
Specification of Execution Management
AUTOSAR AP R19-11

Document Title Specification of Execution
Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 721

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R19-11

Document Change History
Date Release Changed by Description

2019-11-28 R19-11 AUTOSAR
Release

• Further refinement of State
Management API and semantics
• Introduced support for trusted

platform
• Added support for non-reporting

Processes
• Execution Management API uses

Core types
• Changed Document Status from

Final to published

2019-03-29 19-03
AUTOSAR
Release
Management

• Refinement of State Management
semantics
• Document structure modified to

reflect current template

2018-10-31 18-10
AUTOSAR
Release
Management

• Refinement of Deterministic
Execution
• Updated Process lifecycle to clarify

Process and Execution States
• Updated Application Recovery

Actions

2018-03-29 18-03
AUTOSAR
Release
Management

• Deterministic Execution
• Resource Limitation
• State Management
• Fault Tolerance elaboration

1 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

2017-10-27 17-10
AUTOSAR
Release
Management

• State Management elaboration,
introduction of Function Groups
• Recovery actions for Platform Health

Management
• Resource limitation and deterministic

execution

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

2 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Requirement Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as follows, based on [1].

Note that the requirement level of the document in which they are used modifies the
force of these words.

• MUST: This word, or the adjective "LEGALLY REQUIRED", means that the defi-
nition is an absolute requirement of the specification due to legal issues.

• MUST NOT: This phrase, or the phrase "MUST NOT", means that the definition
is an absolute prohibition of the specification due to legal issues.

• SHALL: This phrase, or the adjective "REQUIRED", means that the definition is
an absolute requirement of the specification.

• SHALL NOT: This phrase means that the definition is an absolute prohibition of
the specification.

• SHOULD: This word, or the adjective "RECOMMENDED", means that there may
exist valid reasons in particular circumstances to ignore a particular item, but the
full implications must be understood and carefully weighed before choosing a
different course.

• SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that
there may exist valid reasons in particular circumstances when the particular be-
havior is acceptable or even useful, but the full implications should be understood

3 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

and the case carefully weighed before implementing any behavior described with
this label.

• MAY: This word, or the adjective "OPTIONAL", means that an item is truly op-
tional. One vendor may choose to include the item because a particular market-
place requires it or because the vendor feels that it enhances the product while
another vendor may omit the same item.

An implementation, which does not include a particular option, SHALL be prepared
to interoperate with another implementation, which does include the option, though
perhaps with reduced functionality. In the same vein an implementation, which does
include a particular option, SHALL be prepared to interoperate with another implemen-
tation, which does not include the option (except, of course, for the feature the option
provides.)

4 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Table of Contents

1 Introduction and functional overview 10

1.1 What is Execution Management? . 10
1.2 Interaction with AUTOSAR Runtime for Adaptive 10

2 Acronyms and abbreviations 12

3 Related documentation 15

3.1 Input documents & related standards and norms 15
3.2 Further applicable specification . 16

4 Constraints and assumptions 17

4.1 Known Limitations . 17

5 Dependencies to other Functional Clusters 18

5.1 Protocol layer dependencies . 18

6 Requirements traceability 19

6.1 Not applicable requirements . 21

7 Functional specification 22

7.1 Functional Cluster Lifecyle . 23
7.1.1 Startup . 23
7.1.2 Shutdown . 23
7.1.3 Restart . 23

7.2 Technical Overview . 23
7.2.1 Application . 23
7.2.2 Adaptive Application . 23
7.2.3 Executable . 24
7.2.4 Process . 25
7.2.5 Execution Manifest . 26
7.2.6 Machine Manifest . 26
7.2.7 Manifest Format . 27

7.3 Execution Management Responsibilities 28
7.4 Process Lifecycle Management . 29

7.4.1 Execution State . 29
7.4.2 Process States . 31
7.4.3 Startup and Termination . 32

7.4.3.1 Ordering . 32
7.4.3.2 Arguments . 33
7.4.3.3 Environment Variables 35

7.4.4 Startup Sequence . 35
7.4.4.1 Execution Dependency 36

7.5 State Management . 40
7.5.1 Overview . 40
7.5.2 Machine State . 40

5 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.5.2.1 Startup . 42
7.5.2.2 Shutdown . 43
7.5.2.3 Restart . 44

7.5.3 Function Group State . 44
7.5.4 State Interaction . 47
7.5.5 State Transition . 48

7.6 Application Recovery Actions . 54
7.6.1 Overview . 54
7.6.2 Process State Information 55

7.6.2.1 Get Process States Information 55
7.6.2.2 Process State Transition Event 55

7.6.3 Recovery Actions . 55
7.6.3.1 Process Restart . 55
7.6.3.2 Enter Unrecoverable State 55

7.7 Deterministic Execution . 57
7.7.1 Determinism . 57

7.7.1.1 Time Determinism 58
7.7.1.2 Data Determinism 58
7.7.1.3 Full Determinism . 58

7.7.2 Redundant Deterministic Execution 59
7.7.3 Cyclic Deterministic Execution 62

7.7.3.1 Control of Cyclic Execution 63
7.7.3.2 Worker Pool . 65
7.7.3.3 Random Numbers 67
7.7.3.4 Time Stamps . 67
7.7.3.5 Real-Time Resources 68

7.8 Resource Limitation . 72
7.8.1 Resource Configuration . 72
7.8.2 Resource Monitoring . 74
7.8.3 Application-level Resource configuration 75

7.8.3.1 CPU Usage . 75
7.8.3.2 Core Affinity . 75
7.8.3.3 Scheduling . 76
7.8.3.4 Memory Budget and Monitoring 77
7.8.3.5 Working Folder . 78

7.9 Fault Tolerance . 79
7.9.1 Introduction . 79
7.9.2 Scope . 79
7.9.3 Threat Model . 79

7.10 Security . 81
7.10.1 Trusted Platform . 81

7.10.1.1 Handling of failed authenticity checks 83

8 API specification 85

8.1 Type Definitions . 85
8.1.1 ExecutionState . 85

6 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

8.1.2 ActivationReturnType . 85
8.1.3 ActivationTimeStampReturnType 86

8.2 Class Definitions . 86
8.2.1 ExecutionClient class . 86

8.2.1.1 ExecutionClient::ExecutionClient 87
8.2.1.2 ExecutionClient::~ExecutionClient 87
8.2.1.3 ExecutionClient::ReportExecutionState 87

8.2.2 DeterministicClient class . 88
8.2.2.1 DeterministicClient::DeterministicClient 88
8.2.2.2 DeterministicClient::~DeterministicClient 89
8.2.2.3 DeterministicClient::WaitForNextActivation 89
8.2.2.4 DeterministicClient::RunWorkerPool 89
8.2.2.5 DeterministicClient::GetRandom 90
8.2.2.6 DeterministicClient::GetActivationTime 90
8.2.2.7 DeterministicClient::GetNextActivationTime 91

8.2.3 FunctionGroup class . 91
8.2.3.1 FunctionGroup::Preconstruct 92
8.2.3.2 FunctionGroup::FunctionGroup 92
8.2.3.3 FunctionGroup::~FunctionGroup 93
8.2.3.4 FunctionGroup::operator== 93
8.2.3.5 FunctionGroup::operator!= 94

8.2.4 FunctionGroupState class . 94
8.2.4.1 FunctionGroupState::Preconstruct 95
8.2.4.2 FunctionGroupState::FunctionGroupState 95
8.2.4.3 FunctionGroupState::~FunctionGroupState 96
8.2.4.4 FunctionGroupState::operator== 96
8.2.4.5 FunctionGroupState::operator!= 96

8.2.5 StateClient class . 97
8.2.5.1 StateClient::StateClient 97
8.2.5.2 StateClient::~StateClient 98
8.2.5.3 StateClient::SetState 98
8.2.5.4 StateClient::GetInitialMachineStateTransitionResult . 99

8.3 Errors . 101
8.3.1 Execution Management error codes 101
8.3.2 ExecException type . 101

8.3.2.1 ExecException::ExecException 102
8.3.3 GetExecErrorDomain function 102
8.3.4 MakeErrorCode function . 102
8.3.5 ExecErrorDomain type . 103

8.3.5.1 ExecErrorDomain::ExecErrorDomain 103
8.3.5.2 ExecErrorDomain::Name 104
8.3.5.3 ExecErrorDomain::Message 104
8.3.5.4 ExecErrorDomain::ThrowAsException 104

9 Service Interfaces 106

A Mentioned Manifest Elements 107

7 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

B Interfaces to other Functional Clusters (informative) 114

B.1 Overview . 114
B.2 Interface Tables . 115

B.2.1 Get Process States Information 115
B.2.2 Enter Unrecoverable State Request 116
B.2.3 Process Restart Request . 116

C History of Constraints and Specification Items 117

C.1 Constraint and Specification Item History of this document according
to AUTOSAR Release 17-10 . 117

C.1.1 Added Traceables in 17-10 117
C.1.2 Changed Traceables in 17-10 118
C.1.3 Deleted Traceables in 17-10 120
C.1.4 Added Constraints in 17-10 120
C.1.5 Changed Constraints in 17-10 120
C.1.6 Deleted Constraints in 17-10 120

C.2 Constraint and Specification Item History of this document according
to AUTOSAR Release 18-03 . 120

C.2.1 Added Traceables in 18-03 120
C.2.2 Changed Traceables in 18-03 122
C.2.3 Deleted Traceables in 18-03 123
C.2.4 Added Constraints in 18-03 124
C.2.5 Changed Constraints in 18-03 124
C.2.6 Deleted Constraints in 18-03 124

C.3 Constraint and Specification Item History of this document according
to AUTOSAR Release 18-10 . 124

C.3.1 Added Traceables in 18-10 124
C.3.2 Changed Traceables in 18-10 125
C.3.3 Deleted Traceables in 18-10 126
C.3.4 Added Constraints in 18-10 126
C.3.5 Changed Constraints in 18-10 126
C.3.6 Deleted Constraints in 18-10 126

C.4 Constraint and Specification Item History of this document according
to AUTOSAR Release 19-03 . 127

C.4.1 Added Traceables in R19-03 127
C.4.2 Changed Traceables in R19-03 127
C.4.3 Deleted Traceables in R19-03 128
C.4.4 Added Constraints in R19-03 128
C.4.5 Changed Constraints in R19-03 128
C.4.6 Deleted Constraints in R19-03 128

C.5 Constraint and Specification Item History of this document according
to AUTOSAR Release 19-11 . 129

C.5.1 Added Traceables in R19-11 129
C.5.2 Changed Traceables in R19-11 130
C.5.3 Deleted Traceables in R19-11 133
C.5.4 Added Constraints in R19-11 133

8 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

C.5.5 Changed Constraints in R19-11 133
C.5.6 Deleted Constraints in R19-11 133

9 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

1 Introduction and functional overview

This document is the software specification of the Execution Management func-
tional cluster within the Adaptive Platform Foundation.

Execution Management is responsible for the management of all aspects of sys-
tem execution including platform initialization and the startup / shutdown of Appli-
cations. Execution Management works with, and configures, the Operating
System to perform run-time scheduling of Applications.

Chapter 7 describes how Execution Management concepts are realized within the
AUTOSAR Adaptive Platform.

Chapter 8 documents the Execution Management Application Programming Inter-
face (API). Inter-functional cluster (IFC) interfaces are described in Appendix B.

1.1 What is Execution Management?

Execution Management is the functional cluster within the Adaptive Platform
Foundation that is responsible for platform initialization and the startup and shutdown
of Adaptive Applications. It performs these tasks using information contained
within one or more Manifest files such as when and how Executables should be
started.

The Execution Management functional cluster is part of the AUTOSAR Adaptive
Platform. However, the AUTOSAR Adaptive Platform is usually not exclusively
used within a single AUTOSAR System as the vehicle is also equipped with a number
of ECUs developed on the AUTOSAR Classic Platform. The System design for the
entire vehicle will therefore cover both AUTOSAR Classic Platform ECUs as well as
AUTOSAR Adaptive Platform Machines.

1.2 Interaction with AUTOSAR Runtime for Adaptive

The set of programming interfaces to the Adaptive Applications is called
AUTOSAR Runtime for Adaptive (ARA). The interfaces that constitute ARA include
those of Execution Management specified in Chapter 8. Note that interfaces which
are exclusively accessed within the AUTOSAR Adaptive Platform are defined as
inter-functional cluster (IFC) interfaces (see Appendix B), which are not part of ARA.

Execution Management, in common with other Applications is assumed to be a
process executed on a POSIX compliant operating system. Execution Management
is responsible for initiating execution of the processes in all the Functional Clusters,
Adaptive AUTOSAR Services, and user-level Applications. The launching order
is derived by Execution Management according to the specification defined in this
document to ensure proper startup of the AUTOSAR Adaptive Platform.

10 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

The Adaptive AUTOSAR Services are provided via mechanisms provided by the
Communication Management functional cluster [2] of the Adaptive Platform
Foundation. In order to use the Adaptive AUTOSAR Services, the functional clusters
in the Adaptive Platform Foundation must be properly initialized beforehand.
Please refer to the respective specifications regarding more information on Communi-
cation Management.

11 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

2 Acronyms and abbreviations

All technical terms used throughout this document – except the ones listed here – can
be found in the official [3] AUTOSAR Glossary or [4] TPS Manifest Specification.

Certain requirements necessitate the specification of mandatory whitespace. This is
indicated by ‘ ’ in the requirement text.

Term Description

Application

An implementation that resolves a set of coherent functional re-
quirements and is the result of functional development. An Ap-
plication is the unit of delivery for Machine specific configu-
ration and integration.

Executable

Part of an Application. It consists of executable code (with
exactly one entry point) created at integation time that can be
deployed and installed on a Machine. An Application may
consist of one or more Executables, each of which can be de-
ployed to different Machines.

Process

A Process is an instance of an Executable to be executed
on a Machine and has a 1:1 association with the ARXML/Meta-
Model element with the same name. This document also uses
the term process (without a capital "P") to refer to the OS con-
cept of a running process.
Attention: Process != process. Hence each Process has at
some time a related process but a process may not always have
a related Process.

Reporting Process

A type of Process with an associated Executable where re-
portingBehavior is omitted ([TPS_MANI_01279]) or set to
reportsExecutionState. Such a Process is expected to
report its Execution State to Execution Management.

Non-reporting Process

A type of Process with an associated Executable where re-
portingBehavior set to doesNotReportExecutionState.
Such a Process is not expected to report its Execution State to
Execution Management.

Self-terminating Process
A type of Process that self initiate termination procedure, please
note that for a standard Process this procedure is initiated by
Execution Management.

Execution Dependency Dependencies between Executable instances can be config-
ured to define a sequence for starting and terminating them.

Execution Management
The element of the AUTOSAR Adaptive Platform responsi-
ble for the ordered startup and shutdown of the AUTOSAR Adap-
tive Platform and the Applications.

State Management
The element of AUTOSAR Adaptive Platform defining
modes of operation. It allows flexible definition of functions which
are active on the platform at any given time.

12 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Function Group

A Function Group is a set of coherent Processes, which
need to be controlled consistently. Depending on the state of
the Function Group, Processes are started or terminated.
Processes can belong to more than one Function Group
State (but at exactly one Function Group).
"MachineState" is a Function Group with a predefined
name, which is mainly used to control Machine lifecycle and
Processes of platform level Applications. Other Function
Groups are sort of general purpose tools used (for example) to
control Processes of user level Applications.

Function Group State

The state of a Function Group (except "MachineState"). It
defines a set of active Applications for any certain situation.
The set of Function Groups and their states is machine spe-
cific and is deployed as part of the Machine Manifest.

Machine State The state of Function Group "MachineState" with some
predefined states (Startup/Shutdown/Restart).

Time Determinism The results of a calculation are guaranteed to be available before
a given deadline.

Data Determinism The results of a calculation only depend on the input data and
are reproducible, assuming a given initial internal state.

Full Determinism Combination of Time and Data Determinism.

Communication Management A Functional Cluster within the Adaptive Platform
Foundation

Execution Manifest

Manifest file to configure execution of an Adaptive Appli-
cation. An Execution Manifest is created at integration
time and deployed onto a Machine together with the Exe-
cutable to which it is attached. It supports the integration of the
Executable code and describes the configuration properties
(startup parameters, resource group assignment etc.) of each
Process, i.e. started instance of that Executable.

Machine Manifest
Manifest file to configure a Machine. The Machine Man-
ifest holds all configuration information which cannot be as-
signed to a specific Executable or Process.

Operating System Software responsible for managing Processes on a Machine
and for providing an interface to hardware resources.

ResourceGroup Configuration element to enable restrictions on resources uses
by Adaptive Applications running in the group.

ExecutionClient Adaptive Application interface to Execution Manage-
ment.

DeterministicClient
Adaptive Application interface to Execution Manage-
ment to support control of the process-internal cycle, a determin-
istic worker pool, activation time stamps and random numbers.

StateClient
State Management interface to Execution Management to
support Function Group State and Machine State man-
agement.

Platform Health Management A Functional Cluster within the Adaptive Platform
Foundation

Recovery Action Actions defined by the integrator to control Adaptive Appli-
cation error recovery.

Process State Lifecycle state of a Process

Service Instance Manifest Manifest file to configure Service usage of an Adaptive
Application.

13 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Trusted Platform

An execution platform supporting a continuous chain of trust from
boot through to application supporting authentication (that all
code executed is from the claimed source) and integrity valida-
tion (that prevents tampered code/data from being executed).

Table 2.1: Technical Terms

The following technical terms used throughout this document are defined in the official
[3] AUTOSAR Glossary or [4] TPS Manifest Specification – they are repeated here for
tracing purposes.

Term Description

Adaptive Application see [3] AUTOSAR Glossary
Application see [3] AUTOSAR Glossary
AUTOSAR Adaptive Platform see [3] AUTOSAR Glossary
Adaptive Platform Foundation see [3] AUTOSAR Glossary
Adaptive Platform Services see [3] AUTOSAR Glossary
Manifest see [3] AUTOSAR Glossary
Executable see [3] AUTOSAR Glossary
Functional Cluster see [3] AUTOSAR Glossary
Machine see [3] AUTOSAR Glossary
Service see [3] AUTOSAR Glossary
Service Interface see [3] AUTOSAR Glossary
Service Discovery see [3] AUTOSAR Glossary

Table 2.2: Glossary-defined Technical Terms

14 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

3 Related documentation

3.1 Input documents & related standards and norms

The main documents that serve as input for the specification of the Execution Man-
agement are:

[1] Key words for use in RFCs to Indicate Requirement Levels
http://www.ietf.org/rfc/rfc2119.txt

[2] Specification of Communication Management
AUTOSAR_SWS_CommunicationManagement

[3] Glossary
AUTOSAR_TR_Glossary

[4] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[5] General Specification of Adaptive Platform
AUTOSAR_SWS_General

[6] Requirements on Execution Management
AUTOSAR_RS_ExecutionManagement

[7] Specification of Operating System Interface
AUTOSAR_SWS_OperatingSystemInterface

[8] Specification of Persistency
AUTOSAR_SWS_Persistency

[9] Specification of Platform Health Management for Adaptive Platform
AUTOSAR_SWS_PlatformHealthManagement

[10] Methodology for Adaptive Platform
AUTOSAR_TR_AdaptiveMethodology

[11] Specification of State Management
AUTOSAR_SWS_StateManagement

[12] Guidelines for using Adaptive Platform interfaces
AUTOSAR_EXP_AdaptivePlatformInterfacesGuidelines

[13] Standard for Information Technology–Portable Operating System Interface
(POSIX(R)) Base Specifications, Issue 7
http://pubs.opengroup.org/onlinepubs/9699919799/

[14] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, ’Basic
Concepts and Taxonomy of Dependable and Secure Computing’, IEEE Transac-
tions on Dependable and Secure Computing, Vol. 1, No. 1, January-March 2004

15 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

http://pubs.opengroup.org/onlinepubs/9699919799/

Specification of Execution Management
AUTOSAR AP R19-11

[15] Explanation of Adaptive Platform Design
AUTOSAR_EXP_PlatformDesign

3.2 Further applicable specification

AUTOSAR provides a general specification [5] which is also applicable for Execution
Management. The specification SWS General shall be considered as additional and
required specification for implementation of Execution Management.

16 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4 Constraints and assumptions

4.1 Known Limitations

This chapter lists known limitations of Execution Management and their relation to
this release of the AUTOSAR Adaptive Platform with the intent to provide an indi-
cation how Execution Management within the context of the AUTOSAR Adaptive
Platform will evolve in future releases.

The following functionality is mentioned within this document but is not fully specified
in this release:

Section 7.8 Resource Limitation and Section 7.9 Fault Tolerance – these sec-
tions have been expanded in this release but are not complete. In particular
the contents will be expanded with more properties and formal requirements in
the next release.

Section 6.1 details requirements from Execution Management Requirement Spec-
ification [6] that are not elaborated within this specification. The presence of these
requirements in this document ensures that the requirement tracing is complete and
also provides an indication of how Execution Management will evolve in future re-
leases of the AUTOSAR Adaptive Platform.

The functionality described above is subject to modification and will be considered for
inclusion in a future release of this document.

17 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

5 Dependencies to other Functional Clusters

Execution Management is dependent on the Operating System Interface [7]. The
OSI is used to control specific aspects of Application execution, for example, to set
scheduling parameters or to execute an Application.

Execution Management may dependent on the Operating System beyond the Op-
erating System Interface [7], e.g to control the core affinity of processes (refer 7.8.3.2).

Execution Management is dependent on the Persistency [8] functional cluster. Per-
sistency is used to access persistent storage.

Execution Management is dependent on the Platform Health Management [9] func-
tional cluster. The Platform Health Management Interfaces are used by Execution
Management for notifying a state change of a Process.

5.1 Protocol layer dependencies

None.

18 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

6 Requirements traceability

The following tables reference the requirements specified in [6] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_AP_00115] Namespaces. [SWS_EM_NA]
[RS_AP_00120] Method and Function names. [SWS_EM_02283] [SWS_EM_02286]

[SWS_EM_02287] [SWS_EM_02288]
[SWS_EM_02289] [SWS_EM_02290]
[SWS_EM_02291]

[RS_AP_00121] Parameter names. [SWS_EM_02283] [SWS_EM_02288]
[SWS_EM_02289] [SWS_EM_02291]

[RS_AP_00122] Type names. [SWS_EM_02281] [SWS_EM_02282]
[SWS_EM_02284]

[RS_AP_00124] Variable names. [SWS_EM_NA]
[RS_AP_00127] Usage of ara::core types. [SWS_EM_02281] [SWS_EM_02282]

[SWS_EM_02284]
[RS_AP_00128] Error reporting. [SWS_EM_02292]
[RS_AP_00130] AUTOSAR Adaptive Platform

shall represent a rich and
modern programming
environment.

[SWS_EM_02246] [SWS_EM_02247]
[SWS_EM_02248] [SWS_EM_02249]
[SWS_EM_02281] [SWS_EM_02282]
[SWS_EM_02283] [SWS_EM_02284]
[SWS_EM_02286] [SWS_EM_02287]
[SWS_EM_02288] [SWS_EM_02289]
[SWS_EM_02290] [SWS_EM_02291]

[RS_AP_00132] noexcept behavior of API
functions

[SWS_EM_02283] [SWS_EM_02286]
[SWS_EM_02287] [SWS_EM_02288]
[SWS_EM_02290] [SWS_EM_02291]
[SWS_EM_NA]

[RS_EM_00002] Execution Management shall
set-up one process for the
execution of each Process.

[SWS_EM_01014] [SWS_EM_01015]
[SWS_EM_01041] [SWS_EM_01042]
[SWS_EM_01043]

[RS_EM_00005] Execution Management shall
support the configuration of OS
resource budgets for Process
and groups of Processes.

[SWS_EM_02102] [SWS_EM_02103]
[SWS_EM_02106] [SWS_EM_02107]
[SWS_EM_02108] [SWS_EM_02109]

[RS_EM_00008] Execution Management shall
support the binding of all threads
of a given Process to a specified
set of processor cores.

[SWS_EM_02104]

[RS_EM_00009] Execution Management shall
ensure it is the sole entity
starting Processes.

[SWS_EM_01030] [SWS_EM_01033]

[RS_EM_00010] Execution Management shall
support multiple instances of
Executables.

[SWS_EM_01012] [SWS_EM_01072]
[SWS_EM_01073] [SWS_EM_01074]
[SWS_EM_01075] [SWS_EM_01076]
[SWS_EM_01077] [SWS_EM_02246]
[SWS_EM_02247] [SWS_EM_02248]
[SWS_EM_02249]

[RS_EM_00011] Execution Management shall
support self-initiated graceful
shutdown of Processes.

[SWS_EM_01404] [SWS_EM_01405]

19 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Requirement Description Satisfied by
[RS_EM_00013] Execution Management shall

support configurable recovery
actions.

[SWS_EM_01016] [SWS_EM_01062]
[SWS_EM_01063] [SWS_EM_01064]
[SWS_EM_02076] [SWS_EM_02077]
[SWS_EM_02257] [SWS_EM_02261]
[SWS_EM_02262]

[RS_EM_00014] Execution Management shall
support a Trusted Platform.

[SWS_EM_02299] [SWS_EM_02300]
[SWS_EM_02301] [SWS_EM_02302]
[SWS_EM_02303] [SWS_EM_02304]
[SWS_EM_02305] [SWS_EM_02306]
[SWS_EM_02307] [SWS_EM_02308]
[SWS_EM_02309] [SWS_EM_NA]

[RS_EM_00050] Execution Management shall
perform Machine-wide
coordination of Processes.

[SWS_EM_NA]

[RS_EM_00051] Execution Management shall
provide APIs to the Process for
configuring external trigger
conditions for its activities.

[SWS_EM_NA]

[RS_EM_00052] Execution Management shall
provide APIs to the Process for
configuring cyclic triggering of its
activities.

[SWS_EM_01301] [SWS_EM_01302]
[SWS_EM_01303] [SWS_EM_01304]
[SWS_EM_01351] [SWS_EM_01352]
[SWS_EM_01353] [SWS_EM_02201]
[SWS_EM_02210] [SWS_EM_02211]
[SWS_EM_02215] [SWS_EM_02216]

[RS_EM_00053] Execution Management shall
provide APIs to the Process to
support deterministic redundant
execution of Processes.

[SWS_EM_01305] [SWS_EM_01306]
[SWS_EM_01308] [SWS_EM_01310]
[SWS_EM_01311] [SWS_EM_01312]
[SWS_EM_01313] [SWS_EM_02202]
[SWS_EM_02211] [SWS_EM_02215]
[SWS_EM_02220] [SWS_EM_02225]
[SWS_EM_02230] [SWS_EM_02235]

[RS_EM_00100] Execution Management shall
support the ordered startup and
shutdown of Processes.

