AUTOSAR

Document Title | E2E Protocol Specification
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 849

Document Status published

Part of AUTOSAR Standard Foundation

Part of Standard Release R19-11

Document Change History

Date Release | Changed by

Description

AUTOSAR
Release
Management

2019-11-28 | R19-11

e Introduction of Constraints for
Client-Server Communication.

e Added E2E_PXXForward
functionality to provide a mechanism
for replicating received E2E Errors.

e Incorporated new configuration
options for switching between valid
and invalid state of
E2E-Statemachine.

e Fixed interoperability issues between
P01 and P11, P02 and P22.

e Changed Document Status from
Final to published.

AUTOSAR
Release
Management

2019-03-29 | 1.5.1

e clarification on choosing suitable
maximum data lengths for E2E
profiles.

AUTOSAR

e Migrated all functional specifications
from Classic Platform’s SWS
E2ELibrary into Foundation’s E2E
Protocol Specification
e Moved all figures and tables out of
AUTOSAR specifications and added references
2018-10-31 | 1.5.0 Release to them
Management e Fixed duplicate/missing figures in
profiles 2 (Calculate DeltaCounter), 5
(Read CRC), 6 (Read Counter) and
11 (Read DatalDNibble).
e Added protocol examples for each
profile
AUTOSAR
2018-03-29 | 1.4.0 Release e No content Changes
Management
AUTOSAR
2017-12-08 | 1.3.0 Release e No content Changes
Management
AUTOSAR
2017-10-27 | 1.2.0 Release e Initial Release
Management

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

—

Introduction and functional overview

2 Acronyms and Abbreviations

3 Related documentation

3.1
3.2

Input documents & related standards andnorms
Related specification,

4 Constraints and assumptions

41
4.2
4.3

Limitations
Applicability to cardomains L
Background information concerning functional safety

4.3.1
4.3.2

4.3.3

Functional safety and communication

Sources of faults in E2E communication
4.3.2.1 Softwarefaults
4.3.2.2 Random hardware faults
4.3.2.3 External influences, environmental stress

Communicationfaults
4.3.3.1 Repetition of information
4.3.3.2 Loss of information
4.3.3.3 Delay of information
4.3.3.4 Insertion of information.
4.3.3.5 Masquerading
4.3.3.6 Incorrectaddressing
4.3.3.7 Incorrect sequence of information.
4.3.3.8 Corruption of information
4.3.3.9 Asymmetric information sent from a sender to multi-

plereceivers
4.3.3.10 Information from a sender received by only a subset

ofthereceivers
4.3.3.11 Blocking access to a communication channel

5 Requirements Tracing

6 Functional specification

6.1
6.2

6.3

Overview of communication protection
Overview of E2E Profiles,

6.2.1

Error detectiono

Specification of E2E Profile 1 (Only forCP)

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

Data Layout
Counter e e
DatalD e
CRCcalculation
Timeoutdetection,

10

11

11
11

11

11
12
12
12
13
13
13
13
14
14
14
14
14
14
14
14
15

15

15
15

16

AUTO SAR

6.4

6.5

6.6

6.7

6.3.6 E2E Profiletvariants 29
6.3.7 E2E PO1Protect 30
6.3.8 Calculate CRC 31
6.3.9 E2E PO1Forward 33
6.3.10 E2E_PO1Check 36
6.3.10.1 Profile 1 Check Status Enumeration 42
6.3.11 E2E Profile 1 Protocol Examples 43
6.3.11.1 DatalDMode set to E2E_P0O1_DATAID_ALT 44
6.3.11.2 DatalDMode set to E2E_P0O1_DATAID LOW. 44
6.3.11.3 DatalDMode set to E2E_PO1_DATAID_NIBBLE . .. 45
Specification of E2E Profile 2 (only forCP) 45
6.4.1 E2E PO2Protect 48
6.4.2 E2E PO2Forward, 50
6.4.3 E2E P02Check, 51
6.4.3.1 Profile 2 Check Status Enumeration 60
6.4.4 E2E Profile 2 Protocol Examples 62
Specification of E2E Profile 4 63
6.5.1 Data Layout 64
6.5.1.1 Userdatalayout 64
6.5.1.2 Headerlayout 64
6.5.2 Counter e 65
6.5.3 DatalD e 65
6.5.4 Length 66
6.5.5 CRC . . . e 66
6.5.6 Timeout detection 66
6.5.7 E2E Profile4 variants 67
6.5.8 E2E PO4Protect 67
6.5.9 E2E PO4Forward 72
6.5.10 E2E _P04Check, 75
6.5.10.1 Profile 4 Check Status Enumeration 80
6.5.11 E2E Profile 4 Protocol Examples 80
Specification of E2E Profile 5 81
6.6.1 Data Layout 82
6.6.1.1 Userdatalayout 82
6.6.1.2 Headerlayout 82
6.6.2 Counter e 83
6.6.3 DatalD 83
6.6.4 Length 84
6.6.5 CRC . . . e 84
6.6.6 Timeoutdetection 84
6.6.7 E2E PO5Protect 85
6.6.8 E2E PO5Forward 88
6.6.9 E2E_PO5Check 90
6.6.9.1 Profile 5 Check Status Enumeration 94
6.6.10 E2E Profile 5 Protocol Examples 95

Specification of E2E Profile6 96

AUTO SAR

6.8

6.9

6.7.1 Datalayout 97
6.7.1.1 Userdatalayout 97
6.7.1.2 Headerlayout 97

6.7.2 Counter e 97

6.7.3 DatalD 98

6.7.4 Length 99

6.7.5 CRC . . . e 99

6.7.6 Timeoutdetection 99

6.7.7 E2E PO6Protect 100

6.7.8 E2E PO6Forward 103

6.7.9 E2E_P0O6Check 106
6.7.9.1 Profile 6 Check Status Enumeration 111

6.7.10 E2E Profile 6 Protocol Examples 111

Specification of E2E Profile 7 oL 112

6.8.1 DataLayout 113
6.8.1.1 Userdatalayout 113
6.8.1.2 Headerlayout 113

6.8.2 Counter e 114

6.8.3 DatalD e 114

6.8.4 Length 115

6.8.5 CRC . . . e 115

6.8.6 Timeoutdetection, 115

6.8.7 E2E Profile 7variants o L. 116

6.8.8 E2E PO7Protect 116

6.8.9 E2E PO7Forward 121

6.8.10 E2E_PO7Check 124
6.8.10.1 Profile 7 Check Status Enumeration 129

6.8.11 E2E Profile 7 Protocol Examples 129

Specification of E2E Profile 11 130

6.9.1 DataLayout 131
6.9.1.1 Userdatalayout 131
6.9.1.2 Headerlayout 132

6.9.2 Counter e 133

6.9.3 DatalD e 134

6.9.4 Length 134

6.9.5 CRC . . . e 134

6.9.6 Timeoutdetection 135

6.9.7 E2E P11Protect 135

6.9.8 E2E P11Forward, 139

6.9.9 E2E P11Check, 142
6.9.9.1 Profile 11 Check Status Enumeration 147

6.9.10 E2E Profile 11 Protocol Examples 147

6.9.10.1 DatalDMode set to E2E_P11DATAID NIBBLE. .. . 148
6.9.10.2 DatalDMode set to E2E_P11DATAID_ NIBBLE, Off-
setsetto64 149

6.10 Specification of E2E Profile22, 149

AUTO SAR

6.11

6.10.1 Datalayout
6.10.1.1 Userdatalayout
6.10.1.2 Headerlayout

6.10.2 Counter e

6.10.3 DatalD

6.10.4 Length

6.10.5 CRC . . . e

6.10.6 Timeoutdetection
6.10.7 E2E P22Protect
6.10.8 E2E P22Forward
6.10.9 E2E P22Check

6.10.9.1 Profile 22 Check Status Enumeration
6.10.10 E2E Profile 22 Protocol Examples

6.10.10.1 Offsetsetto64

Specification of E2E state machine
6.11.1 Overview of the state machine
6.11.2 State machine specification 0oL

6.11.2.1 E2E State Machine Status Enumeration
6.11.2.2 Profile specific Check Status to State Machine Check
Status mappings oo

7 EZ2E API specification

AA

7.1 APl of middleware to applications

72 APIOfE2E.
8 Configuration Parameters

8.1 GeneralConstraints

8.1.1 E2E-Statemachine Settings oL

9 Protocol usage and guidelines

9.1 E2EandSOME/IP

9.2 Client-Server Communication

9.3 Periodicuseof E2Echeck

9.4 Errorhandling

9.5 Maximal lengths of Data, communicationbuses
A Constraint History

Constraint History R19-11
A1.1 Added Constraints
A1.2 Changed Constraints
A1.3 Deleted Constraints
A1.4 Added Specificationltems
A.15 Changed Specificationltems
A.1.6 Deleted Specificationltems

AUTOSAR

1 Introduction and functional overview

The concept of E2E communication protection assumes that safety-related data ex-
change shall be protected at runtime against the effects of faults on the communica-
tion link (see Figure 1.1). Faults detected between a sender and a receiver using E2E
communication protection include systematic software faults, such as faults that are
introduced on the lower communication layers of sender or receiver, and random hard-
ware faults introduced by the MCU hardware, communication peripherals, transceivers,
communication lines or other communication infrastructure.

Examples for such faults are random HW faults (e.g. corrupt registers of a CAN
transceiver), interference (e.g. due to EMC), and systematic faults of the lower com-
munication layers (e.g. RTE, I0C, COM and network stacks).

ECU 1 ECU 2
Sender Receiver

upper upper
Communication Communication
Layers Layers
E2E E2E
Communication Communication
Protection Protection
Lower Lower
Communication Communication
Layers Layers

MCU Hardware MCU Hardware

Communication
Infrastructure

Figure 1.1: Overview of E2E communication protection between a sender and a receiver

By using E2E communication protection mechanisms, faults in lower software and
hardware layers can be detected and handled at runtime. The E2E Supervision pro-
vides mechanisms for E2E communication protection, adequate for safety-related com-
munication having requirements up to ASIL D.

The algorithms of protection mechanisms are implemented in the E2E Supervision.
The callers of the E2E Supervision are responsible for the correct usage of the E2E
Supervision, in particular for providing correct parameters the E2E Supervision rou-
tines.

AUTOSAR

The E2E communication protection allows the following:
1. It protects the safety-related data to be sent by adding control data,
2. It verifies the safety-related data received using this control data, and
3. It provides the check result to the receiver, which then has to handle it sufficiently.

To provide the appropriate solution addressing flexibility and standardization,
AUTOSAR specifies a set of flexible E2E profiles that implement an appropriate combi-
nation of E2E communication protection mechanisms. Each specified E2E profile has
a fixed set of mechanisms, as well as configuration options to configure the protocol
header layout and status evaluation on the receiver side.

The E2E Supervision can be invoked from communication middleware e.g. from
Adaptive Platform’s ARA, Classic Platform’s RTE. It can be also invoked in a non-
standardized way from other software, e.g. non-volatile memory managers, local IPCs,
or intra-ECU bus stacks.

Appropriate usage of the E2E Supervision to fulfill the specific safety requirements for
communication depends on several aspects. The specified profiles are capable, to
a high probability, of detecting a large variety of communication faults. However, the
use of a specific E2E profile requires the user to demonstrate that the selected pro-
file provides sufficient error detection capabilities for the considered use case (taking
into account various contributing factors, such as hardware failure rates, bit error rates,
number of nodes in the network, repetition rate of messages, the usage of a gateway,
potential software faults on the communication channel), as well as appropriate reac-
tion on detected faults (e.g. by revoking repeated messages, determining timed-out
communication or reacting on corrupt messages by initiating a safety reaction).

This specification specifies also the functionality, APl and the configuration of the CRC
routines.

The following routines for CRC calculation are specified:
e CRC8: SAEJ1850

CRC8H2F: CRC8 0x2F polynomial

CRC16

CRC32

CRC32P4: CRC32 0x1F4ACFB13 polynomial

e CRC64: CRC-64-ECMA

For all routines (CRC8, CRC8H2F, CRC16, CRC32, CRC32P4 and CRC64), the fol-
lowing calculation methods are possible:

e Table based calculation: Fast execution, but larger code size (ROM table)

e Runtime calculation: Slower execution, but small code size (no ROM table)

AUTOSAR

e Hardware supported CRC calculation (device specific): Fast execution, less CPU

time

All routines are re-entrant and can be used by multiple applications at the same time.
Hardware supported CRC calculation may be supported by some devices in the future.

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Communica-
tion Management that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym:

Description:

Data ID An identifier that uniquely identifies the message / data element /
data.

Repetition The same message was received more than once

Loss A message was not received

Delay A message was received later than expected

Insertion Unexpected information or an extra message was inserted

Masquerade non-authentic information is accepted as authentic information

by a receiver.

Incorrect addressing

information is accepted from an incorrect sender or by an incor-
rect receiver.

Corruption

A communication fault, which changes information

Asymmetric information

Receivers do receive different information from the same sender

Subset Information from a sender received by only a subset of the re-
ceivers
Blocking Blocking access to a communication channel

Table 2.1: table:acronyms

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of CRC Routines
AUTOSAR_SWS_CRClLibrary

[3] Specification of SW-C End-to-End Communication Protection Library
AUTOSAR_SWS_ EZ2ELibrary

3.2 Related specification

1. SAE-J1850 8-bit CRC
2. CCITT-FALSE 16-bit CRC. Refer to:

ITU-T Recommendation X.25 (1096) (Previously ,CCITT Recommendation”)
SERIES X: DATA NETWORKS AND OPEN SYSTEM COMMUNICATION

Public data networks - Interfaces

Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating
Equipment (DCE) for terminals operating in the packet mode and connected to
public data networks by dedicated circuit

Section 2.2.7.4 ,Frame Check Sequence (FCS) field” and Appendix | ,Examples
of data link layer transmitted bit patterns by the DCE and the DTE”
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.
25-199610-1I!!PDF-E&type=items

3. IEEE 802.3 Ethernet 32-bit CRC
4. ”32-Bit Cyclic Redundancy Codes for Internet Applications” [Koopman 2002]

5. Collection and evaluation of CRC polynomials by Philip Koopman, Carnegie Mel-
lon University https://users.ece.cmu.edu/~koopman/crc/

4 Constraints and assumptions

4.1 Limitations

E2E communication protection is limited to periodic or semi-periodic data communi-
cation paradigm, where the receiver (subscriber) has an expectancy on the regular
reception of data and in case of communication loss/timeout or error, it performs an
error handling.

http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.25-199610-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.25-199610-I!!PDF-E&type=items
https://users.ece.cmu.edu/~koopman/crc/

AUTOSAR

Data communication is called sender/receiver in Classic Platform, and it is called event
communication in Adaptive Platform. Note that the word event is a bit confusing as a
periodic communication is required.

This means, not all protection methods are supported for client-server (methods) as
well as non-periodic data communication.

4.2 Applicability to car domains

The E2E supervision is applicable for the realization of safety-related automotive sys-
tems implemented by various SW-Cs distributed across different ECUs in a vehicle,
interacting via communication links. The Supervision may also be used for intra-ECU
communication (e.g. between memory partitions, processes, OSes/VMs in the same
micorcontroller, between CPU cores or microcontrollers).

4.3 Background information concerning functional safety

This chapter provides some safety background information considered during the de-
sign of the E2E supervision, including the fault model for communication and definition
of sources of faults.

4.3.1 Functional safety and communication

With respect to the exchange of information in safety-related systems, the mechanisms
for the in-time detection of causes for faults, or effects of faults as listed below, can be
used to design suitable safety concepts, e.g. to achieve freedom from interference
between system elements sharing a common communication infrastructure (see ISO
26262-6:2011, annex D.2.4):

e repetition of information;

e loss of information;

e delay of information;

e insertion of information;

e masquerade or incorrect addressing of information;

e incorrect sequence of information;

e corruption of information;

e asymmetric information sent from a sender to multiple receivers;

¢ information from a sender received by only a subset of the receivers;

AUTOSAR

e blocking access to a communication channel.

4.3.2 Sources of faults in E2E communication

E2E communication protection aims to detect and mitigate the causes for or effects of
communication faults arising from:

1. (systematic) software faults,
2. (random) hardware faults,
3. transient faults due to external influences.

These three sources are described in the sections below.

4.3.2.1 Software faults

Software like, communication stack modules and RTE, may contain faults, which are
of a systematic nature.

Systematic faults may occur in any stage of the system’s life cycle including specifica-
tion, design, manufacturing, operation, and maintenance, and they will always appear
when the circumstances (e.g. trigger conditions for the root-cause) are the same. The
consequences of software faults can be failures of the communication, like interruption
of sending of data, overrun of the receiver (e.g. buffer overflow), or underrun of the
sender (e.g. buffer empty). To prevent (or to handle) resulting failures the appropriate
technical measures to detect and handle such faults (e.g. program flow monitoring or
E2E supervision) have to be considered.

4.3.2.2 Random hardware faults

A random hardware fault is typically the result of electrical overload, degradation, aging
or exposure to external influences (e.g. environmental stress) of hardware parts. A ran-
dom hardware fault cannot be avoided completely, but its probability can be evaluated
and appropriate technical measures can be implemented (e.g. diagnostics).

4.3.2.3 External influences, environmental stress

This includes influences like EMI, ESD, humidity, corrosion, temperature or mechanical
stress (e.g. vibration).

AUTOSAR

4.3.3 Communication faults

Relevant faults related to the exchange of information are listed in this section.

4.3.3.1 Repetition of information

A type of communication fault, where information is received more than once.

4.3.3.2 Loss of information

A type of communication fault, where information or parts of information are removed
from a stream of transmitted information.

4.3.3.3 Delay of information

A type of communication fault, where information is received later than expected.

4.3.3.4 Insertion of information

A type of communication fault, where additional information is inserted into a stream of
transmitted information.

4.3.3.5 Masquerading

A type of communication fault, where non-authentic information is accepted as authen-
tic information by a receiver.

4.3.3.6 Incorrect addressing

A type of communication fault, where information is accepted from an incorrect sender
or by an incorrect receiver.

4.3.3.7 Incorrect sequence of information

A type of communication fault, which modifies the sequence of the information in a
stream of transmitted information.

AUTOSAR

4.3.3.8 Corruption of information

A type of communication fault, which changes information.

4.3.3.9 Asymmetric information sent from a sender to multiple receivers

A type of communication fault, where receivers do receive different information from
the same sender.

4.3.3.10 Information from a sender received by only a subset of the receivers

A type of communication fault, where some receivers do not receive the information.

4.3.3.11 Blocking access to a communication channel

A type of communication fault, where the access to a communication channel is
blocked.

AUTO SAR

5 Requirements Tracing

Requirement

Description

Satisfied by

[RS_E2E_08528]

E2E protocol shall provide
different E2E profiles

[PRS_E2E_00012]
[PRS_E2E_00075]
[PRS_E2E_00076]
[PRS_E2E_00085]
[PRS_E2E_00117]
[PRS_E2E_00118]
[PRS_E2E_00119]
[PRS_E2E_00120]
[PRS_E2E_00121]
[PRS_E2E_00122]
[PRS_E2E_00123]
[PRS_E2E_00124]
[PRS_E2E_00125]
[PRS_E2E_00126]
[PRS_E2E_00127]
[PRS_E2E_00128]
[PRS_E2E_00129]
[PRS_E2E_00130]
[PRS_E2E_00132]
[PRS_E2E_00133]
[PRS_E2E_00134]
[PRS_E2E_00135]
[PRS_E2E_00136]
[PRS_E2E_00137]

[PRS_E2E_00138]
[PRS_E2E_00139]
[PRS_E2E_00140]
[PRS_E2E_00141]
[PRS_E2E_00142]
[PRS_E2E_00143]
[PRS_E2E_00145]
[PRS_E2E_00146]
[PRS_E2E_00147]
[PRS_E2E_00148]
[PRS_E2E_00149]
[PRS_E2E_00150]
[PRS_E2E_00151]
[PRS_E2E_00163]
[PRS_E2E_00169]
[PRS_E2E_00190]
[PRS_E2E_00195]
[PRS_E2E_00196]
[PRS_E2E_00217]
[PRS_E2E_00221]
[PRS_E2E_00227]
[PRS_E2E_00228]
[PRS_E2E_00298]
[PRS_E2E_00299]

AUTO SAR

Requirement

Description

Satisfied by

[PRS_E2E_00300]
[PRS_E2E_00301]
[PRS_E2E_00306]
[PRS_E2E_00307]
[PRS_E2E_00329]
[PRS_E2E_00400]
[PRS_E2E_00420]
[PRS_E2E_00484]
[PRS_E2E_00508]
[PRS_E2E_00526]
[PRS_E2E_00540]
[PRS_E2E_00541]
[PRS_E2E_00584]
[PRS_E2E_00585]
[PRS_E2E_00586]
[PRS_E2E_00587]
[PRS_E2E_00588]
[PRS_E2E_00589]
[PRS_E2E_00590]
[PRS_E2E_00591]
[PRS_E2E_00592]
[PRS_E2E_00593]
[PRS_E2E_00594]
[PRS_E2E_00595]

[PRS_E2E_00596]
[PRS_E2E_00597]
[PRS_E2E_00598]
[PRS_E2E_00599]
[PRS_E2E_00600]
[PRS_E2E_00601]
[PRS_E2E_00602]
[PRS_E2E_00603]
[PRS_E2E_00604]
[PRS_E2E_00605]
[PRS_E2E_00608]
[PRS_E2E_00609]
[PRS_E2E_00610]
[PRS_E2E_00611]
[PRS_E2E_00612]
[PRS_E2E_00613]
[PRS_E2E_00614]
[PRS_E2E_UC_00051]
[PRS_E2E_UC_00061]
[PRS_E2E_UC_00237]
[PRS_E2E_UC_00316]
[PRS_E2E_UC_00351]
[PRS_E2E_UC_00466]
[PRS_E2E_USE_00235]

[PRS_E2E_USE_00325]

AUTO SAR

Requirement

Description

Satisfied by

[RS_E2E_08529]

Each E2E profile shall use an
appropriate subset of specific
protection mechanisms

[PRS_E2E_00070]
[PRS_E2E_00218]
[PRS_E2E_00219]
[PRS_E2E_00372]
[PRS_E2E_00394]
[PRS_E2E_00479]
[PRS_E2E_00480]
[PRS_E2E_00503]
[PRS_E2E_00522]

[RS_E2E_08530]

Each E2E profile shall have a
unique Profile ID, define
precisely a set of mechanisms
and its behavior in a
semi-formal way

[PRS_E2E_00196]
[PRS_E2E_00218]
[PRS_E2E_00219]
[PRS_E2E_00372]
[PRS_E2E_00394]
[PRS_E2E_00479]
[PRS_E2E_00480]
[PRS_E2E_00503]
[PRS_E2E_00522]

[RS_E2E_08533]

CRC used in a E2E profile shall
be different than the CRC used
by the underlying physical
communication protocol

[PRS_E2E_00070]
[PRS_E2E_00218]
[PRS_E2E_00219]
[PRS_E2E_00372]
[PRS_E2E_00394]
[PRS_E2E_00479]
[PRS_E2E_00480]
[PRS_E2E_00503]
[PRS_E2E_00522]

[RS_E2E_08534]

E2E Protocol shall provide E2E
Check status to the application

[PRS_E2E_00318]
[PRS_E2E_00319]
[PRS_E2E_00320]
[PRS_E2E_00322]
[PRS_E2E_00323]
[PRS_E2E_00324]
[PRS_E2E_USE_00321]

[RS_E2E_08536]

Either SW-C or E2E Library
shall compute the intermediate
CRC over application data
element

[PRS_E2E_00082]
[PRS_E2E_00126]
[PRS_E2E_00134]
[PRS_E2E_00330]
[PRS_E2E_00401]
[PRS_E2E_00421]
[PRS_E2E_00485]
[PRS_E2E_00527]
[PRS_E2E_00613]

AUTOSAR

Requirement

Description

Satisfied by

[RS_E2E_08539]

An E2E protection mechanism
for inter-ECU communication of
short to large data shall be
provided

[PRS_E2E_00326]
[PRS_E2E_00329]
[PRS_E2E_00345]
[PRS_E2E_00354]
[PRS_E2E_00355]
[PRS_E2E_00356]
[PRS_E2E_00357]
[PRS_E2E_00358]
[PRS_E2E_00359]
[PRS_E2E_00360]
[PRS_E2E_00361]
[PRS_E2E_00362]
[PRS_E2E_00363]
[PRS_E2E_00364]
[PRS_E2E_00365]
[PRS_E2E_00366]
[PRS_E2E_00367]
[PRS_E2E_00368]
[PRS_E2E_00369]
[PRS_E2E_00375]
[PRS_E2E_00376]
[PRS_E2E_00397]
[PRS_E2E_00399]
[PRS_E2E_00400]

[PRS_E2E_00401]
[PRS_E2E_00403]
[PRS_E2E_00404]
[PRS_E2E_00405]
[PRS_E2E_00406]
[PRS_E2E_00407]
[PRS_E2E_00409]
[PRS_E2E_00411]
[PRS_E2E_00412]
[PRS_E2E_00413]
[PRS_E2E_00414]
[PRS_E2E_00416]
[PRS_E2E_00417]
[PRS_E2E_00419]
[PRS_E2E_00420]
[PRS_E2E_00421]
[PRS_E2E_00423]
[PRS_E2E_00424]
[PRS_E2E_00425]
[PRS_E2E_00426]
[PRS_E2E_00427]
[PRS_E2E_00428]
[PRS_E2E_00429]
[PRS_E2E_00430]

AUTO SAR

Requirement

Description

Satisfied by

[PRS_E2E_00431]
[PRS_E2E_00432]
[PRS_E2E_00433]
[PRS_E2E_00434]
[PRS_E2E_00436]
[PRS_E2E_00466]
[PRS_E2E_00467]
[PRS_E2E_00469]
[PRS_E2E_00470]
[PRS_E2E_00478]
[PRS_E2E_00481]
[PRS_E2E_00482]
[PRS_E2E_00483]
[PRS_E2E_00484]
[PRS_E2E_00486]
[PRS_E2E_00487]
[PRS_E2E_00489]
[PRS_E2E_00490]
[PRS_E2E_00491]
[PRS_E2E_00492]
[PRS_E2E_00493]
[PRS_E2E_00494]
[PRS_E2E_00495]
[PRS_E2E_00496]

[PRS_E2E_00497]
[PRS_E2E_00498]
[PRS_E2E_00499]
[PRS_E2E_00500]
[PRS_E2E_00501]
[PRS_E2E_00504]
[PRS_E2E_00505]
[PRS_E2E_00506]
[PRS_E2E_00508]
[PRS_E2E_00509]
[PRS_E2E_00510]
[PRS_E2E_00511]
[PRS_E2E_00512]
[PRS_E2E_00513]
[PRS_E2E_00514]
[PRS_E2E_00515]
[PRS_E2E_00516]
[PRS_E2E_00517]
[PRS_E2E_00518]
[PRS_E2E_00519]
[PRS_E2E_00521]
[PRS_E2E_00523]
[PRS_E2E_00524]
[PRS_E2E_00525]

AUTO SAR

Requirement

Description

Satisfied by

[PRS_E2E_00526]
[PRS_E2E_00527]
[PRS_E2E_00528]
[PRS_E2E_00529]
[PRS_E2E_00530]
[PRS_E2E_00531]
[PRS_E2E_00532]
[PRS_E2E_00533]
[PRS_E2E_00534]
[PRS_E2E_00535]
[PRS_E2E_00536]
[PRS_E2E_00537]
[PRS_E2E_00539]
[PRS_E2E_00582]
[PRS_E2E_00583]
[PRS_E2E_00607]
[PRS_E2E_00615]
[PRS_E2E_00616]
[PRS_E2E_00617]
[PRS_E2E_00618]
[PRS_E2E_00619]
[PRS_E2E_00620]
[PRS_E2E_00621]
[PRS_E2E_00632]

[PRS_E2E_00639]
[PRS_E2E_0507]
[PRS_E2E_UC_00236]
[PRS_E2E_UC 00327]
[PRS_E2E_UC_00463]
[PRS_E2E_UC_00464]

[RS_E2E_08540]

E2E protocol shall support
protected periodic/mixed
periodic communication

[PRS_E2E_USE_00236]
[PRS_E2E_USE_00237]

[RS_E2E_08541]

E2E protocol shall support
protected non-periodic
communication

[PRS_E2E_USE_00606]

[RS_E2E_08639]

No description

[PRS_E2E_00622]
[PRS_E2E_00623]
[PRS_E2E_00624]
[PRS_E2E_00625]

[RS_E2E_08739]

No description

[PRS_E2E_00626]
[PRS_E2E_00627]
[PRS_E2E_00628]
[PRS_E2E_00629]
[PRS_E2E_00630]
[PRS_E2E_00631]
[PRS_E2E_00633]
[PRS_E2E_00634]
[PRS_E2E_00635]
[PRS_E2E_00636]
[PRS_E2E_00637]
[PRS_E2E_00638]

AUTOSAR

6 Functional specification

This chapter contains the specification of the internal functional behavior of the E2E
supervision. For general introduction of the E2E supervision, see first chapter 1.

6.1 Overview of communication protection

An important aspect of a communication protection mechanism is its standardization
and its flexibility for different purposes. This is resolved by having a set of E2E Profiles,
that define a combination of protection mechanisms, a message format, and a set of
configuration parameters.

Moreover, some E2E Profiles have standard E2E variants. An E2E variant is simply
a set of configuration options to be used with a given E2E Profile. For example, in
E2E Profile 1, the positions of CRC and counter are configurable. The E2E variant 1A
requires that CRC starts at bit 0 and counter starts at bit 8.

E2E communication protection works as follows:
e Sender: addition of control fields like CRC or counter to the transmitted data;

e Receiver: evaluation of the control fields from the received data, calculation of
control fields (e.g. CRC calculation on the received data), comparison of calcu-
lated control fields with an expected/received content.

Appdataelement

| Appdataelement l E2EHeader |

|CF1 | cF2 | |CF[x] |
b A

Dataelement forRTE

Figure 6.1: Safety protocol concept (with exemplary location of the E2E header)

Each E2E Profile has a specific set of control fields with a specific functional behavior
and with specific properties for the detection of communication faults.

6.2 Overview of E2E Profiles

The E2E Profiles provide a consistent set of data protection mechanisms, designed to
protecting against the faults considered in the fault model.

Each E2E Profile provides an alternative way to protect the communication, by means
of different algorithms. However, E2E Profile have similar interfaces and behavior.

AUTOSAR

[PRS_E2E_00221] [Each E2E Profile shall use a subset of the following data protec-
tion mechanisms:

1. A CRC, provided by CRC Supervision;

2. A Sequence Counter incremented at every transmission request, the value is
checked at receiver side for correct incrementation;

3. An Alive Counter incremented at every transmission request, the value checked
at the receiver side if it changes at all, but correct incrementation is not checked;

4. A specific ID for every port data element sent over a port or a specific ID for ev-
ery message-group (global to system, where the system may contain potentially
several ECUs);

5. Timeout detection:
(a) Receiver communication timeout.
(b) Sender acknowledgement timeout.

Depending on the used communication and network stack, appropriate subsets of
these mechanisms are defined as E2E communication profiles.

|(RS_E2E_08528)

Some of the above mechanisms are implemented in RTE, COM, and/or communication
stacks. However, to reduce or avoid an allocation of safety requirements to these
modules, they are not considered: E2E Supervision provides all mechanisms internally
(only with usage of CRC Supervision).

The E2E Profiles can be used for both inter and intra ECU communication. The E2E
Profiles were specified for specific communication infrastructure, such as CAN, CAN
FD, FlexRay, LIN, Ethernet.

Depending on the system, the user selects which E2E Profile is to be used, from the
E2E Profiles provided by E2E Supervision.

