
Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Document Title Specification of Update and
Configuration Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 888

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R19-11

Document Change History
Date Release Changed by Description

2019-11-28 R19-11
AUTOSAR
Release
Management

• Introduced UCM Master concept
• Software Package state machine

updated for processing while
streaming
• Reviewed UCM State Machine
• Added new security analysis

appendix
• Changed Document Status from

Final to published

2019-03-29 19-03
AUTOSAR
Release
Management

• Updating Package Management
state machine
• New requirements for robustness

against reset
• Improving specification item atomicity
• Fixing errors in chapter Service

Interfaces

2018-10-31 18-10
AUTOSAR
Release
Management

• Updated interaction other functional
clusters like PER and EMO/SM
• Introduction of vehicle package

distribution

2018-03-29 18-03
AUTOSAR
Release
Management

• Extended and updated service
interface
• Introduction of Software Package
• Introduction to securing update

process

1 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

2017-10-27 17-10
AUTOSAR
Release
Management

• Initial release

2 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Table of Contents

1 Introduction and functional overview 8

2 Acronyms and abbreviations 9

3 Related documentation 10

3.1 Input documents & related standards and norms 10
3.2 Related specification . 10
3.3 Further applicable specification . 11

4 Constraints and assumptions 12

4.1 Limitations . 12
4.2 Applicability to car domains . 12

5 Dependencies to other functional clusters 13

5.1 Interfaces to Adaptive State Management 13
5.2 UCM service over ara::com . 13
5.3 Interfaces to Adaptive Crypto Interface 13
5.4 Interfaces to Identity and Access Management 14

6 Requirements Tracing 15

7 Functional specification 24

7.1 UCM . 24
7.1.1 Technical Overview . 24

7.1.1.1 Software Package Management 25
7.1.1.2 Runtime dependencies 27
7.1.1.3 Update scope and state management 28

7.1.2 Transferring Software Packages 29
7.1.3 Processing of Software Packages from a stream 32
7.1.4 Processing Software Packages 32
7.1.5 Status Reporting . 34
7.1.6 Activation and Rollback . 38

7.1.6.1 Activation . 38
7.1.6.2 Rollback . 39
7.1.6.3 Boot options . 39
7.1.6.4 Finishing activation 40

7.1.7 Robustness against reset . 40
7.1.7.1 Boot monitoring . 40

7.1.8 Logging and history . 41
7.1.9 Version Reporting . 41
7.1.10 SoftwareCluster lifecycle . 42
7.1.11 Securing Software Updates 42
7.1.12 Functional cluster lifecycle 43
7.1.13 Shutdown behaviour . 43

7.2 UCM Master . 44

4 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.2.1 Technical Overview . 44
7.2.2 UCM Master general behaviour 45
7.2.3 UCM identification . 46
7.2.4 UCM Master Software Packages transfer or streaming 46
7.2.5 Adaptive Applications interacting with UCM Master 47

7.2.5.1 OTA Client . 47
7.2.5.2 Vehicle Driver Interface 48
7.2.5.3 Vehicle State Manager 48

7.2.6 Status reporting . 50
7.2.6.1 States . 51
7.2.6.2 States Transitions . 52

7.2.7 Campaign Reporting . 56
7.2.8 Content of Vehicle Package 57
7.2.9 Vehicle update security and confidentiality 58

8 API specification 59

9 Service Interfaces 60

9.1 Type definitions . 60
9.1.1 UCMIdentifierType . 60
9.1.2 TransferIdType . 60
9.1.3 SwNameType . 60
9.1.4 SwNameVectorType . 61
9.1.5 StrongRevisionLabelString 61
9.1.6 SwNameVersionType . 61
9.1.7 SwNameVersionVectorType 62
9.1.8 ByteVectorType . 62
9.1.9 SwPackageStateType . 62
9.1.10 SwPackageInfoType . 63
9.1.11 SwPackageInfoVectorType 63
9.1.12 SwClusterStateType . 64
9.1.13 SwClusterInfoType . 64
9.1.14 SwClusterInfoVectorType . 65
9.1.15 LogLevelType . 65
9.1.16 LogEntryType . 66
9.1.17 LogVectorType . 66
9.1.18 PackageManagerStatusType 66
9.1.19 ActionType . 67
9.1.20 ResultType . 67
9.1.21 GetHistoryType . 68
9.1.22 GetHistoryVectorType . 68
9.1.23 CampaignStateType . 68
9.1.24 SafetyPolicyType . 69

9.2 Service Interfaces . 69
9.2.1 Provided Service Interfaces 69

9.2.1.1 Package Management 70
9.2.1.2 Vehicle Package Management 78

5 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

9.2.2 Required Service Interfaces 84
9.2.2.1 Vehicle Driver Application 84
9.2.2.2 Vehicle State Manager 86

9.3 Application Errors . 87
9.3.1 Application Error Domain . 87

9.3.1.1 UCMErrorDomain 87
9.3.1.2 VehicleStateManagerErrorDomain 88
9.3.1.3 VehicleDriverApplicationErrorDomain 89

10 Sequence diagrams 90

10.1 Update process . 90
10.2 Data transmission . 91
10.3 Package processing . 92
10.4 Activation . 93
10.5 UCM Master simplified vehicle update 95

A Not applicable requirements 97

B Mentioned Class Tables 98

C Interfaces to other Functional Clusters (informative) 104

C.1 Overview . 104
C.2 Interfaces Tables . 104

C.2.1 UCM update notification . 104

D Packages distribution within vehicle detailed sequence examples 105

D.1 Collect information of present Software Clusters in vehicle 105
D.2 Action computation . 105

D.2.1 Pull package from Backend into vehicle 106
D.2.2 Push package from backend into vehicle 106

D.3 Packages transfer from backend into targeted UCM 108
D.4 Package processing . 110
D.5 Package activation . 112
D.6 Package rollback . 113
D.7 Campaign reporting . 114

E Security Analysis of Installation and Update 115

E.1 Securing Software Package . 115
E.2 Securing Calls to UCM . 115
E.3 Suppressing Call to UCM . 116
E.4 Resource Starvation . 116
E.5 Zombie Sessions . 116

F History of Specification Items 118

F.1 Specification Item History of this document compared to AUTOSAR
R19-03. 118

F.1.1 Added Traceables in R19-11 118

6 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

F.1.2 Changed Traceables in R19-11 121
F.1.3 Deleted Traceables in R19-11 122

7 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

1 Introduction and functional overview

This software specification contains the functional description and interfaces of the
functional cluster Update and Configuration Management which belongs to the
AUTOSAR Adaptive Platform Services. Update and Configuration Man-
agement has the responsibility of installing, updating and removing software on an
AUTOSAR Adaptive Platform in a safe and secure way while not sacrificing the
dynamic nature of the AUTOSAR Adaptive Platform.

The Update and Configuration Management functional cluster is responsible
for:

• Version reporting of the software present in the AUTOSAR Adaptive Platform

• Receiving and buffering software updates

• Checking that enough resources are available to ensure a software update

• Performing software updates and providing log messages and progress informa-
tion

• Validating the outcome of a software update

• Providing rollback functionality to restore a known functional state in case of fail-
ure

In addition to updating and changing software on the AUTOSAR Adaptive Plat-
form, the Update and Configuration Management is also responsible for up-
dates and changes to the AUTOSAR Adaptive Platform itself, including all func-
tional clusters, the underlying POSIX OS and its kernel with the responsibilities defined
above.

In order to allow flexibility in how Update and Configuration Management is
used, it will expose its functionality via ara::com service interfaces, not direct APIs.
This ensures that the user of the functional cluster Update and Configuration
Management does not have to be located on the same ECU.

8 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

2 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to the UCM module
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
DM AUTOSAR Adaptive Diagnostic Management
UCM Update and Configuration Management
UCM Master UCM Master is distributing packages and coordinating an update

campaign in a vehicle
Backend Backend is a server hosting Software Packages
OTA Client OTA Client is an Adaptive Application in communication with

Backend Over The Air
Application Error Errors returned by UCM
Boot options Boot Manager Configuration

Some technical terms used in this document are already defined in the corresponding
document mentioned in the table below. This is to avoid duplicate definition of the
technical term. And to refer to the correct document.

Term Description

Adaptive Application see [1] AUTOSAR Glossary
Application see [1] AUTOSAR Glossary
AUTOSAR Adaptive Platform see [1] AUTOSAR Glossary
AUTOSAR Classic Platform see [1] AUTOSAR Glossary
Electronic Control Unit see [1] AUTOSAR Glossary
Adaptive Platform Foundation see [1] AUTOSAR Glossary
Adaptive Platform Services see [1] AUTOSAR Glossary
Manifest see [1] AUTOSAR Glossary
Executable see [1] AUTOSAR Glossary
Functional Cluster see [1] AUTOSAR Glossary
Machine see [1] AUTOSAR Glossary
Service see [1] AUTOSAR Glossary
Service Interface see [1] AUTOSAR Glossary
Service Discovery see [1] AUTOSAR Glossary
Execution Management see [2] AUTOSAR Execution Management
kRunning see [2] AUTOSAR Execution Management
Software Cluster see [1] AUTOSAR Glossary
Software Package see [1] AUTOSAR Glossary
Vehicle Package see [1] AUTOSAR Glossary

Table 2.1: Reference to Technical Terms

9 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of Execution Management
AUTOSAR_SWS_ExecutionManagement

[3] General Specification of Adaptive Platform
AUTOSAR_SWS_General

[4] Specification of State Management
AUTOSAR_SWS_StateManagement

[5] Specification of Cryptography for Adaptive Platform
AUTOSAR_SWS_Cryptography

[6] Specification of Communication Management
AUTOSAR_SWS_CommunicationManagement

[7] Specification of Identity and Access Management
AUTOSAR_SWS_IdentityAndAccessManagement

[8] Requirements on Update and Configuration Management
AUTOSAR_RS_UpdateAndConfigManagement

[9] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[10] Explanation of Adaptive Platform Design
AUTOSAR_EXP_PlatformDesign

[11] Specification of Persistency
AUTOSAR_SWS_Persistency

[12] Requirements on Security Management for Adaptive Platform
AUTOSAR_RS_SecurityManagement

3.2 Related specification

See chapter 3.1.

10 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

3.3 Further applicable specification

AUTOSAR provides a general specification [3] which is also applicable for UCM. The
specification SWS General shall be considered as additional and required specification
for implementation of UCM.

11 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4 Constraints and assumptions

4.1 Limitations

UCM is not responsible to initiate the update process. UCM realizes a service interface
to achieve this operation. The user of this service interface is responsible to verify that
the vehicle is in a safe state before executing a software update procedure on demand.
It is also in the responsibility of the user to communicate with other AUTOSAR Adap-
tive Platforms or AUTOSAR Classic Platforms within the vehicle. Therefore
management of software dependencies between different physical or virtual ECU soft-
ware platforms is currently out of UCM’s scope but will be managed by the UCM Master
which will be introduced in the next release.

The UCM receives a locally available software package for processing. The software
package is usually downloaded from the OEM backend. The download of the software
packages has to be done by another application, i.e. UCM does not manage the connec-
tion to the OEM backend. Prior to triggering their processing, the software packages
have to be transferred to UCM by using the provided ara::com interface.

The UCM update process is designed to cover updates on use case with single
AUTOSAR Adaptive Platform. UCM can update Adaptive Applications, the
AUTOSAR Adaptive Platform itself, including all functional clusters and the under-
lying OS. Distinction between different types of updates, such as safety critical updates
vs infotainment updates, isn’t addressed in this release. Currently such distinction shall
be included into vendor specific meta-data.

The UCM is not responsible for enforcing authentication and access control to the pro-
vided interfaces. The document currently does not provide any mechanism for the
confidentiality protection as well as measures against denial of service attacks. The
assumption is that the platform preserves the integrity of parameters exchanged be-
tween UCM and its user.

The UCM do not support update of ECUs not supporting ARA::COM or UDS with aligned
diagnostic flash sequence support.

This UCM Master specification release scope is limited to update, install or remove of
Adaptive platform Software Clusters. It is planned to specify any modification of
Classic platform (being FOTA or non FOTA compatible) and non-Autosar platform from
release 20-11.

4.2 Applicability to car domains

No restrictions to applicability.

12 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

5 Dependencies to other functional clusters

The UCM functional cluster expose services to client applications via the ara::com
middleware.

Software Package A

Signed container

Software Package
Manifest

SoftwareClusterExecutables

Data

Manifests

Authentication tag

UCM Client

ara::com

Dependencies to Functional Clusters

Identity & Access Management

Persistency

Crypto API

State Management

Posix

Figure 5.1: UCM dependencies to other Functional Clusters.

5.1 Interfaces to Adaptive State Management

Certain applications can conflict with the update process or the newly updated pack-
age, and they need to be stopped during the update process. This could be achieved
by putting the machine to a safe Machine State, for example Update State, or by
activating a combination of suitable Function Groups and its states. It is the re-
sponsibility of the platform integrator to define this state or Function Groups. The
application accessing the UCM, should make sure that the platform is switched to this
state (using interfaces from State Management [4]), before starting the update.

UCM uses State Management interface field parameter FunctionGroupState to monitor
the restart of the updated software.

5.2 UCM service over ara::com

The UCM shall provide a service interface over ara::com using methods and fields.

5.3 Interfaces to Adaptive Crypto Interface

UCM uses Crypto Interface for AUTOSAR Adaptive Platform [5] to verify package
integrity and authenticity and to decrypt confidential update data.

13 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

5.4 Interfaces to Identity and Access Management

Communication Management,[6] uses Identity and Access Management [7] to validate
the authorization of requests made to UCM’s service interface PackageManagement.

14 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

6 Requirements Tracing

The following tables reference the requirements specified in [8] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_SM_00001] State Management shall

coordinate and control multiple
sets of Applications.

[SWS_UCM_00102]
[SWS_UCM_00124]

[RS_UCM_00001] UCM shall support installing new
software on AUTOSAR
Adaptive Platform

[SWS_UCM_00001]
[SWS_UCM_00017]
[SWS_UCM_00073]
[SWS_UCM_00099]
[SWS_UCM_00131]
[SWS_UCM_00137]
[SWS_UCM_00165]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

[RS_UCM_00002] UCM shall support reporting
version information for an
AUTOSAR Adaptive
Platform

[SWS_UCM_00004]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00071]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00105]
[SWS_UCM_00112]
[SWS_UCM_00130]
[SWS_UCM_00131]
[SWS_UCM_00174]
[SWS_UCM_00175]
[SWS_UCM_00176]
[SWS_UCM_00177]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_01114]
[SWS_UCM_CONSTR_00001]

[RS_UCM_00003] UCM shall support updating
installed software on Adaptive
Platform

[SWS_UCM_00017]
[SWS_UCM_00165]

[RS_UCM_00004] UCM shall support uninstalling
software on AUTOSAR
Adaptive Platform

[SWS_UCM_00001]
[SWS_UCM_00137]
[SWS_UCM_00165]

[RS_UCM_00005] UCM shall make sure that
persistent data owned by
uninstalled software is deleted

[SWS_UCM_00001]
[SWS_UCM_00137]

15 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Requirement Description Satisfied by
[RS_UCM_00006] UCM shall verify Software

Package authenticity and
integrity using strong
cryptographic techniques

[SWS_UCM_00028]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00136]

[RS_UCM_00007] UCM shall check that software
dependencies are fulfilled

[SWS_UCM_00026]
[SWS_UCM_00027]
[SWS_UCM_00120]
[SWS_UCM_00128]
[SWS_UCM_00136]
[SWS_UCM_00161]

[RS_UCM_00008] UCM shall support a recovery
mechanism in case of failed
update process

[SWS_UCM_00005]
[SWS_UCM_00024]
[SWS_UCM_00096]
[SWS_UCM_00107]
[SWS_UCM_00110]
[SWS_UCM_00111]
[SWS_UCM_00113]
[SWS_UCM_00126]
[SWS_UCM_00127]
[SWS_UCM_00131]
[SWS_UCM_00142]
[SWS_UCM_00146]
[SWS_UCM_00155]
[SWS_UCM_00162]
[SWS_UCM_00163]
[SWS_UCM_00164]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

[RS_UCM_00010] UCM shall support reporting of
Software Packages
downloaded for AUTOSAR
Adaptive Platform

[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00069]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00105]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_CONSTR_00001]

16 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Requirement Description Satisfied by
[RS_UCM_00011] UCM shall support reporting

software versions which have
been installed and will be
activated when new versions are
activated

[SWS_UCM_00030]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00105]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_CONSTR_00001]

[RS_UCM_00012] UCM shall check the consistency
of transferred Software
Package

[SWS_UCM_00029]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00104]
[SWS_UCM_00136]

[RS_UCM_00013] UCM shall check that it has
enough resources to receive,
process and store the
Software Package and
associated data

[SWS_UCM_00007]
[SWS_UCM_00008]
[SWS_UCM_00010]
[SWS_UCM_00087]
[SWS_UCM_00088]
[SWS_UCM_00091]
[SWS_UCM_00092]
[SWS_UCM_00098]
[SWS_UCM_00136]
[SWS_UCM_00140]
[SWS_UCM_00145]
[SWS_UCM_00156]

[RS_UCM_00014] UCM shall check that correct
amount of data has been
transferred for the Software
Package

[SWS_UCM_00136]

[RS_UCM_00015] UCM shall remove all unneeded
data after Software Package
processing has finished

[SWS_UCM_00020]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

[RS_UCM_00017] UCM shall support installing and
updating the persistent data
storage for an Adaptive
Application

[SWS_UCM_00011]
[SWS_UCM_00113]

[RS_UCM_00018] UCM shall announce when an
application has been installed,
updated or uninstalled

[SWS_UCM_00021]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

17 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Requirement Description Satisfied by
[RS_UCM_00019] UCM shall support simultaneous

transfers multiple Software
Packages

[SWS_UCM_00007]
[SWS_UCM_00008]
[SWS_UCM_00010]
[SWS_UCM_00031]
[SWS_UCM_00075]
[SWS_UCM_00087]
[SWS_UCM_00088]
[SWS_UCM_00091]
[SWS_UCM_00092]
[SWS_UCM_00093]
[SWS_UCM_00098]
[SWS_UCM_00140]
[SWS_UCM_00141]
[SWS_UCM_00145]
[SWS_UCM_00148]
[SWS_UCM_00156]

[RS_UCM_00020] UCM shall support cancellation of
an update or install operation

[SWS_UCM_00003]
[SWS_UCM_00167]

[RS_UCM_00021] UCM shall support atomic
activation of installed or updated
packages

[SWS_UCM_00022]
[SWS_UCM_00025]
[SWS_UCM_00094]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

[RS_UCM_00022] UCM shall support logging of the
update or installation process

[SWS_UCM_00041]
[SWS_UCM_00042]
[SWS_UCM_00043]
[SWS_UCM_00131]
[SWS_UCM_00143]
[SWS_UCM_00170]
[SWS_UCM_00171]
[SWS_UCM_00172]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

[RS_UCM_00023] UCM shall provide an interface to
read progress of the update

[SWS_UCM_00018]
[SWS_UCM_00131]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

18 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Requirement Description Satisfied by
[RS_UCM_00024] UCM shall provide an interface to

read the state of UCM
[SWS_UCM_00019]
[SWS_UCM_00044]
[SWS_UCM_00080]
[SWS_UCM_00081]
[SWS_UCM_00082]
[SWS_UCM_00083]
[SWS_UCM_00084]
[SWS_UCM_00085]
[SWS_UCM_00086]
[SWS_UCM_00131]
[SWS_UCM_00147]
[SWS_UCM_00149]
[SWS_UCM_00150]
[SWS_UCM_00151]
[SWS_UCM_00152]
[SWS_UCM_00153]
[SWS_UCM_00154]
[SWS_UCM_00166]
[SWS_UCM_00168]
[SWS_UCM_00169]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

[RS_UCM_00025] UCM shall support efficient
streaming of Software
Package data

[SWS_UCM_00007]
[SWS_UCM_00008]
[SWS_UCM_00010]
[SWS_UCM_00031]
[SWS_UCM_00032]
[SWS_UCM_00087]
[SWS_UCM_00088]
[SWS_UCM_00091]
[SWS_UCM_00092]
[SWS_UCM_00098]
[SWS_UCM_00131]
[SWS_UCM_00140]
[SWS_UCM_00145]
[SWS_UCM_00156]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]

[RS_UCM_00026] UCM shall process installation of
new Software Packages,
updates and removal of existing
Software Packages sequentially

[SWS_UCM_00017]
[SWS_UCM_00044]
[SWS_UCM_00122]

[RS_UCM_00027] UCM shall be able to safely
recover from unexpected
interruption.

