
 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

1 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

Document Title Design guidelines for using
parallel processing
technologies on Adaptive
Platform

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 884

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R19-11

Document Change History

Date Release Changed by Change Description

2019-11-28 R19-11 AUTOSAR
Release
Management

 No content changes

 Changed Document Status from

Final to published

2019-03-29 19-03 AUTOSAR
Release
Management

 Minor changes

2018-10-31 18-10 AUTOSAR
Release
Management

 Minor changes

2018-03-29 18-03 AUTOSAR
Release
Management

 Minor changes

2017-10-27 17-10 AUTOSAR
Release
Management

 Initial release

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

2 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

3 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

Table of Contents
1 Introduction to this document .. 4

1.1 Contents ... 4
1.2 Prereads ... 4
1.3 Relationship to other AUTOSAR specifications .. 4
1.4 Glossary ... 4

2 Scope .. 5
2.1 Definition of parallel processing “technologies” .. 5
2.2 Audience .. 5

3 Architectural design ... 6
3.1 Background .. 6

3.1.1 Evolving parallel processing technologies ... 6

3.1.2 Distributed, concurrent, and parallel .. 6

3.1.3 TLP/DLP/PLP .. 7
3.2 Service-based parallel processing.. 8

3.2.1 Layered architectural view .. 8
3.2.2 Accelerator-model ... 9

3.2.3 CPU/co-processor-model .. 10
3.3 Rationale: decoupling of parallel processing specific knowledge from

application development .. 11
3.4 Adaptive Platform methodology consideration ... 12

4 Non-functional design topics ... 13

4.1 Performance ... 13
4.1.1 Interface granularity and communication overhead 13

4.1.2 Data handling and throughput balancing ... 13

4.2 Deterministic execution .. 13

4.3 Safety considerations ... 14
4.4 Prospects ... 14

4.4.1 AP standard application services .. 14
4.4.2 More parallel processing within AA ... 14

5 References .. 16

Figure 3-1 Parallel processing consumer-provider layered view example 8

Figure 3-2 Accelerator-model example ... 10

Figure 3-3 CPU/co-processor-model example .. 11

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

4 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

1 Introduction to this document

1.1 Contents

This document specifies the guidelines for using parallel processing technologies on
Adaptive Platform, or Parallel Processing Guidelines, in short.

The purpose of this document is to provide design guidelines for using parallel
processing technologies on AP. The focus is on software, especially the application
layer including the services. General hardware discussions are also included to build
the base for software.

1.2 Prereads

This document is one of the high-level conceptual documents of AUTOSAR.
Useful pre-reads are [1] [2] [3] [4].

1.3 Relationship to other AUTOSAR specifications

Refer to Contents and Prereads.

1.4 Glossary

The following abbreviations are used in this document but not defined at first use.
Please consult [1] for further explanation.

AA Adaptive Application
ADAS Autonomous Driving and Assistance System
AP AUTOSAR Adaptive Platform
ARA AUTOSAR Run-time for Applications
SOA Service-Oriented Architecture

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

5 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

2 Scope

2.1 Definition of parallel processing “technologies”

In this document, the meaning of parallel processing technologies is loosely defined.
This is so on purpose, with hopes to provide design principles for parallel and related
processing (see Distributed, concurrent, and parallel).

The term “parallel processing technologies” in this document, therefore, covers both
hardware and software. In term of hardware, multicore, manycore, DFP (Data-Flow
Processor), GPU (Graphical Processing Unit), FPGA (Field Programmable Gate
Array), or alike; in terms of software, multi-thread programming, pragma based
techniques like OpenMP1, various template programming such as TBB2, accelerator
programming language like OpenCL3, and even various message passing APIs like
MPI4 that are not by themselves parallel processing technologies but are tightly
related to. The technologies also include various tooling that assists in designing and
implementing the parallel processing technologies into an AP based system.

