
Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Document Title Explanation of Adaptive Platform
Software Architecture

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 982

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R20-11

Document Change History
Date Release Changed by Description

2020-11-30 R20-11
AUTOSAR
Release
Management

• Initial release

1 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Table of Contents

1 Introduction 6

1.1 Objectives . 6
1.2 Scope . 6
1.3 Document Structure . 7

2 Definition of Terms and Acronyms 8

2.1 Acronyms and Abbreviations . 8
2.2 Definition of Terms . 8

3 Related Documentation 9

4 Overview and Goals 10

4.1 Requirements Overview . 10
4.2 Quality Goals . 12
4.3 Stakeholders . 12

5 Architecture Constraints 13

5.1 Internal Interfaces . 13
5.2 Distributed Work . 14

6 Quality Requirements 15

6.1 Quality Attributes . 15
6.1.1 AUTOSAR Adaptive Platform Standard 15
6.1.2 AUTOSAR Adaptive Platform Stack 18
6.1.3 AUTOSAR Adaptive Application 18

6.2 Quality Scenarios . 19

7 System Scope and Context 20

7.1 Adaptive Application . 20
7.2 Dependencies . 21

7.2.1 Crypto Provider . 21
7.2.2 Operating System . 21
7.2.3 Watchdog . 21

7.3 External Systems . 21
7.3.1 AUTOSAR Adaptive Application 22
7.3.2 AUTOSAR Classic Platform 22
7.3.3 Third-party Platform . 22
7.3.4 Diagnostic Client . 22
7.3.5 Backend . 22

8 Solution Strategy 23

8.1 Architectural Approach . 23
8.2 Decomposition Strategy . 23
8.3 Technology . 24

8.3.1 Implementation Language 24

3 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

8.3.2 Parallel Processing . 24
8.4 Design Principles . 24

8.4.1 Leveraging existing standards 25
8.4.2 SOLID principles . 25
8.4.3 Acyclic Dependencies Principle 26

8.5 Deployment . 26
8.6 Verification and Validation . 27

9 Building Block View 28

9.1 Overview . 28
9.1.1 Stereotypes . 28

9.2 Runtime . 29
9.2.1 Execution Management . 30
9.2.2 State Management . 33
9.2.3 Log and Trace . 35
9.2.4 Core . 36
9.2.5 Operating System Interface 37

9.3 Communication . 38
9.3.1 Communication Management 39
9.3.2 Network Management . 41
9.3.3 Time Synchronization . 42

9.4 Storage . 43
9.4.1 Persistency . 43

9.5 Security . 45
9.5.1 Cryptography . 46
9.5.2 Identity and Access Management 48

9.6 Safety . 49
9.6.1 Platform Health Management 49

9.7 Configuration . 51
9.7.1 Update and Configuration Management 51
9.7.2 Registry . 53

9.8 Diagnostics . 54
9.8.1 Diagnostic Management . 54

10 Runtime View 56

10.1 Overview . 56
10.2 AUTOSAR Runtime for Adaptive Applications Lifecycle 56

10.2.1 Machine Startup . 56
10.2.2 Machine Shutdown . 57
10.2.3 Function Group State Transition 58
10.2.4 Failure Recovery . 59

10.3 Communication . 60
10.4 Update and Configuration Management 61

10.4.1 Update of an Adaptive Application 61

11 Deployment View 63

11.1 Vehicle Software Deployment . 63

4 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

12 Cross-cutting Concepts 65

12.1 Overview of Platform Entities . 65
12.2 Function Group . 66
12.3 Function Group State . 66
12.4 Software Cluster . 66
12.5 Machine . 69
12.6 Manifest . 70
12.7 Application Design . 71
12.8 Execution Manifest . 72
12.9 Service Instance Manifest . 72
12.10 Machine Manifest . 73
12.11 Error Handling . 73
12.12 Trusted Platform . 74
12.13 Secure Communication . 75

13 Risks and Technical Debt 76

13.1 Risks . 76
13.1.1 Risk Assessment . 76
13.1.2 Risk List . 77

13.2 Technical Debt . 77

5 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

1 Introduction

This explanatory document provides an overview of the software architecture of the
AUTOSAR Adaptive Platform standard.

1.1 Objectives

This document is an architecture description of the AUTOSAR Adaptive Platform in
accordance to [1, ISO/IEC 42010] and has the following main objectives:

• Identify the stakeholders of the AUTOSAR Adaptive Platform and their con-
cerns.

• Identify the system scope and provide overview information of the AUTOSAR
Adaptive Platform.

• Provide definitions for all used architecture viewpoints and a mapping of all
stakeholder concerns to those viewpoints.

• Provide an architecture view and its architecture models for each architecture
viewpoint used in this architecture description.

• Provide correspondence rules and correspondences among the contents of
this architecture description.

• Provide an architecture rationale (explanation, justification, reasoning for de-
cisions made) on a high level. A more in-depth documentation of decisions is
provided in [2, EXP_SWArchitecturalDecisions].

• Provide a record of known inconsistencies among the architecture description.

Please note that the AUTOSAR Adaptive Platform standard is defined by means of
requirements and software specification documents. Those documents deliberately
lack specifications of dependencies and interfaces between the building blocks of the
AUTOSAR Adaptive Platform to provide more degrees of freedom for stack vendors in
their solution design. This document describes the original architectural design of the
AUTOSAR Adaptive Platform including details how the building blocks should interact
with each other. It is an example how an implementation of the standard should work
internally. However, a stack vendor is free to choose another design as long as it
complies with the binding AUTOSAR Adaptive Platform standard.

1.2 Scope

This explanatory document applies to the AUTOSAR Adaptive Platform. It is recom-
mended to get an overview of the AUTOSAR Adaptive Platform for all members of the
working groups, stack vendors, and application developers.

6 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

1.3 Document Structure

This document is organized as follows. Section 4 provides an overview of the main
requirements for the AUTOSAR Adaptive Platform, the top quality goals of its architec-
ture, and a list of stakeholders that are affected by it. Section 5 lists requirements that
constrain design and implementation decisions or decisions about the development
process.

Section 6 is the base for discovering trade-offs and sensitivity points in the architecture
of the AUTOSAR Adaptive Platform by introducing a quality attribute tree followed by
the most important quality scenarios. The system context in which the AUTOSAR
Adaptive Platform is intended to be used is outlined in section 7. Section 8 summarizes
the fundamental decisions and solution strategies, that shape the architecture of the
AUTOSAR Adaptive Platform such as technology decisions or architectural patterns to
be used.

Sections 9 to 11 explain the software architecture from different view points. First, sec-
tion 9 explains the decomposition of the AUTOSAR Adaptive Platform into Functional
Clusters and their interdependencies. Then, section 10 demonstrates how the main
use cases are realized using the Functional Clusters in the AUTOSAR Adaptive Plat-
form. Section 11 shows different scenarios how applications based on the AUTOSAR
Adaptive Platform may be deployed.

Section 12 provides an overview of concepts and patterns used by the AUTOSAR
Adaptive Platform. Section 13 lists and rates risks associated with the architecture of
the AUTOSAR Adaptive Platform and technical debt.

7 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

2 Definition of Terms and Acronyms

2.1 Acronyms and Abbreviations

Abbreviation / Acronym Description
DoIP Diagnostics over Internet Protocol
POSIX Portable Operating System Interface
SecOC AUTOSAR Secure Onboard Communication
TLS Transport Layer Security
UML Unified Modeling Language

2.2 Definition of Terms

This section lists terms that are specific to this document. A list of general terms for
AUTOSAR is provided in the [3, glossary].

Term Description
Functional Cluster A logical group of functionality within the AUTOSAR Adaptive

Platform. Functional Clusters are the second level of ab-
straction in the building block view (cf. Chapter 9). They are also
subject of the individual specification documents that make up
the AUTOSAR Adaptive Platform standard.

Function Group A set of modeled Processes. See Section 12.2 for details.
Thread The smallest sequence of instructions the can be managed in-

dependently by a scheduler. Multiple Threads can be exe-
cuted concurrently within one Process sharing resources such
as memory.

Watchdog An external component that supervises execution of the AU-
TOSAR Adaptive Platform. See Section 7.2.3 for details.

8 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

3 Related Documentation

This document provides a high-level overview of the AUTOSAR Adaptive Platform ar-
chitecture. It is closely related to general requirements for AUTOSAR Adaptive Plat-
form specified in [4, RS_Main] and [5, RS_General], and the architectural decisions
documented in [2, EXP_SWArchitecturalDecisions].

The individual building blocks of the architecture (Functional Clusters) are spec-
ified in separate documents. Each Functional Cluster defines one or more
requirements specification(s) (RS document), one or more software specification(s)
(SWS document) and one or more explanatory document(s) (EXP document). Please
refer to these documents for any details on the AUTOSAR Adaptive Platform standard.

9 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

4 Overview and Goals

In conventional automotive systems ECUs are used to replace or augment electro-
mechanical systems. Those resource constrained,deeply-embedded ECUs typically
perform basic control functions by creating electrical output signals (e.g. for actors)
based on input signals (e.g. from sensors) and information from other ECUs con-
nected to the vehicle network. Much of the control software is specifically designed
and implemented for the target vehicle and does not change significantly during vehi-
cle lifetime. The AUTOSAR Classic Platform standard addresses the needs of these
deeply-embedded systems.

Recent and future vehicle functions, such as highly automated driving, will introduce
complex and computing resource demanding software that shall fulfill strict safety, in-
tegrity and security requirements. Such software performs for example, environment
perception and behavior planning, and interacts with external backend and infrastruc-
ture systems. The software in the vehicle regularly needs to be updated during the
life-cycle of the vehicle, due to evolving external systems, improved or added function-
ality, or security problems. The AUTOSAR Classic Platform standard cannot fulfill the
needs of such systems. Therefore, AUTOSAR specifies a second software platform,
the AUTOSAR Adaptive Platform. It provides high-performance computing and com-
munication mechanisms as well as a flexible software configuration, for example, to
support software update over-the-air. Features that are specifically defined for the AU-
TOSAR Classic Platform, such as access to electrical signals and automotive specific
bus systems, can be integrated into the AUTOSAR Adaptive Platform but is not in the
focus of standardization.

4.1 Requirements Overview

This section provides an overview of the basic requirements for the AUTOSAR Adap-
tive Platform that impact its architecture. The corresponding requirement identifiers are
provided in square brackets. Please refer to [4, RS_Main] and [5, RS_General] for any
details, rationale or intended use-cases of these requirements.

Support of state-of-the-art Technology

The AUTOSAR Adaptive Platform aims to support resource-intensive (memory, cpu)
applications on state-of-the-art hardware. Therefore, the AUTOSAR Adaptive Platform
shall support high performance computing platforms [RS_Main_00002] as well as vir-
tualized environments [RS_Main_00511]. The AUTOSAR Adaptive Platform shall be
able to run multiple applications in parallel [RS_Main_00049], each with concurrent
application internal control flows [RS_Main_00050].

10 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Software Update and Configuration

The AUTOSAR Adaptive Platform shall support a flexible (configuration) data and soft-
ware update. Hereby, AUTOSAR Adaptive Platform shall support up- and download of
such update packages [RS_Main_00650] and change of communication and applica-
tion software at runtime [RS_Main_00503].

AUTOSAR shall provide a unified way to describe software systems deployed to
Adaptive and / or Classic platforms [RS_Main_00161]. That kind of description
shall also support the deployment and reallocation of AUTOSAR Application Software
[RS_Main_00150], and shall provide means to describe interfaces of the entire system
[RS_Main_00160].

Security

The AUTOSAR Adaptive Platform shall support the development of secure systems
[RS_Main_00514] with secure access to ECU data and services [RS_Main_00170],
and secure onboard communication [RS_Main_00510].

Safety

The AUTOSAR Adaptive Platform shall support the development of safety related
systems [RS_Main_00010] that are reliable [RS_Main_00011] and highly available
[RS_Main_00012]. The AUTOSAR Adaptive Platform specifications shall be analyz-
able and support methods to demonstrate the achievement of safety related properties
accordingly [RS_Main_00350].