[SWS_EM_01000] [SWS_EM_01001]
[SWS_EM_01050] [SWS_EM_01051]

[RS_EM_00101] Execution Management shall
support State Management
functionality.

[SWS_EM_01013] [SWS_EM_01023]
[SWS_EM_01024] [SWS_EM_01025]
[SWS_EM_01032] [SWS_EM_01033]
[SWS_EM_01060] [SWS_EM_01065]
[SWS_EM_01066] [SWS_EM_01067]
[SWS_EM_01107] [SWS_EM_01109]
[SWS_EM_01110] [SWS_EM_02241]
[SWS_EM_02242] [SWS_EM_02245]
[SWS_EM_02250] [SWS_EM_02251]
[SWS_EM_02253] [SWS_EM_02254]
[SWS_EM_02255] [SWS_EM_02258]
[SWS_EM_02259] [SWS_EM_02260]

20 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Requirement Description Satisfied by
[SWS_EM_02263] [SWS_EM_02264]
[SWS_EM_02265] [SWS_EM_02266]
[SWS_EM_02267] [SWS_EM_02268]
[SWS_EM_02269] [SWS_EM_02270]
[SWS_EM_02271] [SWS_EM_02272]
[SWS_EM_02273] [SWS_EM_02274]
[SWS_EM_02275] [SWS_EM_02276]
[SWS_EM_02277] [SWS_EM_02278]
[SWS_EM_02279] [SWS_EM_02297]
[SWS_EM_02298]

[RS_EM_00103] Execution Management shall
support Process lifecycle
management.

[SWS_EM_01002] [SWS_EM_01003]
[SWS_EM_01004] [SWS_EM_01006]
[SWS_EM_01055] [SWS_EM_01071]
[SWS_EM_01401] [SWS_EM_01402]
[SWS_EM_01403] [SWS_EM_01404]
[SWS_EM_01405] [SWS_EM_02000]
[SWS_EM_02001] [SWS_EM_02002]
[SWS_EM_02003] [SWS_EM_02030]
[SWS_EM_02243] [SWS_EM_02244]

[RS_EM_00111] Execution Management shall
assist identification of
Processes during Machine
runtime.

[SWS_EM_NA]

[RS_EM_NA] [SWS_EM_NA]

6.1 Not applicable requirements

[SWS_EM_NA]{DRAFT} dThese requirements are not applicable as they are not
within the scope of this release.c(RS_EM_00014, RS_EM_00050, RS_EM_00051,
RS_AP_00115, RS_AP_00124, RS_AP_00132, RS_EM_00111, RS_EM_NA)

21 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7 Functional specification

Execution Management is a functional cluster contained in the Adaptive Plat-
form Foundation. Execution Management is responsible for all aspects of sys-
tem execution management including platform initialization and startup / shutdown of
Applications.

Execution Management works in conjunction with the Operating System. In partic-
ular, Execution Management is responsible for configuring the Operating System to
perform run-time scheduling and resource monitoring of Applications.

This chapter describes the functional behavior of Execution Management.

• Section 7.2 presents an introduction to key terms within Execution Manage-
ment focusing on the relationship between Application, Executable, and
Process.

• Section 7.3 covers the core Execution Management run-time responsibilities
including the start of Applications.

• Section 7.4 describes the lifecycle of Applications including Process state
transitions and startup / shutdown sequences.

• Section 7.5 covers several topics related to State Management within Execu-
tion Management including execution, Machine and Function Group state
management.

• Section 7.6 describes how Application error recovery actions are specified
during integration.

• Section 7.7 documents support provided by Execution Management Deter-
ministic execution such that given the same input and internal state, a calculation
will always produce the same output.

• Section 7.8 describes how Execution Management supports resource man-
agement including the limitation of usage of CPU and memory by an Applica-
tion.

• Section 7.9 provides an introduction to Fault Tolerance strategies in general. This
section will be expanded in a future release to describe how such strategies are
realized within Execution Management.

• Section 7.10 covers the topic of Trusted Platform, i.e. ensuring the integrity
and authenticity of Applications.

22 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.1 Functional Cluster Lifecyle

7.1.1 Startup

See Section 7.5.2.1.

7.1.2 Shutdown

See Section 7.5.2.2.

7.1.3 Restart

See Section 7.5.2.3.

7.2 Technical Overview

This chapter presents a short summary of the relationship between Application,
Executable, and Process.

7.2.1 Application

Applications are developed to resolve a set of coherent functional requirements.
An Application consists of executable software units, additional execution related
items (e.g. data or parameter files), and descriptive information used for integration
and execution (e.g. a formal model description based on the AUTOSAR meta model,
test cases, etc.).

Application Executables can be located on user level above the middleware or
can implement functional clusters of the AUTOSAR Adaptive Platform (located on
the level of the middleware), see [constr_1605] in [4].

In general, an Application, whether user-level or platform-level, is treated the same
by Execution Management and can use all mechanisms and APIs provided by the
Operating System and other functional clusters of the AUTOSAR Adaptive Plat-
form. However in doing so it potentially restricts its portability to other implementations
of the AUTOSAR Adaptive Platforms.

7.2.2 Adaptive Application

An Adaptive Application is a specific type of Application. The implementa-
tion of an Adaptive Application fully complies with the AUTOSAR specification,

23 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

i.e. it is restricted to the use of APIs standardized by AUTOSAR and needs to follow
specific coding guidelines to allow reallocation between different implementations of
the AUTOSAR Adaptive Platform.

Adaptive Applications are always located above the middleware. To allow porta-
bility and reuse, user level Applications should be Adaptive Applications
whenever technically possible.

Figure 7.1 shows the different types of Applications.

platform/
machine

user level

fully AUTOSAR
compliant

OS/hardware
specific

implementation

Adaptive
Application

non portable, e.g.
hardware-dependent

user Application

portable
Adaptive

Application

reusable
platform

Application

typical
functional cluster

Application

Figure 7.1: Types of Applications

An Adaptive Application is the result of functional development and is the unit of
delivery for Machine specific configuration and integration. Some contracts (e.g. con-
cerning used libraries) and Service Interfaces to interact with other Adaptive
Applications need to be agreed on beforehand. For details see [10].

7.2.3 Executable

An Executable is a software unit which is part of an Application. It has exactly
one entry point (main function) [SWS_OSI_01001]. An Application can be imple-
mented in one or more Executables [TPS_MANI_01010].

The lifecycle of Executables usually consists of:

Process Step Software Meta Information

Development
and Integration

Linked, configured and calibrated bi-
nary for deployment onto the target
Machine. The binary might contain
code which was generated at integra-
tion time.

Execution Manifest, see 7.2.5
and [4], and Service Instance
Manifest (not used by Execution
Management).

24 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Deployment
and Removal

Binary installed on the target Ma-
chine. Previous version (if any) re-
moved.

Processed Manifests, stored in a
platform-specific format which is effi-
ciently readable at Machine startup.

Execution Process started as instance of the
binary.

The Execution Management uses
contents of the Processed Manifests
to start up and configure each Pro-
cess individually.

Table 7.1: Executable Lifecycle

Executables which belong to the same Adaptive Application might need to be
deployed to different Machines, e.g. to one high performance Machine and one high
safety Machine.

Figure 7.2 shows the lifecycle of an Executable from deployment to execution.

functional
cluster

API

function
cluster

API

application process

Software Package

offboard

machine

OS

installed
executable

process
(loaded executable instance)

API

Update and
Configuration
Management

deployment,
authentication,

installation
Execution

Management
startup, configure OS,

shutdown, …

API

other
functional
clusters

API

data base

application
manifest

processed
manifests

Execution
Manifest

executable
(binary)Machine

Manifest

design, development, integration

Service
Instance
Manifest

Figure 7.2: Executable Lifecycle from deployment to execution

7.2.4 Process

A Process is an instance of an Executable. On the AUTOSAR Adaptive Plat-
form, a Process is realized at run-time as an OS process. For details on how Exe-
cution Management starts and stops Processes see 7.4.

Execution Management treats all Executables and the derived Processes the
same way, independent of Application boundaries.

25 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Remark: In this release of this document it is mostly assumed that Processes are
self-contained, i.e. that they take care of controlling thread creation and scheduling
by calling APIs of the Operating System Interface from within the code. Execution
Management only starts and terminates the Processes and while the Processes
are running, Execution Management only interacts with the Processes by pro-
viding State Management mechanisms (see 7.5) or APIs to support Deterministic
Execution (see 7.7.3).

7.2.5 Execution Manifest

An Execution Manifest is created together with a Service Instance Mani-
fest (not used by Execution Management) at design time and deployed onto a Ma-
chine together with the Executable it is attached to.

The Execution Manifest specifies the deployment related information of an Exe-
cutable and describes in a standardized way the machine-specific configuration of
Process properties (startup parameters, resource group assignment, scheduling pri-
orities etc.).

The Execution Manifest is bundled with the actual executable code in order to
support the deployment of the executable code onto the Machine.

Each instance of an Executable binary, i.e. each started Process, is individually
configurable, with the option to use a different configuration set per Machine State
or per Function Group State (see Section 7.5 and [TPS_MANI_01012], [TPS_-
MANI_01013], [TPS_MANI_01014], [TPS_MANI_01015], [TPS_MANI_01059], [TPS_-
MANI_01017] and [TPS_MANI_01041]).

To perform its necessary actions, Execution Management imposes a number of
requirements on the content of the Execution Manifest.

For more information regarding the Execution Manifest specification please see
[4].

7.2.6 Machine Manifest

The Machine Manifest is also created at integration time for a specific Machine
and is deployed like Execution Manifests whenever its contents change. The
Machine Manifest holds all configuration information which cannot be assigned to
a specific Executable or its instances (the Processes), i.e. which is not already
covered by an Execution Manifest or a Service Instance Manifest.

The contents of a Machine Manifest includes the configuration of Machine proper-
ties and features (resources, safety, security, etc.), e.g. configured Machine States
and Function Group States, resource groups, access right groups, scheduler
configuration, SOME/IP configuration, memory segmentation. For details see [4].

26 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.2.7 Manifest Format

The Execution Manifests and the Machine Manifest can be transformed from
the original standardized ARXML into a platform-specific format (called Processed
Manifest), which is efficiently readable at Machine startup. The format transforma-
tion can be done either off board at integration time or at deployment time, or on the
Machine (by Update and Configuration Management) at installation time.

27 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.3 Execution Management Responsibilities

Execution Management is responsible for all aspects of Process execution man-
agement. A Process is a loaded instance of an Executable, which is part of an
Application.

Execution Management is started as part of the AUTOSAR Adaptive Platform
startup phase and is responsible for starting and terminating Processes.

Execution Management determines when, and possibly in which order, to start or
stop Processes, i.e. instances of the deployed Executables, based on information
in the Machine Manifest and Execution Manifests.

Execution Management ensures that the integrity and authenticity of all Executa-
bles and Executable-related data (e.g. manifests) is checked. In the case of a
failed integrity or authenticity check, Execution Management carries out the mea-
sures defined in Section 7.10.

[SWS_EM_01030]{DRAFT} Restriction of process creation right for Processes d
Execution Management shall restrict the rights of Processes such that they cannot
start other processes.c(RS_EM_00009)

The mechanism by which the restriction of [SWS_EM_01030] is implementation-
specific, but could be realized by configuring the process capability attribute mask at
the time of process creation.

Depending on the Machine State or on any other Function Group State, de-
ployed Executables are started during AUTOSAR Adaptive Platform startup or
later, however it is not expected that all will begin active work immediately since many
Processes will provide services to other Processes and therefore wait and “listen”
for incoming service requests.

Execution Management derives an ordering for startup/shutdown of deployed Exe-
cutables within the context of Machine and/or Function Group State changes based
on declared Execution Dependencies [SWS_EM_01050]. The dependencies are
described in the Execution Manifests, see [TPS_MANI_01041].

Execution Management is not responsible for run-time scheduling of Processes
since this is the responsibility of the Operating System [SWS_OSI_01003]. How-
ever, Execution Management is responsible for initialization / configuration of the
OS to enable it to perform the necessary run-time scheduling and resource manage-
ment based on information extracted by Execution Management from the Machine
Manifest and Execution Manifests.

28 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.4 Process Lifecycle Management

7.4.1 Execution State

Execution States characterizes the internal lifecycle of a Process. In other words, they
describe it from the point of view of a Process that is executed. The states visible to
the Process are defined by the ExecutionState enumeration.

Initializing

application

data

initialization

Running

perform main

functionality

Terminating

 store data,

free resources,

exit

Terminate

create process

allocate

resources

Figure 7.3: Execution States

Execution Management considers Process initialization complete when the state
kRunning is reached whether this is achieved implicitly or explicitly through a Pro-
cess reporting its Execution State.

Please note that Service Discovery can introduce non-deterministic delays and
thus is advised to be done after reporting kRunning state. This implies that the
Process may not have completed all its initialization when the kRunning state is
reported by the Process, using the ExecutionClient::ReportExecutionState
interface.

[SWS_EM_01055] Initiation of Process termination dExecution Management
shall initiate Process termination by sending the SIGTERM signal to the Process.c
(RS_EM_00103)

Note that from the perspective of Execution Management, requirement
[SWS_EM_01055] only requests the initiation of the steps necessary for termi-
nation.

On receipt of SIGTERM, a Reporting Process acknowledges the request (by
reporting kTerminating to Execution Management using the Execution-
Client::ReportExecutionState interface) and then commences the actual ter-
mination. A Reporting Process initiates self-termination by reporting the kTermi-
nating state to Execution Management.

[SWS_EM_01071]{DRAFT} Premature Termination of a Reporting Process dExe-
cution Management shall consider the termination of a Reporting Process with-
out prior reporting of kTerminating as an error. The error reaction is implementation
specific.c(RS_EM_00103)

During the Terminating state, the Process is expected to save persistent data and
free all internally used resources. The Process indicates completion of the Termi-
nating state by simply exiting (with an appropriate exit code).

29 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Execution Management does not require an explicit notification of actual Process
termination by the process itself as this would introduce a race condition. Instead,
Execution Management as the parent Process can detect termination of the child
Process and take the appropriate platform-specific actions such as processing exe-
cution dependencies that rely on the Terminated state and thus ensure that there is
no overlap between these Processes when both are running.

Details on the response to “fault” error-codes, e.g. a non-zero exit code, will be defined
in Section 7.9 in a future release of this document.

Correct Execution State reporting performed by Processes is a part of consistent
behavior of Execution Management.

[SWS_EM_02243]{DRAFT} Handling Execution State Running dAfter Process
creation, Execution Management shall ignore duplicate Execution State Running
reports triggered by a specific Process.c(RS_EM_00103)

[SWS_EM_02244]{DRAFT} Handling Execution State Terminating dAfter initiation
of Process termination, Execution Management shall ignore duplicate Execution
State Terminating reports and inconsistent backward Execution State Running
transition reports triggered by a specific Process.c(RS_EM_00103)

Note that in [SWS_EM_01065], Process termination timeout monitoring applies to all
termination sequences including self-termination (Process reports Execution State
Terminating without request by Execution Management) and termination re-
quested by Execution Management.

Execution Management differentiates between two types of Processes: Reporting
Processes and Non-reporting Processes. Reporting Processes are con-
sidered to be the normal form of Processes and Non-reporting Processes are
considered to be an exception.

Non-reporting Processes can be used to support running Executables which
have not been designed with the AUTOSAR Adaptive Platform in mind. For example, if
an Executable is available as binary only, if it is not feasible to patch its source code
or if the Executable is only used during development time.

[SWS_EM_01402] Implicit Running Process State dFor Non-reporting Pro-
cess the transition from Starting to Running Process State shall implicitly apply
after Execution Management has allocated the required resources and created the
run-time process.c(RS_EM_00103)

In safety related systems the system designer has to use Non-reporting Process
functionality with care. Such Processes will probably not provide safety critical func-
tionality and will not be monitored by Platform Health Management but still they
might influence other safety related Processes and therefore can introduce a safety
risk. To isolate Non-reporting Processes from safety critical parts Resource-
Groups can be used (see Section 7.8).

30 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

[SWS_EM_01403]{DRAFT} Reporting Non-reporting Process dExecution Man-
agement shall consider Execution State reporting from a Non-reporting Pro-
cess as an error. The error reaction is implementation specific.c(RS_EM_00103)

7.4.2 Process States

Process States characterize the lifecycle of a Process from the point of view of Ex-
ecution Management. In other words, they represent Execution Management
internal tracking of the Execution States (see Section 7.4.1). Note that each Process
is independent and therefore has its own Process State.

ExecuteIdle

Starting

process

created,

resources

allocated

Terminated

process

resources

freed

TerminatingTerminateRunningSchedule

Figure 7.4: Process Lifecycle

[SWS_EM_01401] Process Self Reporting dThe AdaptivePlatform implementa-
tion shall only allow a Process to report its own ExecutionState.c(RS_EM_00103)

[SWS_EM_01002] Idle Process State dThe Idle Process State shall be the Process
State prior to creation of the Process and to resource allocation.c(RS_EM_00103)

[SWS_EM_01003] Starting Process State dThe Starting Process State shall apply
when the Process has been created and resources have been allocated.c(RS_EM_-
00103)

[SWS_EM_01004] Running Process State of Reporting Processes dThe Running
Process State shall apply to a Reporting Process after it has reported kRunning
Execution State to Execution Management.c(RS_EM_00103)

[SWS_EM_01404] Terminating Process State after Termination Request dThe
Terminating Process State shall apply when Execution Management sent
SIGTERM signal to the Process.c(RS_EM_00103, RS_EM_00011)

[SWS_EM_01405] Terminating Process State after Terminating Report dThe Ter-
minating Process State shall apply when the Reporting Process has decided
to self-terminate and informed Execution Management by reporting kTerminat-
ing Execution State.c(RS_EM_00103, RS_EM_00011)

The kTerminating and kRunning Execution State indications from Process to
Execution Management use the ExecutionClient::ReportExecutionState
API (see Section 8.2.1.3).

[SWS_EM_01006] Terminated Process State dThe Terminated Process State shall
apply after the Process has terminated and the Process resources have been freed.c
(RS_EM_00103)

31 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

For [SWS_EM_01006], Execution Management observes the exit status of all Pro-
cesses. The mechanism is implementation dependent but could, for example, use the
POSIX waitpid() API.

From the resource allocation point of view, the Terminated Process State is similar
to the Idle Process State – there is no Process running and no resources are al-
located. However from the execution point of view, the Terminated Process State
is different from Idle as it tells Execution Management that the Process has al-
ready been executed, terminated and can be now restarted (if needed) as specified in
[SWS_EM_01066].

7.4.3 Startup and Termination

7.4.3.1 Ordering

Execution Management can derive an ordering for the startup and termination of
Processes within State Management framework based on the declared Execu-
tion Dependencies.

An Execution Dependency defines the provider of functionality required by a Pro-
cess necessary for that Process to provide its own functionality. Execution Man-
agement ensures the dependent Processes are in the state defined by the Execu-
tion Dependency before the Process defining the dependency is started.

When considering dependencies on Services it is tempting to use Execution De-
pendencies. However general Service Discovery is a better mechanism as ser-
vices can go ON or OFF at any time and the Processes are expected to cope with
this situation. Please note that Execution Dependencies may be used to reduce
service discovery delays.

Execution Dependencies, see [TPS_MANI_01041] and [constr_1606], are config-
ured in the Execution Manifests.

Example 7.1

Consider a Process, DataLogger, which has an Execution Dependency on an-
other Process, Storage. For startup this means DataLogger has a Execution De-
pendency on Storage so the latter is required to be started by Execution Manage-
ment before DataLogger so that DataLogger can store its data.

[SWS_EM_01050] Start Dependent Processes dDuring startup of a Process, Ex-
ecution Management shall respect Execution Dependencies by ensuring that
any Processes upon which the Process to be started depends have reached the
requested Process State before starting the Process.c(RS_EM_00100)

32 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

The same Execution Dependencies used to define the startup order are also used
to define the termination order. However the situation is reversed as Execution Man-
agement is required to ensure that dependent Processes are terminated after the
Process to ensure that the services required remain available until no longer required.

[SWS_EM_01051] Termination of Processes dDuring termination of a Process, Ex-
ecution Management shall respect Execution Dependencies by ensuring that
any Processes upon which the Process to be terminated depends are not termi-
nated before termination of the Process.c(RS_EM_00100)

Example 7.2

Consider the same Process, DataLogger, as above which has an Execution De-
pendency on another Process, Storage. For termination the Execution Depen-
dency indicates Execution Management is required to only termination Storage
after DataLogger so the latter can flush its data during termination.

Note that [SWS_EM_01051] merely requires Execution Management to not termi-
nate the dependent Processes before terminating a Process. It is not an error if the
Process has self-terminated so is not available to be terminated.

If no Execution Dependencies are specified between two Processes then no
order is imposed and they can be started or terminated in an arbitrary order.

The required dependency information is provided by the Application developer. It
is adapted to the specific Machine environment at integration time and made available
in the Execution Manifest.

Execution Management parses the information and uses it to build the startup se-
quence to ensure that the required antecedent Processes have reached a certain
Process State before starting a dependent Process [SWS_EM_01050].

7.4.3.2 Arguments

Execution Management provides argument passing for a Process containing
one or more StateDependentStartupConfig in the role Process.stateDepen-
dentStartupConfig. This permits different Processes to be started with different
arguments.

[SWS_EM_01012] Process Argument Passing dAt the initiation of startup of a Pro-
cess, the aggregated StartupOptions of the StartupConfig referenced by the
StateDependentStartupConfig shall be passed to the Process by Execution
Management based on [SWS_EM_01072], [SWS_EM_01073], [SWS_EM_01074],
[SWS_EM_01075], [SWS_EM_01076] and [SWS_EM_01077].c(RS_EM_00010)

Note that [SWS_EM_01012] deliberately does not specify the OS mechanism used to
start a Process, e.g. the exec-family based POSIX interface, as this is ultimately an
implementation specific property.

33 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

The first argument on the command-line passed by Execution Management is the
name of the Executable.

[SWS_EM_01072] Process Argument Zero dArgument 0 shall be set to name of the
Executable.c(RS_EM_00010)

Execution Management supports simple arguments that are passed directly to the
Process without any additional processing. Please note that StartupOption.op-
tionName will not be passed to the Process if StartupOption.optionKind =
commandLineSimpleForm and can be omitted.

[SWS_EM_01073] Simple Arguments dFor each aggregated StartupOption at po-
sition n with StartupOption.optionKind = commandLineSimpleForm the nth ar-
gument shall be StartupOption.optionArgument.c(RS_EM_00010)

Execution Management supports short form arguments which are typically single
characters. All short form arguments begin with a single dash (-) which is not included
in the StartupOption.optionName.

[SWS_EM_01074] Short form arguments with option value dFor each aggregated
StartupOption at position n with StartupOption.optionKind = commandLi-
neShortForm and with multiplicity of StartupOption.optionArgument = 1 the
nth argument shall be ’-’ + StartupOption.optionName + ’ ’ + StartupOption.
optionArgumentc(RS_EM_00010)

Note that requirement [SWS_EM_01074] includes the specification of mandatory
whitespace; this is indicated by ‘ ’ in the requirement text.

[SWS_EM_01075] Short form Arguments without option value dFor each aggre-
gated StartupOption at position n with StartupOption.optionKind = comman-
dLineShortForm and with multiplicity of StartupOption.optionArgument = 0
the nth argument shall be ’-’ + StartupOption.optionNamec(RS_EM_00010)

Execution Management supports long form arguments which are typically more
meaningful to the user than short-form arguments. To distinguish long form arguments
from short form the former begin with a double dash (--) which is not included in the
StartupOption.optionName.

[SWS_EM_01076] Long form Arguments with option value dFor each aggregated
StartupOption at position n with StartupOption.optionKind = commandLine-
LongForm and with multiplicity of StartupOption.optionArgument = 1 the nth
argument shall be ’--’ + StartupOption.optionName + ’=’ + StartupOption.
optionArgumentc(RS_EM_00010)

[SWS_EM_01077] Long form Arguments without option value dFor each aggre-
gated StartupOption at position n with StartupOption.optionKind = comman-
dLineLongForm and with multiplicity of StartupOption.optionArgument = 0 the
nth argument shall be ’--’ + StartupOption.optionNamec(RS_EM_00010)

34 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.4.3.3 Environment Variables

Execution Management initializes environment variables for Processes. Process
specific environment variables are configured in its Execution Manifest. Machine
specific environment variables are configured in the Machine Manifest. During run-
time environment variables are accessible via POSIX getenv() command.

[SWS_EM_02246] Process specific Environment Variables dExecution Man-
agement shall prepare environment variables based on the configuration from
Process.stateDependentStartupConfig.startupConfig.environment-
Variable and pass them during a Process start.c(RS_EM_00010, RS_AP_00130)

[SWS_EM_02247] Machine specific Environment Variables dExecution Man-
agement shall prepare environment variables based on the configuration from Ma-
chine.environmentVariable and pass them during a Process start.c(RS_EM_-
00010, RS_AP_00130)

Please note that AUTOSAR meta model (see [4]) uses TagWithOptionalValue for
environment variables definition ([TPS_MANI_01208] and [TPS_MANI_01209]). As
explained there, the value (TagWithOptionalValue.value) can be omitted as a
way of specifying environment variable with empty value.

[SWS_EM_02249] Missing value from Environment Variable definition dWhenever
Execution Management finds environment variable definition, that have TagWith-
OptionalValue.value missing, it should use empty string as a value for this envi-
ronment variable.c(RS_EM_00010, RS_AP_00130)

[SWS_EM_02248] Environment Variables precedence dWhenever the same envi-
ronment variable is configured within both the Execution Manifest and the Ma-
chine Manifest then Execution Management shall use the environment variable
value from the Execution Manifest.c(RS_EM_00010, RS_AP_00130)

7.4.4 Startup Sequence

When the Machine is started, Execution Management is launched as the Ma-
chine’s first process. Other functional clusters and platform-level Applications
of the Adaptive Platform Foundation and Adaptive Platform Services
are then launched by Execution Management. After the Adaptive Platform
Foundation and Adaptive Platform Services are up and running, Execu-
tion Management continues to launch user-level Applications.

Please note that an Application consists of one or more Executables. There-
fore to launch an Application, Execution Management starts Processes as
instances of each Executable.

[SWS_EM_01000] Startup order dThe startup order of the platform-level Processes
shall be determined by Execution Management based on Machine Manifest
and Execution Manifest information.c(RS_EM_00100)

35 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Please see Section 7.2.5.

