid
state. Those operators are not supposed to provide any performance overhead or
side effects that could affect moving or copying the object.

Note: Class members that are not essential for a class invariant may not need to be
moved/copied (e.g. caches, debug information).

Example
// $1d: A6-2-1.cpp 305786 2018-01-30 08:58:33Z michal.szczepankiewicz $

#include <cstdint>
#include <utility>
class A
{
public:
A& operator=(const A& oth) // Compliant
{
if(&oth == this)
{
return *this;
}
X = oth.X;
return *this;

}

private:
std::int32_t x;
b
class B
{
public:
~B() { delete ptr; }

/lcompliant
B& operator=(B&& oth)

{

29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64

66
67
68
69
70
71
72
73

74

75
76
77

78

AUTO©SAR

if(&oth == this)
{
return *this;
}
ptr = std::move(oth.ptr);
/I Compliant - this is not a side-effect, in this
/I case it is essential to leave moved-from object
/l in a valid state, otherwise double deletion will

/I occur.
return *this;
}
private:
std::int32_t* ptr;
2
class C
{
public:
C& operator=(const C& oth)
{
if(&oth == this)
{
return this;
}
x = oth.x % 2; // Non-compliant - unrelated side-effect
return xthis;
}
private:
std::int32_t x;
b
class D
{
public:

explicit D(std::uint32_t a) : a(a), noOfModifications(0) {}

D& operator=(const D& oth)
{
if(&oth == this)
{
return xthis;

}

a = oth.a;

/lcompliant, not copying the debug information about number of modifications

return *this;

void SetA(std::uint32_t aa)

79

80

81

82

83

84

85

86

87

11

12

13

14

15

16

AUTOSAR

{
++noOfModifications;
a=aa;
}
std::uint32_t GetA() const noexcept
{
return a;
}
private:

std::uint32_t a;
std::uint64_t noOfModifications;

See also

JSF December 2005 [8]: AV Rule 83: An assignment operator shall assign all
data members and bases that affect the class invariant (a data element
representing a cache, for example, would not need to be copied).

Rule A6-2-2 (required, implementation, automated)
Expression statements shall not be explicit calls to constructors
of temporary objects only.

Rationale

The developer’s intention might have been to define an unnamed local variable that
would live until the end of the scope to implement the RAIl pattern (Resource
Acquisition Is Initialization). But as there are no unnamed variables in C++, it is in fact
only creating a temporary object that gets destroyed again at the end of the full
expression.

Example
/I $1d: A6-2-2.cpp 326655 2018-07-20 14:58:55Z christof.meerwald $

#include <cstdint>
#include <fstream>
#include <mutex>

class A
{
public:
void SetValuel(std::int32_t value)
{
std::lock_guard<std::mutex> {m_mtx}; // Non-compliant: temporary object
/I Assignment to m_value is not protected by lock
m_value = value;

AUTOSAR

void SetValue2(std::int32_t value)
{

std::lock_guard<std::mutex> guard{m_mtx}; // Compliant: local variable m_value = value;

}

private:
mutable std::mutex m_mtx;
std::int32_t m_value;

h

void Print(std::string const & fname, std::string const & s)

{

/I Compliant: Not only constructing a temporary object
std::ofstream{fname}.write(s.c_str(), s.length());

}

See also

C++ Core Guidelines [11]: ES.84: Don't (try to) declare a local variable with no
name

C++ Core Guidelines [11]: CP.44: Remember to name your lock_guards and
unique_locks

Rule M6-2-2 (required, implementation, partially automated) Floating-
point expressions shall not be directly or indirectly tested for
equality or inequality.

See MISRA C++ 2008 [7]

Rule M6-2-3 (required, implementation, automated)

Before preprocessing, a null statement shall only occur on aline by itself;
it may be followed by a comment, provided that the first character
following the null statement is a white-space character.

See MISRA C++ 2008 [7]

6.6.3 Compound statement or block

Rule M6-3-1 (required, implementation, automated)
The statement forming the body of a switch, while, do ... while or
for statement shall be a compound statement.

See MISRA C++ 2008 [7]

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-noname
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-noname
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-name

AUTOSAR

6.6.4 Selection statements

Rule M6-4-1 (required, implementation, automated)

An if (condition) construct shall be followed by a compound
statement. The else keyword shall be followed by either a compound
statement, or another if statement.

See MISRA C++ 2008 [7]

Rule M6-4-2 (required, implementation, automated)
All if ... else if constructs shall be terminated with an else clause.

See MISRA C++ 2008 [7]

Rule M6-4-3 (required, implementation, automated)
A switch statement shall be a well-formed switch statement.

See MISRA C++ 2008 [7]

Rule M6-4-4 (required, implementation, automated)
A switch-label shall only be used when the most closely-
enclosing compound statement is the body of a switch statement.

See MISRA C++ 2008 [7]

Rule M6-4-5 (required, implementation, automated)
An unconditional throw or break statement shall terminate every non-
empty switch-clause.

See MISRA C++ 2008 [7]

Rule M6-4-6 (required, implementation, automated)
The final clause of a switch statement shall be the default-clause.

See MISRA C++ 2008 [7]

© o N o g A~ W N R

NN NN = L T
N o g R W N NN © B2 B e O N ®Ww N B O
= o © N o

N
3]

AUTO©SAR

Rule M6-4-7 (required, implementation, automated)
The condition of a switch statement shall not have bool type.

See MISRA C++ 2008 [7]

Note: "“The condition shall be of integral type, enumeration type, or class type. If of
class type, the condition is contextually implicitly converted (Clause 4) to an integral
or enumeration type." [C++14 Language Standard, 6.4.2 The switch statement]

Rule A6-4-1 (required, implementation, automated)
A switch statement shall have at least two case-clauses, distinct from
the default label.

Rationale

A switch statement constructed with less than two case-clauses can be expressed as
an if statement more naturally.

Note that a switch statement with no case-clauses is redundant.

Example

I/ $1d: A6-4-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
void F1(std::uint8_t choice) noexcept

{
switch (choice)
{
default:
break;
} /I Non-compliant, the switch statement is redundant
}
void F2(std::uint8_t choice) noexcept
{
switch (choice)
{
case 0O:
...
break;
default:
...
break;

} // Non-compliant, only 1 case-clause

if (choice == 0) // Compliant, an equivalent if statement

{
...

}

else

AUTO©SAR

29 {

30 ...

31 }

32

33 ...

34 switch (choice)
35 {

36 case 0:

37 ...

38 break;

39
40 case 1:

a ...

a2 break;

43
44 default:

45 ...

46 break;
47 } // Compliant
a8}

See also

MISRA C++ 2008 [7]: Rule 6-4-8 Every switch statement shall have at least one
case-clause.

HIC++ v4.0 [9]: 6.1.4 Ensure that a switch statement has at least two case
labels, distinct from the default label.

6.6.5 Iteration statements

Rule A6-5-1 (required, implementation, automated)
A for-loop that loops through all elements of the container and does not
use its loop-counter shall not be used.

Rationale

A for-loop that simply loops through all elements of the container and does not use its
loop-counter is equivalent to a range-based for statement that reduces the amount of
code to maintain correct loop semantics.

Example

/I $1d: A6-5-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
#include <iterator>
void Fn() noexcept

{

o g A W N R

constexpr std::int8_t arraySize = 7,

http://www.codingstandard.com/rule/6-1-4-ensure-that-a-switch-statement-has-at-least-two-case-labels-distinct-from-the-default-label/
http://www.codingstandard.com/rule/6-1-4-ensure-that-a-switch-statement-has-at-least-two-case-labels-distinct-from-the-default-label/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

AUTO©SAR

std::uint32_t array[arraySize] = {0, 1, 2, 3, 4, 5, 6};

for (std::int8_t idx = O; idx < arraySize; ++idx) // Compliant
{
array[idx] = idx;

}

for (std::int8_t idx = O; idx < arraySize / 2;
++idx) // Compliant - for does not loop though all elements

{
...

}

for (std::uint32_t* iter = std::begin(array); iter != std::end(array);
++iter) // Non-compliant

{
...

}

for (std::int8_t idx = O; idx < arraySize; ++idx) // Non-compliant

{
...

}

for (std::uint32_t value :

array) // Compliant - equivalent to non-compliant loops above

{
...

}

for (std::int8_t idx = O; idx < arraySize; ++idx) // Compliant
{
if ((idx % 2) == 0)
{
...

}

See also

HIC++ v4.0 [9]: 6.2.1 Implement a loop that only uses element values as a
range-based loop.

C++ Core Guidelines [11]: ES.55: Avoid the need for range checking.

C++ Core Guidelines [11]: ES.71: Prefer a range-for-statement to a for-
statement when there is a choice.

http://www.codingstandard.com/rule/6-2-1-implement-a-loop-that-only-uses-element-values-as-a-range-based-loop/
http://www.codingstandard.com/rule/6-2-1-implement-a-loop-that-only-uses-element-values-as-a-range-based-loop/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-range-checking
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-range

10

11

12

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

32

33

34

35

AUTO©SAR

Rule A6-5-2 (required, implementation, automated)
A for loop shall contain a single loop-counter which shall not
have floating-point type.

Rationale

A for loop without a loop-counter is simply a while loop. If this is the desired behavior,
then a while loop is more appropriate.

Floating types, as they should not be tested for equality/inequality, are not to be used
as loop-counters.

Example

/I $1d: A6-5-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

namespace

{

constexpr std::int32_t xlimit = 20;

constexpr std::int32_t ylimit = 15;

constexpr float zlimit = 2.5F;

constexpr std::int32_t ilimit = 100;

}
void Fn() noexcept
{
std::int32_ty =0;
for (std::int32_t x = 0; x < xlimit && y < ylimit;
x++, y++) // Non-compliant, two loop-counters
{
...
}
for (float z = 0.0F; z != zlimit;
z += 0.1F) // Non-compliant, float with !=
{
...
}
for (float z = 0.0F; z < zlimit; z += 0.1F) // Non-compliant, float with <
{
...
}
for (std::int32_t i = 0; i < ilimit; ++i) // Compliant
{
...
}
}

See also

AUTOSAR

MISRA C++ 2008 [7]: Rule 6-5-1 A for loop shall contain a single loop-counter
which shall not have floating type.

C++ Core Guidelines [11]: ES.72: Prefer a for-statement to a while-statement
when there is an obvious loop variable.

Rule M6-5-2 (required, implementation, automated)
If loop-counter is not modified by or ++, then, within condition, the
loop-counter shall only be used as an operand to <=, <, > or >=.

See MISRA C++ 2008 [7]

Rule M6-5-3 (required, implementation, automated)
The loop-counter shall not be modified within condition or statement.

See MISRA C++ 2008 [7]

Rule M6-5-4 (required, implementation, automated)
The loop-counter shall be modified by one of: , ++, = n, or + = n; where
n remains constant for the duration of the loop.

See MISRA C++ 2008 [7]

Note: “n remains constant for the duration of the loop” means that “n” can be either a
literal, a constant or constexpr value.

Rule M6-5-5 (required, implementation, automated)
A loop-control-variable other than the loop-counter shall not be
modified within condition or expression.

See MISRA C++ 2008 [7]

Rule M6-5-6 (required, implementation, automated)
A loop-control-variable other than the loop-counter which is modified
in statement shall have type bool.

See MISRA C++ 2008 [7]

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es72-prefer-a-for-statement-to-a-while-statement-when-there-is-an-obvious-loop-variable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es72-prefer-a-for-statement-to-a-while-statement-when-there-is-an-obvious-loop-variable

AUTO©SAR

Rule A6-5-3 (advisory, implementation, automated)
Do statements should not be used.

Rationale

Do-statements are bug-prone, as the termination condition is checked at the end and
can be overlooked.

Exception

A do-statement may be used in a function-like macro to ensure that its invocation
behaves like an expression statement consisting of a function call (see http://c-
faq.com/cpp/multistmt.html).

Note: Rule A16-0-1 forbids function-like macros. This exception is kept in case rule
A16-0-1 is disabled in a project.

Example
1 /1 $Id: A6-5-3.cpp 291350 2017-10-17 14:31:34Z jan.babst $

3 #include <cstdint>

5 [/ Compliant by exception

s #define SWAP(a, b) \

7 do \

8 { \
0 decltype(a) tmp = (a); \
10 (@ = (b); \
1 (b) = tmp; \
12 } while (0)

13

14 [/ Non-compliant

15 #define SWAP2(a, b) \
16 decltype(a) tmp = (a); \

17 (@) = (b); \
18 (b) = tmp;

19
20 int main(void)

21 {

22 uint8_ta = 24;

23 uint8 tb =12;

24

25 if (@a>12)

26 SWAP(a, b);

27

28 II'if (a>12)

29 [ISWAP2(a, b);

30 /I Does not compile, because only the first line is used in the body of the
31 /I if-statement. In other cases this may even cause a run-time error.

32 /I The expansion contain two semicolons in a row, which may be flagged by

33 /I compiler warnings.

34

35

36

37

38

39

40

a1

o g b w N e

10

AUTO©SAR

/I Expands to:

Il'if (a>12)
/ldecltype(a) tmp = (a);
I (a) = (b);

/I (b) = tmp;
return O;

}

See also

C++ Core Guidelines [11]: ES.75: Avoid do-statements.

Rule A6-5-4 (advisory, implementation, automated) For-init-statement
and expression should not perform actions other than loop-counter
initialization and modification.

Rationale

If only a loop-counter is used in the for-init-statement and expression, it increases
readability and it is easier to understand and maintain code.

Example

/I $1d: A6-5-4.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
#include <cstdint>

void Fn() noexcept

{ for (std::int32_t x = 0, MAX=10; x < MAX; x++) // compliant with A6-5-2, but
non-compliant with advisory A6-5-4
{
...
}
}
See also

JSF December 2005 [8]: AV Rule 198: The initialization expression in a for loop
will perform no actions other than to initialize the value of a single for loop
parameter.

JSF December 2005 [8]: AV Rule 199: The increment expression in a for loop
will perform no action other than to change a single loop parameter to the next
value for the loop.

6.6.6 Jump statements

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es75-avoid-do-statements

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

AUTO©SAR

Rule A6-6-1 (required, implementation, automated)
The goto statement shall not be used.

Rationale

Using goto statement significantly complicates the logic, makes the code difficult to
read and maintain, and may lead to incorrect resources releases or memory leaks.

Example

/] $ld: AB-6-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
namespace
{
constexpr std::int32_t loopLimit = 100;
}
void F1(std::int32_t n) noexcept
{
if (n<0)
{
/I goto exit; // Non-compliant - jumping to exit from here crosses ptr
/l pointer initialization, compilation
/I error

std::int32_t* ptr = new std::int32_t(n);
...
exit:
delete ptr;
}
void F2() noexcept
{
...
goto error; // Non-compliant
...
error:; // Error handling and cleanup

}
void F3() noexcept
{
for (std::int32_t i = 0; i < loopLimit; ++i)
{
for (std::int32_t j = 0; j < loopLimit; ++j)
{
for (std::int32_t k = 0; k < loopLimit; ++k)
{
if (i ==]) && (j == k))
{
...
goto loop_break; // Non-compliant
}

42

43

a4

45

46

AUTO©SAR

}

loop_break:; ...
}

See also
JSF December 2005 [8]: AV Rule 189 The goto statement shall not be used.
C++ Core Guidelines [11]: ES.76: Avoid goto.

C++ Core Guidelines [11]: NR.6: Don’t: Place all cleanup actions at the end of a
function and goto exit.

Rule M6-6-1 (required, implementation, automated)
Any label referenced by a goto statement shall be declared in the
same block, or in a block enclosing the goto statement.

See MISRA C++ 2008 [7]

Rule M6-6-2 (required, implementation, automated)
The goto statement shall jump to a label declared later in the same
function body.

See MISRA C++ 2008 [7]

Rule M6-6-3 (required, implementation, automated)
The continue statement shall only be used within a well-formed for loop.

See MISRA C++ 2008 [7]

6.7 Declaration

6.7.1 Specifiers

Rule A7-1-1 (required, implementation, automated)
Constexpr or const specifiers shall be used for immutable data declaration.

Rationale

If data is declared to be const or constexpr then its value can not be changed by
mistake. Also, such declaration can offer the compiler optimization opportunities.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rnr-goto-exit

o o A W N R

~

10

11

1

w

4

AUTO©SAR

Note that the constexpr specifier in an object declaration implies const as well.

Example

/% $Id: A7-1-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <limits>

void Fn()

{
const std::int16_t x1 = 5; /I Compliant

constexpr std::intl6_t x2 = 5; // Compliant
std::intl6 tx3 =
5; /I Non-compliant - x3 is not modified but not declared as
/I constant (const or constexpr)

See also

C++ Core Guidelines [11]: ES.25: Declare objects const or constexpr unless
you want to modify its value later on.

C++ Core Guidelines [11]: Con.1: By default, make objects immutable.

C++ Core Guidelines [11]: Con.4: Use const to define objects with values that
do not change after construction.

Rule A7-1-2 (required, implementation, automated)
The constexpr specifier shall be used for values that can be determined
at compile time.

Rationale

The constexpr specifier declares that it is possible to evaluate the value of the
function or variable at compile time, e.g. integral type overflow/underflow,
configuration options or some physical constants. The compile-time evaluation can
have no side effects so it is more reliable than const expressions.

Note that the constexpr specifier in an object declaration implies const, and when
used in a function declaration it implies inline.

Note also that since 2014 C++ Language Standard constexpr specifier in member
function declaration no longer implicitly implies that the member function is const.

Example

/1% $1d: A7-1-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

std::int32_t Powl(std::int32_t number)

{

return (number * number);

}

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con1-by-default-make-objects-immutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con4-use-const-to-define-objects-with-values-that-do-not-change-after-construction
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con4-use-const-to-define-objects-with-values-that-do-not-change-after-construction
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con4-use-const-to-define-objects-with-values-that-do-not-change-after-construction

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

AUTO©SAR

constexpr std::int32_t Pow2(
std::int32_t number) // Possible compile-time computing
/I because of constexpr specifier

{
return (number * number);
}
void Fn()
{
constexpr std::intl6_til = 20; // Compliant, evaluated at compile-time
const std::int16_ti2 = 20; // Non-compliant, possible run-time evaluation
std::int32_t twoSquare =
Pow1(2); // Non-compliant, possible run-time evaluation
const std::int32_t threeSquare =
Pow1(3); // Non-compliant, possible run-time evaluation
/Il static_assert(threeSquare == 9, "pow1(3) did not succeed."); // Value
/I can not be static_assert-ed
constexpr std::int32_t fiveSquare =
Pow2(5); // Compliant, evaluated at compile time
static_assert(fiveSquare == 25,
"pow2(5) did not succeed."); // Compliant, constexpr
/l evaluated at compile time
/I constexpr std::int32_t int32Max =
/I std::numeric_limits<std::int32_t>::max() + 1; //
/I Compliant - compilation error due to
/I compile-time evaluation (integer overflow)
}
class A
{
public:
static constexpr double pi = 3.14159265; // Compliant - value of PI can be
/I determined in compile time
/I constexpr double e = 2.71828182; // Non-compliant - constexprs need
/I to be static members, compilation error
constexpr A() = default; // Compliant
2
See also

C++ Core Guidelines [11]: Con.5: Use constexpr for values that can be
computed at compile time.

Rule M7-1-2 (required, implementation, automated)
A pointer or reference parameter in a function shall be declared as pointer to
const or reference to const if the corresponding object is not modified.

See MISRA C++ 2008 [7]

See also

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

AUTO©SAR

C++ Core Guidelines [11]: Con.3: By default, pass pointers and references to
consts.

Rule A7-1-3 (required, implementation, automated) CV-qualifiers shall
be placed on the right hand side of the type that is a typedef or a
using name.

Rationale

If the type is a typedef or a using name, placing const or volatile qualifier on the left
hand side may result in confusion over what part of the type the qualification applies
to.

Example

/I $1d: A7-1-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

using IntPtr = std::int32_tx;

using IntConstPtr = std::int32_t* const;

using ConstIntPtr = const std::int32_tx;

void Fn(const std::uint8_t& input) // Compliant

{
std::int32_t valuel = 10;

std::int32_t value2 = 20;

const IntPtr ptrl =
&valuel; // Non-compliant - deduced type is std::int32_t*

/I const, not const std::int32_t*

/l ptrl = &value2; // Compilation error, ptrl is read-only variable

IntPtr const ptr2 =
&valuel; // Compliant - deduced type is std::int32_t* const

I ptr2 = &value2; // Compilation error, ptr2 is read-only variable

IntConstPtr ptr3 = &valuel; // Compliant - type is std::int32_t* const, no
/I additional qualifiers needed

Il ptr3 = &value2; // Compilation error, ptr3 is read-only variable
ConstIntPtr ptr4 = &valuel; // Compliant - type is const std::int32_t*

const ConstIntPtr ptr5 = &valuel; // Non-compliant, type is const

// stdz:int32_tx const, not const const

/] std::int32_t*
ConstIntPtr const ptré =

&valuel; // Compliant - type is const std::int32_t* const

See also

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con3-by-default-pass-pointers-and-references-to-consts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con3-by-default-pass-pointers-and-references-to-consts

AW NP

© o N o U

10

11

12

AUTO©SAR

HIC++ v4.0 [9]: 7.1.4 Place CV-qualifiers on the right hand side of the type they
apply to

Rule A7-1-4 (required, implementation, automated)
The register keyword shall not be used.

Rationale

This feature was deprecated in the 2011 C++ Language Standard [2] and may be
withdrawn in a later version.

Moreover, most compilers ignore register specifier and perform their own register
assignments.

Example

I/ $1d: A7-1-4.cpp 289448 2017-10-04 11:11:03Z michal.szczepankiewicz $
#include <cstdint>
std::int32_t F1(register std::int16_t number) noexcept // Non-compliant

{

return ((number * number) + number);

}

void F2(std::int16_t number) noexcept // Compliant

{
register std::int8_t x = 10; /I Non-compliant
std::int32_t result = F1(number); // Compliant
...

}
See also

JSF December 2005 [8]: AV Rule 140 The register storage class specifier shall
not be used.

HIC++ v4.0 [9]: 1.3.2 Do not use the register keyword

Rule A7-1-5 (required, implementation, automated)

The auto specifier shall not be used apart from following cases: (1) to declare
that a variable has the same type as return type of a function call, (2) to
declare that a variable has the same type as initializer of non-fundamental
type, (3) to declare parameters of a generic lambda expression, (4) to declare a
function template using trailing return type syntax.

Rationale

Using the auto specifier may lead to unexpected type deduction results, and
therefore to developers confusion. In most cases using the auto specifier makes the
code less readable.

Note that it is allowed to use the auto specifier in following cases:

http://www.codingstandard.com/rule/7-1-4-place-cv-qualifiers-on-the-right-hand-side-of-the-type-they-apply-to/

AUTO©SAR

1. When declaring a variable that is initialized with a function call or initializer of
non-fundamental type. Using the auto specifier for implicit type deduction in
such cases will ensure that no unexpected implicit conversions will occur. In
such case, explicit type declaration would not aid readability of the code.

2. When declaring a generic lambda expression with auto parameters
3. When declaring a function template using trailing return type syntax

Example

1 /I $ld: A7-1-5.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
2 #include <cstdint>
3 #include <vector>

5 class A
s {
7}
s void F1() noexcept
o {
10 auto x1 = 5;// Non-compliant - initializer is of fundamental type
11 auto x2 = 0.3F; // Non-compliant - initializer is of fundamental type
12 auto x3 = {8} /I Non-compliant - initializer is of fundamental type
13
14 std::vector<std::int32_t> v;
15 auto x4 = v.size(); // Compliant with case (1) - x4 is of size_t type that
16 Il'is returned from v.size() method
17
18 auto a = A{}; // Compliant with case (2)
19
20 auto lambdal = []() -> std::uint16_t{
21 return 5U;
22 }; // Compliant with case (2) - lambdal is of non-fundamental lambda
23 /I expression type
24 auto x5 = lambdal(); // Compliant with case (1) - x5 is of
25 /I std::uint16_t type
2%}
27 void F2() noexcept
28 |
29 auto lambdal = [J(auto X, auto y) -> decltype(x +y) {
30 return (X +y);
31 } /I Compliant with cases (2) and (3)
32 auto y1 = lambdal(5.0, 10); // Compliant with case (1)
33}

34 template <typename T, typename U>

35 auto F3(T t, U u) noexcept -> decltype(t + u) // Compliant with case (4)
36 {

37 return (t + u);

3}

template <typename T>

40 class B

a1 |

w
©

42

43

44

45

46

a7

48

49

50

10
11

12

AUTO©SAR

public:
T Fn(T t);
2
template <typename T>
auto B<T>::Fn(T t) -> T // Compliant with case (4)

{
...
return t;
}
See also

HIC++ v4.0 [9]: 7.1.8 Use auto id = expr when declaring a variable to have the
same type as its initializer function call.

C++ Core Guidelines [11]: Use auto.

Google C++ Style Guide [12]: Use auto to avoid type names that are noisy,
obvious, or unimportant.

Rule A7-1-6 (required, implementation, automated)
The typedef specifier shall not be used.

Rationale

The typedef specifier can not be easily used for defining alias templates. Also, the
typedef syntax makes the code less readable.

For defining aliases, as well as template aliases, it is recommended to use the using
syntax instead of the typedef.

Note that active issues related to the using syntax are listed below, in the “See also”
section.

Example

/I $1d: A7-1-6.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $
#include <cstdint>
#include <type_traits>

typedef std::int32_t (*fPointerl)(std::int32_t); // Non-compliant
using fPointer2 = std::int32_t (*)(std::int32_t); // Compliant

/I template<typename T>
/I typedef std::int32_t (*fPointer3)(T); // Non-compliant - compilation error

template <typename T>
using fPointer3 = std::int32_t (*)(T); // Compliant

See also

http://www.codingstandard.com/rule/7-1-8-use-auto-id-expr-when-declaring-a-variable-to-have-the-same-type-as-its-initializer-function-call/
https://google.github.io/styleguide/cppguide.html#auto

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

AUTO©SAR

C++ Core Guidelines [11]: T.43: Prefer using over typedef for defining aliases

C++ Standard Core Language Active Issues, Revision 96 [18]: 1554. Access
and alias templates.

C++ Standard Core Language Defect Reports and Accepted Issues, Revision
96 [18]: 1558. Unused arguments in alias template specializations.

Rule A7-1-7 (required, implementation, automated)
Each expression statement and identifier declaration shall be placed on
a separate line.

Rationale

Declaring an identifier on a separate line makes the identifier declaration easier to
find and the source code more readable. Also, combining objects, references and
pointers declarations with assignments and function calls on the same line may
become confusing.

Exception
It is permitted to declare identifiers in initialization statement of a for loop.

Example

/I $1d: A7-1-7.cpp 292454 2017-10-23 13:14:23Z michal.szczepankiewicz $
#include <cstdint>
#include <vector>

typedef std::int32_t* ptr; /I Compliant

typedef std::int32_t *pointer, value; // Non-compliant

void Fn1() noexcept

{ std::int32_t x = 0; /I Compliant

std::int32_ty = 7, *pl = nullptr; // Non-compliant

std::int32_t const *p2, z = 1; /I Non-compliant
}
void Fn2()
{

std::vector<std::int32_t> v{1, 2, 3, 4, 5};

for (auto iter{v.begin()}, end{v.end()}; iter '= end;

++iter) // Compliant by exception
{
...

}

}

void Fn3() noexcept

{

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1554
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1554

27

28

29

30

31

32

33

34

35

10

11

12

13

14

15

16

AUTO©SAR

std::int32_t x{5};
std::int32_t y{15}; // Non-compliant
X++;

++y; // Non-compliant
for (std::int32_t i{0}; i < 100; ++i)

{
Fn2(); // Compliant

}

See also

HIC++ v4.0 [9]: 7.1.1 Declare each identifier on a separate line in a separate
declaration.

JSF December 2005 [8]: AV Rule 42 Each expression-statement will be on a
separate line.

JSF December 2005 [8]: AV Rule 152: Multiple variable declarations shall not
be allowed on the same line.

C++ Core Guidelines [11]: NL.20: Don’t place two statements on the same line.

Rule A7-1-8 (required, implementation, automated)
A non-type specifier shall be placed before a type specifier in a declaration.

Rationale

Placing a non-type specifier, i.e. typedef, friend, constexpr, register, static, extern,
thread_local, mutable, inline, virtual, explicit, before type specifiers makes the source
code more readable.

Example

I/ $1d: A7-1-8.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

typedef std::int32_t intl; // Compliant
std::int32_t typedef int2; // Non-compliant

class C
{
public:
virtual inline void F1(); // Compliant
inline virtual void F2(); // Compliant
void virtual inline F3(); // Non-compliant
private:
std::int32_t mutable x; // Non-compliant
mutable std::int32_ty; // Compliant

http://www.codingstandard.com/rule/7-1-1-declare-each-identifier-on-a-separate-line-in-a-separate-declaration/

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

AUTO©SAR

See also

HIC++ v4.0 [9]: 7.1.3 Do not place type specifiers before non-type specifiers in
a declaration.

Rule A7-1-9 (required, implementation, automated)
A class, structure, or enumeration shall not be declared in the definition
of its type.

Rationale

Combining a type definition with a declaration of another entity can lead to readability
problems and can be confusing for a developer.

Example

I/ $1d: A7-1-9.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
#include <cstdint>

enum class DIRECTION

{
UP,
DOWN
} dir; /Inon-compliant

class Foo

{
public:
enum class ONE {AA, BB}; //compliant

static constexpr enum class TWO {CC, DD} sVar = TWO::CC; // non-compliant
static constexpr ONE sVar2 = ONE::AA; //compliant

struct Bar

{
std::uint32_t a;
} barObj; //non-compliant

struct Bar2

{
std::uint32_t a;
} bar20bj, *bar2Ptr; //non-compliant, also with A7-1-7

struct Foo2

{
std::uint32_t f;

h

Foo2 foo20bj; //compliant

http://www.codingstandard.com/rule/7-1-3-do-not-place-type-specifiers-before-non-type-specifiers-in-a-declaration/
http://www.codingstandard.com/rule/7-1-3-do-not-place-type-specifiers-before-non-type-specifiers-in-a-declaration/

10

11

12

13

14

15

16

17

18

19

20

21

AUTO©SAR

See also

JSF December 2005 [8]: AV Rule 141: A class, structure, or enumeration will
not be declared in the definition of its type.

C++ Core Guidelines [11]: C.7: Don’t define a class or enum and declare a
variable of its type in the same statement.

6.7.2 Enumeration declaration

Rule A7-2-1 (required, implementation, automated)
An expression with enum underlying type shall only have
values corresponding to the enumerators of the enumeration.

Rationale

It is unspecified behavior if the evaluation of an expression with enum underlying type
yields a value which does not correspond to one of the enumerators of the enumeration.

Additionally, other rules in this standard assume that objects of enum type only
contain values corresponding to the enumerators. This rule ensures the validity of
these assumptions.

One way of ensuring compliance when converting to an enumeration is to use a
switch statement.

Example

I/ $1d: A7-2-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
enum class E : std::uint8_t

{
Ok =0,
Repeat,
Error
2
E Convertl(std::uint8_t number) noexcept
{

E result = E::Ok; // Compliant
switch (number)
{
case 0:
{
result =E:Ok; // Compliant
break;
}

case 1:

{

result = E::Repeat; // Compliant

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c7-dont-define-a-class-or-enum-and-declare-a-variable-of-its-type-in-the-same-statement
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c7-dont-define-a-class-or-enum-and-declare-a-variable-of-its-type-in-the-same-statement

AUTO©SAR

22 break;

23 }

24 case 2:

25 {

2 result = E:Error; // Compliant

27 break;

28 }

29 case 3:
30 {

31 constexpr std::int8_t val = 3;

32 result = static_cast<E>(val); // Non-compliant - value 3 does not
33 /I correspond to any of E’s
34 /I enumerators

35 break;

36 }

37 default:
38 {

39 result =

) static_cast<E>(0); // Compliant - value 0 corresponds to E::Ok
41 break;
42 }
43 }
44 return result;
a5}
46 E Convert2(std::uint8_t userlnput) noexcept
ar |
48 E result = static_cast<E>(userlnput); // Non-compliant - the range of

49 /I userlnput may not correspond to
50 /I any of E’s enumerators
51 return result;

52}

53 E Convert3(std::uint8_t userlnput) noexcept

54 {
55 E result = E::Error;
56 if (userlnput < 3)
57 {
58 result = static_cast<E>(userlnput); // Compliant - the range of

59 /I userlinput checked before casting
60 /I it to E enumerator
61 }

62 return result;

63 }

See also

MISRA C++ 2008 [7]: Rule 7-2-1 An expression with enum underlying type shall
only have values corresponding to the enumerators of the enumeration.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

AUTO©SAR

Rule A7-2-2 (required, implementation, automated)
Enumeration underlying base type shall be explicitly defined.

Rationale

The enumeration underlying type is implementation-defined, with the only restriction
that the type must be able to represent the enumeration values. Although scoped
enum will implicitly define an underlying type of int, the underlying base type of
enumeration should always be explicitly defined with a type that will be large enough
to store all enumerators.

Example

I $Id: A7-2-2.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $
#include <cstdint>
enum class E1 // Non-compliant

{
E10,
E11,
E12
2
enum class E2 : std::uint8_t // Compliant
{
E20,
E21,
E22
2
enum E3 // Non-compliant
{
E30,
E31,
E32
2
enum E4 : std::uint8_t // Compliant - violating another rule
{
E40,
E41,
E42
2
enum class E5 : std::uint8_t // Non-compliant - will not compile
{
E50 = 255,
/I E5_1, /I E5_1 = 256 which is outside of range of underlying type
// std::uint8_t
/I - compilation error
/I ES_2 /I E5_2 = 257 which is outside of range of underlying type
/I std::uint8 _t
/I - compilation error
2

See also

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

N
©

30

w
g

32

AUTO©SAR

HIC++ v4.0 [9]: 7.2.1 Use an explicit enumeration base and ensure that it is
large enough to store all enumerators

Rule A7-2-3 (required, implementation, automated)
Enumerations shall be declared as scoped enum classes.

Rationale

If unscoped enumeration enum is declared in a global scope, then its values can
redeclare constants declared with the same identifier in the global scope. This may
lead to developer’s confusion.

Using enum-class as enumeration encloses its enumerators in its inner scope and
prevent redeclaring identifiers from outer scope.

Note that enum class enumerators disallow implicit conversion to numeric values.

Example

/I $1d: A7-2-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

enum E1 : std::int32_t // Non-compliant

{
E10,
E11,
E12
3
enum class E2 : std::int32_t // Compliant
{
E20,
E21,
E22
3

I/ static std::int32_t E1_0 =5; // E1_0 symbol redeclaration, compilation
I error

static std::int32_t €20 = 5; // No redeclarations, no compilation error

extern void F1(std::int32_t number)

{
}

void F2()
{
F1(0);

F1(E11); // Implicit conversion from enum to std::int32_t type

http://www.codingstandard.com/rule/7-2-1-use-an-explicit-enumeration-base-and-ensure-that-it-is-large-enough-to-store-all-enumerators/
http://www.codingstandard.com/rule/7-2-1-use-an-explicit-enumeration-base-and-ensure-that-it-is-large-enough-to-store-all-enumerators/

33

34

35

36

37

38

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

AUTO©SAR

/I f1(E2::E2_1); // Implicit conversion not possible, compilation error

F1(static_cast<std::int32_t>(
E2::E21)); /I Only explicit conversion allows to
/I pass E2_1 value to f1() function

See also

C++ Core Guidelines [11]: Enum.3: Prefer class enums over "‘plain™ enums.

Rule A7-2-4 (required, implementation, automated)
In an enumeration, either (1) none, (2) the first or (3) all enumerators shall
be initialized.

Rationale

Explicit initialization of only some enumerators in an enumeration, and relying on
compiler to initialize the remaining ones, may lead to developer‘s confusion.

Example

/1% $1d: A7-2-4.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $
#include <cstdint>
enum class Enuml : std::uint32_t

{
One,
Two = 2, // Non-compliant
Three
3
enum class Enum2 : std::uint32_t // Compliant (none)
{
One,
Two,
Three
b
enum class Enuma3 : std::uint32_t // Compliant (the first)
{
One =1,
Two,
Three
b
enum class Enum4 : std::uint32_t // Compliant (all)
{
One =1,
Two = 2,
Three =3
b

See also

© o N o g A w N R

e~ i < e =
o A W N P O

=
o

AUTO©SAR

MISRA C++ 2008 [7]: Rule 8-5-3 In an enumerator list, the = construct shall not
be used to explicitly initialize members other than the first, unless all items are
explicitly initialized.

HIC++ v4.0 [9]: 7.2.2 Initialize none, the first only or all enumerators in an
enumeration.

Rule A7-2-5 (advisory, design, non-automated)
Enumerations should be used to represent sets of related named constants.

Rationale

Explicit declaration of constants as an enumeration clearly shows that they are
related, which enhances readability and maintenance.

Note: Using switch statement on an enumeration is a common case and such an
approach helps to detect errors, see M6-4-6.

Example

/% $Id: A7-2-5.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
#include <cstdint>
/lcompliant
enum class WebpageColors: std::uint32_t
{
Red,
Blue,
Green
2
/Inon-compliant
enum class Misc: std::uint32_t
{
Yellow,
Monday,
Holiday

See also

JSF December 2005 [8]: AV Rule 148: Enumeration types shall be used instead
of integer types (and constants) to select from a limited series of choices.

C++ Core Guidelines [11]: Enum.2: Use enumerations to represent sets of
related named constants.

6.7.3 Namespaces

http://www.codingstandard.com/rule/7-2-2-initialize-none-the-first-only-or-all-enumerators-in-an-enumeration/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum2-use-enumerations-to-represent-sets-of-related-named-constants
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum2-use-enumerations-to-represent-sets-of-related-named-constants

AUTOSAR

Rule M7-3-1 (required, implementation, automated)
The global namespace shall only contain main, namespace
declarations and extern "C" declarations.

See MISRA C++ 2008 [7]

Rule M7-3-2 (required, implementation, automated)
The identifier main shall not be used for a function other than the
global function main.

See MISRA C++ 2008 [7]

Rule M7-3-3 (required, implementation, automated) There
shall be no unnamed namespaces in header files.

See MISRA C++ 2008 [7]

Rule M7-3-4 (required, implementation, automated)
Using-directives shall not be used.

See MISRA C++ 2008 [7]

See: Using-directive [16] concerns an inclusion of specific hamespace with all its
types, e.g. using namespace std.

Rule A7-3-1 (required, implementation, automated)
All overloads of a function shall be visible from where it is called.

Rationale

Additional identifiers introduced by a using declaration makes only prior declarations
of this identifier visible. Any potential subsequent declarations will not be added to
the current scope, which may lead to unexpected results and developers confusion.

Overriding or overloading a member function in a derived class causes other member
functions with the same name to be hidden. Thus, a potential function call may result
in a different function being called depending on if the call was made using the
derived or base class reference/pointer. Introducing hidden names into the derived
class by a using declaration helps to avoid such misleading situations.

Example

http://en.cppreference.com/w/cpp/language/namespace#Using-directives
http://en.cppreference.com/w/cpp/language/namespace#Using-directives

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50

51

AUTO©SAR

/I $1d: A7-3-1.cpp 312801 2018-03-21 16:17:05Z michal.szczepankiewicz $
#include <cstdint>

class Base

{
public:
void P(uint32_t);

virtual void V(uint32_t);
virtual void V(double);

2
class NonCompliant : public Base
{
public:
/Ihides P(uint32_t) when calling from the
/lderived class
void P(double);
/Ihides V(uint32_t) when calling from the
//derived class
void V(double) override;
b
class Compliant : public Base
{
public:
/Iboth P(uint32_t) and P(double) available
/[from the derived class
using Base::P;
void P(double);
/Iboth P(uint32_t) and P(double)
using Base::V;
void V(double) override;
2
void F1()
{
NonCompliant d{};
d.P(0U); // D::P (double) called
Base& b{d};
b.P(0U); // NonCompliant::P (uint32_t) called
d.v(0U); // D::V (double) called
b.V(0U); // NonCompliant::V (uint32_t) called
}
void F2()
{

Compliant d{};
d.P(0U); // Compliant::P (uint32_t) called

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

AUTO©SAR

Base& b{d};
b.P(0U); // Compliant::P (uint32_t) called

d.V(0V); // Compliant::V (uint32_t) called
b.V(0U); // Compliant::V (uint32_t) called

}
namespace NS
{
void F(uint16_t);
}

/lincludes only preceding declarations into
/lthe current scope
using NS::F;

namespace NS

{
void F(uint32_t);
}
void B(uint32_t b)
{
/Inon-compliant, only F(uint16_t) is available
/lin this scope
F(b);
}
See also

MISRA C++ 2008 [7]: 7-3-5: Multiple declarations for an identifier in the same
namespace shall not straddle a using-declaration for that identifier.

HIC++ v4.0 [9]: 13.1.1: Ensure that all overloads of a function are visible from
where it is called.

Rule M7-3-6 (required, implementation, automated) Using-directives and
using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files.

See MISRA C++ 2008 [7]

See: Using-declaration [16] concerns an inclusion of specific type, e.g. using
std::string.

6.7.4 The asm declaration

http://www.codingstandard.com/rule/13-1-1-ensure-that-all-overloads-of-a-function-are-visible-from-where-it-is-called/
http://www.codingstandard.com/rule/13-1-1-ensure-that-all-overloads-of-a-function-are-visible-from-where-it-is-called/
http://en.cppreference.com/w/cpp/language/using_declaration
http://en.cppreference.com/w/cpp/language/using_declaration

10

11

12

13

14

15

16

17

18

19

20

21

22

AUTO©SAR

Rule A7-4-1 (required, implementation, automated)
The asm declaration shall not be used.

Rationale

Inline assembly code restricts the portability of the code.

Example

/I $1d: A7-4-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
std::int32_t Fnl(std::int32_t b) noexcept

{
std::int32_tret = 0;
...
asm("pushqg %%rax \n"
"movl %0, %%eax \n"
"addl %1, %%eax \n"
"movl %%eax, %0 \n"
"popq %%rax"
D "=r(ret)
:"r"(b)); // Non-compliant
return ret;
}
std::int32_t Fn2(std::int32_t b) noexcept
{
std::int32_tret = 0;
...
ret += b; // Compliant - equivalent to asm(...) above
return ret;
}
See also

HIC++ v4.0 [9]: 7.5.1 Do not use the asm declaration.

Rule M7-4-1 (required, implementation, non-automated)
All usage of assembler shall be documented.

See MISRA C++ 2008 [7]

Rule M7-4-2 (required, implementation, automated)
Assembler instructions shall only be introduced using the asm declaration.

See MISRA C++ 2008 [7]

AUTOSAR

Rule M7-4-3 (required, implementation, automated)
Assembly language shall be encapsulated and isolated.

See MISRA C++ 2008 [7]

6.7.5 Linkage specification

Rule M7-5-1 (required, implementation, non-automated)
A function shall not return a reference or a pointer to an automatic
variable (including parameters), defined within the function.

See MISRA C++ 2008 [7]

Rule M7-5-2 (required, implementation, non-automated)
The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist.

See MISRA C++ 2008 [7]

Note: C++ specifies that binding a temporary object (e.g. automatic variable returned
from a function) to a reference to const prolongs the lifetime of the temporary to the
lifetime of the reference.

Note: Rule 7-5-2 concerns C++11 smart pointers, i.e. std::unique_ptr, std::shared_ptr
and std::weak_ptr, too.

See also

C++ Core Guidelines [11]: F.45: Don’t return a T&&.

Rule A7-5-1 (required, implementation, automated)
A function shall not return a reference or a pointer to a parameter that
is passed by reference to const.

Rationale

“[...] Where a parameter is of const reference type a temporary object is introduced if
needed (7.1.6, 2.13, 2.13.5, 8.3.4, 12.2).” [C++14 Language Standard [3]]

Any attempt to dereferencing an object which outlived its scope will lead to undefined
behavior.

References to const bind to both Ivalues and rvalues, so functions that accept
parameters passed by reference to const should expect temporary objects too.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref-ref

AUTO©SAR

Returning a pointer or a reference to such an object leads to undefined behavior on
accessing it.
Example

1 /I $ld: A7-5-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
2 #include <cstdint>

3 class A

o A

5 public:

6 explicit A(std::uint8_t n) : number(n) {}
7 ~A() { number = 0U; }

8 /I Implementation

10 private:

11 std::uint8_t number;

12}

13 const A& Fnl(const A& ref) noexcept // Non-compliant - the function returns a

14 I reference to const reference parameter

15 /I which may bind to temporary objects.

16 /I According to C++14 Language Standard, it

17 I is undefined whether a temporary object is introduced for const

18/ reference

19 /] parameter

20 |

21 ...

22 return ref;

23}

24 const A& Fn2(A& ref) noexcept // Compliant - non-const reference parameter does
25 /I not bind to temporary objects, it is allowed
2 /I that the function returns a reference to such
27 1l a parameter

28 {

29 ...

30 return ref;

31}

32 const A* Fn3(const A& ref) noexcept // Non-compliant - the function returns a

33 I/ pointer to const reference parameter

sa Il which may bind to temporary objects.

35/l According to C++14 Language Standard, it

36 /l'is undefined whether a temporary object is introduced for const

37 Il reference

38 Il parameter

39 |

40 ...

4 return &ref;
a2}

43 template <typename T>

44 T& Fn4(T& v) /I Compliant - the function will not bind to temporary objects
a5 |

46 ...

47 return v;

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

AUTO©SAR

}
void F() noexcept
{
A a{5};
const A& refl = Fnl(a); // fnl called with an Ivalue parameter from an
/I outer scope, refl refers to valid object
const A& ref2 = Fn2(a); // fn2 called with an Ivalue parameter from an
/I outer scope, ref2 refers to valid object
const Ax ptrl = Fn3(a); // fn3 called with an Ivalue parameter from an
/I outer scope, ptrl refers to valid object
const A& ref3 = Fn4(a); // fn4 called with T = A, an lvalue parameter from
/I an outer scope, ref3 refers to valid object
const A& ref4 = Fn1(A{10}); // fnl called with an rvalue parameter
/I (temporary), ref3 refers to destroyed object
/I A const& ref5 = fn2(A{10}); // Compilation
/I error - invalid initialization of non-const
Il reference
const Ax ptr2 = Fn3(A{15}); // fn3 called with an rvalue parameter
/I (temporary), ptr2 refers to destroyted
/I object
Il const A& ref6 = fn4(A{20}); // Compilation error - invalid
/l initialization of non-const reference
}
See also

MISRA C++ 2008 [7]: A function shall not return a reference or a pointer to a

parameter that is passed by reference or const reference.

Rule A7-5-2 (required, implementation, automated)
Functions shall not call themselves, either directly or indirectly.

Rationale

As the stack space is limited resource, use of recursion may lead to stack overflow at

run-time. It also may limit the scalability and portability of the program.

Recursion can be replaced with loops, iterative algorithms or worklists.

Exception

Recursion in variadic template functions used to process template arguments does
not violate this rule, as variadic template arguments are evaluated at compile time

and the call depth is known.

Recursion of a constexpr function does not violate this rule, as it is evaluated at

compile time.

Example

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

a1

42

43

44

45

46

47

48

49

50

51

AUTO©SAR

I/ $1d: A7-5-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

static std::int32_t Fnl(std::int32_t number);

static std::int32_t Fn2(std::int32_t number);

static std::int32_t Fn3(std::int32_t number);

static std::int32_t Fn4(std::int32_t number);

std::int32_t Fnl(std::int32_t number)

{
if (number > 1)
{
number = number * Fnl(number - 1); // Non-compliant
}
return number;
}
std::int32_t Fn2(std::int32_t number)
{
for (std::int32_t n = number; n > 1; --n) // Compliant
{
number = number * (n - 1);
}
return number;
}
std::int32_t Fn3(std::int32_t number)
{
if (number > 1)
{
number = number * Fn3(number - 1); // Non-compliant
}
return number;
}
std::int32_t Fn4(std::int32_t number)
{
if (number == 1)
{
number = number * Fn3(number - 1); // Non-compliant
}
return number;
}

template <typename T>
T Fn5(T value)
{

return value;

}

template <typename T, typename... Args>
T Fn5(T first, Args... args)
{

return first + Fn5(args...); // Compliant by exception - all of the

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

o O o~ W N R

AUTO©SAR

/[arguments are known during compile time

}
std::int32_t Fn6() noexcept
{
std::int32_t sum = Fn5<std::int32_t, std::uint8_t, float, double>(
10, 5, 2.5, 3.5); // An example call to variadic template function
...
return sum;
}
constexpr std::int32_t Fn7(std::int32_t x, std::int8_t n)
{
if (n>=0)
{
X +=X;
return Fn5(x, --n); // Compliant by exception - recursion evaluated at
/I compile time
}
return X;
}
See also

MISRA C++ 2008 [7]: Rule 7-5-4 Functions should not call themselves, either
directly or indirectly.

JSF December 2005 [8]: AV Rule 119 Functions shall not call themselves,
either directly or indirectly (i.e. recursion shall not be allowed).

HIC++ v4.0 [9]: 5.2.2 Ensure that functions do not call themselves, either
directly or indirectly.

6.7.6 Attributes

Rule A7-6-1 (required, implementation, automated)
Functions declared with the [[noreturn]] attribute shall not return.

Rationale

The C++ standard specifies that functions with the [[noreturn]] attribute shall not
return. Returning from such a function can be prohibited in the following way:
throwing an exception, entering an infinite loop, or calling another function with the
[[noreturn]] attribute. Returning from such a function leads to undefined behavior.

/I $1d: A7-6-1.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $

#include <cstdint>
#include <exception>

class PositivelnputException : public std::exception {};

http://www.codingstandard.com/rule/5-2-2-ensure-that-functions-do-not-call-themselves-either-directly-or-indirectly/
http://www.codingstandard.com/rule/5-2-2-ensure-that-functions-do-not-call-themselves-either-directly-or-indirectly/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

AUTO©SAR

[[noreturn]] void f(int i) //non-compliant

{
if (i>0)
{
throw PositivelnputException();
}
/lundefined behaviour for non-positive i
}
[[noreturn]] void g(int i) //compliant
{
if (i>0)
{
throw "Received positive input";
}
while(1)
{
/ldo processing
}
}
See also

SEI CERT C++ Coding Standard [10]: MSC53-CPP: Do not return from a
function declared [[noreturn]].

6.8 Declarators

6.8.0 General

Rule M8-0-1 (required, implementation, automated)
An init-declarator-list or a member-declarator-list shall consist of a
single init-declarator or member-declarator respectively.

See MISRA C++ 2008 [7]

6.8.2 Ambiguity resolution

Rule A8-2-1 (required, implementation, automated)
When declaring function templates, the trailing return type syntax shall
be used if the return type depends on the type of parameters.

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046346
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046346
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046346

© o N oo g A W N P

I N e T i i e =
SO © o N o o A~ W N kB O

N
[y

AUTO©SAR

Rationale

Use of trailing return type syntax avoids a fully qualified return type of a function

along with the typename keyword.

Example

/] $ld: A8-2-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
template <typename T>
class A
{
public:
using Type = std::int32_t;

Type F(T const&) noexcept;
Type G(T const&) noexcept;
3
template <typename T>
typename A<T>::Type A<T>::F(T const&) noexcept // Non-compliant
{
/I Implementation
}
template <typename T>
auto A<T>::G(T const&) noexcept -> Type // Compliant

{

/I Implementation
}
See also

HIC++ v4.0 [9]: 7.1.7 Use a trailing return type in preference to type
disambiguation using typename.

6.8.3 Meaning of declarators

Rule M8-3-1 (required, implementation, automated)

Parameters in an overriding virtual function shall either use the same
default arguments as the function they override, or else shall not
specify any default arguments.

See MISRA C++ 2008 [7]

Note: Overriding non-virtual functions in a subclass is called function “hiding” or

“redefining”. It is prohibited by A10-2-1.

6.8.4 Function definitions

http://www.codingstandard.com/rule/7-1-7-use-a-trailing-return-type-in-preference-to-type-disambiguation-using-typename/

© o N o U A~ w N

B
=)

-
]

AUTO©SAR

Rule A8-4-1 (required, implementation, automated)
Functions shall not be defined using the ellipsis notation.

Rationale

Passing arguments via an ellipsis bypasses the type checking performed by the
compiler. Additionally, passing an argument with non-POD class type leads to
undefined behavior.

Variadic templates offer a type-safe alternative for ellipsis notation. If use of a
variadic template is not possible, function overloading or function call chaining can be
considered.

Example
/I $1d: A8-4-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $

void Printl(charx format, ...) // Non-compliant - variadic arguments are used

{
...

}

template <typename First, typename... Rest>
void Print2(const First& first, const Rest&... args) // Compliant

{
...

}
See also

MISRA C++ 2008 [7]: Rule 8-4-1 Functions shall not be defined using the
ellipsis notation.

HIC++ v4.0 [9]: 14.1.1 Use variadic templates rather than an ellipsis.

C++ Core Guidelines [11]: Type.8: Avoid reading from varargs or passing
vararg arguments. Prefer variadic template parameters instead.

C++ Core Guidelines [11]: F.55: Don’t use va_arg arguments.

Rule M8-4-2 (required, implementation, automated)
The identifiers used for the parameters in a re-declaration of a function
shall be identical to those in the declaration.

See MISRA C++ 2008 [7]

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f55-dont-use-va_arg-arguments

A W NP

AUTO©SAR

Rule A8-4-2 (required, implementation, automated)
All exit paths from a function with non-void return type shall have an
explicit return statement with an expression.

Rationale

In a function with non-void return type, return expression gives the value that the
function returns. The absence of a return with an expression leads to undefined
behavior (and the compiler may not give an error).

Exception

A function may additionally exit due to exception handling (i.e. a throw statement).

Example

I/ $1d: A8-4-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <stdexcept>

std::int32_t F1() noexcept // Non-compliant

{
}
std::int32_t F2(std::int32_t x) noexcept(false)
{
if (x > 100)
{
throw std::logic_error("Logic Error"); // Compliant by exception
}
return x; // Compliant
}
std::int32_t F3(std::int32_t x, std::int32_t y)
{
if (x> 100 || y > 100)
{
throw std::logic_error("Logic Error"); // Compliant by exception
}
if (y > x)
{
return (y - x); // Compliant
}
return (x - y); // Compliant
}
See also

MISRA C++ 2008 [7]: Rule 8-4-3 All exit paths from a function with non-void
return type shall have an explicit return statement with an expression.

SEI CERT C++ [10]: MSC52-CPP. Value-returning functions must return a
value from all exit paths.

https://www.securecoding.cert.org/confluence/display/cplusplus/MSC52-CPP.+Value-returning+functions+must+return+a+value+from+all+exit+paths
https://www.securecoding.cert.org/confluence/display/cplusplus/MSC52-CPP.+Value-returning+functions+must+return+a+value+from+all+exit+paths

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

AUTO©SAR

Rule M8-4-4 (required, implementation, automated)
A function identifier shall either be used to call the function or it shall
be preceded by &.

See MISRA C++ 2008 [7]

Rule A8-4-3 (advisory, design, non-automated) Common
ways of passing parameters should be used.

Rationale

Using common and well-understood parameter passing patterns as summarised in
the following table helps meeting developer expectations.

cheap to copy or move only | cheap to move | expensive to move
in f(X) f(const X &)
in/out f(X &)
out X f() | f(X &)
consume f(X &&)
forward template<typename T> (T &&)

Parameter passing

Example
I/ $1d: A8-4-3.cpp 308906 2018-02-23 15:34:15Z christof.meerwald $

#include <algorithm>
#include <array>
#include <cstdint>
#include <numeric>
#include <string>
#include <vector>

/I Compliant: passing cheap-to-copy parameter by value
int32_t Increment(int32_t i)

{

returni + 1;

}

/I Compliant: passing expensive to copy parameter by reference to const
int32_t Sum(const std::vector<int32_t> &v)

{

return std::accumulate(v.begin(), v.end(), 0);

}

/I Compliant: passing in-out parameter by reference
void Decrement(int32_t &i)

{

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

/I Compliant: returning out parameter by value
std::string GetGreeting()

{
return "Hello";
}
struct A
{
std::string text;
std::array<std::string, 1000> arr;
2

/I Expensive to move "out" parameter passed by reference. If
/I intentional, violation of A8-4-8 needs to be explained
void InitArray(std::array<std::string, 1000> &arr,
const std::string &text)
{
std::for_each(arr.begin(), arr.end(), [&text] (std::string &s) {
S = text;
D
}

/I Compliant: passing in-out parameter by reference
void PopulateA(A &a)

{

InitArray(a.arr, a.text);
}
See also

C++ Core Guidelines [11]: F.16: Prefer simple and conventional ways of
passing information

Rule A8-4-4 (advisory, design, automated)
Multiple output values from a function should be returned as a struct
or tuple.

Rationale

Returning multiple values from a function using a struct or tuple clearly states output
parameters and allows to avoid confusion of passing them as a reference in a
function call. Returning a struct or tuple will not have an additional overhead for
compilers that support return-value-optimization.

In C++14, a returned tuple can be conveniently processed using std::tie at the call
site, which will put the tuple elements directly into existing local variables. In C++17,

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

AUTO©SAR

structured bindings allow to initialize local variables directly from members or
elements of a returned struct or tuple.

Note: For return types representing an abstraction, a struct should be preferred over
a generic tuple.

Note: This rule applies equally to std::pair, which is a special kind of tuple for exactly
two elements.

Example

I/l $ld: A8-4-4.cpp 289816 2017-10-06 11:19:42Z michal.szczepankiewicz $
#include <tuple>

/I Non-compliant, remainder returned as the output parameter
int Dividel1(int dividend, int divisor, int& remainder)
{

remainder = dividend % divisor;

return dividend / divisor;

}

/Il Compliant, both quotient and remainder returned as a tuple
std::tuple<int, int> Divide2(int dividend, int divisor)
{

return std::make_tuple(dividend / divisor, dividend % divisor);

}

/I Compliant since C++17, return tuple using list-initialization
/I std::tuple<int, int> Divide3(int dividend, int divisor)

1K

[Ireturn { dividend / divisor, dividend % divisor };

I}

int main()

{
int quotient, remainder;
std::tie(quotient, remainder) = Divide2(26, 5); // store in local variables
/[auto [quotient, remainder] = Divide3(26, 5); // since C++17, by
/I structured bindings
return O;

}

See also

C++ Core Guidelines [11]: F.21: To return multiple "out” values, prefer returning
a tuple or struct.

Rule A8-4-5 (required, design, automated)
”consume” parameters declared as X && shall always be moved from.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

AUTO©SAR

Rationale

A "consume” parameter is declared with a type of rvalue reference to non-const non-
template type (X &&). This documents that the value will be consumed in the function
(i.e. left in a moved-from state) and requires an explicit 'std::move’ at the call site if an
Ivalue is passed to the function (an rvalue reference can implicitly bind only to an
rvalue).

Note: Other operations may be performed on the "consume” parameter before being
moved.

Example
[/l $1d: A8-4-5.cpp 305588 2018-01-29 11:07:35Z michal.szczepankiewicz $

#include <string>
#include <vector>

class A
{
public:
explicit A(std::vector<std::string> &&v)
: m_v{std::move(v)} // Compliant, move from consume parameter

{
}
private:
std::vector<std::string> m_v;
2
class B
{
public:
explicit B(std::vector<std::string> &&v)
> m_v{v} // Non-Compliant, consume parameter not moved from
{
}
std::vector<std::string> m_v;
I3
See also

C++ Core Guidelines [11]: F.18: For "consume” parameters, pass by X&& and
std::move the parameter

Rule A8-4-6 (required, design, automated)
”forward” parameters declared as T && shall always be forwarded.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-consume
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-consume

[e)

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

31

AUTO©SAR

Rationale

A "forward” parameter is declared with a type of forwarding reference (i.e. an rvalue
reference to non-const template type (T &&)). As a forwarding reference can bind to
both Ivalues and rvalues, preserving lvalue-ness and cv qualifications, it is useful
when forwarding a value to another function using "std::forward”.

However, as the parameter can bind to anything, it should only be used for
forwarding without performing any other operations on the parameter.

Note: A forwarding parameter can also be declared via "auto &&” in a generic lambda

Example
/I $1d: A8-4-6.cpp 305588 2018-01-29 11:07:35Z michal.szczepankiewicz $

#include <string>
#include <vector>

class A

{
public:
explicit A(std::vector<std::string> &&v);

h

class B

{
public:
explicit B(const std::vector<std::string> &v);

template<typename T, typename ... Args>
T make(Args && ... args)

{
return T{std::forward<Args>(args) ...}; // Compliant, forwarding args
}
int main()
{
make<A>(std::vector<std::string>{ });
std::vector<std::string> v;
make(v);
}
See also

C++ Core Guidelines [11]: F.19: For "forward” parameters, pass by TP&& and
only std::forward the parameter

A18-9-2 in section 6.18.9

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-forward
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-forward

N

o o 9~ w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

AUTO©SAR

Rule A8-4-7 (required, design, automated)
”’in” parameters for "cheap to copy” types shall be passed by value.

Rationale

Passing an argument by value documents that the argument won’t be modified.
Copying the value (instead of passing by reference to const) also ensures that no
indirection is needed in the function body to access the value.

For the purpose of this rule, "cheap to copy” is defined as a trivially copyable type
that is no longer than two words (i.e. pointers).

Example
[/l $1d: A8-4-7.cpp 305588 2018-01-29 11:07:35Z michal.szczepankiewicz $

#include <cstdint>
#include <iostream>
#include <string>

/I Compliant, pass by value
void output(std::uint32_t i)
{

std::cout << i <<’\n’;

}

/I Non-Compliant, std::string is not trivially copyable
void output(std::string s)

{ std::cout << s << ’\n’;
}
struct A
{
std::uint32_t v1,;
std::uint32_t v2;
h

/I Non-Compliant, A is trivially copyable and no longer than two words
void output(const A &a)

{

std::cout << a.vl << ", " << a.v2 <<’\n’;
}
See also

C++ Core Guidelines [11]: F.16: For "in” parameters, pass cheaply-copied types
by value and others by reference to const

JSF December 2005 [8]: AV Rule 116: Small, concrete-type arguments (two or
three words in size) should be passed by value if changes made to formal
parameters should not be reflected in the calling function.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

AUTO©SAR

JSF December 2005 [8]: AV Rule 117.1: An object should be passed as const
T& if the function should not change the value of the object.

A18-9-2 in section 6.18.9

Rule A8-4-8 (required, design, automated)
Output parameters shall not be used.

Rationale

Output parameters are passed to a function as non-const references or pointers that
can denote either in-out or out-only parameter. Using return value prevents from
possible misuse of such a parameter.

Note: Prefer returning non-value types (i.e. types in a inheritance hierarchy) as
std::shared_ptr or std::unique_ptr.

Example
// $1d: A8-4-8.cpp 306164 2018-02-01 15:04:53Z christof.meerwald $

#include <iostream>

#include <vector>

/I Compliant, return value

std::vector<int> SortOutOfPlace(const std::vector<int>& inVec);

/I Non-compliant: return value as an out-parameter
void FindAll(const std::vector<int>& inVec, std::vector<int>& outVec);

struct B

{
h

struct BB

{
B GetB() const& { return obj; }

B&& GetB() && { return std::move(obj); }

B obj;
b

/I Non-compliant: returns a dangling reference
BB&& MakeBb1()
{

return std::move(BB());

}

/I Compliant: uses compiler copy-ellision
BB MakeBb2()

{
return BB();

33

34

35

36

37

38

39

40

a1

42

43

10

11

12

13

14

15

16

17

18

AUTO©SAR

}
int main()
{
BB x = MakeBb2();
auto cpd = x.GetB(); /I copied value
auto mvd = MakeBb2().GetB(); // moved value
return O;
}
See also

C++ Core Guidelines [11]: F.20: For "out” output values, prefer return values to
output parameters.

Rule A8-4-9 (required, design, automated) ”in-out”
parameters declared as T & shall be modified.

Rationale

An "in-out” parameter is declared with a type of reference to non-const. This means
that a fully constructed object is passed into the function that can be read as well as
modified.

Note: Completely replacing the passed in object without reading any data from it
would make it an "out” parameter instead and is not considered compliant with this
rule, also see rule: A8-4-8

Example
I/ $1d: A8-4-9.cpp 306178 2018-02-01 15:52:25Z christof.meerwald $

#include <cstdint>
#include <numeric>
#include <string>
#include <vector>

/I Non-Compliant: does not modify the "in-out" parameter
int32_t Sum(std::vector<int32_t> &v)
{

return std::accumulate(v.begin(), v.end(), 0);

}

/I Compliant: Modifying "in-out" parameter
void AppendNewline(std::string &s)
{

s+="\n;

}

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out

19

20

21

22

23

24

~ o o A W N R

10

11

12

13

14

15

17

AUTO©SAR

Il Non-Compliant: Replacing parameter value
void GetFileExtension(std::string &ext)

{

ext =".cpp";
}
See also

C++ Core Guidelines [11]: F.17: For "in-out” parameters, pass by reference to
non-const

JSF December 2005 [8]: AV Rule 117.2: An object should be passed as T& if
the function may change the value of the object.

Rule A8-4-10 (required, design, automated)
A parameter shall be passed by reference if it can’t be NULL

Rationale

Passing a parameter by pointer suggests that it can be NULL. If it can’t be NULL (i.e.
it's not optional) it should therefore be passed by reference instead. Only parameters
that can be NULL shall be passed by pointer.

Note: The C++ Library Fundamentals TS v2 defines std::observer_ptr as a near drop-
in replacement for raw pointers that makes it explicit that the object is not owned by
the pointer.

Note: boost::optional supports reference types, and in C++17 std::optional can be
used in conjunction with std::reference_wrapper (using std::optional with a value type
would create an undesirable copy of the object)

Example
// $1d: A8-4-10.cpp 307966 2018-02-16 16:03:46Z christof. meerwald $

#include <cstdint>
#include <numeric>
#include <vector>

/I Non-Compliant: non-optional parameter passed by pointer
int32_t Sum(const std::vector<int32_t> *v)

{

return std::accumulate(v->begin(), v->end(), 0);

}

/I Compliant: non-optional parameter passed by reference
int32_t Sum(const std::vector<int32_t> &v)

{

return std::accumulate(v.begin(), v.end(), 0);

}

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-inout
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-inout

® N o 0 A W N R

AUTO©SAR

See also

C++ Core Guidelines [11]: F.60: Prefer T* over T& when "no argument" is a
valid option

JSF December 2005 [8]: AV Rule 118: Arguments should be passed via
pointers if NULL values are possible.

JSF December 2005 [8]: AV Rule 118.1: An object should be passed as const
T* if its value should not be modified.

JSF December 2005 [8]: AV Rule 118.2: An object should be passed as T* if its
value may be modified.

Rule A8-4-11 (required, design, automated)
A smart pointer shall only be used as a parameter type if it
expresses lifetime semantics

Rationale

If the object passed into the function is merely used without affecting the lifetime, it is
preferable to pass it by reference or raw pointer instead.

Keeping a copy of a std::shared_ptr or moving a std::unique_ptr would be examples
that affect the lifetime.

Note: When an object whose lifetime is managed by a non-local smart pointer is
passed by reference or raw pointer, care needs to be taken that the lifetime of the
object doesn’'t end during the duration of the called function. In the case of a
std::shared_ptr this can be achieved by keeping a local copy of the shared_ptr.

Exception

A non-owning smart pointer, like std::observer_ptr from the C++ Library
Fundamentals TS v2, that documents the non-owning property of the parameter does
not violate this rule.

Example
// $1d: A8-4-11.cpp 307966 2018-02-16 16:03:46Z christof. meerwald $

#include <cstdint>
#include <memory>
#include <numeric>
#include <vector>

class A

{
public:
void do_stuff();

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr-ref

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

35

36

37

38

39

40

53

54

55

56

57

AUTO©SAR

/l Non-Compliant: passing object as smart pointer

void foo(std::shared_ptr<A> a)
{
if (a)
{
a->do_stuff();
}

else

{
..
}
}

/I Compliant: passing as raw pointer instead
void bar(A *a)
{
if (a = nullptr)
{
a->do_stuff();
}

else

{
...

}

class B

{
public:
void add_a(std::shared_ptr<A> a)
{
m_v.push_back(a);

}

private:
std::vector<std::shared_ptr<A>>m_yv;

h

/I Compliant: storing the shared pointer (affecting lifetime)

void bar(B &b, std::shared_ptr<A> a)

{
b.add_a(a);

}

See also

C++ Core Guidelines [11]: R.30: Take smart pointers as parameters only to
explicitly express lifetime semantics.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrparam

© o N o 0 A W N e

T =
w N P O

-
Iy

AUTO©SAR

C++ Core Guidelines [11]: R.37: Do not pass a pointer or reference obtained
from an aliased smatrt pointer.

C++ Core Guidelines [11]: F.7: For general use, take T* or T& arguments rather
than smart pointers.

A18-5-2 in section 6.18.5

Rule A8-4-12 (required, design, automated)

A std::unique_ptr shall be passed to a function as: (1) a copy to express
the function assumes ownership (2) an lvalue reference to express that the
function replaces the managed object.

Rationale

Transferring ownership in the (1) case is unconditional. A temporary std::unique_ptr IS
constructed implicitly and move-initialized from the caller’'s std::unique_ptr and then
passed to the function. This guarantees that the caller’s std::unique_ptr Object is empty.

Passing an Ivalue reference is suggested to be used if a called function is supposed
to replace the object managed by the passed std:unique_ptr, €.g. call assignment
operator or reset method. Otherwise, it is recommended to pass an Ivalue reference to
the underlying object instead, see A8-4-11, A8-4-10.

Note: Passing a const Ivalue reference to std::unique_ptr does not take ownership and
does not allow to replace the managed object. Also, the const qualifier does not
apply to the underlying object, but to the smart pointer itself. It is suggested to pass a
const Ivalue reference to the underlying object instead, see A8-4-11, A8-4-10.

Exception

It is allowed to transfer ownership by passing a std::unique_ptr by an rvalue reference in
case this reference is moved into a std::unique_ptr object inside the called function.

Example
/I $1d: A8-4-12.cpp 308795 2018-02-23 09:27:03Z michal.szczepankiewicz $

#include <memory>
#include <iostream>

/lcompliant, transfers an ownership
void Value(std::unique_ptr<int>v) { }

/lcompliant, replaces the managed object
void Lv1(std::unique_ptr<int>& v)
{

v.reset();

}

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r37-do-not-pass-a-pointer-or-reference-obtained-from-an-aliased-smart-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r37-do-not-pass-a-pointer-or-reference-obtained-from-an-aliased-smart-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-smart

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

AUTO©SAR

/Inon-compliant, does not replace the managed object
void Lv2(std::unique_ptr<int>& v) {}

/lcompliant by exception
void Rv1(std::unique_ptr<int>&& r)
{

std::unique_ptr<int> v(std::move(r));

}

/Inon-compliant
void Rv2(std::unique_ptr<int>&& r) {}

int main(void)

{
auto sp = std::make_unique<int>(7);
Value(std::move(sp));
/Isp is empty

auto sp2 = std::make_unique<int>(9);
Rv1(std::move(sp2));
/Isp2 is empty, because it was moved from in Rv1 function

auto sp3 = std::make_unique<int>(9);
Rv2(std::move(sp3));
/Isp3 is not empty, because it was not moved from in Rv1 function

return O;

See also
HIC++ v4.0 [9]: 8.2.4: Do not pass std::unique_ptr by const reference.

C++ Core Guidelines [11]: R.32: Take a unique_ptr<widget> parameter to
express that a function assumes ownership of a widget.

C++ Core Guidelines [11]: R.33: Take a unigue_ptr<widget>& parameter to
express that a function reseats the widget.

C++ Core Guidelines [11]: 1.11: Never transfer ownership by a raw pointer (T*)
or reference (T&).

Rule A8-4-13 (required, design, automated)

A std::shared_ptr shall be passed to a function as: (1) a copy to express
the function shares ownership (2) an lvalue reference to express that the
function replaces the managed object (3) a const lvalue reference to
express that the function retains a reference count.

http://www.codingstandard.com/rule/8-2-4-do-not-pass-stdunique_ptr-by-const-reference/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r32-take-a-unique_ptrwidget-parameter-to-express-that-a-function-assumes-ownership-of-a-widget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r32-take-a-unique_ptrwidget-parameter-to-express-that-a-function-assumes-ownership-of-a-widget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r33-take-a-unique_ptrwidget-parameter-to-express-that-a-function-reseats-thewidget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r33-take-a-unique_ptrwidget-parameter-to-express-that-a-function-reseats-thewidget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i11-never-transfer-ownership-by-a-raw-pointer-t-or-reference-t
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i11-never-transfer-ownership-by-a-raw-pointer-t-or-reference-t
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i11-never-transfer-ownership-by-a-raw-pointer-t-or-reference-t

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

w

5

36

AUTO©SAR

Rationale
Passing a std::shared_ptr by value (1) is clear and makes ownership sharing explicit.