[SWS_UCM_00157]
[SWS_UCM_00158]

[RS_UCM_00028] UCM shall support updating
Functional Clusters

[SWS_UCM_00100]

[RS_UCM_00029] UCM shall support updating the
underlying Operating System

[SWS_UCM_00101]

19 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Requirement Description Satisfied by
[RS_UCM_00030] UCM shall be able to verify the

updated software during
activation

[SWS_UCM_00096]
[SWS_UCM_00107]
[SWS_UCM_00108]
[SWS_UCM_00111]
[SWS_UCM_00126]
[SWS_UCM_00127]
[SWS_UCM_00146]
[SWS_UCM_00155]
[SWS_UCM_00162]
[SWS_UCM_00163]
[SWS_UCM_00164]

[RS_UCM_00031] UCM shall prevent installation of
arbitrary previous version of an
Adaptive Application or the
Adaptive Platform

[SWS_UCM_00103]

[RS_UCM_00032] UCM shall provide an interface to
return UCM’s action history

[SWS_UCM_00115]
[SWS_UCM_00131]
[SWS_UCM_00132]
[SWS_UCM_00133]
[SWS_UCM_00134]
[SWS_UCM_00135]
[SWS_UCM_00160]
[SWS_UCM_00181]
[SWS_UCM_00182]
[SWS_UCM_00183]
[SWS_UCM_01177]

[RS_UCM_00033] UCM Master shall support
reporting version information of
a complete vehicle

[SWS_UCM_01101]
[SWS_UCM_01102]
[SWS_UCM_01103]
[SWS_UCM_01218]
[SWS_UCM_01304]

[RS_UCM_00034] UCM Master shall record all
UCM Master’s action history

[SWS_UCM_01247]
[SWS_UCM_01248]

20 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Requirement Description Satisfied by
[RS_UCM_00035] UCM Master shall coordinate

software update in a vehicle
across multiple Electronic
Control Units

[SWS_UCM_00178]
[SWS_UCM_00210]
[SWS_UCM_01006]
[SWS_UCM_01007]
[SWS_UCM_01008]
[SWS_UCM_01009]
[SWS_UCM_01010]
[SWS_UCM_01106]
[SWS_UCM_01111]
[SWS_UCM_01204]
[SWS_UCM_01205]
[SWS_UCM_01206]
[SWS_UCM_01207]
[SWS_UCM_01208]
[SWS_UCM_01209]
[SWS_UCM_01211]
[SWS_UCM_01212]
[SWS_UCM_01213]
[SWS_UCM_01214]
[SWS_UCM_01215]
[SWS_UCM_01216]
[SWS_UCM_01217]
[SWS_UCM_01218]
[SWS_UCM_01219]
[SWS_UCM_01220]
[SWS_UCM_01221]
[SWS_UCM_01222]
[SWS_UCM_01223]
[SWS_UCM_01224]
[SWS_UCM_01225]
[SWS_UCM_01226]
[SWS_UCM_01227]
[SWS_UCM_01228]
[SWS_UCM_01229]
[SWS_UCM_01230]
[SWS_UCM_01231]
[SWS_UCM_01232]
[SWS_UCM_01233]
[SWS_UCM_01234]
[SWS_UCM_01235]
[SWS_UCM_01236]
[SWS_UCM_01237]
[SWS_UCM_01238]
[SWS_UCM_01239]
[SWS_UCM_01240]
[SWS_UCM_01241]
[SWS_UCM_01242]
[SWS_UCM_01243]
[SWS_UCM_01244]
[SWS_UCM_01245]
[SWS_UCM_01246]
[SWS_UCM_01303]

21 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Requirement Description Satisfied by
[RS_UCM_00036] UCM Master shall use platform

communication services for
interacting with UCM
subordinates

[SWS_UCM_00009]
[SWS_UCM_00173]
[SWS_UCM_01002]
[SWS_UCM_01005]
[SWS_UCM_01007]
[SWS_UCM_01008]
[SWS_UCM_01009]
[SWS_UCM_01010]

[RS_UCM_00037] UCM Master shall ensure it is
safe to perform any modification
to the vehicle

[SWS_UCM_00179]
[SWS_UCM_01004]
[SWS_UCM_01106]
[SWS_UCM_01108]
[SWS_UCM_01109]
[SWS_UCM_01110]
[SWS_UCM_01111]
[SWS_UCM_01112]
[SWS_UCM_01113]
[SWS_UCM_01115]
[SWS_UCM_01222]
[SWS_UCM_01223]
[SWS_UCM_01224]
[SWS_UCM_01226]
[SWS_UCM_01228]
[SWS_UCM_01229]
[SWS_UCM_01230]
[SWS_UCM_01231]
[SWS_UCM_01234]
[SWS_UCM_01235]
[SWS_UCM_01237]
[SWS_UCM_01238]
[SWS_UCM_01240]
[SWS_UCM_01244]
[SWS_UCM_01245]
[SWS_UCM_01246]

[RS_UCM_00038] UCM Master shall interact with
driver

[SWS_UCM_00180]
[SWS_UCM_01105]
[SWS_UCM_01107]
[SWS_UCM_01116]
[SWS_UCM_01206]
[SWS_UCM_01208]
[SWS_UCM_01211]
[SWS_UCM_01222]
[SWS_UCM_01223]
[SWS_UCM_01224]
[SWS_UCM_01228]
[SWS_UCM_01230]
[SWS_UCM_01231]
[SWS_UCM_01234]
[SWS_UCM_01235]
[SWS_UCM_01237]

[RS_UCM_00039] UCM Master shall prevent
processing of compromised
Vehicle Packages

[SWS_UCM_01001]
[SWS_UCM_01221]
[SWS_UCM_01301]
[SWS_UCM_01302]

22 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Requirement Description Satisfied by
[RS_UCM_00042] UCM Master shall provide an

interface to read the state of an
update campaign

[SWS_UCM_01203]
[SWS_UCM_01205]

[RS_UCM_00043] UCM Master shall orchestrate a
software update campaign
according to the Vehicle
Package’s Manifest

[SWS_UCM_00179]
[SWS_UCM_00180]
[SWS_UCM_00210]
[SWS_UCM_01001]
[SWS_UCM_01003]
[SWS_UCM_01006]
[SWS_UCM_01115]
[SWS_UCM_01116]
[SWS_UCM_01201]
[SWS_UCM_01207]
[SWS_UCM_01209]
[SWS_UCM_01212]
[SWS_UCM_01228]
[SWS_UCM_01230]
[SWS_UCM_01301]
[SWS_UCM_01302]
[SWS_UCM_01303]

23 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7 Functional specification

7.1 UCM

7.1.1 Technical Overview

One of the declared goals of AUTOSAR Adaptive Platform is the ability to flexibly
update the software and its configuration through over-the-air updates. During the life-
cycle of an AUTOSAR Adaptive Platform, UCM is responsible to perform software
modifications on the machine and to retain consistency of the whole system.

The UCM Functional Cluster provides a service interface that exposes its func-
tionality to retrieve AUTOSAR Adaptive Platform software information and consis-
tently execute software updates. Since ara::com is used, the client using the UCM
service interface can be located on the same AUTOSAR Adaptive Platform, but
also remote clients are possible.

The service interface has been primarily designed with the goal to make it possible to
use standard diagnostic services for downloading and installing software updates for
the AUTOSAR Adaptive Platform. However, the methods and fields in the service
interface are designed in such a way that they can be used in principle by any Adaptive
Application. UCM does not impose any specific protocol on how data is transferred to
the AUTOSAR Adaptive Platform and how package processing is controlled. In
particular UCM does not expose diagnostic services.

As shown in Figure 7.1, wether the use case is an over-the-air update or garage update
done through diagnostics, it is not visible to the UCM. The UCM Client abstracts the use
case from the UCM and forwards the data stream and sequence control commands
to the UCM. Later in this document the term UCM Client is used to cover both roles:
Diagnostic Application and OTA Client.

24 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Vehicle

«device»

Adaptive ECU

AUTOSAR Adaptive Platform Services + Foundation

DoIP socketDiagnostic

Manager (DM)

DoIP socket«ServiceProvider»

UCM

AUTOSAR Adaptive Application Layer

App B App ...App A

Diagnostic Application /

OTA Client

Server

Diagnostic Client

«optional»

«optional»

Cloud

Figure 7.1: Architecture overview for diagnostic use case

7.1.1.1 Software Package Management

The UCM update sequence consists three different phases:

• Software Package transfer: A phase in which, one or several Software
Packages are transferred from the UCM’s Client Application to the internal buffer
of the UCM. For further information see chapter 7.1.2.

• Software Package processing: A phase in which the UCM performs the oper-
ation (kInstall, kUpdate, kRemove) on the relevant SoftwareCluster. For
further information see chapter 7.1.4.

• Activation: A phase in which the UCM checks the dependencies of the Soft-
wareClusters that have been involved in the operation, then activates them
and finally check that all the SoftwareClusters can be executed properly (via
State Management [4]) prior to finishing the update. For further information see
chapter 7.1.6

7.1.1.1.1 Software Package

[SWS_UCM_00122] Software Package utilization dThe unit for deployment that
the UCM shall take as input is called Software Package, see [1]. Each Software
Package shall address a single SoftwareCluster.c(RS_UCM_00026)

25 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

A SoftwareCluster can act in two roles:

• ‘Sub’-SoftwareCluster : It is a SoftwareCluster without diagnostic target
address, containing processes, executables and further elements

• ‘Root’-SoftwareCluster : It is a SoftwareCluster with a diagnostic target
address that may reference several other ‘Sub’-SoftwareClusters, which thus
form a logical group.

The two roles are expressed by reserved values of the attribute SoftwareCluster.
category.

A Software Package has to be modelled as a so-called SoftwareCluster which
describes the content of a Software Package that has to be uploaded to the
AUTOSAR Adaptive Platform, see [9].

The term Software Package is used for the "physical", uploadable Software
Package that is processed by UCM whereas the term SoftwareCluster is used
for the modeling element. In the model, the content of a SoftwareCluster is de-
fine by references to all required model elements. The SoftwareCluster and the
related model elements define the content of the manifest that is part of the Software
Package. The Software Package format and the update scope are described in
chapter "Content of a Software Package" as well as in [10].

7.1.1.1.2 Content of a Software Package

Each Software Package addresses a single SoftwareCluster and contains
manifests, executables and further data (depending on the role of the SoftwareClus-
ter) as example sketched in Figure 7.2.

Software Package A

Signed container

Software Package
Manifest

SoftwareClusterExecutables

Data

Manifests

Authentication tag

Figure 7.2: Software Package content description

26 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

A single Software Package is designed in a way that it could contain one or sev-
eral executables of Adaptive Applications, kernel or firmware updates, or up-
dated configuration and calibration data to be deployed on the AUTOSAR Adaptive
Platform. An exemplary implementation of the adaptive workflow with Software
Packages can be seen in chapter Methodology and Manifest in [10].

[SWS_UCM_00112]{DRAFT} Software Cluster and version dSoftwareClus-
ter’s manifest shall include a name and a version following semantic versioning 2.0.0
(https://semver.org/). A time stamp shall be trailing the Major.Minor.Patch version.c
(RS_UCM_00002)

[SWS_UCM_CONSTR_00001] dIf any content of SoftwareCluster is modified by a
Software Package, for instance an executable or persistent data, then the version
number of SoftwareCluster indicated in the Software Package shall be higher.c
(RS_UCM_00002, RS_UCM_00010, RS_UCM_00011)

[SWS_UCM_00130] Software Cluster and version error dIf SoftwareClus-
ter’s manifest does not contain any version as specified in [SWS_UCM_00112], UCM
shall raise the ApplicationError InvalidManifest.c(RS_UCM_00002)

7.1.1.1.3 Applications Persisted Data

[SWS_UCM_00011]{DRAFT} Updating persisted data dThe UCM shall be able
to create, update or remove any persistency data that is contained in the Soft-
wareCluster.c(RS_UCM_00017)

Further details on the persistent data can be found in Persistency Specification [11].

[SWS_UCM_00113]{DRAFT} Rollback of persisted data dThe UCM shall be able to
rollback changes done to persistent data during update process.c(RS_UCM_00017,
RS_UCM_00008)

7.1.1.2 Runtime dependencies

Both ’Sub’ and ’Root’ SoftwareCluster can have execution dependencies toward
other SoftwareClusters.

Dependencies are described in the SoftwareCluster metamodel, see [9].

[SWS_UCM_00120]{DRAFT} Runtime dependencies check dUCM shall check run-
time dependencies before the activation of the new software version. This action is
done in the context of Activate.c(RS_UCM_00007)

The rationale is, if UCM has to process several Software Packages, then execu-
tion dependencies may not be fulfilled at all times during the Software Packages
process but must be fulfilled before changes can be activated.

27 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

[SWS_UCM_00128]{DRAFT} dIf dependency check fails, UCM shall raise the Appli-
cationError MissingDependencies and change its state from kActivating to
kReady.c(RS_UCM_00007)

7.1.1.3 Update scope and state management

Software Package processed by UCM can contain Adaptive Applications, up-
dates to AUTOSAR Adaptive Platform itself or to the underlying OS. Update type
depends on the content of the Software Package.

[SWS_UCM_00099]{DRAFT} Update of Adaptive Application dUCM shall be
able to update Adaptive Applicationsc(RS_UCM_00001)

[SWS_UCM_00100]{DRAFT} Update of Functional Clusters dUCM shall be
able to update all Functional Clusters, including UCM itself.c(RS_UCM_00028)

[SWS_UCM_00101]{DRAFT} Update of Host dUCM shall be able to update the un-
derlying OS hosting the AUTOSAR Adaptive Platform.c(RS_UCM_00029)

Definition of a safe state with respect to the system setup is the OEM responsibility.
Based on the system setup and the application, the system might need to be switched
into an update state, to free resource to speed up the update, to block normal us-
age of software which might cause interruptions to update process and to block using
functionality which might be interrupted by the update sequence.

[SWS_UCM_00102]{DRAFT} Update state dFor the updates of processes associ-
ated with Machine State Function Group, UCM shall check that system is set to
update state.c(RS_SM_00001)

In update state only the applications required for the Update process are executed.
This way system is more robust, more resources are free and user is blocked from
using applications, of which failure could cause safety risk to the user.

It is the responsibility of the UCM Client to request the transition to update state, using
suitable interfaces of Adaptive State Management [4].

[SWS_UCM_00124]{DRAFT} Verify State dAs minimal check UCM shall check that
processed Software Package is able to reach kRunning state. For checking if the
updated software can reach the kRunning state, the machine or the related Func-
tion Group (depending on what is updated) shall be set into verify state.c(RS_SM_-
00001)

After the Dependency Check has been performed successfully, kVerifying state is
set (see chapter 7.1.5 for more details). In this state, it is the responsibility of the UCM
Client to request the transition to verify state, using suitable interfaces of Adaptive
State Management [4]. Then, State Management [4] will return a successful state
change only if all the relevant processes have reached the kRunning state. This gives
a chance to perform a Rollback if some processes fails to reach the kRunning state.

28 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Update of some components require a Machine reset to be performed. These compo-
nents should be configured to be part of Machine State function group, as the update
sequence of Machine State function group includes a Machine reset. Execution
Manager, State Manager, Communication Manager and UCM itself are good ex-
amples which probably require a Machine reset to activate the update. Other such
components could be applications involved in the update sequence or applications in-
volved in safety monitoring. Further details on Machine State function group
can be found in State Management [4].

7.1.2 Transferring Software Packages

To speed up the overall data transmission time, the package transfer is decoupled
from the processing and activation process. This section describes requirements for
initiation of a data transfer, the data transmission and ending of the data transmission.

Each Software Package gets its own state as soon as it is being transferred to UCM.
The state machine in Fig. 7.3 specifies the lifecycle of a Software Package that is
transferred to and processed by UCM. During this lifecycle, a Software Package is
uniquely identified with an id that UCM provides to the client.

TRANSFERRING TRANSFERRED PROCESSING

PROCESSED

Initial

Final

PROCESSING_STREAM

D
eleteTransfer

ProcessSwPackage

Cancel

TransferStart

ProcessSw
Package

TransferData|
TransferExit

TransferData

(ProcessSwPackageDone)

TransferExit

DeleteTransfer

DeleteTransfer|Finish|
RevertProcessedSwPackages

Cancel|
RevertProcessedSwPackages

(ProcessSw
PackageD

one)

Figure 7.3: State Machine for transferring packages using service interface PackageM-
anagement

[SWS_UCM_00007]{DRAFT} Data transfer at any time dUCM shall provide support
to transfer Software Packages at any time when UCM is running. Transferring is

29 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

decoupled from the UCM Package Management states.c(RS_UCM_00013, RS_UCM_-
00019, RS_UCM_00025)

[SWS_UCM_00088]{DRAFT} Preparation of data transfer dData transfer shall be
prepared with the method TransferStart. In the preparation step the number of
bytes to be transferred is provided by the client and UCM assigns a id for the Software
Package to be transferred.c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00140]{DRAFT} UCM insufficient memory dTransferStart method
shall raise the ApplicationError InsufficientMemory if the UCM buffer has
not enough resources to store the corresponding Software Package.c(RS_UCM_-
00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00008] Executing the data transfer dAfter preparing of the data transfer,
the transmission of the Software Package block-wise shall be supported by the
method TransferData.c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00145] Sequential order of data transfer dThe method TransferData
shall support the parameter blockCounter that shall start with 0x01 and incremented
by one for each subsequent block.c(RS_UCM_00013, RS_UCM_00019, RS_UCM_-
00025)

[SWS_UCM_00010] End of data transfer dAfter transmission of a Software Pack-
age is completed, the transmission can be finished with method TransferExit.c
(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00156]{DRAFT} Procurement of Checksum dDuring TransferExit,
the client may also provide to the UCM the Checksums (e.g. Checksum of the Soft-
ware Packages, Checksum of the Payload) needed by the UCM for performing the
upcoming integrity checks.c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00087] Insufficient amount of data transferred dDuring Transfer-
Exit UCM shall check if all blocks of the Software Package have been transferred
according to the size parameter of TransferStart. If not UCM shall return Ap-
plicationError InsufficientData.c(RS_UCM_00013, RS_UCM_00019, RS_-
UCM_00025)

[SWS_UCM_00092]{DRAFT} Package consistency dDuring TransferExit UCM
shall raise the ApplicationError PackageInconsistent if the package integrity
check fails. This package integrity check may be realized by the UCM via a Package
Checksum check or via other mechanisms.c(RS_UCM_00013, RS_UCM_00019, RS_-
UCM_00025)

[SWS_UCM_00028]{DRAFT} Package Authentication dUCM shall authenticate the
Software Package.c(RS_UCM_00006)

Software Package contains authentication and integrity tags, which are used during
update sequence to authenticate the source of the Software Package. Usage of
hash algorithms and cryptographic signatures to validate the package authenticity is
defined in [12].

30 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

[SWS_UCM_00098]{DRAFT} Package Authentication failure dDuring Transfer-
Exit UCM shall raise the ApplicationError AuthenticationFailed, if the data
authentication check fails.c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00091]{DRAFT} Successful data transfer dDuring TransferExit
UCM shall not raise any ApplicationError if the transfer of data could be success-
fully finished.c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00075] Multiple data transfers in parallel dHandling of multiple data
transfers in parallel shall be supported by UCM.c(RS_UCM_00019)

[SWS_UCM_00141]{DRAFT} UCM insufficient memory for parallel data transfer
dWhile a Software Package is being transferred, if UCM receives a subsequent
TransferStart call targeting another Software Package, UCM shall make sure
that the sum of the size of both Software Packages (the one being transferred and
the one requested to be transferred) does not exceed the size of the UCM buffer. Oth-
erwise, the TransferStart shall raise the ApplicationError Insufficient-
Memory and the newly requested transmission shall be rejected.c(RS_UCM_00019)

If UCM provide enough buffering resources for Software Packages, several pack-
ages could be transferred (in parallel) before they are processed one after the other.
The processing (i.e. unpacking and actually applying changes to the AUTOSAR Adap-
tive Platform) of Software Packages described by the state kProcessing is
further detailed in Sect. 7.1.4.

[SWS_UCM_00021] Deleting transferred Software Packages dUCM shall provide
a method DeleteTransfer that shall delete the targeted Software Package and
free the resources reserved to store that Software Package.c(RS_UCM_00018)

[SWS_UCM_00093] Transfer sequence dFor each Software Package UCM shall
ensure that TransferStart, TransferData and TransferExit had been used.c
(RS_UCM_00019)

[SWS_UCM_00148]{DRAFT} Transfer sequence order dCalling TransferExit
without calling TransferData at least once shall raise the ApplicationError
OperationNotPermitted.c(RS_UCM_00019)

[SWS_UCM_00069]{DRAFT} Report information on Software Packages dUCM
shall provide a method GetSwPackages of the interface service PackageManage-
ment to provide the identifiers, names and versions of Software Packages of any
state.c(RS_UCM_00010)

If Software Package is in kTransferring state, it is not possible to get versions
or names as manifest could not be complete or accessible, therefore method GetSw-
Packages should return empty values except for identifiers at this particular state.

31 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.1.3 Processing of Software Packages from a stream

It is also possible to process a Software Package while the transfer is still ongoing.
The following requirements apply for this use case.

[SWS_UCM_00165]{DRAFT} Processing from stream dThe UCM may support call-
ing ProcessSwPackage directly from stream without waiting to receive the Software
Package completely.c(RS_UCM_00001, RS_UCM_00003, RS_UCM_00004)

[SWS_UCM_00166]{DRAFT} Processing from stream state dIf UCM supports pro-
cessing from stream and is in state kIdle or kReady, the method ProcessSwPack-
age for a Software Package in state kTransferring shall set this Software
Package to state kProcessingStream.c(RS_UCM_00024)

[SWS_UCM_00167]{DRAFT} Cancelling streamed packages dAll temporary and
processed data of a Software Package in state kProcessingStream shall be re-
moved if Cancel is called.c(RS_UCM_00020)

[SWS_UCM_00168]{DRAFT} Transferring while processing from stream dSoft-
ware Package state shall remain in kProcessingStream when TransferData is
called.c(RS_UCM_00024)

[SWS_UCM_00169]{DRAFT} Finishing transfer while processing from stream d
Software Package state shall remain in kProcessingStream when Transfer-
Exit is called until the Software Package is completely processed.c(RS_UCM_-
00024)

7.1.4 Processing Software Packages

In contrast to package transmission, only one Software Package can be processed
at the same time to ensure consistency of the system. In the following, a software
or package processing can involve any combination of an installation, update or re-
moval of applications, configuration data, calibration data or manifests. It is up to the
vendor-specific metadata inside a Software Package to describe the tasks UCM has
to perform for its processing. For a removal, this might involve metadata describing
which data needs to be deleted. Nevertheless, the communication sequence between
the triggering application of the software modification and UCM is the same in any case.
For an update of an existing application, the Software Package can contain only
partial data, e.g. just an updated version of the execution manifest.

[SWS_UCM_00001]{DRAFT} Starting the package processing dUCM shall provide
a method ProcessSwPackage to process transferred Software Package. id cor-
responding to Software Package shall be provided for this method.c(RS_UCM_-
00001, RS_UCM_00004, RS_UCM_00005)

[SWS_UCM_00137]{DRAFT} Processing several update Software Packages d
UCM shall support processing of several Software Packages by calling method

32 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

ProcessSwPackage several times in sequence.c(RS_UCM_00001, RS_UCM_-
00004, RS_UCM_00005)

During package processing, the progress is provided.

[SWS_UCM_00018]{DRAFT} Providing Progress Information dUCM shall provide a
method GetSwProcessProgress to query the progress of executing the ProcessS-
wPackage method call for provided transferId. Parameter progress shall be set to a
value representing the progress between 0% and 100% (0x00 ... 0x64).c(RS_UCM_-
00023)

[SWS_UCM_00029]{DRAFT} Consistency Check of Manifest dUCM shall validate
the content of the manifest against the schema defined for the meta-data(eg: for miss-
ing parameter or for value out of range of the parameter) and shall raise the Appli-
cationError InvalidManifest if it finds discrepancies there.c(RS_UCM_00012)

[SWS_UCM_00104]{DRAFT} Consistency Check of processed Package dUCM
shall raise the ApplicationError ProcessedSoftwarePackageInconsistent
if integrity check of the processed Software Packages fails. This operation is real-
ized by the UCM to verify that it did not corrupt any files during the processing. This
integrity check may be realized by the UCM by checking the payload Checksum or by
any other mechanisms.c(RS_UCM_00012)

[SWS_UCM_00003]{DRAFT} Cancelling the package processing dUCM shall pro-
vide a method Cancel to cancel the running package processing. UCM shall then
abort the current package processing task, undo any changes and free any reserved
resources.c(RS_UCM_00020)

[SWS_UCM_00024]{DRAFT} Revert all processed Software Packages dUCM
shall provide a method RevertProcessedSwPackages to revert all changes done
with ProcessSwPackage.c(RS_UCM_00008)

Depending on the capabilities of UCM and of the updated target, Cancel and Revert-
ProcessedSwPackages is used to revert all the changes that have been applied by
ProcessSwPackage. For example, if an application with large resource files is up-
dated “in place” (i.e. in the same partition) then it might not be feasible to revert the
update. In this case, to perform a rollback the triggering application could download a
Software Package to restore a stable version of the application.