Reuse and Interoperability

The AUTOSAR Adaptive Platform shall support standardized interoperability with
non-AUTOSAR software [RS_Main_00190] as well as (source code) portability for
AUTOSAR Adaptive Applications across different implementations of the platform
[RS_AP_00111]. Hereby, the AUTOSAR Adaptive Platform shall provide means to
describe a component model for application software [RS_Main_00080], and support
bindings for different programming languages [RS_Main_00513].

Communication

The AUTOSAR Adaptive Platform shall support standardized automotive communica-
tion protocols [RS_Main_00280] for intra ECU communication [RS_Main_01001] with
different network topologies [RS_Main_00230].

11 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Diagnostics

The AUTOSAR Adaptive Platform shall provide diagnostics means during runtime for
production and services purposes [RS_Main_00260].

4.2 Quality Goals

This section will list the top quality goals for the architecture whose fulfillment is of
highest importance to the major stakeholders in a future version of this document.
Please refer to the currently un-prioritized list of Quality Attributes in Section 6.1.

4.3 Stakeholders

This section lists the stakeholders of the AUTOSAR Adaptive Platform architecture and
their main expectations.

Role Expectation
Project Leader Overview of technical risks and technical debt in the AUTOSAR

Adaptive Platform.
Working Group Architecture Concise yet thorough documentation of the goals and driving

forces of the AUTOSAR Adaptive Platform. Documentation of
the original architectural design of the AUTOSAR Adaptive Plat-
form standard. Documentation of identified technical risks and
technical debt in the AUTOSAR Adaptive Platform.

Working Group Consolidated overview of the AUTOSAR Adaptive Platform ar-
chitecture. Realization of use-cases that span multiple Func-
tional Clusters. Usage of interfaces within the AUTOSAR
Adaptive Platform. Guidelines and patterns for Functional
Cluster and interface design.

Stack Developer Consolidated overview of the original architectural design of the
AUTOSAR Adaptive Platform. Realization of use-cases that span
multiple Functional Clusters. Usage of interfaces within the
AUTOSAR Adaptive Platform.

Application Developer Overview of the building blocks of the AUTOSAR Adaptive Plat-
form and their purpose and provided functionality. Explanation of
the concepts used in the AUTOSAR Adaptive Platform.

Table 4.1: Stakeholder table with roles and expectations

12 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

5 Architecture Constraints

AUTOSAR is a worldwide development partnership of vehicle manufacturers, suppli-
ers, service providers and companies from the automotive electronics, semiconductor
and software industry. AUTOSAR standardizes the AUTOSAR Adaptive Platform au-
tomotive middleware. The AUTOSAR Adaptive Platform is not a concrete implemen-
tation. The AUTOSAR Adaptive Platform standard leaves a certain degree of freedom
to implementers of the standard, as most standards do. On the one hand, more free-
dom enables competition among the different implementations and a broader choice
of properties for users of the AUTOSAR Adaptive Platform. On the other hand, a more
strict standardization makes the different implementations compatible and exchange-
able (within the standardized scope). Naturally, those attributes are in conflict. It is
usually a choice of the standardization organization to evaluate the attributes and de-
fine the desired level of strictness.

The AUTOSAR Classic Platform is rather strict in that sense by specifying a detailed
layered software architecture imposing many constraints on its implementations. The
AUTOSAR Adaptive Platform launched with a less strict approach. That less strict
approach puts constraints on the AUTOSAR Adaptive Platform architecture as outlined
below.

5.1 Internal Interfaces

An important architectural constraint is that only interfaces that are intended to be
used by applications or interfaces that are used to extend the functionality of the
AUTOSAR Adaptive Platform shall be standardized. Internal interfaces between the
building blocks of the AUTOSAR Adaptive Platform shall not be standardized. This
approach leaves a lot of freedom to design and optimize the internals of an AUTOSAR
Adaptive Platform stack. However, it also imposes constraints on how the AUTOSAR
Adaptive Platform architecture can be defined and described in this document. Also,
this means that it might not be possible to use different functional clusters from different
AUTOSAR Adaptive Platform stack vendors.

First, the existence of internal interfaces and their usage by other building blocks is in
most cases a recommendation and reflects the original design approach of the authors
of the standard. The same applies to any interactions described in this document that
make use of such internal interfaces.

Second, some quality attributes may be hard to ensure in general by the architec-
ture of the standard. Additional measures like security or safety considerations lack
well-defined inputs such as data flows or specifications of interdependencies. Con-
sequently, a more thorough design phase is required when an AUTOSAR Adaptive
Platform stack is implemented.

13 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

5.2 Distributed Work

Standardization of the AUTOSAR Adaptive Platform is a worldwide distributed effort.
The individual building blocks are specified by dedicated working groups in separate
documents to be able to scale in that distributed setup. This impacts the way the
AUTOSAR Adaptive Platform architecture is described in this document.

First, this document shows interfaces on an architectural level only. This document
does not specify details of interfaces such as individual operations. This keeps redun-
dancies and thus dependencies between this document and the documents actually
specifying the individual building blocks manageable. Another consequence is that the
interactions shown in this document are not based on actual operations specified in the
interfaces but rather on an architectural level as well.

Second, this document aims to provide guidance for the working groups in specify-
ing the individual building blocks by defining patterns and concepts to solve common
problems. This guidance should help to build a uniform and consistent standard from
ground up.

14 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

6 Quality Requirements

Quality requirements define the expectations of AUTOSAR Adaptive Platform stake-
holders for the quality and the attributes of the AUTOSAR Adaptive Platform standard
that indicate whether the quality factors are satisfied or not. Section 6.1 starts by list-
ing the quality attributes that, in the end, are used to assess whether the AUTOSAR
Adaptive Platform and its software architecture satisfies the expected quality factors or
not. Section 6.2 then provides quality scenarios that operationalize quality attributes
and turn them into measurable quantities by describing the reaction of the system to a
stimulus in a certain situation.

6.1 Quality Attributes

The AUTOSAR Adaptive Platform has many stakeholders with different concerns.
Thus, this document uses the following three quality attribute categories that corre-
spond to the three main stakeholder groups in order to make the requirements and
their impact on the architecture more comprehensible:

• AUTOSAR Adaptive Platform Standard: Quality requirements for the AU-
TOSAR standard itself. These requirements may directly affect the architecture
of the AUTOSAR Adaptive Platform.

• AUTOSAR Adaptive Platform Stack: Quality requirements for an implementa-
tion of the AUTOSAR standard as an AUTOSAR stack. These requirements may
indirectly affect the architecture of the AUTOSAR Adaptive Platform.

• AUTOSAR Adaptive Application: Quality requirements for an application based
on an AUTOSAR stack. These requirements may transitively affect the architec-
ture of the AUTOSAR Adaptive Platform.

The quality attributes are organized according to the Architecture Tradeoff Analysis
Method (ATAM) [6] as a tree, one for each of the quality attribute categories. The leafs
of those trees are the individual quality attributes.

6.1.1 AUTOSAR Adaptive Platform Standard

• Functional suitability

– The software architecture shall reflect the project objectives (POs) and be
the consistent source for all specifications (here: completeness with respect
to the PO; see also usability below).

– The standard shall not contain elements that are not traceable to POs,
change requests (CRs), or concepts.

15 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

– The standard shall contain at least one element derived from each PO, CR,
or concept.

• Performance efficiency

– The specification shall allow for a run-time efficient implementation. Run-
time efficiency refers to all resource consumption, CPU, RAM, ROM.

• Compatibility

– The standard shall retain older versions of its elements in the face of change.

– The standard shall be interoperable with pre-existing standards, especially
the AUTOSAR Classic Platform. Pre-existing standards means network pro-
tocols and the like.

– The standard shall adopt new versions of pre-existing standards only after
an impact analysis.

• Usability

– The use of the standard shall be as easy as possible for suppliers and appli-
cation developers. Easy means: not much material and resources required.

– The holistic approach shall not be broken (avoid different approaches in one
standard).

– The standard shall contain application sample code for all its elements.

– The standard shall contain documentation of the use cases for its elements.

– The standard shall document the semantics of its elements.

– The standard shall document its decisions, consequences, and implemen-
tation restrictions (both for stack & apps) including their rationale.

– The standards elements shall be easy to use and hard to misuse.

– The standard shall stick to pre-existing standards, as far as no functional
requirements are compromised.

– The standard shall be as stable as possible.

– AUTOSAR standards shall not change disruptive but rather evolve evolution-
ary (for example, backward-compatibility can be a help).

– The software architecture shall reflect the PO and be the consistent source
for all specifications (here: consistency; see also functional suitability
above).

• Reliability

– The standard shall classify its elements with respect to safety relevance (that
is, functional clusters shall be marked if they participate in safety critical
operations of the platform).

16 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

– The standard shall specify control flow restrictions between its elements in
order to achieve freedom from interference.

– The standard shall contain use case driven argumentation for safety sce-
narios that can be used to build a safety case. (This should help the stack
implementers in getting a certification, if they follow the standard.)

• Security

– The standard shall specify data flow restrictions between its elements, and
between applications.

– The standard shall classify its elements with respect to security sensitivity
(that is, functional clusters shall be marked if they handle sensitive data.)

– The standard shall contain use case driven argumentation for security sce-
narios that can be used to build a security case. (This should help the stack
implementers in getting a certification, if they follow the standard.)

• Maintainability

– It shall be possible in an efficient way to maintain AUTOSAR Adaptive Plat-
form without preventing the introduction of new technologies (efficient in
terms of effort on the modification of the standard).

– The impact set of a change shall be available.

– The standard shall be structured in a way that minimizes change impact.

– It shall be possible to drop/deprecate elements of the standard.

– It shall be easy to add new features/needs without breaking the maintain-
ability or the need to redesign the software architecture. Easy means quick,
with low effort, local changes only and no heavy side effects.

– The maturity of parts of the standard shall be visible.

– The process shall enforce an architectural impact analysis in a very early
stage of the change process.

– The process shall enforce minimizing changes, that is not adding similar
functionality multiple times.

• Portability

– Applications shall be portable between different stack implementations and
different machines.

– It shall be possible to scale the software architecture to the given project
needs.

17 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

6.1.2 AUTOSAR Adaptive Platform Stack

• Compatibility

– An AUTOSAR Adaptive Platform stack implementation shall be capable to
offer multiple versions of the same service.

– An instance of an AUTOSAR Adaptive Platform stack implementation shall
be able to co-exist with other instances on different machines, within the
same vehicle.

• Usability

– An AUTOSAR Adaptive Platform stack implementation shall explicitly doc-
ument restrictions on the application development that go beyond the stan-
dard.

• Maintainability

– An AUTOSAR Adaptive Platform stack implementation shall be traceable to
the contents of the standard.

– An AUTOSAR Adaptive Platform stack implementation shall support multiple
versions of the same service.

• Portability

– An AUTOSAR Adaptive Platform stack shall be portable to a different custom
hardware.

– An AUTOSAR Adaptive Platform stack shall provide mechanisms to replace
parts.

6.1.3 AUTOSAR Adaptive Application

• Usability

– No Goal: An application developer shall be able to supply custom implemen-
tation for pre-defined platform functionality.

• Maintainability

– An application shall explicitly state which parts of the standard it uses.

• Portability

– An application entirely based on AUTOSAR Adaptive Platform (i.e. with-
out custom extensions) shall be portable to another AUTOSAR Adaptive
Platform stack of the same version without modifications to the application
source code itself (source code compatibility).

18 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

6.2 Quality Scenarios

There are currently no quality scenarios defined for the AUTOSAR Adaptive Platform.

19 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

7 System Scope and Context

This chapter provides an overview of the AUTOSAR Adaptive Platform system context
by separating the AUTOSAR Adaptive Platform and its communication partners (e.g.,
external systems). Considering Figure 7.1, there are three categories of communica-
tion partners for the AUTOSAR Adaptive Platform.