Passing an Ivalue reference (2) to std:shared ptr IS suggested to be used if a called
function replaces the managed object on at least one code path, e.g. call assignment
operator or reset method. Otherwise, it is recommended to pass an Ivalue reference to
the underlying object instead, see A8-4-11, A8-4-10.

Functions that take a const Ivalue reference (3) to std:shared_ptr as a parameter are
supposed to copy it to another std::shared_ptr On at least one code path, otherwise the
parameter should be passed by a const Ivalue reference to the underlying object
instead, see A8-4-11, A8-4-10.

Example
I/ $1d: A8-4-13.cpp 308795 2018-02-23 09:27:03Z michal.szczepankiewicz $

#include <memory>
#include <iostream>

/lcompliant, explicit ownership sharing
void Value(std::shared_ptr<int>v) { }

/lcompliant, replaces the managed object
void Lv1(std::shared_ptr<int>& v)
{

v.reset();

}

/Inon-compliant, does not replace the managed object
/Ishall be passed by int& so that API that does not
/lextend lifetime of an object is not polluted
/lwith smart pointers
void Lv2(std::shared_ptr<int>& v)
{

++(*V);

}

/lcompliant, shared_ptr copied in the called function
void Clvl(const std::shared_ptr<int>& v)
{

Value(v);

}

/Inon-compliant, const Ivalue reference not copied
/lto a shared_ptr object on any code path

/Ishall be passed by const int&

void Clv2(const std::shared_ptr<int>& v)

{

std::cout << *v << std::endl;

}

37

38

39

© o N o 0 b~ W N e

=
A w N B O

=
15

AUTO©SAR

/Inon-compliant
void Rvl(std::shared_ptr<int>&& r) {}
See also

C++ Core Guidelines [11]: R.34: Take a shared_ptr<widget> parameter to
express that a function is part owner.

C++ Core Guidelines [11]: R.35: Take a shared_ptr<widget>& parameter to
express that a function might reseat the shared pointer.

C++ Core Guidelines [11]: R.36: Take a const shared_ptr<widget>& parameter
to express that it might retain a reference count to the object.

Rule A8-4-14 (required, design, non-automated)
Interfaces shall be precisely and strongly typed.

Rationale
Using precise and strong types in interfaces helps using them correctly.

A large number of parameters of fundamental type (particularly of arithmetic type)
can be an indication of bad interface design as it does not make it obvious what the
units are, and there is no way for the compiler to warn when parameters are passed
in the wrong order (as the types are the same or implicitly convertible).

When several parameters are related, combining the parameters into a separate
user-defined type should be considered.

Similarly, a type of pointer to void does not provide any type safety and alternatives
like a pointer to a common base class or using a (potentially constrained) template
parameter should be considered.

Example
/I $1d: A8-4-14.cpp 326058 2018-07-16 07:52:31Z christof. meerwald $

#include <cstdint>
#include <chrono>

/I Non-compliant: unit of duration not obvious
void Sleep(std::uint32_t duration);

/I Compliant: strongly typed
void Sleep(std::chrono::seconds duration);

/I Non-compliant: list of related parameters with same type
void SetAlarm(std::uint32_t year, std::uint32_t month, std::uint32_t day,
std::uint32_t hour, std::uint32_t minute, std::uint32_t second);

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r34-take-a-shared_ptrwidget-parameter-to-express-that-a-function-is-part-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r34-take-a-shared_ptrwidget-parameter-to-express-that-a-function-is-part-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r35-take-a-shared_ptrwidget-parameter-to-express-that-a-function-might-reseat-the-shared-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r35-take-a-shared_ptrwidget-parameter-to-express-that-a-function-might-reseat-the-shared-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r36-take-a-const-shared_ptrwidget-parameter-to-express-that-it-might-retain-a-reference-count-to-the-object-
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r36-take-a-const-shared_ptrwidget-parameter-to-express-that-it-might-retain-a-reference-count-to-the-object-

16

17

18

©

11

12

13

14

15

16

AUTO©SAR

/I Compliant: strongly typed
void SetAlarm(std::chrono::system_clock::time_point const & when);

See also

C++ Core Guidelines [11]: I.4: Make interfaces precisely and strongly typed

6.8.5 Initializers

Rule A8-5-0 (required, implementation, automated)
All memory shall be initialized before it is read.

Rationale

Objects with automatic or dynamic storage duration are default-initialized if no
initializer is specified. Default initialization produces indeterminate values for objects
of neither class nor array types. Default initialization of array types leads to default
initialization of each array element. Reading from indeterminate values may produce
undefined behavior.

Thus, all local variables, member variables, or objects allocated dynamically must be
explicitly initialized before their values are read, unless they are of class type or array
of non-fundamental type. It is recommended practice to initialize all such objects
immediately when they are defined.

Note: Zero-initialization will happen before any other initialization for any objects with
static or thread-local storage duration. Thus, such objects need not be explicitly
initialized.

Example

// $1d: A8-5-0.cpp 307536 2018-02-14 12:35:11Z jan.babst $
#include <cstdint>
#include <string>

static std::int32_t zero; // Compliant - Variable with static storage duration
I is zero-initialized.

void local()

{
std::int32_t a; /I No initialization
std::int32_t b{}; // Compliant - zero initialization

b=a; /I Non-compliant - uninitialized memory read
a = zero; // Compliant - a is zero now
b=a; /I Compliant - read from initialized memory

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-typed

17

18

19

20

21

22

23

24

25

26

27

28
29

30

32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57

58

AUTO©SAR

std::string s; // Compliant - default constructor is a called
/l read from s

}
void dynamic()
{
/I Note: These examples violate A18-5-2
auto const a = new std::int32_t; /I No initialization
auto const b = new std::int32_t{}; // Compliant - zero initialization
*h = *a; /I Non-compliant - uninitialized memory read
*a = zero; // Compliant - a is zero now
*h = *a; /I Compliant - read from initialized memory
delete b;
delete a;
auto const s =
new std::string; // Compliant - default constructor is a called
/I read from *s
delete s;
}

/I Members of Bad are default-initialized by the (implicitly generated) default
/I constructor. Note that this violates A12-1-1.

struct Bad
{
std::int32_t a;
std::int32_t b;
2

/I Compliant - Members of Good are explicitly initialized.

/I This also complies to A12-1-1.

struct Good

{
std::int32_t a{0};
std::int32_t b{0};

I3

void members()

{
Bad bad; // Default constructor is called, but members a not initialized
bad.b = bad.a; // Non-compliant - uninitialized memory read
bad.a = zero; /I Compliant - bad.a is zero now
bad.b = bad.a; // Compliant - read from initialized memory

Good good; // Default constructor is called and initializes members

std::int32_t x = good.a; // Compliant

AUTO©SAR

68 std::int32_t y = good.b; // Compliant
69}
See also

MISRA C++ 2008 [7]: 8-5-1: All variables shall have a defined value before they
are used.

HIC++ v4.0 [9]: 8.4.1: Do not access an invalid object or an object with
indeterminate value

JSF December 2005 [8]: AV Rule 142: All variables shall be initialized before
use.

SEIl CERT C++ Coding Standard [10]: EXP53-CPP: Do not read uninitialized
memory

C++ Core Guidelines [11]: ES.20: Always initialize an object
ISO/IEC 14882:2014 [3]: 8.5: [dcl.init]

Rule A8-5-1 (required, implementation, automated)

In an initialization list, the order of initialization shall be following: (1) virtual
base classes in depth and left to right order of the inheritance graph, (2) direct
base classes in left to right order of inheritance list, (3) non-static data
members in the order they were declared in the class definition.

Rationale

To avoid confusion and possible use of uninitialized data members, it is
recommended that the initialization list matches the actual initialization order.

Regardless of the order of member initializers in a initialization list, the order of
initialization is always:
Virtual base classes in depth and left to right order of the inheritance graph.
Direct non-virtual base classes in left to right order of inheritance list.

Non-static member data in order of declaration in the class definition.

Note that “The order of derivation is relevant only to determine the order of default
initialization by constructors and cleanup by destructors.” [C++14 Language Standard

[31]
Example

// $1d: A8-5-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $
#include <cstdint>

#include <string>

class A

{

A W N R

al

http://www.codingstandard.com/rule/8-4-1-do-not-access-an-invalid-object-or-an-object-with-indeterminate-value/
http://www.codingstandard.com/rule/8-4-1-do-not-access-an-invalid-object-or-an-object-with-indeterminate-value/
https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP53-CPP.+Do+not+read+uninitialized+memory
https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP53-CPP.+Do+not+read+uninitialized+memory
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#es20-always-initialize-an-object

AUTO©SAR

6 §

7 class B

s |

s }

10 class C : public virtual B, public A

1 {

12 public:

13 C(: B0, A(, s {3 // Compliant

14

15 11 C() : AQ, B {} // Non-compliant - incorrect order of initialization

17 private:

18 std::string s;
19 %
20 class D
21 |
2 h
23 class E
20 |
P
26 class F : public virtual A, public B, public virtual D, public E
o1 |
28 public:
29 F(O : A, D), B(), E(), number1(0), number2(0U) {} // Compliant
30 F(F const& oth)
31 : B(), EQ), A(), D(), numberl(oth.numberl), number2(oth.number2)
32 {
33 } // Non-compliant - incorrect
34 /I order of initialization
35
36 private:
37 std::int32_t numberl;
38 std::uint8_t number2;
CI
See also

HIC++ v4.0 [9]:12.4.4 Write members in an initialization list in the order in which
they are declared

Rule M8-5-2 (required, implementation, automated)
Braces shall be used to indicate and match the structure in the non-
zero initialization of arrays and structures.

See MISRA C++ 2008 [7]

http://www.codingstandard.com/rule/12-4-4-write-members-in-an-initialization-list-in-the-order-in-which-they-are-declared/
http://www.codingstandard.com/rule/12-4-4-write-members-in-an-initialization-list-in-the-order-in-which-they-are-declared/

10

11

12

13

14

15

16

17

18

AUTO©SAR

Rule A8-5-2 (required, implementation, automated) Braced-
initialization {}, without equals sign, shall be used for variable
initialization.

Rationale

Braced-initialization using {} braces is simpler and less ambiguous than other forms
of initialization. It is also safer, because it does not allow narrowing conversions for
numeric values, and it is immune to C++’s most vexing parse.

The use of an equals sign for initialization misleads into thinking that an assignment
is taking place, even though it is not. For built-in types like int, the difference is
academic, but for user-defined types, it is important to explicitly distinguish
initialization from assignment, because different function calls are involved.

Note that most vexing parse is a form of syntactic ambiguity resolution in C++, e.g.
“Class c¢()” could be interpreted either as a variable definition of class “Class” or a
function declaration which returns an object of type “Class”.

Note that in order to avoid grammar ambiguities, it is highly recommended to use
only braced-initialization {} within templates.

Exception

If a class declares both a constructor taking std::initializer_list argument and a
constructor which invocation will be ignored in favor of std::initializer_list constructor,
this rule is not violated by calling a constructor using () parentheses, see A8-5-4.

Example

// $1d: A8-5-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
#include <initializer_list>
void F1() noexcept
{
std::int32_t x1 =
7.9; I/l Non-compliant - x1 becomes 7 without compilation error
/I std::int32_t y {7.9}; // Compliant - compilation error, narrowing
std::int8_t x2{50}; /I Compliant
std::int8_t x3 = {50}; // Non-compliant - std::int8_t x3 {50} is equivalent
/I and more readable
std::int8_t x4 =
1.0; // Non-compliant - implicit conversion from double to std::int8_t
std::int8_t x5 = 300; // Non-compliant - narrowing occurs implicitly
std::int8_t x6(x5); /I Non-compliant
}
class A
{
public:
A(std::int32_t first, std::int32_t second) : x{first}, y{second} {}

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72

AUTO©SAR

private:
std::int32_t x;
std::int32_ty;
2
struct B
{
std::intl6_t x;
std::intl6_ty;
2
class C
{
public:
C(std::int32_t first, std::int32_t second) : x{first}, y{second} {}
C(std::initializer_list<std::int32_t> list) : x{0}, y{0} {}
private:
std::int32_t x;
std::int32_ty;
2
void F2() noexcept
{
A al{l, 5}; /I Compliant - calls constructor of class A
A a2 ={1, 5}; // Non-compliant - calls a default constructor of class A
/l and not copy constructor or assignment operator.
A a3(1, 5); /I Non-compliant
B b1{5, 0} /I Compliant - struct members initialization
Ccl{2, 2}; /I Compliant - C(std::initializer_list<std::int32_t>)
/I constructor is
/I called
C c2(2, 2);// Compliant by exception - this is the only way to call
/I C(std::int32_t, std::int32_t) constructor
C c3{{}}; // Compliant - C(std::initializer_list<std::int32_t>) constructor
Il'is
/I called with an empty initializer_list
C c4({2, 2)); /I Compliant by exception -
/I C(std::initializer_list<std::int32_t>)
/I constructor is called
2

template <typename T, typename U>
void F1(T t, U u) noexcept(false)

{
std::int32_tx = 0;
T v1(x); // Non-compliant
T v2{x}; // Compliant - v2 is a variable
/I 'auto y = T(u); // Non-compliant - is it construction or cast?
/I Compilation error
2
void F3() noexcept
{

F1(0, "abcd"); // Compile-time error, cast from const char* to int

}

AUTO©SAR

See also
C++ Core Guidelines [11]: ES.23 Prefer the {} initializer syntax.

C++ Core Guidelines [11]: T.68: Use {} rather than () within templates to avoid
ambiguities.

C++ Core Guidelines [11]: ES.64: Use the T{e} notation for construction.

Effective Modern C++ [13]: Item 7. Distinguish between () and {} when creating
objects.

Rule A8-5-3 (required, implementation, automated)
A variable of type auto shall not be initialized using {} or
={} braced-initialization.

Rationale

If an initializer of a variable of type auto is enclosed in braces, then the result of type
deduction may lead to developer confusion, as the variable initialized using {} or ={}
will always be of std::initializer_list type.

Note that some compilers, e.g. GCC or Clang, can implement this differently -
initializing a variable of type auto using {} will deduce an integer type, and initializing
using ={} will deduce a std::initializer_list type. This is desirable type deduction which
will be introduced into the C++ Language Standard with C++17.

Example

// $1d: A8-5-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <initializer_list>

void Fn() noexcept

o g A W N R

~

10

11

12

13

14

15

16

{
auto x1(10); // Compliant - the auto-declared variable is of type int, but
/I not compliant with A8-5-2.
auto x2{10}, /I Non-compliant - according to C++14 standard the
/I auto-declared variable is of type std::initializer_list.
/I However, it can behave differently on different compilers.
auto x3 = 10; // Compliant - the auto-declared variable is of type int, but
/I non-compliant with A8-5-2.
auto x4 = {10}; // Non-compliant - the auto-declared variable is of type
/I std::initializer_list, non-compliant with A8-5-2.
std::int8_t x5{10}; // Compliant
}
See also

Effective Modern C++ [13]: Item 2. Understand auto type deduction.

Effective Modern C++ [13]: Item 7. Distinguish between () and {} when creating
objects.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namert-castat68-use--rather-than--within-templates-to-avoid-ambiguities
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es64-use-the-tenotation-for-construction

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

AUTO©SAR

Rule A8-5-4 (advisory, implementation, automated)

If a class has a user-declared constructor that takes a parameter of type
std::initializer_list, then it shall be the only constructor apart from
special member function constructors.

Rationale

If an object is initialized using {} braced-initialization, the compiler strongly prefers
constructor taking parameter of type std:initializer_list to other constructors. Thus, if it is
defined in the class, it is initially a sole member of the candidate set of the two-phase
overload resolution. Only if no viable std:initializer_list is found, the rest of constructors
are considered in the second overload resolution.

Such a case can be non-intuitive for developers and can lead to reviewers’ confusion
on which constructor was intended to be called.

If other constructors (besides the std:initializer_list one and special member functions)
are declared in a class, then it is suggested to use, e.g. the std:vector<int >({1,1}) Syntax
instead of std::vector<int> V{1, 1}, which makes the intent clear.

Example

// $1d: A8-5-4.cpp 319328 2018-05-15 10:30:25Z michal.szczepankiewicz $
#include <cstdint>

#include <initializer_list>

#include <vector>

#include <iostream>

/Inon-compliant, there are other constructors

/lapart from initializer_list one defined

class A

{

public:
A() = default;
A(std::size_t num1, std::size_t num2) : x{num1}, y{num2} {}
A(std:initializer_list<std::size_t> list) : x{list.size()}, y{list.size()} {

}
private:
std::size_t x;
std::size_tvy;
2
class B
{
public:
B() = default;
B(std::initializer_list<std::size_t> list) : collection{list} { }
private:

std::vector<std::size_t> collection;

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

h

void F1() noexcept

{

AUTO©SAR

Aal{}; /I Calls A::A()
A a2{{}}; /I Calls A::A(std::initializer_list<std::size_t>)
A a3{0, 1}; /I Calls A::A(std::initializer_list<std::size_t>), not
recommended
A a4({o, 1});// Calls A::A(std::initializer_list<std::size_t>), recommended
A a5(0, 1); // Calls A::A(std::size_t, std::size_t), compliant with A8-5-2
by exception

}

void F2() noexcept

{
B bi{}; /I Calls B::B()
B b2{{}}; /I Calls B::B(std::initializer_list<std::size_t>)
B b3{1, 2} /I Calls B::B(std::initializer_list<std::size_t>), not
recommended
B b4({1, 2}); /I Calls B::B(std::initializer_list<std::size_t>),
recommended

}

See also

Effective Modern C++ [13]: Item 7. Distinguish between () and {} when creating
objects.

ISO/IEC 14882:2014 [3]: 13.3.1.7: [over.match.list]

6.9 Classes

6.9.3 Member function

Rule M9-3-1 (required, implementation, automated)
Const member functions shall not return non-const pointers or
references to class-data.

See MISRA C++ 2008 [7]
Note: This rule applies to smart pointers, too.

Note: “The class-data for a class is all non-static member data and any resources
acquired in the constructor or released in the destructor.” [MISRA C++ 2008 [7]]

AUTO©SAR

Rule A9-3-1 (required, implementation, partially automated)
Member functions shall not return non-const “raw” pointers or
references to private or protected data owned by the class.

Rationale

By implementing class interfaces with member functions the implementation retains
more control over how the object state can be modified and helps to allow a class to
be maintained without affecting clients. Returning a handle to data that is owned by
the class allows for clients to modify the state of the object without using an interface.

Note that this rule applies to data that are owned by the class (i.e. are class-data). Non-
const handles to objects that are shared between different classes may be returned.

10

11

12

13

14

15

16

17

18

19

20

21

22

See: Ownership.

Exception

Classes that mimic smart pointers and containers do not violate this rule.

Example

/I $1d: A9-3-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
#include <memory>
#include <utility>
class A
{
public:

explicit A(std::int32_t number) : x(number) {}

/I Implementation

std::int32_t&

GetX() noexcept // Non-compliant - x is a resource owned by the A class

{

return x;

}

private:
std::int32_t x;
b
void Fn1() noexcept
{
A a{10}
std::int32_t& number = a.GetX();
number = 15; // External modification of private class data

}

class B
{
public:
explicit B(std::shared_ptr<std::int32_t> ptr) : sharedptr(std::move(ptr)) {}
/I Implementation
std::shared_ptr<std::int32_t> GetSharedPtr() const

31

32

33

34

35

36

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

AUTO©SAR

noexcept // Compliant - sharedptr is a variable being shared between
/I instances

return sharedptr;

private:
std::shared_ptr<std::int32_t> sharedptr;
h
void Fn2() noexcept
{
std::shared_ptr<std::int32_t> ptr = std::make_shared<std::int32_t>(10);
B b1{ptr};
B b2{ptr};
*ptr = 50; // External modification of ptr which shared between b1 and b2
/I instances
auto shared = b1.GetSharedPtr();
*xshared = 100; // External modification of ptr which shared between b1 and
/I b2 instances

}

class C
{
public:
explicit C(std::int32_t number)
: ownedptr{std::make_unique<std::int32_t>(number)}
{
}

/I Implementation
const std::unique_ptr<std::int32_t>& GetOwnedPtr() const
noexcept // Non-compliant - only unique_ptr is const, the object that
/ it is pointing to is modifiable

return ownedptr;
}

const std::int32_t& GetData() const noexcept // Compliant

{

return xownedptr;

private:
std::unique_ptr<std::int32_t> ownedptr;
2
void Fn3() noexcept
{
C c{10};
const std::int32_t& data = c.GetData();
/l data = 20; // Can not modify data, it is a const reference
const std::unique_ptr<std::int32_t>& ptr = c.GetOwnedPtr();
*ptr = 20; // Internal data of class C modified

N~ o g A W N R

AUTOSAR

See also

MISRA C++ 2008 [7]: Rule 9-3-2 Member functions shall not return non-const
handles to class-data.

JSF December 2005 [8]: AV Rule 112: Function return values should not
obscure resource ownership.

Rule M9-3-3 (required, implementation, automated)
If a member function can be made static then it shall be made static,
otherwise if it can be made const then it shall be made const.

See MISRA C++ 2008 [7]

Note: Static methods can only modify static members of a class, they are not able to
access data of a class instance.

Note: Const methods can only modify static members of a class or mutable-declared
members of a class instance.

See also

C++ Core Guidelines [11]: Con.2: By default, make member functions const.

6.9.5 Unions

Rule A9-5-1 (required, implementation, automated)
Unions shall not be used.

Rationale

Unions are not type safe and their usage can be misleading and easily misinterpreted
by developers.

Exception

It is allowed to use tagged unions until std::variant is available in the C++ Standard
Library (C++17)

Example
// $1d: A9-5-1.cpp 305588 2018-01-29 11:07:35Z michal.szczepankiewicz $

#include <cstdint>
/I Compliant
struct Tagged

{

enum class TYPE

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con2-by-default-make-member-functions-const

AUTO©SAR

8 {

9 UINT,
10 FLOAT
11 h
12 union {
13 uint32_t u;
14 float f;
15 h
16 TYPE which;

17§

18
9 int main(void)

20 |

[N

21 Tagged un;
22
23 un.u=12;
24 un.which = Tagged::TYPE::UINT;
25
26 un.u = 3.14f;
27 un.which = Tagged::TYPE::FLOAT;
28
29 return O;
30 }
See also

MISRA C++ 2008 [7]: M9-5-1: Unions shall not be used

JSF December 2005 [8]: AV Rule 153: Bit-fields shall have explicitly unsigned
integral or enumeration types only

C++ Core Guidelines [11]: C.181: Avoid “naked” unions

C++ Core Guidelines [11]: C.182: Use anonymous unions to implement tagged
unions

C++ Core Guidelines [11]: Type.7: Avoid naked union: Use variant instead.

6.9.6 Bit-fields

Rule M9-6-1 (required, implementation, non-automated)
When the absolute positioning of bits representing a bit-field is required,
then the behavior and packing of bit-fields shall be documented.

See MISRA C++ 2008 [7]

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c181-avoid-naked-unions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c182-use-anonymous-unions-to-implement-tagged-unions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c182-use-anonymous-unions-to-implement-tagged-unions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c181-avoid-naked-unions

© o N o g A~ w N P

NONRNN NN NN NN R R R R R R R R R
© © N o o A W N P O © ® N o o b~ W N P O

w
o

AUTO©SAR

Rule A9-6-1 (required, design, partially automated)

Data types used for interfacing with hardware or conforming to
communication protocols shall be trivial, standard-layout and only
contain members of types with defined sizes.

Rationale

When the layout of data types is important, only those types that have a defined size
shall be used (see A3-9-1, this excludes bool, wchar_t, pointers, and pointers to
members). Enumeration types may be used if they have been explicitly declared with
an underlying type that has a defined size.

Note: As the use of bit-fields is only allowed for interfacing with hardware or
conforming to communication protocols, this restriction on types also applies to bit-
fields, see A9-6-2.

Note: The signed exact-width integer types like std:int16_t are guaranteed to have a
two’s complement representation.

Example

/I $1d: A9-6-1.cpp 319312 2018-05-15 08:29:17Z christof.meerwald $
#include <cstdint>

enum class E1 : std::uint8_t

{
E11,
E12,
E13
3
enum class E2 : std::int16_t
{
E21,
E22,
E23
b
enum class E3
{
E31,
E32,
E33
b
enum E4
{
E41,
E42,
E43
b
class C

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

49

50

51

52

53

54

55

56

57

58

[$)]

9

60

61

62

63

AUTOSAR

public:

std::int32_ta: 2; /I Compliant
std::uint8_t b : 2U; /I Compliant

boolc: 1, /I Non-compliant - the size of bool is implementation defined

chard: 2; /I Non-compliant
wchar_t e : 2; // Non-compliant - the size of wchar_t is implementation defined

El f1 1 2; /I Compliant
E2 f2 1 2; /I Compliant
E3 3 : 2;// Non-compliant - E3 enum class does not explicitly define
I/l underlying type
E4 {4 : 2; /I Non-compliant - E4 enum does not explicitly define underlying
I type
I3
struct D
{
std::int8_t a; /I Compliant
bool b; /l Non-compliant - the size of bool is
/I implementation defined
std::uintl6_t cl 1 8; /I Compliant
std::uintl6_t c2 1 8; /I Compliant
2
void Fn() noexcept
{
Cc;
c.fl = E1:E11;
}
See also

MISRA C++ 2008 [7]: A9-6-2: Bit-fields shall be either bool type or an explicitly
unsigned or signed integral type

JSF December 2005 [8]: AV Rule 154: Bit-fields shall have explicitly unsigned
integral or enumeration types only

HIC++ v4.0 [9]: 9.2.1: Declare bit-fields with an explicitly unsigned integral or
enumeration type

Rule A9-6-2 (required, design, non-automated) Bit-fields shall be used
only when interfacing to hardware or conforming to communication
protocols.

http://www.codingstandard.com/section/9-2-bit-fields/
http://www.codingstandard.com/section/9-2-bit-fields/

AUTOSAR

Rationale

Usage of bit-fields increases code complexity and certain aspects of bit-field
manipulation can be error prone and implementation-defined. Hence a bit-field usage
is reserved only when interfacing to hardware or conformance to communication
protocols

Note: A9-6-1 restricts the types allowed to be used in these contexts.

See also

JSF December 2005 [8]: AV Rule 155: Bit-fields will not be used to pack data
into a word for the sole purpose of saving space.

Rule M9-6-4 (required, implementation, automated)
Named bit-fields with signed integer type shall have a length of more
than one bit.

See MISRA C++ 2008 [7]

Note: The signed exact-width integer types like std::int1l6_t are guaranteed to have a
two’s complement representation (see also A9-6-1). In this case, a single bit signed
bit-field contains only a sign bit, thus it can represent values either (-1) or (0).
Therefore, to avoid developers’ confusion, it is recommended to use unsigned types
for single bit bit-fields.

6.10 Derived Classes

6.10.0 General

Rule A10-0-1 (required, design, non-automated)
Public inheritance shall be used to implement “is-a” relationship.

Rationale

Public and non-public inheritance have a very different application and it shall be
used accordingly.

See: Is-a-relationship, Has-a-relationship

See also

JSF December 2005 [8]: AV Rule 91: Public inheritance will be used to
implement “is-a” relationships.

© o N o o b~ W N

=
=)

[N
N

13

[,
]

AUTO©SAR

Rule A10-0-2 (required, design, non-automated)
Membership or non-public inheritance shall be used to implement “has-
a” relationship.

Rationale

Public and non-public inheritance have a very different application and it shall be
used accordingly.

See: Is-a-relationship, Has-a-relationship

See also

JSF December 2005 [8]: AV Rule 93: “has-a” or “is-implemented-in-terms-of”
relationships will be modeled through membership or non-public inheritance.

6.10.1 Multiple base Classes

Rule A10-1-1 (required, implementation, automated)
Class shall not be derived from more than one base class which is not
an interface class.

Rationale

Multiple inheritance exposes derived class to multiple implementations. This makes
the code more difficult to maintain.

See: Diamond-Problem, Interface-Class

Example

// $1d: A10-1-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
class A
{
public:
void F1() noexcept(false) {}

private:
std::int32_t x{0};
std::int32_t y{0};
3
class B
{
public:
void F2() noexcept(false) {}

private:

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

a1

42

44

45

46

a7

48

49

AUTO©SAR

std::int32_t x{0};
b
class C : public A,
public B // Non-compliant - A and B are both not interface classes
{
b
class D
{
public:
virtual ~D() = 0;
virtual void F3() noexcept = 0;
virtual void F4() noexcept = 0;
3
class E
{
public:
static constexpr std::int32_t value{10};

virtual ~E() = 0;
virtual void F5() noexcept = 0;
I3
class F : public A,
public B,
public D,
public E // Non-compliant - A and B are both not interface classes
{
2
class G : public A,
public D,
public E // Compliant - D and E are interface classes

See also

JSF December 2005 [8]: AV Rule 88 Multiple inheritance shall only be allowed
in the following restricted form: n interfaces plus m private implementations,

plus at most one protected implementation.

HIC++ v4.0 [9]: 10.3.1 Ensure that a derived class has at most one base class

which is not an interface class.

C++ Core Guidelines [11]: C.135: Use multiple inheritance to represent multiple

distinct interfaces.

Rule M10-1-1 (advisory, implementation, automated)
Classes should not be derived from virtual bases.

See MISRA C++ 2008 [7]

http://www.codingstandard.com/section/10-3-abstract-classes/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerh-mi-interfaceac135-use-multiple-inheritance-to-represent-multiple-distinct-interfaces

AUTOSAR

Rule M10-1-2 (required, implementation, automated)
A base class shall only be declared virtual if itis used in a
diamond hierarchy.

See MISRA C++ 2008 [7]

Rule M10-1-3 (required, implementation, automated)
An accessible base class shall not be both virtual and non-virtual in
the same hierarchy.

See MISRA C++ 2008 [7]

6.10.2 Member name lookup

Rule M10-2-1 (advisory, implementation, automated)
All accessible entity names within a multiple inheritance hierarchy
should be unique.

See MISRA C++ 2008 [7]

Rule A10-2-1 (required, implementation, automated) Non-virtual public or
protected member functions shall not be redefined in derived classes.

Rationale

A non-virtual member function specifies an invariant over the hierarchy. It cannot be
overridden in derived classes, but it can be hidden by a derived class member (data
or function) with the same identifier. The effect of this hiding is to defeat
polymorphism by causing an object to behave differently depending on which
interface is used to manipulate it, resulting in unnecessary complexity and error.

Note that a maintenance change to a private implementation detail could impact
clients of the base class, and often it will be the case that those clients may not be in
a position to fix the problem. Therefore, redefinitions of functions which are private in
the base class are not affected by this rule.

Exception

Redefinition of functions from private inheritance do not violate this rule.

Example

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

AUTO©SAR

/] $ld: A10-2-1.cpp 317123 2018-04-23 08:48:11Z ilya.burylov $
class A
{
public:
virtual ~A() = default;
void F() noexcept {}
virtual void G() noexcept {}
private:
void H() noexcept {}
I8
class B : public A
{
public:
void
F() noexcept {} // Non-compliant - F() function from A class hidden by B class

void G() noexcept override {} // Compliant - G() function from A class
/I overridden by B class
private:
void H() noexcept {} // Compliant - H() function is private in A class
I3
class C : private A
{
public:
F() noexcept {} // Compliant by exception - private inheritance
2
void Fn1(A& object) noexcept
{
object.F(); // Calls F() function from A
object.G(); // Calls G() function from B
}
void Fn2() noexcept
{
B b;
Fnl(b);

See also

JSF December 2005 [8]: AV Rule 94 An inherited nonvirtual function shall not
be redefined in a derived class.

C++ Core Guidelines [11]: ES.12: Do not reuse hames in nested scopes.

6.10.3 Virtual functions

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

AUTO©SAR

Rule A10-3-1 (required, implementation, automated)
Virtual function declaration shall contain exactly one of the three specifiers:
(1) virtual, (2) override, (3) final.

Rationale

Specifying more than one of these three specifiers along with virtual function
declaration is redundant and a potential source of errors.

It is recommended to use the virtual specifier only for new virtual function declaration,
the override specifier for overrider declaration, and the final specifier for final
overrider declaration.

Note that this applies to virtual destructors and virtual operators, too.

Example
// $1d: A10-3-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
class A
{
public:
virtual ~A() {} /I Compliant
virtual void F() noexcept = 0; /I Compliant

virtual void G() noexcept final = 0; // Non-compliant - virtual final pure
/I function is redundant
virtual void
H() noexcept final // Non-compliant - function is virtual and final
{
}
virtual void K() noexcept // Compliant
{
}

virtual void J() noexcept {}
virtual void M() noexcept // Compliant

{
}
virtual void Z() noexcept // Compliant
{
}
virtual A& operator+=(A const& rhs) noexcept // Compliant
{
...
return *this;
}
2
class B : public A
{
public:
~B() override {} /I Compliant

virtual void F() noexcept override // Non-compliant - function is specified
/I with virtual and override

35

36

37

38

39

40

a1

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1

2

3

AUTO©SAR

{
}

void K() noexcept override
final // Non-compliant - function is specified with override and final

{

}

virtual void M() noexcept // Compliant - violates A10-3-2
{

}

void Z() noexcept override // Compliant

{

}

void J() noexcept // Non-compliant - virtual function but not marked as
Il overrider

{
}

A& operator+=(A const& rhs) noexcept override // Compliant - to override
/I the operator correctly,

Il 'its signature needs to be
/I the same as in the base
Il class
{
...
return this;
}
2
See also

C++ Core Guidelines [11]: C.128: Virtual functions should specify exactly one of
virtual, override, or final.

Rule A10-3-2 (required, implementation, automated)
Each overriding virtual function shall be declared with the override or
final specifier.

Rationale

Explicit use of the override or final specifier enables the compiler to catch mismatch
of types and names between base and derived classes virtual functions.

Note that this rule applies to virtual destructor overriders, too.

Also, note that this rule applies to a pure virtual function which overrides another pure
virtual function.

Example

// $1d: A10-3-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
class A

{

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override

15

16

17

18

19

20

21

22

23

24

25

40

41

42

43

44

45

46

AUTO©SAR

public:
virtual ~A() {}
virtual void F() noexcept = 0;
virtual void G() noexcept {}
virtual void Z() noexcept {}
virtual A& operator+=(A const& oth) = 0;
h
class B : public A
{
public:
~B() override {} /I Compliant
void F() noexcept // Non-compliant
{
}
virtual void G() noexcept // Non-compliant
{
}
void Z() noexcept override // Compliant
{
}

B& operator+=(A const& oth) override // Compliant

{

return *this;
}
I3
class C : public A
{
public:
~CO { /I Non-compliant
void F() noexcept override // Compliant
{
}

void G() noexcept override // Compliant

{
}

void Z() noexcept override // Compliant

{
}

C& operator+=(A const& oth) // Non-compliant

{

return *this;
}
3

See also

HIC++ v4.0 [9]: 10.2.1 Use the override special identifier when overriding a
virtual function

C++ Core Guidelines [11]: C.128: Virtual functions should specify exactly one of
virtual, override, or final.

http://www.codingstandard.com/rule/10-2-1-use-the-override-special-identifier-when-overriding-a-virtual-function/
http://www.codingstandard.com/rule/10-2-1-use-the-override-special-identifier-when-overriding-a-virtual-function/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override

© o N o g A W N P

[I T R e T i T i =
P O © © ~N o o ~ W N KB O

N
N

AUTO©SAR

Rule A10-3-3 (required, implementation, automated)
Virtual functions shall not be introduced in a final class.

Rationale

Declaring a class as final explicitly specifies that the class cannot be inherited.
Declaring a virtual function inside a class specifies that the function can be
overridden in the inherited class, which is inconsistent.

Example

/I $1d: A10-3-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
class A
{
public:
virtual ~A() = default;
virtual void F() noexcept = 0;
virtual void G() noexcept {}

3
class B final : public A
{
public:
void F() noexcept final // Compliant
{
}
void G() noexcept override // Non-compliant
{
}
virtual void H() noexcept = 0; // Non-compliant
virtual void Z() noexcept /I Non-compliant
{
}
h
See also

HIC++ v4.0 [9]: 9.1.5 Do not introduce virtual functions in a final class.

Rule A10-3-5 (required, implementation, automated)
A user-defined assignment operator shall not be virtual.

Rationale

If an overloaded operator is declared virtual in a base class A, then in its subclasses
B and C identical arguments list needs to be provided for the overriders. This allows
to call an assignment operator of class B that takes an argument of type C which
may lead to undefined behavior.

Note that this rule applies to all assignment operators, as well to copy and move
assignment operators.

N
o]

29

30

31

32

33

34

35

36

37
38

40

41

42

43

a4

45

46

47

48

AUTO©SAR

Example

// $ld: A10-3-4.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
class A
{
public:
virtual A& operator=(A const& oth) = 0; /I Non-compliant
virtual A& operator+=(A const& rhs) = 0; // Non-compliant
2
class B : public A
{
public:
B& operator=(A const& oth) override // It needs to take an argument of type
/I A& in order to override

{

return *this;
}
B& operator+=(A const& oth) override // It needs to take an argument of
/I type A& in order to override

{

return this;
}
B& operator-=(B const& oth) // Compliant

{

return *this;

3
class C : public A
{
public:
C& operator=(A const& oth) override // It needs to take an argument of type
/I A& in order to override
{

return *this;
}
C& operator+=(A const& oth) override // It needs to take an argument of
/I type A& in order to override

return *this;

}
C& operator-=(C const& oth) // Compliant

{
return *this;
}
2
/I class D : public A
1K
// public:
/D& operator=(D const& oth) override // Compile time error - this method
//does not override because of different
/I signature
I/

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

AUTO©SAR

1
1

return *this;

}

/ID& operator+=(D const& oth) override // Compile time error - this method
/ldoes not override because of different

1 signature
/A
/! return *this;
I}
I}
void Fn() noexcept
{
B b;
Cgc;
b=c; /I Calls B::operator= and accepts an argument of type C
b +=c; // Calls B::operator+= and accepts an argument of type C
c=b; /I Calls C::operator= and accepts an argument of type B
c +=b; // Calls C::operator+= and accepts an argument of type B
/I b -=c; /I Compilation error, because of types mismatch. Expected
/I behavior
/I ¢ -=b; /I Compilation error, because of types mismatch. Expected
/I behavior
B b2;
Ccz;
b -=b2;
c-=c2;
}
See also
none

Rule M10-3-3 (required, implementation, automated)
A virtual function shall only be overridden by a pure virtual function if it
is itself declared as pure virtual.

See MISRA C++ 2008 [7]

See: A10-3-2 for pure virtual function overriders declaration.

6.10.4 Abstract Classes

Rule A10-4-1 (advisory, design, non-automated)
Hierarchies should be based on interface classes.

Rationale

Software design that provides common and standardized interfaces without

committing to a particular implementation:

AUTOSAR

eliminates of potential redundancy.
increases software reusability.
hides implementation details.
can be easily extended.
facilitates different objects iteration.
Well-defined interfaces are less prone to require further reworking and maintenance.

See: Interface-Class

See also

JSF December 2005 [8]: AV Rule 87: Hierarchies should be based on abstract
classes.

C++ Core Guidelines [11]: 1.25: Prefer abstract classes as interfaces to class
hierarchies.

C++ Core Guidelines [11]: C.122: Use abstract classes as interfaces when
complete separation of interface and implementation is needed.

6.11 Member access control

6.11.0 General

Rule M11-0-1 (required, implementation, automated)
Member data in non-POD class types shall be private.

See MISRA C++ 2008 [7]
See: POD-type, Standard-Layout-Class, Trivially-Copyable

Rule A11-0-1 (advisory, implementation, automated)
A non-POD type should be defined as class.

Rationale

Types that are not POD types are supposed to be defined as class objects, as a
class specifier forces the type to provide private access control for all its members by
default. This is consistent with developer expectations, because it is expected that a
class has its invariant, interface and could provide custom-defined constructors.

Example

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i25-prefer-abstract-classes-as-interfaces-to-class-hierarchies
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i25-prefer-abstract-classes-as-interfaces-to-class-hierarchies
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c122-use-abstract-classes-as-interfaces-when-complete-separation-of-interface-and-implementation-is-needed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c122-use-abstract-classes-as-interfaces-when-complete-separation-of-interface-and-implementation-is-needed

11

12

13

14

15

16

17

18

19

26

27

28

29

30

31

32

33

34

35

36

w
b

39

40

41

42

43

44

45

46

47

48

49

50

51

AUTO©SAR

/] $ld: A11-0-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <limits>

class A // Compliant - A provides user-defined constructors, invariant and

h

I/l interface
std::int32_t x; // Data member is private by default

public:
static constexpr std::int32_t maxValue =
std::numeric_limits<std::int32_t>::max();
A() : x(maxValue) {}
explicit A(std::int32_t number) : x(number) {}
A(A const&) = default;
A(A&&) = default;
A& operator=(A const&) = default;
A& operator=(A&&) = default;

std::int32_t GetX() const noexcept { return Xx; }
void SetX(std::int32_t number) noexcept { x = number; }

struct B // Non-compliant - non-POD type defined as struct

{

h

public:
static constexpr std::int32_t maxValue =
std::numeric_limits<std::int32_t>::max();
B() : x(maxValue) {}
explicit B(std::int32_t number) : x(number) {}
B(B const&) = default;
B(B&&) = default;
B& operator=(B const&) = default;
B& operator=(B&&) = default;

std::int32_t GetX() const noexcept { return Xx; }
void SetX(std::int32_t number) noexcept { x = number; }

private:
std::int32_t x; // Need to provide private access specifier for x member

struct C // Compliant - POD type defined as struct

{

h

std::int32_t x;
std::int32_ty;

class D // Compliant - POD type defined as class, but not compliant with

{

1/ M11-0-1

public:
std::int32_t x;
std::int32_ty;

AUTO©SAR

See also

C++ Core Guidelines [11]: C.2: Use class if the class has an invariant; use
struct if the data members can vary independently.

stackoverflow.com [17]: When should you use a class vs a struct in C++?

Rule A11-0-2 (required, implementation, automated)

A type defined as struct shall: (1) provide only public data members, (2)
not provide any special member functions or methods, (3) not be a base of
another struct or class, (4) not inherit from another struct or class.

Rationale

This is consistent with developer expectations that a class provides its invariant,
interface and encapsulation guarantee, while a struct is only an aggregate without
any class-like features.

An example of a struct type is POD type.
See: POD-type.

Example

/I $1d: A11-0-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
struct A // Compliant

{
std:int32_t x;
double y;
3
struct B // Compliant
{
std::uint8_t x;
Aa;
3
struct C // Compliant
{
float x = 0.0f;
std::int32_ty = 0;
std::uint8_t z = OU;
3
struct D // Non-compliant
{
public:
std::int32_t x;
protected:
std::int32_ty;

private:

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#c2-use-class-if-the-class-has-an-invariant-use-struct-if-the-data-members-can-vary-independently
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#c2-use-class-if-the-class-has-an-invariant-use-struct-if-the-data-members-can-vary-independently

28

29

30

31

32

33

34

35

36

37

38

39

40

41

13

AUTO©SAR

std::int32_t z;
h
struct E // Non-compliant

{
public:
std::int32_t x;
void Fn() noexcept {}

private:
void F1() noexcept(false) {}
2
struct F : public D // Non-compliant

{
h

See also

stackoverflow.com [17]: When should you use a class vs a struct in C++?

6.11.3 Friends

Rule A11-3-1 (required, implementation, automated)
Friend declarations shall not be used.

Rationale

Friend declarations reduce encapsulation and result in code that is more difficult to
maintain.

Exception

It is allowed to declare comparison operators as friend functions, see A13-5-5.

Example

/I $1d: A11-3-1.cpp 325916 2018-07-13 12:26:22Z christof.meerwald $
class A
{
public:
A& operator+=(A const& oth);
friend A const operator+(A const& lhs, A const& rhs); // Non-compliant
2
class B
{
public:
B& operator+=(B const& oth);
friend bool operator ==(B const& Ihs, B const& rhs) // Compliant by exception

{

14

15

16

17

18

19

20

21

AUTO©SAR

/I Implementation
I8

B const operator+(B const& lhs, B const& rhs) // Compliant

{

/I Implementation
}
See also

JSF December 2005 [8]: AV Rule 70 A class will have friends only when a
function or object requires access to the private elements of the class, but is
unable to be a member of the class for logical or efficiency reasons.

HIC++ v4.0 [9]: 11.2.1 Do not use friend declarations.

6.12 Special member functions

6.12.0 General

Rule A12-0-1 (required, implementation, automated)

If a class declares a copy or move operation, or a destructor, either via
“=default”, “=delete”, or via a user-provided declaration, then all others
of these five special member functions shall be declared as well.

Rationale
The semantics of five of the special member functions,
the copy constructor,
the move constructor,
the copy assignment operator,
the move assignment
operator, and the destructor,

are closely related to each other. If, for example, there is need to provide a non-
default destructor to release a resource, special handling usually also needs to be
added in the copy and move operations to properly handle this resource.

Language rules exist to generate the special member functions under certain conditions.
For historical reasons, these language rules are not entirely consistent. For example, the
presence of a destructor does not prevent the compiler from generating copy operations.
However, it prevents the move operations from being generated. Thus

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

AUTO©SAR

it is required, in order to maintain consistency and document the programmer’s
intent, that either none or all of the five functions are declared.

This rule is also known as “the rule of zero”, or “the rule of five” respectively. It is
highly recommended to design classes in a way that the rule of zero can be followed.

Note that the default constructor (which is also a special member function) is not part
of this rule. The presence of any user-declared constructor inhibits the generation of
the default constructor. Therefore, if a user-declared constructor is present, it may be
necessary (depending on requirements) to also declare the default constructor.
However, the presence of a user-declared default constructor does not inhibit the
generation of the other five special member functions. This rule therefore allows to
follow the rule of zero when the class only has a user-declared default constructor
(and possibly one or more constructors which are not special member functions).

Example

/I $1d: A12-0-1.cpp 309769 2018-03-01 17:40:29Z jan.babst $
#include <string>

namespace vl
{
/I Class is copyable and moveable via the compiler generated funtions.
/I Compliant - rule of zero.
class A
{

private:

/ Member data ...

2

} // namespace v1

namespace v2
{
/I New requirement: Destructor needs to be added.
/I Now the class is no longer moveable, but still copyable. The program
/I still compiles, but may perform worse.
/I Non-compliant - Unclear if this was the developers intent.
class A
{
public:
~A()
{
...

}

private:
/I Member data ...

h

} // namespace v2

namespace v3

{

36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83

85

86

AUTO©SAR

/I Move operations are brought back by defaulting them.
/I Copy operations are defaulted since they are no longer generated
/I (complies to A12-0-1 but will also be a compiler error if they are needed).
/I Default constructor is defaulted since it is no longer generated
/I (not required by A12-0-1 but will be a compiler error if it is needed).
/I Compliant - rule of five. Programmer’s intent is clear, class behaves the
/l same as v1:A.
class A
{
public:

A() = default;

A(A const&) = default;

A(A&&) = default;

~A()

{

...

}

A& operator=(A const&) = default;

A& operator=(A&&) = default;

private:
/I Member data ...
b

} // namespace v3

/I A class with regular (value) semantics.
/I Compliant - rule of zero.
class Simple
{
public:
/I User defined constructor, also acts as default constructor.
explicit Simple(double d = 0.0, std::string s = "Hello")
:d_(d), s_(std::move(s))
{
}

/I Compiler generated copy c’tor, move c’tor, d’tor, copy assignment, move

/I assignment.

private:
double d_;
std::string s_;

h

/I A base class.
/I Compliant - rule of five.
class Base

{
public:

Base(Base const&) = delete; / see also Al12-8-6
Base(Base&&) = delete; / see also A12-8-6

AUTOSAR

87 virtual ~Base() = default; /] see also A12-4-1
88 Base& operator=(Base const&) = delete; // see also A12-8-6
89 Base& operator=(Base&&) = delete; /] see also A12-8-6
90
91 /I Declarations of pure virtual functions ...
92
93 protected:
94 Base() = default; // in order to allow construction of derived objects
95§

96

97 I/ A move-only class.

98 [/l Compliant - rule of five.
99 class MoveOnly

100 {
101 public:
102 MoveOnly();
103 MoveOnly(MoveOnly const&) = delete;
104 MoveOnly(MoveOnly&&) noexcept;
105 ~MoveOnly();
106 MoveOnly& operator=(MoveOnly const&) = delete;
107 MoveOnly& operator=(MoveOnly&&) noexcept;
108
109 private:
110 ...
RN
See also

C++ Core Guidelines [11]: C.21: If you define or =delete any default operation,
define or =delete them all.

C++ Core Guidelines [11]: C.81: Use =delete when you want to disable default
behavior (without wanting an alternative).

Rule A12-0-2 (required, implementation, partially automated)
Bitwise operations and operations that assume data representation
in memory shall not be performed on objects.

Rationale

Object representations may consist of more than only the declared fields (unless the
objects are standard-layout or trivially copyable). Performing bitwise operations on
objects may access bits that are not part of the value representation, which may lead
to undefined behavior. Operations on objects (e.qg. initialization, copying, comparing,
setting, accessing) shall be done by dedicated constructors, overloaded operators,
accessors or mutators.

Example
1 /] $ld: A12-0-2.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#c21-if-you-define-or-delete-any-default-operation-define-or-delete-them-all
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#c21-if-you-define-or-delete-any-default-operation-define-or-delete-them-all
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c81-use-delete-when-you-want-to-disable-default-behavior-without-wanting-an-alternative
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c81-use-delete-when-you-want-to-disable-default-behavior-without-wanting-an-alternative

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

AUTO©SAR

I
#include <cstdint>
#include <cstring>

class A
{
public:
A() = default;
A(uint8_t c, uint32_t i, int8_t d, int32_t h) : c(c), i(i), d(d), h(h) {}

bool operator==(const A& rhs) const noexcept

{
return c==rhs.c && i==rhs.i && d==rhs.d && h==rhs.h;

private:
uint8_tc;
uint32_ti;
int8_td;
int32_t h;

int main(void)

{
A noninit;
/Isetting field ¢
std::memset(&noninit, 3, 1); //non-compliant
[Isetting field i
std::memset(((uint8_tx)&noninit)+sizeof(uint8_t)+3, 5, 1); //non-compliant
Ainit(3, 5, 7, 9); //lcompliant
if (noninit == init) /compliant
{
}
if (0 == std::memcmp(&noninit, &init, sizeof(init)))
{/Inon-compliant, includes padding bytes
}
return O;

}

See also

JSF December 2005 [8]: AV Rule 156: All the members of a structure (or class)
shall be named and shall only be accessed via their names.

PN O U A W N

AUTO©SAR

JSF December 2005 [8]: AV Rule 210: Algorithms shall not make assumptions
concerning how data is represented in memory (e.g. big endian vs. little endian,
base class subobject ordering in derived classes, nonstatic data member
ordering across access specifiers, etc.)

JSF December 2005 [8]: AV Rule 210.1: Algorithms shall not make
assumptions concerning the order of allocation of nonstatic data members
separated by an access specifier.

JSF December 2005 [8]: AV Rule 211: Algorithms shall not assume that shorts,
ints, longs, floats, doubles or long doubles begin at particular addresses.

SEI CERT C++ Coding Standard [10]: EXP42-C: Do not compare padding data

SEI CERT C++ Coding Standard [10]: EXP62-C: Do not access the bits of an
object representation that are not part of the object’s value representation

SEI CERT C++ Coding Standard [10]: OOP57-CPP: Prefer special member
functions and overloaded operators to C Standard Library functions

6.12.1 Constructors

Rule A12-1-1 (required, implementation, automated)
Constructors shall explicitly initialize all virtual base classes, all
direct non-virtual base classes and all non-static data members.

Rationale

A constructor of a class is supposed to completely initialize its object. Explicit
initialization of all virtual base classes, direct non-virtual base classes and non-static
data members reduces the risk of an invalid state after successful construction.

Example

/1 $1d: A12-1-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $
#include <cstdint>
class Base
{
/I Implementation
b
class VirtualBase
{
b
class A : public virtual VirtualBase, public Base
{
public:
A() : VirtualBase{}, Base{}, i{0}, {0} // Compliant
{
}

https://wiki.sei.cmu.edu/confluence/display/c/EXP42-C.+Do+not+compare+padding+data
https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP62-CPP.+Do+not+access+the+bits+of+an+object+representation+that+are+not+part+of+the+object%27s+value+representation
https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP62-CPP.+Do+not+access+the+bits+of+an+object+representation+that+are+not+part+of+the+object%27s+value+representation
https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP57-CPP.+Prefer+special+member+functions+and+overloaded+operators+to+C+Standard+Library+functions
https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP57-CPP.+Prefer+special+member+functions+and+overloaded+operators+to+C+Standard+Library+functions

16

17

19

20

21

22

23

24

26

N

7

AUTO©SAR

A(A const& oth)
: Base{}, j{0} /I Non-compliant - VirtualBase base class and member
/I inotinitialized

{
}

private:
std::int32_t;
std::int32_t j;
static std::int32_tk;
2
std::int32_t A::k{0};

See also

MISRA C++ 2008 [7]: Rule 12-1-2 All constructors of a class should explicitly call a
constructor for all of its immediate base classes and all virtual base classes.

HIC++ v4.0 [9]:12.4.2 Ensure that a constructor initializes explicitly all base
classes and non-static data members.

JSF December 2005 [8]: AV Rule 71: Calls to an externally visible operation of
an object, other than its constructors, shall not be allowed until the object has
been fully initialized.

Rule M12-1-1 (required, implementation, automated)
An object’s dynamic type shall not be used from the body of its
constructor or destructor.

See MISRA C++ 2008 [7]

Note: This rule prohibits both direct and indirect usage of object’s dynamic type from
its constructor or destructor.

See also

C++ Core Guidelines [11]: C.50: Use a factory function if you need “virtual
behavior” during initialization.

Rule A12-1-2 (required, implementation, automated)
Both NSDMI and a non-static member initializer in a constructor shall not
be used in the same type.

Rationale

Since 2011 C++ Language Standard it is allowed to initialize a non-static member
along with the declaration of the member in the class body using NSDMI (“non-static
data member initializer”). To avoid possible confusion which values are actually used,

http://www.codingstandard.com/rule/12-4-2-ensure-that-a-constructor-initializes-explicitly-all-base-classes-and-non-static-data-members/
http://www.codingstandard.com/rule/12-4-2-ensure-that-a-constructor-initializes-explicitly-all-base-classes-and-non-static-data-members/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c50-use-a-factory-function-if-you-need-virtual-behavior-during-initialization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c50-use-a-factory-function-if-you-need-virtual-behavior-during-initialization

AUTO©SAR

if any member is initialized by NSDMI or with a constructor, then all others should be
initialized the same way.

Exception

The move and copy constructors are exempt from this rule, because these
constructors copy the existing values from other objects.

Example

1 /] $ld: A12-1-2.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $
2 #include <cstdint>
3 #include <utility>

4 class A

s {

6 public:

7 A() : i11{0}, i2{0} // Compliant - i1 and i2 are initialized by the

8 /I constructor only. Not compliant with A12-1-3
o {

10 }

11 /I Implementation

12

13 private:

14 std::int32_til;

15 std::int32_t i2;

6}

17 class B

1 |

19 public:

20 /I Implementation

21

22 private:

23 std::int32_t i1{0}

24 std::int32_t i2{

25 0}; // Compliant - both i1 and i2 are initialized by NSDMI only
26}

27 class C

28 |

29 public:

30 C() : i2{0} // Non-compliant - i1 is initialized by NSDMI, i2 is in
31 /l member in member initializer list

32 {

33 }

34 C(C const& oth) : i1{oth.i1}, i2{oth.i2} // Compliant by exception
35 {

36 }

37 C(C&& oth)

38 : i1{std::move(oth.i1)},

39 i2{std::move(oth.i2)} // Compliant by exception
40 {

Vil }

42 /I Implementation

43

a4

45

46

47

w

IN

© o ~N o u

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

AUTO©SAR

private:
std::int32_t i1{0};
std::int32_ti2;

See also

HIC++ v4.0 [9]:12.4.3 Do not specify both an NSDMI and a member initializer in
a constructor for the same non static member

Rule A12-1-3 (required, implementation, automated)

If all user-defined constructors of a class initialize data members
with constant values that are the same across all constructors, then
data members shall be initialized using NSDMI instead.

Rationale

Using NSDMI lets the compiler to generate the function that can be more efficient
than a user-defined constructor that initializes data member variables with pre-
defined constant values.

Example

/I $1d: A12-1-3.cpp 291949 2017-10-19 21:26:22Z michal.szczepankiewicz $
#include <cstdint>
#include <string>
class A
{
public:
A() : x(0), y(0.0F), str() // Non-compliant
{

}
...

private:
std:int32_t x;
float y;
std::string str;
3
class B
{
public:
...

private:
std::int32_t x = 0; /I Compliant
float y = 0.0F; /I Compliant
std::string str =""; // Compliant

http://www.codingstandard.com/rule/12-4-3-do-not-specify-both-an-nsdmi-and-a-member-initializer-in-a-constructor-for-the-same-non-static-member/
http://www.codingstandard.com/rule/12-4-3-do-not-specify-both-an-nsdmi-and-a-member-initializer-in-a-constructor-for-the-same-non-static-member/

N
A

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

10

11

AUTO©SAR

class C

{

public:
C() : C(0, 0.0F, decltype(str)()) // Compliant
{
}
C(std::int32_t i, float f, std::string s) : x(i), y(f), str(s) // Compliant
{

}
...

private:
std::int32_tx =
0;// Non-compliant - there’s a constructor that initializes C

/I class with user input

float y = 0.0F; // Non-compliant - there’s a constructor that initializes C
/I class with user input

std::string str=""; // Non-compliant - there’s a constructor that

/l initializes C class with user input

See also

C++ Core Guidelines [11]: C.45: Don’t define a default constructor that only
initializes data members; use in-class member initializers instead.

Rule A12-1-4 (required, implementation, automated)
All constructors that are callable with a single argument of
fundamental type shall be declared explicit.

Rationale

The explicit keyword prevents the constructor from being used to implicitly convert a

fundamental type to the class type.

See: Fundamental-Types.

Example

/I $1d: A12-1-4.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
class A

{

public:
explicit A(std::int32_t number) : x(number) {} // Compliant
A(A const&) = default;
A(A&&) = default;
A& operator=(A const&) = default;
A& operator=(A&&) = default;

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

AUTO©SAR

private:
std::int32_t x;
I8
class B
{
public:
B(std::int32_t number) : x(number) {} // Non-compliant
B(B const&) = default;
B(B&&) = default;
B& operator=(B const&) = default;
B& operator=(B&&) = default;
private:
std::int32_t x;
I3
void F1(A a) noexcept
{
}
void F2(B b) noexcept
{
}
void F3() noexcept
{
F1(A(20));
// £1(10); /I Compilation error - because of explicit constructor it is not
/I possible to implicitly convert integer
/I to type of class A
F2(B(20));
F2(20); // No compilation error - implicit conversion occurs
}
See also

MISRA C++ 2008 [7]: Rule 12-1-3 (Required) All constructors that are callable
with a single argument of fundamental type shall be declared explicit.

a delegating constructor.

Rule A12-1-5 (required, implementation, partially automated)
Common class initialization for non-constant members shall be done by

Rationale

Common initialization of non-constant members in a delegating constructor prevents
from code repetition, accidental differences and maintenance problems.

Example
/I $1d: A12-1-5.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $

#include <cstdint>

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

AUTO©SAR

class A
{
public:
/I Compliant
A(std::int32_t x, std::int32_ty) : x(x + 8), y(y) {}
explicit A(std::int32_t x) : A(x, 0) {}

private:
std::int32_t x;
std::int32_ty;
b

class B
{
public:
/I Non-compliant
B(std::int32_t x, std::int32_ty) : x(x + 8), y(y) {}
explicit B(std::int32_t x) : x(x + 8), y(0) {}

private:

std:int32_t x;
std::int32_ty;

See also

HIC++ v4.0 [9]: 12.4.5: Use delegating constructors to reduce code duplication.

C++ Core Guidelines [11]: C.51: Use delegating constructors to represent
common actions for all constructors of a class.

Rule A12-1-6 (required, implementation, automated)
Derived classes that do not need further explicit initialization and require
all the constructors from the base class shall use inheriting constructors.

Rationale

Reimplementing constructors that do not need further initialization is error-prone and
may lead to using wrong base class constructor accidentally.

Example

// $1d: A12-1-6.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $

#include <cstdint>

class A

{
public:
A(std::int32_t x, std::int32_ty) : x(x + 8), y(y) {}

http://www.codingstandard.com/rule/12-4-5-use-delegating-constructors-to-reduce-code-duplication/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c51-use-delegating-constructors-to-represent-common-actions-for-all-constructors-of-a-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c51-use-delegating-constructors-to-represent-common-actions-for-all-constructors-of-a-class

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

a A W N R

AUTO©SAR

explicit A(std::int32_t x) : A(x, 0) {}

private:
std::int32_t x;
std::int32_ty;
2

/I Non-compliant
class B : public A

{
public:
B(std::int32_t x, std::int32_ty) : A(X, y) {}
explicit B(std::int32_t x) : A(X) {}
I3

/I Compliant
class C : public A

{
public:
using AA,;

See also

C++ Core Guidelines [11]: C.52: Use inheriting constructors to import
constructors into a derived class that does not need further explicit initialization.

6.12.4 Destructors

Rule A12-4-1 (required, implementation, automated)
Destructor of a base class shall be public virtual, public override
or protected non-virtual.

Rationale

If an object is supposed to be destroyed through a pointer or reference to its base
class, the destructor in the base class needs to be virtual. Otherwise, destructors for
derived types will not be invoked.

Note that if it is prohibited to destroy an object through a pointer or reference to its
base class, the destructor in the base class is supposed to be protected.

Example

/I $1d: A12-4-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
class A
{
public:
~A() // Non-compliant

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c52-use-inheriting-constructors-to-import-constructors-into-a-derived-class-that-does-not-need-further-explicit-initialization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c52-use-inheriting-constructors-to-import-constructors-into-a-derived-class-that-does-not-need-further-explicit-initialization

© o ~N o

AUTO©SAR

{
}
h
class B : public A
{
h
class C
{
public:
virtual ~C() // Compliant
{
}
h
class D : public C
{
b
class E
{
protected:
~E(); // Compliant
h
class F : public E
{
b
void F1(A* obj1, C* obj2)
{
...
delete obj1; // Only destructor of class A will be invoked
delete obj2; // Both destructors of D and C will be invoked
}
void F2()
{
Ax a = new B;
Cxc=newD;
Fl(a, c);
}
See also

JSF December 2005 [8]: AV Rule 78 All base classes with a virtual function
shall define a virtual destructor.

HIC++ v4.0 [9]: 12.2.1 Declare virtual, private or protected the destructor of a
type used as a base class.

SEI CERT C++ Coding Standard [10]: OOP52-CPP: Do not delete a
polymorphic object without a virtual destructor.

C++ Core Guidelines [11]: C.35: A base class destructor should be either public
and virtual, or protected and nonvirtual.

http://www.codingstandard.com/section/12-2-destructors/
https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP52-CPP.+Do+not+delete+a+polymorphic+object+without+a+virtual+destructor
https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP52-CPP.+Do+not+delete+a+polymorphic+object+without+a+virtual+destructor
https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP52-CPP.+Do+not+delete+a+polymorphic+object+without+a+virtual+destructor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

AUTO©SAR

C++ Core Guidelines [11]: Discussion: Make base class destructors public and

virtual, or protected and nonvirtual.

Rule A12-4-2 (advisory, implementation, automated)

be declared final.

If a public destructor of a class is non-virtual, then the class should

Rationale

If a public destructor of a class is non-virtual (i.e. no virtual, override or final keyword),
then the class is not supposed to be used as a base class in inheritance hierarchy.

Note that a destructor needs to be virtual in a base class in order to correctly destroy

an instance of a derived class through a pointer to the base class.

Example

I/ $1d: A12-4-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
class A // Non-compliant - class A should not be used as a base class because
/I its destructor is not virtual, but it is
Il not declared final

public:
A() = default;
A(A const&) = default;
A(A&&) = default;
A& operator=(A const&) = default;
A& operator=(A&&) = default;
~A() = default; // Public non-virtual destructor
2
class B final // Compliant - class B can not be used as a base class, because
/I it is declared final, and it should not be derived
/I because its destructor is not virtual
{
public:
B() = default;
B(B const&) = default;
B(B&&) = default;
B& operator=(B const&) = default;
B& operator=(B&&) = default;
~B() = default; // Public non-virtual destructor
2
class C // Compliant - class C is not final, and its destructor is virtual. It
/I can be used as a base class
{
public:
C() = default;
C(C const&) = default;
C(C&&) = default;
C& operator=(C const&) = default;
C& operator=(C&&) = default;

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namesd-dtoradiscussion-make-base-class-destructors-public-and-virtual-or-protected-and-nonvirtual

35

36

37

38

39

40

a1

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

AUTO©SAR

virtual ~C() = default; // Public virtual destructor

2
class AA : public A
{
2
Il class BA : public B // Compilation error - can not derive from final base
Il class B
1
I1};
class CA : public C
{
2
void Fn() noexcept
{
AA obj1;
CA obj2;
A& refl = obj1;
C& ref2 = obj2;
refl.~A(); // Calls A::~A() only
ref2.~C(); // Calls both CA::~CA() and C::~C()
}
See also

SEI CERT C++ Coding Standard [10]: OOP52-CPP: Do not delete a
polymorphic object without a virtual destructor.

6.12.6 Initialization

Rule A12-6-1 (required, implementation, automated)
All class data members that are initialized by the constructor shall
be initialized using member initializers.

Rationale

Using the constructor’'s member initializers is more efficient than assigning a copy of
passed values to data members in the constructor's body. Also, it supports the
programmer to prevent “data usage before initialization” errors.

Note that if a data member is already initialized using member initializer, then
changing its value in the constructor’s body does not violate this rule.

Example

I/ $1d: A12-6-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $
#include <cstdint>

#include <string>

class A

https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP52-CPP.+Do+not+delete+a+polymorphic+object+without+a+virtual+destructor
https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP52-CPP.+Do+not+delete+a+polymorphic+object+without+a+virtual+destructor
https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP52-CPP.+Do+not+delete+a+polymorphic+object+without+a+virtual+destructor

AUTO©SAR

{
public:
A(std::int32_t n, std::string s) : number{n}, str{s} // Compliant
{
}
/I Implementation
private:
std::int32_t number;
std::string str;
2
class B
{
public:
B(std::int32_t n, std::string s) // Non-compliant - no member initializers
{
number = n;
str=s;
}
/I Implementation
private:
std::int32_t number;
std::string str;
b
class C
{
public:
C(std::int32_t n, std::string s) : number{n}, str{s} // Compliant
{
n +=1; // This does not violate the rule
str.erase(str.begin(),
str.begin() + 1); /I This does not violate the rule
}
/I Implementation
private:
std::int32_t number;
std::string str;
2
See also

C++ Core Guidelines [11]: C.49: Prefer initialization to assignment in
constructors.

6.12.7 Construction and destructions

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-initialize

N o g A W N R

]

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

AUTO©SAR

Rule A12-7-1 (required, implementation, automated)

If the behavior of a user-defined special member function is identical
to implicitly defined special member function, then it shall be defined
“=default” or be left undefined.

Rationale

If a user-defined version of a special member function is the same as would be
provided by the compiler, it will be less error prone and more maintainable to replace
it with “=default” definition or leave it undefined to let the compiler define it implicitly.

Note that this rule applies to all special member functions of a class.

See: Implicitly-Defined-Default-Constructor, Implicitly-Defined-

Copy-Constructor, Implicitly-Defined-Move-Constructor,
Implicitly-Defined-Copy-Assignment-Operator, Implicitly-Defined-Move-Assignment-
Operator, Implicitly-Defined-Destructor

Example

I/ $1d: A12-7-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $
#include <cstdint>
#include <utility>
class A
{
public:
A(Q) : x(0), y(0) {} // Compliant
A(std::int32_t first, std::int32_t second) : x(first), y(second) {} // Compliant

I -

/[anyway, such
/I a constructor
/I cannot be
/I defaulted.
A(const A& oth)

x(oth.x),

y(oth.y) // Non-compliant - equivalent to the implicitly

/I defined copy constructor

{
}
A(A&& oth)

x(std::move(oth.x)),

y(std::move(

oth.y)) // Non-compliant - equivalent to the implicitly
/I defined move constructor

{
}
~A() /I Non-compliant - equivalent to the implicitly defined destructor
{

}

31
32
33
34
35
36
37
38
39

40

a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

AUTO©SAR

private:
std::int32_t x;
std::int32_ty;
2
class B
{
public:
B() {} // Non-compliant - x and y are not initialized
/I should be replaced with: B() : x{0}, y{0} {}
B(std::int32_t first, std::int32_t second) : x(first), y(second) {} // Compliant
B(const B&) =
default; // Compliant - equivalent to the copy constructor of class A
B(B&&) =
default; // Compliant - equivalent to the move constructor of class A
~B() = default; // Compliant - equivalent to the destructor of class A
private:
std::int32_t x;
std::int32_ty;
2
class C
{
public:
C() = default; /I Compliant
C(const C&) = default; // Compliant
C(C&&) = default; /I Compliant
2
class D
{
public:
D() : ptr(nullptr) {} /I Compliant - this is not equivalent to what the
/I implicitly defined default constructor would do
D(C* p) : ptr(p) {} /I Compliant
D(const D&) = default; // Shallow copy will be performed, user-defined copy
/I constructor is needed to perform deep copy on ptr variable
D(D&&) = default; // ptr variable will be moved, so ptr will still point to
/I the same object
~D() = default; // ptr will not be deleted, the user-defined destructor is
/I needed to delete allocated memory
private:
C* ptr;
2

class E // Compliant - special member functions definitions are not needed as
/I class E uses only implicit definitions

See also

AUTO©SAR

HIC++ v4.0 [9]: 12.5.2 Define special members =default if the behavior is
equivalent.

C++ Core Guidelines [11]: C.80: Use =default if you have to be explicit about
using the default semantics.

6.12.8 Copying and moving class objects

Rule A12-8-1 (required, implementation, automated)
Move and copy constructors shall move and respectively copy base
classes and data members of a class, without any side effects.

Rationale

It is expected behavior that the move/copy constructors are only used to move/copy
the object of the class type and possibly set moved-from object to a valid state.

Move and copy constructors of an object are frequently called by STL algorithms and
containers, so they are not supposed to provide any performance overhead or side
effects that could affect moving or copying the object.

Note: Class members that are not essential for a class invariant may not need to be

© o N o g A w N P

T
w N B O

[N
N

15

copied (e.g. caches, debug information).

Example

/I $1d: A12-8-1.cpp 303582 2018-01-11 13:42:56Z michal.szczepankiewicz $
#include <cstdint>
#include <utility>
class A
{
public:
/I Implementation
A(A const& oth) : x(oth.x) // Compliant

{
}

private:
std::int32_t x;
3
class B
{
public:
/I Implementation
B(B&& oth) : ptr(std::move(oth.ptr)) // Compliant
{
oth.ptr = nullptr; // Compliant - this is not a side-effect, in this
I/l case itis essential to leave moved-from object
/l'ina valid state, otherwise double deletion will

http://www.codingstandard.com/rule/12-5-2-define-special-members-default-if-the-behavior-is-equivalent/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eqdefault

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

51

52

54

55

56

57

58

59

AUTO©SAR

/I occur.

}
~B() { delete ptr; }

private:
std::int32_t* ptr;
3
class C

{
public:
/I Implementation
C(C const& oth) : x(oth.x)

{
...

X =X % 2; // Non-compliant - unrelated side-effect

}

private:
std:int32_t x;
b

class D

{

public:
explicit D(std::uint32_t a) : a(a), noOfModifications(0) {}
D(const D& d) : D(d.a) {} //compliant, not copying the debug information about number of
modifications

void SetA(std::uint32_t aa)
{

++noOfModifications;
a=aa;

}
std::uint32_t GetA() const noexcept

{

return a,

}

private:
std::uint32_t a;
std::uint64_t noOfModifications;

See also

MISRA C++ 2008 [7]: Rule 12-8-1 A copy constructor shall only initialize its
base classes and the nonstatic members of the class of which it is a member.