[PRS_E2E_00217] [The implementation of the E2E Supervision shall provide at least
one of the E2E Profiles.

|(RS_E2E _08528)

6.2.1 Error detection

[PRS_E2E_00012] [The internal Supervision mechanisms error detection and report-
ing shall be implemented according to the pre-defined E2E Profiles specified in this
document. |(RS_E2E _08528)

AUTOSAR

6.3 Specification of E2E Profile 1 (Only for CP)

[PRS_E2E_00218] [Profile 1 shall provide the following mechanisms: Counter, Time-
out monitoring, Data ID, CRC (see Table 6.1).|(RS_E2E 08529, RS_E2E 08530,
RS _E2E 08533)

Mechanism Description

Counter 4bit (explicitly sent) representing numbers from 0 to 14 in-
cremented on every send request. Both Alive Counter and
Sequence Counter mechanisms are provided by E2E Pro-
file 1, evaluating the same 4 bits.

Timeout monitoring Timeout is determined by E2E Supervision by means
of evaluation of the Counter, by a nonblocking read
at the receiver. Timeout is reported by E2E Super-
vision to the caller by means of the status flags in
E2E_PO01CheckStatusType.

Data ID 16 bit, unique number, included in the CRC calculation.
For dataldMode equal to 0, 1 or 2, the Data ID is not trans-
mitted, but included in the CRC computation (implicit trans-
mission). For dataldMode equal to 3:

¢ the high nibble of high byte of DatalD is not used (it
is 0x0), as the DatalD is limited to 12 bits,

e the low nibble of high byte of DatalD is transmit-
ted explicitly and covered by CRC calculation when
computing the CRC over Data.

e the low byte is not transmitted, but it is included in
the CRC computation as start value (implicit trans-
mission, like for datalDMode equal to 0, 1 or 2) .

CRC CRC-8-SAE J1850 - 0x1D (x8 + x4 + x3 + x2 + 1), but with
different start and XOR values (both start value and XOR
value are 0x00).

This CRC is provided by CRC Supervision. Starting with
AUTOSAR R4.0, the SAE8 CRC function of the CRC Su-
pervision uses OxFF as start value and XOR value. To
compensate a different behavior of the CRC Supervision,
the E2E Supervision applies additional XOR 0xFF oper-
ations starting with R4.0, to come up with 0x00 as start
value and XOR value.

Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN.

Table 6.1: E2E Profile 1 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

E2E Mechanism Detected communication faults
Counter Repetition, Loss, insertion, incorrect sequence, blocking

AUTOSAR

Transmission on a regular ba- | Loss, delay, blocking
sis and timeout monitoring using
E2E-Supervision '

Data ID + CRC Masquerade and incorrect addressing, insertion
CRC Corruption, Asymmetric information 2

Table 6.2: Detectable communication faults using Profile 1

[PRS_E2E_00070] |

E2E Profile 1 shall use the polynomial of CRC-8-SAE J1850, i.e. the polynomial 0x1D
(x8 + x4 + x3 + x2 + 1), but with start value and XOR value equal to 0x00.

|(RS_E2E_08529, RS_E2E_08533)

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[2].

6.3.1 Data Layout

In the E2E Profile 1, the layout is in general free to be defined by the user, as long as
the basic limitations of signal alignment are followed:

¢ signals that have length < 8 bits should be allocated to one byte of an I-PDU, i.e.
they should not span over two bytes.

e signals that have length >= 8 bits should start or finish at the byte limit of an
message.

However, predefined E2E Profile 1 variants define specific data layouts regarding the
protocol data fields, see subsection 6.3.6.

6.3.2 Counter

In E2E Profile 1, the counter is initialized, incremented, reset and checked by E2E
profile.

[PRS_E2E_00075] [In E2E Profile 1, on the sender side, for the first transmission
request of a data element the counter shall be initialized with 0 and shall be incre-
mented by 1 for every subsequent send request (from sender SW-C). When the counter
reaches the value 14 (OxE), then it shall restart with 0 for the next send request (i.e.
value OxF shall be skipped). All these actions shall be executed by E2E Supervision.

|(RS_E2E 08528)

'Implementation by sender and receiver, which are using E2E-Supervision
2for a set of data protected by same CRC

AUTOSAR

[PRS_E2E_00076] [In E2E Profile 1, on the receiver side, by evaluating the counter
of received data against the counter of previously received data, the following shall be
detected by the E2E Supervision: (1) no new data has arrived since last invocation of
E2E Supervision check function, (2) no new data has arrived since receiver start, (3)
the data is repeated (4) counter is incremented by one (i.e. no data lost), (5) counter
is incremented more than by one, but still within allowed limits (i.e. some data lost), (6)
counter is incremented more than allowed (i.e. too many data lost).

|(RS_E2E 08528)

Case 3 corresponds to the failed alive counter check, and case 6 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.3.3 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00163] [There shall be following four inclusion modes for the two-byte
Data ID into the calculation of the one-byte CRC:

1. E2E_PO1_DATAID_BOTH: both two bytes (double ID configuration) are in-
cluded in the CRC, first low byte and then high byte (see variant 1A -
PRS_E2EProtocol_00227) or

2. E2E_PO1_DATAID_ALT: depending on parity of the counter (alternating ID
configuration) the high and the low byte is included (see variant 1B -
PRS_E2EProtocol_00228). For even counter values the low byte is included and
for odd counter values the high byte is included.

3. E2E_PO01_DATAID_LOW: only the low byte is included and high byte is never
used. This equals to the situation if the Data IDs (in a given application) are only
8 bits.

4. E2E_PO1_DATAID_NIBBLE:

¢ the high nibble of high byte of DatalD is not used (it is 0x0), as the DatalD is
limited to 12 bits,

¢ the low nibble of high byte of DatalD is transmitted explicitly and covered by
CRC calculation when computing the CRC over Data.

e the low byte is not transmitted, but it is included in the CRC computation as
start value (implicit transmission, like for the inclusion modes BOTH, _ALT
and _LOW)

|(RS_E2E_08528)

AUTOSAR

[PRS_E2E_00085] |[In E2E Profile 1, with E2E_PO1DatalDMode equal to
E2E_P01_DATAID BOTH or E2E_P01_DATAID_ALT the length of the Data ID shall
be 16 bits (i.e. 2 byte).|(RS_E2E_08528)

[PRS_E2E_00169] |[In E2E Profile 1, with E2E_P0O1DatalDMode equal to
E2E_PO01_DATAID_LOW, the high byte of Data ID shall be set to 0x00.|(RS_E2E_-
08528)

The above requirement means that when high byte of Data ID is unused, it is set to
0x00.

[PRS_E2E_00306] [In E2E Profle 1, with E2E_PO1DatalDMode equal to
E2E_P01_DATAID_NIBBLE, the high nibble of the high byte shall be 0x0.|(RS_E2E -
08528)

The above requirement means that the address space with
E2E_PO01_DATAID_NIBBLE is limited to 12 bits.

In case of usage of E2E Supervision for protecting data elements, due to multiplicity
of communication (1:1 or 1:N), a receiver of a data element receives it only from one
sender. In case of usage of E2E Supervision for protecting messages, because each
message has a unique Data ID, the receiver COM of a message receives it only from
one sender COM. As a result (regardless if the protection is at data element level or
at messages), the receiver expects data with only one Data ID. The receiver uses the
expected Data ID to calculate the CRC. If CRC matches, it means that the Data ID
used by the sender and expected Data ID used by the receiver are the same.

6.3.4 CRC calculation

E2E Profile 1 uses CRC-8-SAE J1850, but using different start and XOR values. This
checksum is already provided by AUTOSAR CRC Supervision, which typically is quite
efficient and may use hardware support.

[PRS_E2E_00190] [E2E Profile 1 shall use the Crc_CalculateCRC8 () function of the
SWS CRC Supervision for calculating CRC checksums. |(RS_E2E_08528)

Note: The CRC used by E2E Profile 1 is different than the CRCs used by FlexRay
and CAN and is provided by different software modules (FlexRay and CAN CRCs are
provided by hardware support in Communication Controllers, not by CRC Supervision).

The CRC calculation is illustrated by the following two examples.

For standard variant 1A:

AUTOSAR

Datald | |CRC ‘rwﬁf

B J "

CRC =CRC3S over(1) Data |d, (2)all serialized signal {including em pty areas , excluding CRC byteitseff)

‘Sig1 |GxFF I |Sig1 |

Figure 6.2: E2E Profile 1 variant 1A CRC calculation example

For standard variant 1C:

|anby‘te DfDataID| |CRC |

B T |

CREC = CRCS over (1) Data Id, (2) all serialized signal (induding em pty areas, exduding CRC byte itzelf)

ZDIIIPr”Sig1 |||:|)(FF | |S|g1 |

Legend:
*1 Lovww nibble of high byte of Data 1D

Figure 6.3: E2E Profile 1 variant 1C CRC calculation example

The Data ID can be encoded in CRC in different ways, see [PRS_E2E_00163].
[PRS_E2E_00082] [In E2E Profile 1, the CRC is calculated over:

1. First over the one or two bytes of the Data ID (depending on Data ID configura-
tion), and

2. then over all transmitted bytes of a safety-related complex data element/signal
group (except the CRC byte).

|(RS_E2E 08536)

6.3.5 Timeout detection

The previously mentioned mechanisms (CRC, counter, Data ID) enable to check the
validity of received data element, when the receiver is executed independently from
the data transmission, i.e. when receiver is not blocked waiting for Data Elements or
respectively signal groups, but instead if the receiver reads the currently available data
(i.e. checks if new data is available). Then, by means of the counter, the receiver can
detect loss of communication and timeouts.

The attribute State->Status = E2E_PO1STATUS REPEATED means that there is a
repetition (caused either by communication loss, delay or duplication of the previous
message). The receiver uses State->Status for detecting communication timeouts.

AUTOSAR

6.3.6 EZ2E Profile 1 variants

The E2E Profile 1 has recommended variants. The variants are specific configurations
of E2E Profile.

[PRS_E2E_00227] [The E2E Profile variant 1A is defined as follows:
1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)
3. E2E_P0O1DatalDMode = E2E_P01_DATAID_BOTH
4. SignallPdu.unusedBitPattern = OxFF.
|(RS_E2E_08528)
[PRS_E2E_00228] [The E2E Profile variant 1B is defined as follows:
1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)
3. E2E_PO01DatalDMode = E2E_P01_DATAID_ALT
4. SignallPdu.unusedBitPattern = OxFF.
|(RS_E2E_08528)

Below is an example compliant to 1A/1B:

|:§: ”agu |=.||-,-e”ag1 | }agz | Iﬁ: ||1111 Ia.u-,-e ”5191[3] |

Figure 6.4: E2E Profile 1 example layout (two signal groups protected by E2E in one
message)

[PRS_E2E_00307] [The E2E Profile variant 1C is defined as follows:
1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. The Data ID nibble is located in the highest 4 bits of 1st byte (i.e. starts with bit
offset 12)

4. E2E_P01DatalDMode = E2E_P01_DATAID NIBBLE
5. SignallPdu.unusedBitPattern = OxFF.
|(RS_E2E_08528)

AUTOSAR

6.3.7 E2E_PO1Protect

[PRS_E2E_00195] [The function E2E_P01Protect() shall:
1. write the Counter in Data,
2. write DatalD nibble in Data, if E2E_P01_DATAID_NIBBLE configuration is used
3. compute the CRC over DatalD and Data
4. write CRC in Data
5

. increment the Counter (which will be used in the next invocation of
E2E_PO01Protect()),as specified by Figure 6.5 and Figure 6.6

|(RS_E2E 08528)

E2E_PO1Protect(Config, State,

Data)
[TRUE] [FALSE]
Config->CounterOffset % 8
=0
(Data+(Config->CounterOffset/8)) = ((Data *(Data+(Config->CounterOffset/8)) = (*(Data
+(Config->CounterOffset/8)) & OxFO) | (State- +(Config->CounterOffset/8)) & OxOF) | ((State-
>Counter & 0xOF) >Counter<<4) & 0xF0)
=
Write the counter in the Data, at the configured
CounterOffset. The counter goes either into low [FALSE]
nibble (left branch) or high nibble (right branch) of § __
Data. Note that the nibble next to Counter may be Config->DatalDMode ==
o=y Epp it E2E_P01_DATAID_NIBBLE
[TRUE]
Config->DatalDNibbleOffset %
8==0
[TRUE] [FALSE]
(Data+(Config->DatalDNibbleOffset/8)) = (*(Data+(Config->DatalDNibbleOffset/8)) = (*
(Data+(Config->DatalDNibbleOffset/8)) & (Data+(Config->DatalDNibbleOffset/8)) &
0xFO0) | ((Config->DatalD>>8) & 0X0F) 0XOF) | ((Config->DatalD>>4) & 0xF0)
Wiite the low nibble of high byte of DataID - [~ 7T
only for E2E_PO1 DATAID_NIBBLE
configuration.

CRC = Calculate CRC over Data
(os o)

v

*(Data+(Config->CRCOffset/8)) = CRC - ICRC @s written to the Data at configured
location.

v N

_ | Increment the counter modulo 15 (ie.
next value after 14 is 0).

AN

(State->Counter ++) % 15

return

Figure 6.5: E2E_PO01Protect()

AUTOSAR

6.3.8 Calculate CRC

The diagram of the function E2E PO1Protect() (see above chapter),
E2E_PO1Forward() and E2E_P01Check() (see below chapters) have a sub-diagram
specifying the calculation of CRC:

Caleulate CRC ower Datald
and [ata

[CHC = EZE_P0O1_getlatalCRC(Config-=Catall, Cnnfig-:DatalDMndejj
S

-\ Computz CRC over the arsa before the CRC (if CRC is
not the first bys)
[FALSE] -
Config-=CRC Offzet
=g
[TRUE]
B [CRC = Cre_Calculate CRCE ([ata, (Config-»CRCOffset / 2), CRC, FALSE)]

All invocations of CRE library. apart
from the firstone, getas smalus the e
CRC computed in the pravious sep. -
The CRC alue cdoss not nesd @2 be - '\
HORed (PR ecause: LT
1. The "previous” CRC functon XORs . ..':.:_ - -,_L/
the computd CRC with 0xFF just ""—\
hefare remiming
2. The "nesct” CRC function XORs the
recaived startvalue with 0<FF at the . .
baginning. '\ Comput the arsa afer CRC, if CRC is not the Bst iyt

Smrkwith the lyte after CRC, finish with the Bst oyt of
Asa result the KORing cone by "nest” =~ — [FALSE] -=~| ba.
stz negates the XORIng done by Teal) "
“mevious” - CRC * QxFF * OxFF = CRC. Config->CRCOffset /3 < (Config-
This menas, the behavior is as if thae T [TRUE] *Datalength /8] - 1
was no XORing fwhich is equal 12 e .
HORIng with D).

CRC = Crc_CalculateCRCS (& D ata[Config-»CRCOffset® + 1], (Config-
=Datalength /8 - Config-=CRCOffset /S - 1), CRC, FALSE)

T negate the kst XOR 0xFF ope@aton
cona on compuied CRE by the st

/
CakulwCRCS). theare is a XORing '\>

clona exmally by E2E Library.
[CRC = CRC ~0x=FF]

Figure 6.6: Subdiagram ,Calculate CRC over Data ID and Data”, used by
E2E_PO1Protect(), E2E_P01Forward() and E2E_P01Check()

The diagram of the function "Calculate CRC over Data ID and Data” has a sub-diagram
specifying the calculation of DatalD CRC, which is shown by Figure 6.7.

AUTOSAR

E2E_PO01_getDatalDCRC(DatalD,
DatalD e)

Compute CRC over DatalD, depending on DatalDMode setting.
The first invocation of Crc_CalculateCRC8() is done with start value OxFF.

The CalculateCRC8() is XORing the start value provided by the caller (equal
OxFF) with OxFF, resulting with actual internal start value equal to 0x00.

switch
[case [case DatalDMode [case) [case
E2E_PO01_DATAID_BOTH] E2E_P01_DATAID LOW]———E2E_P01_DATAID_ALT] E2E_PO01_DATAID_NIBBLE]
Alternating inclusion depending on Counter
'CRC = Crc_CalculateCRC8 parity | CRC =
(DatalD, 1, OXFF, FALSE) [TRUE]— [FALSE] Crc_CalculateCRC8
State->Counter % 2 (DatalD, 1, OxFF, FALSE)
=0

N

v
\
CRC = Crc_CalculateCRC8 CRC = Crc_CalculateCRC8
CRC over 2 CRC over low byte (DatalD, 1, OXFF, FALSE) (DatalD>>8, 1, OXFF,
b only FALSE)
. .
N
v

,

R

i
,
,

.

\
\
\\
CRC = Crc_CalculateCRC8 CRC = Crc_CalculateCRC8 CRC =
(DatalD>>8, 1, CRC, (DatalD, 1, OxFF, FALSE) Crc_CalculateCRC8 (0, 1,
FALSE) CRC, FALSE)
K
.
'
.
'
,'
,
'
’

AN

All invocations of CRC library, apart from the first one, get as start value the CRC
computed in the previous step. The CRC value does not need to be XORed
OxFF because:

1. The "previous” CRC function XORs the computed CRC with OxFF just before
returning

2. The "next" CRC function XORs the received strart value with OxFF at the

beginning.

ActivityFinal

As a result, the XORing done by "next" step negates the XORing done by
"previous” - CRC A OxFF A OxFF = CRC. This menas, the behavior is as if there
was no XORing (which is equal to XORing with 0x00).

Figure 6.7: Subdiagram “getDatalDCRC”, used by E2E_PO1Protect() and
E2E_P01Check()

It is important to note that the function Crc_CalculateCRC8 of CRC Supervision / CRC
routines have changed is functionality since R4.0, i.e. it is different in R3.2 and >=R4.0:

1. There is an additional parameter Crc_IsFirstCall

2. The function has different start value and different XOR values (changed from
0x00 to OxFF).

This results with a different value of computed CRC of a given buffer.

To have the same results of the functions E2E_PO01Protect() and E2E_P02Check() in
>=R4.0 and R3.2, while using differently functioning CRC Supervision, E2E ,compen-
sates” different behavior of the CRC Supervision. This results with different invocation
of the CRC Supervision by E2E Supervision Figure 6.6 in >=R4.0 and R3.2. This
means Figure 6.6 is different in >=R4.0 and R3.2.

AUTOSAR

6.3.9 E2E_PO1Forward

[PRS_E2E_00608] Draft [The function E2E_PO1Forward() shall calculate the e2e
header data based on the current value of the IN parameter ForwardStatus.|(RS_-
E2E 08528)

The E2E_P01Forward() has additional requirements to the E2E_P01Protect() since it
shall be used to reconstruct an E2E-State on an outgoing message.

[PRS_E2E_00609] Draft [If ForwardStatus equals to E2E_P_OK the function
E2E_PO1Forward() shall:

—

o ~ 0D

. write the Counter in Data

write DatalD nibble in Data, if E2E_P01_DATAID_NIBBLE configuration is used
compute the CRC over DatalD and Data
write CRC in Data

increment the Counter (which will be used in the next invocation of
E2E_PO1Forward()), as specified by Figure 6.8 and Figure 6.6

|(RS_E2E 08528)

[PRS_E2E_00610] Draft [If ForwardStatus equals to E2E_P_REPEATED the function
E2E_PO1Forward() shall :

1.

S T

decrement the Counter

write Counter in Data

write DatalD nibble in Data, if E2E_P01_DATAID_NIBBLE configuration is used
compute the CRC over DatalD and Data

write CRC in Data

increment the Counter (which will be used in the next invocation of
E2E_PO1Forward()), as specified by Figure 6.8 and Figure 6.6

|(RS_E2E_08528)

[PRS_E2E_00611] Draft [If ForwardStatus equals to E2E_P_WRONGSEQUENCE
the function E2E_P01Forward() shall use counter + MaxDeltaCounterlnit :

—

o &~ N

. calculate Counter = Counter + MaxDeltaCounterlnit

write the Counter in Data

write DatalD nibble in Data, if E2E_PO01_DATAID_NIBBLE configuration is used
compute the CRC over DatalD and Data

write CRC in Data

AUTOSAR

6. increment the Counter (which will be used in the next invocation of
E2E_PO1Forward()), as specified by Figure 6.8 and Figure 6.6

|(RS_E2E 08528)

[PRS_E2E_00612] Draft [If ForwardStatus equals to E2E_P_ERROR the function
E2E_PO01Forward() shall use DatalD + 1:

1. DatalD = DatalD+1

write the Counter in Data

write DatalD nibble in Data, if E2E_P01_DATAID_NIBBLE configuration is used
compute the CRC over DatalD and Data

write CRC in Data

2L T

increment the Counter (which will be used in the next invocation of
E2E_PO1Forward()), as specified by Figure 6.8 and Figure 6.6

|(RS_E2E 08528)

AUTO SAR

E2E_PO1Forward(Config, State, Data,

ForwardStatus)

if ForwardStatus ==
E2E_P_ERROR

[True]
Y

(DatalD = Config->DatalD+1)

N

Create local variable
DatalD to be later used

in CRC Calculation if ForwardStatus

E2E_P_Repeated

DatalD = Config->DatalD

[FALSE]

if ForwardStatus ==
E2E_P_WRONGSEQUENCE

[FALSE]

[TRUE]
if State->Counter
=0
Set counterto 14, 15 is
special error value [TRUE]
(FALSE] [TRUE] 7 [FALSE]
State->Counter = (State-
State->Counter - - State->Counter = 14 >Counter + Config-
>MaxDeltaCounterlnit) % 15
Config->CounterOffset % 8
=0
I |
[TRUE] [FALSE]
(Data+(Config->CounterOffset/8)) = ((Data *(Data+(Config->CounterOffset/8)) = (*(Data
+(Config->CounterOffset/8)) & 0xF0) | (State- +(Config->CounterOffset/8)) & OxOF) | ((State-
>Counter & 0x0F) >Counter<<4) & 0xF0)
. e -
L TS
., .-
, —
, -

Write the counter in the Data, at the configured o _—
CounterOffset. The counter goes either into low Eozfl?—::?a:z?/,;ﬂ&del\n;m_t
nibble (left branch) or high nibble (right branch) of — — —
Data. Note that the nibble next to Counter may be
used by application. [TRUE] [FALSE]

Config->DatalDNibbleOffset %

[
[TRUE]

(Data+(Config->DatalDNibbleOffset/8)) = (
(Data+(Config->DatalDNibbleOffset/8)) &
0xFO) | ((DatalD>>8) & 0xOF)

=0

]
[FALSE]

(Data+(Config->DatalDNibbleOffset/8)) = (
(Data+(Config->DatalDNibbleOffset/8)) &
Ox0F) | ((DatalD>>4) & 0xF0)

Write the low nibble of high byte of Data ID - only for
E2E_PO1_DATAID_NIBBLE configuration.

(

(*(Data+(Config->CRCOffset/8)) = CRC J

(State->Counter ++) % 15

rotiim

Figure 6.8: E2E_PO1Forward()

CRC = Calculate CRC over Data

)

CRC is written to the Data at configured
location.

Increment the counter
modulo 15 (i.e. next
value after 14 is Q).

AUTOSAR

6.3.10 E2E_PO01Check

[PRS_E2E_00196] [The function E2E_P01Check shall
1. Check the CRC

2. Check the Data ID nibble, i.e. compare the expected value with the received
value (for E2E_PO1_DATAID_NIBBLE configuration only)

3. Check the Counter,
4. determine the check Status,as specified by Figure 6.9 and Figure 6.6.
|(RS_E2E_08528, RS_E2E_08530)

AUTOSAR

E2E_PO01Check(Config, State,

Data)
At every function invocation, the maximum allowed |_______ State->MaxDeltaCounter = min (State->MaxDeltaCounter++,
delta between previous and cument Counter is 14)
incremented.
If any NEW data is available to be checked
| (e.g. from COM, RTE, bus).
[FALSE] -
State->NewDataAvailable ==
TRUE
Read the Counter from Data, at the [TRUE]
configured offset N
[TRUE] [FALSE]

Config->CounterOffset % 8

.) ReceivedCounter = (*(Data+(Config->CounterOffset/8)) >> 4) &
[Recelvedcounter:*(Data+(Conf|g->CounterOffset/8))&OxOF] [v u ¢ (Oonlg Y)) j

(datavalld = E2E_P01_CRCAndDatalDNibble)é[TRUE] [FALSE] \@

ReceivedCounter return
<15 E2E_E_INPUTERR_WRONG

received.

Check if any correct data has already been Iﬁ

[TRUE] [FALSE]
dataValid == State->WaitForFirstData ==
TRUE TRUE
[FALSE] [TRUE]

This is the first message with
j correct CRC, WaitForFirstData

State->WaitForFirstData=

- is therefore set to false.
FALSE

Counter is not checked as it
cannot be done yet.

;
.
,
.
.
.
.
.
.
.
™
.

State->LastValidCounter =
ReceivedCounter

State->MaxDeltaCounter =
GZEiPOLprocessiNoNewOrRepeatedDataCounta Config->MaxDeltaCounterlnit
O

State->Status = State->Status= State->Status= E2E_PO1_process counter
E2E_PO1STATUS_NONEWDATA E2E_PO1STATUS_WRONGCRC E2E_PO1STATUS_INTIAL SO

return

Figure 6.9: E2E_P01Check()

The diagram of the function E2E_P01Check() has a sub-diagram
E2E_PO01_CRCAndDatalDNibble specifying the calculation of CRC and compar-
ing it with the received CRC, which is shown by Figure 6.6. The subroutines of Figure
6.10 are described in Figure 6.6 and Figure 6.7

AUTOSAR

_____________ ReceivedCRC = *(Data+(Config-
Read CRC from Data >CRCOffset/8))
[FALSE]
N Config->DatalDMode ==
Read low nibble of high byte E2E_PO1_DATAID_NIBBLE
of Data ID from Data.
[T RUE]
[T RUE] Y = e ——
Config->DatalDNibbleOffset %
8==0
. ; o - ;
[ReceivedDatalDNibble = (+(Data+(Config->DatalDNibbleOffset/8))) & OXOFJ [Rece"’EdDa'a'DN'bb'e = (Da‘a"(g:gzg PEREEN et 2> 4) &]
[I
Calculate CRC in the same way
as the Senderdid. ~ f---<._ ..
CalculatedCRC = E2E_P01_Calculate CRC over Datald
N and Data oo
Check if received nibble is
identical to the one in DatalD. |
[TRUE|— == [FALSE]

ReceivedCRC == CalculatedRCR
&& ReceivedDatalDNibble ==
DatalDNibble

returm TRUE return FALSE

return

Figure 6.10: E2E Profile Check step "E2E_P01_CRCAndDatalDNibble”

The diagram of the function E2E_P01Check() has a sub-diagram
E2E_PO1_process_ NoNewOrRepeatedDataCounter specifying the evaluation of
the different counter states, which is shown in Figure 6.11.

AUTOSAR

Compute the delta,
taking into account the
overflow.

ReceivedCounter >= State-
>LastValidCounter

DeltaCounter =

DeltaCounter = 15 +
ReceivedCounter - State-

>LastValidCounter

ReceivedCounter - State-
>LastValidCounter

The previous and the
current data have
correct CRC, verify the

counter.
[FALSE] [FALSE}
DeltaCounter DeltaCounter > State-
=0 >MaxDeltaCounter
[TRUE] [TRUE]
E2E_PO01_process_NoNewOrRepeatedDataCounter E2E_P01_handle_wrongSequence returnvalue =
oo oo E2E_POl_handIe_ok_and_okSomeLoslo_o

_ returnvalue =
[returnvalue = E2E_P01STATUS_REPEATED] [E2E_PO1STATUS_WRONGSEQUENCE]

return
retumvalue

Figure 6.11: E2E Profile Check step "E2E_P01_process_counter”

The diagram of the function E2E_P01Check() and "E2E_PO01_process_counter” have a
sub-diagram E2E_P01_process_NoNewOrRepeatedDataCounter specifying the han-

dling of receiving a repeated message and receiving no message, which is shown in
Figure 6.12.

AUTOSAR

>—[FA|_5 E]

State-

=MoMenwdrRepeatedbataCounter <
14

[TRUE]

[State->HoMewDrRepeatedDataCounter++]

®

Figure 6.12: E2E Profile Check step ’E2E_P01_process_NoNewOrRepeatedDataCounter”

The diagram of the step “E2E_PO1_process counter” has a sub-diagram
"E2E_PO01_handle_wrongSequence” specifying the handling of receiving a message
where the counter exceeded the maximum between two messages, which is shown in
Figure 6.13.

[State->NoNewOrRepeatedDataCounter = 0 j

[State->SyncCounter = Config->SyncCounterlnit j

>—[FALSE]—
State->SyncCounter

>0

[TRUE]

State->MaxDeltaCounter = Config-
>MaxDeltaCounterinit

[State->LastValidCounter = ReceivedCounter j

®
Figure 6.13: E2E Profile Check step "E2E_P01_handle_wrongSequence”

AUTO SAR

The diagram of the step “E2E_PO01_process_counter” has a sub-diagram
"E2E_PO01_handle_ok_and_okSomeLost” specifying the handling of receiving a mes-
sage of valid messages where the no fault was detected, some messages where lost
but this particular is valid or the the profile is synchronizing the counter, which is shown
in Figure 6.14.

State->MaxDeltaCounter = Config-
>MaxDeltaCounterlnit

State->LastValidCounter =
ReceivedCounter

[State->LostData = deltacounter - 1 J

{TRUE]—<>—[FALSE]
State-

>NoNewOrRepeatedDataCounter >
Config-
>MaxNoNewOrRepeatedData

State->SyncCounter = Config-
>SyncCounterlnit

State->SyncCounter
tate-> NoNewOrRepeatedDataCounter
{Sae oNewO :%ea edDataCounte! H State->SyncCounter--]&[TRUE]AQ >0

[FALSE]

[Slate->N0 NewOrRepeatedDataCounter =J
0

deltacounter
[TRUE] =1

[FALSE]

retumvalue =
[retumvalue = E2E_POlSTATUS_SYNC] [returnvalue = E2E_PO1STATUS_OK] [E2E_PO1STATUS_OKSOMELOST]

O,
return
returnvalue

Figure 6.14: E2E Profile Check step "E2E_P01_handle_ok_and_okSomeLost”

AUTOSAR

6.3.10.1 Profile 1 Check Status Enumeration

[PRS_E2E_00588] [The E2E_P01Check function shall set State->Status to one of the
following enumeration values (see Table 6.3).|(RS_E2E_08528)

Name State | Description
Type
E2E PO1STATUS OK OK The new data has been received accord-

ing to communication medium, the CRC
is correct, the Counter is incremented by
1 with respect to the most recent Data re-
ceived with Status _INITIAL, OK, or OK-
SOMELOST. This means that no Data has
been lost since the last correct data recep-
tion.

E2E PO1STATUS NONEWDATA Error The Check function has been invoked but
no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed

E2E PO1STATUS WRONGCRC Error The data has been received accord-
ing to communication medium, but 1.
the CRC is incorrect (applicable for
all E2E Profile 1 configurations) or 2.
the low nibble of the high byte of
Data ID is incorrect (applicable only for
E2E Profile 1 with E2E_P01DatalDMode
= E2E_PO1_DATAID_NIBBLE). The two
above errors can be a result of corruption,
incorrect addressing or masquerade.

E2E PO1STATUS SYNC Not The new data has been received after
Valid detection of an unexpected behavior of
counter. The data has a correct CRC and
a counter within the expected range with
respect to the most recent Data received,
but the determined continuity check for the
counter is not finalized yet.

E2E _PO1STATUS INITIAL Initial | The new data has been received accord-
ing to communication medium, the CRC
is correct, but this is the first Data since
the receiver’s initialization or reinitializa-
tion, so the Counter cannot be verified yet.

E2E PO1STATUS REPEATED Error The new data has been received accord-
ing to communication medium, the CRC
is correct, but the Counter is identical to
the most recent Data received with Status
_INITIAL, OK, or OKSOMELOST.