Figure 7.5 shows the overall startup sequence.

OS boot

OS starts the Execution Management

The Execution Management reads the processed manifests

and determines the application startup order based on the

dependency description.

Processes of Application Executables are instantiated

based on the startup order.

Other Adaptive Platform Foundation modules are also

started as they are Applications described with

Manifests

Figure 7.5: Startup sequence

7.4.4.1 Execution Dependency

Execution Management provides support to the AUTOSAR Adaptive Platform
for ordered startup and shutdown of Applications. This ensures that Applica-
tions are started before dependent Applications use the services that they pro-
vide and, likewise, that Applications are shutdown only when their provided ser-
vices are no longer required.

The Execution Dependencies, see [TPS_MANI_01041] and [constr_1606] , are
configured in the Execution Manifests, which is created at integration time based
on information provided by the Application developer.

User-level Applications are expected to use the service discovery mechanisms of
Communication Management as the primary mechanism for execution sequencing
as this is supported both within a Machine and across Machine boundaries. Thus
user-level applications should not rely on Execution Dependencies unless strictly
necessary. Which Processes are running depends on the current Function Group
States, including the Machine State, see Section 7.5. The integrator should en-
sure that all service dependencies are mapped to State Management configuration,
i.e. that all dependent Processes are running when needed.

In real life, specifying a simple dependency to a Process might not be sufficient to
ensure that the depending service is actually provided. Since some Processes shall
reach a certain Execution State (see Section 7.4.1) to be able to offer their services

36 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

to other Processes, the dependency information shall also refer to Process State of
the Process specified as dependency. With that in mind, the dependency information
may be represented as a pair like: <Process>.<ProcessState>. For more details
regarding the Process States refer to Section 7.4.2.

The following dependency use-cases have been identified:

Dependency on Running Process State In case Process B has a simple depen-
dency on Process A, the Running Process State of Process A is specified in
the dependency section of Process B’s Execution Manifest.

When Process B has a Running Execution Dependency to Process A,
then Process B will only be started once the Process A reports Running state
to the EM.

Dependency on Terminated Process State In case Process D depends on
Self-terminating Process C, the Terminated Process State of Process C
is specified in the dependency section of Process D’s Execution Manifest.

If Process D has Terminated Execution Dependency on Process C, then
Process D will only be started once Process C reaches the Terminated state.

If a Terminated Execution Dependency is specified on a non self-
terminating Process then it will, by definition, time-out as the mentioned Pro-
cess will not terminate until the next Function Group transition.

Note: No use-case has been identified for an Execution Dependency on other
Process States, i.e. Idle or Terminating, and therefore these are not supported for
Execution Dependency configuration.

The version information within the Execution Manifest is available for use dur-
ing integration to ensure that a consuming Executable and its required services are
compatible with the producing Executable and its provided services. This also ap-
plies to the Processes which are instantiated from these Executables. An example
for the definition of the version information attached to several Executables can be
found in Listing Figure 7.1.

Listing 7.1: Example for Executable versions
<AR-PACKAGE>

<SHORT-NAME>Executables</SHORT-NAME>
<ELEMENTS>

<EXECUTABLE>
<SHORT-NAME>RadarSensorVR</SHORT-NAME>
<VERSION>1.0.3</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>RadarSensorVL</SHORT-NAME>
<VERSION>1.0.4</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>Diag</SHORT-NAME>
<VERSION>1.0.0</VERSION>

</EXECUTABLE>

37 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

<EXECUTABLE>
<SHORT-NAME>SensorFusion</SHORT-NAME>
<VERSION>1.0.2</VERSION>

</EXECUTABLE>
</ELEMENTS>

</AR-PACKAGE>

An example for the definition of the Execution Dependency information can be
found in Listing Figure 7.2

Listing 7.2: Example for Executable dependency
<PROCESS>

<SHORT-NAME>SensorFusion</SHORT-NAME>
<EXECUTABLE-REF DEST="EXECUTABLE">/Executables/SensorFusion</EXECUTABLE-

REF>
<MODE-DEPENDENT-STARTUP-CONFIGS>

<MODE-DEPENDENT-STARTUP-CONFIG>
<EXECUTION-DEPENDENCYS>

<EXECUTION-DEPENDENCY>
<PROCESS-MODE-IREF>

<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-
DECLARATION-GROUP-PROTOTYPE">/Processes/RadarSensorVR/
ProcessStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ProcessStateMachine/Running</TARGET-
MODE-DECLARATION-REF>

</PROCESS-MODE-IREF>
</EXECUTION-DEPENDENCY>
<EXECUTION-DEPENDENCY>

<PROCESS-MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-

DECLARATION-GROUP-PROTOTYPE">/Processes/RadarSensorVL/
ProcessStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ProcessStateMachine/Running</TARGET-
MODE-DECLARATION-REF>

</PROCESS-MODE-IREF>
</EXECUTION-DEPENDENCY>
<EXECUTION-DEPENDENCY>

<PROCESS-MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-

DECLARATION-GROUP-PROTOTYPE">/Processes/Diag/
ProcessStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ProcessStateMachine/Running</TARGET-
MODE-DECLARATION-REF>

</PROCESS-MODE-IREF>
</EXECUTION-DEPENDENCY>

</EXECUTION-DEPENDENCYS>
<STARTUP-CONFIG-REF DEST="STARTUP-CONFIG">/StartupConfigSets/

StartupConfigSet_AA/SensorFusion_Startup</STARTUP-CONFIG-REF>
</MODE-DEPENDENT-STARTUP-CONFIG>

38 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

</MODE-DEPENDENT-STARTUP-CONFIGS>
</PROCESS>

Processes are only started by Execution Management if they reference a re-
quested Machine State or Function Group State, but not because of config-
ured Execution Dependencies. Execution Dependencies are only used to
control a startup or terminate sequence at state transitions.

[SWS_EM_01001]{DRAFT} Execution Dependency error dIf Execution Man-
agement needs to start Process A that depends on another Process B and Pro-
cess B is not part of the same Function Group State as Process A, then Execu-
tion Management shall return an error (and fail to start Process A).c(RS_EM_00100)

Example 7.3

Let assume that Process “A” depends on the Running Process State of a Process
“B”. At a Machine State transition, Process “A” shall be started, because it refer-
ences the new Machine State. However, Process “B” does not reference that Ma-
chine State, so it is not started. Due to the Execution Dependency between the
two Processes, Process “A” would never start running in the new Machine State
because it waits forever for Process “B”. This is considered to be a configuration error
and shall also cause run time error.

Please note that requirement [SWS_EM_01001] effectively forbids any Execution
Dependencies that spans outside of a single Function Group State (or a Ma-
chine State) definition, see also [constr_1689]. This is done on purpose, as
this kind of dependencies will introduce hidden dependencies between Function
Groups and they will not be visible to State Management. If dependencies be-
tween Function Groups needs to be expressed (e.g. mapping software could have
dependency on GPS software), then this should be done inside State Management.
For more information see [11].

Unlike a Reporting Process, a Non-reporting Process is in Execution
State Running directly after start. Regardless of whether the Process has completed
its initialization phase and is ready to offer its services or not. This means that Run-
ning Execution Dependencies do not work in combination with Non-reporting
Processes without further action.

This limitation can be overcome by introducing a companion Process, which acts as
a representative of the Non-reporting Process. The companion waits for avail-
ability of the service provided by the Non-reporting Process and reports kRun-
ning to Execution Management. The Processes which in fact need the services
of the Non-reporting Process can be configured to be dependent on the com-
panion Process. Please note that the Terminated Execution Dependency is not
affected as Execution Management is informed by the Operating System when
Non-reporting Processes are Terminated. This approach can also be used to
communicate a Health State to Platform Health Management.

39 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.5 State Management

7.5.1 Overview

State Management functional cluster defines the operational state of an AUTOSAR
Adaptive Platform, while Execution Management performs the transitions be-
tween different states.

The Execution Manifest allows to define in which states the Processes have
to run (see [4]). As mentioned before, a Process is an instance of an Executable,
which is part of an Application. State Management mechanisms grant full control
over the set of Applications to be executed and ensures that Processes are only
executed (and hence resources allocated) when actually needed.

Four different states are relevant for Execution Management:

Execution State – An Execution States characterizes the internal lifecycle of each
started Process, see Section 7.4.1

Process State – Process States are managed by an Execution Management in-
ternal state machine. For details see Section 7.4.2.

Machine State – see Section 7.5.2

Function Group State – see Section 7.5.3

An example for the interaction between these states will be shown in section Section
7.5.4.

7.5.2 Machine State

Execution Management requires that at least one Function Group will be con-
figured for each Machine. This Function Group shall have the name "MachineS-
tate" and in this document, this particular Function Group State is named Ma-
chine State. Machine State is meant to represent a global state of Machine.

The Function Group "MachineState" has several mandatory states (see
[SWS_EM_02250], [SWS_EM_01024] and [SWS_EM_01025]) that are also expected
to be configured for each machine. Additional Machine States can be defined on a
machine specific basis and are therefore not standardized.

Function Group States (including Machine States), define the current set of
running Processes. Each Application can declare in its Execution Manifests
in which Function Group States its Processes shall be running. A ModeDecla-
ration for each required Machine State has to be defined in the Machine Man-
ifest [constr_1687] [TPS_MANI_03194].

40 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Machine States (as well as other Function Group States) are requested by
State Management. The set of active states is significantly influenced by vehicle-
wide events and modes. For details on state change management see Section 7.5.5.

[SWS_EM_01032]{DRAFT} Machine States configuration dExecution Manage-
ment shall obtain configuration of the Function Group “MachineState” from Ma-
chine Manifest and set-up Machine States management.c(RS_EM_00101)

The start-up sequence from initial state Startup to the point where State Manage-
ment, SM, requests the initial running machine state StateXYZ is illustrated in Figure
7.6.

Figure 7.6: Start-up Sequence – from Startup to initial running state StateXYZ

An arbitrary state change sequence to machine state StateXYZ is illustrated in Figure
7.7. Here, on receipt of the state change request, Execution Management termi-
nates running Processes and then starts Processes active in the new state before
confirming the state change to State Management.

41 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Figure 7.7: State Change Sequence – Transition to machine state StateXYZ

7.5.2.1 Startup

[SWS_EM_02250]{DRAFT} Machine State Startup dExecution Management
shall ensure that Startup state is configured for a Function Groupwith name "Ma-
chineState".c(RS_EM_00101)

[SWS_EM_01023]{DRAFT} Self initiation of Machine State Startup transition d
Execution Management shall self initiate the state transition to the Startup Ma-
chine State, as soon as possible after the startup of Execution Management.c
(RS_EM_00101)

Please note that for Machine State transitions, the requirements of section Section
7.5.5 apply.

[SWS_EM_02241]{DRAFT} Machine State Startup Completion dUpon completion
of initial (self initiated) Machine State transition to the Startup state, Execution
Management shall notify State Management that the Startup state of Machine
State has been reached.c(RS_EM_00101)

[SWS_EM_02242]{DRAFT} Further Function Group State Changes dExecution
Management shall not self initiate any further Function Group State changes
(this includes Machine State) by itself.c(RS_EM_00101)

42 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Execution Management will be controlled by other software entities and should
not execute any Function Group State changes on its own (with one exception:
[SWS_EM_01023]). This creates some expectations towards system configuration.
The specification expects that State Management will be configured to run in every
Machine State (this includes Startup, Shutdown and Restart). Above expecta-
tion is needed in order to ensure that there is always a software entity that can introduce
changes in the current state of the Machine. If (for example) system integrator doesn’t
configure State Management to be started in Startup Machine State, then Ma-
chine will never be able transit to any other state and will be stuck forever in it. This
also applies to any other Machine State that doesn’t have State Management
configured.

7.5.2.2 Shutdown

Execution Management does not perform shutdown of the Operating System. Instead it
is required that at least one Process provides a mechanism to shutdown the Operating
System. This Process is expected to be configured to run inside Shutdown Machine
State. See [4] [constr_1618].

[SWS_EM_01024]{DRAFT} Machine State Shutdown dExecution Management
shall ensure that Shutdown state is configured for a Function Group with name
"MachineState".c(RS_EM_00101)

A request to Execution Management to change the current Machine State to
Shutdown is handled the same as any other Function Group state change re-
quest. From the point of view of Execution Management all Function Groups
are independent and therefore changes to them, can be applied without any side ef-
fects. However, from the point of view of State Management, where knowledge of
the dependencies between different Function Groups exist this may not be true.
AUTOSAR assumes that State Management will requests Machine State Shut-
down when it’s valid to do so; see [11] for advice on how to orchestrate shutdown of
the Machine.

As mentioned in Section 7.5.2.1 AUTOSAR assumes that State Management will be
configured to run in Shutdown. State transition is not a trivial system change and it
can fail for a number of reasons - in which case State Management should remain
alive so you can report an error and wait for further instructions. Please note that very
purpose of this state is to shutdown Machine (this includes State Management) in
a clean manner. Unfortunately this means that at some point State Management
will no longer be available to report errors and subsequent errors should be handled
through implementation specific mechanisms.

43 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.5.2.3 Restart

Execution Management does not perform restart of the Operating System. To restart
the system it is required that at least one Process provide a mechanism to restart
the Operating System. This Process is expected to be be configured to run inside
Restart Machine State. See [4] [constr_1619].

[SWS_EM_01025]{DRAFT} Machine State Restart dExecution Management
shall ensure that Restart state is configured for a Function Groupwith name "Ma-
chineState".c(RS_EM_00101)

From the point of view of Execution Management, the Restart state of a Func-
tion Group with name "MachineState" is very similar to a Shutdown state. For
the reasons mentioned in Section 7.5.2.2, a state transition to Restart is handled the
same as any other Function Group state transition; please see [11] for advice on
how to orchestrate restart of the Machine.

As mentioned in Section 7.5.2.1 AUTOSAR assumes that State Management will be
configured to run in Restart. The reasons for doing so are the same as for Section
7.5.2.2.

7.5.3 Function Group State

If there is a group of functionally coherent Applications installed on the machine,
it will be useful to have ability of controlling them together. For that very reason the
concept of Function Groups was introduced to AUTOSAR Adaptive Platform.

Each Function Group has its own set of Processes and set of states called Func-
tion Group States. Each Function Group State defines which Processes
shall be started when State Management requests Function Group State acti-
vation from Execution Management. Please note that minimal size of a Function
Group is one Process and maximum size is implementation limited.

The Function Groups mechanism is very flexible and is intended as a tool used to
start and stop Processes of Applications. System integrator can assign Pro-
cesses to a Function Group State and then request it by State Management.
For details on state change management see Section 7.5.5.

In general, Machine States (see Section 7.5.2) are used to control machine life-
cycle (startup/shutdown/restart) and Processes of platform level Applications,
while other Function Group States individually control Processes which belong
to groups of functionally coherent user level Applications. Please note that this
doesn’t mean that all Processes of platform level Applications has to be con-
trolled by Machine States.

44 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Figure 7.8 shows an example of state change sequence where several Processes ref-
erence Machine States and Function Group States of two additional Func-
tion Groups FG1 and FG2. For simplicity, only the three static Process States Idle,
Running, and Terminated are shown for each process.

FG1:Off

t

StartupMachine State Running Diagnostics Shutdown

FG2:Diag

Function Group 1
State

FG2:Fallback

FG1:Running

Function Group 2
State

FG2:
Off

FG2:Off

Idle
Running

Terminated

Idle
Running

Terminated

Idle
Running

Terminated

A B C

Idle
Running

Terminated

A

B

C

D

D

FG2:Running

Idle
Running

Terminated

E

Idle
Running

Terminated

F

E

reference

dependency

state
transitionprocess

different
StartupOptions

Process State

Off

FG1:Off

self-
terminating

FG2:Off

F

Figure 7.8: State dependent process control

• Process A references the Machine State Startup. It is a Self-termi-
nating Process, i.e. it terminates after executing once.

• Process B references Machine States Startup and Running. It depends
on the termination of Process A, i.e. an Execution Dependency has been
configured, as described in Section 7.4.4.1

• Process C references Machine State Running only. It terminates when
Machine State Diagnostics is requested by State Management.

45 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

• Processes D and E references Function Group State FG1:Running only
and there is no Execution Dependency configured between them. Execu-
tion Management will start and terminate them in an arbitrary order (e.g. in
parallel if possible).

• Process F references FG2:Running and FG2:Fallback. It has different
startup configurations assigned to the two states, therefore it terminates at the
state transition and starts again, using a different startup configuration.

System design and integration should ensure that enough resources are available on
the machine at any time, i.e. the added resource consumption of all Processes which
reference simultaneously active states should be considered.

[SWS_EM_01107]{DRAFT} Function Group configuration dExecution Manage-
ment shall obtain configuration of the Function Group from the Machine Mani-
fest to set-up the Function Group specific state management.c(RS_EM_00101)

A proper system configuration requires that each Process references in its Execu-
tion Manifest one or more Function Group States (which can be Machine
States) of the same Function Group.

[SWS_EM_01013]{DRAFT} Function Group State dExecution Management shall
support the execution of a specific Process, depending on the current Function
Group State and on information provided in the Execution Manifests.c(RS_-
EM_00101)

Each Process is assigned to one or several startup configurations (StartupCon-
fig), which each can define the startup behavior in one or several Function Group
States (including Machine States). For details see [4]. By parsing this information
from the Execution Manifests, Execution Management can determine which
Processes need to be launched if a specific Function Group State is entered,
and which startup parameters are valid.

[SWS_EM_01033]{DRAFT} Process start-up configuration dTo enable a Process
to be launched in multiple Function Group States, Execution Management
shall be able to configure the Process start-up on every Function Group State
change based on information provided in the Execution Manifest.c(RS_EM_-
00009, RS_EM_00101)

[SWS_EM_01109]{DRAFT} Misconfigured Process - not assigned to a Function
Group dIn the event of a misconfigured system, Execution Management shall not
start a Process that doesn’t reference at least one state.c(RS_EM_00101)

[SWS_EM_02254]{DRAFT} Misconfigured Process - assigned to more than one
Function Group dIn the event of a misconfigured system, Execution Manage-
ment shall not start a Process that references states from more than one Function
Group.c(RS_EM_00101)

Please note AUTOSAR doesn’t support the possibility of assigning a single Process
to more than one Function Group, see [4] ([constr_1688]).

46 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

[SWS_EM_01110]{DRAFT} Off States dEach Function Group (including the
Function Group "MachineState") has an Off State which shall be used by Ex-
ecution Management as default Function Group State, if no other state was
requested.c(RS_EM_00101)

Please note that [SWS_EM_01110] and [SWS_EM_01023] together define the very
first Function Group state transition after the power up. When Execution Man-
agement starts it performs Machine State transition from the "Off" state (the de-
fault state) to the "Startup" state.

Processes reference in their Execution Manifest the states in which they want
to be executed. A state can be any Function Group State, including a Machine
State. For details see [4], especially "State-dependent Startup Configuration" chapter
and "Function Groups" chapter.

The arbitrary state change sequence as shown in Figure 7.7 applies to state changes of
any Function Group - just replace "MachineState" by the name of the Function
Group. On receipt of the state change request, Execution Management terminates
no longer needed Processes and then starts Processes active in the new Func-
tion Group State before confirming the state change to State Management. For
details see Section 7.5.5.

7.5.4 State Interaction

Figure 7.9 shows a simplified example for the interaction between different types of
states, after State Management functional cluster has requested different Func-
tion Group States . One can see the state transitions of the Function Group
and the Process and Execution States of one Process which references one state
of this Function Group, ignoring possible delays and dependencies if several Pro-
cesses were involved.

47 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

process

Execution Management

Execution State

Process State

Execute

FG1 State

Idle

(Execution

Manifest

references

FG1:State2)

Starting

process

created,

resources

allocated

Terminated

process

resources

freed

Initializing

application

data

initialization

Running

perform main

functionality

Terminating

store data,

free resources,

exit

Start()

Terminate()
ReportExecutionState

(Running)

ReportExecutionState

(Terminating)

TerminatingTerminate

“waitpid”

process

terminated

FG1:State1

initial state of

Function

Group “FG1“

(example)

FG1:State2 FG1:State3

State Management

Arbitration of input data (e.g. state requests, events) to determine current target states

State Transition State Transition

SetState(FG1, State2) SetState(FG1, State3)return

(success)

vehicle management, error management, diagnostics, authorized applications, etc.

Running

Process Lifecycle

managed by EM

State Transitions

managed by EM

confirm

trigger

optional

Terminatecreate process

allocate

resources

schedule

Schedule

ara::com

return

(success)

Figure 7.9: Interaction between states

7.5.5 State Transition

State Management can request to change one or several Function Group
States (including the Machine State), using API described in Section 8.2.5.
StateClient::SetState allows State Management to request several Func-
tion Group State changes in parallel. If Machine State change is required, the
name of the Function Group passed shall be: "MachineState".

48 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

FG_B

ABC

XYZ

FG_A

ON

 Process

 state

 dependency

 forbidden dependency

Figure 7.10: Example configuration for state transition

Before we specify how internals of a state transition works, let’s consider an exam-
ple configuration illustrated in figure Figure 7.10. As we can see Execution De-
pendencies that spans outside of a Function Group and moreover of a single
Function Group State are forbidden. The dependency from Process B (inside
Function Group FG_B) to Process A (inside Function Group FG_A) is forbid-
den, as it would introduce hidden dependencies between Function Groups that are
not visible to State Management. If system configuration requires this kind of depen-
dencies, please see [11] for advice on how to configure them. Dependencies outside
of a single Function Group State definition are forbidden, as they would result in
starting a Process that is not configured to run in the given State. For more informa-
tion on Execution Dependencies see chapter Section 7.4.4.1 ([SWS_EM_01001]
and [constr_1689]).

From the above we can conclude that each Function Group is a separate entity
and state transition of one Function Group doesn’t have side effects on another
Function Group. Please note that this is true from the point of view of Execution
Management and may differ from the point of view of State Management (see [11]
if you need more information on this).

49 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

In the following requirements, the term "the Process references a State" means
that a Process has in its Execution Manifest an aggregation of StateDepen-
dentStartupConfig in the role Process.stateDependentStartupConfig with
an instanceRef to a ModeDeclaration in the role StateDependentStartupCon-
fig.functionGroupState that belongs to that State.

CurrentState is the current (currently active) State, of a Function Group for
which the state transition was requested; or the current Machine State if the Func-
tion Group has "MachineState" name. In short this is a Function Group
State or Machine State.

RequestedState is the state that will become the CurrentState, once the state
transition finishes successfully.

In other words CurrentState is the starting point of the transition, the list of the Pro-
cesses that should be currently running inside the Function Group (please note the
existence of Self-terminating Processes). RequestedState is a destination
point of the state transition, the list of the Processes that will be running inside of
the Function Group once the state transition finishes successfully (please note the
existence of Self-terminating Processes).

StartupConfig it is a StateDependentStartupConfig that is aggregated in the
role Process.stateDependentStartupConfig for a given Process.

State transition is a complicated process, however it is composed out of three simple
logical steps:

• Terminate all Processes that are currently running and are not needed in the
RequestedState

• Restart all Processes that are currently running and have StartupConfig that
differs between the CurrentState and the RequestedState

• Start all Processes that are not running currently and are needed in the Re-
questedState

Please see Section 7.4.1 and Section 7.4.2 for more detail information on how Exe-
cution Management handles termination and start of Processes (restart is a se-
quence of termination and start).

[SWS_EM_01060]{DRAFT} State transition - termination behavior dOn state tran-
sition Execution Management shall terminate all Processes that references the
CurrentState in its Execution Manifest, but don’t references the Requested-
State and have Process State different than [Idle or Terminated].c(RS_EM_-
00101)

[SWS_EM_02251]{DRAFT} State transition - restart behavior dOn state transition
Execution Management shall terminate all Processes that references the Cur-
rentState in its Execution Manifest, but references the RequestedState with
different StartupConfig and have Process State different than [Idle or Termi-
nated].c(RS_EM_00101)

50 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Please note that [SWS_EM_02251] only request a termination of Processes, the start
part will fall under [SWS_EM_01066] requirement thus making the restart complete.

Execution Management monitors the time required by each Process to terminate.
The default value of the Process termination timeout is defined by the system inte-
grator in the Machine Manifest, see [TPS_MANI_03151]. This value may be over-
written in the startup configuration of individual Processes by defining the termination
timeout parameter in the Execution Manifest, see [TPS_MANI_01278].

[SWS_EM_01065]{DRAFT} State transition - Process termination timeout mon-
itoring dExecution Management shall monitor the time required by the Process
to terminate (the time needed by the Process to reach the Terminated Process
State).c(RS_EM_00101)

[SWS_EM_02255]{DRAFT} State transition - Process termination timeout reac-
tion dIn case a Process termination timeout occurred, Execution Management
shall request the Operating System to terminate the underlying process.c(RS_-
EM_00101)

On multi-process POSIX platforms, this could be achieved using a SIGKILL signal.

[SWS_EM_02258]{DRAFT} State transition - Process termination timeout report-
ing dWhen the termination of a Process resulted in the timeout, Execution Man-
agement shall perform following actions:

• Report error code back to State Management to indicate that the State
change request cannot be fulfilled.

c(RS_EM_00101)

Note that in [SWS_EM_01065], [SWS_EM_02255] and n [SWS_EM_02258], Pro-
cess termination timeout monitoring applies to all termination sequences including
self-termination.

[SWS_EM_01066]{DRAFT} State transition - start behavior dOn state transition
Execution Management shall start all Processes that references the Request-
edState in its Execution Manifest and have Process State that is [Idle or
Terminated].c(RS_EM_00101)

Execution Management monitors the time required by each Process to start. The
start-up timeout is defined per Process startup configuration by the system integrator
in the Execution Manifest, see [TPS_MANI_01277].

[SWS_EM_02253]{DRAFT} State transition - Process start-up timeout monitoring
dExecution Management shall monitor the time required by the Process to start-
up (the time between Execution Management requesting process creation from
the operating system and the Process successfully reporting the Running Process
State).c(RS_EM_00101)

Execution Management monitors the time required by each Process to start. The
value of the Process start-up timeout is defined by the system integrator in the Ex-
ecution Manifest, see [TPS_MANI_03149]. Please note that startup time for

51 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Non-reporting Processes is zero because Non-reporting Processes imme-
diately switch from Process State Idle to Running skipping the Starting state.