Operating System

Adaptive Application

Watchdog Crypto Provider

«externalInterfac...
Multi-Process System

Interface

«platformExtension...
Crypto Provider

«externalInterfac...
TCP/IP Stack

«externalInterface»
Watchdog Driver

«externalInterfac...
Non-volatile Storage

AUTOSAR Adaptive Platform

«externalInterface»
Single-Process POSIX API

«use»

«use»«use» «use»«use» «use» «use»

Figure 7.1: Overview of AUTOSAR Adaptive Platform and its context

The AUTOSAR Adaptive Platform is conceptually a middleware. AUTOSAR Adaptive
Platform provides services to Adaptive Applications (cf. Section 7.1) beyond
those available from the underlying operating system, drivers, and extensions (cf. Sec-
tion 7.2). Section 7.3 describes the third category that are external systems communi-
cating with (an Adaptive Application via) AUTOSAR Adaptive Platform.

7.1 Adaptive Application

Adaptive Applications are built on the functionality provided by the AUTOSAR
Adaptive Platform. They directly use the various interfaces provided by the individual
building blocks of AUTOSAR Adaptive Platform described in more detail in chapter 9.

20 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

7.2 Dependencies

7.2.1 Crypto Provider

Crypto Provider is a component that provides implementations of cryptographic
routines and hash functions to the AUTOSAR Adaptive Platform.

7.2.2 Operating System

The Operating System is the main component that AUTOSAR Adaptive Plat-
form uses to provide its services. The Operating System controls processes and
threads, and provides inter-process communication facilities. The Operating Sys-
tem also provides access to network interfaces, protocols like TCP/IP, and access to
non-volatile storage.

7.2.3 Watchdog

The Watchdog is a component to control the hardware watchdog of the machine an
AUTOSAR Adaptive Platform runs on.

7.3 External Systems

AUTOSAR Classic
Platform

Backend

Diagnostic Client

Third-party Platform

AUTOSAR Adaptive Platform

Adaptive Application

«flow»

«flow»

«flow»

«flow» «flow»

Figure 7.2: Overview of the AUTOSAR Adaptive Platform and external systems

The AUTOSAR Adaptive Platform supports applications that are operated in heteroge-
neous environments. This section lists the external systems that AUTOSAR Adaptive
Platform is intended to interface.

21 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

7.3.1 AUTOSAR Adaptive Application

There may be many Adaptive Applications deployed in a vehicle on different Ma-
chines. An Adaptive Application that does not run on the current instance of the
AUTOSAR Adaptive Platform is therefore an external system to the AUTOSAR Adap-
tive Platform. Such Adaptive Applications may exchange data such as sensor
or status information. During a software update of the entire vehicle, the update of the
individual AUTOSAR Adaptive Platforms could be coordinated by a central Adaptive
Application that makes use of the UCM Master addon to UCM.

7.3.2 AUTOSAR Classic Platform

The AUTOSAR Classic Platform is the main platform for deeply-embedded applications
such as sensor/actor systems. Adaptive Applications may require access for
example to sensor data provided by an AUTOSAR Classic Platform ECU and vice
versa.

7.3.3 Third-party Platform

Besides the both platforms (AUTOSAR Adaptive Platform and AUTOSAR Classic Plat-
form) provided by AUTOSAR, there may be ECUs in a vehicle and other systems that
are built on different platforms that need to communicate with an Adaptive Appli-
cation via AUTOSAR Adaptive Platform.

7.3.4 Diagnostic Client

A Diagnostic Client uses the diagnostic services provided by the AUTOSAR
Adaptive Platform.

7.3.5 Backend

A Backend system provides Software Packages for download and controls the
update process via Update and Configuration Management.

22 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

8 Solution Strategy

The AUTOSAR Adaptive Platform is a standard for an automotive middleware. It is
not a concrete implementation. The AUTOSAR Adaptive Platform standard leaves a
certain degree of freedom to its implementers by defining requirements and software
specifications that need to be fulfilled without specifying how.

8.1 Architectural Approach

To support the complex applications, while allowing maximum flexibility and scalabil-
ity in processing distribution and compute resource allocations, AUTOSAR Adaptive
Platform follows the concept of a service-oriented architecture (SOA). In a service-
oriented architecture a system consists of a set of services, in which one may use
another in turn, and applications that use one or more of the services depending on
its needs. Often service-oriented architectures exhibit system-of-system characteris-
tics, which AUTOSAR Adaptive Platform also has. A service, for instance, may reside
on a local ECU that an application also runs, or it can be on a remote ECU, which is
also running another instance of AP. The application code is the same in both cases -
the communication infrastructure will take care of the difference providing transparent
communication. Another way to look at this architecture is that of distributed comput-
ing, communicating over some form of message passing. At large, all these represent
the same concept. This message passing, communication-based architecture can also
benefit from the rise of fast and high-bandwidth communication such as Ethernet.

8.2 Decomposition Strategy

The building blocks of the AUTOSAR Adaptive Platform architecture are refined step-
by-step in this document according to the model depicted in figure 8.1. The top-level
categories are chosen to give an overview from a users perspective what kind of func-
tionality the AUTOSAR Adaptive Platform provides. A category contains one or more
Functional Clusters. The Functional Clusters of the AUTOSAR Adaptive
Platform are defined to group a specific coherent technical functionality. Functional
Clusters themselves specify a set of interfaces and components to provide and real-
ize that technical functionality. The building block view also contains information of the
Functional Clusters interdependencies based on interfaces from other Func-
tional Clusters they use. However, note that these interdependencies are recom-
mendations rather than strict specifications because they would constrain implementa-
tions.

23 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Category

Functional Cluster

Interface Component

1..*1..*

1..*

Figure 8.1: Type model of building blocks

8.3 Technology

8.3.1 Implementation Language

C++ is the programming language of choice for the AUTOSAR Adaptive Platform and
Adaptive Applications. C++ was chosen due to its safer programming model
(compared to C) and availability of certified compilers that produce highly optimized
machine code. Such properties are especially important for safety- and performance-
critical, real-time applications (such as typical Adaptive Applications) where C++
has become more and more popular in the software industry and academics.

8.3.2 Parallel Processing

Although the design for AUTOSAR Adaptive Platform as a service-oriented architecture
inherently leverages parallel processing, the advancement of (heterogeneous) many-
core processors offers additional opportunities. The AUTOSAR Adaptive Platform is
designed to scale its functionality and performance as (heterogeneous) many-core
technologies advance. Hardware and platform interface specifications are one part
of that equation. However, advancements in operating system and hypervisor tech-
nologies as well as development tools (for example automatic parallelization) are also
crucial and are to be fulfilled by AUTOSAR Adaptive Platform providers, the software
industry, and academics.

8.4 Design Principles

The architecture of the AUTOSAR Adaptive Platform is based on several design prin-
ciples that are outlined below.

24 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

8.4.1 Leveraging existing standards

AUTOSAR Adaptive Platform aims to leverage existing standards and specifications
wherever possible. For example, AUTOSAR Adaptive Platform ist built on the existing
and open C++ standard (cf. Section 8.3.1) to facilitate a faster development of the
AUTOSAR Adaptive Platform itself and benefiting from the eco-systems of such stan-
dards. It is, therefore, a critical focus in developing the AUTOSAR Adaptive Platform
specification not to casually introduce a new replacement functionality that an existing
standard already offers. For instance, no new interfaces are casually introduced just
because an existing standard provides the functionality required but the interface is
superficially hard to understand.

8.4.2 SOLID principles

The SOLID principles [7] are a central part of the design principles of AUTOSAR. While
these five principles are all valid, only the Single-responsibility Principle, the Interface
Segregation Principle and the Dependency Inversion Principle are relevant on the ab-
straction level of this document. Therefore, they are elaborated in the following.

8.4.2.1 Single-responsibility Principle

The single-responsibility principle (SRP,SWEBOK3) [7] states that a component or class
should be responsible for a single part of the overall functionality provided by the soft-
ware. That responsibility should be encapsulated by the component or class. The
services provided by the component or class (via its interface(s)) should be closely
aligned with its responsibility.

The single-responsibility principle minimizes the reasons (i.e. a change to the single
responsibility) that require a change to its interface. Thus, it minimizes impact on clients
of such an interface and leads to a more maintainable architecture (or code).

8.4.2.2 Interface Segregation Principle

The interface segregation principle (ISP) [7], [8] states that clients should not be forced
to depend on methods that they don’t use. As a consequence of the interface segre-
gation principle, interfaces should be split up to reflect different roles of clients.

Similar to the single-responsibility principle, the segregation of interfaces reduce the
impact of a change to an interface to the clients and suppliers of an segregated inter-
face.

25 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

8.4.2.3 Dependency Inversion Principle

The dependency inversion principle (DIP) [7], [8] states that high-level building blocks
should not depend on low-level building blocks. Both should depend on abstractions
(e.g. interfaces). Furthermore, the dependency inversion principle states that abstrac-
tions (e.g. interfaces) should not depend on details. Details (e.g. a concrete imple-
mentation) should depend on abstractions.

The dependency inversion principle results in a decoupling of the implementations of
building blocks. This is important to scale implementation efforts (cf. Section 5.2) and
to perform proper integration tests.

8.4.3 Acyclic Dependencies Principle

The acyclic dependencies principle (ADP) [7], [8] states that dependencies between
building blocks should form a directed acyclic graph.

The acyclic dependencies principle helps to identify participating building blocks and
reason about error propagation and freedom from interference. In general, it also re-
duces the extend of building blocks to consider during activities such as test, build and
deployment.

8.5 Deployment

The AUTOSAR Adaptive Platform supports the incremental deployment of applica-
tions, where resources and communications are managed dynamically to reduce the
effort for software development and integration, enabling short iteration cycles. Incre-
mental deployment also supports explorative software development phases. For prod-
uct delivery, the AUTOSAR Adaptive Platform allows the system integrator to carefully
limit dynamic behavior to reduce the risk of unwanted or adverse effects allowing safety
qualification. Dynamic behavior of an application will be limited by constraints stated
in the Execution Manifest (cf. Section 12.8), for example, dynamic allocation of
resources and communication paths are only possible in defined ways, within config-
ured ranges. Implementations of an AUTOSAR Adaptive Platform may further remove
dynamic capabilities from the software configuration for production use. Examples of
reduced behavioral dynamics might be:

• Pre-determination of the service discovery process

• Restriction of dynamic memory allocation to the startup phase only

• Fair scheduling policy in addition to priority-based scheduling

• Fixed allocation of processes to CPU cores

• Access to pre-existing files in the file-system only

26 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

• Constraints for AUTOSAR Adaptive Platform API usage by applications

• Execution of authenticated code only

8.6 Verification and Validation

The AUTOSAR Adaptive Platform standard uses a dedicated implementation of the
standard (AUTOSAR Adaptive Platform Demonstrator) to validate the requirements
and to verify the (still abstract) software design imposed by the individual software
specifications.

27 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9 Building Block View

This chapter provides an overview of the static structure of the AUTOSAR Adaptive
Platform by describing the high-level building blocks and their inter-dependencies.
Please note that the use of interfaces between Functional Clusters in the AU-
TOSAR Adaptive Platform is currently not standardized. Some aspects, for example,
access management, are also not yet fully incorporated and standardized in all Func-
tional Clusters.

9.1 Overview

Figure 9.1 provides an overview of the different categories of building blocks available
in the AUTOSAR Adaptive Platform. The categories are explained in more detail in the
subsequent sections.

AUTOSAR Adaptive Platform

Runtime Communication Storage

Security Safety Configuration

Diagnostics

Figure 9.1: Overview of AUTOSAR Adaptive Platform and its building blocks

9.1.1 Stereotypes

The UML diagrams presented in this chapter use a UML profile to provide a more
precise semantics of the elements and relationships. Table 9.1 provides an overview
of the stereotypes in that profile and their semantics.

28 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Stereotype Metaclass Semantics
applicationInterface Interface An interface that is intended to be used by

Adaptive Applications directly. Com-
ponents within the AUTOSAR Adaptive Plat-
form may use such interfaces as well.

externalInterface Interface An interface that is provided by an external
component.

internalInterface Interface An interface that is intended to be used only
by components within the AUTOSAR Adap-
tive Platform itself.

platformExtension-
Interface

Interface An interface that is used to extend the func-
tionality of the AUTOSAR Adaptive Platform.
Such interfaces are not intended to be used
by Adaptive Applications directly.

restrictedApplication-
Interface

Interface An applicationInterface that is re-
stricted to be used by specific application
components only. This applies in particular
to interfaces used by State Management.
State Management is considered to be a
part of an Adaptive Application. How-
ever, State Management access to inter-
faces, for example, provided by Execution
Management, that are not intended to be
used by any other part of an Adaptive Ap-
plication.