AUTOSAR

E2E_PO1STATUS_OKSOMELOST OK The new data has been received accord-
ing to communication medium, the CRC
is correct, the Counter is incremented
by DeltaCounter (1 < DeltaCounter =
MaxDeltaCounter) with respect to the
most recent Data received with Status
_INITIAL, _OK, or _OKSOMELOST. This
means that some Data in the sequence
have been probably lost since the last cor-
rect/initial reception, but this is within the
configured tolerance range.

E2E_PO1STATUS_WRONGSEQUENCE | Error | The new data has been received ac-
cording to communication medium, the
CRC is correct, but the Counter Delta is
too big (DeltaCounter > MaxDeltaCounter)
with respect to the most recent Data re-
ceived with Status _INITIAL, _OK, or _OK-
SOMELOST. This means that too many
Data in the sequence have been probably
lost since the last correct/initial reception.

Table 6.3: E2E Profile 1 Check Status Enumeration

6.3.11 EZ2E Profile 1 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P01ConfigType field Value

CounterOffset 8

CRCOffset 0

DatalD 0x123
DatalDNibbleOffset 12

DatalDMode E2E_P01_DATAID_BOTH
DatalLength 64

MaxDeltaCounterlnit 1
MaxNoNewOrRepeatedData 15

SyncCounterlnit 0

Table 6.4: E2E Profile 1 protocol example configuration

E2E_PO1ProtectStateType field Value
Counter 0

Table 6.5: E2E Profile 1 example state initialization

AUTOSAR

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0

1

2

3

4

5

6

7

Oxcc

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.6: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_ BOTH, counter 0

Result data of E2E_PO1Protect() with data equals all zeros (0x00), counter

1:

Byte

0

1

2

3

4

5

6

7

0x91

0x01

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.7: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_BOTH, counter 1

6.3.11.1

DatalDMode set to E2E_P01_DATAID _ALT

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0

1

2

3

4

5

6

7

0x5f

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.8: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_ALT, counter 0

Result data of E2E_PO1Protect() with data equals all zeros (0x00), counter

1:

Byte

0

1

2

3

4

5

6

7

0x93

0x01

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.9: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_ALT, counter 1

6.3.11.2 DatalDMode set to E2E_P01_DATAID_LOW

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

AUTOSAR

Byte
0 1 2 3 4 5 6 7
0x5f 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.10: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_LOW, counter 0

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter =
1:

Byte
0 1 2 3 4 5 6 7
0x02 0x01 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.11: E2E Profile 1 protect result DataIDMode = E2E_P01_DATAID_LOW, counter 1

6.3.11.3 DatalDMode set to E2E_P01_DATAID_NIBBLE

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

Byte
0 1 2 3 4 5 6 7
0x2a 0x10 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.12: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_NIBBLE, counter
0

Result data of E2E_PO1Protect() with data equals all zeros (0x00), counter =
1:

Byte
0 1 2 3 4 5 6 7
0x77 0x11 0x00 0x00 0x00 0x00 0x00 0x00
Table 6.13: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_NIBBLE, counter
1

6.4 Specification of E2E Profile 2 (only for CP)

[PRS_E2E_00219] [Profile 2 shall provide the following mechanisms: Sequence Num-
ber (Counter), Message Key used for CRC calculation (Data ID), Data ID + CRC, Safety
Code (CRC) (see Table 6.14).| (RS_E2E_08529, RS _E2E 08530, RS_EZ2E 08533)

’ Mechanism ’ Description ‘

AUTOSAR

Sequence Number (Counter) 4bit (explicitly sent) representing numbers from 0 to 15 in-
cremented by 1 on every send request (Bit 0:3 of Data

1

) at sender side. The counter is incremented on every call
of the E2E_PO02Protect() function, i.e. on every transmis-
sion request of the SW-C

Message Key used for CRC cal- | 8 bit (not explicitly sent) The specific Data ID used to cal-
culation (Data ID) culate the CRC depends on the value of the Counter and is
an element of an pre-defined set of Data IDs (value of the
counter as index to select the particular Data ID used for
the protection). For every Data element, the List of Data
IDs depending on each value of the counter is unique.

Data ID + CRC Masquerade and incorrect addressing, insertion

Safety Code(CRC) 8 bit explicitly sent (Data[0]) Polynomial: 0x2F (x8 + x5 +
x3 + x2 + x + 1) Start value: 0OxFF Final XOR-value: OxFF
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay and CAN.

Table 6.14: E2E Profile 2 mechanisms

The mechanisms provided by Profile 2 enable the detection of the relevant failure
modes except message delay (for details see the table in Table 6.14):

Since this profile is implemented in a Supervision, the Supervision’s E2E_P02Check()
function itself cannot ensure to be called in a periodic manner. Thus, a required pro-
tection mechanism against undetected message delay (e.g. Timeout) must be imple-
mented in the caller.

The E2E mechanisms can detect the following faults or effects of faults:

E2E Mechanism Detected communication faults
Counter Repetition, Loss, insertion, incorrect sequence, blocking

Transmission on a regular bases | Loss, delay, blocking
and timeout monitoring using
E2E-Library 3

Data ID + CRC Masquerade and incorrect addressing, insertion

CRC Corruption, Asymmetric information #

Table 6.15: Detectable communication faults using Profile 2

[PRS_E2E_00117] [E2E Profile 2 shall use the Crc_CalculateCRC8H2F() function of
the SWS CRC Supervision for calculating CRC checksums. | (RS_E2E_08528)

3Implementation by sender and receiver
“for a set of data protected by same CRC

AUTOSAR

[PRS_E2E_00118] [E2E Profile 2 shall use OxFF as the start value CRC_StartValue8
for CRC calculation.| (RS_E2E_08528)

[PRS_E2E_00119] [In E2E Profile 2, the specific Data ID used to calculate a specific
CRC shall be of length 8 bit. | (RS_E2E_08528)

[PRS_E2E_00120] [In E2E Profile 2, the specific Data ID used for CRC calculation
shall be selected from a pre-defined DatalDList[16] using the value of the Counter as
an index. | (RS_E2E_08528)

Each data, which is protected by a CRC owns a dedicated DatalDList which is de-
posited on the sender site and all the receiver sites.

The pre-defined DatalDList[16] is generated offline. In general, there are several fac-
tors influencing the contents of DatalDList, e.g:

1. length of the protected data

2. number of protected data elements

3. number of cycles within a masquerading fault has to be detected
4. number of senders and receivers

5. characteristics of the CRC polynomial.

Due to the limited length of the 8bit polynomial, a masquerading fault cannot be de-
tected in a specific cycle when evaluating a received CRC value. Due to the adequate
Data IDs in the DatalDList, a masquerading fault can be detected in one of the succes-
sive communication cycles.

Due to the underlying rules for the DatalDList, the system design of the application has
to take into account that a masquerading fault is detected not until evaluating a certain
number of communication cycles.

[PRS_E2E_00121] [In E2E Profile 2, the layout of the data buffer (Data) shall be as
depicted in Figure 6.15, with a maximum length of 256 bytes (i.e. N=255) |(RS_EZ2E -
08528)

Data[0] Data[1] Data[2] Data[N-1] Data[N]

[CRC gy g ™ . g I S) S

Figure 6.15: E2E Profile 2 data buffer layout

[PRS_E2E_00122] [In E2E Profile 2, the CRC shall be Data[0].| (RS E2E_08528)

[PRS_E2E_00123] [In E2E Profile 2, the Counter shall be the low nibble (Bit 0...Bit 3)
of Data[1].|(RS_E2E_08528)

[PRS_E2E_00124] [In E2E Profile 2, both the E2E_PO2Protect() and the
E2E_P02Forward() function shall not modify any bit of Data except the bits represent-
ing the CRC and the Counter.| (RS_E2E_08528)

AUTOSAR

[PRS_E2E_00125] [In E2E Profile 2, the E2E_P02Check() function shall not modify
any bit in Data. | (RS_E2E_08528)

6.4.1 E2E_PO0O2Protect

The E2E_PO02Protect() function of E2E Profile 2 is called by a SW-C in order to
protect its application data against the failure modes as shown in table in Table
6.14. E2E_PO02Protect() therefore calculates the Counter and the CRC and puts it
into the data buffer (Data). A flow chart with the visual description of the function
E2E_PO02Protect() is depicted in Figure 6.16 and Figure 6.17.

[PRS_E2E_00126] |In E2E Profile 2, the E2E_P02Protect() function shall perform the
activities as specified in Figure 6.16 and Figure 6.17.|(RS_E2E_08528, RS _EZE -
08536)

E2E_PO02Protect(Config, State, Data)

Increment State->Counter
oo

|

C(Da[aﬂ_) = (*(Data+1) & OXFO) | (State»>coumer} Counter is written to Bits
& JOF) 0..3 of Data[1]

DatalD = Config->DatalDList[State-
>Counter]

----- Crc_CalculateCRC8H2F(),
Crc_IsFirstCall is set to
TRUE.

CRC = Crc_CalculateCRC8H2F() computed over Data[1], Data[2], ... Data[Config-
>DataLength/8-1], DatalD

(Data[0] = CRC J """""" CRC is written to Data[0] ﬁ

O]

return

Figure 6.16: E2E_PO02Protect()

} For the first call of

AUTOSAR

Increment State-
>Count

State->Counter <

[TRUE] 152

[FALSE]

(State->Counter ++) (State-> Counter = 0)

Figure 6.17: Increment Counter

[PRS_E2E_00127] [In E2E Profile 2, the E2E_P02Protect() function shall increment
the Counter of the state (E2E_PO02ProtectStateType) by 1 on every transmission re-
quest from the sending SW-C, i.e. on every call of E2E_P02Protect().|(RS_EZ2E_-
08528)

[PRS_E2E_00128] [In E2E Profile 2, the range of the value of the Counter shall be
[0...15].] (RS_E2E_08528)

[PRS_E2E_00129] [When the Counter has reached its upper bound of 15 (0OxF), it
shall restart at 0 for the next call of the E2E_P02Protect() from the sending SW-C. |
(RS_E2E 08528)

[PRS_E2E_00130] [In E2E Profile 2, the E2E_P02Protect() function shall update the
Counter (i.e. low nibble (Bit 0...Bit 3) of Data byte 1) in the data buffer (Data) after
incrementing the Counter.| (RS_E2E_08528)

The specific Data ID used for this send request is then determined from a DatalDList[]
depending on the value of the Counter (Counter is used as an index to select the Data
ID from DatalDList[]). The DatalDList[] is defined in E2E_P02ConfigType.

[PRS_E2E_00132] [In E2E Profile 2, after determining the specific Data ID, the
E2E_PO02Protect() and E2E_P02Forward() functions shall calculate the CRC over
Data[1], Data[2], ... Data[Config->DataLength/8-1] of the data buffer (Data) extended
with the Data ID.|(RS_E2E_08528)

[PRS_E2E_00133] [In E2E Profile 2, the E2E_P02Protect() and E2E_P02Forward()
functions shall update the CRC (i.e. Data[0]) in the data buffer (Data) after computing
the CRC. | (RS_E2E_08528)

The specific Data ID itself is not transmitted on the bus. It is just a virtual message key
used for the CRC calculation.

AUTOSAR

6.4.2 E2E_PO2Forward

The E2E_P02Forward() function of E2E Profile 2 is called by a SW-C in order to protect
its application data and forward an received E2E-Status for use cases like translation
of signal based to service oriented communication. If the received E2E status equals
E2E_P_OK the behavior of the function shall be the same like E2E_P02Protect(). A
flow chart with the visual description of the function E2E_P02Forward() is depicted in
Figure 6.18 and Figure 6.19.

[PRS_E2E_00613] Draft [In E2E Profile 2, the E2E_P02Forward() function shall per-
form the activities as specified in Figure 6.18 and Figure 6.17.|(RS_E2E 08528, RS_-
E2E 08536)

E2E_PO02Forward(Config, State, Data,
ForwardStatus)

Increment State->Counter
SO

(*(Dataﬂ) = (*(Data+1) & OxFO) | (State->Counter}

------------- Counter is written to Bits

& OXOF) 0..3 of Data[1]
if ForwardStatus ==
—E2E P ERRC?T P—
[TRUE] [FALSE]
DatalD = Config->DatalDList[State->Counter] + DatalD = Config->DatalDList[State-
1 >Counter]

CRC = Crc_CalculateCRC8H2F() computed over Data[1], Data[2], ... Data[Config-
>DatalLength/8-1], DatalD

[Data[0] = CRC } """"" CRC is written to Data[0] Ij

®

returm

Figure 6.18: E2E_PO02Forward()

[PRS_E2E_00614] Draft [In E2E Profile 2, the E2E_P02Forward() function shall in-
crement the Counter according to Figure 6.19.|(RS_E2E_08528)

AUTOSAR

Increment State-

>C0unt?

if ForwardStatus ==
if ForwardStatus E2E_P_WRONGSEQUENCE State->Counter >=

il 152
e I 1
E2E_P_REPEATE<%[FALSE]9? [FALSE] 7Y [FALSE]
[Ti/UE]

TRUE] [TRUE]

State-> Counter += State-> Counter = 0 ' State->Counter ++ '
Config-
>MaxDeltaCounterlnit + 1

Figure 6.19: Increment Counter

6.4.3 E2E_P02Check

The E2E_P02Check() function is used as an error detection mechanism by a caller in
order to check if the received data is correct with respect to the failure modes men-
tioned in the profile summary.

A flow chart with the visual description of the function E2E_P02Check() is depicted in
Figure 6.20, Figure 6.21 and Figure 6.22.

[PRS_E2E_00134] [In E2E Profile 2, the E2E_P02Check() function shall perform the

activities as specified in Figure 6.20, Figure 6.21 and Figure 6.22.|(RS_E2E_08528,
RS _E2E 08536)

AUTOSAR

EZE_POZChediConfig, State,

[ata)
Atevery function invacation, the maximum alloved ____] State-=MaxDeltaCounter= min (State->MaxDelaCounter+,
dela betvesn previous and cunent Counter is 157
incremantxl.
[FALSE]
State-=MewD atafwvailable ==
TRUE
[TRUE]
the counter is on ker nibble of lnte F---- ReceivedCounter= [*(Data + 13 &0:F)
L.

V

[Cratall = Config-=DatalbList[Re ceived Counter]

v

[FALSE] Chechsum Ok
1 1\ oo

[TRLIIE]

[TRUE]
\!; State-WaitForFirsthata ==
TRUE

State-=WfaitF orFirstD ata =
FALSE

[FALSE]

-

State-=MaxDeltaCounter=
Config-=hMaxDeltaCounterinit

State-=LastWalidCounter=
ReceivedCounter

EZE_FOZ_process MoMewOrRepeatedD ataCounty State-=5tatus= EZE_POZ_processCounter
(= o0

State-»Status=
EXE_POZ3TATUS _WROHMGCRC

State-: Status = State-» Status=
EXE_PO23TATUS_HONEBEMDATA EIE POZSTATUS_INITIAL

S0

return

Figure 6.20: E2E_P02Check

AUTO SAR

Checksum
OK

over Data[1], Data[2], ... Data[Config->DataLength/8-1],

CalcualtedCRC = Crc_CalculateCRC8H2F() computed
DatalD

[TRUE] [FALSE]

CalculatedCRC ==
Data[0]

return return
TRUE FALSE

Figure 6.21: Checksum OK

Calculate
DeltaCounter

DeltaCounter =
ReceivedCounter - State-

>LastValidCounter

(sint8) DeltaCounter <
0 ?

[TRUE]

[FALSE]

[DeltaCounler = DeltaCounter + 1%

O]

return

Figure 6.22: Calculate Delta Counter

AUTO SAR

DeltaCounter =
k E2E_P02_calculateDeltaCounter O-O

DeltaCounter
[FALSE]

[FALSE]

DeltaCounter >
State>MaxDeltaCounter

[TRUE] [TRUE]

E2E_P02_process_NoNewOrRepeatedDataCounter E2E_P02_handle_wrongSequence
(o e) O

returnvalue =
E2E_P02_handle_ok_and_okSomeLoSO

[returnvalue = E2E_POZSTATUS_REPEATED] [LSO

alue =
E2E_P02STATUS_WRONGSEQUENCE j

O,
return
returnvalue

Figure 6.23: E2E Profile Check step "E2E_P02_process_counter”

Calculate
DeltaC r

[Deltacaunter = ReceivedCounter - State—>LastVaIidCounter]

[TRUE]

(sint8) DeltaCounter <
0°?

[FALSE]

[DeltaCounter = DeltaCounter + 16

O]
return
DeltaCounter

Figure 6.24: E2E Profile Check step "E2E_P02_process_counter”

AUTO SAR

[FALSE]
State-
>NoNewOrRepeatedDataCounter <
15
[TRUE]

(State->NONewOrRepeatedDataCoumer += :D

Figure 6.25: E2E Profile Check step "E2E_P02_process_NoNewOrRepeatedDataCounter”

[State->NoNewOrRepeatedDataCounter = 0]

[State->SyncCounter = Config->SyncCounterlnit]

[FALSE]
State->SyncCounter

[TRUE] >0

[State->MaxDeltaCounter = Config->MaxDeltaCounterlnit]

[State-> LastValidCounter = ReceivedCounter]

@
Figure 6.26: E2E Profile Check step "E2E_P02_handle_wrongSequence”

AUTOSAR

(State->MaxDeltaCounter = Config->MaxDeltaCounterinit]

[State->LastValidCounter = State->ReceivedCounter J

[State->LostData = DeltaCounter - 1 J

[FALSE]—<>—[TRUE}
State-

>NoNewOrRepeatedDataCounter <=
Config->MaxNoNewOrRepeatedData

[State->SyncCounter = Config->SyncCounterlnit J

State->SyncCounter
State->SyncCounter -= 1 [TRUE] >0

[FALSE]

DeltaCounter
[TRUE] =1

[FALSE]

returnvalue =
(relurnvalue = E2E_POZSTATUS_SYNC] (returvalue = E2E_P02STATUS_OK] (E2E_PO2STATUS_OKSOMELOST]

[State->NoNewOrRepeatedDataCounter = 0 J

return
returnvalue

Figure 6.27: E2E Profile Check step "E2E_P02_handle_ok_and_okSomeLost”

First, the E2E_P02Check() function increments the value MaxDeltaCounter. MaxDelta-
Counter specifies the maximum allowed difference between two Counter values of two
consecutively received valid messages. Note: MaxDeltaCounter is used in order to per-
form a plausibility check for the failure mode re-sequencing. If the flag NewDataAvail-
able is set, the E2E_P02Check() function continues with the evaluation of the CRC.
Otherwise, it returns with Status set to E2E_ PO2STATUS NONEWDATA. To evaluate
the correctness of the CRC, the following actions are performed:

e The specific Data ID is determined using the value of the Counter as provided in
Data.

AUTOSAR

e Then the CRC is calculated over Data payload extended with the Data ID as
last Byte: CalculatedCRC = Crc_CalculateCRC8H2F() calculated over Data[1],
Data[2], ... Data[Config->DatalLength/8-1], Data ID

e Finally, the check for correctness of the received Data is performed by comparing
CalculatedCRC with the value of CRC stored in Data.

In case CRC in Data and CalculatedCRC do not match, the E2E_P02Check() func-
tion returns with Status E2E_ PO2STATUS WRONGCRC, otherwise it continues with
further evaluation steps.

The flag WaitForFirstData specifies if the SW-C expects the first message after startup
or after a timeout error. This flag should be set by the SW-C if the SW-C expects the
first message e.g. after startup or after reinitialization due to error handling. This flag
is allowed to be reset by the E2E_P02Check() function only. The reception of the first
message is a special event because no plausibility checks against previously received
messages is performed.

If the flag WaitForFirstData is set by the SW-C, E2E_P02Check() does not evaluate
the Counter of Data and returns with Status E2E_P02STATUS _INITIAL. However, if
the flag WaitForFirstData is reset (the SW-C does not expect the first message) the
E2E_P02Check() function evaluates the value of the Counter in Data.

For messages with a received Counter value within a valid range, the
E2E_P02Check() function returns either with E2E_PO2STATUS _OK or
E2E_P02STATUS_OKSOMELOST. In LostData, the number of missing messages
since the most recently received valid message is provided to the SW-C.

For messages with a received Counter value outside of a valid range, E2E_P02Check()
returns with one of the following states: E2E_P02STATUS WRONGSEQUENCE or
E2E_PO02STATUS_REPEATED.

[PRS_E2E_00135] [In E2E Profile 2, the local variable DeltaCounter shall be calcu-
lated by subtracting LastValidCounter from Counter in Data, considering an overflow
due to the range of values [0...15].| (RS_E2E_08528)

Details on the calculation of DeltaCounter are depicted in Figure 7-12.

[PRS_E2E_00136] [In E2E Profile 2, MaxDeltaCounter shall specify the maximum
allowed difference between two Counter values of two consecutively received valid
messages. |(RS_E2E _08528)

[PRS_E2E_00137] [In E2E Profile 2, MaxDeltaCounter shall be incremented by 1 ev-
ery time the E2E_P02Check() function is called, up to the maximum value of 15 (OxF). |
(RS_E2E 08528)

[PRS_E2E_00138] [In E2E Profile 2, the E2E_P02Check() function shall set Status to
E2E_P02STATUS_NONEWDATA if the attribute NewDataAvailable is FALSE.|(RS_-
E2E 08528)

AUTOSAR

[PRS_E2E_00139] [In E2E Profile 2, the E2E_P02Check() function shall determine
the specific Data ID from DatalDList using the Counter of the received Data as index. |
(RS_E2E 08528)

[PRS_E2E_00140] [In E2E Profile 2, the E2E_P02Check() function shall calculate
CalculatedCRC over Data[1], Data[2], ... Data[Config->DatalLength/8-1] of the data
buffer (Data) extended with the determined Data ID. | (RS_E2E_08528)

[PRS_E2E_00141] [In E2E Profile 2, the E2E_P02Check() function shall set Status
to E2E_ PO2STATUS WRONGCRC if the calculated CalculatedCRC value differs from
the value of the CRC in Data.

|(RS_E2E 08528)

[PRS_E2E_00142] [In E2E Profile 2, the E2E_P02Check() function shall set Status to
E2E_PO2STATUS_INITIAL if the flag WaitForFirstData is TRUE. |(RS_E2E_08528)

[PRS_E2E_00143] [In E2E Profile 2, the E2E_P02Check() function shall clear the
flag WaitForFirstData if it returns with Status E2E_P02STATUS_INITIAL. | (RS_EZ2E_-
08528)

For the first message after start up no plausibility check of the Counter is possible.
Thus, at least a minimum number of messages need to be received in order to per-
form a check of the Counter values and in order to guarantee that at least one correct
message was received.

[PRS_E2E_00145] [The E2E_P02Check() function shall
e set Status to E2E_ PO2STATUS WRONGSEQUENCE; and
e re-initialize SyncCounter with SyncCounterlnit

if the calculated value of DeltaCounter exceeds the value of MaxDeltaCounter. | (RS_-
E2E_08528)

[PRS_E2E_00146] [The E2E_P02Check() function shall set Status to
E2E_P02STATUS_REPEATED if the calculated DeltaCounter equals 0.|(RS_-
E2E 08528)

[PRS_E2E_00147] |[The E2E_P02Check() function shall set Status to
E2E_PO02STATUS_OK if the following conditions are true:

¢ the calculated DeltaCounter equals 1; and

e the value of the NoNewOrRepeatedDataCounter is less than or equal to
MaxNoNewOrRepeatedData (i.e. State —> NoNewOrRepeatedDataCounter <=
Config —> MaxNoNewOrRepeatedData); and

e the SyncCounter equals 0.
|(RS_E2E _08528)
[PRS_E2E_00298] [The E2E_P02Check() function shall

AUTOSAR

e re-initialize SyncCounter with SyncCounterlnit; and
e set Status to E2E_P02STATUS_SYNC; if the following conditions are true:

¢ the calculated DeltaCounter is within the parameters of 1 and MaxDeltaCounter
(i.e. 1 =/< DeltaCounter =/< MaxDeltaCounter); and

e the value of the NoNewOrRepeatedDataCounter exceeds MaxNoNewOrRe-
peatedData. (i.e. State NoNewOrRepeatedDataCounter > Config MaxNoNewOr-
RepeatedData)

|(RS_E2E_08528)
[PRS_E2E_00299] [The E2E_P02Check() function shall
e decrement SyncCounter by 1; and
e set Status to E2E_P02STATUS_SYNC if the following conditions are true:

¢ the calculated DeltaCounter is within the parameters of 1 and MaxDeltaCounter
(i.e. 1 =/< DeltaCounter =/< MaxDeltaCounter); and

e the value of the NoNewOrRepeatedDataCounter is less than or equal to
MaxNoNewOrRepeatedData (i.e. State NoNewOrRepeatedDataCounter =/<
Config MaxNoNewOrRepeatedData); and

e the SyncCounter exceeds 0.
|(RS_E2E_08528)

[PRS_E2E_00148] |[The E2E_P02Check() function shall set Status to
E2E_P02STATUS_OKSOMELOST if the following conditions are true:

e the calculated DeltaCounter is greater-than 1 but less-than or equal to MaxDelta-
Counter (i.e. 1 < DeltaCounter =/< MaxDeltaCounter); and

e the NoNewOrRepeatedDataCounter is less than or equal to MaxNoNewOr-
RepeatedData (i.e. State NoNewOrRepeatedDataCounter =/< Config
MaxNoNewOrRepeatedData); and

e the SyncCounter equals 0.
|(RS_E2E_08528)

[PRS_E2E_00149] [The E2E_P02Check() function shall set the value LostData to
(DeltaCounter - 1) if the calculated DeltaCounter is greater-than 1 but less-than or
equal to MaxDeltaCounter. | (RS_E2E _08528)

[PRS_E2E_00150] [The E2E_P02Check() function shall r-initialize MaxDeltaCounter
with MaxDeltaCounterlnit if it returns one of the following Status:

e E2E_P02STATUS_OK; or
e E2E_P02STATUS_OKSOMELOST; or
o E2E PO2STATUS_INITIAL; or

AUTOSAR

e E2E_P02STATUS_SYNC; or

e E2E PO2STATUS WRONGSEQUENCE on condition that SyncCounter exceeds
0 (i.e. SyncCounter > 0).

|(RS_E2E_08528)

[PRS_E2E_00151] [The E2E_P02Check() function shall set LastValidCounter to
Counter of Data if it returns one of the following Status:

o E2E_P02STATUS_OK; or
E2E_P02STATUS OKSOMELOST; or
E2E_PO2STATUS INITIAL; or
E2E_P02STATUS SYNC; or

E2E P02STATUS WRONGSEQUENCE on condition that SyncCounter exceeds
0 (i.e. SyncCounter > 0).

|(RS_E2E 08528)

[PRS_E2E_00300] [The E2E_P02Check() function shall reset the NoNewOrRe-
peatedDataCounter to O if it returns one of the following status:

o E2E_P02STATUS_OK; or

o E2E_P02STATUS_OKSOMELOST; or

o E2E_P02STATUS_SYNC; or

¢ E2E_P02STATUS WRONGSEQUENCE
|(RS_E2E 08528)

[PRS_E2E_00301] [The E2E_P02Check() function shall increment NoNewOrRe-
peatedDataCounter by 1 if it returns the Status E2E_P02STATUS_NONEWDATA or
E2E_PO02STATUS_REPEATED up to the maximum value of Counter (i.e. 15 or 0xF). |
(RS_E2E 08528)

6.4.3.1 Profile 2 Check Status Enumeration

[PRS_E2E_00589] [The E2E_P02Check function shall set State->Status to one of the
following enumeration values (see Table 6.16).| (RS_E2E_08528)

Name State | Description
Type

AUTOSAR

E2E_PO02STATUS_OK

OK

The new data has been received accord-
ing to communication medium, the CRC
is correct, the Counter is incremented by
1 with respect to the most recent Data re-
ceived with Status _INITIAL, OK, or _OK-
SOMELOST. This means that no Data has
been lost since the last correct data recep-
tion.

E2E_PO02STATUS_NONEWDATA

Error

The Check function has been invoked but
no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed.

E2E_PO02STATUS_WRONGCRC

Error

The data has been received according to
communication medium, but the CRC is
incorrect.

E2E_P02STATUS_SYNC

Not
Valid

The new data has been received after
detection of an unexpected behavior of
counter. The data has a correct CRC and
a counter within the expected range with
respect to the most recent Data received,
but the determined continuity check for the
counter is not finalized yet.

E2E_PO2STATUS_INITIAL

Initial

The new data has been received accord-
ing to communication medium, the CRC
is correct, but this is the first Data since
the receiver’s initialization or reinitializa-
tion, so the Counter cannot be verified yet.

E2E_PO02STATUS_REPEATED

Error

The new data has been received accord-
ing to communication medium, the CRC
is correct, but the Counter is identical to
the most recent Data received with Status
_INITIAL, OK, or OKSOMELOST.

E2E_PO02STATUS_OKSOMELOST

OK

The new data has been received ac-
cording to communication medium, the
CRC is correct, the Counter is incre-
mented by DeltaCounter (1 < Delta-
Counter =MaxDeltaCounter) with respect
to the most recent Data received with Sta-
tus _INITIAL, _OK, or _OKSOMELOST.
This means that some Data in the se-
quence have been probably lost since
the last correct/initial reception, but this is
within the configured tolerance range.

AUTOSAR

E2E_P02STATUS_ WRONGSEQUENCE

Error

The new data has been received ac-
cording to communication medium, the
CRC is correct, but the Counter Delta is
too big (DeltaCounter > MaxDeltaCounter)
with respect to the most recent Data re-
ceived with Status _INITIAL, _OK, or _OK-
SOMELOST. This means that too many
Data in the sequence have been probably
lost since the last correct/initial reception.

Table 6.16: E2E Profile 2 Check Status Enumeration

6.4.4 EZ2E Profile 2 Protocol Examples

E2E_P02ConfigType field Value
DatalLength 64
DatalDList 0x01, 0x02, 0x03, 0x04,

0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0xOc,
0x0d, 0x0e, 0x0f, 0x10

MaxDeltaCounterlnit

1

MaxNoNewOrRepeatedData 15
SyncCounterlnit 0
Offset 0

Table 6.17: E2E Profile 2 protocol example configuration

E2E_PO02ProtectStateType field

Value

Counter

0

Table 6.18: E2E Profile 2 example state initialization

AUTOSAR

Result data of E2E_P02Protect() with data equals all zeros (0x00), counter starting with
1 (note: first used counter is 1, although counter field is initialized with 0, as counter is
incremented before usage):

Counter DatalD Byte
(1] 1 2 3 4 5 6 7
1 0x02 0x1b 0x01 0x00 0x00 0x00 0x00 0x00 0x00
2 0x03 0x98 0x02 0x00 0x00 0x00 0x00 0x00 0x00
3 0x04 0x31 0x03 0x00 0x00 0x00 0x00 0x00 0x00
4 0x05 0x0d 0x04 0x00 0x00 0x00 0x00 0x00 0x00
5 0x06 0x18 0x05 0x00 0x00 0x00 0x00 0x00 0x00
6 0x07 0x9b 0x06 0x00 0x00 0x00 0x00 0x00 0x00
7 0x08 0x65 0x07 0x00 0x00 0x00 0x00 0x00 0x00
8 0x09 0x08 0x08 0x00 0x00 0x00 0x00 0x00 0x00
9 0x0a 0ox1d 0x09 0x00 0x00 0x00 0x00 0x00 0x00
10 0x0b 0x9e 0x0a 0x00 0x00 0x00 0x00 0x00 0x00
11 0x0c 0x37 0x0b 0x00 0x00 0x00 0x00 0x00 0x00
12 0xod 0x0b 0x0c 0x00 0x00 0x00 0x00 0x00 0x00
13 0x0e Ox1e 0x0d 0x00 0x00 0x00 0x00 0x00 0x00
14 oxof 0x9d 0x0e 0x00 0x00 0x00 0x00 0x00 0x00
15 0x10 Oxcd 0xO0f 0x00 0x00 0x00 0x00 0x00 0x00
0 0x01 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x00
CRC 4 bit Data
Data + 4
bit
Counter

Table 6.19: E2E Profile 2 example protect result

6.5 Specification of E2E Profile 4

[PRS_E2E_00372] |Profile 4 shall provide the following control fields, transmitted at
runtime together with the protected data: Length, Counter, CRC, Data ID (see Table
6.20).| (RS_E2E 08529, RS_E2E 08530, RS_E2E_08533)

Control field Description

Length 16 bits, to support dynamic-size data.