It is not a purpose of this document to list all the existing parallel processing
technologies, to explain what they are, nor to guide how to use the technologies
themselves. Nevertheless, the document may contain some references to the
technologies as minimum as deemed necessary to describe the design guidelines.

2.2 Audience

This specification is for multiple domains of AP related designers and developers,
namely the system designer who decides hardware/software partitioning, hardware
designer who design and/or select computing hardware resources, a software
designer who design overall software system architecture, AP developers, and
developers of AP services running on ARA.

AA developers, on the other hand, who may not directly use parallel processing
technologies and only design sequential, single-threaded application, may find this
irrelevant, if his/her software architect follows the architectural design guideline
described in this document. However, nowadays it is becoming difficult to write an
application without some form of multi-thread programming, and it is likely to be more
so in future, so essentially everyone concerned with AP is advised to reference this
document.

1
 http://www.openmp.org/

2
 https://www.threadingbuildingblocks.org/

3
 https://jp.khronos.org/opencl

4
 http://www.mcs.anl.gov/research/projects/mpi/

http://www.openmp.org/
https://www.threadingbuildingblocks.org/
https://jp.khronos.org/opencl
http://www.mcs.anl.gov/research/projects/mpi/

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

6 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

3 Architectural design

3.1 Background

3.1.1 Evolving parallel processing technologies

The parallel processing technologies are still rapidly evolving, both in hardware and
software. In hardware, GPGPU (General Purpose GPU) is one of them but never the
only one - various manycore processors, data flow processors, FPGA, and some
dedicated accelerators are emerging, and it seems there are more to come, including
the evolutions of these existing technologies.

The picture looks similar in software. Starting with the threading library offered by
POSIX and C++ Standard libraries AP supports, and other threading libraries such as
TBB, MTAPI5, compiler directives based threading like OpenMP, accelerator
programming language like OpenCL and CUDA® (proprietary), HLS6 compiler based
FPGA programming, and various parallelization compilers/tools, such as graph or
process network-based tools, which generally use threading underneath but
technologically not limited to, and there are even model based parallelization tools
that can take a Simulink® model as input. Also, there are various message passing
APIs, like MPI, that often work along with these technologies. There are higher-level
libraries such as OpenCV7, OpenVX8 - though these are not by themselves parallel
processing libraries, they generally use parallel processing technologies underneath
to accelerate the processing. At last, similar in a sense that they are higher-level,
there are C++ AMP9 and SYCL10. To further complicate the matter, OpenMP 4 now
supports accelerators. And this is not a complete list.

3.1.2 Distributed, concurrent, and parallel

In most cases, AUTOSAR systems are distributed systems. A distributed system is
concurrent, meaning multiple tasks are running at the same time. Each subsystem in
the distributed system has some sort of processing elements, typically CPUs (but not
necessarily) – therefore at the whole this is a multi-processor system, capable of both
concurrent and parallel computing. Note that if AP runs on a single-core processor
machine without any other computing elements, parallel processing is not possible,
although concurrency still is, as OS provides the threading mechanism to switch
processing (threads) triggered by some event.

Parallel processing may occur at different computing layers, from bit-level,
instruction-level, thread-level, (and/or) task-level. The definition of “task-level” differs
among computing models and methodologies. In AUTOSAR AP software point of
view, however, parallel processing strictly applies either on thread-level, process
level, or on machine (platform) level. It is also noteworthy to recognize that a
process, in the context of AP that is based on POSIX multi-process OS, is just a
container for threads and not an execution entity like a thread by itself. The container

5
 The Multicore Association http://www.multicore-association.org/workgroup/mtapi.php

6
 High Level Synthesis

7
 http://opencv.org/

8
 https://www.khronos.org/openvx/

9
 http://download.microsoft.com/download/4/0/E/40EA02D8-23A7-4BD2-AD3A-

0BFFFB640F28/CppAMPLanguageAndProgrammingModel.pdf
10

 https://www.khronos.org/sycl

http://www.multicore-association.org/workgroup/mtapi.php
http://opencv.org/
https://www.khronos.org/openvx/
http://download.microsoft.com/download/4/0/E/40EA02D8-23A7-4BD2-AD3A-0BFFFB640F28/CppAMPLanguageAndProgrammingModel.pdf
http://download.microsoft.com/download/4/0/E/40EA02D8-23A7-4BD2-AD3A-0BFFFB640F28/CppAMPLanguageAndProgrammingModel.pdf
https://www.khronos.org/sycl

