AUTOSAR

Document Title

Specification of Log and Trace

Document Owner

AUTOSAR

Document Responsibility AUTOSAR
Document Identification No 853
Document Status Final

Part of AUTOSAR Standard

Adaptive Platform

Part of Standard Release

19-03

Document Change History

Date Release | Changed by Description
AUTOSAR e Changed APIs (Logstream,
2019-03-29 | 19-03 Release Logmanager, Logging)
Management ¢ Refactoring and editorial changes
AUTOSAR e Changed initialization APIs
2018-10-31 | 18-10 Release e Improved references
Management e Log file definition
AUTOSAR . o
2018-03-29 | 18-03 Release ¢ Refactoring and edlto_rlal changes
Management e Log and Trace extensions added
AUTOSAR
2017-10-27 | 17-10 Release No content changes
Management
AUTOSAR
2017-03-31 | 17-03 Release Initial release
Management

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

1 Introduction and functional overview

2 Acronyms and Abbreviations

3 Related documentation

3.1

Inputdocuments

4 Constraints and assumptions

41
4.2

Limitations
Applicability tocardomainso

5 Dependencies to other Functional Clusters

5.1

Platform dependencies

6 Requirements Tracing

7 Functional specification

7.1

7.2
7.3
7.4
7.5

Necessary Parameters and Initialization

7.1.1
7.1.2
7.1.3
7.1.4

ApplicationID
Application Description L.
Default Log Level
LogMode

7.1.41 LogFilePath

7.1.5
7.1.6
7.7

ContextID
Context Description, .
Initialization of the Logging framework

LogMessages
Conversion Functionso
Logand Trace Timestamp
Log and Trace Network Bandwith Limitation

8 API specification

8.1

8.2

Type definitions
8.1.1 LogLevel
8.1.2 LogMode
8.1.3 LogHex8
8.1.4 LogHex16
8.1.5 LogHex32
8.1.6 LogHex64
8.1.7 LogBin8
8.1.8 LogBin16
8.1.9 LogBin32
8.1.10 LogBin64
8.1.11 LogRawBuffer o o oo

Function definitions L o

» O

© 0o 00 N N

AUTOSAR

8.3

8.2.1 CreateLogger e 30
8.2.2 HexFormat (uint8) 30
8.2.3 HexFormat (int8) 31
8.2.4 HexFormat (uint16) 31
8.2.5 HexFormat (int16) 31
8.2.6 HexFormat (uint32) 32
8.2.7 HexFormat (int32) 32
8.2.8 HexFormat (uint64) 33
8.2.9 HexFormat (int64) 33
8.2.10 BinFormat (uint8) L. 34
8.2.11 BinFormat (int8), 34
8.2.12 BinFormat (uint16) 35
8.2.13 BinFormat (int16) 35
8.2.14 BinFormat (uint32) oL 36
8.2.15 BinFormat (int82) L. 36
8.2.16 BinFormat (uinté4) oL 36
8.2.17 BinFormat (int64) L. 37
8.2.18 RawBuffer 37
Class definitions 39
8.3.1 Class LogManager. 39
8.3.2 Class LogStream 41
8.3.2.1 Extending the Logging API to understand custom types 41
8.3.2.2 LogStream::Flush. 42
8.3.2.3 Built-in operators for natively supported types 42
8.3.2.4 Built-in operators for conversiontypes 46
8.3.2.5 Built-in operators for extratypes. 49
8.3.3 Class Logger o o i 51
8.3.3.1 Logger::iLogFatal 51
8.3.3.2 Logger::LogErroro 52
8.3.3.3 Logger::LogWarn 52
8.3.3.4 Logger::Loginfo L. 52
8.3.3.5 Logger::iLogDebug 53
8.3.3.6 Logger::LogVerbose 53
8.3.3.7 Logger:lsEnabled L. 53

A Mentioned Class Tables 55

AUTOSAR

1 Introduction and functional overview

This specification specifies the functionality of the AUTOSAR Adaptive Platform
Log and Trace.

The Log and Trace provides interfaces for Adaptive Applications to forward
logging information onto the communication bus, the console, or to the file system.
Each of the provided logging information has its own severity level. For each severity
level, a separate method is provided to be used by applications or Adaptive Plat-
form Services, e.g. ara::com. In addition, utility methods are provided to convert
decimal values into the hexadecimal numeral system, or into the binary numeral sys-
tem.

To pack the provided logging information into a standardized delivery and presentation
format, a protocol is needed. For this purpose, the LT protocol can be used, which
is standardized within the AUTOSAR consortium.

The LT protocol can add additional information to the provided logging informa-
tion. This information can be used by a Logging client to relate, sort or filter the
received logging frames.

Detailed information regarding the use cases and the LT protocol itself are provided
by the PRS Log and Trace protocol specification. For more information regarding the
LT protocol referto [1].

Adaptive Adaptive
Application Application

SWS

Logging APIs

Logging and Tracing Functional Cluster ara::com

Log and Trace backend

GENIVI DLT GENIVI DLT Client

| LT Protocol

Figure 1.1: Architecture overview

Furthermore, this document introduces additional specification extensions for the
AUTOSAR Adaptive Platform Log and Trace.

AUTO SAR

2 Acronyms and Abbreviations

Abbreviation
Acronym:

/

Description:

Log and Trace

The official Functional Cluster name that manages the logging

L&T

Acronym for Log and Trace

LT protocol Original name of the protocol itself (Log and Trace), specified in the
PRS document [1]
Logging API The main logging interface towards user applications as a library

Logging back-end

Implementation of the LT protocol, e.g. DLT

Logging Client

An external tool which can remotely interact with the Logging frame-—
work

Logging framework

Implementation of the software solution used for logging purposes

Logging instance

The class that enables the logging functionality and handles a single
logging context

Log message

Log message, including message header(s)

Log severity level

Meta information about the severity of a passed logging information

DLT

Diagnostics Log and Trace - a GENIVI Log and Trace daemon imple-
mentation of the LT protocol

Application process

An executable instance (process) that is running on a Machine

The following technical terms used throughout this document are defined in the official
[2] AUTOSAR Gilossary or [3] TPS Manifest Specification — they are repeated here for

tracing purposes.

Term

Description

Adaptive Application

see [2] AUTOSAR Gilossary

Application

see [2] AUTOSAR Gilossary

AUTOSAR Adaptive Platform

see [2] AUTOSAR Gilossary

Adaptive Platform Foundation

see [2] AUTOSAR Gilossary

Manifest

see [2] AUTOSAR Gilossary

Executable

see [2] AUTOSAR Glossary

Functional Cluster

see [2] AUTOSAR Gilossary

Adaptive Platform Service

see [2] AUTOSAR Gilossary

Machine

see [2] AUTOSAR Gilossary

Service

see [2] AUTOSAR Gilossary

Service Interface

see [2] AUTOSAR Gilossary

Service Discovery

see [2] AUTOSAR Gilossary

Table 2.1: Glossary-defined Technical Terms

AUTOSAR

3 Related documentation

3.1 Input documents
[1] Log and Trace Protocol Specification
AUTOSAR_PRS_LogAndTraceProtocol

[2] Glossary
AUTOSAR_TR_Glossary

[3] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[4] Requirements on Log and Trace
AUTOSAR_RS_LogAndTrace

[5] Specification of Time Synchronization for Adaptive Platform
AUTOSAR_SWS_TimeSync

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

The provided Logging framework API is designed to be independent from the un-
derlying Logging back-end implementation and as such doesn’t impose limitations.