Counter 16-bits.

CRC 32 bits, polynomial in normal form 0x1F4ACFB13, pro-

vided by CRC library.
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN and TCPIP.

Data ID 32-bits, unique system-wide.

Table 6.20: E2E Profile 4 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

AUTOSAR

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Insertion of information Data ID

Masquerading Data ID, CRC

Incorrect addressing Data ID

Incorrect sequence of information Counter

Corruption of information CRC

Asymmetric information sent from a sender to | CRC (to detect corruption at any of receivers)
multiple receivers

Information from a sender received by only a | Counter (loss on specific receivers)
subset of the receivers

Blocking access to a communication channel | Counter (loss or timeout)

Table 6.21: Detectable communication faults using Profile 4

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[2].

6.5.1 Data Layout
6.5.1.1 User data layout
In the E2E Profile 4, the user data layout (of the data to be protected) is not constrained

by E2E Profile 4 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

6.5.1.2 Header layout

The header of the E2E Profile 4 has one fixed layout, as follows:

[] I F [z I E] |
Tramsmizzhonorder | 8| 1| 2|3 |a|s |6 | 7| =] 5|01z |13|1a|15|26)|27|as]|1s|20|21]|22]| 23| 24|25 |25 |27 2522|300
o
£
=

Figure 6.28: E2E Profile 4 Header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte fist) - imposed by profile
2. LSB Fist (least significant bit within byte first) - imposed by TCPIP bus

AUTOSAR

For example, the 16 bits of the E2E counter are transmitted in the following order
(higher number meaning higher significance): 7891011 121314150123456 7.

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

6.5.2 Counter
In E2E Profile 4, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00478] [In E2E Profile 4, on the sender side, for the first transmission re-
quest of a data element the counter shall be initialized with 0 and shall be incremented
by 1 for every subsequent send request. When the counter reaches the maximum
value (OxFF’FF), then it shall restart with 0 for the next send request.| (RS_E2E_08539)

Note: This specification was previously falsely identified as PRS_E2EProtocol _00324.

Note that the counter value OXFF’FF is not reseved as a special invalid value, but it is
used as a normal counter value.

In E2E Profile 4, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion, b. the data is repeated

2. OK:a. counter is incremented by one (i.e. no data lost), b. counter is incremented
more than by one, but still within allowed limits (i.e. some data lost),

3. Wrong sequence: a. counter is incremented more than allowed (i.e. too many
data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.5.3 DatalD
The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00326] [In the E2E Profile 4, the Data ID shall be explicitly transmitted, i.e.
it shall be the part of the transmitted E2E header. | (RS_E2E_08539)

AUTOSAR

[PRS_E2E_UC_00327] [In the E2E profile 4, the Data IDs shall be globally unique
within the network of communicating system (made of several ECUs each sending
different data). | (RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.5.4 Length

The Length field is introduced to support variable-size length - the Data [] array storing
the serialized data can potentially have a different length in each cycle. The Length
includes user data + E2E Header (CRC + Counter + Length + DatalD).

6.5.5 CRC

E2E Profile 4 uses a 32-bit CRC, to ensure a high detection rate and high Hamming
Distance.

[PRS_E2E_00329] [E2E Profile 4 shall use the Crc_CalculateCRC32P4 () function
of the SWS CRC Supervision for calculating the CRC.|(RS_E2E 08528, RS _EZE -
08539)

Note: The CRC used by E2E Profile 4 is different from the CRCs used by FlexRay,
CAN and TCP/IP. It is also provided by different software modules (FlexRay, CAN and
TCP/IP stack CRCs/checksums are provided by hardware support in Communication
Controllers or by communication stack software, but not by CRC Supervision).

[PRS_E2E_00330] [In E2E Profile 4, the CRC shall be calculated over the entire E2E
header (excluding the CRC bytes) and over the user data.| (RS_E2E_08536)

6.5.6 Timeout detection

The previously mentioned mechanisms (CRC, Counter, Data ID, Length) enable to
check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively messages, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

AUTOSAR

6.5.7 EZ2E Profile 4 variants

[PRS_E2E_00584] [The E2E Profile variant 4A is defined as follows:
1. The CRC is the 64th bit in the signal group
2. The max Delta Counter is 1

|(RS_E2E_08528)

[PRS_E2E_00585] | The E2E Profile variant 4B is defined as follows:
1. The CRC is the 64th bit in the signal group
2. The max Delta Counter is 2

|(RS_E2E_08528)

6.5.8 E2E_PO04Protect
The function E2E_P04Protect() performs the steps as specified by the following eight
diagrams in this section.

[PRS_E2E_00362] | The function E2E_P04Protect() shall have the overall behavior as
shown in Figure 6.29.|(RS_E2E_08539)

AUTOSAR

[PRS_E2E_00363]

[null
input]

@6
retum

E2E_E_INPUTERR_NULL

E2E_PO04Protect(Config, State, Data,

Length)

Verify inputs of the prot&g_b
function

[input
ok

=

Compute offset

Write Length

Write Counter

Write DatalD

Compu

HRGEY

Write CRC

8

Increment Counter

fmARAEANANp

{

(e o)

®

return
E2E_E_OK

[wrong
input]

®

E2E_E_INPUTERR_WRONG

Figure 6.29: E2E Profile 4 Protect

[The step

"Verify

inputs of

the protect

function”

E2E_PO04Protect() shall behave as shown in Figure 6.30.| (RS_E2E_08539)

in

AUTOSAR

E2E_PO04Protect() .
(eos o)

(Config != NULL) && (State != NULL) && (Data != NULL)

[FALSE]

[TRUE]

(Length >= Config->MinDatalLength/8) && (Length <= Config->MaxDataLength/8)
[FALSE]
[TRUE]
wrong input
@ @) input ok

null input

Figure 6.30: E2E Profile 4 Protect step "Verify inputs of the protect function”

[PRS_E2E_00376] [The step "Compute offset” in
E2E_P04Protect(), E2E_PO04Forward() and E2E_P04Check()
shall behave as shown in Figure 6.31.] (RS_E2E_08539)

E2E_PO04Protect()

E2E_P04Check() I

E2E_PO04Forward()
(eose)

J

8

Offset = Config->Offset / 8]

!

Figure 6.31: E2E Profile 4 Protect step "Compute offset”

compute local variable uintl6
Offset, which is in [byte]

[PRS_E2E_00364] [The step “"Write Length” in E2E_PO4Protect() and
E2E_PO4Forward() shall behave as shown in Figure 6.32.|(RS_E2E _08539)

E2E_PO04Protect()

E2E_PO04Forward()

u!

Copy 2-byte Length on bytes Data[Offset...Offset+1] in Big Endian order]

!

Figure 6.32: E2E Profile 4 Protect step ”Write Length”

AUTOSAR

[PRS_E2E 00365] [The step "Write Counter” in E2E_PO04Protect()
shall behave as shown in Figure 6.33.] (RS_E2E_08539)

E2E_PO04Protect()
(o)

[Copy 2-byte State->Counter on bytes Data[Offset+2...Offset+3] in Big Endian]
order

®

Figure 6.33: E2E Profile 4 Protect step ”Write Counter”

[PRS_E2E 00366] [The step "Write DatalD” in E2E_P04Protect()
shall behave as shown in Figure 6.34.| (RS_E2E_08539)

E2E_PO04Protect()
(o)

Copy 4-byte Config->DatalD to bytes Data[Offset+4...Offset+7] in
Big Endian order

Figure 6.34: E2E Profile 4 Protect step ”Write DatalD”

[PRS_E2E 00367] [The step "Compute CRC” in
E2E_PO04Protect(), E2E_PO4Forward() and in E2E_P04Check()

AUTOSAR
shall behave as shown in Figure 6.35.|(RS_E2E _08539)
oSO
O
oY) uint32 ComputedCRC = Crc_CalculateCRC32P4(Crc_DataPtr:
(&Data[0], Crc_Length: Offset+8, Crc_StartValue32: } compute CRC over bytes that are before CRC.

CEER : - computation length: offset+8, where:
OxFPFPFPFF, Cre IsFirsCall: TRUE) offset: number of bytes before the E2E header

8 number of header bytes before E2E CRC

Offset + 12 <
Length

[false] [true]

[offset+12], Crc_Length: Length-Offset-12, Crc_StartValue32: [~~~"""~
ComputedCRC, Crc_lsFirstCall: FALSE)

[CompuledCRC = Crc_CalculateCRC32P4(Crc_DataPtr: &Dataj Compute CRC over bytes that are after CRC (f any). j

entire E2E-Prodected Data (includung E2E Header (length, I

............. At this step, there is a ready ComputedCRC value, over the
D,
CRC etc) and the user data).

Figure 6.35: E2E Profile 4 Protect and Check step "Compute CRC”

[PRS_E2E 00368] |[The step "Write CRC’in E2E_PO04Protect() and
E2E_PO4Forward() shall behave as shown in Figure 6.36.|(RS_E2E_08539)

E2E_PO04Protect()
(e o)

E2E_PO04Forward()
(e o)

Copy 4-byte local variable CRC on bytes Data[Offset+8...Offset
+11] using big Endian order

®
Figure 6.36: E2E Profile 4 Protect step "Write CRC”

AUTOSAR

[PRS_E2E_00369] [The step ’“Increment Counter” in E2E_P04Protect() and
E2E_PO4Forward() shall behave as shown in Figure 6.37.|(RS_E2E 08539)

E2E_PO04Protect()

E2E_PO04Forward()

uu

__________ The type is uintl6. After
SECECOUE OxFF'FF, the next value
is 0.

O)

Figure 6.37: E2E Profile 4 Protect step ”Increment Counter”

6.5.9 E2E_PO4Forward

The E2E_P04Forward() function of E2E Profile 4 is called by a SW-C in order to protect
its application data and forward an received E2E-Status for use cases like translation
of signal based to service oriented communication. If the received E2E status equals
E2E_P_OK the behavior of the function shall be the same like E2E_P04Protect(). The
function E2E_P04Forward() performs the steps as specified by the following four dia-
grams in this section.

[PRS_E2E_00615] Draft [The function E2E_P04Forward() shall have the overall be-
havior as shown in Figure 6.38.|(RS_E2E_08539)

AUTO SAR

E2E_PO04Forward(Config, State, Data, Length,
CheckStatus)

Tyhe type of CheckState is
described in [PRS_E2E_
00597

Verify inputs of the proé.sg:é> [wrong
function input]

@ retumn
retumn E2E_E_OK @ return

E2E_E_INPUTERR_NULL E2E_E_INPUTERR_WRONG

Figure 6.38: E2E Profile 4 Forward

Following steps are described in Section in Section 6.5.8
e "Compute Offset” see [PRS_E2E_00376]
e "Write Length” see [PRS_E2E_00364]
e "Compute CRC” see [PRS_E2E_00367]
e "Write CRC” see [PRS_E2E_00368]
¢ “Increment Counter” see [PRS_E2E 00369]

[PRS_E2E_00616] Draft [The step "Verify inputs of the forward function” in
E2E_P04Forward() shall behave as shown in Figure 6.39. | (RS_E2E_08539)

AUTO SAR

E2E_P04Forward()
(o)

(Config != NULL) &&
(State != NULL) &&
(Data != NULL) &&

(ForwardStatus !=
NULL)

[FALSE]

[TRUE]

(Length >= Config->MinDataLength/8) &&
(Length <= Config->MaxDataLength/8) &&
ForwardStatus != E2E_P_NONEWDATA

[FALSE]

[TRUE]

®

null input wrong

input ok input

Figure 6.39: E2E Profile 4 Forward step “Verify inputs of the forward function”

[PRS_E2E_00617] Draft [The step "Write Counter” in E2E_PO04Forward() shall be-
have as shown in Figure 6.40.|(RS_E2E_08539)

E2E_P04Forward()
(os o)

if ForwardStatus ==

E2E_P_WRONGSEQUENCE

else
if ForwardStatus

E2E_P_REPEATED [FALSE] Y />

[TRUE]

[TRUE]

>Counter +
Config->MaxDeltaCounter

State->Counter = State-
State->Counter - -

The type is uintl6. After
OxFF'FF, the next value
is 0.

{Copy 2-byte State->Counter on bytes Data[Offset+2...Offset+3] in Big Endian]
order

®
Figure 6.40: E2E Profile 4 Forward step ”Write Counter”

AUTOSAR

[PRS_E2E_00618] Draft [The step
shall behave as shown

E2E_PO04Forward()
(o)

if ForwardStatus ==

E2E_P_ERROR
- [TRUE]

Copy 4-byte Config->DatalD+1 to
bytes Data[Offset+4...Offset+7] in Big

Endian order

"Write DatalD” in

E2E_PO4Forward()

Figure 6.41.](RS_E2E_08539)

[FALSE]

Copy 4-byte Config->DatalD to
bytes Data[Offset+4...Offset+7]

in Big Endian order

Figure 6.41: E2E Profile 4 Forward step ”Write DatalD”

6.5.10 E2E_P04Check

The function E2E_P04Check performs the actions as as specified by the following
seven diagrams in this section and according to diagram PRS_E2EProtocol_00367.

AUTO SAR

[PRS_E2E 00355] [The function E2E_P04Check() shall have
the overall behavior as shown in Figure 6.42.](RS_E2E_08539)

E2E_P04Check(Config, State, Data,
Length)

Verify inputs of the ch%
function

[null [input [wrong
input] oK input]
NewDataAvailable ==

RUE

[FALSE]

o

[TRUE]

Compute offset

]

Read

|
Ul

Read Counter

Read DatalD

Read CRC

8

Compute CRC

L s
:

Do checks ~c
® O, ®
return return return
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.42: E2E Profile Check

AUTO SAR

[PRS_E2E_00356] |[The step “Verify inputs of the check function” in
E2E_P04Check() shall behave as shown in Figure 6.43.|(RS_E2E 08539)

E2E_P04Check()
O
NewDataAvailable |-----
= FALSE

local variable, no need
to store it in the State
structure.

(Config != NULL) && (State !=
NULL)
[FALSE] [TRUE]
Check: Either both Data .
and Length mean that [FALSE]
a message is available, (Data != NULL && Length !=0) || (Data == NULL &&
or both mean the Length == 0)
opposite.
[TRUE]
[FALSE]
Data !=
NULL
This path may (TRUE]
happen at runtime if
quzﬁed [FALSE]
communication is (Length >= Config->MinDataLength/8) && (Length <= Config-
used and no data is >MaxDatalLength/8)
available (in this case
both Data is NULL
nd Length i
[TRUE]
NewDataAvailable
=TRUE
896

null
input

Figure 6.43: E2E Profile Check step ’Verify inputs of the check function”

input wrong
ok input

[PRS_E2E_00357] [The step "Read Length” in E2E_P04Check()
shall behave as shown in Figure 6.44.|(RS_E2E_08539)

E2E_P04Check))
[e3e)

[Copy bytes Data[Offset...Offset+1] in Big Endian order to uint16 local variable ReceivedLength]

% Options is always at the
same location.

Figure 6.44: E2E Profile Check step ”Read Length”

AUTOSAR

[PRS_E2E 00358] [The step "Read Counter” in E2E_P04Check()
shall behave as shown in Figure 6.45.|(RS_E2E_08539)

E2E_P04Check() .
oo

Copy bytes Data[Offset+2...Offset+3] in Big Endian order on uint16 local
variable ReceivedCounter

@

Figure 6.45: E2E Profile Check step "Read Counter”

[PRS_E2E 00359] [The step "Read DatalD” in E2E_P04Check()
shall behave as shown in Figure 6.46.| (RS_E2E_08539)

E2E_P04Check()
=2 o

Copy bytes Data[Offset+4...Offset+7] in Big Endian order on
uint32 local variable ReceivedDatalD

@
Figure 6.46: E2E Profile Check step ”"Read DatalD”

AUTOSAR

[PRS_E2E_00360] [The step "Read CRC” in E2E_P04Check()
shall behave as shown in Figure 6.47.|(RS_E2E_08539)

E2E_P04Check()
(o)

Copy bytes Data[Offset+8...Offset+11] using big Endian order
on 4-byte local variable ReceivedCRC

Figure 6.47: E2E Profile Check step "Read CRC”

[PRS_E2E 00361] [The step "Do Checks” in E2E_P04Check()
shall behave as shown in Figure 6.48.| (RS_E2E_08539)

EZE_PO4Check)
oo

NewDatafwailable == TRUE

[TRUE]
[FALSE]

ReceivedCRC == ComputedCRE

r]
[FALSE]

ReceivedDatalD == Config->D atalh

[TRUE]

[FALSE] é ReceivedLength == Length
[TRUE]
W
Compute Iocal variable DeltaCounter: ReceivedCounter - State->Counter
[FALSE] (taking into wrap around DxFFFF)

ter <= Config->MaxDelaCaunt
ter >=0)

[FALSE]
DeltaCounter > 0

z
><r< ><
z
m
5D
i

[FALSE] [TRUE]

DeltaCounter == 1

[FALSE] [TRUE]

i

State->Gtatus =
EZE_PO4STATUS_OK

State->Status = State-» Status = State->Status = State->Status =
EZE_PO4STATUS_NONEWDATA E2E_POASTATUS_ERROR E2E_PO4STATUS_WRONGSEQUENCE| | E2E_poasTATUS_REPEATED

E2E_PO4STATUS_OKSOMELOST

Figure 6.48: E2E Profile 4 Check step Do Checks”

AUTOSAR

6.5.10.1 Profile 4 Check Status Enumeration

[PRS_E2E_00590] [The step "Do Checks” in E2E_P04Check shall set State->Status
to one of the following enumeration values (see Table 6.22).|(RS_E2E_08528)

Name State | Description
Type
E2E PO4STATUS OK OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented by 1).

E2E_PO4STATUS_NONEWDATA Error The Check function has been invoked but
no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_P04STATUS REPEATED.

E2E_PO4STATUS_ERROR Error Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong options,
wrong Data ID).

E2E PO4STATUS REPEATED Error The checks of the Data in this cycle were
successful, with the exception of the repe-
tition.

E2E_PO04STATUS OKSOMELOST OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented within the allowed
configured delta).

E2E PO4STATUS WRONGSEQUENCE | Error The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the al-
lowed delta

Table 6.22: E2E Profile 4 Check Status Enumeration

6.5.11 EZ2E Profile 4 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P04ConfigType field Value
DatalD 0x0a0b0c0d
Offset 0x0000
MinDatalength 96
MaxDatalength 32768
MaxDeltaCounter 1

Table 6.23: E2E Profile 4 protocol example configuration

AUTOSAR

E2E_PO04ProtectStateType field

Value

Counter

0

Result data of E2E_P04Protect() with short data length (length 16 bytes, means 4

Table 6.24: E2E Profile 4 example state initialization

actual data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x10 0x00 0x00 0x00 0x00 0x00 0x00
Field Length Counter DatalD

Byte 8 9 10 11 12 13 14 15
Data 0x34 Oxea 0x4b Oxff 0x00 0x00 0x00 0x00
Field CRC Data

Result data of E2E_P04Protect() with minimum data length (4 data bytes), offset = 64

Table 6.25: E2E Profile 4 example short

(as with SOME/IP header use case), datalength = 24, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data 0x00 0x18 0x00 0x00 0x00 0x00 0x00 0x00
Field Length Counter DatalD

Byte 16 17 18 19 20 21 22 23
Data 0xe2 0x4d 0x10 Oxfa 0x00 0x00 0x00 0x00
Field CRC Data

Table 6.26: E2E Profile 4 example short with SOME/IP use case

6.6 Specification of E2E Profile 5

[PRS_E2E_00394] |Profile 5 shall provide the following control fields, transmitted at
runtime together with the protected data: Counter, CRC, Data ID (see Table 6.27).]

(RS_E2E_08529, RS_EZ2E 08530, RS_E2E_08533)

Control field Description

Counter 8 bits. (explicitly sent)

CRC 16 bits, polynomial in normal form 0x1021 (Autosar notation),
provided by CRC library. (explicitly sent)

Data ID 16 bits, unique system-wide. (implicitly sent)E2E

AUTOSAR

Table 6.27: E2E Profile 5 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Masquerading Data ID, CRC

Incorrect addressing Data ID

Incorrect sequence of information Counter

Corruption of information CRC

Asymmetric information sent from a senderto | CRC (to detect corruption at any of receivers)
multiple receivers

Information from a sender received by only a | Counter (loss on specific receivers)
subset of the receivers

Blocking access to a communication channel | Counter (loss or timeout)

Table 6.28: Detectable communication faults using Profile 5

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[2].

6.6.1 Data Layout
6.6.1.1 User data layout
In the E2E Profile 5, the user data layout (of the data to be protected) is not constrained

by E2E Profile 5 - there is only a requirement, that the length of data to be protected is
multiple of 1 byte.

6.6.1.2 Header layout

The header of the E2E Profile 5 has one fixed layout, as follows:

| 0 [1 [2 |
Transmlszlon order [1] 1 2 3 4 5 () 7 8 9 |10 111213 |14 | 15|16 (17|18 |19|20 |21 | 22|23
(]

Figure 6.49: E2E Profile 5 header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

AUTOSAR

1. Little Endian (least significant byte fist) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB Fist (most significant bit within byte first) - imposed by FlexrayCAN bus.

6.6.2 Counter
In E2E Profile 5, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00397] [In E2E Profile 5, on the sender side, for the first transmission re-
quest of a data element the counter shall be initialized with 0 and shall be incremented
by 1 for every subsequent send request. When the counter reaches the maximum
value (OxFF), then it shall restart with 0 for the next send request. | (RS_E2E _08539)

Note that the counter value OxFF is not reserved as a special invalid value, but it is
used as a normal counter value.

In E2E Profile 5, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated
2. OK:
a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.6.3 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00399] |In the E2E Profile 5, the Data ID shall be implicitly transmitted, by
adding the Data ID after the user data in the CRC calculation. |(RS_E2E_08539)

AUTOSAR

The Data ID is not a part of the transmitted E2E header (similar to Profile 2 and 6).

[PRS_E2E_UC_00463] [In the E2E profile 5, the Data IDs shall be globally unique
within the network of communicating system (made of several ECUs each sending
different data). | (RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.6.4 Length

In Profile 5 there is no explicit transmission of the length.

6.6.5 CRC

E2E Profile 5 uses a 16-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

[PRS_E2E_00400] |E2E Profile 5 shall use the Crc_CalculateCRC16() function of the
SWS CRC Supervision for calculating the CRC (Polynomial: 0x1021; Autosar nota-
tion).| (RS_E2E_08528, RS _E2E_08539)

[PRS_E2E_00401] [In E2E Profile 5, the CRC shall be calculated over the entire E2E
header (excluding the CRC bytes), including the user data extended at the end with
the Data ID.|(RS_E2E_08539, RS_E2E 08536)

6.6.6 Timeout detection

The previously mentioned mechanisms (for Profile 5: CRC, Counter, Data ID) enable
to check the validity of received data element, when the receiver is executed inde-
pendently from the data transmission, i.e. when receiver is not blocked waiting for
Data Elements or respectively messages, but instead if the receiver reads the currently
available data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->NewDataAvailable == FALSE means that the transmission
medium (e.g RTE) reports that no new data element is available at the transmission
medium. The attribute State->Status = E2E_ POSSTATUS REPEATED means that the

AUTOSAR

transmission medium (e.g. RTE) provided new valid data element, but this data ele-
ment has the same counter as the previous valid data element. Both conditions repre-
sent an unavailability of valid data that was updated since the previous cycle.

6.6.7 E2E_PO5Protect

The function E2E_PO5Protect() performs the steps as specified by the following six
diagrams in this section.

[PRS_E2E 00403] [The function E2E_PO05Protect() shall have
the overall behavior as shown in Figure 6.50.](RS_E2E_08539)

E2E_PO5Protect(Config, State, Data,
Length)

Verify inputs of the pro%
function

[null [input [wrong
input] oK input]

I

Compute offset

Write Counter

Compute CRC

Y

Write CRC

fipn

6

Increment Counter

i
!

O ('5 @
retum return return
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.50: E2E Profile 5 Protect

AUTOSAR

[PRS_E2E_00404] [The step “Verify inputs of the protect function” in
E2E_PO5Protect() shall behave as shown in Figure 6.51.|(RS_E2E 08539)

E2E_PO05Protect()
(o o)

(Config != NULL) && (State != NULL) && (Data != NULL)

[FALSE]
[TRUE]

Length == Config->DataLength/8

[TRUE] [FALSE]

input ok wrong input
no input

Figure 6.51: E2E Profile 5 Protect step ”Verify inputs of the protect function”

[PRS_E2E_00469] [The step "Compute offset” in
E2E_PO05Protect(), E2E_PO5Forward() and E2E_PO05Check()
shall behave as shown in Figure 6.52.| (RS_E2E_08539)

E2E_PO5Protect()

J

E2E_P05Check(

(o) .
E2E_PO05Forward()

OO Offset = Config->Offset / 8

®
compute local variable uint16

Offset, which is in [byte]

Figure 6.52: E2E Profile 5 Protect step "Compute offset”

[PRS_E2E 00405] [The step "Write Counter” in E2E_PO05Protect()
shall behave as shown in Figure 6.53.] (RS_E2E_08539)

E2E_PO5Protect() .
oo

[Copy 1-byte State->Counter on byte Data[Offset+2] in Little Endian order]

O,
Figure 6.53: E2E Profile 5 Protect step "Write Counter”

AUTO SAR

[PRS_E2E_00406] [The step "Compute CRC” in E2E_PO05Protect() and in
E2E_PO05Check shall behave as shown in Figure 6.54.|(RS_E2E 08539)

E2E_PO5Protect()
(o)
E2E_P05Check()
O
Config->Offset > 0

[TRUE]

[FALSE]

&Data[Offset+2], Crc_Length: Length-Offset-2,

uint16 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
Crc_StartValuel6: OxFFFF, Crc_IsFirstCall: TRUE)

&Data[0], Crc_Length: Offset, Crc_StartValue16: OXFFFF,
Crc_lIsFirstCall: TRUE)

[uint16 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr: J

[Offset+2], Crc_Length: Length-Offset-2, Crc_StartValuel6:

ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:&Data
ComputedCRC, Crc_IsFirstCall: FALSE)

Crc_Length: 1, Crc_StartValuel6: ComputedCRC,

ComputedCRC= Crc_CalculateCRC16(Config->DatalD & OxFF,
Crc_lsFirstCall: FALSE)

OxFF, Crc_Length: 1, Crc_StartValue16: computedCRC,

ComputedCRC= Crc_CalculateCRC16(Config->DatalD>>8 &
Crc_lsFirstCall: FALSE)

O,
Figure 6.54: E2E Profile 5 Protect and Check step "Compute CRC”

[PRS_E2E_00407] [The step "Write CRC” in E2E_PO05Protect() and
E2E_POSForward() shall behave as shown in Figure 6.55.](RS_E2E 08539)

E2E_PO5Protect()
O

Copy 2-byte local variable CRC on bytes Data[Offset+0...Offset+1] using Little
Endian order

O,
Figure 6.55: E2E Profile 5 Protect step "Write CRC”

AUTOSAR

[PRS_E2E_00409] [The step ’“Increment Counter” in E2E_PO05Protect() and
E2E_PO5Forward() shall behave as shown in Figure 6.56.|(RS_E2E 08539)

E2E_PO5Protect()
(o)

E2E_PO5Forward()
__________ The type is uint8. After
State->Counter++ OxFF, the next value is
0.
O,

Figure 6.56: E2E Profile 5 Protect step ”Increment Counter”

6.6.8 E2E_PO5Forward

The E2E_PO05Forward() function of E2E Profile 5 is called by a SW-C in order to protect
its application data and forward an received E2E-Status for use cases like translation
of signal based to service oriented communication. If the received E2E status equals
E2E_P_OK the behavior of the function shall be the same like E2E_PO0O5Protect(). The
function E2E_PO5Forward() performs the steps as specified by the following four dia-
grams in this section.

[PRS_E2E_00639] Draft [The function E2E_PO05Forward() shall have the overall be-
havior as shown in Figure 6.57.|(RS_E2E_08539)

E2E_PO5Forward(Config, State, Data, Length,

ForwardStatus)
Verify inputs of the pro%
function

Compute offset
Write Counter

Compute CRC

i

[wrong

oo input]

Write CRC
(ose)

Increment Counter

oo

®
retum

E2E_E_INPUTERR_NULL

Figure 6.57: E2E Profile 5 Forward

return
E2E_E_OK

@ return

E2E_E_INPUTERR_WRONG

AUTOSAR

Following steps are described in Section in Section 6.6.7
e "Compute Offset” see [PRS_E2E_00469]
e "Write CRC” see [PRS_E2E 00407]
¢ “Increment Counter” see [PRS_E2E_00409]

[PRS_E2E_00619] Draft [The step "Verify inputs of the forward function” in
E2E_PO5Forward() shall behave as shown in Figure 6.58.|(RS_E2E _08539)

E2E_PO5Foward() .
oo (Config != NULL) &&

(State != NULL) &&
(Data = NULL) &&
(ForwardStatus !=

NULL)
[TRUE]
[FALSE]
Length == Config->DataLength/8
&&
ForwardStatus !=
E2E_P_NONEWDATA
[TRUE] [FALSE]
® G
no ok input
input

Figure 6.58: E2E Profile 5 Forward step “Verify inputs of the forward function”

[PRS_E2E_00620] Draft [The step "Write Counter” in E2E_P05Forward() shall be-
have as shown in Figure 6.59.| (RS_E2E_08539)

E2E_PO5Forward()
(o)

if ForwardStatus ==

if ForwardStatus == E2E_P_WRONGSEQUENCE else

E2E_P_REPEATED

[FALSE] [FALSE]

[TRUE] [TRUE]
T State->Counter = State->Counter +
ate->Counter - - Config->MaxDeltaCounter
The type is uint8. After
OxFF, the next value is
0.

[Copy 1-byte State->Counter on byte Data[Offset+2] in Little]

Endian order

s

Figure 6.59: E2E Profile 5 Forward step ”Write Counter”

AUTO SAR

[PRS_E2E_00621] Draft [The step "Compute CRC” in E2E_P05Forward()
shall behave as shown in Figure 6.60.]| (RS_E2E_08539)

E2E_PO5Forward()
(o)

Config->Offset

>0
[TRUE] [FALSE]
uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr: uint16 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Datal[0], Crc_Length: Offset, Crc_StartValue16: OxFFFF, &Data[Offset+2], Crc_Length: Length-Offset-2,
Crc_lsFirstCall: TRUE) Crc_StartValuel6: OXFFFF, Crc_l|sFirstCall: TRUE)
ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:&Data
[Offset+2], Crc_Length: Length-Offset-2, Crc_StartValuel6:
ComputedCRC, Crc_IsFirstCall: FALSE)
if ForwardStatus ==
E2E_P_ERROR
[FALSE] [TRUE]
ComputedCRC= Crc_CalculateCRC16(Config->DatalD & OxFF, ComputedCRC= Crc_CalculateCRC16((Config->DatalD+1) &
Crc_Length: 1, Crc_StartValue16: ComputedCRC, OxFF, Crc_Length: 1, Crc_StartValue16: ComputedCRC,
Crc_lsFirstCall: FALSE) Crc_lsFirstCall: FALSE)
ComputedCRC= Crc_CalculateCRC16(Config->DatalD>>8 & ComputedCRC= Crc_CalculateCRC16((Config->DatalD+1)>>8
OxFF, Crc_Length: 1, Crc_StartValuel6: computedCRC, & OxFF, Crc_Length: 1, Crc_StartValuel16: computedCRC,
Crc_lsFirstCall: FALSE) Crc_lsFirstCall: FALSE)

Figure 6.60: E2E Profile 5 Forward step "Compute CRC”

6.6.9 E2E_P05Check

The function E2E_PO05Check performs the actions as specified by the following six
diagrams in this section.

