
 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

1 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Document Title Explanation of Adaptive Platform Design

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 706

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R19-11

Document Change History
Date Release Changed by Description

2019-11-28 R19-11 AUTOSAR
Release
Management

• Updated the architecture logical view

• Updates in Execution Management,

Communication Management,

Security, Diagnostics, Persistency,

State Management, Network

Management, Update and

Configuration Management, Platform

Health Management, Core Types

chapters updated due to changes in

SWS

• Various minor updates for clarification

• Changed Document Status from Final

to published

2019-03-29 19-03 AUTOSAR
Release
Management

Changes to reflect the latest SWS

contents. Chapter 17.4 C++ coding

guidelines deleted.

2018-10-31 18-10 AUTOSAR
Release
Management

Changes to reflect the latest SWS

contents.

2018-03-29 18-03 AUTOSAR
Release
Management

Update of a logical view of AP architecture.

Addition of Update and Configuration

Management, State Management, Time

Synchronization, Adaptive Network

Management, Identity Access

Management, Cryptography, and Core

types.

2017-10-27 17-10 AUTOSAR
Release
Management

Added RESTful Communication

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

2 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Document Change History
Date Release Changed by Description

2017-03-31 17-03 AUTOSAR
Release
Management

Initial release

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

3 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

4 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Table of Contents
1 Introduction to this document .. 8

1.1 Contents ... 8
1.2 Prereads ... 8
1.3 Relationship to other AUTOSAR specifications .. 8

2 Technical Scope and Approach ... 9
2.1 Overview – a landscape of intelligent ECUs ... 9
2.2 Technology Drivers .. 9
2.3 Adaptive Platform – Characteristics ... 10

C++.. 10

SOA ... 10

Parallel processing .. 11

Leveraging existing standard ... 11
Safety and security .. 11
Planned dynamics ... 12
Agile .. 12

2.4 Integration of Classic, Adaptive and Non-AUTOSAR ECUs 12
2.5 Scope of specification .. 14

3 Architecture ... 15

3.1 Logical view .. 15
ARA ... 15

Language binding, C++ Standard Library, and POSIX API 16
Application launch and shutdown .. 16
Application interactions .. 17

Non-standard interfaces .. 17

3.2 Physical view .. 17
OS, processes, and threads .. 17
Library-based or Service based Functional Cluster implementation 18

The interaction between Functional Clusters ... 18
Machine/hardware ... 19

3.3 Methodology and Manifest ... 19
3.4 Manifest .. 20
3.5 Application Design .. 22

3.6 Execution manifest ... 22
3.7 Service Instance Manifest .. 23

3.8 Machine Manifest ... 23
4 Operating System .. 24

4.1 Overview .. 24
4.2 POSIX .. 24
4.3 Scheduling ... 25
4.4 Memory management .. 25
4.5 Device management .. 25

5 Execution Management ... 26
5.1 Overview .. 26
5.2 System Startup ... 26
5.3 Execution Management Responsibilities .. 26
5.4 Deterministic Execution .. 27

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

5 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

5.5 Resource Limitation .. 28
5.6 Application Recovery .. 29
5.7 Trusted Platform ... 29

6 State Management .. 31
7 Communication Management .. 32

7.1 Overview .. 32
7.2 Service Oriented Communication ... 32
7.3 Language binding and Network binding ... 33

7.4 Generated Proxies and Skeletons of C++ Language Binding 34
7.5 Static and dynamic configuration.. 34
7.6 Service Contract Versioning ... 35

7.7 Raw Data Streaming Interface ... 35
8 RESTful Communication ... 36

8.1 Overview .. 36
8.2 Architecture .. 36
8.3 Components ... 37

9 Diagnostics .. 38

9.1 Overview .. 38
Software Cluster .. 38

9.2 Diagnostic communication sub-cluster ... 38

Diagnostic in Adaptive Application (AA) .. 39
Typed vs generic interfaces ... 39

Diagnostic conversations ... 39
9.3 Event memory sub-cluster .. 40

10 Persistency .. 41
10.1 Overview .. 41

10.2 Key-Value Storage ... 41
10.3 File Storage .. 42
10.4 Use cases for handling persistent data for UCM .. 42

11 Time Synchronization .. 44
11.1 Overview .. 44

11.2 Design .. 44
11.3 Architecture .. 45

12 Network Management .. 46
12.1 Overview on Network Management Algorithm ... 46
12.2 Architecture .. 46

13 Update and Config Management ... 48

13.1 Overview .. 48
13.2 Update protocol .. 48

Data transfer .. 48

13.3 Packages ... 49
Software package .. 49
Backend package .. 51
Vehicle Package .. 52
Software release and packaging workflow .. 55

13.4 UCM processing and activating Software Packages 56
13.5 UCM Master update campaign coordination .. 58

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

6 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Adaptive applications interacting with UCM Master ... 59
OTA Client ... 59
Vehicle driver ... 60

Vehicle state manager ... 60
13.6 Software information reporting ... 60
13.7 Software update consistency and authentication 60
13.8 Securing the update process .. 61
13.9 Safe State Management during an update process 61

14 Identity and Access Management .. 63
14.1 Terminology ... 63
14.2 Scope and Focus of the IAM framework: ... 64

14.3 Contents of the AUTOSAR specification .. 64
14.4 The architecture of the IAM Framework ... 65
14.5 Implementation and Usage of IAM ... 68

15 Cryptography ... 70
Security Architecture ... 70

Key Management Architecture .. 71

Remarks on API Extension .. 72
16 Log and Trace .. 73

16.1 Overview .. 73

16.2 Architecture .. 73
17 Safety ... 75

17.1 Safety Overview ... 75
17.2 Protection of Information Exchange (E2E-Protection) 76

17.3 Platform Health Management ... 76
18 Core Types .. 80

18.1 Error Handling .. 80
Overview ... 80
ErrorCode .. 80

Result .. 80
Future and Promise ... 81

18.2 Advanced data types .. 81
18.3 Primitive data types .. 82

18.4 Global initialization and shutdown functions ... 82
19 References .. 84

Figure 2-1 Exemplary deployment of different platforms .. 13

Figure 2-2 Exemplary interactions of AP and CP ... 13

Figure 3-1 AP architecture logical view .. 15

Figure 3-2 Applications ... 16

Figure 3-3 AP development workflow ... 20

Figure 5-1 AP start-up sequence .. 26

Figure 5-2 Deterministic Client ... 28

Figure 7-1 Service-oriented communication ... 32

Figure 7-2 Example Language and Network Binding ... 33

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

7 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 8-1 ara::rest stack architecture overview ... 36

Figure 8-2 ara::rest components ... 37

Figure 12-1 Overview NM ... 47

Figure 13-1 Overview Software Package ... 49

Figure 13-2 Dependency model example ... 51

Figure 13-3 Overview Backend Package ... 52

Figure 13-4 Overview Vehicle Package .. 53

Figure 13-5 Vehicle Package template with its campaign orchestration 54

Figure 13-6 Packaging steps .. 55

Figure 13-7 Packages distribution to vehicle .. 56

Figure 13-8 Overview Processing and Activation of Software Package 57

Figure 13-9 UCM Master state machine ... 59

Figure 14-1 IAM Sequence ... 67

Figure 14-2 Identification of Adaptive Application during runtime, two examples 67

Figure 15-1 Crypto Stack – Reference Architecture ... 71

Figure 15-2 CKI Key Management Interactions .. 72

Figure 16-1 Overview Log and Trace ... 74

Figure 17-1 Platform Health Management and other functional clusters 78

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

8 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

1 Introduction to this document

1.1 Contents

This specification describes the AUTOSAR Adaptive Platform (AP) design. The
purpose of this document is to provide an overview of AP but is not to detail all the
elements of AP design. It is to provide the overall design of the AP and key concepts
for both AP users and AP implementers.

The document is organized as follows. It starts with Technical Scope and Approach
to provide some background of AP, followed by Architecture describing both logical
and physical views of AP. Independent chapters of Methodology and Manifest and all
Functional Clusters follow, which are the units of functionalities of AP, each
containing its overview and introductions to their key concepts.

The detailed specification and discussions on the explained concepts are defined in
the relevant RS, SWS, TR and EXP documents.

1.2 Prereads

This document is one of the high-level conceptual documents of AUTOSAR.
Useful pre-reads are [1] [2] [3].

1.3 Relationship to other AUTOSAR specifications

Refer to Contents and Prereads.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

9 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

2 Technical Scope and Approach

2.1 Overview – a landscape of intelligent ECUs

Traditionally ECUs mainly implement functionality that replaces or augments electro-
mechanical systems. Software in those deeply-embedded ECUs controls electrical
output signals based on input signals and information from other ECUs connected to
the vehicle network. Much of the control software is designed and implemented for
the target vehicle and does not change significantly during vehicle lifetime.

New vehicle functions, such as highly automated driving, will introduce highly
complex and computing resource demanding software into the vehicles and must
fulfill strict integrity and security requirements. Such software realizes functions, such
as environment perception and behavior planning, and integrates the vehicle into
external backend and infrastructure systems. The software in the vehicle needs to be
updated during the lifecycle of the vehicle, due to evolving external systems or
improved functionality.

The AUTOSAR Classic Platform (CP) standard addresses the needs of deeply-
embedded ECUs, while the needs of ECUs described above cannot be fulfilled.
Therefore, AUTOSAR specifies a second software platform, the AUTOSAR
Adaptive Platform (AP). AP provides mainly high-performance computing and
communication mechanisms and offers flexible software configuration, e.g. to support
software update over-the-air. Features specifically defined for the CP, such as
access to electrical signals and automotive specific bus systems, can be integrated
into the AP but is not in the focus of standardization.

2.2 Technology Drivers

There are two major groups of technology drivers behind. One is Ethernet, and the
other is processors.

The ever-increasing bandwidth requirement of the on-vehicle network has led to the
introduction of Ethernet, that offers higher bandwidth and with switched networks,
enabling the more efficient transfer of long messages, point-to-point communications,
among others, compared to the legacy in-vehicle communication technologies such
as CAN. The CP, although it supports Ethernet, is primarily designed for the legacy
communication technologies, and it has been optimized for such, and it is difficult to
fully utilize and benefit from the capability of Ethernet-based communications.

Similarly, performance requirements for processors have grown tremendously in
recent years as vehicles are becoming even more intelligent. Multicore processors
are already in use with CP, but the needs for the processing power calls for more
than multicore. Manycore processors with tens to hundreds of cores, GPGPU
(General Purpose use of GPU), FPGA, and dedicated accelerators are emerging, as

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

10 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

these offer orders of magnitudes higher performance than the conventional MCUs.
The increasing number of cores overwhelms the design of CP, which was originally
designed for a single core MCU, though it can support multicore. Also, as the
computing power swells, the power efficiency is already becoming an issue even in
data centers, and it is in fact much more significant for these intelligent ECUs. From
semiconductor and processor technologies point of view, constrained by Pollack’s
Rule, it is physically not possible to increase the processor frequency endlessly and
the only way to scale the performance is to employ multiple (and many) cores and
execute in parallel. Also, it is known that the best performance-per-watt is achieved
by a mix of different computing resources like manycore, co-processors, GPU,
FPGA, and accelerators. This is called heterogeneous computing – which is now
being exploited in HPC (High-Performance Computing) - certainly overwhelms the
scope of CP by far.

It is also worthwhile to mention that there is a combined effect of both processors and
faster communications. As more processing elements are being combined in a single
chip like manycore processors, the communication between these processing
elements is becoming orders of magnitude faster and efficient than legacy inter-ECU
communications. This has been made possible by the new type of processor inter-
connect technologies such as Network-on-Chip (NoC). Such combined effects of
more processing power and faster communication within a chip also prompts the
need for a new platform that can scale over ever-increasing system requirements.

2.3 Adaptive Platform – Characteristics

The characteristic of AP is shaped by the Overview – landscape of intelligent ECUs
and Technology Drivers. The landscape inevitably demands significantly more
computing power, and the technologies trend provides a baseline of fulfilling such
needs. However, the HPC in the space of safety-related domain while power and
cost efficiencies also matter, is by itself imposes various new technical challenges.

To tackle them, AP employs various proven technologies traditionally not fully
exploited by ECUs, while allowing maximum freedom in the AP implementation to
leverage the innovative technologies.

C++

From top-down, the applications can be programmed in C++. It is now the language
of choice for the development of new algorithms and application software in
performance critical complex applications in the software industry and in academics.
This should bring faster adaptations of novel algorithms and improve application
development productivity if properly employed.

SOA

To support the complex applications, while allowing maximum flexibility and
scalability in processing distribution and compute resource allocations, AP follows
service-oriented-architecture (SOA). The SOA is based on the concept that a system
consists of a set of services, in which one may use another in turn, and applications

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

11 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

that use one or more of the services depending on its needs. Often SOA exhibits
system-of-system characteristics, which AP also has. A service, for instance, may
reside on a local ECU that an application also runs, or it can be on a remote ECU,
which is also running another instance of AP. The application code is the same in
both cases – the communication infrastructure will take care of the difference
providing transparent communication. Another way to look at this architecture is that
of distributed computing, communicating over some form of message passing. At
large, all these represent the same concept. This message passing, communication-
based architecture can also benefit from the rise of fast and high-bandwidth
communication such as Ethernet.

Parallel processing

Distributed computing is inherently parallel. The SOA, as different applications use a
different set of services, shares this characteristic. The advancement or manycore
processors and heterogeneous computing that offer parallel processing capability
offer technological opportunities to harness the computing power to match the
inherent parallelism. Thus, the AP possesses the architectural capability to scale its
functionality and performance as the manycore-heterogeneous computing
technologies advance. Indeed, the hardware and platform interface specification are
only parts of the equation, and advancements in OS/hypervisor technologies and
development tools such as automatic parallelization tools are also critical, which are
to be fulfilled by AP provider and the industry/academic eco-system. The AP aims to
accommodate such technologies as well.

