
General Requirements on Basic Software Modules
AUTOSAR CP R19-11

1 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Document Change History
Date Release Changed by Change Description

2019-11-28 R19-11 AUTOSAR

Release

Management

 No content changes

 Changed Document Status from

Final to published

2018-10-31 4.4.0 AUTOSAR

Release

Management

 Added requirement for classification

of security events

(SRS_BSW_00488)

 Added requirement for errors for

module initialization

(SRS_BSW_00487)

 Header File Cleanup

 Obsolete references removed

 Editorial Changes

2017-12-08 4.3.1 AUTOSAR

Release

Management

 Life cycle change for header files

 Related standards and norms are

updated

 Editorial changes

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Interfaces for C90 has been added

 Support for MISRA 2012 updated

 Obsolete references removed

 Editorial Changes

Document Title General Requirements on
Basic Software Modules

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 43

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R19-11

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

2 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Document Change History
Date Release Changed by Change Description

2015-07-31 4.2.2 AUTOSAR

Release

Management

 Introduce new requirement

SRS_BSW_00403

 Introduce new requirement

SRS_BSW_00351

 Modified requirement

SRS_BSW_00406 and

SRS_BSW_00450

 Debugging support marked as

obsolete

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Alignment of post-build configuration

to SWS_BSWGeneral

 Rephrasing of definition of runtime

errors

 Incorporation of concept

SupportForPBLAndPBSECUConfig

uration

 Editorial changes

2014-03-31 4.1.3 AUTOSAR

Release

Management

 Erased/modified requirements about

standard header files providing a

more abstract view

 Improved definition of run-time

errors

 Editorial changes

2013-10-31 4.1.2 AUTOSAR

Release

Management

 Revised the management of

interfaces and the corresponding

types into a dedicated header file for

one module

 Deleted a redundant requirement

 Editorial changes

2013-03-15 4.1.1 AUTOSAR

Administration

 Interface for BSW Modules to DEM

and Debouncing for DEM

 Declaration and implementation

requirements for the interrupt

routines in the BSW modules

 Function prototype and

improvement callback functions of

AUTOSAR Services

 Improvement of safety and integrity

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

3 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Document Change History
Date Release Changed by Change Description

2011-12-22 4.0.3 AUTOSAR

Administration

 Improvement of safety and integrity:

 Limitation on callers for Init and

definite functions

 Re-entrant handling

 New implementation requirements

for the interrupt routines in the BSW

modules

 Adaptation to the Include structure

of the BSW modules. (e.g. RTE

headers handling)

 The format of VENDOR_ID adapted

to ease the verification

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

4 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Document Change History
Date Release Changed by Change Description

2009-12-18 4.0.1 AUTOSAR

Administration

 Changed Requirement

[SRS_BSW_00416] (sequence of

initialisation): added check of

uninitialized module calls.

 Changed Requirement

[SRS_BSW_00004] (version check):

reworded to specify pass criteria of

checks.

 Changed Requirement

[SRS_BSW_00346] (Basic set of

module files): added Link-time and

Post-Build configuration header

files.

 Changed Requirement

[SRS_BSW_00408] (Configuration

parameter naming convention):

requirement relaxed.

 Changed Requirement

[SRS_BSW_00440] (Function

Prototype for Callback functions of

AUTOSAR): modified callback call

mechanism through RTE.

 Changed Requirement

[SRS_BSW_00414] (Parameter if

init function): added check on

coherence of configuration type

(pre-compile, link time, post-build)

and pointer passed to API.

 Added Requirement

[SRS_BSW_00462] (Requirement

Id for Standardized Autosar

Interface): AUTOSAR Standard

Interfaces description has now a

Requirement ID and is binding.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

5 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Document Change History
Date Release Changed by Change Description

2010-09-30 3.1.5 AUTOSAR

Administration

 Added New Requirements:

[BSW00443], [BSW00444],

[BSW00445], [BSW00446],

[SRS_BSW_00442],

[SRS_BSW_00448],

[SRS_BSW_00447],

[SRS_BSW_00450],

[SRS_BSW_00453],

[SRS_BSW_00455],

[SRS_BSW_00456],

[SRS_BSW_00457,

[SRS_BSW_00449]

 Removed Requirements :

 [BSW00434] The Schedule Module

provides an API for exclusive areas.

 [BSW00431] The BSW Scheduler

module implements task bodies.

These requirements are available in

SRS RTE SRS_Rte_00222,

RTE00225 respectively.

 Changed requirements:

[SRS_BSW_00416],

[SRS_BSW_00407],

SRS_BSW_00379],

[SRS_BSW_00435],

[SRS_BSW_00305],

[SRS_BSW_00429],

[SRS_BSW_00318],

[SRS_BSW_00004],

[SRS_BSW_00402],

[SRS_BSW_00373],

[SRS_BSW_00406],

[SRS_BSW_00414],

[SRS_BSW_00347],

[SRS_BSW_00343],

[SRS_BSW_00003],

[SRS_BSW_00347]

 Legal disclaimer revised

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

6 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Document Change History
Date Release Changed by Change Description

2008-08-13 3.1.1 AUTOSAR

Administration

 Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR

Administration

 [SRS_BSW_00439] Declaration of

interrupt handlers and ISRs

 [SRS_BSW_00440] Function

prototype for callback functions of

AUTOSAR Services

 [SRS_BSW_00441] Enumeration

literals and define naming

convention

 Changes done for Interrupt

Handling, Configuration Parameter

Naming Convention and AUTOSAR

Services

 Document meta information

extended

 Small layout adaptations made

2007-01-24 2.1.15 AUTOSAR

Administration

 Interface for BSW Modules to DEM

and Debouncing for DEM

 Changes in Configuration

Requirements

 Module Headerfile Structure

 Naming separation of different

instances of BSW drivers

 Legal disclaimer revised

 “Advice for users” revised

 “Revision Information” added

2006-05-16 2.0 AUTOSAR

Administration

 Second release

2005-05-31 1.0 AUTOSAR

Administration

 Initial release

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

7 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

8 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

 Table of Contents

1 Scope of this document.. 9

1.1 Constraints ... 9
2 How to read this document .. 10

2.1 Conventions used .. 10
2.2 Requirements structure .. 11
2.3 Mapping to AUTOSAR releases .. 11

3 Acronyms and abbreviations .. 12
4 Requirements Tracing .. 13

5 General Requirements on Basic Software ... 17
5.1 Functional Requirements ... 17

5.1.1 Configuration ... 17

5.1.2 Wake-Up ... 26
5.1.3 Initialization ... 26
5.1.4 Normal Operation .. 28
5.1.5 Shutdown Operation.. 34

5.1.6 Fault Operation and Error Detection ... 34
5.2 Non-functional Requirements ... 43

5.2.1 Software Architecture Requirements ... 43
5.2.2 Software Integration Requirements ... 44

5.2.3 Software Module Design Requirements .. 49
5.2.4 Software Documentation Requirements .. 74

6 References ... 80

6.1 Deliverables of AUTOSAR ... 80

6.2 Related standards and norms .. 80
6.2.1 ISO 17356 ... 80
6.2.2 AUTOSAR Vendor ID List ... 80

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

9 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

1 Scope of this document

The goal of AUTOSAR WP Architecture and this document is to define a common set
of basic requirements that apply to all SW modules of the AUTOSAR Basic Software.
These requirements shall be adopted and refined by the work packages responsible
for the specification of Basic SW modules .

The functional requirements defined in this document shall be referenced in each
Software Specification (SWS) document of the AUTOSAR Basic Software.

1.1 Constraints

First scope for specification of requirements on Basic Software Modules are systems
which are not safety relevant. For this reason safety requirements are assigned to
medium priority.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

10 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

2 How to read this document

Each requirement has its unique identifier starting with the prefix “BSW” (for “Basic
Software”). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

2.1 Conventions used

 The representation of requirements in AUTOSAR documents follows the table
specified in [TPS_STDT_00078].

 In requirements, the following specific semantics shall be used (based on the
Internet Engineering Task Force IETF).

The key words "MUST", "MUST NOT", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "MAY", and "OPTIONAL" in this document are to be interpreted as:

 SHALL: This word means that the definition is an absolute requirement of the
specification.

 SHALL NOT: This phrase means that the definition is an absolute prohibition
of the specification.

 MUST: This word means that the definition is an absolute requirement of the
specification due to legal issues.

 MUST NOT: This phrase means that the definition is an absolute prohibition of
the specification due to legal constraints.

 SHOULD: This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

 SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean
that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing
any behavior described with this label.

 MAY: This word, or the adjective „OPTIONAL“, means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation,
which does not include a particular option, MUST be prepared to interoperate
with another implementation, which does include the option, though perhaps
with reduced functionality. In the same vein an implementation, which does
include a particular option, MUST be prepared to interoperate with another
implementation, which does not include the option (except, of course, for the
feature the option provides.)

All requirements tables comply with the template TPS_StdT_00077.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

11 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

2.2 Requirements structure

Each module specific chapter contains a short functional description of the Basic
Software Module. Requirements of the same kind within each chapter are grouped
under the following headlines (where applicable):

Functional Requirements:
- Configuration (which elements of the module need to be configurable)
- Initialization
- Normal Operation
- Shutdown Operation
- Fault Operation
- …

Non-Functional Requirements:
- Timing Requirements
- Resource Usage
- Usability
- Output for other WPs (e.g. Description Templates, Tooling,...)
- ...

2.3 Mapping to AUTOSAR releases

For each requirement defined in the document “General Requirements on Basic
Software Modules”, there shall be a reference to the AUTOSAR release(s) for which
the requirement is valid. This is achieved by the row “AUTOSAR release” in the
requirement description table.

This Requirements Specification contains general requirements that are valid for all
SW modules that are part of the AUTOSAR Basic Software.

The obligatory part of the requirements is stated in the description of each
requirement.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

12 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

3 Acronyms and abbreviations

Acronym: Description:

Interrupt frame An interrupt frame is the code which is generated by the compiler or the assembler
code for prefix and postfix of interrupt routines. This code is Microcontroller specific

ISR Interrupt Service Routine. Also used as a macro to declare in C a cat2 interrupt
service routine.

Abbreviation: Description:

Cat2 Category 2. Cat2 ISRs are supported by the OS and can make OS calls.

Cat1 Category 1. Cat1 interrupts are not supported by the OS and are only allowed to
make a very small selection of OS calls to enable and disable all interrupts.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

13 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

4 Requirements Tracing

Requirement Description Satisfied by

RS_BRF_00057 AUTOSAR shall define a
memory mapping mechanism

SRS_BSW_00437

RS_BRF_00129 AUTOSAR shall support data
corruption detection and
protection

SRS_BSW_00472

RS_BRF_01000 AUTOSAR architecture shall
organize the BSW in a
hardware independent and a
hardware dependent layer

SRS_BSW_00006

RS_BRF_01008 AUTOSAR shall organize the
hardware dependent layer in
a microcontroller independent
and a microcontroller
dependent layer

SRS_BSW_00161

RS_BRF_01016 AUTOSAR shall provide a
modular design inside
software layers

SRS_BSW_00161, SRS_BSW_00162,
SRS_BSW_00453, SRS_BSW_00456,
SRS_BSW_00461

RS_BRF_01024 AUTOSAR shall provide
naming rules for public
symbols

SRS_BSW_00300, SRS_BSW_00305,
SRS_BSW_00307, SRS_BSW_00310,
SRS_BSW_00327, SRS_BSW_00335,
SRS_BSW_00346, SRS_BSW_00347,
SRS_BSW_00348, SRS_BSW_00357,
SRS_BSW_00373, SRS_BSW_00389,
SRS_BSW_00390, SRS_BSW_00392,
SRS_BSW_00410, SRS_BSW_00441,
SRS_BSW_00462, SRS_BSW_00463,
SRS_BSW_00464, SRS_BSW_00465,
SRS_BSW_00480, SRS_BSW_00481,
SRS_BSW_00482, SRS_BSW_00487

RS_BRF_01028 AUTOSAR shall provide
naming conventions for
symbols in its documentation

SRS_BSW_00350, SRS_BSW_00408,
SRS_BSW_00411

RS_BRF_01032 AUTOSAR modules shall
provide meta data information

SRS_BSW_00003, SRS_BSW_00318,
SRS_BSW_00321, SRS_BSW_00334,
SRS_BSW_00341, SRS_BSW_00351,
SRS_BSW_00374, SRS_BSW_00379,
SRS_BSW_00402

RS_BRF_01056 AUTOSAR BSW modules
shall provide standardized
interfaces

SRS_BSW_00007, SRS_BSW_00308,
SRS_BSW_00358, SRS_BSW_00359,
SRS_BSW_00360, SRS_BSW_00371,
SRS_BSW_00379, SRS_BSW_00414,
SRS_BSW_00440, SRS_BSW_00454,
SRS_BSW_00462, SRS_BSW_00477,
SRS_BSW_00478, SRS_BSW_00479,
SRS_BSW_00483, SRS_BSW_00484,
SRS_BSW_00485, SRS_BSW_00486

RS_BRF_01064 AUTOSAR BSW shall
provide callback functions in
order to access upper layer
modules

SRS_BSW_00333, SRS_BSW_00359,
SRS_BSW_00360, SRS_BSW_00384,
SRS_BSW_00440, SRS_BSW_00457

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

14 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

RS_BRF_01096 AUTOSAR shall support
start-up and shutdown of
ECUs

SRS_BSW_00336

RS_BRF_01104 AUTOSAR shall support
sleep and wake-up of ECUs
and buses

SRS_BSW_00375

RS_BRF_01136 AUTOSAR shall support
variants of configured BSW
data resolved after system
start-up

SRS_BSW_00101, SRS_BSW_00395,
SRS_BSW_00406

RS_BRF_01144 AUTOSAR shall support
configuration parameters
which allow to trade interrupt
response time against
runtime

SRS_BSW_00314

RS_BRF_01160 AUTOSAR shall support
BSW distribution on multi-
core MCUs

SRS_BSW_00459, SRS_BSW_00460

RS_BRF_01192 AUTOSAR shall document all
architectural constraints
which exist to use the RTE
and the BSW

SRS_BSW_00009

RS_BRF_01208 AUTOSAR OS shall support
to start lists of tasks regularly

SRS_BSW_00416

RS_BRF_01320 AUTOSAR RTE shall
schedule SWC and BSW
modules

SRS_BSW_00172

RS_BRF_01352 AUTOSAR RTE shall offer
direct read/write data access,
and alternatively pre-read
data before a runnable is
called and post-write data
after the runnable returns

SRS_BSW_00407, SRS_BSW_00432

RS_BRF_01384 AUTOSAR RTE shall support
automatic range checks of
data

SRS_BSW_00323, SRS_BSW_00393

RS_BRF_01440 AUTOSAR services shall
support system diagnostic
functionality

SRS_BSW_00375

RS_BRF_01464 AUTOSAR services shall
support standardized
handling of watchdogs

SRS_BSW_00425

RS_BRF_01480 AUTOSAR shall support
software component local
modes, ECU global modes,
and system wide modes

SRS_BSW_00170

RS_BRF_01616 AUTOSAR communication
shall support initial values for
signals

SRS_BSW_00410

RS_BRF_01856 AUTOSAR microcontroller
abstraction shall provide
access to internal MCU

SRS_BSW_00162

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

15 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

configuration

RS_BRF_01864 AUTOSAR microcontroller
abstraction shall provide
mapping of I/O signals to
digital I/O ports

SRS_BSW_00162

RS_BRF_01872 AUTOSAR microcontroller
abstraction shall provide
mapping of I/O signals to
analog/digital converter ports

SRS_BSW_00162

RS_BRF_01880 AUTOSAR microcontroller
abstraction shall provide
mapping of I/O signals to
pulse-width modulation
controlled ports

SRS_BSW_00162

RS_BRF_01888 AUTOSAR microcontroller
abstraction shall provide
mapping of I/O signals to an
output compare unit

SRS_BSW_00162

RS_BRF_01896 AUTOSAR microcontroller
abstraction shall provide
mapping of I/O signals to
input capture units

SRS_BSW_00162

RS_BRF_01904 AUTOSAR microcontroller
abstraction shall provide
access to hardware timers

SRS_BSW_00162

RS_BRF_01912 AUTOSAR microcontroller
abstraction shall provide
access to SPI

SRS_BSW_00162

RS_BRF_01920 AUTOSAR microcontroller
abstraction shall provide
access to communication bus
controllers

SRS_BSW_00162

RS_BRF_01928 AUTOSAR microcontroller
abstraction shall provide
access to non-volatile
memory hardware

SRS_BSW_00162

RS_BRF_01936 AUTOSAR microcontroller
abstraction shall provide
access to MCU internal and
external hardware watchdogs

SRS_BSW_00162

RS_BRF_02024 AUTOSAR shall provide
mechanisms to protect the
system from unauthorized
use

SRS_BSW_00302

RS_BRF_02032 AUTOSAR security shall
allow integration of
cryptographic primitives into
the cryptographic service
manager

SRS_BSW_00328

RS_BRF_02040 AUTOSAR BSW and RTE
shall ensure data consistency

SRS_BSW_00459, SRS_BSW_00460

RS_BRF_02056 AUTOSAR OS shall support SRS_BSW_00164

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

16 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

timing protection

RS_BRF_02072 AUTOSAR shall provide
generic functionality which is
in wide use in the automotive
domain as libraries

SRS_BSW_00328

RS_BRF_02080 AUTOSAR libraries shall use
C interfaces

SRS_BSW_00346, SRS_BSW_00353,
SRS_BSW_00361

RS_BRF_02096 AUTOSAR shall provide
checksum computation of
cyclic redundancy check
sums as a library

SRS_BSW_00470

RS_BRF_02112 AUTOSAR shall support
floating point arithmetic
functions as a library

SRS_BSW_00328

RS_BRF_02144 AUTOSAR diagnostic shall
provide standardized
diagnostic services for
external testers

SRS_BSW_00168

RS_BRF_02168 AUTOSAR diagnostics shall
provide a central
classification and handling of
abnormal operative
conditions

SRS_BSW_00337, SRS_BSW_00339,
SRS_BSW_00369, SRS_BSW_00385,
SRS_BSW_00386, SRS_BSW_00417,
SRS_BSW_00452, SRS_BSW_00458,
SRS_BSW_00466, SRS_BSW_00469,
SRS_BSW_00488

RS_BRF_02176 AUTOSAR error handling
shall distinguish between
defined abnormal operative
conditions and unexpected
exceptions from intended
behavior

SRS_BSW_00386, SRS_BSW_00452,
SRS_BSW_00458, SRS_BSW_00466,
SRS_BSW_00469, SRS_BSW_00488

RS_BRF_02184 AUTOSAR diagnostics shall
provide central storage to
document occurrences of
fault conditions

SRS_BSW_00339, SRS_BSW_00385,
SRS_BSW_00386, SRS_BSW_00417,
SRS_BSW_00452, SRS_BSW_00458,
SRS_BSW_00466, SRS_BSW_00469,
SRS_BSW_00488

RS_BRF_02200 AUTOSAR diagnostic shall
provide external access to
internal configuration and
calibration data

SRS_BSW_00396

RS_BRF_02224 AUTOSAR shall support run-
time hardware tests

SRS_BSW_00470

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

17 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5 General Requirements on Basic Software

The requirements on Basic Software cover the following domains:

 Body

 Powertrain

 Chassis

 Safety (assumption: covered, because hardware and system infrastructure are
similar to the domains above)

The ECU application experience is taken from the following concrete applications:

 Sunroof and power window ECU

 Diesel engine ECU

 ESP ECU

 BMW, DC and VW standard software packages (‘Standard Core’, ‘Standard
Software Platform‘, ‘Standard Software Core’) including ISO 17356-3 OS,
communication modules, bootloader, basic diagnostic functions for the
domains listed above

 Infotainment control ECU

5.1 Functional Requirements

5.1.1 Configuration

5.1.1.1 [SRS_BSW_00344] BSW Modules shall support link-time configuration

⌈
Type: Valid

Description: Link-time configuration phase shall be supported. Link-time parameters are
optional.