[SWS_EM_02260]{DRAFT} State transition - Process start-up timeout reaction
dIn case a Process start-up timeout occurred, Execution Management shall re-
quest Process termination. If Process doesn’t terminate as requested, Execu-
tion Management shall request the Operating System to terminate the under-
lying process. After the process is terminated, the Process shall be restarted a num-
berOfRestartAttempts number of times until success or final fail.c(RS_EM_00101)

[SWS_EM_02259]{DRAFT} State transition - Process start-up timeout reporting
dWhen the start-up of a Process resulted in the timeout, Execution Management
shall perform following actions:

• Report error code back to State Management to indicate that the State
change request cannot be fulfilled.

c(RS_EM_00101)

When starting new Processes, Execution Management is obligated to perform
dependency resolution. When doing so it may came across a configuration where
Process B depends on Process A, but Process A needs to be restarted during
state change. Please see Figure 7.11 for more details.

t

FG2:Off FG2:Fallback
Function Group 2
State

Idle
Running

Terminated
B

FG2:Running

Idle
Running

Terminated

A

dependency on process A
“Running“

different
StartupOptions

Process State

A B

Figure 7.11: Dependency resolution during state change

52 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

[SWS_EM_02245]{DRAFT} Dependency resolution during state change dExe-
cution Management shall ensure that Execution Dependency resolution is per-
formed against the Processes that are configured for RequestedState.c(RS_EM_-
00101)

Please note that [SWS_EM_02245] doesn’t bring new functionality to state transition.
It merely ensures that [SWS_EM_02251] and [SWS_EM_01066] are performed on
Process A, before [SWS_EM_01066] is performed on Process B. If this order is
not ensured then [SWS_EM_02245] could not be satisfied as Process A will be a
Process that is configured for CurrentState and not for RequestedState.

Description of Function Group State transition in this chapter may give impres-
sion that, it is required to first stop all Processes that are not needed in Requested-
State, before you can start any of the Processes that are needed. Please note that
this is not the case. Step by step approach of this chapter was chosen to introduce as
much clarity as possible, when describing Function Group State transition. Imple-
menters are free to parallelize as much steps (needed for state transition) as possible
for a particular implementation.

[SWS_EM_01067]{DRAFT} Finish of a successful state transition dWhen all op-
eration required for a state transition has been performed successfully, Execution
Management shall consider the transition to be complete, set the CurrentState to
the RequestedState and report success back to State Management.c(RS_EM_-
00101)

[SWS_EM_02297]{DRAFT} StateClient usage restriction dAdaptivePlatform
implementation shall only allow State Management to use interface implemented
in StateClient class.c(RS_EM_00101)

If not protected StateClient can be used to destabilise Machine, see Section 8.2.5
for more details.

53 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.6 Application Recovery Actions

7.6.1 Overview

Execution Management is responsible for the state dependent management of
Process start/stop, so it has to have the special right to start and stop Processes.

The Platform Health Management monitors Processes and could trigger a Re-
covery Action in case any Process behaves not within the specified parameters.

The Recovery Actions are defined by the integrator based on the software archi-
tecture requirements for the Platform Health Management and configured in the
Execution Manifest.

Figure 7.12: Adaptive Platform - Recovery Action Architecture

[SWS_EM_02257]{DRAFT} Recovery Action API Security dThe AdaptivePlat-
form implementation shall only allow Platform Health Management to use the
Process State Information and RecoveryAction APIs.c(RS_EM_00013)

54 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.6.2 Process State Information

7.6.2.1 Get Process States Information

[SWS_EM_02076]{DRAFT} Get Process States Information dExecution Man-
agement shall provide an inter functional cluster interface for Platform Health
Management to receive a list of all currently running Processes.c(RS_EM_00013)

7.6.2.2 Process State Transition Event

[SWS_EM_02077]{DRAFT} Process State Transition Event dExecution Man-
agement shall call an inter functional cluster interface provided by Platform Health
Management to report Process state changes.c(RS_EM_00013)

7.6.3 Recovery Actions

7.6.3.1 Process Restart

[SWS_EM_01016]{DRAFT} Process Restart dExecution Management shall pro-
vide an inter functional cluster interface to restart a specific Process on the request
from the Platform Health Management.c(RS_EM_00013)

[SWS_EM_01062]{DRAFT} Process Restart Behavior dExecution Management
shall restart a specific Process on the request from the Platform Health Man-
agement.c(RS_EM_00013)

[SWS_EM_01063]{DRAFT} Process Restart Failed dExecution Management
shall return an error code to the requester of the Process restart when the Process
restart could not be finished successfully.c(RS_EM_00013)

[SWS_EM_01064]{DRAFT} Process Restart Successful dWhen Execution Man-
agement succeeds with restarting the Process, a success code shall be returned to
the requester of the Process restart.c(RS_EM_00013)

Remark: The Process Restart IFC API is a powerfull but also a critical API. The inte-
grator should be sure about all consequences when using this API. Usually such an
API could be used to restart the State Manager, all other scenarious might become
complex.

7.6.3.2 Enter Unrecoverable State

[SWS_EM_02261]{DRAFT} Enter Unrecoverable State dExecution Management
shall provide an inter functional cluster interface to force Execution Management to
switch to the Unrecoverable State on the request from Platform Health Manage-
ment.c(RS_EM_00013)

55 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

[SWS_EM_02262]{DRAFT} Enter Unrecoverable State Behavior dThe Machine will
never return from this Unrecoverable State.c(RS_EM_00013)

The implementation of an Enter Unrecoverable State request could trigger the following
actions:

• call a "pre-cleanup action" to inform others about the switch to the Unrecoverable
State

• shutdown all processes

• call a "post-cleanup action" to set the machine in a physically known state, the
machine will NOT return from this State. However as explained in the limitation
above this is an example and NOT prescriptive.

Examples:

pre-cleanup action (optional):

• information another machine about the status

– for error reporting to the driver via the cluster display (Level 1,2)

– to activate a backup functionality (Level 4,5)

post-cleanup action (mandatory):

• to set the machine in a physically known state (switch the HW in a safe and stable
state)

• the Adaptive Application machine will NOT return from this State

56 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.7 Deterministic Execution

7.7.1 Determinism

In real-time systems, deterministic execution often means, that a calculation of a given
set of input data always produces a consistent output within a bounded time, i.e. the
behavior is reproducible.

In the context of Execution Management, the term “calculation” can apply to ex-
ecution of a thread, a Process, or a group of Processes. The calculation can be
event-driven or cyclic; i.e. time-driven.

It is also worthwhile to note that determinism must be distinguished from other non-
functional qualities like reliability or availability, which all deal in different ways with the
statistical risk of failures. Determinism does not provide such numbers, it only defines
the behavior in the absence of errors.

There are multiple elements in determinism and here we distinguish them as follows:

• Time Determinism: The output of the calculation is always produced before a
given deadline (a point in time).

• Data Determinism: Given the same input and internal state, the calculation al-
ways produces the same output.

• Full Determinism: Combination of Time and Data Determinism as defined above.

In particular, deterministic behavior is important for safety-critical systems, which may
not be allowed to deviate from the specified behavior at all. Whether Time Determin-
ism, or in addition Data Determinism is necessary to provide the required functionality
depends on the system and on the safety goals.

Expected use cases of the AUTOSAR Adaptive Platform where such determinism
is required include:

• Software Lockstep: To execute ASIL C/D applications with high computing perfor-
mance demands, specific measures, such as software lockstep are required, due
to high transient hardware error rates of high performance microprocessors. Soft-
ware lockstep is a technique where the calculation is done redundantly through
two different execution paths and the results are compared. To make the re-
dundant calculations comparable, software lockstep requires a fully deterministic
calculation. For details see 7.7.2.

• Reuse of verified software: The deterministic subsystem shows the same be-
havior on different platforms which satisfy the performance and resource needs
of the subsystem, regardless of other differences in each environment, such as
existence of unrelated applications. Examples include the different development
and simulation platforms. Due to reproducible functional behavior, many results
of testing, configuration and calibration of the subsystem are valid in each envi-
ronment where the subsystem is deployed on and don’t need to be repeated.

57 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.7.1.1 Time Determinism

Each time a calculation is started, its results are guaranteed to be available before
a specified deadline. To achieve this, sufficient and guaranteed computing resources
(processor time, memory, service response times etc.) should be assigned to the
software entities that perform the calculation. For more information on resources see
chapter 7.8.

Non-deterministic “best-effort” Processes can request guaranteed minimum re-
sources for basic functionality, and additionally can have maximum resources specified
for monitoring purposes. However, if Time Determinism is requested, the resources
must be guaranteed at any time, i.e. minimum and maximum resources are identical.

If the assumptions for deterministic execution are violated, e.g. due to a deadline
miss, this must be treated as an error and recovery actions must be initiated. In non-
deterministic “best-effort” subsystems such deadline violations or other deviations from
normal behavior sometimes can be tolerated and mitigated without dedicated error
management.

Fully-Deterministic behavior additionally requires Data Determinism, however in many
cases Time Determinism is sufficient.

7.7.1.2 Data Determinism

For Data Determinism, each time a calculation is started, its results only depend on the
input data. For a specific sequence of input data, the results always need to be exactly
the same, assuming the same initial internal state.

A common approach to verify Data Determinism in a safety context is the use of
lockstep mechanisms, where execution is done simultaneously through two different
paths and the result is compared to verify consistency. Hardware lockstep means that
the hardware has specific equipment to make this double-/multi-execution transparent.
Software lockstep is another technique that allows providing a similar property without
requiring the use of dedicated hardware.

Depending on the Safety Level, as well as the Safety Concept employed, software lock-
step may involve executing multiple times the same software, in parallel or sequentially,
but may also involve running multiple separate implementations of the same algorithm.

7.7.1.3 Full Determinism

For Full Determinism, each time a calculation is started, its results are available before
a specified deadline and only depend on the input data, i.e. both Time and Data
Determinism must be guaranteed.

58 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Currently, only Full Deterministic behavior of one Process is supported. Determinism
of a cluster of Processes on one or even several machines needs extensions of the
Communication Management, which have not been specified yet.

Non-deterministic behavior may arise from different reasons; for example insufficient
computing resources, or uncoordinated access of data, potentially by multiple threads
running on multiple processor cores. The order in which the threads access such data
will affect the result, which makes it non-deterministic (“race condition”).

A fully deterministic calculation must be designed, implemented and integrated in a
way such that it is independent of processor load caused by other functions and cal-
culations, sporadic unrelated events, race conditions, deviating random numbers etc.,
i.e. for the same input and initial conditions it always produces the same result within
a given time.

7.7.2 Redundant Deterministic Execution

As explained in 7.7.1, future systems need high computing performance in combina-
tion with high ASIL safety goals. In this chapter we specify mechanisms which support
deterministic multithread execution to support high performance software lockstep so-
lutions. Here are some additional rationales behind it:

• Safety goals for Highly Automated Driving (HAD) systems can be up to ASIL D.

• High Performance Computing (HPC) demands can only be met by non
automotive-grade, e.g. consumer electronics (CE), microprocessors, which have
high transient hardware error rates compared to automotive-grade microcon-
trollers. Most likely no such microprocessor is available for ASIL above B, at
least for the parts relevant to the design.

• To deal with high error rates, ASIL C/D HAD applications require specific mea-
sures, in particular software lockstep, where execution is done redundantly
through two different paths and the result is compared to detect errors.

• To make these redundant calculations comparable, software lockstep requires a
fully deterministic calculation as defined in 7.7.1.3.

• To meet HPC demands, highly predictable and reliable multi-threading must be
supported

Figure 7.13 shows a simplified example for a possible software lockstep architecture.

Two redundant Processes, which run in an internal cycle, get in each cycle the same
input data via regular interfaces of Communication Management and produce (in
the absence of errors) the same results, due to full deterministic execution.

Execution Management provides DeterministicClient APIs to support control
of the process-internal cycle, a deterministic worker pool, activation time stamps and

59 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

random numbers. In case of software lockstep, the DeterministicClient inter-
acts with an optional software lockstep framework to ensure identical behavior of the
redundantly executed Processes. DeterministicClient interacts with Commu-
nication Management to synchronize data handling with cycle activation.

For each execution cycle, the software lockstep framework synchronizes input data in
cooperation with Communication Management, makes sure that random numbers
and activation time stamps are identical for the redundantly executed Processes,
synchronizes triggering of execution, and compares the output to detect failures (e.g.
transient processor core or memory errors due to radiation) in one of the redundant
Processes. This infrastructure layer can span over multiple hardware instances and
is implementation specific.

Details of the software lockstep framework are out of scope of the Adaptive Platform
specification. The interaction with DeterministicClient and Communication
Management depends on hardware architecture and specific platform design and is
a USP of platform providers; so this can only be partly specified in later releases.

Communication Management

user process

software lockstep framework

synchronize input and redundant execution, compare output

input data output data

redundant user process

DeterministicClient

Communication Management

DeterministicClient

details not yet
specified

user process

producing
data

user process

consuming
data

data flow

synchronization with
activation cycle

synchronization with
activation cycle

Figure 7.13: Software Lockstep in a typical data flow processing

In case of restart of one of the Processes as an error recovery action due to errors
detected when comparing the results, the internal states (i.e. internal memory) need
to be resynchronized. To do so, both redundant Processes might need to be re-
initialized or even restarted.

Figure 7.14 zooms into one of the redundantly executed Processes.

The AUTOSAR Adaptive Platform needs to provide some library functions to sup-
port redundant deterministic execution with sufficient isolation. The library functions (
DeterministicClient) run in the context of the user Process.

60 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

user process

worker

RunWorkerPool()

GetActivationTime()
GetNextActivationTime()

GetRandom()

WaitForNextActivation()

DeterministicClient
provide activation cycle control, worker pool, random numbers, activation time

Service
Discovery

Init

Terminate

Run

worker

worker

worker

workerRegister
Services

no
interaction

Communication Management
service registration and discovery, provide stable input data, receive output data

ara::com ara::com

access input data publish output datasynchronization with
activation cycle

RunWorkerPool()

details not yet
specified

workers
joining

Figure 7.14: Cyclic Deterministic Execution

Cyclic Process behavior is controlled by a wait point API. The API returns a code
to control the process mode (register services/ service discovery/ init/ run/ terminate).
The execution is triggered by the DeterministicClient, depending on a defined
period or on received events. Within a Process, all input data is available via ara::com
(polling-based access only) when execution starts and is stable over one execution
cycle. For details see 7.7.3.1.

The workload can be deployed to a worker pool API, which allows deterministic execu-
tion of a set of container elements (e.g. data sets), which are processed in parallel by
the same runnable object (i.e. application function). The runnable object is not allowed
to exchange any information while it is running, i.e. it doesn’t access data which can be
altered by other instances of the runnable object to avoid race conditions. The runnable
object instances can physically run in parallel or sequentially in any order. For details
see 7.7.3.2.

Additional DeterministicClient APIs provide random numbers and activiation
time stamps. Common HAD algorithms use particle filters which require random num-
bers. If used from within the worker pool, the random numbers are assigned to specific
container elements to allow deterministic redundant execution. The activation time
stamps don’t change until the Process reaches its next wait point. For deterministic
redundant execution, random number seeds and time stamps need to be synchronized.
For details see 7.7.3.3 and 7.7.3.4.

61 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

At the end of the execution cycle, the Process returns to the wait point and waits for
the next activation.

The APIs of DeterministicClient are standardized and provide abstraction of the
application deployment on the actual hardware. The implementation is vendor specific
and needs to be configured at integration time individually for each Process which
uses it.

The DeterministicClient Class is only local to the Process. Therefore, there is
currently no security concern foreseen for this API.

Different variants of the DeterministicClient might work in a software lockstep
environment or stand-alone, to support cyclic execution and deterministic worker pools.

Figure 7.15: Deterministic Execution Interface

7.7.3 Cyclic Deterministic Execution

This section describes the APIs shown in Figure 7.14, and how they need to be used
by a Process to execute deterministically, so the Process can be transparently inte-
grated into a software lockstep environment.

62 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.7.3.1 Control of Cyclic Execution

Execution Management provides an API to trigger and control recurring, i.e. cyclic
execution of the main thread code within a Process.

[SWS_EM_01301] Cyclic Execution dExecution Management shall provide a
blocking wait point API DeterministicClient::WaitForNextActivation.c
(RS_EM_00052)

After the Process has been started by Execution Management, it re-
ports ExecutionState kRunning (see 7.4.1) and calls Deterministic-
Client::WaitForNextActivation.

The Process executes one cycle when Deterministic-
Client::WaitForNextActivation returns and then calls the API again to
wait for the next activation.

A return value controls the internal lifecycle (e.g. init, run, terminate) of the Process,
see Figure 7.14. The return codes are used to synchronize the behavior of two Pro-
cesses in case they are executed redundantly.

[SWS_EM_01302] Cyclic Execution Control dDeterministicClient::WaitForNextActivation
shall return a code to control the execution mode of the calling Process. Possible
codes are kRegisterServices, kServiceDiscovery, kInit, kRun, and kTerminate.c
(RS_EM_00052)

The Process returns to DeterministicClient::WaitForNextActivation af-
ter each of the following sequential steps:

Register Services – The Process registers its communication services, i.e. the ser-
vices it offers via Communication Management. This should be the only oc-
casion for performing service registering. No other functionality should be per-
formed in this step to limit resource consumption and runtime, so no dedicated
budget needs to be assigned.

Service Discovery – The Process does communication service discovery. This
should be the only occasion for performing service discovery, except a ser-
vice needs to be replaced later (see ([SWS_EM_01304]). No other functionality
should be performed in this step to limit resource consumption and runtime, so
no dedicated budget needs to be assigned.

Init – The Process initializes its internal data structures. The worker pool (see
7.7.3.2) can be accessed once or several time sequentially. A budget (see
7.7.3.5) needs to be assigned to the “Init” cycle.

Run – The Process performs one cycle of its normal cyclic execution. This can be
repeated indefinitely. The worker pool (see 7.7.3.2) can be accessed once or
several times sequentially within a cycle. A budget (see 7.7.3.5) needs to be
assigned.

63 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Terminate – The Process prepares to terminate. The actual termination is performed
according to [SWS_EM_01404] or [SWS_EM_01405], see section 7.4.2.

[SWS_EM_01303] Cyclic Execution Control Sequence dThe return code of Deter-
ministicClient::WaitForNextActivation shall follow this sequence: kRegis-
terServices, kServiceDiscovery, kInit, kRun, and kTerminate. Only the code kRun can
be returned repeatedly, i.e. more than once.c(RS_EM_00052)

[SWS_EM_01304] Service Modification dIn case a service which is accessed
by the Process needs to be replaced (e.g. due to unavailability) while the kRun
cycles are executed, DeterministicClient::WaitForNextActivation
shall return kServiceDiscovery once immediately after Deterministic-
Client::WaitForNextActivation is called, and then continue with the normal
kRun cycle.c(RS_EM_00052)

The service discovery update needs to be triggered by Communication Manage-
ment in an implementation specific way. Because the service discovery update runs
in addition to the kRun execution within a kRun cycle, the worst case execution time
estimation and budget assignment need to consider that kRun and kServiceDiscovery
might run sequentially within the configured execution cycle time (see below).

The point in time when DeterministicClient::WaitForNextActivation re-
turns with kRegisterServices, kServiceDiscovery, kInit, kRun (first kRun cycle only,
otherwise see below) or kTerminate is implementation specific. In case of redundant
execution, the sequences need to be synchronized.

The activation behavior of the kRun-cycles can be realized by Execution Manage-
ment together with the Communication Management as required by the safety con-
cept. Execution can be triggered via two distinct mechanisms.

• Periodic activation means that Deterministic-
Client::WaitForNextActivation returns periodically based on a defined
period.

• Event-triggered activation means that Deterministic-
Client::WaitForNextActivation returns based on the communication-
event-triggers that are configured for the Process from the outside via
Communication Management, e.g. by external units, events generated due
to the arrival of data or timer events. Details are out of scope of the Adaptive
Platform specification.

[SWS_EM_01351] Execution Cycle Time dDeterministicClient::WaitForNextActivation
shall return with kRun when a configurable cycle time “cycleTimeValue” (see De-
terministicClient) has been reached since the last return with kRun (except
the kRun-cycle needs to be interrupted or terminated by the implementation specific
activation control).c(RS_EM_00052)

64 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

[SWS_EM_01352]{DRAFT} Execution Cycle Timeout dIf the Process calls Deter-
ministicClient::WaitForNextActivation within a kRun cycle after the config-
ured cycle time “cycleTimeValue” has been exceeded since the last activation, Plat-
form Health Management shall be notified about the timeout to initiate appropriate
recovery actions.c(RS_EM_00052)

[SWS_EM_01353]{DRAFT} Event-triggered Cycle Activation dIf the
configured cycle time “cycleTimeValue” is zero, Deterministic-
Client::WaitForNextActivation shall be triggered by Communication
Management to start the next kRun cycle. The trigger conditions are implementation
specific and evaluated by Communication Management.c(RS_EM_00052)

This cyclic behavior can be used in a software lockstep environment to initialize and
trigger execution of redundant Processes and compare the results after a cycle has
finished. For redundant execution, the execution behavior and its budget (activation
timing, computing time, computing resources) should be explicitly visible at integration
time to configure Execution Management accordingly.

Execution Management together with Communication Management initiates
service discovery so that in total the behavior is deterministic. Optionally, e.g. if neces-
sary for a software lockstep implementation, all input data as received via Communi-
cation Management should be available when a cycle starts and guaranteed to be
deterministically consistent.

7.7.3.2 Worker Pool

[SWS_EM_01305] Worker Pool dExecution Management shall provide a blocking
API DeterministicClient::RunWorkerPool to run a deterministic worker pool
to be used within the Process execution cycle.c(RS_EM_00053)

The worker pool is triggered by the main-thread of the Process in a sequential order.
DeterministicClient::RunWorkerPool is blocking and therefore there is no parallelism
between the main-thread and the worker pool. The user Process is not allowed to
create threads on its own by using normal POSIX mechanisms to avoid the risk of
inducing indeterministic behavior.

DeterministicClient::RunWorkerPool registers a “worker” runnable object,
along with its parameter object. The parameter contains a set of objects, which are
processed in parallel by the same runnable object invoked from multiple workers (e.g.
based on POSIX threads) in the pool (see Figure 7.16). This means, the deterministic
worker pool is used to process a set of container elements, which are the parameters
to the worker. Each element in the container represents a job to be computed. The
deterministic distribution of the elements to individual workers is done by using the
container iterator.

[SWS_EM_01306] Processing Container Objects
dDeterministicClient::RunWorkerPool shall sequentially (using the itera-
tor of input parameter “container”) call a method workerRunnable(...) (input parameter

65 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

“runnableObj”) on every element of “container”, by using a worker pool of size
“numberOfWorkers”.c(RS_EM_00053)

The implementation and size of the worker pool (i.e. number of threads) is hidden from
the user. The Integrator decides about the size and the implementation and configures
a parameter “numberOfWorkers” (see DeterministicClient). The distribution of
the worker threads to processor cores is left to the Operating System.

worker

runnable

object

parameter

object

(container)

worker worker worker workerworker pool

iterator

1st set of

container

elements

2nd set of

container

elements

Figure 7.16: Worker Pool Usage

If the number of required container elements exceeds the number of workers (threads)
in the deterministic worker pool, Execution Management can use the worker pool
several times sequentially (with unrestricted interleaving), which shall be transparent
to the user of the worker pool.

To achieve Data Determinism, the parallel workers need to satisfy certain implemen-
tation properties, e.g. no exchange of data is allowed between the instances of the
runnable object which are processed by the workers. For details see [12]. Other, more
complex solutions which allow interaction between the workers would be possible, but
they increase complexity, reduce utilization and transparency, and are error-prone re-
garding the deterministic behavior.

The worker pool runs within the Process context of the caller of this API. It is designed
as part of Execution Management to guarantee the deterministic behavior by incor-
porating it in the DeterministicClient::WaitForNextActivation cycle.

66 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

An example for the implementation of a worker runnable object can be found in [12].

The aim is to abstract the data processing as far as possible, irrespective of the actual
number of available parallel execution paths. Example: a task with N similar subtasks
(e.g. N Kalman-filters). The task is assigned to the worker pool and the worker pool
processes it using a given worker runnable object (in this example the worker runnable
object would be the Kalman-filter).

The worker pool cannot be used to process multiple different tasks in parallel. The use
of multiple potentially different explicit functions (worker runnable objects) could add
unnecessary complexity and can lead to extremely heterogeneous runtime utilization,
as each worker may have different computing time. This would complicate the planning
of resource deployment, which is necessary for black-box integration.

7.7.3.3 Random Numbers

[SWS_EM_01308] Random Numbers dExecution Management shall provide an
API DeterministicClient::GetRandom which provides “Deterministic” random
numbers. ‘Deterministic” means, that the provided random numbers are identical for
Processes which are executed redundantly, including within runnable objects being
processed by a worker pool (see [SWS_EM_01305]).c(RS_EM_00053)

If used from within DeterministicClient::RunWorkerPool, the random num-
bers are assigned to specific container elements, using the container iterator, to allow
deterministic redundant execution.

The provision of the seeds for the pseudo random numbers generation is designed as
part of Execution Management to guarantee the deterministic behavior by incorpo-
rating it in the DeterministicClient::WaitForNextActivation cycle.

Implementations of DeterministicClient which do not need to support redundant
execution can provide standard random numbers without specific properties.

7.7.3.4 Time Stamps

The deterministic user Process might need timing information while cyclically (see
7.7.3.1) processing its input data in the kRun cycle. The used time value may have
an influence on the calculated results. Therefore, Execution Management returns
deterministic timestamps that represent the points in time when the current cycle was
activated and when the next cycle will be activated, if this value is known. The times-
tamps are required to be identical for Processes which are executed redundantly, e.g.
in a lockstep environment (see 7.7.2).

[SWS_EM_01310] Get Activation Time dExecution Management shall provide
an API DeterministicClient::GetActivationTime which provides a deter-
ministic timestamp that represents the point in time when the current kRun cy-
cle was activated by DeterministicClient::WaitForNextActivation (see

67 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

[SWS_EM_01301]). Deterministic means, that the timestamps are identical for Pro-
cesses which are executed redundantly. Subsequent calls within a cycle shall always
return the same value.c(RS_EM_00053)

[SWS_EM_01311] Activation Time Unknown dIf Deterministic-
Client::GetActivationTime is called from outside a kRun cycle, Execution
Management shall return kNotAvailable.c(RS_EM_00053)

[SWS_EM_01312] Get Next Activation Time dExecution Management shall pro-
vide an API DeterministicClient::GetNextActivationTime which provides
a deterministic timestamp that represents the point in time when the next kRun cy-
cle will be activated by DeterministicClient::WaitForNextActivation (see
[SWS_EM_01301]). Deterministic means, that the timestamps are identical for Pro-
cesses which are executed redundantly. Subsequent calls within a cycle shall always
return the same value.c(RS_EM_00053)

[SWS_EM_01313] Next Activation Time Unknown dIn case the next activation time
is not known when calling DeterministicClient::GetNextActivationTime,
e.g. because of non-equidistant event-triggered activation, Execution Management
shall return kNotAvailable.c(RS_EM_00053)

7.7.3.5 Real-Time Resources

To ensure Time Determinism (see 7.7.1.1), i.e. to make sure that a cyclic deterministic
execution within a Process (see 7.7.3.1) is finished at a given deadline we need:

• Execution Management supports deterministic multithreading to meet high
performance demand, see 7.7.3.2

• The integrator needs to assign appropriate resources to the Process.