[SWS_UCM_00161]{DRAFT} Check Software Package version compatibility
against UCM version dAt ProcessSwPackage, TransferData or TransferExit calls, UCM
shall raise ApplicationError IncompatiblePackageVersion if the version for
the Software Package transferred or to be processed is not compatible with the
current version of UCMc(RS_UCM_00007)

The Software Package is generated by a tooling including a packager which version
could not match with the UCM version, leading to manifest interpretation issues for
instance.

33 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.1.5 Status Reporting

Once Software Packages are transferred to UCM, they are ready to be processed
to finally apply changes to the AUTOSAR Adaptive Platform. In contrast to the
transmission, the processing and activation tasks have to happen in a strict sequential
order.

To give an overview of the update sequence, the global state of UCM is described in
this section. The details of the processing and activation phases and the methods are
specified in the 7.1.4 and 7.1.6.

The global state of UCM can be queried using the field CurrentStatus. The state
machine for CurrentStatus is shown in Fig. 7.4.

[SWS_UCM_00019]{DRAFT} Status Field of Package Management dThe global
state of UCM shall be provided using the field CurrentStatusc(RS_UCM_00024)

PackageManagerStatus

PROCESSING

do / process SW package

READY

VERIFYING

do / MonitorApplicationRestart

Initial

IDLE

ACTIVATEDROLLING-BACK

do / roll back to old version

ROLLED-BACK CLEANING_UP

do / clean up

ACTIVATING

do / DependencyCheck

Activate()
Rollback()

RevertProcessedSwPackages()
Finish()

ProcessSwPackage()

Cancel()

OnFailure

RevertProcessedSwPackages()

OnSuccess

ProcessSwPackage()Finish()

OnSuccess

On
Failure

Rollback()

Figure 7.4: State Machine for the package processing using service interface: Package-
Management

UCM supported method calls for each value of field CurrentStatus are shown in Fig.
7.4.

[SWS_UCM_00086]{DRAFT} Unsupported method calls dUnsupported method
calls shall raise the ApplicationError OperationNotPermitted.c(RS_UCM_-
00024)

34 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

[SWS_UCM_00080]{DRAFT} Idle state of Package Management dkIdle shall be
the default state.c(RS_UCM_00024)

[SWS_UCM_00147]{DRAFT} Return to the Idle state from Cleaning-up state dkI-
dle state shall be set when the Clean-up operation has been completed succesfully.
Once ProcessSwPackage is performed successfully, UCM is managing two software
configurations, active and inactive. UCM must go through kCleaningUp state to start
a new update from kIdle state.c(RS_UCM_00024)

[SWS_UCM_00082]{DRAFT} Exit from Processing state of Package Management
dkProcessing state shall be exited when processing of called method ProcessSw-
Package or RevertProcessedSwPackages has finished or after the processing of
the package has been interrupted by calling Cancel. Following state reported by Cur-
rentStatus is kCleaning-up in case of a RevertProcessedSwPackages call or
kReady in case of a ProcessSwPackage completion.c(RS_UCM_00024)

[SWS_UCM_00150]{DRAFT} Cancellation of a Software Package processing d
ProcessSwPackage method shall raise the ApplicationError ProcessSwPack-
ageCancelled if the Cancel method has been called during the processing of a
Software Package.c(RS_UCM_00024)

[SWS_UCM_00149]{DRAFT} Return to the Idle state from Processing state dkI-
dle state shall be set when ProcessSwPackage returns with error code ProcessS-
wPackageCanceled and if no other Software Packages were previously pro-
cessed during this processing operation.c(RS_UCM_00024)

[SWS_UCM_00151]{DRAFT} Entering the Ready state of Package Management
after a Cancel call dIf ProcessSwPackage has been cancelled, it shall return er-
ror code ProcessSwPackageCanceled and set state to kReady only if at least one
other Software Package was previously processed during this processing opera-
tion.c(RS_UCM_00024)

[SWS_UCM_00081]{DRAFT} Processing state of Package Management dkPro-
cessing state shall be set only if ProcessSwPackage has been called. This shall
only be possible, if CurrentStatus is reported as kIdle or kReady.c(RS_UCM_-
00024)

[SWS_UCM_00017]{DRAFT} Sequential Software Package Processing dOnce
method ProcessSwPackage has been called by a client, further calls to the same
method shall be rejected with ApplicationError ServiceBusy as long as Cur-
rentStatus is different than kIdle or kReady.c(RS_UCM_00001, RS_UCM_-
00003, RS_UCM_00026)

[SWS_UCM_00083]{DRAFT} Entering the Ready state of Package Management
after a successful processing operation dkReady state shall be set after a Soft-
ware Package processing has been completed successfully.c(RS_UCM_00024)

[SWS_UCM_00152]{DRAFT} Entering the Ready state of Package Management
after a missing dependency dkReady state shall be set when Activate fails due to
an ApplicationError MissingDependencies.c(RS_UCM_00024)

35 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

[SWS_UCM_00084]{DRAFT} Entering the Activating state of Package Manage-
ment dkActivating shall be set when Activate is called. This triggers the depen-
dency check and prepares the processed Software Package to be executed in the
next restart of the machine or Function Group.c(RS_UCM_00024)

[SWS_UCM_00153]{DRAFT} Action in Activating state of Package Management
dWhen kActivating is set, the UCM shall perform a dependency check to ensure that
all the Software Packages having dependencies toward each other have been pro-
cessed successfully and shall return ApplicationError MissingDependencies
if this check fails.c(RS_UCM_00024)

[SWS_UCM_00154]{DRAFT} Entering the Verifying state of Package Manage-
ment dkVerifying shall be set when ActivateReturnType is returned and no error
has been raised in the context of the Activate call. This implies that the dependency
check have been performed successfully (all dependencies are satisfied) and that the
processed Software Package can now be executed.c(RS_UCM_00024)

In kVerifying, the machine has to be restarted in case a A/B partition is used. In
case the A/B partition is not used, all affected Function Groups or the platform
could be restarted. Immediately after the processed Software Package has been
restarted, a system check has to be performed in order to make sure the machine
is able to start up as expected. With this check it is verified that other safety rele-
vant software like Functional Cluster Platform Health Manager is running
and user can be protected from any issues caused by the update after the update
has finished. To do so, one mechanism offered by the Adaptive Platform is to restart
the processed Software Package into a Verify Function Group state (refer to re-
quirement [SWS_UCM_00124] and State Management [4] specification).

[SWS_UCM_00085]{DRAFT} Entering the Activated state of Package Manage-
ment dkActivated state shall be set when the machine or all impacted Function
Groups (the ones related to the processed Software Package) have been suc-
cessfully restarted into verify Function Group state. Practically, this is done when the
[4] Function GroupState field notifies that the Verify state associated with the pro-
cessed Software Package has been reached (which means that all the updated
processes have reached the kRunning state).c(RS_UCM_00024)

UCM monitors FunctionGroupStates from State Management [4] to conclude if activa-
tion was successful. kVerifying state gives the client controlling the update process
a chance to perform verification test, though functionality in verify state can be limited.
Client can also coordinate the results over several AUTOSAR Adaptive Platforms
and still perform a Rollback if verification indicates the need for it.

If the system check is successful, the client can decide either to Rollback the current
active processing so that the previous processed working software gets started, or to
perform Finish so that the changes of processed software become permanent. By
calling Finish a clean-up is initiated and in case of A/B partition, a swap between
the partitions happens and the newly inactive partition becomes a copy of the newly
active partition. In case Finish succeeds (including the clean-up), the current Cur-
rentStatus changes to kIdle.

36 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

For Rollback the update software needs to be deactivated and possibly reactivated
from original version. e.g. self-update of UCM. For this reason Rollback is also
performed through two states, similarly as activation. Calling Rollback sets UCM
into kRollingBack state where original software version is made executable and
where original software is activated by the State Management [4], then UCM goes to
kRolledBack state. In this state all the changes introduced during update process
have been deactivated and can be cleaned by calling Finish.

[SWS_UCM_00126]{DRAFT} Entering the RollingBack state after a Rollback call
dThe state kRollingBack shall be set when Rollback is called. This prepares
the original software to be executed in the next restart of the machine or Function
Group.c(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00155]{DRAFT} Entering the RollingBack state after a failure in the
Verifying state dThe state kRollingBack shall be set when a failure occurs in the
Verifying state. Such failure could result from the [4] Function GroupState field
notifying that the updated processes could not be executed successfully (i.e. when
verify state is reported as not reached by [4]).c(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00111]{DRAFT} Entering the Rolled-back state dThe state kRolled-
Back shall be set when State Management FunctionGroupState field indicates that
all the software updated have been restarted or shutdown.c(RS_UCM_00008, RS_-
UCM_00030)

[SWS_UCM_00146]{DRAFT} Entering the Cleaning-up state after a Finish call
dThe state kCleaning-up shall be set when Finish is called and the UCM starts to
perform cleanup actions.c(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00162]{DRAFT} Entering the Cleaning-up state after a RevertPro-
cessedSwPackages call dThe state kCleaning-up shall be set when RevertPro-
cessedSwPackages is called and the UCM starts to perform cleanup actions.c(RS_-
UCM_00008, RS_UCM_00030)

[SWS_UCM_00163]{DRAFT} Action in Cleaning-up state dWhen kCleaning-up
state is set, the UCM shall clean up all data of the processed packages that are not
needed anymore.c(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00164]{DRAFT} Cleaning up of Software Packages dIn kClean-
ing-up state, the UCM may remove (from the UCM buffer for instance) the "physical"
Software Package (e.g. zip file) that was used to transport the the SoftwareCluster to
the UCM.c(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00127]{DRAFT} Finishing update sequence dkIdle shall be set when
Finish is called and the clean-up has been successfully performed. This finishes the
update sequence and next sequence can be started.c(RS_UCM_00008, RS_UCM_-
00030)

37 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.1.6 Activation and Rollback

[SWS_UCM_00108]{DRAFT} Execution of the update software dUCM shall only
commit updates which have been successfully executed. As part of Activation se-
quence a context switch to updated software is performed and updated software is
executed, before update sequence can be successfully Finished.c(RS_UCM_00030)

UCM should notify the activation or rollback of Software Packages to other Func-
tional Clusters of the AUTOSAR Adaptive Platform. Vendor specific solution
dictates to which modules this information is available, in which form and if this is done
directly when change is done or when change is executed.

7.1.6.1 Activation

The SoftwareCluster state kPresent does not express whether a Soft-
wareCluster is currently executed or not.

[SWS_UCM_00107]{DRAFT} Activated state dUCM state kActivated shall express
that new version of updated SoftwareCluster is executed.c(RS_UCM_00008, RS_-
UCM_00030)

The state management on the level of execution is handled by the UCM’s client control-
ling the update process.

UCM has to be able to update several SoftwareClusters for an update campaign.
However, these SoftwareClusters could have dependencies not satisfied if updates
are processed and activated one by one. Therefore, UCM splits the activation action
from the general package processing.

[SWS_UCM_00026]{DRAFT} Dependency Check dAt activation (i.e. when Acti-
vate is called), UCM shall check that dependencies described in the SoftwareClus-
ters are all fulfilled. Unfulfilled dependencies shall raise the ApplicationError
MissingDependencies.c(RS_UCM_00007)

[SWS_UCM_00027]{DRAFT} Delta Package activation dMinimum version of Soft-
wareCluster on which to apply delta shall be included into SoftwareCluster de-
pendency model with role SoftwareCluster.dependsOnc(RS_UCM_00007)

[SWS_UCM_00025]{DRAFT} Activation of SoftwareClusters dUCM shall offer
method Activate to enable execution of any pending changes from the previously
processed Software Packages. After Activate the new set of SoftwareClus-
ters can be started. Activation covers all the processed Software Packages for all
the clients.c(RS_UCM_00021)

[SWS_UCM_00022]{DRAFT} Shared Activation of Software Packages dUCM
shall activate all the processed Software Packages when Activate is called.c
(RS_UCM_00021)

38 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

The activation method could either lead to a full system reset or restart of Function
Groups impacted by the Software Package. When Software Package updates
underlying OS, AUTOSAR Adaptive Platform or any Adaptive Application
which is configured to be part of Machine State function group, the execution
of updated software occurs through system reset. In other cases Function Group
restarts can be used to execute the updated software. Meta-data of Software Pack-
age defines the activation method, but it can be overruled using an optional input ar-
gument indicating if a system reset or Function Group restart will occur.

The UCM does not trigger the restart of processed software. This needs to be performed
by the client application. This is due to the fact that such restart might need to be syn-
chronized between several Platforms/ECUs (e.g. during an update campaign where
several dependent Software Packages from several ECUs have to be updated).

7.1.6.2 Rollback

[SWS_UCM_00005]{DRAFT} Rollback to the software prior to Finish the update
process dUCM shall provide a method Rollback to recover from an activation that
went wrong.c(RS_UCM_00008)

Rollback can be called in the case of A/B partitions or UCM uses some other solution to
maintain backups of updated or removed Software Packages.

[SWS_UCM_00110]{DRAFT} Rolling-back the software update dDuring Rolling-
Back UCM shall disable the changes done by the software update.c(RS_UCM_00008)

[SWS_UCM_00142]{DRAFT} Prevent software from blocking the Rollback oper-
ation dWhile Rolling-Back, UCM can forcefully shutdown the newly processed software
(i.e the one that needs to be the Rolled-back), if needed, in order to avoid this software
blocking the Rollback operation.c(RS_UCM_00008)

7.1.6.3 Boot options

During update process the executed software is switched from original software to
updated software and in case of rollback, from updated software to original version.
Which version of software is executed is dependent on the UCM state and this is man-
aged by the UCM. In case of platform and OS update the switch between software
versions occurs through system reset and depending on the system design the Exe-
cution Management [2] might be started before UCM. In this case there can’t be direct
interface between UCM and Execution Management [2] to define which versions of soft-
ware would be executed. Instead this would be controlled through persistent controls
which are referred as Boot options in this document.

[SWS_UCM_00094]{DRAFT}Management of executable software dUCM shall man-
age which version of software is available for the Execution Management [2] to launch.c
(RS_UCM_00021)

39 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

During the kActivating state UCM modifies the Boot options so that in the next
restart for the updated software the new versions will be executed. In the kRolling-
Back state UCM modifies the Boot options so that in the next restart of the updated
software the original versions will be executed. Successful exit from kActivating
and kRollingBack states is triggered by the FunctionGroupState from State Man-
agement.

[SWS_UCM_00096]{DRAFT} Entering the Rolled-back state dUCM shall switch from
kRollingBack state into the kRolledBack state when FunctionGroupState from
State Management [4] indicates that original software has successfully reached the
Application state kRunning.c(RS_UCM_00008, RS_UCM_00030)

7.1.6.4 Finishing activation

[SWS_UCM_00020]{DRAFT} Finishing the packages activation dUCM shall provide
a method Finish to commit all the changes and clean up all temporary data of the
packages processed.

UCM should also remove Software Packages, logs or any older versions of changed
software to save storage space. It is up to implementer to remove or not the Software
Packages.c(RS_UCM_00015)

For UCM to be able to free all unneeded resources while processing the Finish re-
quest, it is up to the vendor and platform specific implementation to make sure that
obsolete versions of changed SoftwareClusters aren’t executed anymore.

7.1.7 Robustness against reset

Failure during over-the-air updates could lead into corrupted or inconsistent software
configuration and further updates might be blocked. For this reason UCM needs to be
robust against interruptions like power downs.

[SWS_UCM_00157]{DRAFT} Detection of reset dAt start up UCM shall identify if un-
controlled reset occurred.c(RS_UCM_00027)

[SWS_UCM_00158]{DRAFT} Cleanup of interrupted actions dAfter uncontrolled re-
set UCM shall perform cleanup and return the system into consistent state, from where
the client can continue in a controlled manner.c(RS_UCM_00027)

7.1.7.1 Boot monitoring

Activation failure during OS and Platform-self updates can lead to a state in which the
system is not able to reach a point where UCM and the client are able to function as
expected and thus not able to execute the rollback. For these cases the system should
include component which is responsible to monitor that the OS and platform will start

40 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

up correctly. In case of failure, the Boot monitoring component should trigger a reset
or modify the boot options to trigger a rollback.

7.1.8 Logging and history

[SWS_UCM_00170]{DRAFT} Log message retrieving dUCM shall provide a method
GetLog to retrieve all log messages that have been stored by UCM.c(RS_UCM_00022)

[SWS_UCM_00143]{DRAFT} Log level setting dUCM shall provide a method Set-
LogLevel to provide a log level for all subsequent log messages that are stored by
UCM.c(RS_UCM_00022)

[SWS_UCM_00171]{DRAFT} Log level changing dCalling SetLogLevel shall im-
mediatly lead to change of loglevel, even in the middle of any UCM action.c(RS_UCM_-
00022)

[SWS_UCM_00172]{DRAFT} Log messages removing dAll log messages that are
stored by UCM shall be removed within the Finish call.c(RS_UCM_00022)

[SWS_UCM_00115]{DRAFT} History dUCM shall provide a method GetHistory to
retrieve all actions that have been performed by UCM in a specific time window.c(RS_-
UCM_00032)

[SWS_UCM_00160]{DRAFT} Processing results records dUCM shall save activation
time and activation result of processed Software Packages in the history.c(RS_-
UCM_00032)

7.1.9 Version Reporting

[SWS_UCM_00004]{DRAFT} Report software information dUCM shall provide a
method GetSwClusterInfo of the interface service PackageManagement to pro-
vide the identifiers and versions of the SoftwareClusters that are in state kPre-
sent.c(RS_UCM_00002)

[SWS_UCM_00030]{DRAFT} Report changes dUCM shall provide a method
GetSwClusterChangeInfo of the interface service PackageManagement to pro-
vide the identifiers and versions of the SoftwareCluster that are in state kAdded,
kUpdated or kRemoved.c(RS_UCM_00011)

41 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.1.10 SoftwareCluster lifecycle

Initial

ADDED PRESENT

UPDATED

REMOVED

Final

Finish RevertProcessedSwPackages

RevertProcessedSwPackages

Finish

ProcessSwPackage

RevertProcessedSwPackages

FinishProcessSwPackage

Figure 7.5: State Machine for a SoftwareCluster

The state machine in Fig. 7.5 describes the states of a SoftwareCluster. After
processing a Software Package with a new SoftwareCluster that was not yet
existing on the AUTOSAR Adaptive Platform, the new SoftwareCluster starts
its lifecycle with state kAdded. After finishing update process with method Finish, it is
in state kPresent. In another update process, by processing a Software Package
with new data for the SoftwareCluster, it changes to kUpdated and returns to
kPresent once update process has finished. If a Software Package is processed
and it involves the deletion of an existing SoftwareCluster the state changes to
kRemoved. Finish commits the change and the removed SoftwareCluster is not
reported by UCM any more.

The state machine in Fig. 7.5 describes the states of a SoftwareCluster. After
processing a Software Package with a new SoftwareCluster that was not yet
existing on the AUTOSAR Adaptive Platform, the new SoftwareCluster starts
its lifecycle with state kAdded. After finishing update process with method Finish, it is
in state kPresent. In another update process, by processing a Software Package
with new data for the SoftwareCluster, it changes to kUpdated and returns to
kPresent once update process has finished. If a Software Package is processed
and it involves the deletion of an existing SoftwareCluster the state changes to
kRemoved. Finish commits the change and the removed SoftwareCluster is not
reported by UCM any more.

7.1.11 Securing Software Updates

UCM provides service interface using ara::com. There is no authentication of the
client in UCM’s update sequence.

For authentication of the Software Package, you can refer to 7.1.2

[SWS_UCM_00103]{DRAFT} Update to older Software Cluster version than
currently present dIn order to avoid an attacker to install an old Software Clus-
ter version having known security flaws, UCM shall prohibit its processing. In case

42 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

of such attempt, UCM TransferExit shall raise the ApplicationError OldVer-
sion, keep within history this tentative and delete old Software Package.c(RS_-
UCM_00031)

[SWS_UCM_00105]{DRAFT} UCM confidential information handling dThe meth-
ods GetSwClusterInfo, GetSwClusterChangeInfo, GetLog, GetHistory and
GetSwPackages shall only be called over secure communication channel providing
confidentiality protection.c(RS_UCM_00002, RS_UCM_00010, RS_UCM_00011)

7.1.12 Functional cluster lifecycle

7.1.13 Shutdown behaviour

There are no requirements of shutdown behaviour from UCM functional cluster.

43 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.2 UCM Master

7.2.1 Technical Overview

UCM Master objective is to provide a standard Adaptive Autosar solution to safely and
securely update a complete vehicle Over The Air or by a Diagnostic Tester.

UCM Master receives packages from Backend or Diagnostic tool, parses and inter-
prets the Vehicle Package, transfers or streams Software Packages to suitable
target (UCM subordinate or Diagnostic Application) and orchestrates the processing,
activations and eventual rollbacks. All these actions are what is called an update cam-
paign which UCM Master is coordinating.

Figure 7.6: Example of UCM Master architecture overview within a vehicle

The UCM Master could be considered as a set of add-on features that could enrich
any UCM instance. Therefore, as per the UCM APIs, the UCM Master APIs are part of
the Adaptive Platform Services. UCM and UCM Master have separate service
instances.

When communication is established between Backend and UCM Master by OTA
Client, versions of installed Software Clusters in vehicle can be exchanged be-
tween these two components. This communication could be triggered by OTA Client
with a scheduler or by Backend to push for instance an important security update to
a fleet of vehicles. The computation to find new Software Clusters versions and
resolution of dependencies between Software Clusters can be either done at UCM
Master or Backend.

44 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Vehicle Driver interface Adaptive Application is required if it is needed during an
update campaign to interact with vehicle human driver through for instance Human-
Machine Interface. Download of packages from a Backend could have various finan-
cial costs for the driver depending of communication types, so consent from driver
could be suitable.