Rationale: Allow configurable functionality of modules that are deployed as object code.
Usually those modules are drivers.

Use Case: --

Dependencies: [SRS_BSW_00342] Usage of source code and object code

Supporting Material: --

⌋()

5.1.1.2 [SRS_BSW_00404] BSW Modules shall support post-build
configuration

⌈
Type: Draft

Description: Post-build configuration phase shall be supported. Post-build parameters
are optional

Rationale: Change ECU configuration after ECU production without an update of the

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

18 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

whole application.

Use Case: type declaration of the Config Type
typedef struct ComM_ConfigType_Tag {

...

} ComM_ConfigType; (in ComM.h)

as a forward declaration use:
typedef struct ComM_ConfigType_Tag ComM_ConfigType;

extern void ComM(ComM_ConfigType * ComMConfigPtr); (in

ComM.h)

Dependencies: [SRS_BSW_00342] Usage of source code and object code

Supporting Material: --

⌋()

5.1.1.3 [SRS_BSW_00405] BSW Modules shall support multiple configuration
sets

⌈
Type: Valid

Description: Modules of the AUTOSAR Basic Software shall be able to operate with more
than one configuration set, selectable at start-up time.

Rationale: Application of the same software to different cars.

Use Case: --

Dependencies: [SRS_BSW_00342] Usage of source code and object code

Supporting Material: --

⌋()

5.1.1.4 [SRS_BSW_00345] BSW Modules shall support pre-compile
configuration

⌈
Type: Valid

Description:

Rationale: Static configuration is decoupled from implementation. Separation of
configuration dependent data at compile time furthermore enhances
flexibility, readability and reduces version management as no source code is
affected.

Use Case:

Dependencies:

Supporting Material: --

⌋()

5.1.1.5 [SRS_BSW_00159] All modules of the AUTOSAR Basic Software shall
support a tool based configuration

⌈
Type: Valid

Description: All modules of the AUTOSAR Basic Software shall support a tool based
configuration.

Rationale: Integration into AUTOSAR methodology

Use Case: The NVRAM manager can be automatically configured depending on the NV

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

19 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

parameters and their corresponding attributes of the software components.

Dependencies: --

Supporting Material: --

⌋()

5.1.1.6 [SRS_BSW_00167] All AUTOSAR Basic Software Modules shall provide
configuration rules and constraints to enable plausibility checks

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall provide configuration rules and
constraints to enable plausibility checks of configuration during ECU
configuration time where possible.

Rationale: Runtime efficiency:
Checks can be made by a configuration tool or the preprocessor instead
during runtime.

Safety:
Detect wrong or missing configurations as early as possible

Use Case: --

Dependencies: [SRS_BSW_00334] Provision of XML file

Supporting Material: --

⌋()

5.1.1.7 [SRS_BSW_00171] Optional functionality of a Basic-SW component
that is not required in the ECU shall be configurable at pre-compile-time

⌈
Type: Valid

Description: Optional functionality of a Basic-SW component that is not required in the
ECU shall be configurable at pre-compile-time (on/off).

Rationale: Optional functionalities of Basic SW components which are disabled by static
configuration shall not consume resources (RAM, ROM, runtime).

Implementation example: in C language, preprocessing directives can be
used.

Ensure optimal resource consumption. There are many requirements
marked with high importance but not all are used in each ECU thus resource
overhead must be avoided.

Use Case: 1. The development error detection is a statically configurable optional
function that can be enabled and disabled.

2. The EEPROM write cycle reduction is a statically configurable optional
function that can be enabled and disabled.

Dependencies: --

Supporting Material: --

⌋()

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

20 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.1.1.8 [SRS_BSW_00170] The AUTOSAR SW Components shall provide
information about their dependency from faults, signal qualities, driver
demands

⌈
Type: Valid

Description: AUTOSAR SW-Components may depend on the system fault state or
configuration demand of OEM or driver. These reconfiguration dependencies
must be provided during ECU configuration time. This information must be
used for cross checks and functional evaluation at ECU configuration time
and for correct shut down/activation behavior at runtime.

Rationale: Resolve the interdependencies between AUTOSAR SW-Components.

Use Case: A fault of the steering angle sensor will lead to reduced function of the
related AUTOSAR SW-Components.

Example:
- faults (CAN bus off, sensor defective, calibration data checksum error)
- signal quality (lambda sensor not yet in operating temperature range)
- driver demands (disable ESP)
- ...

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01480)

5.1.1.9 [SRS_BSW_00380] Configuration parameters being stored in memory
shall be placed into separate c-files

⌈
Type: Valid

Description: Configuration parameters being stored in memory shall be placed into
separate c-files (effected parameters are those from link-time configuration
as well as those from post-build time configuration).

Rationale: Enable the use of different object files.

Use Case: --

Dependencies: [SRS_BSW_00346] Basic set of module files

Supporting Material: Layered Software Architecture ([DOC_LAYERED_ARCH])

⌋()

5.1.1.10 [SRS_BSW_00419] If a pre-compile time configuration parameter is
implemented as “const“ it should be placed into a separate c-file

⌈
Type: Valid

Description: If a pre-compile time configuration parameter is implemented as “const“ it

should be placed into a separate c-file.

Rationale: Enabling of object code integration.
Separation of configuration from implementation.

Use Case: --

Dependencies: --

Supporting Material: Layered Software Architecture ([DOC_LAYERED_ARCH])

⌋()

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

21 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.1.1.11 [SRS_BSW_00383] The Basic Software Module specifications
shall specify which other configuration files from other modules they
use at least in the description

⌈
Type: Valid

Description: The Basic Software Module specifications shall specify which other
configuration files from other modules they use at least in the description.

Rationale: Resolve compatibility issues

Use Case: --

Dependencies: [SRS_BSW_00384] List dependencies to other modules

Supporting Material: --

⌋()

5.1.1.12 [SRS_BSW_00384] The Basic Software Module specifications shall
specify at least in the description which other modules they require

⌈
Type: Valid

Description: The Basic Software Module specifications shall specify at least in the
description which other modules (in which versions) they require.

Rationale: Resolve compatibility issues

Use Case: --

Dependencies: [SRS_BSW_00383] List dependencies of configuration files

Supporting Material: --

⌋(RS_BRF_01064)

5.1.1.13 [SRS_BSW_00388] Containers shall be used to group
configuration parameters that are defined for the same object

⌈
Type: Valid

Description: Containers are used to group configuration parameters that are defined for
the same object. Containers are to be defined whenever

1. Several configuration parameters logically belong together.
2. Configuration must be repeated with different parameter values for

several entities of same type (e.g. the NVRAM manager has some
parameters that are defined once for the whole module, which are
collected in one container, and a set of parameters that are defined
once per memory block, which are collected in another container.
This second container is included in the first container and will be
instantiated once for each memory block)

3. Containers may contain parameters of different configuration
classes. This will not map to the software implementation!

Rationale: Cluster the configuration parameters in order to ease the readability of code.

Use Case: Header configuration file with sections for each container

Dependencies: [SRS_BSW_00389] Containers shall have names

Supporting Material:

⌋()

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

22 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.1.1.14 [SRS_BSW_00389] Containers shall have names

⌈
Type: Valid

Description: Containers shall have names – these names will map to section headers in
the configuration header-files or configuration c-files containing the
parameters

Rationale: Enable referencing to the .XML document.

Use Case: --

Dependencies: --

Supporting Material: See Glossary ([GLOSSARY])

⌋(RS_BRF_01024)

5.1.1.15 [SRS_BSW_00390] Parameter content shall be unique within the
module

⌈
Type: Valid

Description: The same intention, logical contents or semantic shall be placed in one
parameter only (There must not be several parameters with the same
intention, logical contents or semantic)

Rationale: Avoid multitude identical definitions. Ease the maintenance

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01024)

5.1.1.16 [SRS_BSW_00392] Parameters shall have a type

⌈
Type: Valid

Description: Each Parameter shall have a type. Types shall be based on primitive or,
complex types defined within AUTOSAR specifications. I.e. they may be
combined to structures, arrays etc.
Parameters based on a “define” are not required to have an explicit cast to
their type, they shall have an appropriate C suffix (“U” if of unsigned integer
type, “L” if of integer long type and “F” if of single precision floating type).

Rationale: --

Use Case: --

Dependencies: --

Supporting Material: MISRA-C Rule 7.2

⌋(RS_BRF_01024)

5.1.1.17 [SRS_BSW_00393] Parameters shall have a range

⌈
Type: Valid

Description: Each parameter shall have a list of valid values or the minimum as well as
maximum values shall be specified.

Rationale: --

Use Case: E.g. the range is used to enable the consistency check by a tool.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

23 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01384)

5.1.1.18 [SRS_BSW_00394] The Basic Software Module specifications shall
specify the scope of the configuration parameters

⌈
Type: Valid

Description: A parameter may only be applicable for the module it is defined in.
In this case, the parameter is marked as "local". Alternatively, the parameter
may be shared with other modules (i.e. exported).

Rationale: Increase the uniformity of the use of this attribute and let as single entity
(BSW UML model) be the source for import information.

Use Case: Importing and exporting could be achieved in different ways: external
reference, redefinition in the other module.

Dependencies: --

Supporting Material:

⌋()

5.1.1.19 [SRS_BSW_00395] The Basic Software Module specifications shall
list all configuration parameter dependencies

⌈
Type: Valid

Description: The Basic Software Module specifications must specify, via configuration
constraint items, all dependencies to this or other modules configuration
parameters. A dependency is for example: the value of another parameter
influences or invalidates the setting of this parameter. A dependency shall be
documented only once, i.e. if a dependency between two Basic Software
Modules exists, then the configuration constraint item shall be described only
in the Basic Software Module specification containing the influenced
configuration parameter.

Rationale: --

Use Case: Specified parameter “Bit timing register” requires other parameters e.g.,
“input clock frequency” which is defined in another module.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01136)

5.1.1.20 [SRS_BSW_00396] The Basic Software Module specifications shall
specify the supported configuration classes for changing values and
multiplicities for each parameter/container

⌈
Type: Valid

Description: There are three main configuration classes for changing values (applicable
only to parameters) and multiplicities (applicable both to parameters and
containers). The Basic Software Module specifications shall specify the
classes to be supported per parameter/container. The classes are:

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

24 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

- pre- compile time configuration
- link time configuration
- post build time configuration

Rationale: Enable optimizing towards different goals of configuration.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02200)

5.1.1.21 [SRS_BSW_00403] The Basic Software Module specifications shall
specify for each parameter/container whether it supports different
values or multiplicity in different configuration sets

⌈
Type: Valid

Description: For each container, the module shall be able to specify whether the
multiplicity may be different in different configuration sets. For each
parameter, the module shall be able to specify whether the multiplicity and/or
the value may be different in different configuration sets.

Rationale: Enable to specify restrictions that are necessary to optimize the
implementation.

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

5.1.1.22 [SRS_BSW_00397] The configuration parameters in pre-compile
time are fixed before compilation starts

⌈
Type: Valid

Description: The configuration parameters in pre-compile time are fixed before
compilation starts. The configuration of the SW element is done at source
code level.

Rationale: Ease generation of efficient code.

Use Case: --

Dependencies: --

Supporting Material: [SRS_BSW_00345] Pre-compile-time configuration

⌋()

5.1.1.23 [SRS_BSW_00398] The link-time configuration is achieved on
object code basis in the stage after compiling and before linking

⌈
Type: Valid

Description: The link-time configuration is achieved on object code basis in the stage
after compiling and before linking (locating).

Rationale: Concept of configuration to support modules delivered as object code.

Use Case: --

Dependencies: --

Supporting Material: [SRS_BSW_00344] Reference to link-time configuration

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

25 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

⌋()

5.1.1.24 [SRS_BSW_00399] Parameter-sets shall be located in a separate
segment and shall be loaded after the code

⌈
Type: Valid

Description: Parameter-sets are located in a separate segment and can be loaded after
the code. (see definition of post-build time configuration in the AUTOSAR
glossary). This means as well the memory layout of ext. conf. parameters
must be known.
This set of parameters may be optimized in a way (configuration is always
located at the same address) that the pointer indirection is avoided.

Rationale: --

Use Case: Loadable CAN configuration or communication matrix.

Dependencies: --

Supporting Material: --

⌋()

5.1.1.25 [SRS_BSW_00400] Parameter shall be selected from multiple sets
of parameters after code has been loaded and started

⌈
Type: Valid

Description: Parameter will be selected from multiple sets of parameters after code has
been loaded and started. During module startup (initialization) one of several
configurations is selected. This configuration is typically a data structure that
contains the relevant parameter values.

Rationale: --

Use Case: Reuse of ECUs.

Dependencies: --

Supporting Material: --

⌋()

5.1.1.26 [SRS_BSW_00438] Configuration data shall be defined in a
structure

⌈
Type: Valid

Description: In case of post-build configuration, or when one of multiple configuration sets
shall be selectable at initialization time, the configuration parameters of a
BSW module shall be reachable from a single base structure. The pointer to
this structure shall be passed to the Init function of the BSW module.

Rationale: 1. Allow selection of one configuration set in case more than one set is
available.
2. Allow moving of configuration in reprogrammable memory in case post-
build configuration is applied.

Use Case: Initialization concept for ComM or CanIf.

Dependencies: --

Supporting Material: --

⌋()

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

26 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.1.1.27 [SRS_BSW_00402] Each module shall provide version information

⌈
Type: Valid

Description: The provided informationshall be included in each module. This information
shall include: Vendor and module identification numbers, AUTOSAR release
version and software module version.

Rationale: The published information contains data defined by the implementer of the
SW module that doesn’t change when the module is adapted (i.e.
configured) to the actual HW/SW environment it is used in. It thus contains
version and manufacturer information to ease the integration of different
BSW modules.

Use Case: --

Dependencies: [SRS_BSW_00407], [SRS_BSW_00318]

Supporting Material: --

⌋(RS_BRF_01032)

5.1.2 Wake-Up

5.1.2.1 [SRS_BSW_00375] Basic Software Modules shall report wake-up
reasons

⌈
Type: Valid

Description: All Basic Software Modules that implement wake-up interrupts shall report
the wake-up reason to the ECU State Manager.

Within this notification the ECU State Manager shall store the passed wake-
up ID for later evaluation.

Rationale: Allow ECU State Manager to decide which start-up sequence is chosen
based on the wake-up reason.

Use Case: A body ECU can wake-up from 3 different wake-up sources. Depending on
the wake-up reason, the ECU

 blinks the door lock indication LEDs

 performs a full start-up

 evaluates the received key ID and decides to start-up and unlock or
goto sleep again

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01104,RS_BRF_01440)

5.1.3 Initialization

5.1.3.1 [SRS_BSW_00101] The Basic Software Module shall be able to initialize
variables and hardware in a separate initialization function

⌈
Type: Valid

Description: If a Basic Software Module needs to initialize variables and hardware

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

27 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

resources, this should be done in a separate initialization function. This

function shall be named <Module name>_Init(). This function shall only

be called by the BswM or EcuM.

Rationale: Interface to ECU state manager

Use Case: --

Dependencies: [SRS_BSW_00358] ,[SRS_BSW_00414] , [SRS_BSW_00406]

Supporting Material: --

⌋(RS_BRF_01136)

5.1.3.2 [SRS_BSW_00416] The sequence of modules to be initialized shall be
configurable

⌈
Type: Valid

Description: The sequence of modules to be initialized shall be configurable.

Rationale: To enable the handling of dependencies of Basic SW-modules with the
respect to environment, implementation and proprietary functionality the
start-up sequence needs to be adaptable.

Use Case: Start-up sequence is a proprietary functionality. DET dependency shall allow
error detection during development.

Dependencies: [SRS_BSW_00406]

Supporting Material: --

⌋(RS_BRF_01208)

5.1.3.3 [SRS_BSW_00406] A static status variable denoting if a BSW module is
initialized shall be initialized with value 0 before any APIs of the BSW
module is called

⌈
Type: Valid

Description: If the Default Error Tracer (DeT) Error is enabled, module APIs shall check if
the module is initialized.
If the Module is not initialized and Default Error Tracer (DeT) is enabled,
then the Module shall report respective error to DeT.

Module Initialization and initialization check shall not be performed for
i) Init Functions itself
ii) Version Check API, because it shall not need module initialization for
returning a hard coded value
iii) Libraries, because they are generally stateless.
iv) BSW Main functions , Reason .- They return immediately without
performing any functionality when the module is not initialized.
v) If Det not initialized before reporting functions, it shall return immediately
without any other action.