HIC++ v4.0 [9]: 12.5.3 Ensure that a user defined move/copy constructor only
moves/copies base and member objects.

http://www.codingstandard.com/rule/12-5-3-ensure-that-a-user-defined-movecopy-constructor-only-movescopies-base-and-member-objects/

10

11

12

13

14

15

16

17

18

19

20

21

22

AUTO©SAR

JSF December 2005 [8]: AV Rule 77: A copy constructor shall copy all data
members and bases that affect the class invariant (a data element representing
a cache, for example, would not need to be copied).

Rule A12-8-2 (advisory, implementation, automated) User-defined copy and
move assignment operators should use user-defined no-throw swap
function.

Rationale

Using a non-throwing swap operation in the copy and move assignment operators
helps to achieve Strong Exception Safety. Each assignment operator is also
simplified because it does not require check for assignment to itself.

Example

/l $1d: A12-8-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
#include <utility>

class A
{
public:
A(const A& oth)
{
...
}
A(A&& oth) noexcept
{
...
}
A& operator=(const A& oth) & // Compliant
{
A tmp(oth);
Swap(*this, tmp);
return *this;
}
A& operator=(A&& oth) & noexcept // Compliant
{
A tmp(std::move(oth));
Swap(*this, tmp);
return *this;
}
static void Swap(A& Ihs, A& rhs) noexcept
{
std::swap(lhs.ptrl, rhs.ptrl);
std::swap(lhs.ptr2, rhs.ptr2);
}
private:

std::int32_tx ptrl;

a1

42

43

44
45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

»
a1

66

68

AUTO©SAR

std::int32_t* ptr2;
2
class B

{
public:
B& operator=(const B& oth) & // Non-compliant
{
if (this 1= &oth)
{
ptrl =new std:int32_t(xoth.ptrl);
ptr2 =new std:int32_t(

*oth.ptr2); // Exception thrown here results in
/l a memory leak of ptrl

return *this;

}
B& operator=(B&& oth) & noexcept // Non-compliant

{
if (this != &oth)
{
ptrl = std::move(oth.ptrl);
ptr2 = std::move(oth.ptr2);
oth.ptrl = nullptr;
oth.ptr2 = nullptr;

return *this;

}

private:
std::int32_t* ptrl;
std::int32_tx ptr2;

See also

HIC++ v4.0 [9]: 12.5.6 Use an atomic, non-throwing swap operation to
implement the copy and move assignment operators

Rule A12-8-3 (required, implementation, partially automated)
Moved-from object shall not be read-accessed.

Rationale

Except in rare circumstances, an object will be left in an unspecified state after its
values has been moved into another object. Accessing data members of such object
may result in abnormal behavior and portability concerns.

http://www.codingstandard.com/rule/12-5-6-use-an-atomic-non-throwing-swap-operation-to-implement-the-copy-and-move-assignment-operators/
http://www.codingstandard.com/rule/12-5-6-use-an-atomic-non-throwing-swap-operation-to-implement-the-copy-and-move-assignment-operators/

al

(<))

© o N

10

11

12

13

14

AUTO©SAR

Exception

It is permitted to access internals of a moved-from object if it is guaranteed to be left
in a well-specified state.

The following Standard Template Library functions are guaranteed to leave the
moved-from object in a well-specified state:

move construction, move assignment, “converting” move construction and
“converting” move assignment of std::unique_ptr type

move construction, move assignment, “converting” move construction,
“converting” move assignment of std::shared_ptr type

move construction and move assignment from a std::unique_ptr of
std::shared_ptr type

move construction, move assignment, “converting” move construction and
“converting” move assignment of std::weak_ptr type

std::move() of std::basic_ios type
move constructor and move assignment of std::basic_filebuf
type move constructor and move assignment of std::thread type
move constructor and move assignment of std::unique_lock type
move constructor and move assignment of std::shared_lock type
move constructor and move assignment of std::promise type

move constructor and move assignment of std::future type

move construction, move assignment, “converting” move construction and
“converting” move assignment of std::shared_future type

move constructor and move assignment of std::packaged_task type

Example

/I $1d: A12-8-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
#include <iostream>
#include <memory>
#include <string>
void F1()
{
std::string s1{"string"};
std::string s2{std::move(sl)};
...
std::cout << s1 << "\n"; // Non-compliant - s1 does not contain "string"
/I value after move operation

}
void F2()

15

16

17

18

19

20

21

22

1

w

10

11

12

13

14

15

16

17

AUTO©SAR

{
std::unique_ptr<std::int32_t> ptrl = std::make_unique<std::int32_t>(0);
std::unique_ptr<std::int32_t> ptr2{std::move(ptrl)};
std::cout << ptrl.get() << std::endl; // Compliant by exception - move
I construction of std::unique_ptr
Il leaves moved-from object in a
Il well-specified state
}
See also

SEI CERT C++ [10]: EXP63-CPP Do not rely on the value of a moved-from object.

Rule A12-8-4 (required, implementation, automated)
Move constructor shall not initialize its class members and base
classes using copy semantics.

Rationale

Data members or base classes initialization in move constructor needs to be done
with move semantics. Move construction is an optimization strategy and the copy-
initialization for data members and base classes will have negative impact on the
program’s performance, as well as it does not meet developer expectations.

Exception

In move constructor, copy initialization for data members of scalar types does not
violate this rule.

See: Scalar-Types.

Example

/I $1d: A12-8-4.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $
#include <cstdint>
#include <string>
class A
{
public:
...
A(A&& oth)
: X(std::move(oth.x)), /I Compliant
s(std::move(oth.s)) /I Compliant
{
}

private:
std::int32_t x;
std::string s;

AUTO©SAR

1z class B
19 |
20 public:
21 ...
22 B(B&& oth)
23 : X(oth.x), /I Compliant by exception, std::int32_t is of scalar
24 Il type
25 s(oth.s) /I Non-compliant
26 {
27 }
28
29 private:
30 std::int32_t x;
31 std::string s;
2k
3z class C
aa |
35 public:
36 ...
37 C(C&& oth)
38 : X(oth.x), /I Compliant by exception
39 s(std::move(oth.s)) /I Compliant
40 {
41 }
42
43 private:
44 std::int32_t x = 0;
45 std::string s = "Default string";
VI
See also

SEI CERT C++ [10]: OOP11-CPP Do not copy-initialize members or base
classes from a move constructor.

Rule A12-8-5 (required, implementation, automated)
A copy assighment and a move assignment operators shall
handle self-assignment.

Rationale

User-defined copy assignment operator and move assignment operator need to
prevent self-assignment, so the operation will not leave the object in an indeterminate
state. If the given parameter is the same object as the local object, destroying object-
local resources will invalidate them. It violates the copy/move assignment
postconditions.

Note that STL containers assume that self-assignment of an object is correctly handled.
Otherwise it may lead to unexpected behavior of an STL container.

https://www.securecoding.cert.org/confluence/display/cplusplus/OOP11-CPP.+Do+not+copy-initialize+members+or+base+classes+from+a+move+constructor
https://www.securecoding.cert.org/confluence/display/cplusplus/OOP11-CPP.+Do+not+copy-initialize+members+or+base+classes+from+a+move+constructor

AUTO©SAR

Self-assignment problem can also be solved using swap operators. See rule: A12-8-2.

Example

1 /1 $Id: A12-8-5.cpp 271773 2017-03-23 13:16:53Z piotr.tanski $
2 #include <cstdint>

3 #include <stdexcept>

4 struct A

s {

6 std::int32_t number;

7 std::int32_t* ptr;

8 /I Implementation

9}

10 class B

11 {

12 public:

13 ...

14 B& operator=(B const& oth) // Non-compliant
15 {

16 i = oth.i;

17 delete aPtr;

18

19 try

20 {

2 aPtr = new A(*oth.aPtr); // If this is the self-copy case, then
22 /I the oth.a_ptr is already deleted

23 }
24 catch (std::bad_alloc&)
25 {
26 aPtr = nullptr;
27 }
28
29 return *this;
30 }
31
32 private:
33 std::intl6_ti=0;
34 Ax aPtr = nullptr;
s}
3 class C
7 {
38 public:
39 C& operator=(C const& oth) // Compliant
40 {
41 if (this !'= &oth)
42 {
0 A* tmpPtr = new A(*oth.aPtr);

45 i = oth.i;

46 delete aPtr;
47 aPtr = tmpPtr;
48 }

49

50

52

53

54

55

56

57

58

59

61
62

63

(<3
a

66

67

10

11

12

AUTO©SAR

return *this;

}
C& operator=(C&& oth) // Compliant
{
if (this != &oth)
{
A* tmpPtr = new A{std::move(*oth.aPtr)};
i = oth.i;
delete aPtr;
aPtr = tmpPtr;
}
return xthis;
}
private:
std::intl6_ti=0;
Ax aPtr = nullptr;
2
See also

SEI CERT C++ [10]: OOP54-CPP Gracefully handle self-assignment.

C++ Core Guidelines [11]: C.62: Make copy assignment safe for self-assignment.

Rule A12-8-6 (required, implementation, automated)
Copy and move constructors and copy assignment and move assignment
operators shall be declared protected or defined “=delete” in base class.

Rationale

Invoking copy or move constructor or copy assignment or move assignment operator
from the top of a class hierarchy bypasses the underlying implementations. This
results in “slicing” where only the base sub-objects being copied or moved.

Example

/I $1d: A12-8-6.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <memory>

#include <utility>

#include <vector>

class A /I Abstract base class

{
public:
A() = default;
A(A const&) = default; // Non-compliant
A(A&&) = default; /I Non-compliant
virtual ~A() = 0;

A& operator=(A const&) = default; // Non-compliant

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

AUTO©SAR

A& operator=(A&&) = default; /I Non-compliant
2
class B : public A
{
2
class C // Abstract base class
{
public:
C() = default;
virtual ~C() = 0;
protected:
C(C const&) = default; /I Compliant
C(C&&) = default; /I Compliant
C& operator=(C const&) = default; // Compliant
C& operator=(C&&) = default; /I Compliant
b
class D : public C
{
2
class E /I Abstract base class
{
public:
E() = default;
virtual ~E() = 0;
E(E const&) = delete; /I Compliant
E(E&&) = delete; /I Compliant
E& operator=(E const&) = delete; // Compliant
E& operator=(E&&) = delete; /I Compliant
b
class F : public E
{
2
class G // Non-abstract base class
{
public:
G() = default;
virtual ~G() = default;
G(G const&) = default; /I Non-compliant
G(G&&) = default; /I Non-compliant
G& operator=(G const&) = default; // Non-compliant
G& operator=(G&&) = default; /I Non-compliant
2
class H : public G
{
2
void Fn1() noexcept
{
B obj1;
B obj2;

Ax ptrl = &obj1;

64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86

87

97

98

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

AUTOSAR

}

A* ptr2 = &obj2;

*ptrl = *ptr2; /I Partial assignment only
*ptrl = std::move(*ptr2); // Partial move only

D obj3;

D obj4;

C* ptr3 = &obj3;

C+ ptr4 = &obj4;

/[+ptr3 = *ptr4; // Compilation error - copy assignment operator of class C
/l'is protected

[I*ptr3 = std::move(*ptrd); // Compilation error - move assignment operator
/I of class C is protected

F obj5;

F obj6;

Ex* ptr5 = &obj5;

E* ptré = &obj6;

[[*ptr5 = *ptr6; // Compilation error - use of deleted copy assignment

/I operator

[[*ptr5 = std::move(*ptr6); // Compilation error - use of deleted move
I/l assignment operator

H obj7;

H obj8;

G ptr7 = &obj7;

G+ ptr8 = &obj8;

*ptr7 = *ptr8; /I Partial assignment only
*ptr7 = std::move(*ptr8); // Partial move only

class | // Non-abstract base class

{

h

public:

I() = default;
~I() = default;

protected:

I(I const&) = default; /I Compliant
1(1&&) = default; /I Compliant
1& operator=(I const&) = default; // Compliant

1& operator=(1&&) = default; /I Compliant

class J : public |

{

h

public:

J() = default;

~J() = default;

J(J const&) = default;

J(J&&) = default;

J& operator=(J const&) = default;
J& operator=(J&&) = default;

void Fn2() noexcept

{

std::vector<|> v1;

— AUTOSAR CONFIDENTIAL —

115

116

117

118

119

120

121

122

123

124

125

126

127

128

AUTOSAR

/I v1.push_back(J{}); // Compilation-error on calling a deleted move
/I constructor of | class, slicing does not occur

/I v1.push_back(l{}); // Compilation-error on calling a deleted move
/I constructor of | class

std::vector<J> v2;
v2.push_back(J{}); // No compilation error

std::vector<std::unique_ptr<I|>> v3;

v3.push_back(std::unique_ptr<I>{}); /I No compilation error
v3.push_back(std::make_unique<I>()); // No compilation error
v3.push_back(std::make_unique<J>()); // No compilation error
v3.emplace_back(); /I No compilation error

See also

MISRA C++ 2008 [7]: Rule 12-8-2 The copy assignment operator shall be
declared protected or private in an abstract class.

HIC++ v4.0 [9]: 12.5.8 Make the copy assignment operator of an abstract class

protected or define it =delete.

C++ Core Guidelines [11]: C.67: A base class should suppress copying, and
provide a virtual clone instead if “‘copying™ is desired.

C++ Core Guidelines [11]: C.81: Use =delete when you want to disable default

behavior (without wanting an alternative).

Rule A12-8-7 (advisory, implementation, automated)
Assignment operators should be declared with the ref-qualifier &.

Rationale

User declared assignment operators differ from built-in operators in a way that they
accept rvalues as parameters, which is confusing. Adding & to the function
declaration prohibits rvalue parameters and ensures that all of the calls can only be

made on lvalue objects, which results with the same behavior as for built-in types.

Note that this rule applies to all assignment operators, e.g. operator=(), operator*=(),

operator+=.

Example

// $1d: A12-8-7.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
class A
{
public:
A() = default;
A& operator*=(std::int32_t i) // Non-compliant

http://www.codingstandard.com/rule/12-5-8-make-the-copy-assignment-operator-of-an-abstract-class-protected-or-define-it-delete/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerc-copy-virtualac67-a-base-class-should-suppress-copying-and-provide-a-virtual-clone-instead-if-copying-is-desired
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c81-use-delete-when-you-want-to-disable-default-behavior-without-wanting-an-alternative
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c81-use-delete-when-you-want-to-disable-default-behavior-without-wanting-an-alternative

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

AUTO©SAR

{
...
return *this;
}
2
A F1() noexcept
{
return A{};
}
class B
{
public:
B() = default;
B& operatorx=(std::int32_t) & // Compliant
{
...
return this;
}
2
B F2() noexcept
{
return B{};
}
std::int32_t F3() noexcept
{
return 1;
}
int main(int, charxx)
{
F1() »= 10; // Temporary result of f1() multiplied by 10. No compile-time
/I error.
/I f2() *= 10; /I Compile-time error due to ref-qualifier
/1 f3() #= 10; // Compile-time error on built-in type
}
See also

HIC++ v4.0 [9]: 12.5.7 Declare assignment operators with the ref-qualifier &.

cppreference.com [16]: Assignment operators.

6.13 Overloading

6.13.1 Overloadable declarations

AUTO©SAR

Rule A13-1-2 (required, implementation, automated)
User defined suffixes of the user defined literal operators shall start
with underscore followed by one or more letters.

Rationale

Suffixes that do not begin with the underscore character are reserved for operators
provided by the standard library.
Example

1/ $1d: A13-1-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
2 constexpr long double operator™ _m(long double meters) // Compliant

= {

4 /I Implementation

5 return meters;

s}

7 constexpr long double operator™ _kg(long double kilograms) // Compliant
e {

/I Implementation
return kilograms;

}

constexpr long double operator
{

/I Implementation

return meters;

}

constexpr long double operator™ kilograms(
long double kilograms) // Non-compliant

{

/I Implementation

return kilograms;

}
void Fn()

{
long double weight = 20.0_kg;

long double distance = 204.8_m;

}

m(long double meters) // Non-compliant

See also

none

Rule A13-1-3 (required, implementation, automated)
User defined literals operators shall only perform conversion of
passed parameters.

AUTO©SAR

Rationale

It is expected behavior that the user-defined literals operators are only used to
convert passed parameters to the type of declared return value. User-defined literals
are not supposed to provide any other side-effects.

Example

/] $ld: A13-1-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <iostream>

struct Cube

{

unsigned long long int volume;

constexpr explicit Cube(unsigned long long int v) : volume(v) {}

b

constexpr Cube operator" _m3(unsigned long long int volume)
{

return Cube(volume); // Compliant

}

struct Temperature

{

unsigned long long int kelvins;
constexpr explicit Temperature(unsigned long long int k) : kelvins(k) {}
h

constexpr Temperature operator

{

return Temperature(kelvins); // Compliant

}

static void SumDistances(std::int32_t distance)

{

static std::int32_t overallDistance = 0;

overallDistance += distance;

}

struct Distance

{

long double kilometers;

explicit Distance(long double kms) : kilometers(kms) {}
h

Distance operator
{
SumbDistances(meters); // Non-compliant - function has a side-effect
return Distance(meters / 1000);

_K(unsigned long long int kelvins)

_m(long double meters)

}

void operator™ _print(const char* str)

{

std::cout << str <<’\n’; // Non-compliant - user-defined literal operator

) /I does not perform conversion and has a
a I side-effect

}

See also

AUTO©SAR

none

6.13.2 Declaration matching

Rule A13-2-1 (required, implementation, automated)
An assignment operator shall return a reference to “this”.

Rationale

Returning a type “T&” from an assignment operator is consistent with the C++
Standard Library.

Example

I/ $1d: A13-2-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $
class A

{

public:

...

A& operator=(const A&) & // Compliant

{

...

return *this;

}

2

12

class B

{

public:
...

const B& operator=(const B&) & // Non-compliant - violating consistency
18 /I with standard types
{
...

return *this;

}

I8

24

class C

{

public:
...

C operator=(const C&) & // Non-compliant
{
I ...

return *this;

}

I8

35

AUTO©SAR

class D

{

public:

...

D+ operator=(const D&) & // Non-compliant

{
..

return this;

}
h
See also

HIC++ v4.0 [9]: 13.2.2 Ensure that the return type of an overloaded binary
operator matches the built-in counterparts.

C++ Core Guidelines [11]: F.47: Return T& from assignment operators.

Rule A13-2-2 (required, implementation, automated)
A binary arithmetic operator and a bitwise operator shall return a “prvalue”.

Rationale

Returning a type “T” from binary arithmetic and bitwise operators is consistent with
the C++ Standard Library.

See: prvalue.

Example

/I $1d: A13-2-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $
#include <cstdint>

3

class A

{

b

7

A operator+(A const&, A const&) noexcept // Compliant

{

return A{};
}
std::int32_t operator/(A const&, A const&) noexcept // Compliant

{

return O;

}

A operator&(A const&, A const&)noexcept // Compliant

{
return A{};

}

const A operator-(A const&, std::int32_t) noexcept // Non-compliant

{

http://www.codingstandard.com/rule/13-2-2-ensure-that-the-return-type-of-an-overloaded-binary-operator-matches-the-built-in-counterparts/

AUTO©SAR

return A{};
}

Ax operator|(A const&, A const&) noexcept // Non-compliant

{

return new A{};

}

See also

HIC++ v4.0 [9]: 13.2.2 Ensure that the return type of an overloaded binary
operator matches the built-in counterparts.

Rule A13-2-3 (required, implementation, automated)
A relational operator shall return a boolean value.

Rationale

Returning a type “bool” from a relational operator is consistent with the C++ Standard
Library.

Example

/Il $1d: A13-2-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $
#include <cstdint>

3

class A

{

2

7

bool operator==(A const&, A const&) noexcept // Compliant

{

return true;

}

bool operator<(A const&, A const&) noexcept // Compliant

{

return false;

}

bool operator!=(A const& Ihs, A const& rhs) noexcept // Compliant
{

return !(operator==(lhs, rhs));

}

std::int32_t operator>(A const&, A const&) noexcept // Non-compliant
{

return -1;

}
A operator>=(A const&, A const&) noexcept // Non-compliant

{

return A{};

}

const A& operator<=(A const& lhs, A const& rhs) noexcept // Non-compliant

http://www.codingstandard.com/rule/13-2-2-ensure-that-the-return-type-of-an-overloaded-binary-operator-matches-the-built-in-counterparts/

{

AUTO©SAR

return |hs;

}

See also

HIC++ v4.0 [9]: 13.2.2 Ensure that the return type of an overloaded binary
operator matches the built-in counterparts.

6.13.3 Overload resolution

Rule A13-3-1 (required, implementation, automated)
A function that contains “forwarding reference” as its argument shall not
be overloaded.

Rationale

A template parameter that is declared “T&&” (Scott Meters called it a “universal
reference”, while C++ Language Standard calls it a “forwarding reference”) will
deduce for any type. Overloading functions with “forwarding reference” argument
may lead to developer’s confusion on which function will be called.

Exception

Declaring an overloading function that takes a “forwarding reference” parameter to be
“=delete” does not violate this rule.

Declaring a “forwarding constructor” that is constrained (via SFINAE) to not match
any other overloads also does not violate this rule, see A14-5-1.

Example

// $1d: A13-3-1.cpp 309903 2018-03-02 12:54:18Z christof.meerwald $
#include <cstdint>

template <typename T>

void F1(T&& t) noexcept(false)

{

}

void F1(

std::int32_t&& t) noexcept // Non-compliant - overloading a function with
9 /l forwarding reference

{

}

template <typename T>
void F2(T&& t) noexcept(false)
{

}
void F2(std::int32_t&) = delete; // Compliant by exception

17

http://www.codingstandard.com/rule/13-2-2-ensure-that-the-return-type-of-an-overloaded-binary-operator-matches-the-built-in-counterparts/

AUTO©SAR

class A
{
public:
/I Compliant by exception, constrained to not match copy/move ctors
template<typename T,
23 std::enable_if t<! std::is_same<std::remove_cv_t<std::
remove_reference_t<T>>, A>::value> * = nullptr>
A(T &&value);
h
26
int main(int, char*¥)
{
std::int32_t x = 0;
30 F1(x); /I Calls f1(T&&) with T = int&
F1(+x); // Calls f1(std::int32_t&&)
F1(0); // Calls f1(std::int32_t&&)
F1(0U); // Calls f1(T&&) with T = unsigned int
F2(0); /I Calls f2(T&&) with T =int
Il f2(x); // Compilation error, the overloading function is deleted

}

See also

HIC++ v4.0 [9]: 13.1.2 If a member of a set of callable functions includes a
universal reference parameter, ensure that one appears in the same position
for all other members.

Effective Modern C++ [13]: Item 26. Avoid overloading on universal references.

6.13.5 Overloaded operators

Rule A13-5-1 (required, implementation, automated)
If “operator[]” is to be overloaded with a non-const version, const
version shall also be implemented.

Rationale

A non-const overload of the subscript operator allows an object to be modified, by
returning a reference to member data, but it does not allow reading from const
objects. The const version of “operator[]” needs to be implemented to ensure that the
operator can be invoked on a const object.

Note that one can provide a const version of operator[] (to support read-only access
to elements), but without a non-const version.

Example

/I $1d: A13-5-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

http://www.codingstandard.com/rule/13-1-2-if-a-member-of-a-set-of-callable-functions-includes-a-universal-reference-parameter-ensure-that-one-appears-in-the-same-position-for-all-other-members/
http://www.codingstandard.com/rule/13-1-2-if-a-member-of-a-set-of-callable-functions-includes-a-universal-reference-parameter-ensure-that-one-appears-in-the-same-position-for-all-other-members/
http://www.codingstandard.com/rule/13-1-2-if-a-member-of-a-set-of-callable-functions-includes-a-universal-reference-parameter-ensure-that-one-appears-in-the-same-position-for-all-other-members/

AUTO©SAR

class Containerl

{

public:

std::int32_t& operator[](

std::int32_t index) // Compliant - non-const version
{

return containerfindex];
}
std::int32_t operator[](
std::int32_t index) const // Compliant - const version

{

return containerfindex];

}

16

private:

static constexpr std::int32_t maxSize = 10;
std::int32_t container[maxSize];

h

void Fn() noexcept

{

Containerl c1,;

std::int32_t e = ¢1[0]; // Non-const version called
25 c1[0] = 20; /I Non-const version called
Containerl const c2{};

e = c2[0]; // Const version called

/I ¢2[0] = 20; /I Compilation error

}

class Container2 // Non-compliant - only non-const version of operator(]
31 /I implemented

{

public:

std::int32_t& operator[](std::int32_t index) { return container[index]; }
35

private:

static constexpr std::int32_t maxSize = 10;

std::int32_t container[maxSize];

h
See also

HIC++ v4.0 [9]: 13.2.4 When overloading the subscript operator (operator(])
implement both const and non-const versions.

Rule A13-5-2 (required, implementation, automated)
All user-defined conversion operators shall be defined explicit.

Rationale

Without explicit keyword, a single user defined conversion can be invoked in a
standard conversion sequence, which can lead to accidental errors.

http://www.codingstandard.com/rule/13-2-4-when-overloading-the-subscript-operator-operator-implement-both-const-and-non-const-versions/

AUTO©SAR

Example

// $1d: A13-5-2.cpp 303121 2018-01-09 09:03:52Z michal.szczepankiewicz $
class A
{
public:
explicit A(double d) : d(d) {}
explicit operator double() const { return d; } // Compliant
private:
double d;
I8
10
int main(void)
{
A a{3.1415926535897932384626433832795028841971693993751058209749445923078};
14
double tmp1{a};
/I float tmp2{a}; //compilation error instead of warning, prevents from data
/I precision loss
18
return O;

}

See also

HIC++ v4.0 [9]: 12.1.1: Do not declare implicit user defined conversions.

Rule A13-5-3 (advisory, implementation, automated)
User-defined conversion operators should not be used.

Rationale

Explicitly named conversions using dedicated member function eliminate any
potential errors that can arise if the type conversion operators have to be used.

If using conversion operators is fundamental in an application domain, see A13-5-2.

Example

/I $1d: A13-5-3.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
#include <iostream>

3

class Complex

{

public:

Complex (double r, double i = 0.0) : re(r), im(i) {}
explicit operator double() const noexcept { return re; }
double AsDouble() const noexcept { return re; }
private:
double re;
double im;

http://www.codingstandard.com/rule/12-1-1-do-not-declare-implicit-user-defined-conversions/

AUTO©SAR

¥
14
int main(void)

{
Complex c(2.0f);

18

19 std::cout << (double) ¢ << std::endl; //compliant with A13-5-2, non-compliant with A13-5-3

std::cout << c.AsDouble() << std::endl; //compliant
21

return 0O;

}

See also

JSF December 2005 [8]: AV Rule 177: User-defined conversion functions
should be avoided.

C++ Core Guidelines [11]: C.164: Avoid conversion operators.

Rule A13-5-4 (required, implementation, automated)
If two opposite operators are defined, one shall be defined in terms of
the other.

Rationale

Defining one operator in terms of the other simplifies maintenance and prevents from
accidental errors during code development.

Note: Completeness of relational operators can be achieved by implementing just
operator== and operator< and using namespace rel_ops.

Example

/I $1d: A13-5-4.cpp 328319 2018-08-03 14:08:42Z christof.meerwald $
#include <cstdint>

3

/I non-compliant

class A

{

public:

8 explicit A(std::uint32_t d) : d(d) {}

9

10 friend bool operator==(A const & Ihs, A const & rhs) noexcept
11 {

12 return lhs.d == rhs.d;

13 }

14 friend bool operator!=(A const & Ihs, A const & rhs) noexcept
15 {

16 return lhs.d !=rhs.d;

17 }

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c164-avoid-conversion-operators

18

AUTO©SAR

private:
std::uint32_t d;

h

22

/I compliant
class B

{

public:
explicit B(std::uint32_t d) : d(d) {}

28

29

friend bool operator==(B const & Ihs, B const & rhs) noexcept

30 {

31 return lhs.d == rhs.d;

32 }

33

34 friend bool operator!=(B const & Ihs, B const & rhs) noexcept
35 {

36 return !(lhs == rhs);

}

private:

std::uint32_t d;

k

See also

JSF December 2005 [8]: AV Rule 85: When two operators are opposites (such
as == and !=), both will be defined and one will be defined in terms of the other.

Rule A13-5-5 (required, implementation, automated)
Comparison operators shall be non-member functions with
identical parameter types and noexcept.

Rationale

Any asymmetric behavior for comparison functions can be confusing. In order to
achieve fully symmetric treatment, comparison functions need to be defined as non-
member functions, as the implicit object parameter of a member function does not
allow user-defined conversions to be applied (but the right hand side would).

Since comparison is a fundamental operation, it should never throw an exception.
Note: This rule applies to ==, I=, <, <=, >, and >=

Note: Declaring a comparison operator as a friend allows it to access internal data
similar to a member function and is allowed by exception in rule A11-3-1.

Example

/I $1d: A13-5-5.cpp 325916 2018-07-13 12:26:22Z christof.meerwald $
#include <cstdint>

AUTO©SAR

3

class A

{

public:

explicit A(std::uint32_t d)

:m_d(d)

{}

10

11 bool operator ==(A const & rhs) const // Non-compliant: member, not noexcept
12 {

13 return m_d == rhs.m_d;

14 }

15

private:

std::uint32_t m_d;

b

19

class C

{

public:

operator A() const;

2

25
void Foo(A const & a, C const & ¢)

{

a == c; // asymmetric as "a ==c" compiles, but "c == a" doesn’t compile
}

30
31

class B

{

public:

explicit B(std::uint32_t d)

: m_d(d)

{}

38

39 Compliant: non-member, identical parameter types, noexcept friend bool operator
40 ==(B const & lhs, B const & rhs) noexcept
41 {
42 return lhs.m_d == rhs.m_d;
43 }
44

private:

std::uint32_t m_d;

2
48

class D

{

public:

operator B() const;

h

54

AUTO©SAR

void Bar(B const & b, D const & d)

{

b==d;
d==b;

}

See also

C++ Core Guidelines [11]: C.86: Make == symmetric with respect to operand
types and noexcept

6.13.6 Build-in operators

Rule A13-6-1 (required, implementation, automated)

Digit sequences separators ’ shall only be used as follows: (1) for
decimal, every 3 digits, (2) for hexadecimal, every 2 digits, (3) for binary,
every 4 digits.

Rationale

Since C++14 Language Standard it is allowed (optionally) to separate any two digits
in digit sequences with separator ’. However, to meet developer expectations, usage
of separator in integer and floating-point digit sequences should be unified:

for decimal values, separator can be placed every 3 digits, e.g. 3'000°000,
3.141'592°653

for hexadecimal values, separator can be placed every 2 digits, e.g.
OxFF'FF’'FF'FF

for binary values, separator can be placed very 4 digits, e.g. 0b1001'1101°0010

Example

// $1d: A13-6-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
void Fn() noexcept

{

© o N o »

10

11

12

std::uint32_t decimall =3'000’000; /I Compliant
std::uint32_t decimal2 = 4’500; /I Compliant
std::uint32_t decimal3 = 54’00'30; /Il Non-compliant
float decimal4 = 3.141°592°653; /I Compliant
float decimal5 = 3.1’4159'265'3; /I Non-compliant
std::uint32_t hex1 = OXFF'FF'FF’FF; /I Compliant
std::uint32_t hex2 = OxFAB’I’FFFFF; /Il Non-compliant
std::uint8_t binaryl = 0b1001°’0011; /I Compliant

std::uint8_t binary2 = 0b10°00°10°01; // Non-compliant

}

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq

AUTO©SAR

See also

ISO 26262-6 [5]: 8.4.4 e) readability and comprehensibility

6.14 Templates

6.14.0 General

6.14.1 Template parameters

Rule A14-1-1 (advisory, implementation, non-automated)
A template should check if a specific template argument is suitable for
this template.

Rationale

If a template class or function requires specific characteristics from a template type
(e.g. if it is move constructible, copyable, etc.), then it needs to check whether the
type matches the requirements to detect possible faults. The goal of this rule is to
ensure that a template defines all of the preconditions that a template argument
needs to fulfill without having any information about the specific class.

This can be achieved in compile time using static_assert assertion.

Example

/I $1d: A14-1-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <utility>
class A
{
public:
A() = default;
~A() = default;
A(A const&) = delete;
A& operator=(A const&) = delete;
A(A&&) = delete;
A& operator=(A&&) = delete;
¥
class B
{
public:
B() = default;
B(B const&) = default;
B& operator=(B const&) = default;
B(B&&) = default;
B& operator=(B&&) = default;
¥

template <typename T>

AUTO©SAR

void F1(T const& obj) noexcept(false)

{

static_assert(

std::is_copy_constructible<T>(),

"Given template type is not copy constructible."); // Compliant

}

template <typename T>

class C

{

/I Compliant

static_assert(std::is_trivially_copy_constructible<T>(),
34 "Given template type is not trivially copy constructible.");
35

/I Compliant

static_assert(std::is_trivially_move_constructible<T>(),
38 "Given template type is not trivially move constructible.");
39

/I Compliant

static_assert(std::is_trivially_copy_assignable<T>(),
a2 "Given template type is not trivially copy assignable.");
43

/I Compliant

static_assert(std::is_trivially_move_assignable<T>(),
46 "Given template type is not trivially move assignable.");
47

public:

C() = default;

C(C const&) = default;

C& operator=(C const&) = default;
C(C&&) = default;

C& operator=(C&&) = default;

54

private:

Tc;

I8

template <typename T>

class D

{

public:

D() = default;

63 D(D const&) = default; /l Non-compliant - T may not be copyable
D& operator=(D const&) = default; // Non-compliant - T may not be copyable

65 D(D&&) = default; // Non-compliant - T may not be movable

D& operator=(D&&) = default;// Non-compliant - T may not be movable
67

private:

Td;

I3

void F2() noexcept

{
Ag;

AUTO©SAR

B b;

Il f1<A>(a); /I Class A is not copy constructible, compile-time error

I/l occurs

F1(b); // Class B is copy constructible

/I C<A> c1; /I Class A can not be used for template class C, compile-time
/I error occurs

C c2; // Class B can be used for template class C

D<A> d1;

/I D<A> d2 = d1; // Class D can not be copied, because class A is not

/I copyable, compile=time error occurs

/I D<A> d3 = std::move(dl); // Class D can not be moved, because class A is
/I not movable, compile-time error occurs

D d4;

D d5 = d4;

D d6 = std::move(d4);

}

See also

JSF December 2005 [8]: AV Rule 103: Constraint checks should be applied to
template arguments.

C++ Core Guidelines [11]: T.150: Check that a class matches a concept using
static_assert.

6.14.5 Template declarations

Rule A14-5-1 (required, implementation, automated)
A template constructor shall not participate in overload resolution for
a single argument of the enclosing class type.

Rationale

A template constructor is never a copy or move constructor and therefore doesn’t
prevent the implicit definition of a copy or move constructor even if the template
constructor looks similar and might easily be confused.

At the same time, copy or move operations do not necessarily only use a copy or
move constructor, but go through the normal overload resolution process to find the
best matching function to use.

This can cause confusion in the following cases:

a template constructor that looks like a copy/move constructor is not selected
for a copy/move operation because the compiler has generated an implicit
copy/move constructor as well

a template constructor is selected in preference over a copy/move constructor
because the template constructor is a better match

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-check-class

AUTO©SAR

To avoid these confusing situations, template constructors shall not participate in
overload resolution for a single argument of the enclosing class type to avoid a
template constructor being selected for a copy/move operation. It also makes it clear
that the constructor is not a copy/move constructor and that it does not prevent the
implicit generation of copy/move constructors.

Example

/I $ld: A14-5-1.cpp 309903 2018-03-02 12:54:18Z christof. meerwald $
#include <cstdint>

#include <type_traits>

4

class A

{

public:

/I Compliant: template constructor does not participate in overload
9 I resolution for copy/move operations

template<typename T,
11 std::enable_if t<! std::is_same<std::remove_cv_t<T>, A>:ivalue> * = nullptr>

A(const T &value)

: m_value { value }

{}

15

private:

std::int32_t m_value;

I8

19

void Foo(A const &a)

{

A myA {a}; // will use the implicit copy ctor, not the template converting
ctor

23

Aa2{2}; //will use the template converting ctor

}

26

class B

{

public:

B(const B &) = default;

B(B &&) = default;

32

/I Compliant: forwarding constructor does not participate in overload

34 1l resolution for copy/move operations

template<typename T,

36 std::enable_if_t<! std::is_same<std::remove_cv_t<std::
remove_reference_t<T>>, B>::value> * = nullptr>

B(T &&value);

I3

39

void Bar(B b)
{

AUTO©SAR

B myB { b}, // will use the copy ctor, not the forwarding ctor
}

44

class C

{

public:

C(const C &) = default;

C(C &&) = default;

50

/I Non-Compliant: unconstrained template constructor
template<typename T>

C(T &);

h

55

void Bar(C c)

{

C myC {c}; //will use template ctor instead of copy ctor

}

See also

MISRA C++ 2008 [7]: M14-5-2: A copy constructor shall be declared when there is
a template constructor with a single parameter that is a generic parameter.

Rule A14-5-2 (advisory, design, partially-automated)
Class members that are not dependent on template class
parameters should be defined in a separate base class.

Rationale

Having non-dependent members in a class template can lead to unnecessary template
instantiations and potential code bloat. It is therefore preferred to move those members
to a non-dependent base class so they can be used without any template instantiation.

Example

/I $1d: A14-5-2.cpp 323444 2018-06-22 14:38:18Z christof.meerwald $

#include <cstdint>

3

template<typename T>
class A

{
public:

enum State // Non-Compliant: member doesn’t depend on template parameter

{
Statel,

State2

3

13

State GetState();

h

16

AUTO©SAR

class B_Base

{

public:
enum State // Compliant: not a member of a class template

{

Statel,
State?2

h
h

26

template<typename T>
class B : B_Base

{

public:
State GetState();

k

See also

C++ Core Guidelines [11]: T.62: Place non-dependent class template members
in a non-templated base class

Rule A14-5-3 (advisory, design, automated)
A non-member generic operator shall only be declared in a namespace that
does not contain class (struct) type, enum type or union type declarations.

Rationale

Argument-dependent lookup (ADL) adds additional associated namespaces to the
set of scopes searched when lookup is performed for the names of called functions.
A generic operator found in one of these additional namespaces would be added to
the overload set and choosen by overload resolution. ADL is complicated by several
possible use forms for operators (via function calls and via expression, operators can
be declared as members and as non-members) and lookup in those cases is
different, which is likely to be inconsistent with developer expectation.

Generic operator is a non-member operator template that can be called without
explicit template arguments and has at least one generic parameter. A template type
parameter T is a generic parameter if, in the function declaration, it has the (possibly
cv-qualified) form of T, or T & or T &&.

Example

// $1d: A14-5-3.cpp $
#include <cstdint>

3

template<typename T>

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nondependent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nondependent

AUTO©SAR

class B
{
public:
bool operator+(long rhs);
9
void f()
{
*this + 10;
}
2
15
namespace NS1
{
class A {};
19
template<typename T>
bool operator+(T, std::int32_t); / Non-Compliant: a member of namespace
22 Il with other declarations

}

24

namespace NS2

{

void g();

28

template<typename T>

bool operator+(T, std::int32_t); / Compliant: a member of namespace

31 /I with declarations of functions only
}
33
template class B<NS1::A>; // NS1::operator+ will be used in function B::f()
35 /I instead of B::operator+
See also

MISRA C++ 2008 [7]: M14-5-1: A non-member generic function shall only be
declared in a namespace that containes only operator declarations.

Rule M14-5-3 (required, implementation, automated)
A copy assignment operator shall be declared when there is a template
assignment operator with a parameter that is a generic parameter.

See MISRA C++ 2008 [7]

6.14.6 Name resolution

AUTO©SAR

Rule M14-6-1 (required, implementation, automated)
In a class template with a dependent base, any name that may be found
in that dependent base shall be referred to using a qualified-id or this->.

See MISRA C++ 2008 [7]

6.14.7 Template instantiation and specialization

Rule A14-7-1 (required, implementation, automated)
A type used as a template argument shall provide all members that are
used by the template.

Rationale

If a type used as a template argument does not provide all the members used by the
template, the instantiation of the template will result in an ill-formed program. It is not
clear for developer whether the template should be used with the type.

Example

/I $1d: A14-7-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
class A
{
public:
void SetProperty(std::int32_t X) noexcept { property = x; }
void DoSomething() noexcept {}
8
private:
std::int32_t property;
h
struct B
{
h
class C
{
public:
void DoSomething() noexcept {}
¥
template <typename T>
class D
{
public:
void F1() {
void F2()

{
Tt;

AUTO©SAR

t.SetProperty(0);

}

void F3()

{

Tt

t.DoSomething();

}

¥

36

void Fn() noexcept

{

D<A> d1; // Compliant - struct A provides all needed members
d1.F1();

d1.F2();

d1.F3();

43

D d2; // Non-compliant - struct B does not provide needed members
d2.F1();

I/ d2.f2(); // Compilation error - no ’property’ in struct B

/1 d2.f3(); /I Compilation error - no member named 'doSomething’ in struct
/I B

49

D<C> d3; // Non-compliant - struct C does not provide property
d3.F1();

/I d3.F2(); /I Compilation error - no property in struct C

d3.F3();

}

See also

MISRA C++ 2008 [7]: Rule 14-7-2 (Required) For any given template
specialization, an explicit instantiation of the template with the template
arguments used in the specialization shall not render the program ill-formed.

Rule A14-7-2 (required, implementation, automated)
Template specialization shall be declared in the same file (1) as the primary
template (2) as a user-defined type, for which the specialization is declared.

Rationale

It is undefined behavior, when a compiler sees the (partial or explicit) template
specialization after it already has instantiated the primary or less specialized
template. Moreover, the case (2) allows compile-time interfaces to be extensible, as
developers can safely provide custom specializations e.g. for traits classes or std::hash.

Example

/I $1d: A14-7-2.cpp 312645 2018-03-21 11:44:35Z michal.szczepankiewicz $
#include <cstdint>
3

AUTO©SAR

/lin A.hpp

5

#include <functional>

7

struct A

{
std::uint8_t x;
2
12

namespace std {
14
/lcompliant, case (2)
/ltemplate specialization for the user-defined type
/lin the same file as the type declaration
template <>
struct hash<A>

{

size_t operator()(const A& a) const noexcept

{

return std::hash<decltype(a.x)>()(a.x);

}

2

26

}

28

[[traits.hpp

30

#include <type_traits>

#include <cstdint>

33

template <typename T>

struct is_serializable : std::false_type {};

36

/lcompliant, case (1)

template <>

struct is_serializable<std::uint8_t> : std::true_type {};
40

/lfunc.cpp

42

#include <vector>

44

/Inon-compliant, not declared

/lin the same file as

Ilis_serializable class

template <>

struct is_serializable<std::uint16_t> : std::true_type {};
50

template <typename T, typename = std::enable_if<is_serializable<T>::value>>
std::vector<std::uint8_t> serialize(const T& t)

{

/lonly a basic stub

AUTO©SAR

return std::vector<std::uint8_t>{t};

}

57
#include <string>
int main()

{

serialize(std::uint8_t{3});

}

}

See also

MISRA C++ 2008 [7]: Rule 14-7-2 (Required) For any given template
specialization, an explicit instantiation of the template with the template
arguments used in the specialization shall not render the program ill-formed.

6.14.8 Function template specializations

Rule A14-8-2 (required, implementation, automated)
Explicit specializations of function templates shall not be used.

Rationale

Specializations of function templates do not participate in overload resolution. They
are only considered after their primary template has been selected during overload
resolution. This is highly dependent on the declaration order of overloads and
specializations and may be inconsistent with developer expectations.

A non-template function is always selected over a function template specialization if they
are otherwise an equally good match, which also may be confusing for developers.

Function templates cannot be partially specialized, which may lead to troublesome
implementations. If a partial specialization is required, then it is recommended to
write a single function template that delegates to a class template (which can be
partially specialized).

Example

// $1d: A14-8-2.cpp 312698 2018-03-21 13:17:36Z michal.szczepankiewicz $
#include <cstdint>

#include <memory>

#include <iostream>

5

template <typename T>
void F1(T t)

{

/lcompliant, (a)
std::cout << "(a)" << std::endl;

AUTO©SAR

12

template <>

void F1<>(uint16_t* p)

{

/Inon-compliant

11(x), explicit specialization of
/l(a), not (b), due to declaration
/lorder

std::cout << "(x)" << std::endl;

}

22

template <typename T>

void F1(T* p)

{

/lcompliant, (b), overloads (a)
std::cout << "(b)" << std::endl;

}

29

template <>

void F1<>(uint8_t* p)

{

/Inon-compliant

/(c), explicit specialization of (b)
std::cout << "(c)" << std::endl;

}

37

void F1(uint8_t* p)

{

/lcompliant

//(d), plain function, overloads with (a), (b)
/Ibut not with (c)

std::cout << "(d)" << std::endl;

}

45

int main(void)

{

auto sp8 = std::make_unique<uint8_t>(3);
auto spl6 = std::make_unique<uintl6_t>(3);

50

51 F1(sp8.get()); //calls (d), which might be
52 /[confusing, but (c) is non-compliant
53
54 F1(spl6.get()); //calls (b), which might be
55 /[confusing, but (b) is non-compliant
}
See also

MISRA C++ 2008 [7]: 14-8-1: Overloaded function templates shall not be
explicitly specialized.

AUTOSAR

MISRA C++ 2008 [7]: 14-8-2: The viable function set for a function call should
either contain no function specializations, or only contain function specializations.

HIC++ v4.0 [9]: 14.2.2: Do not explicitly specialize a function template that is
overloaded with other templates.

C++ Core Guidelines [11]: T.144: Don’t specialize function templates.

6.15 Exception handling

Advantages of using exceptions

“The exception handling mechanism can provide an effective and clear means of
handling error conditions, particularly where a function needs to return both some
desired result together with an indication of success or failure. However, because of
its ability to transfer control back up the call tree, it can also lead to code that is
difficult to understand. Hence it is required that the mechanism is only used to
capture behavior that is in some sense undesirable, and which is not expected to be
seen in normal program execution.” [MISRA C++ 2008]

“The preferred mechanism for reporting errors in a C++ program is exceptions rather
than using error codes. A number of core language facilities, including dynamic_cast,
operator new(), and typeid, report failures by throwing exceptions. In addition, the
C++ standard library makes heavy use of exceptions to report several different kinds
of failures. Few C++ programs manage to avoid using some of these facilities.” [ISO
C++ Core Guidelines].

Consequently, C++ programs need to be prepared for exceptions to occur and need
to handle each appropriately.

Challenges of using exceptions

Issue: Solution:

Correctness of the exception handling Exception handling mechanism is implemented by
the compiler (by its library functions and machine
code generator) and defined by the C++ Language
Standard. Rule A1-2-1 requires that the compiler
(including its exception handling routines), when
used for safety-related software, meets appropriate
safety requirements.

Hidden control flow ISO 26262-6 (Table *) recommends “no hidden
data flow or control flow” for ASIL A software and
highly recommends it for ASIL B/C/D. Therefore, the
Rule A15-0-1 prohibits the usage of exceptions for
normal control flow of software - they are allowed
only for errors where a function failed to perform its
assigned task.

http://www.codingstandard.com/rule/14-2-2-do-not-explicitly-specialize-a-function-template-that-is-overloaded-with-other-templates/
http://www.codingstandard.com/rule/14-2-2-do-not-explicitly-specialize-a-function-template-that-is-overloaded-with-other-templates/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t144-dont-specialize-function-templates

AUTOSAR

Additional exit point from functions

ISO 26262-6 (Table *) highly recommends “one
entry and one exit point in subprograms and
functions” for ASIL A software. Therefore, the
Rule A15-0-1 prohibits the usage of exceptions for
normal control flow of software - they are allowed
only for errors where a function failed to perform its
assigned task.

Code readability

If exceptions are used correctly, in particularly by
using checked and unchecked exception types, see
Rules: A15-0-4 and A15-0-5, the code is easier to
read and maintain than if using error codes. It avoids
nesting if/else error-checking statements.

Exception safety and
program state consistency after exception is
thrown

The Rule A15-0-2 requires that functions provide at
least “basic exception safety” (Note: this C++ term
is not related to functional safety)

Impact on runtime performance

If a function does not throw an exception (i.e. error
conditions do not occur), then there could be a little
overhead due to exception handling mechanism
initialization. However, some compilers offer “zero
cost exception handling”, which means that there
is no performance overhead if the exception is not
thrown.

Impact on worst-case execution time

The A15-0-7 rule requires that the
exception handling mechanism provides real-time
implementation. Note that this is not the case for
e.g. GCC compiler that allocates dynamic memory
on throwing an exception. However, it is possible to
fix it simply by avoiding memory allocation.

Maturity of exceptions

Exceptions are a widespread concept in several
programming languages, not only in C++, but also
in e.g. Ada, Java, Modula-3, ML, OCaml, Python,
Ruby, C#, Lisp, Eiffel, and Modula-2.

Tool support

There are several tools that support exceptions well:
compilers (e.g. gcc, clang, visual studio), IDEs
(e.g. eclipse, clion, visual studio), static analysis
tools (e.g. QA C++, Coverity Prevent) and compiler
validation suites (e.g. SuperTest).

Appropriate usage of exceptions in
implementation

Exceptions need to be used properly in the code,
therefore this document specifies almost 40 precise
rules defining how to code using exceptions, in
particular defining the rules for checked/unchecked
exceptions.

Table 6.1: Challenges of exceptions usage

Checked and unchecked exceptions

AUTOSAR

Like MISRA introduces a concept of "underlying type", AUTOSAR C++14 Guidelines
introduces a concept of unchecked and checked exceptions. This is based on the
classification used in Java language, having as a goal an efficient, complete and
consistent way of specifying the exceptions. There are therefore two exclusive
categories of exceptions:

Checked Exceptions: Used to represent errors that are expected and
reasonable to recover from, so they are supposed to be documented by
functions using a dedicated tag (e.g. @throws) and have to be either handled or
documented (in the same way) by caller functions. Exceptions are marked as
Checked using a separate tag (e.g. @checkedException) that precedes an exception
class declaration.

Unchecked Exceptions: Used to represent errors that a program typically can
not recover from. However, unchecked exceptions can be documented by
functions, i.e in cases when all preconditions of thrown exception are defined
and known. It is context dependent where such an exception can be caught
(e.g. is it done before main function) and what is the proper handling (e.g. other
than program termination). However, it is not forced so that unchecked
exceptions are documented by caller functions (even if they are documented by
called functions). By default, all exceptions are unchecked (also from third-party
libraries used), unless their definition is preceded by the dedicated tag.

“Checked exceptions are a wonderful feature of the Java programming language.
Unlike return codes, they force the programmer to deal with exceptional conditions,
greatly enhancing reliability.” [Effective Java 2nd Edition [15]]

The following sections specify several specific rules defining the usage of exceptions,
in particular concerning the use of unchecked and checked exceptions.

6.15.0 General

Rule A15-0-1 (required, architecture / design /
implementation, non-automated)
A function shall not exit with an exception if it is able to complete its task.

Rationale

“The notion of an exception is provided to help get information from the point where
an error is detected to a point where it can be handled. A function that cannot cope
with a problem throws an exception, hoping that its (direct or indirect) caller can
handle the problem. A function that wants to handle a kind of problem indicates that
by catching the corresponding exception.” [The C++ Programming Language [14]]

Exceptions are only supposed to be used to capture incorrect, and which is not
expected to be seen in normal program, execution. Using exception handling
mechanism to transfer control back up the call stack, in error-free situation, leads to

AUTO©SAR

code that is difficult to understand and significantly less efficient than returning from a
function.

Note that most of the monitoring or supervision functions are not supposed to throw
an exception when an error is detected.

Example

/% $Id: A15-0-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <fstream>

#include <stdexcept>

#include <string>

#include <vector>

std::uint8_t ComputeCrc(std::string& msg);

bool IsMessageCrcCorrectl(std::string& message)

{

std::uint8_t computedCRC = ComputeCrc(message);
std::uint8_t receivedCRC = message.at(0);

11

if (computedCRC != receivedCRC)

{

throw std::logic_error(
15 "Computed CRC is invalid."); // Non-compliant - CheckMessageCRC()
16 /I was able to perform

/I its task, nothing exceptional about its invalid result

}

19

return true;

}

bool IsMessageCrcCorrect2(std::string& message)

{

bool isCorrect = true;

std::uint8_t computedCRC = ComputeCrc(message);

std::uint8_t receivedCRC = message.at(0);

27

if (computedCRC != receivedCRC)

{

isCorrect =

31 false; /I Compliant - if CRC is not correct, then return "false"

}

33

return isCorrect;

}

void SendData(std::string message)

{

if (message.empty())

{

throw std::logic_error("Preconditions are not met."); // Compliant -

a /I SendData() was
) /I not able to
43 /I perform its
44 /I task

AUTO©SAR

}

46

bool sendTimeoutReached = false;
48

/I Implementation

if (sendTimeoutReached)

{
throw std::runtime_error(

53 "Timeout on sending a message has been reached."); // Compliant -
54 /I SendData()

55 /l did not

56 1 perform its
57 /1 task
}
}
std::int32_t FindIndex(std::vector<std::int32_t>& v, std::int32_t x) noexcept
{
try
{

std::size_t size = v.size();
for (std::size_ti=0U; i < size; ++i)
{
67 if (v.at(i) == x) // v.at() throws an std::out_of_range exception
68 {
69 throw i; // Non-compliant - nothing exceptional about finding a
70 /l value in vector
71 }
}
}

74

catch (std::size_t

76 foundldx) // Non-compliant - nothing exceptional about finding a
77 /I value in vector

{

return foundldx;

}

81

catch (std::out_of range&

83 e) /[Compliant - std::out_of_range error shall be handled
{

return -1;

}

87

return -1;

}

bool ReadFile(std::string& filename) noexcept
{

try

{

std::ifstream file(filename, std::ios_base::in);

95

AUTOSAR

if (!file.is_open())
{
98 throw std::runtime_error(
99 "File cannot be opened"); // Compliant - error on opening a
100 /I file is an exceptional case
}
102
char ¢ =file.get();
104
if (Ifile.good())
{
107 throw std::runtime_error(
108 "Cannot read from file"); // Compliant - error on reading from
109 /I file is an exceptional case

}
}

112

catch (std::exception& e)

{

return false;

}

117

return true;

}

void Fn1(

std::uint32_t x) // Non-compliant - inefficient and less readable version
122 /l than its obvious alternative, e.g. fn2()
/l function

{

try

{

if (x <10)

{

129 throw 10;
}

131

/I Action "A"

}

134

catch (std::int32_t y)

{

/I Action "B"

}

}
void Fn2(

std::uint32_t x) // Compliant - the same functionality as fn1() function
{

if (x < 10)

{

/I Action "B"

}

AUTOSAR

else

{
/I Action "A"

}
}

See also

MISRA C++ 2008 [7]: 15-0-1 (Document) Exceptions shall only be used for
error handling.

C++ Core Guidelines [11]: E.3: Use exceptions for error handling only

Effective Java 2nd Edition [15]: Item 57: Use exceptions only for exceptional
conditions

The C++ Programming Language [14], 13.1.1. Exceptions

Rule A15-0-2 (required, architecture / design / implementation,

partially automated)

At least the basic guarantee for exception safety shall be provided for all
operations. In addition, each function may offer either the strong
guarantee or the nothrow guarantee

Rationale

Exceptions introduce additional data flow into a program. It is important to consider
all the effects of code taking such paths to always recover from an exception error

properly and always preserve object’s invariants.

“‘Well-designed functions are exception safe, meaning they offer at least the basic
exception safety guarantee (i.e., the basic guarantee). Such functions assure callers
that even if an exception is thrown, program invariants remain intact (i.e., no data
structures are corrupted) and no resources are leaked. Functions offering the strong
exception safety guarantee (i.e., the strong guarantee) assure callers that if an
exception arises, the state of the program remains as it was prior to the call.”

[effective modern c++]

The C++ standard library always provides one of the following guarantees for its

operations, the same needs to be followed by code compliant to the guidelines. *

Basic guarantee for all operations: The basic invariants of all objects are
maintained, and no resources, such as memory, are leaked. In particular, the
basic invariants of every built-in and standard-library type guarantee that you
can destroy an object or assign to it after every standard-library operation

Strong guarantee for key operations: in addition to providing the basic
guarantee, either the operation succeeds, or it has no effect.

Nothrow guarantee for some operations: in addition to providing the basic
guarantee, some operations are guaranteed not to throw any exception.

http://jtechies.blogspot.com/2012/07/item-57-use-exceptions-only-for.html

AUTO©SAR

” [C++ Programming Reference]

Nothrow means in this context that the function not only does not exit with an
exception, but also that internally an exception cannot occur.

Example

/1% $Id: A15-0-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
#include <cstring>

class C1
{
public:
C1(const C1& rhs)
{
9 CopyBad(rhs); /I Non-compliant - if an exception is thrown, an object
10 I/l will be left in an indeterminate state
CopyGood(rhs); // Compliant - full object will be properly copied or
12 /I none of its properties will be changed
}

~C1() { delete[] e; }
void CopyBad(const C1& rhs)

{
if (this != &rhs)
{
19 delete] e;
20 e = nullptr; /I e changed before the block where an exception can
2 /I be thrown
2 s =rhs.s; /I's changed before the block where an exception can be
23 Il thrown
24
2% if (s>0)
26 {
27 e = new std::int32_t[s]; // If an exception will be thrown
28 I here, the
29 /I object will be left in an indeterminate
30 /I state
3 std::memcpy(e, rhs.e, s * sizeof(std::int32_t));
32 }
}
}
void CopyGood(const C1& rhs)
{
std::int32_tx eTmp = nullptr;
38
if (rhs.s > 0)
{
a eTmp = new std::int32_t[rhs.s]; // If an exception will be thrown
) /I here, the
43 /I object will be left unchanged
w0 std::memcpy(eTmp, rhs.e, rhs.s * sizeof(std::int32_t));

}

AUTO©SAR

46

delete]] e;

e =eTmp;

s =rhs.s;

}

51

private:

std::int32_tx e;

std::size ts;

2

class A

{

public:

A() = default;

2

class C2

{

public:

C2() : al(new A), a2(new A) // Non-compliant - if a2 memory allocation
65 /I fails, al will never be deallocated

{
}

68
private:
A* al;
A* az;
3
class C3
{
public:
C3() : al(nullptr), a2(nullptr) // Compliant
{
try
{
80 al =new A;
81 a2 =new A; /I If memory allocation for a2 fails, catch-block will
82 /I deallocate al
}
84
catch (...)
{
87 delete al;
88 al = nullptr;
89 delete a2;
90 a2 = nullptr;
91 throw;
}
}

94
private:
Ax al;

AUTO©SAR

A* az;
h

See also

SE| CERT C++ [10]: ERR56-CPP. Guarantee exception safety

Rule A15-0-3 (required, implementation, non-automated)
Exception safety guarantee of a called function shall be considered.

Rationale

Supplying an external function with an object that throws an exception on specific
operations (e.g. in special member functions) may lead to function’s unexpected
behavior.

Note that the result of a function call supplied with an object which throws on specific
operations may differ when the function guarantees the basic exception safety and
the strong exception safety.

Example

/1% $1d: A15-0-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $
#include <cstdint>

#include <stdexcept>

#include <vector>

class A

{

public:

explicit A(std::int32_t value) noexcept(false) : x(value)

{

if (x==0)
{
12 throw std::invalid_argument("Constructor: Invalid Argument");
}
}

15

private:

std::int32_t x;

¥

int main(int, charxx*)

{

constexpr std::int32_t limit = 10;

std::vector<A> vecl; // Constructor and assignment operator of A class
23 /I throw exceptions
24

try

{

for (std::int32_t i = 1; i < limit; ++i)

{

AUTO©SAR

29 vecl.push_back(A(i)); // Constructor of A class will not throw for
30 /I value from 1 to 10
}
32
vecl.emplace(vecl.begin(),
34 0); /I Non-compliant - constructor A(0) throws inan
35 /I emplace() method of std::vector. This leads to
36 /I unexpected result of emplace() method. Throwing an
37 /I exception inside an object constructor in emplace()
38 1l leads to duplication of one of vector's elements.
/I Vector invariants are valid and the object is destructible.
}
catch (std::invalid_argument& e)
{
/I Handle an exception
}

45
std::vector<A> vecz;
vec2.reserve(limit);

try

{

for (std::int32_t i = limit - 1; i >= 0; --i)

{
5 vec2.push_back(A(i)); // Compliant - constructor of A(0) throws for
53 /I'i =0, but in this case strong exception
54 /I safety is guaranteed. While push_back()
55 /I offers strong exception safety guarantee,
56 /I push_back can only succeed to add a new
57 /I element or fails and does not change the
58 /I container

}

}

catch (std::invalid_argument& e)

{

/l Handle an exception

}

65

return O;

}

See also

none

Rule A15-0-4 (required, architecture / design /

implementation, non-automated)

Unchecked exceptions shall be used to represent errors from which
the caller cannot reasonably be expected to recover.

AUTO©SAR

Rationale

Problems that are unpreventable and not expected by the caller are represented with
instances of unchecked exceptions category. Such problems include:

Software errors, i.e. preconditions/postconditions violations, arithmetic errors,
failed assertions, sanity checks or invalid variable access, that in C++ are
typically represented by logic_error, bad_exception, bad_cast and bad_typeid
exceptions or their subclasses

Internal errors of the executable (like VirtualMachineError of Java language), that in
C++ are represented by bad_alloc and bad_array_new_length exceptions

It is not possible to recover from such errors in a meaningful way.

Example

/% $Id: A15-0-4.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
#include <stdexcept>
#include <vector>
class InvalidArguments : public std::logic_error // Compliant - invalid
/[arguments error is
7 /I "unchecked" exception
{
public:
using std::logic_error::logic_error;
¥
class OutOfMemory : public std::bad_alloc Compliant - insufficient memory
13 error is "unchecked" exception
{
public:
using std::bad_alloc::bad_alloc;
h
class DivisionByZero : public std::logic_error Compliant - division by zero
19 error is "unchecked"
20 exception
{
public:
using std::logic_error::logic_error;
h
class CommunicationError : public std::logic_error // Non-compliant -
2 /I communication error
27 /l should be "checked"
/I exception but defined to be "unchecked"
{
public:
using std::logic_error::logic_error;
¥
double Division(std::int32_t a, std::int32_t b) noexcept(false)
{
...
if (b ==0)

AUTO©SAR

{

throw DivisionByZero(

39 "Division by zero error"); /I Unchecked exception thrown correctly

}

41

...
}

void Allocate(std::uint32_t bytes) noexcept(false)

{

...

throw OutOfMemory(); // Unchecked exception thrown correctly

}

void InitializeSocket() noexcept(false)

{

bool validParameters = true;

52

...

if (lvalidParameters)

{

throw InvalidArguments(“Invalid parameters passed"); // Unchecked
57
58

59

}

}

void SendData(std::int32_t socket) noexcept(false)

{

...

bool isSentSuccessfully = true;

66

...

if (lisSentSuccessfully)

{

throw CommunicationError("Could not send data"); // Unchecked exception
71
72

73

/I exception
Il thrown
I correctly

/I thrown when checked
/I exception should
Il be.

}

}

void IterateOverContainer(const std::vector<std::int32_t>& container,

77 std::uint64_t length) noexcept(false)

{

for (std::uint64_t idx{OU}; idx < length; ++idx)

{

int32_t value = container.at(idx); // at() throws std::out_of range

82 /I exception when passed integer
83 /I exceeds the size of container.
84 /I Unchecked exception thrown
85 /I correctly

}

AUTO©SAR

See also

Effective Java: Item 58: Use checked exceptions for recoverable conditions and
runtime exceptions for programming errors, Item 60: Favor the use of standard
exceptions

Rule A15-0-5 (required, architecture / design /

implementation, non-automated)

Checked exceptions shall be used to represent errors from which the
caller can reasonably be expected to recover.

Rationale

All expected by the caller, but also reasonable to recover from, problems are
represented with instances of checked exceptions. Such problems include
input/output and other application’s runtime errors. It is possible to handle such errors
in a meaningful way.

“Overuse of checked exceptions can make an API far less pleasant to use. If a
method throws one or more checked exceptions, the code that invokes the method
must handle the exceptions in one or more catch blocks, or it must declare that it
throws the exceptions and let them propagate outward. Either way, it places a
nontrivial burden on the programmer.

The burden is justified if the exceptional condition cannot be prevented by proper use
of the API and the programmer using the API can take some useful action once
confronted with the exception. Unless both of these conditions hold, an unchecked

exception is more appropriate.” [Effective Java 2nd Edition [15]]

Example

/% $Id: A15-0-5.cpp 309502 2018-02-28 09:17:39Z michal.szczepankiewicz $
#include <cstdint>

#include <stdexcept>

#include <system_error>

5

/I @checkedException

class CommunicationError

: public std::exception // Compliant - communication error is "checked"

{

public:
explicit CommunicationError(const charx message) : msg(message) {}
CommunicationError(CommunicationError const&) noexcept = default;
CommunicationError& operator=(CommunicationError const&) noexcept = default;
~CommunicationError() override = default;
15

const char* what() const noexcept override { return msg; }
17

private:

const charx msg;

http://thefinestartist.com/effective-java/58
http://thefinestartist.com/effective-java/58
http://thefinestartist.com/effective-java/58
http://jtechies.blogspot.com/2012/07/item-60-favor-use-of-standard.html

AUTO©SAR

2

21

/I @checkedException

class BusError

: public CommunicationError // Compliant - bus error is "checked"

{

public:

using CommunicationError;:CommunicationError;

2

29

/I @checkedException

class Timeout : public std::runtime_error // Compliant - communication timeout
32 /l'is "checked"
{

public:

using std::runtime_error::runtime_error;

2

37

/I @checkedException

class PreconditionsError : public std::exception // Non-compliant - error on

40 Il preconditions check should
a /I be "unchecked" but is

a2 /I defined to be "checked"

{

/I lmplementation

h

46

void Fnl(std::uint8_t* buffer, std::uint8_t bufferLength) noexcept(false)
{

bool sentSuccessfully = true;

50

...

if (IsentSuccessfully)

{

throw CommunicationError(

55 "Could not send data"); /I Checked exception thrown correctly
}

}

void Fn2(std::uint8_t* buffer, std::uint8_t bufferLength) noexcept(false)

{

bool initSuccessfully = true;
61
if (linitSuccessfully)

{

throw PreconditionsError(); // An exception thrown on preconditions

65 Il check failure should be "Unchecked", but
66 /I PreconditionsError is "Checked"

}

68

...

bool sentSuccessfully = true;

AUTOSAR

bool isTimeout = false;

72

...

if (IsentSuccessfully)

{

throw BusError(

77 "Could not send data"); /I Checked exception thrown correctly

}

79

...

if (isTimeout)

{

throw Timeout("Timeout reached"); // Checked exception thrown correctly
}

}

void Fn3(std::uint8_t* buffer) noexcept(false)

{

bool isResourceBusy = false;

89

...

if (isResourceBusy)

{

throw std::runtime_error(

94 "Resource is busy now"); /I Checked exception thrown correctly
}

}

class Thread // Class which mimics the std::thread
{

public:
/I Implementation

101
Thread() noexcept(false)
{

bool resourcesAvailable = false;
...

if ('resourcesAvailable)

{
108 throw std::system_error(
109 static_cast<int>(std::errc::resource_unavailable_try_again),
110 std::generic_category()); // Compliant - correct usage of
11 /I checked exception system_error
}
}
h

See also

Effective Java: Item 58 - Use checked exceptions for recoverable conditions
and runtime exceptions for programming errors.

http://thefinestartist.com/effective-java/58
http://thefinestartist.com/effective-java/58
http://thefinestartist.com/effective-java/58

AUTOSAR

Rule A15-0-6 (required, verification / toolchain, non-automated)

An analysis shall be performed to analyze the failure modes of exception
handling. In particular, the following failure modes shall be analyzed: (a)
worst time execution time not existing or cannot be determined, (b) stack
not correctly unwound, (c) exception not thrown, other exception thrown,
wrong catch activated, (d) memory not available while exception handling.

Rationale

Note that the worst-case execution time and behavior of exception handling can be
hardware specific. This rule requires only that the exception handling is deterministic
in the sense that it has a deterministic behavior.

Note: this analysis can be performed by the compiler supplier or it can be done by
the project.

See also

none

Rule A15-0-7 (required, verification / toolchain, partially automated)
Exception handling mechanism shall guarantee a deterministic worst-
case time execution time.

Rationale

Compilers, i.e. GCC or Clang, uses dynamic memory allocation in order to allocate
currently thrown exception in their exception handling mechanism implementations.
This causes a non-deterministic execution time and run-time allocation errors. A
possible working approach is to modify the memory allocator so that the dynamic
memory does not need to be obtained (from OS) when an exception is thrown.

A static code analysis can search for a use of dynamic memory in the implementation of
the try/catch mechanism of the compiler, to show if worst-case time cannot be ensured.

GCC compiler uses following gcc library’s functions to provide exception handling
mechanism routines:

__cxa_allocate_exception
__cxa_throw
__cxa_free_exception
__cxa_begin_catch
__cxa_end_catch

Specific stack unwinding functions, i.e. _Unwind_RaiseException,
_Unwind_Resume, _Unwind_DeleteException, etc.

AUTO©SAR

Example

/1% $Id: A15-0-7.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdlib>
#include <cstring>
struct CxaException
{
/I Exception’s structure implementation
2
extern "C" void FatalError(const charx msg)
{
/I Reports an error and terminates the program
}
12
extern "C" void* CxaAllocateExceptionDynamically(size_t thrownSize)
{
size_t size = thrownSize + sizeof(CxaException);
CxaException* buffer = static_cast<CxaException*>(
malloc(size)); // Non-compliant - dynamic memory allocation used
18
if (buffer)
{
FatalError("Not enough memory to allocate exception!");
}
23
memset(buffer, 0, sizeof(CxaException));
return buffer + 1;
}
extern "C" void* StaticMalloc(size_t size)
{
void* mem = NULL;
/I Allocates memory using static memory pool
return mem;
}
extern "C" void* CxaAllocateExceptionStatically(size_t thrownSize)
{
size_t size = thrownSize + sizeof(CxaException);
CxaException* buffer = static_cast<CxaException*>(StaticMalloc(
size)); // Compliant - memory allocation on static memory pool used
38
if (buffer)
{

FatalError("Not enough memory to allocate exception!");

}

43
memset(buffer, 0, sizeof(CxaException));
return buffer + 1;

}

See also

none

AUTOSAR

Rule A15-0-8 (required, verification / toolchain, non-automated)

A worst-case execution time (WCET) analysis shall be performed to
determine maximum execution time constraints of the software, covering
in particular the exceptions processing.

Rationale

Some systems require a guarantee that an action will be performed within predictable
time constraints. Such real-time systems are allowed to use exception handling
mechanism only if there is a tool support for accurate predicting such maximum time
boundaries.

“‘Before deciding that you cannot afford or don’t like exception-based error handling,
have a look at the alternatives; they have their own complexities and problems. Also, as
far as possible, measure before making claims about efficiency.” [C++ Core Guidelines]

See also

MISRA C++ 2008 [7]: 15-0-1 (Document) Exceptions shall only be used for
error handling.

open-std.org [18]: ISO/IEC TR 18015:2006(E). Technical Report on C++
Performance

6.15.1 Throwing an exception

Rule A15-1-1 (advisory, implementation, automated)
Only instances of types derived from std::exception should be thrown.

Rationale

If an object that inherits from std::exception is thrown, there’s a guarantee that it
serves to document the cause of an exception in an unified way. Also, "it makes your
code easier to learn and re-use, because it matches established conventions with
which programmers are already familiar.". [Effective Java 2nd Edition [15]]

This means that only standard library exceptions or user-defined exceptions that
inherit from std::exception base class should be used for exceptions.

Note that direct instances of std::exception are not to be thrown as they can not be
unique.

