
Specification of Persistency
AUTOSAR AP Release 19-03

Document Title Specification of Persistency
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 858

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 19-03

Document Change History
Date Release Changed by Description

2019-03-29 19-03
AUTOSAR
Release
Management

• Improved naming of
classes/methods/functions
• Reworked installation/update
• Support for parallel execution in

multiple threads
• Cleaned up usage of ara::core

concepts

2018-10-31 18-10
AUTOSAR
Release
Management

• Introduction of ara::core types and
switch to exceptionless API
• Rework of redundancy approach
• Support for resource limitation
• Improvements and harmonization of

KeyValueStorage and FileProxy API

2018-03-29 18-03
AUTOSAR
Release
Management

• Installation/update of persistent data
• Data types supported by

KeyValueStorage API

2017-10-27 17-10
AUTOSAR
Release
Management

• Introduction of AUTOSAR model
• Security added
• Redundancy added
• Rework of FileProxy/Stream API

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

1 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Table of Contents

1 Introduction and functional overview 6

2 Acronyms and Abbreviations 6

3 Related documentation 6

3.1 Input documents & related standards and norms 6

4 Constraints and assumptions 7

4.1 Limitations . 7
4.2 Constraints on Configuration . 7
4.3 Direct Access to Storage Hardware . 7

5 Dependencies to other modules 8

6 Requirements Tracing 8

7 Functional specification 23

7.1 Architecture . 23
7.2 Security concepts . 24
7.3 Redundancy concepts . 25
7.4 Installation and Update of Persistent Data 25

7.4.1 Installation of Persistent Data 28
7.4.1.1 Installation of Key-Value Storage 28
7.4.1.2 Installation of File Storage 29

7.4.2 Update of Persistent Data . 30
7.4.2.1 Update of Key-Value Storage 30
7.4.2.2 Update of File Storage 31

7.4.3 Roll-Back of Persistent Data after Failed Update 32
7.4.4 Removal of Persistent Data 33

7.5 Supported data types in Key-Value Storage 33
7.6 Resource management concepts . 33

8 API specification 35

8.1 Key-Value Storage . 35
8.1.1 OpenKeyValueStorage . 35
8.1.2 RecoverKeyValueStorage . 36
8.1.3 ResetKeyValueStorage . 36
8.1.4 KeyValueStorage class . 37

8.1.4.1 KeyValueStorage::KeyValueStorage 37
8.1.4.2 KeyValueStorage::operator= 38
8.1.4.3 KeyValueStorage::~KeyValueStorage 38
8.1.4.4 KeyValueStorage::GetAllKeys 39
8.1.4.5 KeyValueStorage::HasKey 39
8.1.4.6 KeyValueStorage::GetValue 40
8.1.4.7 KeyValueStorage::SetValue 41

3 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.1.4.8 KeyValueStorage::RemoveKey 41
8.1.4.9 KeyValueStorage::RemoveAllKeys 42
8.1.4.10 KeyValueStorage::SyncToStorage 42
8.1.4.11 KeyValueStorage::DiscardPendingChanges 43

8.2 File Storage . 44
8.2.1 OpenFileStorage . 44
8.2.2 RecoverAllFiles . 44
8.2.3 ResetAllFiles . 45
8.2.4 Helper Functions for BasicOperations Class 45

8.2.4.1 operator| for BasicOperations::OpenMode 46
8.2.4.2 operator& for BasicOperations::OpenMode 46

8.2.5 Helper Functions for ReadWriteAccessor Class 46
8.2.5.1 endl . 47
8.2.5.2 flush . 47

8.2.6 FileStorage Class . 47
8.2.6.1 FileStorage::FileStorage 48
8.2.6.2 FileStorage::operator= 48
8.2.6.3 FileStorage::~FileStorage 49
8.2.6.4 FileStorage::GetAllFileNames 49
8.2.6.5 FileStorage::DeleteFile 50
8.2.6.6 FileStorage::FileExists 50
8.2.6.7 FileStorage::RecoverFile 51
8.2.6.8 FileStorage::ResetFile 51
8.2.6.9 FileStorage::OpenFileReadWrite 52
8.2.6.10 FileStorage::OpenFileReadOnly 53
8.2.6.11 FileStorage::OpenFileWriteOnly 54

8.2.7 Char Traits Wrapper . 55
8.2.7.1 int_type . 55
8.2.7.2 pos_type . 56
8.2.7.3 off_type . 56

8.2.8 BasicOperations class . 56
8.2.8.1 BasicOperations::BasicOperations 57
8.2.8.2 BasicOperations::operator= 57
8.2.8.3 BasicOperations::~BasicOperations 58
8.2.8.4 BasicOperations::SeekDirection 58
8.2.8.5 BasicOperations::OpenMode 59
8.2.8.6 BasicOperations::tell 59
8.2.8.7 BasicOperations::seek 60
8.2.8.8 BasicOperations::good 61
8.2.8.9 BasicOperations::eof 61
8.2.8.10 BasicOperations::fail 61
8.2.8.11 BasicOperations::bad 62
8.2.8.12 BasicOperations::operator! 62
8.2.8.13 BasicOperations::operator bool 63
8.2.8.14 BasicOperations::clear 63

8.2.9 ReadAccessor class . 64

4 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.2.9.1 ReadAccessor::peek 64
8.2.9.2 ReadAccessor::get 64
8.2.9.3 ReadAccessor::read 65
8.2.9.4 ReadAccessor::getline 65

8.2.10 ReadWriteAccessor class . 66
8.2.10.1 ReadWriteAccessor::fsync 66
8.2.10.2 ReadWriteAccessor::write 67
8.2.10.3 ReadWriteAccessor::flush 67
8.2.10.4 ReadWriteAccessor::operator« 68

8.3 Update and Removal of Persistent Data 69
8.3.1 RegisterApplicationDataUpdateCallback 69
8.3.2 UpdatePersistency . 69
8.3.3 ResetPersistency . 70

8.4 Handle Classes . 70
8.4.1 SharedHandle Class . 70

8.4.1.1 SharedHandle::SharedHandle 71
8.4.1.2 SharedHandle::operator= 72
8.4.1.3 SharedHandle::Operator-> 72

8.4.2 UniqueHandle Class . 73
8.4.2.1 UniqueHandle::UniqueHandle 73
8.4.2.2 UniqueHandle::operator= 74
8.4.2.3 UniqueHandle::Operator-> 75
8.4.2.4 UniqueHandle::Operator* 76

8.5 Errors . 77
8.5.1 PerErrc . 77
8.5.2 GetPerDomain . 78
8.5.3 MakeErrorCode . 78
8.5.4 PerException . 78

8.5.4.1 PerException::PerException 79
8.5.5 PerErrorDomain . 79

8.5.5.1 PerErrorDomain::PerErrorDomain 80
8.5.5.2 PerErrorDomain::Name 80
8.5.5.3 PerErrorDomain::Message 80
8.5.5.4 PerErrorDomain::ThrowAsException 81

A Not applicable requirements 81

B Mentioned Class Tables 81

5 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

1 Introduction and functional overview

This document is the software specification of the Persistency functional cluster
within the Adaptive Platform.

Persistency offers mechanisms to Adaptive Applications to store information
in the non-volatile memory of a machine. The data is available over boot and ignition
cycles.

The Persistency functional cluster will typically be implemented as a library that runs
within a Process of an Adaptive Application, with the rights of that Process.

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Persis-
tency that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym Description
KVS Key-Value Storage

Terms Description
File Storage A set of files that are stored persistently.
Key-Value Pair A key with an associated value, to be stored in a Key-Value

Storage together with the type of the value.
Key-Value Storage A set of key-value pairs that are stored persistently.
Persistency The functional cluster described in this document, which han-

dles persistent data of AUTOSAR Adaptive Applica-
tions and other functional clusters in File Storages and
Key-Value Storages.

Persistent Data Data that is stored in the persistent memory that can be accessed
by one Process.
Persistency supports different mechanisms to access data in
persistent memory. Concurrent access to the data by several
Processes is not supported as the data is owned exclusively by
one Process.

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

6 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[3] Requirements on Persistency
AUTOSAR_RS_Persistency

[4] General Requirements specific to Adaptive Platform
AUTOSAR_RS_General

[5] Requirements on Update and Configuration Management
AUTOSAR_RS_UpdateAndConfigManagement

[6] Specification of Update and Configuration Management
AUTOSAR_SWS_UpdateAndConfigManagement

[7] Specification of Platform Types for Adaptive Platform
AUTOSAR_SWS_AdaptivePlatformTypes

[8] Specification of Core Types for Adaptive Platform
AUTOSAR_SWS_CoreTypes

4 Constraints and assumptions

4.1 Limitations

• The configuration of encryption for Persistency is not defined in [2].

4.2 Constraints on Configuration

There are several constraints on the Persistency configuration that need to be ob-
served by the tooling which creates/processes this part of the Execution Manifest.
These constraints are defined in [2].

4.3 Direct Access to Storage Hardware

Modern embedded controllers use flash memory and similar hardware to store data.
These devices have the intrinsic problem that the signal that can be read from each
memory cell is reduced over time, mainly influenced by the number of write accesses.
In the end, the cell will produce arbitrary values on each read access.

Unfortunately, the distribution of write accesses in typical systems is very uneven.
Some parameters might be updated a few times a second, while some code may stay
untouched for the whole life time of the ECU. To avoid early read errors, wear leveling
should be deployed, such that frequent updates of single data elements are distributed
over the whole memory area.

On the other hand, most operating systems include a file system or at least a flash
driver that takes care of wear leveling, such that a typical implementation of the Per-

7 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

sistency will not have to care about the wear leveling. This use case is therefore not
described in any detail in this specification.

5 Dependencies to other modules

The Persistency is (at least partially) compiled as part of an Executable of an
Adaptive Application, and therefore also executed as part of a Process, which
creates an implicit dependency on the Execution Management.

For the implementation of redundancy and security purposes, the Persistency ac-
cesses services of the Adaptive Crypto Interface.

For the installation, update, and deletion of persisted data, the Persistency interacts
with the Update and Configuration Management (UCM).

6 Requirements Tracing

The following table references the features specified in [3], [4], [5] and links to the
fulfillments of these.

Feature Description Satisfied by
[RS_AP_00111] The AUTOSAR Adaptive Platform shall support

source code portability for AUTOSAR Adaptive
applications.

[SWS_PER_NA]

[RS_AP_00113] API specification shall comply with selected coding
guidelines.

[SWS_PER_NA]

[RS_AP_00114] C++ interface shall be compatible with C++11. [SWS_PER_NA]
[RS_AP_00115] Namespaces. [SWS_PER_00002]
[RS_AP_00116] Header file name. [SWS_PER_NA]

8 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[RS_AP_00119] Return values / application errors. [SWS_PER_00042]
[SWS_PER_00043]
[SWS_PER_00044]
[SWS_PER_00046]
[SWS_PER_00047]
[SWS_PER_00048]
[SWS_PER_00049]
[SWS_PER_00052]
[SWS_PER_00106]
[SWS_PER_00107]
[SWS_PER_00108]
[SWS_PER_00110]
[SWS_PER_00111]
[SWS_PER_00112]
[SWS_PER_00113]
[SWS_PER_00114]
[SWS_PER_00115]
[SWS_PER_00116]
[SWS_PER_00119]
[SWS_PER_00122]
[SWS_PER_00125]
[SWS_PER_00126]
[SWS_PER_00127]
[SWS_PER_00128]
[SWS_PER_00140]
[SWS_PER_00142]
[SWS_PER_00143]
[SWS_PER_00144]
[SWS_PER_00145]
[SWS_PER_00162]
[SWS_PER_00163]
[SWS_PER_00164]
[SWS_PER_00165]
[SWS_PER_00166]
[SWS_PER_00167]
[SWS_PER_00168]
[SWS_PER_00313]
[SWS_PER_00314]
[SWS_PER_00315]
[SWS_PER_00323]
[SWS_PER_00325]
[SWS_PER_00327]
[SWS_PER_00329]
[SWS_PER_00332]
[SWS_PER_00333]
[SWS_PER_00334]
[SWS_PER_00335]
[SWS_PER_00336]

9 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00337]
[SWS_PER_00338]
[SWS_PER_00345]
[SWS_PER_00347]
[SWS_PER_00351]
[SWS_PER_00352]
[SWS_PER_00357]
[SWS_PER_00358]
[SWS_PER_00360]
[SWS_PER_00361]
[SWS_PER_00363]
[SWS_PER_00364]
[SWS_PER_00365]
[SWS_PER_00368]
[SWS_PER_00370]
[SWS_PER_00372]
[SWS_PER_00375]
[SWS_PER_00376]
[SWS_PER_00377]
[SWS_PER_00400]
[SWS_PER_00401]

[RS_AP_00120] Method and Function names. [SWS_PER_00042]
[SWS_PER_00043]
[SWS_PER_00044]
[SWS_PER_00046]
[SWS_PER_00047]
[SWS_PER_00048]
[SWS_PER_00049]
[SWS_PER_00050]
[SWS_PER_00052]
[SWS_PER_00106]
[SWS_PER_00107]
[SWS_PER_00108]
[SWS_PER_00110]
[SWS_PER_00111]
[SWS_PER_00112]
[SWS_PER_00113]
[SWS_PER_00114]
[SWS_PER_00115]
[SWS_PER_00116]
[SWS_PER_00119]
[SWS_PER_00122]
[SWS_PER_00124]
[SWS_PER_00125]
[SWS_PER_00126]

10 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00127]
[SWS_PER_00128]
[SWS_PER_00140]
[SWS_PER_00141]
[SWS_PER_00142]
[SWS_PER_00143]
[SWS_PER_00144]
[SWS_PER_00145]
[SWS_PER_00162]
[SWS_PER_00163]
[SWS_PER_00164]
[SWS_PER_00165]
[SWS_PER_00166]
[SWS_PER_00167]
[SWS_PER_00168]
[SWS_PER_00313]
[SWS_PER_00314]
[SWS_PER_00315]
[SWS_PER_00322]
[SWS_PER_00323]
[SWS_PER_00324]
[SWS_PER_00325]
[SWS_PER_00326]
[SWS_PER_00327]
[SWS_PER_00328]
[SWS_PER_00329]
[SWS_PER_00330]
[SWS_PER_00332]
[SWS_PER_00333]
[SWS_PER_00334]
[SWS_PER_00335]
[SWS_PER_00336]
[SWS_PER_00337]
[SWS_PER_00338]
[SWS_PER_00344]
[SWS_PER_00345]
[SWS_PER_00346]
[SWS_PER_00347]
[SWS_PER_00348]
[SWS_PER_00350]
[SWS_PER_00351]
[SWS_PER_00352]
[SWS_PER_00355]
[SWS_PER_00356]
[SWS_PER_00357]
[SWS_PER_00358]
[SWS_PER_00365]
[SWS_PER_00367]

11 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00368]
[SWS_PER_00369]
[SWS_PER_00370]
[SWS_PER_00371]
[SWS_PER_00372]
[SWS_PER_00373]
[SWS_PER_00374]
[SWS_PER_00375]
[SWS_PER_00376]
[SWS_PER_00377]

[RS_AP_00121] Parameter names. [SWS_PER_00043]
[SWS_PER_00044]
[SWS_PER_00046]
[SWS_PER_00047]
[SWS_PER_00052]
[SWS_PER_00111]
[SWS_PER_00112]
[SWS_PER_00113]
[SWS_PER_00114]
[SWS_PER_00115]
[SWS_PER_00116]
[SWS_PER_00119]
[SWS_PER_00125]
[SWS_PER_00126]
[SWS_PER_00127]
[SWS_PER_00128]
[SWS_PER_00144]
[SWS_PER_00145]
[SWS_PER_00163]
[SWS_PER_00164]
[SWS_PER_00165]
[SWS_PER_00166]
[SWS_PER_00315]
[SWS_PER_00322]

12 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00323]
[SWS_PER_00326]
[SWS_PER_00327]
[SWS_PER_00332]
[SWS_PER_00333]
[SWS_PER_00334]
[SWS_PER_00335]
[SWS_PER_00336]
[SWS_PER_00337]
[SWS_PER_00338]
[SWS_PER_00344]
[SWS_PER_00345]
[SWS_PER_00350]
[SWS_PER_00351]
[SWS_PER_00355]
[SWS_PER_00356]
[SWS_PER_00367]
[SWS_PER_00368]
[SWS_PER_00369]
[SWS_PER_00370]
[SWS_PER_00371]
[SWS_PER_00372]
[SWS_PER_00375]
[SWS_PER_00376]
[SWS_PER_00377]

[RS_AP_00122] Type names. [SWS_PER_00146]
[SWS_PER_00147]
[SWS_PER_00180]
[SWS_PER_00181]
[SWS_PER_00182]
[SWS_PER_00311]
[SWS_PER_00312]
[SWS_PER_00339]
[SWS_PER_00340]
[SWS_PER_00341]
[SWS_PER_00342]
[SWS_PER_00343]
[SWS_PER_00354]
[SWS_PER_00359]
[SWS_PER_00362]

[RS_AP_00124] Variable names. [SWS_PER_NA]

13 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[RS_AP_00127] Usage of ara::core types. [SWS_PER_00042]
[SWS_PER_00043]
[SWS_PER_00044]
[SWS_PER_00046]
[SWS_PER_00047]
[SWS_PER_00048]
[SWS_PER_00049]
[SWS_PER_00052]
[SWS_PER_00110]
[SWS_PER_00111]
[SWS_PER_00112]
[SWS_PER_00113]
[SWS_PER_00114]
[SWS_PER_00115]
[SWS_PER_00116]
[SWS_PER_00119]
[SWS_PER_00122]
[SWS_PER_00125]
[SWS_PER_00165]
[SWS_PER_00166]
[SWS_PER_00311]
[SWS_PER_00312]
[SWS_PER_00332]
[SWS_PER_00333]
[SWS_PER_00334]
[SWS_PER_00335]
[SWS_PER_00336]
[SWS_PER_00337]
[SWS_PER_00338]
[SWS_PER_00354]
[SWS_PER_00356]
[SWS_PER_00357]
[SWS_PER_00358]
[SWS_PER_00365]
[SWS_PER_00375]
[SWS_PER_00376]
[SWS_PER_00377]

14 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[RS_AP_00128] Use of exceptions in API. [SWS_PER_00044]
[SWS_PER_00046]
[SWS_PER_00047]
[SWS_PER_00048]
[SWS_PER_00049]
[SWS_PER_00052]
[SWS_PER_00111]
[SWS_PER_00113]
[SWS_PER_00114]
[SWS_PER_00115]
[SWS_PER_00116]
[SWS_PER_00122]
[SWS_PER_00332]
[SWS_PER_00333]
[SWS_PER_00334]
[SWS_PER_00335]
[SWS_PER_00336]
[SWS_PER_00337]
[SWS_PER_00338]
[SWS_PER_00357]
[SWS_PER_00358]
[SWS_PER_00365]
[SWS_PER_00375]
[SWS_PER_00376]
[SWS_PER_00377]

[RS_AP_00129] Public types defined by functional clusters shall be
designed to allow implementation without dynamic
memory allocation.