Table 9.1: Overview of Stereotypes

9.2 Runtime

State ManagementExecution Management Log and Trace Core

Operating System Interface

Figure 9.2: Overview of Runtime and its building blocks

29 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.2.1 Execution Management

Platform Health Monitor

Execution Management

State Management

Operating System

«restrictedApplicationInterface»
State Client

+ SetState(FunctionGroupState): Future

«externalInterface»
Multi-Process System Interface

+ SetProcessConfiguration()
+ StartProcess()
+ TerminateProcess()

«applicationInterface»
Execution Client

+ ReportExecutionState(ExecutionState): Result

«applicationInterface»
Deterministic Client

+ GetActivationTime()
+ GetNextActivationTime()
+ GetRandom()
+ RunWorkerPool()
+ WaitForNextActivation()

«internalInterface»
Request Execution Info

+ GetFunctionGroupStates()
+ GetProcessStates()

«use»

«use»

«use»

Figure 9.3: Overview of Execution Management

9.2.1.1 Responsibilities

Execution Management is responsible to control Processes of the AUTOSAR
Adaptive Platform and Adaptive Applications. That is, it starts, configures, and
stops Processes as configured in Function Group States using interfaces of the
Operating System. The Operating System is responsible for runtime scheduling
of those Process. The configuration of Processes that Execution Management
performs includes limiting their resource consumption (CPU time, memory) using Re-
source Groups provided by the Operating System.

Execution Management is the entry point of AUTOSAR Adaptive Platform and is
started by the Operating System during system boot. Execution Management
then controls the startup and shutdown of the AUTOSAR Adaptive Platform (see Sec-
tion 10.2.1 for details). Execution Management optionally supports authenticated

30 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

startup where it maintains the chain of trust when starting from a Trust Anchor. Dur-
ing authenticated startup Execution Management validates the authenticity and in-
tegrity of Processes and will prevent their execution if violations are detected. Through
these mechanisms, a trusted platform can be established (cf. Section 12.12).

9.2.1.2 Provided Interfaces

Deterministic Client (applicationInterface)

The Deterministic Client interface provides the functionality to run a cyclic de-
terministic execution.

Deterministic execution provides a mechanism such that a calculation using a given
input data set always produces a consistent output within a bounded time. There is
a distinction between time and data determinism. Time determinism states that the
output is always produced by a fixed deadline. Data determinism refers to generat-
ing always the same output from the same input data set and internal state. In the
AUTOSAR Adaptive Platform, time determinism has to be handled by the provisioning
of sufficient resources. The support for data determinism is provided by Execution
Management through the Deterministic Client interface.

If a software lockstep is used, Execution Management interacts with the software
lockstep framework to ensure identical behavior of the redundantly executed Pro-
cesses.

Execution Management also interacts with Communication Management to syn-
chronize data handling with cycle activation.

Execution Client (applicationInterface)

The Execution Client interface provides functionality for a Process to report its
execution state to Execution Management.

State Client (restrictedApplicationInterface)

The State Client interface provides functionality to request entering a Function
Group State. This interface is intended to be used by State Management only.

State Management determines the desired state of the Function Groups that run
on an AUTOSAR Adaptive Platform and requests corresponding state transitions via
the State Client interface. Execution Management will start/stop Processes
to reflect the configuration of the Function Group State made by the integrator
and report the result back to State Management.

31 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Request Execution Info (internalInterface)

The Request Execution Info interface provides functionality to retrieve informa-
tion about Processes and Function Group States.

9.2.1.3 Required Interfaces

Multi-Process System Interface

Execution Management should use this interface for starting, controlling, and stop-
ping Processes via the Operating System.

32 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.2.2 State Management

Platform Health Monitor

Execution Management

State Management

«restrictedApplicationInterface»
State Client

+ SetState(FunctionGroupState): Future

«restrictedApplicationInterf...
Machine Manager

+ ResetMachine()

«restrictedApplicationInterface»
NetworkState

+ NetworkCurrentState()
+ NetworkRequestedState()

Network Management

Diagnostic
Management

Update and
Configuration
Management

«applicationInterface»
Package Management

+ CurrentStatus

+ GetSwClusterInfo()
+ GetSwPackages()

«internalInterface»
Function Group State

+ FunctionGroupState

+ ReleaseRequest()
+ RequestState()

Interface is obsolete and
creates dependency cycles.

«applicationInterface»
Execution Client

+ ReportExecutionState(ExecutionState): Result

«use»«use»

«use»

«use»
«use»

«use»

«use»

Figure 9.4: Overview of State Management

9.2.2.1 Responsibilities

State Management determines the desired target state of the AUTOSAR Runtime
for Adaptive Applications based on various application-specific inputs. That target state
is the set of active Function Group States of all Function Groups running on

33 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

the AUTOSAR Runtime for Adaptive Applications. State Management delegates to
Execution Management to switch the individual Function Groups to the respec-
tive Function Group States.

State Management is a unique component in the AUTOSAR Adaptive Platform be-
cause it is not part of a AUTOSAR Adaptive Platform stack. The logic of State Man-
agement currently needs to be implemented as application-specific code and then
configured and integrated with an AUTOSAR Adaptive Platform stack.

9.2.2.2 Provided Interfaces

Function Group State (internalInterface)

The (obsolete) Function Group State interface provides functionality to request a
switch to a Function Group State. It is still included in the current release due to
compatibility reasons with Update and Configuration Management.

9.2.2.3 Required Interfaces

Execution Client

State Management should use the Execution Client interface to report its own
execution state back to Execution Management.

State Client

State Management should use the State Client interface to request transitions
to Function Group States.

Network State

State Management should use the Network State interface to trigger activation
and deactivation of (partial) networks and to subscribe for corresponding activation and
deactivation events.

Package Management

State Management should use the Package Management interface to subscribe
for status changes of Update and Configuration Management. State Man-
agement shall use this information to prevent shutdown of the AUTOSAR Runtime for

34 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Adaptive Applications while an update session is running and to reload/restart rele-
vant parts of the application and AUTOSAR Runtime for Adaptive Applications after an
update has been applied.

9.2.3 Log and Trace

Log and Trace

«applicationInterface»
Logger

+ LogDebug(): void
+ LogError(): void
+ LogFatal(): void
+ LogInfo(): void
+ LogVerbose(): void
+ LogWarn(): void

«applicationInterface»
Time Base Resource

Time Synchronization

«use»

Figure 9.5: Overview of Log and Trace

9.2.3.1 Responsibilities

Log and Trace provides functionality to build and log messages of different severity.
An Adaptive Application can be configured to forward log messages to various
sinks, for example to a network, a serial bus, the console, and to non-volatile storage.

9.2.3.2 Provided Interfaces

Logger (applicationInterface)

The Logger interface provides functionality to log textual messages.

35 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.2.3.3 Required Interfaces

Time Base Resource

The Time Base Resource interface should be used to determine timestamps for log
messages.

9.2.4 Core

Core

«applicationInterface»
Runtime Controller

+ Deinitialize()
+ Initialize()

«applicationInterface»
Process Termination

+ Abort()
+ SetAbortHandler()

Figure 9.6: Overview of Core

9.2.4.1 Responsibilities

Core provides functionality for initialization and de-initialization of the AUTOSAR Run-
time for Adaptive Applications as well as termination of Processes.

9.2.4.2 Provided Interfaces

Runtime Controller (applicationInterface)

The Runtime Controller interface provides functionality for initialization and de-
initialization of the AUTOSAR Runtime for Adaptive Applications.

Process Termination (applicationInterface)

The Process Termination interface provides functionality to terminate the current
Process.

9.2.4.3 Required Interfaces

Application Initializer does not require any standardized interfaces.

36 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.2.5 Operating System Interface

Operating System Interface

«applicationInterface»
Operating System Interface

Operating System

«externalInterface»
Single-Process POSIX API

«use»

Figure 9.7: Overview of Operating System Interface

9.2.5.1 Responsibilities

The Operating System Interface provides functionality for implementing multi-
threaded real-time embedded applications and corresponds to the [9, POSIX PSE51
profile]. That profile provides support to create Threads that may be executed in
parallel on modern multi-core processors and to control their properties such as stack
memory or their scheduling. In addition, primitives for shared resource access are
provided such as Semaphores or memory locking. Asynchronous (real-time) signals
and message passing enable inter-process communication. High resolution timers and
clocks are provided to control real-time behavior precisely. Some input/output functions
are provided as well but no file system APIs.

POSIX PSE51 and the Operating System Interface do not provide any means
to execute and control Processes. Processes (of the AUTOSAR Adaptive Platform)
are entirely controlled by Execution Management via non-standardized interfaces.

Note that a typical AUTOSAR Adaptive Platform stack will not provide an actual im-
plementation of the Operating System Interface because all functionality is al-
ready provided by standard libraries of the programming language (e.g. Standard C++
Library).

37 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.2.5.2 Provided Interfaces

Operating System Interface (applicationInterface)

The Operating System Interface is used by Adaptive Applications to cre-
ate, configure and control multiple Threads with support for real-time guarantees.

9.2.5.3 Required Interfaces

Single-Process POSIX API

The Single-Process POSIX API is used to delegate creation, configuration and
control of Threads to the Operating System.

9.3 Communication

Communication Management Network Management Time Synchronization

Figure 9.8: Overview of Communication and its building blocks

38 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.3.1 Communication Management

Communication Management

Log and Trace

«applicationInterface»
Logger

+ LogDebug(): void
+ LogError(): void
+ LogFatal(): void
+ LogInfo(): void
+ LogVerbose(): void
+ LogWarn(): void

«externalInterface»
TCP/IP Stack

Operating System Identity and Access
Management

«applicationInterface»
Service Interface

+ GetField()
+ InvokeMethod()
+ ReceiveEvent()
+ RegisterMethod()
+ SendEvent()
+ SetField()

«internalInterface»
Policy Decision Point

+ CheckAccess(): boolean

«internalInterface»
Manifest Accessor

RegistryCryptography

«applicationInterface»
Crypto Stack

«applicationInterface»
Service Registry

+ FindService()
+ OfferService()

«applicationInterface»
Raw Data Interface

+ ReadRawData()
+ WriteRawData()

«applicationInterface»
Operating System

Interface

Operating System
Interface

«use»«use»«use» «use»«use»«use»

Figure 9.9: Overview of Communication Management

9.3.1.1 Responsibilities

Communication Management is responsible for all levels of service-oriented and
raw communication between applications in a distributed real-time embedded environ-
ment. That is, intra-process communication, inter-process communication and inter-
machine communication. The latter is also possible with AUTOSAR Classic Platforms
and third-party platforms. Communication paths can be established at design-, start-
up-, and run-time. Communication Management consists of a generic part that han-
dles brokering and configuration as well as (potentially generated) skeletons for service
providers and respective proxies for service consumers.

39 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.3.1.2 Provided Interfaces

Service Interface (applicationInterface)

The Service Interface is used for service-oriented communication.

A service consists of a combination of Events, Fields, and Methods. The Ser-
vice Interface supports both synchronous callback-based communication (e.g.,
service method calls) and asynchronous communication (e.g., field changes, events).
Extensions are provided for secure communication and quality of service.

Raw Data Interface (applicationInterface)

The Raw Data Interface provides functionality to send and receive streams of raw
data.

Service Registry (applicationInterface)

The Service Registry provides functionality to register and to discover services
during runtime.

9.3.1.3 Required Interfaces

Logger

The Logger interface should be used to log for example failed checks.

TCP/IP Stack

The TCP/IP Stack interface should be used to control network connections for inter-
machine communication.

Operating System Interface

The Operating System Interface interface should be used to control connec-
tions for intra- and inter-process communication.

40 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Crypto Application Interface

The Crypto Application Interface should be used for end-to-end protection
(integrity, authenticity, confidentiality) of communication channels.

Manifest Accessor

The Manifest Accessor should be used to read service configuration from the
Manifests.

Policy Decision Point

The Policy Decision Point interface should be used to check access.