Leveraging existing standard

There is no point in re-inventing the wheels, especially when it comes to
specifications, not implementations. As with already described in C++, AP takes the
strategy of reusing and adapting the existing open standards, to facilitate the faster
development of the AP itself and benefiting from the eco-systems of existing
standards. It is, therefore, a critical focus in developing the AP specification not to
casually introduce a new replacement functionality that an existing standard already
offers. For instance, this means no new interfaces are casually introduced just
because an existing standard provides the functionality required but the interface is
superficially not easy to understand.

Safety and security

The systems that AP targets often require some level of safety and security, possibly
at its highest level. The introduction of new concepts and technologies should not
undermine such requirements although it is not trivial to achieve. To cope with the
challenge, AP combines architectural, functional, and procedural approaches. The
architecture is based on distributed computing based on SOA, which inherently
makes each component more independent and free of unintended interferences,
dedicated functionalities to assist achieving safety and security, and guidelines such
as C++ coding guideline, which facilitates the safe and secure usage of complex
language like C++, for example.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

12 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Planned dynamics

The AP supports the incremental deployment of applications, where resources and
communications are managed dynamically to reduce the effort for software
development and integration, enabling short iteration cycles. Incremental deployment
also supports explorative software development phases.

For product delivery, AP allows the system integrator to carefully limit dynamic
behavior to reduce the risk of unwanted or adverse effects allowing safety
qualification. Dynamic behavior of an application will be limited by constraints stated
in the Execution manifest. The interplay of the manifests of several applications may
cause that already at design time. Nevertheless, at execution time dynamic allocation
of resources and communication paths are only possible in defined ways, within
configured ranges, for example.

Implementations of an AP may further remove dynamic capabilities from the software
configuration for production use. Examples of planned dynamics might be:

 Pre-determination of the service discovery process

 Restriction of dynamic memory allocation to the startup phase only

 Fair scheduling policy in addition to priority-based scheduling

 Fixed allocation of processes to CPU cores

 Access to pre-existing files in the file-system only

 Constraints for AP API usage by Applications

 Execution of authenticated code only

Agile

Although not directly reflected in the platform functionalities, the AP aims to be
adaptive to different product development processes, especially agile based
processes. For agile based development, it is critical that the underlying architecture
of the system is incrementally scalable, with the possibility of updating the system
after its deployment. The architecture of AP should allow this. As the proof of
concept, the AP specification itself and the demonstrator, the demonstrative
implementation of AP, are both developed with Scrum.

2.4 Integration of Classic, Adaptive and Non-AUTOSAR ECUs

As described in previous sections, AP will not replace CP or Non-AUTOSAR
platforms in IVI/COTS. Rather, it will interact with these platforms and external
backend systems such as road-side infrastructures, to form an integrated system
(Figure 2-1 Exemplary deployment of different platforms, and Figure 2-2 Exemplary
interactions of AP and CP). As an example, CP already incorporates SOME/IP,
which is also supported by AP, among other protocols.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

13 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 2-1 Exemplary deployment of different platforms

Figure 2-2 Exemplary interactions of AP and CP

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

14 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

2.5 Scope of specification

AP defines the runtime system architecture, what constitutes a platform, and what
functionalities and interfaces it provides. It also defines machine-readable models
that are used in the development of such a system. The specification should provide
necessary information on developing a system using the platform, and what needs to
be met to implement the platform itself.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

15 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

3 Architecture

3.1 Logical view

ARA

Figure 3-1 AP architecture logical view shows the architecture of AP. The Adaptive
Applications (AA) run on top of ARA, AUTOSAR Runtime for Adaptive
applications. ARA consists of application interfaces provided by Functional
Clusters, which belong to either Adaptive Platform Foundation or Adaptive
Platform Services. Adaptive Platform Foundation provides fundamental
functionalities of AP, and Adaptive Platform Services provide platform standard
services of AP. Any AA can also provide Services to other AA, illustrated as Non-
platform service in the figure.

The interface of Functional Clusters, either they are those of Adaptive Platform
Foundation or Adaptive Platform Services, are indifferent from AA point of view –
they just provide specified C++ interface or any other language bindings AP may
support in future. There are indeed differences under the hood. Also, note that
underneath the ARA interface, including the libraries of ARA invoked in the AA
contexts, may use other interfaces than ARA to implement the specification of AP
and it is up to the design of AP implementation.

Figure 3-1 AP architecture logical view

Be aware that Figure 3-1 AP architecture logical view contains Functional Clusters
that are not part of the current release of AP, to provide a better idea of overall
structure. Further new Functional Clusters not shown here may well be added future
releases of AP.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

16 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Language binding, C++ Standard Library, and POSIX API

The language binding of these API is based on C++, and the C++ Standard library is
also available as part of ARA. Regarding the OS API, only PSE51 interface, a single-
process profile of POSIX standard is available as part of ARA. The PSE51 has been
selected to offer portability for existing POSIX applications and to achieve freedom of
interference among applications.

Note that the C++ Standard Library contains many interfaces based on POSIX,
including multi-threading APIs. It is recommended not to mix the C++ Standard
library threading interface with the native PSE51 threading interface to avoid
complications. Unfortunately, the C++ Standard Library does not cover all the PSE51
functionalities, such as setting a thread scheduling policy. In such cases, the
combined use of both interfaces may be necessary.

Application launch and shutdown

Lifecycles of applications are managed by Execution Management (EM).
Loading/launching of an application is managed by using the functionalities of EM,
and it needs appropriate configuration at system integration time or at runtime to
launch an application. In fact, all the Functional Clusters are applications from EM
point of view, and they are also launched in the same manner, except for EM itself.
Figure 3-2 Applications illustrates different types of applications within and on AP.

Figure 3-2 Applications

Note that decisions on which and when the application starts or terminates are not
made by EM. A special FC, called State Management (SM), is the controller,
commanding EM based on the design of a system, arbitrating different states thus
controlling the overall system behavior. Since the system here refers to the whole
machine AP and its application are running, the internal behavior thus the
implementation is project specific. The SM also interact with other FCs to coordinate
the overall machine behavior. The SM should use only the standard ARA interface to
maintain portability among different AP stack implementations.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

17 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Application interactions

Regarding the interaction between AAs, PSE51 do not include IPC (Inter-Process-
Communication), so there is no direct interface to interact between AAs.
Communication Management (CM) is the only explicit interface. CM also provides
Service Oriented Communication for both intra-machine and inter-machine, which
are transparent to applications. CM handles routing of Service requests/replies
regardless of the topological deployment of Service and client applications. Note that
other ARA interfaces may internally trigger interactions between AAs, however, this
is not an explicit communication interface but just a byproduct of functionalities
provided by the respective ARA interfaces.

Non-standard interfaces

AA and Functional Clusters may use any non-standard interfaces, provided that they
do not conflict with the standard AP functionalities and also that they conform to the
safety/security requirements of the project. Unless they are pure application local
runtime libraries, care should be taken to keep such use minimal, as this will impact
the software portability onto other AP implementations.

3.2 Physical view

The physical architecture1 of AP is discussed here. Note that most of the contents in
this section are for illustration purpose only, and do not constitute the formal
requirement specification of AP, as the internals of AP is implementation-defined.
Any formal requirement on the AP implementation is explicitly stated.

OS, processes, and threads

The AP Operating System is required to provide multi-process POSIX OS capability.
Each AA is implemented as an independent process, with its own logical memory
space and namespace. Note that a single AA may contain multiple processes, and
this may be deployed onto a single AP instance or distributed over multiple AP
instances. From the module organization point of view, each process is instantiated
by OS from an executable. Multiple processes may be instantiated from a single
executable. Also, AA may constitute multiple executables.

Functional Clusters are also typically implemented as processes. A Functional
Cluster may also be implemented with a single process or multiple (sub) processes.
The Adaptive Platform Services and the non-platform Services are also implemented
as processes.

All these processes can be a single-threaded process or a multi-threaded process.
However, the OS API they can use differs depending on which logical layer the
processes belong to. If they are AAs running on top of ARA, then they should only
use PSE51. If a process is one of the Functional Clusters, it is free to use any OS
interface available.

1
 The ‘physical architecture’ here means mainly the Process View, Physical View, and some

Development View as described in [6].

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

18 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

In summary, from the OS point of view, the AP and AA forms just a set of processes,
each containing one or multiple threads – there is no difference among these
processes, though it is up to the implementation of AP to offer any sort of partitioning.
These processes do interact with each other through IPC or any other OS
functionalities available. Note that AA processes, may not use IPC directly and can
only communicate via ARA.

Library-based or Service based Functional Cluster implementation

As in Figure 3-1 AP architecture logical view, a Functional Cluster can be an
Adaptive Platform Foundation module or an Adaptive Platform Service. As described
previously, these are generally both processes. For them to interact with AAs, which
are also processes, they need to use IPC. There are two alternative designs to
achieve this. One is “Library-based” design, in which the interface library, provided by
the Functional Cluster and linked to AA, calls IPC directly. The other is “Service-
based” design, where the process uses Communication Management functionality
and has a Server proxy library linked to the AA. The proxy library calls
Communication Management interface, which coordinates IPC between the AA
process and Server process. Note it is implementation-defined whether AA only
directly performs IPC with Communication Management or mix with direct IPC with
the Server through the proxy library.

A general guideline to select a design for Functional Cluster is that if it is only used
locally in an AP instance, the Library-based design is more appropriate, as it is
simpler and can be more efficient. If it is used from other AP instance in a distributed
fashion, it is advised to employ the Service-based design, as the Communication
Management provides transparent communication regardless of the locations of the
client AA and Service. Functional Clusters belonging to Adaptive Platform
Foundation are “Library-based” and Adaptive Platform Services are “Service-based”
as the name rightly indicate.

Finally, note that it is allowed for an implementation of an FC to not to have a process
but realize in the form of a library, running in the context of AA process, as long as it
fulfills the defined RS and SWS of the FC. In this case, the interaction between an
AA and the FC will be regular procedure call instead of IPC-based as described
previously.

The interaction between Functional Clusters

In general, the Functional Clusters may interact with each other in the AP
implementation-specific ways, as they are not bound to ARA interfaces, like for
example PSE51, that restricts the use of IPC. It may indeed use ARA interfaces of

other Functional Clusters, which are public interfaces. One typical interaction

model between Functional Clusters is to use protected interfaces of Functional

Clusters to provide privileged access required to achieve the special functionalities of
Functional Clusters.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

19 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Also, from AP18-03, a new concept of Inter-Functional-Cluster (IFC) interface has
been introduced. It describes the interface an FC provides to other FCs. Note that it
is not part of ARA, nor does it constitute formal specification requirements to AP
implementations. These are provided to facilitate the development of the AP
specification by clarifying the interaction between FCs, and they may also provide
better architectural views of AP for the users of AP specification. The interfaces are
described in the Annex of respective FC SWS.

Machine/hardware

The AP regards hardware it runs on as a Machine. The rationale behind that is to
achieve a consistent platform view regardless of any virtualization technology which
might be used. The Machine might be a real physical machine, a fully-virtualized
machine, a para-virtualized OS, an OS-level-virtualized container or any other
virtualized environment.

On hardware, there can be one or more Machines, and only a single instance of AP
runs on a machine. It is generally assumed that this ‘hardware’ includes a single chip,
hosting a single or multiple Machines. However, it is also possible that multiple chips
form a single Machine if the AP implementation allows it.

3.3 Methodology and Manifest

The support for distributed, independent, and agile development of functional
applications requires a standardized approach to the development methodology.
AUTOSAR adaptive methodology involves the standardization of work products for
the description of artifacts like services, applications, machines, and their
configuration; and the respective tasks to define how these work products shall
interact to achieve the exchange of design information for the various activities
required for the development of products for the adaptive platform.
Figure 3-3 illustrates a draft overview of how adaptive methodology might be
implemented. For the details of these steps see [3].

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

20 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 3-3 AP development workflow

3.4 Manifest

A Manifest represents a piece of AUTOSAR model description that is created to
support the configuration of an AUTOSAR AP product and which is uploaded to the
AUTOSAR AP product, potentially in combination with other artifacts (like binary files)
that contain executable code to which the Manifest applies.

The usage of a Manifest is limited to the AUTOSAR AP. This does not mean,
however, that all ARXML produced in a development project that targets the
AUTOSAR AP is automatically considered a Manifest.
In fact, the AUTOSAR AP is usually not exclusively used in a vehicle project.

A typical vehicle will most likely be also equipped with a number of ECUs developed
on the AUTOSAR CP and the system design for the entire vehicle will, therefore,
have to cover both – ECUs built on top of the AUTOSAR CP and ECUs created on
top of the AUTOSAR AP.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

21 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

In principle, the term Manifest could be defined such that there is conceptually just
one "Manifest" and every deployment aspect would be handled in this context. This
does not seem appropriate because it became apparent that manifest-related model-
elements exist that are relevant in entirely different phases of a typical development
project.

This aspect is taken as the main motivation that next to the application design it is
necessary to subdivide the definition of the term Manifest in three different partitions:

Application Design This kind of description specifies all design-related aspects that
apply to the creation of application software for the AUTOSAR AP. It is not
necessarily required to be deployed to the adaptive platform machine, but the
application design aids the definition of the deployment of application software in the
Execution manifest and Service Instance Manifest.