4.2 Applicability to car domains

No restrictions to applicability.

AUTOSAR

5 Dependencies to other Functional Clusters

There are no dependencies to other Functional Clusters.

5.1 Platform dependencies

This specification is part of the AUTOSAR AUTOSAR Adaptive Platform and
therefore depends on it.

AUTO SAR

6 Requirements Tracing

The following table references the requirements specified in RS Log And Trace [4] and
links to the fulfillment of these. Please note that if column “Satisfied by” is empty for a
specific requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_LT_00003]

Applications shall
have the possibility to
send log or trace
messages to the LT
module.

[SWS_LOG_00002]

[RS_LT_00017]

Each log and trace
message shall contain
a timestamp, which
will be added to the
message during
reception of the
message in the LT
module.

[SWS_LOG _00082] [SWS_LOG _00083]
[SWS_LOG_00091] [SWS_LOG_00092]
[SWS_LOG_00093] [SWS_LOG_00094]

[RS_LT_00030]

Monitoring and
shaping of LT log and
trace event amount .

[SWS_LOG_00090] [SWS_LOG._00095]

[RS_LT_00044]

Provide raw buffer
content.

[SWS_LOG 00014] [SWS_LOG _00038]

[RS_LT_00045]

Check the current
severity level.

[SWS_LOG_00007] [SWS_LOG_00070]

[RS_LT_00046]

Conversion functions
for hexadecimal and
binary values.

[SWS_LOG 00015] [SWS_LOG _00016]
[SWS_LOG _00017] [SWS_LOG_00022]
[SWS_LOG_00023] [SWS_LOG_00024]
[SWS_LOG_00025] [SWS_LOG_00026]
[SWS_LOG_00027] [SWS_LOG_00028]
[SWS_LOG_00029] [SWS_LOG_00030]
[SWS_LOG_00031] [SWS_LOG_00032]
[SWS_LOG_00033] [SWS_LOG_00034]
[SWS_LOG_00035] [SWS_LOG_00036]
[SWS_LOG_00037] [SWS_LOG_00051]
[SWS_LOG_00053] [SWS_LOG_00054]
[SWS_LOG_00055] [SWS_LOG_00056]
[SWS_LOG_00057] [SWS_LOG_00058]
[SWS_LOG_00059] [SWS_LOG_00060]
[SWS_LOG_00061] [SWS_LOG_00062]
[SWS_LOG_00063] [SWS_LOG_00108]
[SWS_LOG_00109] [SWS_LOG_00110]
[SWS_LOG 00111] [SWS_LOG 00112]
[SWS_LOG_00113] [SWS_LOG_00114]
[SWS_LOG_00115] [SWS_LOG_00116]
[SWS_LOG_00120]

[RS_LT_00047]

Initialization and
registration.

[SWS_LOG_00003] [SWS_LOG_00004]

[RS_LT_00048]

Meta information
about Applications.

[SWS_LOG_00004]

AUTO SAR

Requirement Description Satisfied by
[RS_LT_00049] Providing Logging [SWS_LOG_00008] [SWS_LOG_00008]
Information. [SWS_LOG_00009] [SWS_LOG_00010]

[SWS_LOG_00011] [SWS_LOG_00012]
[SWS_LOG_00013] [SWS_LOG_00018]
[SWS_LOG_00039] [SWS_LOG_00040]
[SWS_LOG 00041] [SWS_LOG_00042]
[SWS_LOG_00043] [SWS_LOG_00044]
[SWS_LOG_00045] [SWS_LOG_00046]
[SWS_LOG_00047] [SWS_LOG_00048]
[SWS_LOG_00049] [SWS_LOG_00050]
[SWS_LOG_00065] [SWS_LOG_00066]
[SWS_LOG_00067] [SWS_LOG_00068]
[SWS_LOG_00069]

[RS_LT_00050]

Grouping of Logging
Information.

[SWS_LOG_00005] [SWS_LOG _00006]
[SWS_LOG_00021] [SWS_LOG_00097]
[SWS_LOG_00098] [SWS_LOG_00100]
[SWS_LOG_00101]

[RS_LT_00051]

Logging Information
targets.

[SWS_LOG _00019]

[RS_LT_00052]

Early logging.

[SWS_LOG_00001]

AUTOSAR

7 Functional specification

This specification defines the usage of the defined C++ Logging API for the Log
and Trace. Adaptive Applications can use these functions to forward Log
messages to various sinks, for example the network, a serial bus, the console or the
file system.

The following functionalities are provided:
1) Methods for initializing the Logging framework (see chapter 7.2)

2) Utility methods to convert decimal values into hexadecimal or binary values (see
chapter 7.3)

3) Automatic timestamping of Log messages (see chapter 7.4)

4) Log and trace network bandwith limitation (see chapter 7.5)

7.1 Necessary Parameters and Initialization

The concept of identifying the user application:

To be able to distinguish the logs of different application instances within a system (e.g.
an ECU or even the whole vehicle), every Application process, in that system,
has to get a particular ID and a description.

The concept of log contexts:

In order to be able to distinguish the logs from different logical groups within an Appli-
cation process, for every context within an Application process a particular
ID and a description has to be assigned. Every Application process can have an
arbitrary amount of contexts, but at least one — the default context.

Machine-specific configuration settings for the Log and Trace functional cluster are
collected in LogAndTraceInstantiation. The Application processes using
the Logging framework need to supply the following configuration through the ap-
plication execution manifest:

e Application ID
e Application description

e The default log level, if not set through the manifest a default predifiend value is
set

e The log mode
e The log file path, in case of a specific log mode that indicates logging to a file

The Application process using the Logging framework creates a Logging
instance per context. The context is defined at creation of the Logging instance
and the following information should be provided:

AUTOSAR

e Context ID
e Context description

e The default log level, if not set through the manifest a default predifiend value is
set

7.1.1 Application ID

The Application ID is an identifier that allows to associate generated logging informa-
tion with its user application. The Application ID is passed as a string value. Depend-
ing on the Logging framework actual implementation, i.e. Logging back-end,
the length of the Application ID might be limited. To be able to unambiguously as-
sociate the received logging information to the origin, it is recommended to assign
unique Application IDs within one ECU. There is no need for uniqueness of Applica-
tion IDs across ECUs as the ECU ID will be the differentiator. The system integrator
has the overall responsibility to ensure that each Application process instance
has a unique Application ID. By having this value defined in the manifest the integrator
is able to perform consistency checks. The logTraceProcessId in the Process
identifies the application instance and is put as 2pplicationId into the log and trace
message.

Note:
The Application IDs are unique IDs per Application process, meaning if the same
Application process is started multiple times it shall have an own ID per instance.