Example

/% $Id: A15-1-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <memory>

#include <stdexcept>

class A

http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf

AUTO©SAR

{

/Il Implementation

I3

class MyException : public std::logic_error
{

public:

using std::logic_error::logic_error;
/I Implementation

I3

void F1()

{

throw - 1; // Non-compliant - integer literal thrown

}
void F2()

{

throw nullptr; // Non-compliant - null-pointer-constant thrown

}
void F3()

{
throw A(); Non-compliant - user-defined type that does not inherit from
25 std::exception thrown

}
void F4()

{
throw std::logic_error{
"Logic Error"}; // Compliant - std library exception thrown

}
void F5()

{
throw MyException{"Logic Error"}; // Compliant - user-defined type that
35 /I 'inherits from std::exception thrown

}
void F6()

{

throw std::make_shared<std::exception>(

std::logic_error("Logic Error")); // Non-compliant - shared_ptr does

41 /I not inherit from std::exception

}

void F7()

{

try

{

F6();

}

49

catch (std::exception& e) // An exception of

51 /I std::shared_ptr<std::exception> type will not
52 /I be caught here

{

/I Handle an exception

}

AUTO©SAR

catch (std::shared_ptr<std::exception>& e) // An exception of
/I std::shared_ptr<std::exception>

I type will be caught here, but

/I unable to access

/I std::logic_error information

{

/I Handle an exception

}
}

See also
HIC++ v4.0 [9]: 15.1.1 Only use instances of std::exception for exceptions

C++ Core Guidelines [11]: E.14: Use purpose-designed user-defined types as
exceptions (not built-in types)

Effective Java 2nd Edition [15]: Item 60: Favor the use of standard exceptions

Rule A15-1-2 (required, implementation, automated)
An exception object shall not be a pointer.

Rationale

If an exception object of pointer type is thrown and that pointer refers to a
dynamically created object, then it may be unclear which function is responsible for
destroying it, and when. This may lead to memory leak.

If an exception object of pointer type is thrown and that pointer refers to an automatic
variable, it allows using a variable after its destruction, leading to undefined behavior.

This ambiguity does not exist if a copy of the object is thrown.

Example

/% $Id: A15-1-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
class A

{

/I Implementation

3

void Fn(std::int16_t i)
{

Aal;
A& a2 = al;
Ax a3 = new A;
12

if (i <10)
{

throw al; // Compliant - copyable object thrown

}

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-types

AUTO©SAR

17
else if (i < 20)
{

throw A(); // Compliant - copyable object thrown

}

22
else if (i < 30)
{

throw a2; // Compliant - copyable object thrown

}

27
else if (i < 40)
{

throw & al; // Non-compliant - pointer type thrown

}

32
else if (i < 50)
{

throw a3; // Non-compliant - pointer type thrown

}

37
else if (i < 60)
{

throw(*a3); // Compliant - memory leak occurs, violates other rules

}

42
else

{

throw new A; // Non-compliant - pointer type thrown

}
}

See also
MISRA C++ 2008 [7]: 15-0-2 An exception object should not have pointer type.

C++ Core Guidelines [11]: E.13: Never throw while being the direct owner of an
object

Rule M15-0-3 (required, implementation, automated)
Control shall not be transferred into a try or catch block using a goto or
a switch statement.

See MISRA C++ 2008 [7]

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-throw

AUTO©SAR

Rule M15-1-1 (required, implementation, automated)
The assignment-expression of a throw statement shall not itself cause
an exception to be thrown.

See MISRA C++ 2008 [7]

Rule M15-1-2 (required, implementation, automated)
NULL shall not be thrown explicitly.

See MISRA C++ 2008 [7]

Rule M15-1-3 (required, implementation, automated)
An empty throw (throw;) shall only be used in the compound statement of
a catch handler.

See MISRA C++ 2008 [7]

Rule A15-1-3 (advisory, implementation, automated)
All thrown exceptions should be unique.

Rationale
Defining unique exceptions in the project significantly simplifies debug process.

An exception is considered to be unique if at least one of the following conditions is
fulfilled:

The type of the exception does not occur in any other place in the project

The error message (i.e. message itself, error code, etc.) of the exception does
not occur in any other place in the project

Example

/% $Id: A15-1-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $

#include <iostream>

#include <sstream>

#include <stdexcept>

#include <string>

static std::string ComposeMessage(const charx file,

const charx func,

std::int32_t line,

g const std::string& message) noexcept
{

std::stringstream s;
s << "(" << file << ", " << func << ™" << line << "): " << message;

AUTO©SAR

return s.str();

}

void F1()

{

...

throw std::logic_error("Error");

}

void F2()

{

...

throw std::logic_error("Error"); // Non-compliant - both exception type and
24 /I error message are not unique

}
void F3()

{

...

throw std::invalid_argument(

"Error"); // Compliant - exception type is unique

}

void F4() noexcept(false)

{

...

throw std::logic_error("f3(): preconditions were not met"); // Compliant -

36 I error

37 /I message is
38 /I unique

}

void F5() noexcept(false)

{

...

throw std::logic_error(ComposeMessage(

__FILE__,

__func__,

__LINE__,

"postconditions were not met")); // Compliant - error message is unique

}

void F6() noexcept

{

try

{

F10);

F2();

F30;

}

57

catch (std::invalid_argument& e)

{

std::cout << e.what() << ’\n’; // Only f3() throws this type of
61 Il exception, it is easy to deduce which
62 /I function threw

}

AUTO©SAR

64
catch (std::logic_error& e)

{

std::cout << e.what() << '\n’; // f1() and f2() throw exactly the same

68 /I exceptions, unable to deduce which
69 /I function threw

}

71

try

{

Fa();

F50;

}

77
catch (std::logic_error& e)

{

std::cout << e.what() << ’\n’; // Debugging process simplified, because
81 /I of unique error message it is known
82 /I which function threw

}
}

See also

Effective Java 2nd Edition [15]: Item 63: Include failure-capture information in
detail messages

Rule A15-1-4 (required, implementation, partially automated)

If a function exits with an exception, then before a throw, the function shall
place all objects/resources that the function constructed in valid states or
it shall delete them.

Rationale

If the only handler to dynamically allocated memory or system resource (e.g. file,
lock, network connection or thread) goes out of scope due to throwing an exception,
memory leak occurs. Memory leaks lead to performance degradation, security

violations and software crashes.

Allocated memory or system resource can be released by explicit call to resource
deinitialization or memory deallocation function (such as operator delete), before
each return/try/break/continue statement. However, this solution is error prone and

difficult to maintain.

The recommended way of releasing dynamically allocated objects and resources is

"

to follow RAIl ("‘Resource Acquisition Is Initialization

) design pattern, also known as

Scope-Bound Resource Management or “Constructor Acquires, Destructor
Releases” (CADRe). It allows to bind the life cycle of the resource to the lifetime of a
scope-bound object. It guarantees that resources are properly deinitialized and

released when data flow reaches the end of the scope.

http://jtechies.blogspot.com/2012/07/item-63-include-failure-capture.html

AUTO©SAR

Examples of RAIl design pattern that significantly simplifies releasing
objects/resources on throwing an exception are C++ smart pointers: std::unique_ptr
and std::shared_ptr.

Example

/1% $Id: A15-1-4.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <memory>

#include <stdexcept>

extern std::uint32_t F1();

void FVeryBad() noexcept(false)

{

std::logic_error* e = new std::logic_error("Logic Error 1");

...

std::uint32_ti = F1();

11

if (i < 10)

{
throw(*e); // Non-compliant - fVeryBad() is not able to clean-up
15 /I allocated memory

}

17

...

delete e;

}

void FBad() noexcept(false)

{

std::int32_tx x = new std::int32_t(0);
...

std::uint32_ti = F1();

26

if (i <10)

{

throw std::logic_error("Logic Error 2"); // Non-compliant - exits from

30 I fBad() without cleaning-up
31 /I allocated resources and

32 Il causes a memory leak

}

34

else if (i < 20)

{

throw std::runtime_error("Runtime Error 3"); // Non-compliant - exits

38 Il from fBad() without
39 I cleaning-up allocated
40 /I resources and causes a
a /I memory leak

}

43

...

delete x; // Deallocates claimed resource only in the end of fBad() scope

}

AUTO©SAR

void FGood() noexcept(false)

{

std::int32_tx y = new std::int32_t(0);

...

std::uint32_ti = F1();

52

if (i < 10)

{

delete y; // Deletes allocated resource before throwing an exception
throw std::logic_error("Logic Error 4"); // Compliant - deleting y

57 /l variable before exception
58 /I leaves the fGood() scope
}
60
else if (i < 20)
{

delete y; // Deletes allocated resource before throwing an exception
throw std::runtime_error("Runtime Error 5"); // Compliant - deleting y

65 I variable before
66 Il exception leaves the
67 /Il fGood() scope
}
69
else if (i < 30)
{
delete y; // Deletes allocated resource before throwing an exception
73 /[again, difficult to maintain
throw std::invalid_argument(
75 "Invalid Argument 1"); // Compliant - deleting
76 /'y variable before
7 /I exception leaves the
78 /l fGood() scope
}
80
...
delete y; // Deallocates claimed resource also in the end of f{Good() scope
}
void FBest() noexcept(false)
{
std::unique_ptr<std::int32_t> z = std::make_unique<std::int32_t>(0);
I ...

std::uint32_t i = F1();
89

if (i <10)

{

throw std::logic_error("Logic Error 6"); // Compliant - leaving the

93 /] fBest() scope causes
9 /I deallocation of all

/[automatic variables, unique_ptrs, too

}

97

AUTOSAR

else if (i < 20)
{
throw std::runtime_error("Runtime Error 3"); // Compliant - leaving the
101 /I fBest() scope causes
102 /I deallocation of all
103 /I automatic variables,
104 /I unique_ptrs, too
}
106
else if (i < 30)
{
throw std::invalid_argument(
110 "Invalid Argument 2"); // Compliant - leaving the fBest() scope
11 /I causes deallocation of all automatic
112 /I variables, unique_ptrs,
/Il too
}

115
...
/I z is deallocated automatically here, too

}

class CRaii // Simple class that follows RAIl pattern

{

public:

CRaii(std::int32_t* pointer) noexcept : x(pointer) {}

~CRaii()

{

delete x;

x = nullptr;

}

128

private:

std::int32_tx x;

3

void FBest2() noexcept(false)

{

CRaii al(new std::int32_t(10));

...

std::uint32_ti = F1();

137

if (i <10)

{

throw std::logic_error("Logic Error 7"); // Compliant - leaving the
141 I fBest2() scope causes al
142 /I variable deallocation
143 /I automatically

}

else if (i < 20)

{

throw std::runtime_error("Runtime Error 4"); // Compliant - leaving the

148 I/ fBest2() scope causes

AUTOSAR

149 /I al variable
150 /I deallocation
151 /[automatically
}
else if (i < 30)

{

throw std::invalid_argument(

156 "Invalid Argument 3"); // Compliant - leaving the fBest2() scope
157 Il causes al variable deallocation
158 /I automatically

}

160
...
/l al is deallocated automatically here, too

}

See also

SEI CERT C++ [10]: ERR57-CPP. Do not leak resources when handling
exceptions

C++ Core Guidelines [11]: E.6: Use RAIl to prevent leaks.

Rule A15-1-5 (required, implementation, non-automated)
Exceptions shall not be thrown across execution boundaries.

Rationale

An execution boundary is the delimitation between code compiled by differing
compilers, including different versions of a compiler produced by the same vendor.
For instance, a function may be declared in a header file but defined in a library that
is loaded at runtime. The execution boundary is between the call site in the
executable and the function implementation in the library. Such boundaries are also
called ABI (application binary interface) boundaries because they relate to the
interoperability of application binaries.

Throwing an exception across an execution boundary requires that both sides of the
execution boundary use the same ABI for exception handling, which may be difficult
to ensure.

Exception

If it can be ensured that the execution boundaries use the same ABI for exception
handling routines on both sides, then throwing an exception across these execution
boundaries is allowed.

See also

SEI CERT C++ [10]: ERR59-CPP. Do not throw an exception across execution
boundaries

https://www.securecoding.cert.org/confluence/display/cplusplus/ERR57-CPP.+Do+not+leak+resources+when+handling+exceptions
https://www.securecoding.cert.org/confluence/display/cplusplus/ERR59-CPP.+Do+not+throw+an+exception+across+execution+boundaries

AUTO©SAR

6.15.2 Constructors and destructors

Rule A15-2-1 (required, implementation, automated)
Constructors that are not noexcept shall not be invoked before
program startup.

Rationale

Before the program starts executing the body of main function, it is in a start-up phase,
constructing and initializing static objects. There is nowhere an exception handler can be
placed to catch exceptions thrown during this phase, so if an exception is thrown it leads
to the program being terminated in an implementation-defined manner.

Such errors may be more difficult to find because an error message can not be
logged, due to lack of exception handling mechanism during static initialization.

Example

11% $1d: A15-2-1.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $
#include <cstdint>

#include <stdexcept>

class A

{

public:

A() noexcept : x(0)

{

...
}

explicit A(std::int32_t n) : x(n)
{
...
throw std::runtime_error("Unexpected error");
}
A(std::int32_t i, std::int32_t j) noexcept : x(i + j)
{
try
{

20 ...

21 throw std::runtime_error("Error");
2 ...

}

24

catch (std::exception& e)

{

}

}

29

private:
std::int32_t x;
h

AUTO©SAR

33 static A al; /I Compliant - default constructor of type A is noexcept
static A a2(5); // Non-compliant - constructor of type A throws, and the

35 /I exception will not be caught by the handler in main function
static A a3(5, 10); // Compliant - constructor of type A is noexcept, it

37 /I handles exceptions internally

int main(int, charxx*)

{

try

{

/I program code

}

catch (...)

{

/l Handle exceptions

}

48
return O;
}
See also

SEI CERT C++ [10]: ERR51-CPP. Handle all exceptions.

Rule A15-2-2 (required, implementation, partially automated)

If a constructor is not noexcept and the constructor cannot finish
object initialization, then it shall deallocate the object’s resources and it
shall throw an exception.

Rationale

Leaving the constructor with invalid object state leads to undefined behavior.

Example

/1% $1d: A15-2-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $

#include <fstream>

#include <stdexcept>

class A

{

public:

A() = default;

h

class C1
{

public:

C1()

noexcept(false)

14 :al(new A), a2(new A) // Non-compliant - if a2 memory allocation
15 /I fails, al will never be deallocated

{

AUTO©SAR

}

C1(A* pAl, Ax pA2)

noexcept : al(pAl), a2(pA2) // Compliant - memory allocated outside of C1

20 /I constructor, and no exceptions can be thrown
{

}

23

private:

A* al;

Ax az;

b

class C2

{

public:

C2() noexcept(false) : al(nullptr), a2(nullptr)

{

try

{

35 al =new A;

36 a2 =new A; //If memory allocation for a2 fails, catch-block will
37 /I deallocate al

}

39

catch (std::exception& e)

{

) throw; // Non-compliant -whenever a2 allocation throws an
43 /I exception, al will never be deallocated
}

}

46
private:
A* al;
Ax az;
2
class C3
{
public:
C3() noexcept(false) : al(nullptr), a2(nullptr), file("./filename.txt")
{
try
{
58 al =newA;
59 a2 =newA;
60
61 if (ffile.good())
62 {
63 throw std::runtime_error("Could not open file.");
64 }
}

66
catch (std::exception& e)

AUTOSAR

69 delete al;
70 al = nullptr;
7 delete a2;
72 a2 = nullptr;
73 file.close();
74 throw; // Compliant - all resources are deallocated before the
75 /I constructor exits with an exception
}
}

78
private:
A* al;
A* a2;
std::ofstream file;
3
class C4
{
public:
C4() : x(0), y(0)
{
/I Does not need to check preconditions here - x and y initialized with
Il correct values
}
C4(std::int32_t first, std::int32_t second)
noexcept(false) : x(first), y(second)
{
CheckPreconditions(x,
96 y); // Compliant - if constructor failed to create a
97 /I valid object, then throw an exception
}
static void CheckPreconditions(std::int32_t x,
100 std::int32_t y) noexcept(false)
{
if (x <0] x> 1000)
{
104 throw std::invalid_argument(
105 "Preconditions of class C4 were not met");
}
107
elseif (y <0 || y > 1000)
{
110 throw std::invalid_argument(
11 "Preconditions of class C4 were not met");
}
}

114

private:

std::int32_t x; // Acceptable range: <0; 1000>
std::int32_ty; // Acceptable range: <0; 1000>
h

AUTO©SAR

See also

C++ Core Guidelines [11]: C.42: If a constructor cannot construct a valid object,
throw an exception

6.15.3 Handling an exception

Rule M15-3-1 (required, implementation, automated)
Exceptions shall be raised only after start-up and before termination.

See MISRA C++ 2008 [7]

Rule A15-3-2 (required, implementation, non-automated)
If a function throws an exception, it shall be handled when
meaningful actions can be taken, otherwise it shall be propagated.

Rationale

Provide exception handlers only for functions that actually are able to take recovery or
cleanup actions. Implementing meaningless exception handlers that only re-throw caught
exception results in an implementation that is inefficient and difficult to maintain.

Example

/1% $1d: A15-3-2.cpp 309502 2018-02-28 09:17:39Z michal.szczepankiewicz $
#include <cstdint>

#include <iostream>

#include <stdexcept>

#include <memory>

6

/Il @checkedException

class CommunicationError : public std::exception
{
/I Implementation

h

12
/Il @throw CommunicationError Exceptional communication errors
extern void Send(std::uint8_tx buffer) noexcept(false);
15
void SendDatal(std::uint8_t* data) noexcept(false)
{
try
{
Send(data);
}
22
catch (CommunicationError& €)

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-throw

AUTO©SAR

{

std::cerr << "Communication error occured" << std::endl;

throw; // Non-compliant - exception is not handled, just re-thrown
}

}

extern void BusRestart() noexcept;
extern void BufferClean() noexcept;
void SendData2(std::uint8_tx data) noexcept(false)

{

try

{

Send(data);

}

37

catch (CommunicationError& e)

{

std::cerr << "Communication error occured" << std::endl;
BufferClean();

throw; // Compliant - exception is partially handled and re-thrown
}

}

void F1() noexcept

{

std::uint8_t buffer = nullptr;

48

...

try

{

SendData2(buffer);

}

54

catch (CommunicationError& €)

{

std::cerr << "Communication error occured" << std::endl;
BusRestart();

/I Compliant - including SendData2() exception handler, exception is now
/I fully handled

}

}

void SendData3(std::uint8_t* data) noexcept

{

try

{

Send(data);

}

69

catch (CommunicationError& €)

{

std::cerr << "Communication error occured" << std::endl;
BufferClean();

BusRestart();

AUTOSAR

/Il Compliant - exception is fully handled

}
}

78

struct A

{

std::uint32_t x;

b

83

std::unique_ptr<A[]> Funcl()

{

[Irather throws std::bad_alloc

return std::make_unique<A[]>(999999999999999999);

}

89

std::unique_ptr<A[]> Func2()

{

/ldoes not catch std::bad_alloc

/Ibecause nothing meaningful can be done here

return Funcl();

}

96

std::unique_ptr<A[]> Func3()

{

/ldoes not catch std::bad_alloc
/Ibecause nothing meaningful can be done here
return Func2();

}

103
extern void Cleanup() noexcept;
105
int main(void)

{

try

{
Func3();

}

catch (const std::exception& ex)
{

/Icatches std::bad_alloc here and
/lterminates the application
/lgracefully

Cleanup();

}

119
return O;

}

See also

none

AUTO©SAR

Rule A15-3-3 (required, implementation, partially-automated)

Main function and a task main function shall catch at least: base
class exceptions from all third-party libraries used, std::exception
and all otherwise unhandled exceptions.

Rationale

If a program throws an unhandled exception in main function, as well as in init thread
function, the program terminates in an implementation-defined manner. In particular,
it is implementation-defined whether the call stack is unwound, before termination, so
the destructors of any automatic objects may or may not be executed. By enforcing
the provision of a “last-ditch catch-all’, the developer can ensure that the program
terminates in a consistent manner.

Exceptions hierarchy from external libraries may be completely separate from C++
Standard Library std:exception. Handling such base exception classes separately may
provide some additional information about application termination causes.

Example

/1% $1d: A15-3-3.cpp 309502 2018-02-28 09:17:39Z michal.szczepankiewicz $
#include <stdexcept>

3

/Ibase exception class from external library that is used

class ExtLibraryBaseException {};

6

int MainGood(int, char**) // Compliant

{
try
{
/[program code
}
catch (std::runtime_error& e)
{
/I Handle runtime errors
}
catch (std::logic_error& e)
{
/l Handle logic errors
}
catch (ExtLibraryBaseException &e)
{

/I Handle all expected exceptions
/I from an external library

}

catch (std::exception& e)

{

/I Handle all expected exceptions

}
catch (...)

{

AUTO©SAR

/I Handle all unexpected exceptions

}

34
return O;

}

int MainBad(int, char*x) // Non-compliant - neither unexpected exceptions

38

{

try

{

/[program code

}

catch (std::runtime_error& e)
{

/I Handle runtime errors

}

catch (std::logic_error& e)

{

/I Handle logic errors

}

catch (std::exception& e)

{

/I Handle all expected exceptions
}

56

return O;

}

void ThreadMainGood() // Compliant
{

try

{

/I thread code

}
catch (ExtLibraryBaseException &e)

{
/I Handle all expected exceptions
/I from an external library

}

catch (std::exception& e)

{

/I Handle all expected exception

}

catch (...)

{

/ Handle all unexpected exception
}

}

79
g Vvoid ThreadMainBad()

81

{

/I nor external libraries exceptions are caught

/I Non-compliant - neither unexpected exceptions
/I nor external libraries exceptions are caught

AUTO©SAR

try
{
/I thread code

}

catch (std::exception& e)

{

/I Handle all expected exceptions

}

91
/I Uncaught unexpected exception will cause an immediate program termination

}
See also

MISRA C++ 2008 [7]: 15-3-2 There should be at least one exception handler to
catch all otherwise unhandled exceptions.

SEI CERT C++ [10]: ERR51-CPP. Handle all exceptions

Effective Java 2nd Edition [15]: Item 65: Don’t ignore exceptions

Rule A15-3-4 (required, implementation, non-automated) Catch-all
(ellipsis and std::exception) handlers shall be used only in (a) main, (b)
task main functions, (c) in functions that are supposed to isolate
independent components and (d) when calling third-party code that uses
exceptions not according to AUTOSAR C++14 guidelines.

Rationale

Catching an exception through catch-all handlers does not provide any detailed
information about caught exception. This does not allow to take meaningful actions to
recover from an exception other than to re-throw it. This is inefficient and results in
code that is difficult to maintain.

Example

/1% $1d: A15-3-4.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <stdexcept>

#include <thread>

extern std::int32_t Fn(); // Prototype of external third-party library function
void F1() noexcept(false)

{

try

{

std::int32_t ret = Fn();

...

}

12

I ...
catch (...) // Compliant

AUTO©SAR

{

/I Handle all unexpected exceptions from fn() function
}

}

void F2() noexcept(false)

{

std::int32_tret =

Fn(); // Non-compliant - can not be sure whether fn() throws or not
23

if (ret < 10)

{

throw std::underflow_error("Error");
}

28

else if (ret < 20)

{

I ...

}

else if (ret < 30)

{

throw std::overflow_error("Error");
}

37

else

{

throw std::range_error("Error");

}

}

void F3() noexcept(false)

{

try

{

F2();

}

49

catch (std::exception& e) // Non-compliant - caught exception is too
51 /I general, no information which error occured
{

/I Nothing to do

throw;

}

}

void F4() noexcept(false)

{

try

{

F30;

}

63

catch (...) // Non-compliant - no information about the exception

{

AUTOSAR

/I Nothing to do

throw;

}

}

class ExecutionManager

{

public:

ExecutionManager() = default;
void Execute() noexcept(false)
{

try

{

78 F3();

}

80

...

catch (std::exception& e) // Compliant
{

84 /l Handle all expected exceptions

}
catch (...) // Compliant

{

88 /l Handle all unexpected exceptions
}

}

h

void ThreadMain() noexcept
{

try

{

F30);

}

98
...
catch (std::exception& e) // Compliant

{

/l Handle all expected exceptions

}
catch (...) // Compliant

{

/l Handle all unexpected exceptions
}

}

int main(int, char**)

{

try

{

ExecutionManager execManager;
execManager.Execute();

...

std::thread t(&ThreadMain);

AUTOSAR

...
F4();
}

120

...
catch (std::exception& e) // Compliant

{

/l Handle all expected exceptions

}
catch (...) // Compliant

{

// Handle all unexpected exceptions

}
130
return O;

}

See also

none

its bases.

Rule M15-3-3 (required, implementation, automated)
Handlers of a function-try-block implementation of a class constructor
or destructor shall not reference non-static members from this class or

See MISRA C++ 2008 [7]

Rule M15-3-4 (required, implementation, automated)
Each exception explicitly thrown in the code shall have a handler of
a compatible type in all call paths that could lead to that point.

See MISRA C++ 2008 [7]

Rule A15-3-5 (required, implementation, automated)
A class type exception shall be caught by reference or const reference.

Rationale

If a class type exception object is caught by value, slicing occurs. That is, if the
exception object is of a derived class and is caught as the base, only the base class’s
functions (including virtual functions) can be called. Also, any additional member data
in the derived class cannot be accessed. If the exception is caught by reference or
const reference, slicing does not occur.

Example

AUTO©SAR

/% $Id: A15-3-5.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <iostream>

#include <stdexcept>

class Exception : public std::runtime_error
{

public:

using std::runtime_error::runtime_error;
const charx what() const noexcept(true) override
{

return "Exception error message";

}

b
void Fn()

{

try

{
...

throw std::runtime_error("Error");
I ...

throw Exception("Error");

}

22

catch (const std::logic_error& e) // Compliant - caught by const reference

{

/ Handle exception

}

catch (std::runtime_error& e) // Compliant - caught by reference

{

std::cout << e.what() << "\n"; // "Error" or "Exception error message"
/I will be printed, depending upon the

/I actual type of thrown object

throw e; // The exception re-thrown is of its original type

}
34
catch (
std::runtime_error
37 e) /I Non-compliant - derived types will be caught as the base type
{
std::cout
40 << e.what()
@ << "\n"; /I Will always call what() method from std::runtime_error
throw e; // The exception re-thrown is of the std::runtime_error type,
43 /I not the original exception type
}
}

See also

MISRA C++ 2008 [7]: 15-3-5 A class type exception shall always be caught by
reference.

SEI CERT C++ [10]: ERR61-CPP. Catch exceptions by Ivalue reference

AUTOSAR

C++ Core Guidelines [11]: E.15: Catch exceptions from a hierarchy by reference

Rule M15-3-6 (required, implementation, automated)

Where multiple handlers are provided in a single try-catch statement
or function-try-block for a derived class and some or all of its bases,
the handlers shall be ordered most-derived to base class.

See MISRA C++ 2008 [7]

Rule M15-3-7 (required, implementation, automated)
Where multiple handlers are provided in a single try-catch statement
or function-try-block, any ellipsis (catch-all) handler shall occur last.

See MISRA C++ 2008 [7]

6.15.4 Exception specifications

Rule A15-4-1 (required, implementation, automated)
Dynamic exception-specification shall not be used.

Rationale

This feature was deprecated in the 2011 C++ Language Standard (See: Deprecating
Exception Specifications).

Main issues with dynamic exception specifications are:

Run-time checking: Exception specifications are checked at runtime, so the
program does not guarantee that all exceptions will be handled. The run-time
failure mode does not lend itself to recovery.

Run-time overhead: Run-time checking requires the compiler to produce additional
code that hampers optimizations.

Unusable in generic code: It is not possible to know what types of exceptions may
be thrown from templates arguments operations, so a precise exception
specification cannot be written.

In place of dynamic exception-specification, use noexcept specification that allows to
declare whether a function throws or does not throw exceptions.

Note: std::unexpected_handler shall not be used.

Example

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3051.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3051.html

AUTO©SAR

/% $Id: A15-4-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <stdexcept>

void F1() noexcept; // Compliant - note that noexcept is the same as

4 /I noexcept(true)

s void F2() throw(); /I Non-compliant - dynamic exception-specification is
/I deprecated
; void F3() noexcept(false); I/l Compliant

void F4() throw(std::runtime_error); // Non-compliant - dynamic

/I exception-specification is deprecated

void F5() throw(

...); /I Non-compliant - dynamic exception-specification is deprecated
template <class T>

void F6() noexcept(noexcept(T())); // Compliant

See also

C++ Core Guidelines [11]: E.12: Use noexcept when exiting a function because
of a throw is impossible or unacceptable

open-std.org [18]: open std Deprecating Exception Specifications

mill22: A Pragmatic Look at Exception Specifications

Rule A15-4-2 (required, implementation, automated)
If a function is declared to be noexcept, noexcept(true) or
noexcept(<true condition>), then it shall not exit with an exception.

Rationale

If a function declared to be noexcept, noexcept(true) or noexcept(true condition)
throws an exception, then std::terminate() is called immediately. It is implementation-
defined whether the call stack is unwound before std::terminate() is called.

To ensure that the rule is not violated, if function’s noexcept specification can not be
determined, then always declare it to be noexcept(false).

Example

/% $Id: A15-4-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $

> #include <stdexcept>

Il library.h

void LibraryFunc();

Il project.cpp

void F1() noexcept

{

...

throw std::runtime_error("Error"); Non-compliant - f1 declared to be
10 noexcept, but exits with exception.
11 This leads to std::terminate() call

}

void F2() noexcept(true)

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
http://www.gotw.ca/publications/mill22.htm

AUTO©SAR

{
try
{
...

throw std::runtime_error(
19 "Error"); /I Compliant - exception will not leave f2

}

catch (std::runtime_error& e)

{

/I Handle runtime error

}
}

void F3() noexcept(false)

{
...

throw std::runtime_error("Error"); // Compliant

}
void F4() noexcept(
false) // Compliant - no information whether library_func() throws or not

{
LibraryFunc();

}

See also

MISRA C++ 2008 [7]: 15-5-2: Where a function’s declaration includes an
exception-specification, the function shall only be capable of throwing
exceptions of the indicated type(s).

MISRA C++ 2008 [7]: 15-5-3: The terminate() function shall not be called
implicitly.

HIC++ v4.0 [9]: 15.3.2: Ensure that a program does not result in a call to
std::terminate

SEI CERT C++ Coding Standard [10]: ERR50-CPP: Do not abruptly terminate
the program.

Rule A15-4-3 (required, implementation, automated)

The noexcept specification of a function shall either be identical across
all translation units, or identical or more restrictive between a virtual
member function and an overrider.

Rationale

Declarations of the same function, even in different translation units, have to specify
the same noexcept specification. Overriding functions have to specify the same or a
stricter noexcept specification than the base class function which they override.

http://www.codingstandard.com/rule/15-3-2-ensure-that-a-program-does-not-result-in-a-call-to-stdterminate/
http://www.codingstandard.com/rule/15-3-2-ensure-that-a-program-does-not-result-in-a-call-to-stdterminate/
https://www.securecoding.cert.org/confluence/display/cplusplus/ERR50-CPP.+Do+not+abruptly+terminate+the+program
https://www.securecoding.cert.org/confluence/display/cplusplus/ERR50-CPP.+Do+not+abruptly+terminate+the+program

AUTO©SAR

Note that in many cases, a violation of this rule will lead to a compilation error. This is
not guaranteed, however, in particular when function declarations appear in separate
translation units.

Example

/1% $Id: A15-4-3.cpp 317753 2018-04-27 07:44:02Z jan.babst $
Il f1.hpp

void Fn() noexcept;

4

Il f1.cpp

Il #include <f1.hpp>

void Fn() noexcept // Compliant

{

/I Implementation

}

11

Il f2.cpp

/I #include <f1.hpp>

void Fn() noexcept(false) // Non-compliant - different exception specifier

{

/I Implementation

}

18

class A

{

public:

void F() noexcept;

void G() noexcept(false);

virtual void V1() noexcept = 0;
virtual void V2() noexcept(false) = 0;
2

void A::F() noexcept // Compliant

/I void A::F() noexcept(false) // Non-compliant - different exception specifier
/I than in declaration

{

/I Implementation

}

void A::G() noexcept(false) // Compliant

/I void A::G() noexcept // Non-compliant - different exception specifier than
/I in declaration

{

/I Implementation

}
class B : public A

{

public:

void V1() noexcept override // Compliant

I/l void V1() noexcept(false) override // Non-compliant - less restrictive
/I exception specifier in derived method, non-compilable

{

/I Implementation

}

AUTO©SAR

void V2() noexcept override // Compliant - stricter noexcept specification

{

/I Implementation

}
h

See also

MISRA C++ 2008 [7]: 15-4-1: If a function is declared with an exception-
specification, then all declarations of the same function (in other translation
units) shall be declared with the same set of type-ids.

Rule A15-4-4 (required, implementation, automated)
A declaration of non-throwing function shall contain noexcept specification.

Rationale

Noexcept specification is a method for a programmer to inform the compiler whether
or not a function should throw exceptions. The compiler can use this information to
enable certain optimizations on non-throwing functions as well as enable the
noexcept operator, which can check at compile time if a particular expression is
declared to throw any exceptions.

Noexcept specification is also a method to inform other programmers that a function
does not throw any exceptions.

A non-throwing function needs to declare noexcept specifier. A function that may or
may not throw exceptions depending on a template argument, needs to explicitly
specify its behavior using noexcept(<condition>) specifier.

Note that it is assumed that a function which does not contain explicit noexcept
specification throws exceptions, similarly to functions that declare noexcept(false)
specifier.

Example

/1% $1d: A15-4-4.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <iostream>

#include <stdexcept>

void F1(); // Compliant - f1, without noexcept specification, declares to throw

/I exceptions implicitly

s void F2() noexcept; /I Compliant - f2 does not throw exceptions
; void F3() noexcept(true); /I Compliant - f3 does not throw exceptions
void F4() noexcept(false); // Compliant - f4 declares to throw exceptions

9

try
{

void F5() noexcept /I Compliant - f5 does not throw exceptions

AUTO©SAR

F1(); // Exception handling needed, f1 has no noexcept specification
}

15

catch (std::exception& e)

{

/I Handle exceptions

}

20

F2(); // Exception handling not needed, f2 is noexcept
F3(); // Exception handling not needed, f3 is noexcept(true)
23

try

{

F4(); // Exception handling needed, f4 is noexcept(false)
}

28

catch (std::exception& e)

{

/l Handle exceptions

}

}

template <class T>
void F6() noexcept(noexcept(T())); // Compliant - function f6() may be

36 /I noexcept(true) or noexcept(false)
37 /I depending on constructor of class
template <class T>
class A
{
public:

A() noexcept(noexcept(T())) // Compliant - constructor of class A may be
/I noexcept(true) or noexcept(false) depending on

/I constructor of class T

{

}

3

class C1

{

public:

C1()

noexcept(

true) // Compliant - constructor of class C1 does not throw exceptions
{

}

...

h

class C2

{

public:

C2() // Compliant - constructor of class C2 throws exceptions
{

}

64

65

66

67

68

69

70

71

72

73

74

75

AUTO©SAR

...
2
void F7() noexcept // Compliant - f7 does not throw exceptions
{
std::cout << noexcept(A<C1>()) <<'\n’; /I prints 1’ - constructor of
/l A<C1> class is noexcept(true)
I/l because constructor of C1 class
/l'is declared to be noexcept(true)
std::cout << noexcept(A<C2>()) <<’\n’; [/l prints 'O’ - constructor of
/I A<C2> class is noexcept(false)
I/l because constructor of C2 class
/I has no noexcept specifier

See also

none

Rule A15-4-5 (required, implementation, automated)

Checked exceptions that could be thrown from a function shall be
specified together with the function declaration and they shall be identical
in all function declarations and for all its overriders.

Rationale

In C++ language, all exceptions are unchecked, because the compiler does not force
to either handle the exception or specify it. Because dynamic-exception specification
is obsolete and error prone, an alternative mechanism of specifying checked
exceptions using C++ comments along with function declarations is used. It is a
concept that is based on Java exception handling mechanism.

When analyzing a given function f, a static code analysis needs to analyze functions
invoked by f and analyze if they throw any checked exceptions that are not caught by
f and not listed by f in the function comment.

Exception

Within generic code, it is not generally possible to know what types of exceptions
may be thrown from operations on template arguments, so a precise exception
specification cannot be written. Therefore, this rule does not apply for templates.

Example

/% $Id: A15-4-5.cpp 309502 2018-02-28 09:17:39Z michal.szczepankiewicz $
#include <cstdint>
#include <stdexcept>

4

/Il @checkedException
class CommunicationError : public std::exception

{

AUTO©SAR

/Il Implementation
2
/Il @checkedException
class BusError : public CommunicationError
{
/I Implementation
2
/Il @checkedException
class Timeout : public std::runtime_error
{
public:
using std::runtime_error::runtime_error;
/I lmplementation
2
/Il @throw CommunicationError Communication error
/Il @throw BusError Bus error
24 Il @throw Timeout On send timeout exception
void Send1(
std::uint8_tx buffer,
std::uint8_t bufferLength) noexcept(false) // Compliant - All and only
28 /I those checked exceptions
29 /I that can be thrown are
30 Il specified
{
I ...
throw CommunicationError();
...
throw BusError();
...
throw Timeout("Timeout reached");
I ...
}
/Il @throw CommunicationError Communication error
void Send2(
std::uint8_tx buffer,
std::uint8_t bufferLength) noexcept(false) // Non-compliant - checked
4 Il exceptions that can be
45 /I thrown are missing from
46 Il specification
{
...
throw CommunicationError();
...
throw Timeout("Timeout reached");
...
}

class MemoryPartitioningError : std::exception

{

/I Implementation
I8

/Il @throw CommunicationError Communication error

AUTO©SAR

/Il @throw BusError Bus error

s0 /Il @throw Timeout On send timeout exception

/Il @throw MemoryPartitioningError Memory partitioning error prevents message

/Il from being sent.

void Send3(

std::uint8_tx buffer,

std::uint8_t bufferLength) noexcept(false) // Non-compliant - additional
66 /I checked exceptions are
67 I specified

{

...

throw CommunicationError();

I ...

throw Timeout("Timeout reached");

I ...

}

See also

Effective Java 2nd Edition [15]: Item 62: Document all exceptions thrown by
each method

6.15.5 Special functions

Rule A15-5-1 (required, implementation, automated)

All user-provided class destructors, deallocation functions, move
constructors, move assignment operators and swap functions shall not
exit with an exception. A noexcept exception specification shall be added
to these functions as appropriate.

Rationale

When an exception is thrown, the call stack is unwound up to the point where the
exception is to be handled. The destructors for all automatic objects declared
between the point where the exception is thrown and where it is to be handled will be
invoked. If one of these destructors or delete operators exits with an exception, then
the program will terminate in an implementation-defined manner.

Move constructors and move assignment operators are usually expected to be non-
throwing. If they throw exceptions, strong exception safety cannot be guaranteed,
because the original type values could be already modified or partially modified.

Note that some operations in the standard library statically check the noexcept
specification of the move constructors and move assignment operators of parameter
types. They may choose less efficient algorithms or provide fewer exception safety
guarantees if these are not noexcept.

http://jtechies.blogspot.com/2012/07/item-62-document-all-exceptions-thrown.html
http://jtechies.blogspot.com/2012/07/item-62-document-all-exceptions-thrown.html

AUTO©SAR

The standard-library containers and algorithms will not work correctly if swapping of
two elements exits with an exception. A non-throwing swap function is also an
important basic tool to implement the strong exception safety guarantee in a copy
assignment operator (see A12-8-2).

Note that it is acceptable for a destructor or deallocation function to throw an
exception that is handled within this function, for example within a try-catch block.

Note that deallocation functions are declared noexcept by default. A destructor is
declared as noexcept by default unless a destructor of any base class or member is
potentially-throwing. Using a base class or member with a potentially-throwing
destructor is a violation of this rule. The respective base class or member destructor
must be fixed in order to comply to this rule. The intention of this rule is that the
implementation of a user-provided destructor is ensured to not exit with an exception.
Only then, the default noexcept specification added implicitly to the user-provided
destructor is correct. It may be explicitly restated as noexcept for documentation
purposes.

The compiler also adds a noexcept specification implicitly for any defaulted special
member function. This noexcept specification depends on the noexcept specification
of the member and base class operations that the defaulted special member function
will call implicitly. It is therefore not required to default a special member function only
to add the noexcept specification. Reasons to default a special member function exist
independently from this rule, for example due to A12-0-1.

Exception

Generic move constructors, generic move assignment operators, and generic swap
functions may have noexcept specifications which depend on type properties of the
template parameters.

Example

1% $1d: A15-5-1.cpp 309720 2018-03-01 14:05:17Z jan.babst $

#include <stdexcept>

#include <type_traits>

4

class C1

{

public:

C1() = default;

9
/I Compliant - move constructor is non-throwing and declared to be noexcept
C1(C1&& rhs) noexcept {}
12
/I Compliant - move assignment operator is non-throwing and declared to be
/I noexcept
C1& operator=(C1&& rhs) noexcept { return *this; }
16
/I Compliant - destructor is non-throwing and declared to be noexcept by
/I default

AUTO©SAR

~C1() noexcept {}

2

21

void Swap(C1& lhs,

C1& rhs) noexcept // Compliant - swap function is non-throwing and
24 /I declared to be noexcept

{

/I Implementation

}

28

class C2

{

public:

C2() = default;

33

/I Compliant - move constructor is non-throwing and declared to be noexcept
C2(C2&& rhs) noexcept

{
try
{
39 ...
40 throw std::runtime_error(
a "Error"); /I Exception will not escape this function
}
43
catch (std::exception& e)
{
46 / Handle error
}
}
49
C2& operator=(C2&& rhs) noexcept
{
try
{
54 ...
55 throw std::runtime_error(
56 "Error"); // Exception will not escape this function
}
58
catch (std::exception& e)
{
61 / Handle error
}
return *this;
}

65

/I Compliant - destructor is non-throwing and declared to be noexcept by
/I default

~C2()

{

AUTOSAR

try
{
72 ...

73 throw std::runtime_error(
74 "Error"); // Exception will not escape this function
}
76
catch (std::exception& €)
{
79 / Handle error
}
}
3
83
/I Non-compliant - swap function is declared to be noexcept(false)
void Swap(C2& Ihs, C2& rhs) noexcept(false)
{
...
/I Non-compliant - Implementation exits with an exception
throw std::runtime_error("Swap function failed");
}
91
class C3
{
public:
C3() = default;
C3(C3&& rhs) /I Non-compliant - move constructor throws
{
...
throw std::runtime_error("Error");

}

C3& operator=(C3&& rhs) // Non-compliant - move assignment operator throws
{

...

throw std::runtime_error("Error");

return *this;

}

~C3() // Non-compliant - destructor exits with an exception

{

throw std::runtime_error("Error");

}

static void operator delete(void* ptr, std::size_t sz)

{

...

throw std::runtime_error("Error"); // Non-compliant - deallocation

115 / function exits with an exception
}

h

118

void Fn()
{

AUTOSAR

C3 cl; // program terminates when c1 is destroyed
C3* c2 =new C3;

...

delete c2; // program terminates when c2 is deleted

}

126
template <typename T>
class Optional

{

public:

...

132

/I Compliant by exception

Optional(Optional&& other) noexcept(
std::is_nothrow_move_constructible<T>::value)

{
...

}

139

/I Compliant by exception

Optional& operator=(Optional&& other) noexcept(
std::is_nothrow_move_assignable<T>::value&&

143 std::is_nothrow_move_constructible<T>::value)

{
...

return +this;

}

148

...
h
See also
MISRA C++ 2008 [7]: 15-5-1: A class destructor shall not exit with an exception.
HIC++ v4.0 [9]: 15.2.1: Do not throw an exception from a destructor

C++ Core Guidelines [11]: E.16: Destructors, deallocation, and swap must
never fail

C++ Core Guidelines [11]: C.85: Make swap noexcept
ISO/IEC 14882:2014 [3]: 15.4: [except.spec]
ISO/IEC 14882:2014 [3]: 20.2.4, paragraph 9:
[forward] A12-0-1 in section 6.12.0
Al12-8-2 in section 6.12.8

Rule A15-5-2 (required, implementation, partially automated) Program
shall not be abruptly terminated. In particular, an implicit or

http://www.codingstandard.com/rule/15-2-1-do-not-throw-an-exception-from-a-destructor/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail

AUTO©SAR

explicit invocation of std::abort(), std::quick_exit(),
std::_Exit(), std::terminate() shall not be done.

Rationale

Functions that are used to terminate the program in an immediate fashion, i.e.
std::abort(), std::quick_exit(), std::_Exit(), do so without calling exit handlers or calling
destructors of automatic, thread or static storage duration objects.
implementation-defined whether opened streams are flushed and closed, and

temporary files are removed.

The std::terminate() function calls std::abort() implicitly in its terminate handler, and it
is implementation-defined whether or not stack unwinding will occur.

Note: std::terminate_handler shall not be used.

Example

/1% $1d: A15-5-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $

#include <cstdlib>
#include <exception>

void F1() noexcept(false);
void F2() // Non-compliant
{

F1(); /I A call to throwing f1() may result in an implicit call to
/I std::terminate()

}

void F3() // Compliant

{

try

{

F1(); // Handles all exceptions from f1() and does not re-throw

}
catch (...)

{
/I Handle an exception
}
}

void F4(const char* log)

{

/I Report a log error
...

std::exit(0); // Call std::exit() function which safely cleans up resources

}

void F5() // Compliant by exception
{

try

{

F10;

}

catch (...)

{

AUTO©SAR

F4("f1() function failed");

}
}
int main(int, charx*)

{
if (std::atexit(&F2) 1= 0)
{

/I Handle an error

}

44
if (std::atexit(&F3) !'=0)
{

/I Handle an error

}

49
...
return O;

}

See also

MISRA C++ 2008 [7]: 15-5-3 (Required) The terminate() function shall not be
called implicitly.

HIC++ v4.0 [9]: 15.3.2 Ensure that a program does not result in a call to
std::terminate

SEI CERT C++ [10]: ERR50-CPP. Do not abruptly terminate the program

Rule A15-5-3 (required, implementation, automated)
The std::terminate() function shall not be called implicitly.

Rationale

It is implementation-defined whether the call stack is unwound before std::terminate()
is called. There is no guarantee that the destructors of automatic thread or static
storage duration objects will be called.

These are following ways to call std::terminate() function implicitly, according to
(std::terminate() in CppReference [16]):

an exception is thrown and not caught (it is implementation-defined whether any
stack unwinding is done in this case)

an exception is thrown during exception handling (e.g. from a destructor of some local
object, or from a function that had to be called during exception handling)

the constructor or the destructor of a static or thread-local object throws an
exception

a function registered with std::atexit or std::at_quick_exit throws an exception

http://www.codingstandard.com/rule/15-3-2-ensure-that-a-program-does-not-result-in-a-call-to-stdterminate/
http://en.cppreference.com/w/cpp/error/terminate
http://en.cppreference.com/w/cpp/error/terminate

AUTO©SAR

a noexcept specification is violated (it is implementation-defined whether any stack
unwinding is done in this case)

a dynamic exception specification is violated and the default handler for
std::unexpected is executed

a non-default handler for std::unexpected throws an exception that violates the
previously violated dynamic exception specification, if the specification does not
include std::bad_exception

std::nested_exception::rethrow_nested is called for an object that isn’t holding a
captured exception

an exception is thrown from the initial function of std::thread
a joinable std::thread is destroyed or assigned to

Note: std::terminate_handler shall not be used.

Example

/% $Id: A15-5-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <stdexcept>
#include <thread>
extern bool F1();
class A
{
public:
A() noexcept(false)
{
...
throw std::runtime_error("Errorl");
}
~A()
{
...
throw std::runtime_error("Error2"); // Non-compliant - std::terminate()
17 /I called on throwing an exception
18 /I from noexcept(true) destructor
}
¥
class B
{
public:
~B() noexcept(false)
{
I ...
throw std::runtime_error("Error3");
}
h
void F2()
{

throw;

AUTO©SAR

}
void ThreadFunc()

{

A a; /l Throws an exception from a’s constructor and does not handle it in

I thread_func()

}

void F3()

{

try

{

std::thread t(&ThreadFunc); // Non-compliant - std::terminate() called
44 /I on throwing an exception from
45 I thread_func()
46

if (F10))

{

49 throw std::logic_error("Error4");

}

51

else

{
54 F2(); // Non-compliant - std::terminate() called if there is no
55 /I active exception to be re-thrown by 2

}

}

catch (...)

{

B b; // Non-compliant - std::terminate() called on throwing an
61 /I exception from b’s destructor during exception handling
62

...

F2();

}

}

static A a; // Non-compliant - std::terminate() called on throwing an exception
68 /l during program'’s start-up phase
int main(int, charxx)

{

F3(); // Non-compliant - std::terminate() called if std::logic_error is
/I thrown
return O,

}
See also

MISRA C++ 2008 [7]: 15-5-3 (Required) The terminate() function shall not be
called implicitly.

AUTO©SAR

6.16 Preprocessing directives

6.16.0 General

Rule A16-0-1 (required, implementation, automated)

The pre-processor shall only be used for unconditional and conditional file
inclusion and include guards, and using the following directives: (1) #ifndef,
#ifdef, (3) #if, (4) #if defined, (5) #elif, (6) #else, (7) #define, (8) #endif, (9)
#include.

Rationale

C++ provides safer, more readable and easier to maintain ways of achieving what is
often done using the pre-processor. The pre-processor does not obey the linkage,
lookup and function call semantics. Instead, constant objects, constexprs, inline
functions and templates are to be used.

Example

/I $1d: A16-0-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#pragma once // Non-compliant - implementation-defined feature
3

#ifndef HEADER_FILE_NAME // Compliant - include guard
#define HEADER_FILE_NAME // Compliant - include guard

6

#include <cstdint> // Compliant - unconditional file inclusion

8

#ifdef WIN32
#include <windows.h> // Compliant - conditional file inclusion
#endif

12
#ifdef WIN32

std::int32_t fnl(
std::int16_t x,
std::int16_t y) noexcept; // Non-compliant - not a file inclusion
#endif
18

#if defined VERSION && VERSION > 2011L // Compliant

20 #include <array> /I Compliant - conditional file inclusion
#elif VERSION > 1998L // Compliant
2> #include <vector> /I Compliant - conditional file inclusion
23 #Hendif /I Compliant

24
#define MAX_ARRAY_SIZE 1024U // Non-compliant
26 #ifndef MAX_ARRAY_SIZE /I Non-compliant
#error "MAX_ARRAY_SIZE has not been defined" // Non-compliant
28 #endif /I Non-compliant
#undef MAX_ARRAY_SIZE // Non-compliant
30

#define MIN(a, b) (((a) < (b)) ? (a) : (b)) // Non-compliant

AUTO©SAR

#define PLUS2(X) ((X) + 2) // Non-compliant - function should be used instead
#define PI 3.14159F// Non-compliant - constexpr should be used instead
#define std ::int32_t long // Non-compliant - 'using’ should be used instead
#define STARTIF if(// Non-compliant - language redefinition

#define HEADER "filename.h" // Non-compliant - string literal

37

void Fn2() noexcept

{

#ifdef __linux__ // Non-compliant - ifdef not used for file inclusion

41

...

43

#elif WIN32 // Non-compliant - elif not used for file inclusion

45

I ...

47

#elif __ APPLE__ // Non-compliant - elif not used for file inclusion

49

I ...

51

#else // Non-compliant - else not used for file inclusion

53

I ...

55

#endif // Non-compliant - endif not used for file inclusion or include guards
}

58

#endif // Compliant - include guard

See also

MISRA C++ 2008 [7]: Rule 16-2-1 The pre-processor shall only be used for file
inclusion and include guards.

MISRA C++ 2008 [7]: Rule 16-2-2 C++ macros shall only be used for: include
guards, type qualifiers, or storage class specifiers.

JSF December 2005 [8]: AV Rule 26 Only the following pre-processor directives
shall be used: 1. #ifndef 2. #define 3. #endif 4. #include.

JSF December 2005 [8]: AV Rule 27 #ifndef, #define and #endif will be used to
prevent multiple inclusions of the same header file. Other techniques to prevent
the multiple inclusions of header files will not be used.

JSF December 2005 [8]: AV Rule 28 The #ifndef and #endif pre-processor
directives will only be used as defined in AV Rule 27 to prevent multiple
inclusions of the same header file.

JSF December 2005 [8]: AV Rule 29 The #define pre-processor directive shall
not be used to create inline macros. Inline functions shall be used instead.

AUTOSAR

JSF December 2005 [8]: AV Rule 30 The #define pre-processor directive shall
not be used to define constant values. Instead, the const qualifier shall be
applied to variable declarations to specify constant values.

JSF December 2005 [8]: AV Rule 31 The #define pre-processor directive will
only be used as part of the technique to prevent multiple inclusions of the same
header file.

JSF December 2005 [8]: AV Rule 32 The #include pre-processor directive will
only be used to include header (*.h) files.

HIC++ v4.0 [9]: 16.1.1 Use the preprocessor only for implementing include
guards, and including header files with include guards.

Rule M16-0-1 (required, implementation, automated)
#include directives in a file shall only be preceded by other pre-
processor directives or comments.

See MISRA C++ 2008 [7]

Rule M16-0-2 (required, implementation, automated)
Macros shall only be #define’d or #undef’d in the global namespace.

See MISRA C++ 2008 [7]

Rule M16-0-5 (required, implementation, automated)
Arguments to a function-like macro shall not contain tokens that look
like pre-processing directives.

See MISRA C++ 2008 [7]

Note: Function-like macros are anyway not allowed, see A16-0-1. This rule is kept in
case A16-0-1 is disabled in a project.

Rule M16-0-6 (required, implementation, automated)
In the definition of a function-like macro, each instance of a parameter shall
be enclosed in parentheses, unless it is used as the operand of # or ##.

See MISRA C++ 2008 [7]

Note: Function-like macros are anyway not allowed, see A16-0-1. This rule is kept in
case A16-0-1 is disabled in a project.

http://www.codingstandard.com/rule/16-1-1-use-the-preprocessor-only-for-implementing-include-guards-and-including-header-files-with-include-guards/

AUTOSAR

Rule M16-0-7 (required, implementation, automated)
Undefined macro identifiers shall not be used in #if or #elif pre-
processor directives, except as operands to the defined operator.

See MISRA C++ 2008 [7]

Note: “#if” and “#elif” are anyway only allowed for conditional file inclusion, see A16-
0-1. This rule is kept in case A16-0-1 is disabled in a project.

Rule M16-0-8 (required, implementation, automated)
If the # token appears as the first token on a line, then it shall
be immediately followed by a pre-processing token.

See MISRA C++ 2008 [7]

6.16.1 Conditional inclusion

Rule M16-1-1 (required, implementation, automated)
The defined pre-processor operator shall only be used in one of the
two standard forms.

See MISRA C++ 2008 [7]

Note: “#if defined” is anyway only allowed for conditional file inclusion, see A16-0-1.
This rule is kept in case A16-0-1 is disabled in a project.

Rule M16-1-2 (required, implementation, automated)
All #else, #elif and #endif pre-processor directives shall reside in the
same file as the #if or #ifdef directive to which they are related.

See MISRA C++ 2008 [7]

Note: “#if”, “#elif”, “#else” and “#ifded” are anyway only allowed for conditional file
inclusion, see A16-0-1. This rule is kept in case A16-0-1 is disabled in a project.

6.16.2 Source file inclusion

Rule M16-2-3 (required, implementation, automated)
Include guards shall be provided.

See MISRA C++ 2008 [7]

AUTO©SAR

Rule A16-2-1 (required, implementation, automated)

The, ", 1=, //,\ characters shall not occur in a header file name or in
#include directive.

Rationale

It is undefined behavior if the ’, ", /*, /1, \\ characters are used in #include directive,
between < and > or “” delimiters.

Example
/I $1d: A16-2-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2

Il #include <directory/headerfile.hpp> // Compliant

Il #include <headerfile.hpp> // Compliant

Il #include "directory/headerfile.hpp" // Compliant

Il #include "headerfile.hpp" // Compliant

/I #include <directory/*.hpp> // Non-compliant

Il #include <header’file.hpp> // Non-compliant

Il #include <"headerfile.hpp"> // Non-compliant
/I #include <directory\\headerfile.hpp> // Non-compliant

See also

MISRA C++ 2008 [7]: Rule 16-2-4 The ', ", /* or // characters shall not occur in a
header file name.

MISRA C++ 2008 [7]: Rule 16-2-5 The \character shall not occur in a header file
name.

Rule A16-2-2 (required, implementation, automated)
There shall be no unused include directives.

Rationale

Presence of unused include directives considerably slows down compilation phase,
makes the code base larger and introduces unneeded dependencies.

Note: In order to determine what an unused include directive is, only the immediate
level of includes, and the specifications of external libraries shall be considered. So,
for example, if a source file uses the standard library algorithm std::copy, it is
required (see also rule A16-2-3) to include the standard library header <algorithm>. It
is not a violation of this rule if <algorithm>, possibly through inclusion of other
headers, contains declarations of symbols not used in the source file.

Example

I/ $1d: A16-2-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <algorithm> // Non-compliant - nothing from algorithm header file is used

AUTO©SAR

; #include <array> /I Non-compliant - nothing from array header file is used
. #include <cstdint> /[Compliant - std::int32_t, std::uint8_t are used

s #include <iostream> /I Compliant - cout is used

#include <stdexcept> // Compliant - out_of _range is used

7 #include <vector> /I Compliant - vector is used

void Fn1() noexcept

{
std::int32_t x = 0;
/...
std::uint8_ty =0;
...
}
void Fn2() noexcept(false)
{
try
{
std::vector<std::int32_t> v;
...
std::uint8_tidx = 3;
std::int32_t value = v.at(idx);
}
catch (std::out_of _range& e)
{
std::cout << e.what() << '\n’;
}
}

See also

HIC++ v4.0 [9]: 16.1.5 Include directly the minimum number of headers
required for compilation.

Rule A16-2-3 (required, implementation, non-automated)
An include directive shall be added explicitly for every symbol used in afile.

Rationale

All header files that define types or functions used in a file should be included
explicitly. The actual header to include depends on the specification of the
library/component used.

Exception

Types defined via forward declarations do not violate this rule.

Example

/I $1d: A16-2-3.hpp 319944 2018-05-21 09:00:40Z ilya.burylov $
#ifndef HEADER_HPP

http://www.codingstandard.com/rule/16-1-5-include-directly-the-minimum-number-of-headers-required-for-compilation/
http://www.codingstandard.com/rule/16-1-5-include-directly-the-minimum-number-of-headers-required-for-compilation/

AUTO©SAR

#define HEADER_HPP

4

#include <array>

#include <cstdint>

7

class B; // Compliant - type B can be included using forward declaration
9

class OutOfRangeException

: public std::out_of_range // Non-compliant - <stdexcept> which defines
12 /I out_of_range included
13 /l'implicitly through <array>
{

public:

using std::out_of_range::out_of_range;

I8

18

class A

{

public:
Il Interface of class A

23

private:

std::array<std::uint32_t, 10>

mArray; // Compliant - <array> included explicitly

B* mB;

std::int32_t mX; // Compliant - <cstdint> included explicitly

I8

30

#endif

See also

none

6.16.3 Macro replacement

Rule M16-3-1 (required, implementation, automated)
There shall be at most one occurrence of the # or ## operators in a
single macro definition.

See MISRA C++ 2008 [7]

Note: Operators # and ## are anyway not allowed, see M16-3-2. This rule is kept in
case M16-3-2 is disabled in a project.

AUTO©SAR

Rule M16-3-2 (advisory, implementation, automated)
The # and ## operators should not be used.

See MISRA C++ 2008 [7]

6.16.6 Error directive

Rule A16-6-1 (required, implementation, automated)
#error directive shall not be used.

Rationale

Using the pre-processor #error directive may lead to code that is complicated and not
clear for developers. The #error directive can not be applied to templates as it will not
be evaluated as a per-instance template deduction.

Static assertion, similarly to #error directive, provides a compile-time error checking.
However, static_assert behaves correctly in all C++ concepts and makes the code
more readable and does not rely on pre-processor directives.

Note: “#error” is anyway not allowed, see A16-0-1. This rule is kept in case A16-0-1
is disabled in a project.

Example

/I $1d: A16-6-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <type_traits>

constexpr std::int32_t value = 0;

#if value > 10

#error "Incorrect value" // Non-compliant

#endif

void F1() noexcept

{

static_assert(value <= 10, "Incorrect value"); // Compliant
...

}

template <typename T>
void F2(T& a)

{

static_assert(std::is_copy_constructible<T>::value,

17 "f2() function requires copying"); /I Compliant
I ...

}

See also

none

AUTOSAR

6.16.7 Pragma directive

Rule A16-7-1 (required, implementation, automated)
The #pragma directive shall not be used.

Rationale

The #pragma directive is implementation-defined and causes the implementation to
behave in implementation-defined manner.

Example

/Il $1d: A16-7-1.hpp 270497 2017-03-14 14:58:50Z piotr.tanski $

I/l #pragma once // Non-compliant - implementation-defined manner
#ifndef A16_7_1_ HPP // Compliant - equivalent to #pragma once directive
#define A16_7_1 HPP

5

...

7

#endif

See also

MISRA C++ 2008 [7]: Rule 16-6-1 All uses of the #pragma directive shall be
documented.

6.17 Library introduction - partial

6.17.1 General

Rule A17-0-1 (required, implementation, automated)
Reserved identifiers, macros and functions in the C++ standard library
shall not be defined, redefined or undefined.

Rationale

It is generally bad practice to #undef a macro that is defined in the standard library. It
is also bad practice to #define a macro name that is a C++ reserved identifier, or C++
keyword or the name of any macro, object or function in the standard library. For
example, there are some specific reserved words and function names that are known
to give rise to undefined behavior if they are redefined or undefined, including
defined, LINE_, FILE_, DATE , TIME__, STDC__, errno and assert.

Refer to C++ Language Standard for a list of the identifiers that are reserved.
Generally, all identifiers that begin with the underscore character are reserved.

AUTOSAR

Note that this rule applies regardless of which header files, if any, are actually included.

Example

/1 $1d: A17-0-1.cpp 271389 2017-03-21 14:41:05Z piotr.tanski $
2 #undef _ TIME___ /I Non-compliant
#define __LINE__ 20 // Non-compliant

See also

MISRA C++ 2008 [7]: Rule 17-0-1 Reserved identifiers, macros and functions in
the standard library shall not be defined, redefined or undefined.

Rule M17-0-2 (required, implementation, automated)
The names of standard library macros and objects shall not be reused.

See MISRA C++ 2008 [7]

Rule M17-0-3 (required, implementation, automated)
The names of standard library functions shall not be overridden.

See MISRA C++ 2008 [7]

Rule A17-0-2 (required, implementation, non-automated)

All project’s code including used libraries (including standard and user-
defined libraries) and any third-party user code shall conform to the
AUTOSAR C++14 Coding Guidelines.

Rationale

Note that library code can be provided as source code or be provided in a compiled
form. The rule applies for any form of libraries.

As for any rule in this standard, a deviation procedure can be performed for this rule
and the project needs to argue what are the measures ensuring that non-compliant
libraries can be used in a project, addressing:

interference from the non-compliant code (for example, a library function
overwrites the stack or heap of the caller)

residual errors in non-compliant code resulting with its wrong outputs, which are
subsequently used (for example, a library function delivers wrong return value
used by the caller).

AUTO©SAR

Exception

If a function is defined in a library or any third-party user code but it is ensured that
the function will not be used (directly or indirectly) in the project, then the function
may not conform to the AUTOSAR C++14 Coding Guidelines.

See also

none

Rule M17-0-5 (required, implementation, automated)
The setjmp macro and the longjmp function shall not be used.

See MISRA C++ 2008 [7]
See: A6-6-1.

6.17.2 The C standard library

Rule A17-1-1 (required, implementation, non-automated)
Use of the C Standard Library shall be encapsulated and isolated.

Rationale

The C Standard Library leaves the responsibility for handling errors, data races and
security concerns up to developers. Therefore, use of the C Standard Library needs
to be separated and wrapped with functions that will be fully responsible for all
specific checks and error handling.

Example

// $1d: A17-1-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $

#in
#in
#in

clude <cerrno>
clude <cstdio>
clude <cstring>

#include <iostream>
#include <stdexcept>

7

Vo]
9

{

d Fnl(const char* filename) // Compliant - C code is isolated; fnl()
/ function is a wrapper.

FILE* handle = fopen(filename, "rb");
if (handle == NULL)

{

throw std::system_error(errno, std::system_category());

}
...

fclo

se(handle);

AUTO©SAR

}

19

void Fn2() noexcept

{

try

{

Fnl("filename.txt"); // Compliant - fn1() allows you to use C code like
25 /I C++ code

26
...
}
catch (std::system_error& e)
itd::cerr << "Error: " << e.code() << " - " << e.what() <<’\n’;
}
}

34
std::int32_t Fn3(const char* filename) noexcept // Non-compliant - placing C
/I functions calls along with C++

/I code forces a developer to be

/I responsible for C-specific error

/I handling, explicit resource

/I cleanup, etc.

{

FILE* handle = fopen(filename, "rb");
if (handle == NULL)

{

std::cerr << "An error occured: " << errno << " - " << strerror(errno)
46 <<’\n’;
return errno;

}

49

try

{

I ...

fclose(handle);

}

catch (std::system_error& €)

{

fclose(handle);

}

catch (std::exception& e)

{

fclose(handle);

}

63
return errno;

}

See also

MISRA C++ 2008 [7]: Rule 19-3-1 The error indicator errno shall not be used.

AUTO©SAR

HIC++ v4.0 [9]: 17.2.1 Wrap use of the C Standard Library.

JSF December 2005 [8]: Chapter 4.5.1: Standard Libraries, AV Rule 17 - AV
Rule 25.

6.17.3 Definitions

The corresponding section in the C++14 standard provides a glossary only.

6.17.6 Library-wide requirements

Rule A17-6-1 (required, implementation, automated) Non-standard
entities shall not be added to standard namespaces.

Rationale

Adding declarations or definitions to namespace std or its sub-namespaces, or to
namespace posix or its sub-namespaces leads to undefined behavior.

Declaring an explicit specialization of a member function or member function
template of a standard library class or class template leads to undefined behavior.

Declaring an explicit or partial specialization of a member class template of a
standard library class or class template leads to undefined behavior.

Exception

It is allowed by the language standard to add a specialization to namespace std if the
declaration depends on a user-defined type, meets the requirements for the original
template and is not explicitly forbidden.

It is allowed by the language standard to explicitly instantiate a template defined in
the standard library if the declaration depends on a user defined type and meets the
requirements for the original template.

Example

// $1d: A17-6-1.cpp 305588 2018-01-29 11:07:35Z michal.szczepankiewicz $
#include <cstdint>

#include <limits>

#include <memory>

#include <type_traits>

#include <utility>

7

namespace std

{

10

/I Non-compliant - An alias definition is added to namespace std.

AUTO©SAR

/I This is a compile error in C++17, since std::byte is already defined.
using byte = std::uint8_t;

14

/I Non-compliant - A function definition added to namespace std.
pair<int, int> operator+(pair<int, int> const& x, pair<int, int> const& y)
{

return pair<int, int>(x.first + y.first, x.second + y.second);

}

20

} // namespace std

22

struct MyType

{

int value;

b

27

namespace std

{

30

/I Non-compliant - std::numeric_limits may not be specialized for
/I non-arithmetic types [limits.numeric].

template <>

struct numeric_limits<MyType> : numeric_limits<int>

{

b

37

/I Non-compliant - Structures in <type_traits>, except for std::common_type,
/l may not be specialized [meta.type.synop].

template <>

struct is_arithmetic<MyType> : true_type

{

2

44

/I Compliant - std::hash may be specialized for a user type if the
/I specialization fulfills the requirements in [unord.hash].
template <>

struct hash<MyType>

{

50 using result_type = size_t; /I deprecated in C++17
using argument_type = MyType; // deprecated in C++17

52

size_t operator()(MyType const& x) const noexcept

{

return hash<int>()(x.value);

}

I8

58

} // namespace std

See also

AUTOSAR

SEI CERT C++ Coding Standard [10]: DCL58-CPP: Do not modify the standard
namespaces

C++ Core Guidelines [11]: SL.3: Do not add non-standard entities to
namespace std

ISO/IEC 14882:2014 [3]: 17.6.4.2: [namespace.constraints]
ISO/IEC 14882:2014 [3]: 18.3.2.1: [limits.numeric]

ISO/IEC 14882:2014 [3]: 20.9.13: [unord.hash]

ISO/IEC 14882:2014 [3]: 20.10.2: [meta.type.synop]

6.18 Language support library - partial

The corresponding chapter in the C++ standard defines the fundamental support
libraries, including integer types, dynamic memory, start and termination.

6.18.0 General

Rule A18-0-1 (required, implementation, automated)
The C library facilities shall only be accessed through C++ library headers.

Rationale

C libraries (e.g. <stdio.h>) also have corresponding C++ libraries (e.g. <cstdio>). This
rule requires that the C++ version is used.

See also
MISRA C++ 2008 [7]: Rule 18-0-1 (Required) The C library shall not be used.
HIC++ v4.0 [9]: 1.3.3 Do not use the C Standard Library .h headers.

Rule A18-0-2 (required, implementation, automated)
The error state of a conversion from string to a numeric value shall
be checked.

Rationale

Error conditions of a string-to-number conversion must be detected and properly
handled. Such errors can happen when an input string:

does not contain a number;

contains a number, but it is out of range;

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL58-CPP.+Do+not+modify+the+standard+namespaces
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL58-CPP.+Do+not+modify+the+standard+namespaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#sl3-do-not-add-non-standard-entities-to-namespace-std
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#sl3-do-not-add-non-standard-entities-to-namespace-std
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#sl3-do-not-add-non-standard-entities-to-namespace-std

AUTO©SAR

contains additional data after a number.

Some functions for string-to-number conversion from the C Standard library have
undefined behavior when a string cannot be converted to a number, e.g. atoi(). Since
the C++11 Language Standard, new numeric conversion functions are available
(see: std::stoi(), std::stol(), std::stoll() [16]). These guarantee defined behavior.

Moreover, errors shall be checked also for formatted input stream functions (e.g.
istream::operator>>()), by using basic_ios::fail().

Example

/I $1d: A18-0-2.cpp 312092 2018-03-16 15:47:01Z jan.babst $
#include <cstdint>

#include <cstdlib>

#include <iostream>

#include <string>

6

std::int32_t F1(const char* str) noexcept

{

return atoi(str); // Non-compliant - undefined behavior if str can not

10 Il be converted

}

std::int32_t F2(std::string const& str) noexcept(false)

{

return std::stoi(str); // Compliant - throws a std::invalid_argument

15 /I exception if str can not be converted
}

17

std::uint16_t ReadFromStdinl() // non-compliant

{

std::uintl6 _t a;

std::cin >> a; // no error detection

return a;

}

24

std::uint16_t ReadFromStdin2() // compliant

{

std::uintl6_t a;

28

std::cin.clear(); // clear all flags

std::cin >> a;

if (std::cin.fail())

{

throw std::runtime_error{"unable to read an integer"};
}

std::cin.clear(); // clear all flags for subsequent operations
return a;

}

See also

http://en.cppreference.com/w/cpp/string/basic_string/stol
http://en.cppreference.com/w/cpp/string/basic_string/stol
http://en.cppreference.com/w/cpp/string/basic_string/stol

AUTOSAR

MISRA C++ 2008 [7]: 18-0-2: The library functions atof, atoi and atol from
library <cstdlib> shall not be used.

SEI CERT C++ Coding Standard [10]: ERR34-C: Detect errors when converting
a string to a number

SEI CERT C++ Coding Standard [10]: ERR62-CPP: Detect errors when
converting a string to a number

Rule M18-0-3 (required, implementation, automated)
The library functions abort, exit, getenv and system from library
<cstdlib> shall not be used.

See MISRA C++ 2008 [7]

Rule M18-0-4 (required, implementation, automated)
The time handling functions of library <ctime> shall not be used.

See MISRA C++ 2008 [7]

Note: Facilities from <chrono> shall be used instead.

Rule M18-0-5 (required, implementation, automated)
The unbounded functions of library <cstring> shall not be used.

See MISRA C++ 2008 [7]
Note: The intention of this rule is to prohibit the functions from <cstring> which have a
char* or char const* parameter, but no additional size_t parameter placing a bound

on the underlying loop. Other functions from <cstring> taking a char* or char const*
parameter fall under the restrictions of rule A27-0-4. Use of memchr, memcmp,

memset, memcpy, and memmove is still allowed by this rule, but limited by rule A12-
0-2.
See also

Rule A12-0-2 in section 6.12.0

Rule A27-0-4 in section 6.27.1

Rule A18-0-3 (required, implementation, automated)
The library <clocale> (locale.h) and the setlocale function shall not be used.