Vehicle State Manager Adaptive Application is required if it is needed during an
update campaign to control the vehicle state for safety purposes. For instance, it could
be required for safety to have standing still vehicle, shut-off engine, closed doors, etc.
before starting an UCM activation or during its processing.

7.2.2 UCM Master general behaviour

The UCM Master runs as a separate service instance besides other UCM services.
It uses these offered UCM services as a supervisor to allow performance of update
campaigns. To achieve this behaviour, the UCM specification is extended. As an UCM
Master generally acts as a UCM client, it uses the already specified UCM API. UCM
Master aggregates UCM subordinates states and can report its status field to a Back-
end trough its OTA Client.

An UCM Master receives a Vehicle Package and transfers or streams Software
Package(s) to the UCM subordinates for an AUTOSAR Adaptive Platform Soft-
ware Cluster update. A Vehicle Package contains instructions for orchestrating
updates between ECUs. The UCM Master provides information about ECUs in the
vehicle, installed software and update campaign resolution.

[SWS_UCM_01001]{DRAFT} UCM Master processes Vehicle Package dAn UCM
Master shall receive a Vehicle Package and transfers corresponding Software
Package(s) to its UCM subordinates.c(RS_UCM_00039, RS_UCM_00043).

[SWS_UCM_01002]{DRAFT} UCM Master shall provide UCM services dIt is cur-
rently not foreseen to have a UCM acting only as a UCM Master, which would imply
that this UCM Master would require another UCM instance to perform the update of its
AUTOSAR Adaptive Platform.c(RS_UCM_00036).

[SWS_UCM_01003]{DRAFT} UCM Master checks states of UCM subordinates dAn
UCM Master shall check the populated status of its UCM subordinates to make sure
no interfering update is currently ongoing.c(RS_UCM_00043)

UCM Master should for instance make sure that there is no ongoing diagnostic up-
dates before starting an update campaign by checking the reported state(s) of the UCM
subordinate(s) to be idle.

[SWS_UCM_01004]{DRAFT} Only one UCM Master shall be active per network
domain dAs UCM Master is distributing Software Packages and coordinating UCM
subordinates, no other UCM Master shall be active within a network domain in order
to avoid any interferences and guaranty success of an update campaign.c(RS_UCM_-
00037)

45 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.2.3 UCM identification

For UCM Master to distribute Software Packages to other UCM subordinates, UCM
Master has to identify UCM subordinates in vehicle. This identification could be at boot
or later but at least before any communication with Backend are engaged. Each UCM
has a unique identifier in Vehicle Package ucmModuleInstantiation called
identifier to help UCM Master transferring packages to targeted UCMs. To get such
identifier, UCM Master will perform first a service discovery through ara::com to get all
UCMs service instances available. Then UCM Master will call GetId method for each
UCM subordinates returning each corresponding ucmModuleInstantiation identifiers.

[SWS_UCM_00009]{DRAFT} UCM exposing its identifier dUCM shall provide a
method GetId returning its ucmModuleInstantiation identifier.c(RS_UCM_00036)

If an ECU hosting UCM subordinate is replaced physically, it will register its services
to the registry at boot up and UCM Master will be able to communicate with UCM
subordinate(s).

[SWS_UCM_01005]{DRAFT} UCM Master is discovering UCMs in vehicle dUCM
Master shall continuously look for UCM service instances (use of StartFindService()
call).c(RS_UCM_00036)

If a UCM Master is failing, another inactive UCM Master could be used or activated
by OTA Client.

Default (at boot) Master/Subordinate hierarchy or priority could be optionally overwrit-
ten for each campaign based on Vehicle Package content at the condition OTA
Client could properly parse Vehicle Packages.

7.2.4 UCM Master Software Packages transfer or streaming

UCM Master has generally same transfer API as UCM in order to simplify implementa-
tion and reuse code as much as possible (could be shared library between UCM and
UCM Master).

[SWS_UCM_01006]{DRAFT} Vehicle Package transfer to UCM Master dUCM
Master shall provide method transferVehiclePackage via ARA::COM to OTA
Client.c(RS_UCM_00035, RS_UCM_00043) It is necessary to distinguish Vehicle
Package (UCM Master specific) from Software Packages transfer.

[SWS_UCM_01007]{DRAFT} Start transfer of a Vehicle Package or Software
Packageto UCM Master dUCM Master shall provide method transferStart via
ARA::COM to OTA Client.c(RS_UCM_00035, RS_UCM_00036)

[SWS_UCM_01008]{DRAFT} Transfer data of a Vehicle Package to UCM Mas-
ter dUCM Master shall provide method transferData via ARA::COM to OTA
Client.c(RS_UCM_00035, RS_UCM_00036)

46 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

[SWS_UCM_01009]{DRAFT} Exit the transfer of a Vehicle Package to UCM
Master dUCM Master shall provide method transferExit via ARA::COM to OTA
Client.c(RS_UCM_00035, RS_UCM_00036)

[SWS_UCM_01010]{DRAFT} Delete a Vehicle Package transferred to UCM
Master dUCM Master shall provide method deleteTransfer via ARA::COM to
OTA Client.c(RS_UCM_00035, RS_UCM_00036)

7.2.5 Adaptive Applications interacting with UCM Master

In order to have interoperability between several vendors platforms, Adaptive Ap-
plications interacting with UCM Master via ara::com like OTA Client, Vehicle
State Manager or Vehicle Driver Interface have their APIs specified. However, their
detailed behaviours are out of scope for this specification document.

7.2.5.1 OTA Client

OTA Client is an Adaptive Application that sets communication channel be-
tween Backend and UCM Master. It uses the UCM Master as a service provider via
ARA::COM. The communication between Backend and OTA Client is abstracted
and details like protocol are out of scope for this specification document. OTA Client
shall make sure Backend is providing the right information and packages to the vehicle
by identifying the vehicle, by for instance sending VIN to Backend.

[SWS_UCM_01101]{DRAFT} Provide information of installed Software Clus-
ters in vehicle dUCM Master shall provide a method GetSwClusterInfo to return
information of all Software Cluster present in the vehicle.c(RS_UCM_00033)

UCM Master can aggregate Software Cluster information from several UCMs
within a vehicle and returns the result to a Backend which can compute if there is
any new Software Cluster available and decide to send to UCM Master through
OTA Client a Vehicle Package.

[SWS_UCM_01102]{DRAFT} Get information of available Software Clusters
in Backend dUCM Master shall provide a method SwPackageInventory which ar-
gument contains information Software Clusters present in Backend for the vehi-
cle.c(RS_UCM_00033)

[SWS_UCM_01103]{DRAFT} Inform Backend of needed Software Clusters
for an update dAfter UCM Master receives with SwPackageInventory call the in-
formation of available Software Clusters present in Backend for the vehicle, UCM
Master shall compute based on its own internal information of present Software
Clusters in vehicle what are the new Software Clusters available at Backend
and return to it.c(RS_UCM_00033)

47 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.2.5.2 Vehicle Driver Interface

Vehicle driver interface could be required by legal constrains or communication cost
consideration. To support mandatory safety and security critical updates, driver inter-
action can be used for:

• Requesting transfer, processing or activation permission from vehicle driver

• Notifying vehicle driver of safety and security measures he has to apply to the
vehicle in order to proceed to next step into the update campaign

[SWS_UCM_01105]{DRAFT} Interaction of UCM Master with Vehicle Driver
dVehicle Driver Interface Adaptive Application shall provide to UCM Master a
method DriverNotification over ARA::COM in order for UCM Master to inform
the driver at what state is the update, if approval is required or what safety measures
shall be applied to the vehicle in order to continue towards next update state.c(RS_-
UCM_00038)

After a call of DriverNotification, UCM Master waits for an approval before go-
ing to next step in the update campaign.

[SWS_UCM_01106]{DRAFT} Exclusive use of Vehicle Driver Interface dVehicle
Driver Interface shall ensure that UCM Master is the exclusive user of the Driver-
Notification method at any time during a software update campaign.c(RS_UCM_-
00035, RS_UCM_00037)

For example, the integrator may restrict the access to Vehicle Driver Interface in con-
figuring the Identity and Access Management functional cluster accordingly.

[SWS_UCM_01107]{DRAFT} UCM Master provides progress information to Ve-
hicle Driver dUCM Master shall provide to Vehicle Driver Interface Adaptive Ap-
plication methods GetSwTransferProgress and GetSwProcessProgress in
order for UCM Master to inform progress of respectively update campaign’s transfer
and processing.c(RS_UCM_00038)

[SWS_UCM_01108]{DRAFT} Unsupported safety policy by Vehicle driver inter-
face dIn the case method DriverNotification is called with an unsupported safety
policy argument, Vehicle driver interface shall raise the ApplicationError notSup-
portedSafetyPolicy.c(RS_UCM_00037)

7.2.5.3 Vehicle State Manager

Vehicle State Manager is collecting states from the several vehicle ECUs and provides
to UCM Master a field to subscribe, a judgement against the safety policy referred
in the Vehicle Package. If the safety policy is not met, the UCM Master can for
instance decide to:

• Inform vehicle driver that the safety conditions are not met to continue the update

• postpone, pause or cancel the update until policy is met

48 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

[SWS_UCM_01109]{DRAFT} Vehicle State Manager shall provide to UCM Mas-
ter a safety state dUCM Master shall provide to Vehicle State Manager Adaptive
Application a field SafeToUpdate.c(RS_UCM_00037)

[SWS_UCM_01110]{DRAFT} UCM Master shall be able to set the safety policy to
be computed by Vehicle State Manager dVehicle State Manager Adaptive Appli-
cation shall provide to UCM Master a method ApplyPolicy via ARA::COM setting
suitable safety policy to be computed by Vehicle State Manager.c(RS_UCM_00037)

[SWS_UCM_01111]{DRAFT} Exclusive use of Vehicle State Manager dVehicle
State Manager shall ensure that UCM Master is the exclusive user of the Apply-
Policy method at any time during a software update campaign.c(RS_UCM_00035,
RS_UCM_00037)

For example, the integrator may restrict the access to Vehicle State Manager in config-
uring the Identity and Access Management functional cluster accordingly.

[SWS_UCM_01112]{DRAFT} Unsupported safety policy by Vehicle State Man-
ager dIn the case method ApplyPolicy is called with an unsupported safety policy
argument, Vehicle State Manager shall raise the ApplicationError notSupport-
edSafetyPolicy.c(RS_UCM_00037)

[SWS_UCM_01113]{DRAFT} Switching vehicle into update mode dVehicle State
Manager shall change vehicle’s state and its ECUs in the right update mode in order to
avoid any timeout issues during update.c(RS_UCM_00037) This vehicle state change
could be triggered based on UCM Master State Machine.

49 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.2.6 Status reporting

UCM Master supports a mechanism to provide the state of an update campaign
typically to OTA Client, Vehicle Driver Application and Vehicle State
Manager.

Initi al

IDLE

SYNCING

do / ComputeUpdates

TRANSFERRING

do / D istributeSoftwarePackages

TRANSFER_APPROVING

entry / SafetyPolicySetting
do / DriverN otification

ACTIVATING

do / UCM.Activate()

VEHICLE_CHECKING

do / V ehicleSanityCheck

ROLLING-BACK

do / UCM.RollBack()

VEHICLEPACKAGE_TRANSFERRING

do / V ehiclePackageReceiving

PROCESS_APPROVING

entry / SafetyPolicySetting
do / DriverN otification

ACTIVATE_APPROVING

entry / SafetyPolicySetting
do / DriverN otification

PROCESSING

entry / U CM.processSwPackage()
do / ProcessingSoftwarePackages

[V alidManifest & Enough
Resources &
D ependencyCheck]

[Driver_Approved &
SafeToUpdate == True &
currentStatus == Ready]

U CMMaster.transferExit()
[approvalRequired == True ||
safetyPolicyRequired]

[CurrentStatus == Idle]

U CMMaster.cancel()

U CMMaster.transferV ehiclePackage()

[SafeToUpdate
== False]

U CMMaster.cancel()

U CMMaster.cancel()
[V ehicleChecksFailing]

U CMMaster.transferData()

[CurrentStatus == Ready]

[CurrentStatus == Idle]

U CMMaster.transferExit()

[SafeToUpdate
== False]

U CMMaster.cancel()
[CampaignFailure]

U CMMaster.transferData()

[A ll CurrentStatus == kReady]

U CMMaster.deleteTransfer()
[InvalidManifest |
LackResources |
FailedDependency]

[Driver_Approved &
SafeToUpdate == True]

U CMMaster.deleteTransfer(),
U CMMaster.cancel()

U CMMaster.cancel()

[SyncingDone]

[A ll CurrentStatus == kReady
&& (approvalRequired == True
|| safetyPolicyRequired)]

U CMMaster.cancel()

U CMMaster.GetSwClusterInfo(),
U CMMaster.SwPackageInventory()

[SafeToUpdate
== False]

[approvalRequired == True ||
safetyPolicyRequired]

[CampaignSuccess]

[SafeToUpdate == True
& Driver_Approved]

Figure 7.7: Campaign State Machine

[SWS_UCM_01201]{DRAFT} Sequential orchestration of campaigns dUCM Mas-
ter shall orchestrate at most a single campaign at any one time.c(RS_UCM_00043)

[SWS_UCM_01203]{DRAFT} CampaignState field dUCM Master shall provide the
state of a campaign over the CampaignState field of the UCM Master Provided-
Port.c(RS_UCM_00042) There is an overview of the campaign state machine in Fig.
7.7 detailing UCM Master campaign states and transitions.

50 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.2.6.1 States

[SWS_UCM_01204]{DRAFT} Initial state dkIdle shall be the initial state at UCM
Master startup if no recovery is required.c(RS_UCM_00035)

[SWS_UCM_01205]{DRAFT} UCM Master internal state persistency dUCM Mas-
ter shall persist its state to be able to resume on-going update campaign after an
intended or unintended reboot.c(RS_UCM_00035, RS_UCM_00042)

[SWS_UCM_01206]{DRAFT} Trigger on kTransferApproving state dOn transi-
tion to kTransferApproving state, UCM Master shall request if required (campaign
orchestration) approval for transferring (DriverNotification) from the Vehicle
Driver Application and request if required (campaign orchestration) safety pol-
icy enforcement for transferring (ApplyPolicy) from Vehicle State Manager.c
(RS_UCM_00035, RS_UCM_00038)

[SWS_UCM_01207]{DRAFT} Trigger on kTransferring state dOn transition to
kTransferring state and if all UCM subordinates part of the campaign are in kIdle
state, UCM Master shall start or resume transferring (TransferStart and Trans-
ferData as well as TransferExit if no streaming required) the software packages
to the UCM subordinates according to the campaign orchestration.c(RS_UCM_00035,
RS_UCM_00043)

[SWS_UCM_01208]{DRAFT} Trigger on kProcessApproving state dOn transi-
tion to kProcessApproving state, UCM Master shall request if required (campaign
orchestration) approval for processing (DriverNotification) from the Vehicle
Driver Application and request if required (campaign orchestration) safety policy
enforcement for processing (ApplyPolicy) from Vehicle State Manager.c(RS_-
UCM_00035, RS_UCM_00038)

[SWS_UCM_01209]{DRAFT} Trigger on kProcessing state dOn transition to
kProcessing state, UCM Master shall start or resume processing the software pack-
ages (ProcessSwPackage) ready for processing according to the campaign orches-
tration.c(RS_UCM_00035, RS_UCM_00043)

[SWS_UCM_00210]{DRAFT} Transferring of software packages on kProcess-
Approving or kProcessing state dIf UCM Master is in kProcessApproving
or kProcessing state, UCM Master shall transfer software packages to the UCM
subordinates according to the campaign orchestration.c(RS_UCM_00035, RS_UCM_-
00043)

[SWS_UCM_01211]{DRAFT} Trigger on kActivateApproving state dOn transi-
tion to kActivateApproving state, UCM Master shall request if required (cam-
paign orchestration) approval for activating (DriverNotification) from the Vehi-
cle Driver Application and request if required (campaign orchestration) safety
policy enforcement for activating (ApplyPolicy) from Vehicle State Manager.c
(RS_UCM_00035, RS_UCM_00038)

51 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

[SWS_UCM_01212]{DRAFT} Trigger on kActivating state dOn transition to kAc-
tivating state, UCM Master shall activate the software (Activate) according to
the campaign orchestration.c(RS_UCM_00035, RS_UCM_00043)

[SWS_UCM_01213]{DRAFT} Trigger on kVehicleChecking state dOn transition
to kVehicleChecking state, UCM Master shall first perform checks (OEM specific)
to assess the post-activation state of the vehicle.c(RS_UCM_00035)

UCM Master may be responsible for performing post-activation checks, interfacing
with an application performing such checks, confirming backend is still reachable and
further updates are still possible.

[SWS_UCM_01214]{DRAFT} Final action on kVehicleChecking state dIf UCM
Master is in kVehicleChecking state and the post-activation checks (OEM spe-
cific) are successful, UCM Master shall secondly commit (Finish) the software on all
UCM subordinates part of the campaign.c(RS_UCM_00035)

[SWS_UCM_01215]{DRAFT} Trigger on kRollingBack state dOn transition to
kRollingBack state, UCM Master shall first rollback (RollingBack) the software
on all UCM subordinates part of the campaign.c(RS_UCM_00035)

[SWS_UCM_01216]{DRAFT} Final action on kRollingBack state dIf UCM Mas-
ter is in kRollingBack state and the rollback of software on all UCM subordi-
nates is successful (successful RollingBack and transition from kRollingBack to
kRolledBack), UCM Master shall secondly commit (Finish) the software on all
UCM subordinates part of the campaign.c(RS_UCM_00035)

[SWS_UCM_01217]{DRAFT}Monitoring of UCM subordinates dUCM Master shall
monitor the state of the UCM subordinates during a campaign.c(RS_UCM_00035)

7.2.6.2 States Transitions

[SWS_UCM_01218]{DRAFT} Transition from kIdle state to kSyncing state dIf
UCM Master is in kIdle state, UCM Master shall enter the kSyncing state on a
request to GetSwClusterInfo or SwPackageInventory.c(RS_UCM_00035, RS_-
UCM_00033)

[SWS_UCM_01219]{DRAFT} Transition from kSyncing state to kIdle state dIf
UCM Master is in kSyncing state, UCM Master shall enter the kIdle state on com-
pletion of GetSwClusterInfo or SwPackageInventory.c(RS_UCM_00035)

[SWS_UCM_01220]{DRAFT} Transition from kIdle state to kVehiclePackage-
Transferring state dIf UCM Master is in kIdle state, UCM Master shall enter the
kVehiclePackageTransferring state on successful completion of TransferVe-
hiclePackage.c(RS_UCM_00035)

[SWS_UCM_01221]{DRAFT} Transition from kVehiclePackageTransferring
state to kIdle state dIf UCM Master is in kVehiclePackageTransferring state,

52 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

UCM Master shall enter the kIdle state on unsuccessful completion of Transfer-
Exit (Vehicle Package) or successful completion of DeleteTransfer (Vehicle
Package).c(RS_UCM_00035, RS_UCM_00039)

[SWS_UCM_01222]{DRAFT} Transition from kVehiclePackageTransferring
state to kTransferring state dIf UCM Master is in kVehiclePackageTrans-
ferring state, UCM Master shall enter the kTransferring state on successful
completion of TransferExit (Vehicle Package) if no driver approval or safety
policy enforcement is required for transferring.c(RS_UCM_00035, RS_UCM_00037,
RS_UCM_00038)

[SWS_UCM_01223]{DRAFT} Transition from kVehiclePackageTransferring
state to kTransferApproving state dIf UCM Master is in kVehiclePackage-
Transferring state, UCM Master shall enter the kTransferApproving state on
successful completion of TransferExit (Vehicle Package) and driver approval or
safety policy enforcement is required for transferring.c(RS_UCM_00035, RS_UCM_-
00037, RS_UCM_00038)

[SWS_UCM_01224]{DRAFT} Transition from kTransferApproving state to
kTransferring state dIf UCM Master is in kTransferApproving state, UCM
Master shall enter the kTransferring state on a positive feedback (return value of
DriverNotification is true) from the Vehicle Driver Application if driver
approval is required and on a positive feedback (value of SafeToUpdate field is true)
from the Vehicle State Manager if safety policy enforcement is required.c(RS_-
UCM_00035, RS_UCM_00037, RS_UCM_00038)

[SWS_UCM_01225]{DRAFT} Transition from kTransferApproving state to kI-
dle state dIf UCM Master is in kTransferApproving state, UCM Master shall
enter the kIdle state on successful cancellation request (Cancel) and completion.c
(RS_UCM_00035)

[SWS_UCM_01226]{DRAFT} Transition from kTransferring state to kTrans-
ferApproving state dIf UCM Master is in kTransferring state, UCM Master
shall enter the kTransferApproving state on a negative feedback (value of Safe-
ToUpdate field is false) from the Vehicle State Manager if safety policy en-
forcement is required.c(RS_UCM_00035, RS_UCM_00037)

[SWS_UCM_01227]{DRAFT} Transition from kTransferring state to kIdle
state dIf UCM Master is in kTransferring state, UCM Master shall enter the kI-
dle state on successful cancellation request (Cancel) and completion.c(RS_UCM_-
00035)

[SWS_UCM_01228]{DRAFT} Transition from kTransferring state to kPro-
cessing state dIf UCM Master is in kTransferring state and any software pack-
ages are ready for processing (successful completion of TransferExit or process-
ing started by ProcessSwPackage call) according to the campaign orchestration,
UCM Master shall enter the kProcessing state if no driver approval of safety pol-
icy enforcement is required.c(RS_UCM_00035, RS_UCM_00037, RS_UCM_00038,
RS_UCM_00043)

53 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

[SWS_UCM_01229]{DRAFT} SafetyPolicy while processing stream dIn the case
there is transition from kTransferring state to kProcessing state, the SafetyPol-
icy for kProcessing state shall apply even though there are Software Packages
transferring.c(RS_UCM_00035, RS_UCM_00037) Integrator should make sure in this
use case that safety policy for Processing will also cover safety approach of transfer-
ring.

