AUTOSAR

Document Title

Specification of Basic Software
Multicore Library

Document Owner

AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 946

Document Status

published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R19-11

Document Change History

Date Release | Changed by Description
AUTOSAR

Management

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

1 Introduction and functional overview

2 Acronyms and Abbreviations

3 Related documentation

3.1
3.2

Input documents & related standards andnorms
Related specification,

4 Constraints and assumptions

41
4.2

Limitations
Applicability to cardomains L

5 Dependencies to other modules

6 Requirements Tracing

7 Functional specification

7.1
7.2
7.3
7.4
7.5
7.6

Error Classification,
Error Detection e
Error Notification
Initialization and Shutdown
Using Library APl
Library Implementation L.

8 API specification

8.1
8.2
8.3
8.4

Importedtypes
Type definitions
Macro definitions
Function definitions Lo
8.4.1 FlagRoutines,
8.4.1.1 Bmc_FlagTestAndSet
8.4.1.2 Bmc_FlagClear
8.4.2 Load and Store Routines
8.4.2.1 Bmc Load.
8.4.2.2 Bmc Store
8.4.2.3 Bmc_Exchange L.
8.4.2.4 Bmc_CompareExchange
8.4.3 FetchRoutines
8.4.3.1 Bmc FetchAdd
8.4.3.2 Bmc FetchSub
8.4.3.3 Bmc FetchOr
8.4.3.4 Bmc FetchXor
8.4.3.5 Bmc FetchAnd
844 Fence Routines

8.4.4.1 Bmc ThreadFence

N O O oo OO o1 O

~

AUTO SAR

8.4.5 Version APl
8.4.5.1 Bmc _GetVersioninfo

8.5 Callback notifications
8.6 Scheduled functions
8.7 Expectedinterfaces.

8.7.1 Mandatory interfaces
8.7.2 Optionalinterfaces
8.7.3 Configurable interfaces

9 Sequence diagrams

10 Configuration specification

10.1 Published Information,
10.2 Configuration Option

A Not applicable requirements

24

24
24

24

AUTOSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration of the
AUTOSAR library for atomic routines.

This library (Bmc) contains the following routines:
e flag test and set
o flag clear
e store
e load
e exchange
e compare and exchange
e fetch and add
o fetch and subtract
e fetch and or
e fetch and xor
¢ fetch and and
e thread fence

All routines are re-entrant and can be used by multiple runnables at the same time.

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Bmc module
that are not included in the [1, AUTOSAR glossary].

Abbreviation/Acronym: | Description:

Bmc Basic Software Multicore Library

DET Default Error Tracer

s16 Mnemonic for sint 16, specified in AUTOSAR_SWS_PlatformTypes
s32 Mnemonic for sint 32, specified in AUTOSAR_SWS_PlatformTypes
s64 Mnemonic forsint 64, specified in AUTOSAR_SWS_PlatformTypes
s8 Mnemonic for sint 8, specified in AUTOSAR_SWS_PlatformTypes
ulé Mnemonic for uint 16, specified in AUTOSAR_SWS_PlatformTypes
u32 Mnemonic for uint 32, specified in AUTOSAR_SWS_PlatformTypes
u64 Mnemonic for uint 64, specified in AUTOSAR_SWS_PlatformTypes
u8 Mnemonic for uint 8, specified in AUTOSAR_SWS_PlatformTypes
Terms: Description:

Term Description of Term...

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Glossary
AUTOSAR_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS BSWGeneral

[4] Requirements on Libraries
AUTOSAR_SRS_Libraries

[5] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

[6] ISO/IEC 9899:2011
http://www.iso.org

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2], which is
also valid for BSWMulticoreLibrary.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for BSWMulticoreLibrary.

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

http://www.iso.org

AUTOSAR

5 Dependencies to other modules

[SWS_BMC_00001] DRAFT | The Bmc module shall provide the following files: C files
Bmc_<name>. c used to implement the library. All C files shall be pre-fixed with ’'Bmc_".
The header file Bmc . h provides all public function prototypes and types defined by the

Bmc library specification.| (SRS_LIBS_00005)

Implementation and grouping of routines with respect to C files is recommended as per
options below and there is no restriction to follow these proposals.

Option 1: <Name> can be a function name providing one C file per function, e.g.:
Bmc_FlagClear.c etc.