Rationale

A call to the setlocale function introduces a data race with other calls to setlocale
function.

https://wiki.sei.cmu.edu/confluence/display/c/ERR34-C.+Detect+errors+when+converting+a+string+to+a+number
https://wiki.sei.cmu.edu/confluence/display/c/ERR34-C.+Detect+errors+when+converting+a+string+to+a+number
https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR62-CPP.+Detect+errors+when+converting+a+string+to+a+number
https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR62-CPP.+Detect+errors+when+converting+a+string+to+a+number

AUTO©SAR

It may also introduce a data race with calls to functions that are affected by the current
locale settings: fprintf, isprint, iswdigit, localeconv, tolower, fscanf, ispunct, iswgraph,
mblen, toupper, isalnum, isspace, iswlower, mbstowcs, towlower, isalpha, isupper,
iswprint, mbtowc, towupper, isblank, iswalnum, iswpunct, setlocale, wcscoll, iscntrl,
iswalpha, iswspace, strcoll, wcstod, isdigit, iswblank, iswupper, strerror, wcstombs,
isgraph, iswentrl, iswxdigit, strtod, wesxfrm, islower, iswctype, isxdigit, strxfrm, wctomb.

See also

JSF December 2005 [8]: AV Rule 19 <locale.h> and the setlocale function shall
not be used.

6.18.1 Types

Rule A18-1-1 (required, implementation, automated)
C-style arrays shall not be used.

Rationale

A C-style array is implicitly convertible to a raw pointer and easily loses information
about its size. This construct is unsafe, unmaintainable, and a source of potential
errors.

For fixed-size, stack-allocated arrays, std::array is supposed to be used instead.
This type is designed to work with standard library algorithms.

Exception

It is allowed to declare a static constexpr data member of a C-style array type.

Example

/I $1d: A18-1-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <algorithm>

#include <array>

#include <cstdint>

void Fn() noexcept

{
const std::uint8_t size = 10;
8 std::int32_t al[size]; /l Non-compliant

std::array<std::int32_t, size> a2; // Compliant

...

std::sort(al, al + size);

std::sort(a2.begin(), a2.end()); // More readable and maintainable way of

13 I/l working with STL algorithms
}

class A

{
public:

AUTO©SAR

static constexpr std::uint8_t array[]{0, 1, 2}; // Compliant by exception

h

See also

C++ Core Guidelines [11]: ES.27: Use std::array or stack_array for arrays on
the stack.

C++ Core Guidelines [11]: SL.con.1: Prefer using STL array or vector instead of
a C array.

Rule A18-1-2 (required, implementation, automated) The
std::vector<bool> specialization shall not be used.

Rationale

The std::vector<bool> specialization does not work with all STL algorithms as
expected. In particular, operator[]() does not return a contiguous sequence of
elements as it does for the primary template std::vector<T>.

The C++ Language Standard guarantees that distinct elements of an STL container
can be safely modified concurrently, except when the container is a std::vector<
bool>.

Note that std::bitset<N>, std::array<bool, N>, std::deque<bool>, or using std::vector
with a value type which wraps bool are possible alternatives.

Example

// $1d: A18-1-2.cpp 312108 2018-03-16 17:56:49Z jan.babst $
#include <cstdint>
#include <vector>

4

class BoolWrapper

{

7
8
9
10
11
12
13

14

public:
BoolWrapper() = default;
constexpr BoolWrapper(bool b) : b_(b) {} /I implicit by design
constexpr operator bool() const { return b_; } /I implicit by design
private:
bool b_{};

h

void Fn() noexcept

{

17

18

std::vector<std::uint8_t> v1; /I Compliant
std::vector<bool> v2; /I Non-compliant

std::vector<BoolWrapper> v3{true, false, true, false}; // Compliant

}

See also

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es27-use-stdarray-or-stack_array-for-arrays-on-the-stack
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es27-use-stdarray-or-stack_array-for-arrays-on-the-stack
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es27-use-stdarray-or-stack_array-for-arrays-on-the-stack
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slcon1-prefer-using-stl-array-or-vector-instead-of-a-c-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slcon1-prefer-using-stl-array-or-vector-instead-of-a-c-array

AUTO©SAR

HIC++ v4.0 [9]: 17.1.1: Do not use std::vector<bool>.

Rule A18-1-3 (required, implementation, automated)
The std::auto_ptr type shall not be used.

Rationale

The std::auto_ptr type has been deprecated since the C++11 Language Standard
and is removed from the C++17 Language Standard. Due to the lack of move
semantics in pre C++11 standards, it provides unusual copy semantics and cannot
be placed in STL containers.

The correct alternative is std::unique_ptr, which shall be used instead.

Example

/I $1d: A18-1-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>
#include <memory>
#include <vector>
void Fn() noexcept
{
std::auto_ptr<std::int32_t> ptri(new std::int32_t(10)); // Non-compliant
std::unique_ptr<std::int32_t> ptr2 =
9 std::make_unique<std::int32_t>(10); /I Compliant
std::vector<std::auto_ptr<std::int32_t>>v; // Non-compliant

}

See also
HIC++ v4.0 [9]: 1.3.4: Do not use deprecated STL library features.
cppreference.com [16]:

std::auto_ptr. A1-1-1 in section 6.1.1

Rule A18-1-4 (required, implementation, automated)
A pointer pointing to an element of an array of objects shall not be
passed to a smart pointer of single object type.

Rationale

A dynamically allocated array of objects needs a corresponding deallocation function,
e.g. allocation by new[] requires deallocation by delete[], see also rule A18-5-3 in
section 6.18.5. Smart pointers of a single object type, e.g. std::unique_ptr <T> and
std::shared_ptr<T>, by default have a deleter associated with them which is only
capable of deleting a single object. Therefore, it is undefined behavior if a pointer
pointing to an element of an array of objects is passed to such a

http://www.codingstandard.com/rule/17-1-1-do-not-use-stdvector/
http://www.codingstandard.com/rule/1-3-4-do-not-use-deprecated-stl-library-features/
http://en.cppreference.com/w/cpp/memory/auto_ptr

AUTO©SAR

smart pointer. With the standard library smart pointer templates std::unique_ptr and
std::shared_ptr, this is possible when calling the constructor or the reset function.

Note that the standard library provides a specialization of the std::unique_ptr
template for array types, std::unique_ptr<T[]>, and corresponding overloads for
std::make_unique. Usage of these features is conforming to this rule.

Note that corresponding features for std::shared_ptr are only available in C++17
(usage of std::ishared_ptr<T[]> with C++11 and C++14 will lead to compilation
errors). The overloads for std::make_shared will only be available in C++20.

Furthermore, note that it is possible to create a smart pointer of single object type
with a custom deleter handling an array of objects. This is well behaving as long as
this smart pointer is actually managing an array of objects. However, such a use is
error-prone, since the smart pointer can be assigned a single object again in the
reset function; it may no longer be possible in C++17 (moving a std::unique_ptr<T[]>
into a std::shared_ptr<T> is no longer allowed); and it is superseded by better
alternatives in C++17 (availability of std:shared_ptr<T[]>). Therefore such usage is
considered not compliant to this rule.

In many cases, using a container such as std::array or std::vector or a smart pointer
to a container, e.g. std::shared_ptr<std::vector<T>>, is a better alternative than a

smart pointer to an array of objects.

Example

/I $1d: A18-1-4.cpp 313638 2018-03-26 15:34:51Z jan.babst $
#include <memory>
class A

{

2

void F1()

{

Il Create a dynamically allocated array of 10 objects of type A.
auto upl = std::make_unique<A[]>(10); // Compliant

10

std::unique_ptr<A> up2{upl.release()}; // Non-compliant
}

void F2()

{

auto upl = std::make_unique<A[]>(10); // Compliant

16

std::unique_ptr<A> up2;

up2.reset(upl.release()); // Non-compliant

}
void F3()

{
auto up = std::make_unique<A[]>(10); // Compliant
23

std::shared_ptr<A> sp{up.release()}; // Non-compliant

}

AUTO©SAR

void F4()

{

auto up = std::make_unique<A[]>(10); // Compliant

29

std::shared_ptr<A> sp;

sp.reset(up.release()); // Non-compliant

}

void F5()

{

auto up = std::make_unique<A[]>(10); // Compliant

36

/I sp will obtain its deleter from up, so the array will be correctly
/I deallocated. However, this is no longer allowed in C++17.
std::shared_ptr<A> sp{std::move(up)}; // Non-compliant

40 sp.reset(new A{}); /' leads to undefined behavior

}
void F6()

{

auto up = std::make_unique<A[]>(10); // Compliant
45

/I Well behaving, but error-prone
std::shared_ptr<A> sp{up.release(),

48 std::default_delete<A[]>{}}; /I Non-compliant
sp.reset(new A{}); // leads to undefined behavior
}

See also

HIC++ v4.0 [9]: 17.3.4: Do not create smart pointers of array type.
ISO/IEC 14882:2014 [3]: 20.8 Smart pointers: [smartptr]
Rule A18-5-3 in section 6.18.5

Rule A18-1-6 (required, implementation, automated)
All std::hash specializations for user-defined types shall have a
noexcept function call operator.

Rationale

Some of standard library containers use std::hash indirectly. Function call operator
should be defined as noexcept to prevent container simple access from throwing an
exception.

Note: Consider own hash specializations to use standard library specializations
combined with XOR (") operation as implemented by boost::hash_combine: seed =
std::hash< decltype (v)>{}(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
Example

// $1d: A18-1-6.cpp 311792 2018-03-15 04:15:08Z christof.meerwald $

http://www.codingstandard.com/rule/17-3-4-do-not-create-smart-pointers-of-array-type/

AUTO©SAR

#include <cstdint>
#include <functional>
#include <string>
#include <unordered_map>
6
class A
{
public:
A(uint32_t x, uint32_t y) noexcept : x(x), y(y) {}
11
uint32_t GetX() const noexcept { return x; }
uint32_t GetY() const noexcept { return y; }
14
friend bool operator == (const A &lhs, const A &rhs) noexcept
{return Ihs.x ==rhs.x && Ihs.y ==rhs.y; }
private:
uint32_t x;
uint32_ty;
¥
21
class B
{
public:
B(uint32_t x, uint32_t y) noexcept : x(x), y(y) {}
26
uint32_t GetX() const noexcept { return x; }
uint32_t GetY() const noexcept { return y; }
29
friend bool operator == (const B &lhs, const B &rhs) noexcept
{return Ihs.x ==rhs.x && Ihs.y ==rhs.y; }
private:
uint32_t x;
uint32_ty;
h
36
namespace std
{
/I Compliant
template <>
struct hash<A>

{

std::size_t operator()(const A& a) const noexcept

{

auto hl = std::hash<decltype(a.GetX())>{}(a.GetX());
std::size_t seed { hl + 0x9e3779hb9 };

auto h2 = std::hash<decltype(a.GetY())>{}(a.GetY());
seed "= h2 + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;

}

h

52

AUTO©SAR

/I Non-compliant: string concatenation can potentially throw
template <>

struct hash

{

std::size_t operator()(const B& b) const

{

std::string s{std::to_string(b.GetX()) + ’,” + std::to_string(b.GetY())};
return std::hash<std::string>{}(s);

}

h

}

64

int main()

{

std::unordered_map<A, bool> m1 { { A{5, 7}, true } };
68

if (m1.count(A{4, 3}) I=0)

{

...

}

73

std::unordered_map<B, bool> m2 {{ B{5, 7}, true } };
75

/I Lookup can potentially throw if hash function throws
if (m2.count(B{4, 3}) I=0)

{

...

}

}

See also

C++ Core Guidelines [11]: C.89: Make a hash noexcept.

6.18.2 Implementation properties

The macro offsetof shall not be used.

Rule M18-2-1 (required, implementation, automated)

See MISRA C++ 2008 [7]

6.18.5 Dynamic memory management

The dynamic memory management provides flexible mechanism of allocating and
deallocating blocks of memory during run-time phase of the program. The application
is allowed to acquire as much memory as it needs in its current state, and return it

once the memory is not used.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c89-make-a-hash-noexcept

AUTOSAR

Moreover, this is a convenient way of extending lifetime of objects outside the
functions where the objects were created. In other words, a function can create
objects on dynamic memory and then exit and the objects that were created in the
dynamic memory are preserved and can be used subsequently by other functions.

The dynamic memory management uses the Operating System routines to allocate
and deallocate memory, what introduces several issues. Therefore, the AUTOSAR
C++14 Coding Guidelines defines specific rules for appropriate usage and
implementation of dynamic memory management.

Challenges arising due to dynamic memory usage

Issue:

Solution:

Memory leaks

RAII design pattern usage is highly recommended
for managing resource and memory acquisition and
release (A18-5-2). Itis prohibited to make calls

to new and delete operators explicitly, to force
programmers to assign each allocated memory
block to manager object which deallocates the
memory automatically on leaving its scope. Also,
the form of delete operator used for memory
deallocation needs to match the form of new
operator used for memory allocation (A18-5-3).

Memory fragmentation

Memory allocator used in the project needs to
guarantee that no memory fragmentation occurs
(A18-5-5).

Invalid memory access

C-style functions malloc/calloc/realloc must not be
used in the project, so memory block can not be
accessed as it would be of another type. Memory
allocator used in the project needs to guarantee that
objects do not overlap in the physical storage (A18-
5-5).

Erroneous memory allocations

The application program needs to define the
maximum amount of dynamic memory it needs,
S0 running out of memory must not occur during
faultless execution. The memory would be pre-
allocated before run-time phase of the program

(A18-5-5).

Not deterministic execution time of memory
allocation and deallocation

Memory allocator used in the project needs to
guarantee that memory allocation and deallocation
are executed within defined time constraints that
are appropriate for the response time constraints
defined for the real-time system and its programs
(A18-5-7).

Table 6.2: Challenged of dynamic memory usage

AUTOSAR

Ownership and smart pointers

Memory allocated dynamically requires strict control of objects or functions that are
responsible for deallocating it when it is no longer needed. Such lifetime manipulation
and maintenance of managing dynamically allocated memory is called Ownership.
Ownership has the following features:

if it is exclusive, then it is possible to transfer it from one scope to another.

if it is shared, then memory deletion is typically responsibility of the last owner
that releases that ownership.

if it is temporary, then a non-owning/weak reference has to be converted to
shared ownership before accessing the object.

Since C++11, management of Ownership is done by smart pointer types. Smart
pointers are allocated on stack, which guarantees destructor execution and possible
object deallocation (if that is the last or sole owner) at the end of the scope. Pointer-

like behavior is done by overloading operator-> and operator methods.
The following standard smart pointer classes are available since C++11.:

std::unique_ptr wraps a pointer to an object in an exclusive way. Such std:: unique_ptr
object guarantees that only one pointer to the underlying object exists at a time, as
std::unique_ptr IS not copyable. It is movable and such an operation represents
ownership transfer. When the std::unique_ptr instance is goes out of scope, the
underlying pointer is deleted and memory is deallocated.

std::shared_ptr wraps a pointer to an object in a shared way. Multiple std:: shared_ptr
are capable to point at the same object, as std::shared_ptr iS copyable and it contains
a reference counting mechanism. When the last std::shared_ptr instance goes out of
scope (and the reference counter drops to 0), the underlying pointer is deleted and
memory is deallocated.

std::weak_ptr wraps a pointer to an object, but it has to be converted to a std
::shared_ptr in order to access the referenced object. The main purpose of the
std::weak_ptr iS to break potential circular references among multiple std ::shared_ptr
objects, which would prevent reference counting from dropping to 0 and removing
the underlying pointer. If only std::weak_ptr Objects exist at a time, then conversion to
std::shared_ptr Will return an empty std::shared_ptr.

The main purpose of smart pointers is prevent from possible memory leaks to
provide limited garbage-collection feature:

with almost no overhead over raw pointers for std::unique_ptr, unless user-
specified deleter is used.

with possibility of sharing ownership among multiple std::shared_ptr Objects.

However, this solution bases purely on the reference-counting and smart pointers
destructors calling and it does not involve independent process that periodically
cleans up memory that is no longer referenced.

AUTO©SAR

Usage of smart pointers makes Ownership matters unambiguous and self-
documenting. It also facilitates memory management issues and eliminates multiple
error types that can be made by developers.

There are also other types of memory managing objects that follow RAIl design
pattern, e.g. std::string and std::vector.

Rule A18-5-1 (required, implementation, automated)
Functions malloc, calloc, realloc and free shall not be used.

Rationale

C-style allocation/deallocation using malloc/calloc/realloc/free functions is not type
safe and does not invoke class’s constructors and destructors.

Note that invoking free function on a pointer allocated with new, as well as invoking
delete on a pointer allocated with malloc/realloc/calloc function, result in undefined
behavior.

Also, note that realloc function should only be used on memory allocated via malloc
or calloc functions.

Exception

This rule does not apply to dynamic memory allocation/deallocation performed in
user-defined overloads of new and delete operators or malloc and free functions
custom implementations.

Example

/I $1d: A18-5-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <cstdlib>

void F1() noexcept(false)

{

/I Non-compliant
std::int32_tx pl = static_cast<std::int32_tx>(malloc(sizeof(std::int32_t)));
*pl =0;

9

12

15

18

/I Compliant
std::int32_tx p2 = new std::int32_t(0);

/I Compliant
delete p2;

/I Non-compliant
free(pl);

/I Non-compliant
std::int32_tx arrayl =
static_cast<std::int32_tx>(calloc(10, sizeof(std::int32_t)));

AUTO©SAR

22

/I Non-compliant

std::int32_tx array2 =
static_cast<std::int32_t*>(realloc(arrayl, 10 * sizeof(std::int32_t)));
26

/I Compliant

std::int32_tx array3 = new std::int32_t[10];

29

/I Compliant

delete[] array3;

32

/I Non-compliant

free(array?2);

35

/I Non-compliant

free(arrayl);

}

void F2() noexcept(false)

{

/l Non-compliant

std::int32_t* p1 = static_cast<std::int32_t*>(malloc(sizeof(std::int32_t)));
/I Non-compliant - undefined behavior

delete p1;

45

std::int32_tx p2 = new std::int32_t(0); // Compliant
free(p2); // Non-compliant - undefined behavior
}

void operator delete(void* ptr) noexcept

{
std::free(ptr); // Compliant by exception

}

See also
HIC++ v4.0 [9]: 5.3.2 Allocate memory using new and release it using delete.

C++ Core Guidelines [11]: R.10: Avoid malloc() and free().

Rule A18-5-2 (required, implementation, partially automated)
Non-placement new or delete expressions shall not be used.

Rationale

If a resource returned by a non-placement new expression is assigned to a raw pointer,
then a developer’s mistake, an exception or a return may lead to memory leak.

It is highly recommended to follow RAIl design pattern or use manager objects that
manage the lifetime of variables with dynamic storage duration, e.g.:

std::unique_ptr along with std::make_unique

AUTO©SAR

std::shared_ptr along with
std::make_shared std::string
std::vector

Note: Functions that do not extend lifetime shall not take parameters as smart
pointers, see A8-4-11.

Exception

If the result of explicit resource allocation using a new expression is immediately
passed to a manager object or an RAIl class which does not provide a safe
alternative for memory allocation, then it is not a violation of this rule.

This rule does not apply to dynamic memory allocation/deallocation performed in
user-defined RAII classes and managers.

Placement new expression is allowed, see A18-5-10.

Example

/I $1d: A18-5-2.cpp 316977 2018-04-20 12:37:31Z christof.meerwald $
#include <cstdint>

#include <memory>

#include <vector>

std::int32_t Fn1()

{

std::int32_t errorCode{0};

8

std::int32_t* ptr =

new std::int32_t{0}; // Non-compliant - new expression
...

if (errorCode !=0)
{

throw std::runtime_error{"Error"}; // Memory leak could occur here
}

...

17

if (errorCode !=0)

{

return 1; // Memory leak could occur here

}

22

I ...

delete ptr; // Non-compilant - delete expression
25

return errorCode;

}
std::int32_t Fn2()

{
std::int32_t errorCode{0};

31

std::unique_ptr<std::int32_t> ptrl = std::make_unique<std::int32_t>(

AUTO©SAR

0); /I Compliant - alternative for ‘'new std::int32_t(0)’

34

std::unique_ptr<std::int32_t> ptr2(new std::int32_t{

0}); // Non-compliant - unique_ptr provides make_unique
37 /[function which shall be used instead of explicit
38 /I new expression
39

std::shared_ptr<std::int32_t> ptr3 =

std::make_shared<std::int32_t>(0); // Compliant

42

std::vector<std::int32_t> array; // Compliant
4 /I alternative for dynamic array
45

if (errorCode !=0)

{

throw std::runtime_error{"Error"}; // No memory leaks

}

I ...

if (errorCode !=0)

{

return 1; // No memory leaks

}

...

return errorCode; // No memory leaks

}

template <typename T>

class ObjectManager

{

public:

explicit ObjectManager(T* obj) : object{obj} {}
~ObjectManager() { delete object; } // Compliant by exception

/I Implementation

65

private:

T* object;

2

std::int32_t Fn3()

{

std::int32_t errorCode{0};

72

ObjectManager<std::int32_t> manager{

new std::int32_t{0}}; // Compliant by exception

if (errorCode !=0)

{

throw std::runtime_error{"Error"}; // No memory leak
}

...

if (errorCode !=0)

{

return 1; // No memory leak

}

AUTO©SAR

I"...
return errorCode; // No memory leak
}
See also
C++ Core Guidelines [11]: R.11: Avoid calling new and delete explicitly.

C++ Core Guidelines [11]: R.12: Immediately give the result of an explicit
resource allocation to a manager object.

C++ Core Guidelines [11]: ES.60: Avoid new and delete outside resource
management functions.

Rule A18-5-3 (required, implementation, automated)
The form of the delete expression shall match the form of the
new expression used to allocate the memory.

Rationale

Plain and array forms of new and delete expressions must not be mixed. If an array
was allocated using a new expression, then an array delete expression must be used
to deallocate it and vice versa.

Example

/I $1d: A18-5-3.cpp 316977 2018-04-20 12:37:31Z christof. meerwald $
#include <cstdint>

3

void Fnl()

{

std::int32_tx array =

new std::int32_t[10]; // new expression used to allocate an

8 /[array object

...
delete array; // Non-compliant - array delete expression supposed

11 / to be used

}

void Fn2()

{

std::int32_tx object = new std::int32_t{0}; // new operator used to
16 /I allocate the memory for an
17 /I integer type

...

delete[] object; // Non-compliant - non-array delete expression supposed
20 /I to be used

}

void Fn3()

{

std::int32_t* object = new std::int32_t{0};

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerr-immediate-allocar12-immediately-give-the-result-of-an-explicit-resource-allocation-to-a-manager-object
hhttp://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-nameres-newaes60-avoid-new-and-delete-outside-resource-management-functions

AUTO©SAR

std::int32_t* array = new std::int32_t[10];

I ...

delete[] array; // Compliant

28 delete object; /I Compliant

}
See also

HIC++ v4.0 [9]: 5.3.3 Ensure that the form of delete matches the form of new
used to allocate the memory.

Rule A18-5-4 (required, implementation, automated)
If a project has sized or unsized version of operator “delete” globally

defined, then both sized and unsized versions shall be defined.

Rationale

Since C++14 Language Standard it is allowed to overload both sized and unsized
versions of the “delete” operator. Sized version provides more efficient way of
memory deallocation than the unsized one, especially when the allocator allocates in
size categories instead of storing the size nearby the object.

Example

/1% $1d: A18-5-4.cpp 289415 2017-10-04 09:10:20Z piotr.serwa $
#include <cstdlib>

void operator delete(

void#* ptr) noexcept // Compliant - sized version is defined

{
std::free(ptr);

}

void operator delete(
void* ptr,
std::size_t size) noexcept // Compliant - unsized version is defined

{
std::free(ptr);

}

See also

none

Rule A18-5-5 (required, toolchain, partially automated)

Memory management functions shall ensure the following: (a) deterministic
behavior resulting with the existence of worst-case execution time, (b)
avoiding memory fragmentation, (c) avoid running out of memory, (d)

http://www.codingstandard.com/rule/5-3-3-ensure-that-the-form-of-delete-matches-the-form-of-new-used-to-allocate-the-memory/

AUTOSAR

avoiding mismatched allocations or deallocations, (e) no dependence
on non-deterministic calls to kernel.

Rationale

Memory management errors occur commonly and they can affect application stability
and correctness. The main problems of dynamic memory management are as
following:

Non deterministic worst-case execution time of allocation and
deallocation Invalid memory access
Mismatched allocations and
deallocations Memory fragmentation
Running out of memory

Custom memory management functions (custom allocators) need to address all of
this problems for the project and all libraries used in the project.

To ensure the worst-case execution time, the memory management functions need
to be executed without context switch and without syscalls.

To prevent running out of memory, an executable is supposed to define its maximal
memory needs, which are pre-allocated for this executable during its startup.

Memory management functions include operators new and delete, as well as low-
level functions malloc and free. Nevertheless code written in C++ language uses new
and delete operators, and direct use of malloc and free operations do not occur,
some libraries, e.g. exception handling mechanism routines of libgcc uses malloc and
free functions directly and omits new and delete operators usage. Custom memory
management functionality needs to provide custom implementation of C++ new and
delete operators, as well as implementation of malloc and free operations to hide
incorrect dynamic memory allocation/deallocation in linked libraries.

Note: If custom memory management requires to use custom std::new_handler, its
implementation shall perform one of the following:

make more storage available for allocation and then return
throw an exception of type bad_alloc or a class derived from bad_alloc

terminate execution of the program without returning to the caller

Example

/% $Id: A18-5-5.cpp 289815 2017-10-06 11:19:11Z michal.szczepankiewicz $

2

#define _ GNU_SOURCE
#include <dlfcn.h>
#include <cstddef>

6

AUTO©SAR

void* MallocBad(size_t size) // Non-compliant, malloc from libc does not

8 /I guarantee deterministic execution time
{
void* (xlibcMalloc)(size_t) = (voidx (*)(size_t))dIsym(RTLD_NEXT, "malloc");

return libcMalloc(size);

}
13
void FreeBad(void* ptr) // Non-compliant, malloc from libc does not guarantee
15 /I deterministic execution time
{
void (xlibcFree)(void*) = (void (*)(void*))disym(RTLD_NEXT, "free");
libcFree(ptr);
}
20
void* MallocGood(size_t size) // Compliant - custom malloc implementation that
22 /I will guarantee deterministic execution time
{
/I Custom implementation that provides deterministic worst-case execution
/[time
}
27
void FreeGood(void* ptr) // Compliant - custom malloc implementation that will
29 /I guarantee deterministic execution time
{
/I Custom implementation that provides deterministic worst-case execution
I time
}

See also

none

Rule A18-5-6 (required, verification / toolchain, non-automated)

An analysis shall be performed to analyze the failure modes of dynamic
memory management. In particular, the following failure modes shall be
analyzed: (a) non-deterministic behavior resulting with nonexistence of
worst-case execution time, (b) memory fragmentation, (c) running out of
memory, (d) mismatched allocations and deallocations, (e) dependence
on non-deterministic calls to kernel.

Rationale

The worst-case execution time and behavior of memory management functions are
specific to each implementation. In order to use dynamic memory in the project, an
analysis needs to be done to determine possible errors and worst-case execution

time of allocation and deallocation functions.

Note that standard C++ implementation violates some of this requirements. However,
listed problems can be addressed by implementing or using a custom memory

allocator.

AUTO©SAR

See also

none

Rule A18-5-7 (required, implementation, non-automated)

If non-realtime implementation of dynamic memory management
functions is used in the project, then memory shall only be allocated and
deallocated during non-realtime program phases.

Rationale

If worst-case execution time of memory management functions can not be
determined, then dynamic memory usage is prohibited during realtime program
phase, but it can be used e.g. during initialization or non-realtime state transitions.

See: Real-time.

Example

/% $Id: A18-5-7.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <memory>

#include <vector>

std::int8_t AppMainLoop() noexcept

{

std::int8_t retCode = 0;

std::int32_tx arr[10];

while (true)
{
for (std::int8_ti=0; i < 10; ++i)
{
13 arrfi] = new std::int32_t{
14 i}; // Non-compliant - allocation in a phase that
15 /I requires real-time
}

/I Implementation
for (auto& i : arr)

{

20 delete i; // Non-compliant - deallocation in a phase that requires
21 [l real-time

}

}

return retCode;

}

static std::int32_tx object =

new std::int32_t{0}; // Compliant- allocating in start-up phase
28

int main(int, char*x)

{

std::unique_ptr<std::int32_t> ptr =
std::make_unique<std::int32_t>(0); // Compliant

AUTO©SAR

33 std::vector<std::int32_t> vec; /I Compliant
34 vec.reserve(10); /I Compliant
35
std::int8_t code = AppMainLoop();
return code;

}

See also

none

Rule A18-5-8 (required, implementation, partially automated)
Objects that do not outlive a function shall have automatic storage duration.

Rationale

Creating objects with automatic storage duration implies that there is no additional
allocation and deallocation cost, which would occur when using dynamic storage.

Note: This rule applies only to objects created in a function scope, it does not forbid
the object to internally allocate additional memory on heap.

Exception

Objects causing high memory utilization may be allocated on heap using memory
managing objects.

Example

1% $1d: A18-5-8.cpp 311792 2018-03-15 04:15:08Z christof.meerwald $
#include <cstdint>

#include <memory>

#include <vector>

5

class StackBitmap

{

public:

constexpr static size_t maxSize = 65535;

using BitmapRawType = std::array<uint8_t, maxSize>;
StackBitmap(const std::string& path, uint32_t bitmapSize)

{
/I read bitmapSize bytes from the file path

}

15

const BitmapRawTypeé& GetBitmap() const noexcept { return bmp; }
17

private:

BitmapRawType bmp;

¥

21

AUTO©SAR

void AddwWidgetToLayout(int32_t row, int32_t col)

{

auto idx = std::make_pair(row, col); // Compliant

auto spldx = std::make_shared<std::pair<int32_t, int32_t>>(
row, col); // Non-compliant

/I addWidget to index idx

}

29

uint8_t CalcAverageBitmapColor(const std::string& path, uint32_t bitmapSize)
{

std::vector<uint8_t> bmpZ1(bitmapSize); // Compliant

/I read bitmap from path

StackBitmap bmp2(path, bitmapSize); // Non-compliant
bmp2.GetBitmap();

}

37

int main(int, char*x)

{

AddWidgetTolLayout(5, 8);
CalcAverageBitmapColor(“path/to/bitmap.bmp", 32000);

}
See also

C++ Core Guidelines [11]: R.5: Prefer scoped objects, don’t heap-allocate
unnecessarily.

Rule A18-5-9 (required, implementation, automated)

Custom implementations of dynamic memory allocation and
deallocation functions shall meet the semantic requirements specified in
the corresponding “Required behaviour” clause from the C++ Standard.

Rationale

It is possible to provide custom implementations of global dynamic memory
allocation/deallocation functions. Requirements for custom implementations for each
function declaration are specified in the C++ Standard in the section “Required
behaviour”. If the provided function do not implement the required semantics, it can
lead to undefined behaviour.

Example

/% $Id: A18-5-9.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $
#include <new>
3

void* operator new(std::size_t count, const std::nothrow_t& tag)

{

extern void* custom_alloc(std::size_t); // Implemented elsewhere; may return
nullptr
if (void *ret = custom_alloc(count))

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r5-prefer-scoped-objects-dont-heap-allocate-unnecessarily
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r5-prefer-scoped-objects-dont-heap-allocate-unnecessarily

AUTO©SAR

8 {
9 return ret;
10 }
11 throw std::bad_alloc(); //non-compliant, this version of new method shall not throw exceptions
}
See also

SE| CERT C++ Coding Standard [10]: MEM55-CPP: Honor replacement
dynamic storage management requirements

Rule A18-5-10 (required, implementation, automated)
Placement new shall be used only with properly aligned pointers
to sufficient storage capacity.

Rationale

Placement new can be useful for cases in which allocation is required separately
from type initialization, e.g. memory allocators, generic containers. Correct usage of
placement new requires passing a pointer that:

is suitably aligned
provides sufficient storage memory

Violating above constrains will result in an object constructed at a misaligned location
or memory initialization outside of the allocated bounds, which leads to undefined
behaviour. An initial memory pointer used for placement new shall not be used after
the call.

Example
/1% $ld: A18-5-10.cpp 305629 2018-01-29 13:29:25Z piotr.serwa $

2

#include <new>

#include <cstdint>

5

void Foo()

{

uint8_tc;

uint64_tx ptr = ::new (&c) uint64_t;
/Inon-compliant, insufficient storage

}

void Bar()
{

uint8_t c; // Used elsewhere in the function
uint8_t buf[sizeof(uint64_t)];
uint64_t* ptr = ::new (buf) uinté4_t;

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM55-CPP.+Honor+replacement+dynamic+storage+management+requirements
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM55-CPP.+Honor+replacement+dynamic+storage+management+requirements
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM55-CPP.+Honor+replacement+dynamic+storage+management+requirements

AUTO©SAR

/Inon-compliant, storage not properly aligned

}

See also

SEI CERT C++ Coding Standard [10]: MEM54-CPP: Provide placement new
with properly aligned pointers to sufficient storage capacity

Rule A18-5-11 (required, implementation, automated) “operator
new” and “operator delete” shall be defined together.

Rationale

Providing a custom allocation function (operator new) for a class or program implies
the use of a custom memory management scheme different to the default one. It is
therefore unlikely that memory allocated using a custom allocation function can be
deallocated by the default deallocation function (operator delete).

Example

1% $1d: A18-5-11.cpp 316977 2018-04-20 12:37:31Z christof.meerwald $
#include <cstdlib>

3

class A {
public:
static void * operator new(std::size_t s); // Compliant: operator new

h

10

static void operator delete(void *ptr); /I defined together with
/I operator delete

class B {
public:

13

static void * operator new(std::size_t s); /l Non-compliant: operator

static void * operator new [J(std::size_t s); // new defined without

15

16

h

/I corresponding operator
/I delete

See also

HIC++ v4.0 [9]: 12.3.1: Correctly declare overloads for operator new and delete

6.18.9 Other runtime support

Rule M18-7-1 (required, implementation, automated)
The signal handling facilities of <csignal> shall not be used.

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM54-CPP.+Provide+placement+new+with+properly+aligned+pointers+to+sufficient+storage+capacity
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM54-CPP.+Provide+placement+new+with+properly+aligned+pointers+to+sufficient+storage+capacity
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM54-CPP.+Provide+placement+new+with+properly+aligned+pointers+to+sufficient+storage+capacity
http://www.codingstandard.com/rule/12-3-1-correctly-declare-overloads-for-operator-new-and-delete/

AUTO©SAR

See MISRA C++ 2008 [7]

Rule A18-9-1 (required, implementation, automated)
The std::bind shall not be used.

Rationale

Using the std::bind function makes the function call less readable and may lead to
the developer confusing one function parameter with another. Also, compilers are
less likely to inline the functions that are created using std::bind.

It is recommended to use lambda expressions instead.

Example

/I $1d: A18-9-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <functional>

class A

{

/I Implementation

h

void Fn(A const& a, double y) noexcept

{

/I Implementation

}

void F1() noexcept

{

double y = 0.0;

auto function = std::bind(&Fn, std::placeholders::_1, y); // Non-compliant
...

A const a{};

function(a);

}

void F2() noexcept

{

auto lambda = []J(A const& a) -> void {
double y = 0.0;

Fn(ar y):

}; // Compliant

I ...

A const a{};

lambda(a);

}

See also

Effective Modern C++ [13]: Item 34: Prefer lambdas to std::bind

AUTO©SAR

Rule A18-9-2 (required, implementation, automated)

Forwarding values to other functions shall be done via: (1) std::move if
the value is an rvalue reference, (2) std::forward if the value is forwarding
reference.

Rationale

The std::move function unconditionally casts an rvalue reference to rvalue, while the
std::forward function does the same if and only if the argument was initialized with an
rvalue. Both functions should be used as follows:

std::move should be used for forwarding rvalue references to other functions,
as rvalue reference always bounds to rvalue

std::forward should be used for forwarding forwarding references to other
functions, as forwarding reference might be bound to Ivalue or rvalue

Note that parameter of type “auto&&” is also considered as a forwarding reference for
the purpose of this rule.

Example

/I $1d: A18-9-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <string>

#include <utility>

class A

{

public:

explicit A(std::string&& s)

9 : str(std::move(s)) /I Compliant - forwarding rvalue reference
{
}

12

private:

std::string str;

h

class B

{

h

void Fnl(const B& Ival)
{

}

void Fn1(B&& rval)
{

}

template <typename T>

void Fn2(T&& param)

{

Fnl(std::forward<T>(param)); // Compliant - forwarding forwarding reference

}

template <typename T>

AUTO©SAR

void Fn3(T&& param)

{

Fnl(std::move(param)); // Non-compliant - forwarding forwarding reference
34 // via std::move

}

void Fn4() noexcept

{

B b1;

B& b2 = b1;

40 Fn2(b2); /Il fn1(const B&) is called
Fn2(std::move(bl)); // fn1(B&&) is called

42 Fn3(b2); Il fn1(B&&) is called
Fn3(std::move(bl)); // fn1(B&&) is called

}

See also
HIC++ v4.0 [9]:17.3.2 Use std::forward to forward universal references

Effective Modern C++ [13]: Item 25. Use std::move on rvalue references,
std::forward on universal references.

Rule A18-9-3 (required, implementation, automated)
The std::move shall not be used on objects declared const or consté&.

Rationale

If an object is declared const or const&, then it will actually never be moved using the
std::move.

Example

// $1d: A18-9-3.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <utility>
class A

{

/I Implementation
2
void F1()

{
const A al{};

10 Aa2=al; /I Compliant - copy constructor is called
A a3 = std::move(al); // Non-compliant - copy constructor is called
12 /I implicitly instead of move constructor

}

See also

HIC++ v4.0 [9]: 17.3.1 Do not use std::move on objects declared with const or
const& type.

http://www.codingstandard.com/rule/17-3-2-use-stdforward-to-forward-universal-references/
http://www.codingstandard.com/rule/17-3-1-do-not-use-stdmove-on-objects-declared-with-const-or-const-type/

AUTO©SAR

Rule A18-9-4 (required, implementation, automated)
An argument to std::forward shall not be subsequently used.

Rationale

Depending on the value category of parameters used in the call, std::forward may
result in a move of the parameter. When the value is an Ivalue, modifications to the
parameter will affect the argument of the caller. If the value is an rvalue, the value
may be in indeterminate state after the call to std::forward.

Example

/I $1d: A18-9-4.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <iostream>

#include <utility>

template <typename T1, typename T2>

void F1(T1 const& t1, T2& t2){

...

3

template <typename T1, typename T2>

void F2(T1&& t1, T2&& t2)

{
f1(std::forward<T1>(t1), std::forward<T2>(t2));
++t2; // Non-compliant

h

See also

HIC++ v4.0 [9]: 17.3.3 Do not subsequently use the argument to std::forward.

6.19 Diagnostics library - partial

6.19.4 Error numbers

Rule M19-3-1 (required, implementation, automated)
The error indicator errno shall not be used.

See MISRA C++ 2008 [7]

6.20 General utilities library - partial

6.20.8 Smart pointers

AUTO©SAR

Rule A20-8-1 (required, implementation, automated)
An already-owned pointer value shall not be stored in an unrelated
smart pointer.

Rationale

Smart pointers (e.g. std::shared_ptr) that allow to manage the same underlying pointer
value using multiple smart pointer objects, shall be created in a way that creates a
relationship between two smart pointer objects (e.g. via copy assignment). Unrelated
smart pointer objects with a pointer value that is owned by another smart pointer
object shall not be created.

Example
/I $1d: A20-8-1.cpp 305588 2018-01-29 11:07:35Z michal.szczepankiewicz $

2

#include <memory>

4

void Foo()

{

uint32_t *i = new uint32_t{5};
std::shared_ptr<uint32_t> p1(i);
std::shared_ptr<uint32_t> p2(i); // non-compliant
}

11
void Bar()

{
std::shared_ptr<uint32_t> p1 = std::make_shared<uint32_t>(5);
std::shared_ptr<uint32_t> p2(p1); //compliant

}
See also

SEI CERT C++ Coding Standard [10]: MEM56-CPP: Do not store an already-
owned pointer value in an unrelated smart pointer

Rule A20-8-2 (required, implementation, automated)
A std::unique_ptr shall be used to represent exclusive ownership.

Rationale

std::unique_ptr IS @ smart pointer that owns and manages another object and removes it
when it goes out of scope. It has almost no overhead over a raw pointer and clearly
states developers intentions and ownership status of the object.

Note: Further usage of the instance of std:unique_ptr in another scope requires
transferring ownership using move semantics.

Example

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM56-CPP.+Do+not+store+an+already-owned+pointer+value+in+an+unrelated+smart+pointer
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM56-CPP.+Do+not+store+an+already-owned+pointer+value+in+an+unrelated+smart+pointer
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM56-CPP.+Do+not+store+an+already-owned+pointer+value+in+an+unrelated+smart+pointer

AUTO©SAR

// $1d: A20-8-2.cpp 308981 2018-02-26 08:11:52Z michal.szczepankiewicz $
2

#include <thread>

#include <memory>

5

struct A

{

A(std::uint8_t xx, std::uint8_t yy) : x(xx), y(vy) {}
std::uint8_t x;
std::uint8_ty;
h
12
/lconsumes object obj or just uses it
void Foo(A+* obj) {}
void Bar(std::unique_ptr<A> obj) { }
16

int main(void)
{
Ax a = new A(3,5); //non-compliant with A18-5-2
std::unique_ptr<A> spA = std::make_unique<A>(3,5);
21
/Inon-compliant, not clear if function assumes
/lownership of the object
std::thread th1{&Foo, a};
std::thread th2{&Foo, a};
/lcompliant, it is clear that function Bar
/lassumes ownership
std::thread th3{&Bar, std::move(spA)};
29
th1.join();
th2.join();
th3.join();

return O;

}

See also

JSF December 2005 [8]: AV Rule 112: Function return values should not
obscure resource ownership.

C++ Core Guidelines [11]: F.26: Use a unique_ptr<T> to transfer ownership
where a pointer is needed

C++ Core Guidelines [11]: R.20: Use unique_ptr or shared_ptr to represent
ownership

Rule A20-8-3 (required, implementation, automated)
A std::shared_ptr shall be used to represent shared ownership.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f26-use-a-unique_ptrt-to-transfer-ownership-where-a-pointer-is-needed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f26-use-a-unique_ptrt-to-transfer-ownership-where-a-pointer-is-needed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r20-use-unique_ptr-or-shared_ptr-to-represent-ownership
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r20-use-unique_ptr-or-shared_ptr-to-represent-ownership

AUTO©SAR

Rationale

std::shared_ptr allows to retain shared ownership by keeping multiple std::shared_ptr
instances pointing at the same object. The object is removed when the last std ::shared_ptr
instance goes out of scope. Although reference counting mechanism included brings
some overhead over a raw pointer, it clearly states ownership status of the object and
effectively prevents from possible memory leaks.

Example

/I $1d: A20-8-3.cpp 308507 2018-02-21 13:23:57Z michal.szczepankiewicz $
2

#include <memory>

#include <cstdint>

#include <thread>

6

struct A

{

A(std::uint8_t xx, std::uint8_t yy) : x(xx), y(yy) {}
std::uint8_t x;
std::uint8_ty;
h
13
void Foo(A* obj) { }
void Bar(A* obj) { }
16
void Foo2(std::shared_ptr<A> obj) { }
void Bar2(std::shared_ptr<A> obj) {}
19

int main(void)
{
A* a = new A(3,5); //non-compliant with A18-5-2
std::shared_ptr<A> spA = std::make_shared<A>(3,5);
24
/Inon-compliant, not clear who is responsible
/[for deleting object a
std::thread th1{&Foo, a};
std::thread th2{&Bar, a}
29
/lcompliant, object spA gets deleted
/lwhen last shared_ptr gets destructed
std::thread th3{&Fo002, spA};
std::thread th4{&Bar2, spA};
34
th1.join();
th2.join();
th3.join();
th4.join();
39

return O,

}

AUTO©SAR

See also

JSF December 2005 [8]: AV Rule 112: Function return values should not
obscure resource ownership.

C++ Core Guidelines [11]: F.27: Use a shared_ptr<T> to share ownership

C++ Core Guidelines [11]: R.20: Use unique_ptr or shared_ptr to represent

ownership

Rule A20-8-4 (required, implementation, automated)

is not required.

A std::unique_ptr shall be used over std::shared_ptr if ownership sharing

Rationale

std::unique_ptr iS more predictable in terms of its destruction, as it happens at the end of
the scope unless ownership transfer occurred. It also has lower overhead than a

std::shared_ptr, as it does not keep internal reference counting.

Example
// $1d: A20-8-4.cpp 308507 2018-02-21 13:23:57Z michal.szczepankiewicz $

2

#include <memory>

#include <cstdint>

#include <thread>

6

struct A

{

A(std::uint8_t xx, std::uint8_t yy) : x(xx), y(yy) {}
std::uint8_t x;

std::uint8_ty;

h

13
void Func()

{

auto spA = std::make_shared<A>(3,5);
/Inon-compliant, shared_ptr used only locally
/Iwithout copying it

}

20

void Foo(std::unique_ptr<A> obj) { }

void Bar(std::shared_ptr<A> obj) { }

23

int main(void)

{

std::shared_ptr<A> spA = std::make_shared<A>(3,5);
std::unique_ptr<A> upA = std::make_unique<A>(4,6);
28

/lcompliant, object accesses in parallel

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f27-use-a-shared_ptrt-to-share-ownership
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r20-use-unique_ptr-or-shared_ptr-to-represent-ownership
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r20-use-unique_ptr-or-shared_ptr-to-represent-ownership

AUTO©SAR

std::thread th1{&Bar, spA};

std::thread th2{&Bar, spA};

std::thread th3{&Bar, spA};

33

/lcompliant, object accesses only by 1 thread
std::thread th4{&Foo0, std::move(upA)};
36

thl.join();

th2.join();

th3.join();

th4.join();

41

return O;

}

See also

C++ Core Guidelines [11]: R.21: Prefer unique_ptr over shared_ptr unless you
need to share ownership

Rule A20-8-5 (required, implementation, automated)
std::make_unique shall be used to construct objects owned
by std::unique_ptr.

Rationale

Using std::make_unique t0 create instances of std::unique_ptr<T> provides object allocation
without explicit call of new function, see A18-5-2. It also ensures exception safety in
complex expressions and prevents from memory leaks caused by unspecified-
evaluation order-expressions.

Exception

It is allowed to use explicit new function call to create an instance of std::unique_ptr<T>, if
it requires a custom deleter.

Example

/I $1d: A20-8-5.cpp 308507 2018-02-21 13:23:57Z michal.szczepankiewicz $
#include <memory>

#include <cstdint>

#include <functional>

5

struct A

{

A() { throw std::runtime_error("example"); }
A(std::uint8_t xx, std::uint8_t yy) : x(xx), y(yy) {}
std::uint8_t x;
std::uint8_tvy;
h

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r21-prefer-unique_ptr-over-shared_ptr-unless-you-need-to-share-ownership
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r21-prefer-unique_ptr-over-shared_ptr-unless-you-need-to-share-ownership

AUTO©SAR

13

void Foo(std::unique_ptr<A> a, std::unique_ptr<A> b) { }

15

int main(void)

{

/lcompliant

std::unique_ptr<A> upA = std::make_unique<A>(4,6);

/Inon-compliant

std::unique_ptr<A> upA2 = std::unique_ptr<A>(new A(5,7));

22

/Inon-compliant, potential memory leak, as A class constructor throws

Foo(std::unique_ptr<A>(new A()), std::unique_ptr<A>(new A()));

/Inon-compliant, potential memory leak, as A class constructor throws

Foo(std::make_unique<A>(4,6), std::unique_ptr<A>(new A()));

/lcompliant, no memory leaks

Foo(std::make_unique<A>(4,6), std::make_unique<A>(4,6));

29

/lcompliant by exception

std::unique_ptr<A, std::function<void(Ax)>> ptr(new A(4,5), [J(A* b) { delete
b;});

32

return O;

}

See also
C++ Core Guidelines [11]: R.23: Use make_unique() to make unique_ptrs

C++ Core Guidelines [11]: C.150: Use make_unigue() to construct objects
owned by unique_ptrs

Rule A20-8-6 (required, implementation, automated)
std::make_shared shall be used to construct objects owned
by std::shared_ptr.

Rationale

std::shared_ptr manages two entities: a control block (for meta data such as reference
counter or type-erased deleter) and an allocated object. Using std::make_shared typically
performs a single heap allocation (as it is recommended by the Standard) for both
control block and allocated object. std:make_shared function also provides object allocation
without explicit call of new function, see A18-5-2. It also ensures exception safety and

prevents from memory leaks caused by unspecified-evaluation-order expressions.

Exception

It is allowed to use explicit new function call to create an instance of std::shared_ptr, if it
requires a custom deleter. It is also allowed to construct objects owned by std:

shared_ptr using std::allocate_shared.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r23-use-make_unique-to-make-unique_ptrs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c150-use-make_unique-to-construct-objects-owned-by-unique_ptrs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c150-use-make_unique-to-construct-objects-owned-by-unique_ptrs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c150-use-make_unique-to-construct-objects-owned-by-unique_ptrs

AUTO©SAR

Example

/I $1d: A20-8-6.cpp 308507 2018-02-21 13:23:57Z michal.szczepankiewicz $
#include <memory>

#include <cstdint>

#include <functional>

5

struct A

{

A() { throw std::runtime_error("example"); }

A(std::uint8_t xx, std::uint8_t yy) : x(xx), y(vy) {}
std::uint8_t x;
std::uint8_ty;
h
13
void Foo(std::shared_ptr<A> a, std::shared_ptr<A> b) { }
15

int main(void)
{
/lcompliant

std::shared_ptr<A> upA = std::make_shared<A>(4,6);
/Inon-compliant

std::shared_ptr<A> upA2 = std::shared_ptr<A>(new A(5,7));

22
/Inon-compliant, potential memory leak, as A class constructor throws
Foo(std::shared_ptr<A>(new A()), std::shared_ptr<A>(new A()));
/Inon-compliant, potential memory leak, as A class constructor throws
Foo(std::make_shared<A>(4,6), std::shared_ptr<A>(new A()));
/[compliant, no memory leaks

Foo(std::make_shared<A>(4,6), std::make_shared<A>(4,6));

29
/lcompliant by exception

std::shared_ptr<A> ptr(new A(4,5), [J(A* b) { delete b; });

32

return O;

}

See also
C++ Core Guidelines [11]: R.22: Use make_shared() to make shared_ptrs.

C++ Core Guidelines [11]: C.151: Use make_shared() to construct objects
owned by shared_ptrs

Rule A20-8-7 (required, implementation, non-automated)
A std::weak_ptr shall be used to represent temporary shared ownership.

Rationale

A cyclic structure of std::shared_ptr results in reference counting mechanism never
dropping to zero, which prevents from pointed object deallocation. Breaking such

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r22-use-make_shared-to-make-shared_ptrs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c151-use-make_shared-to-construct-objects-owned-by-shared_ptrs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c151-use-make_shared-to-construct-objects-owned-by-shared_ptrs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c151-use-make_shared-to-construct-objects-owned-by-shared_ptrs

AUTO©SAR

cycles is done using std:weak_ptr which must be converted to std::shared_ptr in order to
access the referenced object.

Example
/I $ld: A20-8-7.cpp 308795 2018-02-23 09:27:03Z michal.szczepankiewicz $

2
#include <memory>
4
template <template <typename> class T, typename U>
struct Base
{
T<U> sp;
2
10
template <typename T>
using Shared = Base<std::shared_ptr, T>;
13
template <typename T>
using Weak = Base<std::weak_ptr, T>;
16
struct SBarSFoo;
struct SFooSBar : public Shared<SBarSFoo> {};
struct SBarSFoo : public Shared<SFooSBar> {};
20
struct A : public Shared<A> {};
22
struct WBarSFoo;
struct SFooWBar : public Shared<WBarSFoo> {};
struct WBarSFoo : public Weak<SFooWBar> {};
26
int main()
{
std::shared_ptr<SFooSBar> f = std::make_shared<SFooSBar>();
std::shared_ptr<SBarSFoo> b = std::make_shared<SBarSFoo>();
f->sp = b;
b->sp =f;
/Inon-compliant, both f and b have ref_count() ==
/ldestructors of f and b reduce ref_count() to 1,
/ldestructors of underlying objects are never called,
/Iso destructors of shared_ptrs sp are not called
/land memory is leaked
38
std::shared_ptr<A> a = std::make_shared<A>();
a->sp = a;
/Inon-compliant, object ’a’ destructor does not call
/lunderlying memory destructor
43
std::shared_ptr<SFooWBar> f2 = std::make_shared<SFooWBar>();
std::shared_ptr<WBarSFoo> b2 = std::make_shared<WBarSFoo>();
f2->sp = b2;
b2->sp = f2;

AUTO©SAR

/lcompliant, b2->sp holds weak_ptr to 2, so f2 destructor
/lis able to properly destroy underlying object

50

return O;

}

See also

C++ Core Guidelines [11]: R.24: Use std::weak_ptr to break cycles of
shared_ptrs

6.21 Strings library

6.21.8 Null-terminated sequence utilities

Rule A21-8-1 (required, implementation, automated)
Arguments to character-handling functions shall be representable as
an unsigned char.

Rationale

This rule applies to the character handling functions in <cctype>. They all take an int
parameter as input and specify that its value either shall be EOF or otherwise shall
be representable as an unsigned char. On platforms where char is signed, it can
have negative values that are not representable as an unsigned char, so that passing
a char to such a function can result in undefined behavior.

Thus, this rule mandates that all character arguments passed to such functions shall
be explicitly cast to unsigned char.

Note: Of all the functions in <cctype>, isdigit and isxdigit are the only ones whose
behavior does not depend on the currently installed locale. See A18-0-3 in section
6.18.0 for a rule concerning the setlocale function.

Example

/I $1d: A21-8-1.cpp 312606 2018-03-21 09:52:14Z jan.babst $
#include <algorithm>

#include <cctype>

#include <string>

5

void RemoveDigits_Bad(std::string& s)

{

s.erase(std::remove_if(s.begin(),

9

10

11

12

s.end(),
(I(char c) {
return std::isdigit(c); // non-compliant

D,

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r24-use-stdweak_ptr-to-break-cycles-of-shared_ptrs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r24-use-stdweak_ptr-to-break-cycles-of-shared_ptrs

AUTO©SAR

13 s.cend());
}
15
void RemoveDigits_Good(std::string& s)
{
s.erase(std::remove_if(s.begin(),
19 s.end(),
20 I(char c) {
21 return std::isdigit(
2 static_cast<unsigned char>(c)); // compliant
2 hB
24 s.cend());
}
See also

SEI CERT C++ Coding Standard [10]: STR37-C: Arguments to character-
handling functions must be representable as an unsigned char.

cppreference.com [16]: Standard library header <cctype>.

Rule A18-0-3 in section 6.18.0

6.23 Containers library - partial

6.23.1 General

Rule A23-0-1 (required, implementation, automated)
An iterator shall not be implicitly converted to const_iterator.

Rationale

The Standard Template Library introduced methods for returning const iterators to
containers. Making a call to these methods and immediately assigning the value they
return to a const_iterator, removes implicit conversions.

Example

/% $Id: A23-0-1.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <cstdint>

#include <vector>

4

void Fnl(std::vector<std::int32_t>& v) noexcept

{

for (std::vector<std::int32_t>::const_iterator iter{v.cbegin()},

end{v.cend()};

iter 1= end;

++iter) // Compliant

{

https://wiki.sei.cmu.edu/confluence/display/c/STR37-C.+Arguments+to+character-handling+functions+must+be+representable+as+an+unsigned+char
https://wiki.sei.cmu.edu/confluence/display/c/STR37-C.+Arguments+to+character-handling+functions+must+be+representable+as+an+unsigned+char
https://wiki.sei.cmu.edu/confluence/display/c/STR37-C.+Arguments+to+character-handling+functions+must+be+representable+as+an+unsigned+char

AUTO©SAR

...

}
}

15

void Fn2(std::vector<std::int32_t>& v) noexcept
ior (auto iter{v.cbegin()}, end{v.cend()}; iter = end;
++iter) // Compliant

{

...

}

}

24
void Fn3(std::vector<std::int32_t>& v) noexcept

{

for (std::vector<std::int32_t>::const_iterator iter{v.begin()},
end{v.end()};

iter I= end,;

++iter) // Non-compliant

{

...

}

}

See also

HIC++ v4.0 [9]: 17.4.1 Use const container calls when result is immediately
converted to a const iterator.

Rule A23-0-2 (required, implementation, automated)
Elements of a container shall only be accessed via valid
references, iterators, and pointers.

Rationale

Some operations on standard library containers invalidate references, iterators, and
pointers to container elements which were previously stored.

The behavior of the standard library containers and their operations with respect to
the invalidation of references, iterators, and pointers is well documented, e.g. in [16].

Example

I/ $1d: A23-0-2.cpp 309868 2018-03-02 10:47:23Z jan.babst $
#include <algorithm>

#include <cstdint>

#include <list>

#include <vector>

6

void f()

http://www.codingstandard.com/rule/17-4-1-use-const-container-calls-when-result-is-immediately-converted-to-a-const-iterator/

AUTO©SAR

{

std::vector<int32_t> V{0, 1, 2, 3, 4, 5, 6, 7};
10

auto it = std::find(v.begin(), v.end(), 5); // *itis 5
12

/I These calls may lead to a reallocation of the vector storage
/I and thus may invalidate the iterator it.
v.push_back(8);

v.push_back(9);

17

*it = 42; // Non-compliant

}

20

void g()

{

std::list<int32_t> KO, 1, 2, 3, 4, 5, 6, 7};

24

auto it = std::find(l.begin(), l.end(), 5); // *itis 5

l.remove(7);

l.push_back(9);

*it = 42; // Compliant - previous operations do not invalidate iterators
IINisnow {0, 1, 2, 3,4,42,6,9}

}
See also

SEI CERT C++ Coding Standard [10]: CTR51-CPP: Use valid references,
pointers, and iterators to reference elements of a container.

SEI CERT C++ Coding Standard [10]: STR52-CPP: Use valid references,
pointers, and iterators to reference elements of a basic_string.

cppreference.com [16]: Containers library. Iterator invalidation.

6.25 Algorithms library

6.25.1 General

Rule A25-1-1 (required, implementation, automated) Non-static data
members or captured values of predicate function objects that are state
related to this object’s identity shall not be copied.

Rationale

Generic algorithms available in the C++ Standard Library accept a predicate function
object. The ISO/IEC 14882:2014 C++ Language Standard states that it is
implementation-defined whether predicate function objects can be copied by the STL

algorithms.

https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR51-CPP.+Use+valid+references%2C+pointers%2C+and+iterators+to+reference+elements+of+a+container
https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR51-CPP.+Use+valid+references%2C+pointers%2C+and+iterators+to+reference+elements+of+a+container
https://wiki.sei.cmu.edu/confluence/display/cplusplus/STR52-CPP.+Use+valid+references%2C+pointers%2C+and+iterators+to+reference+elements+of+a+basic_string
https://wiki.sei.cmu.edu/confluence/display/cplusplus/STR52-CPP.+Use+valid+references%2C+pointers%2C+and+iterators+to+reference+elements+of+a+basic_string

AUTO©SAR

To prevent from unexpected results while using predicate function objects, any such
object shall either:

be passed to an STL algorithm wrapped as a std::reference_wrapper.

implement a function call operator that is const and does not modify any data
members or captured values that have a mutable specifier.

Example
//% $Id: A25-1-1.cpp 309784 2018-03-01 20:18:29Z michal.szczepankiewicz $

2

#include <iostream>

#include <vector>

#include <algorithm>

#include <functional>

#include <iterator>

8

class ThirdElemPred : public std::unary_function<int, bool>
{

public:

ThirdElemPred() : timesCalled(0) {}

bool operator()(const int &) { return (++timesCalled) == 3; }
/Inon-compliant, non-const call operator that
/Imodifies the predicate object field

private:

size_t timesCalled,;

2

19

class ThirdElemPred2 : public std::unary_function<int, bool>
{

public:

ThirdElemPred2() : timesCalled(0) {}

bool operator()(const int &) const { return (++timesCalled) == 3; }
/Inon-compliant, const call operator that

/Imodifies the mutable predicate object field

private:

mutable size_t timesCalled;

2

30

class ValueFivePred: public std::unary_function<int, bool>
{

public:

bool operator()(const int& v) const { return v==5; }
/lcompliant, const call operator that does not

/Imodify the predicate object state

2

38

void F1(std::vector<int> v)

{

/Inon-compliant, predicate object state modified

int timesCalled = 0;

/ldisplay values that are NOT to be removed

AUTO©SAR

std::copy(v.begin(), std::remove_if(v.begin(), v.end(), [timesCalled](const int &) mutable { return
(++timesCalled) == 3; }), std::ostream_iterator<std:: vector<int>::value_type>(std::cout, " "));

std::cout << std::endl;

}

47

void F2(std::vector<int> v)

{

/Inon-compliant, predicate object state modified

std::copy(v.begin(), std::remove_if(v.begin(), v.end(), ThirdElemPred()), std
::0stream_iterator<std::vector<int>::value_type>(std::cout, " "));

std::cout << std::endl;

}

54

void F22(std::vector<int> v)

{

/Inon-compliant, predicate object state modified

std::copy(v.begin(), std::remove_if(v.begin(), v.end(), ThirdElemPred2()),
std::ostream_iterator<std::vector<int>::value_type>(std:.cout, " "));

std::cout << std::endl;

}

61

void F3(std::vector<int> v)

{

/lcompliant, predicate object that has its state

/Imodified is passed as a std::reference_wrapper

ThirdElemPred pred;

std::copy(v.begin(), std::remove_if(v.begin(), v.end(), std::ref(pred)), std
::ostream_iterator<std::vector<int>::value_type>(std::cout, " "));

std::cout << std::endl;

}

70

int main(void)

{

std::vector<int>v{0, 1, 2, 3, 4,5, 6, 7, 8, 9};

74

F1(v);

F2(v);

F22(v);

F3(v);

/loutput for g++-5.5, correct result only for F3
s /IF1 01 346789
a1 IIF2 01 346789
g2 [IF22 01 346789
s IIF3 01 34567 89
return O;

}

See also

AUTO©SAR

SEI CERT C++ Coding Standard [10]: CTR58-CPP: Predicate function objects
should not be mutable

cppreference.com [16]: C++ concepts: Predicate

6.25.4 Sorting and related operations

Rule A25-4-1 (required, implementation, non-automated)
Ordering predicates used with associative containers and STL sorting
and related algorithms shall adhere to a strict weak ordering relation.

Rationale

Ordering predicates that can be passed to associative containers or sorting STL
algorithms and related operations must fulfill requirements for a strict weak ordering,

e.g..
irreflexivity: FOR ALL x: x < x == false
assymetry: FOR ALL x, y: if x <y then I(y < x)

transitivity: FORALL x,y, z:ifx<y&&y<zthenx<z

Ordering predicates not adhering to these requirements will result in these algorithms
not working correctly, which may include infinite loops and other erratic behavior.

Example
/1% $1d: A25-4-1.cpp 309738 2018-03-01 15:08:00Z michal.szczepankiewicz $

2

#include <functional>

#include <iostream>

#include <set>

6

int main(void)

{

/Inon-compliant, given predicate does not return false
/[for equal values

std::set<int, std::greater_equal<int>> s{2, 5, 8},

auto r = s.equal_range(5);

Ilreturns O

std::cout << std::distance(r.first, r.second) << std::endl;
15

/lcompliant, using default std::less<int>
std::set<int> s2{2, 5, 8};

auto r2 = s2.equal_range(5);
/Ireturns 1
std::cout << std::distance(r2.first, r2.second) << std::endl;
21

return O;

https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR58-CPP.+Predicate+function+objects+should+not+be+mutable
https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR58-CPP.+Predicate+function+objects+should+not+be+mutable

AUTO©SAR

See also

SEI CERT C++ Coding Standard [10]: CTR57-CPP: Provide a valid ordering
predicate

cppreference.com [16]: C++ concepts: Compare

6.26.5 Random number generation

Rule A26-5-1 (required, implementation, automated) Pseudorandom
numbers shall not be generated using std::rand().

Rationale

Using a pseudo-random sequence of numbers requires that it is generated with good
statistical properties. Some implementations of std::rand() function have a
comparatively short cycle, as a result the numbers can be predictable. Using
functionalities from <random> is recommended instead of using std::rand().

Note: std:random_shuffle Should not be used, as it is deprecated since C++14 (see Al-1-
1) and one of the available overloads is often implemented in terms of std::rand.

Example

/I $1d: A26-5-1.cpp 311495 2018-03-13 13:02:54Z michal.szczepankiewicz $
2

#include <cstdlib>

#include <cstdint>

#include <ctime>

#include <iostream>

#include <random>

8

int main()
{
std::srand(std::time(nullptr));

int rl = std::rand() % 100; //non-compliant
std::cout << "Random value using std::rand(): " << rl << std::endl;
14
std::random_device rd;
std::default_random_engine eng{rd()};
std::uniform_int_distribution<int> ud{0, 100};

int r2 = ud(eng); //compliant
std::cout << "Random value using std::random_device: " << r2 << std::endl;
20

return O,

}

https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR57-CPP.+Provide+a+valid+ordering+predicate
https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR57-CPP.+Provide+a+valid+ordering+predicate

AUTO©SAR

See also

SEI CERT C++ Coding Standard [10]: MSC50-CPP: Do not use std::rand() for
generating pseudorandom numbers.

Rule A26-5-2 (required, implementation, automated)
Random number engines shall not be default-initialized.

Rationale

Using a pseudo-random number generator gives different results that depend on a
used seed value. Initializing random number engines by default initializes pseudo-
random generator with a default seed constant value. However, this can be not
obvious for a developer and can lead to unexpected program behaviour (generating
the same random sequences among different program executions).

Exception

For consistent testing purposes it can be convenient to seed the random number
engine with a fixed value to get a deterministic sequence, but never within production
code where real randomness is required, e.g. for security reasons.

Example

/I $1d: A26-5-2.cpp 311495 2018-03-13 13:02:54Z michal.szczepankiewicz $

2

#include <iostream>
#include <random>

5

int main()

{

std::random_device rd;

std::default_random_engine eng{rd()}; /compliant
std::uniform_int_distribution<int> ud{0, 100};

int rl = ud(eng);

std::cout << "Random value using std::random_device: " << rl << std::endl;

13

14

std::default_random_engine eng2{}; //non-compliant
std::uniform_int_distribution<int> ud2{0, 100},

int r2 = ud2(eng);

std::cout << "Random value using std::random_device: " << r2 << std::endl;

19

return O;

}

See also

SEI CERT C++ Coding Standard [10]: MSC51-CPP: Ensure your random
number generator is properly seeded.

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MSC50-CPP.+Do+not+use+std%3A%3Arand%28%29+for+generating+pseudorandom+numbers
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MSC50-CPP.+Do+not+use+std%3A%3Arand%28%29+for+generating+pseudorandom+numbers
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MSC51-CPP.+Ensure+your+random+number+generator+is+properly+seeded
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MSC51-CPP.+Ensure+your+random+number+generator+is+properly+seeded
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MSC51-CPP.+Ensure+your+random+number+generator+is+properly+seeded

AUTO©SAR

6.27 Input/output library - partial

6.27.1 General

Rule M27-0-1 (required, implementation, automated)
The stream input/output library <cstdio> shall not be used.

See MISRA C++ 2008 [7]

Rule A27-0-1 (required, implementation, non-automated)
Inputs from independent components shall be validated.

Rationale

An “attacker” who fully or partially controls the content of an application’s buffer can
crash the process, view the content of the stack, view memory content, write to
random memory locations or execute code with permissions of the process.

This rule concerns network inputs, as well as inputs that are received from other
processes or other software components over IPC or through component APIs.

Note: If more advanced style formatting is required, this can be done using C++
dedicated libraries (e.g. boost:format OF libfmt).

Example

/I $1d: A27-0-1.cpp 311495 2018-03-13 13:02:54Z michal.szczepankiewicz $
#include <cstring>
#include <cstdint>
#include <cstdio>

void F1(const charx name) // name restricted to 256 or fewer characters

{

static const char format[] = "Name: %s .";
size_t len = strlen(name) + sizeof(format);
char* msg = new char[len];

10

if (msg == nullptr)

{

/I Handle an error

}

15

std::int32_tret =
snprintf(msg,

18

19

20

21

len,
format,
name); // Non-compliant - no additional check for overflows

if (ret < 0)

AUTO©SAR

{

/[Handle an error

}

else if (ret >= len)

{

/I Handle truncated output
}

30

fprintf(stderr, msg);
delete[] msg;

}

void F2(const charx name)
{

static const char format[] = "Name: %s .";
fprintf(stderr, format, name); // Compliant - untrusted input passed as one

38 /I of the variadic arguments, not as part of
39 /I vulnerable format string

}

void F3(const std::string& name)

{

/lcompliant, untrusted input not passed
/las a part of vulnerable format string
std::cerr << "Name: " << name;

}

See also

SEI CERT C++ [10]: FIO30-C. Exclude user input from format strings.

Rule A27-0-4 (required, implementation, automated)
C-style strings shall not be used.

Rationale

It is required that an underlying buffer for a C-style string needs to be of sufficient
size to hold character data and a null terminator. In addition, a C-style string implies
all other disadvantages of built-in arrays (see A18-1-1 in section 6.18.1). Using std:
string provides correct memory allocation, copying, gradual expansion and iteration. It is
self-explanatory in terms of ownership and offers more readable interface.

Example

/I $1d: A27-0-4.cpp 311495 2018-03-13 13:02:54Z michal.szczepankiewicz $
#include <iostream>

#include <string>

#include <list>

5

void F1()

{
std::string string1;

AUTO©SAR

std::string string2;

std::cin >> stringl >> string2; // Compliant - no buffer overflows
}

12

std::list<std::string> F2(const std::string& terminator)

{

std::list<std::string> ret;

/lread a single word until it is different from the given terminator sequence
for (std::string s; std::cin >> s && s != terminator;)

{

ret.push_back(s);

}

return ret;

}

See also

C++ Core Guidelines [11]: SL.str.1: Use std::string to own character sequences.

Rule A27-0-2 (advisory, implementation, automated)
A C-style string shall guarantee sufficient space for data and the
null terminator.

Rationale

To prevent buffer overflows, it needs to be ensured that the destination is of sufficient
size to hold the character data to be copied and the null terminator.

Note that C-style string requires additional space for null character to indicate the end
of the string, while the C++ std::basic_string does that implicitly.

Note: This rule is deliberately redundant, in case the rule A27-0-4 is disabled in a
project.

Example

/I $1d: A27-0-2.cpp 289436 2017-10-04 10:45:23Z michal.szczepankiewicz $
#include <iostream>

#include <string>

void F1() noexcept

{

char buffer[10];

std::cin >> buffer; // Non-compliant - this could lead to a buffer overflow

}

void F2() noexcept

{

std::string string1;

std::string string2;

std::cin >> stringl >> string2; // Compliant - no buffer overflows

}

void F3(std::istream& in) noexcept

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slstr1-use-stdstring-to-own-character-sequences

{

AUTO©SAR

char buffer[32];

18

try
{

in.read(buffer, sizeof(buffer));

}

23

catch (std::ios_base::failure&)

{

/I Handle an error

}

28

std::string str(buffer); // Non-compliant - if ‘buffer” is not null

30

31

}

/I terminated, then constructing std::string leads
I/ to undefined behavior.

void F4(std::istream& in) noexcept

{

char buffer[32];

36

try
{

in.read(buffer, sizeof(buffer));

}

41

catch (std::ios_base::failure&)

{

/I Handle an error

}

46

std::string str(buffer, in.gcount()); // Compliant

}

See also

SEI CERT C++ [10]: STR50-CPP. Guarantee that storage for strings has
sufficient space for character data and the null terminator.

Rule A27-0-3 (required, implementation, automated)
Alternate input and output operations on a file stream shall not be
used without an intervening flush or positioning call.