Rationale: Wrong control flows shall be detected (and happen only) during integration
phase. Therefore DeT must be called and stop execution if an uninitialized
module is called.

Use Case: During optimization of init phase for fast startup, wrong init order has been
configured and needs correction.

Dependencies: [SRS_BSW_00407], [SRS_BSW_00369], [SRS_BSW_00450]

Supporting Material: --

⌋(RS_BRF_01136)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

28 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.1.3.4 [SRS_BSW_00467] The init / deinit services shall only be called by
BswM or EcuM

⌈
Type: Valid

Description: The init / deinit services shall only be called by BswM or EcuM

Rationale: The module does not need to protect itself against untimely calls.

Use Case:

Dependencies: [SRS_BSW_00101]

Supporting Material: --

⌋()

5.1.3.5 [SRS_BSW_00437] Memory mapping shall provide the possibility to
define RAM segments which are not to be initialized during startup

⌈
Type: Valid

Description: Memory mapping shall provide the possibility to define RAM segments which
are not to be initialized during startup (NoInit-Area).
This shall be achieved by using/modifying linker and C startup routines.

Rationale: There should be an area in the RAM, which will not be affected by a reset
(clearing all memory). This area is used as storage for persistent data which
are needed during normal operation (and that will not be stored in
EEPROM).

Use Case: Reset information is stored in RAM and has to be evaluated after reset.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_00057)

5.1.4 Normal Operation

5.1.4.1 [SRS_BSW_00168] SW components shall be tested by a function
defined in a common API in the Basis-SW

⌈
Type: Valid

Description: If a SW component above or below RTE has the requirement to be tested by
external devices e.g. in the garage, the required function shall be accessed
via a common API from diagnostics services in Basic-SW (function, data
interface).

Rationale: Ensure less difference in handling and kind of API

Use Case: Tester in the garage requires calibration of a certain SW-component e.g.
steering angle sensor monitoring in the ESP. The interface must remain to
be ready for moving this SW-component.
This interface can also be used by XCP.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02144)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

29 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.1.4.2 [SRS_BSW_00407] Each BSW module shall provide a function to read
out the version information of a dedicated module implementation

⌈
Type: Valid

Description: Each BSW module shall provide a function to read out the version

information of a dedicated module implementation.

This API shall be pre-compile time configurable (see SRS_BSW_00411).

It shall be possible to call this function at any time (e.g. before the init

function is called).

Rationale: If problems are detected within an ECU during lifetime this enables the
garage to check the version of the modules.
The AUTOSAR specification version number is checked during compile time
(see requirement SRS_BSW_00004) and therefore not required in this API.

Use Case: With this API the garage can read out version information which is
implemented in a dedicated (erroneous) ECU to enable the decision whether
a software update might be sufficient, or not.

Dependencies: [SRS_BSW_00318] ,[SRS_BSW_00374] ,[SRS_BSW_00411],
[SRS_BSW_00406]

Supporting Material: --

⌋(RS_BRF_01352)

5.1.4.3 [SRS_BSW_00423] BSW modules with AUTOSAR interfaces shall be
describable with the means of the SW-C Template

⌈
Type: Valid

Description: BSW modules with AUTOSAR interfaces shall be describable with the
means of the SW-C Template. The BSW description template shall therefore
inherit the concepts of the SW-C Template for those BSW modules.

Rationale: AUTOSAR Services are located in the BSW, but have to interact with
AUTOSAR SW-Cs (above the RTE) via ports. Therefore the RTE generator
shall be able to read the input and shall be able to generate proper RTE.

Use Case: (1) SW-Cs use the service(s) related to the NvM_Read C-API of the NvM
(2) SW-Cs use services of the EcuM in order to request or release the run
mode

Dependencies: --

Supporting Material: --

⌋()

5.1.4.4 [SRS_BSW_00424] BSW module main processing functions shall not
be allowed to enter a wait state

⌈
Type: Valid

Description: BSW module main processing functions are not allowed to enter a wait state
because the function must be able to be allocated to a basic task.
(see extended and basic task according to AUTOSAR OS classification).

Rationale: Typically, basic tasks are more efficient then extended tasks.
Enables schedule ability analysis and predictability.

Use Case: Enabling schedule ability analysis of the ECU.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

30 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Dependencies: --

Supporting Material: --

⌋()

5.1.4.5 [SRS_BSW_00425] The BSW module description template shall provide
means to model the defined trigger conditions of schedulable objects

⌈
Type: Valid

Description: The BSW module description template shall provide means to model the
following trigger conditions of schedulable objects:

 Cyclic timings (fixed and selectable during runtime)

 Sporadic events

Rationale: The model of the timing behavior of a BSW module can serve for the
purpose of
(1) documentation
(2) integration supports the design of the schedule module.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01464)

5.1.4.6 [SRS_BSW_00426] BSW Modules shall ensure data consistency of data
which is shared between BSW modules

⌈
Type: Valid

Description: BSW Modules shall ensure data consistency of data which is shared
between BSW modules.
There are two possible scenarios.
Scenario 1: the data is defined and managed within one BSW Module. In this
case, Exclusive Areas shall be defined and documented in the BSW module
description template of the managing module and used in the
implementation. The exclusive areas shall be defined with a name and the
accessing main functions, API services, callback functions and ISR
functions.
Scenario 2: the data is not managed by a BSW Module. This is only possible
in case of special hardware resources like registers. In this case, the
accessing modules need to disable and enable interrupts to ensure data
consistency

Rationale: To allow priority determination for preventing simultaneous access to shared
resources.

Use Case: Stop interrupt handler from corrupting a data buffer in COM due to
simultaneous access via the RTE.

Dependencies: --

Supporting Material: --

⌋()

5.1.4.7 [SRS_BSW_00427] ISR functions shall be defined and documented in
the BSW module description template

⌈

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

31 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Type: Valid

Description: ISR functions shall be defined and documented in the BSW module
description template.
The ISR functions shall be defined with a name and the category according
to the AUTOSAR OS.
In case of the intention to support memory protection a BSW module
implementation shall at least support interrupt category 2.

Rationale: Determination of locking scheme for a particular exclusive area.

Use Case: Stop interrupt handler from corrupting a data buffer in COM due to
simultaneous access via the RTE.

Dependencies: --

⌋()

5.1.4.8 [SRS_BSW_00428] A BSW module shall state if its main processing
function(s) has to be executed in a specific order or sequence

⌈
Type: Valid

Description: A BSW module shall state if its main processing function(s) has to be
executed in a specific order or sequence with respect to other BSW main
processing function(s).

Rationale: Improved integration of BSW modules.

Use Case: Improved efficiency in the COM stack by ensuring receive and transmit call
sequence.

Dependencies: --

⌋()

5.1.4.9 [SRS_BSW_00429] Access to OS is restricted

⌈
Type: Valid

Description: BSW modules shall only be allowed to use certain OS services. The services
and their access shall be defined in SWS_BSW_General.

Rationale: Simplification of the OS integration of BSW modules.

Use Case: Integration of different BSW modules in one ECU.

Dependencies: --

Supporting Material: --

⌋()

5.1.4.10 [SRS_BSW_00432] Modules should have separate main
processing functions for read/receive and write/transmit data path

⌈
Type: Valid

Description: Modules which propagate data up (read, receive) or down (write, transmit)
through the different layers of the BSW should have separate main
processing functions for the read/receive and write/transmit data path.

Rationale: Enables efficient scheduling of the main processing functions in a more
specific order to reduce execution time and latency.

Use Case: TASK(BSW_Scheduler_Communications) {

 ...

 CanIf_MainFunction_Receive();

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

32 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

 Com_MainFunction_Receive();

 Com_MainFunction_Transmit();

 CanIf_MainFunction_Transmit();

 ...

}

Dependencies: [SRS_BSW_00373] Main processing function naming convention

Supporting Material: --

⌋(RS_BRF_01352)

5.1.4.11 [SRS_BSW_00433] Main processing functions are only allowed to
be called from task bodies provided by the BSW Scheduler

⌈
Type: Valid

Description: Main processing functions are only allowed to be called from task bodies
provided by the BSW Scheduler.

Rationale: Indirect and in-transparent timing dependencies between BSW modules
shall be prohibited.

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

5.1.4.12 [SRS_BSW_00450] A Main function of a un-initialized module shall
return immediately

⌈
Type: Valid

Description: If a Main function of an un-initialized module is called, then it shall return
immediately without performing any functionality and without raising any
errors.

Rationale: Main Function processing of an un-initialized Module may result in undesired
and non defined behaviour.

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

5.1.4.13 [SRS_BSW_00461] Modules called by generic modules shall
satisfy all interfaces requested by the generic module

⌈
Type: Valid

Description: If a generic module (e.g. PDU Router) requests an interface
from an surrounding module, the surrounding module shall offer the
interface, unless a configuration parameter exists which suppresses calling
the interface.
In case the respective module does not support the functionality of
the interface, the module shall supply an 'empty function'.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

33 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Rationale: Keep generic modules independent of specification of surrounding
Modules.

Use Case: Generic NM interface, COM Manager etc. need no adaptation to
specific modules and CDDs

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01016)

5.1.4.14 [SRS_BSW_00451] Hardware registers shall be protected if
concurrent access to these registers occur

⌈
Type: Valid

Description: In all cases where concurrent access to hardware registers may occur, the
caller has to protect manipulation of such registers by disabling interrupts
and using read-modify-write functions, unless there is specific hardware
support (e.g. atomic instructions) which makes such precautions
unnecessary.

Rationale: The respective implementation restriction in the SWS General
guarantees system consistency with no influence on system
functionality. It only applies to BSW modules with direct access to
hardware registers

Use Case: CompletionOfCDD concept

Dependencies: --

Supporting Material: --

⌋()

5.1.4.15 [SRS_BSW_00478] Timing limits of main functions

⌈
Type: Valid

Description: Basic Software Modules which require a periodic main function shall allow to
configure the period time between] 0 .. INF[seconds.

Rationale: It should be avoided to standardize different upper limits for main functions.
Therefore the upper limit should be open (INF). Also the lower number
should exclude 0, since this value does not make sense. An implementation
may restrict the upper limit to a reasonable time, but the specifications
should not be limited. The lower limit is typically given by the used
implementation and hardware.

Use Case: Avoid fragmentation of different main functions caused by different upper
limits.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

34 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.1.5 Shutdown Operation

5.1.5.1 [SRS_BSW_00336] Basic SW module shall be able to shutdown

⌈
Type: Valid

Description: If a Basic SW module needs to shutdown functionality (e.g. release
hardware resources), this shall be done in a separate API function.

Rationale: Interface to ECU state manager

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01096)

5.1.6 Fault Operation and Error Detection

5.1.6.1 [SRS_BSW_00337] Classification of development errors

⌈
Type: Changed (by the TF Production Errors)

Description: All AUTOSAR Basic Software Modules shall report development relevant
errors if development error detection is enabled:

 Errors caused by software bugs

 Errors caused by incorrect integration by the user

 Errors caused by invalid configuration

 Errors caused by bugs in the integration tools
Development errors are handled like assertions: After calling the configured
Det_ReportError hooks, the normal control flow of execution shall not be
continued. DET shall stop execution of the entire process.
This can be done for example with an endless loop or a halt statement or by
creating something like an exception stack trace. If there is only one hook
function configured, this might also do the exception handling and stop

execution.
Rationale: Extended error detection for debugging and especially integration.

Use Case: The EEPROM driver provides internal checking of API parameters which is
only activated for the first software integration test (‘development build’) and
disabled afterwards (‘deployment build’).

Dependencies: [SRS_BSW_00350] Development error detection keyword

Supporting Material:

⌋(RS_BRF_02168)

5.1.6.2 [SRS_BSW_00369] All AUTOSAR Basic Software Modules shall not
return specific development error codes via the API

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall not return specific development
error codes via the API. In case of a detected development error, the error
shall only be reported to the DET. If the API- function which detected the

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

35 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

error has a return type it shall return a value which indicates an error.

Rationale: The production version of a module shall have a limited number of return
values.

Use Case: --

Dependencies: [SRS_BSW_00337] ,[SRS_BSW_00327] ,[SRS_BSW_00357]

Supporting Material: --

⌋(RS_BRF_02168)

5.1.6.3 [SRS_BSW_00339] Reporting of production relevant error status

⌈
Type: Changed (by the TF Production Errors)

Description: AUTOSAR Basic Software Modules shall report all production errors and
extended production errors to the Dem (Diagnostic Event Manager).

Rationale: Central configuration and handling of error events instead of

 spreading the handling all over the Basic Software.

 Common reporting to the lamps

 Common reporting to the garage

 Centralized fail-safe reactions through FiM

Use Case: Error events like (e.g CANSM_E_BUS_OFF) are reported to the DEM.

Dependencies: [RS_BSWMD_00069] Configuration for production errors and extended
production errors
[SRS_Diag_04063] Single Event ID for each monitoring path

Supporting Material: --

⌋(RS_BRF_02184,RS_BRF_02168)

5.1.6.4 [SRS_BSW_00422] Pre-de-bouncing of error status information is done
within the DEM

⌈
Type: Valid

Description: Pre-de-bouncing of error status information reported via

Dem_SetEventStatus is done within the DEM.

Pre-de-bouncing is handled inside the Diagnostic Event Manager using
AUTOSAR predefined generic signal de-bouncing libraries.
The Diagnostic Event Manager shall define the interface to the libraries. By
defining the interface it is possible for the user to implement further
extensions for more complex pre-de-bouncing algorithms.

Rationale: Central configuration and handling of error events instead of spreading the
handling all over the Basic Software.

Use Case: This is only one of several possible use cases (error detected and notified):

Dem
Main Function

0 20 40 60 80 100

Dem
ReportError

BSW Module
A

Error Event

Dem
LibraryTimer

.

Starts
Timer

Error Event treated as
“Real“ Error

t

P: DEM_PASSED
F: DEM_FAILED

P P F F F

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

36 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

The timer function shall be provided (in this example) in the pre-de-bouncing
library of the Diagnostic Event Manager.

Dependencies: [SRS_BSW_00339] Reporting of production relevant error status

Supporting Material: --

⌋()

5.1.6.5 [SRS_BSW_00417] Software which is not part of the SW-C shall report
error events only after the DEM is fully operational.

⌈
Type: Valid

Description: Software which is not part of the SW-C shall report error events only after
the DEM is fully operational.

Rationale: It is only possible to store errors in error memory after the DEM is fully
operational. To simplify error handling within DEM (and to gain efficiency)
this requirement is needed.

Use Case: Reporting of non plausible sensor values.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02184,RS_BRF_02168)

5.1.6.6 [SRS_BSW_00323] All AUTOSAR Basic Software Modules shall check
passed API parameters for validity

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall check passed API parameters
for validity. The (minimum) conditions if a parameter needs to be treated as
invalid shall be described for each parameter (e.g. check of reserved
values).
This checking shall be statically configurable (ON/OFF) per
module with one single preprocessor switch.

Rationale: Ease of debugging for development, efficient code for deployment.

Use Case: The EEPROM driver provides internal checking of API parameters which is
only activated for the first software integration test (‘development build’) and
disabled afterwards (‘deployment build’).

Dependencies: [SRS_BSW_00350],[SRS_BSW_00327]

Supporting Material: --

⌋(RS_BRF_01384)

5.1.6.7 [SRS_BSW_00004] All Basic SW Modules shall perform a pre-processor
check of the versions of all imported include files

⌈
Type: Valid

Description: All Basic SW Modules shall perform a pre-processor check of the versions of
all imported include files (Inter Module Checks).

Rationale: Compatibility enforcement, error avoidance, ease of integration

Use Case: The integration of incompatible imported files shall be avoided.
The version numbers of all modules shall be listed in the Basic Software

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

37 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Description Template. During configuration a tool shall check whether the
version numbers of all integrated modules belong to the same AUTOSAR
major and minor release (same baseline). If not an error shall be reported.

For the update of Basic Software Modules, version conflicts shall be
detected.
Example:

 For included files from other modules, the AUTOSAR- MAJOR and
MINOR Release Version shall be verified. I.e. Can.c includes
Dem.h: Only MAJOR and MINOR Release versions shall be verified.

Dependencies: [SRS_BSW_00003] ,[SRS_BSW_00318] ,[SRS_BSW_00402]

Supporting Material: The term AUTOSAR baseline is defined in [ARReleaseManagement].

⌋()

5.1.6.8 [SRS_BSW_00409] All production code error ID symbols are defined by
the Dem module and shall be retrieved by the other BSW modules from
Dem configuration

⌈
Type: Valid

Description: All production code error ID symbols are defined by the Dem module and
shall be retrieved by the other BSW modules from Dem configuration.

Rationale: The error codes shall be defined in a central file, to simplify the include
structure of the DEM.

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

5.1.6.9 [SRS_BSW_00385] List possible error notifications

⌈
Type: Changed (by the TF Production Errors)

Description: The BSW shall document all production errors, extended production errors,
development errors and runtime errors which are supported by the BSW
module.

Rationale: Documentation, overview of errors

Use Case: --

Dependencies:

Supporting Material: --

⌋(RS_BRF_02184,RS_BRF_02168)

5.1.6.10 [SRS_BSW_00386] The BSW shall specify the configuration for
detecting an error

⌈
Type: Valid

Description: The BSW shall specify the configuration for detecting an error. This
configuration shall describe criteria and limits how the error is detected and
possibly reset. This is applicable for production code errors as well as for
development errors.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

38 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Rationale: --

Use Case: a) configuration of debounce counters (counting up/down), configuration of
limits of these debounce counters etc.,
b) specify the library function which is to be used to debounce.
c) specify whether the Diagnostic modules may request to delete errors. If
so, specify how and when errors may be reset

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02184,RS_BRF_02168,RS_BRF_02176)

5.1.6.11 [SRS_BSW_00452] Classification of runtime errors

⌈
Type: New
Description: AUTOSAR Basic Software Modules may report runtime errors.

Runtime errors are systematic faults that do not necessarily affect the overall
system behavior (e.g. wrong PDU-Ids, wrong post-build configurations).
Runtime errors are not implementation errors; they will not cause assertions
and therefore not cause the abortion of the ‘normal’ control flow of execution
(as DET will do).
Runtime errors shall only be reported as an event in case of the occurrence
(have set conditions only). In contrast to production errors, there is no reset
conditions reported to an error handler.
An error handler of runtime errors is executed synchronously and may only
store the corresponding events to a memory, may call DEM and may
execute any reasonable action.