[SWS_PER_00042]
[SWS_PER_00044]
[SWS_PER_00046]
[SWS_PER_00047]
[SWS_PER_00048]
[SWS_PER_00049]
[SWS_PER_00050]
[SWS_PER_00052]
[SWS_PER_00110]
[SWS_PER_00111]
[SWS_PER_00113]
[SWS_PER_00114]
[SWS_PER_00115]
[SWS_PER_00116]
[SWS_PER_00119]
[SWS_PER_00122]
[SWS_PER_00322]
[SWS_PER_00326]
[SWS_PER_00330]
[SWS_PER_00332]
[SWS_PER_00333]
[SWS_PER_00334]
[SWS_PER_00335]
[SWS_PER_00336]

15 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00337]
[SWS_PER_00338]
[SWS_PER_00344]
[SWS_PER_00348]
[SWS_PER_00360]
[SWS_PER_00361]
[SWS_PER_00363]
[SWS_PER_00364]
[SWS_PER_00365]
[SWS_PER_00367]
[SWS_PER_00369]
[SWS_PER_00371]
[SWS_PER_00375]
[SWS_PER_00376]
[SWS_PER_00377]
[SWS_PER_00400]
[SWS_PER_00401]

[RS_AP_00130] AUTOSAR Adaptive Platform shall represent a rich
and modern programming environment.

[SWS_PER_NA]

[RS_AP_00131] Use of verbal forms to express requirement levels. [SWS_PER_NA]
[RS_AP_00132] Usage of noexcept keyword. [SWS_PER_00042]

[SWS_PER_00043]
[SWS_PER_00044]
[SWS_PER_00046]
[SWS_PER_00047]
[SWS_PER_00048]
[SWS_PER_00049]
[SWS_PER_00050]
[SWS_PER_00052]
[SWS_PER_00106]
[SWS_PER_00107]
[SWS_PER_00108]
[SWS_PER_00110]
[SWS_PER_00111]
[SWS_PER_00112]
[SWS_PER_00113]
[SWS_PER_00114]
[SWS_PER_00115]
[SWS_PER_00116]
[SWS_PER_00119]
[SWS_PER_00122]
[SWS_PER_00124]
[SWS_PER_00125]
[SWS_PER_00126]

16 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00127]
[SWS_PER_00128]
[SWS_PER_00140]
[SWS_PER_00141]
[SWS_PER_00142]
[SWS_PER_00143]
[SWS_PER_00162]
[SWS_PER_00163]
[SWS_PER_00164]
[SWS_PER_00165]
[SWS_PER_00166]
[SWS_PER_00167]
[SWS_PER_00168]
[SWS_PER_00313]
[SWS_PER_00314]
[SWS_PER_00315]
[SWS_PER_00322]
[SWS_PER_00323]
[SWS_PER_00326]
[SWS_PER_00327]
[SWS_PER_00330]
[SWS_PER_00332]
[SWS_PER_00333]
[SWS_PER_00334]
[SWS_PER_00335]
[SWS_PER_00336]
[SWS_PER_00337]
[SWS_PER_00338]
[SWS_PER_00344]
[SWS_PER_00345]
[SWS_PER_00348]
[SWS_PER_00351]
[SWS_PER_00352]
[SWS_PER_00355]
[SWS_PER_00356]
[SWS_PER_00357]
[SWS_PER_00358]
[SWS_PER_00360]
[SWS_PER_00361]
[SWS_PER_00363]
[SWS_PER_00364]
[SWS_PER_00365]
[SWS_PER_00367]
[SWS_PER_00368]
[SWS_PER_00369]
[SWS_PER_00370]
[SWS_PER_00371]
[SWS_PER_00372]
[SWS_PER_00375]
[SWS_PER_00376]
[SWS_PER_00377]
[SWS_PER_00400]
[SWS_PER_00401]

17 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[RS_AP_00134] Library destructors shall be tagged with noexcept. [SWS_PER_00050]
[SWS_PER_00330]
[SWS_PER_00348]

[RS_PER_00001] Persistency shall support storage of persistent
data

[SWS_PER_00106]
[SWS_PER_00107]
[SWS_PER_00108]
[SWS_PER_00110]
[SWS_PER_00111]
[SWS_PER_00112]
[SWS_PER_00113]
[SWS_PER_00114]
[SWS_PER_00115]
[SWS_PER_00116]
[SWS_PER_00119]
[SWS_PER_00122]
[SWS_PER_00124]
[SWS_PER_00125]
[SWS_PER_00126]
[SWS_PER_00127]
[SWS_PER_00128]
[SWS_PER_00140]
[SWS_PER_00141]
[SWS_PER_00142]
[SWS_PER_00143]
[SWS_PER_00144]
[SWS_PER_00145]
[SWS_PER_00162]
[SWS_PER_00163]
[SWS_PER_00164]
[SWS_PER_00165]
[SWS_PER_00166]
[SWS_PER_00167]
[SWS_PER_00168]
[SWS_PER_00302]
[SWS_PER_00303]
[SWS_PER_00304]
[SWS_PER_00309]
[SWS_PER_00335]
[SWS_PER_00336]
[SWS_PER_00337]
[SWS_PER_00338]
[SWS_PER_00349]
[SWS_PER_00353]
[SWS_PER_00360]
[SWS_PER_00361]
[SWS_PER_00363]
[SWS_PER_00364]
[SWS_PER_00375]
[SWS_PER_00376]
[SWS_PER_00377]
[SWS_PER_00400]
[SWS_PER_00401]

18 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[RS_PER_00002] Persistency shall support to retrieve data that has
been persistently stored on a platform instance

[SWS_PER_00049]
[SWS_PER_00050]
[SWS_PER_00322]
[SWS_PER_00323]
[SWS_PER_00324]
[SWS_PER_00325]
[SWS_PER_00339]
[SWS_PER_00344]
[SWS_PER_00345]
[SWS_PER_00346]
[SWS_PER_00347]
[SWS_PER_00348]
[SWS_PER_00359]
[SWS_PER_00360]
[SWS_PER_00361]
[SWS_PER_00362]
[SWS_PER_00363]
[SWS_PER_00364]
[SWS_PER_00365]
[SWS_PER_00371]
[SWS_PER_00372]
[SWS_PER_00373]
[SWS_PER_00374]
[SWS_PER_00400]
[SWS_PER_00401]

[RS_PER_00003] Persistency shall support identification of data
using a unique identifier

[SWS_PER_00042]
[SWS_PER_00043]
[SWS_PER_00044]
[SWS_PER_00046]
[SWS_PER_00047]
[SWS_PER_00048]
[SWS_PER_00052]
[SWS_PER_00146]
[SWS_PER_00147]
[SWS_PER_00180]
[SWS_PER_00181]
[SWS_PER_00182]
[SWS_PER_00331]
[SWS_PER_00332]
[SWS_PER_00333]
[SWS_PER_00334]
[SWS_PER_00341]
[SWS_PER_00360]
[SWS_PER_00361]
[SWS_PER_00363]
[SWS_PER_00364]
[SWS_PER_00400]
[SWS_PER_00401]

19 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[RS_PER_00004] Persistency shall support access to file-like
structures

[SWS_PER_00106]
[SWS_PER_00107]
[SWS_PER_00108]
[SWS_PER_00110]
[SWS_PER_00111]
[SWS_PER_00112]
[SWS_PER_00113]
[SWS_PER_00114]
[SWS_PER_00115]
[SWS_PER_00116]
[SWS_PER_00119]
[SWS_PER_00122]
[SWS_PER_00124]
[SWS_PER_00125]
[SWS_PER_00126]
[SWS_PER_00127]
[SWS_PER_00128]
[SWS_PER_00140]
[SWS_PER_00141]
[SWS_PER_00142]
[SWS_PER_00143]
[SWS_PER_00144]
[SWS_PER_00145]
[SWS_PER_00162]
[SWS_PER_00163]
[SWS_PER_00164]
[SWS_PER_00165]
[SWS_PER_00166]
[SWS_PER_00167]
[SWS_PER_00168]
[SWS_PER_00326]
[SWS_PER_00327]
[SWS_PER_00328]
[SWS_PER_00329]
[SWS_PER_00330]
[SWS_PER_00335]
[SWS_PER_00336]
[SWS_PER_00337]
[SWS_PER_00338]
[SWS_PER_00340]
[SWS_PER_00342]
[SWS_PER_00343]
[SWS_PER_00367]
[SWS_PER_00368]
[SWS_PER_00369]
[SWS_PER_00370]
[SWS_PER_00375]
[SWS_PER_00376]
[SWS_PER_00377]

[RS_PER_00005] Persistency shall support encryption/decryption of
persistent data

[SWS_PER_00210]
[SWS_PER_00211]

[RS_PER_00008] Persistency shall support detection of data
corruption in persistent memory

[SWS_PER_00221]
[SWS_PER_00317]
[SWS_PER_00318]
[SWS_PER_00319]

20 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[RS_PER_00009] Persistency shall support data recovery
mechanisms if persistent data was corrupted

[SWS_PER_00222]
[SWS_PER_00317]
[SWS_PER_00318]
[SWS_PER_00319]

[RS_PER_00010] The layout of persistent data shall be configurable [SWS_PER_00044]
[SWS_PER_00046]
[SWS_PER_00047]
[SWS_PER_00048]
[SWS_PER_00052]
[SWS_PER_00113]
[SWS_PER_00114]
[SWS_PER_00115]
[SWS_PER_00116]
[SWS_PER_00210]
[SWS_PER_00211]
[SWS_PER_00251]
[SWS_PER_00252]
[SWS_PER_00253]
[SWS_PER_00254]
[SWS_PER_00265]
[SWS_PER_00266]
[SWS_PER_00267]
[SWS_PER_00275]
[SWS_PER_00277]
[SWS_PER_00281]
[SWS_PER_00283]
[SWS_PER_00304]
[SWS_PER_00317]
[SWS_PER_00318]
[SWS_PER_00319]
[SWS_PER_00320]
[SWS_PER_00321]
[SWS_PER_00332]
[SWS_PER_00333]
[SWS_PER_00334]
[SWS_PER_00335]
[SWS_PER_00336]
[SWS_PER_00375]
[SWS_PER_00376]
[SWS_PER_00377]
[SWS_PER_00378]
[SWS_PER_00379]
[SWS_PER_00380]
[SWS_PER_00381]
[SWS_PER_00382]
[SWS_PER_00383]
[SWS_PER_00384]
[SWS_PER_00385]
[SWS_PER_00386]
[SWS_PER_00387]
[SWS_PER_00388]
[SWS_PER_00389]

21 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00390]
[SWS_PER_00391]
[SWS_PER_00392]
[SWS_PER_00393]
[SWS_PER_00394]
[SWS_PER_00395]
[SWS_PER_CONSTR_00001]
[SWS_PER_CONSTR_00002]
[SWS_PER_CONSTR_00003]
[SWS_PER_CONSTR_00004]

[RS_PER_00011] Persistency shall be able to ensure and limit the
amount of storage used by persisted data

[SWS_PER_00320]
[SWS_PER_00321]

[RS_PER_00012] Persistency shall support installation of persistent
data

[SWS_PER_00251]
[SWS_PER_00252]
[SWS_PER_00253]
[SWS_PER_00254]
[SWS_PER_00265]
[SWS_PER_00266]
[SWS_PER_00267]
[SWS_PER_00379]
[SWS_PER_00380]
[SWS_PER_00381]
[SWS_PER_00382]
[SWS_PER_00383]
[SWS_PER_00384]
[SWS_PER_00385]
[SWS_PER_CONSTR_00001]
[SWS_PER_CONSTR_00002]
[SWS_PER_CONSTR_00003]
[SWS_PER_CONSTR_00004]

[RS_PER_00013] Persistency shall support update of persistent data [SWS_PER_00251]
[SWS_PER_00275]
[SWS_PER_00277]
[SWS_PER_00281]
[SWS_PER_00283]
[SWS_PER_00356]
[SWS_PER_00357]
[SWS_PER_00378]
[SWS_PER_00379]
[SWS_PER_00380]
[SWS_PER_00381]
[SWS_PER_00386]
[SWS_PER_00387]
[SWS_PER_00388]
[SWS_PER_00389]
[SWS_PER_00390]
[SWS_PER_00391]
[SWS_PER_00392]
[SWS_PER_00393]
[SWS_PER_00394]
[SWS_PER_00395]

[RS_PER_00014] Persistency shall support roll-back of persistent
data

[SWS_PER_00378]
[SWS_PER_00396]

[RS_PER_00015] Persistency shall support removal of persistent
data

[SWS_PER_00358]
[SWS_PER_00397]

22 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

7 Functional specification

7.1 Architecture

The typical usage of the Persistency within an Adaptive Application is de-
picted in Figure 7.1. As shown there, an Adaptive Application can use a combi-
nation of multiple Key-Value Storages and multiple File Storages.

Figure 7.1: Typical usage of Persistency within an Adaptive Application

The functional cluster Persistency offers two different mechanisms to access per-
sistent memory as shown in Figure 7.1.

Key-Value Storage offers access to one or multiple Key-Value Storages for
every AdaptiveApplicationSwComponentType. Every Key-Value Storage
is represented by a PortPrototype typed by a PersistencyKeyValueDataba-
seInterface in the application design for the respective AdaptiveApplication-
SwComponentType. Every Key-Value Storage can hold multiple Key-Value
Pairs.

A Key-Value Storage with predefined Key-Value Pairs can be deployed with
default data during installation or update of an Adaptive Application. This oper-
ation is triggered by the UCM module (see [6]) during installation or update using the
deployment information and data provided by the software package of the Adap-
tive Application. See section 7.4.

23 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

File Storages offer access to a set of files, they are similar to a directory of a
file system. Every File Storage is represented by a PortPrototype typed by
a PersistencyFileProxyInterface in the application design for the respective
AdaptiveApplicationSwComponentType. Every File Storage can hold mul-
tiple files as described in [2]. Similar to the Key-Value Pairs mentioned above,
additional files can be created by the Adaptive Application using the Persis-
tency API (see 8.2.6.9 and 8.2.6.11).

A File Storage with predefined files with initial content can be deployed during in-
stallation or update. This operation is triggered by the UCM module, too. All needed
deployment information and files come with the software package of the Adap-
tive Application. See section 7.4.

The API specification holds classes for Key-Value Storage and File Stor-
age access with appropriate creator functions. These receive the identifier (the
fully qualified shortName path) of a PortPrototype typed by a Persisten-
cyKeyValueDatabaseInterface or a PersistencyFileProxyInterface as
an ara::core::InstanceSpecifier input parameter (see 8.1.1 and 8.2.1). De-
pending on the nature of the PortPrototype, the Key-Value Storage or File
Storage can be only read (when the PortPrototype is instantiated as RPort-
Prototype) or read and written (when the PortPrototype is instantiated as PR-
PortPrototype) or only be written (when the PortPrototype is instantiated as
PPortPrototype).

The Persistency shall not provide an additional communication path for applications
besides the mechanisms provided by the functional cluster Communication Manage-
ment (e.g. using ara::com). Therefore, persistent data shall never be shared
between two (or more) Processes.

[SWS_PER_00309]{DRAFT} d Persistent data shall always be local to one Pro-
cess. c(RS_PER_00001)

If persistent data needs to be accessed by multiple Processes (of the same or
different applications), it is the duty of the application designer to provide Service
Interfaces for communication.

7.2 Security concepts

Security requirements of the Key-Value Storage and File Storage are currently
not modeled in [2].

[SWS_PER_00210]{DRAFT} d The Persistency cluster shall encrypt data before
storing it to the persistent memory. c(RS_PER_00005, RS_PER_00010)

[SWS_PER_00211]{DRAFT} d The Persistency cluster shall decrypt data after
reading it from persistent memory. c(RS_PER_00005, RS_PER_00010)

24 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

7.3 Redundancy concepts

The Persistency functional cluster shall take care of the integrity of the stored data.
The measures taken to ensure integrity are configurable. The application designer can
use PersistencyInterface.redundancy to request redundancy. During deploy-
ment, the integrator can define the actual measures taken to ensure integrity using
PersistencyDeployment.redundancyHandling.

[SWS_PER_00317]{DRAFT} d The Persistency cluster shall store redundant in-
formation for every Key-Value Storage and every File Storage represented by
a PortPrototype typed by a PersistencyInterface where PersistencyIn-
terface.redundancy is set to redundant. c(RS_PER_00008, RS_PER_00009,
RS_PER_00010)

[SWS_PER_00221]{DRAFT} d The Persistency cluster shall use the redundant
information to detect data corruption in the persistent memory. c(RS_PER_00008)

[SWS_PER_00222]{DRAFT} d The Persistency cluster shall use the redundant
information to recover corrupted data if possible. c(RS_PER_00009)

The type of redundancy that is applied by the Persistency functional cluster is de-
fined by the set of PersistencyRedundancyHandling classes aggregated as Per-
sistencyDeployment.redundancyHandling.