Execution manifest This kind of Manifest is used to specify the deployment-related
information of applications running on the AUTOSAR AP.
An Execution manifest is bundled with the actual executable code to support the
integration of the executable code onto the machine.

Service Instance Manifest This kind of Manifest is used to specify how service-
oriented communication is configured in terms of the requirements of the underlying
transport protocols.
A Service Instance Manifest is bundled with the actual executable code that
implements the respective usage of service-oriented communication.

Machine Manifest This kind of Manifest is supposed to describe deployment-related
content that applies to the configuration of just the underlying machine (i.e. without
any applications running on the machine) that runs an AUTOSAR AP.
A Machine Manifest is bundled with the software taken to establish an instance of the
AUTOSAR AP.

The temporal division between the definition (and usage) of different kinds of
Manifest leads to the conclusion that in most cases different physical files will be
used to store the content of the three kinds of Manifest.

In addition to the Application Design and the different kinds of Manifest, the
AUTOSAR Methodology supports a System Design with the possibility to describe
Software Components of both AUTOSAR Platforms that will be used in a System in
one single model. The Software Components of the different AUTOSAR platforms
may communicate in a service-oriented way with each other. But it is also possible to
describe a mapping of Signals to Services to create a bridge between the service-
oriented communication and the signal-based communication.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

22 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

3.5 Application Design

The application design describes all design-related modeling that applies to the
creation of application software for the AUTOSAR AP.

Application Design focuses on the following aspects:

 Data types used to classify information for the software design and
implementation

 Service interfaces as the pivotal element for service-oriented communication

 Definition how service-oriented communication is accessible by the application

 Persistency Interfaces as the pivotal element to access persistent data and files

 Definition how persistent storage is accessible by the application

 Definition how files are accessible by the application

 Definition how crypto software is accessible by the application

 Definition how the Platform Health Management is accessible by the application

 Definition how Time Bases are accessible by the application

 Serialization properties to define the characteristics of how data is serialized for
the transport on the network

 REST service interfaces as the pivotal element to communicate with a web
service by means of the REST pattern

 Description of client and server capabilities

 Grouping of applications in order to ease the deployment of software.

The artifacts defined in the application design are independent of a specific
deployment of the application software and thus ease the reuse of application
implementations for different deployment scenarios.

3.6 Execution manifest

The purpose of the execution manifest is to provide information that is needed for the
actual deployment of an application onto the AUTOSAR AP.
The general idea is to keep the application software code as independent as possible
from the deployment scenario to increase the odds that the application software can
be reused in different deployment scenarios.

With the execution manifest the instantiation of applications is controlled, thus it is
possible to

 instantiate the same application software several times on the same machine, or
to

 deploy the application software to several machines and instantiate the
application software per machine.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

23 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

The Execution manifest focuses on the following aspects:

 Startup configuration to define how the application instance shall be started. The
startup includes the definition of startup options and access roles.
Each startup may be dependent on machines states and/or function group states.

 Resource Management, in particular resource group assignments.

3.7 Service Instance Manifest

The implementation of service-oriented communication on the network requires
configuration which is specific to the used communication technology (e.g.
SOME/IP). Since the communication infrastructure shall behave the same on the
provider and the requesters of a service, the implementation of the service must be
compatible on both sides.

The Service Instance Manifest focuses on the following aspects:

 Service interface deployment to define how a service shall be represented on the
specific communication technology.

 Service instance deployment to define for specific provided and required service
instances the required credentials for the communication technology.

 The configuration of E2E protection

 The configuration of Security protection

 The configuration of Log and Trace

3.8 Machine Manifest

The machine manifest allows to configure the actual adaptive platform instance
running on specific hardware (machine).

The Machine Manifest focuses on the following aspects:

 Configuration of the network connection and defining the basic credentials for the
network technology (e.g. for Ethernet this involves setting of a static IP address or
the definition of DHCP).

 Configuration of the service discovery technology (e.g. for SOME/IP this involves
the definition of the IP port and IP multicast address to be used).

 Definition of the used machine states

 Definition of the used function groups

 Configuration of the adaptive platform functional cluster implementations (e.g. the
operating system provides a list of OS users with specific rights).

 The configuration of the Crypto platform Module

 The configuration of Platform Health Management

 The configuration of Time Synchronization

 Documentation of available hardware resources (e.g. how much RAM is available;
how many processor cores are available)

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

24 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

4 Operating System

4.1 Overview

The Operating System (OS) is responsible for run-time scheduling, resource
management (including policing memory and time constraints) and inter-process
communication for all Applications on the Adaptive Platform. The OS works in
conjunction with Execution Management which is responsible for platform
initialization and uses the OS to perform the start-up and shut-down of Applications.

The Adaptive Platform does not specify a new Operating System for highly
performant processors. Rather, it defines an execution context and Operating
System Interface (OSI) for use by Adaptive Applications.

The OSI specification contains application interfaces that are part of ARA, the
standard application interface of Adaptive Application. The OS itself may very well
provide other interfaces, such as creating processes, that are required by Execution
Management to start an Application. However, the interfaces providing such
functionality, among others, are not available as part of ARA and it is defined to be
platform implementation dependent.

The OSI provides both C and C++ interfaces. In the case of a C program, the
application’s main source code business logic include C function calls defined in the
POSIX standard, namely PSE51 defined in IEEE1003.13 [1]. During compilation, the
compiler determines which C library from the platform’s operating system provides
these C functions and the applications executable shall be linked against at runtime.
In case of a C++ program, application software component’s source code includes
function calls defined in the C++ Standard and its Standard C++ Library.

4.2 POSIX

There are several operating systems on the market, e.g. Linux, that provide POSIX
compliant interfaces. However, applications are required to use a more restricted API
to the operating systems as compared to the platform services and foundation.

The general assumption is that a user Application shall use PSE51 as OS interface
whereas platform Application may use full POSIX. In case more features are needed
on application level they will be taken from the POSIX standard and NOT newly
specified wherever possible.

The implementation of Adaptive Platform Foundation and Adaptive Platform Services
functionality may use further POSIX calls. The use of specific calls will be left open to
the implementer and not standardized.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

25 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

4.3 Scheduling

The operating system provides multi-threading and multi-process support. The
standard scheduling policies are SCHED_FIFO and SCHED_RR, which are defined
by the POSIX standard. Other scheduling policies such as SCHED_DEADLINE or
any other operating system specific policies are allowed, with the limitation that this
may not be portable across different AP implementations.

4.4 Memory management

One of the reasons behind the multi-process support is to realize ‘freedom of
interferences’ among different Functional Clusters and AA. The multi-process support
by OS forces each process to be in an independent address space, separated and
protected from other processes. Two instances of the same executable run in
different address spaces such that they may share the same entry point address and
code as well as data values at startup, however, the data will be in different physical
pages in memory.

4.5 Device management

Device management will be provided under POSIX PSE51 interfaces. Refer to
POSIX specifications for details.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

26 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

5 Execution Management

5.1 Overview

Execution Management is responsible for all aspects of system execution
management including platform initialization and startup/shutdown of Applications.
Execution Management works in conjunction with the Operating System to perform
run-time scheduling of Applications.

5.2 System Startup

When the Machine is started, the OS will be initialized first and then Execution
Management is launched as one of the OS’s initial processes. Other functional
clusters and platform-level Applications of the Adaptive Platform Foundation are then
launched by Execution Management. After the Adaptive Platform Foundation is up
and running, Execution Management continues launching Adaptive Applications. The
startup order of the platform-level Applications and the Adaptive Applications are
determined by the Execution Management, based on Machine Manifest and
Execution manifest information.

Figure 5-1 AP start-up sequence

Execution Management optionally supports authenticated Startup where starting from
a trust anchor the Adaptive Platform is started while maintaining the chain of trust.
During authenticated startup Execution Management validates the authenticity and
integrity of applications and will prevent their execution if violations are detected.
Through these mechanisms, a Trusted Platform can be established.

5.3 Execution Management Responsibilities

Execution Management is responsible for all aspects of Adaptive Platform execution
management and Application execution management including:

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

27 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

1. Platform Lifecycle Management
Execution Management is launched as part of the Adaptive Platform startup
phase and is responsible for the initialization of the Adaptive Platform and
deployed Applications.

2. Application Lifecycle Management
The Execution Management is responsible for the ordered startup and shutdown
of the deployed Applications. The Execution Management determines the set of
deployed Applications based on information in the Machine Manifest and
Execution manifests and derives an ordering for startup/shutdown based on
declared Application dependencies. Depending on the Machine State and on the
Function Group States, deployed Applications are started during Adaptive
Platform startup or later, however it is not expected that all will begin active work
immediately since many Applications will provide services to other Applications
and therefore wait and “listen” for incoming service requests.

The Execution Management is not responsible for run-time scheduling of
Applications since this is the responsibility of the Operating System. However, the
Execution Management is responsible for initialization/configuration of the OS to
enable it to perform the necessary run-time scheduling based on information
extracted by the Execution Management from the Machine Manifest and Execution
manifests.

5.4 Deterministic Execution

Deterministic execution provides a mechanism such that a calculation using a given
input data set always produces a consistent output within a bounded time. Execution
Management distinguishes between time and data determinism. The former states
that the output is always produced by the deadline whereas the latter refers to
generating the same output from the same input data set and internal state.

The support provided by Execution Management focuses on data determinism as it
assumes time determinism has handled by the provision of sufficient resources. For
data determinism, Execution Management provides the DeterministicClient APIs to
support control of the process-internal cycle, a deterministic worker pool, activation
time stamps, and random numbers. In the case of software lockstep, the
DeterministicClient interacts with an optional software lockstep framework to ensure
identical behavior of the redundantly executed Processes. DeterministicClient
interacts with Communication Management to synchronize data handling with cycle
activation.

The API supported by DeterministicClient and its interaction with an application is illustrated in
Figure 5-2 Deterministic Client

.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

28 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 5-2 Deterministic Client

5.5 Resource Limitation

The Adaptive Platform permits execution of multiple Adaptive Applications on the
same Machine and thus ensuring freedom from interference is a system property.
Hence an incorrectly behaving Adaptive Application should be limited with respect to
its ability to affect other applications, for example, an application should be prevented
from consuming more CPU time than specified due to the potential for consequent
impacts on the correct functioning of other applications.

Execution Management supports freedom from interference through the configuration
of one or more ResourceGroups to which application’s processes are assigned. Each
ResourceGroup may then be assigned a limit for CPU time or memory that permits
restricting the Application's available resources.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

29 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

5.6 Application Recovery

Execution Management is responsible for the state-dependent management of
Process start/stop, so it has to have the special right to start and stop Processes.
The Platform Health Management monitors Processes and could trigger a Recovery
Action in case any Process behaves not within the specified parameters. The
Recovery Actions are defined by the integrator based on the software architecture
requirements for the Platform Health Management and configured in the Execution
Manifest.

5.7 Trusted Platform

To guarantee the correct function of the system, it is crucial to ensure that the code
executed on the platform has legitimate origin. Keeping this property allows the
integrator to build a Trusted Platform.

A key property of a system that implements a Trusted Platform is a Trust Anchor
(also called Root of Trust). A Trust Anchor is often realized as a public key that is
stored in a secure environment, e.g. in non-modifiable persistent memory or in an
HSM.

A system designer is responsible to ensure at least that the system starts beginning
with a Trust Anchor and that the trust is kept until the Execution Management is
launched. Depending on the mechanism that is chosen by the system designer to
establish the chain of trust, the integrity and authenticity of the entire system may
have been checked at this point in the system start-up. However, if the system
designer only ensured that the already executed software has been checked
regarding integrity and authenticity, the Execution Management takes over
responsibility on continuing the chain of trust when it takes over control of the
system. In this case, the system integrator is responsible to ensure that the
Execution Management is configured properly.

One example of passing trust from the Trust Anchor to the OS and the Adaptive
Platform (i.e. establishing a chain of trust) could look like this: The Trust Anchor - as
an authentic entity by definition - authenticates the bootloader before the bootloader
is being started. In each subsequent step in the boot process, the to-be-started
Executable shall be authenticated first. This authenticity check shall be done by an
already authenticated entity, i.e. the authenticity check could be done e.g. by the
Executable started previously or by some external entity like an HSM, for example.

After the OS has been authentically started, it shall launch Execution Management
as one of its first processes. Before Execution Management is being launched, the
OS shall ensure that the authenticity of the Execution Management has been verified
by an already authenticated and thus trustworthy entity.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

30 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Note: If authentication is not checked by the functionality of the Trust Anchor itself,
which is authentic by definition, the Software that shall be applied to verify
authenticity of an Executable has to be authenticated before it is applied. For
instance, if the Crypto API shall be used to verify authentication of Executables, the
Crypto API itself shall be authenticated by some trusted entity before it is used.

Execution Management takes now over the responsibility of authenticating Adaptive
Applications before launching them. However, there exists more than one possibility
to validate the integrity and authenticity of the Executable code. In
SWS_ExecutionManagement, a list of possible mechanisms is provided that fulfill
this task.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

31 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

6 State Management

State Management is a unique Functional Cluster that is intended to be mostly an
ECU development project specific, and generally, the final implementation is to be
performed by the system integrator. It is responsible for all aspects of the operational
state of the AUTOSAR Adaptive Platform, Including handling of incoming events,
prioritization of these events/requests to set the corresponding internal states. State
Management may consist of one or more state machines depending on the project
needs.

The State Management interact with Adaptive Applications via project specific
ara::com service interface consisting of ‘Fields” as described below. The interaction
between State Management and other Function Clusters shall be done via a
standardized interface(s) defined by each Function Cluster.