• The integrator needs to assign appropriate scheduling policies. Details and op-
tions other than standard POSIX scheduling policies (see [SWS_EM_01014])
heavily depend on the used Operating System, are vendor specific, and are for
now out of scope of the Adaptive Platform specification.

• The integrator needs to configure deadline monitoring, possibly execution bud-
get monitoring, and appropriate recovery actions in case of violations. For more
details on resources see 7.8.

To make sure that all Processes which use the Deterministic-
Client APIs get enough computing resources and can finish their cy-
cle in time, it is in particular important to know when the worker pool
(DeterministicClient::RunWorkerPool) is needed within a kInit and kRun De-
terministicClient::WaitForNextActivation cycle. Also, a good computing
resource utilization can only be achieved if usage of the workers (i.e. of available
cores) can be distributed evenly over time. If the application code is known to the
integrator, it should not be a problem to analyze the behavior and configure the
system accordingly. However, if third party “black box” applications are delivered for

68 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

integration, their resource demands need to be described in a standardized way, so
the integrator has a rough idea about the distribution of resource consumption within a
DeterministicClient::WaitForNextActivation-cycle.

To describe budget needs within the kInit and kRun cycle, we use a normalized value
NormalizedInstruction to specifiy runtime consumption on the target system.

NormalizedInstruction = runtime in sec * clock frequency in Hz

NormalizedInstruction does not reflext the actual number of code instructions,
but allows the description of comparative resource needs.

The following parameters (DeterministicClientResource, see [TPS_MANI_-
01200] in [4]) are relevant for describing the computing time budget needs of a Pro-
cess which uses DeterministicClient::RunWorkerPool.

The parameters are needed to be specified twice per Process which uses Deter-
ministicClient, once for the kInit cycle and once for the kRun cycles (Determin-
isticClientResourceNeeds, and [TPS_MANI_01199]).

• numberOfInstructions [NormalizedInstructions]

This is the normalized runtime consumption on the target system within one cy-
cle, assuming the “worst-case” runtime where the workers would be executed
sequentially.

• speedup = sequental runtime / parallelized runtime

Defines how much faster the calculations within one cycle can be finished if num-
berOfWorkers (see 7.7.3.2) are physically available, i.e. if enough cores were
available on the machine to perform parallel execution of all workers.

• sequentialInstructionsBegin [NormalizedInstructions]

This is the normalized sequential runtime at the beginning of the cycle (which
mostly cannot be parallelized), before the main usage of the worker pool starts.

• sequentialInstructionsEnd [NormalizedInstructions]

This is the normalized sequential runtime at the end of the cycle (which mostly
cannot be parallelized), after the main usage of the worker pool has ended.

Examples

Example 7.4

The Process uses the worker pool mainly in the middle of the cycle. The first 100
(normalized) instructions are mostly sequential, the next 275 instructions have a benefit
when using the worker pool, and the last 125 instructions are mostly sequential again.
The average speedup, over the complete 500 instructions is 1.3.

69 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

• numberOfInstructions = 500

• numberOfWorkers = 2

• speedup = 1.3

• sequentialInstructionsBegin = 100

• sequentialInstructionsEnd = 125

NormalizedInstructions

begin of
cycle

end of
cycle

0 500375

workers main
thread

100

main
thread

Figure 7.17: Worker pool used in middle of cycle

Example 7.5

The Process runs sequentially throughout most of the cycle and does not benefit in
using the worker pool, i.e. the overhead of using the worker pool compensates the
parallelization gain.

• numberOfInstructions = 200

• numberOfWorkers = 2

• speedup = 1

• sequentialInstructionsBegin = 200

• sequentialInstructionsEnd = 0

begin of
cycle

end of
cycle

0 200

main thread

NormalizedInstructions

Figure 7.18: No benefit from worker pool

Example 7.6

70 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

The Process fully utilizes the worker pool throughout the cycle.

• numberOfInstructions = 200

• numberOfWorkers = 3

• speedup = 2.9

• sequentialInstructionsBegin = 0

• sequentialInstructionsEnd = 0

begin of
cycle

end of
cycle

0 200

workers

NormalizedInstructions

Figure 7.19: Full utilization of worker pool

71 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.8 Resource Limitation

Despite the correct behavior of a particular Adaptive Application in the system, it
is important to ensure any potentially incorrect behavior, as well as any unforeseen in-
teractions cannot cause interference in unrelated parts of the system [RS_EM_00002].
As AUTOSAR Adaptive Platform also strives to allow consolidation of several func-
tions on the same machine, ensuring Freedom From Interference is a key property to
maintain.

However, AUTOSAR Adaptive Platform cannot support all mechanisms as de-
scribed in this overview chapter in a standardized way, because the availability highly
depends on the used Operating System.

In addition, it is important to consider that Execution Management is only respon-
sible for the correct configuration of the Machine. However, enforcing the associated
restrictions is usually done by either the Operating System or another Applica-
tion like the Persistency service.

Some mechanisms that could be standardized will not yet be defined in this release.

7.8.1 Resource Configuration

This section provides an overview on resource assignment to Processes. The re-
sources considered in this specification are:

• RAM (e.g. for code, data, thread stacks, heap)

• CPU time

Other resources like persistent storage or I/O usage are also relevant, but are currently
out of scope for this specification.

In general, we need to distinguish between two resource demand values:

• Minimum resources, which need to be guaranteed so the process can reach its
Running state and perform its basic functionality.

• Maximum resources, which might be temporarily needed and shall not be ex-
ceeded at any time, otherwise an error can be assumed.

The following stakeholders are involved in resource management:

• Application Developer

The Application developer should know how much memory (RAM) and comput-
ing resources the Processes need to perform their tasks within a specific time.
This needs to be specified in the Application description (which can be the pre-
integration stage of the Execution Manifest) which is handed over to the
integrator. Additional constraints like a deadline for finishing a specific task, e.g.
cycle time, will usually also be configured here.

72 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

However, the exact requirements may depend on the specific use case, e.g.

– The RAM consumption might depend on the intended use, e.g. a video filter
might be configurable for different video resolutions, so the resource needs
might vary within a range.

– The computing power required depends on the processor type. i.e. the re-
source demands need to be converted into a computing time on that specific
hardware. Possible parallel thread execution on different cores also needs
to be considered here.

Therefore, while the Application developer should be able to bring estimates re-
garding the resource consumption, a precise usage cannot be provided out of
context.

• Integrator

The integrator knows the specific platform and its available resources and con-
straints, as well as other applications which may run at the same time as the
Processes to be configured. The integrator should assign available resources
to the applications which can be active at the same time, which is closely related
to State Management configuration, see section 7.5. If not enough resources
are available at any given time to fulfill the maximum resource needs of all run-
ning Processes, assuming they are actually used by the Processes, several
steps have to be considered:

– Assignment of resource criticality to Processes, depending on safety and
functional requirements.

– Depending on the Operating System, maximum resources which cannot be
exceeded by design (e.g. Linux cgroups) can be assigned to a process or a
group of Processes.

– A scheduling policy has to be applied, so threads of Processes with high
criticality get guaranteed computing time and finish before a given deadline,
while threads of less critical Processes might not. For details see section
7.8.3.1.

– If the summarized maximum RAM needs of all Processes, which can be
running in parallel at any given time, exceeds the available RAM, this cannot
be solved easily by prioritization, since memory assignment to low critical
Processes cannot just be removed without compromising the Process.
However, it should be ensured that Processes with high criticality have
ready access to their maximum resources at any time, while lower criticality
Processes need to share the remaining resources. For details see 7.8.3.4.

Based on the above, all the resource configuration elements are to be configured dur-
ing platform integration, most probably by the Integrator. To group these configuration
elements, we define a ResourceGroup. It may have several properties configured to
enable restricting Applications running in the group. Subsequently, each Process

73 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

is required to belong to a ResourceGroup, clarifying how the Application will be
constrained at the system level.

[SWS_EM_02102]{DRAFT} Memory control dExecution Management shall con-
figure the maximum amount of RAM available globally for all Processes belonging to
each ResourceGroup when defined in the configuration, before loading a Process
from this ResourceGroup.c(RS_EM_00005)

If a ResourceGroup does not have a configured RAM limit, then the Processes are
only bound by their implicit memory limit.

[SWS_EM_02103]{DRAFT} CPU usage control dExecution Management shall
configure the maximum amount of CPU time available globally for all Processes be-
longing to each ResourceGroup when defined in the configuration, before loading a
Process from this ResourceGroup.c(RS_EM_00005)

If ResourceGroup does not have a configured CPU usage limit, then the Processes
are only bound by their implicit CPU usage limit (priority, scheduling scheme...).

7.8.2 Resource Monitoring

As far as technically possible, the resources which are actually used by a Process
should be controlled at any given time. For the entire system, the monitoring part of
this activity is fulfilled by the Operating System. For details on CPU time monitoring
see 7.8.3.1. For RAM monitoring see 7.8.3.4. The monitoring capabilities depend on
the used Operating System. Depending on system requirements and safety goals,
an appropriate Operating System has to be chosen and configured accordingly, in
combination with other monitoring mechanisms (e.g. for execution deadlines) which
are provided by Platform Health Management.

Resource monitoring can serve several purposes, e.g.

• Detection of misbehavior of the monitored Process to initiate appropriate re-
covery actions, like Process restart or state change, to maintain the provided
functionality and guarantee functional safety.

• Protection of other parts of the system by isolating the erroneous Processes
from unaffected ones to avoid resource shortage.

For Processes which are attempting to exceed their configured maximum resource
needs (see 7.8.1), one of the following alternatives is valid:

• The resource limit violation or deadline miss is considered a failure and recovery
actions may need to be initiated. Therefore the specific violation gets reported to
the Platform Health Management, which then starts recovery actions which have
been configured beforehand. This will be the standard option for deterministic
subsystems (see 7.7.1).

74 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

• For Processes without hard deadlines, resource violations sometimes can be
mitigated without dedicated error recovery actions, e.g. by interrupting execution
and continue at a later point in time.

• If the OS provides a way to limit resource consumption of a Process or a group
of Processes by design, explicit external monitoring is usually not necessary
and often not even possible. Instead, the limitation mechanisms make sure that
resource availability for other parts of the system is not affected by failures within
the enclosed Processes. When such by-design limitation is used, monitoring
mechanisms may still be used for the benefit of the platform, but are not re-
quired. Self-monitoring and out-of-process monitoring is currently out-of-scope in
AUTOSAR Adaptive Platform.

7.8.3 Application-level Resource configuration

We need to be able to configure minimum, guaranteed resources (RAM, computing
time) and maximum resources. In case Time or Full Determinism is required, the
maximum resource needs are guaranteed.

7.8.3.1 CPU Usage

CPU usage is represented in a process by its threads. Generally speaking, Operat-
ing Systems use some properties of each thread’s configuration to determine when
to run it, and additionally constrain a group of threads to not use more than a defined
amount of CPU time. Because threads may be created at runtime, only the first thread
can be configured by Execution Management.

7.8.3.2 Core Affinity

[SWS_EM_02104]{DRAFT} Core affinity dExecution Management shall configure
the Core affinity of the Process initial thread restricting it to a sub-set of cores in the
system.c(RS_EM_00008)

Requirement [SWS_EM_02104] permits the initial thread (the “main” thread of the pro-
cess) to be bound to certain cores [SWS_OSI_01012]. Depending on the capabilities
of the Operating System the sub-set could be a single core. If the Operating
System does not support binding to specific cores then the only supported sub-set is
the entire set of cores.

75 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.8.3.3 Scheduling

Currently available POSIX-compliant Operating Systems offer the scheduling poli-
cies required by POSIX, and in most cases additional, but different and incompatible
scheduling strategies. This means for now, the required scheduling properties need to
be configured individually, depending on the chosen OS.

Moreover, scheduling strategy is defined per thread and the POSIX standard al-
lows for modifying the scheduling policy at runtime for a given thread, using
pthread_setschedparam(). It is therefore not currently possible for the AUTOSAR
Adaptive Platform to enforce a particular scheduling strategy for an entire pro-
cess, but only for its first thread.

[SWS_EM_01014]{DRAFT} Scheduling policy dExecution Management shall
support the configuration of the scheduling policy when launching a Process, based
on information provided by the Execution Manifest.c(RS_EM_00002)

For the detailed definitions of these policies, refer to [13]. Note, SCHED_OTHER shall be
treated as non real-time scheduling policy, and actual behavior of the policy is imple-
mentation specific. It should not be assumed that the scheduling behavior is compatible
between different AUTOSAR Adaptive Platform implementations, except that it is
a non real-time scheduling policy in a given implementation.

• [SWS_EM_01041]{DRAFT} Scheduling FIFO dExecution Management
shall be able to configure FIFO scheduling using policy SCHED_FIFO.c(RS_EM_-
00002)

• [SWS_EM_01042]{DRAFT} Scheduling Round-Robin dExecution Man-
agement shall be able to configure round-robin scheduling using policy
SCHED_RR.c(RS_EM_00002)

• [SWS_EM_01043]{DRAFT} Scheduling Other dExecution Management
shall be able to configure non real-time scheduling using policy SCHED_OTHER.c
(RS_EM_00002)

While scheduling policies are not a sufficient method to guarantee Full Determinism,
they contribute to improve it. While the aim is to limit CPU time for a process, schedul-
ing policies apply to threads.

Note that while Execution Management will ensure the proper configuration for the
first thread (that calls the main() function), it is the responsibility of the Process itself
to properly configure secondary threads.

[SWS_EM_01015]{DRAFT} Scheduling priority dExecution Management shall
support the configuration of a scheduling priority when launching a Process, based
on information provided by the Execution Manifest.c(RS_EM_00002)

The available priority range and actual meaning of the scheduling priority depends
on the selected scheduling policy, see [constr_1692], [TPS_MANI_01061] and [TPS_-
MANI_01188] in [4].

76 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.8.3.3.1 Resource Management

In general, for deterministic behavior the required computing time is guaranteed and
violations are treated as error, while best-effort subsystems are more robust and might
be able to mitigate sporadic violations, e.g. by continuing the calculation at the next
activation, or by providing a result of lesser quality. This means, if time (e.g. deadline
or runtime budget) monitoring is in place, the reaction on deviations is different for
deterministic and best-effort subsystems.

In fact, it may not even be necessary to monitor best-effort subsystems, since they by
definition are doing only a function that may not succeed. This leads to an architecture
where monitoring is a voluntary, configured property.

The remaining critical property however is to guarantee that a particular process or set
of processes cannot adversely affect the behavior of other processes.

To guarantee Full Determinism for the entire system, it is important to ensure Freedom
from Interference, which the ResourceGroup contribute to ensure.

[SWS_EM_02106]{DRAFT} ResourceGroup assignment dExecution Manage-
ment shall configure the Process according to its ResourceGroup membership.c
(RS_EM_00005)

7.8.3.4 Memory Budget and Monitoring

To render a function, a Process requires the availability of some amount of memory
for its usage (mainly code, data, heap, thread stacks). Over the course of its execution
however, not all of this memory is required at all times, such that an OS can take
advantage of this property to make these ranges of memory available on-demand, and
provide them to other Processes when the memory is no longer used.

While this has clear advantages in terms of system flexibility as well as memory effi-
ciency, it is also in the way of both Time Determinism and Full Determinism: when a
range of memory that was previously unused should now be made available, the OS
may have to execute some amounts of potentially-unbounded activities to make this
memory available. Often, the reverse may also be happening, removing previously
available (but unused) memory from the Process under scope, to make it available to
other Processes. This is detrimental to an overall system determinism.

Execution Management should ensure that the entire memory range that determin-
istic Processes may be using is available at the start and for the whole duration of the
respective Process execution.

Applications not configured to be deterministic may be mapped on-demand.

In order to provide sufficient memory at the beginning of the execution of a Process,
some properties may need to be defined for each Process.

77 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

[SWS_EM_02107]{DRAFT} Maximum heap dExecution Management shall con-
figure the Maximum heap usage for the Process.c(RS_EM_00005)

Heap memory is used for dynamic memory allocation inside a Process e.g. through
malloc()/free() and new/delete.

[SWS_EM_02108]{DRAFT} Maximum system memory usage dExecution Man-
agement shall configure the Maximum system memory usage of the Process.c(RS_-
EM_00005)

System memory can be used to create extra resources like file handles or semaphores,
as well as creating new threads.

[SWS_EM_02109]{DRAFT} Process pre-mapping dExecution Management
shall pre-map a Process if required by the corresponding Execution Manifest.c
(RS_EM_00005)

Fully pre-mapping a Process ensures that code and data execution is not going to be
delayed at its first execution by demand-loading. This helps providing Time Determin-
ism during system startup and first execution phases, but also helps with safety where
code handling error cases can be preloaded and made guaranteed to be available. In
addition, pre-mapping avoids late issues where filesystem may be corrupted and part
of the Process may not be loadable anymore.

7.8.3.5 Working Folder

The working folder of a process is not defined by configuration but rather is deliberately
left as an implementation-specific element. The required PSE51 POSIX profile does
not define that an (Adaptive) Application may use the path or file argument for any
function using a file pathname (e.g., open), instead only to specify the name of the
object without any file system semantics implied.

78 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.9 Fault Tolerance

7.9.1 Introduction

What is Fault-Tolerance?

The method of coping with faults within a large-scale software system is termed fault
tolerance.

The model adopted for Execution Management is outlined in [14].

This section provides context to the application of fault tolerance concepts with respect
to Execution Management and perspective on how this contributes in overall plat-
form instance’s dependability.

Platform-wide Service Oriented Architecture fault tolerance aspects are outside the
scope of this document and are not further addressed.

7.9.2 Scope

Execution Management has a crucial influence on overall system behavior of the
AUTOSAR Adaptive Platform.

The effect of erroneous functionality, within Execution Management can have very
different severity depending on operational mode and fault type. For example, a fault
identified by Execution Management may have a local effect, influencing an inde-
pendent process only, or may become a root cause for a Machine wide failures.

It is therefore necessary to not only specify correct behavior but also to introduce alter-
native behavior in case of deviations.

Such mechanisms address a broad spectrum of concerns that emerge during Ma-
chine and Process Life Cycle Management.

The AUTOSAR Adaptive Platform architecture is composed of two levels; Appli-
cation and Platform Instance. The Application level constitutes cooperative
Applications intended to satisfy overal system’s needs and objectives and repre-
sents a service level in vehicle context. The Platform Instance level as a reusable
asset providing basic capabilities and platform level services. Fault tolerance within
Execution Management is therefore required to handle both levels.

7.9.3 Threat Model

The main threats which leading to incorrect behavior of software - whether Appli-
cation or Platform Instance - is the presence of systematic defects or faults
i.e. those incorporated during design phase and remaining dormant untill deployment.
Other sources of faults include physical faults, e.g. random hardware failures, that

79 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

might influence resource allocation and correct execution, and interraction faults which
can be a source for incorrect state transition requests.

Figure 7.20: General Fault Tolerance scheme.

From the perspective of Execution Management, fault activation occures when re-
sulting Function Group State or combination of such is requested. Due to the
different nature of faults, these can lead to various types of deviations from expected
functional behavior and finally result in erroneous system functionality either in terms
of correct computational results or timing response.

In general, the implementation of fault tolerance mechanism is based on two consistent
steps - Error Detection and subsequent Error Recovery. The major focus of
Error Detection during Design Phase activities and thus the focus of Fault
Tolerance in this specification is on the analysis of potential Failure Modes and
the consequent error detection mechanisms that should later be incorporated into the
implementation.

In contrast, Error Recovery consists of actions that should be taken in order to
restore the system’s state where the system can once again perform correct service
delivery. Binding of Error Detection and Recovery Actions should be a subject
of platform wide fault tolerance model.

Remark:The remainder of this section is the subject for elaboration for the next release
of this specification. Provision for fault-tolerance mechanisms will consider possible
faults, how they can lead to errors within Execution Management and the mecha-
nisms that are introduced to ensure error detection.

80 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.10 Security

7.10.1 Trusted Platform

From a security perspective, it is essential that all software executed on the Adaptive
Platform is trusted, i.e. the integrity and authenticity of the software is ensured.
Execution Management - as the entity responsible for Process creation - shall
take over this task.

A key requirement for a trusted Adaptive Platform is a Trust Anchor on the Machine
that is authentic by definition (hence that alternative name, "root of trust"). A Trust
Anchor is often realized as a public key stored in a secure environment, e.g. in non-
modifiable persistent memory or in an HSM. The trust has to be passed to Execution
Management by appropriate means, e.g. by a chain of trust. If the Machine does not
exhibit a Trust Anchor, it cannot be ensured that the Adaptive Platform is trusted.

[SWS_EM_02299]{DRAFT} Availability of a Trust Anchor dIf there is no Trust
Anchor available on the Machine, the following requirements may be ignored:
[SWS_EM_02300], [SWS_EM_02301], [SWS_EM_02302], [SWS_EM_02303],
[SWS_EM_02304], [SWS_EM_02305], [SWS_EM_02306], [SWS_EM_02307],
[SWS_EM_02308], [SWS_EM_02309].c(RS_EM_00014)

There are many ways to verify the integrity and authenticity of the Adaptive Platform.
A Trusted Platform can be realized e.g. (but not limited to) by

• Verification of the complete Ramdisk by the Bootloader

• Verification of individual Executables and data files, e.g. using OS-
functionalities or a trusted third-party process

• Verification of individual memory pages upon being loaded, e.g. using OS-
functionalities or a trusted third-party process

[SWS_EM_02300]{DRAFT} Integrity and Authenticity of processed Machine
Manifest dExecution Management shall ensure that the integrity and authentic-
ity of the processed Machine Manifest are checked.c(RS_EM_00014)

[SWS_EM_02301]{DRAFT} Integrity and Authenticity of each Executable dExe-
cution Management shall ensure that for every Process that is about to be started,
the integrity and authenticity of the Executable itself are checked.c(RS_EM_00014)

[SWS_EM_02302]{DRAFT} Integrity and Authenticity of shared objects dExecu-
tion Management shall ensure that for every Process that is about to be started,
the integrity and authenticity of each related shared object are checked.c(RS_EM_-
00014)

[SWS_EM_02303]{DRAFT} Integrity and Authenticity of processed Execution
Manifests dExecution Management shall ensure that for every Process that is
about to be started, the integrity and authenticity of its corresponding processed Exe-
cution Manifests are checked.c(RS_EM_00014)

81 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

[SWS_EM_02304]{DRAFT} Integrity and Authenticity of processed Service
Instance Manifests dExecution Management shall ensure that for every Pro-
cess that is about to be started, the integrity and authenticity of its corresponding
processed Service Instance Manifests are checked.c(RS_EM_00014)

From a security perspective, the rationale for choosing these items is as follows:

• Executables: Modifying the Executable itself allows an attacker to execute ar-
bitrary code on the machine;

• Manifests: Machine Manifests, Execution Manifests and Service
Instance Manifests describe what and how something should be executed
and are thus an obvious attack vector on the Adaptive Platform;

• Shared Objects: Shared objects contain Executable code that is executed
within the context of the Process. A modified shared object could consequently
be used to compromise the system.

In order to establish a Trusted Platform, it must be ensured that only trusted soft-
ware is launched. Therefore, a system designer has to ensure that Execution Man-
agement is started authentically. For instance, this could be realized by a chain of trust
as described in [15].

Execution Management in turn shall ensure that all Executable code on the
Adaptive Platform is authenticated before being executed. The complete authenticated
start-up sequence looks like this:

82 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Trust Anchor authenticates and starts Bootloader

OS authenticates and starts Execution Management

Execution Management authenticates the Processed Manifests, reads

them and determines the application startup order based on the

dependency description.

After successful authentication of Execution Manifest and Application

Executables, processes of Application Executables are instantiated

based on the startup order.

Other Adaptive Platform Foundation modules are also started as

they are Applications described with Manifests

Bootloader authenticates and starts OS

Figure 7.21: Authenticated start-up sequence

The integrity and authenticity of persistent data stored by applications is not considered
here. The Functional Cluster Persistency takes care of the integrity of this data.

7.10.1.1 Handling of failed authenticity checks

If the integrity and authenticity has been verified successfully, the system shall continue
with its regular start-up process. If the integrity and authenticity check has failed, how-
ever, Execution Management shall offer a configuration option on how to proceed
with the start-up process.

[SWS_EM_02305]{DRAFT} Failed authenticity checks dExecution Management
shall offer two modes for handling failed authenticity checks: Monitoring Mode and
Strict Mode.c(RS_EM_00014)

The configuration of the two modes is done via the Machine Manifest. The configu-
ration option shall only be processed after the integrity and authenticity of the Machine
Manifest have been verified.

[SWS_EM_02306]{DRAFT} Machine Manifest dExecution Management shall
stop the start-up sequence of the Adaptive Platform if the integrity or authenticity check
of the processed Machine Manifest has failed.c(RS_EM_00014)

83 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

7.10.1.1.1 Monitoring Mode

In Monitoring Mode, the integrity and authenticity checks are performed, but the start-
up process is not affected. Hence, the Adaptive Platform starts up even if the file
system has been compromised.

Monitoring Mode is useful when the integrator wants the system to keep running, even if
the platform is not considered trusted. In this case, the integrator might use additional
measures outside the scope of Adaptive AUTOSAR, like e.g. restricted key access
when using an HSM that supports this feature.

Monitoring Mode is also useful during development phase, when frequent changes on
the Adaptive Platform are performed and keeping the authentication tag (e.g. signa-
tures) valid is a tedious task.

7.10.1.1.2 Strict Mode

In Strict Mode, the Adaptive Platform ensures that no Processes are executed, where
the integrity and authenticity of the corresponding Executable, manifests or linked
library could not be verified.