[SWS_PER_00318]{DRAFT} d In case a PersistencyRedundancyHandling ag-
gregated as PersistencyDeployment.redundancyHandling is derived as Per-
sistencyRedundancyCrc, the Persistency cluster shall calculate a CRC value
with the bit width defined by length when persisting the Key-Value Storage
or a file in the File Storage, and shall use this CRC to check the Key-Value
Storage or the file in the File Storage when it is read back. c(RS_PER_00008,
RS_PER_00009, RS_PER_00010)

[SWS_PER_00319]{DRAFT} d In case a PersistencyRedundancyHandling ag-
gregated as PersistencyDeployment.redundancyHandling is derived as Per-
sistencyRedundancyMOutOfN, the Persistency cluster shall store N copies
when persisting the Key-Value Storage or a file in the File Storage, and shall
check that at least M of the N copies of the Key-Value Storage or the file in the
File Storage are identical when it is read back. N is defined by n, and M is defined
by m. c(RS_PER_00008, RS_PER_00009, RS_PER_00010)

7.4 Installation and Update of Persistent Data

The Update and Configuration Management handles the life cycle of Adap-
tive Applications with the following phases:

• Installation of new software

• Update of already installed software

25 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

• Finalization of updated software after the update succeeded

• Roll-back of updated software after the update failed

• Removal of installed software

For all these phases, persistent data needs to be handled alongside the applica-
tion. The Adaptive Application may trigger this handling explicitly by calling Up-
datePersistency during the verification phase that follows the installation or update,
or rely on the Persistency cluster to do this implicitly when persistent data is
accessed (OpenKeyValueStorage/OpenFileStorage). In both cases, the Per-
sistency cluster will compare the stored manifest version against the current mani-
fest version, and perform the required action.

[SWS_PER_00378]{DRAFT} d Persistency shall store the Executable.version
and the SoftwareCluster.version of the manifest persistently. c(RS_PER_00010,
RS_PER_00013, RS_PER_00014)

The Executable.version is used by Persistency to detect a change of the ap-
plication (see [SWS_PER_00387]), while the SoftwareCluster.version is used
to detect a change of the deployed persistent data (see [SWS_PER_00386] and
[SWS_PER_00396]).

[SWS_PER_CONSTR_00001]{DRAFT} d When the Executable.version is in-
creased, the SoftwareCluster.version needs to be increased, too. c
(RS_PER_00010, RS_PER_00012)

The SoftwareCluster.version and Executable.version are StrongRevi-
sionLabelStrings. These strings consists of a MajorVersion, a MinorVersion,
a PatchVersion, and a BuildVersion. It is assumed that the first three will be in-
cremented when the version is changed, while the last might be arbitrary.

[SWS_PER_CONSTR_00002]{DRAFT} d When the SoftwareCluster.version
or Executable.version is increased, the MajorVersion, MinorVersion, or
PatchVersion have to be incremented. c(RS_PER_00010, RS_PER_00012)

After installation of the Adaptive Application, the Persistency cluster will in-
stall pre-defined persistent data from the manifest. There are different possibili-
ties how this persistent data can be defined in the manifest:

• Persistent data can be defined by an application designer within Persis-
tencyKeyValueDatabaseInterface or PersistencyFileProxyInter-
face.

• Persistent data that was defined by an application designer can be changed
by an integrator within PersistencyKeyValueDatabase or Persistency-
FileArray.

• Persistent data can be directly defined by an integrator within Persisten-
cyKeyValueDatabase or PersistencyFileArray.

26 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00379]{DRAFT} d Elements defined in the deployment data (Persis-
tencyKeyValueDatabase and PersistencyFileArray and associated classes)
shall always be preferred over elements defined in the application design (Persis-
tencyKeyValueDatabaseInterface and PersistencyFileProxyInterface
and associated classes). The latter shall only be used if the former does not exist. c
(RS_PER_00010, RS_PER_00012, RS_PER_00013)

Please note that the manifest contains separate deployment data for each Pro-
cess that references the Executable. The Process is bound to the deployment
data by a mapping class. In case of a Key-Value Storage, the Persisten-
cyKeyValueDatabase is mapped by PersistencyPortPrototypeToKeyVal-
ueDatabaseMapping to a Process and a PortPrototype typed by a Persis-
tencyKeyValueDatabaseInterface. In case of a File Storage, the Per-
sistencyFileArray is mapped by a PersistencyPortPrototypeToFileAr-
rayMapping to a Process and a PortPrototype typed by a Persistency-
FileProxyInterface.

After an update of the Adaptive Application or the manifest, the Persistency
cluster will create a backup of the persistent data, and then update the existing
persistent data using one of the following strategies:

• Existing persistent data is kept unchanged (keepExisting).

• Existing persistent data is replaced (overwrite).

• Existing persistent data is removed (delete).

• New persistent data is added (keepExisting and overwrite).

The update strategy can be set during application design or deployment, and can be
defined for the whole Key-Value Storage or File Storage (PersistencyCol-
lectionLevelUpdateStrategyEnum – keepExisting or delete) and for a sin-
gle key or file (PersistencyElementLevelUpdateStrategyEnum – keepExist-
ing, overwrite, or delete).

[SWS_PER_00251]{DRAFT} d An update strategy defined in the deploy-
ment data (PersistencyDeployment.updateStrategy, PersistencyKeyVal-
uePair.updateStrategy, PersistencyFile.updateStrategy) shall always
be preferred over the update strategy defined in the application design (Per-
sistencyInterface.updateStrategy, PersistencyDataElement.updateS-
trategy, PersistencyFileProxy.updateStrategy). The latter shall only
be used if the former does not exist. c(RS_PER_00010, RS_PER_00012,
RS_PER_00013)

[SWS_PER_00380]{DRAFT} d An update strategy defined for a single key (Persis-
tencyKeyValuePair.updateStrategy, PersistencyDataElement.updateS-
trategy) shall always be preferred over the update strategy defined for the enclos-
ing Key-Value Storage (PersistencyDeployment.updateStrategy, Per-
sistencyInterface.updateStrategy). The latter shall only be used if the former
does not exist. c(RS_PER_00010, RS_PER_00012, RS_PER_00013)

27 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00381]{DRAFT} d An update strategy defined for a single file (Per-
sistencyFile.updateStrategy, PersistencyFileProxy.updateStrategy)
shall always be preferred over the update strategy defined for the enclosing
File Storage (PersistencyDeployment.updateStrategy, PersistencyIn-
terface.updateStrategy). The latter shall only be used if the former does not exist.
c(RS_PER_00010, RS_PER_00012, RS_PER_00013)

When the update succeeded, the Update and Configuration Management will
finalize the new Adaptive Application. The Persistency cluster is not required
to do anything, though it could free the resources allocated by the last backup.

When the update failed, the Update and Configuration Management will revert
to the old Adaptive Application and/or manifest. The Persistency cluster will
then replace the currently used persistent data by the backup created during the
update.

Finally, to remove persistent data before the Adaptive Application is re-
moved, the Adaptive Application needs to call ResetPersistency.

7.4.1 Installation of Persistent Data

[SWS_PER_00382]{DRAFT} d When a Key-Value Storage or File Storage is
opened by the application using OpenKeyValueStorage or OpenFileStorage, or
when UpdatePersistency is called, the Persistency shall check for the existence
of stored data. If no persistent data is found, the Persistency shall initialize the
persistent data. c(RS_PER_00010, RS_PER_00012)

Initialization of persistent data is described in sections 7.4.1.1 and 7.4.1.2.

7.4.1.1 Installation of Key-Value Storage

[SWS_PER_00383]{DRAFT} d Persistency shall create a Key-Value Storage
for each PortPrototype typed by a PersistencyKeyValueDatabaseInter-
face that is found in the manifest of a newly installed Adaptive Application.
The Key-Value Storage shall be identified at run-time by the shortName path of
the PortPrototype, passed as InstanceSpecifier to OpenKeyValueStorage.
c(RS_PER_00010, RS_PER_00012)

[SWS_PER_00252]{DRAFT} d Persistency shall create an entry in the
Key-Value Storage for each PersistencyKeyValueDatabaseInter-
face.dataElement and PersistencyKeyValueDatabase.keyValuePair
that is found in the manifest of a newly installed or updated Adaptive Appli-
cation, and for which the update strategy is keepExisting or overwrite. c
(RS_PER_00010, RS_PER_00012)

Key-Value Storage entries are identified by the key. An entry with identical
key might be defined both in the PersistencyKeyValueDatabaseInterface

28 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

and the PersistencyKeyValueDatabase, in which case [SWS_PER_00379] ap-
plies. The update strategy is determined according to [SWS_PER_00251] and
[SWS_PER_00380].

[SWS_PER_00253]{DRAFT} d Entries in the Key-Value Storage shall use the
shortName of the PersistencyDataElement and/or PersistencyKeyValue-
Pair as key. c(RS_PER_00010, RS_PER_00012)

[SWS_PER_00254]{DRAFT} d Entries in the Key-Value Storage shall be cre-
ated with the data type defined by the CppImplementationDataType which types
the PersistencyDataElement and/or by the CppImplementationDataType
referenced as PersistencyKeyValuePair.valueDataType. c(RS_PER_00010,
RS_PER_00012)

[SWS_PER_00384]{DRAFT} d Entries in the Key-Value Storage shall be cre-
ated with the value taken from the PersistencyKeyValuePair.initValue or, if
that does not exist, from the PersistencyDataRequiredComSpec.initValue. c
(RS_PER_00010, RS_PER_00012)

[SWS_PER_CONSTR_00003]{DRAFT} d A manifest is not valid if the value or data
type of any PersistencyKeyValuePair or PersistencyDataElement cannot
be determined, or if the determined data types are conflicting. c(RS_PER_00010,
RS_PER_00012)

Invalid manifests should be rejected by the tooling.

7.4.1.2 Installation of File Storage

[SWS_PER_00385]{DRAFT} d Persistency shall create a File Storage for each
PortPrototype typed by a PersistencyFileProxyInterface that is found
in the manifest of a newly installed Adaptive Application. The File Stor-
age shall be identified at run-time by the shortName path of the PortProto-
type, passed as InstanceSpecifier to OpenFileStorage. c(RS_PER_00010,
RS_PER_00012)

[SWS_PER_00265]{DRAFT} d Persistency shall create a file in the File Stor-
age for each PersistencyFileProxyInterface.fileProxy and Persisten-
cyFileArray.file that is found in the manifest of a newly installed or updated
Adaptive Application, and for which the update strategy is keepExisting or
overwrite. c(RS_PER_00010, RS_PER_00012)

The files within a File Storage are identified by their name. A file with the same
name might be defined both in the PersistencyFileProxyInterface and the
PersistencyFileArray, in which case [SWS_PER_00379] applies. The update
strategy is determined according to [SWS_PER_00251] and [SWS_PER_00381].

[SWS_PER_00266]{DRAFT} d Files in the File Storage shall use the name identi-
fied by PersistencyFileProxy.fileName and/or PersistencyFile.fileName.
c(RS_PER_00010, RS_PER_00012)

29 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00267]{DRAFT} d Files in the File Storage shall be created with the
content taken from the resource (within the installed SoftwarePackage) that is ad-
dressed by PersistencyFile.contentUri or, if that does not exist, by Persis-
tencyFileProxy.contentUri. If that does not exist either, and empty file shall be
created. c(RS_PER_00010, RS_PER_00012)

[SWS_PER_CONSTR_00004]{DRAFT} d A manifest is invalid if the shortNames of a
PersistencyFileProxy and a PersistencyFile with the same file name differs.
c(RS_PER_00010, RS_PER_00012)

Invalid manifests should be rejected by the tooling.

7.4.2 Update of Persistent Data

[SWS_PER_00386]{DRAFT} d When a Key-Value Storage or File Storage is
opened by the application using OpenKeyValueStorage or OpenFileStorage, or
when UpdatePersistency is called, the Persistency shall compare the Soft-
wareCluster.version in the manifest against the stored version. If the version in
the manifest is higher than the stored version, the Persistency shall first create
a backup of the persistent data and then update the data. c(RS_PER_00010,
RS_PER_00013)

Only one set of backup data needs to be kept at any time. When a new update is
performed, old backup data could be overwritten. Update of persistent data is
described in sections 7.4.2.1 and 7.4.2.2.

[SWS_PER_00387]{DRAFT} d When a Key-Value Storage or File Storage is
opened by the application using OpenKeyValueStorage or OpenFileStorage, or
when UpdatePersistency is called, the Persistency shall compare the Exe-
cutable.version in the manifest against the stored version. If the version in the
manifest is higher than the stored version, the Persistency shall call the function
registered by the application using RegisterApplicationDataUpdateCallback
for each Key-Value Storage and File Storage that was updated according to
[SWS_PER_00386]. c(RS_PER_00010, RS_PER_00013)

7.4.2.1 Update of Key-Value Storage

[SWS_PER_00388]{DRAFT} d When a new PortPrototype typed by a Persis-
tencyKeyValueDatabaseInterface is detected in an updated manifest, the Per-
sistency shall create a Key-Value Storage as specified in [SWS_PER_00383].
c(RS_PER_00010, RS_PER_00013)

[SWS_PER_00389]{DRAFT} d When a PortPrototype typed by a Persisten-
cyKeyValueDatabaseInterface is missing in an updated manifest, the Persis-
tency shall remove the corresponding Key-Value Storage. c(RS_PER_00010,
RS_PER_00013)

30 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00390]{DRAFT} d When a PersistencyKeyValueDatabaseIn-
terface.dataElement and/or a PersistencyKeyValueDatabase.key-
ValuePair with a new key is detected in an updated manifest, the Per-
sistency shall create a new entry in the Key-Value Storage as spec-
ified in [SWS_PER_00252], [SWS_PER_00253], [SWS_PER_00254], and
[SWS_PER_00384]. c(RS_PER_00010, RS_PER_00013)

[SWS_PER_00391]{DRAFT} d When an existing key of a Key-Value Stor-
age cannot be associated with any PersistencyKeyValueDatabaseInter-
face.dataElement or PersistencyKeyValueDatabase.keyValuePair in an
updated manifest, and the update strategy of the PersistencyKeyValueDatabase
or PersistencyKeyValueDatabaseInterface corresponding to the Key-Value
Storage is delete, the Persistency shall remove the entry for that key from the
Key-Value Storage. c(RS_PER_00010, RS_PER_00013)

The update strategy is determined according to [SWS_PER_00251].

[SWS_PER_00275]{DRAFT} dWhen an existing key of a Key-Value Storage can
be associated with a PersistencyKeyValueDatabaseInterface.dataElement
or PersistencyKeyValueDatabase.keyValuePair in an updated manifest, and
the update strategy is overwrite, the Persistency shall replace the entry in the
Key-Value Storage with the new type and value as specified in [SWS_PER_00254]
and [SWS_PER_00384]. c(RS_PER_00010, RS_PER_00013)

An entry with identical key might be defined both in the PersistencyKey-
ValueDatabaseInterface and the PersistencyKeyValueDatabase, in which
case [SWS_PER_00379] applies. The update strategy is determined according to
[SWS_PER_00251] and [SWS_PER_00380].

[SWS_PER_00277]{DRAFT} dWhen an existing key of a Key-Value Storage can
be associated with a PersistencyKeyValueDatabaseInterface.dataElement
or PersistencyKeyValueDatabase.keyValuePair in an updated manifest, and
the update strategy is delete, the Persistency shall remove the entry for that key
from the Key-Value Storage. c(RS_PER_00010, RS_PER_00013)

Updated keys with the update strategy keepExisting will not be touched during an
update. Persistency will neither check the value nor the type of the existing entry.

7.4.2.2 Update of File Storage

[SWS_PER_00392]{DRAFT} d When a new PortPrototype typed by a Persis-
tencyFileProxyInterface is detected in an updated manifest, the Persistency
shall create a File Storage as specified in [SWS_PER_00385]. c(RS_PER_00010,
RS_PER_00013)

[SWS_PER_00393]{DRAFT} dWhen a PortPrototype typed by a Persistency-
FileProxyInterface is missing in an updated manifest, the Persistency shall
remove the corresponding File Storage. c(RS_PER_00010, RS_PER_00013)

31 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

[SWS_PER_00394]{DRAFT} d When a PersistencyFileProxyInter-
face.fileProxy and/or PersistencyFileArray.file with a new file name
is detected in an updated manifest, the Persistency shall create a new file in
the File Storage as specified in [SWS_PER_00265], [SWS_PER_00266], and
[SWS_PER_00267]. c(RS_PER_00010, RS_PER_00013)

[SWS_PER_00395]{DRAFT} d When an existing file of a File Storage cannot
be associated with any PersistencyFileProxyInterface.fileProxy or Per-
sistencyFileArray.file in an updated manifest, and the update strategy of the
PersistencyFileArray or PersistencyFileProxyInterface corresponding
to the File Storage is delete, the Persistency shall remove the file from the
File Storage. c(RS_PER_00010, RS_PER_00013)

The update strategy is determined according to [SWS_PER_00251].

[SWS_PER_00281]{DRAFT} d When an existing file of a File Storage can be as-
sociated with a PersistencyFileProxyInterface.fileProxy or Persisten-
cyFileArray.file in an updated manifest, and the update strategy is overwrite,
the Persistency shall replace the content of the file in the File Storage with the
new content as specified in [SWS_PER_00267]. c(RS_PER_00010, RS_PER_00013)

A file with the same name might be defined both in the PersistencyFileProxy-
Interface and the PersistencyFileArray, in which case [SWS_PER_00379]
applies. The update strategy is determined according to [SWS_PER_00251] and
[SWS_PER_00381].