Rationale: Catch sporadic error events caused by seldom occurring systematic faults.

Use Case:

 CANNM_E_NET_START_IND: Reception of NM PDUs in Bus-Sleep
Mode

Dependencies: --

Supporting Material:

⌋(RS_BRF_02184,RS_BRF_02168,RS_BRF_02176)

5.1.6.12 [SRS_BSW_00458] Classification of production errors

⌈
Type: New

Description: All AUTOSAR Basic Software Modules shall report a production error if this
error is caused by any hardware problem, e.g., aging, deterioration, total
hardware failure, bad production quality, incorrect assembly, etc.

 and the same root cause is not detected as a production error by
any other BSW module (usually, but not necessarily closer to the
hardware)

 and if at least one of the following criteria is met:
o The error leads to an increase of emissions and must be

detected to fulfill applicable regulations.
o The error limits the capability of any other OBD relevant

diagnostic monitors.
o The error requires limp-home reactions, e.g. to prevent

further damage to the hardware; or customer perceivable
properties.

o The garage shall be pointed to the failed component for
repair actions.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

39 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Production errors shall be defined in a granularity of standardized
diagnostics trouble codes (e.g., SAE J2012), if possible.
Note: Production errors are regular operation of the software, but not of the
system. It is not any kind of exception handling. Software bugs or software
misbehavior are no production errors.

Rationale: Report errors that are useful in the field.

Use Case: Flash is no longer writable due to aging, emission relevant adaptation maps
can no longer be stored. The control unit must be replaced.

Dependencies: If not specified by AUTOSAR, the real classification of a particular error
beeing a production error or an extended production error may be selectable
by configuration. Dependent of this classification the particular error may
cause different reactions within the Dem.

Supporting Material: --

⌋(RS_BRF_02184,RS_BRF_02168,RS_BRF_02176)

5.1.6.13 [SRS_BSW_00466] Classification of extended production errors

⌈
Type: New

Description: AUTOSAR Basic Software Modules may report extended production errors
(to the module Dem) if this error is caused

 by any hardware problem of the ECU itself, e.g., a memory
transactions failed,

 by a misbehavior of the embedding environment, e.g., the loss of
messages due to any problem of the communication channel

AND

 this error does not comply to any criteria of the production error
definition, notably

o OBD relevance
o direct limp-home reactions
o direct repair actions in the garage

 the error cause is already covered by any other production error
Extended production errors shall define set and reset conditions.
Note: Extended production errors are regular operation of the software, but
not of the system. It is not any kind of exception handling. Software bugs or
software misbehavior are no ‘Extended production errors’.
Note: Extended production errors may not be entered in the primary event
memory of the module Dem.

Rationale: Extended production errors may be used

 to deduce ‘real’ production errors by tying several values influencing
the state of the ECU together

 to gain more detailed information of the real cause of a production
error

Use Case: --

Dependencies: If not specified by AUTOSAR, the real classification of a particular error
being a production error or an extended production error may be selectable
by configuration. Dependent of this classification the particular error may
cause different reactions within the Dem.

Supporting Material: --

⌋(RS_BRF_02184,RS_BRF_02168,RS_BRF_02176)

5.1.6.14 [SRS_BSW_00488] Classification of security events

⌈

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

40 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Type: Draft

Description: AUTOSAR Basic Software Modules and SWCs may report security events to
the module Dem if this event has been identified as being relevant for off-
board security analysis. Which events are relevant should be identified as
part of a security analysis.

Note: security events are not any kind of exception handling. Software bugs
or software misbehavior are no security events.
Note: security events should be entered in a user defined event
memory of the module Dem which fulfills the security requirements for
managing the events.

Rationale: Security events may be used to support off-board analysis of security
incidents

Use Case: --

Dependencies: --
Supporting Material: --

The following template should be used to describe security events in Chapter 7 of
SWS documents:

Field Content Example

Security event name: <Abbreviation of BSW
Module>_SE_<Abbreviation
of Event>

SECOC_SE_UNAUTHENTIC_PDU_RECEIVED

Short Description: Description of the event with
key words

Unauthentic PDU received

Long Description: Description of the event with
1-2 sentences

SECOC failed to authenticate a received
secured PDU

Recommended DTC: DTC which is recommended
to identify the event

Assigned by Dem

Detection Criteria
(Fail)

Describes the criteria when
the event is set to FAILED

When the authentication of a secured PDU
(including potential retries) failed.

Detection Criteria
(Passed)

Describes the criteria when
the event is set to PASSED.
For a security events only
one options is possible:

 PASSED is set
automatically by the
Dem directly after
the event was
reported.

PASSED is set automatically by the Dem
directly after the event was reported.

⌋(RS_BRF_02184,RS_BRF_02168,RS_BRF_02176)

5.1.6.15 [SRS_BSW_00469] Fault detection and healing of production
errors and extended production errors

⌈
Type: New

Description: The detection of production errors and extended production errors shall
distinguish between fault detection, failure free detection, and undecided
state. Only detected faults and explicitly failure free detected states shall be
reported.

Rationale: Avoid incorrect healing in case a failure still persists: Do not heal the
OBD pending/confirmed state unless the vehicle is failure free.

 Allow the system to heal if the repair is executed without using a

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

41 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

garage tool to clear the error.

 Heal only if the system is known to work, not in the absense of
detected failures, i.e., ensure the correct computation of the OBD
readiness information.

Use Case: The driver re-connects a disconnected sensor, and the system is again
working properly, and the production error is healed.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02184,RS_BRF_02168,RS_BRF_02176)

5.1.6.16 [SRS_BSW_00470] Execution frequency of production error
detection

⌈
Type: New

Description: State information are detected either by the change of the state or when
checked (event-based or cyclic).
Checks shall be executed as often as possible, at least once per related
monitoring cycle (e.g. OBD driving cycle for emission relevant systems), or
as often as required by applicable regulations, to the extend feasible.

Rationale: Timely detection of failures

 Readiness / self-healing in case failures are absent

 Ensure correct behavior of event handling during the
enableconditions are not fulfilled (if enable-conditions are handled in
Dem).

Use Case: If a monitor is required to be continuous according to the regulations
(CCR1968-2) the execution cycle shall be at least 2 times per second.

Dependencies: --

Supporting Material: CCR1968-2

⌋(RS_BRF_02096,RS_BRF_02224)

5.1.6.17 [SRS_BSW_00471] Do not cause dead-locks on detection of
production errors – the ability to heal from previously detected
production errors

⌈
Type: New

Description: Production errors shall be able to heal, if a problem no longer persists.

Rationale: Detected production errors may cause fail-safe / limp-home modes, usually
through the FiM. During such operation, the detection algorithm may be
disabled, preventing the error from healing. Therefore, care must be taken to
avoid this situation or provide a means of healing, e.g., by starting without
fail-safe / limp-home modes in the next operating cycle.

Use Case: A component is detected as faulty and the error is reported to the Dem. As a
consequence, the component is disabled and no further fault or fault free
detection is possible. At the next operation cycle, the component is re-tested,
and passes the tests, PASS is reported to the Dem.

Dependencies: --

Supporting Material: --

⌋()

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

42 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.1.6.18 [SRS_BSW_00472] Avoid detection of two production errors with
the same root cause.

⌈
Type: New

Description: Some production errors detect the same root cause as failure. To avoid
duplicate error reports to the garage, detection of one error shall be disabled
in case of the the other error, by a appropriate configuration of the FiM.
Hence, the production error shall only be enabled when a permission is
granted.

Rationale: The garage will analyze all DTCs (resulting from production errors), possibly
causing unnecessary repair operations if there was only one root cause.

Use Case: This situation shall be avoided:
The garage reads out two production error trouble codes, one pointing to a
disconnected wiring harness, and the other to a broken control unit. The
control unit is detected as broken due to the disconnected wiring harness.
The garage replaces both the control unit and the wiring harness, causing
unnecessary repair cost.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_00129)

5.1.6.19 [SRS_BSW_00473] Classification of transient faults

⌈
Type: New

Description: AUTOSAR Basic Software Modules may report transient faults.
Transient faults occur in the hardware due to particle passages or thermal
noise for instance and may cause software issues. The handling of those
transient faults may require use case dependent action that cannot be
reasonably decided by the detecting BSW module (most probably drivers)
themselves.
Transient faults are not implementation errors; they will not cause assertions
and therefore even not necessarily cause the abortion of the ‘normal’ control
flow of execution (as DET will do). They may heal in a sense that they
disappear again or get masked or get corrected by software activity.
Monitors of transient errors (if any) shall stay in production code (deployment
build).
Transient faults shall only be reported as an event in case of the occurrence
(have set conditions only). In contrast to production errors, there is no reset
conditions reported to an error handler.
An error handler of transient faults handles the corresponding transient faults
in a synchronous manner.

Rationale: Catch sporadic error events caused by transient hardware faults.

Use Case: • CAN controller goes offline due to bit-flip in its control register.
• Peripheral action lasts accidentally longer than expected (and
specified)

Dependencies: --

Supporting Material: --

⌋()

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

43 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.2 Non-functional Requirements

5.2.1 Software Architecture Requirements

5.2.1.1 [SRS_BSW_00161] The AUTOSAR Basic Software shall provide a
microcontroller abstraction layer which provides a standardized
interface to higher software layers

⌈
Type: Valid

Description: The AUTOSAR Basic Software shall provide a microcontroller abstraction
layer which provides a standardized interface to higher software layers.

Rationale: Portability and reusability.
Encapsulate implementation details of a specific microcontroller from higher
software layers.

Use Case: Exchange microcontroller ST10 with STAR12 without affecting higher
software layers interfacing with the microcontroller abstraction layer.

Dependencies: --

Supporting Material: [DOC_LAYERED_ARCH]

⌋(RS_BRF_01008,RS_BRF_01016)

5.2.1.2 [SRS_BSW_00162] The AUTOSAR Basic Software shall provide a
hardware abstraction layer

⌈
Type: Valid

Description: The AUTOSAR Basic Software shall provide a hardware abstraction layer
which provides a stable interface to higher software layers which is
independent from the ECU hardware layout.

Rationale: Keep the impact of changes in the ECU hardware layout as small as
possible.
Portability and reusability of modules of higher software layers.
Flexibility for changes in the ECU hardware layout.

Use Case: Change the hardware layout of the ECU (e.g. PortA.5 PortD.7)
without affecting software layers interfacing with the hardware
abstraction layer.

 Use the NVRAM manager with an internal and/or external EEPROM.

 Provide uniform access to analog signals using the on-chip ADC or an
external ADC ASIC.

Dependencies: --

Supporting Material: [DOC_LAYERED_ARCH]

⌋(
RS_BRF_01016,RS_BRF_01856,RS_BRF_01864,RS_BRF_01872,RS_BRF_01880
,RS_BRF_01888,RS_BRF_01896,RS_BRF_01904,RS_BRF_01912,RS_BRF_0192
0,RS_BRF_01928,RS_BRF_01936)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

44 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.2.1.3 [SRS_BSW_00005] Modules of the µC Abstraction Layer (MCAL) may
not have hard coded horizontal interfaces

⌈
Type: Valid

Description: Modules of the µC Abstraction Layer (MCAL) may not have hard coded
horizontal interfaces.
Necessary interactions (e.g. GPT triggered ADC conversion) shall be
implemented by using statically configurable notifications (callbacks).

Rationale: Avoidance of strong coupling, ease of integration, better structure

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

5.2.1.4 [SRS_BSW_00415] Interfaces which are provided exclusively for one
module shall be separated into a dedicated header file

⌈
Type: Valid

Description: Interfaces and the corresponding types which are provided exclusively for
one module should be separated into a dedicated header file. This should
prevent the inclusion of the <ModuleName>.h file.

The format of the file name shall be: <ModuleName>_<User>.h

Comment:
Common definitions for different interfaces (e.g. types) shall be defined in a
common header file (e.g. <Module Name>.h).

Rationale: Encapsulate an interface between modules in an include file

Use Case: Example: CanIf_Pdur.h, CanIf_NM.h

Dependencies: [SRS_BSW_00346] Basic set of module files.

Supporting Material: < Module name > shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters). <User> shall be
the user module from the same list.

⌋()

5.2.2 Software Integration Requirements

5.2.2.1 [SRS_BSW_00164] The Implementation of interrupt service routines
shall be done by the Operating System, complex drivers or modules

⌈
Type: Valid

Description: Only the Operating System, complex drivers and modules of the
microcontroller abstraction layer are allowed to implement interrupt service
routines.

If a transition from an interrupt service routine to an operating system task is
needed, it shall take place at the lowest level possible of the Basic Software.

In the case of CAT2 ISRs this shall be at the latest in the RTE.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

45 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

In the case of CAT1 ISRs this shall be at the latest in the Interface layer.

This means: no interrupts on application level.

Rationale: Portability and reusability.
The implementation of interrupt service routines is highly microcontroller
dependent.

Use Case: Exchange microcontroller ST10 with STAR12 without affecting higher
software layers.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02056)

5.2.2.2 [SRS_BSW_00325] The runtime of interrupt service routines and
functions that are running in interrupt context shall be kept short

⌈
Type: Valid

Description: The runtime of interrupt service routines and functions that are running in
interrupt context should be kept short.
Where an interrupt service routine is likely to take a long time, an operating
system task should be used instead.

Rationale: Real time behavior, avoid blocking of the whole system.

Use Case: An ISR calls a callback which is calling other callbacks.

Dependencies: [SRS_BSW_00333] Documentation of callback function context

Supporting Material: --

⌋()

5.2.2.3 [SRS_BSW_00342] It shall be possible to create an AUTOSAR ECU out
of modules provided as source code and modules provided as object
code, even mixed

⌈
Type: Valid

Description: It shall be possible to create an AUTOSAR ECU out of modules provided as
source code and modules provided as object code, even mixed.

Rationale: Allow both:
 IP protection and guaranteed test coverage : object code

 High efficiency and configurability at ECU configuration time (by
integrator) : source code

Use Case: Some simple drivers could be provided as object code. More complex and
configurable modules could be provided as source code or even generated
code.

Dependencies: [SRS_BSW_00344] Configuration at Runtime

Supporting Material: --

⌋()

5.2.2.4 [SRS_BSW_00343] The unit of time for specification and configuration
of Basic SW modules shall be preferably in physical time unit

⌈

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

46 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Type: Valid

Description: The unit of time for specification and configuration of Basic SW modules
shall be preferably in physical time unit, not ticks.
Nevertheless for some module “tick” parameters are accepted

Rationale: The duration of a "tick" varies from system to system.

Use Case: The software specification defines the unit (e.g. µs, s) and software
configuration uses these units.
OS Modules require time parameter values in ticks.

Dependencies: --

Supporting Material: --

⌋()

5.2.2.5 [SRS_BSW_00160] Configuration files of AUTOSAR Basic SW module
shall be readable for human beings

⌈
Type: Valid

Description: Files holding configuration data for AUTOSAR Basic SW modules shall have
a format that is readable and understandable by human beings.

Rationale: Plausibility checking, comparison of different versions of configuration data.

Use Case: XML is readable.

Dependencies: --

Supporting Material: --

⌋()

5.2.2.6 [SRS_BSW_00453] BSW Modules shall be harmonized

⌈
Type: Valid

Description: If an SWS of a BSW module is allowed to be linked to more than one
implementation of another BSW module into an AUTOSAR binary image,
then all involved SWS’s shall ensure that all externally visible C identifiers
(i.e. types, variables, macros, functions, etc) are defined such that no
conflicts can arise for surrounding BSW modules using these multiple
implementations at compile time and that no ambiguity exists at link time.

Rationale: If the rule is not followed, systems with multiple implementations of one BSW
Module will mostly get an error at compile time or link time.

Use Case: In CAN Driver there are 2 type definitions
i) Can_IdType
ii) Can_PduType
which are used in CanIf.
Can_IdType can be uint16 or uint32 type.

If there are 2 CAN drivers implemented in one Autosar system by two
different vendors and both implementations defines Can_IdType differently,
then it will lead to compilation / linking failure in the system.
Hence it should be made sure that there are no ambiguities.

Dependencies: [SRS_BSW_00456]

Supporting Material: --

⌋(RS_BRF_01016)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

47 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.2.2.7 [SRS_BSW_00456] A Header file shall be defined in order to harmonize
BSW Modules

⌈
Type: Draft

Description: If more than one implementation of a BSW Module is linked into an Autosar
system which results in conflict of externally visible C Identifiers (i.e.
types, variables, macros etc), a common header file may define all the
conflicting identifiers.
 The header file shall be named as
 <Module Abbreviation>_GeneralTypes.h
 Module Abbreviation is defined in Basic Software Module List. It refers
 to BSW Module which has more than one implementation.

Rationale: BSW systems with multiple implementations of one BSW Module will mostly
get an error at compile time or link time, if they are not harmonized.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01016)

5.2.2.8 [SRS_BSW_00457] Callback functions of Application software
components shall be invoked by the Basis SW

⌈
Type: Valid

Description: An AUTOSAR Basic Software module shall only invoke the callback
functions of Application Software Components and/or Sensor/Actuator SW-
Components through the Client Server communication of the RTE.
CDDs are not affected by this requirement.

Rationale: RTE shall not be bypassed if AUTOSAR Basic Software Modules are calling
callbacks provided by Application SW-Cs and/or Sensor/Actuator SW-Cs,
because only these components are restricted to having only AUTOSAR
interfaces. This is to support memory partitioning.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01064)

5.2.2.9 [SRS_BSW_00479] Interfaces for handling request from external
devices

⌈
Type: Valid

Description: Drivers for external devices shall use and offer the same interfaces as
internal drivers when calling or being called by the interface module.

Rationale: In general, the driver for external devices shall follow the same SWS
specification. For external drivers, when calling Det, use the same module ID
as the internal drivers.

Use Case: System which uses an internal and an independent external HW Wdg
module.

Dependencies: --

Supporting Material: [SRS_BSW_00005]

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

48 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

⌋(RS_BRF_01056)

5.2.2.10 [SRS_BSW_00483] BSW Modules shall handle buffer alignments
internally

⌈
Type: Valid

Description: BSW modules which require certain alignment of buffers shall not impose
any additional requirements on the users. I.e. Buffers passed as arguments
shall be treated as specified by their base types; alignment results from base
type and platform specifics.