[SWS_EM_02307]{DRAFT} Strict Mode - Execution manifest dIn Strict Mode, Ex-
ecution Management shall not initiate the execution of an Executable if the integrity
or authenticity check of the corresponding processed Execution Manifest has
failed.c(RS_EM_00014)

[SWS_EM_02308]{DRAFT} Strict Mode - Service Instance manifests dIn Strict
Mode, Execution Management shall not initiate the execution of an Executable if
the integrity or authenticity check of at least one of the corresponding processed Ser-
vice Instance Manifests has failed.c(RS_EM_00014)

[SWS_EM_02309]{DRAFT} Strict Mode - Executables dIn Strict Mode, Execution
Management shall execute code only if its integrity and authenticity check was suc-
cessful.c(RS_EM_00014)

Executable code can be provided by executables, but also by shared objects that are
linked by the executable.

Example: Consider an Adaptive Platform in Strict Mode. Execution Management
has started several Executables after successfully verifying the integrity and authen-
ticity of the Executable, its related shared objects and its processed Execution
Manifest. Now, Execution Management wants to start another Executable,
where the authenticity check has failed. Execution Management does not launch
this Executable, because it is not trusted. The other Executables that passed the
authenticity check may however continue to run. When Execution Management at-
tempts to start another Executable it can be started as long as all authenticity checks
are passed.

84 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

8 API specification

8.1 Type Definitions

8.1.1 ExecutionState

[SWS_EM_02000]{DRAFT} d

Kind: enumeration

Symbol: ara::exec::ExecutionState

Scope: namespace ara::exec

Underlying type: uint8_t

Syntax: enum class ExecutionState : uint8_t {...};

kRunning= 0 After a Process has been started by Execution
Management, it reports ExecutionState kRunning.

Values:

kTerminating= 1 On receipt of SIGTERM, a Reporting Process
acknowledges the request (by reporting k
Terminating to Execution Management.

Header file: #include "ara/exec/execution_client.h"

Description: Defines the internal states of a Process (see 7.3.1). Scoped Enumeration of uint8_t .

c(RS_EM_00103)

Please note that ExecutionState includes only states reportable by the Process to
Execution Management and therefore does not include enumerations e.g. the "Ini-
tializing" state mentioned in figure 7.3 and 7.9, which are an implied states for Execu-
tion Management. The Initializing state starts when Process is first scheduled (so
no code executed yet) and ends when kRunning is reported ([SWS_EM_01004]). The
Terminating state starts when Process first reports kTerminating or termination
is requested by Execution Management and ends when the Process terminates
([SWS_EM_01404] and [SWS_EM_01405]). For the reasons mentioned, Execution
Management assumes that Process is in initializing state until kRunning will be re-
ported by it.

8.1.2 ActivationReturnType

[SWS_EM_02201]{DRAFT} d

Kind: enumeration

Symbol: ara::exec::ActivationReturnType

Scope: namespace ara::exec

Underlying type: uint8_t

5

85 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Syntax: enum class ActivationReturnType : uint8_t {...};

kRegisterServices= 0 application shall register communication
services(this must be the only occasion for
performing service registering)

kServiceDiscovery= 1 application shall do communication service
discovery (this must be the only occasion for
performing service discovery)

kInit= 2 application shall initialize its internal data structures
(once)

kRun= 3 application shall perform its normal operation

Values:

kTerminate= 4 application shall terminate

Header file: #include "ara/exec/deterministic_client.h"

Description: Defines the return codes for WaitForNextActivation operations. Scoped Enumeration of uint8_t .

c(RS_EM_00052)

8.1.3 ActivationTimeStampReturnType

[SWS_EM_02202]{DRAFT} d

Kind: enumeration

Symbol: ara::exec::ActivationTimeStampReturnType

Scope: namespace ara::exec

Underlying type: uint8_t

Syntax: enum class ActivationTimeStampReturnType : uint8_t {...};

kSuccess= 0 –Values:
kNotAvailable= 1 –

Header file: #include "ara/exec/deterministic_client.h"

Description: Defines the return codes for "get activation timestamp" operations. Scoped Enumeration of
uint8_t .

c(RS_EM_00053)

8.2 Class Definitions

8.2.1 ExecutionClient class

The Execution State API provides the functionality for a Process to report its state to
the Execution Management.

[SWS_EM_02001]{DRAFT} d

86 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Kind: class

Symbol: ara::exec::ExecutionClient

Scope: namespace ara::exec

Syntax: class ExecutionClient final {...};

Header file: #include "ara/exec/execution_client.h"

Description: Class to implement operations on Execution Client. .

c(RS_EM_00103)

8.2.1.1 ExecutionClient::ExecutionClient

[SWS_EM_02030]{DRAFT} d

Kind: function

Symbol: ara::exec::ExecutionClient::ExecutionClient()

Scope: class ara::exec::ExecutionClient

Syntax: ExecutionClient () noexcept;

Exception Safety: noexcept

Header file: #include "ara/exec/execution_client.h"

Description: Constructor that creates the Execution Client. .

Notes: Constructor for ExecutionClient which opens the Execution Management communication
channel (e.g. POSIX FIFO) for reporting the Execution State. Each Process shall create an
instance of this class to report its state

c(RS_EM_00103)

8.2.1.2 ExecutionClient::~ExecutionClient

[SWS_EM_02002]{DRAFT} d

Kind: function

Symbol: ara::exec::ExecutionClient::~ExecutionClient()

Scope: class ara::exec::ExecutionClient

Syntax: ~ExecutionClient () noexcept;

Exception Safety: noexcept

Header file: #include "ara/exec/execution_client.h"

Description: Destructor of the Execution Client instance. .

c(RS_EM_00103)

8.2.1.3 ExecutionClient::ReportExecutionState

[SWS_EM_02003]{DRAFT} d

87 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Kind: function

Symbol: ara::exec::ExecutionClient::ReportExecutionState(ExecutionState state)

Scope: class ara::exec::ExecutionClient

Syntax: ara::core::Result<void> ReportExecutionState (ExecutionState state)
const noexcept;

Parameters (in): state Value of the Execution State

Return value: ara::core::Result< void > An instance of ara::core::Result. The instance holds
an ErrorCode containing either one of the specified
errors or a void-value.

Exception Safety: noexcept

Errors: ara::exec::ExecErrc::kGeneralError if some unspecified error occurred

Header file: #include "ara/exec/execution_client.h"

Description: Interface for a Process to report its internal state to Execution Management.

c(RS_EM_00103)

8.2.2 DeterministicClient class

The DeterministicClient class provides the functionality for an Application to
run a cyclic deterministic execution, see 7.7.3. Each Process which needs support
for cyclic deterministic execution has to instantiate this class.

[SWS_EM_02210] d

Kind: class

Symbol: ara::exec::DeterministicClient

Scope: namespace ara::exec

Syntax: class DeterministicClient {...};

Header file: #include "ara/exec/deterministic_client.h"

Description: Class to implement operations on Deterministic Client .

c(RS_EM_00052)

8.2.2.1 DeterministicClient::DeterministicClient

[SWS_EM_02211] d

Kind: function

Symbol: ara::exec::DeterministicClient::DeterministicClient()

Scope: class ara::exec::DeterministicClient

Syntax: DeterministicClient () const noexcept;

Exception Safety: noexcept

5

88 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Header file: #include "ara/exec/deterministic_client.h"

Description: Constructor for DeterministicClient which opens the Execution Management communication
channel (e.g. POSIX FIFO) to access a wait point for cyclic execution, a worker pool,
deterministic random numbers and time stamps .

c(RS_EM_00052, RS_EM_00053)

8.2.2.2 DeterministicClient::~DeterministicClient

[SWS_EM_02215] d

Kind: function

Symbol: ara::exec::DeterministicClient::~DeterministicClient()

Scope: class ara::exec::DeterministicClient

Syntax: ~DeterministicClient () const noexcept;

Exception Safety: noexcept

Header file: #include "ara/exec/deterministic_client.h"

Description: Destructor of the Deterministic Client instance .

c(RS_EM_00052, RS_EM_00053)

8.2.2.3 DeterministicClient::WaitForNextActivation

[SWS_EM_02216] d

Kind: function

Symbol: ara::exec::DeterministicClient::WaitForNextActivation()

Scope: class ara::exec::DeterministicClient

Syntax: ActivationReturnType WaitForNextActivation () const noexcept;

Return value: ActivationReturnType –

Exception Safety: noexcept

Header file: #include "ara/exec/deterministic_client.h"

Description: Blocks and returns with a process control value when the next activation is triggered by the
Runtime .

c(RS_EM_00052)

8.2.2.4 DeterministicClient::RunWorkerPool

[SWS_EM_02220] d

89 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Kind: function

Symbol: ara::exec::DeterministicClient::RunWorkerPool(Worker &runnableObj, Container &container)

Scope: class ara::exec::DeterministicClient

Syntax: Void RunWorkerPool (Worker &runnableObj, Container &container) const
noexcept;

runnableObj Object that provides a method called
worker-Runnable (...), which will be called on every
container element

Parameters (in):

container C++ container which supports a standard iterator
interface with - begin() - end() - operator*()
operator++

Return value: Void –

Exception Safety: noexcept

Header file: #include "ara/exec/deterministic_client.h"

Description: Uses a worker pool to call a method Worker::workerRunnable (...) for every element of the
container. The sequential iteration is guaranteed by using the container++ operator. The API
guarantees that no other iteration scheme is used .

c(RS_EM_00053)

8.2.2.5 DeterministicClient::GetRandom

[SWS_EM_02225] d

Kind: function

Symbol: ara::exec::DeterministicClient::GetRandom()

Scope: class ara::exec::DeterministicClient

Syntax: uint64_t GetRandom () const noexcept;

Return value: uint64_t uint64_t 64 bit uniform distributed pseudo random
number

Exception Safety: noexcept

Header file: #include "ara/exec/deterministic_client.h"

Description: This returns ‘Deterministic’ random numbers. Deterministic’ means, that the returned random
numbers are identical within redundant DeterministicClient::WaitForNextActivation() cycles,
which are used within redundantly executed Process .

c(RS_EM_00053)

8.2.2.6 DeterministicClient::GetActivationTime

[SWS_EM_02230] d

90 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Kind: function

Symbol: ara::exec::DeterministicClient::GetActivationTime(TimeStamp)

Scope: class ara::exec::DeterministicClient

Syntax: ActivationTimeStampReturnType GetActivationTime (TimeStamp) const
noexcept;

DIRECTION NOT
DEFINED

TimeStamp –

Return value: ActivationTimeStampReturnType –

Exception Safety: noexcept

Header file: #include "ara/exec/deterministic_client.h"

Description: This provides the timestamp that represents the point in time when the activation was triggered
by \DeterministicClient::WaitForNextActivation() with return value kRun. Subsequent calls
within an activation cycle will always provide the same value. The same value will also be
provided within redundantly executed Processes .

c(RS_EM_00053)

8.2.2.7 DeterministicClient::GetNextActivationTime

[SWS_EM_02235] d

Kind: function

Symbol: ara::exec::DeterministicClient::GetNextActivationTime(TimeStamp)

Scope: class ara::exec::DeterministicClient

Syntax: ActivationTimeStampReturnType GetNextActivationTime (TimeStamp) const
noexcept;

DIRECTION NOT
DEFINED

TimeStamp –

Return value: ActivationTimeStampReturnType –

Exception Safety: noexcept

Header file: #include "ara/exec/deterministic_client.h"

Description: This provides the timestamp that represents the point in time when the next activation will be
triggered by \ARApiRef{DeterministicClient::WaitForNextActivation}() with return value kRun.
Subsequent calls within an activation cycle will always provide the same value. The same value
will also be provided within redundantly executed RefES{Process} .

c(RS_EM_00053)

8.2.3 FunctionGroup class

An instance of this class will represent Function Group defined inside meta-model
(ARXML). This class is intended to be an implementation specific representation, of
information inside meta-model. Once created based on ARXML path, it’s internal value
stay bounded to it for entire lifetime of a object.

[SWS_EM_02263]{DRAFT} d

91 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Kind: class

Symbol: ara::exec::FunctionGroup

Scope: namespace ara::exec

Syntax: class FunctionGroup {...};

Header file: #include "ara/exec/state_client.h"

Description: Class representing Function Group defined in meta-model (ARXML).

Notes: Once created based on ARXML path, it’s internal value stay bounded to it for entire lifetime of
an object.

c(RS_EM_00101)

8.2.3.1 FunctionGroup::Preconstruct

[SWS_EM_02264]{DRAFT} d

Kind: function

Symbol: ara::exec::FunctionGroup::Preconstruct(ara::core::StringView metaModelIdentifier)

Scope: class ara::exec::FunctionGroup

Syntax: static Result<FunctionGroup::CtorToken> Preconstruct
(ara::core::StringView metaModelIdentifier) noexcept;

Parameters (in): metaModelIdentifier stringified meta model identifier (short name path)
where path separator is ’/’.

Return value: Result< FunctionGroup::CtorToken > a construction token from which an instance of
FunctionGroup can be constructed, or ExecErrc
error.

Exception Safety: noexcept

Thread Safety: Thread-safe

ara::exec::ExecErrc::kMetaModelError if metaModelIdentifier passed is incorrect (e.g.
FunctionGroupState identifier has been passed).

Errors:

ara::exec::ExecErrc::kGeneralError if any other error occurs.

Header file: #include "ara/exec/state_client.h"

Description: Pre construction method for FunctionGroup.

This method shall validate/verify meta-model path passed and perform any operation that could
fail and are expected to be performed in constructor.

c(RS_EM_00101)

8.2.3.2 FunctionGroup::FunctionGroup

[SWS_EM_02265]{DRAFT} d

92 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Kind: function

Symbol: ara::exec::FunctionGroup::FunctionGroup(FunctionGroup::CtorToken &&token)

Scope: class ara::exec::FunctionGroup

Syntax: FunctionGroup (FunctionGroup::CtorToken &&token) noexcept;

Parameters (in): token representing pre-constructed object.

Exception Safety: noexcept

Header file: #include "ara/exec/state_client.h"

Description: Constructor that creates FunctionGroup instance.

Notes: Please note that token is destructed during object construction!

c(RS_EM_00101)

8.2.3.3 FunctionGroup::~FunctionGroup

[SWS_EM_02266]{DRAFT} d

Kind: function

Symbol: ara::exec::FunctionGroup::~FunctionGroup()

Scope: class ara::exec::FunctionGroup

Syntax: ~FunctionGroup () noexcept;

Exception Safety: noexcept

Header file: #include "ara/exec/state_client.h"

Description: Destructor of the FunctionGroup instance.

c(RS_EM_00101)

8.2.3.4 FunctionGroup::operator==

[SWS_EM_02267]{DRAFT} d

Kind: function

Symbol: ara::exec::FunctionGroup::operator==(FunctionGroup const &other)

Scope: class ara::exec::FunctionGroup

Syntax: bool operator== (FunctionGroup const &other) const noexcept;

Parameters (in): other FunctionGroup instance to compare this one with.

Return value: bool true in case both FunctionGroups are representing
exactly the same meta-model element, false
otherwise.

Exception Safety: noexcept

Thread Safety: Thread-safe

Header file: #include "ara/exec/state_client.h"

5

93 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Description: eq operator to compare with other FunctionGroup instance.

c(RS_EM_00101)

8.2.3.5 FunctionGroup::operator!=

[SWS_EM_02268]{DRAFT} d

Kind: function

Symbol: ara::exec::FunctionGroup::operator!=(FunctionGroup const &other)

Scope: class ara::exec::FunctionGroup

Syntax: bool operator!= (FunctionGroup const &other) const noexcept;

Parameters (in): other FunctionGroup instance to compare this one with.

Return value: bool false in case both FunctionGroups are representing
exactly the same meta-model element, true
otherwise.

Exception Safety: noexcept

Thread Safety: Thread-safe

Header file: #include "ara/exec/state_client.h"

Description: uneq operator to compare with other FunctionGroup instance.

c(RS_EM_00101)

8.2.4 FunctionGroupState class

An instance of this class will represent Function Group State defined inside meta-
model (ARXML). This class is intended to be an implementation specific representa-
tion, of information inside meta-model. Once created based on ARXML path, it’s inter-
nal value stay bounded to it for entire lifetime of a object.

[SWS_EM_02269]{DRAFT} d

Kind: class

Symbol: ara::exec::FunctionGroupState

Scope: namespace ara::exec

Syntax: class FunctionGroupState {...};

Header file: #include "ara/exec/state_client.h"

Description: Class representing Function Group State defined in meta-model (ARXML).

Notes: Once created based on ARXML path, it’s internal value stay bounded to it for entire lifetime of
an object.

c(RS_EM_00101)

94 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

8.2.4.1 FunctionGroupState::Preconstruct

[SWS_EM_02270]{DRAFT} d
Kind: function

Symbol: ara::exec::FunctionGroupState::Preconstruct(FunctionGroup const &functionGroup,
ara::core::StringView metaModelIdentifier)

Scope: class ara::exec::FunctionGroupState

Syntax: static ara::core::Result<FunctionGroupState::CtorToken> Preconstruct
(FunctionGroup const &functionGroup, ara::core::StringView metaModel
Identifier) noexcept;

functionGroup the Function Group instance the state shall be
connected with.

Parameters (in):

metaModelIdentifier stringified meta model identifier (short name path)
where path separator is ’/’.

Return value: ara::core::Result< FunctionGroup
State::CtorToken >

a construction token from which an instance of
FunctionGroupState can be constructed, or Exec
ErrorDomain error.

Exception Safety: noexcept

Thread Safety: Thread-safe

ara::exec::ExecErrc::kMetaModelError if metaModelIdentifier passed is incorrect (e.g.
FunctionGroup identifier has been passed).

Errors:

ara::exec::ExecErrc::kGeneralError if any other error occurs.

Header file: #include "ara/exec/state_client.h"

Description: Pre construction method for FunctionGroupState.

This method shall validate/verify meta-model path passed and perform any operation that could
fail and are expected to be performed in constructor.

c(RS_EM_00101)

8.2.4.2 FunctionGroupState::FunctionGroupState

[SWS_EM_02271]{DRAFT} d

Kind: function

Symbol: ara::exec::FunctionGroupState::FunctionGroupState(FunctionGroupState::CtorToken &&token)

Scope: class ara::exec::FunctionGroupState

Syntax: FunctionGroupState (FunctionGroupState::CtorToken &&token) noexcept;

Parameters (in): token representing pre-constructed object.

Exception Safety: noexcept

Header file: #include "ara/exec/state_client.h"

Description: Constructor that creates FunctionGroupState instance.

Notes: Please note that token is destructed during object construction!

c(RS_EM_00101)

95 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

8.2.4.3 FunctionGroupState::~FunctionGroupState

[SWS_EM_02272]{DRAFT} d
Kind: function

Symbol: ara::exec::FunctionGroupState::~FunctionGroupState()

Scope: class ara::exec::FunctionGroupState

Syntax: ~FunctionGroupState () noexcept;

Exception Safety: noexcept

Header file: #include "ara/exec/state_client.h"

Description: Destructor of the FunctionGroup instance.

c(RS_EM_00101)

8.2.4.4 FunctionGroupState::operator==

[SWS_EM_02273]{DRAFT} d

Kind: function

Symbol: ara::exec::FunctionGroupState::operator==(FunctionGroupState const &other)

Scope: class ara::exec::FunctionGroupState

Syntax: bool operator== (FunctionGroupState const &other) const noexcept;

Parameters (in): other FunctionGroupState instance to compare this one
with.

Return value: bool true in case both FunctionGroupStates are
representing exactly the same meta-model element,
false otherwise.

Exception Safety: noexcept

Thread Safety: Thread-safe

Header file: #include "ara/exec/state_client.h"

Description: eq operator to compare with other FunctionGroupState instance.

c(RS_EM_00101)

8.2.4.5 FunctionGroupState::operator!=

[SWS_EM_02274]{DRAFT} d

Kind: function

Symbol: ara::exec::FunctionGroupState::operator!=(FunctionGroupState const &other)

Scope: class ara::exec::FunctionGroupState

Syntax: bool operator!= (FunctionGroupState const &other) const noexcept;

5

96 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Parameters (in): other FunctionGroupState instance to compare this one

with.
Return value: bool false in case both FunctionGroupStates are

representing exactly the same meta-model element,
true otherwise.

Exception Safety: noexcept

Thread Safety: Thread-safe

Header file: #include "ara/exec/state_client.h"

Description: uneq operator to compare with other FunctionGroupState instance.

c(RS_EM_00101)

8.2.5 StateClient class

Class used to perform Function Group state management operation needed during
lifetime of a Machine. State Management during its own lifetime will need to start
and stop software, that is intended to run on a Machine managed by it. This can
be achieved by performing state transition of a Function Group to which required
software is assigned. Integrator will assign software to run in a particular state (of
Function Group) and State Management can start it, by requesting Execution
Management to perform state transition (of this Function Group) to the mentioned
state. Execution Management will then start mentioned software and report tran-
sition result back to State Management. Please note that stopping software can be
done in similar way (i.e. Function Group state transition, to a state in which software
is not configured to be run).

[SWS_EM_02275]{DRAFT} d

Kind: class

Symbol: ara::exec::StateClient

Scope: namespace ara::exec

Syntax: class StateClient {...};

Header file: #include "ara/exec/state_client.h"

Description: Class representing connection to Execution Management that is used to request Function
Group state transitions (or other operations).

Notes: StateClient opens communication channel to Execution Management (e.g. POSIX FIFO). Each
Process that intends to perform state management, shall create an instance of this class and it
shall have rights to use it.

c(RS_EM_00101)

8.2.5.1 StateClient::StateClient

[SWS_EM_02276]{DRAFT} d

97 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Kind: function

Symbol: ara::exec::StateClient::StateClient()

Scope: class ara::exec::StateClient

Syntax: StateClient () noexcept;

Exception Safety: noexcept

Header file: #include "ara/exec/state_client.h"

Description: Constructor that creates State Client instance.

c(RS_EM_00101)

8.2.5.2 StateClient::~StateClient

[SWS_EM_02277]{DRAFT} d

Kind: function

Symbol: ara::exec::StateClient::~StateClient()

Scope: class ara::exec::StateClient

Syntax: ~StateClient () noexcept;

Exception Safety: noexcept

Header file: #include "ara/exec/state_client.h"

Description: Destructor of the State Client instance.

c(RS_EM_00101)

8.2.5.3 StateClient::SetState

[SWS_EM_02278]{DRAFT} d

Kind: function

Symbol: ara::exec::StateClient::SetState(FunctionGroupState const &state)

Scope: class ara::exec::StateClient

Syntax: ara::core::Future<void> SetState (FunctionGroupState const &state)
const noexcept;

Parameters (in): state representing meta-model definition of a state inside
a specific Function Group. Execution Management
will perform state transition from the current state to
the state identified by this parameter.

Return value: ara::core::Future< void > void if requested transition is successful, otherwise it
returns ExecErrorDomain error.

Exception Safety: noexcept

Thread Safety: Thread-safe

Errors: ara::exec::ExecErrc::kCancelled if transition to the requested Function Group state
was cancelled by a newer request

5

98 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
ara::exec::ExecErrc::kFailed if transition to the requested Function Group state

failed

ara::exec::ExecErrc::kInvalidArguments if arguments passed doesn’t appear to be valid (e.g.
after a software update, given functionGroup doesn’t
exist anymore)

ara::exec::ExecErrc::kCommunication
Error

if StateClient can’t communicate with Execution
Management (e.g. IPC link is down)

ara::exec::ExecErrc::kGeneralError if any other error occurs.

Header file: #include "ara/exec/state_client.h"

Description: Method to request state transition for a single Function Group.

This method will request Execution Management to perform state transition and return
immediately. Returned ara::core::Future can be used to determine result of requested
transition.

c(RS_EM_00101)

Asynchronous nature of StateClient::SetState makes the returned
ara::core::Future dependable on lifetime of the instance from which it was
received. It is expected that once state change request is received by Execution
Management, it will be processed independently of lifetime of the instance from which
it was requested. Once finished it is implementation specific if answer will arrive on the
corresponding future.

Since Execution Management allows to change direction of the ongoing Function
Group state transition, it may happen (especially in misconfigured system, or during
the development phase) that some of StateClient::SetState requests will be
issued by mistake. It is in the best interest of Execution Management to inform re-
quester (instance of StateClient) of the ongoing transition, that it had been canceled
by a newer request as soon as possible.

[SWS_EM_02298]{DRAFT} Canceling ongoing state transition dWhen Execu-
tion Management receives StateClient::SetState request for a Function
Group that is already under state transition. Execution Management shall can-
cel the ongoing state transition, by sending kCancelled transition result to requestor,
before accepting new request.c(RS_EM_00101)

Please note that [SWS_EM_02298] merely ensures that Execution Management
first informs requester of the ongoing transition (instance of StateClient) about
cancellation, before informing new requester that the new request has been ac-
cepted. Both requesters could be the same instance of StateClient. There
are no other requirements or assumtions on order in which requests from State-
Client::SetState are processed.

8.2.5.4 StateClient::GetInitialMachineStateTransitionResult

[SWS_EM_02279]{DRAFT} d

99 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Kind: function

Symbol: ara::exec::StateClient::GetInitialMachineStateTransitionResult()

Scope: class ara::exec::StateClient

Syntax: ara::core::Future<void> GetInitialMachineStateTransitionResult ()
const noexcept;

Return value: ara::core::Future< void > void if requested transition is successful, otherwise it
returns ExecErrorDomain error.

Exception Safety: noexcept

Thread Safety: Thread-safe

ara::exec::ExecErrc::kCancelled if transition to the requested Function Group state
was cancelled by a newer request

ara::exec::ExecErrc::kFailed if transition to the requested Function Group state
failed

ara::exec::ExecErrc::kCommunication
Error

if StateClient can’t communicate with Execution
Management (e.g. IPC link is down)

Errors:

ara::exec::ExecErrc::kGeneralError if any other error occurs.

Header file: #include "ara/exec/state_client.h"

Description: Method to retrieve result of Machine State initial transition to Startup state.

This method allows State Management to retrieve result of a transition specified by SWS_
EM_01023 and SWS_EM_02241. Please note that this transition happens once per machine
life cycle, thus result delivered by this method shall not change (unless machine is started
again).

c(RS_EM_00101)

Please note that concerns about returned ara::core::Future
from StateClient::SetState apply for State-
Client::GetInitialMachineStateTransitionResult.

100 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

8.3 Errors

The Execution Management cluster implements an error handling based on
ara::core::Result. The errors supported by the Execution Management clus-
ter are listed in section 8.3.1.