Option 2: <Name> can be a common name of a group of functions:
2.1 Group by object family:

€.g.: Bmc_u32.c,Bmc_ulé6.c

2.2 Group by routine family:

e.g.: Bmc_Flag.c, Bmc_Fetch.c

2.3 Group by other methods (individual grouping allowed)

Option 3: <Name> can be removed so that a single C file shall contain all Bmc functions,
e.g.: Bmc. c. Using one of the above options gives certain flexibility of choosing suitable
granularity with reduced number of C files. Linking only on-demand is also possible in
case of some options.

6 Requirements Tracing

The following tables reference the requirements specified in [3], [4] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[SRS_BSW_00303] | No description [SWS_BMC_00016]
[SRS_BSW_00304] | All AUTOSAR Basic Software [SWS_BMC_00015]

Modules shall use the following
data types instead of native C
data types
[SRS_BSW_00374] | All Basic Software Modules shall | [SWS_BMC_00044]
provide a readable module
vendor identification

[SRS_BSW_00378] | AUTOSAR shall provide a [SWS_BMC_00015]
boolean type
[SRS_BSW_00379] | All software modules shall [SWS_BMC_00044]

provide a module identifier in the
header file and in the module
XML description file.
[SRS_BSW_00402] | Each module shall provide [SWS_BMC_00044]
version information

AUTOSAR

Requirement

Description

Satisfied by

[SRS_BSW_00407]

Each BSW module shall provide
a function to read out the version
information of a dedicated
module implementation

[SWS_BMC_00043]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming
rule for enabling/disabling the
existence of the API

[SWS_BMC_00043]

[SRS_BSW_00448]

Module SWS shall not contain
requirements from Other
Modules

[SWS_BMC_00999]

[SRS_LIBS_00001]

The functional behavior of each
library functions shall not be
configurable

[SWS_BMC_00045]

[SRS_LIBS_00002]

A library shall be operational
before all BSW modules and
application SW-Cs

[SWS_BMC_00005]

[SRS_LIBS_00003]

A library shall be operational
until the shutdown

[SWS_BMC_00006]

[SRS_LIBS_00004]

Using libraries shall not pass
through a port interface

[SWS_BMC_00007]

[SRS_LIBS_00005]

Each library shall provide one
header file with its public
interface

[SWS_BMC_00001]

[SRS_LIBS_00007]

Using a library should be
documented

[SWS_BMC_00008]
[SWS_BMC_00012]

[SRS_LIBS_00013]

The error cases, resulting in the
check at runtime of the value of
input parameters, shall be listed
in SWS

[SWS_BMC_00003]
[SWS_BMC_00004]

[SRS_LIBS_00015]

It shall be possible to configure
the microcontroller so that the
library code is shared between
all callers

[SWS_BMC_00009]

[SRS_LIBS_00017]

Usage of macros should be
avoided

[SWS_BMC_00010]

[SRS_LIBS_00018]

A library function may only call
library functions

[SWS_BMC_00011]

[SRS_LIBS_00348]

No description

[SWS_BMC_00014]

[SRS_LIBS_00437]

No description

[SWS_BMC_00013]

7 Functional specification

7.1

[SWS_BMC_00002] DRAFT [No error classification definition — like DET error IDs —

Error Classification

shall be supported by library. | ()

AUTOSAR

7.2 Error Detection

[SWS_BMC_00003] DRAFT [Error detection: Functions should check at runtime (both
in production and in development code) the value of input parameters, especially cases
where erroneous value can bring to fatal error or unpredictable result, if they have the
values allowed by the function specification. All the error cases shall be listed in SWS
and the function should return a specified value (in SWS) that is not configurable. This
value is dependent of the function and the error case so it is determined case by case.

If values passed to the library routines are not in valid range, out of boundary condition
and out of the function specification, then such errors are not detected in the library
routines. | (SRS_LIBS_00013)

7.3 Error Notification

[SWS_BMC_00004] DRAFT [The functions shall not call the DET for error notifica-
tion.| (SRS _LIBS _00013)

7.4 Initialization and Shutdown

[SWS_BMC_00005] DRAFT | The Bmc library shall not require an initialization phase.
A Library function may be called at the very first step of ECU initialization, e.g. even by
the OS or EcuM, thus the library shall be ready. | (SRS_LIBS_00002)

[SWS_BMC_00006] DRAFT [The Bmc library shall not require a shutdown operation
phase.|(SRS_LIBS 00003)

7.5 Using Library API

[SWS_BMC_00007] DRAFT [The Bmc API can be directly called from BSW modules
or SWCs. No port definition is required. It is a pure function call. | (SRS_LIBS _00004)