Rationale

There are following restrictions on reading and writing operations called for an object
of class basic_filebuf<charT, traits>:

output shall not be directly followed by input without an intervening call to the
fflush function or to a file positioning function (fseek, fsetpos, or rewind).

https://www.securecoding.cert.org/confluence/display/cplusplus/STR50-CPP.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

AUTO©SAR

input shall not be directly followed by output without an intervening call to a file
positioning function, unless the input operation encounters end-of-file.

It is recommended to use a file stream either for output (std:ofstream) Or input(std:
ifstream) and not for both in the same context. This avoids the mentioned problem
altogether.

Example

/I $1d: A27-0-3.cpp 311495 2018-03-13 13:02:54Z michal.szczepankiewicz $
2

#include <fstream>
#include <string>

5

int main(void)

{

std::fstream f("testfile");

9
f << "Output";
std::string strl;
f >> strl; // non-compliant
13
f << "More output";
std::string str2;
f.seekg(0, std::ios::beg);
f >> str2; //compliant
18

return O;

}

See also

SEI CERT C++ Coding Standard [10]: FIO39-C: Do not alternately input and
output from a stream without an intervening flush or positioning call

SEI CERT C++ Coding Standard [10]: FIO50-CPP: Do not alternately input and
output from a file stream without an intervening positioning call

https://wiki.sei.cmu.edu/confluence/display/c/FIO39-C.+Do+not+alternately+input+and+output+from+a+stream+without+an+intervening+flush+or+positioning+call
https://wiki.sei.cmu.edu/confluence/display/c/FIO39-C.+Do+not+alternately+input+and+output+from+a+stream+without+an+intervening+flush+or+positioning+call
https://wiki.sei.cmu.edu/confluence/display/cplusplus/FIO50-CPP.+Do+not+alternately+input+and+output+from+a+file+stream+without+an+intervening+positioning+call
https://wiki.sei.cmu.edu/confluence/display/cplusplus/FIO50-CPP.+Do+not+alternately+input+and+output+from+a+file+stream+without+an+intervening+positioning+call

AUTO©SAR

7 References

Bibliography

ISO/IEC 14882:2003, The C++ Standard Incorporating Technical Corrigendum 1,
International Organization for Standardization, 2003.

ISO/IEC 14882:2011, ISO International Standard ISO/IEC 14882:2011(E) - Programming
Language C++, International Organization of Standardization, 2011.

ISO/IEC 14882:2014, ISO International Standard ISO/IEC 14882:2014(E) - Programming
Language C++, International Organization for Standardization, 2016.

ISO 26262-6, Road vehicles - Functional safety - Part 6: Product development at the
software level, International Organization for Standardization, 2011.

ISO 26262-6, Road vehicles - Functional safety - Part 6: Product development at the
software level, International Organization for Standardization, 2011.

ISO 26262-8, Road vehicles - Functional safety - Part 8: Supporting processes,
International Organization for Standardization, 2011.

MISRA C++:2008 Guidelines for the use of the C++ language in critical systems, The
Motor Industry Software Reliability Association, 2008.

Joint Strike Fighter Air Vehicle C++ Coding Standards for the System Development
and Demonstration Program, Document Number 2RDU00001 Rev C, Lockheed
Martin Corporation, 2005.

High Integrity C++ Coding Standard Version 4.0, Programming Research Ltd, 2013.

Software Engineering Institute CERT C++ Coding Standard, Software Engineering
Institute Division at Carnegie Mellon University, 2016.

Bjarne Stroustrup, Herb Sutter, C++ Core Guidelines, 2017.
Google C++ Style Guide, Google, 2017.
Scott Meyers, Effective Modern C++, ISBN: 978-1-491-90399-5, O’Reilly, 2015.

Bjarne Stroustrup, The C++ Programming Language, Fourth Edition, ISBN: 978-
0-321-56384-2, Addison-Wesley, 2013.

Joshua Bloch, Effective Java, Second Edition, ISBN: 978-0321356680, Addison-
Wesley, 2008

cppreference.com, online reference for the C and C++ languages and standard
libraries, 2017

stackoverflow.com, community of programmers, 2017

open-std.org, site holding a number of web pages for groups producing open
standards, 2017

AUTO©SAR

IEC 61508-3, Functional safety of electrical/electronic/programmable electronic
safety-related systems — Annex C, Overview of techniques and measures for
achieving software safety integrity, International Electrotechnical Commission,
2010.

AUTOSAR

A Allocation of rules to work products

This chapter lists the rules that are allocated to ISO 26262 work products or activities
that are impacted by the usage of C++ (in particular for software architectural design
specification, software unit design specification, toolchain and others).

The rules listed below can be used as guidelines for peforming those activities or as
checklists for performing reviews. For example, it can be used for performing the
review of software architectural design specification.

A.1 Rules allocated to architecture

A2-3-d L 37
A2-8- L L 43
o8- L e 44
Y O 44
A2-00-d. e 44
A2- 8- d. 50
A2-13-6. . . 50
M2-03-2 51
M2-03-3 L 51
M2-03-4 52
A2-13-3. e 53
A2 13-4, 53
A L-d 54
AL 55
AB-L-3 56
Ad-10-0. 73
ALS-0-0 . . 260
ALS-0-2 264
ALS-0-4 . e 268

AUTOSAR

A.2 Rules allocated to design

A2-3- L L 37
A2-8-d . e 43
A2-8-2 . 44
M2-00-d . o 44
A2-10-0. . e 44
A2-10-5. 48
A2- L d- 0. 49
A2- 13-, 50
A2-13-6. . . 50
M2-03- 51
M2-03-3 L o 51
M2-03-4 52
A2-03-3. 53
A2-03-4. 53
A L-d 54
AL 55
AS-L-3 56
AB-L-4 56
A LoD 56
A-L-6 . 59
Ad-10-0. . 73
AT 2.0, 142
AB-4-3. 156
AB-4-A. e 157
AB-4-5. 158
AB-4-B. . 159
AB-A-7. 161
AB-4-8. . 162

A.3

AB-4-10 . . e 164
AB-4-0d . 165
AB-4- 12 167
AB-4-L 3 168
AB-4-04 . 170
AO-B-L. 184
AO-B-2. . 185
ALO-0-0 . . e 186
AL0-0-2 . . 187
ALO-4-0 . 196
AL e 250
ALA-5-3 251
ALS-0-d . . 260
ALS-0-2 264
ALS-0-4 . 268
ALS-0-5 . 271

AO-4-d 30
AD-4-3 32
Md-0-2 . o 35
N 35
AL L-3 35
AL 2-d 36
ALS-0-6 274
ALS-0-7 274
ALS-0-8 . . 276
ALB-5-5 350

AUTOSAR

A.4 Rules allocated to infrastructure

A.5 Rules allocated to analysis
A.6 Rules allocated to hardware
A.7 Rules allocated to management

A.8 Rules allocated to verification

MO-3-d . 29
AL-A-d 36
ALS-0-6 . . . e e 274
AL S-0-7 o 274
ALS-0-8 . . 276
ALB-5-6 . . . 351

A.9 Rules allocated to implementation

MO-L-d . 20
MO-1-2 . 20
MO-1-3 . 20
MO-1-4 20
AO-L-d 20
AO-L-2 22
MO-1-8 . . 23
MO-1-0 . 23
MO-1-00 . .o 24
AD-L-3 24
AO-L-4 25

AD-L-6 . e 29
MO-2- 0 . 29
MO-3-0 . . e 29
MO-3-2 . 30
MO-4- 0 . 30
MO-4-2 . . 30
AD-4-2 L 31
AO-4-4 32
N 34
AL -2 35
AL-A-d 36
AL-4-3 37
A2-3- L L 37
S 38
A5 39
Y 40
L 40
AT 40
A2 7-3 42
= 43
A2-8-d . 43
A2-8-2 44
Y 0 44
A2-10-0. 44
A2-10-6. . . . 46
A2-10-4. . 47
A2-10-5. 48
e 49
A2-13- 0. 50

A2- 3.0, 51
M2-08-2 51
M2-03-3 L 51
M2-03-4 . 52
A2- 13-, 52
A2-03-3. 53
A2-L3-4. 53
A L-d 54
AB- -2 55
AB- -8 L 56
M=o 56
A=A e 56
MB-2-d e 59
MB-2-2 e 60
M3-2-3 60
MB-2-4 60
AB-3-d 60
AB-3-2 62
MB-3-2 64
MB-4- L e 64
AB-8-d . 65
MB-0-d . 67
AB-0-d L 67
MB-0-3 . 68
Y 69
A5 69
MA-5-3 71
L 71
Y 0 73

MA-00-2 . 74
AS-0-0 . 75
M50 . e 78
M5-0-3 . . e 78
M5-0-4 . 78
M5-0-5 . 79
M5-0-6 . . .o 79
M5-0-7 e 79
M5-0-8 . . oo 79
0 79
M5-0-00 . .ot 80
MB-0-d L L 80
MB-0-02 . 80
AD-0-2 L 80
M5-0-04 . 82
M5-0-00 L e 82
M5-0-06 . . oot e 82
MS-0-07 . 82
AS-0-4 . 83
M5-0-08 . . o 85
AS-0-3 . 85
M5-0-20 . . . 86
M5-0-2 L L L e 87
AS-L-d 87
AS-L-2 89
AD-L-3 L 90
AS-L-A 90
AS-L-6 . 91
A L-7 o 92

L 94
5o 2.2 95
M5-2-3 95
N 96
A -2 97
N 98
M5-2-6 . . 99
A 2-4 99
Ao 2-B. o 100
M5-2-8 . o 101
M5-2-0 101
MB-2-00 . .o 102
MS-2- 0L L 102
A 2-D. 102
M5-2-0 2 104
MS-3- 0 L 104
M5-3-2 104
M5-3-3 . 105
M5-3-4 L 105
AD-3- L. 105
AS-3-2. 106
AB-3-3. 107
AL L 109
AS-B- L. 110
MS-8- 0 . 111
AD-10-0 . . 111
MS- LA L 112
AS-16-d . . 112
S- 7L e e 113

MS-d0- L L 113
MB-2- L . . 113
AB-2- L. o e 114
AB-2-2. o e 116
MB-2-2 . 117
MB-2-3 . o 117
MB-3-d . . 117
MB-4- L . 118
MB-4-2 . . 118
MB-4-3 . . 118
MB-4-4 . 118
MB-4-5 . . 118
MB-4-6 . . .o 118
MB-4-7 e 119
AB-4- L. o 119
AB-5- L. 120
AB-5-2. L 122
MB-5-2 . 123
MB-5-3 . . 123
MB-5-4 . 123
MB-5-5 . 123
MB-5-6 . . . 123
AB-5-3. L 124
AB-5-A. 125
AB-6- L. . 126
MB-6-L . . . 127
MB-6-2 . . . 127
MB-6-3 . . . 127
AT-L- 0. 127

M7-0-2 129
AT-L-3 130
N 131
N = T 131
AT-0-B. 133
N R 134
AT-L-8. o e 135
AT-0-0. e e 136
AT-2- L. o 137
AT-2-2. 139
AT-2-3 140
AT-2-4. e 141
M7-3-d 143
M7= 143
M7-3-3 143
M7-3-4 e 143
AT-3-d. 143
M7-3-6 . . 145
AT-A- L. e 146
Y 146
M7-4- e 146
L 147
M7-5- L 147
M7-5-2 147
A5, 147
A5 e 149
AT-6-d. 151
MB-0-1 . . 152
AB-2- L. 152

AB-A- L. o e 154
MB-4-2 154
AB-A-2. 155
MB-4-4 . . 156
AB-5-0. . . 171
A8 DL o 173
MB-5-2 174
AB-5-2. 175
AB-D-3. L 177
AB-D-4. 178
MO-3- 0 L 179
AO-3- . L 180
MO-3-3 182
A5, L 182
MO-6-d . . o 183
MO-6-4 . . 186
ALO-1-0 187
Ma0-0- L 188
Ma0-0-2 . . e 189
MA0-0-3 . o o e 189
Ma0-2- . . 189
ALO-2-0 . 189
AL0-3-0 . 191
AL0-3-2 . 192
AL0-3-3 . 194
AL0-3-5 . 194
Ma0-3-3 . . 196
Mad-0-0 . o 197
ALL-0-0 . . e 197

ALL-3-0 200
AL2-0-0 . e 201
AL 2-0-2 . 204
AL 2-d-d 206
Y 207
AL 2-0-2 e 207
AL 2-0-3 209
AL 2-d-4 210
AL 2-0-5 211
AL2-0-6 . o 212
AL 2-4-0 213
AL 2-4-2 215
AL 2-B-d . o 216
AL 270 218
AL 2-8-d . 220
AL 2-8-2 e 222
AL2-8-3 . 223
AL -84 225
AL 2-8-5 226
AL2-8-6 . . . e 228
AL 2-8-7 231
ALB-0-2 233
ALB-1-3 233
ALB-2-0 235
ALB-2-2 236
ALB-2-3 237
ALB-3-0 238
AL 239
ALB-5-2 240

AL3-5-4 242
ALB-5-5 243
ALB-6-1 . . 245
AL - L0 246
AL 0 248
MLA-5-3 . o 252
MLA-6-d . . 253
AL T-d 253
ALA-T-2 254
ALA-8-2 . 256
ALS-0-0 . 260
ALS-0-2 . 264
ALS-0-3 . 267
ALS-0-4 . 268
ALS-0-5 . 271
ALS-d-d 276
ALD-d-2 L 278
Ma5-0-3 . . 279
o 280
Y 280
o 280
ALS-1-3 280
AL S- L4 e 282
ALS-1-5 286
AL -0 287
AL D 2-2 288
MAS-3- L 201
ALS-3-2 291
ALD-3-3 . 294

ML5-3-3 . o 299
MA5-3-4 299
ALS-3-5 299
ML5-3-6 . . oo 301
M S-3-7 301
AL S-4-d 301
AL S-4-2 302
AL S-4-3 303
AL S-4-A 305
ALS-4-5 307
ALS-5-d 309
AL D52 314
AL S-5-3 e 315
ALB-0-0 . . 318
MLB-0-1 . .o 320
MA6B-0-2 . . .o 320
MA6B-0-5 . . . 320
MI6B-0-6o 320
MAB-0-7 . . 321
MAB-0-8 . . . oo 321
MaB-1-d . . e 321
MaB-1-2 . . 321
MdB-2-3 . . . o 321
ALB-2-0 . . 322
ALB-2-2 . 322
ALB-2-3 . 323
MaB-3-1 . . 324
MAB-3-2 . . o 325
ALB-6-0 . . . 325

AL7-0-0 . 326
Ma7-0-2 . 327
ML 7-0-3 . . 327
AL7-0-2 . 327
MA7-0-5 . 328
ALT-0-d e 328
AL7-6-1 . 330
ALB-0-0 . . 332
ALB-0-2 . o e 332
MLB-0-3 . . oot 334
MA8-0-4 . . . o e 334
MLB-0-5 . .o 334
ALB-0-3 . . o 334
ALB-L-d e 335
ALB-d-2 336
ALB-1-3 . e 337
ALB-1-4 337
ALB-1-6 . . . 339
MA8-2-L . . 341
ALB-5-d 344
ALB-5- 345
ALB-5-3 348
ALB-5-4 349
ALB-5-7 352
ALB-5-8 . 353
ALB-5-0 . 354
ALB-5-00 . . . 355
ALB-5-0 . 356
Y 356

B

ALB-0-2 . 358
ALB-0-3 . 359
ALB-0-4 . e 360
MLO-3-d L o 360
A20-8-0 . . 361
A20-8-2 . 361
A20-8-3 . o 362
A20-8-4 . . 364
A20-8-5 . . 365
A20-8-6 . . . o 366
A20-8-7 . 367
A2 L-8-d . 369
A23-0-d . o 370
A23-0-2 371
2D d-d 372
A2S-A4-d 375
A2B-5-0 . 376
A2B-5- . 377
M27-0-0 . 378
A27-0-0 . 378
A2T-0-4 . e 379
A27-0-2 380
A27-0-3 . 381

Traceability to existing standards

This section demonstrates the traceability of AUTOSAR C++14 rules to existing
important C++ coding standards and to 1ISO 26262.

For each rule, the relation is identified:

AUTOSAR

Identical (only for MISRA C++): the rule text, rationale, exceptions, code example
are identical. Only the rule classification can be different. There can be also an
additional note with clarifications.

Small differences: the content of the rule is included by AUTOSAR C++14 rules
with minor differences.

Significant differences: the content of the rule is included by AUTOSAR C++14
rules with significant differences.

Rejected: the rule in the referred document is rejected by AUTOSAR C++14
guidelines.

Not yet analyzed: The rule is not yet analyzed in the current release.

Implemented (only for ISO 26262): A clause is implemented by the AUTOSAR
C++14 rules.

Partially implemented (only for ISO 26262): A clause covered to some extent that
is in scope of this document.

Not applicable (only for ISO 26262): A clause that is out of scope of this document.

B.1 Traceability to MISRA C++:2008

MISRA C++:2008 [7] is a required prerequisite for readers of the document. MISRA
C++:2008 can be purchased over MISRA web store.

The following table demonstrates the traceability to MISRA C++:2008. This is not
considered as a reproduction of a part of MISRA C++:2008, but a mean to compare
the two standards.

MISRA Rule: Relation type: Related Comment:
rule:

0-1-1 (Required) A project shall not 1 - Identical MO0-1-1

contain unreachable code.

0-1-2 (Required) A project shall not 2 - Small differences MO-1-2 Note about

contain infeasible paths. constexpr functions
added.

0-1-3 (Required) A project shall not 1 - Identical MO-1-3

contain unused variables.

0-1-4 (Required) A project shall not 1 - Identical MO-1-4

contain non-volatile POD variables

having only one use.

0-1-5 (Required) A project shall not 3 - Significant differences | A0-1-6 Obligation

contain unused type declarations. level changed to
“Advisory”.

AUTOSAR

arithmetic shall be documented.

0-1-6 (Required) A project shall| 2- Small differences AO0-1-1 Example reworked.

not contain instances of non-volatile

variables being given values that are

never subsequently used.

0-1-7 (Required) The value returned 2 - Small differences AO0-1-2 Rationale

by a function having a non-void return reformulated.

type that is not an overloaded operator

shall always be used.

0-1-8 (Required) All functions with void | 1- Identical MO-1-8 -

return type shall have external side

effect(s).

0-1-9 (Required) There shall be no 1- Identical MO0-1-9 -

dead code.

0-1-10 (Required)| 3- Significant differences | M0-1-10, Rule divided into:

Every defined function shall be called A0-1-2 (1) Identical rule

at least once. with obligation level
“Advisory”, (2) Rule
with obligation level
“Required”
which applies to
static functions and
private methods.

0-1-11 (Required) There shall be| 3- Significant differences | A0-1-4 Unused

no unused parameters (named or parameters

unnamed) in non-virtual functions. are allowed to be
unnamed.

0-1-12 (Required) There shall be| 3- Significant differences | A0-1-5 Unused

no unused parameters (named or parameters

unnamed) in the set of parameters for are allowed to be

a virtual function and all the functions unnamed.

that override it.

0-2-1 (Required) An object shall not be | 1- Identical MO-2-1 -

assigned to an overlapping object.

0-3-1 (Document) Minimization of run- | 1- Identical MO0-3-1 -

time failures shall be ensured by the

use of at least one of: (a) static

analysis tools/techniques; (b) dynamic

analysis tools/techniques; (c) explicit

coding of checks to handle run-time

faults.

0-3-2 (Required) If a function 1- Identical MO0-3-2 -

generates error information, then that

error information shall be tested.

0-4-1 (Document) Use of scaled- 1- Identical MO0-4-1 -

integer or fixed-point arithmetic shall

be documented.

0-4-2 (Document) Use of floating-point | 1- Identical MO0-4-2 -

AUTOSAR

in an inner scope shall not hide an
identifier declared in an outer scope.

0-4-3 (Document) Floating-point| 3- Significant differences | A0-4-1 Specified that

implementations shall comply with a floating-point

defined floating-point standard. implementations
need to
comply with IEEE
754 standard.

1-0-1 (Required) All code shall 2 - Small differences Al-1-1 Specified that the

conform to ISO/IEC 14882:2003 “The code shall conform

C++ Standard Incorporating Technical to ISO/IEC

Corrigendum 1. 14882:2014.

1-0-2 (Document) Multiple compilers 1- Identical M1-0-2 -

shall only be used if they have a

common, defined interface.

1-0-3 (Document) The implementation | 3- Significant differences | A0-4-2 Specified that

of integer division in the chosen the implementation

compiler shall be determined and of integer division

documented. shall comply with
the C++ Language
Standard.

2-2-1 (Document) The character set 3- Significant differences | A2-3-1

and the corresponding encoding shall

be documented.

2-3-1 (Required) Trigraphs shall not be | 2- Small differences A2-5-1 All trigraphs listed

used. in rationale.
Example extended.

2-5-1 (Advisory) Digraphs should not 3- Significant differences | A2-5-2 Obligation

be used. level changed to
“Required”.

2-7-1 (Required)| 1- Identical M2-7-1 -

The character sequence /* shall not be

used within a C-style comment.

2-7-2 (Required) Sections of code shall | 2- Small differences A2-7-1 Commenting-

not be commented out using C-style out code sections

comments. is not allowed.

2-7-3 (Advisory) Sections of code 2- Small differences A2-7-1 Obligation

should not be “commented out” using level changed to

C++ comments. “Required”.
Commenting-
out code sections
is not allowed.

2-10-1 (Required) Different identifiers 1- Identical M2-10-1 -

shall be typographically unambiguous.

2-10-2 (Required) Identifiers declared | 2- Small differences A2-10-1 Added a note to

rationale. Example
extended.

AUTOSAR

enum name (including qualification, if
any) shall be a unique identifier.

2-10-3 (Required) A typedef name 4 - Rejected This rule is
(including qualification, if any) shall be considered as too
a unigue identifier. restrictive.

2-10-4 (Required) A class, union or 4 - Rejected This rule is

considered as too
restrictive.

2-10-5 (Advisory) The identifier name
of a non-member object or function
with static storage duration should not
be reused.

3- Significant differences

A2-10-4

Obligation
level changed to
“Required”. Scope
of the rule
changed.

2-10-6 (Required) If an identifier refers
to a type, it shall not also refer to an
object or a function in the same scope.

2 - Small differences

A2-10-6

2-13-1 (Required) Only those escape
sequences that are defined in ISO/IEC
14882:2003 shall be used.

2 - Small differences

A2-13-1

Standard changed
to ISO/IEC
14882:2014.

2-13-2 (Required) Octal constants
(other than zero) and octal escape
sequences (other than “\0”) shall not
be used.

1- Identical

M2-13-2

2-13-3 (Required) A “U” suffix shall
be applied to all octal or hexadecimal
integer literals of unsigned type.

1- Identical

M2-13-3

2-13-4 (Required) Literal suffixes shall
be upper case.

1- Identical

M2-13-4

2-13-5 (Required)
Narrow and wide string literals shall not
be concatenated.

2 - Small differences

A2-13-2

Example extended.

3-1-1 (Required) It shall be possible
to include any header file in multiple
translation units without violating the
One Definition Rule.

3- Significant differences

A3-1-1

Rationale
reformulated.
Example extended.

3-1-2 (Required) Functions shall not be
declared at block scope.

1- Identical

M3-1-2

3-1-3 (Required) When an array is
declared, its size shall either be
stated explicitly or defined implicitly by
initialization.

2 - Small differences

A3-1-4

Specified that
this rule applies to
arrays with external
linkage only.

3-2-1 (Required) All declarations of
an object or function shall have
compatible types.

1- Identical

M3-2-1

3-2-2 (Required) The One Definition
Rule shall not be violated.

1- Identical

M3-2-2

3-2-3 (Required) A type, object or
function that is used in multiple
translation units shall be declared in
one and only one file.

1- Identical

M3-2-3

AUTOSAR

3-2-4 (Required) An identifier with
external linkage shall have exactly one
definition.

1- Identical

M3-2-4

3-3-1 (Required) Objects or functions
with external linkage shall be declared
in a header file.

2- Small differences

A3-3-1

Added a note to
rationale. Example
extended.

3-3-2 (Required) If a function has
internal linkage then all re-declarations
shall include the static storage class
specifier.

1- Identical

M3-3-2

3-4-1 (Required) An identifier declared
to be an object or type shall be defined
in a block that minimizes its visibility.

1- Identical

M3-4-1

3-9-1 (Required) The types used for
an object, a function return type, or a
function parameter shall be token-for-
token identical in all declarations and
re-declarations.

1- Identical

M3-9-1

3-9-2 (Advisory) typedefs that indicate
size and signedness should be used in
place of the basic numerical types.

3- Significant differences

M3-9-1

Rule

titte and rationale
reformulated to use
types from
<cstdint> header
file. Alltypes that
should be
used were listed.
Example changed.

3-9-3 (Required) The underlying bit
representations of floating-point values
shall not be used.

1- Identical

M3-9-3

4-5-1 (Required) Expressions with type
bool shall not be used as operands

to built-in operators other than the
assignment operator =, the logical
operators &&, ||, !, the equality
operators == and !=, the unary &
operator, and the conditional operator.

1- Identical

M4-5-1

4-5-2 (Required) Expressions with type
enum shall not be used as operands
to built-in operators other than the
subscript operator [], the assignment
operator =, the equality operators ==
and !=, the unary & operator, and the
relational operators <, <=, >, >=,

3 - Significant differences

A4-5-1

Changed the rule
so it applies to
enum classes too.
Rationale
reformulated.
Example extended.

4-5-3 (Required) Expressions with type
(plain) char and wchar_t shall not be
used as operands to built-in operators
other than the assignment operator =,
the equality operators == and !=, and
the unary & operator.

1- Identical

M4-5-3

4-10-1 (Required) NULL shall not be
used as an integer value.

1- Identical

M4-10-1

AUTOSAR

4-10-2 (Required) Literal zero (0)
shall not be used as the null-pointer-
constant.

1- Identical

M4-10-2

5-0-1 (Required) The value of an
expression shall be the same under
any order of evaluation that the
standard permits.

1- Identical

A5-0-1

Example
rewritten to compile
with C++ compiler

5-0-2 (Advisory) Limited dependence
should be placed on C++ operator
precedence rules in expressions.

1- Identical

M5-0-2

5-0-3 (Required) A cvalue expression
shall not be implicitly converted to a
different underlying type.

1- Identical

M5-0-3

5-0-4 (Required) An implicit
integral conversion shall not change
the signedness of the underlying type.

1- Identical

M5-0-4

5-0-5 (Required) There shall be no
implicit floating-integral conversions.

1- Identical

M5-0-5

5-0-6 (Required) An implicit integral
or floating-point conversion shall not
reduce the size of the underlying type.

1- Identical

M5-0-6

5-0-7 (Required) There shall be no
explicit floating-integral conversions of
a cvalue expression.

1- Identical

M5-0-7

5-0-8 (Required) An explicit integral

or floating-point conversion shall not
increase the size of the underlying type
of a cvalue expression.

1- Identical

M5-0-8

5-0-9 (Required) An explicit
integral conversion shall not change
the signedness of the underlying type
of a cvalue expression.

1- Identical

M5-0-9

5-0-10 (Required) If the
bitwise operators and « are applied

to an operand with an underlying type
of unsigned char or unsigned short, the
result shall be immediately cast to the
underlying type of the operand.

1- Identical

M5-0-10

5-0-11 (Required) The plain char type
shall only be used for the storage and
use of character values.

1- Identical

M5-0-11

5-0-12 (Required) signed char and
unsigned char type shall only be used
for the storage and use of numeric
values.

1- Identical

M5-0-12

5-0-13 (Required) The condition of
an if-statement and the condition of
an iteration statement shall have type
bool.

2 - Small differences

A5-0-2

Example extended.

5-0-14 (Required) The first operand of
a conditional-operator shall have type
bool.

1- Identical

M5-0-14

5-0-15 (Required) Array indexing shall
be the only form of pointer arithmetic.

1- Identical

M5-0-15

AUTOSAR

5-0-16 (Required) A pointer operand
and any pointer resulting from pointer
arithmetic using that operand shall
both address elements of the same
array.

1- Identical

M5-0-16

5-0-17 (Required) Subtraction between
pointers shall only be applied to
pointers that address elements of the
same array.

1- Identical

M5-0-17

5-0-18 (Required) >, >=, <, <= shall not
be applied to objects of pointer type,
except where they point to the same
array.

1- Identical

M5-0-18

5-0-19 (Required) The declaration of
objects shall contain no more than two
levels of pointer indirection.

2 - Small differences

A5-0-3

Example
- typedef
with using.

changed
replaced

5-0-20 (Required) Non-constant
operands to a binary bitwise operator
shall have the same underlying type.

1- Identical

M5-0-20

5-0-21 (Required) Bitwise operators
shall only be applied to operands of
unsigned underlying type.

1- Identical

M5-0-21

5-2-1 (Required) Each operand of a
logical && or || shall be a postfix
expression.

3- Significant differences

A5-2-6

Rule formulation
simplified.

5-2-2 (Required) A pointer to a virtual
base class shall only be cast to a
pointer to a derived class by means of
dynamic_cast.

1- Identical

M5-2-2

5-2-3 (Advisory) Casts from a base
class to a derived class should not be

performed on polymorphic types.

1- Identical

M5-2-3

5-2-4 (Required) C-style casts (other
than void casts) and functional notation
casts (other than explicit constructor
calls) shall not be used.

3- Significant differences

A5-2-2

Rule

title and rationale
reformulated,
detailed

explanation and
possible
alternatives added.
Example reworked.

5-2-5 (Required) A cast
shall not remove any const or volatile
gualification from the type of a pointer
or reference.

2 - Small differences

A5-2-3

Added a note to
rationale. Example
reworked.

5-2-6 (Required) A cast shall not
convert a pointer to a function to any
other pointer type, including a pointer
to function type.

1- Identical

M5-2-6

AUTOSAR

5-2-7 (Required) An object with pointer
type shall not be converted to an
unrelated pointer type, either directly or
indirectly.

3- Significant differences

A5-2-4

Rule

titte and
reformulated
prohibit
reinterpret_cast
usage.
reworked.

rationale

to

Example

5-2-8 (Required) An object with integer
type or pointer to void type shall not
be converted to an object with pointer

type.

1- Identical

M5-2-8

5-2-9 (Advisory) A cast shall not
convert a pointer type to an integral

type.

2 - Small differences

M5-2-9

Obligation
level changed
“Required”.

to

5-2-10 (Advisory) The increment (++)
and decrement (—) operators shall not
be mixed with other operators in an
expression.

2 - Small differences

M5-2-10

Obligation
level changed
“Required”.

to

5-2-11 (Required)
The comma operator, && operator and
the operator shall not be overloaded.

1- Identical

M5-2-11

5-2-12 (Required) An identifier with
array type passed as a function
argument shall not decay to a pointer.

1- Identical

M5-2-12

5-3-1 (Required) Each operand of the
I operator, the logical && or the logical
||operators shall have type bool.

1- Identical

M5-3-1

5-3-2 (Required) The unary minus
operator shall not be applied to an
expression whose underlying type is
unsigned.

1- Identical

M5-3-2

5-3-3 (Required) The unary & operator
shall not be overloaded.

1- Identical

M5-3-3

5-3-4 (Required) Evaluation of the
operand to the sizeof operator shall not
contain side effects.

1- Identical

M5-3-4

5-8-1 (Required) The right
hand operand of a shift operator shall
lie between zero and one less than the
width in bits of the underlying type of
the left hand operand.

1- Identical

M5-8-1

5-14-1 (Required) The right hand
operand of a logical && or ||operator
shall not contain side effects.

1- Identical

M5-14-1

5-17-1 (Required) The semantic
equivalence between a binary operator
and its assignment operator form shall
be preserved.

1- Identical

M5-17-1

5-18-1
(Required) The comma operator shall
not be used.

1- Identical

M5-18-1

AUTOSAR

5-19-1 (Required) Evaluation of
constant unsigned integer expressions
shall not lead to wrap-around.

2- Small differences

M5-19-1

Obligation
level changed to
“Required”.

6-2-1
(Required) Assignment operators shall
not be used in subexpressions.

1- Identical

M6-2-1

6-2-2 (Required)
Floating-point expressions shall not be
directly or indirectly tested for equality
or inequality.

1- Identical

M6-2-2

6-2-3 (Required) Before
preprocessing, a null statement shall
only occur on a line by itself; it may

be followed by a comment, provided
that the first character following the null
statement is a white-space character.

1- Identical

M6-2-3

o-

3-1 (Required) The statement forming
the body of a switch, while, do ... while
or for statement shall be a compound
statement.

1- Identical

M6-3-1

6-4-1 (Required) An if (condition
) construct shall be followed by a
compound statement. The else
keyword shall be followed by either
a compound statement, or another if
statement.

1- Identical

M6-4-1

6-4-2 (Required) All if ... else if
constructs shall be terminated with an
else clause.

1- Identical

M6-4-2

6-4-
3 (Required) A switch statement shall
be a well-formed switch statement.

1- Identical

M6-4-3

6-4-4 (Required) A switch-label shall

only be used when the most closely-

enclosing compound statement is the
body of a switch statement.

1- Identical

M6-4-4

6-4-5 (Required) An
unconditional throw or break statement
shall terminate every non-empty switch
clause.

1- Identical

M6-4-5

6-4-6 (Required) The final clause of a
switch statement shall be the default-
clause.

1- Identical

M6-4-6

6-4-7 (Required) The condition of a
switch statement shall not have bool

type.

1- Identical

M6-4-7

6-
4-8 (Required) Every switch statement
shall have at least one case-clause.

3- Significant differences

A6-4-1

Rule reformulated.
Example reworked.

AUTOSAR

6-5-1 (Required) A for loop shall
contain a single loop-counter which
shall not have floating type.

2- Small differences

A6-5-2

Additional
note about floating
types added. Rule
extended.

6-5-2 (Required) If loop-counter is not
modified by — or ++, then, within
condition, the loop-counter shall only
be used as an operand to <=, <, > or
>z,

1- Identical

M6-5-2

6-5-3 (Required) The loop-counter
shall not be modified within condition
or statement.

1- Identical

M6-5-3

6-5-4 (Required) The loop-counter
shall be modified by one of: —, ++, -
=n, or +=n; where n remains constant
for the duration of the loop.

1- Identical

M6-5-4

6-5-5 (Required) A loop-control-
variable other than the loop-counter
shall not be modified within condition
or expression.

1- Identical

M6-5-5

o-

5-6 (Required) A loop-control-variable
other than the loop-counter which is
modified in statement shall have type
bool.

1- Identical

M6-5-6

6-6-1 (Required) Any label referenced
by a goto statement shall be declared
in the same block, or in a block
enclosing the goto statement.

1- Identical

M6-6-1

6-6-2 (Required) The goto statement
shall jump to a label declared later in
the same function body.

1- Identical

M6-6-2

6-6-3 (Required) The continue
statement shall only be used within a
well-formed for loop.

1- Identical

M6-6-3

6-6-4 (Required) For any iteration
statement there shall be no more than
one break or goto statement used for
loop termination.

4- Rejected

The goto statement
shall not be used,
see: A6-6-1. There
can be more than
one break in an
iteration statement.

6-6-5 (Required) A function shall have
a single point of exit at the end of the
function.

4 - Rejected

See Single-
point-of-exit.

7-1-1 (Required) A variable which is
not modified shall be const qualified.

3- Significant differences

A7-1-1, A7-
1-2

constexpr and
const specifiers are
recommended.

AUTOSAR

7-1-2 (Required) A pointer or reference
parameter in a function
shall be declared as pointer to const or
reference to const if the corresponding
object is not modified.

1- Identical

M7-1-2

7-2-1 (Required) An
expression with enum underlying type
shall only have values corresponding
to the enumerators of the enumeration.

2 - Small differences

A7-1-2

Example extended.

7-3-1 (Required) The global
namespace shall only contain main,
namespace declarations and extern
"C" declarations.

1- Identical

M7-3-1

7-3-2 (Required) The identifier main
shall not be used for a function other
than the global function main.

1- Identical

M7-3-2

7-3-3 (Required) There shall be no
unnamed namespaces in header files.

1- Identical

M7-3-3

7-3-4 (Required) Using-directives shall
not be used.

1- Identical

M7-3-4

7-3-5 (Required) Multiple declarations
for an identifier in the
same namespace shall not straddle a
using-declaration for that identifier.

2 - Small differences

A7-3-1

7-3-6

(Required) using-directives and using-
declarations (excluding class scope
or function scope using-declarations)
shall not be used in header files.

1- Identical

M7-3-6

7-4-
1 (Document) All usage of assembler
shall be documented.

1- Identical

M7-4-1

7-
4-2 (Required) Assembler instructions
shall only be introduced using the asm
declaration.

1- Identical

M7-4-2

7-4-3 (Required) Assembly language
shall be encapsulated and isolated.

1- Identical

M7-4-3

7-5-1 (Required)
A function shall not return a reference
or a pointer to an automatic variable
(including parameters), defined within
the function.

1- Identical

M7-5-1

7-5-2 (Required) The address of an
object with automatic storage shall not
be assigned to another object that may
persist after the first object has ceased
to exist.

2 - Small differences

M7-5-2

Added

a note saying that
the rule applies to
std::unique_ptr,
std::shared_ptr
and std::weak_ptr
too.

AUTOSAR

have a defined value before they are
used.

7-5-3 (Required) A function shall not 3 - Significant differences | A7-5-2 Rule reformulated

return a reference or a pointer to a so it is allowed to

parameter that is passed by reference return a reference

or const reference. or a pointer to non-
const reference
parameter.
Rationale
reformulated.
Example reworked.

7-5-4 (Advisory) Functions should not | 2 - Small differences A7-5-1 Obligation

call themselves, either directly or level changed to

indirectly. “Required”.
Example reworked.

8-0-1 (Required) An init-declarator- 1 - Identical M8-0-1 -

list or a member-declarator-list shall

consist of a single init-declarator or

member-declarator respectively.

8-3-1 (Required) Parameters in an 1 - Identical M8-3-1 -

overriding virtual function shall either

use the same default arguments as the

function they override, or else shall not

specify any default arguments.

8-4-1 (Required) Functions shall not be | 3 - Significant differences | A8-4-1 Rationale

defined using the ellipsis notation. reformulated.
Added a note that
variadic templates
should be used
instead. Example
extended.

8-4-2 (Required) The identifiers used 1 - Identical M8-4-2 -

for the parameters in a re-declaration

of a function shall be identical to those

in the declaration.

8-4-3 (Required) All exit paths from a 2 - Small differences A8-4-2 Rule reformulated

function with non-void return type shall o) it applies

have an explicit return statement with to void return type

an expression. functions. Example
reworked so there
isno throwing an
exception of type
int.

8-4-4 (Required) A function identifier 1 - Identical M8-4-4 -

shall either be used to call the function

or it shall be preceded by &.

8-5-1 (Required) All variables shall 2 - Small differences A8-5-0 Rule reworded to

also include
objects with
dynamic storage.

AUTOSAR

8-5-2 (Required) Braces shall be used
to indicate and match the structure in
the non-zero initialization of arrays and
structures.

1- Identical

M8-5-2

8-5-3 (Required) In an enumerator list,
the = construct shall not be used to
explicitly initialize members other than
the first, unless all items are explicitly
initialized.

3- Significant differences

AT-2-4

Rule and rationale
reformulated.
Example reworked.

9-3-

1 (Required) const member functions
shall not return non-const pointers or
references to class-data.

1- Identical

M9-3-1

9-3-2 (Required) Member functions
shall not return non-const handles to
class-data.

2 - Small differences

A9-3-1

Explanation
improved.
Example reworked.

9-3-3 (Required) If a member function
can be made static then it shall be
made static, otherwise if it can be
made const then it shall be made
const.

1- Identical

M9-3-3

9-5-1 (Required) Unions shall not be
used.

2 - Small differences

A9-5-1

9-6-1 (Required) When the absolute
positioning of bits representing a bit-
field is required, then the behavior
and packing of bit-fields shall be
documented.

1- Identical

M9-6-1

9-6-2 (Required) Bit-fields
shall be either bool type or an explicitly
unsigned or signed integral type.

3- Significant differences

A9-6-1

Only types
with a defined size
are allowed to be
used for bit-fields,
also see A9-6-2.

9-6-3 (Required) Bit-fields shall not
have enum type.

4- Rejected

Permitted types
changed. New rule
introduced: A9-6-

1.

9-6-4 (Required) Named bit-fields with
signed integer type shall have a length
of more than one bit.

1- Identical

M9-6-4

10-1-1 (Advisory) Classes should not
be derived from virtual bases

1- Identical

M10-1-1

10-1-2 (Required) A base class shall
only be declared virtual if it is used in
a diamond hierarchy.

1- Identical

M10-1-2

10-1-3 (Required) An accessible base
class shall not be both virtual and non-
virtual in the same hierarchy.

1- Identical

M10-1-3

10-2-1 (Advisory) All accessible entity
names within a multiple inheritance
hierarchy should be unique.

1- Identical

M10-2-1

AUTOSAR

10-3-1 (Required) There shall be no
more than one definition of each virtual
function on each path through the
inheritance hierarchy.

4 - Rejected

Rule
already covered by
Al10-1-1.

private in an abstract class.

10-3-2 (Required) Each overriding 3 - Significant differences | A10-3-2 Rule and rationale
virtual function shall be declared with reformulated so the
the virtual keyword. override
specifier should be
used instead
of virtual keyword.
Example reworked.
10-3-3 (Required) A virtual function 1 - Identical M10-3-3 -
shall only be overridden by a pure
virtual function if it is itself declared as
pure virtual.
11-0-1 (Required) Member data in non-| 1 - Identical M11-0-1 -
POD class types shall be private.
12-1-1 (Required) An object’s dynamic | 1 - Identical M12-1-1 -
type shall not be used from the body of
its constructor or destructor.
12-1-2 (Advisory) All constructors of a | 3 - Significant differences | A12-1-1 Obligation
class should explicitly call a constructor level changed to
for all of its immediate base classes “‘Required”. Rule
and all virtual base classes. reformulated
to cover non-static
class data
members.
Rationale
reformulated.
Example reworked.
12-1-3 (Required) All constructors that | 2 - Small differences Al12-1-4 Example reworked.
are callable with a single argument
of fundamental type shall be declared
explicit.
12-8-1 (Required) A copy constructor | 3 - Significant differences | A12-8-1 Rule reformulated
shall only initialize its base classes and to cover
the non-static members of the class of move constructors,
which it is a member. too. Rationale
reformulated.
Example reworked.
12- 3 - Significant differences | A12-8-6 Rule reformulated
8-2 (Required) The copy assignment to cover move
operator shall be declared protected or assignment

operators and all
base

classes. Rationale
reformulated.
Example reworked.

AUTOSAR

function templates, class template
member functions and class template
static members shall be instantiated at
least once.

12- 3 - Significant differences | A12-8-1 Rule reformulated

8-2 (Required) The copy assignment to cover

operator shall be declared protected or move constructors,

private in an abstract class. too. Rationale
reformulated.
Example reworked.

14-5-1 (Required) A non-| 3 - Significant differences | A14-5-3 Changed the

member generic function shall only be scope of therule

declared in a namespace that is not an from all generic

associated namespace. functions to
operators only, as
most problematic
case. Changed
severity to
Advisory.

14-5-2 (Required) A copy constructor 3 - Significant differences | A14-5-1 Avoids

shall be declared when there is a the ambiguity by

template constructor with a single requiring the

parameter that is a generic parameter. template
parameter to
be constrained to
never
match a copy/move
constructor.

14-5-3 (Required) A copy assignment | 1 - Identical M14-5-3 -

operator shall be declared when there

is a template assignment operator

with a parameter that is a generic

parameter.

14-6-1 (Required) In a class template 1 - Identical M14-6-1 -

with a dependent base, any name that

may be found in that dependent base

shall be referred to using a qualified-id

or this->.

14-6-2 (Required) The function chosen | 4 - Rejected - Usage of the

by overload resolution shall resolve to ADL functionality is

a function declared previously in the allowed. Itis also

translation unit. used in
STL for overloaded
operators lookup in
e.g. out streams,
STL containers.

14-7-1 (Required) All class templates, | 4 - Rejected - It is allowed to not

use all of the public
methods of a class.

AUTOSAR

14-7-2 (Required) | 3- Significant differences | A14-7-1 Rule reformulated

For any given template specialization, to explicitly state

an explicit instantiation of the template what is required.

with the template-arguments used in Example reworked.

the specialization shall not render the

program ill-formed.

14-7-3 (Required) All partial and 3- Significant differences | A14-7-2 Allowed to declare

explicit specializations for a template in a header file

shall be declared in the same file as the that declares user-

declaration of their primary template. defined
type, for which the
specialization is
declared.

14-8-1 (Required) Overloaded function | 3- Significant differences | A14-8-2 Function templates

templates shall not be explicitly specialization is

specialized. forbidden.

14-8-2 (Advisory) The viable function 3- Small differences Al14-8-2 Function templates

set for a function call should either specialization is

contain no function specializations, or forbidden.

only contain function specializations.

15-0-1 (Document) Exceptions shall | 3- Significant differences | A15-0-1 Rule reformulated,

only be used for error handling. example
significantly
extended.

15-0-2 (Advisory) An exception object | 3- Significant differences | A15-1-2 Obligation

should not have pointer type. level changed, rule
reformulated.

15-0-3 (Required) Control shall not be | 1- Identical M15-0-3 -

transferred into a try or catch block

using a goto or a switch statement.

15-1-1 (Required) The assignment- 1- Identical M15-1-1 -

expression of a throw statement shall

not itself cause an exception.

15-1-2 (Required) NULL shall not be 1- Identical M15-1-2 -

thrown explicitly.

15-1-3 (Required) | 1- Identical M15-1-3 -

An empty throw (throw;) shall only be

used in the compound-statement of a

catch handler.

15-3-1 (Required) Exceptions shall be | 1- Identical M15-3-1 -

raised only after start-up and before

termination of the program.

15-3-2 (Advisory) There should be at 2 - Small differences A15-3-3 Obligation level

least one exception handler to catch all changed. Rule

otherwise unhandled exceptions. extended to cover

multi-threading.

AUTOSAR

in a file shall only be preceded by other
preprocessor directives or comments.

15-3-3 (Required) Handlers of| 1- Identical M15-3-3 -

a function-try-block implementation of

a class constructor or destructor shall

not reference non-static members from

this class or its bases.

15-3-4 (Required) Each exception 1- Identical M15-3-4 -

explicitly thrown in the code shall have

a handler of a compatible type in all call

paths that could lead to that point.

15- 2 - Small differences A15-3-5 Possibility to catch

3-5 (Required) A class type exception by const reference

shall always be caught by reference. added

15-3-6 (Required) Where multiple 1- Identical M15-3-6 -

handlers are provided in a single try-

catch statement or function-try-block

for a derived class and some or all of

its bases, the handlers shall be ordered

most-derived to base class.

15-3-7 (Required) Where multiple 1- Identical M15-3-7 -

handlers are provided in a single try-

catch statement or function-try-block,

any ellipsis (catch-all) handler shall

occur last.

15-4-1 (Required) If a| 3- Significant differences | A15-4-3 Dynamic exception

function is declared with an exception- specification was

specification, then all declarations of prohibited. Rule

the same function (in other translation was reformulated

units) shall be declared with the same in terms of the

set of type-ids. noexcept
specification.

15-5-1 (Required) A class destructor 3- Significant differences | A15-5-1 Rule significantly

shall not exit with an exception. extended
with other special
functions and
operators.

15-5-2 (Required) Where a function’s 3- Significant differences | A15-4-2 Dynamic exception

declaration includes an exception- specification was

specification, the function shall only be prohibited. Rule

capable of throwing exceptions of the was reformulated

indicated type(s). in terms of the
noexcept
specification.

15-5-3 (Required) The std::terminate() [2- Small differences A15-5-3 Rationale and

function shall not be called implicitly. example extended.

16-0-1 (Required) #include directives 1- Identical M16-0-1 -

AUTOSAR

16-0-2 (Required) Macros shall only
be #define’d or #undef'd in the global
namespace.

1- Identical

M16-0-2

16-0-3 (Required) #undef shall not be
used.

4 - Rejected

The

rule replaced with
global rule: A16-0-
1.

16-0-4 (Required) Function-like
macros shall not be defined.

4 - Rejected

The

rule replaced with
global rule: A16-0-
1.

16-0-5 (Required) Arguments to a
function-like macro shall not contain
tokens that look like preprocessing
directives.

1- Identical

M16-0-5

16-0-6 (Required) In the definition of
a function-like macro, each instance
of a parameter shall be enclosed in
parentheses, unless it is used as the
operand of # or ##.

1- Identical

M16-0-6

16-0-7 (Required) Undefined macro
identifiers shall not be used in #if or
#elif preprocessor directives, except as
operands to the defined operator.

1- Identical

M16-0-7

16-0-8 (Required) If the # token
appears as the first token on a line,
then it shall be immediately followed by
a pre-processing token.

1- Identical

M16-0-8

16-1-

1 (Required) The defined preprocessor
operator shall only be used in one of
the two standard forms.

1- Identical

M16-1-1

16-1-2 (Required) All #else, #elif and
#endif pre-processor directives shall
reside in the same file as the #if
or #ifdef directive to which they are
related.

1- Identical

M16-1-2

16-2-1 (Required) The pre-processor
shall only be used for file inclusion and
include guards.

4 - Rejected

The

rule replaced with
global rule: A16-0-
1.

16-2-2 (Required) C++ macros shall
only be used for include guards, type
qualifiers, or storage class specifiers.

4 - Rejected

The

rule replaced with
global rule: A16-0-
1.

16-2-3 (Required) Include guards shall
be provided

1- Identical

M16-2-3

AUTOSAR

atof, atoi and atol from library <cstdlib>
shall not be used.

16-2-4 (Required) The’, », /*or// 2 - Small differences Al16-2-1 Merged with

characters shall not occur in a header MISRA Rule 16-2-

file name. 5.

16-2-5 (Advisory) The| 2- Small differences Al16-2-1 Obligation

character \should not occur in a header level changed to

file name. “Required”.
Merged with
MISRA Rule 16-2-
4,

16-2-6 (Required) The #include 4 - Rejected - These are the only

directive shall be followed by either a forms allowed by

<filename> or “filename” sequence. the C++ Language
Standard; No need
for a new rule.

16-3-1 (Required) There shall be at 1- Identical M16-3-1 -

most one occurrence of the # or ##

operators in a single macro definition.

16-3-2 (Advisory) The # and ## 1- Identical M16-3-2 -

operators should not be used.

16-6- 4 - Rejected - The #pragma

1 (Required) All uses of the #pragma directive shall not

directive shall be documented. be used, see: A16-
7-1.

17-0-1 (Required) Reserved| 2- Small differences Al17-0-1 Example extended.

identifiers, macros and functions in the

standard library shall not be defined,

redefined or undefined.

17-0-2 (Required) The names of 1- Identical M17-0-2 -

standard library macros and objects

shall not be reused.

17-0-3 (Required) The names of 1- Identical M17-0-3 -

standard library functions shall not be

overridden.

17-0-4 (Required) All library code shall | 4- Rejected - The rule

conform to MISRA C++. replaced with A17-
0-2 saying that all
code shall conform
to
AUTOSAR C++14
Coding Guidelines.

17-0-5 (Required) The setjmp macro 1- Identical M17-0-5 -

and the longjmp function shall not be

used.

18-0-1 (Required) The C library shall 2 - Small differences A18-0-1 Rule reformulated.

not be used.

18-0-2 (Required) The library functions | 2- Small differences A18-0-2

AUTOSAR

18-0-3 (Required) The library functions
abort, exit, getenv and system from
library <cstdlib> shall not be used.

1- Identical

M18-0-3

18-0-4 (Required) The time handling
functions of library <ctime> shall not be
used.

1- Identical

M18-0-4

18-0-5 (Required) The unbounded
functions of library <cstring> shall not
be used.

1- Identical

M18-0-5

18-2-1 (Required) The macro offsetof
shall not be used.

1- Identical

M18-2-1

18-4-1 (Required) Dynamic heap
memory allocation shall not be used.

4 - Rejected

Dynamic heap
memory allocation
usage is allowed
conditionally, see:
A18-5-1, A18-5-2,
A18-5-3.

18-7-1 (Required) The signal handling
facilities of <csignal> shall not be used.

1- Identical

M18-7-1

19-3-1 (Required) The error indicator
errno shall not be used.

1- Identical

M19-3-1

27-
0-1 (Required) The stream input/output
library <cstdio> shall not be used.

1- Identical

M27-0-1

Table B.1: MISRA C++

B.2 Traceability to HIC++ v4.0

The following table demonstrates the traceability to High Integrity C++ Coding
Standard Version 4.0 [9]. This is not considered as a reproduction, but a mean to

compare the two standards.

This document complies with the conditions of use of HIC++ v4.0, as any rule in this
document that is based on HIC++ v4.0 refers to the related HIC++ v4.0 rule.

HIC++ Rule: Relation type: Related Comment:
rule:

1.1.1 Ensure that code complies with 2 - Small differences Al-1-1 Specified that the

the 2011 ISO C++ Language Standard. code shall conform
to ISO/IEC
14882:2014

1.2.1 Ensure that all statements are 2 - Small differences MO0-1-1

reachable.

1.2.2 Ensure that no expression or 2 - Small differences MO-1-9

sub-expression is redundant.

1.3.1 Do not use the increment 2 - Small differences M4-5-1

operator (++) on a variable of type bool

1.3.2 Do not use the register keyword. | 2 - Small differences A7-1-4

AUTOSAR

1.3.3 Do not use the C Standard 2 - Small differences A18-0-1

Library .h headers

1.3.4 Do not use deprecated STL 2- Small differences Al-1-1, A18-

library features 1-3, A18-9-1

1.3.5 Do not use throw exception 2- Small differences Al5-4-1

specifications.

2.1.1 Do not use tab characters in 4 - Rejected AUTOSAR C++

source files. Coding Guidelines
does not introduce
rules related
tocoding style or
naming
convention.

2.2.1 Do not use digraphs or trigraphs. | 2- Small differences A2-5-1, A2-

5-2

2.3.1 Do not use the C comment 2- Small differences M2-7-1

delimiters /* ... */.

2.3.2 Do not comment out code. 2 - Small differences A2-7-2

2.4.1 Ensure that each identifier is 2- Small differences M2-10-1

distinct from any other visible identifier.

2.5.1 Do not concatenate strings with 2- Small differences A2-13-2

different encoding prefixes.

2.5.2 Do not use octal constants (other | 2- Small differences M2-13-2

than zero).

2.5.3 Use nullptr for the null pointer 2 - Small differences A4-10-1

constant.

3.1.1 Do not hide declarations. 2- Small differences A2-10-1, A2-

10-6

3.2.1 Do not declare functions at block | 2- Small differences M3-1-2

scope.

3.3.1 Do not use variables with static 3- Significant differences | A3-3-2 Limited to

storage duration. constant-initialized
objects only.

3.4.1 Do not return a reference or 2 - Small differences M7-5-1

a pointer to an automatic variable

defined within the function.

3.4.2 Do not assign the address of 2 - Small differences M7-5-2

a variable to a pointer with a greater
lifetime.

3.4.3 Use RAII for resources.

4 - Rejected

AUTOSAR C++
Coding Guidelines
does not define
rules for coding
patterns. Note that
usage of RAIl is
recommended,

see: A15-1-4.

AUTOSAR

operands of unsigned type.

3.5.1 Do not make any assumptions 2 - Small differences A3-9-1,
about the internal representation of a M3-9-3, M5-
value or object. 0-15, M5-0-
21, A9-5-1,
M18-2-1
4.1.1 Ensure that a function argument | 2- Small differences M5-2-12
does not undergo an array-to-pointer
conversion.
4.2.1 Ensure that the U suffix is applied| 2- Small differences M2-13-2
to a literal used in a context requiring
an unsigned integral expression.
4.2.2 Ensure that data loss does| 2- Small differences A4-7-1, M5-
not demonstrably occur in an integral 0-4, M5-0-6,
expression. M5-0-9
4.3.1 Do not convert an expression of | 2- Small differences A4-7-1, M5-
wider floating point type to a narrower 0-6
floating point type.
4.4.1 Do not convert floating values to | 4- Rejected Rules that
integral types except through use of are related: M5-0-
standard library functions. 3, M5-0-5, M5-0-6,
M5-0-7,
5.1.1 Use symbolic names instead of 2- Small differences A5-1-1
literal values in code.
5.1.2 Do not rely on the sequence of 2- Small differences A5-0-1
evaluation within an expression.
5.1.3 Use parentheses in expressions | 2- Small differences A5-
to specify the intent of the expression. 0-1, A5-2-6,
M5-2-10,
5.1.4 Do not capture variables implicitly| 2- Small differences A5-1-2
in a lambda.
5.15 Include a (possibly| 2- Small differences A5-1-3
empty) parameter list in every lambda
expression.
5.1.6 Do not code side effects into 3- Significant differences | A5-3-1, M5- | The condi-
the right-hand operands of: &&, ||, 3-4, M5-14-1 | tion_variable::wait
sizeof, typeid or a function passed to is not yet covered,
condition_variable::wait. this will be ad-
dressed in future
when C++ libraries
are analyzed.
5.2.1 Ensure that pointer or array 2- Small differences A5-2-5
access is demonstrably within bounds
of a valid object.
5.2.2 Ensure that functions do not call | 2- Small differences A7-5-2
themselves, either directly or indirectly.
5.3.1 Do not apply unary minus to 2- Small differences M5-3-2

AUTOSAR

statement block does not fall through
to the next label.

5.3.2 Allocate memory using new and | 2 - Small differences A18-5-1 Note that operators

release it using delete. new and
delete shall not be
used explicitly, see:
Al18-5-2.

5.3.3 Ensure that the form of delete 2 - Small differences A18-5-3 Note that operators

matches the form of new used to new and

allocate the memory. delete shall not be
used explicitly, see:
Al18-5-2.

5.4.1 Only use casting forms: 2 - Small differences A5-2-1, Ab-

static_cast (excl. void*), dynamic_cast 2-2, A5-2-3,

or explicit constructor call. A5-2-4

5.4.2 Do not cast an expressionto an | 4 - Rejected It is allowed to cast

enumeration type. an expression to an
enumeration type,
butan expression
shall have a value
that corresponds to
an enumerator
of the enumeration,
see: A7-2-1.

5.4.3 Do not convert from a base class | 3 - Small differences M5-2-2, M5- [Note that the

to a derived class. 2-3, A5-2-1 dynamic_cast is
unsuitable for use
with real-time
systems.

5.5.1 Ensure that the right hand 2 - Small differences A5-6-1

operand of the division or remainder

operators is demonstrably non-zero.

5.6.1 Do not use bitwise operators with | 2 - Small differences M5-0-21

signed operands.

5.7.1 Do not write code that expects 2 - Small differences M6-2-2

floating point calculations to yield exact

results.

5.7.2 Ensure that a pointer to member | 2 - Small differences A5-10-1

that is a virtual function is only

compared (==) with nullptr.

5.8.1 Do not use the conditional 2 - Small differences A5-16-1

operator (?:) as a sub-expression.

6.1.1 Enclose the body of a selection or | 2 - Small differences M6-3-1, M6-

an iteration statement in a compound 4-1

statement.

6.1.2 Explicitly cover all paths through | 2 - Small differences M6-4-2

multi-way selection statements.

6.1.3 Ensure that a non-empty case 2 - Small differences M6-4-5

AUTOSAR

preference to type
using typename.

disambiguation

6.1.4 Ensure that a switch statement 2- Small differences A6-4-1

has at least two case labels, distinct

from the default label.

6.2.1 Implement a loop that only uses | 2- Small differences A6-5-1

element values as a range-based loop.

6.2.2 Ensure that a loop has a 2- Small differences A6-5-2

single loop counter, an optional control

variable, and is not degenerate.

6.2.3 Do not alter a control or counter | 3- Significant differences | M6-5-3 It is prohibited to

variable more than once in a loop. alter a control
or counter variable
within condition or
statement of a
loop.

6.2.4 Only modify a for loop counter in | 2- Small differences M6-5-3

the for expression.

6.3.1 Ensure that the label(s) for a 2- Small differences M6-6-1

jump statement or a switch condition

appear later, in the same or an

enclosing block.

6.3.2 Ensure that execution of a 2 - Small differences A8-4-2

function with a non-void return type

ends in a return statement with a value.

6.4.1 Postpone variable definitions as | 2- Small differences M3-4-1

long as possible.

7.1.1 Declare each identifier on a 2 - Small differences A7-1-7

separate line in a separate declaration.

7.1.2 Use const whenever possible. 2- Small differences A7-1-1, A7-

1-2

7.1.3 Do not place type| 2- Small differences A7-1-8

specifiers before non-type specifiers in

a declaration.

7.1.4 Place CV-qualifiers on the right 3- Significant differences | A7-1-3 Placement of cv-

hand side of the type they apply to. qualifiers
is only restricted for
typedefs.

7.1.5 Do not inline large functions. 4- Rejected Code metrics are
not covered
by AUTOSAR C++
Coding Guidelines.

7.1.6 Use class types or typedefs to 3- Significant differences | A3-9-1 AUTOSAR C++

abstract scalar quantities and standard Coding Guidelines

integer types. forces to use
typedefs for built-in
numerical types.

7.1.7 Use a trailing return type in 2- Small differences A8-2-1

AUTOSAR

7.1.8 Use auto id = expr when 3 - Significant differences | A7-1-5 The

declaring a variable to have the same rule is formulated

type as its initializer function call. differently.

7.1.9 Do not explicitly specify the return| 4 - Rejected To avoid implicit

type of a lambda. type conversion
return type of
lambda expression
needs to be
specified explicitly,
see: A5-1-6.

7.1.10 Use static_assert for assertions | 3 - Significant differences | A16-6-1 It is recommended

involving compile time constants. to use the
static_assert
instead of #error
directive.

7.2.1 Use an explicit enumeration base | 2 - Small differences A7-2-2

and ensure that it is large enough to

store all enumerators.

7.2.2 Initialize none, the first only or all | 2 - Small differences A7-2-4

enumerators in an enumeration.

7.3.1 Do not use using directives. 2 - Small differences M7-3-4

7.4.1 Ensure

that any objects, functions or types to

be used from a single translation unit

are defined in an unnamed namespace

in the main source file.

7.4.2 Ensure that an inline function, a 2 - Small differences A3-1-1, M3-

function template, or a type used from 2-2

multiple translation units is defined in a

single header file.

7.4.3 Ensure that an object or a 2 - Small differences A3-1-1, M3-

function used from multiple translation 2-4

units is declared in a single header file.

7.5.1 Do not use the asm declaration. | 2 - Small differences A7-4-1

8.1.1 Do not use multiple levels of 3 - Significant differences | A5-0-3 At most two levels

pointer indirection. of
pointer indirection
are allowed.

8.2.1 Make parameter names absent 2 - Small differences M3-9-1

or identical in all declarations.

8.2.2 Do not declare functions with an | 4 - Rejected Code metrics are

excessive number of parameters. not covered
by AUTOSAR C++
Coding Guidelines.

8.2.3 Pass small objects with a trivial 4 - Rejected The rule is vague,

copy constructor by value.

“small” has no
technical meaning.

AUTOSAR

in a final class.

8.2.4 Do not pass std::unique_ptr by 3 - Significant differences | A8-4-11, A8- | A8-4-12 cov-

const reference. 4-12 ers how to pass a
std::unique_ptr,
A8-4-11 cov-
ers when not
to pass by
std::unique_ptr.

8.3.1 Do not write functions| 4 - Rejected Code metrics are

with an excessive McCabe Cyclomatic not covered

Complexity. by AUTOSAR C++
Coding Guidelines.

8.3.2 Do not write functions with a high | 4 - Rejected Code metrics are

static program path count. not covered
by AUTOSAR C++
Coding Guidelines.

8.3.3 Do not use default arguments. 4 - Rejected Using
default arguments
is allowed with
some restrictions,
see e.g. M8-3-1.

8.3.4 Define =delete functions with 2 - Small differences A13-3-1,

parameters of type rvalue reference to A18-9-3

const.

8.4.1 Do not access an invalid object or| 2 - Small differences A8-5-0, A12-

an object with indeterminate value. 8-3

8.4.2 Ensure that a braced aggregate | 2 - Small differences M8-5-2

initializer matches the layout of the

aggregate object.

9.1.1 Declare| 2 - Small differences M9-3-3

static any member function that does

not require this. Alternatively, declare

const any member function that does

not modify the externally visible state

of the object.

9.1.2 Make default arguments the 2 - Small differences M8-3-1

same or absent when overriding a

virtual function.

9.1.3 Do not return non-const handles | 2 - Small differences M9-3-1, A9-

to class data from const member 3-1

functions.

9.1.4 Do not write member functions 3 - Significant differences | A9-3-1 It

which return non-const handles to is allowed to return

data less accessible than the member non-const handles

function. to static data.

9.1.5 Do not introduce virtual functions | 2 - Small differences A10-3-3

AUTOSAR

reduce code duplication.

9.2.1 Declare bit-fields| 3- Significant differences | A9-6-1 Any

with an explicitly unsigned integral or type with a defined

enumeration type. size is allowed to
be used for a bit-
field.

10.1.1 Ensure that access to base 3- Significant differences | A10-1-1 Inheritance

class subobjects does not require from more than one

explicit disambiguation. base class is
prohibited.

10.2.1 Use| 2- Small differences Al10-3-2

the override special identifier when

overriding a virtual function.

10.3.1 Ensure that a derived class has | 2- Small differences A10-1-1 Note that

at most one base class which is not an the definition of an

interface class. interface changed,
see: Interface-
Class.

11.1.1 Declare all data members 2 - Small differences M11-0-1

private.

11.2.1 Do not use friend declarations. 2- Small differences All-3-1

12.1.1 Do not declare implicit user 3- Significant differences | A12-1-4,

defined conversions. A13-5-2

12.2.1 Declare virtual, private or| 3- Significant differences | A12-4-1 Destructor of

protected the destructor of a type used a base class shall

as a base class. be public virtual,
public override or
protected
non-virtual.

12.3.1 Correctly declare overloads for | 2- Small differences A18-5-11

operator new and delete.

12.4.1 Do not use the dynamic type 2- Small differences M12-1-1

of an object unless the object is fully

constructed.

12.4.2 Ensure that a constructor 2 - Small differences Al12-1-1

initializes explicitly all base classes and

non-static data members.

12.4.3 Do not specify both an NSDMI 2 - Significant differences | A12-1-2 Using both NSDMI

and a and

member initializer in a constructor for member initializer

the same non static member. list in one class is
not allowed.

12.4.4 Write| 2- Small differences A8-5-1

members in an initialization list in the

order in which they are declared.

12.4.5 Use delegating constructors to | 2- Small differences A12-1-5

AUTOSAR

operator (operator[]) implement both
const and non-const versions.

125.1 Define| 3- Significant differences | A12-0-1

explicitly =default or =delete implicit

special member functions of concrete

classes.

12.5.2 Define special members| 2- Small differences Al12-7-1

=default if the behavior is equivalent.

12.5.3 Ensure that| 2- Small differences A12-8-1

a user defined move/copy constructor

only moves/copies base and member

objects.

12.5.4 Declare noexcept the move 3- Significant differences | A15-5-1 AUTOSAR C++

constructor and move assignment Coding Guidelines

operator. requires
additional functions
to be noexcept.

12.5.5 Correctly reset moved-from 2 - Small differences Al12-8-1

handles to resources in the move

constructor.

12.5.6 Use an atomic, non-throwing 2 - Small differences Al2-8-2

swap operation to implement the copy

and move assighment operators.

12.5.7 Declare assignment operators 2 - Small differences Al2-8-7

with the ref-qualifier &.

12.5.8 Make the copy assignment 3- Significant differences | A12-8-6 AUTOSAR C++

operator of an abstract class protected Coding Guidelines

or define it =delete. requires
additional functions
to be comply with
this rule.

13.1.1 Ensure that all overloads of a 2 - Small differences A7-3-1

function are visible from where it is

called.

13.1.2 If a member of a set of 3- Significant differences | A13-3-1 A function taking

callable functions includes a universal “forwarding

reference parameter, ensure that one reference” shall not

appears in the same position for all be overloaded.

other members.

13.2.1 Do not overload operators with | 2- Small differences M5-2-11,

special semantics. M5-3-3

13.2.2 Ensure that the return type of an| 2- Small differences Al3-

overloaded binary operator matches 2-1, A13-2-

the built-in counterparts. 2, A13-2-3

13.2.3 Declare binary arithmetic and 4 - Rejected Non-generic

bitwise operators as non-members. design
principle; There is
no need for a new
rule.

13.2.4 When overloading the subscript | 2- Small differences A13-5-1

AUTOSAR

13.2.5 Implement a minimal set of
operators and use them to implement
all other related operators.

4 - Rejected

Non-generic

design

principle; There is
no need for a new
rule.

in filenames supplied in #include
directives.

14.1.1 Use variadic templates rather 3- Significant differences | A8-4-1 AUTOSAR C++

than an ellipsis. Coding Guidelines
prohibits usage of
variadic
arguments.

14.2.1 Declare template| 3- Significant differences | Al14-7-2 Allowed to declare

specializations in the same file as the in a header file

primary template they specialize. that declares user-
defined
type, for which the
specialization is
declared.

14.2.2 Do not explicitly specialize a 3- Significant differences | A14-8-2 Function templates

function template that is overloaded specialization is

with other templates. forbidden.

14.2.3 Declare extern an explicitly 4 - Rejected

instantiated template.

15.1.1 Only use instances of 2- Small differences Al5-1-1

std::exception for exceptions.

15.2.1 Do not throw an exception from | 2- Small differences A15-5-1

a destructor.

15.3.1 Do| 2- Small differences M15-3-3

not access non-static members from a

catch handler of constructor/destructor

function try block.

15.3.2 Ensure that a program does not | 2- Small differences A15-5-2,

result in a call to std::terminate. A15-5-3

16.1.1 Use the preprocessor only| 3- Significant differences | A16-0-1 Conditional

for implementing include guards, and and unconditional

including header files with include file inclusion is

guards. allowed.

16.1.2 Do not include a path specifier 3- Significant differences | A16-2-1 Path specifier [is

allowed to specify
a path relative to
path passed to the
compiler.

16.1.3 Match the filename in a #include
directive to the one on the file system.

4- Rejected

AUTOSAR

16.1.4 Use <> brackets for system and
standard library headers. Use quotes
for all other headers.

4 - Rejected

The rule defines a
coding style.
Anyway,

these are the only
forms allowed by
the C++ Language
Standard. No need
for a new rule.

16.1.5 Include directly the
minimum number of headers required
for compilation.

4 - Rejected

There shall be
no unused include
directives, however
all needed headers
shall be included
explicitly. See:
Al16-2-2, A16-2-3.

result is immediately converted to a
const iterator.

17.1.1 Do not use std::vector<bool>. 2 - Small differences Al18-1-2

17.2.1 Wrap use of the C Standard 2 - Small differences Al7-1-1

Library.

17.3.1 Do not use std::move on objects| 2 - Small differences A18-9-3

declared with const or const & type.

17.3.2 Use std::forward to forward 2 - Small differences A18-9-2

universal references.

17.3.3 Do not subsequently use the 2 - Small differences A18-9-4

argument to std::forward.

17.3.4 Do not create smart pointers of | 3 - Significant differences | A18-1-4 Rule reformulated

array type. to better capture
the problem cases
and to allow use of
smart pointer
specializations for
array types.

17.3.5 Do not create an rvalue 4 - Rejected The rule is only a

reference of std::array. hint
saying that passing
std::array by rvalue
reference would be
less efficient
than passing it by
reference.
However, usage
depends on the
case, and it should
be allowed to pass
std::array by rvalue
reference.

17.4.1 Use const container calls when | 2 - Small differences A23-0-1

AUTOSAR

17.4.2 Use API calls that construct 3 - Significant differences | A18-5-2 A18-5-

objects in place. 2 prohibits explicit
calls to new and
delete operators,
std::make_shared,
std::make_unique
and similar
constructions are
recommended.

1751 Do not ignore the | 2 - Small differences AO0-1-2

result of std::remove, std::remove_if or

std::unique.

18.1.1 Do not use platform specific 5 - Not yet analyzed The “Concurrency”

multi-threading facilities. chapter isnot vyet
covered, this will
be addressed in
future.

18.2.1 Use high_integrity::ithread in 4 - Rejected The

place of std::thread. high_integrity::thread
is not part of the
C++ Language
Standard.

18.2.2 Synchronize access to data 5 - Not yet analyzed The “Concurrency”

shared between threads using a single chapter isnot vyet

lock. covered, this will
be addressed in
future.