9.3.2 Network Management

State Management

«restrictedApplicationInterface»
NetworkState

+ NetworkCurrentState()
+ NetworkRequestedState()

Network Management

«externalInterface»
TCP/IP Stack

«use»

«use»

Figure 9.10: Overview of Network Management

9.3.2.1 Responsibilities

Network Management provides functionality to request and query the network states
for logical network handles that can be mapped to physical or partial networks.

41 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.3.2.2 Provided Interfaces

Network State (restrictedApplicationInterface)

The Network State interface is used to request and query the network states for
logical network handles. It is intended to be used by State Management only.

9.3.2.3 Required Interfaces

TCP/IP Stack

Network Management should use the functionality of the underlying TCP/IP Stack
to send or receive Network Management messages on the physical networks.

9.3.3 Time Synchronization

«applicationInterface»
Time Base Resource

Time Synchronization

«externalInterface»
TCP/IP Stack

«use»

Figure 9.11: Overview of TimeSynchronization

9.3.3.1 Responsibilities

Time Synchronization provides synchronized time information in distributed ap-
plications. Synchronized time information between different applications and/or Ma-
chines is of paramount importance when the correlation of different events across a
distributed system is needed, either to be able to track such events in time or to trigger
them at an accurate point in time.

42 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.3.3.2 Provided Interfaces

Time Base Resource (applicationInterface)

The Time Base Resource interface is used retrieve and update time information.

9.3.3.3 Required Interfaces

TCP/IP Stack

The TCP/IP Stack should be used to perform synchronization via network.

9.4 Storage

Persistency

Figure 9.12: Overview of Storage and its building blocks

9.4.1 Persistency

Persistency

«applicationInterface»
Key-Value Storage

«applicationInterface»
File Storage

«applicationInterface»
Data Management

+ RegisterApplicationDataUpdateCallback()
+ ResetPersistency()
+ UpdatePersistency()

«applicationInterface»
Crypto Stack

Cryptography

«externalInterface»
Non-volatile Storage

Operating System

«applicationInterface»
Redundancy Handling

+ RegisterRecoveryReportCallback()

«use»«use»

Figure 9.13: Overview of Persistency

43 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.4.1.1 Responsibilities

Persistency provides functionality to store and retrieve information to/from non-
volatile storage of a Machine.

Persistent data is always private to one Process and is persisted across boot and
ignition cycles. There is no mechanism available to share data between different Pro-
cesses using Persistency to prevent a second path of data exchange besides
Communication Management. However, Persistency supports concurrent ac-
cess from multiple threads of the same application running in the context of the same
Process.

Persistency offers integrity of the stored data and provides error detection and cor-
rection schemes. Persistency also offers confidentiality of the stored data using
encryption.

Persistency offers statistics, for example, the number of used resources.

9.4.1.2 Provided Interfaces

File Storage (applicationInterface)

The File Storage interface provides read and write access to plain files that may
be used to store arbitrary data.

Key-Value Storage (applicationInterface)

The Key-Value Storage interface provides read and write access to data struc-
tured as key-value pairs. It supports strings as keys and all primitive types supported
by AUTOSAR Adaptive Platform as values. Besides the plain types, Persistency
shall store serialized binary data which are given by ara::core::Vector of ara:-
:core::Byte as well as arbitrary CppImplementationDataTypes.

Redundancy Handling (applicationInterface)

As Persistency supports redundant storage of data and files, an error in the stored
data can be fixed implicitly by using the redundantly stored data. Only if this fails,
an error will occur. The Redundancy Handling interface provides a way to track
whether storage errors have been fixed using the available redundancy.

44 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Data Management (applicationInterface)

The Data Management interface provides functionality to trigger data migration (e.g.,
after an software update) and data reset.

9.4.1.3 Required Interfaces

Crypto Stack

The Crypto Stack interface should be used to ensure integrity and confidentiality of
the stored data.

Non-volatile Storage

The Non-volatile Storage interface should be used to access non-volatile stor-
age.

9.5 Security

Cryptography Identity and Access Management

Figure 9.14: Overview of Security and its building blocks

45 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.5.1 Cryptography

«platformExtensionInterface»
Crypto Provider

Crypto Provider

«applicationInterface»
Crypto Stack

Cryptography

Identity and Access
Management

«internalInterface»
Policy Decision Point

+ CheckAccess(): boolean

«internalInterface»
Crypto Service Manager

Diagnostic
Management

Persistency Communication
Management

Update and
Configuration
Management

«use»

«use» «use»

«use»

«use»«use»

Figure 9.15: Overview of Cryptography

9.5.1.1 Responsibilities

Cryptography provides various cryptographic routines to ensure confidentiality of
data, to ensure integrity of data (e.g., using hashes), and auxiliary functions for ex-
ample key management and random number generation. Cryptography is designed
to support encapsulation of security-sensitive operations and decisions in a separate
component, such as a Hardware Security Module (HSM). Additional protection of keys
and key usage can be provided by constraining keys to particular usages (e.g., decrypt-
only), or limiting the availability of keys to individual applications as reported by Iden-
tity and Access Management.

Depending on application support, Cryptography can also be used to protect session
keys and intermediate secrets when processing cryptographic protocols such as TLS
and SecOC.

46 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.5.1.2 Provided Interfaces

Crypto Stack (applicationInterface)

The Crypto Stack provides cryptographic routines and auxiliary functions to Adap-
tive Applications.

Crypto Service Manager (internalInterface)

The Crypto Service Manager provides internal functionality for access manage-
ment and certificate storage.

9.5.1.3 Required Interfaces

Crypto Provider

Cryptography should use the Crypto Provider interface to access the actual
implementation of cryptographic routines and auxiliary functions provided by external
libraries or hardware drivers.

Policy Decision Point

Cryptography should use the Policy Decision Point interface to make access
control decisions, for example on keys.

47 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.5.2 Identity and Access Management

Identity and Access
Management

«internalInterface»
Policy Decision Point

+ CheckAccess(): boolean

«internalInterface»
Manifest Accessor

Registry

CryptographyCommunication Management Diagnostic Management

«use»

«use»

«use»

«use»

Figure 9.16: Overview of Identity and Access Management

9.5.2.1 Responsibilities

Identity and Access Management checks access to resources of the AUTOSAR
Adaptive Platform, for example, on Service Interfaces and Functional Clus-
ters. Identity and Access Management hereby introduces access control for
Adaptive Applications and protection against privilege escalation in case of at-
tacks. In addition, Identity and Access Management enables integrators to ver-
ify access on resources requested by Adaptive Applications in advance during
deployment.

9.5.2.2 Provided Interface

Policy Decision Point (internalInterface)

The Policy Decision Point interface provides functionality to make an access
control decision.

48 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.5.2.3 Required Interfaces

Manifest Accessor

Intents of Adaptive Applications are stored in the application manifest and need
to be extracted by Identity and Access Management.

9.6 Safety

Platform Health Monitor

Figure 9.17: Overview of Safety and its building blocks

9.6.1 Platform Health Management

Platform Health Monitor

Execution ManagementState Management

«externalInterface»
Watchdog Driver

+ Disable()
+ Enable()
+ Reset()

Watchdog

«applicationInterface»
Supervised Entity

+ GetSupervisionStatus(): void
+ ReportCheckpoint()

«restrictedApplicationInt...
Machine Manager

+ ResetMachine()

«internalInterface»
Request Execution Info

+ GetFunctionGroupStates()
+ GetProcessStates()

«use»

«use» «use»

«use»

«use»

Figure 9.18: Overview of Platform Health Management

49 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.6.1.1 Responsibilities

Platform Health Management performs (aliveness, logical, and deadline) super-
vision of Processes in safety-critical setups and reports failures to State Manage-
ment. Platform Health Management also controls the Watchdog that in turn
supervises the Platform Health Management.

Alive Supervision checks that a supervised entity is not running too frequently
and not too rarely. Deadline Supervision checks that steps in a supervised entity
are executed within the configured minimum and maximum time. Logical Super-
vision checks that the control flow during execution matches the designed control
flow. All types of supervision can be used independently and are performed based on
reporting of Checkpoints by the supervised entity.

State Management and Execution Management are the fundamental Func-
tional Clusters of the AUTOSAR Adaptive Platform and need to run and work
properly in any case. Therefore, Platform Health Management shall always
supervise the corresponding Processes for State Management and Execution
Management. Supervision failures in these Processes shall be recovered by a reset
of the Machine since the normal way of error recovery (via Execution Management
and State Management) is no longer reliable.

9.6.1.2 Provided Interfaces

Machine Manager (restrictedApplicationInterface)

The Machine Manager interface provides functionality to trigger a reset of the Ma-
chine.

Supervised Entity (applicationInterface)

The Supervised Entity interface provides functionality to report Checkpoints to
Platform Health Management, for example that a certain milestone in the control
flow has been reached.

9.6.1.3 Required Interfaces

Watchdog Driver

Platform Health Management shall use the Watchdog Driver to control the
Watchdog.

50 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Request Execution Info

Platform Health Management should use the Request Execution Info to
retrieve information about active Processes and Function Group States and en-
able / disable its supervisions accordingly.

9.7 Configuration

RegistryUpdate and Configuration Management

Figure 9.19: Overview of Configuration and its building blocks

9.7.1 Update and Configuration Management

Update and Configuration Management

Communication
Management

Cryptography

«applicationInterface»
Crypto Stack

«applicationInterface»
Logger

+ LogDebug(): void
+ LogError(): void
+ LogFatal(): void
+ LogInfo(): void
+ LogVerbose(): void
+ LogWarn(): void

Log and Trace

«applicationInterface»
Package Management

+ CurrentStatus

+ GetSwPackages()

State Management

«applicationInterface»
Raw Data Interface

+ ReadRawData()
+ WriteRawData()

«internalInterface»
Function Group State

+ FunctionGroupState

+ ReleaseRequest()
+ RequestState()

«applicationInterface»
Vehicle Package

Management

+ GetSwPackages()
+ SwPackageInventory()

«use»

«use»

«use» «use»

«use»

Figure 9.20: Overview of Update and Configuration Management

51 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.7.1.1 Responsibilities

Update and Configuration Management is responsible for updating, installing,
removing and keeping a record of the software on an AUTOSAR Adaptive Platform in a
safe and secure way. Hereby, Update and Configuration Management enables
to update the software and its configuration flexibly through over-the-air updates (OTA).

9.7.1.2 Provided Interfaces

Package Management (applicationInterface)

The Package Management interface provides provides functionality to download,
process, activate and remove Software Packages. Additionally, Package Man-
agement provides the status of ongoing updates to State Management in order to
prevent switching into unsafe states during updates and shutdowns of the system dur-
ing the update process.

Vehicle Package Management (applicationInterface)

The Vehicle Package Management interface provides functionality methods to
download, process, activate and remove Vehicle Packages.

9.7.1.3 Required Interfaces

Raw Data Interface

Update and Configuration Management should use the Raw Data Inter-
face for raw data transfers, for example transfer of Software Packages.

Crypto Stack

Update and Configuration Management should check the integrity and authen-
ticity of software packages using functionality of the Crypto Stack.

Logger

Update and Configuration Management should use the Logger interface to
write log messages.

52 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Function Group State

Update and Configuration Management should use the Function Group
State interface to bring the AUTOSAR Runtime for Adaptive Applications into a state
that is safe before applying a software update.

9.7.2 Registry

Registry

«internalInterface»
Manifest Accessor

Communication
Management

Identity and Access
Management

«use» «use»

Figure 9.21: Overview of Registry

9.7.2.1 Responsibilities

The Registry is an internal component of the AUTOSAR Adaptive Platform that pro-
vides access the information stored in Manifests. It is not intended to be used by
Adaptive Applications directly.

9.7.2.2 Provided Interfaces

Manifest Accessor (internalInterface)

The Manifest Accessor interface is used to access data stored in Manifests, for
example configuration settings.

9.7.2.3 Required Interfaces

This component does not require any standardized interfaces.