[SWS_BMC_00008] DRAFT [Using a library should be documented. If a BSW mod-
ule or a SWC uses a library, the developer should add an ImplementationDependency-
OnArtifact in the BSW/SWC template. minVersion and maxVersion parameters corre-
spond to the supplier version. In case of an AUTOSAR library, these parameters may
be left empty because a SWC or BSW module may rely on a library behavior, not on a
supplier implementation. However, the SWC or BSW modules shall be compatible with
the AUTOSAR platform where they are integrated. | (SRS_LIBS_00007)

AUTOSAR

7.6 Library Implementation

[SWS_BMC_00009] DRAFT [The Bmc library shall be implemented in a way that the
code can be shared among callers in different memory partitions. | (SRS _LIBS_00015)

[SWS_BMC_00010] DRAFT [Usage of macros should be avoided. The functions
should be declared as functions or inline functions. | (SRS _LIBS 00017)

[SWS_BMC_00011] DRAFT [A library function shall not call any BSW modules func-
tions, e.g. the DET. A library function can call other library functions because a library
function shall be re-entrant. But other BSW modules functions may not be re-entrant. |
(SRS_LIBS 00018)

[SWS_BMC_00012] DRAFT [The library, written in the C programming language,
should conform to the MISRA C Standard. Please refer to SWS_BSW 00115 for more
details. | (SRS _LIBS 00007)

[SWS_BMC_00013] DRAFT [Each AUTOSAR library Module implementation
<library>*.c and <library>«.h shall map their code to memory sections using
the AUTOSAR memory mapping mechanism. | (SRS _LIBS 00437)

[SWS_BMC_00014] DRAFT [Each AUTOSAR library Module implementation
<library>=*.c that uses AUTOSAR integer data types and/or the standard return
type, shall include the header file std_Types.h.|(SRS_LIBS_00348)

[SWS_BMC_00015] DRAFT [All AUTOSAR library Modules should use the AUTOSAR
data types (integers, boolean) instead of native C data types unless this library is clearly
identified to be compliant only with one platform.|(SRS_BSW_00378, SRS_BSW _-
00304)

[SWS_BMC_00016] DRAFT [All AUTOSAR library Modules should avoid direct use
of compiler and platform specific keywords unless this library is clearly identified to be
compliant only with one platform.|(SRS_BSW_00303)

8 API specification

8.1 Imported types

In this chapter, all types included from the following files are listed.

Header file | Imported Type
Std_Types.h | boolean, sint8, uint8, sint16, uint16, sint32, uint32, sint64, uint64

It is observed that since the sizes of the integer types provided by the C language are
implementation-defined, the range of values that may be represented within each of
the integer types will vary between implementations.

AUTOSAR

Thus, in order to improve the portability of the software, these types are defined in
Platform_Types.h [5]. The following mnemonics are used in the library routine names.

Size Platform Type | Mnemonic
signed 8-Bit sint8 s8

signed 16-Bit sint16 s16

signed 32-Bit sint32 832

signed 64-Bit sint64 s64
unsigned 8-Bit uint8 u8
unsigned 16-Bit uint16 ulé
unsigned 32-Bit uint32 u3d2
unsigned 64-Bit uint64 u64

Table 8.1: Base types

As described in [5], the ranges for each of the base types are shown in the table below:

Base Type Range

boolean [TRUE, FALSE]

uint8 [0, 255]

sint8 [-128, 127]

uint16 [0, 65535]

sint16 [-32768, 32767]

uint32 [0, 429496729]

sint32 [-2147483648, 2147483647]

uint64 [0, 18446744073709551615]

sint64 [-9223372036854775808, 9223372036854775807]

Table 8.2: Ranges for base types

As a convention in the rest of the document:

e mnemonics will be used in the name of the routines and macros (using <TypeMn>
means Type Mnemonic and <TYPEMN> means Type Mnemonic in uppercase
letters)

¢ the real type will be used in the description of the prototypes of the routines (using
<Type>).

8.2 Type definitions

None.

8.3 Macro definitions

[SWS_BMC_00017] DRAFT [The Bmc module shall provide the C macros
ATOMIC_<TYPEMN>_LOCK_FREE Which shall expand to constant expressions suitable

AUTOSAR

for use in #1i £ preprocessing directives and which indicate the lock-free property of the
corresponding atomic types. The implemented macros are listed in Table 8.3.]()

Macro
ATOMIC_BOOLEAN_LOCK_FREE
ATOMIC_U8 LOCK_FREE
ATOMIC _U16_LOCK_FREE
ATOMIC_U32 LOCK_FREE

ATOMIC _U64 LOCK_FREE
ATOMIC_S8 LOCK _FREE
ATOMIC_S16_LOCK FREE
ATOMIC_S32 LOCK_FREE
ATOMIC_S64 LOCK_FREE

Table 8.3: Atomic lock free macros

Example: Date type uint 32 is lock free, uint 64 not. Then
#define ATOMIC_U32_LOCK_FREE 1
#define ATOMIC_U64_LOCK_FREE 0

Note: This definition is similar to the one in [6].