18.2.3 Do not share volatile data 3 - Significant differences | A2-11-1 Volatile keyword

between threads. forbidden.

18.2.4 Use std::call_once rather than
the Double-Checked Locking pattern.

5 - Not yet analyzed

The “Concurrency”
chapter isnot vyet
covered, this will
be addressed in
future.

18.3.1 Within the scope of a lock,
ensure that no static path results in a
lock of the same mutex.

5 - Not yet analyzed

The “Concurrency”
chapter isnot vyet
covered, this will
be addressed in
future.

18.3.2 Ensure that order of nesting of
locks in a project forms a DAG.

5 - Not yet analyzed

The “Concurrency”
chapter isnot vyet
covered, this will
be addressed in
future.

AUTOSAR

18.3.3 Do not use
std::recursive_mutex.

5 - Not yet analyzed

The “Concurrency”
chapter isnot vyet
covered, this will
be addressed in
future.

18.3.4 Only use std::unique_lock when
std::lock_guard cannot be used.

5 - Not yet analyzed

The “Concurrency”
chapter isnot vyet
covered, this will
be addressed in
future.

18.3.5 Do not access the members of
std::mutex directly.

5 - Not yet analyzed

The “Concurrency”
chapter isnot vyet
covered, this will
be addressed in
future.

18.3.6 Do not use relaxed atomics.

5 - Not yet analyzed

The “Concurrency”
chapter isnot vyet
covered, this will
be addressed in
future.

18.4.1 Do
not use std::condition_variable_any on
a std::mutex

5 - Not yet analyzed

The “Concurrency”
chapter isnot vyet
covered, this will
be addressed in
future.

B.3 Traceability to JSF

Table B.2: HIC++ v4.0

The following table demonstrates the traceability to Joint Strike Fighter Air Vehicle
C++ Coding Standard [8]. This is not considered as a reproduction, but a mean to

compare the two standards.

Note that the copyright of JSF-AV 2005 allows an unlimited distribution anyway.

specified in the C++ basic source
character set will be used. [...].

JSF Rule: Relation type: Related Comment:
rule:

AV Rule 8 All code shall conform to 2 - Small differences Al-1-1

ISO/IEC 14882:2002(E) standard C++.

AV Rule 9 Only those characters 2 - Small differences A2-3-1

AUTOSAR

AV Rule 10 Values of character types
will be restricted to a defined and
documented subset of ISO 10646-1.

4 - Rejected

Source

files encoding is
too restrictive and
not covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 11 Trigraphs will not be used.

2 - Small differences

A2-5-1

AV Rule 12 The following digraphs will
not be used [...].

2 - Small differences

A2-5-2

AV Rule 13 Multi-byte characters and
wide string literals will not be used.

4 - Rejected

Agreed for wchar_t
type only, A2-13-3.

AV Rule 14 Literal suffixes shall
use uppercase rather than lowercase
letters.

2 - Small differences

M2-13-4

AV Rule 15 Provision shall be
made for run-time checking (defensive
programming).

2 - Small differences

MO0-3-1

AV Rule 16 Only DO-178B level A [15]
certifiable or SEAL 1 C/C++ libraries
shall be used with safety-critical (i.e.
SEAL 1) code.

4 - Rejected

JSF-specific rule.

AV Rule 17 The error indicator errno
shall not be used.

2 - Small differences

M19-3-1

AV Rule 18 The macro offsetof, in
library <stddef.h>, shall not be used.

2 - Small differences

M18-2-1

AV Rule 19 <locale.h> and the
setlocale function shall not be used.

2 - Small differences

A18-0-3

AV Rule 20 The setjmp macro and the
longjmp function shall not be used.

2 - Small differences

M17-0-5

AV Rule 21 The signal handling
facilities of <signal.h> shall not be
used.

2 - Small differences

M18-7-1

AV Rule 22 The input /output library
<stdio.h> shall not be used.

2 - Small differences

M27-0-1

AV Rule 23 The library functions atof,
atoi and atol from library <stdlib.h>
shall not be used.

2 - Small differences

A18-0-2

AV Rule 24 The library functions abort,
exit, getenv and system from library
<stdlib.h> shall not be used.

2 - Small differences

M18-0-3

AV Rule 25
The time handling functions of library
<time.h> shall not be used.

2 - Small differences

M18-0-4

AV Rule 26 Only the following pre-
processor directives shall be used:
1. #ifndef 2. #define 3. #endif 4.
#include.

2 - Small differences

A16-0-1

AUTOSAR

AV Rule 27 #ifndef, #define and #endif
will be used to prevent
multiple inclusions of the same header
file. Other techniques to prevent the
multiple inclusions of header files will
not be used.

2- Small differences

A16-0-1,
M16-2-3

AV Rule 28 The #ifndef and #endif pre-
processor directives will only be used
as defined in AV Rule 27 to prevent
multiple inclusions of the same header
file.

2 - Small differences

A16-0-1

AV Rule 29 The #define pre-processor
directive shall not be used to create
inline macros. Inline functions shall be
used instead.

2 - Small differences

A16-0-1

AV Rule 30 The #define pre-processor
directive shall not be used to define
constant values. Instead, the const
qualifier shall
be applied to variable declarations to
specify constant values.

2 - Small differences

A16-0-1

AV Rule 31 The #define pre-processor
directive will only be used as part
of the technique to prevent multiple
inclusions of the same header file.

2 - Small differences

A16-0-1

AV Rule 32 The #include pre-
processor directive will only be used to
include header (*.h) files.

2 - Small differences

A16-0-1

AV Rule 33 The #include directive
shall use the <filename.h> notation to
include header files.

4 - Rejected

Including
files using quotes is
also possible.

AV Rule 34 Header files should contain
logically related declarations only.

2 - Small differences

A3-3-1

AV Rule 35 A header file will contain
a mechanism that prevents multiple
inclusions of itself.

2 - Small differences

M16-2-3

AV Rule 36 Compilation dependencies
should be minimized when possible.

4- Rejected

The

rule is vague; more
precisely explained
by AV Rules 37 and
38.

AV Rule 37 Header (include) files
should include only those header
files that are required for them to
successfully compile. Files that are
only used by the associated .cpp file
should be placed in the .cpp file - not
the .h file.

2 - Small differences

Al16-2-2,
A16-2-3

AUTOSAR

with the underscore character “ ”.

AV Rule 38 Declarations of classes 3- Significant differences | A16-2-3 Forward
that are only accessed via pointers (*) declarations
or references (&) should be supplied considered as
by forward headers that contain only a possible solution
forward declarations. for unnecessarry
inclusions.
AV Rule 39 Header files (*.h) will not 2 - Small differences M3-2-4, A3-
contain non-const variable definitions 3-1
or function definitions.
AV Rule 40 Every implementation file 2 - Small differences M3-2-4, A3-
shall include the header files that 3-1
uniquely define the inline functions,
types, and templates used.
AV Rule 41 Source lines will be kept to | 4- Rejected Coding style is not
a length of 120 characters or less. covered
by AUTOSAR C++
Coding Guidelines.
AV Rule 42| 2- Small differences A7-1-7
Each expression-statement will be on
a separate line.
AV Rule 43 Tabs should be avoided. 4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.
AV Rule 44 All indentations will be at 4 - Rejected Coding style is not
least two spaces and be consistent covered
within the same source file. by AUTOSAR C++
Coding Guidelines.
AV Rule 45 All words in an identifier will| 4- Rejected Coding style is not
be separated by the “ ” character. covered
by AUTOSAR C++
Coding Guidelines.
AV Rule 46 User-specified identifiers 4- Rejected Coding style is not
(internal and external) will not rely covered
on significance of more than 64 by AUTOSAR C++
characters. Coding Guidelines.
AV Rule 47 Identifiers will not begin 3- Significant differences | A17-0-1

AUTOSAR

enumerator values shall be lowercase.

AV Rule 48 Identifiers will not differ by: | 4- Rejected Coding style is not
(a) Only a mixture of case, (b) The covered
presence/absence of the underscore by AUTOSAR C++
character, (c) The interchange of the Coding Guidelines.
letter “O”, with the number “0” or the
letter “D”, (d) The interchange of the
letter “I”, with the number “1” or the
letter “I”, (e) The interchange of the
letter “S” with the number “5”, (f) The
interchange of the letter “Z” with the
number “2”, (g) The interchange of the
letter “n” with the letter “h”.
AV Rule 49 All acronyms in an identifier| 4- Rejected Coding style is not
will be composed of uppercase letters. covered
by AUTOSAR C++
Coding Guidelines.
AV Rule 50 The first word of the name | 4- Rejected Coding style is not
of a class, structure, namespace, covered
enumeration, or type created with by AUTOSAR C++
typedef will begin with an uppercase Coding Guidelines.
letter. All others letters will be
lowercase.
AV Rule 51 All letters contained in 4 - Rejected Coding style is not
function and variable names will be covered
composed entirely of lowercase letters. by AUTOSAR C++
Coding Guidelines.
AV Rule 52 Identifiers for constant and | 4- Rejected Coding style is not

covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 53 Header files will always
have a file name extension of “.h”.

3- Significant differences

A3-1-2

AV Rule 53.1 The following character
sequences shall not appear in header
file names: ', \, /*, /], or ”.

2 - Small differences

Al16-2-1

AV Rule 54 Implementation files will
always have a file name extension of

“.cpp’.

2 - Small differences

A3-1-3

AV Rule 55 The name of a header
file should reflect the logical entity for
which it provides declarations.

2 - Small differences

A2-8-1

AV Rule 56 The
name of an implementation file should
reflect the logical entity for which it
provides definitions and have a “.cpp”
extension (this name will normally be
identical to the header file that provides
the corresponding declarations.)

2 - Small differences

A2-8-2

AUTOSAR

AV Rule 57 The public, protected, and | 4- Rejected Coding style is not
private sections covered

of a class will be declared in that order by AUTOSAR C++
(the public section is declared before Coding Guidelines.
the protected section which is declared

before the private section).

AV Rule 58 When declaring and 4 - Rejected Coding style is not

defining functions with more than two
parameters, the leading parenthesis
and the first argument will be written

on the same line as the function
name. Each additional argument will
be written on a separate line (with the
closing parenthesis directly after the
last argument).

covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 59 The statements forming 2- Small differences M6-3-1

the body of an if, else if, else, while,

do...while or for statement shall always

be enclosed in braces, even if the

braces form an empty block.

AV Rule 60 Braces (“{}") which enclose | 4- Rejected Coding style is not

a block will be placed in the same covered

column, on separate lines directly by AUTOSAR C++

before and after the block. Coding Guidelines.

AV Rule 61 Braces (“{}") which enclose | 4- Rejected Coding style is not

a block will have nothing else on the covered

line except comments (if necessary). by AUTOSAR C++
Coding Guidelines.

AV Rule 62 The dereference operator | 4- Rejected Coding style is not

“*” and the address-of operator “&” will covered

be directly connected with the type- by AUTOSAR C++

specifier. Coding Guidelines.

AV Rule 63 Spaces will not be used 4 - Rejected Coding style is not

around “.” or “->”, nor between unary covered

operators and operands. by AUTOSAR C++
Coding Guidelines.

AV Rule 64 A class interface should be | 4- Rejected Code metrics are

complete and minimal. not covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 65 A structure should be used | 3- Significant differences | A11-0-2

to model an entity that does not require

an invariant.

AV Rule 66 A class should be used 3- Significant differences | A11-0-1

to model an entity that maintains an

invariant.

AV Rule 67 Public and protected data | 2- Small differences M11-0-1

should only be used in structs - not
classes.

AUTOSAR

AV Rule 68 Unneeded
implicitly generated member functions
shall be explicitly disallowed.

3- Significant differences

A12-0-1

It

is allowed to follow
both “Rule of zero”
and “Rule of five”.

AV Rule 69 A member function that
does not affect the state of an object
(its instance variables) will be declared
const.

2 - Small differences

M9-3-3

AV Rule 70 A class will have friends
only when a function or object requires
access to the private elements of the
class, but is unable to be a member

of the class for logical or efficiency
reasons.

4 - Rejected

Friend declarations
are prohibited, see:
Al1-3-1.

AV Rule 70.1 An object shall not
be improperly used before its lifetime
begins or after its lifetime ends.

2 - Small differences

A3-8-1, A5-
1-4, M7-5-1,
M7-5-2, A7-
5-1, M12-1-1

AV Rule 71 Calls to an externally
visible operation of an object, other
than its constructors, shall not be
allowed until the object has been fully
initialized.

2 - Small differences

Al12-1-1,
M12-1-1

AV Rule 71.1 A class’s virtual functions
shall not be invoked from its destructor
or any of its constructors.

2 - Small differences

M12-1-1

AV Rule
72 The invariant for a class should be:
(a) a part of the postcondition of every
class constructor, (b) a part of the
precondition of the class destructor (if
any), (c) a part of the precondition and
postcondition of every other publicly
accessible operation.

3 - Significant differences

A15-2-

2, M11-0-1,
M9-3-1, A9-
3-1

No enforcement on
pre/postcondition
checking in the
Coding Guidelines

AV Rule 73 Unnecessary default
constructors shall not be defined.

4- Rejected

No rule needed.

AV Rule 74 Initialization of nonstatic
class members will be performed
through the member initialization list
rather than through assignment in the
body of a constructor.

2 - Small differences

Al12-6-1

AV Rule 75 Members
of the initialization list shall be listed in
the order in which they are declared in
the class.

2 - Small differences

A8-5-1

AV Rule 76 A copy constructor and an
assignment operator shall be declared
for classes that contain pointers to data
items or nontrivial destructors.

2 - Small differences

Al12-7-1

AUTOSAR

AV Rule 77 A copy constructor shall
copy all data members and bases
that affect the class invariant (a data
element representing a cache, for

example, would not need to be copied).

2- Small differences

Al12-8-1

AV Rule 77.1 The definition of a
member function shall not contain
default arguments that produce a
signature identical to that of the
implicitly-declared copy constructor for
the corresponding class/structure.

4 - Rejected

No ambiguity in
C++14, see
ISO/IEC
14882:2014 C++14
12.8 [class.copy]2

AV Rule 78 All base classes with a
virtual function shall define a virtual
destructor.

2 - Small differences

Al12-4-1

AV Rule 79 All resources acquired by
a class shall be released by the class’s
destructor.

2 - Small differences

A15-1-4,
A18-5-2

AV Rule 80 The default copy and
assignment operators will be used for
classes when those operators offer
reasonable semantics.

2 - Small differences

A12-0-1

AV Rule 81 The assignment operator
shall handle self-assignment correctly.

2 - Small differences

Al12-8-5

AV Rule 82 An assignment operator
shall return a reference to *this.

2 - Small differences

Al13-2-1

AV Rule 83 An assignment operator
shall assign all data members and
bases that affect the class invariant (a
data element representing a cache, for

example, would not need to be copied).

2 - Small differences

A6-2-1

AV Rule 84 Operator overloading
will be used sparingly and in a
conventional manner.

4 - Rejected

The rule is vague.
Design

principle; There is
no need for a new
rule.

AV Rule 85 When two operators are
opposites (such as == and !=), both will
be defined and one will be defined in
terms of the other.

2 - Small differences

A13-5-4

AV Rule 86 Concrete types should be
used to represent simple independent
concepts.

4- Rejected

The rule is vague.
Design

principle; There is
no need for a new
rule.

AV Rule 87 Hierarchies should be
based on abstract classes.

2 - Small differences

A10-4-1

AV Rule 88 Multiple inheritance shall
only be allowed in the following
restricted form: n interfaces plus m
private implementations, plus at most
one protected implementation.

3 - Significant differences

Al10-1-1

AUTOSAR

AV Rule 88.1 A stateful virtual base
shall be explicitly declared in each
derived class that accesses it.

4 - Rejected

Virtual inheritance
should not be used,
see: M10-1-1.

AV Rule 89 A base class shall not be
both virtual and non-virtual in the same
hierarchy.

2- Small differences

M10-1-3

AV Rule 90 Heavily used
interfaces should be minimal, general
and abstract.

4 - Rejected

The rule is vague.
Design

principle; There is
no need for a new
rule.

AV Rule 91 Public inheritance will be
used to implement “is-a” relationships.

2 - Small differences

A10-0-1

AV Rule 92 A subtype (publicly
derived classes) will conform to the
following guidelines with respect to all
classes involved in the polymorphic
assignment of different subclass
instances to the same variable or
parameter during the execution of the
system: (1) Preconditions of derived
methods must be at least as weak as
the preconditions of the methods they
override. (2) Postconditions of derived
methods must be at least as strong

as the postconditions of the methods
they override. In other words, subclass
methods must expect less and deliver
more than the base class methods
they override. This rule implies that
subtypes will conform to the Liskov
Substitution Principle.

4 - Rejected

The rule is vague.
Design

principle; There is
no need for a new
rule.

AV Rule 93 “has-a” or “is-implemented-
in-terms-of” relationships will be
modeled through membership or non-
public inheritance.

2 - Small differences

A10-0-2

AV Rule 94 An inherited nonvirtual
function shall not be redefined in a
derived class.

2 - Small differences

A10-2-1

AV Rule 95 An inherited default
parameter shall never be redefined.

2 - Small differences

M8-3-1

AV Rule 96 Arrays shall not be treated
polymorphically.

2 - Small differences

A5-0-4

AV Rule 97 Arrays shall not be used
in interfaces. Instead, the Array class
should be used.

2 - Small differences

M5-2-12

AV Rule 97.1 Neither operand of an
equality operator (== or I=) shall be a
pointer to a virtual member function.

3- Significant differences

A5-10-1

Testing for equality
with null-
pointer-constant is
allowed.

AUTOSAR

specification unless the function is
intended to be inlined.

AV Rule 98 Every nonlocal name, 2 - Small differences M7-3-1
except main(), should be placed in
some namespace.
AV Rule 99 Namespaces will not be 4 - Rejected Not compliant with
nested more than two levels deep. the
AUTOSAR general
requirements.
AV Rule 100| 3- Significant differences | M7-3-4, M7-
Elements from a namespace should 3-6
be selected as follows: (a) using
declaration or explicit qualification for
few (approximately five) names, (b)
using directive for many names.
AV Rule 101 Templates shall be 4 - Rejected Rule concerns
reviewed as follows: (1) with respect code review
to the template in isolation considering process.
assumptions or requirements placed
on its arguments, (2) with respect
to all functions instantiated by actual
arguments.
AV Rule 102 Template tests shall be 4 - Rejected Rule concerns test
created to cover all actual template process.
instantiations.
AV Rule 103 Constraint checks should | 2- Small differences Al14-1-1
be applied to template arguments.
AV Rule 104 A template specialization | 2- Small differences Al4-7-2
shall be declared before its use.
AV Rule 105 A template definition’s 4 - Rejected This rule is vague.
dependence “Minimized” has no
on its instantiation contexts should be technical meaning.
minimized.
AV Rule 106 Specializations for pointer | 4- Rejected This rule is vague.
types should be made where “Where
appropriate. appropriate”
has no technical
meaning.
AV Rule 107 Functions shall always be | 2- Small differences M3-1-2
declared at file scope.
AV Rule 108 Functions with variable 2 - Small differences A8-4-1
numbers of arguments shall not be
used.
AV Rule 109 A function definition 3- Significant differences | A3-1-5 Also included
should not be placed in a class template methods

and methods of
template classes.

AV Rule 110 Functions with more than
7 arguments will not be used.

4- Rejected

Code metrics are
not covered
by AUTOSAR C++
Coding Guidelines.

AUTOSAR

AV Rule 111 A function shall not return
a pointer or reference to a non-static
local object.

2- Small differences

M7-5-2

AV Rule
112 Function return values should not
obscure resource ownership.

2- Small differences

M9-3-1, A9-
3-1, A20-8-
2, A20-8-3

AV Rule 113 Functions will have a
single exit point.

4 - Rejected

See Single-
point-of-exit.

AV Rule 114 All exit points of value-
returning functions shall be through
return statements.

2 - Small differences

A8-4-2

AV Rule 115 If a function returns error
information, then that error information
will be tested.

2 - Small differences

A8-4-2

AV Rule 116 Small, concrete-type
arguments (two or three words in size)
should be passed by value if changes
made to formal parameters should not
be reflected in the calling function.

2 - Small differences

AB-4-7

AV Rule 117 Arguments should be
passed by reference if NULL values
are not possible.

2 - Small differences

A8-4-10

AV Rule 117.1 An object should be
passed as const T& if the function
should not change the value of the
object.

2 - Small differences

A8-4-7

AV Rule 117.2 An object should be
passed as T& if the function may
change the value of the object.

2 - Small differences

A8-4-9

AV Rule 118 Arguments should be
passed via pointers if NULL values are
possible.

3- Significant differences

A8-4-10

AV Rule 118.1 An object should be
passed as const T* if its value should
not be modified.

3- Significant differences

A8-4-10

AV Rule 118.2 An object should be
passed as T* if its value may be
modified.

3- Significant differences

A8-4-10

AV Rule 119 Functions shall not call
themselves, either directly or indirectly
(i.e. recursion shall not be allowed).

2 - Small differences

A7-5-2

AV Rule 120 Overloaded operations 4 - Rejected This rule is vague.
or methods should form families that It is not a coding
use the same semantics, share the rule.

same name, have the same purpose,

and that are differentiated by formal

parameters.

AV Rule 121 Only functions with 1 4- Rejected Code metrics are
or 2 statements should be considered not covered

candidates for inline functions.

by AUTOSAR C++
Coding Guidelines.

AUTOSAR

AV Rule 122 Trivial accessor and
mutator functions should be inlined.

2- Small differences

A3-1-6

AV Rule 123 The number of accessor
and mutator functions should be
minimized.

4 - Rejected

This rule is vague.
Itis not a coding
rule.

AV Rule 124 Trivial forwarding
functions should be inlined.

4 - Rejected

Forwarding
functions
mostly
templates and they
most likely will be
inlined.

are

AV Rule 125 Unnecessary temporary
objects should be avoided.

2 - Small differences

MO0-1-9, Al-
4-3

AV Rule 126 Only valid C++ style
comments (//) shall be used.

2 - Small differences

M2-7-1

AV Rule 127 Code that is not used
(commented out) shall be deleted.

2 - Small differences

A2-7-2

AV Rule 128 Comments that document
actions or sources (e.g. tables, figures,
paragraphs, etc.) outside of the file
being documented will not be allowed.

2 - Small differences

A2-7-5

AV Rule 129 Comments in header files
should describe the externally visible
behavior of the functions or classes
being documented.

3- Significant differences

A2-7-3

AV Rule 130 The purpose of every
line of executable code should be
explained by a comment, although one
comment may describe more than one
line of code.

4 - Rejected

AV Rule 131 One should avoid stating
in comments what is better stated in
code (i.e. do not simply repeat what
is in the code).

4- Rejected

AV Rule 132 Each variable declaration,
typedef, enumeration value, and
structure member will be commented.

4- Rejected

AV Rule 133 Every source file will

be documented with an introductory
comment that
provides information on the file name,
its contents, and any program-required
information (e.qg. legal statements,
copyright information, etc).

4- Rejected

AV Rule 134 Assumptions (limitations)

made by
functions should be documented in the

function’s preamble.

3 - Significant differences

A2-7-3

AV Rule 135 Identifiers in an inner
scope shall not use the same name
as an identifier in an outer scope, and
therefore hide that identifier.

2 - Small differences

A2-10-1

AUTOSAR

AV Rule 136 Declarations should be at
the smallest feasible scope.

2- Small differences

M3-4-1

AV Rule 137 All declarations at file
scope should be static where possible.

3- Significant differences

A3-3-1

AV Rule 138 Identifiers shall not
simultaneously have both internal and
external linkage in the same translation
unit.

2 - Small differences

M3-3-2

AV Rule 139 External objects will not
be declared in more than one file.

2- Small differences

M3-2-3

AV Rule 140 The register storage class
specifier shall not be used.

2 - Small differences

A7-1-4

AV Rule 141 A class, structure, or
enumeration will not be declared in the
definition of its type.

2 - Small differences

A7-1-9

AV Rule 142 All variables shall be
initialized before use.

2 - Small differences

A8-5-0

AV Rule 143 Variables will not be
introduced until they can be initialized
with meaningful values.

2 - Small differences

M3-4-1

AV Rule 144 Braces shall be used

to indicate and match the structure in
the non-zero initialization of arrays and
structures.

2 - Small differences

M8-5-2

AV Rule 145 In an enumerator list,
the “=” construct shall not be used to
explicitly initialize members other than
the first, unless all items are explicitly
initialized.

2 - Small differences

A7-2-4

AV Rule 146
Floating point implementations shall
comply with a defined floating point
standard. The standard that will be
used is the ANSI/IEEE Std 754

2 - Small differences

A0-4-1

AV Rule
147 The underlying bit representations
of floating point numbers shall not be
used in any way by the programmer.

2 - Small differences

M3-9-3

AV Rule 148 Enumeration types shall
be used instead of integer types (and
constants) to select from a limited
series of choices.

2 - Small differences

A7-2-5

AV Rule 149 Octal constants (other
than zero) shall not be used.

2 - Small differences

M2-13-2

AV Rule 150 Hexadecimal constants
will be represented using all uppercase
letters.

2 - Small differences

A2-13-5

AV Rule 151 Numeric values in code
will not be used; symbolic values will
be used instead.

2 - Small differences

A5-1-1

AV Rule 151.1 A string literal shall not
be modified.

2 - Small differences

A2-13-4

AUTOSAR

AV Rule
152 Multiple variable declarations shall
not be allowed on the same line.

2- Small differences

A7-1-7

AV Rule 153 Unions shall not be used.

2- Small differences

A9-5-1

AV Rule 154
Bit-fields shall have explicitly unsigned
integral or enumeration types only.

3- Significant differences

A9-6-1

Any

type with a defined
size is allowed to
be used for a bit-
field.

AV Rule 155 Bit-fields will not be used
to pack data into a word for the sole
purpose of saving space.

2 - Small differences

A9-6-2

AV Rule 156 All the members of a
structure (or class) shall be named and
shall only be accessed via their names.

2 - Small differences

A12-0-2

AV Rule 157 The right hand operand of
a && or ||operator shall not contain side
effects.

2 - Small differences

M5-14-1

AV Rule 158 The operands of a logical
&& or ||shall be parenthesized if the
operands contain binary operators.

2 - Small differences

A5-2-6

AV Rule 159 Operators ||, &&, and
unary & shall not be overloaded.

2 - Small differences

M5-2-11,
M5-3-3

AV Rule 160 An assignment
expression shall be used only as the
expression in an expression statement.

2 - Small differences

M6-2-1

AV Rule 162 Signed and unsigned
values shall not be mixed in arithmetic
or comparison operations.

2 - Small differences

M5-0-4, M5-
0-9

AV Rule 163 Unsigned arithmetic shall
not be used.

2 - Small differences

M5-0-4, M5-
0-9

AV Rule 164 The right hand operand of
a shift operator shall lie between zero
and one less than the width in bits of
the left-hand operand (inclusive).

2 - Small differences

M5-8-1

AV Rule 164.1 The left-hand operand
of a right-shift operator shall not have a
negative value.

2 - Small differences

M5-8-1

AV Rule 165 The unary minus operator
shall not be applied to an unsigned
expression.

2 - Small differences

M5-3-2

AV Rule 166 The sizeof operator
will not be used on expressions that
contain side effects.

2 - Small differences

M5-3-4

AV Rule 167 The implementation of
integer division in the chosen compiler
shall be determined, documented and
taken into account.

3- Significant differences

A0-4-2

AV Rule 168 The comma operator shall
not be used.

2 - Small differences

M5-18-1

AV Rule 169 Pointers to pointers
should be avoided when possible.

3- Significant differences

A5-0-3

AUTOSAR

AV Rule 170 More than 2 levels of
pointer indirection shall not be used.

3- Significant differences

A5-0-3

AV Rule 171 Relational operators shall
not be applied to pointer types except
where both operands are of the same
type and point to: (a) the same object,
(b) the same function, (c) members of
the same object, or (d) elements of the
same array (including one past the end
of the same array).

2- Small differences

M5-0-18

AV Rule 173 The address of an object
with automatic storage shall not be
assigned to an object which persists
after the object has ceased to exist.

2- Small differences

M7-5-2

AV Rule 174 The null pointer shall not
be de-referenced.

2 - Small differences

A5-3-2

AV Rule 175 A pointer shall not be
compared to NULL or be assigned
NULL; use plain 0O instead.

4 - Rejected

Only nullptr
constant shall be
used, see: A4-10-
1.

AV Rule 176 A typedef will be
used to simplify program syntax when
declaring function pointers.

4 - Rejected

Implementation
principle. There is
no need for a new
rule.

AV Rule 177 User-defined conversion
functions should be avoided.

2 - Small differences

A13-5-3

AV Rule 178 Down casting (casting
from base to derived class) shall only
be allowed through one of the following
mechanism: (a) Virtual functions that
act like dynamic casts (most likely
useful in relatively simple cases), (b)
Use of the visitor (or similar) pattern
(most likely useful in complicated
cases)

2 - Small differences

M5-2-2, A5-
2-6

AV Rule 179 A pointer to a virtual
base class shall not be converted to a

pointer to a derived class.

2 - Small differences

M5-2-3

AV Rule 180 Implicit conversions that
may result in a loss of information shall
not be used.

2 - Small differences

Ad-7-1

AV Rule 181 Redundant explicit casts
will not be used.

2 - Small differences

MO0-1-9

AV Rule 182 Type casting from any
type to or from pointers shall not be
used.

3- Significant differences

M5-2-9

Not fully covered.

AV Rule 183 Every possible measure
should be taken to avoid type casting.

4- Rejected

It is not a coding
rule.

AUTOSAR

AV Rule 184 Floating
point numbers shall not be converted
to integers unless such a conversion is
a specified algorithmic requirement or
is necessary for a hardware interface.

2- Small differences

M5-0-5

AV

Rule 185 C++ style casts (const_cast,
reinterpret_cast, and static_cast) shall
be used instead of the traditional C-
style casts.

2 - Small differences

A5-2-2

AV Rule 186 There shall be no
unreachable code.

2- Small differences

MO-1-1

AV Rule 187 All non-null statements
shall potentially have a side-effect.

2 - Small differences

MO-1-9

AV Rule 188 Labels will not be used,
except in switch statements.

3- Significant differences

A6-6-1

AV Rule 189 The goto statement shall
not be used.

2 - Small differences

A6-6-1

AV Rule 190 The continue statement
shall not be used.

4 - Rejected

The continue
statement usage is
allowed within for-
loops, see: M6-6-3.

AV Rule 191 The break statement shall
not be used (except to terminate the
cases of a switch statement).

2 - Small differences

M6-4-5

AV Rule 192 All if, else if constructs
will contain either a final else clause or
a comment indicating why a final else
clause is not necessary.

2 - Small differences

M6-4-2

AV Rule 193 Every non-empty case
clause in a switch statement shall be
terminated with a break statement.

2 - Small differences

M6-4-3, M6-
4-5

AV Rule 194 All switch statements
that do not intend to test for every
enumeration value shall contain a final
default clause.

2 - Small differences

M6-4-6

AV Rule 195 A switch expression will
not represent a Boolean value.

2 - Small differences

M6-4-7

AV Rule 196 Every switch statement
will have at least two cases and a

potential default.

2 - Small differences

A6-4-1

AV Rule 197 Floating point variables
shall not be used as loop counters.

2 - Small differences

M6-5-2

AV Rule 198 The initialization
expression in a for loop will perform no
actions other than to initialize the value
of a single for loop parameter.

2 - Small differences

A6-5-4

AV Rule 199 The increment expression
in a for loop will perform no action other
than to change a single loop parameter
to the next value for the loop.

2 - Small differences

A6-5-4

AUTOSAR

AV Rule 200 Null initialize or increment
expressions in for loops will not be
used; a while loop will be used instead.

3- Significant differences

A6-5-2

AV Rule 201 Numeric variables being
used within a for loop for iteration
counting shall not be modified in the
body of the loop.

2- Small differences

M6-5-3

AV Rule 202 Floating point variables
shall not be tested for exact equality or
inequality.

2 - Small differences

M6-2-2

AV Rule 203 Evaluation of expressions
shall not lead to overflow/underflow
(unless required algorithmically and
then should be heavily documented).

2- Small differences

M5-19-1,
A7-1-2

AV Rule 204 A single operation with
side-effects shall only be used in the
following contexts: 1. by itself 2.
the right-hand side of an assignment

3. acondition 4. the only argument
expression with a side-effect in a
function call 5. condition of a loop 6.
switch condition 7. single part of a
chained operation.

3- Significant differences

M6-2-1

Some of presented
examples are
not misleading and
some of them are
already covered.

AV Rule 204.1 The value of an
expression shall be the same under
any order of evaluation that the
standard permits.

2 - Small differences

A5-0-1

AV Rule 205 The volatile keyword shall
not be used unless directly interfacing
with hardware.

3- Significant differences

A2-11-1

Volatile
forbidden.

keyword

AV Rule 206 Allocation/deallocation
from/to the free store (heap) shall not
occur after initialization.

2 - Small differences

A18-5-3

AV Rule 207 Unencapsulated global
data will be avoided.

3- Significant differences

A3-3-2

Restriction to
constant-initialized
objects only.

AV Rule 208 C++ exceptions shall not
be used (i.e. throw, catch and try shall
not be used.)

4- Rejected

C++
exceptions may be
used conditionally.

AV Rule 209 The basic types of
int, short, long, float and double
shall not be used, but specific-
length equivalents should be typedefd
accordingly for each compiler, and
these type names used in the code.

2 - Small differences

A3-9-1

AUTOSAR

AV Rule 210 Algorithms shall not make
assumptions concerning how data is
represented in memory (e.g.
endian

vs. little endian, base class subobject
ordering in derived classes, nonstatic
data member ordering across access
specifiers, etc.)

big

2- Small differences

A12-0-2

AV Rule 210.1 Algorithms shall
make assumptions concerning
order of allocation of nonstatic data
members separated by an access
specifier.

not
the

2- Small differences

A12-0-2

AV Rule 211 Algorithms shall not
assume that shorts, ints, longs, floats,
doubles or long doubles begin at
particular addresses.

2 - Small differences

A12-0-2

AV Rule 212 Underflow or overflow
functioning shall not be depended on
in any special way.

2 - Small differences

A4-7-1

AV Rule 213 No dependence shall be
placed on C++’s operator precedence
rules, below arithmetic operators, in
expressions.

2 - Small differences

A5-0-1

AV Rule 214 Assuming that non-local
static objects, in separate translation

units, are initialized in a special order
shall not be done.

2 - Small differences

A3-3-2

Intent
of the rule achieved
by restriction to
constant-initialized
objects.

AV Rule 215 Pointer arithmetic will not
be used.

3- Significant differences

M5-0-15

Pointer arithmetic
may be used for
array indexing.

AV Rule 216 Programmers should not
attempt to prematurely optimize code.

4 - Rejected

It is not a coding
rule.

AV Rule 217 Compile-time and link-
time errors should be preferred over
run-time errors.

4 - Rejected

Al6-6-1,
A14-1-1, Al-
4-3

This rule is
too generic, some
cases are covered.

AV Rule 218 Compiler warning levels
will be set in compliance with project
policies.

3- Significant differences

Al-1-2

AV Rule 219 All tests applied to a

base class interface shall be applied

to all derived class interfaces as well.

If the derived class poses stronger
postconditions/invariants, then the new
postconditions /invariants shall be
substituted in the derived class tests.

4 - Rejected

It is not a coding
rule.

AV Rule 220 Structural coverage
algorithms shall be applied against
flattened classes.

4 - Rejected

It is not a coding
rule.

AUTO©SAR

AV Rule 221 Structural
of a class within an inheritance

shall include testing every possible
resolution for each set of identical
polymorphic references.

coverage

hierarchy containing virtual functions

4 - Rejected

Itis not a coding
rule.

Table B.3: JSF

B.4 Traceability to SEI CERT C++

The following table demonstrates the traceability to SEI CERT C++ Coding Standard
This is not considered as a reproduction, but a mean to compare the two standards.

Note that the copyright of SEI CERT C++ Coding Standard allows an unlimited

distribution anyway.

initialization of static objects.

SE| CERT Rule: Relation type: Related Comment:
rule:
DCL30-C. Declare objects with 2 - Small differences M7-5-2
appropriate storage durations.
DCLA40-C. Do not create incompatible | 2 - Small differences M3-9-1
declarations of the same function or
object.
DCL50-CPP. Do not define a C-style 2 - Small differences A8-4-1
variadic function.
DCL51-CPP. Do not declare or define | 2 - Small differences A13-1-2,
a reserved identifier. A17-0-1
DCL52-CPP. Never qualify a reference | 2 - Small differences Al-1-1 Covered by a more
type with const or volatile. general rule.
DCL53-CPP. Do not write syntactically | 2 - Small differences A8-5-2
ambiguous declarations.
DCL54-CPP. Overload allocation and | 3 - Significant differences | A18-5-3,
deallocation functions as a pair in the A18-5-4
same scope.
DCL55- 5 - Not yet analyzed The Security
CPP. Avoid information leakage when chapter isnot vyet
passing a class object across a trust covered, this will
boundary. be addressed in
future.
DCL56-CPP. Avoid cycles during 2 - Small differences A3-3-2 Intent

of the rule achieved
by restriction to
constant-initialized
objects.

AUTOSAR

order of evaluation for side effects.

DCL57-CPP. Do not| 3- Significant differences | A15-5-1 AUTOSAR C++

let exceptions escape from destructors Coding Guidelines

or deallocation functions. specify more
functions that need
to be noexcept.

DCL58-CPP. Do not modify the 2- Small differences Al7-6-1

standard hamespaces.

DCL59-CPP. Do not define| 2- Small differences M7-3-3

an unnamed namespace in a header

file.

DCL60-CPP. Obey the one-definition 2- Small differences M3-2-2

rule.

EXP34-C. Do not dereference null 2 - Small differences A5-3-2

pointers.

EXP35-C. Do not modify objects with 4 - Rejected Not applicable to

temporary lifetime. C++. See EXP54-
CPP.

EXP36-C. Do not cast pointers into 2 - Small differences A5-2-4, M5- | Direct and indirect

more strictly aligned pointer types. 2-8 casting of pointer
typesis prohibited
via existing rules.

EXP37-C. Call functions with the 2 - Small differences M5-2-6 The

correct number and type of arguments. only case possible
in C++ is prohibited
via existing rule.

EXP39-C. Do not access a variable 2- Small differences A5-2-2, A5- | Effectively

through a pointer of an incompatible 2-4 prohibited by

type. existing rules.

EXP42-C. Do not compare padding 2- Small differences Al12-0-2

data.

EXP45-C. Do not perform assignments [2- Small differences A5-0-2, M6-

in selection statements. 2-1

EXP46-C. Do not use a bitwise 4- Rejected Use

operator with a Boolean-like operand. of bitwise operators
restricted
to following cases:
M5-0-10, M5-0-20,
M5-0-21.

EXP47-C. Do not call va_arg with an 4 - Rejected Use of

argument of the incorrect type. variable arguments
are prohibited, see:
A8-4-1.

EXP50-CPP. Do not depend on the 2- Small differences A5-0-1

AUTOSAR

signed integers do not result in
overflow.

EXP51-CPP. Do not delete an array 2- Small differences M5-2-12, Covered

through a pointer of the incorrect type. A18-1-1 by a combination of
existing rules.

EXP52-CPP. Do not rely on side effects| 3- Significant differences | M5-3-4, A5-

in unevaluated operands. 3-1

EXP53-CPP. Do not read uninitialized | 2- Small differences A8-5-0

memory.

EXP54-CPP. Do not access an object | 2- Small differences A3-8-1, A5-

outside of its lifetime. 1-4, M7-5-1,

M7-5-2, A7-
5-1, M12-1-1

EXP55-CPP. Do not| 2- Small differences A5-2-3

access a cv-qualified object through a

cv-unqualified type.

EXP56-CPP. Do not call a function with| 2- Small differences M5-2-6

a mismatched language linkage.

EXP57-CPP. Do not cast or delete | 3- Significant differences | A5-3-3, A5- | The

pointers to incomplete classes. 2-2, A5-2-4 first part of EXP57-
CPP is entirely
covered by A5-3-3,
the second part is
implicitly rule out by
A5-2-2 and A5-2-4.

EXP58-CPP. Pass an object of the 4- Rejected Use of

correct type to va_start. variable arguments
are prohibited, see:
A8-4-1.

EXP59-CPP. Use offsetof() on valid 4- Rejected Use of offsetof()

types and members. is prohibited, see:
M18-2-1.

EXP60-CPP. 2 - Small differences M1-0-2

Do not pass a nonstandard-layout type

object across execution boundaries.

EXP61-CPP. A lambda object must not| 2- Small differences A5-1-4

outlive any of its reference captured

objects.

EXP62-CPP. Do not access the bits of | 2- Small differences A12-0-2

an object

representation that are not part of the

object’s value representation.

EXP63-CPP. Do not rely on the value | 2- Small differences A12-8-3

of a moved-from object.

INT30-C. Ensure that unsigned integer | 2- Small differences A4-7-1, M5-

operations do not wrap. 19-1

INT31-C. Ensure| 3- Significant differences | A4-7-1, M5-

that integer conversions do not result 0-15

in lost or misinterpreted data.

INT32-C. Ensure that operations on 2- Small differences A4-7-1

AUTOSAR

scaled integer to a pointer.

INT33-C. Ensure that division and 2- Small differences A5-6-1

remainder operations do not result in

divide-by-zero errors.

INT34-C. Do not shift an expression by | 2- Small differences M5-8-1

a negative number of bits or by greater

than or equal to the number of bits that

exist in the operand.

INT35-C. Use correct integer| 3- Significant differences | A3-9-1

precisions.

INT36-C. Converting a pointer to 2- Small differences M5-2-8, M5-

integer or integer to pointer. 2-9

INT50-CPP. Do not cast to an out-of- 2 - Small differences A7-2-1

range enumeration value.

CTR50-CPP. Guarantee that container | 2- Small differences A5-2-5

indices and iterators are within the

valid range.

CTR51-CPP. Use valid references, 2 - Small differences A23-0-2

pointers, and iterators to reference

elements of a container.

CTR52-CPP. Guarantee that library | 2- Small differences A5-2-5

functions do not overflow.

CTR53-CPP. Use valid iterator ranges. | 3- Significant differences | M5-0-
16, M5-0-17,
A5-2-5

CTR54-CPP. Do not subtract iterators | 3- Significant differences | M5-0-16,

that do not refer to the same container. M5-0-17

CTR55-CPP. Do not use an additive 3- Significant differences | M5-0-

operator on an iterator if the result 16, M5-0-17,

would overflow. Ab-2-5

CTR56-CPP. Do not| 2- Small differences A5-0-4

use pointer arithmetic on polymorphic

objects.

CTR57-CPP. Provide a valid ordering 2- Small differences A25-4-1

predicate.

CTR58-CPP. Predicate function| 2- Small differences A25-1-1

objects should not be mutable.

ARR30-C. Do not form or use out-of- 3- Significant differences | A5-2-5

bounds pointers or array subscripts.

ARR37-C. Do not add or subtract an 3- Significant differences | M5-0-15

integer to a pointer to a non-array

object.

ARR38- 3- Significant differences

C. Guarantee that library functions do RuleLinkM5-

not form invalid pointers. 0-16

ARR39-C. Do not add or subtract a 3- Significant differences | M5-0-15

STR30-C. Do not attempt to modify
string literals.

4 - Rejected

Use of C-style
arrays, apart from
static constexpr
members,
is prohibited.
A18-1-1.

See:

AUTOSAR

STR31-C. Guarantee that storage 3 - Significant differences | A5-2-5 Effectively covered

for strings has sufficient space for by prohibiting out-

character data and the null terminator. of-range array
access.

STR32-C. Do not pass a nhon-null- 4 - Rejected Use of functions

terminated character sequence to a from <cstring> is

library function that expects a string prohibited by M18-
0-5.

STR34-C. Cast characters to unsigned | 3 - Significant differences | M5-0-4

char before converting to larger integer

sizes.

STR37-C. Arguments to | 2 - Small differences A21-8-1

character-handling functions must be

representable as an unsigned char.

STR38-C. Do not confuse narrow and | 3 - Significant differences | A2-13-2, A2- | Use of wchar_tis

wide character strings and functions. 13-3 prohibited.

STR50-CPP. Guarantee that storage 3 - Significant differences | A5-2-5 Effectively covered

for strings has sufficient space for by prohibiting out-

character data and the null terminator. of-range array
access.

STR51-CPP. Do not attempt to create | 3 - Significant differences | A5-3-2 This is a special

a std::string from a null pointer. case of a more
general rule.

STR52-CPP. Use valid references, 2 - Small differences A23-0-2

pointers, and iterators to reference

elements of a basic_string.

STR53-CPP. Range check element | 3 - Significant differences | A5-2-5 The specific case

access. of A5-2-5.

MEM31-C. Free dynamically allocated | 3 - Significant differences | A15-1-4, Intent of this rule is

memory when no longer needed. Al18-5-2 covered by
effectively

demanding the use
of the RAII pattern.

MEM34-C. Only free memory allocated | 4 - Rejected Use of

dynamically. malloc, calloc and
realloc functions is
prohibited, see:
Al18-5-1.

MEM35-C. Allocate sufficient memory | 4 - Rejected Use of

for an object. malloc, calloc and
realloc functions is
prohibited, see:

A18-5-1.

AUTOSAR

MEM36-C.
Do not modify the alignment of objects
by calling realloc().

4 - Rejected

Use of
malloc, calloc and
realloc functions is

and output from a file stream without
an intervening positioning call.

prohibited, see:
A18-5-1.

MEM50-CPP. Do not access freed 2 - Small differences A3-8-1

memory.

MEM51-CPP. Properly deallocate 3 - Significant differences | A18-5-3 Use of

dynamically allocated resources. memory allocation
and deallocation
operators
limited by A18-5-2,
Al18-5-4.

MEM52-CPP. 3 - Significant differences | A15-

Detect and handle memory allocation 0-2, A15-2-

errors. 2, A15-3-3,

A15-5-3

MEMS53-CPP. Explicitly construct and | 4 - Rejected Al18-5-2 Explicit

destruct objects when manually use of operators

managing object lifetime. new and deleteis
prohibited.
Managing
object lifetime also
covered by A18-5-
1, A18-5-3.

MEM54-CPP. Provide placement new | 2 - Small differences A18-5-10

with properly aligned pointers to

sufficient storage capacity.

MEM55-CPP. 2 - Small differences A18-5-9

Honor replacement dynamic storage

management requirements.

MEMS56-CPP. Do not store an already- | 2 - Small differences A20-8-1

owned pointer value in an unrelated

smart pointer.

MEM57-CPP. Avoid using default 4 - Rejected Current approach

operator new for over-aligned types. is to use managed
memory objects,
which does not
allow to work on
a raw storage, but
on a type storage,
thus no need for
this rule.

FIO50-CPP. Do not alternately input 2 - Small differences A27-0-3

AUTOSAR

FIO51-CPP. Close files when they are
no longer needed.

4 - Rejected

Usage of RAII
solves the problem
and is
recommended,

see: A15-1-4, A18-
5-2.

FIO30-C. Exclude user input from 2 - Small differences A27-0-1

format strings.

FIO32-C. Do not perform operations on| 4 - Rejected Non-generic

devices that are only appropriate for rule affecting only

files. particular file types
on some operating
systems.

FIO34-C. Distinguish between | 4 - Rejected M27-0-1 The C 10 library is

characters read from a file and EOF or not used.

WEOF.

FIO37-C. Do not assume that fgets() 4 - Rejected M27-0-1 The C 10 library is

or fgetws() returns a nonempty string not used.

when successful.

FIO38-C. Do not copy a FILE object. 4 - Rejected M27-0-1 The C 10 library is
not used.

FIO39-C. Do not alternately input 2 - Small differences A27-0-3

and output from a stream without an

intervening flush or positioning call.

FIO40-C. Reset strings on fgets() or 4 - Rejected M27-0-1 The C IO library is

fgetws() failure. not used.

FIO41-C. Do not call getc(), putc(), 4 - Rejected M27-0-1 The C IO library is

getwc(), or putwc() with a stream not used.

argument that has side effects.

FIO42-C. Close files when they are no | 4 - Rejected M27-0-1 The C 10 library is

longer needed. not used.

FIO44-C. Only use values for fsetpos() | 4 - Rejected M27-0-1 The C 10 library is

that are returned from fgetpos(). not used.

FIO45-C. Avoid TOCTOU race 5 - Not yet analyzed The “Concurrency

conditions while accessing files. and Parallelism”
chapter is not vyet
covered, this will
be addressed in
future. See also
CP.2

FIO46-C. Do not access a closed file. | 4 - Rejected M27-0-1 The C IO library is
not used.

FIO47-C. Use valid format strings. 4 - Rejected M27-0-1 The C IO library is

not used.

AUTOSAR

CPP. Detect errors when converting a
string to a number.

ERR30-C. Set errno to zero before 4 - Rejected Use of the errno
calling a library function known to is prohibited, see:
set errno, and check errno only after M19-3-1.
the function returns a value indicating
failure.
ERR32-C. Do not rely on indeterminate | 4- Rejected Use of the errno
values of errno. is prohibited, see:
M19-3-1.
ERR33-C. Detect and handle standard | 3- Small differences MO0-3-2,
library errors. A15-0-3
ERR34-C. Detect errors when 2 - Small differences A18-0-2
converting a string to a number.
ERR50-CPP. Do not abruptly terminate| 2- Small differences A15-5-2,
the program. A15-5-3
ERR51-CPP. Handle all exceptions. 2- Small differences A15-3-3,
A15-5-3
ERR52-CPP. Do not use setjimp() or 2 - Small differences M17-0-5
longjmp().
ERR53-CPP. Do not reference base 3- Significant differences | M15-3-3 Use of function-try-
classes or class data members in a blocks is anyway
constructor or destructor function-try- not recommended.
block handler. See: A15-3-5.
ERR54-CPP. Catch handlers should 2- Small differences M15-3-6,
order their parameter types from most M15-3-7
derived to least derived.
ERR55-CPP. Honor exception| 3- Significant differences | A15-4-2 Use of
specifications. dynamic exception
specification
is prohibited, see:
A15-
4-1. The noexcept
specifier should be
used instead.
ERR56-CPP. Guarantee exception 2- Small differences A15-0-2
safety.
ERR57-CPP. Do not leak resources 3- Significant differences | A15-
when handling exceptions. 0-2, A15-1-
2, A15-1-4
ERR58-CPP. Handle all exceptions 2- Small differences Al15-2-1
thrown before main() begins executing.
ERR59- 2 - Small differences A15-1-5
CPP. Do not throw an exception across
execution boundaries.
ERRG60-CPP. Exception objects must 3- Significant differences | A15-5-3
be nothrow copy constructible.
ERR61-CPP. Catch exceptions by 2- Small differences A15-3-5
Ivalue reference.
ERR62- 2 - Small differences A18-0-2

AUTOSAR

not mutate the source object.

OOP50-CPP. Do not invoke| 2 - Small differences M12-1-1

virtual functions from constructors or

destructors.

OOP51-CPP. Do not slice derived 2 - Small differences Al12-8-6,

objects. A15-3-5

OOP52-CPP. Do not| 2 - Small differences Al2-4-1,

delete a polymorphic object without a Al2-4-2

virtual destructor.

OOP53-CPP. 2 - Small differences A8-5-1

Write constructor member initializers in

the canonical order.

OOP54-CPP. Gracefully handle self- 2 - Small differences Al12-8-5

copy assignment.

OOP55-CPP. Do not use| 2 - Small differences A5-5-1

pointer-to-member operators to access

nonexistent members.

OOP56-CPP. Honor replacement 3 - Significant differences | A18- std::terminate and

handler requirements. 5-5, A15-5- | std::unexpected
2, A15-5-3, handler forbidden,
Al5-4-1 std::new_handler

comments added.

OOP57-CPP. Prefer special member 2 - Small differences Al12-0-2

functions and overloaded operators to

C Standard Library functions.

OOP58-CPP. Copy operations must | 2 - Small differences Al2-8-1

CON50-CPP. Do not destroy a mutex
while it is locked.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CON51-CPP. Ensure actively held
locks are released on exceptional
conditions.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CONb52-CPP. Prevent data races
when accessing bit-fields from multiple
threads.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

AUTOSAR

CON53-CPP. Avoid deadlock by
locking in a predefined order.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CONb54-CPP. Wrap functions that can
spuriously wake up in a loop.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CONb55-CPP. Preserve thread safety
and liveness when using condition
variables.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CON56-CPP. Do not speculatively lock
a non-recursive mutex that is already
owned by the calling thread.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CONS33-C. Avoid race conditions when
using library functions.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CON37-C. Do not call signal() in a
multithreaded program

4 - Rejected

Use of signal
handling facilities
of <csignal>
is prohibited, see:
M18-7-1.

CONA40-C. Do not refer to an atomic
variable twice in an expression.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

AUTOSAR

CON41-C. Wrap functions that can fall
spuriously in a loop.

5- Not yet analyzed

The “Concurrency
and Parallelism”
chapter is not vyet
covered, this will
be addressed in
future.

CON43-C. Do not allow data races in
multithreaded code.

5- Not yet analyzed

The “Concurrency
and Parallelism”
chapter is not vyet
covered, this will
be addressed in
future.

new type.

MSC33-C. Do not pass invalid datato | 4- Rejected Use of time

the asctime() function. handling functions
of <ctime>
is prohibited, see:
M18-0-4.

MSC38-C. Do not treat a predefined 4 - Rejected Error indicator

identifier as an object if it might only be errno, setjmp() and

implemented as a macro. variadic arguments
shall not be used,
see: M19-3-1,
M17-0-5, A8-4-1.

MSC39-C. Do not call va_arg() on a 4- Rejected Use of

va_list that has an indeterminate value. variadic arguments
is prohibited, see:
A8-4-1.

MSC40-C. Do not violate constraints. 2 - Small differences Al-1-1

MSC50-CPP. Do not use std::rand() for| 2- Small differences A26-5-1

generating pseudorandom numbers.

MSC51-CPP. Ensure your random 2 - Small differences A26-5-2

number generator is properly seeded.

MSC52-CPP. Value-returning functions| 2- Small differences A8-4-2

must return a value from all exit paths.

MSC53-CPP. Do not return from a | 2- Small differences A7-6-1

function declared [[noreturn]].

MSC54-CPP. A signal handler must be | 4- Rejected Use of signal

a plain old function. handling facilities
of <csignal>
is prohibited, see:
M18-7-1.

FLP30-C. Do not use floating-point 2 - Small differences A6-5-2

variables as loop counters.

FLP32-C. Prevent or detect domain 2 - Small differences AO0-4-4

and range errors in math functions.

FLP34-C. Ensure that floating-point 3- Significant differences | M5-0-5, M5-

conversions are within range of the 0-6, M5-0-7

AUTOSAR

functions.

FLP36-C. Preserve precision when 3 - Significant differences | M5-0-5, M5-

converting integral values to floating- 0-6, M5-0-7

point type.

FLP37-C. Do not| 2 - Small differences M3-9-3

use object representations to compare

floating-point values.

ENV30-C. Do not modify the object 2 - Small differences M18- Listed functions

referenced by the return value of 0-3, M18-0- | are prohibited by

certain functions. 4, A18-0-3, | separate rules.

Al7-1-1

ENV31-C. Do not rely| 4 - Rejected In

on an environment pointer following an general, a project

operation that may invalidate it. shall not rely on
environment-
specific
implementations.

ENV32-C. All exit handlers must return | 3 - Significant differences | A15-5-2,

normally. A15-5-3

ENV33-C. Do not call system(). 2 - Small differences Covered by M18-0-
3

ENV34-C. Do| 3 - Significant differences | A18-0-3,

not store pointers returned by certain M19-3-1

not create a universal character name
through concatenation.

SIG31-C. Do not access shared 4 - Rejected Use of signal

objects in signal handlers. handling facilities
of <csignal>
is prohibited, see:
M18-7-1.

SIG34-C. Do not call signal() from 4 - Rejected Use of signal

within interruptible signal handlers. handling facilities
of <csignal>
is prohibited, see:
M18-7-1.

SIG35-C. Do not| 4 - Rejected Use of signal

return from a computational exception handling facilities

signal handler. of <csignal>
is prohibited, see:
M18-7-1.

PRE30-C. Do| 4 - Rejected Forbidden by A2-3-

1.

PRE31-
C. Avoid side effects in arguments to
unsafe macros.

3 - Significant differences

Defining function-
like macros
is prohibited, see:
Al16-0-1.

AUTOSAR

PRE32-C. Do not use preprocessor
directives in invocations of function-like
macros.

Defining function-
like macros
is prohibited, see:
A16-0-1.

Table B.4: SEI CERT C++

B.5 Traceability to C++ Core Guidelines

The following table demonstrates the traceability to C++ Core Guidelines [11]. This is
not considered as a reproduction, but a mean to compare the two standards.

Note that the copyright of C++ Core Guidelines allows a derivative work anyway.

C++ Core Guidelines Rule: Relation type: Related Comment:
rule:
P.1: Express ideas directly in code. 4 - Rejected The rule is vague.
P.2: Write in ISO Standard C++. 2 - Small differences A0-4-3
P.3: Express intent. 4 - Rejected The rule is vague.
P.4: Ideally, a program should be| 3 - Significant differences The rule is covered
statically type safe. by: A5-2-1, A5-2-
2, A5-2-4, M5-2-
12, A8-5-2, A9-5-1
P.5: Prefer compile-time checking to| 3 - Significant differences | M0-3-1
run-time checking.
P.6: What cannot be checked at| 3 - Significant differences | A0-1-2, MO-
compile time should be checkable at 3-2
run time.
P.7: Catch run-time errors early. 3 - Significant differences | AO-
1-2, M0-3-2,
Ab5-2-5, A15-
0-4, A15-0-5
P.8: Don'’t leak any resources. 3 - Significant differences | A18-
5-1, A18-5-
2, A15-1-4
P.9: Don’t waste time or space. 3 - Significant differences | M0-1-1, AO-
1-1, M0O-1-8,
MO0-1-9
P.10: Prefer immutable data to mutable| 2 - Small differences A7-1-1
data.
P.11: Encapsulate messy constructs,| 4 - Rejected The rule is vague.
rather than spreading through the
code.
I.1: Make interfaces explicit. 4 - Rejected The rule is vague.

https://github.com/isocpp/CppCoreGuidelines/blob/master/LICENSE
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-direct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-Cplusplus
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-what
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-compile-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-compile-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-compile-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-run-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-run-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-run-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-run-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-early
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-leak
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-waste
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-mutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-mutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-explicit

AUTOSAR

interfaces to class hierarchies.

1.2 Avoid global variables. 3- Significant differences | A3-3-2 A3-3-2 covers only
the initialization of
global objects.

1.3: Avoid singletons. 3- Significant differences | A3-3-2 A3-3-2 covers only
the initialization of
static objects.

I.4: Make interfaces precisely and| 2- Small differences A8-4-14 -

strongly typed.

|.5: State preconditions (if any). 4 - Rejected The rule is vague.

I.6: Prefer Expects() for expressing| 4- Rejected Expects() is not

preconditions. part of Language
Standard.

|.7: State postconditions. 4 - Rejected The rule is vague.

1.8: Prefer Ensures() for expressing| 4- Rejected Ensures() is not

postconditions. part of Language
Standard.

1.9: 3- Significant differences | Al14-1-1

If an interface is a template, document

its parameters using concepts.

1.10: Use exceptions to signal a failure | 2- Small differences A15-0-1

to perform a required task.

I.11: Never transfer ownership by a raw| 2- Small differences A8-4-12

pointer (T*).

1.12: Declare a pointer that must not be | 4- Rejected The not_null is not

null as not_null. part of Language
Standard.

1.13: Do not pass an array as a single 2 - Small differences M5-2-12

pointer.

1.22: Avoid complex initialization of| 2- Small differences A3-3-2 Intent

global objects. of the rule achieved
by restriction to
constant-initialized
objects.

1.23: Keep the number of function| 4- Rejected AUTOSAR C++

arguments low. Coding Guidelines
does not define
code metrics, see:
Al-4-1.

1.24: Avoid adjacent unrelated| 4- Rejected Design rule,

parameters of the same type. requiring case-by-
case reasoning to
apply.

1.25: Prefer abstract classes as| 2- Small differences A10-4-1

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-singleton
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-typed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-typed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-typed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-typed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-pre
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-expects
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-expects
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-expects
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-expects
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-post
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-ensures
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-ensures
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-ensures
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-ensures
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-except
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-except
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-unrelated
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-unrelated
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-unrelated
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-unrelated
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-unrelated
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abstract

AUTOSAR

designate a single object.

1.26: If you want a cross-compiler ABI, | 2- Small differences M1-0-2 -

use a C-style subset.

F.1: “Package” meaningful operations | 5- Not yet analyzed - -

as carefully named functions.

F.2: A function should perform a single | 5- Not yet analyzed - -

logical operation.

F.3: Keep functions short and simple. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not define
code metrics, see:
Al-4-1.

F.4: If a function may have to be| 2- Small differences A7-1-2

evaluated at compile time, declare it

constexpr.

F.5: If a function is very small and time-| 4- Rejected AUTOSAR C++

critical, declare it inline. Coding Guidelines
does not define
code metrics, see:
Al-4-1.

F.6: If your function may not throw, | 2- Small differences Al5-4-4

declare it noexcept.

F.7: For general use, take T* or T&| 2- Small differences A8-4-11 Added as a

arguments rather than smart pointers. reference.

F.8: Prefer pure functions. 4- Rejected - There isno need
for a new rule.

F.9: Unused parameters should be| 2- Small differences AO-1-4, AO-

unnamed. 1-5

F.15: Prefer simple and conventional| 2- Small differences A8-4-3

ways of passing information.

F.16: For “in” parameters, pass| 2- Small differences A8-4-7

cheaply-copied types by value and

others by reference to const.

F.17: For “in-out” parameters, pass by | 2- Small differences A8-4-9

reference to non-const.

F.18: For “consume” parameters, pass | 2- Small differences A8-4-5

by X&& and std::move the parameter.

F.19: For “forward” parameters, pass | 2- Small differences A8-4-6

by TP&& and only std::forward the

parameter.

F.20: For “out” output values, prefer| 2- Small differences A8-4-8

return values to output parameters.

F.21: To return multiple “out” values,| 3- Significant differences | A8-4-4 Prefer to return as

prefer returning a tuple or struct. atuple.

F.22: Use T* or owner<T*> to| 3- Significant differences | M5-2-12 The owner<T*> is

not
part of Language
Standard.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-package
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-package
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-logical
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-logical
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-single
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-pure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unused
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unused
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unused
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unused
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-inout
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-inout
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-consume
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-consume
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-forward
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-forward
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-forward
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr

AUTOSAR

Use a zstring or a not_null<zstring> to
designate a C-style string.

F.23: Use a not_null<T> to indicate that | 4 - Rejected The not_null<T> is

“null” is not a valid value. not
part of Language
Standard.

F.24: Use a span<T> or a span_p<T> | 4 - Rejected Neither

to designate a half-open sequence. the span<T> nor
the span_p<T> are
part of Language
Standard.

F.25: 4 - Rejected Neither

the zstring nor the
not_null<zstring>
are

part of Language
Standard.

F.26: Use a unique_ptr<T> to transfer | 2 - Small differences A20-8-2

ownership where a pointer is needed.

F.27: Use a shared_ptr<T>to share| 2 - Small differences A20-8-3

ownership.

F.60: Prefer T* over T& when no| 3 - Significant differences | A8-4-10

argument is a valid option.

F.42: Return a T* to indicate a position | 3 - Significant differences | M5-

(only). 0-15, M5-0-

16, M5-0-17,
M5-0-18

F.43: Never (directly or indirectly)| 2 - Small differences M7-5-2 Added as a note to

return a pointer or a reference to a local this rule.

object.

F.44: Return a T& when copy is 3 - Significant differences | A9-3-1 Do not return non-

undesirable and returning no object const reference to

isn’t needed. private fields.

F.45: Don’t return a T&&. 2 - Small differences M7-5-2 Added as
a reference to this
rule.

F.46: int is the return type for main(). 2 - Small differences A0-4-3 Added as
a reference to this
rule.

F.47: Return T& from assignment| 2 - Small differences A13-2-1 Added as

operators. a reference to this

rule.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-string
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-string
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-string
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unique_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unique_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-shared_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-shared_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-shared_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-dangle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-dangle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-dangle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-dangle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-main
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-assignment-op
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-assignment-op
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-assignment-op

AUTOSAR

in lambdas that will be used locally,
including passed to algorithms.

F.50: Use a lambda when a function 4 - Rejected Design

won'’t do (to capture local variables, or principle. Prefer

to write a local function). using lambda over
functions while
variables capture is
required or it is
defined in a local
scope.

F.51: Where there is a choice, prefer 4 - Rejected Design

default arguments over overloading. principle. Prefer
default arguments
over overloading.

F.52: Prefer capturing by reference| 4 - Rejected This rule

is too specific and
this is a matter of
ownership, not only
lambda.

only if it needs direct access to the
representation of a class.

F.53: Avoid capturing by reference in 2 - Small differences A5-1-4

lambdas that will be used nonlocally,

including returned, stored on the heap,

or passed to another thread.

F.54: If you capture this, capture all| 3 - Significant differences | A5-1-2 AUTOSAR C++

variables explicitly (no default capture). Coding Guidelines
prohibits implicit
variables capturing
into a lambda
expression.

F.55: Don’t use va_arg arguments. 2 - Small differences A8-4-1 Added as
a reference to this
rule.

C.1: Organize related data into| 4 - Rejected Design

structures (structs or classes). principle. There is
no need for a new
rule..

C.2: Use class if the class has| 3 - Significant differences Class shall be used

an invariant; use struct if the data for all non-POD

members can vary independently. types (see: All-
0-1), and a struct
for types defined in
A11-0-2.

C.3: Represent the distinction between | 4 - Rejected This rule is vague.

an interface and an implementation

using a class.

C.4: Make a function a member| 2 - Small differences M9-3-3

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-capture-vs-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-capture-vs-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-capture-vs-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-default-args
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-default-args
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-reference-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-reference-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-reference-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-reference-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-reference-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-value-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-value-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-value-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-value-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-this-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-this-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-this-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-this-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f55-dont-use-va_arg-arguments
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-org
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-org
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-org
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-org
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-org
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-org
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member

AUTOSAR

C.5: Place helper functions in the same
namespace as the class they support.

5 - Not yet analyzed

member, define a destructor.

C.7: Don'’t define a class or enum and | 2 - Small differences A7-1-9

declare a variable of its type in the

same statement.

C.8: Use class rather than struct if any | 2 - Small differences M11-0-1,

member is hon-public. A11-0-1

C.9: Minimize exposure of members. 3 - Significant differences | M9-3-1, A9-

3-1, M11-0-1

C.10 Prefer concrete types over class | 4 - Rejected This rule is vague.

hierarchies. Concrete types
and class
hierarchies
are highly context
dependent.

C.11: Make concrete types regular. 4 - Rejected This rule is vague.
“Concrete types”
has no technical
meaning.

C.20: If you can avoid defining default | 2 - Small differences Al12-0-1 Following “the rule

operations, do. of
zero” is permitted if
no special member
functions need to
be defined.

C.21: If you define or =delete any| 2 - Small differences A12-0-1

default operation, define or =delete

them all.

C.22: Make default operations| 2 - Small differences Al12-1-1,

consistent. A12-8-1

C.30: Define a destructor if a class| 4 - Rejected Design principle.

needs an explicit action at object Destructor shall be

destruction. defined only if a
class needs
an explicit action at
object destruction.

C.31L All resources acquired by a| 4 - Rejected Implementation

class must be released by the class’s principle. Thereis

destructor. no need for a new
rule.

C.32: If a class has a raw pointer (T*) 4 - Rejected Memory managing

or reference (T&), consider whether it objects are

might be owning. recommended.

C.33: If a class has an owning pointer | 4 - Rejected Memory managing

objects
recommended.

are

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-helper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-helper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-standalone
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-standalone
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-standalone
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-private
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-concrete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-concrete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-regular
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-five
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-five
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-five
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-five
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-matched
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-matched
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-matched
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-release
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-release
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-release
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-release
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ptr2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ptr2

AUTOSAR

you need “virtual behavior” during
initialization.

C.34: If a class has an owning| 4- Rejected Memory managing

reference member, define a destructor. objects are
recommended.

C.35: A base class destructor| 2- Small differences Al12-4-1

should be either public and virtual, or

protected and nonvirtual.

C.36: A destructor may not fail. 2 - Small differences A15-5-1

C.37: Make destructors noexcept. 2 - Small differences A15-5-1

C.40: Define a constructor if a class 4 - Rejected Design

has an invariant. principle. Thereis
no need for a new
rule.

c.41: A constructor should create a| 2- Small differences Al15-2-2,

fully initialized object. Al2-1-1, A8-

5-0

C.42: If a constructor cannot construct | 2- Small differences Al5-2-2

a valid object, throw an exception.

C.43: Ensure that a class has a default | 4- Rejected This rule is vague.

constructor.

C.44: Prefer default constructors to be | 4- Rejected Non-generic

simple and non-throwing. design
principle; Thereis
no need for a new
rule.

C.45: 2- Small differences Al2-1-3,

Don’t define a default constructor that Al2-7-1

only initializes data members; use in-

class member initializers instead.

C.46: By default, declare single-| 2- Small differences Al2-1-4

argument constructors explicit.

C.47. Define and initialize member| 2- Small differences A8-5-1

variables in the order of member

declaration.

C.48: Prefer in-class initializers to| 3- Significant differences | A12-1-3 AUTOSAR C++

member initializers in constructors for Coding Guidelines

constant initializers. states that NSDMI
shall not be mixed
with
member initializer
list of constructors,
see: A12-1-2.

C.49: Prefer initialization to| 2- Small differences Al2-6-1

assignment in constructors.

C.50: Use a factory function if| 3- Significant differences | M12-1-1 Added

as a reference to
this rule, as it has

a good example
of virtual behaviour
during initialization.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-ctor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-ctor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-complete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-complete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-complete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default0
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default0
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default00
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default00
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-explicit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-explicit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-explicit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-in-class-initializer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-in-class-initializer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-in-class-initializer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-in-class-initializer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-initialize
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-initialize
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-initialize
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-initialize
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-initialize
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-factory
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-factory
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-factory
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-factory
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-factory
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-factory
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-factory

AUTOSAR

C.51: Use delegating constructors| 2- Small differences Al12-1-5

to represent common actions for all

constructors of a class.

C.52: Use inheriting constructors to| 2- Small differences Al12-1-6

import constructors into a derived class

that does not need further explicit

initialization.

C.60: Make copy assignment non-| 2- Small differences A10-3-5,

virtual, take the parameter by const&, A13-2-1

and return by non-const&.

C.61: A copy operation should copy. 2- Small differences Al12-8-1,

A12-8-2

C.62: Make copy assignment safe for 2- Small differences Al12-8-5

self-assignment.

C.63: Make move assignment non-| 2- Small differences A10-3-5,

virtual, take the parameter by &&, and A13-2-1

return by non-consté&.

C.64: A move operation should move 2 - Small differences Al12-8-1,

and leave its source in a valid state. Al12-8-4

C.65: Make move assignment safe for | 2- Small differences A12-8-5

self-assignment.

C.66: Make move operations| 2- Small differences Al15-5-1

noexcept.

C.67: A base class should suppress 2- Small differences Al12-8-6

copying, and provide a virtual clone

instead if copying” is desired.

C.80: Use =default if you have to| 2- Small differences Al2-7-1

be explicit about using the default

semantics.

C.81: Use =delete when you want| 2- Small differences A12-0-1,

to disable default behavior (without Al12-8-6

wanting an alternative).

C.82: Don't call virtual functions in| 2- Small differences M12-1-1

constructors and destructors.

C.83: For value-like types, consider| 3- Significant differences | A12-8-2 The swap

providing a noexcept swap function. function is explicitly
recommended
for copy and move
assignment
operators only.

C.84: A swap function may not fail. 2 - Small differences A15-5-1

C.85: Make swap noexcept. 2 - Small differences A15-5-1

C.86: Make| 2- Small differences A13-5-5 -

== symmetric with respect to operand

types and noexcept.

C.87: Beware of == on base classes. 2 - Small differences A13-5-5 This rule
is implicitly covered
by adhering to A13-
5-5.