7.1.2 Application Description

Since the length of the Application ID can be quite short, an additional descriptive
text can be provided. This description is passed as a string and the maximum length
is implementation dependent. The logTraceProcessDesc in the Process is an
optional setting that allows to describe the 1ogTraceProcessId as descriptive text.

7.1.3 Default Log Level

The Log severity level represents the severity of the log messages. Severity lev-
els are defined in chapter 7.2. 1ogTraceDefaultLogLevel inthe Process defines
the initial log reporting level for the application instance.

Each initiated log message is qualified with such a severity level. The default Log
severity level is set through the application configuration per Application
process. The Log severity level acts as a reporting filter. Only log messages
having a higher or the same severity will be processed by the Logging framework,
while the others are ignored.

AUTOSAR

The default Log severity level is the initially configured log reporting level for a
certain Application process, though it can be overriden per context.

The Application process wide log reporting level shall be adjustable during run-
time. The realization is an implementation detail of the underlying back-end. E.g.
remotely via a Logging client for example DLT Viewer. The same applies for the
context reporting level.

The design rationale for providing an initial default Log severity level application
wide against having per context default Log severity levels is the following:

¢ It simplifies the APl usage. Otherwise the user will have to define a context default
Log severity level for each group before using the API.

e The context separation of Log messages is possible during runtime.

7.1.4 Log Mode

Depending on the Logging framework implementation, the passed logging infor-
mation can be processed in different ways. The destination (the Log message sink)
can be the console output, a file on the file system or the communication bus. The sys-
tem integrator is responsbile to populate this information in the application execution
manifest. A direct API for dynamically changing this value for development purposes
is provided. In the AUTOSAR Meta-Model the 1ogTracelLogMode is equivalent to
the log mode described here, for more information see [3]. logTraceLogMode in the
Process defines the destination to which the log messages will be forwarded.

Execution Manifest
- LogMode

Adaptive
Application

SWS

Logging APIs

Execution Manifest
- LogMode

Machine Manifest
- Network, LogStorage, etc.

Adaptive
Application

Logging and Tracing Functional Cluster

File - Development Purposes

LT Backend

Console

File - LogStorage

Network - LT Log Viewer

Figure 7.1: Log mode

AUTOSAR

As shown in the diagram, once the log mode is set to use the Logging back-end
the configuration is of that back-end is centralized in the Machine manifest configu-
ration. For example, the Logging back-end can be configured to store the logging
information locally and that configuration would be kept in the Machine-specific man-
ifest. Furthermore, the output channel on Ethernet for Log messages is configured
with the EthernetNetworkConfiguration thatis aggregated by the LogAndTra-
ceInstantiation inthe role networkConfiguration.

7.1.4.1 Log File Path

In case the log mode is set to log to a file, a destination directory path needs to be
provided. logTraceFilePath in the Process defines the destination file to which
the logging information is passed. This option is provided for development, integration
and prototyping purposes and is not suitable for production.

7.1.5 ContextID

The Context ID is an identifier that is used to logically group logging information within
the scope of an Application process. The Context ID is passed as a string value.
Depending on the actual implementation of the Logging back-end, the length of the
Context ID might be limited. Context ID is unique in the scope of an Application
process and as such the developer is responsible for assigning it and this informa-
tion is not modeled in the manifest. There is no need for uniqueness of Context IDs
across multiple different Application processes as the Application ID will be the
differentiator.

Note:

Special attention should be paid to library components. The libraries are meant to
be used by Application processes and therefore are running within the App1i-
cation process’ scope. Logging executed from those libraries will end up inside
the scope of the parent Application process. In order to distinguish the internal
library logs from the Application process logs or from other library logs within
same process, each library might need to reserve its own Context IDs system wide —
at least when it shall be used by more than one Application process.

7.1.6 Context Description

Since the length of the Context ID can be quite short, an additional descriptive text must
be provided. This Context description is passed as a string. The maximum length of
the Context description is implementation dependent.

AUTOSAR

7.1.7 Initialization of the Logging framework

Before the logging information can be processed, the Logging framework needs
to be initialized. In order to initialize the Logging framework, the mandatory infor-
mation needs to be provided to the Logging framework. The essential information
forthe Logging framework is extracted from the application execution manifest and
the AUTOSAR Meta-Model as described above.

The Application ID and description are used to identify and to associate the provided
logging information with the exact process. The log mode and sink information defines
where the logging information is routed. Possible destinations are the console, the file
system or the communication bus.

From the Application process’ perspective, the Logging framework is intial-
ized and a logger instance is created when an Application process decides to
register a logging context. These contexts are used to logically cluster logging infor-
mation.

[SWS_LOG_00001]{DRAFT} [All messages logged before the initialization of the
Logging framework is done shall be stored inside a FIFO-buffer with a limited size,
i.e the oldest entries are discarded if the buffer is exceeded. The size of the buffer is
an implementation detail. |(RS_LT_00052)

[SWS_LOG_00002]{DRAFT} | In case of any errors occurring inside the Logging
framework or underlying system, it is intended to not bother the Application pro-
cess and silently discard the function calls. For this purpose, the relevant interfaces
neither specify return values nor throw exceptions. |(RS_LT_00003)

[SWS_LOG_00003]{DRAFT} | Before Log messages can be processed, the Cre-
ateLogger () function needs to be called. The first call of the function initializes
the Logging framework for the application and creates a valid logging context. |
(RS_LT _00047)

[SWS_LOG_00004]{DRAFT} [The application execution manifest should provide the
following information for the Logging framework to be initialized:

- A unique application 1D

An application description

The default Log severity level

The log mode
- The directory path (only necessary if LogMode: : kFile is given as log mode)
|(RS_LT_00047, RS_LT_00048)

Note:
Depending on the Logging framework implementation not all of the features might
be supported, hence not all of the properties will be used.

AUTOSAR

[SWS_LOG_00005]{DRAFT} [The function CreateLogger () shall create a logger
context instance internally inside the Logging framework and return it as reference
to the using application. Before a Log message can be processed, at least one logger
context shall be available. |(RS_LT_00050)

Note:

This strong ownership relationship of contexts to the Logging framework ensure
correct housekeeping of the involved resources. The design rationale is, once a
context is registered against the Logging back-end, its lifetime must be ensured
until the end of the Application process.

[SWS_LOG_00006]{DRAFT} [By calling CreateLogger (), the following parame-
ters need to be provided:

- The context ID
- The context description

- The Log severity level (as an optional parameter, defaults to
LogLevel: :kWarn)

|(RS_LT _00050)

[SWS_LOG_00007]{DRAFT} [Application processes should be able to check
if a desired Log severity level is configured through the function IsLogEn-
abled (). This mechanism conserves CPU and memory resources that are used
during preparation of logging information, as this logging information is filtered by the
Logging framework lateron. |(RS_LT_00045)

AUTOSAR

7.2 Log Messages

The Logging framework offers stream based API for Log message creation that
supports certain data types described below.

Design rationale for having insert stream based API vs. function-like solutions:
- Convenient usage for developers

- De-facto standard way of concatenating args in C++ or in other words, passing
data to objects

- Enables easy way of having a multi-line message builder

Performance remark:

C++ stream operators translates to normal function calls after compilation, it is just an-
other syntax, there is no difference compared to functions having a variadic argument
pack. Actually compilers expand them in the same way.