8.4 Function definitions

Note: All atomic operations will provide sequentially consistent order-
ing (see https://en.cppreference.com/w/c/atomic/memory_order#Sequentially-
consistent_ordering).

Note: For all APIs which provide different APl instances for different argument types
(e.g. u8/16/32/64 and s8/16/32/64 variants), the implementation (for reasons of align-
ment) may access memory locations up to N-1 bytes before or after the pointed to
memory location (where N is some platform specific constant (basically depending on
the platform’s alignment requirements when performing atomic operations)).

8.4.1 Flag Routines
8.4.1.1 Bmc_FlagTestAndSet

[SWS_Bmc_91003]{DRAFT} [

AUTOSAR

Service Name Bmc_FlagTestAndSet (draft)

Syntax boolean Bmc_FlagTestAndSet (

volatile boolean* Object

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) Object | Object

Parameters (out) None

Return value boolean ‘ The value pointed to by Object immediately before the effects
Description Atomically sets the value pointed to by Object to true.

Tags:atp.Status=draft

Available via Bmc.h

10

[SWS_BMC_00019] DRAFT [The function Bmc_FlagTestAndSet atomically sets
the value pointed to by Object to TRUE. It returns this value before the operation, i.e.,
TRUE, if it was already set and FALSE otherwise. | ()

8.4.1.2 Bmc_FlagClear

[SWS_Bmc_91004]{DRAFT} [

Service Name Bmc_FlagClear (draft)

Syntax void Bmc_FlagClear (

volatile boolean* Object

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) Object Object

Parameters (out) None

Return value None

Description Atomically sets the value pointed to by Object to false.

Tags:atp.Status=draft

Available via Bmc.h

10

[SWS_BMC_00021] DRAFT |[The function Bmc_FlagClear atomically sets the value
pointed to by Object to FALSE. |()

AUTOSAR

8.4.2 Load and Store Routines

8.4.21 Bmc_Load

[SWS_Bmc_91005]{DRAFT} [

Service Name

Bmc_Load_<TypeMn> (draft)

Syntax <Type> Bmc_Load_<TypeMn> (
const volatile <Type>*x Object

)
Service ID [hex] 0x10 to 0x17
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) Object ‘ -
Parameters (out) None
Return value <Type> | The value pointed to by Object

Description

Atomically loads the value pointed to by Object and returns it.

Tags:atp.Status=draft

Available via

Bmc.h

10

[SWS_BMC_00023] DRAFT [The Bmc_Load_<TypeMn> functions atomically load
the value pointed to by Object and return it. The implemented functions are listed

in Table 8.4.]()

Service ID[hex] Function prototype
0x10 uint8 Bmc_Load u8(const volatile uint8*);
0x11 uint16 Bmc_Load_u16(const volatile uint16*);
0x12 uint32 Bmc_Load u32(const volatile uint32*);
0x13 uint64 Bmc_Load_u64(const volatile uint64*);
0x14 sint8 Bmc_Load_s8(const volatile sint8*);
0x15 sint16 Bmc_Load_s16(const volatile sint16*);
0x16 sint32 Bmc_Load_s32(const volatile sint32*);
0x17 sint64 Bmc_Load_s64(const volatile sint64*);

Table 8.4: List of implemented functions for Bmc_Load_<TypeMn>

8.4.2.2 Bmc_Store

[SWS_Bmc_91006]{DRAFT} [

AUTO SAR

Service Name Bmc_Store_<TypeMn> (draft)
Syntax void Bmc_Store_<TypeMn> (
volatile <Type>* Object,
<Type> Desired
)
Service ID [hex] 0x20 to 0x27
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Desired Value to be stored
Parameters (inout) Object Object
Parameters (out) None
Return value None
Description Atomically replaces the value pointed to by Object with the value of Desired.
Tags:atp.Status=draft
Available via Bmc.h

10

[SWS_BMC_00025] DRAFT [The Bmc_Store_<TypeMn> functions atomically re-
place the value pointed to by Object with the value of Desired. The implemented
functions are listed in Table 8.5. ()