[SWS_UCM_01230]{DRAFT} Transition from kTransferring state to kProces-
sApproving state dIf UCM Master is in kTransferring state and any software
packages are ready for processing (successful completion of TransferExit or
streaming required) according to the campaign orchestration, UCM Master shall enter
the kProcessing state if driver approval of safety policy enforcement is required.c
(RS_UCM_00035, RS_UCM_00037, RS_UCM_00038, RS_UCM_00043)

[SWS_UCM_01231]{DRAFT} Transition from kProcessApproving state to
kProcessing state dIf UCM Master is in kProcessApproving state, UCM Master
shall enter the kProcessing state on a positive feedback (return value of Driver-
Notification is true) from the Vehicle Driver Application if driver ap-
proval is required and on a positive feedback (value of SafeToUpdate field is true) of
the Vehicle State Manager if safety policy enforcement is required.c(RS_UCM_-
00035, RS_UCM_00037, RS_UCM_00038)

[SWS_UCM_01232]{DRAFT} Transition from kProcessApproving state to kI-
dle state dIf UCM Master is in kProcessApproving state, UCM Master shall enter
the kIdle state on successful cancellation request (Cancel) and completion.c(RS_-
UCM_00035)

[SWS_UCM_01233]{DRAFT} Transition from kProcessing state to kProcess-
Approving state dIf UCM Master is in kProcessing state, UCM Master shall en-
ter the kProcessApproving state on a negative feedback (value of SafeToUpdate
field is false) from the Vehicle State Manager if safety policy enforcement is
required.c(RS_UCM_00035)

[SWS_UCM_01234]{DRAFT} Transition from kProcessing state to kActivat-
ing state dIf UCM Master is in kProcessing state and all software packages of the
campaign have been successfully (successful ProcessSwPackage) processed and
all UCM subordinates part to the campaign are in the kReady state, UCM Master
shall enter the kActivating state if no driver approval or safety policy enforcement
is required.c(RS_UCM_00035, RS_UCM_00037, RS_UCM_00038)

[SWS_UCM_01235]{DRAFT} Transition from kProcessing state to kActi-
vateApproving state dIf UCM Master is in kProcessing state and all software
packages of the campaign have been successfully (successful ProcessSwPack-
age) processed and all UCM subordinates part to the campaign are in the kReady
state, UCM Master shall enter the kActivateApproving state if driver approval
or safety policy enforcement is required.c(RS_UCM_00035, RS_UCM_00037, RS_-
UCM_00038)

54 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

[SWS_UCM_01236]{DRAFT} Transition from kProcessing state to kIdle state
dIf UCM Master is in kProcessing state, UCM Master shall enter the kIdle state
on successful cancellation request (Cancel) and completion.c(RS_UCM_00035)

[SWS_UCM_01237]{DRAFT} Transition from kActivateApproving state to
kActivating state dIf UCM Master is in kActivateApproving state, UCM Mas-
ter shall enter the kActivating state on a positive feedback (return value of
DriverNotification is true) from the Vehicle Driver Application if driver
approval is required and on a positive feedback (value of SafeToUpdate field is true)
from the Vehicle State Manager if safety policy enforcement is required.c(RS_-
UCM_00035, RS_UCM_00037, RS_UCM_00038)

[SWS_UCM_01238]{DRAFT} Transition from kActivateApproving state to kI-
dle state dIf UCM Master is in kActivateApproving state, UCM Master shall
enter the kIdle state on successful cancellation request (Cancel) and completion.c
(RS_UCM_00035, RS_UCM_00037)

[SWS_UCM_01239]{DRAFT} Transition from kActivating state to kRolling-
Back state dIf UCM Master is in kActivating state, UCM Master shall enter the
kRollingBack state if any UCM subordinates part of the campaign unsuccessfully
(unsuccessful Activate and transition from kVerifying to kRollingBack) com-
pleted activation.c(RS_UCM_00035)

[SWS_UCM_01240]{DRAFT} Transition from kActivating state to kVehi-
cleChecking state dIf UCM Master is in kActivating state, UCM Master shall
enter the kRollingBack state if all UCM subordinates part of the campaign suc-
cessfully (successful Activate and transition from kVerifying to kActivated)
completed activation.c(RS_UCM_00035, RS_UCM_00037)

[SWS_UCM_01241]{DRAFT} Transition from kVehicleChecking state to
kRollingBack state dIf UCM Master is in kVehicleChecking state and the
post-activation checks (OEM specific) are unsuccessful, UCM Master shall enter the
kRollingBack state.c(RS_UCM_00035)

[SWS_UCM_01242]{DRAFT} Transition from kVehicleChecking state to kIdle
state dIf UCM Master is in kVehicleChecking state and all UCM subordinates part
of the campaign transitioned from kCleaningUp to kIdle, UCM Master shall enter
the kIdle state.c(RS_UCM_00035)

[SWS_UCM_01243]{DRAFT} Transition from kRollingBack state to kIdle state
dIf UCM Master is in kRollingBack state and all UCM subordinates part of the cam-
paign transitioned from kCleaningUp to kIdle, UCM Master shall enter the kIdle
state.c(RS_UCM_00035)

[SWS_UCM_01244]{DRAFT} Cancellation of an update campaign shall be pos-
sible dUCM Master shall provide method Cancel to any of its client to cancel from
kTransferring, kTransferApproving, kProcessApproving or kProcessing
).c(RS_UCM_00035, RS_UCM_00037)

55 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Cancel method could be used at garage to unlock a blocked update. Details on action
by UCM Master, like cleaning up the several UCMs, changing AUTOSAR Adaptive
Platform states, etc. are implementation specific.

[SWS_UCM_01245]{DRAFT} Cancellation during activation shall be possible d
UCM Master shall provide method Cancel to any of its client to cancel from kActi-
vating or kActivateApproving).c(RS_UCM_00035, RS_UCM_00037)

In case an update campaign was cancelled, a new update campaign could use again
the already transferred Software Packages. UCM Master could list transferred
Software Packages by calling the UCM subordinates with getSwPackages.

[SWS_UCM_01246]{DRAFT} Unreachable UCM during update campaign dIn case
a UCM is not reachable by UCM Master during an update campaign (from kTrans-
ferring, kTransferApproving, kProcessApproving or kProcessing), UCM
Master shall cancel and go back to kIdle.c(RS_UCM_00035, RS_UCM_00037)

7.2.7 Campaign Reporting

After campaign is finished (finish method has been sent to all UCM subordinates),
UCM Master should report to Backend server status of the vehicle, with for instance
updated information of Software Clusters present in vehicle.

[SWS_UCM_01247]{DRAFT} Method to read History Report dUCM Master shall
provide a method GetHistory to retrieve all actions that have been performed by
UCM Master in a specific time window.c(RS_UCM_00034)

[SWS_UCM_01248]{DRAFT} Content of History Report dUCM Master shall save
activation time and activation result of processed Vehicle Packages in the history.c
(RS_UCM_00034)

56 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

7.2.8 Content of Vehicle Package

Software Package A

Signed container

Software Package B

Signed container

Software Package
Manifest

Vehicle Package

SoftwareClusterExecutables

Data

Software Package
Manifest

SoftwareClusterExecutables

Data

Signed container

OEM authentication tag

Software Package
manifest A

Software Package
manifest B

Vehicle Package manifest

Manifests Manifests

Authentication tag Authentication tag

Figure 7.8: Vehicle package overview

A Vehicle Package is typically assembled by an OEM Backend. A Vehicle
Package has to be modelled as a so-called VehiclePackage which describes the
content of the Vehicle Package. It contains a collection of Software Pack-
age Manifests extracted from Backend packages stored in the Backend database.
These Software Packages have to be modelled as a so-called SoftwarePack-
age which describes the content of the Software Package. A Vehicle Package
contains only one Vehicle Package Manifest.

It is possible that within an update campaign, several Machine or ECUs need to be
updated/installed/removed by groups. Some Software Clusters could require re-
boot of Machine or ECU, some just a restart of Adaptive Application or nothing
(waiting passively for next reboot) to get activated. To optimize a campaign or fulfil
dependencies, it could be required to activate Software Clusters one after the
other or several at once. To support all possible campaigns, the Vehicle Pack-
age includes a model describing this coordination. It also contains a way to identify
the several involved UCMs for packages distribution within the vehicle and potentially
overwriting default UCM Master for this specific campaign.

You can find below for information purpose a description of the information that must
be contained in Vehicle Package manifest:

57 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

• Dependencies: dependencies between Software Clusters that will overrule
the already defined dependencies in Software Package Manifest. Typically
used by vehicle systems integrator to add dependencies related to vehicle sys-
tems that Software Package supplier is not aware of. Modelled by inheritance
of SoftwareActivationDependency, also used by SoftwareCluster.

• Repository: uri, repository or diagnostic address, for history, tracking and security
purposes

• Vehicle description: vehicle description

• Vehicle Driver notifications: it might be needed to ask vehicle driver if UCM Mas-
ter can start transferring Software Packages, processing it and activating it
but also inform him of the necessary safety requirements if applicable.

• Safety policy: safety policy index to be used as argument to subscribe a field to
vehicle safety manager. With this field, UCM Master will be informed at any time
of campaign if vehicle safety is met or not.

• UCM Master identifiers list: defines backup UCM Masters

• Campaign orchestration: You can refer to [9] for more details. This campaign
model allows to group activation of several UCMs and group Software Pack-
ages processing and transferring.

[SWS_UCM_01301]{DRAFT} Vehicle Package authentication dVehicle
Package shall be authenticated by UCM Master before any transfer of Software
Packages.c(RS_UCM_00039, RS_UCM_00043)

[SWS_UCM_01302]{DRAFT} Vehicle Package authentication failure dIn case
Vehicle Package authentication fails at transferExit call, UCM Master shall
raise the ApplicationError AuthenticationFailed.c(RS_UCM_00039, RS_-
UCM_00043)

[SWS_UCM_01303]{DRAFT} Dependencies between Software Packages dUCM
Master shall check dependencies based on Vehicle Package Manifests and
Software Packages Manifests before an transfer of Software Packages.c
(RS_UCM_00035, RS_UCM_00043)

7.2.9 Vehicle update security and confidentiality

The methods GetSwClusterInfo, SwPackageInventory and GetHistory could use pri-
vate or confidential information.

[SWS_UCM_01304]{DRAFT} Confidential information protection dThe methods
GetSwClusterInfo, SwPackageInventory and GetHistory shall only be called over se-
cure communication channel providing confidentiality protection.c(RS_UCM_00033)

58 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

8 API specification

There are no APIs defined in this release.

59 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

9 Service Interfaces

9.1 Type definitions

This chapter lists all types provided by the UCM.

9.1.1 UCMIdentifierType

[SWS_UCM_00173]{DRAFT} UCMIdentifierType table d

Name UCMIdentifierType

Kind STRING

Derived from -

Description UCM Module Instantiation Identifier.

Table 9.1: Implementation Data Type - UCMIdentifierType

c(RS_UCM_00036)

9.1.2 TransferIdType

[SWS_UCM_00031]{DRAFT} TransferIdType table d

Name TransferIdType

Kind ARRAY

Array size 16

Subelements
uint8_t

Derived from -

Description Represents a handle identifier used to reference a particular transfer request.

Table 9.2: Implementation Data Type - TransferIdType

c(RS_UCM_00019, RS_UCM_00025)

9.1.3 SwNameType

[SWS_UCM_00071]{DRAFT} SwNameType table d

60 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Name SwNameType

Kind STRING

Derived from -

Description SoftwareCluster (SoftwarePackage) name.

Table 9.3: Implementation Data Type - SwNameType

c(RS_UCM_00002)

9.1.4 SwNameVectorType

[SWS_UCM_00174]{DRAFT} SwNameVectorType table d

Name SwNameVectorType

Kind VECTOR

Subelements SwNameType

Derived from -

Description Represents a dynamic size array of Software Cluster names.

Table 9.4: Implementation Data Type - SwNameVectorType

c(RS_UCM_00002)

9.1.5 StrongRevisionLabelString

[SWS_UCM_00175]{DRAFT} StrongRevisionLabelString table d

Name StrongRevisionLabelString

Kind STRING

Derived from -

Description SoftwareCluster (SoftwarePackage) version.

Table 9.5: Implementation Data Type - StrongRevisionLabelString

c(RS_UCM_00002)

9.1.6 SwNameVersionType

[SWS_UCM_00176]{DRAFT} SwNameVersionType table d

61 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Name SwNameVersionType

Kind STRUCTURE

Subelements Name SwNameType

Version StrongRevisionLabelString

Derived from -

Description Represents the information of a Software Package (Software Cluster) name and version.

Table 9.6: Implementation Data Type - SwNameVersionType

c(RS_UCM_00002)

9.1.7 SwNameVersionVectorType

[SWS_UCM_00177]{DRAFT} SwNameVersionVectorType table d

Name SwNameVersionVectorType

Kind VECTOR

Subelements SwNameVersionType

Derived from -

Description Represents a dynamic size array of Software Name and Version

Table 9.7: Implementation Data Type - SwNameVersionVectorType

c(RS_UCM_00002)

9.1.8 ByteVectorType

[SWS_UCM_00032]{DRAFT} ByteVectorType table d

Name ByteVectorType

Kind VECTOR

Subelements
uint8_t

Derived from -

Description Byte vector representing raw data.

Table 9.8: Implementation Data Type - ByteVectorType

c(RS_UCM_00025)

9.1.9 SwPackageStateType

[SWS_UCM_00038]{DRAFT} SwPackageStateType table d

62 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Name SwPackageStateType

Kind TYPE_REFERENCE

Derived from
uint8_t

Description Represents the state of a Software Package on the Platform.

Range / Symbol Limit Description

kTransferring 0x00 Software package is being transferred, i.e. not completely received.

kTransferred 0x01 Software package is completely transferred and ready to be
processed.

kProcessing 0x02 Software package is currently being processed.

kProcessed 0x03 Software package processing finished.

kProcessingStream 0x04 Software package is being processed from a stream.

Table 9.9: Implementation Data Type - SwPackageStateType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.10 SwPackageInfoType

[SWS_UCM_00039]{DRAFT} SwPackageInfoType table d

Name SwPackageInfoType

Kind STRUCTURE

Subelements Name SwNameType

Version StrongRevisionLabelString

TransferID TransferIdType

ConsecutiveBytesReceived uint64_t

ConsecutiveBlocksReceived uint64_t

State SwPackageStateType

Derived from -

Description Represents the information of a Software Package.

Table 9.10: Implementation Data Type - SwPackageInfoType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.11 SwPackageInfoVectorType

[SWS_UCM_00040]{DRAFT} SwPackageInfoVectorType table d

63 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Name SwPackageInfoVectorType

Kind VECTOR

Subelements SwPackageInfoType

Derived from -

Description Represents a dynamic size array of Software Packages

Table 9.11: Implementation Data Type - SwPackageInfoVectorType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.12 SwClusterStateType

[SWS_UCM_00077]{DRAFT} SwClusterStateType table d

Name SwClusterStateType

Kind TYPE_REFERENCE

Derived from
uint8_t

Description Represents the state of a SoftwareCluster on the adaptive platform.

Range / Symbol Limit Description

kPresent 0x00 State of a SoftwareCluster that is installed on the adaptive platform
and installation has finished.

kAdded 0x01 State of a SoftwareCluster that has been newly installed.

kUpdated 0x02 State of a SoftwareCluster that has been updated.

kRemoved 0x03 State of a SoftwareCluster that has been removed.

Table 9.12: Implementation Data Type - SwClusterStateType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.13 SwClusterInfoType

[SWS_UCM_00078]{DRAFT} SwClusterInfoType table d

Name SwClusterInfoType

Kind STRUCTURE

Subelements Name SwNameType

Version StrongRevisionLabelString

State SwClusterStateType

Derived from -
5

64 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Description Represents the information of a SoftwareCluster.

Table 9.13: Implementation Data Type - SwClusterInfoType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.14 SwClusterInfoVectorType

[SWS_UCM_00079]{DRAFT} SwClusterInfoVectorType table d

Name SwClusterInfoVectorType

Kind VECTOR

Subelements SwClusterInfoType

Derived from -

Description Represents a dynamic size array of SoftwareClusters

Table 9.14: Implementation Data Type - SwClusterInfoVectorType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011, RS_-
UCM_00012)

9.1.15 LogLevelType

[SWS_UCM_00041]{DRAFT} LogLevelType table d

Name LogLevelType

Kind TYPE_REFERENCE

Derived from
uint8_t

Description Represents the severity of the log messages.

Range / Symbol Limit Description

kOff 0x00 Logging is deactivated.

kFatal 0x01 Only fatal messages are logged.

kError 0x02 Only messages up to error level are logged.

kWarning 0x03 Only messages up to warning level are logged.

kInfo 0x04 Only messages up to info level are logged.

kDebug 0x05 Only messages up to debug level are logged.

kVerbose 0x06 Only messages up to verbose level are logged.

Table 9.15: Implementation Data Type - LogLevelType

c(RS_UCM_00022)

65 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

9.1.16 LogEntryType

[SWS_UCM_00042]{DRAFT} LogEntryType table d
Name LogEntryType

Kind STRUCTURE

Subelements LogLevel LogLevelType

Message LogMessageType

Derived from -

Description Represents a single log message with a log level.

Table 9.16: Implementation Data Type - LogEntryType

c(RS_UCM_00022)

9.1.17 LogVectorType

[SWS_UCM_00043]{DRAFT} LogVectorType table d

Name LogVectorType

Kind VECTOR

Subelements LogEntryType

Derived from -

Description Represents a list of log messages.

Table 9.17: Implementation Data Type - LogVectorType

c(RS_UCM_00022)

9.1.18 PackageManagerStatusType

[SWS_UCM_00044]{DRAFT} PackageManagerStatusType table d

Name PackageManagerStatusType

Kind TYPE_REFERENCE

Derived from
uint8_t

Description Represents the state of UCM.

Range / Symbol Limit Description

kIdle 0x00 UCM is ready to start processing if software packages are present.

kReady 0x01 UCM has processed one or several packages and waits for additional
packages, activation or reversion of processed packages.

kProcessing 0x02 UCM is currently in the middle of processing a Software Package, i.e.
a client has called ProcessSwPackage.

5

66 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
kActivating 0x03 UCM is performing the dependency check and preparing the activation

of the processed Software packages.

kActivated 0x04 Software changes introduced with processed Software Packages has
been activated and executed.

kRollingBack 0x05 UCM is reverting changes introduced with processed packages.

kRolledBack 0x06 Software changes introduced with processed Software Packages has
been deactivated and original software is executed.

kCleaningUp 0x07 Making sure that the system is in a clean state.

kVerifying 0x08 UCM (via State Management) is checking that the processed
packages have been properly restarted.

Table 9.18: Implementation Data Type - PackageManagerStatusType

c(RS_UCM_00024, RS_UCM_00026)

9.1.19 ActionType

[SWS_UCM_00132]{DRAFT} ActionType table d

Name ActionType

Kind TYPE_REFERENCE

Derived from
uint8_t

Description Represents the UCM action.

Range / Symbol Limit Description

kUpdate 0x00 Update of a SoftwareCluster.

kInstall 0x01 Installation of a new SoftwareCluster.
kRemove 0x02 Removal of a SoftwareCluster.

Table 9.19: Implementation Data Type - ActionType

c(RS_UCM_00032)

9.1.20 ResultType

[SWS_UCM_00133]{DRAFT} ResultType table d

Name ResultType

Kind TYPE_REFERENCE

Derived from
uint8_t

Description Represents the result of UCM action.

Range / Symbol Limit Description

kSuccessfull 0x00 UCM’s action was successful.
5

67 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
kFailed 0x01 UCM’s action failed.

Table 9.20: Implementation Data Type - ResultType

c(RS_UCM_00032)

9.1.21 GetHistoryType

[SWS_UCM_00134]{DRAFT} GetHistoryType table d

Name GetHistoryType

Kind STRUCTURE

Subelements Time uint64_t

Name SwNameType

Version StrongRevisionLabelString

Action ActionType

Resolution ResultType

Derived from -

Description Time refers to the activation time of the software cluster. It is represented in milliseconds
of UCM’s action resolution since 01.01.1970 (UTC).

Table 9.21: Implementation Data Type - GetHistoryType

c(RS_UCM_00032)

9.1.22 GetHistoryVectorType

[SWS_UCM_00135]{DRAFT} GetHistoryType table d

Name GetHistoryVectorType

Kind VECTOR

Subelements GetHistoryType

Derived from -

Description Represents a list of UCM actions

Table 9.22: Implementation Data Type - GetHistoryVectorType

c(RS_UCM_00032)

9.1.23 CampaignStateType

[SWS_UCM_01177]{DRAFT} CampaignStateType table d

68 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Name CampaignStateType

Kind TYPE_REFERENCE

Derived from
uint8_t

Description Represents the status of Campaign.

Range / Symbol Limit Description

kIdle 0x00 UCM Master is ready to start a software update campaign.

kSyncing 0x01 UCM master is providing the list of installed SWCLs (GetSwCluster
Info) or computing the list of SWCLs to install (SwPackageInventory).

kVehiclePackageTransferring 0x02 A vehicle package is being transferred to UCM Master.

kTransferApproving 0x03 A driver approval and/or a safety policy application for transferring is
pending.

kTransferring 0x04 UCM Master is transferring software packages to the UCM
subordinates.

kProcessApproving 0x05 A driver approval and/or a safety policy application for processing is
pending.

kProcessing 0x06 The processing of software packages on UCM subordinates is
ongoing. The transferring of software packages may still occur.

kActivateApproving 0x07 A driver approval and/or a safety policy application for activation is
pending.

kActivating 0x08 The activation of SWCLs on UCM subordinates is ongoing.

kVehicleChecking 0x09 UCM Master is performing post-activation checks (OEM specific).

kRollingBack 0x10 UCM Master is rolling-back the activated SWCLs on the UCM
subordinates.

Table 9.23: Implementation Data Type - CampaignStateType

c(RS_UCM_00032)

9.1.24 SafetyPolicyType

[SWS_UCM_01114]{DRAFT} SafetyPolicyType table d

Name SafetyPolicyType

Kind STRING

Derived from -

Description The type of the Safety Policy.

Table 9.24: Implementation Data Type - SafetyPolicyType

c(RS_UCM_00002)

9.2 Service Interfaces

9.2.1 Provided Service Interfaces

This chapter lists all provided service interfaces of the UCM.

69 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

9.2.1.1 Package Management

Port

[SWS_UCM_00073]{DRAFT} ProvidedPort PackageManagement d

Name PackageManagement

Kind ProvidedPort Interface PackageManagement

Description

Variation

Table 9.25: Port - PackageManagement

c(RS_UCM_00001)

Service Interface

[SWS_UCM_00131]{DRAFT} ProvidedInterface PackageManagement d

Name PackageManagement

NameSpace ara::ucm::pkgmgr

Table 9.26: Service Interfaces - PackageManagement

Fields

Name CurrentStatus

Description The current status of UCM.

Type PackageManagerStatusType

HasGetter true

HasNotifier true

HasSetter false

Table 9.27: Service Interface PackageManagement - Field: CurrentStatus

Methods

Name GetSwClusterInfo

Description This method returns a list of SoftwareClusters that are in state kPresent.