AUTOSAR

[PRS_E2E 00411] [The function E2E_P05Check() shall have
the overall behavior as shown in Figure 6.61.](RS_E2E_08539)

E2E_P05Check(Config, State, Data, Length)

Verify inputs of the ch%
function
[null input] [input ok [wrong input]

NewDataAvailable
== TRUE

[TRUE]

Compute offset oo

Read Counter

SO

[FALSE]
Read CRC

Compute CRC oo

Do checks

O
return E2E_E_OK

return
E2E_E_INPUTERR_WRONG

Figure 6.61: E2E Profile 5 Check

O
return
E2E_E_INPUTERR_NULL

AUTO SAR

[PRS_E2E_00412] |[The step “Verify inputs of the check
E2E_P05Check() shall behave as shown

E2E_P05Check() .
(o)
NewDataAvailable | ___ | local variable, no need
= FALSE to store it in the State

structure.

function” in
in Figure 6.62.|(RS_E2E_08539)

(Config != NULL) && (State != NULL)

_</

[TRUE]

(Data !'= NULL && Length !=0) || (Data == NULL && Length == 0)

=

[FALSE] [TRUE]

[FALSE]
Data != NULL

ie

[FALSE]
[TRUE]

This path may happen at
runtime if queued
communication is used and
no data is available.

Length == Config->DataLength/8

o<

[FALSE]
[TRUE]

NewDataAvailable
=TRUE

® ——= ®

null input

input ok wrong input

Figure 6.62

[PRS_E2E 00413] [The step "Read Counter” in E2E_P05Check()
shall behave as shown in Figure 6.63.|(RS_E2E _08539)

E2E_P05Check()
o

Copy byte Data[Offset+2] in Little Endian order on uint8 local variable
ReceivedCounter

®
Figure 6.63: E2E Profile 5 Check step "Read Counter”

AUTOSAR

[PRS_E2E_00414] [The step "Read CRC” in E2E_P05Check()
shall behave as shown in Figure 6.64.| (RS_E2E_08539)

E2E_P05Check() .
oo

Copy bytes Data[Offset+0...Offset+1] using Little Endian order
on 2-byte local variable ReceivedCRC

O,
Figure 6.64: E2E Profile 5 Check step "Read CRC”

AUTOSAR

[PRS_E2E 00416] [The step "Do Checks’ in E2E_P05Check()
shall behave as shown in Figure 6.65.] (RS_E2E_08539)

E2E_POSChedd)
oo

Newlataforailable ==
[FALSE] RUE

[TRUE]

ReceivedCRC ==
ComputedCRC

[FALSE]

[TRUE]

Compute local variable DeltaCounter ReceivedCounter -
State-=Counter(taking into wrap around 0xFF)

(DeltaCounter <= Config-

[FALSE] =haxDeltaCounter) &5 (DeltaCounter
[TRUE] ™
[FALSE]
DeltaCounter
>0
[TRUE]
[FALSE] [TRUE]—
State->5tatus = State-=5Status =
EZE_PO5SSTATUS_ERROR E2E_POSSTATUS_REPEATED E’_e':"':"'-'"te'

State-=Status = State-=Status = State-=Status =
EZE_POSSTATUS_MOMEWDATA EZE_FOSSTATUS_OKSOMELOST] EZE_POSSTATUS_OK

State-=Status =
EZE_POSSTATUS_WRONGSEQUENTE

/

[State-»Counter = ReceivedCounter j

Figure 6.65: E2E Profile 5 Check step Do Checks”

6.6.9.1 Profile 5 Check Status Enumeration

[PRS_E2E_00591] [The step "Do Checks” in E2E_P05Check shall set State->Status
to one of the following enumeration values (see Table 6.29).|(RS_E2E_08528)

AUTOSAR

Name State | Description
Type
E2E_PO5STATUS_OK OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented by 1).

E2E_PO5STATUS NONEWDATA Error The Check function has been invoked but
no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_PO5STATUS_REPEATED.

E2E_PO5STATUS ERROR Error Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong options,
wrong Data ID).

E2E_PO5STATUS REPEATED Error The checks of the Data in this cycle were
successful, with the exception of the repe-
tition.

E2E_PO5STATUS OKSOMELOST OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented within the allowed
configured delta).

E2E_PO5STATUS_WRONGSEQUENCE | Error The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the al-
lowed delta

Table 6.29: E2E Profile 5 Check Status Enumeration

6.6.10 EZ2E Profile 5 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P05ConfigType field Value
DatalD 0x1234
Offset 0x0000
DatalLength 24
MaxDeltaCounter 1

Table 6.30: E2E Profile 5 protocol example configuration

E2E_PO5ProtectStateType field Value
Counter 0

Table 6.31: E2E Profile 5 example state initialization

AUTOSAR

Result data of E2E_P05Protect() with short data length (length 8 bytes, with 5 actual
data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x01c Oxca 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC Counter Data

Table 6.32: E2E Profile 5 example short

Result data of E2E_PO05Protect() with short data length (length 16 bytes, with 5 actual
data bytes), offset = 64 (as with SOME/IP header use case), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data 0x28 0x91 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC Counter Data

Table 6.33: E2E Profile 5 example short with SOME/IP use case

6.7 Specification of E2E Profile 6

[PRS_E2E_00479] |Profile 6 shall provide the following control fields, transmitted at
runtime together with the protected data: Length, Counter, CRC, Data ID (see Table
6.34).| (RS_E2E_08529, RS_E2E 08530, RS_E2E_08533)

Control field Description

Length 16 bits, to support dynamic-size data. (explicitly sent)

Counter 8-bits. (explicitly sent)

CRC 16-bits, polynomial in normal form 0x1021 (Autosar nota-
tion), provided by CRC library. (explicitly sent)

Data ID 16-bits, unique system-wide. (implicitly sent)

Table 6.34: E2E Profile 6 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Insertion of information Data ID

Masquerading Data ID, CRC

Incorrect addressing Data ID

Incorrect sequence of information Counter

AUTOSAR

Corruption of information

CRC

Asymmetric information sent from a sender to
multiple receivers

CRC (to detect corruption at any of receivers)

Information from a sender received by only a
subset of the receivers

Counter (loss on specific receivers)

Blocking access to a communication channel

Counter (loss or timeout)

Table 6.35: Detectable communication faults using Profile 6

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[2].

6.7.1 Data Layout

6.7.1.1 User data layout
In the E2E Profile 6, the user data layout (of the data to be protected) is not constrained

by E2E Profile 6 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

6.7.1.2 Header layout

The header of the E2E Profile 6 has one fixed layout, as follows:

[5 [1 | z [El |
Transmisslonorder | o0l 1] 2]z]al=s]el7]|z]|=|wlujiz|izjialas]|s]|r|i=(=|oo|za(2a]23|2a]2=|2e |27 22]2s]a0]a1
o
£

Figure 6.66: E2E Profile 6 header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte fist), applicable for both implicit and explicit
header fields - imposed by profile

2. LSB Fist (least significant bit within byte first) - imposed by TCP/IP bus

6.7.2 Counter
In E2E Profile 6, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00417] [In E2E Profile 6, on the sender side, for the first transmission re-
quest of a data element the counter shall be initialized with 0 and shall be incremented

AUTOSAR

by 1 for every subsequent send request. When the counter reaches the maximum
value (OxFF), then it shall restart with O for the next send request. | (RS_E2E_08539)

Note that the counter value OxFF is not reserved as a special invalid value, but it is
used as a normal counter value.

In E2E Profile 6, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated
2. OK:
a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.7.3 DatalID

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00419] |In the E2E Profile 6, the Data ID shall be implicitly transmitted, by
adding the Data ID after the user data in the CRC calculation. |(RS_E2E_08539)

The Data ID is not a part of the transmitted E2E header (similar to Profile 2 and 5).

[PRS_E2E_UC_00464] [In the E2E profile 6, the Data IDs shall be globally unique
within the network of communicating system (made of several ECUs each sending
different data). | (RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

AUTOSAR

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.7.4 Length

In Profile 6 the length field is introduced to support variable-size length - the Data []
array storing the serialized data can potentially have a different length in each cycle. In
Profile 6 there is a explicit transmission of the length. The Length includes user data +
E2E Header (CRC + Counter + Length).

6.7.5 CRC

E2E Profile 6 uses a 16-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

[PRS_E2E_00420] [E2E Profile 6 shall use the Crc_CalculateCRC16() function of the
SWS CRC Supervision for calculating the CRC (Polynomial: 0x1021; Autosar nota-
tion).|(RS_EZ2E 08528, RS_E2E_08539)

[PRS_E2E_00421] [In E2E Profile 6, the CRC shall be calculated over the entire E2E
header (excluding the CRC bytes), including the user data extended with the Data ID. |
(RS_E2E 08539, RS _E2E 08536)

6.7.6 Timeout detection

The previously mentioned mechanisms (for Profile 6: CRC, Counter, Data ID, Length)
enable to check the validity of received data element, when the receiver is executed
independently from the data transmission, i.e. when receiver is not blocked waiting for
Data Elements or respectively I-PDUs, but instead if the receiver reads the currently
available data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->NewDataAvailable == FALSE means that the transmission
medium (e.g RTE) reports that no new data element is available at the transmission
medium. The attribute State->Status = E2E_ PO6STATUS REPEATED means that the
transmission medium (e.g. RTE) provided new valid data element, but this data ele-
ment has the same counter as the previous valid data element. Both conditions repre-
sent an unavailability of valid data that was updated since the previous cycle.

AUTOSAR

6.7.7 E2E_PO6Protect

The function E2E_PO06Protect() performs the steps as specified by the following seven
diagrams in this section.

[PRS_E2E 00423] [The function E2E_PO06Protect() shall have
the overall behavior as shown in Figure 6.67.|(RS_E2E 08539)

E2E_PO6Protect(Config, State, Data,
Length)

Verify inputs of the protég_b
function

[null [input [wrong

input ok \l/ input]

Compute offset

N
N

Write Length

Write Counter

Compute CRC

il

Write CRC

b

Increment Counter,

Ll e[

y

©® ® ®

retum return return
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.67: E2E Profile 6 Protect

AUTOSAR

[PRS_E2E_00424] [The step “Verify inputs of the protect function” in
E2E_PO6Protect() shall behave as shown in Figure 6.68.|(RS_E2E 08539)

E2E_PO06Protect()
O

(Config 1= NULL) && (State != NULL) && (Data != NULL)

[FALSE] [TRUE]

(Length >= Config->MinDataLength/8) &&
(Length <= Config->MaxDatalLength/8)

[TRUE]
[FALSE]

[) input ok

wrong input
no input

Figure 6.68: E2E Profile 6 Protect step "Verify inputs of the protect function”

[PRS_E2E 00470] [The step "Compute offset” in
E2E PO6Protect(), E2E_PO0O6Forward() and E2E P06Check()
shall behave as shown in Figure 6.69.|(RS_E2E_08539)

E2E_PO6Protect()

O
E2E_P06Check() .
oo
E2E_PO06Forward()
oo Offset = Config->Offset / 8

Offset, which is in [byte]

®
compute local variable uint16

Figure 6.69: E2E Profile 6 Protect, Forward and Check step "Compute offset”

[PRS_E2E_00425] |[The step “"Write Length” in E2E_PO6Protect() and
E2E_PO6Forward() shall behave as shown in Figure 6.70.|(RS_E2E 08539)

E2E_PO06Protect()
o

E2E_PO06Forward()
O

[Copy 2-byte Length on bytes Data[Offset+2...Offset+3] in Big Endian order]

®
Figure 6.70: E2E Profile 6 Protect and Forward step "Write Length”

AUTO SAR

[PRS_E2E 00426] [The step "Write Counter” in E2E_PO06Protect()
shall behave as shown in Figure 6.71.] (RS_E2E_08539)

E2E_PO06Protect()
oS o

[Copy 1-byte State->Counter on byte Data[Offset+4] in Big Endian order J

O,
Figure 6.71: E2E Profile 6 Protect step ”"Write Counter”

[PRS_E2E_00427] |[The step “"Compute CRC” in E2E_PO6Protect() and
E2E_P06Check() shall behave as shown in Figure 6.72.](RS_E2E 08539)

E2E_P06Check()
[e%)

E2E_PO6Protect()
(o)

Config->Offset > 0

[TRUE]
uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr: uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Datal[0], Crc_Length: Offset, Crc_StartValue16: OxFFFF, &Data[Offset+2], Crc_Length: Length-Offset-2,
Crc_IsFirstCall: TRUE) Crc_StartValuel6: OXFFFF, Crc_lIsFirstCall: TRUE)

[Offset+2], Crc_Length: Length-Offset-2, Crc_StartValuel6:

ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:&Data
ComputedCRC, Crc_lsFirstCall: FALSE)

OxFF, Crc_Length: 1, Crc_StartValue16: computedCRC,

ComputedCRC= Crc_CalculateCRC16(Config->DatalD>>8 &
Crc_IsFirstCall: FALSE)

Crc_Length: 1, Crc_StartValue16: ComputedCRC,

ComputedCRC= Crc_CalculateCRC16(Config->DatalD & OxFF,
Crc_lIsFirstCall: FALSE)

@
Figure 6.72: E2E Profile 6 Protect and Check step "Compute CRC”

AUTOSAR

[PRS_E2E_00428] [The step “"Write CRC” in E2E_PO06Protect() and
E2E_PO6Forward() shall behave as shown in Figure 6.73.|(RS_E2E 08539)

E2E_PO06Protect() .
(o)

E2E_PO6Forward()
oo

Copy 2-byte local variable CRC on bytes Data[Offset+0...Offset
+1] using big Endian order

®

Figure 6.73: E2E Profile 6 Protect and Forward step "Write CRC”

[PRS_E2E_00429] [The step ’“Increment Counter” in E2E_PO06Protect() and
E2E_PO6Forward() shall behave as shown in Figure 6.74.](RS_E2E 08539)

E2E_PO06Protect()
O

E2E_PO06Forward()
(o)
________ The type is uint8. After
State->Counterr+ OxFF, the next value is
0.
®

Figure 6.74: E2E Profile 6 Protect and Forward step “Increment Counter”

6.7.8 E2E_PO6Forward

The E2E_P06Forward() function of E2E Profile 6 is called by a SW-C in order to protect
its application data and forward an received E2E-Status for use cases like translation
of signal based to service oriented communication. If the received E2E status equals
E2E_P_OK the behavior of the function shall be the same like E2E_PO0O6Protect(). The
function E2E_P06Forward() performs the steps as specified by the following four dia-
grams in this section.

[PRS_E2E_00622] Draft [The function E2E_PO06Forward() shall have the overall be-
havior as shown in Figure 6.75.|(RS_E2E_08639)

AUTOSAR

®

returm

E2E_E_INPUTERR_NULL

E2E_PO06Forward(Config, State, Data, Length,
ForwardStatus)

Verify inputs of the protect
function oo

[input

oK
Compute offset
O
Write Length
oo
Write Counter
(os)
Compute CRC
O
Write CRC
oSO
Increme unter
O

nt Co!
o return

E2E_E_OK

[wrong
input]

(?6 return

E2E_E_INPUTERR_WRONG

Figure 6.75: E2E Profile 6 Forward

Following steps are described in Section in Section 6.7.7
e "Compute Offset” see [PRS_E2E_00470]
e "Write Length” see [PRS_E2E_00425]
e "Write CRC” see [PRS_E2E_00428]

¢ “Increment Counter” see [PRS_E2E _00429]

[PRS_E2E_00623] Draft [The step "Verify inputs of the forward function” in
E2E_PO06Forward() shall behave as shown in Figure 6.76.|(RS_E2E_08639)

AUTO SAR

E2E_PO6Foward() .
oo

(Config != NULL) &&
(State != NULL) &&
(Data != NULL) &&
(ForwardStatus !=
NULL)

[TRUE]

(Length >= Config-
>MinDatalLength/8) &&
(Length <= Config-

>MaxDatalLength/8) &&
(ForwardStatus !=
E2E_P_NONEWDATA)
[FALSE] [TRUE] [FALSE]
no input wrong
input ok input

Figure 6.76: E2E Profile 6 Forward step “Verify inputs of the forward function”

[PRS_E2E_00624] Draft [The step "Write Counter” in E2E_PO06Forward() shall be-
have as shown in Figure 6.77.](RS_E2E_08639)

E2E_P06Forward()
O

if ForwardStatus ==

if ForwardStatus E2E_P_WRONGSEQUENCE else
E2E_P_REPEATE TFALSE] Y TASE
[TRUE] [TRUE]

State->Counter = State-
State->Counter - - >Counter +
Config->MaxDeltaCounter
v - -7 -
v - =" -
ra - -

The type is uint8. After
OxFF, the next value is
0.

(Copy 1-byte State->Counter on byte Data[Offset+4] in Big Endian order]

®

Figure 6.77: E2E Profile 6 Forward step Write Counter”

AUTO SAR

[PRS_E2E_00625] Draft

[The step

in E2E_PO6Forward()
6.78.](RS_E2E_08639)

"Compute CRC”
in Figure

Config->Offset

shall behave as shown
O
[TRUE]

uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Datal[0], Crc_Length: Offset, Crc_StartValue16: OXFFFF,
Crc_lIsFirstCall: TRUE)

[

)

uint16 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[Offset+2], Crc_Length: Length-Offset-2,
Crc_StartValuel6: OXFFFF, Crc_lIsFirstCall: TRUE)

[)

ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:&Data
[Offset+2], Crc_Length: Length-Offset-2, Crc_StartValuel6:
ComputedCRC, Crc_lsFirstCall: FALSE)

[

)

if ForwardStatus ==
E2E_P_ERROR

[FALSE]

ComputedCRC= Crc_CalculateCRC16(Config->DatalD>>8 &
OxFF, Crc_Length: 1, Crc_StartValue16: computedCRC,
Crc_IsFirstCall: FALSE)

[

Crc_Length: 1, Crc_StartValue16: ComputedCRC,
Crc_lsFirstCall: FALSE)

)

[ComputedCRC: Crc_CalculateCRC16(Config->DatalD & OxFF,J

[TRUE]

& OxFF, Crc_Length: 1, Crc_StartValue16: computedCRC,
Crc_lsFirstCall: FALSE)

)
)

[CompuledCRC: Crc_CalculateCRC16((Config->DatalD+1)>>8

ComputedCRC= Crc_CalculateCRC16((Config->DatalD+1) &
OxFF, Crc_Length: 1, Crc_StartValue16: ComputedCRC,
Crc_|sFirstCall: FALSE)

[

Figure 6.78: E2E Profile 6 Forward step "Compute CRC”

6.7.9 E2E_P06Check

The function E2E_P06Check performs the actions as specified by the following seven

diagrams in this section.

AUTO SAR

[PRS_E2E 00430] [The function
the overall behavior as shown in
Length)
[null ven in?ﬁ:lscgglnhe o
input] [input
oK
[FALSE] NewDataAvailable
== TRUE
[TRUE]

@ return

E2E_E_INPUTERR_NULL

Figure 6.79: E2E Profile 6 Check

Compute offset oo
Read Length >

Read Counter S
Read CRC oo
Compute CRC oo

Do checks ~c

return
E2E_E_OK

E2E_P06Check()

Figure

E2E_P06Check(Config, State, Data,

[wrong
input]

shall have
6.79.] (RS_E2E_08539)

return
E2E_E_INPUTERR_WRONG

AUTO SAR

[PRS_E2E_00431] [The step "Verify Inputs” in E2E_PO06Check()
shall behave as shown in Figure 6.80.]| (RS_E2E_08539)
[

E2E_P06Check() NewDataAvailable | ______ local variable, no need
oo = FALSE to store it in the State

structure.

(Config != NULL) && (State != NULL)

[FALSE]
[TRUE]

Check: Either both Data
and Length mean that a
message is available, or
both mean the opposite.

((Data != NULL) && (Length != 0)) || (Data == NULL) && (Length == 0))

[TRUE] [FALSE]

Data != NULL

[FALSE]

[TRUE]

(Length >= Config->MinDataLength/8) &&
(Length <= Config->MaxDataLength/8)

This path may happen at
runtime if queued
communication is used and
no data is available (in this
case both Data is NULL ans
Length is Q). [TRUE]

NewDataAvailable
=TRUE

[FALSE

®

no input

input ok wrong input

Figure 6.80: E2E Profile 6 Check step “Verify Inputs”

[PRS_E2E 00432] [The step "Read Length” in E2E_PO06Check()
shall behave as shown in Figure 6.81.](RS_E2E_08539)

E2E_P06Check))
oo

[Copy bytes Data[Offset+2...Offset+3] in Big Endian order to uint16 local variable ReceivedLength]

O,
Figure 6.81: E2E Profile 6 Check step "Read Length”

AUTOSAR

[PRS_E2E 00433] [The step "Read Counter” in E2E_P06Check()
shall behave as shown in Figure 6.82.| (RS_E2E_08539)

E2E_P06Check()
=e o

Copy byte Data[Offset+4] in Big Endian order on uint8 local variable
ReceivedCounter

O,
Figure 6.82: E2E Profile 6 Check step "Read Counter”

[PRS_E2E_00434] [The step "Read CRC” in E2E_P06Check()
shall behave as shown in Figure 6.83.] (RS_E2E_08539)

E2E_P06Check() .
oo

Copy bytes Data[Offset+0...Offset+1] using big Endian order on
2-byte local variable ReceivedCRC

O,
Figure 6.83: E2E Profile 6 Check step "Read CRC”

AUTOSAR

[PRS_E2E 00436] [The step "Do Checks” in E2E_P06Check()
shall behave as shown in Figure 6.84.| (RS_E2E_08539)

EZE_POGBChed)
=al

[FALEE] HewDatafvailable ==
TRUE
[TRUE]
[FALSE] ReceivedCRC ==
ComputedCRC
[TRUE]
[FALSE] Receivedleangth ==
Length
[TRUE]

Compute local variable DeltaCounter: ReceivedCaunter- State-
*Counter (taking into wurap around OxFF)

{FALSE]<
(DelftaCounter <= Config-

=hdaxbeltaCounter) & (DeltaCountar
w=)
[TRUE]

—————————————[FALSE]
DeltaCounter
=0

[TRUE]

State-»Status = State->Status = (FALSEI—) {TRUE]
EZE_FOSSTATUS_ERROR EZE_FOESTATUS_REFEATED DeltaCauntar

=1

State-»Statuz = State-»3tatus = State- > Statuz =
EZE_POSSTATUS_NONEUWDATA EZE_POBSTATUS_DKSOMELOST EZE_POSSTATUS_OK

State-=Status =
EZE_POSSTATUS_WRONGSEQUENJE

[State-=Counter= ReceivedCounter J

®

Figure 6.84: E2E Profile 6 Check step "Do Checks”

AUTOSAR

6.7.9.1 Profile 6 Check Status Enumeration

[PRS_E2E_00592] [The step "Do Checks” in E2E_P06Check shall set State->Status
to one of the following enumeration values (see Table 6.36).|(RS_E2E_08528)

Name State | Description
Type
E2E PO6STATUS OK OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented by 1).

E2E_PO6STATUS_NONEWDATA Error The Check function has been invoked but
no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_PO6STATUS REPEATED.

E2E_PO6STATUS_ERROR Error Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong options,
wrong Data ID).

E2E PO6STATUS REPEATED Error The checks of the Data in this cycle were
successful, with the exception of the repe-
tition.

E2E_PO6STATUS OKSOMELOST OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented within the allowed
configured delta).

E2E PO6STATUS WRONGSEQUENCE | Error The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the al-
lowed delta

Table 6.36: E2E Profile 6 Check Status Enumeration

6.7.10 EZ2E Profile 6 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P06ConfigType field Value
DatalD 0x1234
Offset 0x0000
MinDatalength 40
MaxDatalength 32768
MaxDeltaCounter 1

Table 6.37: E2E Profile 6 protocol example configuration

AUTOSAR

E2E_PO6ProtectStateType field Value
Counter 0

Table 6.38: E2E Profile 6 example state initialization

Result data of E2E_PO06Protect() with short data length (length 8 bytes, with 3 actual
data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data Oxb1 0x55 0x00 0x08 0x00 0x00 0x00 0x00
Field CRC Length Counter Data

Table 6.39: E2E Profile 6 example short

Result data of E2E_PO06Protect() with short data length (length 16 bytes, with 3 actual
data bytes), offset = 64 (as with SOME/IP header use case), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data Ox4e 0xb7 0x00 0x10 0x00 0x00 0x00 0x00
Field CRC Length Counter Data

Table 6.40: E2E Profile 6 example short with SOME/IP use case

6.8 Specification of E2E Profile 7

[PRS_E2E_00480] |Profile 7 shall provide the following control fields, transmitted at
runtime together with the protected data: Length, Counter, CRC, Data ID (see Table
6.41).|(RS_E2E 08529, RS_E2E 08530, RS_E2E_08533)

Control field Description

Length 32 bits, to support dynamic-size data.

Counter 32 bits.

CRC 64 bits, polynomial in normal form 0x42FOE1EBASEA3693, pro-

vided by CRC library.
Note: This CRC polynomial is also known as “CRC-64 (ECMA)".

Data ID 32 bits, unique system-wide.

Table 6.41: E2E Profile 7 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

AUTOSAR

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Insertion of information Data ID, CRC

Masquerading Data ID, CRC

Incorrect addressing Data ID

Incorrect sequence of information Counter

Corruption of information CRC

Asymmetric information sent from a senderto | CRC (to detect corruption at any of receivers)
multiple receivers

Information from a sender received by only a | Counter (loss on specific receivers)
subset of the receivers

Blocking access to a communication channel | Counter (loss or timeout)

Table 6.42: Detectable communication faults using Profile 7

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[2].

6.8.1 Data Layout
6.8.1.1 User data layout
In the E2E Profile 7, the user data layout (of the data to be protected) is not constrained

by E2E Profile 7 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

6.8.1.2 Header layout

The header of the E2E Profile 7 has one fixed layout, as follows:

Figure 6.85: Profile 7 Header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte fist) - imposed by profile

AUTOSAR

2. LSB Fist (least significant bit within byte first) - imposed by TCPIP bus

For example, the 32 bits of the E2E counter are transmitted in the following order
(higher number meaning higher significance): 24 25 26 27 28 293031 16 17 18 19 20
2122237891011 1213141501234567.

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

6.8.2 Counter

In E2E Profile 7, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00481] [In E2E Profile 7, on the sender side, for the first transmission re-
quest of a data element the counter shall be initialized with 0 and shall be incremented
by 1 for every subsequent send request. When the counter reaches the maximum
value (OxFF'FF’FF’FF), then it shall restart with O for the next send request.|(RS_-
E2E 08539)

Note that the counter value OXFF'FF'FF’FF is not reseved as a special invalid value,
but it is used as a normal counter value.

In E2E Profile 7, on the receiver side, by evaluating the counter of received data against
the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion, b. the data is repeated

2. OK: a. counter is incremented by one (i.e. no data lost), b. counter is incremented
more than by one, but still within allowed limits (i.e. some data lost),

3. Wrong sequence: a. counter is incremented more than allowed (i.e. too many
data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.8.3 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

AUTOSAR

[PRS_E2E_00482] [In the E2E Profile 7, the Data ID shall be explicitly transmitted, i.e.
it shall be the part of the transmitted E2E header | (RS_E2E_08539)

There are currently no limitations on the values of Data ID - any values within the
addres space of 32 bits are allowed.

[PRS_E2E_00483] [In the E2E profile 7, the Data IDs shall be globally unique within
the network of communicating system (made of several ECUs each sending different
data).|(RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.8.4 Length

The Length field is introduced to support variable-size length - the Data [] array storing
the serialized data can potentially have a different length in each cycle. The Length
includes user data + E2E Header (CRC + Counter + Length + DatalD).

6.8.5 CRC

E2E Profile 7 uses a 64-bit CRC, to ensure a high detection rate and high Hamming
Distance.

[PRS_E2E_00484] [E2E Profile 7 shall use the Crc_CalculateCRC64 4 () function
of the SWS CRC Supervision for calculating the CRC.|(RS_E2E_08528, RS _EZE -
08539)

[PRS_E2E_00485] [In E2E Profile 7, the CRC shall be calculated over the entire E2E
header (excluding the CRC bytes) and over the user data.| (RS_E2E_08536)

6.8.6 Timeout detection

The previously mentioned mechanisms (CRC, Counter, Data ID, Length) enable to
check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively messages, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

AUTOSAR

6.8.7 EZ2E Profile 7 variants

[PRS_E2E_00586] | The E2E Profile variant 7A is defined as follows:
1. The CRC is the 64th bit in the signal group
2. The max Delta Counter is 1

|(RS_E2E_08528)

[PRS_E2E_00587] [The E2E Profile variant 7B is defined as follows:
1. The CRC is the 64th bit in the signal group
2. The max Delta Counter is 2

|(RS_E2E_08528)

6.8.8 E2E_PO07Protect

The function E2E_PQ7Protect() performs the steps as specified by the following eight
diagrams in this section.

AUTO SAR

[PRS_E2E 00486] [The function E2E_PO07Protect() shall have
the overall behavior as shown in Figure 6.86.](RS_E2E_08539)

E2E_PO07Protect(Config, State, Data,
Length)

Verify inputs of the prot&g_b
function

[null [input [wrong
input oK input]

Compute offset

]

Write Length

Write Counter

Write DatalD

Compu

HEHRY

Write CRC

8

Increment Counter,

® ® ®

retum returm return
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.86: E2E Profile 7 Protect

fRpEANARAED

y

AUTOSAR

[PRS_E2E_00487] [The step “Verify inputs of the protect function” in
E2E_PO7Protect() shall behave as shown in Figure 6.87.|(RS_E2E 08539)

E2E_PO07Protect() .
(o)

(Config != NULL) && (State != NULL) && (Data = NULL)

[FALSE]
[TRUE]

(Length >= Config->MinDatalLength/8) && (Length <= Config->MaxDatalLength/8)

[FALSE]
[TRUE]

wrong input
@ @) input ok

null input

Figure 6.87: E2E Profile 7 Protect step "Verify inputs of the protect function”

[PRS_E2E 00488] |[The step “Compute offset” in E2E_PO7Protect(),
E2E_PO7Forward() and E2E_P07Check() shall behave as shown in Figure 6.88.]()

E2E_PO7Protect()

E2E_P07Check) I

E2E_P07Forward() [

b

b

8

Offset = Config->Offset / 8 J

compute local variable uint32
Offset, which is in [byte]

Figure 6.88: E2E Profile 7 Protect and Forward step "Compute offset”

AUTOSAR

[PRS_E2E_00489] |[The step “"Write Length” in E2E_PO7Protect() and
E2E_PO7Forward() shall behave as shown in Figure 6.89.|(RS_E2E 08539)

E2E_PO07Protect()

E2E_PO7Forward()

Copy 4-byte Length on bytes Data[Offset+8...Offset+11] in Big Endian order j

;

Figure 6.89: E2E Profile 7 Protect and Forward step "Write Length”

6

8

T

[PRS_E2E_00490] [The step "Write Counter” in E2E_P07Protect()
shall behave as shown in Figure 6.90.|(RS_E2E _08539)

E2E_PO07Protect()
= ®

Copy 4-byte State->Counter on bytes Data[Offset+12...Offset+15] in Big
Endian order

@
Figure 6.90: E2E Profile 7 Protect step "Write Counter”

[PRS_E2E 00491] [The step "Write DatalD”in E2E_PO07Protect()
shall behave as shown in Figure 6.91.] (RS_E2E_08539)

E2E_PO07Protect()
(e o)

Copy 4-byte Config->DatalD to bytes Data[Offset+16...Offset+19]
in Big Endian order

Figure 6.91: E2E Profile 7 Protect step ”Write Data ID”

[PRS_E2E 00492] [The step "Compute CRC” in
E2E_P07Protect(), E2E_PO07Forward() and in E2E_P07Check()

AUTO SAR

shall behave as shown in

Figure 6.92.|(RS_E2E 08539)
E2E_PO7Protect() .