53 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.8 Diagnostics

Diagnostic Management

Figure 9.22: Overview of Diagnostics and its building blocks

9.8.1 Diagnostic Management

Diagnostic Management

«applicationInterface»
Diagnostic Interface

«applicationInterface»
File Storage

«applicationInterface»
Logger

+ LogDebug(): void
+ LogError(): void
+ LogFatal(): void
+ LogInfo(): void
+ LogVerbose(): void
+ LogWarn(): void

«externalInterface»
TCP/IP Stack

Persistency Log and TraceOperating System

«applicationInterface»
Crypto Stack

Cryptography

«internalInterface»
Policy Decision Point

+ CheckAccess(): boolean

Identity and Access
Management

«platformExtensionInterface»
UDS Transport Protocol API

«use»
«use»«use» «use»«use»

Figure 9.23: Overview of Diagnostic Management

9.8.1.1 Responsibilities

Diagnostic Management is responsible for handling diagnostic events produced by
the individual Processes running in an AUTOSAR Runtime for Adaptive Applications.
Diagnostic Management stores such events and the associated data persistently
according to rendition policies. Diagnostic Management also provides access to di-
agnostic data for external Diagnostic Clients via standardized network protocols
(ISO 14229-5 (UDSonIP) which is based on the ISO 14229-1 (UDS) and ISO 13400-2
(DoIP)).

54 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

9.8.1.2 Provided Interfaces

Diagnostic Interface (applicationInterface)

The Diagnostic Interface provides functionality to create diagnostic events and
store them persistently.

UDS Transport Protocol API (platformExtensionInterface)

The UDS Transport Protocol API provides functionality to extend the AUTOSAR
Adaptive Platform with UDS transport layer implementations, for example with an OEM
specific implementation.

9.8.1.3 Required Interfaces

File Storage

DM should use the File Storage interface to store diagnostic data persistently.

TCP/IP Stack

The TCP/IP Stack is used to accept and control network connections from external
Diagnostic Clients using the UDSonIP protocol.

Logger

DM should use the Logger interface to log errors and diagnostic events.

Policy Decision Point

DM should use the Policy Decision Point interface to check access of Diag-
nostic Clients.

Crypto Stack

DM should use the Crypto Stack interface for example to perform authentication of
diagnostic sessions.

55 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

10 Runtime View

This chapter shows the original design approach of the AUTOSAR Adaptive Platform
for implementing selected use cases. The presented use cases currently cover just
a small part of the functionality of the AUTOSAR Adaptive Platform. More use cases
will be added in future versions of this document. Please note that individual imple-
mentations of the AUTOSAR Adaptive Platform may always choose a different design
internally. Thus, interaction partners, the type of messages, and their order may differ.

10.1 Overview

The use cases are categorized in the subsequent sections. Section 10.2 groups the
use cases that control the lifecycle of an AUTOSAR Runtime for Adaptive Applica-
tions. Section 10.3 lists use cases for communication with external systems. Section
10.4 demonstrates how Adaptive Applications can be installed and how they and the
AUTOSAR Runtime for Adaptive Applications can be updated.

10.2 AUTOSAR Runtime for Adaptive Applications Lifecycle

10.2.1 Machine Startup

During the startup of a machine the Operating System performs initialization steps
in an implementation-specific way. These steps include starting any middleware related
to the Operating System, including device-drivers and services handling low-level
middleware. In addition, Execution Management is started as the entry point of
the AUTOSAR Runtime for Adaptive Applications. Execution Management then
controls the startup of the AUTOSAR Runtime for Adaptive Applications by starting
State Management and Platform Health Management Processes.

After State Management and Platform Health Management are started,
State Management takes control over the initialization of the AUTOSAR Adaptive
Platform by requesting a transition to the standardized Machine State Startup
from Execution Management. After the rest of the AUTOSAR Adaptive Plat-
form has been initialized, State Management requests application-specific states
for the other Function Groups on the Machine from Execution Management
in the same way. Platform Health Management always supervises the Pro-
cesses of Execution Management and State Management with a (probably
fixed) implementation-specific set of rules. Platform Health Management itself
is supervised by the Watchdog. In addition, Platform Health Management su-
pervises application Processes according to the configuration in the Machine Man-
ifest.

56 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

:Operating System

loop all Processes

TBC: This currently leaves
us with a gap in watchdog
supervision between start
of EM and activation of the
watchdog.

EM: Execution Management

SM: State Management

:Watchdog Driver

PHM: Platform Health
Monitor

app: Adaptive Application

:Core

loop all Function Groups

ref
Function Group State Transition(Startup)

An application must call the
Initialize function before
interacting with the
Adaptive Runtime.

Activate the standard state
"Startup" of the Machine
State. This will start the rest
of the platform processes.

EM needs to be added for
supervision. This should be
done by firing an
ProcessChanged event.

ReportExecutionState(running): Result

ReportExecutionState(running): Result

ReportExecutionState(runing): Result

GetProcessStates()

SetState(FunctionGroupState): Future

GetFunctionGroupStates()

Initialize()

StartProcess()

StartProcess()

StartProcess()

Enable()

Figure 10.1: Startup of the AUTOSAR Runtime for Adaptive Applications

10.2.2 Machine Shutdown

A shutdown is requested by State Management after an application-specific event.
First, the application Function Groups may be brought to a corresponding state (not

57 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

shown). Afterwards, State Management triggers a transition to the Shutdown Ma-
chine State. The shutdown procedure is controlled by Execution Management.
Execution Management stops all platform Processes. Then, Execution Man-
agement terminates the State Management and Platform Health Manage-
ment Processes and requests a shutdown of the underlying operating system.

SM: State Management :Operating SystemEM: Execution
Management

PHM: Platform Health
Monitor

All application and platform
processes will be
terminated. This is not
shown for brevity. Then,
the Machine State
"Shutdown" is requested.

:Watchdog Driver

ref
Function Group State Transition(Shutdown)

TerminateProcess(SM)

ReportExecutionState(terminating): Result

ReportExecutionState(terminating): Result

Disable()

event()

TerminateProcess(PHM)

Shutdown()

ProcessChanged(terminating, SM)

Figure 10.2: Shutdown of the AUTOSAR Runtime for Adaptive Applications

10.2.3 Function Group State Transition

A switch to another Function Group State is requested by State Management
based on its inputs and internal state. The transition to the new Function Group
State is controlled by Execution Management. First, all Processes are termi-
nated that are either not active in the target state, or do have a different Startup
Configuration in the target state. The latter may also include different startup de-
pendencies. Then, all Processes are started by Execution Management in the
order imposed by their dependencies. During the state transition, Execution Man-
agement notifies Platform Health Management on any change of the state of the
Processes. Platform Health Management adapts its supervisions accordingly.

58 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

:Execution
Management

loop all processes of requestedFGState

:Operating System :Platform Health Monitor

loop all running processes

alt

[process not active in requestedFGState]

[process active, but with different startupConfig]

opt process not running

:State Management

StartProcess()

TerminateProcess()

PerformDependencyResolution(requestedFGState)

SetState(requestedFGState): Future

GetProcessStates()

TerminateProcess()

GetFunctionGroupStates()

currentFGState= :requestedFGState

Figure 10.3: Transition to another Function Group State

10.2.4 Failure Recovery

In case Platform Health Management detects a failure in an entity it supervises it
informs Execution Management about the supervision failure. Execution Man-
agement maps the supervised Process to the corresponding Function Group and
delegates to State Management to handle that failure in the Function Group and
perform recovery actions. State Management is an application-specific component
that, depending on its various inputs, internal state etc., may decide upon actions to be
taken to recover from a failure. There are two main possibilities:

• recover by switching Function Group State to another Function Group
State (e.g., for degradation)

• recover by re-entering the same Function Group State and essentially
restarting all Processes in the Function Group

59 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

• as a last resort, advise Platform Health Management to reset the Machine

:Platform Health Monitor :Execution Management :State Management:Supervised Entity

alt

[recover]

[else]

app1: Adaptive Application

Checkpoint reported too
late. Deadline missed.

MapProcessToFunctionGroup(app1): fg1

HandleFailure(fg1, deadline missed)

GetSupervisionStatus(): deadline missed

ResetMachine()

ReportCheckpoint()

SetSupervisionState(app1, deadline missed)

SetState(fg2): Future

Figure 10.4: Failure recovery scenarios

10.3 Communication

Service-oriented communication in the AUTOSAR Adaptive Platform is guarded by
Identity and Access Management that provides access control. All service-
requests are handled by Communication Management. Communication Man-
agement determines the Adaptive Application Identity (AAID) of the sender
Process using Execution Management. Then, Communication Management
requests an access control decision from Identity and Access Management us-
ing the identity of the sender and information about the called service. Communica-
tion Management enforces the access control decision by forwarding the request to
the service in case the access was granted or dropping the request in case the access
was denied.

60 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

app1: Adaptive Application :Communication Management :Identity and Access Management

alt

[Access allowed]

[Access denied]

:Execution Management app2: Adaptive Application

Drop()

Send(request, target)

GetAppID(): appID

CheckAccess(appID, target): boolean

Deliver(request, targetIP)

Figure 10.5: Access control in service-oriented communication

10.4 Update and Configuration Management

10.4.1 Update of an Adaptive Application

When an Adaptive Application has to be updated, the new version of the ap-
plication first has to be transferred to the Update and Configuration Manage-
ment instance. The state of the application as well as Update and Configuration
Management are monitored by State Management. Only if there is nothing else run-
ning (state kIdle), the actual update process starts.

Update and Configuration Management then receives the signal to start pro-
cessing the transferred data. After successful processing, the update enters activa-
tion phase and Update and Configuration Management checks dependencies
in the transferred Software Packages. After successful activation, the Adaptive
Application is restarted and after successful restart, running the updated software.

The last step for Update and Configuration Management is to finish the update
process by cleaning up and deleting temporary data, old software version or stored
data which are no longer required for the execution of the Adaptive Application.

61 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

:Backend :Update and Configuration
Management

:Adaptive Application:State Manager

CurrentStatus= :kCleaning-up

restart()

TransferData(): TransferId

Finish(): FinishReturnType

cleanup()

Activate(): ActivateReturnType

:FinishReturnType

:ActivateReturnType

CheckPackageDependencies()

CurrentStatus= :kIdle

ProcessSwPackage(TransferId)

CurrentStatus= :kIdle

CurrentStatus= :kActivating

CurrentStatus= :kProcessing

CurrentStatus= :kActivated

CurrentStatus= :kVerifying

Figure 10.6: Successful update of an Adaptive Application

62 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

11 Deployment View

This chapter provides an overview of exemplary deployment scenarios for an AU-
TOSAR Adaptive Platform. Since the AUTOSAR Adaptive Platform is highly config-
urable in its deployment, this section rather provides constraints on supported deploy-
ments and a selection of relevant deployment scenarios.

11.1 Vehicle Software Deployment

«device»
Vehicle

«device»
machine1: Machine

«executionEnvironment»
:Adaptive Runtime

«device»
gateway: Machine

«executionEnvironment»
:Adaptive Runtime

:Backend System :Diagnostic Client

«executable»
OTA Client Application

«executable»
Update and

Configuration
Management

«deployment spec»
UCM Master

«executable»
Update and

Configuration
Management

«deployment spec»
UCM Subordinate

«device»
ecu1: ECU

«executionEnvironment»
:Classic Platform

Figure 11.1: Exemplary vehicle software update scenario

63 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Update and Configuration Management allows to install and update software
on the AUTOSAR Adaptive Platform and AUTOSAR Classic Platform. For the AU-
TOSAR Adaptive Platform, Update and Configuration Management also al-
lows to remove software. The software packages can be received either from a Di-
agnostic Client or from a specific Backend System for over-the-air updates. In
a vehicle, one Adaptive Application takes the role of a master that controls the
update process in the vehicle and distributes individual software packages to the Ma-
chines and ECUs within a vehicle.

64 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

12 Cross-cutting Concepts

This section provides an overview of cross-cutting concepts and patterns used in the
AUTOSAR Adaptive Platform.

12.1 Overview of Platform Entities

The AUTOSAR Adaptive Platform defines design entities that several Functional
Clusters depend on. Figure 12.1 provides an overview of these entities, their logical
relationships, and the Functional Clusters that depend on them. For the sake of
brevity, this overview uses simplifications and abstractions over the actual specifica-
tions in the [10, manifest specification].