Rationale: Avoid conflicting alignment requirements within software stack. It shall be
possible to allocate RAM buffers without the need to consider alignment
requirements throughout the software stack.

Use Case: Interoperability of components; avoid "hidden" restrictions in API usage
(imposing stricter alignments limits the value range for pointer parameters).
Especially drivers shall hide HW/peripheral's alignment requirements from
upper layers; they shall not map a HW's/peripheral's alignment requirements
to data buffers, which would result in propagating them to upper layers.

Dependencies: --

Supporting Material: --

⌋ (RS_BRF_01056)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

49 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.2.3 Software Module Design Requirements

5.2.3.1 Software quality

 [SRS_BSW_00007] All Basic SW Modules written in C language shall 5.2.3.1.1
conform to the MISRA C 2012 Standard.

⌈
Type: Valid

Description: MISRA C describes programming rules for the C programming language and
a process to implement and follow these rules.

Only in technically reasonable, exceptional cases MISRA violations are
permissible. Such violations against MISRA rules shall be clearly identified
and documented within comments in the C source code (including rationale
why MISRA rule is violated).

Examples of MISRA rules violations shall look like:

/* MR12 RULE XX VIOLATION: Reason */
/* MR12 DIR XX VIOLATION: Reason */

Rationale: Portability, maintainability, error avoidance, safety

Use Case: Software for safety relevant systems

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056)

5.2.3.2 Naming conventions

 [SRS_BSW_00300] All AUTOSAR Basic Software Modules shall be 5.2.3.2.1
identified by an unambiguous name

⌈
Type: Draft

Description: All AUTOSAR Basic Software Modules shall be identified by an
unambiguous name. The module name is always part of related files.

Convention for module related files:

- <Module name>_*.*
- Spelling of module name: First letter of each word upper case,

consecutive letters lower case
- Module name: 2..8 letters, derived from WP Architecture SW Module

List
- Wildcard replacement according to module related file set (either

basic and recommended)

Rationale: The module name serves as an identifier and classification mechanism in

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

50 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

order to group module related files.

Use Case: Example: Eep.c, Eep.h

Dependencies: --

Supporting Material: WP Architecture SW Module List (Module Abbreviations)

⌋(RS_BRF_01024)

 [SRS_BSW_00413] An index-based accessing of the instances of BSW 5.2.3.2.2
modules shall be done

⌈
Type: Valid

Description: If instances of BSW modules are characterized by:
- same vendor and
- same functionality and
- same hardware device
they shall be accessed index based.

Rationale: --

Use Case: --

Dependencies: [SRS_BSW_00347] Naming separation of drivers

Supporting Material: --

⌋()

 [SRS_BSW_00347] A Naming seperation of different instances of BSW 5.2.3.2.3
drivers shall be in place

⌈
Type: Valid

Description: Driver modules shall be named according to the following rules (only for
implementation, not for the software specification):

 First the module name has to be listed:
<Module Abbreviation>

 After that the vendor Id defined in the AUTOSAR vendor list has to be
given
<Vendor Id>

 At last a vendor specific name (the vendor API infix) follows
<Vendor API infix>

 Only for API names, last name shall be
 <API Service name>

 All parts shall be separated by underscores “_”.

 This naming extension applies to the following externally visible
elements of the module:

o File names
o API names
o Published parameters
o Memory allocation keyword

 For API names, <Vendor specific name> should be followed by "_"
and then <API Service Name>.

 For the creation of file names, no trailing underscore shall be
added.

 For Published parameters and Memory allocation keyword names,
<Vendor Specific name> shall have a trailing underscores.

Rationale: Avoidance of name clashes

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

51 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Use Case: Examples:

 EEPROM (LD): Eep_21_LDExtEepDriver.c

 Published parameters: EEP_21_LDEXT_SW_MAJOR_VERSION

 API: Eep_21_LDExt_Init()

Dependencies: --

Supporting Material: [DOC_MOD_LIST] List of Basic Software Modules (Module Abbreviations)

⌋(RS_BRF_01024)

 [SRS_BSW_00441] Naming convention for type, macro and function 5.2.3.2.4

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall label enumeration literals and
#defines according to the following scheme:

 Composition: <Module Abbreviation>_<Specific name>

 <Module Abbreviation> shall be written in UPPERCASE

 <Specific name> shall be written in UPPERCASE

 <Module Abbreviation> and <Specific name> shall be separated by
underscore

 If <Specific name> consists of several words, they shall be
separated by underscore

The # defines E_OK and E_NOT_OK are exceptions to this.

Rationale: Enhance readability and unique classification of enumeration literals and
#defines identifiers.

Use Case: Example #define:
#define EEP_PARAM_CONFIG

#define EEP_SIZE

Example enumeration literals:

typedef enum

{

 EEP_DRA_CONFIG,

 EEP_ARE,

 EEP_EV

} Eep_NotificationType;

Dependencies: [SRS_BSW_00331] [SRS_BSW_00327] [SRS_BSW_00335]

Supporting Material: --

⌋(RS_BRF_01024)

 [SRS_BSW_00305] Data types naming convention 5.2.3.2.5

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall label data types according to
the following scheme:

 Composition of type: <Module name>_<Type name>Type

 Only one underscore between module name and type name

 < Type name > shall be written in UpperCamelCase.
Note:

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

52 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Basic AUTOSAR types ([SRS_BSW_00304]) need not support the scheme
defined here.

Rationale: Enhance readability and unique classification of data type identifiers.

Use Case:

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01024)

 [SRS_BSW_00307] Global variables naming convention 5.2.3.2.6

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall label global variables
according to the following scheme:

 Composition of name: <Module name>_<Variable name>

 Only one underscore between module name and variable name

 Spelling of name: First letter of each word upper case, consecutive
letters lower case

Rationale: Enhance readability and unique classification of global variables.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01024)

 [SRS_BSW_00310] API naming convention 5.2.3.2.7

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall implement an API based on the
following naming rules:

- Composition of API: <Module name>_ServiceName()

<Mip>_<Sn>

- Where <Mip> is the Module implementation prefix and <Sn> is the

API Service name
- Module name: 2..8 letters, derived from WP Architecture SW Module

List
- Only one underscore between module name and service name
- Spelling of API: First letter of each word upper case, consecutive

letters lower case

Rationale: Avoidance of name clashes, uniform AUTOSAR API;
The API shows to which module it belongs

Use Case: Can_TransmitFrame()

 Nm_RequestBusCommunication()

 Adc_Init()

 Eep_Write()

 Nvm_GetState()

Dependencies: --

Supporting Material: WP Architecture SW Module List (Module Abbreviations)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

53 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

⌋(RS_BRF_01024)

 [SRS_BSW_00373] The main processing function of each AUTOSAR 5.2.3.2.8
Basic Software Module shall be named according the defined
convention

⌈
Type: Valid

Description: The main processing function of each AUTOSAR Basic Software Module
shall be named according to the following rule:

<Module name>_MainFunction_<module specific extension> ()

Module specific extension shall be used to distinguish between multiple main
processing functions of one module (e.g. Cluster index, Rx /Tx …). If only
one main processing function exists in one module no module specific
extension is required.
It is responsibility of the modules to either define one main processing
function and handle all the processing internally or define multiple main
processing functions with appropriate module specific extensions.
This depends on Module requirements.

Main processing functions shall have no parameters and no return value.

Main processing functions shall not be re-entrant.

Rationale: Many modules have one or more functions that have to be called cyclically
(e.g. within an OS Task) and that do the main work of the module. These
shall have unique names.

Use Case: Possible main processing function of EEPROM driver:
void Eep_MainFunction(void)

Possible main processing functions of FlexRay driver:
void Fr_MainFunction_TxClst1(void)

void Fr_MainFunction_TxClst2(void)

void Fr_MainFunction_RxClst1(void)

void Fr_MainFunction_RxClst2(void)

Please Note: The Use case is not recommendation for the particular Module,
it just illustrates Main processing function possibilities.

Dependencies:

Supporting Material: <Module name> shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 charactersWP Architecture SW
Module List (Module Abbreviations))

⌋(RS_BRF_01024)

 [SRS_BSW_00327] Error values naming convention 5.2.3.2.9

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall apply the following naming
rules for all error values:

- Error values shall have only CAPITAL LETTERS
- Naming convention: <MODULENAME>_E_<ERRORNAME>
- If <ERRORNAME> consists of several words, they shall be

separated by underscores

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

54 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Rationale: Avoidance of name clashes, uniform AUTOSAR error values;
The error shows to which module it belongs.

Use Case: The EEPROM driver has the following error values:

 EEP_E_BUSY

 EEP_E_PARAM_ADDRESS

 EEP_E_PARAM_LENGTH

 EEP_E_WRITE_FAILED

Dependencies: [SRS_BSW_00331] [SRS_BSW_00369]

Supporting Material: < MODULENAME > shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

⌋(RS_BRF_01024)

 [SRS_BSW_00335] Status values naming convention 5.2.3.2.10

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall apply the following naming
rules for status values that are visible outside of the module:

- Status values shall have only CAPITAL LETTERS
- If <STATUSNAME> consists of several words, they shall be

separated by underscores

Rationale: Avoidance of name clashes, uniform AUTOSAR status values;
The status value shows to which module it belongs.

Use Case: The Eeprom driver has the following status values:

 EEP_UNINIT

 EEP_IDLE

 EEP_BUSY

Dependencies: [SRS_BSW_00331] Separation of error and status values

Supporting Material: < MODULENAME > shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

⌋(RS_BRF_01024)

 [SRS_BSW_00350] All AUTOSAR Basic Software Modules shall 5.2.3.2.11
allow the enabling/disabling of detection and reporting of
development errors.

⌈
Type: Draft

Description: All AUTOSAR Basic Software Modules shall allow the enabling/disabling of
detection and reporting of development errors. It shall be configurable and
the default value of the configuration shall be that those error type is
disabled.

Rationale: Provide module wide debug instrumentation facilities. Each defined keyword
has to be properly documented.

Use Case: Example:

In Eep.h:
#define EEP_DEV_ERROR_DETECT STD_ON /* detection module

wide enabled */

…

In source Eep.c:
#include "Eep.h"

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

55 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

…

#if (EEP_DEV_ERROR_DETECT == STD_ON)

 ..

 .. development errors to be detected

 ..

#endif /* EEP_DEV_ERROR_DETECT */

Dependencies: [SRS_BSW_00337],

Supporting Material: < MODULENAME > shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

⌋(RS_BRF_01028)

 [SRS_BSW_00408] All AUTOSAR Basic Software Modules 5.2.3.2.12
configuration parameters shall be named according to a specific
naming rule

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules configuration parameters shall be
named according to the following naming rules:

- Naming convention: <Module Abbreviation><ParameterName>

< Module Abbreviation > is the prefix derived from AUTOSAR_WP
Architecture_BasicSoftwareModules.xls.

< ParameterName > may consist of several words which may or may not be
separated by underscore.

The configuration parameter name can either be in UpperCamelCase or
Uppercase

Rationale: Avoidance of name clashes, uniform AUTOSAR configuration naming.

Use Case: Example: CanIfTxConfirmation

 PDUR_E_INIT_FAILED

Dependencies: --

Supporting Material: < Module Abbreviation > shall be derived from WP1.1.2 “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

⌋(RS_BRF_01028)

 [SRS_BSW_00410] Compiler switches shall have defined values 5.2.3.2.13

⌈
Type: Valid

Description: Compiler switches shall be compared with defined values. Simple checks if a
compiler switch is defined shall not be used.
In general the symbols which switch functionality on or off are defined in
Std_Types.h

Rationale: C-Language allows asking for defined symbols. This shall be avoided.

Use Case: Example:

Do :
#if (EEP_DEV_ERROR_DETECT == STD_ON)

..

Don’t:
#ifdef EEP_DEV_ERROR_DETECT

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

56 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

..

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01616,RS_BRF_01024)

 [SRS_BSW_00411] All AUTOSAR Basic Software Modules shall 5.2.3.2.14
apply a naming rule for enabling/disabling the existence of the API

⌈
Type: Draft

Description: All AUTOSAR Basic Software Modules shall apply the following naming rule
for enabling/disabling the existence of the API. It shall be configurable and
the default value of the configuration shall be that this API is not available.

Rationale: Enable/Disable the reading out of version information

Use Case: Example:

In Eep.h:
#define EEP_VERSION_INFO_API STD_ON /*API enabled */

…

Dependencies: [SRS_BSW_00407]

Supporting Material: < MODULENAME > shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

⌋(RS_BRF_01028)

 [SRS_BSW_00463] Naming convention of callout prototypes 5.2.3.2.15

⌈
Type: Valid

Description: Each callout function shall be mapped to its own memory section and
memory class. These memory classes will then be mapped to the actually
implemented memory classes at integration time.

The following naming convention shall be used:

--- Start section definition: ---

#define MSN_START_SEC_CBN_CODE

--- Stop section definition: ---

#define MSN_STOP_SEC_CBN_CODE

--- Function prototype definition: ---

FUNC(void, MSN_CBN_CODE) MSN_Cbn (void);

Where:
 MSN: Module Short Name as officially defined in AUTOSAR (see
supporting material).

 CBN: Call Back Name, which shall have the same spelling of the
Callback name including module reference but using only capital letters.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

57 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

 Cbn: Callback name using the conventional Camel Case notation for
API names.

Rationale: The memory segment used for a callout is not known to the module
developer. The integrator needs the freedom to map callouts independently
from the module's design.

Use Case: In order to ensure uniqueness, it is recommended to use the function´s
name to derive the name of the memory section and the name of the
memory class.

For example:

#define COM_START_SEC_COM_SOMECALLOUT_CODE
#include “Com_MemMap.h”
FUNC(void, COM_SOMECALLOUT_CODE) Com_SomeCallout(void);
#define COM_STOP_SEC_COM_SOMECALLOUT_CODE
#include “Com_MemMap.h”

Dependencies: --

Supporting Material: “List of Basic Software Modules”, UID [150]

⌋(RS_BRF_01024)

 [SRS_BSW_00464] File names shall be considered case sensitive 5.2.3.2.16
regardless of the filesystem in which they are used

⌈
Type: Draft

Description: File names shall be considered case sensitive regardless of the filesystem in
which they are used.

Rationale: Some file systems do not distinguish between file names spelled with the
same letters but with different cases. Allowing such variability in the
definitions can cause ambiguities.

Use Case: If different implementers implement modules using same names with
different cases, the compile and link process shall have unpredictable results
depending on the file system on which they are executed, leading eventually
to errors (source or object file not found).

Example of wrong implementation:

the file name "ModuleAbc.h" is defined in a SWS;
"moduleabc.h" and "ModuleAbc.h" are implemented by two different
implementers and then included in modules developed by different
implementers.

If the file “moduleabc” is included with the directive #include <ModuleAbc.h”
on a case sensitive file system, the file won´t be found.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01024)

 [SRS_BSW_00465] It shall not be allowed to name any two files so 5.2.3.2.17
that they only differ by the cases of their letters

⌈
Type: Draft

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

58 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Description: It shall not be allowed to name any two files so that they only differ by the
cases of their letters.

Rationale: Problems deriving potentially ambiguous name definitons must be avoided
already in the specification phase

Use Case: In a SWS the include files:

RTE.h
rte.h

are defined and they are specified to contain different information.
At compile time a compiler running in a file system which does not
distinguish between cases shall include one or the other in a non predictable
order.

Dependencies: SRS_BSW_00464

Supporting Material: --

⌋(RS_BRF_01024)

 [SRS_BSW_00480] NullPointer Errors shall follow a naming rule 5.2.3.2.18

⌈

Type: Valid

Description: NULL pointer error naming convention. The name for the development errors
for NULL pointer violations is <MIP>_E_PARAM_POINTER.

Rationale: Harmonization of standard

Use Case: --

Dependencies: --

Supporting Material: --

⌋ (RS_BRF_01024)

 [SRS_BSW_00487] Errors for module initialization shall follow a 5.2.3.2.19
naming rule

⌈

Type: Valid

Description: The name for the development errors for uninitialized modules is
<MIP>_E_UNINIT.

Rationale: Harmonization of standard

Use Case:

Dependencies: --

Supporting Material: --

⌋ (RS_BRF_01024)

 [SRS_BSW_00481] Invalid configuration set selection errors shall 5.2.3.2.20
follow a naming rule

⌈

Type: Valid

Description: Invalid configuration set selection error naming convention
The name for the Invalid configuration set selection errors

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

59 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

<MIP>_E_INIT_FAILED.

Rationale: Harmonization of standard

Use Case: --

Dependencies: --

Supporting Material: --

⌋ (RS_BRF_01024)

 [SRS_BSW_00482] Get Version Informationfunction shall follow a 5.2.3.2.21
naming rule

⌈

Type: Valid

Description: The Get Version Information API name follows SRS_BSW_00310 and has
GetVersionInfo as Service name.
Example: void Eep_21_LDExt_GetVersionInfo (
 Std_VersionInfoType *versioninfo

Rationale: Harmonization of standard

Use Case: --

Dependencies: --

Supporting Material: --

⌋ (RS_BRF_01024)

5.2.3.3 Module file structure

 [SRS_BSW_00346] All AUTOSAR Basic Software Modules shall 5.2.3.3.1
provide at least a basic set of module files

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall provide a standardized set of
unique header files which separates source code from configuration. The
exact structure shall be defined in SWS_BSW_General including the naming
convention using the module name.

Rationale: Source code and configuration are strictly separated. User defined
configurations will not imply a change of the original source code. Other
BSW Modules which need to access configuration data can do this without
need for source code change.

Use Case: Separate post built configuration data from precompile configuration data,
source code from configuration data in general etc..

Dependencies: [SRS_BSW_00345], [SRS_BSW_00347], [SRS_BSW_00314],
[SRS_BSW_00419]

Supporting Material: < Module name > shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

⌋(RS_BRF_02080,RS_BRF_01024)

 [SRS_BSW_00314] All internal driver modules shall separate the 5.2.3.3.2
interrupt frame definition from the service routine

⌈

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

60 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Type: Valid

Description: All internal driver modules shall separate the interrupt frame definition from
the service routine in the following way:

 <Module name>_Irq.c: implementation of interrupt frame

 <Module name>.c: implementation of service routine called from
interrupt frame

Rationale: Flexibility using different compilers and/or different OS integrations

Use Case: The interrupt could be realized as ISR frame of the operating system or
implemented directly without changing the driver code.