[SWS_PER_00283]{DRAFT} d When an existing file of a File Storage can be as-
sociated with a PersistencyFileProxyInterface.fileProxy or Persisten-
cyFileArray.file in an updated manifest, and the update strategy is delete, the
Persistency shall remove the file from the File Storage. c(RS_PER_00010,
RS_PER_00013)

Updated files with the update strategy keepExisting will not be touched during an
update. Persistency will not check the content of the existing file.

7.4.3 Roll-Back of Persistent Data after Failed Update

[SWS_PER_00396]{DRAFT} d When a Key-Value Storage or File Storage is
opened by the application using OpenKeyValueStorage or OpenFileStorage, or
when UpdatePersistency is called, the Persistency shall compare the Soft-
wareCluster.version in the manifest against the stored version. If the version in
the manifest is lower than the stored version, the Persistency shall compare the
version in the manifest against the version stored in backup data. If the versions
match, the Persistency shall restore the backup. Otherwise, it shall remove all Key-
Value Storages and File Storages, and re-install the lost persistent data.
c(RS_PER_00014)

Initialization of persistent data is described in section 7.4.1.

32 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

7.4.4 Removal of Persistent Data

[SWS_PER_00397]{DRAFT} d When ResetPersistency is called, the Per-
sistency shall remove all Key-Value Storages and File Storages. c
(RS_PER_00015)

7.5 Supported data types in Key-Value Storage

The Persistency cluster supports the following classes of data types in the functions
for getting and setting the values of a Key-Value Storage. See sections 8.1.4.6 and
8.1.4.7.

[SWS_PER_00302]{DRAFT} d The Persistency cluster shall be able to store all
data types described in [7] in a Key-Value Storage. c(RS_PER_00001)

[SWS_PER_00303]{DRAFT} d The Persistency cluster shall be able to store seri-
alized binary data in a Key-Value Storage. c(RS_PER_00001)

This allows the application to store custom data types.

[SWS_PER_00304]{DRAFT} d The Persistency cluster shall be able to store
all CppImplementationDataTypes referred via PersistencyKeyValueDataba-
seInterface.dataTypeForSerialization or via PersistencyKeyValue-
DatabaseInterface.dataElement in the application design of a Persisten-
cyKeyValueDatabase in the corresponding Key-Value Storage. See [2]. c
(RS_PER_00001, RS_PER_00010)

7.6 Resource management concepts

The Persistency cluster supports configuration of both an upper and a lower limit
for the resources used by a Key-Value Storage or a File Storage.

The lower limit may already be defined by the application developer using Persis-
tencyInterface.minimumSustainedSize.

During deployment, the integrator may update the lower limit using PersistencyDe-
ployment.minimumSustainedSize and add an upper limit using Persistency-
Deployment.maximumAllowedSize.

[SWS_PER_00320]{DRAFT} d The Persistency cluster shall ensure that the
space configured by PersistencyDeployment.minimumSustainedSize is al-
ways available for the Key-Value Storage or File Storage. c(RS_PER_00010,
RS_PER_00011)

One possibility to achieve this would be to initially allocate the minimum size during
deployment, and never reduce the size below this value when persistent data is

33 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

removed. But the implementation of the Persistency cluster is free to chose other
appropriate measures.

[SWS_PER_00321]{DRAFT} d The Persistency cluster shall ensure that the space
actually allocated by a Key-Value Storage or File Storage never surpasses
the amount configured by PersistencyDeployment.maximumAllowedSize. c
(RS_PER_00010, RS_PER_00011)

This could be ensured by supervising all write accesses to persistent data. But
again, the implementation of the Persistency cluster is free to chose other appropri-
ate measures.

34 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8 API specification

The API of the Persistency cluster was designed with the following paradigm in the
mind:

• The API to access files is modeled relatively close to the POSIX API for accessing
files. This applies especially to the BasicOperations class.

Still, the APIs for accessing File Storages and Key-Value Storage are com-
pletely separate, and therefore divided into separate sections.

[SWS_PER_00002]{DRAFT} d All specified classes within the Persistency specifi-
cation shall reside within the C++ namespace ara::per. c(RS_AP_00115)

The ara::per API is based heavily on the ara::core types defined in [8].
ara::core::Result is used wherever possible, and because of this, most meth-
ods are defined as noexcept.

8.1 Key-Value Storage

This section lists all functions and classes that are required to operate a Key-Value
Storage.

The following functions are used to get access to a Key-Value Storage, to recover
as much as possible after it was corrupted, and to reset it to the deployed defaults.

8.1.1 OpenKeyValueStorage

[SWS_PER_00052]{DRAFT} d

Kind: function

Symbol: ara::per::OpenKeyValueStorage(ara::core::InstanceSpecifier kvs)

Scope: namespace ara::per

Syntax: ara::core::Result<SharedHandle<KeyValueStorage> > OpenKeyValueStorage
(ara::core::InstanceSpecifier kvs) noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueDatabaseInterface.

Return value: ara::core::Result< SharedHandle< Key
ValueStorage > >

A Result, containing a SharedHandle, or one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Opens a key-value storage.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

35 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.1.2 RecoverKeyValueStorage

[SWS_PER_00333]{DRAFT} d
Kind: function

Symbol: ara::per::RecoverKeyValueStorage(ara::core::InstanceSpecifier kvs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> RecoverKeyValueStorage (ara::core::Instance
Specifier kvs) noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueDatabaseInterface.

Return value: ara::core::Result< void > A Result, being either empty or containing one of
the errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Recover an instance of KeyValueStorage.

This method allows to recover a key-value storage when the redundancy checks fail. It will fail
with a kResourceBusyError when the key-value storage is currently open.

This method does a best-effort recovery of all keys. After recovery, keys might show outdated
or initial value, or might be lost.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.1.3 ResetKeyValueStorage

[SWS_PER_00334]{DRAFT} d

Kind: function

Symbol: ara::per::ResetKeyValueStorage(ara::core::InstanceSpecifier kvs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> ResetKeyValueStorage (ara::core::Instance
Specifier kvs) noexcept;

Parameters (in): kvs The shortName path of a PortPrototype typed by a
PersistencyKeyValueDatabaseInterface.

Return value: ara::core::Result< void > A Result, being either empty or containing one of
the errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Reset an instance of KeyValueStorage to the initial state.

This method allows to reset a key-value storage to the initial state, containing only keys which
were deployed from the manifest, with their initial values. It will fail with a kResourceBusyError
when the key-value storage is currently open.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

36 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.1.4 KeyValueStorage class

This section shows the methods available for a KeyValueStorage object obtained
from a call to 8.1.1.

[SWS_PER_00331]{DRAFT} d Operations that modify a Key-Value Storage shall
only be executed temporarily, such that following operations are aware of the change.
The actual storage shall only be updated when SyncToStorage is called. c
(RS_PER_00003)

Therefore, if the Key-Value Storage is just destructed (also implicitly when the
Process terminates), the Key-Value Storage is not updated, and the next time
the Key-Value Storage is accessed, the application will see the last saved state.
The last saved state can also be restored using DiscardPendingChanges.

Please note: Threads that access a KVS in parallel need to be aware that changes
done by other threads will become visible immediately, and that the effect of Sync-
ToStorage and DiscardPendingChanges affects all threads.

[SWS_PER_00339]{DRAFT} d

Kind: class

Symbol: ara::per::KeyValueStorage

Scope: namespace ara::per

Syntax: class KeyValueStorage {...};

Header file: #include "ara/per/key_value_storage.h"

Description: The key-value storage contains a set of keys with associated values. .

c(RS_PER_00002, RS_AP_00122)

8.1.4.1 KeyValueStorage::KeyValueStorage

[SWS_PER_00322]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::KeyValueStorage(KeyValueStorage &&kvs)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage (KeyValueStorage &&kvs) noexcept;

Parameters (in): kvs The KeyValueStorage object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Move constructor for KeyValueStorage.

c(RS_PER_00002, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00324]{DRAFT} d

37 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::KeyValueStorage::KeyValueStorage(const KeyValueStorage &)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage (const KeyValueStorage &)=delete;

Header file: #include "ara/per/key_value_storage.h"

Description: The copy constructor for KeyValueStorage shall not be used.

c(RS_PER_00002, RS_AP_00120)

8.1.4.2 KeyValueStorage::operator=

[SWS_PER_00323]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::operator=(KeyValueStorage &&kvs)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage& operator= (KeyValueStorage &&kvs) noexcept;

Parameters (in): kvs The KeyValueStorage object to be moved.

Return value: KeyValueStorage & The moved KeyValueStorage object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Move assignment operator for KeyValueStorage.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00325]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::operator=(const KeyValueStorage &)

Scope: class ara::per::KeyValueStorage

Syntax: KeyValueStorage& operator= (const KeyValueStorage &)=delete;

Header file: #include "ara/per/key_value_storage.h"

Description: The copy assignment operator for KeyValueStorage shall not be used.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120)

8.1.4.3 KeyValueStorage::~KeyValueStorage

[SWS_PER_00050]{DRAFT} d

38 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::KeyValueStorage::~KeyValueStorage()

Scope: class ara::per::KeyValueStorage

Syntax: ~KeyValueStorage () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/key_value_storage.h"

Description: Destructor for KeyValueStorage.

c(RS_PER_00002, RS_AP_00120, RS_AP_00129, RS_AP_00132, RS_AP_00134)

8.1.4.4 KeyValueStorage::GetAllKeys

[SWS_PER_00042]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::GetAllKeys()

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<ara::core::Vector<ara::core::String> > GetAllKeys ()
const noexcept;

Return value: ara::core::Result< ara::core::Vector<
ara::core::String > >

A Result, containing a list of available keys, or one of
the errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Returns a list of all currently available keys of the KeyValueStorage.

c(RS_PER_00003, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00129,
RS_AP_00132)

8.1.4.5 KeyValueStorage::HasKey

[SWS_PER_00043]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::HasKey(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<bool> HasKey (ara::core::StringView key) const
noexcept;

Parameters (in): key The key that shall be checked.

5

39 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Return value: ara::core::Result< bool > A Result, containing true if the key could be located

or false if it couldn’t, or one of the errors defined for
Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Checks if a key exists in the KeyValueStorage.

c(RS_PER_00003, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00127,
RS_AP_00132)

8.1.4.6 KeyValueStorage::GetValue

[SWS_PER_00044]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::GetValue(ara::core::StringView key, T &value)

Scope: class ara::per::KeyValueStorage

Syntax: template <class T>
ara::core::Result<void> GetValue (ara::core::StringView key, T &value)
const noexcept;

Template param: T The type of the value that shall be retrieved.

Parameters (in): key The key to look up.

Parameters (out): value The retrieved value.

Return value: ara::core::Result< void > A Result, being empty or containing one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Returns the value assigned to a key of the KeyValueStorage.

This method may be useful to avoid superfluous instantiation of complex types.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

[SWS_PER_00332]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::GetValue(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: template <class T>
ara::core::Result<T> GetValue (ara::core::StringView key) const
noexcept;

5

40 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Template param: T The type of the value that shall be retrieved.

Parameters (in): key The key to look up.

Return value: ara::core::Result< T > A Result, being either the retrieved value or
containing one of the errors defined for Persistency
in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Returns the value assigned to a key of the KeyValueStorage.

This method is mainly useful for primitive types.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.1.4.7 KeyValueStorage::SetValue

[SWS_PER_00046]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::SetValue(ara::core::StringView key, const T &value)

Scope: class ara::per::KeyValueStorage

Syntax: template <class T>
ara::core::Result<void> SetValue (ara::core::StringView key, const T
&value) noexcept;

Template param: T The type of the value that shall be set.

key The key to assign the value to.Parameters (in):

value The value to store.
Return value: ara::core::Result< void > A Result, being empty or containing one of the

errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Stores a key in the KeyValueStorage. If a value already exists, it is overwritten, independent of
the stored data type.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.1.4.8 KeyValueStorage::RemoveKey

[SWS_PER_00047]{DRAFT} d

41 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::KeyValueStorage::RemoveKey(ara::core::StringView key)

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> RemoveKey (ara::core::StringView key)
noexcept;

Parameters (in): key The key to be removed.

Return value: ara::core::Result< void > A Result, being empty or containing one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Removes a key and the associated value from the KeyValueStorage.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.1.4.9 KeyValueStorage::RemoveAllKeys

[SWS_PER_00048]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::RemoveAllKeys()

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> RemoveAllKeys () noexcept;

Return value: ara::core::Result< void > A Result, being empty or containing one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Removes all keys and associated values from the KeyValueStorage.

c(RS_PER_00003, RS_PER_00010, RS_AP_00119, RS_AP_00120, RS_AP_00127,
RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.1.4.10 KeyValueStorage::SyncToStorage

[SWS_PER_00049]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::SyncToStorage()

Scope: class ara::per::KeyValueStorage

5

42 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Syntax: ara::core::Result<void> SyncToStorage () const noexcept;

Return value: ara::core::Result< void > A Result, being either empty or containing one of
the errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Triggers flushing of key-value pairs to the physical storage of the KeyValueStorage.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00129, RS_AP_00132)

8.1.4.11 KeyValueStorage::DiscardPendingChanges

[SWS_PER_00365]{DRAFT} d

Kind: function

Symbol: ara::per::KeyValueStorage::DiscardPendingChanges()

Scope: class ara::per::KeyValueStorage

Syntax: ara::core::Result<void> DiscardPendingChanges () const noexcept;

Return value: ara::core::Result< void > A Result, being either empty or containing one of
the errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/key_value_storage.h"

Description: Removes all pending changes to the KeyValueStorage since the last call to SyncToStorage() or
since the KeyValueStorage was opened using OpenKeyValueStorage().

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00129, RS_AP_00132)

43 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.2 File Storage

This section lists all functions and classes that are required to operate a File Stor-
age.

The following functions are used to get access to a File Storage, to recover as
much as possible after it was corrupted, and to reset it to the deployed defaults.

8.2.1 OpenFileStorage

[SWS_PER_00116]{DRAFT} d

Kind: function

Symbol: ara::per::OpenFileStorage(ara::core::InstanceSpecifier fs)

Scope: namespace ara::per

Syntax: ara::core::Result<SharedHandle<FileStorage> > OpenFileStorage
(ara::core::InstanceSpecifier fs) noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileProxyInterface.

Return value: ara::core::Result< SharedHandle< File
Storage > >

A Result, containing a SharedHandle, or one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Opens a file storage.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119,
RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129,
RS_AP_00132)

8.2.2 RecoverAllFiles

[SWS_PER_00335]{DRAFT} d

Kind: function

Symbol: ara::per::RecoverAllFiles(ara::core::InstanceSpecifier fs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> RecoverAllFiles (ara::core::InstanceSpecifier
fs) noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileProxyInterface.

Return value: ara::core::Result< void > A Result, being either empty or containing one of
the errors defined for Persistency in PerErrc.

5

44 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Recover the whole file storage, including all files.

This method allows to recover a file storage when the redundancy checks fail. It will fail with a k
ResourceBusyError when the file storage is currently open.

This method does a best-effort recovery of all files. After recovery, files might show outdated or
initial content, or might be lost.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119,
RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129,
RS_AP_00132)

8.2.3 ResetAllFiles

[SWS_PER_00336]{DRAFT} d

Kind: function

Symbol: ara::per::ResetAllFiles(ara::core::InstanceSpecifier fs)

Scope: namespace ara::per

Syntax: ara::core::Result<void> ResetAllFiles (ara::core::InstanceSpecifier
fs) noexcept;

Parameters (in): fs The shortName path of a PortPrototype typed by a
PersistencyFileProxyInterface.

Return value: ara::core::Result< void > A Result, being either empty or containing one of
the errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Reset the whole file storage, including all files.

This method allows to reset a file storage to the initial state, containing only the files which were
deployed from the manifest, with their initial content. It will fail with a kResourceBusyError when
the file storage is currently open.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119,
RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129,
RS_AP_00132)

8.2.4 Helper Functions for BasicOperations Class

The following functions can be used by the application when accessing 8.2.6.10,
8.2.6.11, and 8.2.6.9 to combine the values of BasicOperations::OpenMode.

45 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.2.4.1 operator| for BasicOperations::OpenMode

[SWS_PER_00144]{DRAFT} d
Kind: function

Symbol: ara::per::operator|(BasicOperations::OpenMode const &left, BasicOperations::OpenMode const
&right)

Scope: namespace ara::per

Syntax: constexpr BasicOperations::OpenMode operator| (BasicOperations::Open
Mode const &left, BasicOperations::OpenMode const &right);

left First OpenMode modifiers.Parameters (in):

right Second OpenMode modifiers.

Return value: BasicOperations::OpenMode returns Merged OpenMode modifiers.

Thread Safety: re-entrant

Header file: #include "ara/per/basic_operations.h"

Description: Merges two OpenMode modifiers into one. BasicOperations class.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00121)

8.2.4.2 operator& for BasicOperations::OpenMode

[SWS_PER_00145]{DRAFT} d

Kind: function

Symbol: ara::per::operator&(BasicOperations::OpenMode const &left, BasicOperations::OpenMode
const &right)

Scope: namespace ara::per

Syntax: constexpr BasicOperations::OpenMode operator& (BasicOperations::Open
Mode const &left, BasicOperations::OpenMode const &right);

left First OpenMode modifiers.Parameters (in):

right Second OpenMode modifiers,

Return value: BasicOperations::OpenMode returns Intersected OpenMode modifiers.

Thread Safety: re-entrant

Header file: #include "ara/per/basic_operations.h"

Description: Intersects two OpenMode modifiers into one.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00121)

8.2.5 Helper Functions for ReadWriteAccessor Class

The following functions can be used by the application within a ReadWriteAccessor
stream.

46 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.2.5.1 endl

[SWS_PER_00127]{DRAFT} d
Kind: function

Symbol: ara::per::endl(ReadWriteAccessor &rwa)

Scope: namespace ara::per

Syntax: ReadWriteAccessor& endl (ReadWriteAccessor &rwa) noexcept;

Parameters (in): rwa The ReadWriteAccessor object.