The following effects can be requested by State Management:

• FunctionGroups can be requested to be set to a dedicated state
• (Partial) Networks can be requested to be de- / activated
• The machine can be requested to be shutdown or restarted
• Other Adaptive (Platform) Applications can be influenced in their behavior
• Project-specific actions could be performed

State Management provides a set of ‘Trigger’ and ‘Notifier’ fields via ara::com. The

SM essentially listens to the ‘Triggers’, and perform implementation‐specific state
machine processing internally, and provides the effect to the ‘Notifier’ fields if there is
any.

Since State Management functionality is critical, access from other Functional
Clusters or Applications must be secured, e.g. by IAM (Identity and Access
Management). State Management is monitored and supervised by Platform Health
Management.

State Management functionality is highly project-specific, and AUTOSAR decided
against specifying functionality like the Classic Platforms BswM for the Adaptive
Platform for now. It is planned to only specify a set of basic service interfaces and to
encapsulate the actual arbitration logic into project specific code.

The arbitration logic code might be individually developed or (partly) generated,
based on standardized configuration parameters.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

32 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

7 Communication Management

7.1 Overview

The Communication Management is responsible for all aspects of communication
between applications in a distributed real-time embedded environment.

The concept behind is to abstract from the actual mechanisms to find and connect
communication partners such that implementers of application software can focus on
the specific purpose of their application.

7.2 Service Oriented Communication

The notion of a service means functionality provided to applications beyond the
functionality already provided by the basic operating software. The Communication
Management software provides mechanisms to offer or consume such services for
intra-machine communication as well as inter-machine communication.

A service consists of a combination of

 Events

 Methods

 Fields

Communication paths between communication partners can be established at
design-, at startup- or at run-time. An important component of that mechanism is the
Service Registry that acts as a brokering instance and is also part of the
Communication Management software.

Figure 7-1 Service-oriented communication

Each application that provides services registers these services at the Service
Registry. To use a service a consuming application needs to find the requested

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

33 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

service by querying the Service Registry, this process is known as Service
Discovery.

7.3 Language binding and Network binding

The Communication Management provides standardized means how a defined
service is presented to the application implementer (upper layer, Language Binding)
as well as the respective representation of the service’s data on the network (lower
layer, Network Binding). This assures portability of source code and compatibility of
compiled services across different implementations of the platform.

The Language binding defines how the methods, events, and fields of a service are
translated into directly accessible identifiers by using convenient features of the
targeted programming language. Performance and type safety (as far as supported
by the target language) are the primary goals. Therefore, the Language Binding is
typically implemented by a source code generator that is fed by the service interface
definition.

Figure 7-2 Example Language and Network Binding

The Network Binding defines how the actual data of a configured service is serialized
and bound to a specific network. It can be implemented based on Communication
Management configuration (interface definition of the AUTOSAR meta model) either
by interpreting a generated service specific recipe or by directly generating the
serializing code itself. Currently, Communication Management supports SOME/IP,
DDS, IPC (Inter-Process-Communication or any other custom binding), and Signal
PDU (Signal-Based Network binding).

The local Service Registry is also part of the Network Binding.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

34 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Please note: the interface between Language Binding and Network Binding is
considered as a private interface inside Communication Management software.
Therefore, a normative specification defining this interface is currently out of scope.
Nevertheless, platform vendors are encouraged to define independently such an
interface for their software to allow for easy implementation of other Language
Bindings than C++ together with other Network Bindings inside their platform
implementation.

7.4 Generated Proxies and Skeletons of C++ Language Binding

The upper layer interface of the C++ Language Binding provides an object-oriented
mapping of the services defined in the interface description of the AUTOSAR meta
model.

A generator that is part of the development tooling for the Communication
Management software generates C++ classes that contain type safe representations
of the fields, events, and methods of each respective service.

On the service implementation side, these generated classes are named Service
Provider Skeletons. On the client side, they are called Service Requester Proxies.

For Service Methods, a Service Requester Proxy provides mechanisms for
synchronous (blocking the caller until the server returns a result) and asynchronous
calling (called function returns immediately). A caller can start other activities in
parallel and receives the result when the server’s return value is available via special

features of the Core Type ara::core::future. See chapter 18.1.

A platform implementation may be configured such that the generator creates mock-
up classes for easy development of client functionality when the respective server is
not yet available. The same mechanism can also be used for unit testing the client.

Whereas proxy classes can be used directly by the client the Service Provider
Skeletons for the C++ binding are just abstract base classes. A service
implementation shall derive from the generated base class and implement the
respective functionality.

The interfaces of ara::com can also provide proxies and skeletons for safety-related
E2E protected communication. These interfaces are designed that compatibility to
the applications is assured independent whether E2E protection is switched on or off.

7.5 Static and dynamic configuration

The configuration of communication paths can happen at design-, at startup- or at
run-time and is therefore considered either static or dynamic:

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

35 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

 Full static configuration:
service discovery is not needed at all as the server knows all clients and clients
know the server.

 No discovery by application code:
the clients know the server but the server does not know the clients. Event
subscription is the only dynamic communication pattern in the application.

 Full service discovery in the application:
No communication paths are known at configuration time. An API for Service
discovery allows the application code to choose the service instance at runtime.

7.6 Service Contract Versioning

In SOA environments the client and the provider of a service rely on a contract which
covers the service interface and behavior. During the development of a service the
service interface or the behavior may change over time. Therefore, service contract
versioning has been introduced to differentiate between the different versions of a
service. The AUTOSAR Adaptive platform supports contract versioning for the design
and for the deployment phase of a service. Additionally, the Service Discovery of a
client may be configured to support version backwards-combability. This means that
a client service can connect to different provided service versions if these are
backwards-compatible to the required service version of the client.

7.7 Raw Data Streaming Interface

Besides the Service Oriented Communication, the Communication Management also
provides a standalone API for processing raw binary data streams towards an
external ECU, e.g. a sensor in an ADAS system. The API is static and implements
functionality for a client to establish a communication channel, to destroy a
communication channel, and to read and write raw data (a stream of bytes) over the
communication channel. The Raw Data Stream channels can be configured by an
integrator by applying deployment information, containing e.g. network endpoint
information and selected protocols. Currently, TCP/IP sockets shall be used as a
transport layer, but other alternatives can be added in the future. The Raw Data
Stream interface is available in the namespace ara::com::raw.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

36 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

8 RESTful Communication

8.1 Overview

Both communication stacks, ara::com and ara::rest can establish communication
paths between Adaptive Applications. ara::rest is a framework to build RESTful APIs
as well as specific services on top of such an API. It does not define a specific API
out-of-the-box to construct directly RESTful services. This framework is modular, it
enables developers to access different layers involved in RESTful message
transactions directly. In contrast, the focus of ara::com is to provide a traditional
function call interface and to hide all details of the transactions beyond this point.
Another important difference is that ara::rest ensures interoperability with non-
AUTOSAR peers. For example, an ara::rest service can communicate with a mobile
HTTP/JSON client and vice versa.

8.2 Architecture

The Architecture of ara::rest is based on a modular design which supports
developers at the level of API as well as service design. The following diagram
illustrates its general design. It depicts how a service application is composed in
ara::rest.

Figure 8-1 ara::rest stack architecture overview

The generic REST layer of ara::rest only provides three fundamental abstractions: A
tree-structured message payload (Object Graph), a URI and a request method (like
GET or POST known from HTTP). From these basic primitives domain-specific
RESTful APIs can be composed which defines a concrete high-level protocol for
interaction via object graphs, URI and methods. Its purpose is to define the rules for
access into a domain-specific data model and to provide an abstract (C++) API to an
application. Instead of using this Domain API, it is also possible for an Adaptive

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

37 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Application to use ara::rest directly when this further abstraction is not needed.

8.3 Components

ara::rest comprises of the following set of components.

Figure 8-2 ara::rest components

The Object Graph is a protocol-binding independent tree-like data structure which is
the cornerstone of all ara::rest communication. Its purpose is to map to a protocol
format such as JSON as well as to C structs. This maximizes compatibility with non-
ARA communication peers and Classic AUTOSAR. Object graphs are transmitted in
messages which abstract completely from a concrete underlying protocol binding.
Still they enable a user to access protocol-specific details if required.

Messages encapsulate the entire context of a request/reply communication cycle in
the asynchronous programming model of ara::rest.

The routing concept provides a means to map requests (including request method
and URI) onto user-defined handler functions. Routing is the cornerstone to lift
abstraction from generic REST into a specific kind of RESTful API.

Uri is a generic RFC-compliant but highly efficient URI representation.

ara::rest provides so-called (network) endpoints for server and client communication
which both provide a comparable degrees of resource control. Both are designed to
provide fast and efficient communication capabilities on single as well as multi-core
systems.

The entire framework design is strictly geared towards maximal resource control. All
computations and allocations can be strictly controlled and customized to the precise
needs of an application (deployment).

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

38 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

9 Diagnostics

9.1 Overview

The Diagnostic Management (DM) realizes the ISO 14229-5 (UDSonIP) which is
based on the ISO 14229-1 (UDS) and ISO 13400-2 (DoIP).

Diagnostic Management represents a functional cluster of the Adaptive Platform on
the foundation layer.
The configuration is based on the AUTOSAR Diagnostic Extract Template (DEXT) of
the Classic Platform. DEXT starts to be settled in the market and is already used and
supported by several OEMs and vendors.

The supported Transport Layer is DoIP. DoIP is a vehicle discovery protocol and
designed for off-board communication with the diagnostic infrastructure (diagnostic
clients, production-/workshop tester).
In-vehicle or for remote diagnostics often other transport protocols are used,
wherefore an API to extend the platform with a custom transport layer is provided.

UDS is typically used within the production of a vehicle and within the workshops to
be able to repair the vehicle. In the current (for HDV) and upcoming (for LDV)
legislation UDS is also used for OBD (emission-related diagnostics).

Software Cluster

The atomic updateable/extendable parts are managed by SoftwareClusters (SWCL).
A SoftwareCluster contains all parts which are relevant to update installed or deploy
a particular set of new functionalities/applications. Hence the Adaptive Diagnostics
Manager supports an own diagnostics Server instance for each installed
SoftwareCluster having its own DiagnosticAddress. Note that this SoftwareCluster is
also coupled with the Software Package of UCM so that the SoftwareCluster can be
updated or newly introduced to a machine.

9.2 Diagnostic communication sub-cluster

The diagnostic communication sub-cluster realizes the diagnostic server (like the
DCM of the Classic Platform). Currently, the supported services are limited, but the
support of further UDS services will be extended in future releases.

Besides the pseudo-parallel client handling of ISO 14229-1, the Diagnostic Manager
(DM) is extended to support full parallel handling in the default session of different
diagnostic clients. This allows satisfying the demands of modern vehicle
architectures including several diagnostic clients (tester) for data collection, access
from the backend and finally some of the classic workshop and production use-

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

39 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

cases. If SOTA (Software Over-the-Air) sequences are realized in default session
parallel client handling is possible.

Diagnostic in Adaptive Application (AA)

The DM dispatch as a diagnostic server incoming diagnostic requests (like a routine
control or DID service) to the mapped providing port of the corresponding AA.
To realize this the AA needs to provide a specialized DiagnosticPortInterface.

Typed vs generic interfaces

There are different abstraction levels of DiagnosticPortInterfaces available:
- A RoutineControl message is available as a

o Typed interface.
The API signature includes all requests- and response message
parameters with their primitive types. The DM takes care of the
serialization.
This API is individual to a specific RoutineControl message.

o Generic interface
The API signature includes only a Byte-Vector for the request- and
response message. The application is in the responsibility of the
request- and response message serialization.
The same API could be used for multiple RoutineControl messages.

- A DataIdentifier Message is available as a
o Typed interface

The API signature includes all requests- (for writing) and response
message (for reading) parameters with their primitive types. The DM
takes care of the serialization.

o Generic interface
The API signature includes only a Byte-Vector for the request- and
response message. The application is in the responsibility of the
request- and response message serialization.

o DataElement individual
Each request- and response message parameter has its own interface.
This is the highest level of abstraction i.e. any change in the request-
and response message structure will have no effect on the API.
Further, the parameters of the same diagnostic message could be in
different processes.

Diagnostic conversations

As the DM demands pseudo-parallel handling as it is mentioned above, it supports
Diagnostic Conversations to reflect a distinct conversation between a Diagnostic
Client and a Diagnostic Server. A Diagnostic Server is identified by a target address
of the according to UDS request and is dynamically allocated during run-time in the
Adaptive Platform.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

40 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

9.3 Event memory sub-cluster

The event memory sub-cluster is responsible for DiagnosticTroubleCode (DTC)
management (like the DEM of the Classic Platform).

An active DTC is representing a certainly detected issue (typically important for
production or workshop) in the vehicle. The DM is managing the storage of DTCs
and its configured SnapshotRecords (a set of configured environmental data on the
occurrence time of the DTC) and/or ExtendedDataRecords (statistical data belonging
to the DTC like the number of reoccurrences).
The detection logic is called Diagnostic Monitor. Such a monitor is reporting its recent
test result to a DiagnosticEvent in the DM. The UDS DTC status is derived from one
or multiple DiagnosticEvent(s).
The DTC can be assigned to PrimaryMemory (accessible via 19 02/04/06) or to
configurable UserMemories (accessible via 0x19 17/18/19).

Counter- and Timebase Debouncing are supported. Furthermore, DM offers
notifications about internal transitions: interested parties are informed about DTC
status byte changes, the need to monitor re-initialization for DiagnosticEvents and if
the Snapshot- or ExtendedDataRecord is changed.

A DTC can vanish from the DTC memory if it is not active for a configured amount of
Operation Cycles.