The service routine can be called directly during module test without the
need of causing an interrupt.

Dependencies: --

Supporting Material: < Module name > shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

⌋(RS_BRF_01144)

 [SRS_BSW_00447] Standardizing Include file structure of BSW 5.2.3.3.3
Modules Implementing Autosar Service

⌈
Type: Draft

Description: I. A Basic Software Module implementing an Autosar Service shall
include its Application Types Header file in the Module Header File.

II. Data Types used in Standard Interface and Standard AUTOSAR
Interface shall only be defined in RTE Types Header file only.

III. A Basic Software Module implementing an Autosar Service shall
include Rte_<ModuleShortName>.h as AUTOSAR Service
Application Header File, providing the interface for interaction with
the RTE.

IV. A Basic Software Module implementing an Autosar Service shall
include its AUTOSAR Service Application Header File in module
files, which are using RTE interfaces. The Application Header file
shall not be included in module files, which are in included directly or
indirectly by other modules.

Data Type NvM_RequestResultType used in BSW C-API
"NvM_GetErrorStatus” and in the AUTOSAR Interface "NvMService"
operation GetErrorStatus (OUT NvM_RequestResultType
RequestResultPtr); is same.

The proper types shall be generated in Rte_Type.h.
Rte_Type.h shall be included in BSW module header file via
Rte_”Service”_Type.h
Rte_Type.h shall be included in SW-C module header file via
Rte_”Swc”_Type.h

Rationale: Standardizing Include Header file structure will allow common data types to
be defined in RTE Types header files. This will avoid double and inconsistent
definition of data types in both BSW and Software Component. This will also
avoid type casts if SW-Cs are communicating with Autosar Services.

Use Case:
All BSW Services which are called by Application SW-C and share data
types. E.g.
Asynchronous NvRAM Block request result returned by the operation
GetErrorStatus and API service NvM_GetErrorStatus.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

61 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Dependencies: --

Supporting Material: Please see the Figure “Relationships between RTE Header Files” and
related information in Chapter “RTE Modules” of RTE_SWS

⌋()

5.2.3.4 Standard header files

 [SRS_BSW_00348] All AUTOSAR standard types and constants shall 5.2.3.4.1
be placed and organized in a standard type header file

⌈
Type: Draft

Description: All AUTOSAR standard types and constants shall be placed and organized
in a standard type header file.
Standard type header file naming convention: Std_Types.h
This standard type header file shall

 include the Platform specific type header (Platform_Types.h)

 include the compiler specific language extension header
(Compiler.h)

 define the type Std_ReturnType

 define values for E_OK and E_NOT_OK

 define values for STD_ON, STD_OFF,STD_HIGH, STD_LOW,
STD_ACTIVE, STD_IDLE

Rationale: Provide uniform framework wide access to standard types to be used by all
modules.

Use Case: Each module that uses AUTOSAR integer data types and/or the standard
return type shall include the file Std_Types.h.

Dependencies: [SRS_BSW_00357], [SRS_BSW_00353]

Supporting Material: Important note for implementation of this header file:
Because E_OK is already defined within ISO 17356-3, E_OK has to be
checked for being already defined:
/* for ISO 17356-3 compliance this typedef has been

added */

#ifndef STATUSTYPEDEFINED

#define STATUSTYPEDEFINED

typedef unsigned char StatusType;

#define E_OK 0

#endif

⌋(RS_BRF_01024)

 [SRS_BSW_00353] All integer type definitions of target and compiler 5.2.3.4.2
specific scope shall be placed and organized in a single type header

⌈
Type: Valid

Description: All integer type definitions of target and compiler specific scope shall be
placed and organized in a single type header.
Name of platform types header file: Platform_Types.h

Rationale: Separate compiler and µC-specific integer types from standard types.

Use Case: Changing the microcontroller and/or compiler shall only affect a limited
number of files.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

62 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Dependencies: [SRS_BSW_00308], [SRS_BSW_00348]

Supporting Material: --

⌋(RS_BRF_02080)

 [SRS_BSW_00361] All mappings of not standardized keywords of 5.2.3.4.3
compiler specific scope shall be placed and organized in a compiler
specific type and keyword header

⌈
Type: Valid

Description: All mappings of not standardized keywords of compiler specific scope shall
be placed and organized in a compiler specific type and keyword header.

Name of compiler specific type/keyword header file: Compiler.h

Rationale: Provision of a compiler specific header containing proprietary pre-processor
directives as well as wrapper macros for all specialized language extensions.

Use Case: Different compilers can require extended keywords to be placed in different
places

It is not possible to accommodate the different implementations with inline
macros, so a function-like macro style is adopted instead. This macro wraps
the return type of the function and therefore permits additions to made, such
as __far__, either before or after the return type.

Dependencies: [SRS_BSW_00306], [SRS_BSW_00348]

Supporting Material: --

⌋(RS_BRF_02080)

5.2.3.5 Module Design

 [SRS_BSW_00301] All AUTOSAR Basic Software Modules shall only 5.2.3.5.1
import the necessary information

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall only import the necessary
information (i.e. header files) that is required to fulfill the modules functional
requirements.

Rationale: Promote defensive module layout. Modules shall not import functionality that
could be misused.
Shorten compile times.

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

63 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

 [SRS_BSW_00302] All AUTOSAR Basic Software Modules shall only 5.2.3.5.2
export information needed by other modules

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall export only that kind of
information in their correspondent header-files explicitly needed by other
modules.

Rationale: Prevent other modules accessing functionality and data that is ‘none of their
business’.

Use Case: The NVRAM Manager shall not know all processor registers because
someone has included the processor register file in another header file used
by the NVRAM manager.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02024)

 [SRS_BSW_00328] All AUTOSAR Basic Software Modules shall avoid 5.2.3.5.3
the duplication of code

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules should avoid the duplication of code.

Rationale: Avoid bugs during maintenance

Use Case: A module contains 4 code segments which are equal. During maintenance of
the module 3 of them have been updated, 1 has been forgotten BUG.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02072,RS_BRF_02112,RS_BRF_02032)

 [SRS_BSW_00312] Shared code shall be reentrant 5.2.3.5.4

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules implementing shared code shall
ensure reentrancy if code is exposed to preemptive or parallel environments.
For multi-core systems, reentrancy shall be ensured for unrestricted
concurrent execution of that service on several cores (concurrency safety).

Rationale: Shared code eases functional composition, reusability, code size reduction
and maintainability. As a drawback, shared code shall be implemented
reentrant if it is used in preemptive environments or on multiple partitions in
parallel. Please note that an implementation that is reentrant on single core
systems might not be concurrency safe when used in a Multi-Core
environment.

Use Case: A subroutine or function is reentrant if a single copy of the routine can be
called from several task contexts simultaneously without conflict. Use the
following reentrancy techniques:

- Avoid use of static and/or global variables
- Guard static and/or global variables using blocking mechanisms
- Use dynamic stack variables

Dependencies: --

Supporting Material: --

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

64 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

⌋()

 [SRS_BSW_00006] The source code of software modules above the 5.2.3.5.5
µC Abstraction Layer (MCAL) shall not be processor and compiler
dependent.

⌈
Type: Valid

Description: Those software modules have to be developed once and shall be compilable
for all processor platforms without any changes. Any necessary processor or
compiler specific instructions (e.g. memory locators, pragmas, use of atomic
bit manipulations etc.) have to be exported to macros and include files.

Rationale: Minimize number of variants and development effort

Use Case: NVRAM Manager, Network Management, …

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01000)

 [SRS_BSW_00439] Enable BSW modules to handle interrupts 5.2.3.5.6

⌈
Type: Valid

Description: Autosar shall allow BSW modules to define and handle Interrupts.

Rationale: --

Use Case: In the case where the entire driver is delivered as source this isn’t a problem.

In the case where the MCAL BSW module is delivered as object code, the
interrupt handler could be written as a pair of small stubs (a cat1 stub and a
cat2 stub) that are delivered as source, compiled as necessary, and simply call
the main handler.

Dependencies: --

Supporting Material: --

⌋()

 [SRS_BSW_00448] Module SWS shall not contain requirements from 5.2.3.5.7
Other Modules

⌈
Type: Valid

Description: It shall not be allowed for a module SWS to add requirements from Other
Modules
• If a requirement is missing, then raise an Rfc, possibly resulting in
 a valid requirement within the module.
• For this validrequirement give reference of the document where original
 requirement resides.

Rationale: Increase consistency between SWS documents, ease change management
of documents.

Use Case: CAN Driver SWS using requirements from MCU Driver SRS.
In this case there shall be a validCAN requirement in SRS which refers to
the particular requirement in MCU Driver SRS

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

65 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Dependencies: --

Supporting Material: --

⌋()

 [SRS_BSW_00449] BSW Service APIs used by Autosar Application 5.2.3.5.8
Software shall return a Std_ReturnType

⌈
Type: Valid

Description: Every BSW Service API called by application software via RTE shall return a
Std_ReturnType, return value.
Refer to the Port Interface Section of the respective module, to
confirm if the APIs are accessed by the RTE.

Rationale: RTE call of BSW service always expect a return value of Std_ReturnType

Use Case: RTE always expects return type of Std_ReturnType for the BSW Service API
Call, any other return type or void shall cause incompatibility between the
RTE and BSW.

Dependencies: --

Supporting Material: --

⌋()

5.2.3.6 Types and keywords

 [SRS_BSW_00357] For success/failure of an API call a standard return 5.2.3.6.1
type shall be defined

⌈
Type: Valid

Description: For success/failure of an API call, a return type is defined in Std_Types.h
which indicates the success or failure of the call.

Rationale: Enforces usage of already defined types instead of attempting to override
existing ones.
If different success states can occur and they are of interest for the caller
then different return values need to be defined.

Use Case:

Dependencies: [SRS_BSW_00348], [SRS_BSW_00377],[SRS_BSW_00359]

Supporting Material: --

⌋(RS_BRF_01024)

 [SRS_BSW_00377] A Basic Software Module can return a module 5.2.3.6.2
specific types

⌈
Type: Valid

Description: A Basic Software Module can return a module specifictypes.

Rationale: Example for possibility 1:
uint8 Can_Write(…)

return values: E_OK (0), CAN_BUSY (1), E_OK is taken from Std_Types.h,

CAN_BUSY is #defines in can.h.

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

66 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Note: no strong type checking possible because return type is uint8 and

values are only #defines. E_OK can be used.

Example for possibility 2:
Can_ReturnType Can_Write(…)

Return values: CAN_OK, CAN_BUSY,

Can_ReturnType is an enumeration type in can.h:
typedef enum

{

 CAN_OK = 0,

 CAN_BUSY,

} Can_ReturnType;

Note: strong type checking possible because only the values of the

enumeration may be assigned to variables of type Can_ReturnType. E_OK

cannot be used here!

Use Case:

Dependencies: [SRS_BSW_00357]

Supporting Material: --

⌋()

 [SRS_BSW_00304] All AUTOSAR Basic Software Modules shall use 5.2.3.6.3
the following data types instead of native C data types

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall not use the native C data types.

Rationale: MISRA-C compliance.

The usage of native C-data types (char, int, short, long) is

forbidden as size and sign are not unambiguously defined and therefore are
platform specific. Portability, reusability

Use Case: The ‘_least’ data types can be chosen if optimal performance is required
(e.g. for loop counters).

uint8_least … uint32_least could all be 32 bit on a 32 bit platform.

Dependencies: [SRS_BSW_00353]

Supporting Material: [SRS_BSW_00007] MISRA C

⌋()

 [SRS_BSW_00378] AUTOSAR shall provide a boolean type 5.2.3.6.4

⌈
Type: Draft

Description: For simple logical values and for API return values (if
applicable) AUTOSAR shall provide a boolean type.
The only allowed operations shall be: assignment, return, test for quality.

Rationale: Repeating requests of several WPs to define a boolean data type.

Use Case: API return value. Example:
In file Eep.h:
#include "Std_Types.h" /* this automatically includes

Platform_Types.h */

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

67 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

boolean Eep_Busy(void) {…}

In calling module:
if (Eep_Busy() == FALSE) {…}

Dependencies: --

Supporting Material: Compiler vendors that provide a boolean data type that cannot be disabled
have to change their compiler (i.e. make it ANSI C compliant).

⌋()

 [SRS_BSW_00306] AUTOSAR Basic Software Modules shall be 5.2.3.6.5
compiler and platform independent

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall not use compiler or platform
specific keywords directly.

Rationale: Direct use of not standardized keywords like "_near", "_far", "_pascal" in

the frameworks source code will create compiler and platform dependencies
that must strictly be avoided. If no precautions were made, portability and
reusability of influenced code is deteriorated and effective release
management is costly and hard to maintain.

Use Case:

Dependencies: [SRS_BSW_00361]

Supporting Material: --

⌋()

5.2.3.7 Global data

 [SRS_BSW_00308] AUTOSAR Basic Software Modules shall not define 5.2.3.7.1
global data in their header files, but in the C file

⌈
Type: Valid

Description: AUTOSAR Basic Software Modules shall not define global data in their
header files.
If global variables have to be used, the definition shall take place in the C
file.

Rationale: Avoid multiple definition and uncontrolled spreading of global data, limit
visibility of global variables.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

68 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

 [SRS_BSW_00309] All AUTOSAR Basic Software Modules shall 5.2.3.7.2
indicate all global data with read-only purposes by explicitly assigning
the const keyword

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules shall indicate all global data with
read-only purposes by explicitly assigning the const keyword.

Rationale: In principle, all global data shall be avoided due to extra blocking efforts
when used in preemptive runtime environments. Unforeseen effects are to
occur if no precautions were made. If data is intended to serve as constant
data, global exposure is permitted only if data is explicitly declared read-only
using the const qualifier.

Use Case: const uint8 MaxPayload = 0x18;

Dependencies: --

Supporting Material: --

⌋()

5.2.3.8 Interface and API

 [SRS_BSW_00484] Input parameters of scalar and enum types shall 5.2.3.8.1
be passed as a value.

⌈
Type: Valid

Description: All input parameters of scalar or enum type shall be passed as a value..

Rationale:

Use Case: For example a function named <Mip>_SomeFunction with a return type of
Std_ReturnType and a single parameter named SomeParameter of type
uint8 is defined with the following signature:

Std_ReturnType <Mip>_SomeFunction(uint8 SomeParameter);

Dependencies:

Supporting Material: --

⌋(RS_BRF_01056)

 [SRS_BSW_00485] Input parameters of structure type shall be passed 5.2.3.8.2
as a reference to a constant structure

⌈
Type: Valid

Description: All input parameters of structure type shall be passed as a reference
constant structure

Rationale: Passing input parameters of structure type by value would result in additional
run-time overhead due to efforts for copying the whole structure.

Use Case: For example a function named <Mip>_SomeFunction with a return type of
Std_ReturnType and a single parameter named SomeParameter of type
SomeStructure (where SomeStructure is a struct) is defined with the
following signature:

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

69 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Std_ReturnType <Mip>_SomeFunction(P2CONST(SomeStructure,
AUTOMATIC, <MIP>_APPL_DATA) SomeParameter);

Dependencies:

Supporting Material: --

⌋ (RS_BRF_01056)

 [SRS_BSW_00486] Input parameters of array type shall be passed as a 5.2.3.8.3
reference to the constant array base type

⌈
Type: Valid

Description: All input parameters of array type shall be passed as a reference to the
constant array base type

Rationale: This effectively matches the behavior specified in the ISO-C:90 namely that
a "declaration of a parameter as 'array of type' shall be adjusted to 'qualified
pointer to
type'".

Use Case: For example a function named <Mip>_SomeFunction with a return type of
Std_ReturnType and a single parameter named SomeParameter of type
array of uint8 is defined with the following signature:

Std_ReturnType <Mip>_SomeFunction(P2CONST(uint8, AUTOMATIC,
<MIP>_APPL_DATA) SomeParameter);

Dependencies:

Supporting Material: --

⌋(RS_BRF_01056)

 [SRS_BSW_00371] The passing of function pointers as API parameter 5.2.3.8.4
is forbidden for all AUTOSAR Basic Software Modules

⌈
Type: Valid

Description: The passing of function pointers as API parameter is forbidden for all
AUTOSAR Basic Software Modules.

Rationale: MISRA C

 Protected Operating System compatibility

 Callbacks shall be defined statically at compile time, not during
runtime

Use Case: No, forbidden!!

Dependencies: [SRS_BSW_00007]

Supporting Material: --

⌋(RS_BRF_01056)

 [SRS_BSW_00358] The return type of init() functions implemented 5.2.3.8.5

by AUTOSAR Basic Software Modules shall be void

⌈
Type: Valid

Description: The return type of init() functions implemented by AUTOSAR Basic

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

70 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Software Modules shall be void.

Rationale: Errors in initialization data shall be detected during configuration time (e.g.
by configuration tool).

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056)

 [SRS_BSW_00414] Init functions shall have a pointer to a 5.2.3.8.6
configuration structure as single parameter

⌈
Type: Valid

Description: For post-build time configuration, or when multiple configuration sets are
available, the pointer to the base configuration structure (see
[SRS_BSW_00438]) shall be passed to the init function of the BSW module.
For pre-compile and link time configuration, when only one configuration set
is available, a NULL_PTR shall be passed for this parameter.

<Mip>_ConfigType
It shall be used for init function argument

Rationale: --

Use Case: Example:
void Eep_Init (const Eep_ConfigType *ConfigPtr)

Dependencies: [SRS_BSW_00101], [SRS_BSW_00358], [SRS_BSW_00400]

Supporting Material: --

⌋(RS_BRF_01056)

 [SRS_BSW_00359] All AUTOSAR Basic Software Modules callback 5.2.3.8.7
functions shall avoid return types other than void if possible

⌈
Type: Valid

Description: All AUTOSAR Basic Software Modules callback functions shall avoid return
types other than void if possible.
Callback functions routed to Software Components (SWCs) via the RTE
shall be typed by Std_ReturnType, not void. The caller of the callback
function shall consider the case that the environment (RTE) can return
infrastructure errors (refer SWS_Rte_02593) e.g. in case the servers'
partition is currently not available.
In case the callback is used as notification only, the caller can assume that
always E_OK is returned.