FireAndForget false

SwInfo

Description List of installed SoftwareClusters that are in state kPresent.

Type SwClusterInfoVectorType

Variation

Parameter

Direction OUT
5

70 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4

Table 9.28: Service Interface PackageManagement - Method: GetSwClusterInfo

Name GetSwClusterChangeInfo

Description This method returns a list pending changes to the set of SoftwareClusters on the adaptive platform. The
returned list includes all SoftwareClusters that are to be added, updated or removed. The list of changes
is extended in the course of processing Software Packages.

FireAndForget false

SwInfo

Description List of SoftwareClusters that are in state kAdded,kUpdated or kRemoved.

Type SwClusterInfoVectorType

Variation

Parameter

Direction OUT

Table 9.29: Service Interface PackageManagement - Method: GetSwClusterChangeInfo

Name GetSwPackages

Description This method returns the Software Packages that available in UCM.

FireAndForget false

Packages

Description List of Software Packages.

Type SwPackageInfoVectorType

Variation

Parameter

Direction OUT

Table 9.30: Service Interface PackageManagement - Method: GetSwPackages

Name TransferStart

Description Start the transfer of a Software Package. The size of the Software Package to be transferred to UCM
must be provided. UCM will generate a Transfer ID for subsequent calls to TransferData, TransferExit,
ProcessSwPackage, DeleteTransfer.

FireAndForget false

size

Description Size (in bytes) of the Software Package to be transferred.

Type
uint64_t

Variation

Parameter

Direction IN

id

Description Return TransferId.
Parameter

Type TransferIdType

5

71 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Variation

Direction OUT

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Table 9.31: Service Interface PackageManagement - Method: TransferStart

Name TransferData

Description Block-wise transfer of a Software Package to UCM.

FireAndForget false

id

Description Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

data

Description Data block of the Software Package.

Type ByteVectorType

Variation

Parameter

Direction IN

blockCounter

Description Block counter value of the current block.

Type
uint64_t

Variation

Parameter

Direction IN

Application
Errors

Incorrect-
Block

The the same block number is received twice.

Application
Errors

Incorrect-
Size

The size of the Software Package exceeds the provided size in TransferStart.

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

PackageIn-
consistent

Package integrity check failed.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

Authentica-
tionFailed

Software Package authentication failed.

Application
Errors

Incompati-
blePackageV-
ersion

The version of the Software Package to be processed is not compatible with the
current version of UCM.

5

72 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Application
Errors

BlockIncon-
sistent

Consistency check for transferred block failed.

Application
Errors

TransferIn-
terrupted

Transfer has been interrupted.

Table 9.32: Service Interface PackageManagement - Method: TransferData

Name TransferExit

Description Finish the transfer of a Software Package to UCM.

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

Insuffi-
cientData

TransferExit has been called but total transferred data size does not match expected
data size provided with TransferStart call.

Application
Errors

PackageIn-
consistent

Package integrity check failed.

Application
Errors

Authentica-
tionFailed

Software Package authentication failed.

Application
Errors

OldVersion Software Package version is too old.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

Incompati-
blePackageV-
ersion

The version of the Software Package to be processed is not compatible with the
current version of UCM.

Table 9.33: Service Interface PackageManagement - Method: TransferExit

Name DeleteTransfer

Description Delete a transferred Software Package.

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

GeneralRe-
ject

General reject.

Application
Errors

GeneralMemo-
ryError

A general memory error occured.

5

73 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.34: Service Interface PackageManagement - Method: DeleteTransfer

Name ProcessSwPackage

Description Process a previously transferred Software Package.

FireAndForget false

id

Description The Transfer ID of this Software Package.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

ServiceBusy Another processing is already ongoing and therefore the current processing request
has to be rejected.

Application
Errors

InvalidMani-
fest

Package manifest could not be read.

Application
Errors

Processed-
Soft-
warePack-
ageInconsis-
tent

The processed Software Package integrity check has failed.

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

ProcessSw-
PackageCan-
celled

The processing operation has been interrupted by a Cancel() call.

Application
Errors

Authentica-
tionFailed

Software Package authentication failed.

Application
Errors

Incompati-
blePackageV-
ersion

The version of the Software Package to be processed is not compatible with the
current version of UCM.

Table 9.35: Service Interface PackageManagement - Method: ProcessSwPackage

Name RevertProcessedSwPackages

Description Revert the changes done by processing (ProcessSwPackage) of one or several software packages.

FireAndForget false

Application
Errors

NothingToRe-
vert

RevertProcessedSwPackages has been called without prior processing of a
Software Package.

Application
Errors

NotAbleToRe-
vertPackages

RevertProcessedSwPackages failed.

5

74 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.36: Service Interface PackageManagement - Method: RevertProcessedSwPack-
ages

Name GetSwProcessProgress

Description Get the progress (0 - 100%) of the currently processed Software Package.

FireAndForget false

id

Description The Transfer ID of the Software Package.

Type TransferIdType

Variation

Parameter

Direction IN

progress

Description The progress of the current package processing (0% - 100%). 0x00 ... 0x64, 0xFF
for "’No information available"’

Type
uint8_t

Variation

Parameter

Direction OUT

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Table 9.37: Service Interface PackageManagement - Method: GetSwProcessProgress

Name Cancel

Description This method aborts an ongoing processing of a Software Package.

FireAndForget false

id

Description The Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

CancelFailed Cancel failed.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Table 9.38: Service Interface PackageManagement - Method: Cancel

75 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Name Rollback

Description Rollback the system to the state before the packages were processed.

FireAndForget false

Application
Errors

Nothing-
ToRollback

Rollback cannot be performed due to no rollback data available.

Application
Errors

NotAble-
ToRollback

Rollback failed.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.39: Service Interface PackageManagement - Method: Rollback

Name Activate

Description This method activates the processed components.

FireAndForget false

preActivate

Description The ordered collection of the SoftwarePackage shortnames that are supposed to be
pre-activated.

Type SwNameVectorType

Variation

Parameter

Direction IN

verify

Description The ordered collection of the SoftwarePackage shortnames that are supposed to be
verified.

Type SwNameVectorType

Variation

Parameter

Direction IN

Application
Errors

PreActiva-
tionFailed

Error during preActivation step.

Application
Errors

Verifica-
tionFailed

Error during verification step.

Application
Errors

Er-
rorNoValid-
Processing

Activate cannot be performed because previous processing is invalid.

Application
Errors

MissingDe-
pendencies

Activate cannot be performed because of missing dependencies.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.40: Service Interface PackageManagement - Method: Activate

Name Finish

Description This method finishes the processing for the current set of processed Software Packages. It does a
cleanup of all data of the processing including the sources of the Software Packages.

FireAndForget false

5

76 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Application
Errors

GeneralRe-
ject

General reject.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.41: Service Interface PackageManagement - Method: Finish

Name SetLogLevel

Description This method sets the log level.

FireAndForget false

logLevel

Description The new log level to be used.

Type LogLevelType

Variation

Parameter

Direction IN

Table 9.42: Service Interface PackageManagement - Method: SetLogLevel

Name GetLog

Description Getter method to poll for the log messages.

FireAndForget false

log

Description The log messages.

Type LogVectorType

Variation

Parameter

Direction OUT

Table 9.43: Service Interface PackageManagement - Method: GetLog

Name GetHistory

Description Getter method to retrieve all actions that have been performed by UCM.

FireAndForget false

timestampGE

Description Earliest timestamp (inclusive)

Type
uint64_t

Variation

Parameter

Direction IN

timestampLTParameter

Description Latest timestamp (exclusive)

5

77 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Type

uint64_t

Variation

Direction IN

history

Description The history of all actions that have been performed by UCM.

Type GetHistoryVectorType

Variation

Parameter

Direction OUT

Table 9.44: Service Interface PackageManagement - Method: GetHistory

Name GetId

Description Get the UCM Instance Identifier.

FireAndForget false

id

Description UCM Module Instantiation Identifier.

Type UCMIdentifierType

Variation

Parameter

Direction OUT

Table 9.45: Service Interface PackageManagement - Method: GetId

c(RS_UCM_00001, RS_UCM_00002, RS_UCM_00008, RS_UCM_00010, RS_-
UCM_00011, RS_UCM_00015, RS_UCM_00018, RS_UCM_00021, RS_UCM_-
00022, RS_UCM_00023, RS_UCM_00024, RS_UCM_00025, RS_UCM_00032)

9.2.1.2 Vehicle Package Management

Port

[SWS_UCM_00178]{DRAFT} ProvidedPort VehiclePackageManagement d

Name VehiclePackageManagement

Kind ProvidedPort Interface VehiclePackageManagement

Description

Variation

Table 9.46: Port - VehiclePackageManagement

c(RS_UCM_00035)

Service Interface

78 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

[SWS_UCM_00181]{DRAFT} ProvidedInterface VehiclePackageManagement d
Name VehiclePackageManagement

NameSpace ara::ucm::pkgmgr

Table 9.47: Service Interfaces - VehiclePackageManagement

Fields

Name CampaignState

Description The current status of Campaign.

Type CampaignStateType

HasGetter true

HasNotifier true

HasSetter false

Table 9.48: Service Interface VehiclePackageManagement - Field: CampaignState

Methods

Name SwPackageInventory

Description

FireAndForget false

AvailableSoftwarePackages

Description List of available Software Packages in Backend corresponding to VIN.

Type SwNameVersionVectorType

Variation

Parameter

Direction IN

RequiredSoftwarePackages

Description List of Software Packages to be sent to UCM Master.

Type SwNameVersionVectorType

Variation

Parameter

Direction OUT

Table 9.49: Service Interface VehiclePackageManagement - Method: SwPackageInven-
tory

Name GetSwClusterInfo

Description This method returns a list of SoftwareClusters that are in state kPresent.

FireAndForget false

SwInfo

Description List of installed SoftwareClusters that are in state kPresent.
Parameter

Type SwClusterInfoVectorType

5

79 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Variation

Direction OUT

Table 9.50: Service Interface VehiclePackageManagement - Method: GetSwClusterInfo

Name TransferStart

Description

FireAndForget false

SoftwarePackageName

Description Software Package Short Name of the Software Package to be transferred.

Type SwNameType

Variation

Parameter

Direction IN

id

Description Return TransferId.

Type TransferIdType

Variation

Parameter

Direction OUT

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Table 9.51: Service Interface VehiclePackageManagement - Method: TransferStart

Name TransferVehiclePackage

Description Start the transfer of a Software Package. The size of the Software Package to be transferred to UCM
must be provided. UCM will generate a Transfer ID for subsequent calls to TransferData, TransferExit,
ProcessSwPackage, DeleteTransfer.

FireAndForget false

size

Description Size (in bytes) of the Software Package to be transferred.

Type
uint64_t

Variation

Parameter

Direction IN

id

Description Return TransferId.

Type TransferIdType

Variation

Parameter

Direction OUT
5

80 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Table 9.52: Service Interface VehiclePackageManagement - Method: TransferVehicle
Package

Name TransferData

Description Block-wise transfer of a Software Package to UCM.

FireAndForget false

id

Description Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

data

Description Data block of the Software Package.

Type ByteVectorType

Variation

Parameter

Direction IN

blockCounter

Description Block counter value of the current block.

Type
uint64_t

Variation

Parameter

Direction IN

Application
Errors

Incorrect-
Block

The the same block number is received twice.

Application
Errors

Incorrect-
Size

The size of the Software Package exceeds the provided size in TransferStart.

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

PackageIn-
consistent

Package integrity check failed.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

Authentica-
tionFailed

Software Package authentication failed.

Application
Errors

Incompati-
blePackageV-
ersion

The version of the Software Package to be processed is not compatible with the
current version of UCM.

Application
Errors

BlockIncon-
sistent

Consistency check for transferred block failed.

5

81 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Application
Errors

TransferIn-
terrupted

Transfer has been interrupted.

Table 9.53: Service Interface VehiclePackageManagement - Method: TransferData

Name TransferExit

Description Finish the transfer of a Software Package to UCM.

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

Insuffi-
cientData

TransferExit has been called but total transferred data size does not match expected
data size provided with TransferStart call.

Application
Errors

PackageIn-
consistent

Package integrity check failed.

Application
Errors

Authentica-
tionFailed

Software Package authentication failed.

Application
Errors

OldVersion Software Package version is too old.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

Incompati-
blePackageV-
ersion

The version of the Software Package to be processed is not compatible with the
current version of UCM.

Table 9.54: Service Interface VehiclePackageManagement - Method: TransferExit

Name DeleteTransfer

Description Delete a transferred Software Package.

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

GeneralRe-
ject

General reject.

Application
Errors

GeneralMemo-
ryError

A general memory error occured.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

5

82 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.55: Service Interface VehiclePackageManagement - Method: DeleteTransfer

Name GetSwTransferProgress

Description Get the progress (0 - 100%) of the currently package transferring.

FireAndForget false

progress

Description The progress of the current package transferring (0% - 100%). 0x00 ... 0x64, 0xFF
for "’No information available"’

Type
uint8_t

Variation

Parameter

Direction OUT

Table 9.56: Service Interface VehiclePackageManagement - Method: GetSwTransfer
Progress

Name GetSwProcessProgress

Description Get the progress (0 - 100%) of the currently processing.

FireAndForget false

progress

Description The progress of the current package processing (0% - 100%). 0x00 ... 0x64, 0xFF
for "’No information available"’

Type
uint8_t

Variation

Parameter

Direction OUT

Table 9.57: Service Interface VehiclePackageManagement - Method: GetSwProcess
Progress

Name Cancel

Description This method aborts an ongoing processing of a Software Package.

FireAndForget false

id

Description The Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

CancelFailed Cancel failed.

5

83 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Table 9.58: Service Interface VehiclePackageManagement - Method: Cancel

Name GetHistory

Description Getter method to retrieve all actions that have been performed by UCM.

FireAndForget false

timestampGE

Description Earliest timestamp (inclusive)

Type
uint64_t

Variation

Parameter

Direction IN

timestampLT

Description Latest timestamp (exclusive)

Type
uint64_t

Variation

Parameter

Direction IN

history

Description The history of all actions that have been performed by UCM.

Type GetHistoryVectorType

Variation

Parameter

Direction OUT

Table 9.59: Service Interface VehiclePackageManagement - Method: GetHistory

c(RS_UCM_00001, RS_UCM_00002, RS_UCM_00008, RS_UCM_00010, RS_-
UCM_00011, RS_UCM_00015, RS_UCM_00018, RS_UCM_00021, RS_UCM_-
00022, RS_UCM_00023, RS_UCM_00024, RS_UCM_00025, RS_UCM_00032)

9.2.2 Required Service Interfaces

This chapter lists all required service interfaces of the UCM Master.

9.2.2.1 Vehicle Driver Application

Port

[SWS_UCM_00180]{DRAFT} RequiredPort VehicleDriverApplication d

84 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Name VehicleDriverApplication

Kind RequiredPort Interface VehicleDriverApplication

Description

Variation

Table 9.60: Port - VehicleDriverApplication

c(RS_UCM_00038, RS_UCM_00043)

Service Interface

[SWS_UCM_00182]{DRAFT} RequiredInterface VehicleDriverApplication d

Name VehicleDriverApplication

Table 9.61: Service Interfaces - VehicleDriverApplication

Methods

Name DriverNotification

Description

FireAndForget false

CampaignState

Description

Type CampaignStateType

Variation

Parameter

Direction IN

ApprovalRequiredFlag

Description

Type
bool

Variation

Parameter

Direction IN

SafetyPolicy

Description

Type SafetyPolicyType

Variation

Parameter

Direction IN

ApprovalStatus

Description

Parameter

Type
bool

5

85 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Variation

Direction OUT

Application
Errors

notSupport-
edPolicy

Policy not supported.

Table 9.62: Service Interface VehicleDriverApplication - Method: DriverNotification

c(RS_UCM_00001, RS_UCM_00002, RS_UCM_00008, RS_UCM_00010, RS_-
UCM_00011, RS_UCM_00015, RS_UCM_00018, RS_UCM_00021, RS_UCM_-
00022, RS_UCM_00023, RS_UCM_00024, RS_UCM_00025, RS_UCM_00032)

9.2.2.2 Vehicle State Manager

Port

[SWS_UCM_00179]{DRAFT} RequiredPort VehicleStateManager d

Name VehicleStateManager

Kind RequiredPort Interface VehicleStateManager

Description

Variation

Table 9.63: Port - VehicleStateManager

c(RS_UCM_00037, RS_UCM_00043)

Service Interface

[SWS_UCM_00183]{DRAFT} RequiredInterface VehicleStateManager d

Name VehicleStateManager

Table 9.64: Service Interfaces - VehicleStateManager

Fields

Name SafeToUpdate

Description Vehicle State Manager Application returns a field for UCM Master to know before/during/after update
campaign what is vehicle state considering a safety policy described in the vehicle package.

Type
bool

HasGetter true

HasNotifier true
5

86 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
HasSetter false

Table 9.65: Service Interface VehicleStateManager - Field: SafeToUpdate

Methods

Name ApplyPolicy

Description

FireAndForget false

SafetyPolicy

Description

Type SafetyPolicyType

Variation

Parameter

Direction IN

SafeToUpdate

Description

Type
bool

Variation

Parameter

Direction OUT

Application
Errors

notSupport-
edPolicy

Policy not supported.

Table 9.66: Service Interface VehicleStateManager - Method: ApplyPolicy

c(RS_UCM_00001, RS_UCM_00002, RS_UCM_00008, RS_UCM_00010, RS_-
UCM_00011, RS_UCM_00015, RS_UCM_00018, RS_UCM_00021, RS_UCM_-
00022, RS_UCM_00023, RS_UCM_00024, RS_UCM_00025, RS_UCM_00032)

9.3 Application Errors

9.3.1 Application Error Domain

9.3.1.1 UCMErrorDomain

This section lists all application errors of the UCM.

[SWS_UCM_00136]{DRAFT} UCMErrorDomain d

87 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Name Code Description

InsufficientMemory 1 Insufficient memory to perform operation.

IncorrectBlock 2 The the same block number is received twice.

IncorrectSize 3 The size of the Software Package exceeds the provided size in
TransferStart.

InvalidTransferId 4 The Transfer ID is invalid.

OperationNotPermitted 5 The operation is not supported in the current context.

InsufficientData 6 TransferExit has been called but total transferred data size does not
match expected data size provided with TransferStart call.

PackageInconsistent 7 Package integrity check failed.

AuthenticationFailed 8 Software Package authentication failed.

OldVersion 9 Software Package version is too old.

GeneralReject 10 General reject.

GeneralMemoryError 11 A general memory error occured.

ServiceBusy 12 Another processing is already ongoing and therefore the current
processing request has to be rejected.

InvalidManifest 13 Package manifest could not be read.

NothingToRevert 14 RevertProcessedSwPackages has been called without prior
processing of a Software Package.

NotAbleToRevertPackages 15 RevertProcessedSwPackages failed.

CancelFailed 16 Cancel failed.
NothingToRollback 17 Rollback cannot be performed due to no rollback data available.

NotAbleToRollback 18 Rollback failed.
PreActivationFailed 19 Error during preActivation step.

ErrorNoValidProcessing 20 Activate cannot be performed because previous processing is
invalid.

MissingDependencies 21 Activate cannot be performed because of missing dependencies.

ProcessSwPackageCancelled 22 The processing operation has been interrupted by a Cancel() call.

ProcessedSoftwarePackageInconsistent 23 The processed Software Package integrity check has failed.

IncompatiblePackageVersion 24 The version of the Software Package to be processed is not
compatible with the current version of UCM.

BlockInconsistent 25 Consistency check for transferred block failed.

TransferInterrupted 26 Transfer has been interrupted.

VerificationFailed 27 Error during verification step.

Table 9.67: Application Errors of UCMErrorDomain

c(RS_UCM_00006, RS_UCM_00007, RS_UCM_00012, RS_UCM_00013, RS_-
UCM_00014)

9.3.1.2 VehicleStateManagerErrorDomain

This section lists all application errors of the Vehicle State Manager.

[SWS_UCM_01115]{DRAFT} VehicleStateManagerErrorDomain d

88 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Name Code Description

notSupportedPolicy 1 Policy not supported.

Table 9.68: Application Errors of VehicleStateManagerErrorDomain

c(RS_UCM_00037, RS_UCM_00043)

9.3.1.3 VehicleDriverApplicationErrorDomain

This section lists all application errors of the Vehicle Driver Application.

[SWS_UCM_01116]{DRAFT} VehicleDriverApplicationErrorDomain d

Name Code Description

notSupportedPolicy 1 Policy not supported.

Table 9.69: Application Errors of VehicleDriverApplicationErrorDomain

c(RS_UCM_00038, RS_UCM_00043)

89 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

10 Sequence diagrams

10.1 Update process

sd Update

Diagnostic Application (OEM
specific)

«ServiceProvider»

:UCM

ref
Data transmission

ref
Processing

ref
Activation

Figure 10.1: Sequence diagram showing the update process

90 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

10.2 Data transmission

sd Data transmission

«ServiceProvider»

:UCM

Diagnostic Application (OEM
specific)

loop for each sw-package

loop for each segment of a sw-package

opt

:GeneralResponseType

:TransferExitReturnType

storeData
(byteVector)

SetLogLevel(TransferId, LogLevel): GeneralResponseType

TransferExit(TransferId): TransferExitReturnType

TransferData(TransferId, ByteVectorType, uint32): TransferDataReturnType

checkTransferredPackage()

:TransferDataReturnType

TransferStart(uint32): TransferStartReturnType

:TransferStartReturnType

Figure 10.2: Sequence diagram showing the data transmission

91 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

10.3 Package processing

CurrentStatus= :PROCESSING

Figure 10.3: Sequence diagram showing the package processing

92 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

10.4 Activation

Diagnostic Application (OEM
specific)

«ServiceProvider»

:External Reference

«ServiceSwCompo...