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

7 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

provides an enclosure for a certain unique set of resources, which include some
logical memory accessible by the process. This is also the same for the machines. It
is always the thread-concurrency and parallelism (if more than two processors are
available) at the software level that is directly executed on top of the AUTOSAR AP
OS.

There may be other processing elements that are either incapable of directly
executing AP but offer some useful computing. GPU, FPGA, DFP (Data Flow
Processor), and manycore processor, are representative examples, although some
of them can execute some executive or OS, and even AP itself, fully or partially. If
they are incapable of running AP at least partially, then the parallel processing
capability can only be accessed by some kind of specific interfaces from a thread
running on AP, regardless of the mechanism behind the interface. They are still
programmable in one way or another – but just not in the way ARA and C++ bindings
AP defines.

The important architectural design consideration here is that parallel processing at
large is a system level topic. Distributed, concurrent, and parallel processing are
highly interrelated. One example is that a well-designed multi-threaded program may
run concurrently on a single-core processor, or in parallel on a multi-core processor,
or even distributed over two machines provided it uses some processor/machine
transparent thread communication.

3.1.3 TLP/DLP/PLP

In general, there are three types of parallel processing: Task Level Parallelism (TLP),
Data Level Parallelism (DLP), and Pipeline Level Parallelism (PLP). The TLP refers
performing multiple tasks at the same time as they are (mostly) independent and
(mostly) do not depend on each other. DLP refers to performing the same calculation
with multiple, (mostly) non-interdependent sets of (large) data. The same calculation
is multiplexed with the different set of data. PLP refers to executing multiple inter-
dependent tasks in a pipeline fashion. Each task is assigned to a pipeline stage
according to the data dependency of the task input/output.

The three types of parallelism exist in multiple layers of the system. There can be
system level parallelism, like two AP machines may have TLP or even PLP. Another
example may be that multiple-camera-based 360-degree real-time object recognition
may be realized by multiple AP machines performing DLP against a large data set of
(virtual) vehicle surrounding video image. The point here is that it is critical for a
vehicle system designer to understand the system overall data flow and processing
loads and allocate AP machines accordingly. This can be termed as an AP-machine
level parallelism.

The next physical level below is OS-thread level parallelism. The three types of
parallelism described above can be implemented using OS threads.

Yet another physical level below is the instruction level parallelism. This is
generally in the field of processor and compiler technologies. For example, a VLIW11
processor architecture has multiple execution units that allow concurrent execution of
multiple instruction streams, in either TLP or DLP fashion. A SIMD (Single Instruction

11

 Very Long Instruction Word

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

8 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

Multiple Data) co-processor instruction extension enables DLP at the instruction
level. A GPGPU, in general, is a form of instruction level DLP in” 3.2.2 Accelerator-
model”. The SIMD extension, on the other hand, is DLP in “3.2.3 CPU/co-processor-
model”. A manycore processor, including most of DFP (Data Flow Processor), offer in
general MIMD (Multiple Instruction Multiple Data) instruction level parallelism. Since it
is not the same single instruction as in the case of SIMD, MIMD can be used to
implement all three forms of parallelism, namely TLP, DLP, and PLP.

Also, regardless of the physical levels, namely AP-machine level, OS-thread level, or
Instruction level, the TLP, DLP, and PLP are not always used independently. For
example, for the multi-stage processing of large data, the combination of DLP and
PLP are popular.