The DM supports generalized handling for the storage- and enable conditions.
Enabling Conditions can be used to control the update of DTCs under special
conditions like to disable all network-related DTCs within under-voltage condition.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

41 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

10 Persistency

10.1 Overview

Persistency offers mechanisms to applications and other functional clusters of the
Adaptive Platform to store information in the non-volatile memory of an Adaptive
Machine. The data is available over boot and ignition cycles. Persistency offers
standard interfaces to access the non-volatile memory.

The Persistency APIs take storage location identifiers as parameters from the
application to address different storage locations.
The available storage locations fall into two categories:

• Key-Value Storage
• File Storage

Every application may use a combination of multiple of these storage types.

Persistent data is always private to one application. There is no mechanism available
to share data between different applications using the Persistency. This decision was
taken to prevent a second communication path beneath the functionality provided by
Communication Management.

Persistency is prepared to handle concurrent access from multiple threads of
the same application, running in the context of the same Process. To create shared
access to a Key-Value Storage or File Storage, either the SharedHandle returned by
OpenKeyValueStorage and OpenFileStorage can be passed on (i.e. copied) to
another thread or OpenKeyValueStorage and OpenFileStorage can be called in
independent threads for the same Key-Value Storage or File Storage, respectively.

Persistency is able to take care of the integrity of the stored data. It uses redundant
information to detect data corruption. The redundant information consists of CRC
codes and "M out of N" schema. These mechanisms can be used either together or
independently.

Persistency offers to application statistics regarding the number of used resources.

Persistency offers encryption for stored data to make sure that sensitive data will be
encrypted before storing it on a physical device.

10.2 Key-Value Storage

The Key-Value Storage provides a mechanism to store and retrieve multiple Key-
Value pairs in one storage location. The following three kinds of data types are
supported directly by Key -Value Storage:

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

42 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

 Data types defined in SWS_AdaptivePlatformTypes.

 Simple byte arrays that result from a streaming of complex types in the
application.

 All Implementation Data Types referred via “dataTypeForSerialization“ by a
“PersistencyKeyValueDatabaseInterface” or specialized as
PersistencyDataElements of that interface in the Application Design

The keys need to be unique for each Key-Value database and are defined by an
application using the methods provided by the Persistency.

Adding serialization/storage support based on application/platform specific
serialization code for AUTOSAR data types which are defined in Application Design
is planned.

10.3 File Storage

Not all data relevant for persistent storage is structured in such a way that Key-Value
databases are a suitable storage mechanism.

For this kind of data the mechanism of File Storage was introduced. A File Storage
Port allows an application to access a storage location and create one
or multiple accessors in it. These accessors again are identified by unique keys in
string format.

To give a better impression of this mechanism, a comparison to a file system helps: a
File Storage Port can be understood as a filesystem directory in which an application
is allowed to create multiple files (accessors).

Since File Storage is close to classical file system access, the API was
designed as a subset of the well-known C++ std::iostream class with similar
behavior.

10.4 Use cases for handling persistent data for UCM

Handling the persistent data/persistent files of UCM use cases by Persistency during
the UCM process purely depends on persistency configuration.

In general, there are three main use cases supported in UCM for handling adaptive
applications over the life cycle of the CAR ECU or adaptive machine.

 Installation of new application software to the Adaptive Machine

 Update of existing application software to the Adaptive Machine

 Uninstallation of the existing application software from the Adaptive Machine

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

43 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

In all three scenarios, Persistency is used by UCM to deploy/delete/update the
persistent data of an application.

Persistency shall support the below-mentioned scenarios.

 Persistency shall be able to deploy the persistent data to a Key-Value
database or File Storage that was defined by an application designer during
the Adaptive Application installation

 Persistency shall be able to deploy the persistent data to Key-Value database
or File Storage that was changed by an integrator

 Persistency shall be able to deploy the persistent data to Key-Value database
or File Storage that was defined by an integrator

 Persistency shall be able to overwrite or retain the persistent data to Key-
Value database or File Storage as per the update strategies configured for the
Key-Value database or File Storage when a new version of an application is
installed

 Persistency shall be able to remove the persistent data Key-Value database or
File Storage when an application is uninstalled

In general, the Persistency layer is configured during application design and
deployment. Persistency shall be able to use the deployment stage configuration to
override the application design configuration. If deployment stage configurations are
missing then configuration from the application design will be considered for the
deployment of persistent data.

Persistency shall check the newly installed and updated persistent data before
integration into a Key-Value database or a File Storage

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

44 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

11 Time Synchronization

11.1 Overview

Time Synchronization (TS) between different applications and/or ECUs is of
paramount importance when the correlation of different events across a distributed
system is needed, either to be able to track such events in time or to trigger them at
an accurate point in time.

For this reason, a Time Synchronization API is offered to the Application, so it can
retrieve the time information synchronized with other Entities / ECUs.

The Time Synchronization functionality is then offered by means of different "Time
Base Resources" (from now on referred to as TBR) which are present in the system
via a pre-build configuration.

11.2 Design

For the Adaptive Platform, the following three different technologies were considered
to fulfill all necessary Time Synchronization requirements:

 StbM of the Classic Platform

 Library chrono - either std::chrono (C++11) or boost::chrono

 The Time POSIX interface

After an analysis of the interfaces of these modules and the Time Synchronization
features they cover, the motivation is to design a Time Synchronization API that
provides a functionality wrapped around the StbM module of the Classic Platform, but
with a std::chrono like flavor.

The following functional aspects are considered by the Time Synchronization
module:

 Startup Behavior

 Constructor Behavior (Initialization)

 Normal Operation

 Error Handling

The following functional aspects will be considered in future releases:

 Shutdown Behavior

 Error Classification

 Version Check

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

45 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

11.3 Architecture

The application will have access to a different specialized class implementation for
each Time Base Resource (TBR).

From this handle, the Application will be able to inquire about the type of Time Base
offered (which shall be one of the five types presented above) to then obtain a
specialized class implementation for that type of Time Base. From this handle, the
Application will also be able to create a timer directly.

The TS module itself does not provide means to synchronize TBRs to Time Bases on
other nodes and/or ECUs like network time protocols or time agreement protocols.

An implementation of TBRs may have a dedicated cyclic functionality, which retrieves
the time information from the Time Synchronization Ethernet module or alike to
synchronize the TBRs.

The Application consumes the time information provided and managed by the TBRs.
Therefore, the TBRs serve as Time Base brokers, offering access to Synchronized
Time Bases. By doing so, the TS module abstracts from the "real" Time Base
provider.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

46 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

12 Network Management

12.1 Overview on Network Management Algorithm

The AUTOSAR NM is based on a decentralized network management strategy,
which means that every network node performs activities independently depending
only on the NM messages received and/or transmitted within the communication
system.

The AUTOSAR NM algorithm is based on periodic NM messages, which are
received by all nodes in the cluster via multicast messages.
The reception of NM messages indicates that sending nodes want to keep the NM-
cluster awake. If any node is ready to go to sleep mode, it stops sending NM
messages, but as long as NM messages from other nodes are received, it postpones
the transition to sleep mode. Finally, if a dedicated timer elapses because no NM
messages are received any more, every node performs the transition to the sleep
mode.
If any node in the NM-cluster requires bus-communication, it can keep the NM-
cluster awake by starting the transmission NM messages.

12.2 Architecture

The Adaptive Platform specification describes the functionality, the API design and
the configuration of the Network Management for the AUTOSAR Adaptive Platform
independently of the underlying communication media used. At the moment only
Ethernet is considered but the architecture is kept bus – independent.

The Network Management (NM) is intended to be controlled via State Management
as the control of partial network needs to be coordinated with the set of the relevant
application via Function Group State of EM controlled by SM. The contents in this
chapter do not yet reflect the design.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

47 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 12-1 Overview NM

Its main purpose is to coordinate the transition between normal operation and bus-
sleep mode of the underlying networks (Partial Networks, VLANs or physical
channel) in internally coordinated state machines.
It provides a Serviceinterface to the Statemanagement for requesting and releasing
networks and querying their actual state. It coordinates the requests of different
instances (Network Handles) and provides an aggregated machine request over the
network..

If the Partial Networking feature is used the Nm messages can contain Partial
Network (PN) requests, giving the ECU the possibility to ignore Nm messages which
do not request any PN which is relevant to the ECU. This gives the possibility to shut
down the ECU (or parts of it), allthough communication is still going on in other
Partial Networks.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

48 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

13 Update and Config Management

13.1 Overview

One of the declared goals of the AUTOSAR Adaptive Platform is the ability to flexibly
update the software and its configuration through over-the-air updates (OTA). To
support changes in the software on an Adaptive Platform, the Update and
Configuration Manager (UCM) provides an Adaptive Platform service that handles
software update requests.

UCM is responsible for updating, installing, removing and keeping a record of the
software on an Adaptive Platform. Its role is similar to known package management
systems like dpkg or YUM in Linux, with additional functionality to ensure a safe and
secure way to update or modify the software on the Adaptive Platform.

UCM Master is providing a standard Adaptive Platform solution to update vehicle
software over-the-air or by a diagnostic tester. It is coordinating and distributing
packages within a vehicle among several UCMs. UCM Master can, therefore, be
considered as an AUTOSAR standard UCM Client.

13.2 Update protocol

UCM and UCM Master services have been designed to support the software
configuration management over vehicle diagnostics and support performing changes
in Adaptive Platforms in safe, secure and resource-efficient update processes. To
fulfill requirements to support updates of several clients and to enable fast download,
UCM needs to be capable of transferring Software Packages (UCM input) separately
from their processing.

Data transfer

Data transfer is done by streaming data over ara::com. This enables transferring data
into UCM or UCM Master without the need to buffer data on the way from the
backend or diagnostic tester. UCM can store packages into a local repository where
packages can be processed in the order requested by the UCM client or UCM
Master.

The transfer phase can be separated from the processing phase, UCM supports
receiving data from multiple clients without limitations.

UCM Master is relying on the same transfer API as UCM but accessible through its
own dedicated service interface. It allows the same streaming features as UCM like
pausing, resuming of parallel transfers.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

49 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

13.3 Packages

Software package

The unit of installation which is the input for the UCM is a Software Package.
The package includes, for example, one or several executables of (Adaptive)
Applications, operating system or firmware updates, or updated configuration and
calibration data that shall be deployed on the Adaptive Platform. This constitutes the
Updatable Package part in Software Packages and contains the actual data to be
added to or changed in the Adaptive Platform. Beside application and configuration
data, each Software Package contains a Software Package Manifest providing
metadata like the package name, version, dependencies and possible some vendor-
specific information for processing the package.

The format of the Software Package is not specified, which enables using a different
kind of solutions for the implementation of UCM. Software Package consists of
updates to be performed in software and metadata. This content is pushed through
vendor tooling to generate Software Package which will be processed by the UCM in
the target, which is also provided by the same vendor.

Figure 13-1 Overview Software Package

UCM processes the vendor-specific Software Package based on the provided
metadata. You can find below for information purpose description of the fields that
must be contained in Software Package Manifest:

General information

 Package name: fully qualified short-name.

 Version: Version from Software Cluster model that has to follow
https://semver.org semantic versioning specification with the exception build
number is mandatory for debugging/tracking purposes. Used primitive name is
StrongRevisionLabelString

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

50 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

 isDeltaPackage: boolean, activated if the content has to be processed for
delta package.

 Minimum and maximum supported UCM version: to make sure that the
Software Package can be parsed properly by the UCM.

 Dependencies: Manifest Specification document contains a model that has to
be followed describing dependencies of Software Cluster after it is updated or
installed. In the case of a delta update, this dependency model shall be used
to describe the dependency of this Software Cluster version against its
previous version. Below is a model example:

class DOC_SoftwareActivationDependency

SoftwareCluster

+ version: StrongRevisionLabelString
+ vendorId: PositiveInteger

SoftwareActivationDependencyFormula

+ operator: SoftwareActivationDependencyLogicalOperatorEnum [0..1]

SoftwareActivationDependencyFormulaPart

SoftwareActivationDependencyCompareCondition

+ compareType: SoftwareActivationDependencyOperatorEnum
+ version: StrongRevisionLabelString
+ considerBuildNumber: Boolean

«enumeration»
SoftwareActivationDependencyOperatorEnum

 isGreaterThan
 isEqual
 isLessThan
 isGreaterThanOrEqual
 isLessThanOrEqual

«enumeration»
SoftwareActivationDependencyLogicalOperatorEnum

 logicalAnd
 logicalOr

ARElement

SoftwareActivationDependency

AtpClassifier

SoftwareClusterDesign

VehiclePackage

+ repository: UriString [0..1]

«atpSplitable»

+conflictsTo 0..1

+softwareActivationDependency0..1

+part 0..* {ordered}

«atpSplitable»

+dependsOn 0..1

«atpUriDef»

+design 0..*

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

51 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 13-2 Dependency model example

Sizes to allow checking if there is enough memory available:

 uncompressedSoftwareClusterSize: Size of Software Cluster in the targeted
platform

 compressedSoftwareClusterSize: Size of Software Package

For information and tracking purpose

 Vendor: vendor id

 Vendor authentication tag

 Packager: vendor id

 Packager authentication tag: for package consistency check and security
purposes (for UCM to check if the Software Package is trustable)

 Type approval: optional, homologation information. Could, for instance, be
RXSWIN from UN ECE WP.29

 Release notes: description of this release changes

 License: for instance MIT, GPL, BSD, proprietary.