Return value: ReadWriteAccessor & The ReadWriteAccessor object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/read_write_accessor.h"

Description: Writes a newline to the file and calls flush().

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00132)

8.2.5.2 flush

[SWS_PER_00128]{DRAFT} d

Kind: function

Symbol: ara::per::flush(ReadWriteAccessor &rwa)

Scope: namespace ara::per

Syntax: ReadWriteAccessor& flush (ReadWriteAccessor &rwa) noexcept;

Parameters (in): rwa The ReadWriteAccessor object.

Return value: ReadWriteAccessor & The ReadWriteAccessor object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/read_write_accessor.h"

Description: Calls flush() on the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00132)

8.2.6 FileStorage Class

This section shows the methods available for a FileStorage object obtained from a
call to 8.2.1.

[SWS_PER_00340]{DRAFT} d

47 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: class

Symbol: ara::per::FileStorage

Scope: namespace ara::per

Syntax: class FileStorage {...};

Header file: #include "ara/per/file_storage.h"

Description: The FileStorage contains a set of files identified by their names.

c(RS_PER_00004, RS_AP_00122)

8.2.6.1 FileStorage::FileStorage

[SWS_PER_00326]{DRAFT} d

Kind: function

Symbol: ara::per::FileStorage::FileStorage(FileStorage &&fs)

Scope: class ara::per::FileStorage

Syntax: FileStorage (FileStorage &&fs) noexcept;

Parameters (in): fs The FileStorage object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Move constructor for FileStorage.

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00328]{DRAFT} d

Kind: function

Symbol: ara::per::FileStorage::FileStorage(const FileStorage &)

Scope: class ara::per::FileStorage

Syntax: FileStorage (const FileStorage &)=delete;

Header file: #include "ara/per/file_storage.h"

Description: The copy constructor for FileStorage shall not be used.

c(RS_PER_00004, RS_AP_00120)

8.2.6.2 FileStorage::operator=

[SWS_PER_00327]{DRAFT} d

48 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::FileStorage::operator=(FileStorage &&fs)

Scope: class ara::per::FileStorage

Syntax: FileStorage& operator= (FileStorage &&fs) noexcept;

Parameters (in): fs The FileStorage object to be moved.

Return value: FileStorage & The moved FileStorage object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Move assignment operator for FileStorage.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00329]{DRAFT} d

Kind: function

Symbol: ara::per::FileStorage::operator=(const FileStorage &)

Scope: class ara::per::FileStorage

Syntax: FileStorage& operator= (const FileStorage &)=delete;

Header file: #include "ara/per/file_storage.h"

Description: The copy assignment operator for FileStorage shall not be used.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120)

8.2.6.3 FileStorage::~FileStorage

[SWS_PER_00330]{DRAFT} d

Kind: function

Symbol: ara::per::FileStorage::~FileStorage()

Scope: class ara::per::FileStorage

Syntax: ~FileStorage () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/file_storage.h"

Description: Destructor for FileStorage.

c(RS_PER_00004, RS_AP_00120, RS_AP_00129, RS_AP_00132, RS_AP_00134)

8.2.6.4 FileStorage::GetAllFileNames

[SWS_PER_00110]{DRAFT} d

49 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::FileStorage::GetAllFileNames()

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<ara::core::Vector<ara::core::String> > GetAllFile
Names () const noexcept;

Return value: ara::core::Result< ara::core::Vector<
ara::core::String > >

A Result, containing a list of availables files, or one
of the errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Returns a list of available files within this file storage.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00127,
RS_AP_00129, RS_AP_00132)

8.2.6.5 FileStorage::DeleteFile

[SWS_PER_00111]{DRAFT} d

Kind: function

Symbol: ara::per::FileStorage::DeleteFile(ara::core::StringView file)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<void> DeleteFile (ara::core::StringView file)
noexcept;

Parameters (in): file The identifier of the file.

Return value: ara::core::Result< void > A Result, being empty or containing one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Deletes a file from this file storage.

This operation will fail with a kResourceBusyError when the file is currently open.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.6.6 FileStorage::FileExists

[SWS_PER_00112]{DRAFT} d

50 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::FileStorage::FileExists(ara::core::StringView file)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<bool> FileExists (ara::core::StringView file) const
noexcept;

Parameters (in): file Identifier of the file.

Return value: ara::core::Result< bool > A Result, containing true if the file exists or false if it
doesn’t, or one of the errors defined for Persistency
in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Queries if a file is available in this file storage.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.2.6.7 FileStorage::RecoverFile

[SWS_PER_00337]{DRAFT} d

Kind: function

Symbol: ara::per::FileStorage::RecoverFile(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<void> RecoverFile (ara::core::StringView fileName)
noexcept;

Parameters (in): fileName The identifier of the file.

Return value: ara::core::Result< void > A Result, being empty or containing one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Recovers a file of this file storage.

This method allows to recover a single file when the redundancy checks fail. It will fail with a k
ResourceBusyError when the file is currently open.

This method does a best-effort recovery of the file. After recovery, the file might show outdated
or initial content, or might be lost.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.6.8 FileStorage::ResetFile

[SWS_PER_00338]{DRAFT} d

51 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::FileStorage::ResetFile(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<void> ResetFile (ara::core::StringView fileName)
noexcept;

Parameters (in): fileName The identifier of the file.

Return value: ara::core::Result< void > A Result, being empty or containing one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Resets a file of this file storage to its initial content.

This method allows to reset a single file to its initial content. It will fail with a kResourceBusy
Error when the file is currently open, and with a kInitValueNotAvailableError when deployment
does not define an initial content for the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_00132)

8.2.6.9 FileStorage::OpenFileReadWrite

[SWS_PER_00375]{DRAFT} d

Kind: function

Symbol: ara::per::FileStorage::OpenFileReadWrite(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileReadWrite
(ara::core::StringView fileName) noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result, containing a UniqueHandle, or one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of the file storage for reading and writing. An error that occurs when a new file is
created in the file storage (e.g. that PersistencyFileProxyInterface.maxNumberOfFiles is
surpassed) is reported using a failbit similarly to std::fstream.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119,
RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129,
RS_AP_00132)

[SWS_PER_00113]{DRAFT} d

52 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::FileStorage::OpenFileReadWrite(ara::core::StringView fileName, Basic
Operations::OpenMode const mode)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileReadWrite
(ara::core::StringView fileName, BasicOperations::OpenMode const mode)
noexcept;

fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Parameters (in):

mode Mode with which the file shall be opened.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result, containing a UniqueHandle, or one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of the file storage for reading and writing. An error that occurs when a new file is
created in the file storage (e.g. that PersistencyFileProxyInterface.maxNumberOfFiles is
surpassed) is reported using a failbit similarly to std::fstream.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119,
RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129,
RS_AP_00132)

8.2.6.10 FileStorage::OpenFileReadOnly

[SWS_PER_00376]{DRAFT} d

Kind: function

Symbol: ara::per::FileStorage::OpenFileReadOnly(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadAccessor> > OpenFileReadOnly
(ara::core::StringView fileName) noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< UniqueHandle<
ReadAccessor > >

A Result, containing a UniqueHandle, or one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of the file storage for reading.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119,
RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129,
RS_AP_00132)

[SWS_PER_00114]{DRAFT} d

53 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::FileStorage::OpenFileReadOnly(ara::core::StringView fileName, Basic
Operations::OpenMode const mode)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadAccessor> > OpenFileReadOnly
(ara::core::StringView fileName, BasicOperations::OpenMode const mode)
noexcept;

fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Parameters (in):

mode Mode with which the file shall be opened.

Return value: ara::core::Result< UniqueHandle<
ReadAccessor > >

A Result, containing a UniqueHandle, or one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of the file storage for reading.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119,
RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129,
RS_AP_00132)

8.2.6.11 FileStorage::OpenFileWriteOnly

[SWS_PER_00377]{DRAFT} d

Kind: function

Symbol: ara::per::FileStorage::OpenFileWriteOnly(ara::core::StringView fileName)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileWriteOnly
(ara::core::StringView fileName) noexcept;

Parameters (in): fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result, containing a UniqueHandle, or one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of the file storage for writing. An error that occurs when a new file is created in the
file storage (e.g. that PersistencyFileProxyInterface.maxNumberOfFiles is surpassed) is
reported using a failbit similarly to std::fstream.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119,
RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129,
RS_AP_00132)

[SWS_PER_00115]{DRAFT} d

54 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::FileStorage::OpenFileWriteOnly(ara::core::StringView fileName, Basic
Operations::OpenMode const mode)

Scope: class ara::per::FileStorage

Syntax: ara::core::Result<UniqueHandle<ReadWriteAccessor> > OpenFileWriteOnly
(ara::core::StringView fileName, BasicOperations::OpenMode const mode)
noexcept;

fileName Name of the file. May correspond to the Persistency
File.fileName of a configured file.

Parameters (in):

mode Mode with which the file shall be opened.

Return value: ara::core::Result< UniqueHandle<
ReadWriteAccessor > >

A Result, containing a UniqueHandle, or one of the
errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/file_storage.h"

Description: Opens a file of the file storage for writing. An error that occurs when a new file is created in the
file storage (e.g. that PersistencyFileProxyInterface.maxNumberOfFiles is surpassed) is
reported using a failbit similarly to std::fstream.

c(RS_PER_00001, RS_PER_00004, RS_PER_00010, RS_AP_00119,
RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00128, RS_AP_00129,
RS_AP_00132)

8.2.7 Char Traits Wrapper

This section shows the types that are used by the classes 8.2.8, 8.2.9, and 8.2.10.
They correspond to the std::char_traits types of the same name.

[SWS_PER_00366]{DRAFT} d The types defined in this section shall be at
least 16 bits wide, i.e. shall have at least the range 0 . . . 65535 for un-
signed ([SWS_PER_00180], [SWS_PER_00181]) and −32768 . . . 32767 for signed
([SWS_PER_00182]) types. c()

8.2.7.1 int_type

[SWS_PER_00180]{DRAFT} d

Kind: type alias

Symbol: ara::per::int_type

Scope: namespace ara::per

Derived from: typedef __implementation_specific__

Syntax: using ara::per::int_type = __implementation_specific__;

Header file: #include "ara/per/char_traits_wrapper.h"

5

55 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Description: Character value read from a file, used in file storage operations. Signed type similar

std::char_traits::int_type.

c(RS_PER_00003, RS_AP_00122)

8.2.7.2 pos_type

[SWS_PER_00181]{DRAFT} d

Kind: type alias

Symbol: ara::per::pos_type

Scope: namespace ara::per

Derived from: typedef __implementation_specific__

Syntax: using ara::per::pos_type = __implementation_specific__;

Header file: #include "ara/per/char_traits_wrapper.h"

Description: Position in a file or number of characters, used in file storage operations. Unsigned type similar
to std::char_traits::pos_type.

c(RS_PER_00003, RS_AP_00122)

8.2.7.3 off_type

[SWS_PER_00182]{DRAFT} d

Kind: type alias

Symbol: ara::per::off_type

Scope: namespace ara::per

Derived from: typedef __implementation_specific__

Syntax: using ara::per::off_type = __implementation_specific__;

Header file: #include "ara/per/char_traits_wrapper.h"

Description: Offset in a file, used in file storage operations. Unsigned type similar to
std::char_traits::off_type.

c(RS_PER_00003, RS_AP_00122)

8.2.8 BasicOperations class

This section shows the types and methods defined by the BasicOperations class
that are used by the classes 8.2.9 and 8.2.10. They correspond roughly to the types
and methods provided by std::iostream.

[SWS_PER_00341]{DRAFT} d

56 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: class

Symbol: ara::per::BasicOperations

Scope: namespace ara::per

Syntax: class BasicOperations {...};

Header file: #include "ara/per/basic_operations.h"

Description: The basic operations have to be supported by all accessor interfaces. It contains seeking and
error checking.

c(RS_PER_00003, RS_AP_00122)

8.2.8.1 BasicOperations::BasicOperations

[SWS_PER_00344]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::BasicOperations(BasicOperations &&kvs)

Scope: class ara::per::BasicOperations

Syntax: BasicOperations (BasicOperations &&kvs) noexcept;

Parameters (in): kvs The BasicOperations object to be moved.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Move constructor for BasicOperations.

c(RS_PER_00002, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00346]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::BasicOperations(const BasicOperations &)

Scope: class ara::per::BasicOperations

Syntax: BasicOperations (const BasicOperations &)=delete;

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: The copy constructor for BasicOperations shall not be used.

c(RS_PER_00002, RS_AP_00120)

8.2.8.2 BasicOperations::operator=

[SWS_PER_00345]{DRAFT} d

57 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::BasicOperations::operator=(BasicOperations &&kvs)

Scope: class ara::per::BasicOperations

Syntax: BasicOperations& operator= (BasicOperations &&kvs) noexcept;

Parameters (in): kvs The BasicOperations object to be moved.

Return value: BasicOperations & The moved BasicOperations object.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Move assignment operator for BasicOperations.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00347]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::operator=(const BasicOperations &)

Scope: class ara::per::BasicOperations

Syntax: BasicOperations& operator= (const BasicOperations &)=delete;

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: The copy assignment operator for BasicOperations shall not be used.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120)

8.2.8.3 BasicOperations::~BasicOperations

[SWS_PER_00348]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::~BasicOperations()

Scope: class ara::per::BasicOperations

Syntax: ~BasicOperations () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Destructor for BasicOperations.

c(RS_PER_00002, RS_AP_00120, RS_AP_00129, RS_AP_00132, RS_AP_00134)

8.2.8.4 BasicOperations::SeekDirection

[SWS_PER_00146]{DRAFT} d

58 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: enumeration

Symbol: ara::per::BasicOperations::SeekDirection

Scope: class ara::per::BasicOperations

kBeg= 0 Seek from the beginning.

kEnd= 1 Seek from the end.

Values:

kCur= 2 Seek from the current position.

Header file: #include "ara/per/basic_operations.h"

Description: Specification of seek direction.

c(RS_PER_00003, RS_AP_00122)

8.2.8.5 BasicOperations::OpenMode

[SWS_PER_00147]{DRAFT} d

Kind: enumeration

Symbol: ara::per::BasicOperations::OpenMode

Scope: class ara::per::BasicOperations

kApp= 1 << 0 Append to the end. Seeks to the end of the file
before writing.

kBinary= 1 << 1 Opens the file as binary. Otherwise (if not specified),
the file will be opened as text.

kTrunc= 1 << 4 Deletes existing content when the file is opened.

Values:

kAte= 1 << 5 Sets the seek pointer to the end of the file when the
file is opened.

Header file: #include "ara/per/basic_operations.h"

Description: This enumeration defines how a file shall be opened. The values can be combined (using &
and |) as long as they do not contradict each other.

c(RS_PER_00003, RS_AP_00122)

8.2.8.6 BasicOperations::tell

[SWS_PER_00162]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::tell()

Scope: class ara::per::BasicOperations

Syntax: pos_type tell () noexcept;

Return value: pos_type Current position in the file in bytes from the
beginning.

Exception Safety: noexcept

5

59 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Returns the current position relative to the beginning of the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00132)

8.2.8.7 BasicOperations::seek

[SWS_PER_00163]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::seek(pos_type const pos)

Scope: class ara::per::BasicOperations

Syntax: ara::per::BasicOperations& seek (pos_type const pos) noexcept;

Parameters (in): pos Current position in the file in bytes from the
beginning.

Return value: ara::per::BasicOperations & BasicOperations object for chaining.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Sets the current position relative to the beginning of the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00132)

[SWS_PER_00164]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::seek(off_type const off, SeekDirection const dir)

Scope: class ara::per::BasicOperations

Syntax: ara::per::BasicOperations& seek (off_type const off, SeekDirection
const dir) noexcept;

off Current offset in bytes relative to dir.Parameters (in):

dir Direction into which to move off bytes.

Return value: ara::per::BasicOperations & BasicOperations object for chaining.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Sets the current position in the file according to the SeekDirection.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00132)

60 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.2.8.8 BasicOperations::good

[SWS_PER_00106]{DRAFT} d
Kind: function

Symbol: ara::per::BasicOperations::good()

Scope: class ara::per::BasicOperations

Syntax: bool good () const noexcept;

Return value: bool True if no error occurred, false otherwise.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Checks if no error occurred during an operation.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00132)

8.2.8.9 BasicOperations::eof

[SWS_PER_00107]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::eof()

Scope: class ara::per::BasicOperations

Syntax: bool eof () const noexcept;

Return value: bool True if the end of the file was reached, false
otherwise.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Checks if end of file was reached during an operation.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00132)

8.2.8.10 BasicOperations::fail

[SWS_PER_00108]{DRAFT} d

61 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::BasicOperations::fail()

Scope: class ara::per::BasicOperations

Syntax: bool fail () const noexcept;

Return value: bool True if an error occurred, false otherwise.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Checks if an error occurred during an operation.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00132)

8.2.8.11 BasicOperations::bad

[SWS_PER_00140]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::bad()

Scope: class ara::per::BasicOperations

Syntax: bool bad () const noexcept;

Return value: bool True if an error occurred and the integrity of the
stream was lost, false otherwise.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Checks if an error occurred during an operation which destroyed the integrity of the stream.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00132)

8.2.8.12 BasicOperations::operator!

[SWS_PER_00142]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::operator!()

Scope: class ara::per::BasicOperations

Syntax: bool operator! () const noexcept;

Return value: bool True if an error occurred, false otherwise.

Exception Safety: noexcept

5

62 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Checks if an error occurred during operation, functionally equivalent to ara::per::Basic
Operations::fail().