To forward log messages to the Logging framework, C++ interfaces are provided.
For every Log severity level, a separate function call is foreseen.

The following Log severity levels are defined:
- Off (Logging data is turned off)
- Fatal (Fatal system errors)
- Error (Error messages with impact on correct functionality)
- Warn (Warning messages if correct behavior cannot be ensured)

- Info (Informational log messages providing high level understanding of the pro-
gram flow)

- Debug (Detailed debug information used during development - call stacks, line
numbers or raw data to perform stepwise problem localization)

- Verbose (Verbose information with insight into the behavior of the system without
exposing any critical or sensitive data)

Note:

Off is not applicable for Log messages. This level can be used to set reporting level
forthe Logging framework eitherinitially through the configuration of the application
or during runtime.

Design Rationale:
For having separate functions per Log severity level vs. passing the level as
parameter to a generic function:

- Convenient usage of the API, less to type, clearer reading

- Technically no difference, just a shortcut

AUTOSAR

Each of the Log messages is represented as a stream object which is an instance of
the LogStream class.

By calling one of the Log= () functions, a temporary unnamed LogSt ream object will
be created with a scoped life time, that lasts until the end of the statement.

Design rationale for having temporary stream objects vs. some global-buffer-based log
solution (e.g. std::cout):

- Required destructor semantic to express end-of-statement
- End-of-statement expression is required to gain scoped resource access

- Guaranteed scoped access if required to ensure thread safety which enables to
log out messages concurrently and have them processed in one piece

- Convenient usage for developer due to the fact that he does not need to care for
resource-life-cycle (the stream object goes automatically out-of-scope)

Performance remark:

- Costs of constructor/destructor depends on their content and is implementation
detail of the Logging framework.

- Costs of trivial constructor and destructor (e.g. empty ones) is cheap, actually
instantiating an object in C++ equals to instantiating a struct in C.

- Logger class APl is designed to create a stack object of LogSt ream and passes
them back via RVO (return-value-optimization is C++11 ISO standard), which
results in a no-cost operation for the transition of a LogStream object after a
Logx () function call.

Store LogStream objects in a variable:

It is also possible to use the Logging API in an alternative way by storing a
LogStream object locally in some named variable. The difference to the temporary
object is that it won’t go out of scope already at the end of the statement, but stays
valid and re-usable as long as the variable exists. Hence, it can be fed with data
distributed over multiple lines of code. To get the message buffer processed by the
Logging framework, the Flush () method needs to be called, otherwise the buffer
will be processed when the object dies, i.e. when the variable goes out of scope, at the
end of the function block.

Performance remark:

Due to the fact that a LogStream is no longer created per message but rather could
be re-used for multiple messages, the costs for this object creation is paid only once
— per log level. How much this really influences the actual performance depends on
the Logging framework implementation. However the main goal of this alternative
usage of the Logging APT is to get the multi-line builder functionality.

N o=

© © N o g b~ 0w v o=

AUTOSAR

Note:

It is highly advised NOT to hold global .ogSt ream objects in multi-threaded Appli-
cations, because then concurrent access protection will no longer be covered by the
Logging API.

Usage examples:

Logger& ctx0 = CreateLogger ("CTX0", "Context Description CTX0");
ctx0.LogInfo () << "Some log information" << 123;

// Locally stored LogStream object will process the arguments

// until either Flush () is called or it goes out of scope from
// the block is was created
Logger& ctxl = CreatelLogger ("CTX1", "Context Description CTX1");

LogStream locallogInfo = ctxl.LogInfo();
locallogInfo << "Some log information”" << 123;
locallogInfo << "Some other information";
locallLogInfo.Flush({();

localLogInfo << "a new message..." << 456;

Exception safety: All Logx () interfaces are designed to guarantee no-throw behav-
ior. This applies for the whole L.ogging APT.

New line: Because of convenience purposes the Logging framework automatically
appends a newline to the Log message.

[SWS_LOG_00008]{DRAFT} [To initiate a Log message with the Log level Fatal,
the APl LogFatal () shall be called. This API returns a LogSt ream object that has to
be used by passing arguments via the insert stream operator "<<". |(RS_LT_00049)

[SWS_LOG_00009]{DRAFT} | To initiate a Log message with the Log level Error,
the APl LogError () shall be called. This APl returns a LogSt ream object that has to
be used by passing arguments via the insert stream operator "<<". |(RS_LT_00049)

[SWS_LOG_00010]{DRAFT} [To initiate a Log message with the Log level warn-
ing, the APl LogWarn () shall be called. This API returns a LogStream object
that has to be used by passing arguments via the insert stream operator "<<". |
(RS_LT _00049)

[SWS_LOG_00011]{DRAFT} [To initiate a Log message with the Log level Info,
the APl LogInfo () shall be called. This APl returns a LogStream object that has to
be used by passing arguments via the insert stream operator "<<". | (RS_LT_00049)

[SWS_LOG_00012]{DRAFT} | To initiate a Log message with the Log level Debug,
the APl LogDebug () shall be called. This API returns a LogStream object that has to
be used by passing arguments via the insert stream operator "<<". |(RS_LT_00049)

[SWS_LOG_00013]{DRAFT} | To initiate a Log message with the Log level ver-
bose, the APl Logverbose () shall be called. This APl returns a LogSt ream object
that has to be used by passing arguments via the insert stream operator "<<". |
(RS_LT_00049)

AUTOSAR

[SWS_LOG_00014]{DRAFT} | To log raw data by providing a buffer, the APl Raw-
Buffer () shall be called. | (RS_LT_00044)

AUTOSAR

7.3 Conversion Functions

Sometimes it makes sense to represent integer numbers in hexadecimal or binary
format instead of decimal format.

For this purpose, the following functions are defined to convert provided decimal
numbers into the hexadecimal or binary system.

[SWS_LOG_00120]{DRAFT} [Dedicated conversion functions are provided for con-
version of positive decimal numbers into a string with hexadecimal or binary represen-
tation. | (RS_LT_00046)

[SWS_LOG_00015]{DRAFT} [Dedicated conversion functions are provided for con-
version of decimal numbers into a string with hexadecimal or binary representation,
where the most significant bit shall be set to ’1’ for negative numbers. | (RS _LT_00046)

[SWS_LOG_00016]{DRAFT} | Function HexFormat () shall provide functionality to
convert an integer decimal number into a string with hexadecimal representation. |
(RS_LT_00046)

[SWS_LOG_00017]{DRAFT} [Function BinFormat () shall provide functionality
to convert an integer decimal number into a string with binary representation. |
(RS_LT_00046)

AUTOSAR

7.4 Log and Trace Timestamp

The Log and Trace information is transmitted by means of the LT protocol
which is bus agnostic.

This protocol offers the possibility to include a timestamp in each sent message,
as long as such messages are sent with an extended header (refer to [4] for more
information).

The synchronized time base is supplied by the Time Synchronization Functional
Cluster. The now () method is used by the Adaptive Applications in order to
retrieve the current time from the TS (refer to [5] for more information).