8.3.1 Execution Management error codes

[SWS_EM_02281]{DRAFT} d

Kind: enumeration

Symbol: ara::exec::ExecErrc

Scope: namespace ara::exec

Underlying type: ara::core::ErrorDomain::CodeType

Syntax: enum class ExecErrc : ara::core::ErrorDomain::CodeType {...};

kGeneralError= 1 Some unspecified error occurred

kInvalidArguments= 2 Invalid argument was passed

kCommunicationError= 3 Communication error occurred

kMetaModelError= 4 Wrong meta model identifier passed to a function

kCancelled= 5 Transition to the requested Function Group state
was cancelled by a newer request

Values:

kFailed= 6 Transition to the requested Function Group state
failed

Header file: #include "ara/exec/exec_error_domain.h"

Description: Defines an enumeration class for the Execution Management error codes.

c(RS_AP_00130, RS_AP_00122, RS_AP_00127)

8.3.2 ExecException type

[SWS_EM_02282]{DRAFT} d

Kind: class

Symbol: ara::exec::ExecException

Scope: namespace ara::exec

Base class: ara::core::Exception

Syntax: class ExecException : public Exception {...};

Header file: #include "ara/exec/exec_error_domain.h"

Description: Defines a class for exceptions to be thrown by the Execution Management.

c(RS_AP_00130, RS_AP_00122, RS_AP_00127)

101 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

8.3.2.1 ExecException::ExecException

[SWS_EM_02283]{DRAFT} d
Kind: function

Symbol: ara::exec::ExecException::ExecException(ara::core::ErrorCode errorCode)

Scope: class ara::exec::ExecException

Syntax: explicit ExecException (ara::core::ErrorCode errorCode) noexcept;

Parameters (in): errorCode The error code.

Exception Safety: noexcept

Header file: #include "ara/exec/exec_error_domain.h"

Description: Constructs a new ExecException object containing an error code.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00132)

8.3.3 GetExecErrorDomain function

[SWS_EM_02290]{DRAFT} d

Kind: function

Symbol: ara::exec::GetExecErrorDomain()

Scope: namespace ara::exec

Syntax: ara::core::ErrorDomain const& GetExecErrorDomain () noexcept;

Return value: ara::core::ErrorDomain const & Return a reference to the global ExecErrorDomain
object.

Exception Safety: noexcept

Header file: #include "ara/exec/exec_error_domain.h"

Description: Returns a reference to the global ExecErrorDomain object.

c(RS_AP_00120, RS_AP_00130, RS_AP_00132)

8.3.4 MakeErrorCode function

[SWS_EM_02291]{DRAFT} d

Kind: function

Symbol: ara::exec::MakeErrorCode(ara::exec::ExecErrc code, ara::core::ErrorDomain::SupportDataType
data)

Scope: namespace ara::exec

Syntax: ara::core::ErrorCode MakeErrorCode (ara::exec::ExecErrc code,
ara::core::ErrorDomain::SupportDataType data) noexcept;

Parameters (in): code Error code number.

5

102 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
data Vendor defined data associated with the error.

Return value: ara::core::ErrorCode An ErrorCode object.

Exception Safety: noexcept

Header file: #include "ara/exec/exec_error_domain.h"

Description: Creates an instance of ErrorCode.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00132)

8.3.5 ExecErrorDomain type

The error handling requires an ara::core::ErrorDomain, which can be used to
check the errors returned via ara::core::Result.

[SWS_EM_02284]{DRAFT} d

Kind: class

Symbol: ara::exec::ExecErrorDomain

Scope: namespace ara::exec

Base class: ara::core::ErrorDomain

Syntax: class ExecErrorDomain final : public ErrorDomain {...};

Unique ID: 0x8000’0000’0000’0300ULL

Header file: #include "ara/exec/exec_error_domain.h"

Description: Defines a class representing the Execution Management error domain.

c(RS_AP_00130, RS_AP_00122, RS_AP_00127)

8.3.5.1 ExecErrorDomain::ExecErrorDomain

[SWS_EM_02286]{DRAFT} d

Kind: function

Symbol: ara::exec::ExecErrorDomain::ExecErrorDomain()

Scope: class ara::exec::ExecErrorDomain

Syntax: ExecErrorDomain () noexcept;

Exception Safety: noexcept

Header file: #include "ara/exec/exec_error_domain.h"

Description: Constructs a new ExecErrorDomain object.

c(RS_AP_00120, RS_AP_00130, RS_AP_00132)

103 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

8.3.5.2 ExecErrorDomain::Name

[SWS_EM_02287]{DRAFT} d
Kind: function

Symbol: ara::exec::ExecErrorDomain::Name()

Scope: class ara::exec::ExecErrorDomain

Syntax: char const* Name () const noexcept override;

Return value: char const * The name of the error domain.

Exception Safety: noexcept

Header file: #include "ara/exec/exec_error_domain.h"

Description: Returns a string constant associated with ExecErrorDomain.

c(RS_AP_00120, RS_AP_00130, RS_AP_00132)

[SWS_EM_02292]{DRAFT} dExecErrorDomain::Name shall return the NULL-
terminated string "Exec".c(RS_AP_00128)

8.3.5.3 ExecErrorDomain::Message

[SWS_EM_02288]{DRAFT} d

Kind: function

Symbol: ara::exec::ExecErrorDomain::Message(CodeType errorCode)

Scope: class ara::exec::ExecErrorDomain

Syntax: char const* Message (CodeType errorCode) const noexcept override;

Parameters (in): errorCode The error code number.

Return value: char const * The message associated with the error code.

Exception Safety: noexcept

Header file: #include "ara/exec/exec_error_domain.h"

Description: Returns the message associated with errorCode.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00132)

8.3.5.4 ExecErrorDomain::ThrowAsException

[SWS_EM_02289]{DRAFT} d

Kind: function

Symbol: ara::exec::ExecErrorDomain::ThrowAsException(ara::core::ErrorCode const &errorCode)

Scope: class ara::exec::ExecErrorDomain

5

104 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Syntax: void ThrowAsException (ara::core::ErrorCode const &errorCode) const

noexcept(false) override;

Parameters (in): errorCode The error to throw.

Return value: None

Exception Safety: noexcept(false)

Header file: #include "ara/exec/exec_error_domain.h"

Description: Creates a new instance of ExecException from errorCode and throws it as a C++ exception.

c(RS_AP_00120, RS_AP_00121, RS_AP_00130)

105 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

9 Service Interfaces

This chapter lists all provided and required service interfaces of the Execution Man-
agement.

There are no service interfaces defined in this release.

106 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

A Mentioned Manifest Elements

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Enumeration CommandLineOptionKindEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This enum defines the different styles how the command line option appears in the command line.

Tags:atp.Status=draft

Literal Description

commandLineLong
Form

Long form of command line option.

Example: <nowiki>–version=1.0

• – help</nowiki>

Tags:atp.EnumerationLiteralIndex=1

commandLineShort
Form

Short form of command line option.

Example: <nowiki>-v 1.0

• h</nowiki>

Tags:atp.EnumerationLiteralIndex=0

commandLine
SimpleForm

In this case the command line option does not have any formal structure. Just the value is passed to
the program.

Tags:atp.EnumerationLiteralIndex=2

Table A.1: CommandLineOptionKindEnum

Class DeterministicClient
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note The meta-class DeterministicClient provides the ability to support the deterministic execution of one or
more processes with specific configuration parameters for DeterministicClient library functions.

Tags:
atp.Status=draft
atp.recommendedPackage=DeterministicClients

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

cycleTimeValue TimeValue 0..1 attr This attribute represents the cycle time for execution of a
DeterministicClient activation cycle.

numberOf
Workers PositiveInteger 0..1 attr Number of independent workers that process data-sets.

Size of the worker pool shall be decided based on
availability of resources like processor cores or memory.

Table A.2: DeterministicClient

107 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Class DeterministicClientResource
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ProcessDesign

Note This meta-class specifies computing resource needs of DeterministicClient library functions.

Tags:atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

numberOf
Instructions

NormalizedInstruction 0..1 attr This attribute represents the normalized runtime
consumption on the target system within one
DeterministicClient::WaitForNextActivation cycle,
assuming the "worst-case" runtime where the workers
would be executed sequentially.

sequential
Instructions
Begin

NormalizedInstruction 0..1 attr Normalized sequential runtime at the beginning of the
DeterministicClient::WaitForNextActivation cycle (which
mostly cannot be parallelized), before the main usage of
the worker pool starts.

sequential
InstructionsEnd

NormalizedInstruction 0..1 attr WaitForNextActivation cycle (which mostly cannot be
parallelized), after the main usage of the worker pool has
ended.

speedup Float 0..1 attr This attribute defines how much faster the calculations
within one DeterministicClient::WaitForNextActivation
cycle can be finished if numberOfWorkers are physically
available, i.e. if enough cores were available on the
machine to perform parallel execution of all workers
(sequential runtime / parallelized runtime).

Table A.3: DeterministicClientResource

Class DeterministicClientResourceNeeds
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ProcessDesign

Note This meta-class specifies process and cycle specific computing resource needs of DeterministicClient
library functions.

Tags:atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

hardware
Platform String 0..1 attr This attribute represents a textual identification of the

target platform.

initResource DeterministicClient
Resource

0..1 aggr This represents the computing resource needs of a
DeterministicClient::WaitForNextActivation kInit cycle.

Tags:atp.Status=draft

runResource DeterministicClient
Resource

0..1 aggr This represents the computing resource needs of a
DeterministicClient::WaitForNextActivation kRun cycle.

Tags:atp.Status=draft

Table A.4: DeterministicClientResourceNeeds

Class Executable
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

5

108 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Class Executable
Note This meta-class represents an executable program.

Tags:
atp.Status=draft
atp.recommendedPackage=Executables

Base ARElement , ARObject , AtpClassifier , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mult. Kind Note

buildType BuildTypeEnum 0..1 attr This attribute describes the buildType of a module and/or
platform implementation.

loggingBehavior LoggingBehaviorEnum 0..1 attr This attribute indicates the intended logging behavior of
the enclosing Executable.

minimumTimer
Granularity TimeValue 0..1 attr This attribute describes the minimum timer resolution

(TimeValue of one tick) that is required by the Executable.

Tags:atp.Status=draft

reporting
Behavior

ExecutionState
ReportingBehavior
Enum

0..1 attr this attribute controls the execution state reporting
behavior of the enclosing Executable.

rootSw
Component
Prototype

RootSwComponent
Prototype

0..1 aggr This represents the root SwCompositionPrototype of the
Executable. This aggregation is required (in contrast to a
direct reference of a SwComponentType) in order to
support the definition of instanceRefs in Executable
context.

Tags:atp.Status=draft

version StrongRevisionLabel
String

0..1 attr Version of the executable.

Tags:atp.Status=draft

Table A.5: Executable

Enumeration ExecutionStateReportingBehaviorEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This enumeration provides options for controlling of how an Executable reports its execution state to
the Execution Management

Tags:atp.Status=draft

Literal Description

doesNotReport
ExecutionState

The Executable shall not report its execution state to the Execution Management.

Tags:atp.EnumerationLiteralIndex=1

reportsExecution
State

The Executable shall report its execution state to the Execution Management.

Tags:atp.EnumerationLiteralIndex=0

Table A.6: ExecutionStateReportingBehaviorEnum

Class Machine
Package M2::AUTOSARTemplates::AdaptivePlatform::MachineManifest

5

109 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Class Machine
Note Machine that represents an Adaptive Autosar Software Stack.

Tags:
atp.ManifestKind=MachineManifest
atp.Status=draft
atp.recommendedPackage=Machines

Base ARElement , ARObject , AtpClassifier , AtpFeature, AtpStructureElement , CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mult. Kind Note

default
Application
Timeout

EnterExitTimeout 0..1 aggr This aggration defines a default timeout in the context of a
given Machine with respect to the launching and
termination of applications.

Tags:atp.Status=draft

environment
Variable

TagWithOptionalValue * aggr This aggregation represents the collection of environment
variables that shall be added to the environment defined
on the level of the enclosing Machine.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=environmentVariable
atp.Status=draft

functionGroup ModeDeclarationGroup
Prototype

* aggr This aggregation represents the collection of function
groups of the enclosing Machine.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=shortName, variationPoint.shortLabel
atp.Status=draft
vh.latestBindingTime=preCompileTime

hwElement HwElement * ref This reference is used to describe the hardware
resources of the machine.

Stereotypes: atpUriDef
Tags:atp.Status=draft

machineDesign MachineDesign 1 ref Reference to the MachineDesign this Machine is
implementing.

Tags:atp.Status=draft

module
Instantiation AdaptiveModule

Instantiation

* aggr Configuration of Adaptive Autosar module instances that
are running on the machine.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=shortName
atp.Status=draft

processor Processor 1..* aggr This represents the collection of processors owned by the
enclosing machine.

Tags:atp.Status=draft

secure
Communication
Deployment

SecureCommunication
Deployment

* aggr Deployment of secure communication protocol
configuration settings to crypto module entities.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=shortName
atp.Status=draft

5

110 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Class Machine
trustedPlatform
Executable
LaunchBehavior

TrustedPlatform
ExecutableLaunch
BehaviorEnum

1 attr This attribute controls the behavior of how authentication
affects the ability to launch for each Executable.

Table A.7: Machine

Class ModeDeclaration
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.

Tags:atp.ManifestKind=ExecutionManifest,MachineManifest

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mult. Kind Note

– – – – –

Table A.8: ModeDeclaration

Primitive NormalizedInstruction
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ProcessDesign

Note This meta-class is used to describe runtime budget needs on the target system within Deterministic
Client::WaitForNextActivation cycles. NormalizedInstructions does not reflect the actual number of code
instructions, but allows the description of comparative resource needs. NormalizedInstructions is used for
configuration of computing resources at integration time.

NormalizedInstruction = runtime in sec * clock frequency in Hz

Tags:
atp.Status=draft
xml.xsd.customType=NORMALIZED-INSTRUCTION
xml.xsd.pattern=[1-9][0-9]*
xml.xsd.type=string

Table A.9: NormalizedInstruction

Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class provides information required to execute the referenced executable.

Tags:
atp.ManifestKind=ExecutionManifest
atp.Status=draft
atp.recommendedPackage=Processes

Base ARElement , ARObject , AbstractExecutionContext , AtpClassifier , CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Attribute Type Mult. Kind Note

design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.

Tags:atp.Status=draft

5

111 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Class Process
deterministic
Client

DeterministicClient 0..1 ref This reference adds further execution characteristics for
deterministic clients.

Tags:atp.Status=draft

executable Executable 0..1 ref Reference to executable that is executed in the process.

Stereotypes: atpUriDef
Tags:atp.Status=draft

logTraceDefault
LogLevel LogTraceDefaultLog

LevelEnum

0..1 attr This attribute allows to set the initial log reporting level for
a logTraceProcessId (ApplicationId).

logTraceFile
Path UriString 0..1 attr This attribute defines the destination file to which the

logging information is passed.

logTraceLog
Mode LogTraceLogMode

Enum

* attr This attribute defines the destination of log messages
provided by the process.

logTrace
ProcessDesc String 0..1 attr This attribute can be used to describe the logTrace

ProcessId that is used in the log and trace message in
more detail.

logTrace
ProcessId String 0..1 attr This attribute identifies the process in the log and trace

message (ApplicationId).

numberOf
RestartAttempts PositiveInteger 0..1 attr This attribute defines how often a process shall be

restarted if the start fails.

<nowiki>numberOfRestartAttempts = "0" OR Attribute not
existing, start once

numberOfRestartAttempts = "1", start a second time
</nowiki>

preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.

processState
Machine ModeDeclarationGroup

Prototype

0..1 aggr Set of Process States that are defined for the process.

Tags:atp.Status=draft

stateDependent
StartupConfig

StateDependentStartup
Config

* aggr Applicable startup configurations.

Tags:atp.Status=draft

Table A.10: Process

Class StartupConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class represents a reusable startup configuration for processes..

Tags:
atp.ManifestKind=ExecutionManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mult. Kind Note

environment
Variable

TagWithOptionalValue * aggr This aggregation represents the collection of environment
variables that shall be added to the respective Process’s
environment prior to launch.

Tags:atp.Status=draft

scheduling
Policy SchedulingPolicyKind

Enum

0..1 attr This attribute represents the ability to define the
scheduling policy for the initial thread of the application.

5

112 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Class StartupConfig

scheduling
Priority Integer 0..1 attr This is the scheduling priority requested by the

application itself.

startupOption StartupOption * aggr Applicable startup options

Tags:atp.Status=draft

timeout EnterExitTimeout 0..1 aggr This aggregation can be used to specify the timeouts for
launching and terminating the process depending on the
StartupConfig.

Tags:atp.Status=draft

Table A.11: StartupConfig

Class StartupOption

Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class represents a single startup option consisting of option name and an optional argument.

Tags:
atp.ManifestKind=ExecutionManifest
atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

optionArgument String 0..1 attr This attribute defines option value.

optionKind CommandLineOption
KindEnum

1 attr This attribute specifies the style how the command line
options appear in the command line.

optionName String 0..1 attr This attribute defines option name.

Table A.12: StartupOption

Class StateDependentStartupConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class defines the startup configuration for the process depending on a collection of machine
states.

Tags:
atp.ManifestKind=ExecutionManifest
atp.Status=draft

Base ARObject

Attribute Type Mult. Kind Note

execution
Dependency ExecutionDependency * aggr This attribute defines that all processes that are

referenced via the ExecutionDependency shall be
launched and shall reach a certain ProcessState before
the referencing process is started.

Tags:atp.Status=draft

functionGroup
State

ModeDeclaration * iref This represent the applicable functionGroupMode.

Tags:atp.Status=draft

5

113 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Class StateDependentStartupConfig

resource
Consumption ResourceConsumption 0..1 aggr This aggregation provides the ability to define resource

consumption boundaries on a per-process-startup-config
basis.

Tags:atp.Status=draft

resourceGroup ResourceGroup 1 ref Reference to an applicable resource group.

Tags:atp.Status=draft

startupConfig StartupConfig 1 ref Reference to a reusable startup configuration with startup
parameters.

Tags:atp.Status=draft

Table A.13: StateDependentStartupConfig

Class TagWithOptionalValue

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::TagWithOptionalValue

Note A tagged value is a combination of a tag (key) and a value that gives supplementary information that is
attached to a model element. Please note that keys without a value are allowed.

Tags:atp.ManifestKind=ServiceInstanceManifest

Base ARObject

Attribute Type Mult. Kind Note

key String 1 attr Defines a key.

value String 0..1 attr Defines the corresponding value.

Table A.14: TagWithOptionalValue

B Interfaces to other Functional Clusters (informative)

B.1 Overview

AUTOSAR decided not to standardize interfaces which are exclusively used between
Functional Clusters (on platform-level only), to allow efficient implementations, which
might depend e.g. on the used Operating System.

This chapter provides informative guidelines how the interaction between Functional
Clusters looks like, by clustering the relevant requirements of this document to describe
Inter-Functional Cluster (IFC) interfaces. In addition, the standardized public interfaces
which are accessible by user space applications (see chapters 8 and 9) can also be
used for interaction between Functional Clusters.

The goal is to provide a clear understanding of Functional Cluster boundaries and in-
teraction, without specifying syntactical details. This ensures compatibility between
documents specifying different Functional Clusters and supports parallel implementa-
tion of different Functional Clusters. Details of the interfaces are up to the platform
provider. Additional interfaces, parameters and return values can be added.

114 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Figure B.1: Interfaces between Functional Clusters

B.2 Interface Tables

B.2.1 Get Process States Information

Name Description Requirements
Intended users Platform Health Man-

agement
Name proposal *GetProcessStates*

115 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Functionality Get information about
currently running pro-
cesses

The Execution Management pro-
vides an interface to receive a list
of the currently running processes.
With this information the Platform
Health Management can identify,
based on Manifest information, if
an how each process should be
monitored.
This polling API could be e.g.
called once after startup and main-
tained by the information received
via the reporting API specified in
Platform Health Management.

[SWS_EM_02076]

Parameters (in) None
Parameters (inout) None
Parameters (out) Processes List of Currently running processes.
Return value Operation succeeded

Execution Manage-
ment is busy and
cannot provide re-
quested information
general error

Table B.1: Get Process States Information

B.2.2 Enter Unrecoverable State Request

Name Description Requirements
Intended users Platform Health Manage-

ment
This is a "Recovery Action"

Name proposal *EnterUnrecoverableState*
Functionality Requests a change to a

Unrecoverable State and
stops all currently running
processes

[SWS_EM_02261]
[SWS_EM_02262]

Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value Operation failed This API will never return in

normal operation. Therfore any
actual return always indicate
an error.

Table B.2: Enter Unrecoverable State Request

B.2.3 Process Restart Request

Name Description Requirements
Intended users Platform Health Man-

agement
This is a "Recovery Action"

Name proposal *ProcessRestart*

116 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

Functionality Request to restart a
Process

Restart a specific Process on the
request from the Platform Health
Management.

[SWS_EM_01016]
[SWS_EM_01062]

Parameters (in) Process identifier Unique named identifier of the Pro-
cess to be restarted. Not the PID
because this will change.

[SWS_EM_01016]

Parameters (inout) None
Parameters (out) None
Return value Operation succeeded [SWS_EM_01064]

general error Process could not be restarted [SWS_EM_01063]

Table B.3: Process Restart Request

C History of Constraints and Specification Items

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

C.1 Constraint and Specification Item History of this document
according to AUTOSAR Release 17-10

C.1.1 Added Traceables in 17-10

Number Heading

[SWS_EM_01001] Execution Dependency error

[SWS_EM_01016] RestartProcess API
[SWS_EM_01018] OverrideState API
[SWS_EM_01032] Machine States
[SWS_EM_01061] OverrideState API interrupt

[SWS_EM_01062] RestartProcess behaviour
[SWS_EM_01107] Function Group name

[SWS_EM_01108] Function Group State

[SWS_EM_01109] State References
[SWS_EM_01110] Off States
[SWS_EM_01111] No reference to Off State
[SWS_EM_01112] StartupConfig

[SWS_EM_01201] Core Binding

[SWS_EM_02041] ResetCause Enumeration
5

117 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_02042] ApplicationClient::SetLastResetCause API

[SWS_EM_02043] ApplicationClient::GetLastResetCause API

[SWS_EM_02044] Machine State change in progress

[SWS_EM_02047] StateClient::GetState API
[SWS_EM_02048] Function Group State change in progress

[SWS_EM_02049] State change failed

[SWS_EM_02050] State change successful

[SWS_EM_02051] Machine State change in progress

[SWS_EM_02054] StateClient::SetState API
[SWS_EM_02055] Function Group State change in progress

[SWS_EM_02056] State change failed

[SWS_EM_02057] State change successful

[SWS_EM_02070] ApplicationReturnType Enumeration

[SWS_EM_02071]

[SWS_EM_02072] Retrieving Machine State

[SWS_EM_02073] Retrieving Function Group State

[SWS_EM_02074] Setting Machine State

[SWS_EM_02075] Setting Function Group State

[SWS_EM_NA]

Table C.1: Added Traceables in 17-10

C.1.2 Changed Traceables in 17-10

Number Heading

[SWS_EM_01000] Startup order

[SWS_EM_01002] Idle Process State
[SWS_EM_01003] Starting Process State

[SWS_EM_01004] Running Process State

[SWS_EM_01005] Terminating Process State

[SWS_EM_01006] Terminated Process State
[SWS_EM_01012] Application Argument Passing

[SWS_EM_01013] Machine State and Function Group State

[SWS_EM_01014] Scheduling policy

[SWS_EM_01015] Scheduling priority

[SWS_EM_01017] Application Binary Name

[SWS_EM_01023] Machine State Startup
5

118 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_01024] Machine State Shutdown
[SWS_EM_01025] Machine State Restart
[SWS_EM_01026] State change

[SWS_EM_01028] GetState API
[SWS_EM_01030] Start of Application execution

[SWS_EM_01033] Application start-up configuration

[SWS_EM_01034] Deny State change request

[SWS_EM_01035] Machine State Restart behavior
[SWS_EM_01036] Machine State Shutdown behavior
[SWS_EM_01037] Machine State Startup behavior

[SWS_EM_01039] Scheduling priority range for SCHED_FIFO and SCHED_RR

[SWS_EM_01040] Scheduling priority range for SCHED_OTHER

[SWS_EM_01041] Scheduling FIFO

[SWS_EM_01042] Scheduling Round-Robin

[SWS_EM_01043] Scheduling Other

[SWS_EM_01050] Start dependent Application Executables

[SWS_EM_01051] Shutdown Application Executables

[SWS_EM_01053] Application State Running

[SWS_EM_01055] Application State Termination

[SWS_EM_01056] State Manager

[SWS_EM_01058] Shutdown of the Operating System

[SWS_EM_01059] Restart of the Operating System

[SWS_EM_01060] State change behavior

[SWS_EM_02000] ApplicationState Enumeration

[SWS_EM_02001]

[SWS_EM_02002] ApplicationClient::~ApplicationClient API

[SWS_EM_02003] ApplicationClient::ReportApplicationState API

[SWS_EM_02005] StateReturnType Enumeration

[SWS_EM_02006]

[SWS_EM_02007] StateClient::StateClient API
[SWS_EM_02008] StateClient::~StateClient API
[SWS_EM_02030] ApplicationClient::ApplicationClient API

[SWS_EM_02031] Application State Reporting

Table C.2: Changed Traceables in 17-10

119 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

C.1.3 Deleted Traceables in 17-10

Number Heading

[SWS_EM_00017] Application Processes

[SWS_EM_01027] Rejection of Client Requests

[SWS_EM_01029] SetMachineState API
[SWS_EM_01052] Application State Initializing

[SWS_EM_01057] Machine State Change arbitration

[SWS_EM_02009]

[SWS_EM_02014]

[SWS_EM_02019]

[SWS_EM_99999]

Table C.3: Deleted Traceables in 17-10

C.1.4 Added Constraints in 17-10

none

C.1.5 Changed Constraints in 17-10

none

C.1.6 Deleted Constraints in 17-10

none

C.2 Constraint and Specification Item History of this document
according to AUTOSAR Release 18-03

C.2.1 Added Traceables in 18-03

Number Heading

[SWS_EM_01044] Machine States Identification
[SWS_EM_01063] Process Restart Failed
[SWS_EM_01064] Process Restart Successful
[SWS_EM_01065] Shutdown state timeout monitoring behavior

5

120 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_01066] Start state change behavior

[SWS_EM_01067] Confirm State Changes

[SWS_EM_01068] Report start-up timeout

[SWS_EM_01069] Self-terminating Process State

[SWS_EM_01070] Acknowledgement of termination request

[SWS_EM_01071] Initiation of Process self-termination
[SWS_EM_01072] Application Argument Zero