Service ID[hex] Function prototype
0x20 uint8 Bmc_Store_u8(const volatile uint8*, uint8);
0x21 uint16 Bmc_Store_u16(const volatile uint16*, uint16);
0x22 uint32 Bmc_Store_u32(const volatile uint32*, uint32);
0x23 uint64 Bmc_Store_u64(const volatile uint64*, uint64);
0x24 sint8 Bmc_Store_s8(const volatile sint8*, sint8);
0x25 sint16 Bmc_Store_s16(const volatile sint16*, sint16);
0x26 sint32 Bmc_Store s32(const volatile sint32*, sint32);
0x27 sint64 Bmc_Store_s64(const volatile sint64*, sint64);

Table 8.5: List of implemented functions for Bmc_Store_<TypeMn>

8.4.2.3 Bmc_Exchange

[SWS_Bmc_91007]{DRAFT} [

Service Name Bmc_Exchange_<TypeMn> (draft)

Syntax <Type> Bmc_Exchange_<TypeMn> (
const volatile <Type>x Object,
<Type> Desired

)
Service ID [hex] 0x30 to 0x37
Sync/Async Synchronous

AUTOSAR

A
Reentrancy Reentrant
Parameters (in) Desired Value to be stored
Parameters (inout) Object Object
Parameters (out) None
Return value <Type> The value pointed to by Object immediately before the effects
Description Atomically replaces the value pointed to by Object with the value of Desired and returns the
value pointed to by Object immediately before the effects.
Tags:atp.Status=draft
Available via Bmc.h
10

[SWS_BMC_00027] DRAFT [The Bmc_Exchange_<TypeMn> functions atomically
replace the value pointed to by Object with the value of Desired and return the value
pointed to by Object immediately before the effects. The implemented functions are
listed in Table 8.6. ()

Service ID[hex] Function prototype
0x30 uint8 Bmc_Exchange_u8(volatile uint8*, uint8);
0x31 uint16 Bmc_Exchange_u16(volatile uint16*, uint16);
0x32 uint32 Bmc_Exchange_u32(volatile uint32*, uint32);
0x33 uint64 Bmc_Exchange_u64(volatile uint64*, uint64);
0x34 sint8 Bmc_Exchange_s8(volatile sint8*, sint8);
0x35 sint16 Bmc_Exchange_s16(volatile sint16*, sint16);
0x36 sint32 Bmc_Exchange_s32(volatile sint32*, sint32);
0x37 sint64 Bmc_Exchange_s64(volatile sint64*, sint64);

Table 8.6: List of implemented functions for Bmc_Exchange_<TypeMn>

8.4.2.4 Bmc_CompareExchange

[SWS_Bmc_91008]{DRAFT} [

Service Name Bmc_CompareExchange_<TypeMn> (draft)

Syntax boolean Bmc_CompareExchange_<TypeMn> (

volatile <Type>* Object,
<Type>* Expected,
<Type> Desired

)

Service ID [hex] 0x40 to 0x47

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Desired Value to be stored
Parameters (inout) Object Object

V

AUTOSAR

A
Expected ‘ Value to be stored
Parameters (out) None
Return value boolean ‘ The result of the comparison

Description

Atomically compares the value pointed to by Object for equality with that in Expected, and if
true, replaces the value pointed to by Object with Desired, and if false, updates the value in
Expected with the value pointed to by Object.

Tags:atp.Status=draft

Available via

Bmc.h

10
[SWS_BMC_00029]

DRAFT [The Bmc_CompareExchange_<TypeMn> functions

atomically compare the value pointed to by Object for equality with that in Expected,
and if true, replace the value pointed to by Object with Desired, and if false, update the
value in Expected with the value pointed to by Object. The implemented functions are

listed in Table 8.7.]()

Service ID[hex] Function prototype
0x40 boolean Bmc_CompareExchange_u8(volatile uint8*, uint8*, uint8);
0x41 boolean Bmc_CompareExchange_u16(volatile uint16*, uint16*, uint16);
0x42 boolean Bmc_CompareExchange_u32(volatile uint32*, uint32*, uint32);
0x43 boolean Bmc_CompareExchange_u64(volatile uint64*, uinté4*, uint64);
0x44 boolean Bmc_CompareExchange_s8(volatile sint8*, sint8*, sint8);
0x45 boolean Bmc_CompareExchange_s16(volatile sint16*, sint16*, sint16);
0x46 boolean Bmc_CompareExchange_s32(volatile sint32*, sint32*, sint32);
0x47 boolean Bmc_CompareExchange_s64(volatile sint64*,sint64*,sint64);