According to the requirement [TPS_MANI_03162], the referece time base is derived
from the machine manifest t imeBaseResource.

[SWS_LOG_00082]{DRAFT} [Log and Trace shall have accesss to a synchro-
nized time base. The attribute t imeBaseResource in LogAndTraceInstantia-—
tion shall be used to identify the time base. | (RS_LT_00017)

[SWS_LOG_00083]{DRAFT} | In case there is no time base resource referenced by
the Log and Trace module in the manifest configuration, no timestamp information
shall be transmitted. |(RS_LT_00017)

[SWS_LOG_00091]{DRAFT} [When the CreateLogger () function is called for the
first time in a process, Log and Trace shall send a message indicating whether

the used time base is a local time base or a globally synchronized time base. |
(RS LT 00017)

[SWS_LOG_00092]{DRAFT} [If the referenced time base changes, Log and
Trace shall provide a trace message informing about this change. |(RS_LT_00017)

[SWS_LOG_00093]{DRAFT} | If the referenced time base:
e is a globally synchronized time base
e loses synchronicity (i.e. there is an interruption on the network communication)

Log and Trace shall inform via a trace message of such loss of synchronicity. |
(RS_LT_00017)

[SWS_LOG_00094]{DRAFT} | If the referenced time base:
e is a globally synchronized time base
e it is updated presenting a leap jump (either to the future or to the past)

Log and Trace shall inform via a trace message that the time base has been up-
dated and it shall provide the delta value (i.e. the difference between the updated time
base and the previous time base). A signed data type shall be used to indicate if the

AUTOSAR

leap jump has been done into the past (a negative value) or into the future (positive
value). |(RS_LT_00017)

Note:
At the moment there is no standardized format for the trace messages. Therefore, it
should be considered that there are implementation specific messages.

AUTOSAR

7.5 Log and Trace Network Bandwith Limitation

[SWS_LOG_00090]{DRAFT} | The bandwith consumption, effectively the speed at
which the Log messages are being sent on the network bus shall not be higher than
60 percent of the total possible bandwidth of the network bus. |(RS_LT_00030)

[SWS_LOG_00095]{DRAFT} [When Log and Trace receives a high load of trace
information, generated at the same time, from multiple Adaptive Applications, it
shall buffer this data internally so it can be sent continuously and so that no information
is lost. |(RS_LT_00030)

AUTOSAR

8 API specification

8.1 Type definitions

8.1.1 LogLevel

[SWS_LOG_00018]{DRAFT} |

Kind: enumeration

Symbol: ara::log::LogLevel

Scope: namespace ara::log

Values: kOff= 0x00 No logging.
kFatal= 0x01 Fatal error, not recoverable.
kError= 0x02 Error with impact to correct functionality.
kWarn= 0x03 Warning if correct behavior cannot be ensured.
kinfo= 0x04 Informational, providing high level understanding.
kDebug= 0x05 Detailed information for programmers.
kVerbose= 0x06 Extra-verbose debug messages (highest grade of

information)
Header file: #include "ara/log/common.h"
Description: List of possible severity levels .

|(RS_LT 00049)

8.1.2 LogMode

[SWS_LOG_00019]{DRAFT} [

Kind: enumeration
Symbol: ara::log::LogMode
Scope: namespace ara::log
Values: kRemote= 0x01 Sent remotely.
kFile= 0x02 Save to file.
kConsole= 0x04 Forward to console.
Header file: #include "ara/log/common.h"
Description: Log mode. Flags, used to configure the sink for log messages.
Notes: In order to combine flags, at least the OR and AND operators needs to be provided for this type.

|(RS_LT 00051)

8.1.3 LogHex8

[SWS_LOG_00108]{DRAFT} |

AUTO SAR

Kind: struct

Symbol: ara::log::LogHex8

Scope: namespace ara::log

Syntax: struct LogHex8 {...};

Header file: #include "ara/log/logstream.h"

Description: Represents a 8 bit hexadecimal value data type .
Helper struct that is utilized as custom type. Holds an integer value that will be logged with a
special format.

|(RS_LT_00046)

8.1.4 LogHex16

[SWS_LOG_00109]{DRAFT} [

Kind: struct

Symbol: ara::log::.LogHex16

Scope: namespace ara::log

Syntax: struct LogHex16 {...};

Header file: #include "ara/log/logstream.h"

Description: Represents a 16 bit hexadecimal value data type .

|(RS_LT _00046)

8.1.5 LogHex32

[SWS_LOG_00110]{DRAFT} [

Kind: struct

Symbol: ara::log::LogHex32

Scope: namespace ara::log

Syntax: struct LogHex32 {...};

Header file: #include "ara/log/logstream.h"

Description: Represents a 32 bit hexadecimal value data type .

|(RS_LT _00046)

8.1.6 LogHex64

[SWS_LOG_00111]{DRAFT} |

AUTO SAR

Kind: struct

Symbol: ara::log::LogHex64

Scope: namespace ara::log

Syntax: struct LogHex64 {...};

Header file: #include "ara/log/logstream.h"

Description: Represents a 64 bit hexadecimal value data type .

|(RS_LT_00046)

8.1.7 LogBin8

[SWS_LOG_00112]{DRAFT} |

Kind: struct

Symbol: ara::log::LogBin8

Scope: namespace ara::log

Syntax: struct LogBin8 {...};
Header file: #include "ara/log/logstream.h"
Description: Represents a 8 bit binary data type .

|(RS_LT _00046)

8.1.8 LogBin16

[SWS_LOG_00113]{DRAFT} [

Kind: struct

Symbol: ara::log::LogBin16

Scope: namespace ara::log

Syntax: struct LogBinl6 {...};
Header file: #include "ara/log/logstream.h"
Description: Represents a 16 bit binary data type .

|(RS_LT_00046)

8.1.9 LogBin32

[SWS_LOG_00114]{DRAFT} |

AUTO SAR

Kind: struct

Symbol: ara::log::LogBin32

Scope: namespace ara::log

Syntax: struct LogBin32 {...};
Header file: #include "ara/log/logstream.h"
Description: Represents a 32 bit binary data type .

|(RS_LT_00046)

8.1.10 LogBin64

[SWS_LOG_00115]{DRAFT} |

Kind: struct

Symbol: ara::log::LogBin64

Scope: namespace ara::log

Syntax: struct LogBin64 {...};
Header file: #include "ara/log/logstream.h"
Description: Represents a 64 bit binary data type .

|(RS_LT _00046)

8.1.11 LogRawBuffer

[SWS_LOG_00116]{DRAFT} [

Kind: struct

Symbol: ara::log::LogRawBuffer

Scope: namespace ara::log

Syntax: struct LogRawBuffer {...};

Header file: #include "ara/log/logstream.h"

Description: Represents a raw data buffer of a limited size.
Helper struct that is utilized as custom type. Holds a pointer to some data and the size which is
to be logged as raw data.

|(RS_LT_00046)

AUTOSAR

8.2 Function definitions

8.2.1 CreateLogger

[SWS_LOG_00021]{DRAFT} |

Kind: function

Symbol: ara::log::CreateLogger(ara::core::StringView ctxld, ara::core::StringView ctxDescription, Log
Level ctxDeflLoglevel=LogLevel::kWarn)

Scope: namespace ara::log

Syntax: Loggeré& Createlogger (ara::core::StringView ctxId, ara::core::String

View ctxDescription, LogLevel ctxDefLogLevel=LogLevel::kWarn)
noexcept;

Parameters (in): ctxld The context ID.
ctxDescription The description of the provided context ID.
ctxDefLogLevel The default log level, set to Warning severity if not
explicitly specified.