[uint64 ComputedCRC]

Offset >

:: 0
[FALSE] [TRUEI |

8

E2E_P07Check()

E2E_PO07Forward()

u 8

compute CRC over bytes that are before ComputedCRC = Crc_CalculateCRC64(Crc_DataPtr:
CRC. ----| &Data[0], Crc_Length: Offset, Crc_StartValue64:
computation length: offset, where offset OXFF'FF'FF'FFFFFFFFFF, Crc_lIsFirstCall: TRUE)
is number of bytes before the E2E header

i

&Data[offset+8], Crc_Length: Length-Offset-8,
Crc_StartValue64:0xFF'FFFF'FFFFFFFFFF,

ComputedCRC = Crc_CalculateCRC64(Crc_DataPtr:
Crc_lIsFirstCall: TRUE)

ComputedCRC = Crc_CalculateCRC64(Crc_DataPtr:
&Data[offset+8], Crc_Length: Length-Offset-8,

Crc_StartValue64: ComputedCRC, Crc_IsFirstCall:
FALSE)

Compute CRC over bytes that are after CRC.Ij

entire E2E-Prodected Data (including E2E Header (length, ID,

At this step, there is a ready ComputedCRC value, over the
CRC etc) and the user data).

retum
ComputedCRC

Figure 6.92: E2E Profile 7 Protect, Forward and Check step "ComputeCRC”

[PRS_E2E_00493] [The

step "Write CRC’in E2E_PO07Protect() and
E2E_PO7Forward() shall behave as shown in Figure 6.93.|(RS_E2E 08539)

E2E_PO7Protect()

E2E_PO7Forward()

u!

Copy 8-byte local variable CRC on bytes Data[Offset...Offset+7]
using big Endian order

®
Figure 6.93: E2E Profile 7 Protect and Forward step "Write CRC”

AUTOSAR

[PRS_E2E_00494] [The step ’“Increment Counter” in E2E_PO07Protect() and
E2E_PO7Forward() shall behave as shown in Figure 6.94.|(RS_E2E 08539)

E2E_PO07Protect()
(o)

__________ The type is uint32. After
State->Counter++ OXFFFFEFFF, the next
valueis 0.

®

Figure 6.94: E2E Profile 7 Protect and Forward step “Increment Counter”

6.8.9 E2E_PO7Forward

The E2E_P07Forward() function of E2E Profile 7 is called by a SW-C in order to protect
its application data and forward an received E2E-Status for use cases like translation
of signal based to service oriented communication. If the received E2E status equals
E2E_P_OK the behavior of the function shall be the same like E2E_PO0O7Protect(). The
function E2E_PO7Forward() performs the steps as specified by the following four dia-
grams in this section.

[PRS_E2E_00626] Draft [The function E2E_PO07Forward() shall have the overall be-
havior as shown in Figure 6.95.|(RS_E2E_08739)

AUTOSAR

E2E_PO07Forward(Config, State, Data, Length,

ForwardStatus)
Verify inputsofggo
protect function

Compute offs&S_O [wrong
input]

Write Lenth: e

Write Counteé,_o

Write Datal Ez: o

Compute CRE)—O

Write CRC

SO

Increment Cou%

‘ ' return
E2E_E_OK @ return
E2E_E_INPUTERR_WRONG

Figure 6.95: E2E Profile 7 Forward

O
return
E2E_E_INPUTERR_NULL

Following steps are described in Section in Section 6.8.8
e "Compute Offset” see [PRS_E2E_00488]
e "Write Length” see [PRS_E2E_00489]
e "Compute CRC” see [PRS_E2E_00492]
e "Write CRC” see [PRS_E2E_00493]
¢ ’“Increment Counter” see [PRS_E2E 00494]

[PRS_E2E_00627] Draft [The step "Verify inputs of the forward function” in
E2E_PO07Forward() shall behave as shown in Figure 6.96.|(RS_E2E_08739)

AUTO SAR

E2E_PO7Forward() .
oo
(Config != NULL) &&
(State != NULL) &&
(Data != NULL) &&
(ForwardStatus !=
NULL)
[TRUE]

(Length >= Config-
>MinDataLength/8) &&
(Length <= Config-
>MaxDatalLength/8) &&
(ForwardStatus !=
E2E_P_NONEWDATA)

[FALSE] [TRUE] [FALSE]
input wrong
null ok input
input

Figure 6.96: E2E Profile 7 Forward step “’Verify inputs of the forward function”

[PRS_E2E_00628] Draft [The step "Write Counter” in E2E_PO07Forward() shall be-
have as shown in Figure 6.97.| (RS_E2E_08739)

E2E_PO7Forward()
(o)

if ForwardStatus ==
E2E_P_WRONGSEQUENCE else

if ForwardStatus

E2E_P_REPEAT

[FALSE] [FALSE]

[TRUE] [TRUE]

State->Counter - - >Counter +
Config->MaxDeltaCounter

State->Counter = State-]

The type is uint32. After
OxFF'FF'FF'FF, the next
value is 0.

Copy 4-byte State->Counter on bytes Data[Offset+12...Offset+15] in Big
Endian order

®
Figure 6.97: E2E Profile 7 Forward step ”Write Counter”

AUTOSAR

[PRS_E2E_00629] Draft [The step "Write DatalD” in E2E_P07Forward()
shall behave as shown in Figure 6.98.|(RS_E2E_08739)

E2E_PO07Forward()

if ForwardStatus ==
E2E_P_ERROR

(Copy 4-byte Config->DatalD+1 to bytes Data[Offset+16...Offset J [Copy 4-byte Config->DatalD to bytes Dala[Offset+16...Oﬁset+19]]

+19] in Big Endian order in Big Endian order

Figure 6.98: E2E Profile 7 Forward step ”Write DatalD”

6.8.10 E2E_PO07Check

The function E2E_P07Check performs the actions as as specified by the following
seven diagrams in this section and according to diagram PRS_E2EProtocol 00492.

AUTO SAR

[PRS_E2E 00495] [The function E2E_P07Check() shall have
the overall behavior as shown in Figure 6.99.](RS_E2E_08539)

E2E_P07Check(Config, State, Data, Length)

Verify inputs of the Ch%
function

[null input] [input oK

[wrong input]

NewDataAvailable == TRUE

return E2E_E_OK @ return E2E_E_INPUTERR_WRONG

[FALSE]

®

return E2E_E_INPUTERR_NULL

Figure 6.99: E2E Profile 7 Check

AUTO SAR

[PRS_E2E_00496] |[The step “Verify inputs of the check function” in
E2E_PO07Check() shall behave as shown in Figure 6.100.|(RS_E2E 08539)

E2E_P07Check)
[e3e)

local variable, no need
to store it in the State
structure.

NewDataAvailable |-----
= FALSE

(Config = NULL) && (State !=
NULL)

[FALSE] [TRUE]
Check: Either both Data .
and Length mean that i [FALSE]
a message is available, (Data != NULL && Length = 0) || (Data == NULL &&
or both mean the Length == 0)
opposite.
[TRUE]
Data !=
NULL
[FALSE]
[TRUE]
This path may
happen at runtime if [FALSE]
g:;“n‘z‘:mcaﬁon . (Length >= Config->MinDataLength/8) && (Length <= Config-
used and no data is >MaxDatalLength/8)

available (in this case
both Data is NULL
and Length is 0).

[TRUE]
NewDataAvailable
=TRUE

T i”kPUl wrong
input of input

Figure 6.100: E2E Profile 7 Check step "’Verify inputs of the check function”

[PRS_E2E_00497] [The step "Read Length” in E2E_PO07Check()
shall behave as shown in Figure 6.101.|(RS_E2E 08539)

E2E_P07Check()
=2 ®

[Copy bytes Data[Offset+8...Offset+11] in Big Endian order to uint32 local variable ReceivedLength]

®
Figure 6.101: E2E Profile 7 Check step "Read Length”

AUTOSAR

[PRS_E2E 00498] [The step "Read Counter” in E2E_P07Check()
shall behave as shown in Figure 6.102.](RS_E2E_08539)

E2E_P07Check() .
(e o)

{Copy bytes Data[Offset+12...Offset+15] in Big Endian order on uint32 Iocal]

variable ReceivedCounter

®

Figure 6.102: E2E Profile 7 Check step ”"Read Counter”

[PRS_E2E 00499] [The step "Read DatalD” in E2E_PO07Check()
shall behave as shown in Figure 6.103.|(RS_E2E_08539)

E2E_P07Check()
=2 o

Copy bytes Data[Offset+16...Offset+19] in Big Endian order on
uint32 local variable ReceivedDatalD

®
Figure 6.103: E2E Profile 7 Check step ’Read DatalD”

[PRS_E2E_00500] [The step "Read CRC” in E2E_P07Check()
shall behave as shown in Figure 6.104.|(RS_E2E 08539)

E2E_P07Check()
oo

Copy bytes Data[Offset...Offset+7] using big Endian order on 8-
byte local variable ReceivedCRC

Figure 6.104: E2E Profile 7 Check step "Read CRC”

AUTOSAR

[PRS_E2E 00501]
shall behave

EZE_FO7Chedk

[The
as

step
shown

”DO
in Figure

Checks” in E2E_PO07Check()
6.105.|(RS_E2E_08539)

[FALSE] MewmDatafovailable ==

TRUE

=9

[TRUE]

[FALSE] ReceivedCREC ==

ComputedCRC

<=

ReceivedDatallr == Config-
=Datall

[FALSE]

[FALSE] Receivedlength ==

Length

Compute local variable DeltaCounter: ReceivedCounter - State-
=Counter (taking into wrap around 0xFF'FF'FF'FF)

[FALSE]
(DeltaCounter <= Config-

=i axDeltaCounter) && (DeltaCounter
=0

[TRUE]

— e

[FALSE] DeltaCounter

=0

<<

[TRUE]

FALSE]

[TRUE]

State-=Status =
EZE_PO7YSTATUS_ERROR

J [E2E_PO7STATUS_REFPEATED

O=

CeltaCounter
==1

State-»Status =

State-=Statuz=
EZE_PO7STATUS_HOMEWDATA

State-»Statuz =
EZE_PO7STATUS_OK

State-=Status =
EZE_PO7YSTATUS_OKSOMELOST

State-=Statuz=
EZE_PO7STATUS_WRONGSEQUENCE

[State->Counter= ReceivedCounter]

!

Figure 6.105: E2E Profile 7 Check step "Do Checks”

AUTOSAR

6.8.10.1 Profile 7 Check Status Enumeration

[PRS_E2E_00593] [The step "Do Checks” in E2E_P07Check shall set State->Status
to one of the following enumeration values (see Table 6.43).|(RS_E2E_08528)

Name State | Description
Type
E2E PO7STATUS OK OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented by 1).

E2E_P0O7STATUS_NONEWDATA Error The Check function has been invoked but
no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_PO07STATUS REPEATED.

E2E_PO7STATUS_ERROR Error Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong options,
wrong Data ID).

E2E PO7STATUS REPEATED Error The checks of the Data in this cycle were
successful, with the exception of the repe-
tition.

E2E_PO07STATUS_OKSOMELOST OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented within the allowed
configured delta).

E2E PO7STATUS WRONGSEQUENCE | Error The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the al-
lowed delta

Table 6.43: E2E Profile 7 Check Status Enumeration

6.8.11 EZ2E Profile 7 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P07ConfigType field Value
DatalD 0x0a0b0c0d
Offset 0x0000
MinDatalength 160
MaxDatalength 32768
MaxDeltaCounter 1

Table 6.44: E2E Profile 7 protocol example configuration

AUTOSAR

E2E_PO07ProtectStateType field

Value

Counter

0

Table 6.45: E2E Profile 7 example state initialization

Result data of E2E_PO07Protect() with short data length (length 24 bytes, means 4

actual data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0ox1f 0xb2 Oxe7 0x37 0xfc Oxed Oxbc 0xd9
Field CRC

Byte 8 9 10 11 12 13 14 15
Data 0x00 0x00 0x00 0x18 0x00 0x00 0x00 0x00
Field Length Counter

Byte 16 17 18 19 20 21 22 23
Data 0x0a 0x0b 0x0c 0x0d 0x00 0x00 0x00 0x00
Field DatalD Data

Table 6.46: E2E Profile 7 example short

Result data of E2E_PO7Protect() with short data length (length 32, means 4 actual

data bytes), offset = 64 (as with SOME/IP header use case), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data 0x17 0xf7 0xc8 0x17 0x32 0x38 0x65 Oxa8
Field CRC

Byte 16 17 18 19 20 21 22 23
Data 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00
Field Length Counter

Byte 24 25 26 27 28 29 30 31
Data 0x0a 0x0b 0x0c 0x0d 0x00 0x00 0x00 0x00
Field DatalD Data

Table 6.47: E2E Profile 7 example short with SOME/IP use case

6.9 Specification of E2E Profile 11

Profile 11 is bus-compatible to profile 1, but provides "new" profile behavior similar to
profiles 4 to 7 on receiver side. Moreover, some legacy DatalDModes that are by now

obsolete are omitted.

AUTOSAR

[PRS_E2E_00503] [Profile 11 shall provide the following control fields, transmitted at
runtime together with the protected data: Counter, CRC, Data ID (see Table 6.48).|
(RS_E2E_08529, RS _E2E 08530, RS_E2E 08533)

Control field Description

Counter 4 bits. (explicitly sent)

CRC 8 bits, CRC-8-SAE J1850, provided by CRC library. (explicitly
sent)

Data ID 16 bits or 12 bit, unique system-wide. (either implicitly sent (16
bits) or partly explicitly sent (12 bits; 4 bits explicitly and 8 bits
implicitly sent))

Table 6.48: E2E Profile 11 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Insertion of information Data ID

Masquerading Data ID, CRC

Incorrect addressing Data ID

Incorrect sequence of information Counter

Corruption of information CRC

Asymmetric information sent from a senderto | CRC (to detect corruption at any of receivers)
multiple receivers

Information from a sender received by only a | Counter (loss on specific receivers)
subset of receivers and the receivers

Blocking access to a communication channel | Counter (loss or timeout)

Table 6.49: Detectable communication faults using Profile 11

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[2].

6.9.1 Data Layout
6.9.1.1 User data layout
In the E2E Profile 11, the user data layout (of the data to be protected) is not con-

strained by E2E Profile 11 - there is only a requirement, that the length of data to be
protected is multiple of 1 byte.

AUTOSAR

6.9.1.2 Header layout

Profile 11 is backward compatible to the bus-layout of profile 1. This means that while
all the header fields are configurable, the profile variants of profile 1 are also applicable.
Namely, profile 1 variant 1A and variant 1C.

Byte Order 0 1
TransmissionOrder | 0 | 1 | 2 (3 | 4| 5|6 | 7| 8 | 9 |10 11(12]13| 14| 15
Bit Order 7|6 |54 |3|2|1|0|15|14 |12 |12 (11(10| 9 | 8

Figure 6.106: E2E Profile 11 header

The figure above shows Profile 11 variant 11C where the configuration is given as: The
E2E header fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. CRCOffset =0
2. CounterOffset = 8 by FlexrayCAN bus.
3. DatalDNibbleOffset = 12

For Profile 11 Variant 11A, DatalDNibble is not used. Instead, user data can be placed
there.

[PRS_E2E_00540] [The E2E Profile variant 11A is defined as follows:
1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)
3. E2E_P11DatalDMode = E2E_P11_DATAID_BOTH
4. SignallPdu.unusedBitPattern = OxFF.
|(RS_E2E_08528)

Below is an example compliant to 11A:

Byte Order 0 1
TransmissionOrder | 0 | 1| 2 (3 (4 (5| 6| 7| 8|9 (10| 11|12 |13 14| 15

Bit Order 7/6|5| 4|32 |1|0|15|14|12(12(11|10| 9 8
0 [eEcre | [counter |

Figure 6.107: E2E Profile 11 Variant A

[PRS_E2E_00541] [The E2E Profile variant 11C is defined as follows:
1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. The Data ID nibble is located in the highest 4 bits of 1st byte (i.e. starts with bit
offset 12)

AUTOSAR

4. E2E_P11DatalDMode = E2E_P11_DATAID_NIBBLE
5. SignallPdu.unusedBitPattern = OxFF
|(RS_E2E _08528)

E2E Profile variants 11A and 11C relate to the recommended Configuration of E2E
Profile 11 configuration settings 11A and 11C in system template (system template is
more specific).

The transmission order shown above represents the order in which bits are transmitted.
For comparability to the figures of profile 1, also the bit order is given. The E2E header
fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte fist) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB Fist (most significant bit within byte first) - imposed by Flexray/CAN bus.

6.9.2 Counter

In E2E Profile 11, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00504] [In E2E Profile 11, on the sender side, for the first transmission re-
quest of a data element the counter shall be initialized with 0 and shall be incremented
by 1 for every subsequent send request. When the counter reaches the maximum
value (OxOE), then it shall restart with 0 for the next send request. | (RS_E2E _08539)

Note that the counter value OxOF is reserved as a special invalid value, and must never
be used by the E2E profile 11.

In E2E Profile 11, on the receiver side, by evaluating the counter of received data
against the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated
2. OK:
a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

AUTOSAR

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.9.3 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00583] | The following two Data ID modes shall be supported:

1. E2E_P11_DATAID_BOTH: both bytes of the 16 bit Data ID are used in the CRC
calculation: first the low byte and then the high byte.

2. E2E_P11_DATAID_NIBBLE:

the high nibble of high byte of DatalD is not used (it is 0x0), as the DatalD is
limited to 12 bits,

the low nibble of high byte of DatalD is transmitted explicitly and covered by CRC
calculation when computing the CRC over Data.

the low byte is not transmitted, but it is included in the CRC computation as start
value.

|(RS_E2E_08539)

[PRS_E2E_0507] [In the E2E profile 11, the Data IDs shall be globally unique within
the network of communicating system (made of several ECUs each sending different
data).|(RS_E2E 08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.9.4 Length

In Profile 11 there is no explicit transmission of the length.

6.9.5 CRC

E2E Profile 11 uses a 8-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

AUTOSAR

[PRS_E2E_00508] [E2E Profile 11 shall use the Crc_CalculateCRC8 function of
the SWS CRC Supervision for calculating the CRC (CRC-8-SAE J1850).|(RS_EZ2E_-
08528, RS_E2E _08539)

[PRS_E2E_00505] ([In the E2E Profle 11 with DatalDMode set to
E2E_P11_DATAID_BOTH, the Data ID shall be implicitly transmitted, by adding
first the Data ID low byte, then the Data ID high byte before the user data in the CRC
calculation| (RS_E2E_08539)

[PRS_E2E_00506] [In E2E Profle 11 with DatalDMode set to
E2E_P11_DATAID_NIBBLE, the lower nibble of the high byte of the DatalD shall
be placed in the transmitted data at bit position DatalDNibbleOffset, and the CRC
calculation shall be done by first calculating over the low byte of the Data ID, then a
0-byte, and then the user data. | (RS_E2E_08539)

Note: the byte containing the CRC is always omitted from the CRC calculation.

6.9.6 Timeout detection

The previously mentioned mechanisms (for Profile 11: CRC, Counter, Data ID) enable
to check the validity of received data element, when the receiver is executed inde-
pendently from the data transmission, i.e. when receiver is not blocked waiting for
Data Elements or respectively messages, but instead if the receiver reads the currently
available data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->NewDataAvailable == E2E__P11STATUS NONEWDATA means
that the transmission medium (e.g RTE) reports that no new data element
is available at the transmission medium. The attribute State->Status =
E2E_P11STATUS_REPEATED means that the transmission medium (e.g. RTE) pro-
vided new valid data element, but this data element has the same counter as the pre-
vious valid data element. Both conditions represent an unavailability of valid data that
was updated since the previous cycle.

6.9.7 E2E_P11Protect

The function E2E_P11Protect() performs the steps as specified by the following six
diagrams in this section.

AUTOSAR

[PRS_E2E 00509] [The function E2E_P11Protect() shall have
the overall behavior as shown in Figure 6.108.](RS_E2E_08539)

E2E_P11Protect(Config, State, Data,
Length)

Verify inputs of the protect
function oo

[null [input [wrong
oK input]

Write DatalDNibble

Bé

Write Counter

Compute CRC

il

Write CRC

L
J

Increment Counter

® ® ®

retum return return
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.108: E2E Profile 11 Protect

[PRS_E2E_00510] [The step “Verify inputs of the protect function” in
E2E_P11Protect() shall behave as shown in Figure 6.109.|(RS_E2E 08539)

E2E_P11Protect()

i

(Config = NULL) && (State != NULL) && (Data != NULL)

[FALSE]
[TRUE]

Length == Config->DataLength/8

[TRUE] [FALSE]

input ok wrong input
no input

Figure 6.109: E2E Profile 11 Protect step ”Verify inputs of the protect function”

AUTOSAR

[PRS_E2E_00511] ([The step ,Write DatalDNibble” in E2E_P11Protect()
shall behave as shown in Figure 6.110.](RS_E2E_08539)

E2E_P11Protect()
(o)

Config->DatalDMode == E2E_P11_DATAID_NIBBLE

[FALSE]
[TRUE]

. Byte position in data array can be obtained by:
Copy Iower.4‘blts of sgcond byte qf State->DataIp to Qala ______ Data[Config->DatalDNibbleOffset > > 3]
array at position Config->DatalDNibblerOffset, using little- Nibble position within byte can be obtained by:
endian byte-order. ((Config->DataID & 0x0F00) >> 8) << (Config-> CounterOffset & 0x7)

Figure 6.110: E2E Profile 11 Protect step "Write DatalDNibble”

[PRS_E2E 00512] [The step "Write Counter” in E2E_P11Protect()
shall behave as shown in Figure 6.111.](RS_E2E_08539)

E2E_P11Protect() .
oo

Copy lower 4 bits of State->Counter to data array at position Config-
>CounterOffset, using little-endian byte-order.

----- Data[Config->CounterOffset > > 3]
Nibble position within byte can be obtained by:

} Byte position in data array can be obtained by:
(State->Counter & 0xF) << (Config-> CounterOffset & 0x7)

O,
Figure 6.111: E2E Profile 11 Protect step "Write Counter”

AUTO SAR

[PRS_E2E_00513] [The step "Compute CRC” in E2E_P11Protect() and in
E2E_P11Check shall behave as shown in Figure 6.112.|(RS_E2E 08539)

E2E_P11Check()
(o)
E2E_P11Protect() t
(eos o)
Offset = Config->CRCOffset / 8

\L [ca

T lca
E2E_P11_DATAID_BOTH] switch E2E_P11_DATAID_NIBBLE]
>DatalDMode

Crc_Length: 1, Crc_StartValue8: OxFF, Crc_lsFirstCall: FALSE) Crc_Length: 1, Crc_Startvalue8: 0xff, Crc_lsFirstCall: FALSE)

!

i) CERTAEHERES G Calm i EReE CrriiPEElD), [uint8 ComputedCRC= Crc_CalculateCRC8(Config->DatalD,]

ComputedCBC: Crc_CaIculateCRCB(Conﬁg»>DataID>>8 .& OxFF, ComputedCRC= Crc_CalculateCRC8(0, Crc_Length: 1,
Crc_Length: 1, Crc_StartValue8: computedCRC, Crc_|sFirstCall: Crc_Startvalue8: computedCRC, Crc_IsFirstCall: FALSE)
FALSE)
[TRUE] [FALSE]
Offset >
0
ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[0], ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[1],
Crc_Length: Offset, Crc_StartValue8: ComputedCRC, Crc_Length: Length-1, Crc_StartValue8: ComputedCRC,
Crc_IsFirstCall: FALSE) Crc_IsFirstCall: FALSE)

[FALSE]

Length > Offset
+1

[TRUE]

ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[Offset+1],
Crc_Length: Length-Offset-1, Crc_StartValue8: ComputedCRC,
Crc_|sFirstCall: FALSE)

®

Figure 6.112: E2E Profile 11 Protect and Check step "Compute CRC”

[PRS_E2E_00514] [The step "Write CRC” in E2E_P11Protect() and
E2E_P11Forward() shall behave as shown in Figure 6.113.](RS_E2E _08539)

E2E_P11Protect()

E2E_P11Forward()

!!

[Copy 1-byte local variable ComputedCRC on bytes Data[Config->CRCOffsetl8]]

O,
Figure 6.113: E2E Profile 11 Protect and Forward step "Write CRC”

AUTOSAR

[PRS_E2E_00515] [The step ’“Increment Counter” in E2E_P11Protect() and
E2E_P11Forward() shall behave as shown in Figure 6.114.|(RS_E2E 08539)

E2E_P11Protect() .
oo
E2E_P11Forward()
oo
State->Counter++

_________ The type is uint8, but only 15
values are used. After OxE, the

next value is 0.

(State->Counter %= 15 J

®

Figure 6.114: E2E Profile 11 Protect and Forward step ’Increment Counter”

6.9.8 E2E_P11Forward

The E2E_P11Forward() function of E2E Profile 11 is called by a SW-C in order
to protect its application data and forward an received E2E-Status for use cases
like translation of signal based to service oriented communication. If the received
E2E status equals E2E_P_OK the behavior of the function shall be the same like
E2E_P11Protect(). The function E2E_P11Forward() performs the steps as specified
by the following five diagrams in this section.

[PRS_E2E_00630] Draft [The function E2E_P11Forward() shall have the overall be-
havior as shown in Figure 6.115.|(RS_E2E_08739)

AUTOSAR

E2E_P11Forward(Config, State, Data, Length,
CheckStatus)

Verify inputs of the protect
function oo

[input
oK

Write DatalDNibble
(eose)

Write Counter
(o)
Compute CRC [wrong
oo input]
Write CRC
(eose)

Increment Counter
(eose)
O, ®

®
retum return return

E2E_E_INPUTERR_NULL E2E_E_OK E2E E INPUTERR WRONG

Figure 6.115: E2E Profile 11 Forward

Following steps are described in Section in Section 6.9.7
e "Write CRC” see [PRS_E2E_00514]
¢ ’Increment Counter” see [PRS_E2E_00515]

[PRS_E2E_00631] Draft [The step "Verify inputs of the forward function”
E2E_P11Forward() shall behave as shown in Figure 6.116.|(RS_E2E_08739)

E2E_P11Forward() .
SO

(Config != NULL) &&
(State 1= NULL) &&
(Data != NULL) &&
(ForwardStatus !=
NULL)

[TRUE]

Length == Config->DataLength/8
&&

(ForwardStatus !=
E2E_P_NONEWDATA)

[FALSE] [TRUE] [FALSE]

input
no ok
input

Figure 6.116: E2E Profile 11 Forward step "Verify inputs of the forward function”

wrong
input

AUTO SAR

[PRS_E2E 00632] Draft [The step ~Write DatalDNibble” in
E2E_P11Forward() shall behave as shown in Figure 6.117.|(RS_E2E 08539)

E2E_P11Forward()
(o)

Config->DatalDMode ==
E2E_P11_DATAID_NIBBLE

[FALSE]
[TRUE]
if ForwardStatus
== [FALSE]
E2E_P_ERROR
Byte position in data array can be obtained by:
Data[Config-> DataIDNibbleOffset >> 3]
TRUE Nibble position within byte can be obtained by:
[TRUE] | ((Config-> DatalD & 0x0F00) >> 8) << (Config->
CounterOffset & 0x7)
Copy lower 4 bits of second byte of (State->DatalD+1) to Copy lower 4 bits of second byte of State->DatalD to data
data array at position Config->DatalDNibblerOffset, using array at position Config->DatalDNibblerOffset, using little-
little-endian byte-order. endian byte-order.

Figure 6.117: E2E Profile 11 Forward step ”Write DatalDNibble”

[PRS_E2E_00633] Draft [The step "Write Counter” in E2E_P11Forward() shall be-
have as shown in Figure 6.118.|(RS_E2E_08739)

E2E_P11Forward()
=< ?

if ForwardStatus ==

E2E_P_WRONGSEQUENCE else
if ForwardStatus,
E2E_P_REPEATE [FALSE] [FALSE]
[TRUE] [TRUE]
State->Counter = State-
State->Counter - - >Counter +
__Config->MaxDeltaCounter

The type is uint8, but only 15
values are used. After OxE, the

nextvalue is 0.

X Byte position in data array can be obtained by:

[Copy lower 4 bits of State->Counter to data array at position Config- } ----- Data[Config->CounterOffset >> 3]

>CounterOffset, using little-endian byte-order. Nibble position within byte can be obtained by:
(State->Counter & 0xF) << (Config->CounterOffset & Ox

Figure 6.118: E2E Profile 11 Forward step ”Write Counter”

AUTO SAR

[PRS_E2E_00634] Draft [The step "Compute CRC”
shall behave as shown in

E2E_P11Forward()
(o)

(Offset = Config->CRCOffset / 8)

if ForwardStatus == \l/

E2E_P_ERROR

in E2E_P11Forward()
Figure 6.119.|(RS_E2E_08739)

DatalD = Config- DatalD = Config-
>DatalD+1 >DatalD

\L switch Config-

>DatalDMode

[case [case
E2E_P11_DATAID_BOTH] E2E_P11_DATAID_NIBBLE]

uint8 ComputedCRC= Crc_CalculateCRC8(DatalD, CrciLength] E

int8 ComputedCRC= Crc_CalculateCRC8(DatalD, Crc_Length:
1, Crc_StartValue8: OxFF, Crc_IsFirstCall: FALSE)

1, Crc_StartValue8: 0xff, Crc_IsFirstCall: FALSE)

!

ComputedCRC= Crc_CalculateCRC8(0, Crc_Length: 1,]

Crc_Length: 1, Crc_StartValue8: computedCRC,

ComputedCRC= Crc_CalculateCRC8(DatalD>>8 & OxFF,
Crc_lsFirstCall: FALSE)

Crc_StartValue8: computedCRC, Crc_IsFirstCall: FALSE)

Offset >
Q0
[TRUE] [FALSE]
ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[0], ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[1],
Crc_Length: Offset, Crc_StartValue8: ComputedCRC, Crc_Length: Length-1, Crc_StartValue8: ComputedCRC,
Crc_IsFirstCall: FALSE) Crc_IsFirstCall: FALSE)

ComputedCRC= Crc_Calculate CRC8(Crc_DataPtr:&Data[Offset
+1], Crc_Length: Length-Offset-1, Crc_StartValue8:

ComputedCRC, Crc_lsFirstCall: FALSE)
(CoumptedCRC "= OxFF J

Figure 6.119: E2E Profile 11 Forward step "Compute CRC”

6.9.9 E2E_P11Check

The function E2E_P11Check performs the actions as specified by the following six
diagrams in this section.

AUTO SAR

[PRS_E2E 00516] [The function E2E_P11Check() shall have the
overall behavior as shown in Figure 6.120.](RS_E2E_08539)

E2E_P11Check(Config, State, Data,
Length)

Verify inputs of the check
function oo

[null
input] [input
oK

[wrong
input]

NewDataAvailable
== TRUE

(Read DatalDNibble O—C)

Read Counter ~c
[FALSE]
Read CRC oo
Compute CRC -
Do checks ~C '
O, O, O,
retun return return
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.120: E2E Profile 11 Check

AUTO SAR

[PRS_E2E_00517] |[The step “Verify inputs of the check function” in
E2E_P11Check() shall behave as shown in Figure 6.121.|(RS_E2E 08539)

E2E_P11Check) .
(o)
NewDataAvailable | ___ | local variable, no need
= FALSE to store it in the State

structure.