Table 8.7: List of implemented functions for Bmc_CompareExchange_<TypeMn>

8.4.3 Fetch Routines

8.4.3.1 Bmc_FetchAdd

[SWS_Bmc_91009]{DRAFT} [

Service Name Bmc_FetchAdd_<TypeMn> (draft)
Syntax <Type> Bmc_FetchAdd_<TypeMn> (
volatile <Type>* Object,
<Type> Operand
)
Service ID [hex] 0x50 to 0x57
Sync/Async Synchronous
Reentrancy Reentrant

AUTOSAR

A
Parameters (in) Operand Value for the operation
Parameters (inout) Object Object
Parameters (out) None
Return value <Type> The value pointed to by Object immediately before the effects
Description Atomically replaces the value pointed to by Object with the result of the addition applied to the
value pointed to by Object and the given Operand.
Tags:atp.Status=draft
Available via Bmc.h
10

[SWS_BMC_00031] DRAFT [The Bmc_FetchAdd_<TypeMn> functions atomically
replace the value pointed to by Object with the result of the addition applied to the value
pointed to by Object and the given Operand and return the value pointed to by Object
immediately before the effects. The implemented functions are listed in Table 8.8.]()

Service ID[hex] Function prototype
0x50 uint8 Bmc_FetchAdd_u8(volatile uint8*, uint8);
0x51 uint16 Bmc_FetchAdd_u16(volatile uint16*, uint16);
0x52 uint32 Bmc_FetchAdd_u32(volatile uint32*, uint32);
0x53 uint64 Bmc_FetchAdd_u64(volatile uint64*, uint64);
0x54 sint8 Bmc_FetchAdd_u8(volatile sint8*, sint8);
0x55 sint16 Bmc_FetchAdd _u16(volatile sint16*, sint16);
0x56 sint32 Bmc_FetchAdd_u32(volatile sint32*, sint32);
0x57 sint64 Bmc_FetchAdd _u64(volatile sint64*, sint64);

Table 8.8: List of implemented functions for Bmc_FetchAdd_<TypeMn>

8.4.3.2 Bmc_FetchSub

[SWS_Bmc_91010]{DRAFT} [

Service Name Bmc_FetchSub_<TypeMn> (draft)

Syntax <Type> Bmc_FetchSub_<TypeMn> (

volatile <Type>* Object,
<Type> Operand
)

Service ID [hex] 0x60 to 0x67

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Operand Value for the operation

Parameters (inout) Object Object

Parameters (out) None

Return value <Type> ‘ The value pointed to by Object immediately before the effects

\Y%

AUTOSAR

A

Description Atomically replaces the value pointed to by Object with the result of the subtraction applied to
the value pointed to by Object and the given Operand.

Tags:atp.Status=draft

Available via Bmc.h

10

[SWS_BMC_00033] DRAFT [The Bmc_FetchSub_<TypeMn> functions atomically
replace the value pointed to by Object with the result of the subtraction applied to
the value pointed to by Object and the given Operand and return the value pointed
to by Object immediately before the effects. The implemented functions are listed in
Table 8.9.]()

Service ID[hex] Function prototype
0x60 uint8 Bmc_FetchSub_u8(volatile uint8*, uint8);
0x61 uint16 Bmc_FetchSub_u16(volatile uint16*, uint16);
0x62 uint32 Bmc_FetchSub_u32(volatile uint32*, uint32);
0x63 uint64 Bmc_FetchSub_u64(volatile uint64*, uint64);
0x64 sint8 Bmc_FetchSub_u8(volatile sint8*, sint8);
0x65 sint16 Bmc_FetchSub_u16(volatile sint16*, sint16);
0x66 sint32 Bmc_FetchSub_u32(volatile sint32*, sint32);
0x67 sint64 Bmc_FetchSub_u64(volatile sint64*, sint64);

Table 8.9: List of implemented functions for Bmc_FetchSub_<TypeMn>

8.4.3.3 Bmc_FetchOr

[SWS_Bmc_91011]{DRAFT} [

Service Name Bmc_FetchOr_<TypeMn> (draft)
Syntax <Type> Bmc_FetchOr_<TypeMn> (
volatile <Type>* Object,
<Type> Operand
)
Service ID [hex] 0x70 to 0x77
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Operand Value for the operation
Parameters (inout) Object Object
Parameters (out) None
Return value <Type> The value pointed to by Object immediately before the effects
Description Atomically replaces the value pointed to by Object with the result of the or-operation applied to
the value pointed to by Object and the given Operand.
Tags:atp.Status=draft