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00132)

8.2.8.13 BasicOperations::operator bool

[SWS_PER_00143]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::operator bool()

Scope: class ara::per::BasicOperations

Syntax: explicit operator bool () const noexcept;

Return value: bool True if no error occurred, false otherwise.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Checks if no error occurred during operation, functionally equivalent to ara::per::Basic
Operations::good().

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00132)

8.2.8.14 BasicOperations::clear

[SWS_PER_00141]{DRAFT} d

Kind: function

Symbol: ara::per::BasicOperations::clear()

Scope: class ara::per::BasicOperations

Syntax: void clear () noexcept;

Return value: None

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/basic_operations.h"

Description: Clears all error flags.

c(RS_PER_00001, RS_PER_00004, RS_AP_00120, RS_AP_00132)

63 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.2.9 ReadAccessor class

This section shows the methods available for a ReadAccessor object obtained from a
call to 8.2.6.10, and for the inheriting ReadWriteAccessor object obtained from a call
to 8.2.6.11 or 8.2.6.9.

[SWS_PER_00342]{DRAFT} d

Kind: class

Symbol: ara::per::ReadAccessor

Scope: namespace ara::per

Base class: ara::per::BasicOperations

Syntax: class ReadAccessor : public BasicOperations {...};

Header file: #include "ara/per/read_accessor.h"

Description: ReadAccessor is used to read file data.

c(RS_PER_00004, RS_AP_00122)

8.2.9.1 ReadAccessor::peek

[SWS_PER_00167]{DRAFT} d

Kind: function

Symbol: ara::per::ReadAccessor::peek()

Scope: class ara::per::ReadAccessor

Syntax: int_type peek () noexcept;

Return value: int_type The character at the current position.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Returns the character at the current position in the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00132)

8.2.9.2 ReadAccessor::get

[SWS_PER_00168]{DRAFT} d

64 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::ReadAccessor::get()

Scope: class ara::per::ReadAccessor

Syntax: int_type get () noexcept;

Return value: int_type The character at the current position.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Returns the character at the current position in the file, advancing the current position.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120,
RS_AP_00132)

8.2.9.3 ReadAccessor::read

[SWS_PER_00165]{DRAFT} d

Kind: function

Symbol: ara::per::ReadAccessor::read(ara::core::Span< char > s)

Scope: class ara::per::ReadAccessor

Syntax: pos_type read (ara::core::Span< char > s) noexcept;

Parameters (out): s A span of chars where the read characters shall be
stored.

Return value: pos_type Actual number of characters that have been read.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Reads a number of characters into a char pointer, advancing the current position. Returns the
actual number of characters that were read.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.2.9.4 ReadAccessor::getline

[SWS_PER_00119]{DRAFT} d

Kind: function

Symbol: ara::per::ReadAccessor::getline(ara::core::Span< char > s, char const delim= ’\n’)

Scope: class ara::per::ReadAccessor

Syntax: pos_type getline (ara::core::Span< char > s, char const delim= ’\n’)
noexcept;

5

65 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Parameters (in): delim The character that is used as delimiter.

Parameters (out): s A span of chars where the read line shall be stored.

Return value: pos_type Actual number of characters that have been read,
including the delimiter.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_accessor.h"

Description: Reads a complete line into a sting, advancing the current position.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00129, RS_AP_00132)

8.2.10 ReadWriteAccessor class

This section shows the methods available for a ReadWriteAccessor object obtained
from a call to 8.2.6.11 or 8.2.6.9.

[SWS_PER_00343]{DRAFT} d

Kind: class

Symbol: ara::per::ReadWriteAccessor

Scope: namespace ara::per

Base class: ara::per::ReadAccessor

Syntax: class ReadWriteAccessor : public ReadAccessor {...};

Header file: #include "ara/per/read_write_accessor.h"

Description: ReadWriteAccessor is used to read and write file data.

For unformatted writing it provides the write() method and for formatted writing it provides the
operator<<. It also provides the ability to force an fsync to flush the buffer of the operating
system to the storage.

c(RS_PER_00004, RS_AP_00122)

8.2.10.1 ReadWriteAccessor::fsync

[SWS_PER_00122]{DRAFT} d

Kind: function

Symbol: ara::per::ReadWriteAccessor::fsync()

Scope: class ara::per::ReadWriteAccessor

Syntax: ara::core::Result<void> fsync () noexcept;

5

66 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Return value: ara::core::Result< void > A Result, being either empty or containing one of

the errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_write_accessor.h"

Description: Flushes and forces the write buffer to the persistent storage of the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00128,
RS_AP_00127, RS_AP_00129, RS_AP_00132)

8.2.10.2 ReadWriteAccessor::write

[SWS_PER_00166]{DRAFT} d

Kind: function

Symbol: ara::per::ReadWriteAccessor::write(ara::core::Span< char > s)

Scope: class ara::per::ReadWriteAccessor

Syntax: pos_type write (ara::core::Span< char > s) noexcept;

Parameters (in): s A span of char from where the characters shall be
taken.

Return value: pos_type Actual number of characters that have been written.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_write_accessor.h"

Description: Writes a number of characters from a char pointer. Returns the actual number of characters
that were written.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

8.2.10.3 ReadWriteAccessor::flush

[SWS_PER_00124]{DRAFT} d

Kind: function

Symbol: ara::per::ReadWriteAccessor::flush()

Scope: class ara::per::ReadWriteAccessor

Syntax: void flush () noexcept;

Return value: None

Exception Safety: noexcept

5

67 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Thread Safety: no

Header file: #include "ara/per/read_write_accessor.h"

Description: Flushes the write buffer to the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00120, RS_AP_00132)

8.2.10.4 ReadWriteAccessor::operator«

[SWS_PER_00125]{DRAFT} d

Kind: function

Symbol: ara::per::ReadWriteAccessor::operator<<(ara::core::StringView s)

Scope: class ara::per::ReadWriteAccessor

Syntax: ReadWriteAccessor& operator<< (ara::core::StringView s) noexcept;

Parameters (in): s The string to be written.

Return value: ReadWriteAccessor & The ReadWriteAccessor object.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_write_accessor.h"

Description: Writes a string to the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00127, RS_AP_00132)

[SWS_PER_00126]{DRAFT} d

Kind: function

Symbol: ara::per::ReadWriteAccessor::operator<<(ReadWriteAccessor &(*op)

Scope: class ara::per::ReadWriteAccessor

Syntax: ReadWriteAccessor& operator<< (ReadWriteAccessor &(*op)(ReadWrite
Accessor &)) noexcept;

Parameters (in): op The operation to be executed on the file.

Return value: ReadWriteAccessor & The ReadWriteAccessor object.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/read_write_accessor.h"

Description: Executes endl or flush operations on the file.

c(RS_PER_00001, RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121,
RS_AP_00132)

68 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.3 Update and Removal of Persistent Data

The Persistency cluster allows for updating and resetting/removing all installed
Key-Value Storages and File Storages. And the application may also regis-
ter a callback function that is called after the update of any Key-Value Storage and
File Storage.

8.3.1 RegisterApplicationDataUpdateCallback

[SWS_PER_00356]{DRAFT} d

Kind: function

Symbol: ara::per::RegisterApplicationDataUpdateCallback(std::function< void(ara::core::Instance
Specifier, ara::core::String)

Scope: namespace ara::per

Syntax: void RegisterApplicationDataUpdateCallback (std::function<
void(ara::core::InstanceSpecifier, ara::core::String)> appDataUpdate
Callback) noexcept;

Parameters (in): appDataUpdateCallback The callback function to be called by Persistency
after an update of persistent data took place. The
function will be called with the shortName path of an
updated key-value storage or file storage, and with
the Executable version with which the Persistency
was last accessed.

Return value: None

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/update.h"

Description: Register an application data update callback with persistency.

The provided callback function will be called by persistency if an update of stored application
data might be necessary. This decision is based on the Executable versions. The version that
last accessed Persistency is provided as an argument to the callback, as well as the Instance
Specifier referring to the updated key-value storage or file storage. The provided function will be
called from the context of UpdatePersistency(), OpenKeyValueStorage(), or OpenFileStorage().

c(RS_PER_00013, RS_AP_00120, RS_AP_00121, RS_AP_00127, RS_AP_00132)

8.3.2 UpdatePersistency

[SWS_PER_00357]{DRAFT} d

Kind: function

Symbol: ara::per::UpdatePersistency()

Scope: namespace ara::per

Syntax: ara::core::Result<void> UpdatePersistency () noexcept;

5

69 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Return value: ara::core::Result< void > A Result, being either empty or containing one of

the errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/update.h"

Description: Update all persistency file and key-value storages after a new manifest was installed.

This method can be used to update the persistent data of the application during verification
phase.

c(RS_PER_00013, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00132)

8.3.3 ResetPersistency

[SWS_PER_00358]{DRAFT} d

Kind: function

Symbol: ara::per::ResetPersistency()

Scope: namespace ara::per

Syntax: ara::core::Result<void> ResetPersistency () noexcept;

Return value: ara::core::Result< void > A Result, being either empty or containing one of
the errors defined for Persistency in PerErrc.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/update.h"

Description: Remove all file and key-value storages.

This method can be used to restore the initial state or to prepare removal of the application.

c(RS_PER_00015, RS_AP_00119, RS_AP_00120, RS_AP_00127, RS_AP_00128,
RS_AP_00132)

8.4 Handle Classes

This section contains the definition of the handles used in the API of the Persistency
cluster. The shared handle (section 8.4.1) is used to provide shared access to the
Key-Value Storage and File Storage, while the unique handle (section 8.4.2)
is used to provide non-shared access to ReadAccessors and ReadWriteAccessors of
the File Storage.

8.4.1 SharedHandle Class

[SWS_PER_00362]{DRAFT} d

70 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: class

Symbol: ara::per::SharedHandle

Scope: namespace ara::per

Syntax: template <typename T >
class SharedHandle final {...};

Template param: typename T

Header file: #include "ara/per/shared_handle.h"

Description: Handle to a file storage or key-value storage. This is returned by the functions OpenFile
Storage() and OpenKeyValueStorage() and can be passed between threads as needed. It
provides the abstraction that is necessary to allow thead-safe implementation of OpenFile
Storage() and OpenKeyValueStorage().

c(RS_PER_00002, RS_AP_00122)

8.4.1.1 SharedHandle::SharedHandle

[SWS_PER_00367]{DRAFT} d

Kind: function

Symbol: ara::per::SharedHandle::SharedHandle(SharedHandle &&fsh)

Scope: class ara::per::SharedHandle

Syntax: ara::per::SharedHandle< T >::SharedHandle (SharedHandle &&fsh)
noexcept;

Parameters (in): fsh The SharedHandle object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Move constructor for SharedHandle.

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00369]{DRAFT} d

Kind: function

Symbol: ara::per::SharedHandle::SharedHandle(SharedHandle const &fsh)

Scope: class ara::per::SharedHandle

Syntax: ara::per::SharedHandle< T >::SharedHandle (SharedHandle const &fsh)
noexcept;

Parameters (in): fsh The SharedHandle object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Copy constructor for SharedHandle.

c(RS_PER_00004, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

71 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.4.1.2 SharedHandle::operator=

[SWS_PER_00368]{DRAFT} d
Kind: function

Symbol: ara::per::SharedHandle::operator=(SharedHandle &&fsh)

Scope: class ara::per::SharedHandle

Syntax: SharedHandle& ara::per::SharedHandle< T >::operator= (SharedHandle
&&fsh) noexcept;

Parameters (in): fsh The SharedHandle object to be moved.

Return value: SharedHandle & The moved SharedHandle object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Move assignment operator for SharedHandle.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00370]{DRAFT} d

Kind: function

Symbol: ara::per::SharedHandle::operator=(SharedHandle const &fsh)

Scope: class ara::per::SharedHandle

Syntax: SharedHandle& ara::per::SharedHandle< T >::operator= (SharedHandle
const &fsh) noexcept;

Parameters (in): fsh The SharedHandle object to be moved.

Return value: SharedHandle & The moved SharedHandle object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Copy assignment operator for SharedHandle.

c(RS_PER_00004, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.4.1.3 SharedHandle::Operator->

[SWS_PER_00363]{DRAFT} d

Kind: function

Symbol: ara::per::SharedHandle::operator->()

Scope: class ara::per::SharedHandle

Syntax: T* ara::per::SharedHandle< T >::operator-> () noexcept;

Return value: T * –

Exception Safety: noexcept

5

72 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Non-constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119,
RS_AP_00129, RS_AP_00132)

[SWS_PER_00364]{DRAFT} d

Kind: function

Symbol: ara::per::SharedHandle::operator->()

Scope: class ara::per::SharedHandle

Syntax: T const* ara::per::SharedHandle< T >::operator-> () const noexcept;

Return value: T const * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/shared_handle.h"

Description: Constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119,
RS_AP_00129, RS_AP_00132)

8.4.2 UniqueHandle Class

[SWS_PER_00359]{DRAFT} d

Kind: class

Symbol: ara::per::UniqueHandle

Scope: namespace ara::per

Syntax: template <typename T >
class UniqueHandle final {...};

Template param: typename T

Header file: #include "ara/per/unique_handle.h"

Description: Handle to a ReadAccessor or ReadWriteAccessor. This is returned by the functions OpenFile
ReadOnly(), OpenFileReadWrite(), and OpenFileReadWrite().

c(RS_PER_00002, RS_AP_00122)

8.4.2.1 UniqueHandle::UniqueHandle

[SWS_PER_00371]{DRAFT} d

73 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::UniqueHandle::UniqueHandle(UniqueHandle &&kvsh)

Scope: class ara::per::UniqueHandle

Syntax: ara::per::UniqueHandle< T >::UniqueHandle (UniqueHandle &&kvsh)
noexcept;

Parameters (in): kvsh The UniqueHandle object to be moved.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Move constructor for UniqueHandle.

c(RS_PER_00002, RS_AP_00120, RS_AP_00121, RS_AP_00129, RS_AP_00132)

[SWS_PER_00373]{DRAFT} d

Kind: function

Symbol: ara::per::UniqueHandle::UniqueHandle(UniqueHandle const &)

Scope: class ara::per::UniqueHandle

Syntax: ara::per::UniqueHandle< T >::UniqueHandle (UniqueHandle const
&)=delete;

Header file: #include "ara/per/unique_handle.h"

Description: The copy constructor for UniqueHandle shall not be used.

c(RS_PER_00002, RS_AP_00120)

8.4.2.2 UniqueHandle::operator=

[SWS_PER_00372]{DRAFT} d

Kind: function

Symbol: ara::per::UniqueHandle::operator=(UniqueHandle &&kvsh)

Scope: class ara::per::UniqueHandle

Syntax: UniqueHandle& ara::per::UniqueHandle< T >::operator= (UniqueHandle
&&kvsh) noexcept;

Parameters (in): kvsh The UniqueHandle object to be moved.

Return value: UniqueHandle & The moved UniqueHandle object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Move assignment operator for UniqueHandle.

c(RS_PER_00002, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

[SWS_PER_00374]{DRAFT} d

74 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: function

Symbol: ara::per::UniqueHandle::operator=(UniqueHandle const &)

Scope: class ara::per::UniqueHandle

Syntax: UniqueHandle& ara::per::UniqueHandle< T >::operator= (UniqueHandle
const &)=delete;

Header file: #include "ara/per/unique_handle.h"

Description: The copy assignment operator for UniqueHandle shall not be used.

c(RS_PER_00002, RS_AP_00120)

8.4.2.3 UniqueHandle::Operator->

[SWS_PER_00360]{DRAFT} d

Kind: function

Symbol: ara::per::UniqueHandle::operator->()

Scope: class ara::per::UniqueHandle

Syntax: T* ara::per::UniqueHandle< T >::operator-> () noexcept;

Return value: T * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Non-constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119,
RS_AP_00129, RS_AP_00132)

[SWS_PER_00361]{DRAFT} d

Kind: function

Symbol: ara::per::UniqueHandle::operator->()

Scope: class ara::per::UniqueHandle

Syntax: T const* ara::per::UniqueHandle< T >::operator-> () const noexcept;

Return value: T const * –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Constant arrow operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119,
RS_AP_00129, RS_AP_00132)

75 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.4.2.4 UniqueHandle::Operator*

[SWS_PER_00400]{DRAFT} d
Kind: function

Symbol: ara::per::UniqueHandle::operator*()

Scope: class ara::per::UniqueHandle

Syntax: T& ara::per::UniqueHandle< T >::operator* () noexcept;

Return value: T & –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Non-constant dereference operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119,
RS_AP_00129, RS_AP_00132)

[SWS_PER_00401]{DRAFT} d

Kind: function

Symbol: ara::per::UniqueHandle::operator*()

Scope: class ara::per::UniqueHandle

Syntax: T const& ara::per::UniqueHandle< T >::operator* () const noexcept;

Return value: T const & –

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/unique_handle.h"

Description: Constant dereference operator.

c(RS_PER_00001, RS_PER_00002, RS_PER_00003, RS_AP_00119,
RS_AP_00129, RS_AP_00132)

76 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.5 Errors

The Persistency cluster implements an error handling based on
ara::core::Result. The errors supported by the Persistency cluster are
listed in section 8.5.1.

8.5.1 PerErrc

[SWS_PER_00311]{DRAFT} d

Kind: enumeration

Symbol: ara::per::PerErrc

Scope: namespace ara::per

kStorageLocationNotFoundError= 1 Requested storage location is not found or not
configured in the AUTOSAR model.

kKeyNotFoundError= 2 The key was not found.

kIllegalWriteAccessError= 3 Opening the resource for writing failed because it is
configured read-only.

kPhysicalStorageError= 4 A severe error which might happen during the
operation, such as out of memory or writing/reading
to the storage return an error.

kIntegrityError= 5 The integrity of the storage could not be established.
This can happen when the structure of a key value
database is corrupted, or a read-only file has no
content.

kValidationError= 6 The validation of redundancy measures failed for a
single key, for the whole key value data base, or for
a file.

kEncryptionError= 7 The encryption or decryption failed for a single key,
for the whole key value data base, or for a file.

kDataTypeMismatchError= 8 The provided data type does not match the stored
data type.

kInitValueNotAvailableError= 9 The operation could not be performed because no
initial value is available.

kResourceBusyError= 10 The operation could not be performed because the
resource is currently busy.

kInternalError= 11 Undefined error, implementation specific.

kOutOfMemoryError= 12 The allocated storage quota was exceeded, or
memory could not be allocated.