State Management

FunctionGroupState_{Function Group}
(Verify)

CurrentStatus(Activating)

CurrentStatus(Activated)

:ActivateReturnType

:FinishReturnType

checkPackageDependencies()

Activate(): ActivateReturnType

Cleanup()

:READY

Finish(): FinishReturnType

Subscribe(FunctionGroupState_{Function Group})

Subscribe(CurrentStatus)

Figure 10.4: Sequence diagram showing the activation process

93 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

94 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

10.5 UCM Master simplified vehicle update

OTA Client

(from Actors)

U CM master

(from Actors)

Driver Interface

(from Actors)

V ehicle State Manager

(from Actors)

UCM sub 1

(from Actors)

CampaignState = IDLE

:SafeToUpdate

Driver OK()

ApplyPolicy(SafetyPolicy)

DriverN otification()

Driver OK()

:CamapignState=APPROVAL_PROCESSING

Dependency check
and Verifying()

DriverN otification()

Driver OK()

ProcessSwPackage()

transferExit()

DriverOK and VehicleSafe()

:CampaignState=APPROVAL_ACTIVATE

transferStart()

DriverN otification()

:CampaignState = IDLE

:CurrentStatus=ACTIVATED|ROLLINBACK

:CurrentStatus=READY

:SafeToUpdate

V ehiclePackage sending()

ApplyPolicy(SafetyPolicy)

:CampaignState = TRANSFERRING

:CamapignState=VEHICLEPACKAGE_TRANSFER

Syncing()

:CampaignState = SYNCING

:CampaignState=PROCESSING

Finish()

:CampaignState = PROCESSING

Processing()

:CamapignState=APPROVAL_TRANSFER

transferExit()

transferData()

transferData()

:CampaignState = ACTIVATED

GetHistory()

:SafeToUpdate

ApplyPolicy(SafetyPolicy)

transferExit()

transferStart()

Activate()

clean-up and vehicle checks()

Figure 10.5: Sequence diagram showing vehicle update
95 of 122

— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

96 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

A Not applicable requirements

none

97 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractEvent , AbstractImplementationDataTypeElement , AbstractServiceInstance,
AbstractSignalBasedToISignalTriggeringMapping, AdaptiveModuleInstantiation, AdaptiveSwcInternal
Behavior, ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartitionMapping,
AsynchronousServerCallResultPoint, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpFeature, Autosar
OperationArgumentInstance, AutosarVariableInstance, BswInternalTriggeringPoint, BswModule
Dependency, BuildActionEntity , BuildActionEnvironment, CanTpAddress, CanTpChannel, CanTpNode,
Chapter, CheckpointTransition, ClassContentConditional, ClientIdDefinition, ClientServerOperation,
Code, CollectableElement , ComManagementMapping, CommConnectorPort , Communication
Connector , CommunicationController , Compiler, ConsistencyNeeds, ConsumedEventGroup, Coupling
Port, CouplingPortStructuralElement , CryptoKeySlot, CryptoServiceMapping, DataPrototypeGroup, Data
Transformation, DdsRpcServiceDeployment, DependencyOnArtifact, DeterministicClientResourceNeeds,
DiagEventDebounceAlgorithm, DiagnosticConnectedIndicator, DiagnosticDataElement, Diagnostic
FunctionInhibitSource, DiagnosticMasterToSlaveEventMapping, DiagnosticRoutineSubfunction, Dlt
Argument, DltLogChannel, DltMessage, DoIpInterface, DoIpLogicAddress, E2EProfileConfiguration, EC
UMapping, EOCExecutableEntityRefAbstract , EcuPartition, EcucContainerValue, EcucDefinition
Element , EcucDestinationUriDef, EcucEnumerationLiteralDef, EcucQuery, EcucValidationCondition,
End2EndEventProtectionProps, EndToEndProtection, EventMapping, ExclusiveArea, ExecutableEntity ,
ExecutionTime, FMAttributeDef, FMFeatureMapAssertion, FMFeatureMapCondition, FMFeatureMap
Element, FMFeatureRelation, FMFeatureRestriction, FMFeatureSelection, FieldMapping, FireAndForget
Mapping, FlatInstanceDescriptor, FlexrayArTpNode, FlexrayTpConnectionControl, FlexrayTpNode,
FlexrayTpPduPool, FrameTriggering, GeneralParameter, GlobalTimeGateway, GlobalTimeMaster ,
GlobalTimeSlave, HealthChannel , HeapUsage, HwAttributeDef, HwAttributeLiteralDef, HwPin, HwPin
Group, IPSecRule, IPv6ExtHeaderFilterList, ISignalToIPduMapping, ISignalTriggering, IdentCaption,
InterfaceMapping, InternalTriggeringPoint, J1939SharedAddressCluster, J1939TpNode, Keyword, Life
CycleState, LinScheduleTable, LinTpNode, Linker, MacMulticastGroup, McDataInstance, Memory
Section, MethodMapping, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint, Network
Endpoint, NmCluster , NmNode, NvBlockDescriptor, PackageableElement , ParameterAccess, PduTo
FrameMapping, PduTriggering, PerInstanceMemory, PersistencyFileProxy, PersistencyKeyValuePair,
PhmActionItem, PhmActionList, PhmLogicalExpression, PhmRule, PhmSupervision, PhysicalChannel ,
PortGroup, PortInterfaceMapping, PossibleErrorReaction, ProcessDesignToMachineDesignMapping,
ProcessToMachineMapping, Processor, ProcessorCore, PskIdentityToKeySlotMapping, RawDataStream
MethodDeployment, ResourceConsumption, ResourceGroup, RestAbstractEndpoint , RestElementDef,
RestResourceDef, RootSwClusterDesignComponentPrototype, RootSwComponentPrototype, RootSw
CompositionPrototype, RptComponent, RptContainer, RptExecutableEntity, RptExecutableEntityEvent,
RptExecutionContext, RptProfile, RptServicePoint, RunnableEntityGroup, SdgAttribute, SdgClass, Sec
OcJobMapping, SecOcJobRequirement, SecureComProps, SecureCommunicationAuthenticationProps,
SecureCommunicationDeployment , SecureCommunicationFreshnessProps, ServerCallPoint , Service
EventDeployment , ServiceFieldDeployment , ServiceInstanceToSignalMapping, ServiceInterfaceElement
Mapping, ServiceInterfaceElementSecureComConfig, ServiceInterfaceMapping, ServiceMethod
Deployment , ServiceNeeds, SignalServiceTranslationEventProps, SignalServiceTranslationProps,
SocketAddress, SoftwarePackageStep, SomeipEventGroup, SomeipProvidedEventGroup, SomeipTp
Channel, SpecElementReference, StackUsage, StartupConfig, StaticSocketConnection, StructuredReq,
SupervisionCheckpoint, SwGenericAxisParamType, SwServiceArg, SwcServiceDependency, SwcTo
ApplicationPartitionMapping, SwcToEcuMapping, SwcToImplMapping, SystemMapping, SystemMemory

5
5

98 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Class Identifiable (abstract)

4
Usage, TcpOptionFilterList, TimeBaseResource, TimingCondition, TimingConstraint , TimingDescription,
TimingExtensionResource, TimingModeInstance, TlsCryptoCipherSuite, TlsJobMapping, Topic1, Tp
Address, TraceableTable, TraceableText, TracedFailure, TransformationProps, TransformationPropsTo
ServiceInterfaceElementMapping, TransformationTechnology, Trigger, UcmDescription, UcmStep,
VariableAccess, VariationPointProxy, VehicleRolloutStep, ViewMap, VlanConfig, WaitPoint

Attribute Type Mult. Kind Note

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Tags:xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags:xml.sequenceOffset=-25

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags:xml.sequenceOffset=-50

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags:xml.sequenceOffset=-60

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags:xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.

Tags:xml.attribute=true

Table B.1: Identifiable

99 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Class SoftwareActivationDependency (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::UploadableSoftwarePackage

Note This meta-class acts as an abstract base class for the formalization of dependencies in the context of
software activation on the AUTOSAR adaptive platform.

Tags:atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses SoftwareCluster, SoftwareClusterDesign, VehiclePackage

Attribute Type Mult. Kind Note

conflictsTo SoftwareActivation
DependencyFormula

0..1 aggr This aggregation handles conflicts. If it yields true then
the SoftwareActivationDependency shall not be installed.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=conflictsTo
atp.Status=draft

dependsOn SoftwareActivation
DependencyFormula

0..1 aggr This aggregation can be taken to identify a dependency
for the enclosing SoftwareActivationDependency.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=dependsOn
atp.Status=draft

Table B.2: SoftwareActivationDependency

Class SoftwareCluster
Package M2::AUTOSARTemplates::AdaptivePlatform::UploadableSoftwarePackage

Note This meta-class represents the ability to define an uploadable software-package, i.e. the SoftwareCluster
shall contain all software and configuration for a given purpose.

Tags:
atp.ManifestKind=SoftwareDistribution
atp.Status=draft
atp.recommendedPackage=SoftwareClusters

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, SoftwareActivationDependency

Attribute Type Mult. Kind Note

contained
ARElement ARElement * ref This reference represents the collection of model

elements that cannot derive from UploadablePackage
Element and that contribute to the completeness of the
definition of the SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=containedARElement
atp.Status=draft

containedFibex
Element FibexElement * ref This allows for referencing FibexElements that need to be

considered in the context of a SoftwareCluster.

Tags:atp.Status=draft

contained
Package
Element

UploadablePackage
Element

* ref This reference identifies model elements that are required
to complete the manifest content.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=containedPackageElement
atp.Status=draft

5

100 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Class SoftwareCluster
contained
Process Process * ref This reference represent the processes contained in the

enclosing SoftwareCluster.

Tags:atp.Status=draft

design SoftwareClusterDesign * ref This reference represents the identification of all Software
ClusterDesigns applicable for the enclosing Software
Cluster.

Stereotypes: atpUriDef
Tags:atp.Status=draft

diagnostic
Address SoftwareCluster

DiagnosticAddress

* aggr This aggregation represents the collection of diagnostic
addresses that apply for the SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=diagnosticAddress
atp.Status=draft

diagnostic
Extract DiagnosticContribution

Set

0..1 ref This reference represents the definition of the diagnostic
extract applicable to the referencing SoftwareCluster

Tags:atp.Status=draft

license Documentation * ref This attribute allows for the inclusion of the the full text of
a license of the enclosing SoftwareCluster. In many cases
open source licenses require the inclusion of the full
license text to any software that is released under the
respective license.

Tags:atp.Status=draft

module
Instantiation AdaptiveModule

Instantiation

* ref This reference identifies AdaptiveModuleInstantiations
that need to be included with the SoftwareCluster in order
to establish infrastructure required for the installation of
the SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=moduleInstantiation
atp.Status=draft

releaseNotes Documentation 0..1 ref This attribute allows for the explanations of changes since
the previous version. The list of changes might require
the creation of multiple paragraphs of test.

Tags:atp.Status=draft

subSoftware
Cluster

SoftwareCluster * ref This reference is used to identify the sub-Software
Clusters of an "umbrella" SoftwareCluster.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=subSoftwareCluster
atp.Status=draft

typeApproval String 0..1 attr This attribute carries the homologation information that
may be specific for a given country.

vendorId PositiveInteger 1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list.

vendor
Signature CryptoService

Certificate

1 ref This reference identifies the certificate that represents the
vendor’s signature.

Tags:atp.Status=draft

version StrongRevisionLabel
String

1 attr This attribute can be used to describe a version
information for the enclosing SoftwareCluster.

Table B.3: SoftwareCluster

101 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Class SoftwarePackage

Package M2::AUTOSARTemplates::AdaptivePlatform::UploadableSoftwarePackage

Note This meta-class represents the ability to formalize the content of a software package.

Tags:
atp.ManifestKind=SoftwareDistribution
atp.Status=draft
atp.recommendedPackage=SoftwarePackages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mult. Kind Note

actionType SoftwarePackageAction
TypeEnum

1 attr This attribute defines the action to be taken in the step of
processing the enclosing SoftwarePackage.

activationAction SoftwarePackage
ActivationActionEnum

1 attr This attribute governs the action to be taken after the
installation of the SoftwareCluster completed.

compressed
Software
PackageSize

PositiveInteger 1 attr This size represents the size of the compressed Software
Package.

isDeltaPackage Boolean 1 attr This attribute denotes whether the SoftwarePackage is
only able to update but not for initial installation.

maximum
SupportedUcm
Version

RevisionLabelString 1 attr This attribute identifies the maximum supported version of
the UCM for this SoftwarePackage.

minimum
SupportedUcm
Version

RevisionLabelString 1 attr This attribute identifies the minimum supported version of
the UCM for this SoftwarePackage.

packagerId PositiveInteger 1 attr This attribute identifies Id of the organization that provides
the packager generating the SoftwarePackage.

packager
Signature CryptoService

Certificate

1 ref This reference identifies the certificate that represents the
packager’s signature.

Tags:atp.Status=draft

postVerification
Reboot Boolean 1 attr Reboot the platform after the verification of the activated

software.
preActivate ModeDeclaration * iref The referenced function group states shall be established

for the switch between the already installed and the
activated software.

Tags:atp.Status=draft

preActivation
Reboot Boolean 1 attr Reboot the platform before the switch to the activated

software.

softwareCluster SoftwareCluster 1 ref This reference identifies the SoftwareCluster that belongs
to the SoftwarePackage. The nature of this relation is
actually more like an aggregation than a reference. But
the relation is still modelled as a reference because two
ARElements cannot aggregate each other.

Tags:atp.Status=draft

uncompressed
SoftwareCluster
Size

PositiveInteger 1 attr This attribute gives an indication about the storage that
has to be available on the target.

verify ModeDeclaration * iref The referenced function group states shall be established
for the verification of the activated software.

Tags:atp.Status=draft

Table B.4: SoftwarePackage

102 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Class VehiclePackage

Package M2::AUTOSARTemplates::AdaptivePlatform::UploadableSoftwarePackage

Note This meta-class represents the ability to define a vehicle package for executing an update campaign.

Tags:
atp.ManifestKind=SoftwareDistribution
atp.Status=draft
atp.recommendedPackage=VehiclePackages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, SoftwareActivationDependency

Attribute Type Mult. Kind Note

driver
Notification VehicleDriver

Notification

* aggr This aggregation provides the ability to configure the
necessary driver notifications.

Tags:atp.Status=draft

packager
Signature CryptoService

Certificate

1 ref This reference identifies the certificate that represents the
packager’s signature.

Tags:atp.Status=draft

repository UriString 0..1 attr This attribute identifies the repository where the Vehicle
Package is stored.

rollout
Qualification
(ordered)

VehicleRolloutStep * aggr This represents the rollout qualification.

Tags:atp.Status=draft

ucm UcmDescription * aggr This aggregation represents the UcmDescriptions to be
considered in the context of the VehiclePackage.

Tags:atp.Status=draft

ucmMaster
Fallback
(ordered)

UcmDescription * ref This reference lists the fallback order of Ucms that can
take over the master role if the master goes down.

Tags:atp.Status=draft

vehicle
Description Documentation 0..1 ref This reference identifies the vehicle description.

Tags:atp.Status=draft

Table B.5: VehiclePackage

Class UcmModuleInstantiation
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Ucm

Note This meta-class represents the ability to define a definition of a UCM instantiation.

Tags:atp.Status=draft

Base ARObject , AdaptiveModuleInstantiation, Identifiable, MultilanguageReferrable, NonOsModule
Instantiation, Referrable

Attribute Type Mult. Kind Note

identifier String 1 attr This represents the identification of a UCM.

Table B.6: UcmModuleInstantiation

103 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

C Interfaces to other Functional Clusters (informative)

C.1 Overview

AUTOSAR decided not to standardize interfaces which are exclusively used between
Functional Clusters (on platform-level only), to allow efficient implementations, which
might depend e.g. on the used Operating System.

This chapter provides informative guidelines how the interaction between Functional
Clusters looks like, by clustering the relevant requirements of this document. In addi-
tion, the standardized public interfaces which are accessible by user space applications
(see chapter 8) can also be used for interaction between Functional Clusters.

The goal is to provide a clear understanding of Functional Cluster boundaries and in-
teraction, without specifying syntactical details. This ensures compatibility between
documents specifying different Functional Clusters and supports parallel implementa-
tion of different Functional Clusters. Details of the interfaces are up to the platform
provider.

C.2 Interfaces Tables

C.2.1 UCM update notification

UCM shall provide the notification to other Functional Clusters that changes have been
done to the software. This enables other functional clusters to check if updated man-
ifests have changes relevant for the concerned Functional Cluster. This can be done
through the field CurrentStatus provided by the UCM service.

104 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

D Packages distribution within vehicle detailed
sequence examples

D.1 Collect information of present Software Clusters in vehicle

From a regular basis, UCM master and UCM can collect information of present Soft-
ware Clusters from the other AUTOSAR Adaptive Platforms of the vehicle in
order to be used later when communicating with Backend and then determine if there
are new actions (update, remove, install) required.

Adaptive platform BAdaptive platform A

sd [U seCase] 1. Determine installed SWCL in vehicle [Determine installed SWCL in vehicle]

U CM master

(from Actors)

UCM slave 1

(from Actors)

Diagnostic tool

(from Actors)

:SwClusterInfoV ector

GetSwClusterInfo()

Figure D.1: Collect information of Software Clusters present in vehicle from several
AUTOSAR Adaptive Platforms

D.2 Action computation

In order to find out if there is a new update available from Backend or the need to install
or remove a Software Cluster, vehicle and Backend have to share their current
status and either Backend or vehicle have to compute what UCM Master actions are
needed.

Backend will have the possibility to push a package into the vehicle when communi-
cation is established, for instance for security purpose.

Communication trial between Backend and UCM master can be done on driver’s re-
quest or from a scheduler.

105 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

D.2.1 Pull package from Backend into vehicle

Case where vehicle is computing the difference between Software Clusters ver-
sions that are present in vehicle and the ones available in Backend.

Adaptive Platform CAdaptive Platform BAdaptive Platform A

sd [U seCase] 2.1 Pull package from backend [2.1 Pull package from backend]

U CM master

(from Actors)

OTA Client

(from Actors)

UCM sub 1

(from Actors)

UCM sub 2

(from Actors)

opt Optional

OTA Client could regularly (scheduler
or diag trigger) establish connection
with backend and update whole
vehicle installed SWCluters

UCM Master computes what
SWCLs should be updated

Backend sends
Vehicle Package

Once connection is set with OTA Client,
Backend is sending its inventory based on
VIN already communicated by OTA client

:CampaignState = SYNCING

GetSwClusterInfo()

:CampaignState=IDLE

transferExit(transferId)

:SwClusterInfoVector

:SwClusterInfoVector

:transferId

:SwClusterInfoVector

:CampaignState=IDLE

ComputeDependencies()

TransferV ehiclePackage(Size)

:transferDataReturn

GetSwClusterInfo()

:transferExitReturn

:CampaignState =V ehiclePackage_Transfer

SwPackageInventory(SwClusterInfoVector)

ComputeU pdates()

MergeSwClusterInfoVectors()

transferData(transferId, block, blockCounter)

Figure D.2: Pull package from backend

D.2.2 Push package from backend into vehicle

Case where Backend is computing the difference between Software Clusters ver-
sions that are present in vehicle and the ones available in Backend.

106 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

sd [U seCase] 2.2 pushed package from backend [2.2 pushed package from backend]

U CM master

(from Actors)

OTA Client

(from Actors)

UCM sub 1

(from Actors)

UCM sub 2

(from Actors)

opt Optionnal

Backend is requesting installed
SWClusters in vehicle

Backend sends
Vehicle Package

loop
:transferDataReturn

GetSwClusterInfo()

transferExit(transferId)

transferData(transferId, block, blockCounter)

:CampaignState = SYNCING

:SwClusterInfoVector

BackendComputeU pdatesAndDependencies()

GetSwClusterInfo()

:CampaignState=IDLE

transferV ehiclePackage(Size)

GetSwClusterInfo()

ComputeDependencies()

:transferId

:SwClusterInfoVector

:CampaignState=IDLE

:transferExitReturn

:CampaignState =VEHICLEPACKAGE_TRANSFER

:SwClusterInfoVector

MergeSwClusterInfoVectors()

Figure D.3: Push package from backend

107 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

D.3 Packages transfer from backend into targeted UCM

Adaptive platform CAdpative platform B
Adaptive Platform A

sd [U seCase] 3 D istribute Software packages to U CM slaves [3 Distribute Software packages to UCM subordinates]

U CM master

(from Actors)

UCM sub 1

(from Actors)

OTA Client

(from Actors)

UCM sub 2

(from Actors)

Driver Interface

(from Actors)

V ehicle State Manager

(from Actors)

par Transfers

loop Streaming of package A

loop Streaming of package B

opt Driver notification

Counter argument for
efficient resume

loop transfer blocks

opt Progress check

opt Vehicle Safety condition

1. if upgrade, Check InstalledVersion <
NewVersion
2. if delta package, Check
InstalledV ersion=PreviousVersion

transferData(transferId2, Block, BlockCounter)

transferData(transferId, block, blockCounter)

TransferStart(SWCLPackageBName)

CheckAvailableMemory()

TransferStart(SWCLPackageASize)

:True

CheckV ersion
(V ersion,

PreviousV ersion)

PackageAuthentication(PackageSignature)

ManifestAuthentication(Signature)

transferExit(TransferId2)

:CampaignState = VEHICLEPACKAGE_TRANSFER

TransferStart(SWCLPackageBSize)

:Progress

TransferStart(SWCLPackageAN ame)

WaitApproval()

:transferDataReturn

:transferDataReturn

TransferV ehiclePackage(Size)

GetSwTransferProgress()

:TransferExitReturn

ParseSWCLPackageManisfests(): ((UCM Slave1 Id,
SWCLPackageBSize),(UCM slave2 Id,

SWCLPackageBSize))

DriverN otification(State, ApprovalRequiredFlag, SafetyPolicy)

:transferDataReturn

:transferExitReturn

:transferId1

:transferExitReturn

transferExitReturn()

:transferId2

transferExit(transferId)

:CampaignState = Approval_Transferring

transferData(transferId1, block, BlockCounter)

transferExit(transferId2)

transferExit(transferId1)

TemporaryStoreV ehiclePackageManifest()

:transferDataReturn

:transferId2

:transferDataReturn

ApplyPolicy(SafetyPolicy): SafeToUpdate

:CampaignState = Transferring

checkAvailableMemory()

transferData(transferId2, Block, BlockCounter)

:transferId

:CampaignState = IDLE

PackageAuthentication
(PackageSignature)

ConsistencyCheck(Checksum)

:transferExitReturn

subscribe(SafeToUpdate)

:SafeToUpdate=True

transferData(transferId1, block, blockCounter)

:CampaignState=Approval_Processing

transferExit(transferId1)

:transferId

Figure D.4: Stream packages blocks from backend into targeted UCM

108 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

109 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

D.4 Package processing

sd [U seCase] 4 Software packages processing [4 Software packages processing]

U CM master

(from Actors)

UCM sub 1

(from Actors)

Driver Interface

(from Actors)

UCM sub 2

(from Actors)

V ehicle State Manager

(from Actors)

par Processes packages

opt Check on-going processing

opt Check on-going processing

opt Vehicle driver notification for processing

loop Until Progress = 100

loop Until Progress = 100

opt Vehicle safety state

:True

WaitApproval()