Rationale: Callbacks could be used for notifications.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056,RS_BRF_01064)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

71 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

 [SRS_BSW_00360] AUTOSAR Basic Software Modules callback 5.2.3.8.8
functions are allowed to have parameters

⌈
Type: Valid

Description: AUTOSAR Basic Software Modules callback functions are allowed to have
parameters.

Rationale: Enhance flexibility and scope of callback functionality.

Use Case: If callback functions do serve as simple triggers, no parameter is necessary
to be passed.

If additional data is to be passed to the caller within the callback scope, it
shall be possible to forward the contents of that data using a parameter.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056,RS_BRF_01064)

 [SRS_BSW_00440] The callback function invocation by the BSW 5.2.3.8.9
module shall follow the signature provided by RTE to invoke servers
via Rte_Call API

⌈
Type: Valid

Description: The callback function invocation by the BSW module, which is routed via
RTE shall follow the signature provided by RTE to invoke servers via
Rte_Call API.

Rationale: The callback function has to be to be compatible to Rte_Call
API of the RTE to enable a type safe configuration and implementation of
AUTOSAR Services and IO Hardware Abstraction. Instance pointers are in
Basic Software not allowed.

Use Case: --

Dependencies: [SRS_BSW_00359]

Supporting Material: --

⌋(RS_BRF_01056,RS_BRF_01064)

 [SRS_BSW_00330] It shall be allowed to use macros instead of 5.2.3.8.10
functions where source code is used and runtime is critical

⌈
Type: Valid

Description: It shall be allowed to use macros instead of functions where source code is
used and runtime is critical.
It shall be allowed to use inline functions for the same purpose. Inline
functions have the advantage (compared to macros) that the compiler can
do type checking of function parameters and return values.

Rationale: Improve runtime behavior.

Use Case: --

Dependencies: Macros as well as inline functions are only possible when source code is
delivered.

Supporting Material: Attention has to be paid within reentrant systems.
MISRA-C

⌋()

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

72 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

 [SRS_BSW_00331] All Basic Software Modules shall strictly 5.2.3.8.11
separate error and status information

⌈
Type: Valid

Description: All Basic Software Modules shall strictly separate error and status
information.

Rationale: Common API specification of AUTOSAR Basic Software Modules.

Use Case:

Dependencies: --

Supporting Material: [SRS_BSW_00327] Error values naming convention
[SRS_BSW_00335] Status values naming convention

⌋()

 [SRS_BSW_00462] All Standardized Autosar Interfaces shall have 5.2.3.8.12
unique requirement Id / number

⌈
Type: Valid

Description: All Standardized Autosar Interfaces shall have unique requirement Id /
number.
The purpose of the standardized AUTOSAR Interface definition is to provide
a standard which has to be considered by Software Components defining
Service ports.
Therefore the Port of the Software Component has to be at least compatible
to the definition in the related SWS document.

Rationale: The standardized Autosar Interfaces definitions are not binding without a
requirement Id.

Use Case: A SWC deviating from the Operation names will hinder the integration
process. This is because the Ports of the Service and the Ports of the
Service User (SWC) are NOT compatible.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056,RS_BRF_01024)

 [SRS_BSW_00454] An alternative interface without a parameter of 5.2.3.8.13
category DATA_REFERENCE shall be available.

⌈
Type: Valid

Description: In case an AUTOSAR interface supports a parameter of category
DATA_REFERENCE, an alternative interface without such a parameter shall
be available.

Rationale: A DATA_REFERENCE will show up as a pointer to data at the interface
level.
AUTOSAR BSW can not do a full safety check on the pointer because the
size of the data is not known. Therefore, if safety is an issue, the alternative
interface needs to be available and to be used.
In general, to avoid such problems, AUTOSAR Interfaces should not use a
DATA_REFERENCE.

Use Case: ECUs with safety requirements where an application with lower privileges
passes a DATA_REFERENCE to the BSW with higher privileges.

Dependencies: --

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

73 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Supporting Material: --

⌋(RS_BRF_01056)

 [SRS_BSW_00477] The functional interfaces of AUTOSAR BSW 5.2.3.8.14
modules shall be specified in C90

⌈

Type: Valid

Description: The specification of functional interfaces of AUTOSAR BSW modules shall
be specified in C90 according to ISO/IEC 9899:1990.
This implies that languages, which can interface to C90 can be used for
application programming.

Rationale: A useful reduction of programming languages to current programming
languages reduces the impacts on AUTOSAR definitions and specifications
due to logical and/or technical differences of different programming
languages.

Use Case: AUTOSAR implementation in C, C++.

Dependencies: --

Supporting Material: ISO/IEC 9899:1990 (C90)

⌋ (RS_BRF_01056)

5.2.3.9 Concurrency

 [SRS_BSW_00459] It shall be possible to concurrently execute a 5.2.3.9.1
service offered by a BSW module in different partitions

⌈
Type: Valid

Description: If a service supports concurrent execution in different partitions , the
implementation of the service shall ensure that concurrent handling of calls
is performed in a multi-core safe manner, i.e. several calls from different
partitions to the same service at the same time do not interfere with each
other.

This can be implemented, for example, by using exclusive areas and re-
entrant code.

Rationale: Performance, error avoidance.

Use Case: BSW running on multi core systems

Dependencies: SRS_BSW_00426,

Supporting Material: --

⌋(RS_BRF_01160,RS_BRF_02040)

 [SRS_BSW_00460] Reentrancy Levels 5.2.3.9.2

⌈
Type: Valid

Description: If BSW is executed in multiple partitions, all functions in a BSW module
entity shall conform to the reentrancy level enforced by the API description of

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

74 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

the implemented Bsw module entry, or to a stricter level.

If the description of a module entity contains the optional reentrancy level
attribute, this level must be compliant to the reentrancy requirements of the
implemented entry, and the implementation must conform to the reentrancy
level enforced by the description of the module entity.

If a module can be invoked locally in multiple partitions, reentrancy also
implies safe execution in parallel on multiple cores.

Rationale: Performance, error avoidance.

Use Case: BSW running on multi core systems

Dependencies: SRS_BSW_00426

Supporting Material: --

⌋(RS_BRF_01160,RS_BRF_02040)

5.2.4 Software Documentation Requirements

5.2.4.1 [SRS_BSW_00009] All Basic SW Modules shall be documented
according to a common standard.

⌈
Type: Valid

Description: The module documentation shall contain at least the following items:.

 Cover sheet with title, version number, date, author, document status,
document name

 Change history with version number, date, author, change description,
document status

 Table of contents (navigable)

 Functional overview

 Source file list and description

 Module requirements

 Used resources (interrupts, µC peripherals etc.)

 Integration description (OS, interface to other modules etc.)

 Configuration description with parameter, description, unit, validrange,
default value, relation to other parameters

The module documentation shall also contain examples for

 the correct usage of the API

 the configuration of the module

Rationale: User acceptance, maintainability, usability

Use Case: Standard Core

Dependencies: [SRS_BSW_00010], [SRS_BSW_00333]

Supporting Material: --

⌋(RS_BRF_01192)

5.2.4.2 [SRS_BSW_00401] Documentation of multiple instances of
configuration parameters shall be available

⌈

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

75 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Type: Valid

Description: “Multiplicity” defines how many times an entity (in this case configuration
parameter) is instanciated.
The multiplicity of each configuration parameter has to be documented.
It shall be documented what determines the number of entries (e.g. “one per
frame”).

Rationale: Overall (throughout the complete Basic Software) harmonization of
configuration parameter naming.

Use Case: Id of a PDU is multiple time present dependent on the number of PDUs to be
sent/received.

Dependencies: --

Supporting Material: --

⌋()

5.2.4.3 [SRS_BSW_00172] The scheduling strategy that is built inside the
Basic Software Modules shall be compatible with the strategy used in
the system

⌈
Type: Valid

Description: The scheduling strategy that is built inside the Basic Software Modules shall
be compatible with the strategy used in the system.

To achieve this, the following items shall be traced by BSW specific SWS:

 polling / event driven

 cooperative / pre-emptive

 for each cyclic function:

 invocation rate (either fixed value or allowed range)

 execution order (dependencies to other modules)

 synchronous / asynchronous processing

 minimum and maximum function runtime (WCET)

 maximum interrupt rate

Rationale: Today scheduling mechanisms differ between ECUs. A Basic Software
Module provides several entry points to be accessed by the other Basic
Software Modules/surrounding system. E.g. a function can react directly on
event or by a scheduled polling. The differences may result in difference in
real-time requirements, system load, latency etc.!

Use Case: On the one hand it is possible to avoid any direct function call between BSW
modules by using only scheduling and data interface – more deterministic.
On the other hand it is possible that beside the scheduling additional
functional interfaces exists to control BSW modules – less deterministic.
The integrating SW-system and its SW-architecture might restrict direct
function calls between SW-components. Thus not any SW-component will fit
in this SW-system.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01320)

5.2.4.4 [SRS_BSW_00010] The memory consumption of all Basic SW Modules
shall be documented for a defined configuration for all supported
platforms.

⌈

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

76 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Type: Valid

Description: For software integration the following data shall be available for each
supported platform:
- RAM/ROM consumption

Rationale: Due to stability of documentation, this information is provided in a separate
document for each supported platform. If a further platform is added, the
module documentation remains unvalid

Use Case: Microcontroller selection, software integration, configuration of operating
system

Dependencies: --

Supporting Material: --

⌋()

5.2.4.5 [SRS_BSW_00333] For each callback function it shall be specified if it
is called from interrupt context or not

⌈
Type: Valid

Description: For each callback function it shall be specified if it is called from interrupt
context or not.

Rationale: User awareness. The code inside a callback function called from an ISR has
to be kept short.

Use Case: Some notification function is called from an ISR of the CAN driver. The user
filling this callback function has to know that the function is running in
interrupt context!

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01064)

5.2.4.6 [SRS_BSW_00374] All Basic Software Modules shall provide a readable
module vendor identification

⌈
Type: Valid

Description: All Basic Software Modules shall provide a readable module vendor
identification in their published parameters.

Naming convention:
<MODULENAME>_VENDOR_ID

The vendor ID shall be represented in uint16 (16 bit).

The format of the vendor identification shall be only:
#define <MODULENAME>_VENDOR_ID 0x0000u
without any cast to allow a verification in pre-processor.

Rationale: Allow identification of module vendor

Use Case: EEP_VENDOR_ID

Dependencies: --

Supporting Material: < MODULENAME > shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

 AUTOSAR Vendor ID List [VENDOR_ID_LIST]

⌋(RS_BRF_01032)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

77 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

5.2.4.7 [SRS_BSW_00379] All software modules shall provide a module
identifier in the header file and in the module XML description file.

⌈
Type: Valid

Description: All software modules shall provide a module ID both in the header file and in
the module XML description file.
The value shall be taken from the Basic Software Module List.

Naming convention:
<MODULENAME>_MODULE_ID

The module ID shall be represented in uint16 (16 bit).

Rationale: Required for error reporting to Default Error Tracer (Det).

Use Case: In file Eep.h:
#define EEP_MODULE_ID 90

Dependencies: [SRS_BSW_00334] Provision of XML file

Supporting Material: < MODULENAME > shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

 Basic Software Module List, Column ‘Module ID‘, defines the module
IDs.

⌋(RS_BRF_01056,RS_BRF_01032)

5.2.4.8 [SRS_BSW_00003] All software modules shall provide version and
identification information

⌈
Type: Valid

Description: All software modules shall provide a readable software version number in all
import header files.
Version number macros can be used for checking (Inter Module Checks)
and reading out the software version of a software module during compile
time and runtime.
It is preferred to derive this information from the version management
system automatically.

Rationale: Compatibility checking, configuration supervision

Use Case: --

Dependencies: [SRS_BSW_00004], [SRS_BSW_00318]

Supporting Material: --

⌋(RS_BRF_01032)

5.2.4.9 [SRS_BSW_00318] Each AUTOSAR Basic Software Module file shall
provide version numbers in the header file

⌈
Type: Valid

Description: Each AUTOSAR Basic Software Module file shall provide version numbers
in the header file as defined below:

Naming convention:

 <MODULENAME>_SW_MAJOR_VERSION

 <MODULENAME>_SW_MINOR_VERSION

 <MODULENAME>_SW_PATCH_VERSION

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

78 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

 <MODULENAME>_AR_RELEASE_MAJOR_VERSION

 <MODULENAME>_AR_RELEASE_MINOR_VERSION

 <MODULENAME>_AR_RELEASE_REVISION_VERSION
AR: Major/Minor/Revision Release Version number of AUTOSAR
specification which the appropriate implementation is based on.
SW: Major/minor/patch version number of the vendor specific
implementation of the module. The numbering shall be vendor specific

Each number shall be represent able as uint8 (8 bit).

Rationale: Allow version identification and version checking in between software
modules.

Use Case: Example: Adc vendor module version 1.14.9; implemented according to the
AUTOSAR Release 4.0, Revision 1
#define ADC_SW_MAJOR_VERSION 1

#define ADC_SW_MINOR_VERSION 14

#define ADC_SW_PATCH_VERSION 9

#define ADC_AR_RELEASE_MAJOR_VERSION 4

#define ADC_AR_RELEASE_MINOR_VERSION 0

#define ADC_AR_RELEASE_REVISION_VERSION 1

Dependencies: [SRS_BSW_00321],[SRS_BSW_00374],[SRS_BSW_00402]

Supporting Material: < MODULENAME > shall be derived from WP Architecture “List of Basic
Software Modules”, [DOC_MOD_LIST] (2…8 characters)

⌋(RS_BRF_01032)

5.2.4.10 [SRS_BSW_00321] The version numbers of AUTOSAR Basic
Software Modules shall be enumerated according specific rules

⌈
Type: Valid

Description: The version numbers of AUTOSAR Basic Software Modules shall be
enumerated according to the following rules:
- Increasing a more significant digit of a version number resets all less

significant digits
- The PATCH_VERSION is incremented if the module is still upwards and

downwards compatible (e.g. bug fixed)
- The MINOR_VERSION is incremented if the module is still downwards

compatible (e.g. validfunctionality added)
- The MAJOR_VERSION is incremented if the module is not compatible

any more (e.g. existing API valid)

Rationale: Provide unambiguous version identification for each module, provide version
cross check as well as basic version retrieval facilities.
Compatibility is always visible!

Use Case: Example: ADC module with version 1.14.2:
- Versions 1.14.2 and 1.14.9 are exchangeable. 1.14.2 may contain bugs
- Version 1.14.2 can be used instead of 1.12.0, but not vice versa
- Version 1.14.2 cannot be used instead of 1.15.4 or 2.0.0

Dependencies: [SRS_BSW_00318]

Supporting Material: --

⌋(RS_BRF_01032)

5.2.4.11 [SRS_BSW_00341] Module documentation shall contains all
needed informations

⌈

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

79 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

Type: Valid

Description:
All needed informations by user of a module shall be stated in the
documentation of the module.

Rationale: Opportunity to identify uniquely the specific microprocessor, including known
bugs in the silicon so that its compatibility with the software can be
established.

Use Case: Different mask revisions of e.g. TriCore

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01032)

5.2.4.12 [SRS_BSW_00334] All Basic Software Modules shall provide an
XML file that contains the meta data

⌈
Type: Valid

Description: All Basic Software Modules shall provide an XML file that contains the meta
data which is required for the SW integration process.

Rationale: Being able to have several drivers of the same type (e.g. 2 different
external flash drivers) on the same ECU without name clash

 Ensure system consistency and correctness

Use Case: <function_provided>

 <name>Eep_Write</name>

 <prototype>Eep_ST16RF42_Write</prototype>

</function_provided>

ST16RF42 is the type of the external EEPROM

Dependencies: --

Supporting Material: [ECU_CONF_SWS]

⌋(RS_BRF_01032)

5.2.4.13 [SRS_BSW_00351] Encapsulation of compiler specific methods to
map objects

⌈
Type: Valid

Description: AUTOSAR shall define header files which encapsulate compiler and platform
specific differences in memory mapping such that BSW modules and SWC
can be implemented of compiler and platform.

Rationale: AUTOSAR focuses on embedded systems with only restricted memory
resources. Therefore a precise mapping of objects (data,code) is needed.

Use Case: Storage of different objects in memory with fast access times.