3.2 Service-based parallel processing

With the background provided in 3.1, the key concept of this guideline is to utilize the
SOA of AP. That is, to push the use of parallel processing technologies underneath
non-platform services, leaving the AA free from the various parallel processing
technologies used. The service ‘implementation’, on the other hand, will be specific to
the choice of parallel processing technologies used. We call this model of parallel
processing as “3.2 Service-based parallel processing”.

This model allows the maximum reuse of AA that requires high-performance
computing in realizing its functionality. The heavy lifting part will be separated into
non-platform services, and the implementation of services are free to utilize the full
capability of the parallel processing technologies of choice, provided they conform to
the safety/security requirements of the project.

3.2.1 Layered architectural view

The Figure 3-1 illustrates the overall architecture of the service-based parallel
processing. The example is based on some ADAS domain application, but it is not
the intention to limit the domain in any way.

Figure 3-1 Parallel processing consumer-provider layered view example

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

9 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

The overall picture shows the producers and consumers of various parallel
processing services, in a top-down layered fashion.

The AA layer is the AA that uses various services. The AA does (or should) not
know which of the services it is using uses parallel processing underneath.

The Service layer, in the context of this guideline, consists of the services which use
parallel processing technologies. There are non-platform services that use ara::com.
They provide C++ interface library generated from the service definition, which is
used by the AA. Note that these services may very well use other services internally.
One example is that one may design a pre-processing or low-level sensing service,
and a meta-data provider service that uses the output of the former service. Another
example may be that one may design various detection services and a predictor
service that use the detection services to predict the object in a future horizon. Also,
note that there may well be some common higher-level library or engine used by the
Service layer. Such a library may use some parallel processing library underneath.
One example may be the relationship between OpenCV and OpenCL. OpenCV
provides the vision processing framework/library, which underneath (can) use
OpenCL to use programmable accelerators. The OpenCV library may be used by
multiple services. This is similar for the relationship between OpenVX and OpenCL –
however, unlike OpenCV, OpenVX is designed so that the OpenVX interface
implementations can directly access the specific accelerators, without OpenCL in
between. Therefore, it is drawn to be in the Parallel processing library/language layer
in the figure.

The Service layer uses Parallel processing library/language layer, which can vary
depending on the choice of parallel processing technologies used in the service
implementation. The programming interface for this layer varies as discussed in
“3.1.1 Evolving parallel processing technologies”, and it is just not semantically
possible to have a single unified interface to generalize all or even most of the
different interface/languages, without severely impacting the performance benefit,
which contradicts the purpose of employing the parallel processing in the first place.

3.2.2 Accelerator-model

The Parallel processing library/languages layer interacts with the parallel processing
hardware in different ways. There are two general models. One is accelerator-
model, where the parallel processing library/language calls underneath some form of
device drivers that directly controls the parallel processing hardware. The device
driver, depending upon the design of OS used, maybe another process or some form
of kernel module that executes in the context of OS kernel. The examples of this
accelerator model include OpenCL/CUDA, OpenVX, etc. Figure 3-2 shows the
combined process and physical architectural views for OpenCL based parallel
processing.

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

10 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

Figure 3-2 Accelerator-model example

3.2.3 CPU/co-processor-model

The other model is CPU/co-processor-model, where the parallel processing is
executed directly by the CPUs with or without co-processor support. The most
popular example is a threading model, which uses multiple POSIX threads to
parallelize the processing. This can be fully handwritten, directive-based like
OpenMP, or use some other vendor specific semi/full parallelization compiler
technologies. Furthermore, there may be support for utilizing the specialized co-
processor instructions, also may be manual or semi-automatic. Figure 3-3 shows the
combined process and physical architectural views for threading-based (like POSIX
threads) parallel processing.

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

11 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

Figure 3-3 CPU/co-processor-model example

3.3 Rationale: decoupling of parallel processing specific
knowledge from application development

Understanding the specifics of non-general computing hardware requires specific
skills. As previously mentioned, the parallel processing technologies are still actively
being developed and evolving, it is hard at the best to understand all these. Some
standardization effort, such as OpenCL, aims to ease this problem by setting up a
hardware independent API set. However, in order to cover various types of hardware
and also to fully exploit the hardware features for best performance, the OpenCL, in
general, is very low-level API, essentially requiring the similar level of detailed
hardware level knowledge.