(Config != NULL) && (State != NULL)

_</

[TRUE]

(Data !'= NULL && Length !=0) || (Data == NULL && Length == 0)

=

[FALSE] [TRUE]

[FALSE]
Data != NULL

ie

[FALSE]
[TRUE]

This path may happen at
runtime if queued
communication is used and
no data is available.

Length == Config->DataLength/8

o<

[FALSE]
[TRUE]

NewDataAvailable
=TRUE

® ——= ®

null input input ok wrong input

Figure 6.121: E2E Profile 11 Check step “Verify inputs of the check function”

[PRS_E2E_00582] |[The step “Read DatalDNibble” in E2E_P11Check()
shall behave as shown in Figure 6.122.|(RS_E2E _08539)

E2E_P11Check()
[e%e)

Config->DatalDMode ==
E2E_P11_DATAID_NIBBLE

[TRUE]
Byte position in data array can be obtained by:
Copy DatalDNibble from bit-position Config->NibbleOffset in Data in Little _ .| Byte = Data[Config->NibbleOffset > > 3]
[FALSE] Endian order to uint8 local variable ReceivedNibble Nibble within byte can be obtained by:
Counter = (Byte >> (Config->NibbleOffset & 0x7)) & OxF

Figure 6.122: E2E Profile 11 Check step "Read DatalDNibble”

AUTOSAR

[PRS_E2E 00518] [The step "Read Counter" in E2E_P11Check()
shall behave as shown in Figure 6.123.](RS_E2E_08539)

E2E_P11Check()
= ®

order to uint8 local variable ReceivedCounter | Nibble within byte can be obtained by:
Counter = (Byte >> (Config->CounterOffset & 0x7)) & OxF

Byte position in data array can be obtained by:
[Copy nibble from bit-position Config->CounterOffset in Data in Little Endian} Byte = Data[Config->CounterOffset >> 3]

®
Figure 6.123: E2E Profile 11 Check step ”"Read Counter”

[PRS_E2E 00519] [The step "Read CRC” in E2E_P11Check()
shall behave as shown in Figure 6.124.|(RS_E2E 08539)

E2E_P11Check() .
oo

[Copy byte Data[Config->CRCOffset/8] to local variable]

ReceivedCRC

®
Figure 6.124: E2E Profile 11 Check step ”Read CRC”

AUTOSAR

[PRS_E2E 00521]
shall behave

EZE_P11Check()
=¥

[The
as

step
shown

”Do
in

Checks’ in E2E_P11Check()
Figure 6.125.|(RS_E2E_08539)

[FALSE]

NemDatafrailable ==
TRUE

<-<e

[TRUE]

[FALSE]

ReceivedCREC ==
ComputedCRC

5
=
=
m

[FALSE]
Config-=DatalbMode ==
EZE_P11_DATAID_HIBELE &
(ReceivedMibble == (Config-=Datall==3) &
0x=FF)

[TRUE]

=

[Compute local wariable DeltaCounter ReceivedCounter- State-

*Counter(taking into wrap around OxE)]

[FALSE]

[DeltaCounter <= Config-
=haxbeltaCounter) && (DeltaCounter
==0

[TRUE]

— <

[FALSE] DeltaCounter

=0

=

[TRUE]

[FALSE] [TRUE]

State-»Status =

State-=5Status =
EZE_P11STATUS_ERROR EZE_P11STATUS_REPEATED ==1

e

DeltaCounter

State-»Status =
EZE_P11STATUS_NONEWDATA

EE2E_P11STATUS_DKSDMELDS'I] [

State-=Status = State-=Status =]

E2ZE_PIMSTATUS_OK

State-=5tatus =
EZE_P11STATUS _WRONGSEQUENCE

State-=Counter= ReceivedCounter]

®

Figure 6.125: E2E Profile 11 Check step "Do Checks”

AUTOSAR

6.9.9.1 Profile 11 Check Status Enumeration

[PRS_E2E_00594] [The step "Do Checks” in E2E_P11Check shall set State->Status
to one of the following enumeration values (see Table 6.50). | (RS_E2E_08528)

Name State | Description
Type
E2E P11STATUS OK OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented by 1).

E2E_P11STATUS_NONEWDATA Error The Check function has been invoked but
no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_P11STATUS_ REPEATED.

E2E_P11STATUS_ERROR Error Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong options,
wrong Data ID).

E2E P11STATUS REPEATED Error The checks of the Data in this cycle were
successful, with the exception of the repe-
tition.

E2E_P11STATUS_OKSOMELOST OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented within the allowed
configured delta).

E2E P11STATUS WRONGSEQUENCE | Error The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the al-
lowed delta

Table 6.50: E2E Profile 11 Check Status Enumeration

6.9.10 EZ2E Profile 11 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P11ConfigType field Value

CounterOffset 8

CRCOffset 0

DatalD 0x123
DatalDNibbleOffset 12

DatalDMode E2E_P11DATAID_BOTH
DatalLength 64

MaxDeltaCounter 1
MaxNoNewOrRepeatedData 15

AUTOSAR

SyncCounterlnit ‘ 0

Table 6.51: E2E Profile 11 protocol example configuration

E2E_P11ProtectStateType field Value
Counter 0

Table 6.52: E2E Profile 11 example state initialization

Byte
0 1 2 3 4 5 6 7
Oxcc 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.53: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_BOTH, counter
0

Result data of E2E_P11Protect() with data equals all zeros (0x00), counter =
1:

Byte
0 1 2 3 4 5 6 7
0x91 0x01 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.54: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_BOTH, counter
1

6.9.10.1 DatalDMode set to E2E_P11DATAID_NIBBLE

Result data of E2E_P11Protect() with data equals all zeros (0x00), counter = 0:

Byte
0 1 2 3 4 5 6 7
Ox2a 0x10 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.55: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_NIBBLE, counter
0

Result data of E2E_P11Protect() with data equals all zeros (0x00), counter =
1:

AUTOSAR

Byte

0

1

2

3

4

5

6

7

0x77

Ox11

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.56: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_NIBBLE, counter
1

6.9.10.2 DatalDMode set to E2E_P11DATAID_NIBBLE, Offset set to 64

This is a typical use-case for using P11 with SOME/IP serializer, which puts an
8 byte header in front of the serialized user data. “Offset 64” means CRCOffset
set to 64, CounterOffset set to 72, DatalDNibbleOffset set to 76. Result data of
E2E_P11Protect() with data equals all zeros (0x00), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)
Byte 8 9 10 11 12 13 14 15
Data 0x7d 0x10 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC DatalD- Data
Nibble
[Counter

Table 6.57: E2E Profile 11 example protect result with short data and SOME/IP

6.10 Specification of E2E Profile 22

[PRS_E2E_00522] [Profile 22 shall provide the following control fields, transmitted at
runtime together with the protected data: Counter, CRC, Data ID (see Table 6.58).|
(RS_E2E 08529, RS _E2E 08530, RS_E2E 08533)

Control field Description

Counter 4 bits. (explicitly sent)

CRC 8 bits, polynomial in normal form Ox2F (Autosar notation), pro-
vided by CRC library. (explicitly sent)

Data ID List 16 8 bits values, linked to Counter value. Effectively 16 different
values, one for each counter value. The Data ID List must be
unique system-wide.

Table 6.58: E2E Profile 22 mechanisms

The E2E mechanisms can detect the following faults or effects of faults:

E2E Mechanism
Counter

Detected communication faults
Repetition, loss, insertion, incorrect sequence, blocking

AUTOSAR

Transmission on a regular | Loss, delay, blocking
bases and timeout moni-
toring using E2E-Library 5

Data ID + CRC Masquerade and icorrect addressing, insertion
CRC Corruption, asymmetric information ©

Table 6.59: Detectable communication faults using Profile 22

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[2].

6.10.1 Data Layout
6.10.1.1 User data layout

In the E2E Profile 22, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 22. The total length of transmitted data must be a multiple
of 8 bit (full bytes). Also, as the header only used 12 bit, there are 4 bit unused and
available for user data in the byte where the 4 bit of the counter are placed.

6.10.1.2 Header layout

Profile 22 is backward compatible to the bus-layout of profile 2. In addition, the configu-
ration field offset can be used to offset the header fields, then breaking with backward-
compatibility to profile 2 bus-layout.

Byte Order 0 1
TransmissionOrder | 0 | 1| 2 (3 (4(5| 6| 7| 8|9 (10| 11|12 |13 14| 15
Bit Order 7/6|5| 4|32 |1|0|15|14|12(12(11|10| 9 8

0 | eee | [counter |

Figure 6.126: E2E Profile22 header with offset 0.

The figure above shows Profile 22 with offset configured with 0. Offset is always given
in bit and a multiple of 8 (full bytes).

The transmission order shown above represents the order in which bits are transmitted.
For comparability to the figures of profile 2, also the bit order is given. The E2E header
fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte fist) applicable for both implicit and explicit
header fields - imposed by profile

SImplementation by sender and receiver
8for a set of data protected by same CRC

AUTOSAR
2. MSB Fist (most significant bit within byte first) - imposed by Flexray/CAN bus.

6.10.2 Counter

In E2E Profile 22, the counter is initialized, incremented, reset and checked by E2E
profile check and protect functions. The counter is not manipulated or used by the
caller of the E2E Supervision. .

[PRS_E2E_00523] [In E2E Profile 22, on the sender side, for the first transmission re-
quest of a data element the counter shall be initialized with 0 and shall be incremented
by 1 for every subsequent send request. When the counter reaches the maximum
value (0xOF), then it shall restart with O for the next send request.| (RS_E2E_08539)

Note that the counter value OxOF is not reserved as a special invalid value.

In E2E Profile 22, on the receiver side, by evaluating the counter of received data
against the counter of previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated
2. OK:
a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.10.3 DatalID
The unique Data ID List is used to verify the identity of each transmitted safety-related
data element.

[PRS_E2E_00524] [In the E2E Profile 22, the Data ID shall be implicitly transmitted,
by adding the Data ID after the user data in the CRC calculation. | (RS_E2E_08539)

AUTOSAR

[PRS_E2E_00525] [In the E2E profiles 2 and 22, the Data ID Lists shall be glob-
ally unique within the network of communicating system (made of several ECUs each
sending different data.) | (RS_E2E_08539)

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.10.4 Length

In Profile 22 there is no explicit transmission of the length.

6.10.5 CRC

E2E Profile 22 uses an 8-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance. The CRC polynomial is the same as used in profile 2.

[PRS_E2E_00526] [E2E Profile 22 shall use the Crc_CalculateCRC8H2F() function
of the SWS CRC Supervision for calculating the CRC (Polynomial 0x2F, see also
SWS_E2E_00117)|(RS_E2E 08528, RS_E2E 08539)

[PRS_E2E_00527] [In E2E Profile 22, the CRC shall be calculated over the entire E2E
header (excluding the CRC bytes), including the user data extended at the end with the
coresponding Data ID from the Data ID List.|(RS_E2E_08539, RS_E2E_08536)

6.10.6 Timeout detection

The previously mentioned mechanisms (for Profile 22: CRC, Counter, Data ID) enable
to check the validity of received data element, when the receiver is executed inde-
pendently from the data transmission, i.e. when receiver is not blocked waiting for
Data Elements or respectively messages, but instead if the receiver reads the currently
available data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

The attribute State->Status = E2E__ P22STATUS NONEWDATA means that the trans-
mission medium (e.g RTE) reported that no new data element is available at the trans-
mission medium. The attribute State->Status = E2E_ P22STATUS REPEATED means
that the transmission medium (e.g. RTE) provided new valid data element, but this

AUTOSAR

data element has the same counter as the previous valid data element. Both con-
ditions represent an unavailability of valid data that was updated since the previous
cycle.

6.10.7 E2E_P22Protect

The function E2E_P22Protect() performs the steps as specified by the following dia-
grams in this section.

[PRS_E2E 00528] [The function E2E_P22Protect() shall have
the overall behavior as shown in Figure 6.127.](RS_E2E_08539)

. E2E_P22Protect(Config, State, Data,
Length)

Verify inputs of the protect
function oo

[null [input [wrong
input oK input]

Increment Counter

|
l

Write Counter

|
i

Compute CRC

Write CRC

WL

(o)
('5 ® ®
retum return return
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.127: E2E Profile 22 Protect

AUTOSAR

[PRS_E2E_00529] [The step “Verify inputs of the protect function” in
E2E_P22Protect() shall behave as shown in Figure 6.128.|(RS_E2E 08539)

E2E_P22Protect()
(ose)

[FALSE]

(Config 1= NULL) && (State != NULL) &&
(Data = NULL)

[TRUE]

[FALSE]
Length == Config->DataLength/8 && Length >=
Offset+2

[TRUE]

input input wrong

ok input

Figure 6.128: E2E Profile 22 Protect step Verify inputs of the protect function”

[PRS_E2E_00530] [The step “"Write Counter” in E2E_P22Protect() and
E2E_P22Forward() shall behave as shown in Figure 6.129.|(RS_E2E 08539)

E2E_P22Protect() 5
E2E_P22Forward() Hef -
(eos o) Counter = State->Counter [f==---==============- Stofe EIRE S‘ate'>cqu"ter ppece
variable to be also used in CRC

Iculation

+8

6

Figure 6.129: E2E Profile 22 Protect step "Write Counter”

Copy lower 4 bits of State->Counter to data array at bit position Config->Offset
[24 v ? g } ----- Byte position in data array can be obtained by:
DataPtr[(Config->Offset >> 3) + 1]

AUTO SAR

[PRS_E2E_00531] [The step "Compute CRC” in E2E_P22Protect() and in
E2E_P22Check shall behave as shown in Figure 6.130.|(RS_E2E 08539)

E2E_P22Check()
oo

E2E_P22Protect() (Offset = Config->Offset / 8)
oo

[TRUE] [FALSE]

Config->CRCOffset
>0

&Data[1], Crc_Length: Length-1, Crc_StartValue8: OxFF,

uint8 ComputedCRC= Crc_CalculateCRC8H2F(Crc_DataPtr:
Crc_IsFirstCall: TRUE)

&Data[0], Crc_Length: Offset, Crc_StartValue8: OxFF,
Crc_lIsFirstCall: TRUE)

(uint8 ComputedCRC= Crc_CalculateCRC8H2F(Crc_DataPtr:]

[Offset+1], Crc_Length: Length-Offset-1, Crc_StartValue8:

ComputedCRC= Crc_CalculateCRC8H2F(Crc_DataPtr:&Data
ComputedCRC, Crc_lsFirstCall: FALSE)

ComputedCRC= Crc_CalculateCRC8H2F(Config->DatalDList
[Counter], Crc_Length: 1, Crc_StartValue8: ComputedCRC,
Crc_lsFirstCall: FALSE)

O,
Figure 6.130: E2E Profile 22 Protect and Check step "Compute CRC”

[PRS_E2E_00532] [The step "Write CRC” in E2E_P22Protect() and
E2E_P22Forward() shall behave as shown in Figure 6.131.](RS_E2E 08539)

E2E_P22Protect()

$
E2E_P22Forward()
oo

[Copy 1-byte local variable ComputedCRC on bytes Data[Config->Offset/8]]

s

Figure 6.131: E2E Profile 22 Protect and Forward step "Write CRC”

AUTOSAR

[PRS_E2E_00533] [The step ’“Increment Counter” in E2E_P22Protect()
shall behave as shown in Figure 6.132.](RS_E2E_08539)

E2E_P22Protect()
(o)

next value is 0.

State->Counter++ L. ____| The type is uint8, but only 16
values are used. After OxF, the

[State->Counter %= 16 j

O,
Figure 6.132: E2E Profile 22 Protect step “Increment Counter”

6.10.8 E2E_P22Forward

The E2E_P22Forward() function of E2E Profile 22 is called by a SW-C in order
to protect its application data and forward an received E2E-Status for use cases
like translation of signal based to service oriented communication. |If the received
E2E status equals E2E_P_OK the behavior of the function shall be the same like
E2E_P22Protect(). The function E2E_P22Forward() performs the steps as specified
by the following four diagrams in this section.

[PRS_E2E_00635] Draft [The function E2E_P22Forward() shall have the overall be-
havior as shown in Figure 6.133.| (RS_E2E_08739)

AUTOSAR

E2E_P22Forward(Config, State, Data, Length,
FowardStatus)

Verify inputs of the protect
function oo
_[”U” [input [wrong
input]

input]

ok
Increment Counter
O

Write Counter

oo

Compute CRC
O
Write CRC
O

return
E2E_E_OK

®
returm

E2E_E_INPUTERR_NULL

Figure 6.133: E2E Profile 22 Forward

80)
return

E2E_E_INPUTERR_WRONG

Following steps are described in Section in Section 6.10.7
e "Write Length” see [PRS_E2E_00530]
e "Write CRC” see [PRS_E2E_00532]

[PRS_E2E_00636] Draft [The step "Verify inputs of the forward function” in
E2E_P22Forward() shall behave as shown in Figure 6.134.|(RS_E2E_08739)

E2E_P22Forward()
O

(Config != NULL) &&
(State = NULL) &&
(Data != NULL) &&
(ForwardStatus !=
NULL)

[TRUE]

Length == Config->DataLength/8
&&

Length >= Offset+2 &&
(ForwardStatus !=
E2E_P_NONEWDATA)

[FALSE]

no
input

[TRUE]

input
ok

[FALSE]

wrong
input

Figure 6.134: E2E Profile 22 Forward step ”Verify inputs of the forward function”

AUTO SAR

[PRS_E2E_00637] Draft [The step "Increment Counter” in E2E_P22Forward() shall
behave as shown in Figure 6.135.| (RS_E2E_08739)

E2E_P22Forward()
O

if ForwardStatus ==
E2E_P_WRONGSEQUENCE
if ForwardStatus

E2E_P_REPEATED [FALSE]

[TRUE] [TRUE]
V

State->Counter = State-
>Counter + State->Counter++
Config->MaxDeltaCounter+1
~ T

The type is uint8, but only 16 values
are used. After OxF, the next value is
0.

[State->Counter %= 16]

®

Figure 6.135: E2E Profile 22 Forward step “Increment Counter”

AUTO SAR

[PRS_E2E_00638] Draft [The step "Compute CRC” in E2E_P22Forward()
shall behave as shown in Figure 6.136.](RS_E2E_08739)

E2E_P22Forward() $

(Offset = Config->Offset / 8)
———————————[TRUE] [FALSE]—————
Config->CRCOffset
>0
uint8 ComputedCRC= Crc_CalculateCRC8H2F(Crc_DataPtr: uint8 ComputedCRC= Crc_CalculateCRC8H2F(Crc_DataPtr:
&Data[0], Crc_Length: Offset, Crc_StartValue8: OxFF, &Datal[1], Crc_Length: Length-1, Crc_StartValue8: OxFF,
Crc_|sFirstCall: TRUE Crc_lsFirstCall: TRUE)

[Offset+1], Crc_Length: Length-Offset-1, Crc_StartValue8:

ComputedCRC= Crc_Calculate CRC8H2F(Crc_DataPtr:&Data
ComputedCRC, Crc_lsFirstCall: FALSE)

—————————[TRUE] [FALSE]———— ————————
if ForwardStatus ==
E2E_P_ERROR

DatalD = Config->DatalDList DatalD = Config->DatalDList
[Counter]+1 [Counter]

M

[ComputedCRC: Crc_CalculateCRC8H2F(DatalD, Crc_Length: 1,J

Crc_StartValue8: ComputedCRC, Crc_lIsFirstCall: FALSE)

:

Figure 6.136: E2E Profile 22 Forward step "Compute CRC”

6.10.9 E2E_P22Check

The function E2E_P22Check performs the actions as specified by the following six
diagrams in this section.

AUTO SAR

[PRS_E2E 00534] [The function E2E_P22Check() shall have the
overall behavior as shown in Figure 6.137.](RS_E2E_08539)

E2E_P22Check(Config, State, Data,
Length)

Verify inputs of the check
function [Sa=

[null [input [wrong

input oK NewDataAvailable input]

== TRUE

‘ Read Counter
[FALSE] ‘ Read CRC
‘ Compute CRC

Do checks

5

6

il

O, O, O,

return return retum
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.137: E2E Profile 22 Check

AUTOSAR

[PRS_E2E_00535] [The step “Verify inputs of the check function” in
E2E_P22Check() shall behave as shown in Figure 6.138.|(RS_E2E 08539)

E2E_P22Check() .
O

NewDataAvailable | _ __ _| local variable, no need

=FALSE to store it in the State

structure.

(Config != NULL) && (State !=
ULL)

_<,{

[TRUE]

(Data != NULL && Length != 0) || (Data == NULL &&

Length == 0)
[FALSE]

<

[FALSE] [TRUE]
Data !=
NULL
[FALSE]
[TRUE]

Length == Config->DataLength/8 && Length >=

This path may happen at
runtime if queued ffset+2
q Offet+2 1\ sEj

communication is used and
no data is available.

[TRUE]

NewDataAvailable
=TRUE

©

wrong
input

®

null
input

Figure 6.138: E2E Profile 22 Check step “Verify inputs of the check function”

input
ok

[PRS_E2E 00536] [The step "Read Counter” in E2E_P22Check()
shall behave as shown in Figure 6.139.|(RS_E2E 08539)

E2E_P22Check)
o

Cop 4t coune vt fom i guan Con Ot 103 1 ... cour g e o e oondy
Counter = Data[(Config->Offset >> 3)+1] & O0xOF

®
Figure 6.139: E2E Profile 22 Check step "Read Counter”

AUTOSAR

[PRS_E2E_00537] [The step "Read CRC”
shall behave as shown in Figure

E2E_P22Check() '
oo

in E2E_P22Check()
6.140.|(RS_E2E_08539)

Copy byte Data[Config->Offset/8] to local variable
ReceivedCRC

®

Figure 6.140: E2E Profile 22 Check step ”Read CRC”

AUTOSAR

[PRS_E2E 00539] [The step "Do Checks’ in E2E_P22Check()
shall behave as shown in Figure 6.141.](RS_E2E_08539)

EZE_PZZChedd)
OO
[FALSE]

Newl ataforailable ==
TRUE

[TRUE]

[FALSE] ReceivedCRC ==
ComputedCRC

[TRUE]

Compute local wariable DeltaCounter: Counter - State-
=Counter ftaking into wrap around 0=F)

[FALSE] [DeltaCounter <= Config-
=haxbeltaCounter) && (DeltaCounter
==

[TRUE]

LeltaCounter
————————————————[FALSE] u]

[TRUE]

[FALSE] [TRUE]——
[State-=Status = J [State-=5Status =

E2E_P22STATUS_ERROR EZE_P228TATUS_ REF'EJ'-\TED DeltaCauntar

State-»Status = State-»Status = State-»Status= State-=Status =
EZE_PZZETATUS_MONEWDATA EZE_FP22ESTATUS_WRONGSEQUENCE EzE_P22STATUS_OKSOMELOST EZE_FZZSTATUS Ok

[State->Counter = Counter]

®

Figure 6.141: E2E Profile 22 Check step Do Checks”

AUTOSAR

6.10.9.1 Profile 22 Check Status Enumeration

[PRS_E2E_00595] [The step "Do Checks” in E2E_P22Check shall set State->Status
to one of the following enumeration values (see Table 6.60).|(RS_E2E_08528)

Name State | Description
Type
E2E P22STATUS OK OK The new data has been received accord-

ing to communication medium, the CRC
is correct, the Counter is incremented by
1 with respect to the most recent Data re-
ceived with Status _INITIAL, OK, or OK-
SOMELOST. This means that no Data has
been lost since the last correct data recep-
tion.

E2E P22STATUS NONEWDATA Error The Check function has been invoked but
no new Data is not available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently

executed.

E2E P22STATUS ERROR Error The data has been received according to
communication medium, but the CRC is
incorrect.

E2E_P22STATUS_REPEATED Error The new data has been received accord-

ing to communication medium, the CRC
is correct, but the Counter is identical to
the most recent Data received with Status
_INITIAL, OK, or OKSOMELOST.

E2E_P22STATUS_OKSOMELOST OK The new data has been received ac-
cording to communication medium, the
CRC is correct, the Counter is incre-
mented by DeltaCounter (1 < Delta-
Counter =MaxDeltaCounter) with respect
to the most recent Data received with Sta-
tus _INITIAL, _OK, or _OKSOMELOST.
This means that some Data in the se-
quence have been probably lost since
the last correct/initial reception, but this is
within the configured tolerance range.

E2E_P22STATUS_WRONGSEQUENCE | Error The new data has been received ac-
cording to communication medium, the
CRC is correct, but the Counter Delta is
too big (DeltaCounter > MaxDeltaCounter)
with respect to the most recent Data re-
ceived with Status _INITIAL, OK, or _OK-
SOMELOST. This means that too many
Data in the sequence have been probably
lost since the last correct/initial reception.

Table 6.60: E2E Profile 22 Check Status Enumeration

AUTOSAR

6.10.10 EZ2E Profile 22 Protocol Examples

E2E_P22ConfigType field Value
DatalLength 64
DatalDList 0x01, 0x02, 0x03, 0x04,

0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0xOc,
0x0d, 0x0e, Ox0f, Ox10

MaxDeltaCounter 1
MaxNoNewOrRepeatedData 15
SyncCounterlnit 0
Offset 0

Table 6.61: E2E Profile 22 protocol example configuration

E2E_P22ProtectStateType field Value
Counter 0

Table 6.62: E2E Profile 22 example state initialization

Result data of E2E_P22Protect() with data equals all zeros (0x00), counter starting with
1 (note: first used counter is 1, although counter field is initialized with 0, as counter is
incremented before usage):

Counter Byte
0 1 2 3 4 5 6 7
1 0x1b 0x01 0x00 0x00 0x00 0x00 0x00 0x00
2 0x98 0x02 0x00 0x00 0x00 0x00 0x00 0x00
3 0x31 0x03 0x00 0x00 0x00 0x00 0x00 0x00
4 0xod 0x04 0x00 0x00 0x00 0x00 0x00 0x00
5 0x18 0x05 0x00 0x00 0x00 0x00 0x00 0x00
6 0x9b 0x06 0x00 0x00 0x00 0x00 0x00 0x00
7 0x65 0x07 0x00 0x00 0x00 0x00 0x00 0x00
8 0x08 0x08 0x00 0x00 0x00 0x00 0x00 0x00
9 0ox1d 0x09 0x00 0x00 0x00 0x00 0x00 0x00
10 0x9e 0x0a 0x00 0x00 0x00 0x00 0x00 0x00
11 0x37 0x0b 0x00 0x00 0x00 0x00 0x00 0x00
12 0x0b 0x0c 0x00 0x00 0x00 0x00 0x00 0x00
13 Oxle 0x0d 0x00 0x00 0x00 0x00 0x00 0x00
14 0x9d 0x0e 0x00 0x00 0x00 0x00 0x00 0x00
15 Oxcd oxof 0x00 0x00 0x00 0x00 0x00 0x00
0 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x00
CRC 4 bit Data Data
+ 4 bit
Counter

Table 6.63: E2E Profile 22 example protect result

AUTOSAR

6.10.10.1 Offset set to 64

This is a typical use-case for using P22 with SOME/IP serializer, which puts an 8 byte
header in front of the serialized user data. Result data of E2E_P22Protect() with data
equals all zeros (0x00), counter = 1:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)
Byte 8 9 10 11 12 13 14 15
Data 0x14 0x01 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC DatalD Data

|Counter

Table 6.64: E2E Profile 2 example protect result with short data and SOME/IP

6.11 Specification of E2E state machine

The E2E Profile check()-functions verifies data in one cycle. This function only deter-
mines if data in that cycle are correct or not. In contrary, the state machine builds up a
state out of several results of check() function within a reception window, which is then
provided to the consumer (RTE/SWC/COM).

The state machine is applicable for all E2E profiles. Profiles PO1 and P02 can be
configured to work together with the state machine. However, the behavior of P01/P02
alone, regardless how it is configured, is different to the behavior of PO1/P02 + state
machine.

6.11.1 Overview of the state machine

The diagram below summarizes the state machine.

AUTOSAR

0

E2E_SM_DEINIT

init

<@

E2E_SM_NODATA - wait for 1t reception - do
NOT use data

1st Data with no ERROR

E2E7$M;|N|T - COMMUNICATION \ (éE_SM_VALID - communication within limits - ok

INITIALIZATION - do NOT use data to USE data
[NOT (too many ERROR or too few OK)|

) t

[too many ERRORS] [too many ERRORs or too few OKs] [NOT (too many ERROR or too few OK

/EZEisMJNVALID - communication not within

t limits - do NOT use data

Figure 6.142: E2E state machine overview

6.11.2 State machine specification

[PRS_E2E_00354] [The E2E state machine shall be implemented by the functions
E2E_SMCheck() and E2E_SMCheckInit() | (RS_E2E_08539)

[PRS_E2E_00345] [The E2E State machine shall have the behavior with respect to
the function E2E_SMCheck() as shown in Figure 6.143.

This shall be understood as follows:
1. The current state (e.g. E2E_SM_VALID) is stored in State->SMState

2. At every invocation of E2E_SMCheck, the ProfileStatus is processed (as shown
by logical step E2E_SMAddStatus()

3. After that, there is an examination of two counters: State->ErrorCount and State-
>0OKCount. Depending on their values, there is a transition to a new state, stored
in State->SMState.

|(RS_E2E 08539)

AUTO SAR

E2E_SM_DEINIT

@<

"
H [E2E_SMCheck(ProfileStatus, Config, State)]
/return E2E_E_WRONGSTATE

Transition through
E2E_SMCheckInit()

E2E_SM_NODATA

E2E_SMCheck(ProfileStatus, Config, State)

[ProfileStatus != E2E_P_ERROR && ProfileStatus != E2E_P_NONEWDATA]

E2E_SM_INIT
== E2E_SM_VALID

E2E_SMCheck(ProfileStatus, Config, State)

/E2E_SMAddStatus(ProfileStatus, State) E2E_SMCheck(Profilestatus, Config, State)

/E2E_SMAddStatus(ProfileStatus, State)

[ELSE] - = 1o i
[(State->ErrorCount <= Config->MaxErrorStatelnit) [8(‘S&ta(: zEr::)rfgunt:ngnﬂfg 1’“;"2;:;5:3?\12;?)
&& (State->OkCount >= Config->MinOkStatelnit) ate->OkCount >= Config->MinOltateVall

/E2E_SMClearRemainingStatus(State, Config, [ELSE]
E2E_SM_VALID)

[ELSE]
[Config->ClearTolnvalid == TRUE]]
[State->ErrorCount > Config->MaxErrorStatelnit] /E2E_SMClearStatus(State, Config)

Config->ClearTolnvalid == TRUE E2ESSPISINVALD)

[FALSE]
/E2E_SMClearRemainingStatus(State, Config,
E2E_SM_INVALID)

[State == E2E_SMError] [ELSE] E2E_SMCheck(ProfileStatus, Config, State)
[TRUE] /E2E_SM(ClearStatus /E2E_SMAddStatus(ProfileStatus, State)
/E2E_SMClearStatus(State, Config) (State, Config)

[ELSE]
[(State->ErrorCount <= Config->MaxErrorStatelnvalid)

&& (State->OkCount >= Config->MinOkStatelnvalid)]
/E2E_SMClearRemainingStatus(State, Config,
E2E_SM_VALID)

Figure 6.143: E2E state machine check

AUTO SAR

[PRS_E2E_00466]
E2E_SMCheck()

[The
shall

step E2E_SMAddStatus(ProfileStatus, State) in
behave as shown in Figure 6.144.|(RS_E2E_08539)

E2E_SMAddStatus(ProfileStatus,

State) I

State->Profile Statuswindow[State->WindowT opIndex] = ProfileStatus

CurrentWindowSize = WindowSizelnit, WindowSizeValid or WindowSizelnvalid, depending on the current value of
State->SMState

CurrentWi

rofileStatuswindow[] with values E2E_P_OK, forn =
ndowSize

State->ErrorCount = number of elementsin State -> ProfileStatuswindow(] with values E2ZE_P_ERROR, forn =

CurrentWi

A I S

ndowSize

(State->WindowT opIndex == CurrentWindowSize -1) then

[State->OKCount = number of elementsin State -> P
Ef

+

State->WindowTopIndex=0, else State->WindowTopIndex+

—/

@
Figure 6.144: E2E state machine step E2E_SMAddStatus

E2E_SMAddStatus is just a logical step in the algorithm, it may (but it does not have to
be) implemented a a separate function. It is not a module API function.