[SWS_EM_01073] Simple Arguments

[SWS_EM_01074] Short form arguments with option value

[SWS_EM_01075] Short form Arguments without option value

[SWS_EM_01076] Long form Arguments with option value

[SWS_EM_01077] Long form Arguments without option value

[SWS_EM_01301] Cyclic Execution

[SWS_EM_01302] Cyclic Execution Control

[SWS_EM_01305] Worker Pool
[SWS_EM_01308] Random Numbers
[SWS_EM_01310] Get Activation Time
[SWS_EM_01311] Activation Time Unknown
[SWS_EM_01312] Get Next Activation Time
[SWS_EM_01313] Next Activation Time Unknown
[SWS_EM_02058] State Transition Timeout
[SWS_EM_02102] Memory control

[SWS_EM_02103] CPU usage control

[SWS_EM_02104] Core affinity

[SWS_EM_02106] ResourceGroup assignment

[SWS_EM_02107] Maximum heap

[SWS_EM_02108] Maximum system memory usage

[SWS_EM_02109] Process pre-mapping

[SWS_EM_02201] ActivationReturnType Enumeration

[SWS_EM_02202] ActivationTimeStampReturnType Enumeration

[SWS_EM_02210]

[SWS_EM_02211] DeterministicClient::DeterministicClient API
[SWS_EM_02215] DeterministicClient::~DeterministicClient API
[SWS_EM_02216] DeterministicClient::WaitForNextActivation API
[SWS_EM_02220] DeterministicClient::RunWorkerPool API
[SWS_EM_02225] DeterministicClient::GetRandom API
[SWS_EM_02230] DeterministicClient::GetActivationTime API

5

121 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_02235] DeterministicClient::GetNextActivationTime API

Table C.4: Added Traceables in 18-03

C.2.2 Changed Traceables in 18-03

Number Heading

[SWS_EM_01000] Startup order

[SWS_EM_01001] Execution Dependency error

[SWS_EM_01002] Idle Process State
[SWS_EM_01003] Starting Process State

[SWS_EM_01004] Running Process State

[SWS_EM_01005] Terminating Process State

[SWS_EM_01006] Terminated Process State
[SWS_EM_01012] Application Argument Passing

[SWS_EM_01013] Machine State and Function Group State

[SWS_EM_01014] Scheduling policy

[SWS_EM_01015] Scheduling priority

[SWS_EM_01016] Restart Process
[SWS_EM_01018] Override State
[SWS_EM_01023] Machine State Startup

[SWS_EM_01024] Machine State Shutdown
[SWS_EM_01025] Machine State Restart
[SWS_EM_01026] State Change

[SWS_EM_01028] Get State Information
[SWS_EM_01030] Start of Process execution
[SWS_EM_01032] Machine States Obtainment
[SWS_EM_01033] Application start-up configuration

[SWS_EM_01034] Deny State Change Request

[SWS_EM_01035] Machine State Restart behavior
[SWS_EM_01036] Machine State Shutdown behavior
[SWS_EM_01037] Machine State Startup behavior

[SWS_EM_01041] Scheduling FIFO

[SWS_EM_01042] Scheduling Round-Robin

[SWS_EM_01043] Scheduling Other

[SWS_EM_01050] Start Dependent Processes

[SWS_EM_01051] Shutdown Processes
5

122 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_01053] Application State Running

[SWS_EM_01055] Initiation of Process termination
[SWS_EM_01058] Shutdown of the Operating System

[SWS_EM_01059] Restart of the Operating System

[SWS_EM_01060] Shutdown state change behavior

[SWS_EM_01061] Override State Interrupt

[SWS_EM_01062] Restart Process Behavior
[SWS_EM_01107] Function Group name

[SWS_EM_01108] Function Group State

[SWS_EM_01109] State References
[SWS_EM_01110] Off States
[SWS_EM_02001]

[SWS_EM_02044] State Change in Progress

[SWS_EM_02049] State Change Failed

[SWS_EM_02050] State Information Success
[SWS_EM_02056] State Change Failed

[SWS_EM_02057] State Change Successful

[SWS_EM_NA]

Table C.5: Changed Traceables in 18-03

C.2.3 Deleted Traceables in 18-03

Number Heading

[SWS_EM_01017] Application Binary Name

[SWS_EM_01056] State Manager

[SWS_EM_01112] StartupConfig

[SWS_EM_01201] Core Binding

[SWS_EM_02005] StateReturnType Enumeration

[SWS_EM_02006]

[SWS_EM_02007] StateClient::StateClient API
[SWS_EM_02008] StateClient::~StateClient API
[SWS_EM_02031] Application State Reporting

[SWS_EM_02041] ResetCause Enumeration
[SWS_EM_02042] ApplicationClient::SetLastResetCause API

[SWS_EM_02043] ApplicationClient::GetLastResetCause API

[SWS_EM_02047] StateClient::GetState API
5

123 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_02048] Function Group State change in progress

[SWS_EM_02051] Machine State change in progress

[SWS_EM_02054] StateClient::SetState API
[SWS_EM_02055] Function Group State change in progress

[SWS_EM_02071]

[SWS_EM_02072] Retrieving Machine State

[SWS_EM_02073] Retrieving Function Group State

[SWS_EM_02074] Setting Machine State

[SWS_EM_02075] Setting Function Group State

Table C.6: Deleted Traceables in 18-03

C.2.4 Added Constraints in 18-03

none

C.2.5 Changed Constraints in 18-03

none

C.2.6 Deleted Constraints in 18-03

none

C.3 Constraint and Specification Item History of this document
according to AUTOSAR Release 18-10

C.3.1 Added Traceables in 18-10

none

124 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

C.3.2 Changed Traceables in 18-10

Number Heading

[SWS_EM_01000] Startup order

[SWS_EM_01001] Execution Dependency error

[SWS_EM_01004] Running Process State

[SWS_EM_01005] Terminating Process State

[SWS_EM_01012] Process Argument Passing

[SWS_EM_01013] Machine State and Function Group State

[SWS_EM_01014] Scheduling policy

[SWS_EM_01015] Scheduling priority

[SWS_EM_01018] Override State
[SWS_EM_01023] Machine State Startup

[SWS_EM_01024] Machine State Shutdown
[SWS_EM_01025] Machine State Restart
[SWS_EM_01026] State Change

[SWS_EM_01028] Get State Information
[SWS_EM_01033] Process start-up configuration

[SWS_EM_01034] Deny State Change Request

[SWS_EM_01035] Machine State Restart behavior
[SWS_EM_01036] Machine State Shutdown behavior
[SWS_EM_01037] Machine State Startup behavior

[SWS_EM_01039] Scheduling priority range for SCHED_FIFO and SCHED_RR

[SWS_EM_01040] Scheduling priority range for SCHED_OTHER

[SWS_EM_01041] Scheduling FIFO

[SWS_EM_01042] Scheduling Round-Robin

[SWS_EM_01043] Scheduling Other

[SWS_EM_01053] Execution State Running

[SWS_EM_01060] Shutdown state change behavior

[SWS_EM_01065] Shutdown state timeout monitoring behavior

[SWS_EM_01066] Start state change behavior

[SWS_EM_01067] Confirm State Changes

[SWS_EM_01069] Self-terminating Process State

[SWS_EM_01070] Acknowledgement of termination request

[SWS_EM_01071] Initiation of Process self-termination
[SWS_EM_01072] Process Argument Zero

[SWS_EM_01074] Short form arguments with option value

[SWS_EM_01075] Short form Arguments without option value

[SWS_EM_01076] Long form Arguments with option value
5

125 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_01077] Long form Arguments without option value

[SWS_EM_01107] Function Group configuration

[SWS_EM_01109] Misconfigured Process instances

[SWS_EM_01110] Off States
[SWS_EM_02000] ExecutionState Enumeration
[SWS_EM_02001]

[SWS_EM_02002] ExecutionClient::~ExecutionClient API
[SWS_EM_02003] ExecutionClient::ReportExecutionState API

[SWS_EM_02030] ExecutionClient::ExecutionClient API
[SWS_EM_02044] State Change in Progress

[SWS_EM_02049] State Change Failed

[SWS_EM_02070] ExecutionReturnType Enumeration

[SWS_EM_02109] Process pre-mapping

[SWS_EM_02210]

[SWS_EM_NA]

Table C.7: Changed Traceables in 18-10

C.3.3 Deleted Traceables in 18-10

Number Heading

[SWS_EM_01044] Machine States Identification
[SWS_EM_01108] Function Group State

[SWS_EM_01111] No reference to Off State

Table C.8: Deleted Traceables in 18-10

C.3.4 Added Constraints in 18-10

none

C.3.5 Changed Constraints in 18-10

none

C.3.6 Deleted Constraints in 18-10

none

126 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

C.4 Constraint and Specification Item History of this document
according to AUTOSAR Release 19-03

C.4.1 Added Traceables in R19-03

Number Heading

[SWS_EM_02250] Machine State Startup

[SWS_EM_02251] State transition - restart behavior
[SWS_EM_02252] State transition - Process termination timeout reporting

[SWS_EM_02253] State transition - Process start-up timeout monitoring

[SWS_EM_02254] Misconfigured Process - assigned to more than one Function Group

[SWS_EM_02255] State transition - Process termination timeout reaction
[SWS_EM_02256] State transition - Process start-up timeout reaction

Table C.9: Added Traceables in R19-03

C.4.2 Changed Traceables in R19-03

Number Heading

[SWS_EM_01001] Execution Dependency error

[SWS_EM_01005] Terminating Process State

[SWS_EM_01012] Process Argument Passing

[SWS_EM_01013] Function Group State

[SWS_EM_01014] Scheduling policy

[SWS_EM_01015] Scheduling priority

[SWS_EM_01023] Self initiation of Machine State Startup transition

[SWS_EM_01024] Machine State Shutdown
[SWS_EM_01025] Machine State Restart
[SWS_EM_01060] State transition - termination behavior
[SWS_EM_01065] State transition - Process termination timeout monitoring

[SWS_EM_01066] State transition - start behavior
[SWS_EM_01067] Finish of a successful state transition
[SWS_EM_01068] State transition - Process start-up timeout reporting

[SWS_EM_01109] Misconfigured Process - not assigned to a Function Group

[SWS_EM_01110] Off States
[SWS_EM_01400] Execution Dependency resolution

[SWS_EM_02000]

[SWS_EM_02001]

[SWS_EM_02201]

[SWS_EM_02202]
5

127 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_02210]

[SWS_EM_02241] Machine State Startup Completion

[SWS_EM_02245] Dependency resolution during state change

[SWS_EM_02246] Process specific Environment Variables

Table C.10: Changed Traceables in R19-03

C.4.3 Deleted Traceables in R19-03

Number Heading

[SWS_EM_01035] Machine State Restart behavior
[SWS_EM_01036] Machine State Shutdown behavior
[SWS_EM_02002] ExecutionClient::~ExecutionClient API
[SWS_EM_02003] ExecutionClient::ReportExecutionState API

[SWS_EM_02030] ExecutionClient::ExecutionClient API
[SWS_EM_02070] ExecutionReturnType Enumeration

[SWS_EM_02211] DeterministicClient::DeterministicClient API
[SWS_EM_02215] DeterministicClient::~DeterministicClient API
[SWS_EM_02216] DeterministicClient::WaitForNextActivation API
[SWS_EM_02220] DeterministicClient::RunWorkerPool API
[SWS_EM_02225] DeterministicClient::GetRandom API
[SWS_EM_02230] DeterministicClient::GetActivationTime API
[SWS_EM_02235] DeterministicClient::GetNextActivationTime API

Table C.11: Deleted Traceables in R19-03

C.4.4 Added Constraints in R19-03

none

C.4.5 Changed Constraints in R19-03

none

C.4.6 Deleted Constraints in R19-03

none

128 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

C.5 Constraint and Specification Item History of this document
according to AUTOSAR Release 19-11

C.5.1 Added Traceables in R19-11

Number Heading

[SWS_EM_01401] Process Self Reporting

[SWS_EM_01402] Implicit Running Process State

[SWS_EM_01403] Reporting Non-reporting Process

[SWS_EM_01404] Terminating Process State after Termination Request

[SWS_EM_01405] Terminating Process State after Terminating Report

[SWS_EM_02002]

[SWS_EM_02003]

[SWS_EM_02030]

[SWS_EM_02211]

[SWS_EM_02215]

[SWS_EM_02216]

[SWS_EM_02220]

[SWS_EM_02225]

[SWS_EM_02230]

[SWS_EM_02235]

[SWS_EM_02257] Recovery Action API Security

[SWS_EM_02258] State transition - Process termination timeout reporting

[SWS_EM_02259] State transition - Process start-up timeout reporting

[SWS_EM_02260] State transition - Process start-up timeout reaction

[SWS_EM_02261] Enter Unrecoverable State
[SWS_EM_02262] Enter Unrecoverable State Behavior
[SWS_EM_02263]

[SWS_EM_02264]

[SWS_EM_02265]

[SWS_EM_02266]

[SWS_EM_02267]

[SWS_EM_02268]

[SWS_EM_02269]

[SWS_EM_02270]

[SWS_EM_02271]

[SWS_EM_02272]

[SWS_EM_02273]

[SWS_EM_02274]

[SWS_EM_02275]
5

129 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_02276]

[SWS_EM_02277]

[SWS_EM_02278]

[SWS_EM_02279]

[SWS_EM_02281]

[SWS_EM_02282]

[SWS_EM_02283]

[SWS_EM_02284]

[SWS_EM_02286]

[SWS_EM_02287]

[SWS_EM_02288]

[SWS_EM_02289]

[SWS_EM_02290]

[SWS_EM_02291]

[SWS_EM_02292]

[SWS_EM_02297] StateClient usage restriction

[SWS_EM_02298] Canceling ongoing state transition

[SWS_EM_02299] Availability of a Trust Anchor

[SWS_EM_02300] Integrity and Authenticity of processed Machine Manifest

[SWS_EM_02301] Integrity and Authenticity of each Executable

[SWS_EM_02302] Integrity and Authenticity of shared objects

[SWS_EM_02303] Integrity and Authenticity of processed Execution Manifests

[SWS_EM_02304] Integrity and Authenticity of processed Service Instance Manifests

[SWS_EM_02305] Failed authenticity checks

[SWS_EM_02306] Machine Manifest
[SWS_EM_02307] Strict Mode - Execution manifest
[SWS_EM_02308] Strict Mode - Service Instance manifests
[SWS_EM_02309] Strict Mode - Executables

Table C.12: Added Traceables in R19-11

C.5.2 Changed Traceables in R19-11

Number Heading

[SWS_EM_01000] Startup order

[SWS_EM_01001] Execution Dependency error

[SWS_EM_01002] Idle Process State
5

130 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_01003] Starting Process State

[SWS_EM_01004] Running Process State of Reporting Processes

[SWS_EM_01006] Terminated Process State
[SWS_EM_01012] Process Argument Passing

[SWS_EM_01013] Function Group State

[SWS_EM_01014] Scheduling policy

[SWS_EM_01015] Scheduling priority

[SWS_EM_01016] Process Restart
[SWS_EM_01023] Self initiation of Machine State Startup transition

[SWS_EM_01024] Machine State Shutdown
[SWS_EM_01025] Machine State Restart
[SWS_EM_01030] Restriction of process creation right for Processes

[SWS_EM_01032] Machine States configuration

[SWS_EM_01033] Process start-up configuration

[SWS_EM_01041] Scheduling FIFO

[SWS_EM_01042] Scheduling Round-Robin

[SWS_EM_01043] Scheduling Other

[SWS_EM_01050] Start Dependent Processes

[SWS_EM_01051] Termination of Processes
[SWS_EM_01055] Initiation of Process termination
[SWS_EM_01060] State transition - termination behavior
[SWS_EM_01062] Process Restart Behavior
[SWS_EM_01063] Process Restart Failed
[SWS_EM_01064] Process Restart Successful
[SWS_EM_01065] State transition - Process termination timeout monitoring

[SWS_EM_01066] State transition - start behavior
[SWS_EM_01067] Finish of a successful state transition
[SWS_EM_01071] Premature Termination of a Reporting Process

[SWS_EM_01072] Process Argument Zero

[SWS_EM_01073] Simple Arguments

[SWS_EM_01074] Short form arguments with option value

[SWS_EM_01075] Short form Arguments without option value

[SWS_EM_01076] Long form Arguments with option value

[SWS_EM_01077] Long form Arguments without option value

[SWS_EM_01107] Function Group configuration

[SWS_EM_01109] Misconfigured Process - not assigned to a Function Group

[SWS_EM_01110] Off States
5

131 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_01301] Cyclic Execution

[SWS_EM_01302] Cyclic Execution Control

[SWS_EM_01303] Cyclic Execution Control Sequence

[SWS_EM_01304] Service Modification
[SWS_EM_01305] Worker Pool
[SWS_EM_01306] Processing Container Objects

[SWS_EM_01308] Random Numbers
[SWS_EM_01310] Get Activation Time
[SWS_EM_01311] Activation Time Unknown
[SWS_EM_01312] Get Next Activation Time
[SWS_EM_01313] Next Activation Time Unknown
[SWS_EM_01351] Execution Cycle Time

[SWS_EM_01352] Execution Cycle Timeout

[SWS_EM_01353] Event-triggered Cycle Activation

[SWS_EM_02076] Get Process States Information
[SWS_EM_02077] Process State Transition Event
[SWS_EM_02102] Memory control

[SWS_EM_02103] CPU usage control

[SWS_EM_02104] Core affinity

[SWS_EM_02106] ResourceGroup assignment

[SWS_EM_02107] Maximum heap

[SWS_EM_02108] Maximum system memory usage

[SWS_EM_02109] Process pre-mapping

[SWS_EM_02241] Machine State Startup Completion

[SWS_EM_02242] Further Function Group State Changes

[SWS_EM_02243] Handling Execution State Running

[SWS_EM_02244] Handling Execution State Terminating

[SWS_EM_02245] Dependency resolution during state change

[SWS_EM_02246] Process specific Environment Variables

[SWS_EM_02247] Machine specific Environment Variables

[SWS_EM_02248] Environment Variables precedence

[SWS_EM_02249] Missing value from Environment Variable definition

[SWS_EM_02250] Machine State Startup

[SWS_EM_02251] State transition - restart behavior
[SWS_EM_02253] State transition - Process start-up timeout monitoring

[SWS_EM_02254] Misconfigured Process - assigned to more than one Function Group
5

132 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP R19-11

4
Number Heading

[SWS_EM_02255] State transition - Process termination timeout reaction

Table C.13: Changed Traceables in R19-11

C.5.3 Deleted Traceables in R19-11

Number Heading

[SWS_EM_01005] Terminating Process State

[SWS_EM_01018] Enter Safe State
[SWS_EM_01026] State Change

[SWS_EM_01028] Get State Information
[SWS_EM_01034] Deny State Change Request

[SWS_EM_01053] Execution State Running

[SWS_EM_01061] Enter Safe State Behavior
[SWS_EM_01068] State transition - Process start-up timeout reporting

[SWS_EM_01070] Acknowledgement of termination request

[SWS_EM_01400] Execution Dependency resolution

[SWS_EM_02044] State Change in Progress

[SWS_EM_02049] State Change Failed

[SWS_EM_02050] State Information Success
[SWS_EM_02056] State Change Failed

[SWS_EM_02057] State Change Successful

[SWS_EM_02058] State Transition Timeout
[SWS_EM_02252] State transition - Process termination timeout reporting

[SWS_EM_02256] State transition - Process start-up timeout reaction

Table C.14: Deleted Traceables in R19-11

C.5.4 Added Constraints in R19-11

none

C.5.5 Changed Constraints in R19-11

none

C.5.6 Deleted Constraints in R19-11

none

133 of 133
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

	1 Introduction and functional overview
	1.1 What is Execution Management?
	1.2 Interaction with AUTOSAR Runtime for Adaptive

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known Limitations

	5 Dependencies to other Functional Clusters
	5.1 Protocol layer dependencies

	6 Requirements traceability
	6.1 Not applicable requirements

	7 Functional specification
	7.1 Functional Cluster Lifecyle
	7.1.1 Startup
	7.1.2 Shutdown
	7.1.3 Restart

	7.2 Technical Overview
	7.2.1 Application
	7.2.2 Adaptive Application
	7.2.3 Executable
	7.2.4 Process
	7.2.5 Execution Manifest
	7.2.6 Machine Manifest
	7.2.7 Manifest Format

	7.3 Execution Management Responsibilities
	7.4 Process Lifecycle Management
	7.4.1 Execution State
	7.4.2 Process States
	7.4.3 Startup and Termination
	7.4.3.1 Ordering
	7.4.3.2 Arguments
	7.4.3.3 Environment Variables

	7.4.4 Startup Sequence
	7.4.4.1 Execution Dependency

	7.5 State Management
	7.5.1 Overview
	7.5.2 Machine State
	7.5.2.1 Startup
	7.5.2.2 Shutdown
	7.5.2.3 Restart

	7.5.3 Function Group State
	7.5.4 State Interaction
	7.5.5 State Transition

	7.6 Application Recovery Actions
	7.6.1 Overview
	7.6.2 Process State Information
	7.6.2.1 Get Process States Information
	7.6.2.2 Process State Transition Event

	7.6.3 Recovery Actions
	7.6.3.1 Process Restart
	7.6.3.2 Enter Unrecoverable State

	7.7 Deterministic Execution
	7.7.1 Determinism
	7.7.1.1 Time Determinism
	7.7.1.2 Data Determinism
	7.7.1.3 Full Determinism

	7.7.2 Redundant Deterministic Execution
	7.7.3 Cyclic Deterministic Execution
	7.7.3.1 Control of Cyclic Execution
	7.7.3.2 Worker Pool
	7.7.3.3 Random Numbers
	7.7.3.4 Time Stamps
	7.7.3.5 Real-Time Resources

	7.8 Resource Limitation
	7.8.1 Resource Configuration
	7.8.2 Resource Monitoring
	7.8.3 Application-level Resource configuration
	7.8.3.1 CPU Usage
	7.8.3.2 Core Affinity
	7.8.3.3 Scheduling
	7.8.3.4 Memory Budget and Monitoring
	7.8.3.5 Working Folder

	7.9 Fault Tolerance
	7.9.1 Introduction
	7.9.2 Scope
	7.9.3 Threat Model

	7.10 Security
	7.10.1 Trusted Platform
	7.10.1.1 Handling of failed authenticity checks

	8 API specification
	8.1 Type Definitions
	8.1.1 ExecutionState
	8.1.2 ActivationReturnType
	8.1.3 ActivationTimeStampReturnType

	8.2 Class Definitions
	8.2.1 ExecutionClient class
	8.2.1.1 ExecutionClient::ExecutionClient
	8.2.1.2 ExecutionClient::~ExecutionClient
	8.2.1.3 ExecutionClient::ReportExecutionState

	8.2.2 DeterministicClient class
	8.2.2.1 DeterministicClient::DeterministicClient
	8.2.2.2 DeterministicClient::~DeterministicClient
	8.2.2.3 DeterministicClient::WaitForNextActivation
	8.2.2.4 DeterministicClient::RunWorkerPool
	8.2.2.5 DeterministicClient::GetRandom
	8.2.2.6 DeterministicClient::GetActivationTime
	8.2.2.7 DeterministicClient::GetNextActivationTime

	8.2.3 FunctionGroup class
	8.2.3.1 FunctionGroup::Preconstruct
	8.2.3.2 FunctionGroup::FunctionGroup
	8.2.3.3 FunctionGroup::~FunctionGroup
	8.2.3.4 FunctionGroup::operator==
	8.2.3.5 FunctionGroup::operator!=

	8.2.4 FunctionGroupState class
	8.2.4.1 FunctionGroupState::Preconstruct
	8.2.4.2 FunctionGroupState::FunctionGroupState
	8.2.4.3 FunctionGroupState::~FunctionGroupState
	8.2.4.4 FunctionGroupState::operator==
	8.2.4.5 FunctionGroupState::operator!=

	8.2.5 StateClient class
	8.2.5.1 StateClient::StateClient
	8.2.5.2 StateClient::~StateClient
	8.2.5.3 StateClient::SetState
	8.2.5.4 StateClient::GetInitialMachineStateTransitionResult

	8.3 Errors
	8.3.1 Execution Management error codes
	8.3.2 ExecException type
	8.3.2.1 ExecException::ExecException

	8.3.3 GetExecErrorDomain function
	8.3.4 MakeErrorCode function
	8.3.5 ExecErrorDomain type
	8.3.5.1 ExecErrorDomain::ExecErrorDomain
	8.3.5.2 ExecErrorDomain::Name
	8.3.5.3 ExecErrorDomain::Message
	8.3.5.4 ExecErrorDomain::ThrowAsException

	9 Service Interfaces
	A Mentioned Manifest Elements
	B Interfaces to other Functional Clusters (informative)
	B.1 Overview
	B.2 Interface Tables
	B.2.1 Get Process States Information
	B.2.2 Enter Unrecoverable State Request
	B.2.3 Process Restart Request

	C History of Constraints and Specification Items
	C.1 Constraint and Specification Item History of this document according to AUTOSAR Release 17-10
	C.1.1 Added Traceables in 17-10
	C.1.2 Changed Traceables in 17-10
	C.1.3 Deleted Traceables in 17-10
	C.1.4 Added Constraints in 17-10
	C.1.5 Changed Constraints in 17-10
	C.1.6 Deleted Constraints in 17-10

	C.2 Constraint and Specification Item History of this document according to AUTOSAR Release 18-03
	C.2.1 Added Traceables in 18-03
	C.2.2 Changed Traceables in 18-03
	C.2.3 Deleted Traceables in 18-03
	C.2.4 Added Constraints in 18-03
	C.2.5 Changed Constraints in 18-03
	C.2.6 Deleted Constraints in 18-03

	C.3 Constraint and Specification Item History of this document according to AUTOSAR Release 18-10
	C.3.1 Added Traceables in 18-10
	C.3.2 Changed Traceables in 18-10
	C.3.3 Deleted Traceables in 18-10
	C.3.4 Added Constraints in 18-10
	C.3.5 Changed Constraints in 18-10
	C.3.6 Deleted Constraints in 18-10

	C.4 Constraint and Specification Item History of this document according to AUTOSAR Release 19-03
	C.4.1 Added Traceables in R19-03
	C.4.2 Changed Traceables in R19-03
	C.4.3 Deleted Traceables in R19-03
	C.4.4 Added Constraints in R19-03
	C.4.5 Changed Constraints in R19-03
	C.4.6 Deleted Constraints in R19-03

	C.5 Constraint and Specification Item History of this document according to AUTOSAR Release 19-11
	C.5.1 Added Traceables in R19-11
	C.5.2 Changed Traceables in R19-11
	C.5.3 Deleted Traceables in R19-11
	C.5.4 Added Constraints in R19-11
	C.5.5 Changed Constraints in R19-11
	C.5.6 Deleted Constraints in R19-11