Y

AUTOSAR

| Available via Bmc.h

10

[SWS_BMC_00035] DRAFT [The Bmc_FetchOr_<TypeMn> functions atomically re-
place the value pointed to by Object with the result of the or-operation applied to the
value pointed to by Object and the given Operand and return the value pointed to
by Object immediately before the effects. The implemented functions are listed in
Table 8.10.]()

Service ID[hex] Function prototype
0x70 uint8 Bmc_FetchOr_u8(volatile uint8*, uint8);
0x71 uint16 Bmc_FetchOr_u16(volatile uint16*, uint16);
0x72 uint32 Bmc_FetchOr_u32(volatile uint32*, uint32);
0x73 uint64 Bmc_FetchOr_u64(volatile uint64*, uint64);
0x74 sint8 Bmc_FetchOr_u8(volatile sint8*, sint8);
0x75 sint16 Bmc_FetchOr_u16(volatile sint16*, sint16);
0x76 sint32 Bmc_FetchOr_u32(volatile sint32*, sint32);
0x77 sint64 Bmc_FetchOr_u64(volatile sint64*, sint64);

Table 8.10: List of implemented functions for Bmc_FetchOr_<TypeMn>

8.4.3.4 Bmc_FetchXor

[SWS_Bmc_91012]{DRAFT} [

Service Name Bmc_FetchXor_<TypeMn> (draft)

Syntax <Type> Bmc_FetchXor_ <TypeMn> (

volatile <Type>* Object,
<Type> Operand
)

Service ID [hex] 0x80 to 0x87

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Operand Value for the operation

Parameters (inout) Object Object

Parameters (out) None

Return value <Type> The value pointed to by Object immediately before the effects
Description Atomically replaces the value pointed to by Object with the result of the xor-operation applied to

the value pointed to by Object and the given Operand.
Tags:atp.Status=draft

Available via Bmec.h

10

[SWS_BMC_00037] DRAFT [The Bmc_FetchXor_<TypeMn> functions atomically
replace the value pointed to by Object with the result of the xor-operation applied to

AUTOSAR

the value pointed to by Object and the given Operand and return the value pointed
to by Object immediately before the effects. The implemented functions are listed in
Table 8.11.]()

Service ID[hex] Function prototype
0x80 uint8 Bmc_FetchXor_u8(volatile uint8*, uint8);
0x81 uint16 Bmc_FetchXor_u16(volatile uint16*, uint16);
0x82 uint32 Bmc_FetchXor_u32(volatile uint32*, uint32);
0x83 uinté4 Bmc_FetchXor_u64(volatile uint64*, uinté4);
0x84 sint8 Bmc_FetchXor_u8(volatile sint8*, sint8);
0x85 sint16 Bmc_FetchXor_u16(volatile sint16*, sint16);
0x86 sint32 Bmc_FetchXor_u32(volatile sint32*, sint32);
0x87 sint64 Bmc_FetchXor_u64(volatile sint64*, sint64);

Table 8.11: List of implemented functions for Bmc_FetchXor_<TypeMn>

8.4.3.5 Bmc_FetchAnd

[SWS_Bmc_91013]{DRAFT} [

Service Name Bmc_FetchAnd_<TypeMn> (draft)

Syntax <Type> Bmc_FetchAnd_<TypeMn> (

volatile <Type>* Object,
<Type> Operand
)

Service ID [hex] 0x90 to 0x97
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) Object Object
Operand Value for the operation
Parameters (out) None
Return value <Type> The value pointed to by Object immediately before the effects
Description Atomically replaces the value pointed to by Object with the result of the and-operation applied

to the value pointed to by Object and the given Operand.
Tags:atp.Status=draft

Available via Bmec.h

10

[SWS_BMC_00039] DRAFT [The Bmc_FetchAnd_<TypeMn> functions atomically
replace the value pointed to by Object with the result of the and-operation applied
to the value pointed to by Object and the given Operand and return the value pointed
to by Object immediately before the effects. The implemented functions are listed in
Table 8.12.]()

Service ID[hex] Function prototype
0x90 uint8 Bmc_FetchAnd_u8(volatile uint8*, uint8);
0x91 uint16 Bmc_FetchAnd_u16(volatile uint16*, uint16);

AUTOSAR

0x92 uint32 Bmc_FetchAnd_u32(volatile uint32*, uint32);
0x93 uint64 Bmc_FetchAnd_u64(volatile uint64*, uint64);
0x94 sint8 Bmc_FetchAnd_u8(volatile sint8*, sint8);

0x95 sint16 Bmc_FetchAnd_u16(volatile sint16*, sint16);
0x96 sint32 Bmc_FetchAnd _u32(volatile sint32*, sint32);
0x97 sint64 Bmc_FetchAnd_u64(volatile sint64*, sint64);

Table 8.12: List of implemented functions for Bmc_FetchAnd <TypeMn>

8.4.4 Fence Routines
8.4.4.1 Bmc_ThreadFence

[SWS_Bmc_91014]{DRAFT} [

Service Name Bmc_ThreadFence (draft)

Syntax void Bmc_ThreadFence (

void

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Creates a sequentially consistent acquire and release fence.