AUTO SAR

[PRS_E2E_00375] [The E2E State machine shall have the behavior with respect
to the function E2E_SMCheckinit() as shown in Figure 6.145.](RS_E2E_08539)

EZE_SM_DEINIT

[EZE_SMChedkinitiState, Canfig)]

EZE_SM_NODATA
/EZE_SMCe arProfileStatus(Profile Status, State)

E2E_SM_INIT E2E_SM_VALID
[E2ZE_SMCheckinit{State, Canfig)] [E2E_SMChedkinitState, Config)]
]

: EZE_Shi_INWVALID]
[EZE_SMCheckinit{State, Config)]
r

Figure 6.145: E2E state machine step E2E_SMChecklnit

AUTO SAR

[PRS_E2E 00467] [The step E2E_SMClearStatus(State, Config) in
E2E_SMCheck() shall behave as shown in Figure 6.146.|(RS_E2E 08539)

‘ E2E_SMClearStatus(ProfileStatus, State)

Clear each element of
the

ProfileStatusWindow(]
amay.

[State->ProfileStatuswindow[] = E2E_P_NOTAVAILABLE J

[State->OKCount = 0 J

(State->ErrorCount = 0 J

[State->WindowToplIndex = 0]

®

Figure 6.146: E2E state machine step E2E_SMCheck

[PRS_E2E_00607] [The step E2E_SMClearRemainingStatus(Config, State) in
E2E_SMCheck() shall have the following behavior: Figure 6.147.|(RS_E2E_08539)

E2E_SMClearRemainingStatus(State, Config,

Ne>.te)

CurrentWindowSize = WindowSizeValid, WindowSizelnit or WindowSizelnvalid, dependent on the current value of
State->SMState

[NextWindowSize = WindowSizeValid or WindowSizelnvalid, dependent on NextState]

CurrentWindowSize <
NextWindowSize

WIndowToplIndex. From there, the last
messages can be determined by

The latest element is at position State-:
Set all elementsin State->ProfileStatuswindow[] to E2E_P_NOTAVAILABLE except the latest n elements, forn =
CurrentWindowSize decreasing the index (considering the

wrap-around at/after index Q).

®
Figure 6.147: E2E state machine step E2E_SMClearRemainingStatus

AUTOSAR

6.11.2.1 EZ2E State Machine Status Enumeration

[PRS_E2E_00596] | The E2E State Machine uses the following enumeration values to

indicate its current status (see Table 6.65).|(RS_E2E_08528)

Name

Description

E2E_SM_VALID

Communication functioning properly according to E2E, data can be
used.

E2E_SM_DEINIT

State before E2E_SMCheckInit() is invoked, data cannot be used.

E2E_SM_NODATA

No data from the sender is available since the initialization, data cannot
be used.

E2E_SM_INIT

There has been some data received since startup, but it is not yet pos-
sible use it, data cannot be used.

E2E_SM_INVALID

Communication not functioning properly, data cannot be used.

Table 6.65: E2E State Machine Check Status Enumeration

6.11.2.2 Profile specific Check Status to State Machine Check Status mappings

This section targets the single mappings between each Profile specific check state to

the check states used by the E2E Statemachine

[PRS_E2E_00597] [The E2E State Machine uses the following enumeration values as

input from the Profile specific check functions (see Table 6.66).| (RS_E2E_08528)

Name Description

E2E_P_OK Check of the message was successful and no error was
found

E2E_P_ERROR An error was detected in the received message.

E2E_P_REPEATED

A repeated messages was received

E2E_P_NONEWDATA No new message was received

E2E_P_WRONGSEQUENCE The received message contains wrong counter

Table 6.66: E2E State Machine Check Status Enumeration

[PRS_E2E_00598] Mapping Profile 1 to State-Machine [The mapping between Pro-
file 1 specific check states to the input for the E2E-State Machine is described in table

Table 6.67). (RS_E2E_08528)

Profile Specific State State Machine State

E2E_PO1STATUS_OK, E2E_P_OK
E2E_PO1STATUS_OKSOMELOST,
E2E_PO1STATUS_SYNC

E2E_P01STATUS_WRONGCRC E2E_P_ERROR

E2E_PO01STATUS_REPEATED E2E_P_REPEATED

E2E_P0O1STATUS_NONEWDATA E2E_P_NONEWDATA

AUTOSAR

E2E_P01STATUS_ WRONGSEQUENCE E2E_P_WRONGSEQUENCE
E2E_PO1STATUS_INITIAL

Table 6.67: E2E Profile 1 specific Check Status Mapping

[PRS_E2E_00599] Mapping Profile 2 to State-Machine [The mapping between Pro-
file 2 specific check states to the input for the E2E-State Machine is described in table
Table 6.68).| (RS_E2E_08528)

Profile Specific State State Machine State
E2E_PO2STATUS_OK, E2E_P_OK

E2E_P0O2STATUS_OKSOMELOST,
E2E_PO02STATUS_INITIAL

E2E_PO2STATUS_WRONGCRC E2E_P_ERROR
E2E_PO2STATUS_REPEATED E2E_P_REPEATED
E2E_PO2STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_P0O2STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

E2E_PO2STATUS_SYNC

Table 6.68: E2E Profile 2 specific Check Status Mapping

[PRS_E2E_00600] Mapping Profile 4 to State-Machine [The mapping between Pro-
file 4 specific check states to the input for the E2E-State Machine is described in table
Table 6.69).| (RS_E2E_08528)

Profile Specific State State Machine State
E2E_PO4STATUS_OK, E2E_P_OK
E2E_P0O4STATUS_OKSOMELOST

E2E_P0O4STATUS_ERROR E2E_P_ERROR
E2E_PO4STATUS_REPEATED E2E_P_REPEATED
E2E_P0O4STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_PO4STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

Table 6.69: E2E Profile 4 specific Check Status Mapping

[PRS_E2E_00601] Mapping Profile 5 to State-Machine [The mapping between Pro-
file 5 specific check states to the input for the E2E-State Machine is described in table
Table 6.70).] (RS_E2E_08528)

Profile Specific State State Machine State
E2E_PO5STATUS_OK, E2E P_OK
E2E_PO5STATUS_OKSOMELOST

E2E_PO5STATUS_ERROR E2E _P_ERROR
E2E_PO5STATUS_REPEATED E2E_P_REPEATED
E2E_PO5STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_PO5STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

AUTOSAR

Table 6.70: E2E Profile 5 specific Check Status Mapping

[PRS_E2E_00602] Mapping Profile 6 to State-Machine [The mapping between Pro-
file 6 specific check states to the input for the E2E-State Machine is described in table
Table 6.71).] (RS_E2E_08528)

Profile Specific State State Machine State
E2E_PO6STATUS_OK, E2E_P_OK
E2E_PO6STATUS OKSOMELOST

E2E_PO6STATUS_ERROR E2E_P_ERROR
E2E_PO6STATUS REPEATED E2E_P_REPEATED
E2E_P0O6STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_P06STATUS WRONGSEQUENCE E2E_P_WRONGSEQUENCE

Table 6.71: E2E Profile 6 specific Check Status Mapping

[PRS_E2E_00603] Mapping Profile 7 to State-Machine [The mapping between Pro-
file 7 specific check states to the input for the E2E-State Machine is described in table
Table 6.72).| (RS_E2E_08528)

Profile Specific State State Machine State
E2E_P07STATUS_OK, E2E_P_OK
E2E_P07STATUS_OKSOMELOST

E2E_P07STATUS_ERROR E2E_P_ERROR
E2E_P07STATUS_REPEATED E2E_P_REPEATED
E2E_P07STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_P07STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

Table 6.72: E2E Profile 7 specific Check Status Mapping

[PRS_E2E_00604] Mapping Profile 11 to State-Machine [The mapping between
Profile 11 specific check states to the input for the E2E-State Machine is described
in table Table 6.73).|(RS_E2E_08528)

Profile Specific State State Machine State
E2E_P11STATUS_OK, E2E_P_OK
E2E_P11STATUS_OKSOMELOST

E2E_P11STATUS_ERROR E2E_P_ERROR
E2E_P11STATUS_REPEATED E2E_P_REPEATED
E2E_P11STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_P11STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

Table 6.73: E2E Profile 11 specific Check Status Mapping

AUTOSAR

[PRS_E2E_00605] Mapping Profile 22 to State-Machine [The mapping between
Profile 22 specific check states to the input for the E2E-State Machine is described
in table Table 6.74).|(RS_E2E_08528)

Profile Specific State State Machine State
E2E_P22STATUS_OK, E2E_P_OK
E2E_P11STATUS_OKSOMELOST

E2E_P22STATUS_ERROR E2E_P_ERROR
E2E_P22STATUS_REPEATED E2E_P_REPEATED
E2E_P22STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_P22STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

Table 6.74: E2E Profile 22 specific Check Status Mapping

AUTOSAR

7 E2E API specification

This chapter defines an abstract AP| of E2E supervision. E2E is supposed to be in-
voked by middleware, but the results of checks are visible to the application, so this
chapter is split into two parts.

7.1 API of middleware to applications

The API to the applications is imposed by the middleware (e.g. RTE or ARA). E2E
provides an additional output object providing E2E check results.

[PRS_E2E_USE_00321] [The middleware shall provide, for each exchanged
dataRecord, a set of functions:

e middleware_send(in dataRecord)

e middleware_receive(out dataRecord, out e2eResult)
|(RS_E2E_08534)
[PRS_E2E_00322] [The e2eResult shall contain pieces of information:

e e2eStatus: Profile-independent status of the reception on one single Data in one
cycle. Possible values are: OK, REPEATED, WRONGSEQUENCE, NOTAVAIL-
ABLE, NONEWDATA.

e e2eState: Status of the communication channel exchanging the data. Possible
values are: VALID, DEINIT, NODATA, INIT, INVALID.

|(RS_E2E 08534)

7.2 API of E2E

The E2E interface is independent from any middleware. It is designed with SOME/IP in
mind, but it could work for any other middleware or software services, e.g. a database
requesting to protect its data.

The interface between the middleware and E2E operates on the serialized data, where:
E2E adds E2E header (sender side) and E2E check E2E header (receiver side).

[PRS_E2E_00323] [E2E protocol shall provide the following interface:
e E2E_check(in datalD, inout serializedData)
e E2E protect(in datalD, inout serializedData): e2eResult

where:

AUTOSAR

e datalD is a unique identifier of the exchanged data/information. In case of multiple
instantiation, each single instance gets typically a separate datalD, even if the
same type of information is transmitted

¢ serializedData - vector/array of serialized data, where E2E header is located, next
to serialized data

e e2eResult - result of E2E checks, see previous section for the definition.
|(RS_E2E _08534)
The middleware is responsible to provide an adaptation to E2E functional interface.

[PRS_E2E_00318] [The middleware shall determine the DatalD of the currently ex-
changed information. | (RS_E2E_08534)

For example, in case of vsomeip, it needs to determine DatalD based on servicei-
d/eventid/instanceid tuple.

[PRS_E2E_00319] [The middleware invoke E2E functions providing them the DatalD
together with the data. | (RS_E2E_08534)

[PRS_E2E_00320] [On the receiver side, the middleware shall provide the e2eResult
determined by E2E to the receiver.|(RS_E2E_08534)

AUTOSAR

8 Configuration Parameters

E2E supervision has the following configuration options for each protected data. Note
that it is platform-specific how middleware associates a middleware communication
channel with E2E communication protection.

For each DatalD, which uniquely represents data exchanged, there is a set of configu-

ration options.

[PRS_E2E_00324] [The options for a E2E-protected data shall be available as defined
in Table 8.1 | (RS_E2E _08534)

Parameters Profile Description
datalD 1,4,5, This represents a unique numerical identifier. Note: ID is used for protection
6,7, 11 against masquerading. The details concerning the maximum number of values
(this information is specific for each E2E profile) applicable for this attribute are
controlled by a semantic constraint that depends on the category of the EndToEnd-
Protection.
datald is used as a unique identifier of a configuration object. One datald can
appear only once in the configuration.
profileName all This represents the identification of the concrete E2E profile. Possible profiles: 1
(only CP), 2 (only CP), 4,5, 6,7, 11, 22.
datalength 1,2,5, For fixed size data: length of data in bits.
11,22
minDatalLength 4,6,7 For variable size data: minimum length of data in bits.
maxDatalength 4,6,7 For variable size data: maximum length of data in bits.
dataldList 2,22 List of 16 datalD values, where a a different value is transmitted depending on
counter value.
dataldMode 1, 11 This attribute describes the inclusion mode that is used to include the two-byte
Data ID in E2E communication protection.
offset 2,4,5, Offset of the E2E header in the Data[] array in bits.
6,7,22
counterOffset 1, 11 Offset of the counter in the Data[] array in bits. Fixed for AP to 0.
crcOffset 1, 11 Offset of the CRC in the Data[] array in bits. Fixed for AP to 8.
dataldNibbleOffset 1, 11 Offset of the datalD nibble in the Data[] array in bits. Fixed for AP to 12.
maxDeltaCounter 4,5, 6, Maximum allowed difference between the counter value of the current message
7,11,22 | and the previous valid message.
Parameters of legacy profiles (Only CP)
maxDeltaCounterlnit 1,2 Initial maximum allowed gap between two counter values of two consecutively
received valid Data. The maxDeltaCounter is increased on each reception try but
only reset when receiving a valid message. This is to compensate for and tolerate
lost messages.
maxNoNewOrRepeated- 1,2 The maximum amount of missing or repeated Data which the receiver does not
Data expect to exceed under normal communication conditions.
syncCounterlnit 1,2 The number of messages required for validating the consistency of the counter
after exceeding the maxNoNewOrRepeatedData threshold.
profileBehavior 1,2 Mapping of specific profile status values to unified profileStatus. False: legacy
behavior, as before AUTOSAR Classic Platform Release 4.2, True: mapping ac-
cording to new profiles (profile 4 and newer) interpretation of status, introduced in
AUTOSAR Classic Platform Release 4.2.

Parameters of E2E State Machine

V

AUTOSAR

JAN

windowSizeValid Size of the monitoring window of state Valid for the E2E state machine.

windowSizelnvalid Size of the monitoring window of state Invalid for the E2E state machine.

windowSizelnit Size of the monitoring window of state Init for the E2E state machine.

clearFromValidTolnvalid Clear monitoring window on transition from state Valid to state Invalid.

maxErrorStatelnit Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was determined,
within the last WindowSizelnit checks, for the state E2E_SM_INIT.

maxErrorStatelnvalid Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was determined,
within the last WindowSizelnvalid checks, for the state E2E_SM_INVALID.

maxErrorStateValid Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was determined,
within the last WindowSizeValid checks, for the state E2E_SM_VALID.

minOkStatelnit Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSizelnit checks, for the state E2E_SM_INIT.

minOkStatelnvalid Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSizelnvalid checks, for the state E2E_SM_INVALID.

minOkStateValid Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSizeValid checks, for the state E2E_SM_VALID.

Table 8.1: E2E configuration parameters

8.1 General Constraints

This section contains general platform independent constraints. These belong to the
configuration parameters mentioned in Table 8.1.

8.1.1 E2E-Statemachine Settings

[constr_3176] Value range of windowSizeValid |[The value of the windowSize-
Valid attribute shall be greater or equal to 1. ()

[constr_6301] Dependency between windowSizeInvalid and windowSize-
valid [The following restriction shall be respected: WindowSizeInvalid <= Win-—
dowSizevalid|()

[constr_6302] Dependency between windowSizeInit and windowSizeValid
[The following restriction shall be respected: windowSizeInit <= WindowSize-—
valid|()

[constr_3177] Dependency between maxErrorStateValid, maxEr-
rorStateInit and maxErrorStateInvalid [The following restriction shall
be respected:

maxErrorStateValid >=maxErrorStateInit >=maxErrorStateInvalid >=

0]()

[constr_3178] Dependency between minOkStatevValid, minOkStateInit and
minOkStateInvalid [The following restriction shall be respected:
1 <=minOkStateValid <=minOkStateInit <=minOkStateInvalid]()

AUTOSAR

[constr_3179] Dependency between minOkStateInit, maxErrorStatelnit
and windowSizeValid |The following restriction shall be respected:
minOkStateInit + maxErrorStateInit <=windowSizeValid]()

[constr_3180] Dependency between minOkStateValid, maxErrorStateValid
and windowSizeValid [The following restriction shall be respected:
minOkStateValid + maxErrorStatevValid <= windowSizeValid]|()

[constr_3181] Dependency between minOkStateInvalid, maxErrorStateIn-
valid and windowSizeValid |The following restriction shall be respected: mi-
nOkStateInvalid + maxErrorStateInvalid <= windowSizeValid|()

AUTOSAR

9 Protocol usage and guidelines

This chapter contains requirements on usage of E2E Supervision when designing and
implementing safety-related systems, which are depending on E2E communication
protection and which are not directly related to some specific functionality. Note that
chapter 6 also provides several requirements on usage.

9.1 E2E and SOME/IP

For the combination of E2E communication protection with SOME/IP, there needs to
be a common definition of the on-wire protocol. Depending on architecture properties,
the implementing components need to be configured and used accordingly.

In general, all available E2E profiles can be used in combination with SOME/IP. How-
ever, they may have limitations, as for the maximum usable length of data, or being
limited to fixed length messages.

The size of the E2E Header is dependent on the selected E2E profile.

[PRS_E2E_USE_00236] [The E2E CRC shall be calculated over the following parts
of the serialized SOME/IP message.

1. Request ID (Client ID / Session ID) [32 bit]
2. Protocol Version [8 bit]
3. Interface Version [8 bit]
4. Message Type [8 bit]
5. Return Code [8 bit]

6. Payload [variable size]
|(RS_E2E_08540)

[PRS_E2E_USE_00237] [The E2E header shall be placed after the Return Code de-
pending on the chosen Offset value. The default Offset is 64 bit, which puts the E2E
header exactly after the Return Code. |(RS_EZ2E_08540)

9.2 Client-Server Communication

[PRS_E2E_USE_00606] [When a client sends a request to the server, the server shall
use the received counter as sequence counter for the response, no matter if regular
response or error response. | (RS_E2E_08541)

AUTOSAR

[constr_6300] MaxDeltaCounter for Client-Server Communication [For Client-
Server Communication the MaxDeltaCounter on server-side shall be set to the maxi-
mum of the value range of the sequence counter| ()

9.3 Periodic use of E2E check

[PRS_E2E_USE_00325] [The E2E check function shall be invoked at least once within
FTTI (FTTI is for the safety goals from which the requirements for this E2E checks are
derived). | (RS_E2E_08528)

9.4 Error handling

The E2E Supervision itself does not handle detected communication errors. It only
detects such errors for single received data elements and returns this information to
the callers (e.g. SW-Cs), which have to react appropriately. A general standardization
of the error handing of an application is usually not possible.

[PRS_E2E_USE_00235] [The user (caller) of E2E Supervision, in particular the re-
ceiver, shall provide the error handling mechanisms for the faults detected by the E2E
Supervision.| (RS_E2E_08528)

9.5 Maximal lengths of Data, communication buses

The length of the message and the achieved hamming distance for a given CRC are
related. To ensure the required diagnostic coverage the maximum length of data ele-
ments protected by a CRC needs to be selected appropriately. The E2E profiles are
intended to protect inter-ECU communication with lengths as listed in Table 9.1

All length values stated in this section are based on assumptions on suitable hamming
distances for specific scenarios, without explicitly listing those assumptions. As such,
actual suitable values may differ based on the use case scenarios.

E2E Profile Suggested maximum applicable length including control
fields for inter-ECU communication

E2E Profile 1 and 11 32B

E2E Profile 2 and 22 32B

E2E Profile 4 4 kB

E2E Profile 5 4 kB

E2E Profile 6 4 kB

E2E Profile 7 4 MB

Table 9.1: E2E maximum data length

AUTOSAR

In E2E Profiles 1 and 2, the Hamming Distance is 2, up to the given lengths. Due to 8
bit CRC, the burst error detection is up to 8 bits.

[PRS_E2E_UC_00051] [In case of inter-ECU communication over FlexRay, the length
of the complete Data (including application data, CRC and counter) protected by E2E
Profile 1 or E2E Profile 2 should not exceed 32 bytes. | (RS_E2E_08528)

This requirement only contains a reasonable maximum length evaluated during the de-
sign of the E2E profiles. The responsibility to ensure the adequacy of the implemented
E2E communication protection using E2E Supervision for a particular system remains
by the user.

[PRS_E2E_UC_00466] [In case of inter-ECU communication over FlexRay, CAN,
CAN FD, Ethernet suggested max. data length can be adopted (extended or reduced)
if it can by justified by an analysis of a particular use case or network architecture. |
(RS_E2E 08528)

[PRS_E2E_UC_00061] [In case of CAN or LIN the length of the complete data ele-
ment (including application data, CRC and counter) protected by E2E Profile 1 should
not exceed 8 bytes. |(RS_E2E_08528)

[PRS_E2E_UC_00351] [The length of the complete Data (including application data
and E2E header) protected by E2E Profile 4, 5 or 6 shall not exceed 4kB. |(RS_EZ2E._-
08528)

[PRS_E2E_UC_00316] [The length of the complete Data (including application data
and E2E header) protected by E2E Profile 7 shall not exceed 4MB. | (RS_E2E _08528)

[PRS_E2E_UC_00236] [When using E2E Supervision, the designer of the functional
or technical safety concept of a particular system using E2E Supervision shall evalu-
ate the maximum permitted length of the protected Data in that system, to ensure an
appropriate error detection capability. | (RS_E2E_08539)

Thus, the specific maximum lengths for a particular system may be shorter (or maybe
in some rare cases even longer) than the recommended maximum applicable lengths
defined for the E2E Profiles.

If the protected data length exceeds the network bus frame limit (or payload limit), the
data can be segmented on the sender side after the E2E communication protection,
and be assembled on the receiver side before the E2E evaluation. The possible faults
happening during segmentation/desegmentation can be considered as "corruption of
information".

[PRS_E2E_UC_00170] [When designing the functional or technical safety concept of
a particular system any user of E2E shall ensure that the transmission of one unde-
tected erroneous data element in a sequence of data elements between sender and
receiver, protected with profile 1, 11, 2, 22, will not directly lead to the violation of a
safety goal of this system.|()

In other words, SW-C shall be able to tolerate the reception of one erroneous data
element, which error was not detected by the E2E Supervision. What is not required is

AUTOSAR

that an SW-C tolerates two consecutive undetected erroneous data elements, because
it is enough unlikely that two consecutive Data are wrong AND that for both Data the
error remains undetected by the E2E Supervision.

When using LIN as the underlying communication network the residual error rate on
protocol level is several orders of magnitude higher (compared to FlexRay and CAN)
for the same bit error rate on the bus. The LIN checksum compared to the protocol
CRC of FlexRay (CRC-24) and CAN (CRC-15) has different properties (e.g. hamming
distance) resulting in a higher number of undetected errors coming from the bus (e.g.
due to EMV). In order to achieve a maximum allowed residual error rate on application
level, different error detection capabilities of the application CRC may be necessary,
depending on the strength of the protection on the bus protocol level.

[PRS_E2E_UC_00237] [Any user of E2E Supervision shall ensure, that within one
implementation of a communication network every safety-related Data, protected by
E2E Supervision, has a unique Data ID (E2E Profiles 1, 4, 5, 6, 7, 11) or a unique
DatalDList[] (E2E Profiles 2, 22).|(RS_E2E_08528)

E2E Profile 1 with E2E_P01DatalDMode = E2E_P01_DATAID BOTH and E2E Pro-
file 11 with E2E_P11DatalDMode = E2E_P11_DATAID_BOTH uses an implicit 2-byte
Data ID, over which CRCS8 is calculated. As a CRC over two different 2-byte numbers
may result with the same CRC, some precautions must be taken by the user. See
SWS_E2ELibrary items UC_E2E 00072 and UC_E2E 00073 [3].

A Constraint History

A.1 Constraint History R19-11

A.1.1 Added Constraints

Number Heading

[constr_3176] Value range of windowSizevValid

[constr_3177] Dependency between maxErrorStatevValid, maxErrorStateInit and
maxErrorStateInvalid

[constr_3178] Dependency between minOkStateValid, minOkStateInit and minOk-—
StateInvalid

[constr_3179] Dependency between minOkStatelInit, maxErrorStateInit and window—
SizeValid

[constr_3180] Dependency between minOkStatevValid, maxErrorStatevValid and win-
dowSizeValid

[constr_3181] Dependency between minOkStateInvalid, maxErrorStateInvalid and
windowSizeValid

[constr_6300] MaxDeltaCounter for Client-Server Communication

[constr_6301] Dependency between windowSizeInvalid and windowSizevalid

[constr_6302] Dependency between windowSizeInit and windowSizevalid

AUTOSAR

\ Number \ Heading

Table A.1: changed Constraints in R19-11

A.1.2 Changed Constraints

N/A

A.1.3 Deleted Constraints

N/A

A.1.4 Added Specification Iltems

N/A

A.1.5 Changed Specification ltems

N/A

A.1.6 Deleted Specification Items

N/A

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Background information concerning functional safety
	4.3.1 Functional safety and communication
	4.3.2 Sources of faults in E2E communication
	4.3.2.1 Software faults
	4.3.2.2 Random hardware faults
	4.3.2.3 External influences, environmental stress

	4.3.3 Communication faults
	4.3.3.1 Repetition of information
	4.3.3.2 Loss of information
	4.3.3.3 Delay of information
	4.3.3.4 Insertion of information
	4.3.3.5 Masquerading
	4.3.3.6 Incorrect addressing
	4.3.3.7 Incorrect sequence of information
	4.3.3.8 Corruption of information
	4.3.3.9 Asymmetric information sent from a sender to multiple receivers
	4.3.3.10 Information from a sender received by only a subset of the receivers
	4.3.3.11 Blocking access to a communication channel

	5 Requirements Tracing
	6 Functional specification
	6.1 Overview of communication protection
	6.2 Overview of E2E Profiles
	6.2.1 Error detection

	6.3 Specification of E2E Profile 1 (Only for CP)
	6.3.1 Data Layout
	6.3.2 Counter
	6.3.3 Data ID
	6.3.4 CRC calculation
	6.3.5 Timeout detection
	6.3.6 E2E Profile 1 variants
	6.3.7 E2E_P01Protect
	6.3.8 Calculate CRC
	6.3.9 E2E_P01Forward
	6.3.10 E2E_P01Check
	6.3.10.1 Profile 1 Check Status Enumeration

	6.3.11 E2E Profile 1 Protocol Examples
	6.3.11.1 DataIDMode set to E2E_P01_DATAID_ALT
	6.3.11.2 DataIDMode set to E2E_P01_DATAID_LOW
	6.3.11.3 DataIDMode set to E2E_P01_DATAID_NIBBLE

	6.4 Specification of E2E Profile 2 (only for CP)
	6.4.1 E2E_P02Protect
	6.4.2 E2E_P02Forward
	6.4.3 E2E_P02Check
	6.4.3.1 Profile 2 Check Status Enumeration

	6.4.4 E2E Profile 2 Protocol Examples

	6.5 Specification of E2E Profile 4
	6.5.1 Data Layout
	6.5.1.1 User data layout
	6.5.1.2 Header layout

	6.5.2 Counter
	6.5.3 Data ID
	6.5.4 Length
	6.5.5 CRC
	6.5.6 Timeout detection
	6.5.7 E2E Profile 4 variants
	6.5.8 E2E_P04Protect
	6.5.9 E2E_P04Forward
	6.5.10 E2E_P04Check
	6.5.10.1 Profile 4 Check Status Enumeration

	6.5.11 E2E Profile 4 Protocol Examples

	6.6 Specification of E2E Profile 5
	6.6.1 Data Layout
	6.6.1.1 User data layout
	6.6.1.2 Header layout

	6.6.2 Counter
	6.6.3 Data ID
	6.6.4 Length
	6.6.5 CRC
	6.6.6 Timeout detection
	6.6.7 E2E_P05Protect
	6.6.8 E2E_P05Forward
	6.6.9 E2E_P05Check
	6.6.9.1 Profile 5 Check Status Enumeration

	6.6.10 E2E Profile 5 Protocol Examples

	6.7 Specification of E2E Profile 6
	6.7.1 Data Layout
	6.7.1.1 User data layout
	6.7.1.2 Header layout

	6.7.2 Counter
	6.7.3 Data ID
	6.7.4 Length
	6.7.5 CRC
	6.7.6 Timeout detection
	6.7.7 E2E_P06Protect
	6.7.8 E2E_P06Forward
	6.7.9 E2E_P06Check
	6.7.9.1 Profile 6 Check Status Enumeration

	6.7.10 E2E Profile 6 Protocol Examples

	6.8 Specification of E2E Profile 7
	6.8.1 Data Layout
	6.8.1.1 User data layout
	6.8.1.2 Header layout

	6.8.2 Counter
	6.8.3 Data ID
	6.8.4 Length
	6.8.5 CRC
	6.8.6 Timeout detection
	6.8.7 E2E Profile 7 variants
	6.8.8 E2E_P07Protect
	6.8.9 E2E_P07Forward
	6.8.10 E2E_P07Check
	6.8.10.1 Profile 7 Check Status Enumeration

	6.8.11 E2E Profile 7 Protocol Examples

	6.9 Specification of E2E Profile 11
	6.9.1 Data Layout
	6.9.1.1 User data layout
	6.9.1.2 Header layout

	6.9.2 Counter
	6.9.3 Data ID
	6.9.4 Length
	6.9.5 CRC
	6.9.6 Timeout detection
	6.9.7 E2E_P11Protect
	6.9.8 E2E_P11Forward
	6.9.9 E2E_P11Check
	6.9.9.1 Profile 11 Check Status Enumeration

	6.9.10 E2E Profile 11 Protocol Examples
	6.9.10.1 DataIDMode set to E2E_P11DATAID_NIBBLE
	6.9.10.2 DataIDMode set to E2E_P11DATAID_NIBBLE, Offset set to 64

	6.10 Specification of E2E Profile 22
	6.10.1 Data Layout
	6.10.1.1 User data layout
	6.10.1.2 Header layout

	6.10.2 Counter
	6.10.3 Data ID
	6.10.4 Length
	6.10.5 CRC
	6.10.6 Timeout detection
	6.10.7 E2E_P22Protect
	6.10.8 E2E_P22Forward
	6.10.9 E2E_P22Check
	6.10.9.1 Profile 22 Check Status Enumeration

	6.10.10 E2E Profile 22 Protocol Examples
	6.10.10.1 Offset set to 64

	6.11 Specification of E2E state machine
	6.11.1 Overview of the state machine
	6.11.2 State machine specification
	6.11.2.1 E2E State Machine Status Enumeration
	6.11.2.2 Profile specific Check Status to State Machine Check Status mappings

	7 E2E API specification
	7.1 API of middleware to applications
	7.2 API of E2E

	8 Configuration Parameters
	8.1 General Constraints
	8.1.1 E2E-Statemachine Settings

	9 Protocol usage and guidelines
	9.1 E2E and SOME/IP
	9.2 Client-Server Communication
	9.3 Periodic use of E2E check
	9.4 Error handling
	9.5 Maximal lengths of Data, communication buses

	A Constraint History
	A.1 Constraint History R19-11
	A.1.1 Added Constraints
	A.1.2 Changed Constraints
	A.1.3 Deleted Constraints
	A.1.4 Added Specification Items
	A.1.5 Changed Specification Items
	A.1.6 Deleted Specification Items