Return value: Logger & Reference to the internal managed instance of a
Logger object. Ownership stays within the Logging
framework

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Creates a Logger object, holding the context which is registered in the Logging framework.

|(RS_LT _00050)

8.2.2 HexFormat (uint8)

[SWS_LOG_00022]{DRAFT} [

Kind: function

Symbol: ara::log::HexFormat(uint8_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex8 HexFormat (uint8_t wvalue) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex8 LogHex8 type that has a built-in stream handler.
Exception Safety: noexcept
Header file: #include "ara/log/logging.h"
Description: Conversion of a uint8 into a hexadecimal value.
Negatives are represented in 2's complement. The number of represented digits depends on
the overloaded parameter type length.
Notes: Logs decimal numbers in hexadecimal format.

|(RS_LT _00046)

AUTO SAR

8.2.3 HexFormat (int8)

[SWS_LOG_00023]{DRAFT} [

Kind: function

Symbol: ara::log::HexFormat(int8_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex8 HexFormat (int8_t value) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex8 LogHex8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a int8 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format. Negatives are represented in 2's complement.

|(RS_LT _00046)

8.2.4 HexFormat (uint16)

[SWS_LOG_00024]{DRAFT} [

Kind: function

Symbol: ara::log::HexFormat(uint16_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex16 HexFormat (uintl6_t value) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex16 LogHex16 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a uint16 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format.

|(RS_LT 00046)

8.2.5 HexFormat (int16)

[SWS_LOG_00025]{DRAFT} [

AUTO SAR

Kind: function

Symbol: ara::log::HexFormat(int16_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex16 HexFormat (intl6_t wvalue) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex16 LogHex16 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a int16 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format. Negatives are represented in 2’'s complement.

|(RS_LT_00046)

8.2.6 HexFormat (uint32)

[SWS_LOG_00026]{DRAFT} |

Kind: function

Symbol: ara::log::HexFormat(uint32_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex32 HexFormat (uint32_t value) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex32 LogHex32 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a uint32 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format.

|(RS_LT_00046)

8.2.7 HexFormat (int32)

[SWS_LOG_00027]{DRAFT} [

Kind: function
Symbol: ara::log::HexFormat(int32_t value)
Scope: namespace ara::log

V

AUTO SAR

A

Syntax:

constexpr LogHex32 HexFormat (int32_t value) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex32 LogHex32 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a int32 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format. Negatives are represented in 2’s complement.

|(RS_LT 00046)

8.2.8 HexFormat (uint64)

[SWS_LOG_00028]{DRAFT} [

Kind: function

Symbol: ara::log::HexFormat(uint64_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex64 HexFormat (uint64_t value) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

Return value: LogHex64 LogHex64 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a uint64 into a hexadecimal value.

Notes: Logs decimal numbers in hexadecimal format.

|(RS_LT _00046)

8.2.9 HexFormat (int64)

[SWS_LOG_00029]{DRAFT} [

Kind: function

Symbol: ara::log::HexFormat(int64_t value)

Scope: namespace ara::log

Syntax: constexpr LogHex64 HexFormat (int64_t wvalue) noexcept;

Parameters (in):

value Decimal number to be converted into hexadecimal
number system.

V

AUTO SAR

A
Return value: LogHex64 | LogHex64 type that has a built-in stream handler.
Exception Safety: noexcept
Thread Safety: reentrant
Header file: #include "ara/log/logging.h"
Description: Conversion of a int64 into a hexadecimal value.
Notes: Logs decimal numbers in hexadecimal format. Negatives are represented in 2’s complement.

|(RS_LT_00046)

8.2.10 BinFormat (uint8)

[SWS_LOG_00030]{DRAFT} [

Kind: function

Symbol: ara::log::BinFormat(uint8_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin8 BinFormat (uint8_t wvalue) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin8 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a uint8 into a binary value.

Notes: Logs decimal numbers in binary format.

|(RS_LT _00046)

8.2.11 BinFormat (int8)

[SWS_LOG_00031]{DRAFT} |

Kind: function

Symbol: ara::log::BinFormat(int8_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin8 BinFormat (int8_t value) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin8 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

AUTO SAR

A
Header file: #include "ara/log/logging.h"
Description: Conversion of a int8 into a binary value.
Notes: Logs decimal numbers in binary format. Negatives are represented in 2's complement.

|(RS_LT 00046)

8.2.12 BinFormat (uint16)

[SWS_LOG_00032]{DRAFT}

Kind: function

Symbol: ara::log::BinFormat(uint16_t value)

Scope: namespace ara::log

Syntax: constexpr LogBinlé6 BinFormat (uintlé6_t value) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin16 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a uint16 into a binary value.

Notes: Logs decimal numbers in binary format.

|(RS_LT 00046)

8.2.13 BinFormat (int16)

[SWS_LOG_00033]{DRAFT} [

Kind: function

Symbol: ara::log::BinFormat(int16_t value)

Scope: namespace ara::log

Syntax: constexpr LogBinl6 BinFormat (intl6_t wvalue) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin16 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a int16 into a binary value.

Notes: Logs decimal numbers in binary format. Negatives are represented in 2's complement.

|(RS_LT _00046)

AUTO SAR

8.2.14 BinFormat (uint32)

[SWS_LOG_00034]{DRAFT} [

Kind: function

Symbol: ara::log::BinFormat(uint32_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin32 BinFormat (uint32_t value) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin32 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a uint32 into a binary value.

Notes: Logs decimal numbers in binary format.

|(RS_LT 00046)

8.2.15 BinFormat (int32)

[SWS_LOG_00035]{DRAFT} [

Kind: function

Symbol: ara::log::BinFormat(int32_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin32 BinFormat (int32_t wvalue) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin32 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a int32 into a binary value.

Notes: Logs decimal numbers in binary format. Negatives are represented in 2's complement.

|(RS_LT _00046)

8.2.16 BinFormat (uint64)

[SWS_LOG_00036]{DRAFT} |

AUTO SAR

Kind: function

Symbol: ara::log::BinFormat(uint64_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin64 BinFormat (uint64_t value) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin64 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a uint64 into a binary value.

Notes: Logs decimal numbers in binary format.

|(RS_LT _00046)

8.2.17 BinFormat (int64)

[SWS_LOG_00037]{DRAFT} [

Kind: function

Symbol: ara::log::BinFormat(int64_t value)

Scope: namespace ara::log

Syntax: constexpr LogBin64 BinFormat (int64_t wvalue) noexcept;

Parameters (in): value Decimal number to be converted into a binary value.
Return value: LogBin64 LogBin8 type that has a built-in stream handler.
Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logging.h"

Description: Conversion of a int64 into a binary value.