To distribute the package to the correct UCM within the vehicle:

 Diagnostic address: coming from the Software Cluster model, used in case
package is coming from the tester via UDS for instance

 Action type: can be update, install, or remove

Backend package

In order for an OEM backend to understand packages contents from several package
suppliers, a backend package format is specified as described in below picture:

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

52 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 13-3 Overview Backend Package

The software package format is vendor-specific. However, as the backend package
is meant to be vendor-independent, Software Package Manifest (in red Figure 13-3)
must use the ARXML file format.

Vehicle Package

A vehicle package is typically assembled by an OEM backend. It contains a
collection of Software Package Manifests extracted from backend packages stored in
the backend database. It also contains a Vehicle Package Manifest including a
campaign orchestration and other fields needed for packages distribution by UCM
Master within the vehicle (Figure 13-4).

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

53 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 13-4 Overview Vehicle Package

You can find below for information purpose description of the fields that must be
contained in Vehicle Package Manifest:

 Dependencies: through SoftwareActivationDependency inheritance,
dependencies between Software Clusters that will overrule the already defined
dependencies in Software Package Manifest. Typically used by a vehicle
systems integrator to add dependencies related to vehicle systems that
backend package supplier is not aware of.

 Repository: uri, repository or diagnostic address, for history, tracking and
security purposes

 Vehicle description

 Campaign orchestration: The next figure is a model example. It contains:
o UCM identifier: unique identifier within vehicle architecture, to allow

UCM Master identifying UCMs in the vehicle
o Associations of Software Packages to describe the sequence of

transfer, processing, and activation
o Vehicle driver notification: to interact with vehicle driver, asking for his

consent or notifying him at several steps of the vehicle update

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

54 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 13-5 Vehicle Package template with its campaign orchestration

Vehicle Package could be used by a garage to fix a car having issues downloading
an update for instance. Therefore, like Backend Package, Vehicle Package Manifest
should be an ARXML file format for interoperability purposes.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

55 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Software release and packaging workflow

In order to create a backend package, an integrator has to use a packager
compatible with the targeted UCM. This package could be provided by an Adaptive
Platform stack vendor including the targeted UCM. After the integrator is assembling
executable, Manifests, persistency, etc., he uses the packager to create a Software
Package using UCM vendor-specific format. This same Software Package is then
embedded into a Backend Package along with ARXML Software Package Manifest.
The Software Package could be signed by the packager or integrator and
authentication tag included in Software Package Manifest. As Backend Package
might be transferred via the internet between an integrator and an OEM backend,
both Software Package and Software Package Manifest should be signed into a
container along with its authentication tag in order to avoid any Software Package
Manifest modification.

Figure 13-6 Packaging steps

Backend Packages assembled by integrator can then be put in the backend
database. When a vehicle needs an update or new installation, the backend server
will query software packages from backend package database and merge the related
Software Package Manifests into a Vehicle Package. In this package, backend
server embeds a campaign orchestration selected based on a specific vehicle
electronic architecture, deducted for instance from Vehicle Identifying Number.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

56 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 13-7 Packages distribution to vehicle

13.4 UCM processing and activating Software Packages

Install, update, and uninstall actions are performed through the ProcessSwPackage
interface where UCM is able to parse from metadata in which actions need to be
performed.

UCM sequence has been designed to support for example A/B update scenario or
‘in-place’ scenario (for instance using OSTree) where package manager provides the
possibility to roll back into the previous version if this is needed.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

57 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 13-8 Overview Processing and Activation of Software Package

To keep implementation simpler and more robust, only one client at a time can
request to process a Software Package with the ProcessSwPackage method,
switching UCM state to PROCESSING. Several clients can request to process
transferred packages in sequence. In the case of A/B partition update scenario,
several clients can process the inactive /B partition being updated; in case of
software cluster cross dependencies, each client must update in sequence into “B
partition”. Once, processing is finished, UCM state switches to READY for activation
or another processing.

Activation of changes with the Activate method is done for all processed packages
regardless of the requesting client. UCM Master is coordinating this multi-client
scenario. UCM might not know if all targeted Software Packages have been
processed, but it shall perform a dependency check to see that system is consistent
with the requirements of the installed software in “B partition”. In case of
dependencies are not fulfilled, UCM shall reject the activation and switch back to
READY state.

When updates are being activated, UCM state changes to VERIFYING. UCM then
performs either a machine reset or a functional group restart depending on the type
of update. For instance, if the update includes the operating system of functional

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

58 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

cluster updates, UCM might want to reset the machine. However, if the update is only
about a low criticality function, only restarting functional groups could be enough,
reducing annoyance to the driver. In this phase, UCM can verify from EM if targeted
software clusters are running properly. Once these restarts are finished successfully,
UCM switches to ACTIVATED state.

When updates have been ACTIVATED, other processing requests will be rejected
until activation has been resolved. In this phase, UCM Client or UCM Master can
either call Finish for confirming the changes or Rollback for ignoring the changes and
going back to the previous version of the software (for instance in case such update
is part of a global update campaign coordinated by UCM Master, during which the
update of another ECU has failed). After Finish is called, UCM cleans all unneeded
resources and returns to IDLE.

In the case of Rollback is called, UCM is switched to the ROLLING-BACK state to
reactivates the old version of the software. For instance, in this state, in case of an
A/B partition scenario, UCM will prepare the "A partition" to be reactivated/executed
at the next restart. Then, when the restart takes place and the "A partition" is
reactivated, UCM switches to the ROLLED-BACK state.

Processing while transferring is supported by UCM design in order to avoid storing
Software Packages in Adaptive Platform, reducing costs and update time. For
instance in the case of Software Cluster containing only Adaptive application (small
benefits for Classic platform update with UDS firmware flashing), UCM could
uncompress received blocks, place files to its target location, finally authenticate and
check integrity of Software Package.

13.5 UCM Master update campaign coordination

As UCM Master is coordinating several elements within the vehicle, its state machine
is accessible from the CampaignState field, allowing to reduce UCM Master’s API
complexity. UCM Master is continuously discovering the UCM service instances in
the vehicle using service discovery from ara:com.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

59 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 13-9 UCM Master state machine

The UCM Master state machine is not completely matching the UCM state machine
as specific vehicle aspects have to be considered. For instance, the vehicle package
transfer, synchronization of available software in vehicle and backend or vehicle
integrity check after update, are specific to UCM Master.

Adaptive applications interacting with UCM Master

A vehicle update involves OEM specificities, so OEM specific aspects are pushed by
design into the Adaptive Application side. In order to have interoperability and
exchangeability for those applications with several vendors platforms,the UCM
Master interface is standardized as a Platform Service, like UCM. UCM Master
assumes three applications to interact with itself, as described below.

OTA Client

OTA Client sets the communication channel between Backend and UCM Master.
The communication protocol between backend and OTA Client is not specified. OTA

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

60 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Client could include a scheduler regularly triggering synchronization of databases
(managed by Backend or UCM Master) containing available software from Backend
and present software in the vehicle. Updatable, installable or removable software are
computed by the difference between these two in Backend or UCM Master.

If a UCM Master is failing, it could be replaced by another one present in the vehicle.
OTA Client should include the decision mechanism to choose with which UCM
Master to interact.

Vehicle driver

During an update, it could be necessary to interact with the vehicle human driver to:

 get its consent to download (impacting data transfer costs), process or
activate the software (safety measures acknowledgment)

 put the vehicle in a specific state (to guaranty its safety during a critical
update, it could be asked to stop vehicle and shutdown engine)

Vehicle state manager

Vehicle State Manager is collecting state from the several vehicle ECUs and provides
UCM Master a field to subscribe, and a judgment against the safety policy referred to
in the Vehicle Package. If the safety policy is not met, the UCM Master can decide to
postpone, pause, cancel an update.

13.6 Software information reporting

UCM provides service interfaces that expose functionality to retrieve Adaptive
Platform software information, such as names and versions of transferred packages,
for processed but not committed software and for the last committed software. As the
UCM update process has clear states, UCM provides information in which state is
the processing of each Software Package.

UCM Master also provides service interfaces to expose Software information but
at the vehicle level, aggregating information from several UCMs. This information is
then exchanged with Backend through OTA Client, for instance, to resolve what
Software could be updated in the vehicle. UCM Master provides as well a way to
access the history of its actions like activation time and the result of processed
packages. This history can be used by the backend to gather update campaign
statistics from a fleet of cars or to troubleshoot issues at garage with a Diagnostic
Tester.

13.7 Software update consistency and authentication

UCM and UCM Master shall authenticate their respective packages using
authentication tag covering the whole package as described in Figure 13-1 and
Figure 13-4. The Adaptive platform shall provide necessary checksum algorithms,
cryptographic signatures or other vendor and/or OEM specific mechanisms to
validate the package, otherwise, an error will be returned by UCM or UCM Master.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

61 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Practically, a package should be packaged by the tool coming from the same vendor
as the one developing the targeted UCM or UCM Master in order to have
authentication algorithm compatibility.

As authentication algorithms are using hashes, consistency is also checked when
authenticating a package. Packages authentication and consistency could be
checked at TransferData, TransferExit and ProcessSwPackages calls to cover many
possible use cases and scenarios but shall be performed before any package is
actually processed by UCM or UCM Master for maximum security.

13.8 Securing the update process

UCM and UCM Master provide services over ara::com. There is no authentication
step of a client in both UCM and UCM Master update protocol. Instead, it is up to
Identity and Access Management to ensure that the client requesting services over
ara::com is legit.

UCM shall not allow updating an older version of the software cluster than the one
present at processing time in the Adaptive Platform (otherwise an attacker could
update to an old package with known security flaw).

13.9 Safe State Management during an update process

The definition of a safe state with respect to the system setup is the OEM
responsibility. Based on the system setup and the application, the system might need
to be switched into an ’update state’, so that they are ignoring missing or faulty
messages during the update process.

Additionally, there must be also a minimal check of the system after the update. For
this, the OEM specific Diagnostic Application will put the machine into a ’verification
state’ and check if all the relevant processes have reached the runningState. This
gives a chance to perform a Rollback if some processes fail to reach the
runningState. Fig. 13-9 provides an overview of this concept.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

62 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 13-9 State Management during an update process

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

63 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

14 Identity and Access Management

The concept of Identity and Access Management (IAM) is driven by the increasing
need for security, as the AUTOSAR Adaptive Platform needs a robust and well-
defined trust relationship with its applications. IAM introduces privilege separation for
Adaptive Applications and protection against privilege escalation in case of attacks.
In addition, IAM enables integrators to verify access on resources requested by
Adaptive Applications in advance during deployment. Identity and Access
Management provides a framework for access control for requests from Adaptive
Applications on Service Interfaces, Functional Clusters of the Adaptive Platform
Foundation and related modeled resources.

14.1 Terminology

To understand how the framework works, a few important notions must be defined in
advance. As a reference see also ‘Terminology for Policy-Based Management’ in
RFC3198 (https://tools.ietf.org/html/rfc3198).

 Access Control Decision: The access control decision is a Boolean value
indicating if the requested operation is permitted or not. It is based on the identity
of the caller and the Access Control Policy.

 Access Control Policy: Access Control Policies are used to define constraints
that have to be met in order to access specific objects (e.g. Service Interfaces).

 Policy Decision Point (PDP): A PDP makes the access control decision. It
determines if an Adaptive Application is allowed to perform the requested task by
checking the Access Control Policy.

 Policy Enforcement Point (PEP): A PEP interrupts the control flow during
requests from Adaptive Applications by requesting the Access Control Decision
from a PDP and enforces this decision.

 Capability: A capability is a property of an Adaptive Application Identity. Access
to an AUTOSAR resource (e.g. Service interface) is granted only if a requesting
AA possesses all Capabilities that are mandatory for that specific resource.
Capabilities are assigned to AAs within their Application Manifest.

 Grant: During deployment of Adaptive Applications, each Capability requested in
the design phase shall be acknowledged. Grant elements are available in the
meta-model. Grants will support integrators to review Capabilities, but it’s not
intended to allow partial acceptance of Capabilities.

 Intermediate Identifier (IntID): An identifier that enables the identification of
running POSIX-processes and the mapping to modeled AUTOSAR Processes.
The concrete nature of IntID depends on the mechanism that is used to
authenticate running POSIX processes.

 Adaptive Application Identity (AAID): The modelled identity of an Adaptive
Application is represented by the AUTOSAR Process.

 Adaptive Application Identifier: A referrer to AAID, i.e. AUTOSAR Process,
pointing to exactly one AAID.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

64 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

14.2 Scope and Focus of the IAM framework:

The IAM framework provides a mechanism for developers of Adaptive AUTOSAR
stacks and Adaptive Applications to model the capabilities of each application, to
provide access control decisions upon access requests and to enforce the access
control. IAM focuses on providing means to limit access from Adaptive Applications
to interfaces of the Adaptive Platform Foundation, Service Interfaces and well-
defined resources related to Function Clusters (e.g. KeySlots). In particular enforcing
quotas on system resources like CPU or RAM is not covered by IAM.

During runtime, the process of IAM is transparent to Adaptive Applications unless a
request gets rejected and a notification is raised.

The framework is designed to enforce access control to AUTOSAR resources at
runtime. It is assumed that Adaptive Applications will be authenticated during startup
and that an existing protected runtime environment ensures that Adaptive
Applications are properly isolated and prevented from escalating their privileges (i.e.,
by-passing access control).

14.3 Contents of the AUTOSAR specification

The following table represents which parts of the IAM framework will be defined by
AUTOSAR and which parts are up to the developer implementation-wise.

Description Affiliated to Part of

Requirement specification
for IAM

AUTOSAR
Specification

RS_IdentityAndAccessManagement

Behavioral description of
the IAM framework
(regarding interfaces)

AUTOSAR
specification

SWS_IdentityAndAccessManagement

API for communication
between AAs implementing
a PDP and the PEP in the
Adaptive Platform

AUTOSAR
Specification

SWS_IdentityAndAccessManagement

API for communication
between Functional clusters
implementing a PDP and
the PEP in the Adaptive
Platform.