Our proposed model of Service-based parallel processing decouples the required
knowledge of parallel processing hardware from AA developers via AP service
interfaces. This frees the AA developers from acquiring the specific hardware
knowledge every time a new, more efficient, or more suitable hardware is introduced,
and also allows the system designer to do so if that the introduction of such hardware
yields better system design. At the same time, this decoupling also frees hardware
designers to come up with new, innovative parallel processing technologies, as long
as they can provide the AP services required by the users.

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

12 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

3.4 Adaptive Platform methodology consideration

Service-based parallel processing approach will not introduce any new AP
methodology. It uses already defined service interface description to define the
services.

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

13 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

4 Non-functional design topics

4.1 Performance

One of the primary purposes of using parallel processing is to achieve higher
performance. Since “Service-based parallel processing” utilizes the SOA of AP, the
general performance-related design techniques also apply.

4.1.1 Interface granularity and communication overhead

The granularity of interface is the size of operation unit per API. If the granularity is
small, the service has many API. The finer the granularity is, the more flexible the
service is in general, because it will allow the different application to optimize its
usage.

In SOA, increasing the granularity will increase the communication between the client
and server in general. Caching mechanisms may circumvent that problem. However,
in a real-time system such as AP, caching, depending on the architecture and
implementation increases non-determinism, thus not a convenient choice.

In AP, there are two possible approaches to minimize the communication overhead
of services. One is to make the service interface as coarse as possible, especially for
the interface that has a high frequency in its usage. For example, instead of providing
an interface only for processing one datum, providing another interface for
processing a batch of data at a time is recommended. The other approach is to
optimize at the service interface library. This means that the service interface may
cache some server-side data for client-local processing, and/or simple interfaces that
set up or read fields in an object stored locally in the client process heap. The two
techniques can be mixed.

4.1.2 Data handling and throughput balancing

The overhead of moving very large data is costly. This is especially true if a lot of
coping of data occurs. Often, parallel processing is used to perform processing a
large amount of data, and this is often performed against a stream of data,
constituting a data-flow processing. It is therefore essential to design the whole chain
of data flow, from a data-generating device, a device driver, a primary server to
process the raw data, a secondary server to work on the primary server output, then
finally an AA that uses the result of the secondary server. One typical design to
achieve the highest throughput is to have all these components forming PLP, each
component forming a stage of a pipeline. For the servers that perform heavy
computation, DLP and/or PLP is employed. The data that flows between the
components have to be propagated in an efficient manner, avoiding copying of the
data where possible.

4.2 Deterministic execution

If it is necessary to achieve a high level of deterministic execution by the service-
based parallel processing, the approach defined by [5] should be followed.

For CPU/co-processor-model, especially if there are enough processing elements to
perform the redundant execution in parallel, the approach can be applied in a
straightforward fashion.

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

14 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

For accelerator-model, there is still the server process and also the main thread and
some sub-threads, the main computation will be performed by the kernel executed on
the accelerator. Although it varies, the accelerator is often only capable of executing
a single kernel at a time. Therefore, it is not possible to perform the redundant
execution in parallel, unless the accelerator is capable of running multiple kernels in
parallel or by employing multiple accelerator units. With a single accelerator, one
option is to perform the redundant execution in series. However, as this will impact
the performance, a practical option is to abandon the redundant execution and take
the system design approach of accepting the service-based parallel processing at
ASIL-B, and another ASIL-B or higher sub-system for monitoring the result of
accelerator-model service.