Values:

kFileNotFoundError= 13 The file was not found.

Header file: #include "ara/per/per_error_domain.h"

Description: Defines the errors for Persistency.

The enumeration values 0 - 255 are reserved for AUTOSAR assigned errors, the stack provider
is free to define additional errors starting from 256.

c(RS_AP_00122, RS_AP_00127)

77 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.5.2 GetPerDomain

[SWS_PER_00352]{DRAFT} d
Kind: function

Symbol: ara::per::GetPerDomain()

Scope: namespace ara::per

Syntax: constexpr ara::core::ErrorDomain const& GetPerDomain () noexcept;

Return value: ara::core::ErrorDomain const & The global PerErrorDomain object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/per_error_domain.h"

Description: Returns the global PerErrorDomain object.

c(RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.5.3 MakeErrorCode

[SWS_PER_00351]{DRAFT} d

Kind: function

Symbol: ara::per::MakeErrorCode(PerErrc code, ara::core::ErrorDomain::SupportDataType data, char
const *message)

Scope: namespace ara::per

Syntax: constexpr ara::core::ErrorCode MakeErrorCode (PerErrc code,
ara::core::ErrorDomain::SupportDataType data, char const *message)
noexcept;

code Error code number.

data Vendor defined data associated with the error.
Parameters (in):

message Human readable message explaining the error.

Return value: ara::core::ErrorCode An ErrorCode object.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/per_error_domain.h"

Description: Creates an error code.

c(RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.5.4 PerException

[SWS_PER_00354]{DRAFT} d

78 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Kind: class

Symbol: ara::per::PerException

Scope: namespace ara::per

Base class: ara::core::Exception

Syntax: class PerException : public Exception {...};

Header file: #include "ara/per/per_error_domain.h"

Description: Exception type thrown by persistency classes.

c(RS_AP_00122, RS_AP_00127)

8.5.4.1 PerException::PerException

[SWS_PER_00355]{DRAFT} d

Kind: function

Symbol: ara::per::PerException::PerException(ara::core::ErrorCode errorCode)

Scope: class ara::per::PerException

Syntax: explicit PerException (ara::core::ErrorCode errorCode) noexcept;

Parameters (in): errorCode The error code.

Exception Safety: noexcept

Header file: #include "ara/per/per_error_domain.h"

Description: Construct a new persistency exception object containing an error code.

c(RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.5.5 PerErrorDomain

The error handling requires an ara::core::ErrorDomain, which can be used to
check the errors returned via ara::core::Result.

[SWS_PER_00312]{DRAFT} d

Kind: class

Symbol: ara::per::PerErrorDomain

Scope: namespace ara::per

Base class: ara::core::ErrorDomain

Syntax: class PerErrorDomain final : public ErrorDomain {...};

Header file: #include "ara/per/per_error_domain.h"

Description: Defines the error domain for Persistency.

c(RS_AP_00122, RS_AP_00127)

[SWS_PER_00349]{DRAFT} d The numerical ID of the PerErrorDomain shall be
0x8000’0000’0000’0101. c(RS_PER_00001)

79 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

8.5.5.1 PerErrorDomain::PerErrorDomain

[SWS_PER_00313]{DRAFT} d
Kind: function

Symbol: ara::per::PerErrorDomain::PerErrorDomain()

Scope: class ara::per::PerErrorDomain

Syntax: PerErrorDomain () noexcept;

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/per_error_domain.h"

Description: Creates a PerErrorDomain instance.

c(RS_AP_00119, RS_AP_00120, RS_AP_00132)

8.5.5.2 PerErrorDomain::Name

[SWS_PER_00314]{DRAFT} d

Kind: function

Symbol: ara::per::PerErrorDomain::Name()

Scope: class ara::per::PerErrorDomain

Syntax: char const* Name () const noexcept override;

Return value: char const * The name of the error domain.

Exception Safety: noexcept

Thread Safety: re-entrant

Header file: #include "ara/per/per_error_domain.h"

Description: Returns the name of the error domain.

c(RS_AP_00119, RS_AP_00120, RS_AP_00132)

[SWS_PER_00353]{DRAFT} d PerErrorDomain::Name shall return the NUL-
terminated string "Per". c(RS_PER_00001)

8.5.5.3 PerErrorDomain::Message

[SWS_PER_00315]{DRAFT} d

Kind: function

Symbol: ara::per::PerErrorDomain::Message(CodeType errorCode)

Scope: class ara::per::PerErrorDomain

Syntax: char const* Message (CodeType errorCode) const noexcept override;

5

80 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Parameters (in): errorCode The error code number.

Return value: char const * The message associated with the error code.

Exception Safety: noexcept

Thread Safety: no

Header file: #include "ara/per/per_error_domain.h"

Description: Returns the message associated with the error code.

c(RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00132)

8.5.5.4 PerErrorDomain::ThrowAsException

[SWS_PER_00350]{DRAFT} d

Kind: function

Symbol: ara::per::PerErrorDomain::ThrowAsException(ara::core::ErrorCode const &errorCode)

Scope: class ara::per::PerErrorDomain

Syntax: void ThrowAsException (ara::core::ErrorCode const &errorCode) const
override;

Parameters (in): errorCode The error to throw.

Return value: None

Thread Safety: no

Header file: #include "ara/per/per_error_domain.h"

Description: Throws the exception associated with the error code.

c(RS_AP_00120, RS_AP_00121)

A Not applicable requirements

[SWS_PER_NA]{DRAFT} d These requirements are not applicable to this
specification. c(RS_AP_00111, RS_AP_00113, RS_AP_00114, RS_AP_00116,
RS_AP_00124, RS_AP_00130, RS_AP_00131)

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

81 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Class AdaptiveApplicationSwComponentType

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This meta-class represents the ability to support the formal modeling of application software on the
AUTOSAR adaptive platform. Consequently, it shall only be used on the AUTOSAR adaptive platform.

Tags: atp.Status=draft
atp.recommendedPackage=AdaptiveApplicationSwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Attribute Type Mul. Kind Note

internalBehavior AdaptiveSwcInternal
Behavior

0..1 aggr This aggregation represents the internal behavior of the
AdaptiveApplicationSwComponentType for the AUTOSAR
adaptive platform.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=internalBehavior, variationPoint.short
Label
atp.Status=draft
vh.latestBindingTime=preCompileTime

Table B.1: AdaptiveApplicationSwComponentType

Class CppImplementationDataType (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the way to specify a reusable data type definition taken as a the basis for a
C++ language binding

Tags: atp.Status=draft

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , CppImplementationDataTypeContextTarget ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses CustomCppImplementationDataType, StdCppImplementationDataType

Attribute Type Mul. Kind Note

arraySize PositiveInteger 0..1 attr This attribute can be used to specify the array size if the
enclosing CppImplementationDataType has array
semantics.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

namespace (or-
dered)

SymbolProps * aggr This aggregation allows for the definition an own
namespace for the enclosing CppImplementationData
Type.

Tags: atp.Status=draft

subElement (or-
dered)

CppImplementation
DataTypeElement

* aggr This represents the collection of sub-elements of the
enclosing CppImplementationDataType

Tags: atp.Status=draft

templateArgu-
ment (ordered)

CppTemplateArgument * aggr This aggreation allows for the specification of properties
of template arguments

Tags: atp.Status=draft

typeEmitter NameToken 0..1 attr This attribute can be taken to control how the respective
CppImplementationDataType is contributed to the
language binding.

5

82 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Class CppImplementationDataType (abstract)

typeReference CppImplementation
DataType

0..1 ref This reference shall be defined to define a type reference
(a.k.a. typedef).

Tags: atp.Status=draft

Table B.2: CppImplementationDataType

Class Executable
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This meta-class represents an executable program.

Tags: atp.Status=draft
atp.recommendedPackage=Executables

Base ARElement , ARObject , AtpClassifier , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note

buildType BuildTypeEnum 0..1 attr This attribute describes the buildType of a module and/or
platform implementation.

minimumTimer
Granularity

TimeValue 0..1 attr This attribute describes the minimum timer resolution
(TimeValue of one tick) that is required by the Executable.

Tags: atp.Status=draft

rootSw
Component
Prototype

RootSwComponent
Prototype

0..1 aggr This represents the root SwCompositionPrototype of the
Executable. This aggregation is required (in contrast to a
direct reference of a SwComponentType) in order to
support the definition of instanceRefs in Executable
context.

Tags: atp.Status=draft

version StrongRevisionLabel
String

0..1 attr Version of the executable.

Tags: atp.Status=draft

Table B.3: Executable

Class PPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port providing a certain port interface.

Base ARObject , AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mul. Kind Note

provided
Interface

PortInterface 1 tref The interface that this port provides.

Stereotypes: isOfType

Table B.4: PPortPrototype

Class PRPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This kind of PortPrototype can take the role of both a required and a provided PortPrototype.

Base ARObject , AbstractProvidedPortPrototype, AbstractRequiredPortPrototype, AtpBlueprintable, Atp
Feature, AtpPrototype, Identifiable, MultilanguageReferrable, PortPrototype, Referrable

5

83 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Class PRPortPrototype

Attribute Type Mul. Kind Note

provided
Required
Interface

PortInterface 1 tref This represents the PortInterface used to type the PRPort
Prototype

Stereotypes: isOfType

Table B.5: PRPortPrototype

Enumeration PersistencyCollectionLevelUpdateStrategyEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This enumeration provides possible values for the update strategy on interface/database level.

Tags: atp.Status=draft

Literal Description

delete The update strategy is to delete all values on the level of the respective collection.

Tags: atp.EnumerationValue=1

keepExisting The update strategy is to keep the existing values on the level of the respective collection.

Tags: atp.EnumerationValue=0

Table B.6: PersistencyCollectionLevelUpdateStrategyEnum

Class PersistencyDataElement

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the ability to formally specify a piece of data that is subject to persistency in
the context of the enclosing PersistencyKeyValueDatabaseInterface.

PersistencyDataElement represents also a key of the deployed PersistencyKeyValueDatabase and
provides an initial value.

Tags: atp.Status=draft

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

updateStrategy PersistencyElement
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyDataElement.

Table B.7: PersistencyDataElement

Class PersistencyDataRequiredComSpec

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ComSpec

Note This meta-class represents the ability to define port-specific attributes for supporting use cases of data
persistency on the required side.

Tags: atp.Status=draft

Base ARObject , RPortComSpec

Attribute Type Mul. Kind Note

dataElement PersistencyData
Element

1 ref This refrence represents the PersistencyDataElement for
which the PersistencyDataRequiredComSpec applies.

Tags: atp.Status=draft

5

84 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Class PersistencyDataRequiredComSpec

initValue ValueSpecification 0..1 aggr This aggregation represents the definition of an initial
value for the PersistencyDataElement referenced by the
enclosing PersistencyDataRequiredComSpec

Tags: atp.Status=draft

Table B.8: PersistencyDataRequiredComSpec

Class PersistencyDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract meta-class serves as a base class for concrete classes representing different aspects of
persistency.

Tags: atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Subclasses PersistencyFileArray, PersistencyKeyValueDatabase

Attribute Type Mul. Kind Note

maximum
AllowedSize

PositiveUnlimitedInteger 0..1 attr The value of this attribute represents the maximum size
allowed at deployment time for the enclosing Persistency
Deployment.

minimum
SustainedSize

PositiveInteger 0..1 attr The value of this attribute represents the minimum size
guaranteed at deployment time for the enclosing
PersistencyDeployment.

redundancy
Handling

PersistencyRedundancy
Handling

* aggr This aggregation represents the chosen approaches to
handle redundancy.

Tags: atp.Status=draft

updateStrategy PersistencyCollection
LevelUpdateStrategy
Enum

1 attr This attribute shall be used to specify the update strategy
of the respective PersistencyDeployment as a whole.

Table B.9: PersistencyDeployment

Enumeration PersistencyElementLevelUpdateStrategyEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This enumeration provides possible values for the update strategy on element level.

Tags: atp.Status=draft

Literal Description

delete The update strategy is to delete the value of the respective data item.

Tags: atp.EnumerationValue=2

keepExisting The update strategy is to keep the existing value of the respective data item.

Tags: atp.EnumerationValue=1

overwrite The update strategy is to overwrite the respective data item.

Tags: atp.EnumerationValue=0

Table B.10: PersistencyElementLevelUpdateStrategyEnum

85 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Class PersistencyFile

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the model of a file as part of the persistency on deployment level.

Tags: atp.ManifestKind=ExecutionManifest
atp.Status=draft
atp.recommendedPackage=PersistencyFiles

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note

contentUri UriString 0..1 attr This attribute represents the URI that identifies the initial
content of the PersistencyFile.

fileName String 1 attr This attribute holds filename part of the storage location
for the PersistencyFile, e.g. file on the file system.

Tags: atp.Status=draft

updateStrategy PersistencyElement
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyFile.

Table B.11: PersistencyFile

Class PersistencyFileArray

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class comes with the ability to define an array of single files that creates the deployment-side
counterpart to a PortPrototype typed by a PersistencyFileProxyInterface.

Tags: atp.ManifestKind=ExecutionManifest
atp.Status=draft
atp.recommendedPackage=PersistencyFileArrays

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , PersistencyDeployment , Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note

file PersistencyFile * aggr This aggregation represents the collection of files
aggregated by the PersistencyFileArray.

Tags: atp.Status=draft

uri UriString 1 attr This attribute holds the storage location for the
PersistencyFileArray, e.g. a directory on the file system.

Table B.12: PersistencyFileArray

Class PersistencyFileProxy

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class has the ability to represent a file at design time such that it is possible to configure the
behavior for accessing the represented file at run-time.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

contentUri UriString 1 attr This attribute represents the URI that identifies the initial
content of the PersistencyFile.

fileName String 1 attr This attribute holds filename part of the storage location
for the PersistencyFileProxy, e.g. file on the file system.

5

86 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Class PersistencyFileProxy

updateStrategy PersistencyElement
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyFileProxy.

Table B.13: PersistencyFileProxy

Class PersistencyFileProxyInterface

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the ability to implement a PortInterface for supporting persistency use cases for
files.

Tags: atp.Status=draft
atp.recommendedPackage=PersistencyFileProxyInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PersistencyInterface, PortInterface,
Referrable

Attribute Type Mul. Kind Note

encoding BaseTypeEncoding
String

0..1 attr This attribute supports the definition of an encoding of the
corresponding physical files.

The possible values of this attribute may be partially
standardized by AUTOSAR. But it is also possible to
extend the set of values in a custom way (provided that
the custom values use a notation that ensures the
absence of clashes with further extensions of the
standardized values, e.g. by using a company-specific
prefix).

fileProxy PersistencyFileProxy * aggr This aggregation represents the collection of Persistency
FileProxys in the context of the enclosing PersistencyFile
ProxyInterface.

Tags: atp.Status=draft

maxNumberOf
Files

PositiveInteger 0..1 attr This attribute represents the definition of an upper bound
for the handling of files at run-time in the context of the
enclosing PersistencyFileProxyInterface.

Table B.14: PersistencyFileProxyInterface

Class PersistencyInterface (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the abstract ability to define a PortInterface for the support of persistency use
cases.

Tags: atp.Status=draft

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Subclasses PersistencyFileProxyInterface, PersistencyKeyValueDatabaseInterface

Attribute Type Mul. Kind Note

minimum
SustainedSize

PositiveInteger 0..1 attr The value of this attribute represents the minimum size
required at design time for the enclosing Persistency
Interface.

redundancy PersistencyRedundancy
Enum

0..1 attr This attribute represents a requirement towards the
redundancy of storage.

5

87 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Class PersistencyInterface (abstract)

updateStrategy PersistencyCollection
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyInterface as a whole.

Table B.15: PersistencyInterface

Class PersistencyKeyValueDatabase

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to model a key/value data base on deployment level.

Tags: atp.ManifestKind=ExecutionManifest
atp.Status=draft
atp.recommendedPackage=PersistencyKeyValueDatabases

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , PersistencyDeployment , Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note

keyValuePair PersistencyKeyValue
Pair

* aggr This aggregation represents the key-value-pairs owned
by the enclosing PersistencyKeyValueDatabase

Tags: atp.Status=draft

uri UriString 0..1 attr This attribute holds the storage location for the
PersistencyKeyValueDatabase / PersistencyFile, e.g. file
on the file system.

Table B.16: PersistencyKeyValueDatabase

Class PersistencyKeyValueDatabaseInterface

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the ability to implement a PortInterface for supporting persistency use cases for
data.

Tags: atp.Status=draft
atp.recommendedPackage=PersistencyKeyValueDatabaseInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PersistencyInterface, PortInterface,
Referrable

Attribute Type Mul. Kind Note

dataElement PersistencyData
Element

* aggr This aggregation represents the collection of Persistency
DataElements in the context of the enclosing Persistency
KeyValueDatabaseInterface.

Tags: atp.Status=draft

dataTypeFor
Serialization

AbstractImplementation
DataType

* ref This reference identifies the AbstractImplementationData
Types that shall be supported for storing in a key-value
data base in addition to the types already referenced as
PersistencyDataElement.

Tags: atp.Status=draft

Table B.17: PersistencyKeyValueDatabaseInterface

88 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Class PersistencyKeyValuePair

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to formally model a key-value pair in the context of the deployment
of persistency.

Tags: atp.ManifestKind=ExecutionManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

initValue ValueSpecification 1 aggr This aggregation represents the ability to define an initial
value for the value side of the key-value pair.