Not specified by
AUTOSAR

-

Application capabilities &
Access control policies
(Manifest file information).

AUTOSAR
specification

TPS_Manifest_Specification

Format and contents of
warnings/error messages
that the applications receive
on failed authorization.

AUTOSAR
specification

SWS_IdentityAndAccessManagement

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

65 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

API for activity logging. AUTOSAR
Specification

Not yet decided

Contents of the logging
information.

AUTOSAR
Specification

Not yet decided

Interface between Adaptive
Application and Functional
Clusters

Not specified by
AUTOSAR

-

Identification of Adaptive
Applications during runtime

Not specified by
AUTOSAR

-

14.4 The architecture of the IAM Framework

14.4.1.1 General Framework

The IAM architecture divides the authorizing entities logically into an entity that
decides whether an Adaptive Application is allowed to access a resource (PDP) and
an entity that enforces the access control decision (PEP). Functional Clusters that
need to restrict access to their application interfaces need to implement the PEP that
enforces the access control decision provided by a PDP. For that, the PEP will
communicate with the PDP if an Adaptive Application requests access to such an
interface. Access control decisions are sent back to the PEP based on the request
and the applications’ capabilities. The necessary information for the access control
decision is based on the capabilities found in the Application Manifest of the Adaptive
Application that initiated the request as well as the policies. Policies represent the
rules that apply for the interfaces, i.e. the preliminaries that an Adaptive Application
must fulfill in order to gather access. For each resource under access control,
policies are defined within the specification of Functional Clusters.

Preliminaries and Assumptions

• Applications are designed/configured to have capabilities (properties that
allow them to access certain resources) .

• Each and every capability will be acknowledged during deployment.
• Deployed applications will be cryptographically signed to make verification

of authenticity possible.
• Applications are deployed together with an Application Manifest containing

capabilities.
• An Adaptive Applications that is subject to IAM has to be started

authentically in order and it’s manifest has to be authenticated during
deployment. The PEP interprets the request and demands a Policy
Decision from a PDP (may be implemented in the same process).

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

66 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

14.4.1.2 Identification of Adaptive Applications

In order to request a Policy Decision from a PDP, the PEP has to determine the
identity of calling Adaptive Applications. Since every call is mediated through Inter-
Process-Communication, the middleware shall support this identification.

The identity itself is a reference to a modeled AA. Capabilities are bound to
PortPrototypes and therefore to SWComponentType (see Manifest Specification).

The IAM Framework does not fully specify the identification of AAs. The most
appropriate solution heavily depends on the operating system and platform a stack
vendor chooses. Many modern operating systems do support the identification of
peers on communication endpoints (see SO_PEERCRED in Linux, getpeerid() or
Message Passing in QNX). On platforms that do not provide such mechanisms, it
might be appropriate to implement a protocol on message-level.

Since Execution Management creates running instances of Adaptive Applications by
modeled AUTOSAR Processes it is responsible for keeping track of properties of
running processes (i.e. PID of running Adaptive Application) or for assigning
properties like setting dedicated UID or assigning keys or UUIDs for message-level
implementations. Execution Management shall enable PEPs to find the modeled
Adaptive Application for each valid request to the PEP.

The PEP shall be implemented in the Adaptive Foundation and shall be properly
isolated from the calling Adaptive Application. PDP shall not be provided by an
Adaptive Applications that itself is subject to access control regarding requested
action.

14.4.1.3 The IAM Sequence

1. Adaptive Application (AA) initiates request to resource (e.g. Service Interface).
2. PEP interrupts control flow.
3. PEP resolves identity of the requesting Process via EM.
4. PEP passes identity of caller and request parameters to PD.
5. PDP checks if capabilities of AA are sufficient and returns the Access Control

Decisions to PEP.
6. PEP enforces Access Control Decision by blocking or allowing the request.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

67 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 14-1 IAM Sequence

The Transport Library is aligned with the mechanism used by EM to identify AAs.
Giving the example using POSIX-Process-IDs EM tracks the PID retrieved from the
operating system during the call to fork(). EM provides this information to PEPs by a
protected Functional-Cluster Interface. When using UID EM shall actively set the UID
of new POSIX-processes.

Figure 14-2 Identification of Adaptive Application during runtime, two examples

14.4.1.4 Implementation of Policy Decision Points

Policy Decision Points provide an interface to processed manifest by binary Policy
Decisions. Those decisions are based on well-defined Capabilities of Adaptive
Applications with their Application Manifest.

Capabilities are modelled by PortPrototypes with semantics specific to single
Functional Clusters. Therefore PDPs have to provide interfaces specific to those

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

68 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Capabilities. It is not recommended and not supported by the IAM Framework to
address single methods of Functional Clusters by Capabilities. Instead Capabilities
are resource-centric. A PDP provides Policy Decisions by checking AAs reference to
requested resources.

An example for Capabilities is given by the Crypto API. By assigning the Capability
KeyOwner referring to a specific modelled key, modifying operations on that key will
be allowed.

Application Scenarios in which trusted Adaptive Application implements a PDP are
possible and will be specified in the SWS_IdentityAndAccessManagement. Additional
information about use-cases regarding this scenario will be provided for AP18-10.

14.5 Implementation and Usage of IAM

The following list represents the necessary steps (in order) for an FC implementer
and system designer to make use of IAM. Further information can be seen in the
AUTOSAR_EXP_FCDesignIdentityAndAccessManagement.pdf [4]. Please be aware
that the information depicted in the before mentioned document are taken from the
AUTOSAR Demonstrator and should only be seen as an implementation
proposal/example.

Preparation steps (at design time):
• Applications are designed/configured to have capabilities (properties that allow

them to access certain resources) and to see only specific service interfaces
• Deployed applications will be cryptographically signed to make verification of

authenticity possible
• Applications are deployed with an execution manifest containing capabilities
• Execution manifest files also contain information like Application ID, how many

instances of an application will be instantiated as well as those Application
Instance IDs

• The FC implements the enforcement logic referred to as Policy Enforcement
Point (PEP)

• The FC is deployed with Policies describing what capabilities are needed to
access the provided service interfaces

Usage instructions (at runtime):
• During startup of the Adaptive Platform; EMO will provide a lookup table

between Application (Instance) IDs and process IDs
• When an Adaptive Application requests access to a service for which access

control is configured, it needs to be authenticated to make referring to its
capabilities possible

• The PEP queries the request to the process that implements the PDP (could
be the same process)

• The PDP then checks the query for Application ID and its corresponding
capabilities and compares it to the stored policies of the FC

• The PDP answers the PEP by sending an access control decision (yes/no)

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

69 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

• The PEP enforces the access control decision itself (granting access based on
the decision)

To summarize the steps mentioned, the following should be considered at least:

The FC implementer needs to:

 Provide the following rules which will be put in the service manifest:
1. What capabilities are needed to access certain services (single or

combination of multiple capabilities)

 Implement the logic to query the process that implements the PDP

 Implement the logic to enforce the access control decision that is received

The Application developer needs to:

 Configure capabilities that allow access to the service

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

70 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

15 Cryptography

AUTOSAR Adaptive Platform supports an API for common cryptographic operations
and secure key management. The API supports the dynamic generation of keys and
crypto jobs at runtime, as well as operating on data streams. To reduce storage
requirements, keys may be stored internally in the crypto backend or externally and
imported on demand.

The API is designed to support encapsulation of security-sensitive operations and
decisions in a separate component, such as a Hardware Security Module (HSM).
Additional protection of keys and key usage can be provided by constraining keys to
particular usages (e.g., decrypt-only), or limiting the availability of keys to individual
applications as reported by IAM.

Depending on application support, the API can also be used to protect session keys
and intermediate secrets when processing cryptographic protocols such as TLS and
SecOC.

Security Architecture

While AUTOSAR AP only defines the high-level Crypto Stack API exposed to
applications, this API is defined with a security architecture in mind that was
designed to meet above security and functional requirements.

The general architecture is depicted in Figure 15-1. On the highest layer, AUTOSAR
AP, as well as native and hybrid applications, link against the AUTOSAR AP Crypto
Stack API. The API implementation may refer to a central unit (Crypto Service
Manager) to implement platform-level tasks such as access control and certificate
storage consistently across applications. The implementation may also use the
Crypto Service Manager to coordinate the offloading of functionality to a Crypto
Driver, such as a Hardware Security Module (HSM). Indeed, the offloading
functionality of the Crypto Stack API this way is expected to be a typical
implementation strategy: The Crypto Driver may implement the complete set of key
management and crypto functions in order to accelerate crypto operations and shield
managed keys from malicious applications.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

71 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 15-1 Crypto Stack – Reference Architecture

In order to realize this layered security architecture, the Crypto Stack API not only
performs bulk crypto operations but also provides native support for:

(1) Operating with encrypted keys or key handles
(2) Managing keys securely despite possible application compromise
(3) Constraining application access to and allowed operations on keys

Key Management Architecture

To support the secure remote management of keys despite potential application
compromise, the Crypto Stack integrates a key management architecture where keys
and associated data are managed in end-to-end protected form. Keys can be
introduced into the system either in a trusted fashion, based on an existing
provisioning key, or in an untrusted fashion via local key generation. Assuming an
appropriately secured crypto backend/driver, applications are unable to modify keys
except via well-defined, authorized requests such as key update or revocation.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

72 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 15-2 CKI Key Management Interactions

Remarks on API Extension

Significant new usages and interactions that require the introduction of new or
modified permission/policy validation logic should be tied to corresponding new key
usage policy flags. For example, alternative provisioning keys with different
ownership/permission checks can be introduced by adding a corresponding new key
usage policy and enforcing the new logic in all key management operations involving
those new keys.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

73 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

16 Log and Trace

16.1 Overview

The Log and Trace Functional Cluster is responsible for managing and instrumenting
the logging features of the AUTOSAR Adaptive Platform. The logging and tracing
features can be used by the platform during development as well as in and after
production. These two use cases differ, and the Log and Trace component allows
flexible instrumentation and configuration of logging in order to cover the full
spectrum. The logging information can be forwarded to multiple sinks, depending on
the configuration, such as the communication bus, a file on the system and a serial
console. The provided logging information is marked with severity levels and the Log
and Trace component can be instrumented to log the information only above a
certain severity level, this enables complex filtering and straightforward fault
detection of issues on the logging client side. For each severity level, a separate
method is provided to be used by Adaptive applications or by Functional Clusters.
The AUTOSAR Adaptive Platform and the logging Functional Cluster are responsible
for maintaining the platform stability to not overload the system resources.

Log and Trace relies on the LT protocol standardized within the AUTOSAR
consortium. The protocol ensures that the logging information is packed into a
standardized delivery and presentation format. Furthermore, the LT protocol can add
additional information to the logging messages, such as an ECU ID. This information
can be used by a logging client to relate, sort or filter the received logging frames.

In addition, utility methods are provided, e.g. to convert decimal values into the
hexadecimal numeral system or into the binary numeral system. These are
necessary to enable applications to provide data to Log and Trace which conforms to
the standardized serialization format of the LT protocol.

16.2 Architecture

The Log and Trace interfaces are provided in the namespace ara::log for applications
to forward logging onto one of the aforementioned logging sinks.

The Log and Trace interfaces rely on the back-end implementation that is a part of
the Logging framework. The Logging framework can use other Functional Clusters to
fulfill certain features, such as Time Synchronization or Communication
Management.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

74 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 16-1 Overview Log and Trace

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

75 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

17 Safety

17.1 Safety Overview

AUTOSAR provides a safety overview of the Adaptive Platform to support the
integration of the Adaptive Platform in safety projects. For this release, the safety
overview is presented in the form of an explanatory document
(AUTOSAR_EXP_SafetyOverview).

This document shall help the functional safety engineer to identify functional safety-
related topics within the AUTOSAR Adaptive Platform. The content of this document
is currently structured into separate chapters as follows and can be mapped to the
contents and structures according to ISO 26262:

 AUTOSAR Adaptive Platform assumptions, objectives, scenarios and use-
cases

 System definition, system context and fault considerations

 Hazard analysis

 Safety Goals

 Functional safety concept and functional safety requirements

The objective of this safety overview is to derive safety requirements from the top
level safety goals and assumed use-cases or scenarios and allocate them to the
architectural elements of the item, or to an external measure. The use of the
AUTOSAR Adaptive Platform does not imply ISO 26262 compliance. It is still
possible to build unsafe systems using the AUTOSAR Adaptive Platform safety
measures and mechanisms. The architecture of the AUTOSAR Adaptive Platform
can, in the best case, only be considered to be a Safety Element out-of Context
(SEooC).

The explanatory document contains assumptions, exemplary items, like reference
models, use-cases, scenarios, and/or references to exemplary technical solutions,
devices, processes or software. Any such assumptions or exemplary items contained
in this document are for illustration purposes only. These assumptions are not part of
the AUTOSAR standard.

The chapter Functional safety concept and initial functional safety requirements
is still in development; contents are open for discussion and should not be
considered as final.

The following content is scheduled for later releases:

 Technical safety concept and technical safety requirements

 Validation of safety requirements, safety analysis, and exemplary use-cases
are scheduled for later releases.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

76 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

17.2 Protection of Information Exchange (E2E-Protection)

E2E profiles within AUTOSAR will be supported to allow safe communication
between all combinations of AUTOSAR AP and CP instances, whether they are in
the same or different ECUs. Where useful, mechanisms will be provided to allow safe
communication using more capabilities of the service-oriented approaches within the
Adaptive Platform. The provided functionality gives the possibility to verify that
information sent from a publisher and received by a subscriber has not changed
during the transmission. Acknowledgment of transmission and transmission security
is not provided in the E2E context according to the E2E mechanism in AUTOSAR
CP.