4.3 Safety considerations

Safety is a system design topic. One of the typical issues is that the parallel
processing hardware technology does not satisfy ASIL-D but only up to ASIL-B. The
software can be developed based on ASIL-D practices but as the hardware is only
capable of ASIL-B, as a whole it cannot achieve ASIL-D. The required ASIL for a
“subsystem” depends on the system functionality it provides – e.g. parallel
processing subsystem is used for ASIL-B system functionality, which computation
result is safety-checked by ASIL-D subsystem. Or, one can go duplicate ASIL-B
subsystem to achieve ASIL-D (though it may be expensive). The design guidelines
for system design to achieve overall functional safety requirements are out of the
scope of this document.

To achieve the determinism that is essential for achieving ASIL-D by the service-
based parallel processing, it is advised to follow the approach as discussed in “4.2
Deterministic execution”.

4.4 Prospects

This guideline, especially the parallel processing hidden under the service model,
should be capable of surviving a long time to come, due to the intrinsic decoupling.
There are two areas with foreseeable advancement in future; (1) AP standard
application services and (2) more parallel processing directly within AA.

4.4.1 AP standard application services

It should be reasonable for one to expect such application services that use parallel
processing technologies to be standardized by AP. This indeed will not occur
immediately, nor all services at once – however, even incremental introduction of
such services should help both the providers of parallel processing technologies and
also users of such. Higher level API standardization, that uses parallel processing
technologies underneath, are already emerging in some areas, such as OpenVX.

4.4.2 More parallel processing within AA

Following the service-based parallel processing design, AA will use multiple services
in parallel. As the number of services grows and if the AA remains single-threaded,
then the AA itself can be a bottleneck in the whole processing chain. This will call for
more parallel processing within AA eventually. AP already provides threading APIs of
currently supported C++ standard and POSIX APIs, however, this may not be
sufficient.

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

15 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

AUTOSAR AP adopts the C++ standard, along with the CPP Coding Guidelines to
use the language with safety and security in mind. The C++ standard is incrementally
introducing parallel processing. The most of both open source and commercial
compilers support the standard and widely used in the industry. Therefore, it is
foreseeable and perhaps promising to introduce the more parallel processing
technologies as the C++ standard progresses. One potentially promising standard is
SYCL, as it is purely based on standard C++ with template libraries to write parallel
processing, part of it being introduced in C++17. The single source approach with the
standard language and also capable of mixing with normal C++ multi-threading may
help to consolidate the situation in future.

 Design guidelines for using parallel processing
technologies on Adaptive Platform

AUTOSAR AP R19-11

16 of 16 Document ID 884: AUTOSAR_EXP_ParallelProcessingGuidelines

- AUTOSAR Confidential -

5 References

[1] Glossary, AUTOSAR_TR_Glossary.pdf.

[2] Main Requirement, AUTOSAR_RS_Main.pdf.

[3] Methodology for Adaptive Platform, AUTOSAR_TR_AdaptiveMethodology.pdf.

[4] Explanations of Adaptive Platform Design, AUTOSAR_EXP_PlatformDesign.pdf.

[5] Specification of Execution Management,
AUTOSAR_SWS_ExecutionManagement.pdf.

	1 Introduction to this document
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications
	1.4 Glossary

	2 Scope
	2.1 Definition of parallel processing “technologies”
	2.2 Audience

	3 Architectural design
	3.1 Background
	3.1.1 Evolving parallel processing technologies
	3.1.2 Distributed, concurrent, and parallel
	3.1.3 TLP/DLP/PLP

	3.2 Service-based parallel processing
	3.2.1 Layered architectural view
	3.2.2 Accelerator-model
	3.2.3 CPU/co-processor-model

	3.3 Rationale: decoupling of parallel processing specific knowledge from application development
	3.4 Adaptive Platform methodology consideration

	4 Non-functional design topics
	4.1 Performance
	4.1.1 Interface granularity and communication overhead
	4.1.2 Data handling and throughput balancing

	4.2 Deterministic execution
	4.3 Safety considerations
	4.4 Prospects
	4.4.1 AP standard application services
	4.4.2 More parallel processing within AA

	5 References