Dependencies: --

Supporting Material: [RS_BRF_00057]

⌋(RS_BRF_01032)

General Requirements on Basic Software Modules
AUTOSAR CP R19-11

80 of 80 Document ID 43: AUTOSAR_SRS_BSWGeneral

- AUTOSAR confidential -

6 References

6.1 Deliverables of AUTOSAR

[DOC_LAYERED_ARCH] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[DOC_MOD_LIST] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[ECU_CONF_SRS] Requirements on ECU Configuration
AUTOSAR_RS_ECUConfiguration.pdf

[ECU_CONF_SWS] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[GLOSSARY] Glossary,
AUTOSAR_TR_Glossary.pdf

[DOC_STDTYPE_SWS] Specification of Standard Types,
AUTOSAR_SWS_StandardTypes.pdf

[DOC_MEMMAP_SWS] Specification of Memory Mapping,
AUTOSAR_SWS_MemoryMapping.pdf

[DOC_BSWSCHED_SWS] Specification of BSW Scheduler,
AUTOSAR_SWS_BSW_Scheduler.pdf

[ARReleaseManagement] Definition of Release Management Process,
AUTOSAR_PD_ReleaseManagementProcess.pdf

[TPS_STDT_0078] Software Standardization Template
AUTOSAR_TPS_StandardizationTemplate.pdf

6.2 Related standards and norms

6.2.1 ISO 17356

[STD_ ISO 17356-3_OS] ISO 17356-3: OS
http://www.iso.org

6.2.2 AUTOSAR Vendor ID List

[VENDOR_ID_LIST] AUTOSAR Vendor ID List
https://www.autosar.org

	1 Scope of this document
	1.1 Constraints

	2 How to read this document
	2.1 Conventions used
	2.2 Requirements structure
	2.3 Mapping to AUTOSAR releases

	3 Acronyms and abbreviations
	4 Requirements Tracing
	5 General Requirements on Basic Software
	5.1 Functional Requirements
	5.1.1 Configuration
	5.1.1.1 [SRS_BSW_00344] BSW Modules shall support link-time configuration
	5.1.1.2 [SRS_BSW_00404] BSW Modules shall support post-build configuration
	5.1.1.3 [SRS_BSW_00405] BSW Modules shall support multiple configuration sets
	5.1.1.4 [SRS_BSW_00345] BSW Modules shall support pre-compile configuration
	5.1.1.5 [SRS_BSW_00159] All modules of the AUTOSAR Basic Software shall support a tool based configuration
	5.1.1.6 [SRS_BSW_00167] All AUTOSAR Basic Software Modules shall provide configuration rules and constraints to enable plausibility checks
	5.1.1.7 [SRS_BSW_00171] Optional functionality of a Basic-SW component that is not required in the ECU shall be configurable at pre-compile-time
	5.1.1.8 [SRS_BSW_00170] The AUTOSAR SW Components shall provide information about their dependency from faults, signal qualities, driver demands
	5.1.1.9 [SRS_BSW_00380] Configuration parameters being stored in memory shall be placed into separate c-files
	5.1.1.10 [SRS_BSW_00419] If a pre-compile time configuration parameter is implemented as “const“ it should be placed into a separate c-file
	5.1.1.11 [SRS_BSW_00383] The Basic Software Module specifications shall specify which other configuration files from other modules they use at least in the description
	5.1.1.12 [SRS_BSW_00384] The Basic Software Module specifications shall specify at least in the description which other modules they require
	5.1.1.13 [SRS_BSW_00388] Containers shall be used to group configuration parameters that are defined for the same object
	5.1.1.14 [SRS_BSW_00389] Containers shall have names
	5.1.1.15 [SRS_BSW_00390] Parameter content shall be unique within the module
	5.1.1.16 [SRS_BSW_00392] Parameters shall have a type
	5.1.1.17 [SRS_BSW_00393] Parameters shall have a range
	5.1.1.18 [SRS_BSW_00394] The Basic Software Module specifications shall specify the scope of the configuration parameters
	5.1.1.19 [SRS_BSW_00395] The Basic Software Module specifications shall list all configuration parameter dependencies
	5.1.1.20 [SRS_BSW_00396] The Basic Software Module specifications shall specify the supported configuration classes for changing values and multiplicities for each parameter/container
	5.1.1.21 [SRS_BSW_00403] The Basic Software Module specifications shall specify for each parameter/container whether it supports different values or multiplicity in different configuration sets
	5.1.1.22 [SRS_BSW_00397] The configuration parameters in pre-compile time are fixed before compilation starts
	5.1.1.23 [SRS_BSW_00398] The link-time configuration is achieved on object code basis in the stage after compiling and before linking
	5.1.1.24 [SRS_BSW_00399] Parameter-sets shall be located in a separate segment and shall be loaded after the code
	5.1.1.25 [SRS_BSW_00400] Parameter shall be selected from multiple sets of parameters after code has been loaded and started
	5.1.1.26 [SRS_BSW_00438] Configuration data shall be defined in a structure
	5.1.1.27 [SRS_BSW_00402] Each module shall provide version information

	5.1.2 Wake-Up
	5.1.2.1 [SRS_BSW_00375] Basic Software Modules shall report wake-up reasons

	5.1.3 Initialization
	5.1.3.1 [SRS_BSW_00101] The Basic Software Module shall be able to initialize variables and hardware in a separate initialization function
	5.1.3.2 [SRS_BSW_00416] The sequence of modules to be initialized shall be configurable
	5.1.3.3 [SRS_BSW_00406] A static status variable denoting if a BSW module is initialized shall be initialized with value 0 before any APIs of the BSW module is called
	5.1.3.4 [SRS_BSW_00467] The init / deinit services shall only be called by BswM or EcuM
	5.1.3.5 [SRS_BSW_00437] Memory mapping shall provide the possibility to define RAM segments which are not to be initialized during startup

	5.1.4 Normal Operation
	5.1.4.1 [SRS_BSW_00168] SW components shall be tested by a function defined in a common API in the Basis-SW
	5.1.4.2 [SRS_BSW_00407] Each BSW module shall provide a function to read out the version information of a dedicated module implementation
	5.1.4.3 [SRS_BSW_00423] BSW modules with AUTOSAR interfaces shall be describable with the means of the SW-C Template
	5.1.4.4 [SRS_BSW_00424] BSW module main processing functions shall not be allowed to enter a wait state
	5.1.4.5 [SRS_BSW_00425] The BSW module description template shall provide means to model the defined trigger conditions of schedulable objects
	5.1.4.6 [SRS_BSW_00426] BSW Modules shall ensure data consistency of data which is shared between BSW modules
	5.1.4.7 [SRS_BSW_00427] ISR functions shall be defined and documented in the BSW module description template
	5.1.4.8 [SRS_BSW_00428] A BSW module shall state if its main processing function(s) has to be executed in a specific order or sequence
	5.1.4.9 [SRS_BSW_00429] Access to OS is restricted
	5.1.4.10 [SRS_BSW_00432] Modules should have separate main processing functions for read/receive and write/transmit data path
	5.1.4.11 [SRS_BSW_00433] Main processing functions are only allowed to be called from task bodies provided by the BSW Scheduler
	5.1.4.12 [SRS_BSW_00450] A Main function of a un-initialized module shall return immediately
	5.1.4.13 [SRS_BSW_00461] Modules called by generic modules shall satisfy all interfaces requested by the generic module
	5.1.4.14 [SRS_BSW_00451] Hardware registers shall be protected if concurrent access to these registers occur
	5.1.4.15 [SRS_BSW_00478] Timing limits of main functions

	5.1.5 Shutdown Operation
	5.1.5.1 [SRS_BSW_00336] Basic SW module shall be able to shutdown

	5.1.6 Fault Operation and Error Detection
	5.1.6.1 [SRS_BSW_00337] Classification of development errors
	5.1.6.2 [SRS_BSW_00369] All AUTOSAR Basic Software Modules shall not return specific development error codes via the API
	5.1.6.3 [SRS_BSW_00339] Reporting of production relevant error status
	5.1.6.4 [SRS_BSW_00422] Pre-de-bouncing of error status information is done within the DEM
	5.1.6.5 [SRS_BSW_00417] Software which is not part of the SW-C shall report error events only after the DEM is fully operational.
	5.1.6.6 [SRS_BSW_00323] All AUTOSAR Basic Software Modules shall check passed API parameters for validity
	5.1.6.7 [SRS_BSW_00004] All Basic SW Modules shall perform a pre-processor check of the versions of all imported include files
	5.1.6.8 [SRS_BSW_00409] All production code error ID symbols are defined by the Dem module and shall be retrieved by the other BSW modules from Dem configuration
	5.1.6.9 [SRS_BSW_00385] List possible error notifications
	5.1.6.10 [SRS_BSW_00386] The BSW shall specify the configuration for detecting an error
	5.1.6.11 [SRS_BSW_00452] Classification of runtime errors
	5.1.6.12 [SRS_BSW_00458] Classification of production errors
	5.1.6.13 [SRS_BSW_00466] Classification of extended production errors
	5.1.6.14 [SRS_BSW_00488] Classification of security events
	5.1.6.15 [SRS_BSW_00469] Fault detection and healing of production errors and extended production errors
	5.1.6.16 [SRS_BSW_00470] Execution frequency of production error detection
	5.1.6.17 [SRS_BSW_00471] Do not cause dead-locks on detection of production errors – the ability to heal from previously detected production errors
	5.1.6.18 [SRS_BSW_00472] Avoid detection of two production errors with the same root cause.
	5.1.6.19 [SRS_BSW_00473] Classification of transient faults

	5.2 Non-functional Requirements
	5.2.1 Software Architecture Requirements
	5.2.1.1 [SRS_BSW_00161] The AUTOSAR Basic Software shall provide a microcontroller abstraction layer which provides a standardized interface to higher software layers
	5.2.1.2 [SRS_BSW_00162] The AUTOSAR Basic Software shall provide a hardware abstraction layer
	5.2.1.3 [SRS_BSW_00005] Modules of the µC Abstraction Layer (MCAL) may not have hard coded horizontal interfaces
	5.2.1.4 [SRS_BSW_00415] Interfaces which are provided exclusively for one module shall be separated into a dedicated header file

	5.2.2 Software Integration Requirements
	5.2.2.1 [SRS_BSW_00164] The Implementation of interrupt service routines shall be done by the Operating System, complex drivers or modules
	5.2.2.2 [SRS_BSW_00325] The runtime of interrupt service routines and functions that are running in interrupt context shall be kept short
	5.2.2.3 [SRS_BSW_00342] It shall be possible to create an AUTOSAR ECU out of modules provided as source code and modules provided as object code, even mixed
	5.2.2.4 [SRS_BSW_00343] The unit of time for specification and configuration of Basic SW modules shall be preferably in physical time unit
	5.2.2.5 [SRS_BSW_00160] Configuration files of AUTOSAR Basic SW module shall be readable for human beings
	5.2.2.6 [SRS_BSW_00453] BSW Modules shall be harmonized
	5.2.2.7 [SRS_BSW_00456] A Header file shall be defined in order to harmonize BSW Modules
	5.2.2.8 [SRS_BSW_00457] Callback functions of Application software components shall be invoked by the Basis SW
	5.2.2.9 [SRS_BSW_00479] Interfaces for handling request from external devices
	5.2.2.10 [SRS_BSW_00483] BSW Modules shall handle buffer alignments internally

	5.2.3 Software Module Design Requirements
	5.2.3.1 Software quality
	5.2.3.1.1 [SRS_BSW_00007] All Basic SW Modules written in C language shall conform to the MISRA C 2012 Standard.

	5.2.3.2 Naming conventions
	5.2.3.2.1 [SRS_BSW_00300] All AUTOSAR Basic Software Modules shall be identified by an unambiguous name
	5.2.3.2.2 [SRS_BSW_00413] An index-based accessing of the instances of BSW modules shall be done
	5.2.3.2.3 [SRS_BSW_00347] A Naming seperation of different instances of BSW drivers shall be in place
	5.2.3.2.4 [SRS_BSW_00441] Naming convention for type, macro and function
	5.2.3.2.5 [SRS_BSW_00305] Data types naming convention
	5.2.3.2.6 [SRS_BSW_00307] Global variables naming convention
	5.2.3.2.7 [SRS_BSW_00310] API naming convention
	5.2.3.2.8 [SRS_BSW_00373] The main processing function of each AUTOSAR Basic Software Module shall be named according the defined convention
	5.2.3.2.9 [SRS_BSW_00327] Error values naming convention
	5.2.3.2.10 [SRS_BSW_00335] Status values naming convention
	5.2.3.2.11 [SRS_BSW_00350] All AUTOSAR Basic Software Modules shall allow the enabling/disabling of detection and reporting of development errors.
	5.2.3.2.12 [SRS_BSW_00408] All AUTOSAR Basic Software Modules configuration parameters shall be named according to a specific naming rule
	5.2.3.2.13 [SRS_BSW_00410] Compiler switches shall have defined values
	5.2.3.2.14 [SRS_BSW_00411] All AUTOSAR Basic Software Modules shall apply a naming rule for enabling/disabling the existence of the API
	5.2.3.2.15 [SRS_BSW_00463] Naming convention of callout prototypes
	5.2.3.2.16 [SRS_BSW_00464] File names shall be considered case sensitive regardless of the filesystem in which they are used
	5.2.3.2.17 [SRS_BSW_00465] It shall not be allowed to name any two files so that they only differ by the cases of their letters
	5.2.3.2.18 [SRS_BSW_00480] NullPointer Errors shall follow a naming rule
	5.2.3.2.19 [SRS_BSW_00487] Errors for module initialization shall follow a naming rule
	5.2.3.2.20 [SRS_BSW_00481] Invalid configuration set selection errors shall follow a naming rule
	5.2.3.2.21 [SRS_BSW_00482] Get Version Informationfunction shall follow a naming rule

	5.2.3.3 Module file structure
	5.2.3.3.1 [SRS_BSW_00346] All AUTOSAR Basic Software Modules shall provide at least a basic set of module files
	5.2.3.3.2 [SRS_BSW_00314] All internal driver modules shall separate the interrupt frame definition from the service routine
	5.2.3.3.3 [SRS_BSW_00447] Standardizing Include file structure of BSW Modules Implementing Autosar Service

	5.2.3.4 Standard header files
	5.2.3.4.1 [SRS_BSW_00348] All AUTOSAR standard types and constants shall be placed and organized in a standard type header file
	5.2.3.4.2 [SRS_BSW_00353] All integer type definitions of target and compiler specific scope shall be placed and organized in a single type header
	5.2.3.4.3 [SRS_BSW_00361] All mappings of not standardized keywords of compiler specific scope shall be placed and organized in a compiler specific type and keyword header

	5.2.3.5 Module Design
	5.2.3.5.1 [SRS_BSW_00301] All AUTOSAR Basic Software Modules shall only import the necessary information
	5.2.3.5.2 [SRS_BSW_00302] All AUTOSAR Basic Software Modules shall only export information needed by other modules
	5.2.3.5.3 [SRS_BSW_00328] All AUTOSAR Basic Software Modules shall avoid the duplication of code
	5.2.3.5.4 [SRS_BSW_00312] Shared code shall be reentrant
	5.2.3.5.5 [SRS_BSW_00006] The source code of software modules above the µC Abstraction Layer (MCAL) shall not be processor and compiler dependent.
	5.2.3.5.6 [SRS_BSW_00439] Enable BSW modules to handle interrupts
	5.2.3.5.7 [SRS_BSW_00448] Module SWS shall not contain requirements from Other Modules
	5.2.3.5.8 [SRS_BSW_00449] BSW Service APIs used by Autosar Application Software shall return a Std_ReturnType

	5.2.3.6 Types and keywords
	5.2.3.6.1 [SRS_BSW_00357] For success/failure of an API call a standard return type shall be defined
	5.2.3.6.2 [SRS_BSW_00377] A Basic Software Module can return a module specific types
	5.2.3.6.3 [SRS_BSW_00304] All AUTOSAR Basic Software Modules shall use the following data types instead of native C data types
	5.2.3.6.4 [SRS_BSW_00378] AUTOSAR shall provide a boolean type
	5.2.3.6.5 [SRS_BSW_00306] AUTOSAR Basic Software Modules shall be compiler and platform independent

	5.2.3.7 Global data
	5.2.3.7.1 [SRS_BSW_00308] AUTOSAR Basic Software Modules shall not define global data in their header files, but in the C file
	5.2.3.7.2 [SRS_BSW_00309] All AUTOSAR Basic Software Modules shall indicate all global data with read-only purposes by explicitly assigning the const keyword

	5.2.3.8 Interface and API
	5.2.3.8.1 [SRS_BSW_00484] Input parameters of scalar and enum types shall be passed as a value.
	5.2.3.8.2 [SRS_BSW_00485] Input parameters of structure type shall be passed as a reference to a constant structure
	5.2.3.8.3 [SRS_BSW_00486] Input parameters of array type shall be passed as a reference to the constant array base type
	5.2.3.8.4 [SRS_BSW_00371] The passing of function pointers as API parameter is forbidden for all AUTOSAR Basic Software Modules
	5.2.3.8.5 [SRS_BSW_00358] The return type of init() functions implemented by AUTOSAR Basic Software Modules shall be void
	5.2.3.8.6 [SRS_BSW_00414] Init functions shall have a pointer to a configuration structure as single parameter
	5.2.3.8.7 [SRS_BSW_00359] All AUTOSAR Basic Software Modules callback functions shall avoid return types other than void if possible
	5.2.3.8.8 [SRS_BSW_00360] AUTOSAR Basic Software Modules callback functions are allowed to have parameters
	5.2.3.8.9 [SRS_BSW_00440] The callback function invocation by the BSW module shall follow the signature provided by RTE to invoke servers via Rte_Call API
	5.2.3.8.10 [SRS_BSW_00330] It shall be allowed to use macros instead of functions where source code is used and runtime is critical
	5.2.3.8.11 [SRS_BSW_00331] All Basic Software Modules shall strictly separate error and status information
	5.2.3.8.12 [SRS_BSW_00462] All Standardized Autosar Interfaces shall have unique requirement Id / number
	5.2.3.8.13 [SRS_BSW_00454] An alternative interface without a parameter of category DATA_REFERENCE shall be available.
	5.2.3.8.14 [SRS_BSW_00477] The functional interfaces of AUTOSAR BSW modules shall be specified in C90

	5.2.3.9 Concurrency
	5.2.3.9.1 [SRS_BSW_00459] It shall be possible to concurrently execute a service offered by a BSW module in different partitions
	5.2.3.9.2 [SRS_BSW_00460] Reentrancy Levels

	5.2.4 Software Documentation Requirements
	5.2.4.1 [SRS_BSW_00009] All Basic SW Modules shall be documented according to a common standard.
	5.2.4.2 [SRS_BSW_00401] Documentation of multiple instances of configuration parameters shall be available
	5.2.4.3 [SRS_BSW_00172] The scheduling strategy that is built inside the Basic Software Modules shall be compatible with the strategy used in the system
	5.2.4.4 [SRS_BSW_00010] The memory consumption of all Basic SW Modules shall be documented for a defined configuration for all supported platforms.
	5.2.4.5 [SRS_BSW_00333] For each callback function it shall be specified if it is called from interrupt context or not
	5.2.4.6 [SRS_BSW_00374] All Basic Software Modules shall provide a readable module vendor identification
	5.2.4.7 [SRS_BSW_00379] All software modules shall provide a module identifier in the header file and in the module XML description file.
	5.2.4.8 [SRS_BSW_00003] All software modules shall provide version and identification information
	5.2.4.9 [SRS_BSW_00318] Each AUTOSAR Basic Software Module file shall provide version numbers in the header file
	5.2.4.10 [SRS_BSW_00321] The version numbers of AUTOSAR Basic Software Modules shall be enumerated according specific rules
	5.2.4.11 [SRS_BSW_00341] Module documentation shall contains all needed informations
	5.2.4.12 [SRS_BSW_00334] All Basic Software Modules shall provide an XML file that contains the meta data
	5.2.4.13 [SRS_BSW_00351] Encapsulation of compiler specific methods to map objects

	6 References
	6.1 Deliverables of AUTOSAR
	6.2 Related standards and norms
	6.2.1 ISO 17356
	6.2.2 AUTOSAR Vendor ID List