Software Package Software Cluster

- diagnosticConfig [0..1]
- version

Function Group

ProcessExecutable

Execution
Management

State
Management

Update and Configuration Management

Function Group State

Platform Health
Monitor

PhmSupervision Supervision Checkpoint

Startup Configuration

- options
- schedulingPriority

Adaptive Application

+process 1

1

+/requiredCluster 0..*

+/checkpoints

1..*

+executionDependecy 0..*

0..*

+executable1

1..* +state

0..*

0..*

Figure 12.1: Overview of platform entities and their logical relationships

A Software Package is a digitally signed package that can be installed/uninstalled
via Update and Configuration Management. A Software Package contains
exactly one Software Cluster (see Section 12.4 for details). A Software Clus-
ter refers to a set of Executables (and other files). The corresponding executable
file then holds the executable code for the Machine that the AUTOSAR Adaptive Plat-
form runs on.

65 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Additionally, a Software Cluster configuration collects a set of Processes (cf.
Section 12.4) and related entities. A Process refers to an Executable and provides
different Startup Configuration values, for example parameters, a scheduling
priority, and resource constraints. A Startup Configuration of a Process ap-
plies to one or more Function Group States. Function Group States belong
to a Function Group.

During runtime, State Management requests to enter a Function Group State
from Execution Management. Execution Management then terminates and
starts the Processes accordingly using the underlying Operating System.

For safety-critical systems, Platform Health Management performs supervision
of Processes according to rules (logical sequence, deadlines) defined in PhmSuper-
visions. A PhmSupervision refers to a number of Supervision Checkpoints.
During runtime, a process reports whenever it has reached such a checkpoint in its
control flow.

12.2 Function Group

A Function Group is (logically) made up a set of modeled Processes that provide
a certain functionality. For example, a Function Group could be an application,
or a service. A special Function Group is the Machine State that groups the
Process of the AUTOSAR Adaptive Platform itself. A Function Group contains a
set of Function Group States.

12.3 Function Group State

A Function Group State defines which Processes of a Function Group with
what configuration parameters shall be running or not. The Machine State (that
refers to the Processes of the AUTOSAR Adaptive Platform itself) defines at least the
following Function Group States: Off, Startup, Shutdown, and Restart.

12.4 Software Cluster

A Software Cluster configuration refers to a set of modeled Processes. Those
Processes are (transitively) used by one or more Function Group(s). Hereby, a
Function Group and its associated entities shall be part of only one Software
Cluster. In other words, Function Groups that span several Software Clus-
ters are invalid. A Software Cluster is packaged into one Software Package
- the atomic installable/updateable unit managed by Update and Configuration
Management. A Software Cluster may depend on other Software Clusters.
Such dependencies are expressed by version constraints. A Software Cluster
may also specify structural dependencies to Sub Software Clusters in order to

66 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

build larger installable units. The top of such a structural dependency hierarchy is
called a Root Software Cluster. Please note that a Software Cluster is only
used to configure deployment aspects. A Software Cluster is not a runtime entity.

A Root Software Cluster may specify a diagnostic configuration, in particular, a
diagnostic address. In contrast, a Sub Software Cluster may depend on a diag-
nostic configuration of its Root Software Cluster. The diagnostic configuration
applies to Processes that are (transitively) contained in a Root Software Clus-
ter and its Sub Software Cluster(s). That means, at runtime, any diagnostic
event produced by those Processes will be associated with the diagnostic address.

An exemplary Software Cluster during application design is shown in Figure 12.2.
The application Software Cluster(s) are modeled/configured in the same way as
the platform Software Cluster by defining Function Groups with Function
Group States and associating StartupConfigurations of Processes to them.

A Software Cluster serves as a grouping entity during application design. As a
result, entities within a Software Cluster, in particular the Function Groups, do
not need to have a unique (simple) name within the overall model because their path is
still unique. This allows to design Software Clusters independently, for example,
by external suppliers.

67 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

a: Software Cluster

e1: Executable

fg1: Function Group

normal: Function
Group State

off: Function Group
State

degraded: Function
Group State

executionManifest: Manifest

p1: Process

cfg1: Startup
Configuration

platform: Software Cluster

:Manifest

EM: Process

:Startup
Configuration

Other elements not shown for brevity.

b: Software Cluster

e2: Executable

executionManifest: Manifest

fg2: Function Group

off: Function Group
State

normal: Function
Group State

p2: Process

cfg2: Startup
Configuration

Figure 12.2: Exemplary Software Cluster during application design

From such a standardized model, an equivalent implementation-specific configura-
tion for Execution Management is derived that is used during runtime (see Figure
12.3). That configuration advises Execution Management to start and configure
processes accordingly when a Function Group State is requested. Hereby, Ex-
ecution Management (logically) merges configurations contributed by all installed
Software Packages. Other Functional Clusters that depend on configuration
provided in the Manifests merge the configurations contributed by all installed Soft-
ware Packages in the same way. Please also note that there is no corresponding
runtime entity for a Software Cluster (see Figure 12.3).

68 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

:Execution ManagementPlatform EM
Configuration

fg1 EM
Configuration

Start Executable "e1" as process "p1" with
configuration "cfg1" if "fg1::running" is requested.

fg2 EM
Configuration

e1: Executable

fg1: Function Group

normal: Function
Group State

off: Function Group
State

degraded: Function
Group State

p1: Process

cfg1: Startup
Configuration

e2: Executable

fg2: Function Group

off: Function Group
State

normal: Function
Group State

p2: Process

cfg2: Startup
Configuration

Start Executable "e2" as process "p2" with
configuration "cfg2" if "fg2::running" is requested.

Figure 12.3: Impact of exemplary Software Cluster during runtime

All Processes related to the Functional Clusters of the AUTOSAR Adaptive
Platform should be referenced only in Software Clusters of category PLAT-
FORM_CORE or PLATFORM. This allows for platform-independent development of
Software Clusters of category APPLICATION_LAYER.

In case a Functional Cluster may need multiple logical instances (for example,
Diagnostic Management has a logical instance per diagnostic address), an imple-
mentation of the Functional Cluster should still use a single physical (daemon)
process.

An AUTOSAR Adaptive Platform vendor may deviate from this design guide but should
provide additional countermeasures to keep Adaptive Applications portable.

12.5 Machine

The AUTOSAR Adaptive Platform regards hardware it runs on as a Machine. The ra-
tionale behind that is to achieve a consistent platform view regardless of any virtualiza-
tion technology which might be used. The Machine might be a real physical machine,
a fully-virtualized machine, a para-virtualized OS, an OS-level-virtualized container or
any other virtualized environment.

69 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

On hardware, there can be one or more Machine, and only a single instance of AU-
TOSAR Adaptive Platform runs on a machine. It is generally assumed that this hard-
ware includes a single chip, hosting a single or multiple Machines. However, it is also
possible that multiple chips form a single Machine if the AUTOSAR Adaptive Platform
implementation allows it.

12.6 Manifest

A Manifest represents a piece of AUTOSAR model description that is created to
support the configuration of an AUTOSAR Adaptive Platform product and which is up-
loaded to the AUTOSAR Adaptive Platform product, potentially in combination with
other artifacts (like binary files) that contain executable code to which the Manifest
applies. Please note that a typical Adaptive Application will make use of several
distinct but interrelated Manifests. Hereby, the individual Manifests contribute in-
formation to the complete application model. For example, each Software Cluster
may contribute a self-contained set of Manifests to configure its functionality.

The usage of a Manifest is limited to the AUTOSAR Adaptive Platform. This does
not mean, however, that all ARXML produced in a development project that targets
the AUTOSAR Adaptive Platform is automatically considered a Manifest. In fact,
the AUTOSAR Adaptive Platform is usually not exclusively used in a vehicle project.
A typical vehicle will most likely be also equipped with a number of ECUs developed
on the AUTOSAR Classic Platform and the system design for the entire vehicle will,
therefore, have to cover both, ECUs built on top of the AUTOSAR Classic Platform and
Machines created on top of the AUTOSAR Adaptive Platform.

In principle, the term Manifest could be defined such that there is conceptually just
one "Manifest" and every deployment aspect would be handled in this context. This
does not seem appropriate because it became apparent that Manifest-related model-
elements exist that are relevant in entirely different phases of a typical development
project.

This aspect is taken as the main motivation that next to the application design it is
necessary to subdivide the definition of the term Manifest in three different partitions:

Application Design This kind of description specifies all design-related aspects that
apply to the creation of application software for the AUTOSAR Adaptive Platform. It
is not necessarily required to be deployed to the adaptive platform machine, but the
application design aids the definition of the deployment of application software in the
Execution Manifest and Service Instance Manifest. See Section 12.7 for
details.

Execution Manifest This kind of Manifest is used to specify the deployment-related
information of applications running on the AUTOSAR Adaptive Platform. An Execu-
tion Manifest is bundled with the actual executable code to support the integration
of the executable code onto the machine. See Section 12.8 for details.

70 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Service Instance Manifest This kind of Manifest is used to specify how service-
oriented communication is configured in terms of the requirements of the underlying
transport protocols. A Service Instance Manifest is bundled with the actual
executable code that implements the respective usage of service-oriented communi-
cation. See Section 12.9 for details.

Machine Manifest This kind of Manifest is supposed to describe deployment-related
content that applies to the configuration of just the underlying machine (i.e. without any
applications running on the machine) that runs an AUTOSAR Adaptive Platform. A
Machine Manifest is bundled with the software taken to establish an instance of
the AUTOSAR Adaptive Platform. See Section 12.10 for details.

The temporal division between the definition (and usage) of different kinds of Mani-
fest leads to the conclusion that in most cases different physical files will be used to
store the content of the three kinds of Manifest. In addition to the Application Design
and the different kinds of Manifest, the AUTOSAR Methodology supports a Sys-
tem Design with the possibility to describe Software Components of both AUTOSAR
Platforms that will be used in a System in one single model. The Software Compo-
nents of the different AUTOSAR platforms may communicate in a service-oriented way
with each other. But it is also possible to describe a mapping of Signals to Services
to create a bridge between the service-oriented communication and the signal-based
communication.

12.7 Application Design

The application design describes all design-related modeling that applies to the cre-
ation of application software for the AUTOSAR AP. Application Design focuses on the
following aspects:

• Data types used to classify information for the software design and implementa-
tion

• Service interfaces as the pivotal element for service-oriented communication

• Definition how service-oriented communication is accessible by the application

• Persistency Interfaces as the pivotal element to access persistent data and files

• Definition how persistent storage is accessible by the application

• Definition how files are accessible by the application

• Definition how crypto software is accessible by the application

• Definition how the Platform Health Management is accessible by the application

• Definition how Time Bases are accessible by the application

• Serialization properties to define the characteristics of how data is serialized for
the transport on the network

71 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

• REST service interfaces as the pivotal element to communicate with a web ser-
vice by means of the REST pattern

• Description of client and server capabilities

• Grouping of applications in order to ease the deployment of software.

The artifacts defined in the application design are independent of a specific deployment
of the application software and thus ease the reuse of application implementations for
different deployment scenarios.

12.8 Execution Manifest

The purpose of the execution manifest is to provide information that is needed for the
actual deployment of an application onto the AUTOSAR AP. The general idea is to
keep the application software code as independent as possible from the deployment
scenario to increase the odds that the application software can be reused in different
deployment scenarios. With the execution manifest the instantiation of applications is
controlled, thus it is possible to

• instantiate the same application software several times on the same machine, or
to

• deploy the application software to several machines and instantiate the applica-
tion software per machine.

The Execution manifest focuses on the following aspects:

• Startup configuration to define how the application instance shall be started. The
startup includes the definition of startup options and access roles. Each startup
may be dependent on machines states and/or function group states.

• Resource Management, in particular resource group assignments.

12.9 Service Instance Manifest

The implementation of service-oriented communication on the network requires con-
figuration which is specific to the used communication technology (e.g. SOME/IP).
Since the communication infrastructure shall behave the same on the provider and the
requesters of a service, the implementation of the service shall be compatible on both
sides.

The Service Instance Manifest focuses on the following aspects:

• Service interface deployment to define how a service shall be represented on the
specific communication technology.