Notes: Logs decimal numbers in binary format. Negatives are represented in 2's complement.

|(RS_LT_00046)

8.2.18 RawBuffer

[SWS_LOG_00038]{DRAFT} [

Kind: function

Symbol: ara::log::RawBuffer(const T &value)
Scope: namespace ara::log

Syntax: template <typename T>

constexpr LogRawBuffer RawBuffer (const T &value) noexcept;

\Y

AUTO SAR

A
Template param: T The type of the contents of value.
Parameters (in): value the value to convert to raw data.
Return value: LogRawBuffer LogRawBuffer type that has a built-in stream
handler.
Exception Safety: noexcept
Header file: #include "ara/log/logging.h"
Description: Logs raw binary data by providing a buffer.
Notes: T can take an arbitrary type, though it is not possible to specify a pointer as an argument. In this

case there is no way to get the size of the buffer specified by the pointer. The maximum size of
the provided data that can be processed depends on the underlying back-end implementation.

|(RS_LT 00044)

AUTOSAR

8.3 Class definitions

8.3.1 Class LogManager

The class holding the main logic of the .ogging APTI. It handles the registration and
deregistration of the Application process against the Logging back-end and
is responsible for the logger context object’s life time.

[SWS_LOG_00097]{DRAFT} [

Kind: class

Symbol: ara::log::LogManager

Scope: namespace ara::log

Syntax: class LogManager final {...};

Header file: #include "ara/log/logmanager.h"

Description: Class holding the main logic of the logging API. It handles the de-/registration of the application
against the DLT back-end and is responsible for the logger contexts object life time. .

|(RS_LT_00050)

[SWS_LOG_00100]{DRAFT} [

Kind: function

Symbol: ara::log::LogManager::createLogContext(ara::core::StringView ctxld, ara::core::StringView ctx
Description, LogLevel ctxDefLogLevel)

Scope: class ara::log::LogManager

Syntax: static Logger& createLogContext (ara::core::StringView ctxId,

ara::core::StringView ctxDescription, LogLevel ctxDefLogLevel)
noexcept;

Parameters (in):

ctxld The context ID.

ctxDescription The description of the provided context ID.

ctxDefLoglLevel The default log level, set to Warning severity if not

explicitly specified.

Return value: Logger & Reference to the internal managed instance of a
Logger object.

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logmanager.h"

Description: Creates a logger, representing a DLT context.

Notes: Does internally track all created contexts and cares for their deregistration. It also checks

weather requested ID isn’t created yet, and if so it returns the already available logger as
reference.

|(RS_LT _00050)

[SWS_LOG_00098]{DRAFT} |

AUTO SAR

Kind: enumeration
Symbol: ara::log::LogManager::ClientState
Scope: class ara::log::LogManager
Values: kUnknown= -1 -
kNotConnected B
kConnected -
Header file: #include "ara/log/logmanager.h”
Description: Client state representing the connection state of an external client. .

|(RS_LT_00050)

[SWS_LOG_00101]{DRAFT} |

Kind: function

Symbol: ara::log::LogManager::remoteClientState()

Scope: class ara::log::LogManager

Syntax: ClientState remoteClientState () const noexcept;

Return value: ClientState | The current client state.

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logmanager.h”

Description: Fetches the connection state from the DLT back-end of a possibly available remote client.

|(RS_LT_00050)

© © N o g B~ W o=

o

1

N

AUTOSAR

8.3.2 Class LogStream

The class LogStream represents a Log message, allowing stream operators to be
used for appending data.

Note:

Normally Application processes would not use this class directly. Instead one of
the log methods provided in the main Logging APT shall be used. Those methods
automatically setup a temporary object of this class with the given log severity level.
The only reason to use this class directly is, if the user wants to hold a LogStream
object longer than the default one-statement scope. This is useful in order to create log
messages that are distributed over multiple code lines. See the Flush () method for
further information. Once this temporary object gets out of scope, its destructor takes
care that the message buffer is ready to be processed by the Logging framework.

8.3.2.1 Extending the Logging API to understand custom types

The LogsStream class supports natively the formats stated in chapter 8.2, it can be
easily extended for other derived types by providing a stream operator that makes use
of already supported types.

Example:

struct MyCustomType {
int8_t foo;
ara::core::string bar;

}i

LogStream& operator<<(LogStreamé& out, const MyCustomTypeé& value) {
return (out << value.foo << value.bar);

}

// Producing the output "42 the answer is."
Logger& ctx0 = CreatelLogger ("CTX0", "Context Description CTX0");
ctx0.LogDebug () << MyCustomType{42, " the answer is."};

AUTOSAR

8.3.2.2 LogStream::Flush

[SWS_LOG_00039]{DRAFT} |

Kind: function

Symbol: ara::log::LogStream::Flush()

Scope: class ara::log::LogStream

Syntax: void Flush () noexcept;

Return value: None

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Sends out the current log buffer and initiates a new message stream.

|(RS_LT _00049)

Note:

Calling F1ush () is only necessary if the LogStream object is going to be re-used
within the same scope. Otherwise, if the object goes out of scope (e.g. end of function
block) then the flushing operation will be done internally by the destructor. It is impor-
tant to note that the F1ush () command does not empty the buffer, but it forwards the
buffer’s current contents to the Logging framework.

8.3.2.3 Built-in operators for natively supported types

[SWS_LOG_00040]{DRAFT} |

Kind: function

Symbol: ara::log::LogStream::operator<<(bool value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (bool value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Appends given value to the internal message buffer.

|(RS_LT_00049)

[SWS_LOG_00041]{DRAFT} [

AUTO SAR

Kind: function

Symbol: ara::log::LogStream::operator<<(uint8_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (uint8_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes unsigned int 8 bit parameter into message.

|(RS_LT_00049)

[SWS_LOG_00042]{DRAFT} |

Kind: function

Symbol: ara::log::LogStream::operator<<(uint16_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (uintl6_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes unsigned int 16 bit parameter into message.

|(RS_LT _00049)

[SWS_LOG_00043]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(uint32_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (uint32_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes unsigned int 32 bit parameter into message.

|(RS_LT _00049)

[SWS_LOG_00044]{DRAFT} [

AUTO SAR

Kind: function

Symbol: ara::log::LogStream::operator<<(uint64_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (uint64_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes unsigned int 64 bit parameter into message.

|(RS_LT_00049)

[SWS_LOG_00045]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(int8_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (int8_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes signed int 8 bit parameter into message.

|(RS_LT _00049)

[SWS_LOG_00046]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(int16_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (intlé_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes signed int 16 bit parameter into message.

|(RS_LT _00049)

[SWS_LOG_00047]{DRAFT} [

AUTO SAR

Kind: function

Symbol: ara::log::LogStream::operator<<(int32_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (int32_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes signed int 32 bit parameter into message.

|(RS_LT_00049)

[SWS_LOG_00048]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(int64_t value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (int64_t value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes signed int 64 bit parameter into message.

|(RS_LT _00049)

[SWS_LOG_00049]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(float value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (float value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Wirites float 32 bit parameter into message.