An acquire and release fence instruction prevents the memory reordering of any read or write
which precedes it in program order with any read or write which follows it in program order.

Tags:atp.Status=draft

Available via Bmc.h

10

[SWS_BMC_00041] DRAFT [The function Bmc_ThreadFence creates a sequentially
consistent acquire and release fence. ()

Note: It may also serve as a compiler barrier which stops the compiler from moving
instructions across it either way for optimization purposes. Any instruction that occurs
in program order before this instruction will not be reordered after this instruction. Every
instruction that occurs after this instruction will not be reordered before this instruction.

AUTOSAR

8.4.5 Version API
8.4.5.1 Bmc_GetVersioninfo

[SWS_Bmc_91015]{DRAFT} [

Service Name Bmc_GetVersioninfo (draft)

Syntax void Bmc_GetVersionInfo (

Std_VersionInfoType*x Versioninfo

)

Service ID [hex] OxFF

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) Versioninfo Pointer to where to store the version information of this module.
Format according [BSW00321]

Return value None

Description Returns the version information of this library.

Tags:atp.Status=draft

Available via Bmec.h

10

[SWS_BMC_00043] DRAFT [If source code for caller and callee of Bmc_GetVer—
sionInfo is available, the Bmc library should realize Bmc_GetVersionInfo as a
macro defined in the module’s header file. | (SRS_BSW 00407, SRS_BSW _00411)

8.5 Callback notifications

None.

8.6 Scheduled functions

The Bmc library does not have scheduled functions.

8.7 Expected interfaces

None.

8.7.1 Mandatory interfaces

None.

AUTOSAR

8.7.2 Optional interfaces

None.

8.7.3 Configurable interfaces

None.

9 Sequence diagrams

Not applicable.

10 Configuration specification

10.1 Published Information

[SWS_BMC_00044] DRAFT | The standardized common published parameters as re-
quired by SRS_BSW_00402 in the General Requirements on Basic Software Modules
[3] shall be published within the header file of this module and need to be provided in
the BSW Module Description. The according module abbreviation can be found in the
List of Basic Software Modules|(SRS_BSW _00402, SRS_BSW 00374, SRS _BSW_-
00379)

Additional module-specific published parameters are listed below if applicable.

10.2 Configuration Option

[SWS_BMC_00045] DRAFT [The Bmc library shall not have any configuration options
that may affect the functional behavior of the routines. l.e. for a given set of input
parameters, the outputs shall be always the same. For example, the returned value in
case of error shall not be configurable.|(SRS_LIBS _00001)

However, a library vendor is allowed to add specific configuration options concerning
library implementation, e.g. for resource consumption optimization.

A Not applicable requirements

[SWS_BMC_00999] DRAFT |These requirements are not applicable to this specifica-
tion.|(SRS_BSW _00448)

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 Error Classification
	7.2 Error Detection
	7.3 Error Notification
	7.4 Initialization and Shutdown
	7.5 Using Library API
	7.6 Library Implementation

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Macro definitions
	8.4 Function definitions
	8.4.1 Flag Routines
	8.4.1.1 Bmc_FlagTestAndSet
	8.4.1.2 Bmc_FlagClear

	8.4.2 Load and Store Routines
	8.4.2.1 Bmc_Load
	8.4.2.2 Bmc_Store
	8.4.2.3 Bmc_Exchange
	8.4.2.4 Bmc_CompareExchange

	8.4.3 Fetch Routines
	8.4.3.1 Bmc_FetchAdd
	8.4.3.2 Bmc_FetchSub
	8.4.3.3 Bmc_FetchOr
	8.4.3.4 Bmc_FetchXor
	8.4.3.5 Bmc_FetchAnd

	8.4.4 Fence Routines
	8.4.4.1 Bmc_ThreadFence

	8.4.5 Version API
	8.4.5.1 Bmc_GetVersionInfo

	8.5 Callback notifications
	8.6 Scheduled functions
	8.7 Expected interfaces
	8.7.1 Mandatory interfaces
	8.7.2 Optional interfaces
	8.7.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 Published Information
	10.2 Configuration Option

	A Not applicable requirements