C.89: Make a hash noexcept. 2- Small differences A18-1-6

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delegating
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delegating
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delegating
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delegating
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delegating
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-inheriting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-inheriting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-inheriting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-inheriting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-inheriting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-semantic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-self
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-self
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-semantic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-semantic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-self
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-self
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eqdefault
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eqdefault
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eqdefault
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eqdefault
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-ctor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-ctor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-ctor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq-base
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-hash

AUTOSAR

C.120: Use class
hierarchies to represent concepts with
inherent hierarchical structure (only).

4 - Rejected

Non-generic

design

principle; Thereis
no need for a new
rule.

C.121: If a base class is used as an
interface, make it a pure abstract class.

2 - Small differences

AUTOSAR C++
Coding

Guidelines defines
an interface class

definition,
see: Interface-
Class.

C.122: Use abstract classes as| 2- Small differences A10-4-1

interfaces when complete separation

of interface and implementation is

needed.

C.126: An abstract class typically| 4- Rejected Non-generic

doesn’t need a constructor. design
principle; Thereis
no need for a new
rule.

C.127: A class with a virtual function 2 - Small differences Al12-4-1

should have a virtual or protected

destructor.

C.128: Virtual functions should specify | 2- Small differences Al10-3-1

exactly one of virtual, override, or final.

C.129: When| 4- Rejected Non-generic

designing a class hierarchy, distinguish design

between implementation inheritance principle; Thereis

and interface inheritance. no need for a new
rule.

C.130: Redefine or prohibit copying| 2- Small differences Al12-8-6

for a base class; prefer a virtual clone

function instead.

C.131: Avoid trivial getters and setters. | 4- Rejected All members
in non-POD types
shall be private.

C.132: Don’t make a function virtual | 4- Rejected Non-generic

without reason. design
principle; There is
no need for a new
rule.

C.133: Avoid protected data. 3- Significant differences | M11-0-1 All members
in non-POD types
shall be private.

C.134: Ensure all non-const data| 2- Small differences M11-0-1,

members have the same access level. Al11-0-2

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-domain
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-domain
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-domain
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-domain
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-domain
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-abstract-ctor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-abstract-ctor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-abstract-ctor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-abstract-ctor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-kind
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-kind
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-kind
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-kind
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-kind
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-kind
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-copy
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-copy
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-copy
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-copy
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-copy
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-get
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-protected
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-public
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-public
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-public

AUTOSAR

make_shared() to construct objects
owned by shared ptrs.

C.135: Use multiple inheritance to| 2- Small differences A10-1-1

represent multiple distinct interfaces.

C.136: Use multiple inheritance to| 4- Rejected Multiple

represent the union of implementation implementation

attributes. inheritance is
prohibited
by AUTOSAR C++
Coding Guidelines,
it allows only
multiple interface
inheritance.

C.137: Use virtual bases to avoid| 4- Rejected It is allowed to use

overly general base classes. virtual inheritance
only in a diamond
hierarchy, see:
M10-1-1, M10-1-2.

C.138: Create an overload set for a| 4- Rejected Design

derived class and its bases with using. principle. Thereis
no need for a new
rule.

C.139: Use final sparingly. 3- Significant differences | A12-4-2 Class shall
be declared final if
it has a non-virtual
destructor.

C.140: Do not provide different default | 2- Small differences M8-3-1

arguments for a virtual function and an

overrider.

C.145: Access polymorphic objects| 3- Significant differences | A12-8-6, Functionalities that

through pointers and references. A15-3-5 could lead to slicing
are prohibited.

C.146: Use dynamic_cast where class | 2- Small differences A5-2-1

hierarchy navigation is unavoidable.

C.147: Use dynamic_cast to a| 4- Rejected The dynamic_cast

reference type when failure to find the should not be used,

required class is considered an error. see: A5-2-1.

C.148: Use dynamic_cast to a pointer | 4- Rejected The dynamic_cast

type when failure to find the required should not be used,

class is considered a valid alternative. see: A5-2-1.

C.149: Use unique_ptr or shared_ptr 2- Small differences A18-5-2

to avoid forgetting to delete objects

created using new.

C.150: Use| 2- Small differences A20-8-5

make_unique() to construct objects

owned by unique_ptrs.

C.151: Use| 2- Small differences A20-8-6

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-implementation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-implementation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-implementation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-implementation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-implementation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-vbase
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-vbase
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-vbase
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-using
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-using
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-using
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-final
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerh-virtual-default-argac140-do-not-provide-different-default-arguments-for-a-virtual-function-and-an-overrider
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerh-virtual-default-argac140-do-not-provide-different-default-arguments-for-a-virtual-function-and-an-overrider
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerh-virtual-default-argac140-do-not-provide-different-default-arguments-for-a-virtual-function-and-an-overrider
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-poly
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-poly
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-poly
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dynamic_cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dynamic_cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ptr-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ptr-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ptr-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ptr-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ref-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ref-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ref-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_shared

AUTOSAR

of a system of smart pointers and
references.

C.152; Never assign a pointer to an| 2- Small differences M5-2-12

array of derived class objects to a

pointer to its base.

C.153: Prefer virtual function to| 3- Significant differences | M5-2-2, M5-

casting. 2-3, Ab-2-1

C.160: Define operators primarily to| 4- Rejected Design

mimic conventional usage. principle. Thereis
no need for a new
rule.

C.161: Use nonmember functions for 4 - Rejected Design

symmetric operators. principle. There is
no need for a new
rule.

C.162: Overload operations that are| 4- Rejected Design

roughly equivalent. principle. There is
no need for a new
rule.

C.163: Overload only for operations| 4- Rejected Design

that are roughly equivalent. principle. Thereis
no need for a new
rule.

C.164: Avoid conversion operators. 2- Small differences Al13-5-3

C.165: Use using for customization| 4- Rejected Implementation

points. principle. There is
no need for a new
rule.

C.166: Overload unary & only as part 3- Significant differences | M5-3-3 The unary

& operator shall not
be overloaded.

lambda, use a generic lambda.

C.167: 4 - Rejected Design

Use an operator for an operation with principle; There is

its conventional meaning. no need for a new
rule.

C.168: Define overloaded operators in | 4- Rejected Design

the namespace of their operands. principle. Thereis
no need for a new
rule.

C.170: If you feel like overloading a| 4- Rejected Design

principle; There is
no need for a

new rule. Creating
generic lambda
expressions is

allowed, see; A7-1-
5.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c153-prefer-virtual-function-to-casting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c153-prefer-virtual-function-to-casting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c153-prefer-virtual-function-to-casting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c153-prefer-virtual-function-to-casting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c153-prefer-virtual-function-to-casting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c153-prefer-virtual-function-to-casting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-symmetric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-symmetric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent-2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent-2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent-2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent-2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-conversion
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-custom
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-custom
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-custom
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-address-of
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-address-of
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-address-of
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-namespace
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-namespace
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-lambda
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-lambda
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-lambda

AUTOSAR

C.180: Use unions to save memory.

4 - Rejected

Unions shall not be
used, see: A9-5-1.

C.181: Avoid “naked” unions. 2 - Small differences A9-5-1

C.182: Use anonymous unions to| 2 - Small differences A9-5-1 Tagged

implement tagged unions. unions allowed as
an exception, but
only as POD.

C.183: Don’tusea union for type| 4 - Rejected Unions shall not be

punning. used, see: A9-5-1.

Enum.1l: Prefer enumerations over| 3 - Significant differences | A16-0-1 Usage of macros is

macros. prohibited.

Enum.2: 2 - Small differences A7-2-5

Use enumerations to represent sets of

related named constants.

Enum.3: Prefer class enums over| 2 - Small differences A7-2-3

“plain” enums.

Enum.4: Define operations on| 4 - Rejected Design

enumerations for safe and simple use. principle. There is
no need for a new
rule.

Enum.5: Don’'t use ALL_CAPS for| 4 - Rejected AUTOSAR C++

enumerators. Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

Enum.6: Avoid unnamed| 3 - Significant differences | A7-2-3 Enum classes shall

enumerations. be used instead of

enums; it is not
allowed to declare
unnamed enum
class.

Enum.7: Specify the underlying type of
an enumeration only when necessary.

4 - Rejected

AUTOSAR C++
Coding Guidelines
forces

a programmer to
specify the
underlying

base type explicitly,
as only fixed-width
numeric types shall
be used. See: A3-
9-1.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-union
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-naked
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-anonymous
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-anonymous
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-anonymous
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-pun
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-pun
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-pun
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-pun
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-pun
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-pun
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-macro
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-macro
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-macro
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-macro
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-set
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-set
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-set
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-oper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-oper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-oper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-oper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-oper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-caps
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-caps
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-caps
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-underlying
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-underlying

AUTOSAR

shared_ptrs.

Enum.8: Specify enumerator values| 3- Significant differences | A7-2-4 It is defined how

only when necessary. enumerators
values should be
specified.

R.1: Manage resources automatically | 4- Rejected AUTOSAR C++

using resource handles and RAII Coding Guidelines

(Resource Acquisition Is Initialization). does not define
rules for coding
patterns. Note that
usage of RAIl is
recommended,
see: A15-1-4, A18-
5-2.

R.2: In interfaces, use raw pointers to 2 - Small differences M5-2-12

denote individual objects (only).

R.3: A raw pointer (a T*) is non-| 4- Rejected Ownership is

owning. covered by
memory managing
objects, see: A18-
5-2.

R.4: A raw reference (a T&) is non- 4 - Rejected Ownership is

owning. covered by
memory managing
objects, see: Al8-
5-2.

R.5: Don’t heap-allocate| 2- Small differences Al18-5-8

unnecessarily.

R.6: Avoid non-const global variables. | 3- Significant differences | A3-3-2 A3-3-2 covers only
the initialization of
global objects.

R.10: Avoid malloc() and free(). 2- Small differences A18-5-1

R.11: Avoid calling new and delete| 2- Small differences A18-5-2

explicitly.

R.12: Immediately give the result of| 2- Small differences Al18-5-2

an explicit resource allocation to a

manager object.

R.13: Perform at most one| 2- Small differences A5-0-1

explicit resource allocation in a single

expression statement.

R.14: 2?7 array vs. pointer parameter. | 2- Small differences M5-2-12

R.15: Always overload matched| 3- Significant differences | A18-5-3

allocation/deallocation pairs.

R.20: Use unique_ptr or shared_ptrto | 2- Small differences A20-8-2,

represent ownership. A20-8-3

R.21: Prefer| 2- Small differences A20-8-4

unique_ptr over shared_ptr unless you

need to share ownership.

R.22: Use make_shared() to make| 2- Small differences A20-8-6

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-use-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-use-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-scoped
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-scoped
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-scoped
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-scoped
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-global
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-mallocfree
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-newdelete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-newdelete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-newdelete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-immediate-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-immediate-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-immediate-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-immediate-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ap
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-pair
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-pair
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-pair
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-pair
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_shared

AUTOSAR

initializers and conditions to limit
scope.

R.23: Use make_unique() to make| 2- Small differences A20-8-5

unique_ptrs.

R.24: Use std::weak ptr to break| 2- Small differences A20-8-7

cycles of shared ptrs.

R.30: Take| 2- Small differences A8-4-11

smart pointers as parameters only to

explicitly express lifetime semantics.

R.31: If you have non-std smart| 4- Rejected There is no need

pointers, follow the basic pattern from for a new rule.

std. Smart pointers are
a part of Language
Standard.

R.32: Take a unique_ptr<widget>| 2- Small differences A8-4-12

parameter to express that a function

assumes ownership of a widget.

R.33: Take a unique_ptr<widget>&| 2- Small differences A8-4-12

parameter to express that a function

reseats thewidget.

R.34: Take a shared_ptr<widget>| 2- Small differences A8-4-13

parameter to express that a function is

part owner.

R.35: Take a shared_ptr<widget>&| 2- Small differences A8-4-13

parameter to express that a function

might reseat the shared pointer.

R.36: Take a| 2- Small differences A8-4-13

const shared_ptr<widget>& parameter

to express that it might retain a

reference count to the object ??7?.

R.37: Do not pass a pointer or| 2- Small differences A8-4-11, Added as a

reference obtained from an aliased A18-5-2 reference in these

smart pointer. rules and a note in
A8-4-11.

ES.1: Prefer the standard library to| 4- Rejected Design

other libraries and to “handcrafted principle; There is

code”. no need for a new
rule.

ES.2: Prefer suitable abstractions to| 4- Rejected Design

direct use of language features. principle; There is
no need for a new
rule.

ES.5: Keep scopes small. 2 - Small differences M3-4-1

ES.6: Declare names in for-statement | 2- Small differences M3-4-1 As an exeception

from the A7-
1-7, it is allowed to
declare variables in
for-statement
initializer.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-weak_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-weak_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-weak_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-uniqueptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-uniqueptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-uniqueptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-uniqueptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-reseat
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-reseat
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-reseat
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-reseat
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-abstr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-abstr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-abstr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-scope
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-cond
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-cond
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-cond

AUTOSAR

ES.7: Keep common and local names
short, and keep uncommon and
nonlocal names longer.

4 - Rejected

AUTOSAR C++
Coding Guidelines
does not introduce

constexpr unless you want to modify its
value later on.

rules related
to coding style or
naming
convention.

ES.8: Avoid similar-looking nhames. 2 - Small differences M2-10-1

ES.9: Avoid ALL_CAPS names. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

ES.10: Declare one name (only) per 2 - Small differences A7-1-7

declaration.

ES.11: Use auto to avoid redundant| 3 - Significant differences | A7-1-5 It is

repetition of type names. not recommended
to use the auto
specifier, but it is
allowed.

ES.12: Do not reuse names in nested | 2 - Small differences A2-10-1

scopes.

ES.20: Always initialize an object. 2 - Small differences A8-5-0

ES.21: Don'’t introduce a variable (or 2 - Small differences M3-4-1

constant) before you need to use it.

ES.22: Don’t declare a variable until| 2 - Small differences M3-4-1, A8-

you have a value to initialize it with. 5-0

ES.23: Prefer the {} initializer syntax. 2 - Small differences A8-5-2

ES.24: Use a unique_ptr<T> to hold 3 - Significant differences | A18- AUTOSAR C++

pointers. 5-2, A15-1- | Coding Guidelines

4, A18-1-3 does not force a

programmer to use
std::unique_ptr, it is
just highly
recommended
within examples
and rationales.

ES.25: Declare an object const or| 2 - Small differences A7-1-1

ES.26: Don’t use a variable for two
unrelated purposes.

4 - Rejected

This rule is vague.
“Unrelated” is
highly context
dependent.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-similar
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-not-CAPS
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-one
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-one
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-auto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-auto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-auto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-reuse
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-reuse
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-introduce
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-introduce
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-list
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-recycle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-recycle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-recycle

AUTOSAR

for-statement when there is no obvious
loop variable.

ES.27: Use std::array or stack_array| 3 - Significant differences | A18-1-1 C-style arrays shall

for arrays on the stack. not be used, and
it is recommended
to use std:array
instead.

ES.28: Use lambdas| 4 - Rejected Design

for complex initialization, especially of principle. There is

const variables. no need for a new
rule.

ES.30: Don’t use macros for program 2 - Small differences A16-0-1 Usage of macros is

text manipulation. prohibited.

ES.31: Don’t use macros for constants | 2 - Small differences A16-0-1 Usage of macros is

or “functions”. prohibited.

ES.32: Use ALL_CAPS for all macro 4 - Rejected AUTOSAR C++

names. Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

ES.33: If you must use macros, give 2 - Small differences M2-10-1

them unigue names.

ES.34: Don'’t define a (C-style) variadic | 2 - Small differences A8-4-1

function.

ES.70: Prefer a switch-statement to an | 4 - Rejected Design principle;

if-statement when there is a choice. The switch
statement
shall have at least
two case-clauses,
distinct from the
default label. See:
A6-4-1.

ES.71: Prefer a range-for-statement to | 3 - Significant differences | A6-5-1 It is recommended

a for-statement when there is a choice. to use range-based
for statement to
replace equivalent
for-statements.

ES.72: Prefer a for-statement to| 2 - Small differences A6-5-2

a while-statement when there is an

obvious loop variable.

ES.73: Prefer a while-statement to a 3 - Significant differences | A6-5-2 Itis required that a

for-loop contains a
loop-counter.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-stack
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-stack
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-stack
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ALL_CAPS
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ALL_CAPS
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-MACROS
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-MACROS
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ellipses
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ellipses
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-switch-if
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-switch-if
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-while
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-while
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-while
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-while
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-while-for
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-while-for
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-while-for

AUTOSAR

checking.

ES.74: Prefer to declare a loop| 3- Significant differences | M3-4-1 Itis required that

variable in the initializer part of a for- each identifier is

statement. defined in a block
that minimizes its
visibility.

ES.75: Avoid do-statements. 2- Small differences A6-5-3

ES.76: Avoid goto. 2 - Small differences A6-6-1

ES.78: Always end a non-empty case 2- Small differences M6-4-5

with a break.

ES.79: Use default to handle common | 4- Rejected There is no need

cases (only). for a new rule.

ES.84: Don't (try to) declare a local| 2- Small differences A6-2-2 -

variable with no name.

ES.85: Make empty statements visible. | 2- Small differences M6-3-1, M6-

4-1, M6-4-1

ES.86: Avoid modifying loop control| 2- Small differences M6-5-3

variables inside the body of raw for-

loops.

ES.40: Avoid complicated expressions. | 4- Rejected This rule is vague.
Order of evaluation
is covered by A5-0-
1.

ES.41: If in doubt about operator| 2- Small differences A5-2-6, M5-

precedence, parenthesize. 0-2

ES.42: Keep use of pointers simple| 3- Significant differences | M5-0- ‘span’

and straightforward. 15, M5-0-16, | is not covered as it

A5-2-5 is not part of the
language standard.

ES.43: Avoid expressions with| 2- Small differences A5-0-1

undefined order of evaluation.

ES.44: Don’t depend on order of| 2- Small differences A5-0-1

evaluation of function arguments.

ES.45: Avoid "magic constants”; use| 2- Small differences A5-1-1

symbolic constants.

ES.46: Avoid lossy (narrowing,| 2- Small differences A4-7-1, M5-

truncating) arithmetic conversions. 0-6

ES.47: Use nullptr rather than 0 or| 2- Small differences A4-10-1

NULL.

ES.48: Avoid casts. 2 - Small differences A5-2-1, Ab-

2-2, A5-2-3,
Ab5-2-4

ES.49: If you must use a cast, use a 2 - Small differences A5-2-2

named cast.

ES.50: Don’t cast away const. 2- Small differences Ab5-2-3

ES.55: Avoid the need for range| 3- Significant differences | A6-5-1 A6-5-1 only covers

for-loops

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-do
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-goto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-break
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-break
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-noname
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-noname
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-noname
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-empty
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-loop-counter
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-loop-counter
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-loop-counter
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-loop-counter
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-complicated
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-parens
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-parens
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-parens
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-magic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-magic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-magic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-narrowing
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-narrowing
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-narrowing
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-narrowing
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-narrowing
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts-named
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts-named
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-range-checking
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-range-checking
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-range-checking

AUTOSAR

ES.56: Write std::move() only when| 3- Significant differences | Al12- Vulnerabilities

you need to explicitly move an object 8-3, A18-9- | of std::move() are

to another scope. 2, A18-9-3 explained.

ES.60: Avoid new and delete outside 2- Small differences A18-5-2

resource management functions.

ES.61: Delete arrays using delete[]| 2- Small differences A18-5-3

and non-arrays using delete.

ES.62: Don’'t compare pointers into| 2- Small differences M5-0-16

different arrays.

ES.63: Don't slice. 3- Significant differences | A12-8-6, The functionalities

A15-3-5 that could

lead to slicing were
prohibited.

ES.64: Use the T{e} notation for| 2- Small differences A8-5-2

construction.

ES.65: Don't dereference aninvalid| 2- Small differences A5-3-2

pointer.

ES.100: Don't mix signed and| 2- Small differences M5-0-4, M5-

unsigned arithmetic. 0-9

ES.101: Use unsigned types for bit| 2- Small differences M5-0-21

manipulation.

ES.102: Use signed types for| 3- Significant differences | A4-7-1, M5-

arithmetic. 19-1

ES.103: Don’t overflow. 2- Small differences A4-7-1

ES.104: Don’t underflow. 2 - Small differences A4-7-1

ES.105: Don’t divide by zero. 2- Small differences A5-6-1

code is necessarily faster than high-
level code.

Per.1: Don’t optimize without reason. 4- Rejected Implementation
principle; Thereis
no need for a new
rule.

Per.2: Don’t optimize prematurely. 4 - Rejected Implementation
principle; There is
no need for a new
rule.

Per.3: Don’t optimize something that's | 4- Rejected Implementation

not performance critical. principle; There is
no need for a new
rule.

Per.4: Don’t assume that complicated 4 - Rejected Implementation

code is necessarily faster than simple principle; There is

code. no need for a new
rule.

Per.5: Don’t assume that low-level| 4- Rejected Implementation

principle; Thereis
no need for a new
rule.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-move
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-move
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-move
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-move
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-move
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-new
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-new
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-del
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-del
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-del
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-del
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-arr2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-arr2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-arr2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-arr2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-arr2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-slice
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es65-dont-dereference-an-invalid-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es65-dont-dereference-an-invalid-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es65-dont-dereference-an-invalid-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es65-dont-dereference-an-invalid-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es65-dont-dereference-an-invalid-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es65-dont-dereference-an-invalid-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es65-dont-dereference-an-invalid-pointer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-mix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-mix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-mix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-mix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-mix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-mix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-unsigned
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-unsigned
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-unsigned
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-signed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-signed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-signed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-signed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-signed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-signed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-overflow
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-underflow
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-zero
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-reason
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-Knuth
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-critical
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-critical
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-simple
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-simple
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-simple
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-low

AUTOSAR

Per.6: Don't make claims about| 4- Rejected Implementation

performance without measurements. principle; Thereis
no need for a new
rule.

Per.7: Design to enable optimization. 4 - Rejected Design
principle; Thereis
no need for a new
rule.

Per.10: Rely on the static type system. | 4- Rejected Implementation

principle; Thereis
no need for a new
rule.

Per.11: Move computation from run
time to compile time

2 - Small differences

A3-3-2, A7-
1-1, A7-1-2

Per.12: Eliminate redundant aliases 4- Rejected This rule is
incomplete.

Per.13: Eliminate redundant| 4- Rejected This rule is

indirections incomplete.

Per.14: Minimize the number of| 4- Rejected This rule is

allocations and deallocations incomplete.

Per.15: Do not allocate ona critical| 4- Rejected This rule is

branch incomplete.

Per.16: Use compact data structures 4- Rejected This rule is
incomplete.

Per.18: Space is time 4 - Rejected This rule is
incomplete.

Per.19: Access memory predictably. 4 - Rejected Implementation

principle. There is
no need for a new
rule.

CP.1: Assume that your code will run
as part of a multi-threaded program.

5- Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not yet
covered, this will
be addressed in
future.

CP.2: Avoid data races.

5- Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not yet
covered, this will
be addressed in
future.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-measure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-measure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-measure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-measure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-measure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-efficiency
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-type
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per11-move-computation-from-run-time-to-compile-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per11-move-computation-from-run-time-to-compile-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per11-move-computation-from-run-time-to-compile-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per11-move-computation-from-run-time-to-compile-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per11-move-computation-from-run-time-to-compile-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per12-eliminate-redundant-aliases
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per13-eliminate-redundant-indirections
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per13-eliminate-redundant-indirections
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per13-eliminate-redundant-indirections
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per13-eliminate-redundant-indirections
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per14-minimize-the-number-of-allocations-and-deallocations
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per14-minimize-the-number-of-allocations-and-deallocations
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per14-minimize-the-number-of-allocations-and-deallocations
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per14-minimize-the-number-of-allocations-and-deallocations
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per14-minimize-the-number-of-allocations-and-deallocations
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per15-do-not-allocate-on-a-critical-branch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per15-do-not-allocate-on-a-critical-branch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per15-do-not-allocate-on-a-critical-branch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per15-do-not-allocate-on-a-critical-branch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per15-do-not-allocate-on-a-critical-branch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per16-use-compact-data-structures
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per18-space-is-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-access
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-multi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-multi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-races

AUTOSAR

CP.3: Minimize explicit
writable data.

sharing of

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CP.4: Think in terms of tasks, rather
than threads.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CP.8: Don'’t try to use volatile for
synchronization.

3 - Significant differences

A2-11-1

Volatile
forbidden.

keyword

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CP.20: Use RAIl, never plain
lock()/unlock().
CP.21: Use std:lock() to acquire

multiple mutexes.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CP.22: Never call unknown code while
holding a lock (e.g., a callback).

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CP.23: Think of a joining thread as a
scoped container.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CP.24: Think of a detached thread as a
global container.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-task
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-task
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-volatile
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-volatile
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-volatile
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-unknown
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-unknown
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detach
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detach

AUTOSAR

CP.25: Prefer gsl::raii_thread over
std::thread unless you plan to detach().

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.26: Prefer gsl::detached_thread
over std::thread if you plan to detach().

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.27: Use plain std:thread for
threads that detach based on a run-
time condition (only).

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.28: Remember to join scoped
threads that are not detach()ed.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.30: Do not pass pointers to local
variables to non-raii_threads.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.31: Pass small amounts of data
between threads by value, rather than
by reference or pointer.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

[CP.32: To share ownership between
unrelated threads use shared_ptr.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join-undetached
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join-undetached
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join-undetached
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join-undetached
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#RRconc-pass
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#RRconc-pass
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data-by-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data-by-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data-by-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data-by-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-shared

AUTOSAR

CP.40: Minimize context switching.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.41: Minimize thread creation and
destruction.

55 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.42: Don’t wait without a condition.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.43: Minimize time spent in a critical
section.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.44: Remember to name your
lock_guards and unique_locks.

2 - Small differences

A6-2-2

This is a special
case of the more
generic rule.

P.50: Define a mutex together with the
data it guards.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.60: Use a future to return a value
from a concurrent task.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

CP.61: Use a async() to spawn a
concurrent task.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapter isnot vyet
covered, this will
be addressed in
future.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-switch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-create
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-create
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-create
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-wait
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-mutex
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-mutex
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-future
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-future
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-async
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-async
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-async

AUTOSAR

CP.100: Don’t
use lock-free programming unless you
absolutely have to.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CP.101: Distrust your
hardware/compiler combination.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CP.102: Carefully study the literature.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CP.110: Do not write your own double-
checked locking for initialization.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

CP.111: Use a conventional pattern
if you really need double-checked
locking.

5 - Not yet analyzed

The “Concurrency
and Parallelism”
chapteris not vyet
covered, this will
be addressed in
future.

only.

CP.200: Use volatile only to talk to non- | 3 - Significant differences | A2-11-1 Volatile keyword

C++ memory. forbidden.

E.1: Develop an error-handling| 4 - Rejected Design

strategy early in a design. principle; There is
no need for a new
rule.

E.2: Throw an exception to signal that | 2 - Small differences A15-0-1

a function can’t perform its assigned

task.

E.3: Use exceptions for error handling | 2 - Small differences A15-0-1

E.4: Design your error-handling
strategy around invariants.

4 - Rejected

Design

principle; Thereis
no need for a new
rule.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lockfree
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lockfree
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lockfree
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lockfree
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-distrust
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-distrust
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-distrust
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-distrust
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-literature
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-volatile2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-volatile2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-errors
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-errors
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design-invariants
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design-invariants
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design-invariants
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design-invariants
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design-invariants

AUTOSAR

exception in every function.

E.5: Let a constructor establish an| 2 - Small differences A15-2-2

invariant, and throw if it cannot.

E.6: Use RAIl to prevent leaks. 4 - Rejected Design
principle; There is
no need for a new
rule.

E.7: State your preconditions. 4 - Rejected Design
principle; There is
no need for a new
rule.

E.8: State your postconditions. 4 - Rejected Design
principle; There is
no need for a new
rule.

E.12: Use noexcept when exiting| 2 - Small differences Al15-4-4

a function because of a throw is

impossible or unacceptable.

E.13: Never throw while being the| 3 - Significant differences | A15-1-4 It is required to

direct owner of an object. release all
acquired resources
and objects before
a throw or a return
statement.

E.14: Use purpose-designed user-| 3 - Significant differences | A15-1-1 It is

defined types as exceptions (not built- required that user-

in types). defined exceptions
inherit
from std::exception
class.

E.15: 2 - Small differences A15-3-5

Catch exceptions from a hierarchy by

reference.

E.16: Destructors, deallocation, and| 2 - Small differences A15-5-1

swap must never fail.

E.17: Don’t try to catch every| 2 - Small differences A15-3-2 AUTOSAR C++

Coding Guidelines
introduces checked

and unchecked
exceptions.

Whether an
exception should

be caught depends
if meaningful action
can be performed
in a given context.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-invariant
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-invariant
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-invariant
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-precondition
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-postcondition
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-types
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-types
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-types
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-types
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-not-always
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-not-always
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-not-always

AUTOSAR

express cleanup if no suitable resource
handle is available.

E.18: Minimize the use of explicit| 4- Rejected Implementation

try/catch. principle; There s
no need for a new
rule.

E.19: Use a final_action object to| 4- Rejected The

finally is not part of
the C++ Language
Standard.

E.25: If you cant throw
exceptions, simulate RAII for resource
management.

3- Rejected

the RAIl is a coding
pattern; There is no
need for
a new rule. On the
other hand, usage
of RAII
is recommended in
the example of the
Al15-1-4.

E.26: If you can’t throw exceptions,
consider failing fast.

4 - Rejected

Implementation
principle; There is
no need for a new
rule.

E.27: If you can’t throw exceptions, use
error codes systematically.

4 - Rejected

AUTOSAR C++
Coding Guidelines
does not force any

specific error
handling
mechanism. It

requires that every
error information
will be tested, see:
MO0-3-2.

can be computed at compile time.

E.28: Avoid error handling based on 2- Small differences M19-3-1
global state (e.g. errno).

Con.l: By default, make objects| 2- Small differences A7-1-1
immutable.

Con.2: By default, make member| 2- Small differences M9-3-3
functions const.

Con.3: By default, pass pointers and 2 - Small differences M7-1-2
references to consts.

Con.4: Use const to define objects| 2- Small differences A7-1-1
with values that do not change after

construction.

Con.5: Use constexpr for values that 2- Small differences A7-1-2

T.1: Use templates to raise the level of
abstraction of code.

4 - Rejected

Design

principle; There s
no need for a new
rule.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-catch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-catch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-catch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-finally
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-finally
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-finally
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-finally
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-crash
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-crash
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-crash
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-codes
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-codes
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-immutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-immutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-immutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-immutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-immutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-immutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-raise
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-raise

AUTOSAR

T.2: Use templates to
express algorithms that apply to many
argument types.

4 - Rejected

Design

principle; Thereis
no need for a new
rule.

T.3: Use templates to express
containers and ranges.

4 - Rejected

Design

principle; Thereis
no need for a new
rule.

operations for a concept.

T.4: Use templates to express syntax 4 - Rejected Design

tree manipulation. principle; There is
no need for a new
rule.

T.5: Combine| 4 - Rejected Design

generic and OO techniques to amplify principle; There is

their strengths, not their costs. no need for a new
rule.

T.10: Specify concepts for all template | 4 - Rejected Concepts are not

arguments. part of the C++14
Language
Standard.

T.11: Whenever possible use standard | 4 - Rejected Concepts are not

concepts. part of the C++14
Language
Standard.

T.12: Prefer concept names over auto | 4 - Rejected Concepts are not

for local variables. part of the C++14
Language
Standard.

T.13: Prefer the shorthand notation for | 4 - Rejected Concepts are not

simple, single-type argument part of the C++14

concepts. Language
Standard.

T.20: Avoid “concepts” without| 4 - Rejected Concepts are not

meaningful semantics. part of the C++14
Language
Standard.

T.21: Require a complete set of| 4 - Rejected Concepts are not

part of the C++14
Language
Standard.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-algo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-algo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-algo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-algo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-algo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-algo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cont
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cont
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cont
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cont
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-expr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-expr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-generic-oo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-generic-oo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-generic-oo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-generic-oo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-std-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-std-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-auto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-auto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-shorthand
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-shorthand
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-shorthand
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-shorthand
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-shorthand
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#RT-operations
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#RT-operations
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#RT-operations

AUTOSAR

notation and hide
details.

implementation

T.22: Specify axioms for concepts. 4 - Rejected Concepts are not
part of the C++14
Language
Standard.
T.23: Differentiate a refined concept| 4 - Rejected Concepts are not
from its more general case by adding part of the C++14
new use patterns.. Language
Standard.
T.24: Use tag classes or traits to| 4 - Rejected Concepts are not
differentiate concepts that differ only in part of the C++14
semantics.. Language
Standard.
T.25: Avoid complementary| 4 - Rejected Concepts are not
constraints. part of the C++14
Language
Standard.
T.26: Prefer to define concepts in| 4 - Rejected Concepts are not
terms of use-patterns rather than part of the C++14
simple syntax. Language
Standard.
T.40: Use function objects to pass| 4 - Rejected Implementation
operations to algorithms. principle; There is
no need for a new
rule.
T.41: Require only essential properties | 4 - Rejected Concepts are not
in a template’s concepts. part of the C++14
Language
Standard.
T.42: Use template aliases to simplify | 4 - Rejected Implementation

principle. Thereis
no need for a new
rule.

T.43: Prefer using over typedef for
defining aliases.

2 - Small differences

A7-1-6

be at least Regular or SemiRegular.

T.44: Use function templates to deduce| 4 - Rejected Implementation

class template argument types (where principle; There is

feasible). no need for a new
rule.

T.46: Require template argumentsto | 4 - Rejected Implementation

principle; Thereis
no need for a new
rule.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-axiom
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-refine
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-refine
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-refine
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-refine
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-refine
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-not
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-not
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-not
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-not
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-use
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-use
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-use
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-use
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-essential
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-essential
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-alias
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-alias
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-alias
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-alias
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-using
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-using
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-using
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-deduce
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-deduce
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-deduce
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular

AUTOSAR

provide an ABI-stable interface.

T.47: Avoid| 4- Rejected M17-0-2, This rule is vague.

highly visible unconstrained templates M17-0-3 "Highly visible" and

with common names. "common names"
have no technical
meaning.

T.48: If your compiler does not support | 4- Rejected Implementation

concepts, fake them with enable_if. principle; There is
no need for a new
rule.

T.49: Where possible, avoid type-| 4- Rejected This rule

erasure. is incomplete. This
rule
is vague. "Where
possible" has no
technical meaning.

T.60: Minimize a template’s context| 4- Rejected This rule is vague.

dependencies.

T.61: Do not over-parameterize| 2- Small differences Al4-1-1,

members (SCARY). Al4-7-1

T.62: Place non-dependent class| 2- Small differences Al4-5-2 -

template members in a non-templated

base class.

T.65: 4 - Rejected Implementation

Use tag dispatch to provide alternative principle; There is

implementations of a function. no need for a new
rule.

T.68: Use rather than () within| 2- Small differences A8-5-2

templates to avoid ambiguities.

T.69: Inside a template, don’t make| 4- Rejected Implementation

an unqualified nonmember function principle. Thereis

call unless you intend it to be a no need for a new

customization point. rule.

T.80: Do not naively templatize a class | 5- Not yet analyzed - -

hierarchy.

T.81: Do not mix hierarchies and| 2- Small differences A5-0-4

arrays.

T.83: Do not declare a member| 4- Rejected There is

function template virtual. no need for a new
rule. Handled by a
compiler.

T.84: Use| 4- Rejected Design

a non-template core implementation to principle. Thereis

no need for a new
rule.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-visible
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-visible
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-visible
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-visible
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concept-def
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concept-def
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-erasure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-erasure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-erasure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-depend
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-depend
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-depend
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-scary
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-scary
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-scary
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nondependent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nondependent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nondependent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nondependent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag-dispatch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag-dispatch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag-dispatch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-customization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-customization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-customization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-customization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-customization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-customization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-hier
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-hier
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-abi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-abi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-abi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-abi

AUTOSAR

place only.

T.100: Use variadic templates when| 2- Small differences A8-4-1

you need a function that takes a

variable number of arguments of a

variety of types.

T.101: How to pass arguments to a| 4- Rejected This rule is

variadic template. incomplete.

T.102: How to process arguments to a | 4- Rejected There is no need

variadic template. for a new rule.

T.103: Don’t use variadic templates for | 4- Rejected There is no need

homogeneous argument lists. for a new rule.

T.120: Use| 4- Rejected This rule is vague.

template metaprogramming only when "When you really

you really need to. need to" has no
technical meaning.

T.121: Use template| 4- Rejected Implementation

metaprogramming primarily to emulate principle. Thereis

concepts. no need for a new
rule.

T.122: Use templates (usually template | 4- Rejected Implementation

aliases) to compute types at compile principle. There is

time. no need for a new
rule.

T.123: Use constexpr functions to| 4- Rejected Implementation

compute values at compile time. principle. There is
no need for a new
rule.

T.124: Prefer to use standard-library| 4- Rejected There is no need

TMP facilities. for a new rule.

T.125: If you need to go beyond the 4 - Rejected This rule is vague.

standard-library TMP facilities, use an "beyond the

existing library. standard-library
TMP facilities" has
no technical
meaning.

T.140: Name all operations with| 4- Rejected

potential for reuse.

T.141: Use an unnamed lambda if you | 3- Significant differences | A5-1-9 Only

need a simple function object in one forbids duplication

of identical lambda
expressions.

T.142: Use template variables to

simplify notation.

4- Rejected

This rule is
incomplete.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t101--how-to-pass-arguments-to-a-variadic-template-
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t101--how-to-pass-arguments-to-a-variadic-template-
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t101--how-to-pass-arguments-to-a-variadic-template-
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t102-how-to-process-arguments-to-a-variadic-template
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t102-how-to-process-arguments-to-a-variadic-template
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t103-dont-use-variadic-templates-for-homogeneous-argument-lists
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t103-dont-use-variadic-templates-for-homogeneous-argument-lists
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-metameta
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-metameta
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-metameta
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-metameta
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-emulate
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-emulate
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-emulate
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-emulate
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-emulate
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-std-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-std-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-std-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lambda
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lambda
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lambda
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-var
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-var
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-var
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-var

AUTOSAR

to namespace std.

T.143: Don’t write unintentionally| 5- Not yet analyzed - -

nongeneric code.

T.144: Don'’t specialize function| 2- Small differences Al14-8-2

templates.

T.150: Check that a class matches a 2 - Small differences Al14-1-1

concept using static_assert.

CPL.1: Prefer C++to C. 2 - Small differences Al7-1-1,

A18-0-1

CPL.2: If you must use C, use the 4 - Rejected There is no need

common subset of C and C++, and for a new rule.

compile the C code as C++.

CPL.3: If you must use C for interfaces,| 5- Not yet analyzed - -

use C++ in the calling code using such

interfaces.

SF.1: Use a .cpp suffix for code| 3- Significant differences | A3-1-2, A3- | For header file

files and .h for interface files if your 1-3 names, AUTOSAR

project doesn’t already follow another C++ Coding

convention. Guidelines allows
either “.n”, “.hpp” or
“.hxx” extension.

SF.2: A .h file may not contain| 2- Small differences A3-1-1

object definitions or non-inline function

definitions.

SF.3: Use .h files for all declarations 2 - Small differences M3-2-2, A3-

used in multiple source files. 3-1

SF.4: Include .h files before other| 2- Small differences M16-0-1

declarations in a file.

SF.5: A .cpp file must include the .h| 5- Not yet analyzed - -

file(s) that defines its interface.

SF.7: Don’t write using namespace in 2 - Small differences M7-3-6

a header file.

SF.8: Use #include guards for all .h| 2- Small differences M16-2-3

files.

SF.9: Avoid cyclic dependencies| 5- Not yet analyzed - -

among source files.

SF.21: Don’t use an| 2- Small differences M7-3-3

unnamed (anonymous) hamespace in

a header.

SF.22: Use| 5- Not yet analyzed - -

an unnamed (anonymous) namespace

for all internal/nonexported entities.

SL.1: Use libraries wherever possible. | 4- Rejected Design
principle; There is
no need for a new
rule.

SL.2: Prefer the standard library to| 4- Rejected Design

other libraries. principle; There is
no need for a new
rule.

SL.3: Do not add non-standard entities | 2- Small differences Al7-6-1

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nongeneric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nongeneric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nongeneric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nongeneric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nongeneric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-specialize-function
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-specialize-function
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-specialize-function
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-specialize-function
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-check-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-check-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-C
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-subset
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-subset
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-subset
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-file-suffix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-file-suffix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-file-suffix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-file-suffix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-file-suffix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-declaration-header
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-declaration-header
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-include-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-include-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-include-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-consistency
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-consistency
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-consistency
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-using-directive
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-using-directive
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-guards
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-guards
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-guards
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-cycles
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-cycles
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-cycles
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-cycles
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-cycles
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-sl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-sl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-sl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#sl3-do-not-add-non-standard-entities-to-namespace-std
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#sl3-do-not-add-non-standard-entities-to-namespace-std

AUTOSAR

SL.con.1: Prefer using STL array or 2 - Small differences A18-1-1

vector instead of a C array.

SL.con.2: Prefer using STL vector by 4 - Rejected This rule is vague.

default unless you have a reason to “have a reason to”

use a different container. has no technical
meaning.

SL.str.l: Use std::string to own| 2- Small differences A27-0-4

character sequences

SL.i0.50: Avoid endl. 5- Not yet analyzed - -

Type.1: Don’t use reinterpret_cast. 2- Small differences A5-2-4

Type.2: 2- Small differences M5-2-2

Don’t use static_cast downcasts. Use

dynamic_cast instead.

Type.3: Don’t use const_cast to cast 2- Small differences A5-2-3

away const (i.e., at all).

Type.4: Don’'t] 2- Small differences A5-2-2

use C-style (T) expression casts that

would perform a static_cast downcast,

const_cast, or reinterpret_cast.

Type.5: Don’t use a variable before it 2- Small differences A8-5-0

has been initialized.

Type.6: Always initialize a member| 2- Small differences Al2-1-1

variable.

Type.7: Avoid accessing members of 2 - Small differences A9-5-1

raw unions. Prefer variant instead.

Type.8: Avoid reading from varargs| 2- Small differences A8-4-1

or passing vararg arguments. Prefer

variadic template parameters instead.

Bounds.1: Don’t use pointer arithmetic. | 2- Small differences M5-0-15

Use span instead.

Bounds.2: Only index into arrays using | 2- Small differences A5-2-5

constant expressions.

Bounds.3: No array-to-pointer decay. 2 - Small differences M5-2-12

Bounds.4: Don’t use standard library
functions and types that are not
bounds-checked.

5- Not yet analyzed

NL.1: Don’t say in comments what can | 4- Rejected AUTOSAR C++

be clearly stated in code. Coding Guidelines
does not introduce
rules related
tocoding style or
naming
convention.

NL.2: State intent in comments. 4 - Rejected AUTOSAR C++

Coding Guidelines
does not introduce

rules related
to coding style or
naming

convention.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-arrays
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-arrays
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-vector
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-vector
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-vector
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slstr1-use-stdstring-to-own-character-sequences
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slstr1-use-stdstring-to-own-character-sequences
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slstr1-use-stdstring-to-own-character-sequences
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slstr1-use-stdstring-to-own-character-sequences
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slstr1-use-stdstring-to-own-character-sequences
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rio-endl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-reinterpretcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-downcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-downcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-downcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-constcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-constcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-cstylecast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-cstylecast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-cstylecast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-cstylecast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-cstylecast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-memberinit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-memberinit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-memberinit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-memberinit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-memberinit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-unions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-unions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-varargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-varargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-varargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-varargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-varargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-arithmetic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-arithmetic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-arrayindex
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-arrayindex
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-decay
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-stdlib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-stdlib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-stdlib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments-intent

AUTOSAR

names only.

NL.3: Keep comments crisp. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.4: Maintain a consistent indentation | 4 - Rejected AUTOSAR C++

style. Coding Guidelines
does not introduce
rules related
tocoding style or
naming
convention.

NL.5 Don’t encode type information in | 4 - Rejected AUTOSAR C++

names. Coding Guidelines
does not introduce
rules related
tocoding style or
naming
convention.

NL.7: Make the length ofa name| 4 - Rejected AUTOSAR C++

roughly proportional to the length of its Coding Guidelines

scope. does not introduce
rules related
to coding style or
naming
convention.

NL.8: Use a consistent naming style. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.9: Use ALL _CAPS for macro| 4 - Rejected AUTOSAR C++

Coding Guidelines
does not introduce

rules related
tocoding style or
naming

convention.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments-crisp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-indent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-indent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-type
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-type
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-all-caps
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-all-caps
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-all-caps
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-all-caps

AUTOSAR

NL.10: Avoid CamelCase.

4 - Rejected

AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming

convention.

NL.15: Use spaces sparingly.

4 - Rejected

AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming

convention.

NL.16: Use a conventional class
member declaration order.

4 - Rejected

AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming

convention.

NL.17: Use K&R-derived layout.

4 - Rejected

AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming

convention.

NL.18: Use
layout.

C++-style declarator

4 - Rejected

AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming

convention.

NL.19:
misread.

Avoid names that are easily

2 - Small differences

M2-10-1

NL.20: Don’t place two statements on
the same line.

3 - Significant differences

A7-1-7

It is required for
declarations only.

NL.21: Declare one name (only) per
declaration.

2 - Small differences

A7-1-7

NL.25: Don’t use void as an argument
type.

5 - Not yet analyzed

NL.26: Use
notation.

conventional const

5 - Not yet analyzed

Table B.5: C++ Core Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-camel
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-space
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-knr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-misread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-misread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-misread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-stmt
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-stmt
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-dcl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-dcl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-void
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-void
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-const

AUTO©SAR

B.6 Traceability to ISO 26262

Each method in the tables referenced from the ISO 26262 standard is an entry that is
one of the following:

consecutive — all methods shall be applied as recommended, but with different
recommendation level that depends on the ASIL level.

alternative — an appropriate combination of methods shall be applied.

Consecutive methods are marked by a sequence number, e.g. 1, 2, 3. Alternative
entries are marked by a number followed by a letter, e.g. 1a, 1b, 1c.

This chapter traces mostly principles and recommendations from Section 8 (Software
unit design and implementation) of the Part 6 of the ISO 26262. The rest of the
document is not applicable to the AUTOSAR C++14 Coding Guidelines. Although
AUTOSAR C++14 Coding Guidelines contain multiple rules allocated to other work
products (e.g. software architectural design, verification), those are considered as
recommendations for doing review of such work products, not as a direct fulfillment of
ISO 26262 requirements.

Part 6: Product development at the software level
Initiation of product development at the software level

5.4: Requirements and recommendations

ISO 26262 requirement: Relation type: Related Comment:

rule:

1 | an unambiguous definition 6 - Implemented [3, ISO/IEC | Syntax and semantics of the

14882:2014],| language unambiguously

A2-13-2, defined. Restrictions on

Al-1-1 using conditionally-supported
or deprecated features.

2 |the support for| 6 - Implemented A15-0-1, Introduction of Checked and
embedded real time software A15-0-4, Unchecked Exceptions.
and runtime error handling A15-0-5, Usage of exceptions

A15-0-6, limited only to error handling.
A15-0-7, Additional requirements on
A15-0-8, toolchain support for memory
A18-5-5, management and exceptions
A18-5-6, handling.

A18-5-7

3 | the support for modularity,| 6 - Implemented A8-4-14, Recommendations on which
abstraction and structured A10-0-1, constructs to use to increase
constructs A10-0-2, software reusability and hide

A10-4-1 implementation details.

AUTOSAR

Table B.6: The criteria that shall be considered when selecting a suitable modeling or

programming language. Paragraph 5.4.6 from [5].

ISO 26262 requirement: Relation type: Related Comment:
rule:
la | Enforcement of low| 6 - Implemented Al-4-1 Requirements on code metrics.
complexity Plenty of AUTOSAR
C++14 Coding Guidelines rules
forbid constructs that introduce
unnecessary complexity and
are error-prone, e.g. A9-6-2,
M10-2-1, A10-2-1.
1b | Use of language subsets 6 - Implemented 3.1 Plenty of AUTOSAR C++14
Coding Guidelines rules forbid
constructs that are allowed from
the C++ language perspective,
but (1) lead to unstructured
designs, (2)
are misleading for a developer,
(3) are implementation defined.
In case some features are to
be used in a particular project
nonetheless, see chapter 5.4.
1c | Enforcement of strong typing | 6 - Implemented M5-2-2, Restrictions on type casting.
M5-2-3, Recommendations on strongly-
A5-2-2, typed interfaces and scoped
Ab-2-3, enums.
M5-2-6,
A5-2-4,
M5-2-9,
A8-4-14,
A7-2-3
1d | Use of defensive| 6 - Implemented A0-4-4, Error checking
implementation techniques A4-7-1, required for math functions,
A5-2-5, integer expressions, array
AB-5-1, access. Limitations on iteration
Al4-1-1, statements. Recommendations
A15-3-4 on how to cope with external
code failures.
le | Use of established design| 6 - Implemented 6.18.5, Recommendation on RAII,
principles A18-5-2, exception in rules that facilitate
AO-1-4 correct usage of SFINAE and

Concepts. Multiple
rules contain references to
corresponding rules

from multiple standards, which
confirms that the provided rule
set reflects widely approved
coding techniques.

AUTO©SAR

1f | Use of
graphical representation

unambiguous

8 - Not applicable

Recommendations on graphical
representation is out of scope
of AUTOSAR C++14 Coding
Guidelines.

1g | Use of style guides

8 - Not applicable

AUTOSAR C++14 Coding
Guidelines does not introduce
rules related to coding style.

1h

Use of naming conventions

8 - Not applicable

AUTOSAR

C++14 Coding Guidelines does
not introduce rules related to
naming convention.

Table B.7: Topics to be covered by modelling and coding guidelines. Table 1 from [5].

Software unit design and implementation 8.4:

Requirements and recommendations

ISO 26262 requirement: Relation type: Related rule: Comment:

la | Natural language 7 - Partially | A2-7-3, A2-7-5 | Requirements on: providing
1b | Informal notations implemented documentation for user-defined
1c | Semi-formal notations types, content and structure of
1d | Formal notations the documentation.

Table B.8: Notations for software unit design. Table 7 from [5].

ISO 26262 requirement: Relation type: Related Comment:
rule:
la | One entry and one exit | 6 - Implemented See Single-point-of-exit. All
point in subprograms the benefits from this approach are
and functions handled by different measures. Code
modularity aspects are also ensured
by techniques and limitations that
fulfill other 1S026262 requirements,
see: Enforcement of low complexity,
Readability and comprehensibility,
Suitability for modifications.
1b [No dynamic objects| 6 - Implemented A18-5-5, Dynamic memory allowed, but under
or variables, or else A18-5-6, multiple constraints affecting memory
online test during their A18-5-7, management. Allocated objects
creation A18-5-2, lifetime maintenance delegated to
A18-5-9, shared
A18-5-10 | pointers and memory management

objects. Restrictions set for custom
implementations of dynamic memory
allocation and placement new.

AUTOSAR

A23-0-1

1c | Initialization of| 6 - Implemented A8-5-0, Required is: memory initialization
variables A3-3-2, before access, constant initialization
A6-5-4, of static and thread—local objects, loop
A8-5-1, counters initialization. Defined are
A8-5-3, requirements
A8-5-4, for: initialization lists, initialization of
Al12-1-1, type auto, user-declared constructors,
Al2-1-2, NSDMI, delegating constructors.
Al2-1-6
1d | No multiple use of| 6 - Implemented M2-10-1, Limitations on
variable names A2-10-1, identifier hiding and requirements on
A2-10-6, typographical unambiguity.
A2-10-4,
A2-10-5,
M3-4-1
le | Avoid global variables | 7 - Partially | A3-3-2 Global variables shall be constant-
or else justify their| implemented initialized.
usage
1f | Limited use of pointers | 6 - Implemented A8-4-11, Lifetime semantics is to be handled
A8-4-10, using smart pointers and usage of
M5-0-15, raw pointers is limited only to passing
M5-0-16, parameters that are not owned by
M5-0-17, | the pointer (as currently no constructs
M5-0-18, | from C++14 Standard could replace
A5-0-4, it), which resolves problems with
A5-0-3 possible memory leaks. Restrictions
on pointers arithmetic, no more
than two levels of pointer indirection,
pointers usage limited only to single
objects. Listed rule set fulfills also
all the requirements described in
[19], chapter C.2.6.6 “Limited use of
pointers”, apart from “Data exchange
should be done via the operating
system”, which is out of scope of this
document.
1g | No implicit type| 6 - Implemented A4-5-1, It is
conversions A4-7-1, forbidden to use: enums in arithmetic
M4-10-1, contexts, integer conversions that lead
M5-0-4, to data loss, NULL as an integer value,
M5-0-5, non-scoped enumerations, conversion
M5-0-6, from iterator to const_iterator.
A7-2-3, It is additionally protected by forcing:
A8-5-2, braced initialization
A13-5-2, of variables and restrictions on user-
A13-5-3, defined conversion operators.

AUTOSAR

1h | No hidden data or| 7
control flow

implemented

Partially

A15-0-6,
A15-0-7,
A15-0-8,
6.15

Usage of exceptions as a method
for error handling is not enforced
by the AUTOSAR Coding Guidelines.
However, if it is to be used in a
particular project, it (1) is allowed
only if strict requirements on a
toolchain are fulfilled, e.g. analysis of
failure modes of exception handling,
deterministic worst-
case execution time. (2) is forbidden
as part of the typical program flow

and is limited only for handling errors
where a function failed to perform

its assigned task. (3) requires
analysis of maximum execution time
constraints for a particular software
project. Using Checked Exceptions
for signaling recoverable errors brings
benefits to completeness of error
handling procedure, as it enforces
developers to provide a dedicated
handling hook for each type of such
errors. Rules for stack unwinding are
unambiguously defined by [3, ISO/IEC
14882:2014], thus it is possible to
establish a matching catch clause

for each exception thrown in the
software, to which the control flow

will jJump after exception is thrown.

By default, handling of Unchecked
Exceptions should lead to proper
program termination, therefore stack
unwinding ensures correct invocation
of destructors for all objects with
automatic storage duration,
which prevents from possible memory
leaks in case of errors (considering

no violations of available rules for
memory management). However,
usage of exceptions still introduces
a hidden control flow into a program
execution, thus such an approach only
partially implements this requirement
from the 1ISO26262-6 [5].

1li | No
jumps

unconditional

6 - Implemented

A6-6-1,
M17-0-2

Lack of
exact definition of “unconditional jump”
in 1ISO 26262 [5] and C++14 Standard
[3], therefore the statement from IEC
61508 Annex C [19] was assumed:
“avoid unconditional jumps (goto) in
higher level languages”.

1j | No recursions

6 - Implemented

A7-5-2

AUTOSAR

Table B.9: Design principles for software unit design and implementation. Table 8 from

[5].
ISO 26262 requirement: Relation type: Related Comment:
rule:
1la | correct order of execution of | 6 - Implemented Al15-4-1, Restrictions on constructs that
subprograms and Al15-4-2, may lead
functions within the software A15-5-2, to program termination without
units, based on the software A15-5-3 calling proper exit handlers and
architectural design destructors.
1b | consistency of the interfaces | 6 - Implemented M1-0-2, Restrictions on: passing non-
between the software units Al15-1-5 standard layout type
objects and exceptions across
execution boundaries.
1c | correctness of data flow and | 6 - Implemented MO-3-1 Checked and Unchecked
control flow between and A15-0-1, exceptions are to be used
within the software units A15-0-4, only for error handling, they
A15-0-5, are forbidden for handling the
A15-3-2, normal control flow. Additional
A15-3-3, explanation of this property
A15-3-4, from [19]: “The software design
M15-0-3, shall include, commensurate
A6-6-1 with the required safety integrity
level, self-monitoring of control
flow and data flow. On failure
detection, appropriate actions
shall be taken.”
1d | simplicity 6 - Implemented Al-4-1, Forcing limitations for cases
A8-4-3, that limit maintainability and
Al10-1-1, readability.
Al4-7-2
le | readability and | 6 - Implemented Al-4-1, Enforcing code
comprehensibility Al1-4-3, metrics, forbidding constructs
A5-1-1, that are confusing, lead to
A5-1-9, code duplication or introduce
A10-2-1, unnecessary complexity.
M10-2-1,
Al12-7-1,
Al14-7-2
1f | robustness 6 - Implemented MO0-3-1, Checked exceptions concept
MO0-3-2, which facilitates tracking if a
Al-1-1, particular error type is handled.
A15-0-2, Recommendations on how to
A15-0-3, report errors in an application.
A15-0-6, Requirements on analysis of
A15-0-7, failure modes and worst-case
A18-5-6 execution

time for exception handling and
memory management.

AUTOSAR

1g | suitability for software | 6 - Implemented A8-4-14, Recommending constructs that
modification A10-0-1, increase software reusability,
A10-0-2, eliminate redundancy and hide
A10-4-1 implementation details.
1h | testability 6 - Implemented Al-2-1, Requirements on: testing error
Al-4-1, information if this is generated,
A3-3-2 using code metrics

which will increase code quality
and modularity. Restrictions on
constructs that obscure code
maintainability. Suggestions
on how to perform extensive
testing.

Table B.10: Properties to be achieved by applying design principles from Table 8.

Paragraph 8.4.4 from [5].

ISO 26262 requirement:

Relation type:

Related
rule:

Comment:

la | Walk-through

8 - Not applicable

Process of system examination
to reveal discrepancies
between a specification and
implementation is out of scope

of AUTOSAR C++14 Coding
Guidelines.

1b | Inspection

8 - Not applicable

Structured processes (at any
level of rigour) of revealing
defects in developed software
components are out of scope

of AUTOSAR C++14 Coding
Guidelines.

1c | Semi-formal verification

1d | Formal verification

8 - Not applicable

Aspects

of proving the correctness
of a program basing on an
abstract model are out of
scope of AUTOSAR C++14
Coding Guidelines.

le | Control flow analysis

7 -
implemented

Partially

MO-1-1,
MO-1-2,
MO-1-8,
MO0-1-9,
MO0-1-10,
AO0-1-3

Available are rules oriented
on finding suspect areas of
code (e.g. inaccessible code,
infeasible paths), but analysis
of directed program graph (from
the definition from paragraph
C.5.9 [19]) is out of scope
of AUTOSAR C++14 Coding
Guidelines.

AUTOSAR

1f | Data flow analysis

6 - Implemented

MO-1-3,
MO-1-4,
AO0-1-1,
AO0-1-4,
AO0-1-5,
AO0-1-6,
A8-5-0

Available are rules oriented on
analysis of sequences
of creating, referencing and
deleting variables.

1g | Static code analysis

6 - Implemented

All automated rules included
in AUTOSAR C++14 Coding
Guidelines are enforceable by
means of static code analysis.

1h | Semantic code analysis

8 - Not applicable

Mathematical

source code analysis by use

of an abstract representation of
possible values is out of scope
of AUTOSAR C++14 Coding
Guidelines.

Table B.11: Methods for the verification of software unit design and implementation.

Table 9 from [5].

AUTOSAR

C Glossary

Abbreviation / Acronym:

Description:

Real-time application (RTA)

A real-time application is a program that guarantees response
within defined time constraints. The latency must be less than
a defined value, usually measured in seconds or milliseconds.
Whether or not a given application program qualifies as an
RTA depends on the worst-case execution time (WCET) - the
maximum length of time a defined task requires on a given
hardware platform.

MISRA

Motor Industry Software Reliability Association.

HIC++

High Integrity C++ Coding Standard.

cvalue expression

An expression that should not undergo further conversions, either
implicitly or explicitly, is called a cvalue expression.

Ownership

Ownership of a resource means that the resource’s lifetime is
fully managed by the single class instance or tied with the class
instance lifetime. See also: chapter 6.18.5

AUTOSAR

One definition rule The rule states that:

There shall be one and only one definition of any variable,

function, class type, enumeration type, or template in

a translation unit. Some of these may have multiple
declarations, but only one definition is allowed.

There shall be one and only one definition of every non-
inline function or variable that is odr-used in the entire
program.

An inline function definition is required in every translation
unit where it is odr-used.

There shall be one and only one definition of a class in
any translation unit where the class is used in a way that
requires it to be complete.

There can be more than one definition of any class,
enumeration type, inline function with external linkage,
class template, non-static function template, static data

member of a class template, member function of a class
template, partial template specialization in a program, as
long as all of the following is true:

— each definition consists of the same sequence of
tokens (typically, appears in the same header file)

— name lookup from within each definition finds the
same entities (after overload-resolution), except that
constants with internal or no linkage may refer to
different objects as long as they are not ODR-used
and have the same values in every definition.

— overloaded operators, including conversion,
allocation, and deallocation functions refer to the
same function from each definition (unless referring

to one defined within the definition)

— the language linkage is the same (e.g. the include
file isn’t inside an extern “C” block)

—the three rules above apply to every default
argument used in each definition
— if the definition is for a class with an implicitly-
declared constructor, every translation unit where it
is odr-used must call the same constructor for the
base and members

— if the definition is for a template, then all these
requirements apply to both names at the point of
definition and dependent names at the point of
instantiation
If all these requirements are satisfied, the program
behaves as if there is only one definition in the entire
program. Otherwise, the behavior is undefined.

ODR-use

An object is odr-used if its address is taken, or a reference is
bound to it. A function is odr-used if a function call to it is made

or its address is taken.

AUTOSAR

POD Type

POD (Plain Old Data) type is the type that is compatible with
types used in the C programming language, can be manipulated
using C library functions, and can be exchanged with C libraries
directly in its binary form.

Trivially Copyable Class

A class (C++ Language Standard [3], chapter 9):

where each copy constructor, move constructor, copy
assignment operator, move assigment operator is either
deleted or trivial

that has at least one non-deleted copy constructor,
move constructor, copy assignment operator, or move
assignment operator, and

that has a trivial, non-deleted destructor

Standard-Layout Class

A class that (C++ Language Standard [3], chapter 9):

has no non-static data members of type non-standard-
layout class (or array of such types) or reference

has no virtual functions and no virtual base classes
has the same access control for all non-static data
members

has no non-standard-layout base classes

has at most one base class subobject of any given type
has all non-static data members and bit-fields in the class
and its base classes first declared in the same class

has no element of the set M(X) of types as a base class
where M(X) is defined as follows:

— If X is a non-union class type, the set M(X) is
empty if X has no (possibly inherited) non-static
data members; otherwise, it consists of the type of
the first non-static data member of X (where said
member may be an anonymous union), X0, and the
elements of M(XO0).

— If X'is a union type, the set M(X) is the union of all
M(Ui) and the set containing all Ui, where each Ui is
the type of the i-th non-static data member of X.

— If X is a non-class type, the set M(X) is empty.

AUTOSAR

Dataflow Anomaly

The state of a variable at a point in a program can be described
using the following terms:

Undefined (U): The value of the variable is indeterminate.
Referenced (R): The variable is used in some way (e.g. in
an expression).

Defined (D): The variable is explicitly initialized or assigned
a value.

Given the above, the following dataflow anomalies can be
defined:

UR dataflow anomaly: Variable not assigneda value
before the specified use (this may result in undefined
behavior).

DU dataflow anomaly: Variable is assigned a value that is
never subsequently used.

DD dataflow anomaly: Variable is assigned a value twice
with no intermediate use.

Dead Code

Dead code (also known as redundant code) consists of evaluated
expressions whose removal would not affect the output program.

Unreachable Code

Unreachable code is code to which there is no syntactic (control
flow) path, e.g. a function which is never called, either directly or
indirectly.

Diamond Problem

The “diamond problem” is an ambiguity that arises when two
classes B and C inherit from A, and class D inherits from both B
and C. If there is a method provided by class A, that is overriden
in both B and C and D does not override it, then there is an
ambiguity which version of the method does D actually inherit.
See: Wikipedia.org for more details.

Interface class

An interface class is a class which has following properties:

if there are any, all member functions are public pure
virtual

if there are any, all data members are public static
constexpr

Extended precision format

The IEEE Standard for Floating-Point Arithmetic (IEEE 754)
specifies extended precision formats, that are recommended for
allowing a greater precision format than that provided by the
basic formats.

For an extended format the exponent range must be as great

as that of the next wider basic format. For instance, 64-bit
extended precision binary number must have an “exponent max”
of at least 16383, which is equal to “exponent max” of 128-

bit binary floating-point. The 80-bit extended format meets this
requirement.

https://en.wikipedia.org/wiki/Multiple_inheritance

AUTOSAR

Fundamental types

C++ built-in types defined in C++ Language Standard [3] in
chapter 3.9.1, e.g. char, signed char, unsigned char, int, long
long int, wchar_t, bool, float, double, void, std::nullptr_t, etc.

Scalar types

The following types are scalar types:

integral types
floating point types

pointers and pointers to members

enumerations
std::nullptr_t

glvalue A glvalue is an expression whose evaluation determines the
identity of an object, bit-field, or function.

xvalue An xvalue refers to an object, usually near the end of its lifetime,
so that its resources may be moved.

prvalue A prvalue is an expression whose evaluation initializes an object
or a bit-field, or computes the value of the operand of an operator.

rvalue An rvalue is an xvalue or a prvalue.

Ivalue An lvalue is a glvalue that is not an xvalue.

Implicitly-defined default | Implicitly-defined default constructor calls default constructors of

constructor its base classes and non-static data members. It has exactly the
same effect as a user-defined constructor with empty body and
empty initializer list.

Implicitly-defined copy | Implicitly-defined copy constructor of a class type (class or struct)

constructor performs full member-wise copy of the object’s bases and non-
static data members, in their initialization order, using direct
initialization.

Implicitly-defined move | Implicitly-defined move constructor of a class type (class or

constructor struct) performs full member-wise move of the object’s bases
and non-static members, in their initialization order, using direct
initialization with an xvalue argument.

Implicitly-defined copy | Implicitly-defined copy assignment operator of a class type

assignment operator (class or struct) performs full member-wise copy assignment
of the object’s bases and non-static data members, in their
initialization order, using built-in assignment for the scalars and
copy assignment operator for class types.

Implicitly-defined move | Implicitly-defined move assignment operator of a class type

assignment operator

(class or struct) performs full member-wise move assignment
of the object’s direct bases and immediate non-static data
members, in their initialization order, using built-in assignment
for the scalars, member-wise move-assignment for arrays, and
move assignment operator for class types (called non-virtually).

AUTOSAR

Implicitly-defined destructor

Implicitly-defined destructor has an empty body. After the body of
the destructor is executed, the destructors for all non-static non-
variant data members of the class are called, in reverse order

of declaration. Then it calls destructors of all direct non-virtual
base classes, in reverse order of construction, and then it calls
the destructors of all virtual bases.

Is-a relationship

Subsumption relationship between types. If one class B is a
subclass of another class A (i.e. B is a more specialized concept
than A), then B class specification implies A class specification
and a B class object can be used for any expression that requires
an A class object.

Has-a relationship

Composition relationship where one object is a part or member
of another object with respect to the rules of ownership.

Table C.1: Acronyms

Definition:

Description:

Single point of exit

Approach background:

IEC 61508 [19], as one of methods for providing modular
approach

1ISO26262 part 6 [5] with the requirement for ASIL A-D.

MISRA-C++ 2008 with the rule M6-6-5.
AUTOSAR Coding Guidelines consider that the only reason for
such an approach is improving robustness of resource handling,
e.g. ensuring that resources are properly released in case of an
early exit from the function. However, it is fully ensured by other
rules existing in the document that:

enforce usage of smart
pointers and memory management objects for expressing
lifetime semantics (A18-5-2)

enforce allocate local objects on stack (A18-5-8)

recommend usage of RAIl (A15-1-4, A18-5-2)
Single point of exit is considered to decrease code readability
and will not bring any additional benefits for improving coding
standards, thus it is not enforced by the AUTOSAR Coding
Guidelines.

Table C.2: Definitions

AUTOSAR

D Changelog

This section shows changes done between document releases.

D.1 Release 17-10

Type of change:

Modified rules:

Title, example, exceptions

A7-1-7, A15-0-4, A15-0-5, A15-3-1, A18-5-2

Rule classification

A9-3-1

References A0-4-3, M3-4-1, M5-2-12, A5-0-1, A5-1-2, A5-1-4, A6-5-2, M7-
1-2, M7-5-2, A7-1-1, A7-1-7, A8-4-1, M9-3-3, A12-0-1, A12-8-6,
A18-5-2, A18-9-2

New rule AO-1-4, AO-1-5, A6-5-3, A8-4-4, A9-5-1, A12-1-5, A12-1-6, Al13-

5-2, A18-1-6, A18-5-8

MISRA review changes

AO0-1-3, A2-10-5, A5-1-7, M10-1-2

Other

Traceability updated for HIC (see B.2), CERT (see B.4), C++
Core Guidelines (see B.5). Added changelog appendix chapter.

Table D.1: Changelog for release 17-10.

D.2 Release 18-03

Type of change:

Modified rules:

Title, example, exceptions

Al-4-1, A2-3-1, A2-7-3, A2-8-1, A3-3-2, A5-2-5, A12-0-1, A12-8-
1, A13-3-1, A15-0-5, A15-3-2, A15-3-3, A15-4-5, A15-5-1, A18-
0-2, A18-1-1, A18-1-4, A18-1-6, A18-5-8

Rule classification, numbering

A5-6-1, A2-13-1, A2-13-2, A2-13-3, 6.2.5 (A2-5-2), 6.2.8 (A2-8-1)
6.2.10 (A2-10-1, A2-10-4, A2-10-5), A15-0-6, A15-0-7, A15-0-8,
A15-1-1, A15-3-3, A18-1-1

Chapter numbering

6.2.3 (A2-3-1), 6.2.5 (A2-5-2), 6.2.8 (A2-8-1) 6.2.10 (A2-10-1,
A2-10-4, A2-10-5)

References, notes

MO-1-9, A2-7-3, A2-8-1, A3-3-2, A4-7-1, A5-0-1, M5-0-2, A5-2-1,
A5-2-5, M5-2-2, A6-5-1, A7-1-7, A8-5-2, A9-3-1, A12-1-1, A12-4-
1, A12-4-2, A13-5-2, A14-1-1, A15-0-4, A15-0-5, A15-4-1, Al15-
5-2, A15-5-3, M18-0-4, M18-0-5, A18-5-5

AUTOSAR

New rule

AO0-1-6, AD-4-4, A1-4-3, M2-7-1, A2-7-5, A2-8-2, A2-10-6, A2-11-
1, A2-13-4, A2-13-5, A2-13-6, A3-1-5, A3-1-6, A3-8-1, A5-0-4,
A5-1-9, A5-2-6, A5-3-2, A5-3-3, A5-5-1, A6-2-1, A6-5-4, A7-1-9,
AT7-2-5, A7-3-1, A7-6-1, A8-4-5, A8-4-6, A8-4-8, A8-4-9, A8-4-10,
A8-4-11, A8-4-12, A8-4-13, A8-5-0, A10-0-1, A10-0-2, A10-4-1,
A12-0-2, A13-5-3, A13-5-4, A14-5-1, A14-7-2, A14-8-2, A17-6-1,
A18-5-9, A18-5-10, A20-8-1, A20-8-2, A20-8-3, A20-8-4, A20-8-
5, A20-8-6, A20-8-7, A21-8-1, A23-0-2, A25-1-1, A25-4-1, A26-
5-1, A26-5-2, A27-0-3, A27-0-4

Removed rule

MO-1-5, Al1-4-2, A2-7-4, A2-10-2, A2-10-3, M2-10-6, A5-1-5, M5-
2-1, M7-3-5, M8-5-1, A13-1-1, M14-5-2, M14-7-3, A14-8-1, M14-
8-1, A15-3-1, A15-4-6, A18-1-5

Definitions

Is-a-relationship, Has-a-relationship

Other

Traceability updated for MISRA (see B.1), HIC++ (see B.2), JSF
(see B.3), CERT (see B.4), C++ Core Guidelines (see B.5)

D.3 Release 18-10

Table D.2: Changelog for release 18-03.

Type of change:

Modified rules:

Title, example, exceptions

A8-5-2, A8-5-4, A9-6-1, A10-2-1, A11-3-1, A13-5-4, A15-4-3,
A16-2-2, A16-2-3, A18-5-2, A18-5-3

References, notes

A5-0-4

New rule

A6-2-2, A8-4-14, M9-6-4, A13-5-5, A14-5-2, A14-5-3, A18-5-11

Other

Traceability updated for MISRA (see B.1), C++ Core Guidelines
(see B.5), HIC++ (see B.2). Traceability added for ISO 26262
(see B.6).

Table D.3: Changelog for release 18-10.