GetProcessProgress(transferId2): ProcessingStatusType

:CampaignState = Processing

CheckSWCLAvailableMemory
(SWCLPayloadSize)

ApplyPolicy(SafetyPolicy): SafeToUpdate

:CampaignState = Transferring

CheckV ehicleSWCLDependencies
(V ehiclePackageDependencies)

ProcessSwPackage(transferId2): ProcessSwPacakgeReturnType

:SafeToUpdate=True

GetProcessProgress(transferId1): ProcessingStatusType

ParseActionFromManifest()

DriverN otification(State, ApprovalRequiredFlag, SafetyPolicy)

:CampaignState = Approval_Activate

PackageIntegrityCheck()

Subscribe(SafeToUpdate)

ManifestConsistencyCheck()

:CampaignState = Processing

Subscribe(CurrentStatus)

ManifestConsistencyCheck()

:ProcessSwPackageReturn

PackageIntegrityCheck()

:progress=100

ProcessSwPackage(transferId1): ProcessSwPackageReturnType

ParseV ehiclePackageManifest(): CampaignOrchestration,
Dependencies

:progress=100

:CampaignState = Approval_Processing

:Progress

ParseActionFromManifest()

GetSwProcessProgress()

CheckSWCLAvailableMemory
(SWCLPayloadSize)

:CurrentStatus=ready

GetSwPackages(): SwClusterInfoVectorType

GetSwPackages(SwInfoN ame2): SwClusterInfoVectorType

Figure D.5: Packages processing by UCMs
110 of 122

— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

111 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

D.5 Package activation

sd [U seCase] 5 Software packages activation [5 Software packages activation]

U CM master

(from Actors)

UCM sub 1

(from Actors)

Driver Interface

(from Actors)

UCM sub 2

(from Actors)

V ehicle State Manager

(from Actors)

opt Optional Action

par A ctivations could be performed in parallel

Sw restart activation

Partition activation

opt Check Vehicle Safety conditions before/during activation

:CurrentStatus = CLEANING_UP

:CampaignState=Processing

:CurrentStatus = ACTIVATING

WaitApproval()

:READY

CheckPackageDependencies
(SWCLDependencies)

Finish()

:CurrentStatus = IDLE

:V ehicleState

:CampaignState=Approval_Activate

stopOldSWCLIfNeeded()

:CurrentStatus = ACTIVATED

:CampaignState=Activated

V ehicleChecks()

CheckPackageDependencies(SWCLDependencies)

Activate(ActivationMethod)

Subscribe(CurrentStatus)

:CurrentStatus = ACTIVATED

DefineActivationMethod(Manifest or ActionMethod)

:CurrentStatus = VERIFYING

:True

DefineActivationMethod
(Manifest or ActionMethod)

:CurrentStatus = IDLE

:CurrentStatus = CLEANING_UP

:READY

:0

ApplyPolicy(SafetyPolicy): SafeToUpdate

:0

Activate(ActivationMethod)

DriverN otification(State, ApprovalRequiredFlag, SafetyPolicy)

startN ewSWCLIfNeeded()

Finish()

swapPartitionAndSyncThem()

Subscribe(CurrentStatus)

:SafeToUpdate=True

:CurrentStatus = ACTIVATING

:CurrentStatus = VERIFYING

:CampaignState=Processing

:CampaignState=IDLE

Figure D.6: Packages activation by UCMs

112 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

D.6 Package rollback

sd [U seCase] 5.1 Software clusters rollback [5.1 Software clusters rollback]

U CM master

(from Actors)

UCM sub 1

(from Actors)

Driver Interface

(from Actors)

OTA Client

(from Actors)

Verifying if Failing

:CurrentStatus = ROLLING-BACK

Finish()

:CampaignState=ROLLBACK

Activate(CampaignOrchestration)

CheckPackageDependencies
(SWCLDependencies)

:CurrentStatus = ACTIVATING

Subscribe(CurrentStatus)

DefineActivationMethod
(Manifest or ActionMethod)

:CampaignState=IDLE

:READY

:CurrentStatus = CLEANING_UP

:CurrentStatus = VERIFYING

:CampaignState=Processing

:CurrentStatus = ROLLED-BACK

Figure D.7: Packages rollback by UCMs

113 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

D.7 Campaign reporting

sd [U seCase] 6 Campaign reporting [6 Campaign reporting]

OTA Client

(from Actors)

U CM master

(from Actors)

UCM sub 1

(from Actors)

UCM sub 2

(from Actors)

Driver Interface

(from Actors)

par Checking UCM slaves states

opt Optional Action

opt Check UCM state

opt

:GetHistoryReturnType

:IDLE

GetHistory(timeStampGE, timeStampLT)

:CampaignState = IDLE

Subscribe(CurrentStatus)

:IDLE

CampaignJudgement()

CampaignAggregation()

Subscribe(CurrentStatus)

GetHistory(timeStampGE, timeStampLT)

:GetHistoryVectorType

getHistory(timeFrom, timeTo)

:CampaignState=IDLE

DriverN otification(State, ApprovalRequiredFlag, SafetyPolicy)

:GetHistoryReturnType

Figure D.8: Campaign reporting to backend

114 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

E Security Analysis of Installation and Update

This chapter presents a summary for the security analysis of the UCM. Some of the
threats could not be addressed by specifying AUTOSAR requirements. The main rea-
son for not specifying the countermeasures is to allow vendors to flexibly decide on the
solution that fits their setup. Here we aim to raise awareness and provide advice on
the selected topics:

E.1 Securing Software Package

UCM is responsible for applying changes of the platform and applications contained
in the Software Packages it receives. Therefore, integrity and authenticity of Software
Packages are critical to protect system integrity. It shall be ensured that the Software
Packages are neither illegitimately altered nor issued by unauthorized parties. This
can be achieved by applying cryptographic techniques such as digital signatures. The
period that Software Package resides in UCM before being activated shall not be ne-
glected. It provides a window of opportunity for an attacker to tamper with the Software
Package after the authentication is done at TransferExit.

Information disclosure is another security threat category that might be applicable to
Software Packages. Packages that contain sensitive information, such as intellec-
tual properties or cryptographic keys, require confidentiality protection in addition to
integrity and authenticity when being persisted or transmitted over a communication
channel.

Another aspect of protecting Software Update Packages is their freshness. An attacker
may try to manipulate the system by downgrading the software via replaying an authen-
tic but older Software Update Package. In this regard, the platform shall ensure that
only newer packages (i.e. packages that contain newer version of installed SWCL) can
be installed.

E.2 Securing Calls to UCM

UCM provides a very critical functionality in the platform that allows modifying appli-
cations and platform components. In that sense, it is critical to prevent unauthorized
access to UCM, meaning only legitimate callers should be allowed to reach the UCM
service interface. This is primarily enforced in the communication layer supported by
the Identity and Access Management. Additionally, the calls to the UCM interface shall
be protected against altering, e.g. changing API arguments. When the service and
client reside on the same machine, the security relies on the integrity of the operating
system and the platform. In case, the service and the client are running on different
machines, a secure communication, assuring authenticity and integrity of communica-
tion, is additionally required.

115 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

Moreover, some API methods of the UCM interface returns sensitive information
about the platform. This subset (GetSwClusterInfo, GetSwClusterChangeInfo, Get-
Log, GetHistory, GetSwPackages) shall be protected against information disclosure
and should only be reachable over a channel that provides confidentiality.

A similar reasoning is applicable for securing the communication between UCM Master
and its clients. Regarding protection against information disclosure, GetSwClusterInfo,
SwPackageInventory and GetHistory for UCM Master shall only be called over confi-
dential channels.

E.3 Suppressing Call to UCM

Multiple scenarios can be envisioned where an attacker targets suppressing the calls to
UCM. The attack could block the calls to or the response from UCM. In both cases the
caller of the service may assume that UCM is not responding and retries its request.
This would lead to undesired overhead on the system. For such scenarios, it is recom-
mended that both UCM and the UCM Client consider reporting security events when
same calls repeatedly received at UCM or calls repeatedly fail at the caller side. This
information could potentially be picked up by Intrusion Detection Systems or Anomaly
Detection Systems.

E.4 Resource Starvation

According to the current specification, the available resources for transferring a Soft-
ware Package is only checked when TransferStart is called but not reserved. This
means, while the transfer is ongoing, the system storage can be exhausted by other
processes using the same storage media. This scenario is also applicable to UCM
Master when receiving data from its client. A similar case is possible for processing
of Software Package, as the resources are only checked at the beginning but not re-
served. In this regard, a solution could be to reserve the necessary resources for the
Software Package transfer or processing from the beginning to prevent attacks aiming
at such scenarios.

At the same time, reserving the resources might provide opportunity to the attacker
in other scenarios. The specification allows transferring multiple Software Packages
in parallel. Consequently, a misbehaving or compromised client can open unlimited
number of transfer sessions causing UCM to run out of resources. To cope with this
scenario, a threshold for the number of parallel transfer sessions can be defined.

E.5 Zombie Sessions

The AUTOSAR specification does not enforce any expiry time for the established trans-
fer sessions. As a result, the resources that are hold by an ongoing session will not

116 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

be released no matter how long time it takes. At the same time, in certain cases it
may take a long time for larger software packages to be transferred to UCM or UCM
Master, especially when they are received from external sources with weak connec-
tivity on-the-fly. However, a timeout may be considered for such a transfer to prevent
attackers from mounting denial of service attacks by long term allocation of resources.

117 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

F History of Specification Items

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These specification items do not
appear as hyperlinks in the document.

F.1 Specification Item History of this document compared to
AUTOSAR R19-03.

F.1.1 Added Traceables in R19-11

Number Heading

[SWS_UCM_00009] UCM exposing its identifier

[SWS_UCM_00105] UCM confidential information handling

[SWS_UCM_00161] Check Software Package version compatibility against UCM version

[SWS_UCM_00162] Entering the Cleaning-up state after a RevertProcessedSwPackages call

[SWS_UCM_00163] Action in Cleaning-up state

[SWS_UCM_00164] Cleaning up of Software Packages

[SWS_UCM_00165] Processing from stream

[SWS_UCM_00166] Processing from stream state

[SWS_UCM_00167] Cancelling streamed packages

[SWS_UCM_00168] Transferring while processing from stream

[SWS_UCM_00169] Finishing transfer while processing from stream

[SWS_UCM_00170] Log message retrieving

[SWS_UCM_00171] Log level changing

[SWS_UCM_00172] Log messages removing

[SWS_UCM_00173] UCMIdentifierType table

[SWS_UCM_00174] SwNameVectorType table

[SWS_UCM_00175] StrongRevisionLabelString table

[SWS_UCM_00176] SwNameVersionType table

[SWS_UCM_00177] SwNameVersionVectorType table

[SWS_UCM_00178] ProvidedPort VehiclePackageManagement

[SWS_UCM_00179] RequiredPort VehicleStateManager

[SWS_UCM_00180] RequiredPort VehicleDriverApplication

[SWS_UCM_00181] ProvidedInterface VehiclePackageManagement

[SWS_UCM_00182] RequiredInterface VehicleDriverApplication

[SWS_UCM_00183] RequiredInterface VehicleStateManager
5

118 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Number Heading

[SWS_UCM_00210] Transferring of software packages on kProcessApproving or kProcess-
ing state

[SWS_UCM_01001] UCM Master processes Vehicle Package

[SWS_UCM_01002] UCM Master shall provide UCM services

[SWS_UCM_01003] UCM Master checks states of UCM subordinates
[SWS_UCM_01004] Only one UCM Master shall be active per network domain

[SWS_UCM_01005] UCM Master is discovering UCMs in vehicle

[SWS_UCM_01006] Vehicle Package transfer to UCM Master

[SWS_UCM_01007] Start transfer of a Vehicle Package or Software Packageto UCM Mas-
ter

[SWS_UCM_01008] Transfer data of a Vehicle Package to UCM Master

[SWS_UCM_01009] Exit the transfer of a Vehicle Package to UCM Master

[SWS_UCM_01010] Delete a Vehicle Package transferred to UCM Master

[SWS_UCM_01101] Provide information of installed Software Clusters in vehicle
[SWS_UCM_01102] Get information of available Software Clusters in Backend

[SWS_UCM_01103] Inform Backend of needed Software Clusters for an update

[SWS_UCM_01105] Interaction of UCM Master with Vehicle Driver
[SWS_UCM_01106] Exclusive use of Vehicle Driver Interface
[SWS_UCM_01107] UCM Master provides progress information to Vehicle Driver

[SWS_UCM_01108] Unsupported safety policy by Vehicle driver interface

[SWS_UCM_01109] Vehicle State Manager shall provide to UCM Master a safety state

[SWS_UCM_01110] UCM Master shall be able to set the safety policy to be computed by Vehicle
State Manager

[SWS_UCM_01111] Exclusive use of Vehicle State Manager

[SWS_UCM_01112] Unsupported safety policy by Vehicle State Manager

[SWS_UCM_01113] Switching vehicle into update mode

[SWS_UCM_01114] SafetyPolicyType table

[SWS_UCM_01115] VehicleStateManagerErrorDomain

[SWS_UCM_01116] VehicleDriverApplicationErrorDomain

[SWS_UCM_01177] CampaignStateType table

[SWS_UCM_01201] Sequential orchestration of campaigns

[SWS_UCM_01203] CampaignState field

[SWS_UCM_01204] Initial state
[SWS_UCM_01205] UCM Master internal state persistency

[SWS_UCM_01206] Trigger on kTransferApproving state

[SWS_UCM_01207] Trigger on kTransferring state

[SWS_UCM_01208] Trigger on kProcessApproving state

[SWS_UCM_01209] Trigger on kProcessing state
5

119 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Number Heading

[SWS_UCM_01211] Trigger on kActivateApproving state

[SWS_UCM_01212] Trigger on kActivating state

[SWS_UCM_01213] Trigger on kVehicleChecking state

[SWS_UCM_01214] Final action on kVehicleChecking state

[SWS_UCM_01215] Trigger on kRollingBack state

[SWS_UCM_01216] Final action on kRollingBack state

[SWS_UCM_01217] Monitoring of UCM subordinates

[SWS_UCM_01218] Transition from kIdle state to kSyncing state

[SWS_UCM_01219] Transition from kSyncing state to kIdle state

[SWS_UCM_01220] Transition from kIdle state to kVehiclePackageTransferring state

[SWS_UCM_01221] Transition from kVehiclePackageTransferring state to kIdle state

[SWS_UCM_01222] Transition from kVehiclePackageTransferring state to kTransfer-
ring state

[SWS_UCM_01223] Transition from kVehiclePackageTransferring state to kTransferAp-
proving state

[SWS_UCM_01224] Transition from kTransferApproving state to kTransferring state

[SWS_UCM_01225] Transition from kTransferApproving state to kIdle state

[SWS_UCM_01226] Transition from kTransferring state to kTransferApproving state

[SWS_UCM_01227] Transition from kTransferring state to kIdle state

[SWS_UCM_01228] Transition from kTransferring state to kProcessing state

[SWS_UCM_01229] SafetyPolicy while processing stream

[SWS_UCM_01230] Transition from kTransferring state to kProcessApproving state

[SWS_UCM_01231] Transition from kProcessApproving state to kProcessing state

[SWS_UCM_01232] Transition from kProcessApproving state to kIdle state

[SWS_UCM_01233] Transition from kProcessing state to kProcessApproving state

[SWS_UCM_01234] Transition from kProcessing state to kActivating state

[SWS_UCM_01235] Transition from kProcessing state to kActivateApproving state

[SWS_UCM_01236] Transition from kProcessing state to kIdle state

[SWS_UCM_01237] Transition from kActivateApproving state to kActivating state

[SWS_UCM_01238] Transition from kActivateApproving state to kIdle state

[SWS_UCM_01239] Transition from kActivating state to kRollingBack state

[SWS_UCM_01240] Transition from kActivating state to kVehicleChecking state

[SWS_UCM_01241] Transition from kVehicleChecking state to kRollingBack state

[SWS_UCM_01242] Transition from kVehicleChecking state to kIdle state

[SWS_UCM_01243] Transition from kRollingBack state to kIdle state

[SWS_UCM_01244] Cancellation of an update campaign shall be possible

[SWS_UCM_01245] Cancellation during activation shall be possible

[SWS_UCM_01246] Unreachable UCM during update campaign
5

120 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

4
Number Heading

[SWS_UCM_01247] Method to read History Report

[SWS_UCM_01248] Content of History Report

[SWS_UCM_01301] Vehicle Package authentication

[SWS_UCM_01302] Vehicle Package authentication failure

[SWS_UCM_01303] Dependencies between Software Packages

[SWS_UCM_01304] Confidential information protection

[SWS_UCM_CON-
STR_00001]

Table F.1: Added Traceables in R19-11

F.1.2 Changed Traceables in R19-11

Number Heading

[SWS_UCM_00003] Cancelling the package processing

[SWS_UCM_00017] Sequential Software Package Processing

[SWS_UCM_00018] Providing Progress Information

[SWS_UCM_00027] Delta Package activation

[SWS_UCM_00071] SwNameType table

[SWS_UCM_00081] Processing state of Package Management

[SWS_UCM_00082] Exit from Processing state of Package Management

[SWS_UCM_00102] Update state

[SWS_UCM_00103] Update to older Software Cluster version than currently present

[SWS_UCM_00104] Consistency Check of processed Package

[SWS_UCM_00111] Entering the Rolled-back state

[SWS_UCM_00112] Software Cluster and version
[SWS_UCM_00126] Entering the RollingBack state after a Rollback call

[SWS_UCM_00130] Software Cluster and version error
[SWS_UCM_00146] Entering the Cleaning-up state after a Finish call

[SWS_UCM_00149] Return to the Idle state from Processing state

[SWS_UCM_00151] Entering the Ready state of Package Management after a Cancel call

[SWS_UCM_00155] Entering the RollingBack state after a failure in the Verifying state

Table F.2: Changed Traceables in R19-11

121 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP R19-11

F.1.3 Deleted Traceables in R19-11

Number Heading

[SWS_UCM_00012] Log message retrieving

[SWS_UCM_00114] ActivateOptionType table

[SWS_UCM_00144] Log error

Table F.3: Deleted Traceables in R19-11

122 of 122
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification
	3.3 Further applicable specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other functional clusters
	5.1 Interfaces to Adaptive State Management
	5.2 UCM service over ara::com
	5.3 Interfaces to Adaptive Crypto Interface
	5.4 Interfaces to Identity and Access Management

	6 Requirements Tracing
	7 Functional specification
	7.1 UCM
	7.1.1 Technical Overview
	7.1.1.1 Software Package Management
	7.1.1.2 Runtime dependencies
	7.1.1.3 Update scope and state management

	7.1.2 Transferring Software Packages
	7.1.3 Processing of Software Packages from a stream
	7.1.4 Processing Software Packages
	7.1.5 Status Reporting
	7.1.6 Activation and Rollback
	7.1.6.1 Activation
	7.1.6.2 Rollback
	7.1.6.3 Boot options
	7.1.6.4 Finishing activation

	7.1.7 Robustness against reset
	7.1.7.1 Boot monitoring

	7.1.8 Logging and history
	7.1.9 Version Reporting
	7.1.10 SoftwareCluster lifecycle
	7.1.11 Securing Software Updates
	7.1.12 Functional cluster lifecycle
	7.1.13 Shutdown behaviour

	7.2 UCM Master
	7.2.1 Technical Overview
	7.2.2 UCM Master general behaviour
	7.2.3 UCM identification
	7.2.4 UCM Master Software Packages transfer or streaming
	7.2.5 Adaptive Applications interacting with UCM Master
	7.2.5.1 OTA Client
	7.2.5.2 Vehicle Driver Interface
	7.2.5.3 Vehicle State Manager

	7.2.6 Status reporting
	7.2.6.1 States
	7.2.6.2 States Transitions

	7.2.7 Campaign Reporting
	7.2.8 Content of Vehicle Package
	7.2.9 Vehicle update security and confidentiality

	8 API specification
	9 Service Interfaces
	9.1 Type definitions
	9.1.1 UCMIdentifierType
	9.1.2 TransferIdType
	9.1.3 SwNameType
	9.1.4 SwNameVectorType
	9.1.5 StrongRevisionLabelString
	9.1.6 SwNameVersionType
	9.1.7 SwNameVersionVectorType
	9.1.8 ByteVectorType
	9.1.9 SwPackageStateType
	9.1.10 SwPackageInfoType
	9.1.11 SwPackageInfoVectorType
	9.1.12 SwClusterStateType
	9.1.13 SwClusterInfoType
	9.1.14 SwClusterInfoVectorType
	9.1.15 LogLevelType
	9.1.16 LogEntryType
	9.1.17 LogVectorType
	9.1.18 PackageManagerStatusType
	9.1.19 ActionType
	9.1.20 ResultType
	9.1.21 GetHistoryType
	9.1.22 GetHistoryVectorType
	9.1.23 CampaignStateType
	9.1.24 SafetyPolicyType

	9.2 Service Interfaces
	9.2.1 Provided Service Interfaces
	9.2.1.1 Package Management
	9.2.1.2 Vehicle Package Management

	9.2.2 Required Service Interfaces
	9.2.2.1 Vehicle Driver Application
	9.2.2.2 Vehicle State Manager

	9.3 Application Errors
	9.3.1 Application Error Domain
	9.3.1.1 UCMErrorDomain
	9.3.1.2 VehicleStateManagerErrorDomain
	9.3.1.3 VehicleDriverApplicationErrorDomain

	10 Sequence diagrams
	10.1 Update process
	10.2 Data transmission
	10.3 Package processing
	10.4 Activation
	10.5 UCM Master simplified vehicle update

	A Not applicable requirements
	B Mentioned Class Tables
	C Interfaces to other Functional Clusters (informative)
	C.1 Overview
	C.2 Interfaces Tables
	C.2.1 UCM update notification

	D Packages distribution within vehicle detailed sequence examples
	D.1 Collect information of present Software Clusters in vehicle
	D.2 Action computation
	D.2.1 Pull package from Backend into vehicle
	D.2.2 Push package from backend into vehicle

	D.3 Packages transfer from backend into targeted UCM
	D.4 Package processing
	D.5 Package activation
	D.6 Package rollback
	D.7 Campaign reporting

	E Security Analysis of Installation and Update
	E.1 Securing Software Package
	E.2 Securing Calls to UCM
	E.3 Suppressing Call to UCM
	E.4 Resource Starvation
	E.5 Zombie Sessions

	F History of Specification Items
	F.1 Specification Item History of this document compared to AUTOSAR R19-03.
	F.1.1 Added Traceables in R19-11
	F.1.2 Changed Traceables in R19-11
	F.1.3 Deleted Traceables in R19-11