When E2E protection is used in communication between a publisher and a
subscriber, the E2E protection is invoked synchronously in the process of the
publisher. On the subscriber side, the E2E check is invoked at the reception of the
data within the subscriber process.

For this release E2E supports:

 Periodic and mixed periodic events in polling mode

 Methods (for limitation see AP SWS Communication Management)

The principle for E2E protection of periodic events is that the publisher of an event
serializes the event data and adds an E2E header. When receiving the event, the
subscriber will de-serialize the message and run E2Echeck which will return a result
showing if any of the detectable faults (defined by the E2E profiles) occurred during
transmission.

The following are not yet supported:

 Events in callout mode

 Non-periodic events

 Methods (without constraints)

The profiles that can be used for E2E protection are described in the AUTOSAR
Foundation (AUTOSAR_PRS_E2EProtocol)

17.3 Platform Health Management

The Platform Health Management supervises the execution of software. It offers the
following supervision functionalities (all supervision functions can be invoked
independently):

 Alive supervision

 Deadline supervision

 Logical supervision

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

77 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

 Health Channel Supervision

Alive Supervision checks that a supervised entity is not running too frequently and
not too rarely.

Deadline supervision checks that steps in a supervised entity are executed in a time
that is within the configured minimum and maximum limits.

Logical supervision checks that the control flow during execution matches the
designed control flow.

Alive, Deadline and Logical Supervision are performed based on reporting of
checkpoints by Applications or clusters/services via API ReportCheckpoint.

Health channel supervision provides the possibility to hook external supervision
results (like RAM test, voltage monitoring, …) to the Platform Health Management.

Health channel supervision is performed based on reporting of Health statuses by
Applications or clusters/services via API ReportHealthStatus.

Platform Health Management could trigger a configurable recovery action if a failure
is detected in the supervised entities.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

78 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Figure 17-1 Platform Health Management and other functional clusters

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

79 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

The following recovery actions are available for an Autosar Adaptive Platform:

 Request the State Manager to switch to a specified FunctionGroup state.

 Request the Execution Manager to force switching to a specified
Unrecoverable

 State.

 Request the Execution Manager to restart a specified process.

 Request the Watchdog driver to perform a watchdog reset (implementor
specific

 API).

 Report error information to the Diagnostic Manager: not specified in this
release.

 Forward error information to an Application

Known limitations for this release:

 Only a single PHM instance is currently supported. Multiple PHM instances
and daisy-chaining of multiple instances is currently not supported.

 Dependency on the Diagnostic Manager is not defined, yet

 Health Management configuration related to Supervision Modes is not fully
supported in this release

Functionality shared by CP and AP is described in the foundation documents and
named “Health Monitoring” (RS_HealthMonitoring, SWS_HealthMonitoring).
Additional specifications for AP only are described in the AP documents and named
“Platform Health Management” (RS_PlatformHealthManagement,
SWS_PlatformHealthManagement).

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

80 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

18 Core Types

Core Types defines common classes and functionality used by multiple Functional
Clusters as part of their public interfaces. One of the rationale to define Core Types
was to include common complex data types that are often used in the interface
definition.

18.1 Error Handling

Overview

Handling errors is a crucial topic for any software development. For safety-critical
software, it is even more important, because lives can depend on it. However, current
standards for the development of safety-critical software impose significant
restrictions on the build toolchain, especially with regard to C++ exceptions. For ASIL
applications, using C++ exceptions is usually not possible due to the lack of
exceptions support with ASIL-certified C++ compilers.

The Adaptive Platform introduces a concept that enables error handling without C++
exceptions and defines a number of C++ data types to aid in this.

From an application programmer’s point of view, the central types implementing this

concept are ara::core::ErrorCode and ara::core::Result.

ErrorCode

An instance of ara::core::ErrorCode represents a specific error condition within

a software. It is similar to std::error_code, but differs in significant aspects from

it.

An ErrorCode always contains an enumeration value (type-erased into an integral

type) and a reference to an error domain. The enumeration value describes the
specific type of error, and the error domain reference defines the context where that
error is applicable. Additional optional members are a user-defined message string
and a vendor-defined supplementary error description value.

Within the Adaptive Platform, each Functional Cluster defines one or more error
domains. For instance, the Functional Cluster “Core Types” defines two error
domains “Core” and “Future”, which contain error codes for different sets of error
conditions.

Result

Class ara::core::Result is a wrapper type that either contains a value or an

error. Due to its templated nature, both value and error can be of any type. However,

the error type is defaulted to ara::core::ErrorCode, and it is expected that this

assignment is kept throughout the Adaptive Platform.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

81 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

Because the error type has a default, most declarations of ara::core::Result

only need to give the type of the value, e.g. ara::core::Result<int> for a

Result type that contains either an int or an ara::core::ErrorCode.

The contained value or error can be accessed via the member functions

Result::Value or Result::Error. It is the caller’s responsibility to ensure that

these access functions are called only if the Result instance contains a value or an

error, respectively. The type of the content of a Result, i.e. a value or an error, can

be queried by Result::HasValue. None of these member functions throw any

exceptions and thus can be used in environments that do not support C++
exceptions.

In addition to the exception-less workflow described above, the class

ara::core::Result allows to convert a contained ara::core::ErrorCode

object into a C++ exception, by calling ara::core::Result::ValueOrThrow.

This call returns any contained value as-is, but treats a contained error by throwing
the corresponding exception type, which is automatically derived from the contents of

the contained ara::core::ErrorCode.

Future and Promise

Similar to the way ara::core::Result is used as a generalized return type for

synchronous function calls, ara::core::Future is used as a generalized return

type for asynchronous function calls.

ara::core::Future is closely modeled on std::future, but has been extended

to interoperate with ara::core::Result.

Similar to ara::core::Result, ara::core::Future is a class that either

contains a value or an error. This content can be extracted in two ways:

1. by calling ara::core::Future::get, which returns the contained value, if

it exists, or throws an exception otherwise

2. by calling ara::core::Future::GetResult, which returns a

ara::core::Result object which contains the value or the error from the
Future

Both of these calls will block until the value or error has been made available by the
asynchronous function call.

18.2 Advanced data types

In addition to the error-handling data types mentioned in the previous section, the
Adaptive Platform also contains a number of other data types and helper functions.

Some of these types are already contained in the C++11 standard; however, types

with almost identical behavior are re-defined within the ara::core namespace. The

reason for this is that the memory allocation behavior of the std:: types is often

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

82 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

unsuitable for automotive purposes. Thus, the ara::core ones define their own

memory allocation behavior.

Examples of such data types are Vector, Map, and String.

Other types defined in ara::core have been defined in or proposed for a newer

C++ standard, and the Adaptive Platform includes them into the ara::core

namespace, because they are necessary for supporting certain constructs of the
Manifest, or because they are deemed very useful to use in an API.

Examples of such data types are StringView, Span, Optional, and Variant.

18.3 Primitive data types

Another document, AUTOSAR_SWS_AdaptivePlatformTypes, exists, which defines
primitive types that can be used in ServiceInterface descriptions. This document may
be considered to be merged with Core Types document in the future.

18.4 Global initialization and shutdown functions

The following functions are available to initialize and de-initialize respective data
structures and threads of the AUTOSAR Runtime for Adaptive Application:

 ara::core::Initialize

 ara::core::Deinitialize

ara::core::Initialize initializes data structures and threads of the AUTOSAR

Adaptive Runtime for Applications. Prior to this call, no interaction with the ARA is
possible. This call must be made inside of main(), i.e., in a place where it is
guaranteed that static memory initialization has completed. Depending on the
individual functional cluster specification, the calling application may have to provide
additional configuration data (e.g., set an Application ID for Logging) or make
additional initialization calls (e.g., start a FindService in ara::com) before other API
calls to the respective functional cluster can be made. Such calls must be made after
the call to Initialize(). Calls to ARA APIs made before static initialization has
completed lead to undefined behavior. Calls made after static initialization has
completed but before Initialize() was called will be rejected by the functional cluster
implementation with an error or, if no error to be reported is defined, lead to
undefined behavior.

ara::core::Deinitialize destroys all data structures and threads of the

AUTOSAR Adaptive Runtime for Applications. After this call, no interaction with the
ARA is possible. This call must be made inside of main(), i.e., in a place where it is
guaranteed that the static initialization has completed and destruction of statically
initialized data has not yet started. Calls made to ARA APIs after a call to
ara::core::Deinitialize() but before destruction of statically initialized data will be
rejected with an error or, if no error is defined, lead to undefined behavior. Calls

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

83 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

made to ARA APIs after the destruction of statically initialized data will lead to
undefined behavior.

 Explanation of Adaptive Platform Design
AUTOSAR AP R19-11

84 of 84 Document ID 706: AUTOSAR_EXP_PlatformDesign

- AUTOSAR Confidential -

19 References

[1] Glossary, AUTOSAR_TR_Glossary.pdf.

[2] Main Requirement, AUTOSAR_RS_Main.pdf.

[3] Methodology for Adaptive Platform, AUTOSAR_TR_AdaptiveMethodology.pdf.

[4] FCDesign IAM, AUTOSAR_EXP_FCDesignIdentityAndAccessManagement.pdf.

[5] Design guidelines for using parallel processing technologies on Adaptive Platform,
AUTOSAR_EXP_ParallelProcessingGuidelines.pdf.

[6] P. Kruchten, “Architectural Blueprints—The “4+ 1” View Model of Software
Architecture,” IEEE Software, vol. 12, no. 6, pp. 42-50, November 1995.

	1 Introduction to this document
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications

	2 Technical Scope and Approach
	2.1 Overview – a landscape of intelligent ECUs
	2.2 Technology Drivers
	2.3 Adaptive Platform – Characteristics
	C++
	SOA
	Parallel processing
	Leveraging existing standard
	Safety and security
	Planned dynamics
	Agile

	2.4 Integration of Classic, Adaptive and Non-AUTOSAR ECUs
	2.5 Scope of specification

	3 Architecture
	3.1 Logical view
	ARA
	Language binding, C++ Standard Library, and POSIX API
	Application launch and shutdown
	Application interactions
	Non-standard interfaces

	3.2 Physical view
	OS, processes, and threads
	Library-based or Service based Functional Cluster implementation
	The interaction between Functional Clusters
	Machine/hardware

	3.3 Methodology and Manifest
	3.4 Manifest
	3.5 Application Design
	3.6 Execution manifest
	3.7 Service Instance Manifest
	3.8 Machine Manifest

	4 Operating System
	4.1 Overview
	4.2 POSIX
	4.3 Scheduling
	4.4 Memory management
	4.5 Device management

	5 Execution Management
	5.1 Overview
	5.2 System Startup
	5.3 Execution Management Responsibilities
	5.4 Deterministic Execution
	5.5 Resource Limitation
	5.6 Application Recovery
	5.7 Trusted Platform

	6 State Management
	7 Communication Management
	7.1 Overview
	7.2 Service Oriented Communication
	7.3 Language binding and Network binding
	7.4 Generated Proxies and Skeletons of C++ Language Binding
	7.5 Static and dynamic configuration
	7.6 Service Contract Versioning
	7.7 Raw Data Streaming Interface

	8 RESTful Communication
	8.1 Overview
	8.2 Architecture
	8.3 Components

	9 Diagnostics
	9.1 Overview
	Software Cluster

	9.2 Diagnostic communication sub-cluster
	Diagnostic in Adaptive Application (AA)
	Typed vs generic interfaces
	Diagnostic conversations

	9.3 Event memory sub-cluster

	10 Persistency
	10.1 Overview
	10.2 Key-Value Storage
	10.3 File Storage
	10.4 Use cases for handling persistent data for UCM

	11 Time Synchronization
	11.1 Overview
	11.2 Design
	11.3 Architecture

	12 Network Management
	12.1 Overview on Network Management Algorithm
	12.2 Architecture

	13 Update and Config Management
	13.1 Overview
	13.2 Update protocol
	Data transfer

	13.3 Packages
	Software package
	Backend package
	Vehicle Package
	Software release and packaging workflow

	13.4 UCM processing and activating Software Packages
	13.5 UCM Master update campaign coordination
	Adaptive applications interacting with UCM Master
	OTA Client
	Vehicle driver
	Vehicle state manager

	13.6 Software information reporting
	13.7 Software update consistency and authentication
	13.8 Securing the update process
	13.9 Safe State Management during an update process

	14 Identity and Access Management
	14.1 Terminology
	14.2 Scope and Focus of the IAM framework:
	14.3 Contents of the AUTOSAR specification
	14.4 The architecture of the IAM Framework
	14.4.1.1 General Framework
	14.4.1.2 Identification of Adaptive Applications
	14.4.1.3 The IAM Sequence
	14.4.1.4 Implementation of Policy Decision Points

	14.5 Implementation and Usage of IAM

	15 Cryptography
	Security Architecture
	Key Management Architecture
	Remarks on API Extension

	16 Log and Trace
	16.1 Overview
	16.2 Architecture

	17 Safety
	17.1 Safety Overview
	17.2 Protection of Information Exchange (E2E-Protection)
	17.3 Platform Health Management

	18 Core Types
	18.1 Error Handling
	Overview
	ErrorCode
	Result
	Future and Promise

	18.2 Advanced data types
	18.3 Primitive data types
	18.4 Global initialization and shutdown functions

	19 References