72 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

• Service instance deployment to define for specific provided and required service
instances the required credentials for the communication technology.

• The configuration of E2E protection

• The configuration of Security protection

• The configuration of Log and Trace

12.10 Machine Manifest

The machine manifest allows to configure the actual adaptive platform instance running
on specific hardware (machine).

The Machine Manifest focuses on the following aspects:

• Configuration of the network connection and defining the basic credentials for the
network technology (e.g. for Ethernet this involves setting of a static IP address
or the definition of DHCP).

• Configuration of the service discovery technology (e.g. for SOME/IP this involves
the definition of the IP port and IP multi-cast address to be used).

• Definition of the used machine states.

• Definition of the used function groups.

• Configuration of the adaptive platform functional cluster implementations (e.g.
the operating system provides a list of OS users with specific rights).

• The configuration of the Crypto platform Module.

• The configuration of Platform Health Management.

• The configuration of Time Synchronization.

• Documentation of available hardware resources (e.g. how much RAM is avail-
able; how many processor cores are available).

12.11 Error Handling

Proper handling of errors during runtime is an important aspect to build safe and se-
cure systems. The AUTOSAR Adaptive Platform does provide means for raising and
handling of such errors on different levels in the platform.

Platform Health Management detects errors (errors in the logical control flow,
missed deadlines, and missed liveness reporting) at the level of Processes and
performs recovery actions (for example, degradation) according to rules defined in
the Manifest. Execution Management detects unexpected termination of Pro-
cesses and reports to State Management for handling of such errors.

73 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

During execution of a Process of an Adaptive Application, different abnormal
conditions might be detected and need to be handled and/or reported. The follow-
ing types of unsuccessful operations are distinguished within the AUTOSAR Adaptive
Platform:

• An Error is the inability of an AUTOSAR Runtime for Adaptive Applications API
function to fulfill its specified purpose. An Error it is often a consequence of
invalid and/or unexpected input data. An Error is considered to be recoverable
and therefore shall be handled by applications.

• A Violation is the consequence of failed pre- or post-conditions of internal
state of the AUTOSAR Runtime for Adaptive Applications. A Violation is con-
sidered to be non-recoverable.

• A Corruption is the consequence of the corruption of a system resource, e.g.
stack or heap overflow, or a hardware memory flaw (for example, a detected bit
flip). A Corruption is considered to be non-recoverable.

• A failed default allocation is the inability of the AUTOSAR Runtime for
Adaptive Applications’s default memory allocation mechanism to satisfy an allo-
cation request (for example, there is not enough free memory available).

It is expected that a Violation or Corruption will not be experienced by a user of
the AUTOSAR Adaptive Platform (i.e. an application developer), unless there is some-
thing seriously wrong in the overall system. For example, faulty hardware may lead to a
Corruption. A Violation may occur if basic assumptions about resource require-
ments are violated, or the user runs the AUTOSAR Runtime for Adaptive Applications
in a configuration that is not supported by its vendor.

12.12 Trusted Platform

To guarantee the correct function of the system, it is crucial to ensure that the code ex-
ecuted on the AUTOSAR Adaptive Platform is unaltered (integrity) and has legitimate
origin (authenticity). Keeping this property allows the integrator to build a Trusted
Platform. A key property of a system that implements a Trusted Platform is a
Trust Anchor (also called Root of Trust). A Trust Anchor is often realized
as a public key that is stored in a secure environment, e.g. in non-modifiable persistent
memory or in an Hardware Security Module. A system designer is responsible
to ensure that the system starts beginning with a Trust Anchor and that the chain of
trust is kept until the Execution Management is launched. Depending on the mech-
anism that is chosen by the system designer to establish the chain of trust, the integrity
and authenticity of the entire system (including all executables) may be checked during
system start-up. Alternatively, the system designer might only ensure that the already
executed software has been checked regarding integrity and authenticity and Execu-
tion Management takes over responsibility on continuing the chain of trust when it
takes over control of the system. In the latter case, the system integrator is responsible
to ensure that the Execution Management is configured accordingly.

74 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

Passing trust requires that a trusted entity checks (using trusted functionality) that the
entity down the chain is authentic. The Trust Anchor (the first entity in the chain) is
authentic by definition. An example of such a chain of trust could look like this: The
Trust Anchor authenticates the bootloader before the bootloader is being started.
In each subsequent step in the boot process, the to-be-started executable shall be au-
thenticated first, for example by the executable started previously or by some external
entity like an Hardware Security Module. After the relevant parts of the Operat-
ing System have been authentically started, it shall launch Execution Manage-
ment as one of its first processes in the same manner passing trust to the AUTOSAR
Adaptive Platform. Then, Execution Management takes over the responsibility of
authenticating Adaptive Applications before launching them.

As stated above, if authenticity is not checked by the functionality of the Trust An-
chor itself, which is authentic by definition, the functionality that shall be applied to
verify authenticity of an executable has to be authenticated as well before it is applied.
For instance, if the Crypto Functional Cluster shall be used to verify authentic-
ity of executables, the Crypto Functional Cluster itself shall be authenticated by
some trusted entity before it is used.

12.13 Secure Communication

AUTOSAR supports different protocols that provide communication security over a net-
work. Integrity of messages can be ensured by the end-to-end protection offered by the
[11, AUTOSAR E2E library]. End-to-end protection assumes that safety- and security-
related data exchange shall be protected at runtime against the effects of faults within
the communication link. Such faults include random hardware faults (e.g. corrupt regis-
ters of a transceiver), interference (e.g. electromagnetic interference), and systematic
faults in the communication stack. The configuration of end-to-end-protection is done
via Service Instance Manifest on level of Service events, methods, and fields
(notifier, get, and set methods). Confidentiality and authenticity of messages can be
ensured by dedicated configurations for the individual transport protocols (e.g. TLS,
SecOC) in the Service Instance Manifest on level of Service events, meth-
ods, and fields (notifier, get, and set methods).

75 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

13 Risks and Technical Debt

This chapter lists and rates risks associated with the overall architecture of the AU-
TOSAR Adaptive Platform in Section 13.1. These risks usually might cause that some
of the quality attributes of the AUTOSAR Adaptive Platform are not (fully) meat. Sec-
tion 13.2 lists technical debt of the AUTOSAR Adaptive Platform that may impact its
maintainability.

13.1 Risks

13.1.1 Risk Assessment

This document categorizes risks according to their severity. The severity is a function
of the probability and the impact of a risk. The probabilities are categorized as follows:

• very low - probability is less than 1 thousandth

• low - probability is between 1 thousandth and 1 percent

• medium - probability is between 1 percent and 10 percent

• high - probability is between 10 percent and 50 percent

• very high - probability is more than 50 percent

The impact of a risk is categorized as follows:

• very low - at most one quality scenario will take additional significant effort to be
satisfied

• low - more than one quality scenario will take additional significant effort to be
satisfied

• medium - at most one quality scenario is not satisfied with small gaps

• high - at most one quality scenario is not satisfied with big gaps

• very high - more than one quality scenario is not satisfied with big gaps

The final severity of a risk is then calculated according to table 13.1.

Probability
Impact very low low medium high very high
very low low (1) low (2) low (3) medium (4) medium (5)
low low (2) medium (4) medium (6) high (8) high (10)
medium low (3) medium (6) high (9) high (12) high (15)
high medium (4) high (8) high (12) extreme (16) extreme (20)
very high medium (5) high (10) high (15) extreme (20) extreme (25)

Table 13.1: Risk Severity Matrix

76 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

13.1.2 Risk List

No architectural risks were identified yet.

13.2 Technical Debt

No technical debt has been identified yet.

77 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

Explanation of Adaptive Platform Software
Architecture

AUTOSAR AP R20-11

References

[1] ISO 42010:2011 – Systems and software engineering – Architecture description
http://www.iso.org

[2] Explanation of Adaptive Platform Software Architectural Decisions
AUTOSAR_EXP_SWArchitecturalDecisions

[3] Glossary
AUTOSAR_TR_Glossary

[4] Main Requirements
AUTOSAR_RS_Main

[5] General Requirements specific to Adaptive Platform
AUTOSAR_RS_General

[6] ATAMSM: Method for Architecture Evaluation
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001
_13706.pdf

[7] Agile Software Development: Principles, Patterns, and Practices

[8] Guide to the Software Engineering Body of Knowledge, Version 3.0
www.swebok.org

[9] API standards for Open Systems
http://www.opengroup.org/austin/papers/wp-apis.txt

[10] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[11] Specification of SW-C End-to-End Communication Protection Library
AUTOSAR_SWS_E2ELibrary

78 of 78 Document ID 982: AUTOSAR_EXP_SWArchitecture

http://www.iso.org
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000\hskip 0em{}_005\hskip 0em{}_001\hskip 0em{}_13706.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000\hskip 0em{}_005\hskip 0em{}_001\hskip 0em{}_13706.pdf
www.swebok.org
http://www.opengroup.org/austin/papers/wp-apis.txt

	1 Introduction
	1.1 Objectives
	1.2 Scope
	1.3 Document Structure

	2 Definition of Terms and Acronyms
	2.1 Acronyms and Abbreviations
	2.2 Definition of Terms

	3 Related Documentation
	4 Overview and Goals
	4.1 Requirements Overview
	4.2 Quality Goals
	4.3 Stakeholders

	5 Architecture Constraints
	5.1 Internal Interfaces
	5.2 Distributed Work

	6 Quality Requirements
	6.1 Quality Attributes
	6.1.1 AUTOSAR Adaptive Platform Standard
	6.1.2 AUTOSAR Adaptive Platform Stack
	6.1.3 AUTOSAR Adaptive Application

	6.2 Quality Scenarios

	7 System Scope and Context
	7.1 Adaptive Application
	7.2 Dependencies
	7.2.1 Crypto Provider
	7.2.2 Operating System
	7.2.3 Watchdog

	7.3 External Systems
	7.3.1 AUTOSAR Adaptive Application
	7.3.2 AUTOSAR Classic Platform
	7.3.3 Third-party Platform
	7.3.4 Diagnostic Client
	7.3.5 Backend

	8 Solution Strategy
	8.1 Architectural Approach
	8.2 Decomposition Strategy
	8.3 Technology
	8.3.1 Implementation Language
	8.3.2 Parallel Processing

	8.4 Design Principles
	8.4.1 Leveraging existing standards
	8.4.2 SOLID principles
	8.4.3 Acyclic Dependencies Principle

	8.5 Deployment
	8.6 Verification and Validation

	9 Building Block View
	9.1 Overview
	9.1.1 Stereotypes

	9.2 Runtime
	9.2.1 Execution Management
	9.2.2 State Management
	9.2.3 Log and Trace
	9.2.4 Core
	9.2.5 Operating System Interface

	9.3 Communication
	9.3.1 Communication Management
	9.3.2 Network Management
	9.3.3 Time Synchronization

	9.4 Storage
	9.4.1 Persistency

	9.5 Security
	9.5.1 Cryptography
	9.5.2 Identity and Access Management

	9.6 Safety
	9.6.1 Platform Health Management

	9.7 Configuration
	9.7.1 Update and Configuration Management
	9.7.2 Registry

	9.8 Diagnostics
	9.8.1 Diagnostic Management

	10 Runtime View
	10.1 Overview
	10.2 AUTOSAR Runtime for Adaptive Applications Lifecycle
	10.2.1 Machine Startup
	10.2.2 Machine Shutdown
	10.2.3 Function Group State Transition
	10.2.4 Failure Recovery

	10.3 Communication
	10.4 Update and Configuration Management
	10.4.1 Update of an Adaptive Application

	11 Deployment View
	11.1 Vehicle Software Deployment

	12 Cross-cutting Concepts
	12.1 Overview of Platform Entities
	12.2 Function Group
	12.3 Function Group State
	12.4 Software Cluster
	12.5 Machine
	12.6 Manifest
	12.7 Application Design
	12.8 Execution Manifest
	12.9 Service Instance Manifest
	12.10 Machine Manifest
	12.11 Error Handling
	12.12 Trusted Platform
	12.13 Secure Communication

	13 Risks and Technical Debt
	13.1 Risks
	13.1.1 Risk Assessment
	13.1.2 Risk List

	13.2 Technical Debt