Tags: atp.Status=draft

updateStrategy PersistencyElement
LevelUpdateStrategy
Enum

0..1 attr This attribute can be used to specify the update strategy
of the respective PersistencyKeyValuePair.

valueDataType AbstractImplementation
DataType

1 ref This reference represents the data type applicable for the
value of the key-value pair.

Tags: atp.Status=draft

Table B.18: PersistencyKeyValuePair

Class PersistencyPortPrototypeToFileArrayMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to define a mapping between an array of files on deployment level
to a given PortPrototype.

Tags: atp.ManifestKind=ExecutionManifest
atp.Status=draft
atp.recommendedPackage=PersistentFileProxyToFileMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note

persistencyFile
Array

PersistencyFileArray 1 ref This reference represents the mapped array of files.

Tags: atp.Status=draft

portPrototype PortPrototype 0..1 iref This reference represents the mapped PortPrototype.

Tags: atp.Status=draft

process Process 1 ref This reference represents the process required as context
for the mapping.

Tags: atp.Status=draft

Table B.19: PersistencyPortPrototypeToFileArrayMapping

Class PersistencyPortPrototypeToKeyValueDatabaseMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class represents the ability to define a mapping between a PortPrototype and a key value
database used in a persistent storage.

Tags: atp.ManifestKind=ExecutionManifest
atp.Status=draft
atp.recommendedPackage=PersistentPortPrototypeToKeyValueDatabaseMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

5

89 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Class PersistencyPortPrototypeToKeyValueDatabaseMapping

Attribute Type Mul. Kind Note

keyValue
Storage

PersistencyKeyValue
Database

1 ref This reference represents the mapped key-value storage.

Tags: atp.Status=draft

portPrototype PortPrototype 0..1 iref This reference represents the affected Persistency Port
Prototype

Tags: atp.Status=draft

process Process 1 ref This reference represents the process required for
context of the mapping.

Tags: atp.Status=draft

Table B.20: PersistencyPortPrototypeToKeyValueDatabaseMapping

Class PersistencyRedundancyCrc

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class formally describes the usage of a CRC for the implementation of redundancy.

Tags: atp.Status=draft

Base ARObject , PersistencyRedundancyHandling

Attribute Type Mul. Kind Note

algorithmFamily String 1 attr This attribute identifies the algorithm family that is used to
execute the CRC.

length PositiveInteger 1 attr This attribute describes the length of the CRC in the unit
bits.

Table B.21: PersistencyRedundancyCrc

Enumeration PersistencyRedundancyEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ComSpec

Note This meta-class provides a way to specify in which way redundancy shall be applied on collection
level.

Tags: atp.Status=draft

Literal Description
none This value represents the requirement that redundancy measures are not applied on persistency

collection level.

Tags: atp.EnumerationValue=1

redundant This value represents the requirement that redundancy measures are applied on persistency
collection level.

The nature of the redundant persistent storage is not further qualified and subject to integrator
decisions.

Tags: atp.EnumerationValue=0

Table B.22: PersistencyRedundancyEnum

90 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Class PersistencyRedundancyHandling (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This abstract base class represents a formal description of redundancy.

Tags: atp.Status=draft

Base ARObject

Subclasses PersistencyRedundancyCrc, PersistencyRedundancyMOutOfN

Attribute Type Mul. Kind Note
– – – – –

Table B.23: PersistencyRedundancyHandling

Class PersistencyRedundancyMOutOfN

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::Persistency

Note This meta-class provides the ability to describe redundancy via an "M out of N" approach. In this case N
is the number of copies created and M is the minimum number of identical copies to justify a reliable read
access to the data.

Tags: atp.Status=draft

Base ARObject , PersistencyRedundancyHandling

Attribute Type Mul. Kind Note
m PositiveInteger 1 attr This attribute represents the "M" coordinate in the "M out

of N" scheme.
n PositiveInteger 1 attr This attribute represents the "N" coordinate in the "M out

of N" scheme.

Table B.24: PersistencyRedundancyMOutOfN

Class PortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Attribute Type Mul. Kind Note

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to
client/server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

portPrototype
Props

PortPrototypeProps 0..1 aggr This attribute allows for the definition of further
qualification of the semantics of a PortPrototype.

Tags: atp.Status=draft

5

91 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Class PortPrototype (abstract)

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table B.25: PortPrototype

Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class provides information required to execute the referenced executable.

Tags: atp.ManifestKind=ExecutionManifest
atp.Status=draft
atp.recommendedPackage=Processes

Base ARElement , ARObject , AbstractExecutionContext , AtpClassifier , CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note

design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.

Tags: atp.Status=draft

deterministic
Client

DeterministicClient 0..1 ref This reference adds further execution characteristics for
deterministic clients.

Tags: atp.Status=draft

executable Executable 0..1 ref Reference to executable that is executed in the process.

Stereotypes: atpUriDef
Tags: atp.Status=draft

logTraceDefault
LogLevel

LogTraceDefaultLog
LevelEnum

0..1 attr This attribute allows to set the initial log reporting level for
a logTraceProcessId (ApplicationId).

logTraceFile
Path

UriString 0..1 attr This attribute defines the destination file to which the
logging information is passed.

logTraceLog
Mode

LogTraceLogMode
Enum

0..1 attr This attribute defines the destination of log messages
provided by the process.

logTrace
ProcessDesc

String 0..1 attr This attribute can be used to describe the logTrace
ProcessId that is used in the log and trace message in
more detail.

logTrace
ProcessId

String 0..1 attr This attribute identifies the process in the log and trace
message (ApplicationId).

preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.

processState
Machine

ModeDeclarationGroup
Prototype

0..1 aggr Set of Process States that are defined for the process.

Tags: atp.Status=draft

stateDependent
StartupConfig

StateDependentStartup
Config

* aggr Applicable startup configurations.

Tags: atp.Status=draft

Table B.26: Process

92 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

Class RPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port requiring a certain port interface.

Base ARObject , AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mul. Kind Note

required
Interface

PortInterface 1 tref The interface that this port requires, i.e. the port depends
on another port providing the specified interface.

Stereotypes: isOfType

Table B.27: RPortPrototype

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, CppImplementationDataTypeContextTarget ,
DiagnosticDebounceAlgorithmProps, DiagnosticEnvModeElement , EthernetPriorityRegeneration, Event
Handler, ExclusiveAreaNestingOrder, HwDescriptionEntity , ImplementationProps, LinSlaveConfigIdent,
ModeTransition, MultilanguageReferrable, NetworkConfiguration, NmNetworkHandle, PncMappingIdent,
SingleLanguageReferrable, SocketConnectionBundle, SomeipRequiredEventGroup, TimeSyncServer
Configuration, TpConnectionIdent

Attribute Type Mul. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Tags: xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

Table B.28: Referrable

Class SoftwareCluster
Package M2::AUTOSARTemplates::AdaptivePlatform::UploadableSoftwarePackage

Note This meta-class represents the ability to define an uploadable software-package, i.e. the SoftwareCluster
shall contain all software and configuration for a given purpose.

Tags: atp.Status=draft
atp.recommendedPackage=SoftwareClusters

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

conflictsTo SoftwareCluster
DependencyFormula

0..1 aggr This aggregation handles conflicts. If it yields true then
the SoftwareCluster shall not be installed.

Stereotypes: atpSplitable
Tags: atp.Splitkey=conflictsTo
atp.Status=draft

5

93 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Class SoftwareCluster
contained
ARElement

ARElement * ref This reference represents the collection of model
elements that cannot derive from UploadablePackage
Element and that contribute to the completeness of the
definition of the SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft

containedFibex
Element

FibexElement * ref This allows for referencing FibexElements that need to be
considered in the context of a SoftwareCluster.

Tags: atp.Status=draft

contained
Package
Element

UploadablePackage
Element

* ref This reference identifies model elements that are required
to complete the manifest content.

Stereotypes: atpSplitable
Tags: atp.Splitkey=containedPackageElement
atp.Status=draft

contained
Process

Process * ref This reference represent the processes contained in the
enclosing SoftwareCluster.

Tags: atp.Status=draft

dependsOn SoftwareCluster
DependencyFormula

0..1 aggr This aggregation can be taken to identify a dependency
for the enclosing SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=dependsOn
atp.Status=draft

design SoftwareClusterDesign * ref This reference represents the identification of all Software
ClusterDesigns applicable for the enclosing Software
Cluster.

Stereotypes: atpUriDef
Tags: atp.Status=draft

diagnostic
Address

SoftwareCluster
DiagnosticAddress

* aggr This aggregation represents the collection of diagnostic
addresses that apply for the SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=diagnosticAddress
atp.Status=draft

diagnostic
Extract

DiagnosticContribution
Set

0..1 ref This reference represents the definition of the diagnostic
extract applicable to the referencing SoftwareCluster

Tags: atp.Status=draft

license Documentation * ref This attribute allows for the inclusion of the the full text of
a license of the enclosing SoftwareCluster. In many cases
open source licenses require the inclusion of the full
license text to any software that is released under the
respective license.

Tags: atp.Status=draft

module
Instantiation

AdaptiveModule
Instantiation

* ref This reference identifies AdaptiveModuleInstantiations
that need to be included with the SoftwareCluster in order
to establish infrastructure required for the installation of
the SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=moduleInstantiation
atp.Status=draft

5

94 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Class SoftwareCluster
releaseNotes Documentation 0..1 ref This attribute allows for the explanations of changes since

the previous version. The list of changes might require
the creation of multiple paragraphs of test.

Tags: atp.Status=draft

subSoftware
Cluster

SoftwareCluster * ref This reference is used to identify the sub-Software
Clusters of an "umbrella" SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=subSoftwareCluster
atp.Status=draft

vendorId PositiveInteger 1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list.

vendor
Signature

CryptoService
Certificate

1 ref This reference identifies the certificate that represents the
vendor’s signature.

Tags: atp.Status=draft

version StrongRevisionLabel
String

1 attr This attribute can be used to describe a version
information for the enclosing SoftwareCluster.

Table B.29: SoftwareCluster

Class SoftwarePackage

Package M2::AUTOSARTemplates::AdaptivePlatform::UploadableSoftwarePackage

Note This meta-class represents the ability to formalize the content of a software package.

Tags: atp.Status=draft
atp.recommendedPackage=SoftwarePackages

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

actionType SoftwarePackageAction
TypeEnum

1 attr This attribute defines the action to be taken in the step of
processing the enclosing SoftwarePackage.

activationAction SoftwarePackage
ActivationActionEnum

1 attr This attribute governs the action to be taken after the
installation of the SoftwareCluster completed.

compressed
Software
PackageSize

PositiveInteger 1 attr This size represents the size of the compressed Software
Package.

isDeltaPackage Boolean 1 attr This attribute denotes whether the SoftwarePackage is
only able to update but not for initial installation.

maximum
SupportedUcm
Version

RevisionLabelString 1 attr This attribute identifies the maximum supported version of
the UCM for this SoftwarePackage.

minimum
SupportedUcm
Version

RevisionLabelString 1 attr This attribute identifies the minimum supported version of
the UCM for this SoftwarePackage.

packagerId PositiveInteger 1 attr This attribute identifies Id of the organization that provides
the packager generating the SoftwarePackage.

packager
Signature

CryptoService
Certificate

1 ref This reference identifies the certificate that represents the
packager’s signature.

Tags: atp.Status=draft

5

95 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

Specification of Persistency
AUTOSAR AP Release 19-03

4
Class SoftwarePackage

softwareCluster SoftwareCluster 1 ref This reference identifies the SoftwareCluster that belongs
to the SoftwarePackage. The nature of this relation is
actually more like an aggregation than a reference. But
the relation is still modelled as a reference because two
ARElements cannot aggregate each other.

Tags: atp.Status=draft

typeApproval String 0..1 attr This attribute carries the homologation information that
may be specific for a given country.

uncompressed
SoftwareCluster
Size

PositiveInteger 1 attr This attribute gives an indication about the storage that
has to be available on the target.

Table B.30: SoftwarePackage

Primitive StrongRevisionLabelString

Package M2::AUTOSARTemplates::AdaptivePlatform::UploadableSoftwarePackage

Note This primitive represents a revision label which identifies an engineering object. It represents a pattern
which requires four integer numbers separated by a dot, representing from left to right MajorVersion,
MinorVersion, PatchVersion, and BuildVersion.

Legal patterns are for example:

4.0.0.3456
4.0.0.1234565

Tags: atp.Status=draft
xml.xsd.customType=STRONG-REVISION-LABEL-STRING
xml.xsd.pattern=[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+
xml.xsd.type=string

Table B.31: StrongRevisionLabelString

96 of 96
— AUTOSAR CONFIDENTIAL —

Document ID 858: AUTOSAR_SWS_Persistency

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Constraints on Configuration
	4.3 Direct Access to Storage Hardware

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 Architecture
	7.2 Security concepts
	7.3 Redundancy concepts
	7.4 Installation and Update of Persistent Data
	7.4.1 Installation of Persistent Data
	7.4.1.1 Installation of Key-Value Storage
	7.4.1.2 Installation of File Storage

	7.4.2 Update of Persistent Data
	7.4.2.1 Update of Key-Value Storage
	7.4.2.2 Update of File Storage

	7.4.3 Roll-Back of Persistent Data after Failed Update
	7.4.4 Removal of Persistent Data

	7.5 Supported data types in Key-Value Storage
	7.6 Resource management concepts

	8 API specification
	8.1 Key-Value Storage
	8.1.1 OpenKeyValueStorage
	8.1.2 RecoverKeyValueStorage
	8.1.3 ResetKeyValueStorage
	8.1.4 KeyValueStorage class
	8.1.4.1 KeyValueStorage::KeyValueStorage
	8.1.4.2 KeyValueStorage::operator=
	8.1.4.3 KeyValueStorage::~KeyValueStorage
	8.1.4.4 KeyValueStorage::GetAllKeys
	8.1.4.5 KeyValueStorage::HasKey
	8.1.4.6 KeyValueStorage::GetValue
	8.1.4.7 KeyValueStorage::SetValue
	8.1.4.8 KeyValueStorage::RemoveKey
	8.1.4.9 KeyValueStorage::RemoveAllKeys
	8.1.4.10 KeyValueStorage::SyncToStorage
	8.1.4.11 KeyValueStorage::DiscardPendingChanges

	8.2 File Storage
	8.2.1 OpenFileStorage
	8.2.2 RecoverAllFiles
	8.2.3 ResetAllFiles
	8.2.4 Helper Functions for BasicOperations Class
	8.2.4.1 operator| for BasicOperations::OpenMode
	8.2.4.2 operator& for BasicOperations::OpenMode

	8.2.5 Helper Functions for ReadWriteAccessor Class
	8.2.5.1 endl
	8.2.5.2 flush

	8.2.6 FileStorage Class
	8.2.6.1 FileStorage::FileStorage
	8.2.6.2 FileStorage::operator=
	8.2.6.3 FileStorage::~FileStorage
	8.2.6.4 FileStorage::GetAllFileNames
	8.2.6.5 FileStorage::DeleteFile
	8.2.6.6 FileStorage::FileExists
	8.2.6.7 FileStorage::RecoverFile
	8.2.6.8 FileStorage::ResetFile
	8.2.6.9 FileStorage::OpenFileReadWrite
	8.2.6.10 FileStorage::OpenFileReadOnly
	8.2.6.11 FileStorage::OpenFileWriteOnly

	8.2.7 Char Traits Wrapper
	8.2.7.1 int_type
	8.2.7.2 pos_type
	8.2.7.3 off_type

	8.2.8 BasicOperations class
	8.2.8.1 BasicOperations::BasicOperations
	8.2.8.2 BasicOperations::operator=
	8.2.8.3 BasicOperations::~BasicOperations
	8.2.8.4 BasicOperations::SeekDirection
	8.2.8.5 BasicOperations::OpenMode
	8.2.8.6 BasicOperations::tell
	8.2.8.7 BasicOperations::seek
	8.2.8.8 BasicOperations::good
	8.2.8.9 BasicOperations::eof
	8.2.8.10 BasicOperations::fail
	8.2.8.11 BasicOperations::bad
	8.2.8.12 BasicOperations::operator!
	8.2.8.13 BasicOperations::operator bool
	8.2.8.14 BasicOperations::clear

	8.2.9 ReadAccessor class
	8.2.9.1 ReadAccessor::peek
	8.2.9.2 ReadAccessor::get
	8.2.9.3 ReadAccessor::read
	8.2.9.4 ReadAccessor::getline

	8.2.10 ReadWriteAccessor class
	8.2.10.1 ReadWriteAccessor::fsync
	8.2.10.2 ReadWriteAccessor::write
	8.2.10.3 ReadWriteAccessor::flush
	8.2.10.4 ReadWriteAccessor::operator<<

	8.3 Update and Removal of Persistent Data
	8.3.1 RegisterApplicationDataUpdateCallback
	8.3.2 UpdatePersistency
	8.3.3 ResetPersistency

	8.4 Handle Classes
	8.4.1 SharedHandle Class
	8.4.1.1 SharedHandle::SharedHandle
	8.4.1.2 SharedHandle::operator=
	8.4.1.3 SharedHandle::Operator->

	8.4.2 UniqueHandle Class
	8.4.2.1 UniqueHandle::UniqueHandle
	8.4.2.2 UniqueHandle::operator=
	8.4.2.3 UniqueHandle::Operator->
	8.4.2.4 UniqueHandle::Operator*

	8.5 Errors
	8.5.1 PerErrc
	8.5.2 GetPerDomain
	8.5.3 MakeErrorCode
	8.5.4 PerException
	8.5.4.1 PerException::PerException

	8.5.5 PerErrorDomain
	8.5.5.1 PerErrorDomain::PerErrorDomain
	8.5.5.2 PerErrorDomain::Name
	8.5.5.3 PerErrorDomain::Message
	8.5.5.4 PerErrorDomain::ThrowAsException

	A Not applicable requirements
	B Mentioned Class Tables