|(RS_LT_00049)

[SWS_LOG_00050]{DRAFT} |

AUTO SAR

Kind: function

Symbol: ara::log::LogStream::operator<<(double value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (double value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes float 64 bit parameter into message.

|(RS_LT 00049)

[SWS_LOG_00061]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(const LogRawBuffer &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogRawBuffer &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes plain binary data into message.

|(RS_LT_00046)

8.3.2.4 Built-in operators for conversion types

[SWS_LOG_00053]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(const LogHex8 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogHex8 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

AUTO SAR

A

Header file:

#include "ara/log/logstream.h"

Description:

Writes unsigned int parameter into message, formatted as hexadecimal 8 digits.

|(RS_LT _00046)

[SWS_LOG_00054]{DRAFT} |

Kind: function

Symbol: ara::log::LogStream::operator<<(const LogHex16 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogHexl6 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes unsigned int parameter into message, formatted as hexadecimal 16 digits.

|(RS_LT 00046)

[SWS_LOG_00055]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(const LogHex32 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogHex32 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes unsigned int parameter into message, formatted as hexadecimal 32 digits.

|(RS_LT _00046)

[SWS_LOG_00056]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(const LogHex64 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogHex64 &value) noexcept;

Y%

AUTO SAR

A
Parameters (in): value Value to be appended to the internal message
buffer.
Return value: LogStream & -
Exception Safety: noexcept
Thread Safety: reentrant
Header file: #include "ara/log/logstream.h"
Description: Writes unsigned int parameter into message, formatted as hexadecimal 64 digits.

|(RS_LT 00046)

[SWS_LOG_00057]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(const LogBin8 &value)

Scope: class ara::log::LogStream

Syntax: LogStreamé& operator<< (const LogBin8 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes unsigned int parameter into message, formatted as binary 8 digits.

|(RS_LT _00046)

[SWS_LOG_00058]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(const LogBin16 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogBinl6 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes unsigned int parameter into message, formatted as binary 16 digits.

|(RS_LT _00046)

[SWS_LOG_00059]{DRAFT} [

AUTO SAR

Kind: function

Symbol: ara::log::LogStream::operator<<(const LogBin32 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogBin32 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes unsigned int parameter into message, formatted as binary 32 digits.

|(RS_LT 00046)

[SWS_LOG_00060]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(const LogBin64 &value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const LogBin64 &value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes unsigned int parameter into message, formatted as binary 64 digits.

|(RS_LT 00046)

8.3.2.5 Built-in operators for extra types

[SWS_LOG_00062]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(const ara::core::StringView value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const ara::core::StringView value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

AUTO SAR

A

Header file:

#include "ara/log/logstream.h"

Description:

Writes ara::core::StringView into message.

|(RS_LT _00046)

[SWS_LOG_00051]{DRAFT} [

Kind: function

Symbol: ara::log::LogStream::operator<<(const char *const value)

Scope: class ara::log::LogStream

Syntax: LogStream& operator<< (const char =*const value) noexcept;

Parameters (in): value Value to be appended to the internal message
buffer.

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Writes null terminated UTF8 string into message. (NOT sPECIFIED. WILL BE REMOVED IN

FUTURE!)

|(RS_LT_00046)

[SWS_LOG_00063]{DRAFT} |

Kind: function

Symbol: ara::log::operator<<(LogStream &out, LogLevel value)

Scope: namespace ara::log

Syntax: LogStream& operator<< (LogStream &out, LogLevel value) noexcept;

Parameters (in):

value LogLevel enum parameter as text to be appended to
the internal message buffer.

DIRECTION NOT out -

DEFINED

Return value: LogStream & -

Exception Safety: noexcept

Thread Safety: reentrant

Header file: #include "ara/log/logstream.h"

Description: Appends LogLevel enum parameter as text into message.

|(RS_LT _00046)

AUTOSAR

8.3.3 Class Logger

The class Logger represents a logger context. The Logging framework defines
contexts which can be seen as logger instances within one Application process
Or process scope.

The contexts have the following properties:
1) Context ID
2) Description of the Context ID
3) Default log level

A context will be automatically registered against the Logging back-end during cre-
ation phase, as well as automatically deregistered during process shutdown phase.
So the end user does not care for the objects life time. To ensure such housekeeping
functionality, a strong ownership of the logger instances needs to be ensured towards
the Logging framework. This means that the Application process are not
supposed to call the Logger constructor themselves.

The user is not allowed to create a Logger object by himself. Logger context needs to
be created by the provided API call CreateLogger (). This is because the internal
LogManager is tracking all created log contexts and does the checking of correct ID
naming conventions as well as multiple instantiation attempts.

8.3.3.1 Logger::LogFatal

[SWS_LOG_00008]{DRAFT} [

Kind: function

Symbol: ara::log::Logger::LogFatal()

Scope: class ara::log::Logger

Syntax: LogStream LogFatal () noexcept;

Return value: LogStream LogStream object of Fatal severity.

Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Creates a LogStream object.
Returned object will accept arguments via the insert stream operator "@c <<".

Notes: In the normal usage scenario, the object’s life time of the created LogStream is scoped within
one statement (ends with ; after last passed argument). If one wants to extend the LogStream
object’s life time, the object might be assigned to a named variable.

|(RS_LT 00049)

AUTO SAR

8.3.3.2 Logger::LogError

[SWS_LOG_00065]{DRAFT} |

Kind: function

Symbol: ara::log::Logger::LogError()

Scope: class ara::log::Logger

Syntax: LogStream LogError () noexcept;

Return value: LogStream LogStream object of Error severity.
Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Same as Logger::LogFatal().

|(RS_LT_00049)

8.3.3.3 Logger::LogWarn

[SWS_LOG_00066]{DRAFT} |

Kind: function

Symbol: ara::log::Logger::LogWarn()

Scope: class ara::log::Logger

Syntax: LogStream LogWarn () noexcept;

Return value: LogStream LogStream object of Warn severity.
Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Same as Logger::LogFatal().

|(RS_LT_00049)

8.3.3.4 Logger::Loginfo

[SWS_LOG_00067]{DRAFT} [

Kind: function

Symbol: ara::log::Logger::LoglInfo()

Scope: class ara::log::Logger

Syntax: LogStream LogInfo () noexcept;

Return value: LogStream ‘ LogStream object of Info severity.
Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

\Y

AUTO SAR

A

‘ Description: ‘ Same as Logger::LogFatal().
|(RS_LT_00049)
8.3.3.5 Logger::LogDebug
[SWS_LOG_00068]{DRAFT} [

Kind: function

Symbol: ara::log::Logger::LogDebug()

Scope: class ara::log::Logger

Syntax: LogStream LogDebug () noexcept;

Return value: LogStream LogStream object of Debug severity.

Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Same as Logger::LogFatal().
|(RS_LT_00049)
8.3.3.6 Logger::LogVerbose
[SWS_LOG_00069]{DRAFT} [

Kind: function

Symbol: ara::log::Logger::LogVerbose()

Scope: class ara::log::Logger

Syntax: LogStream LogVerbose () noexcept;

Return value: LogStream ‘ LogStream object of Verbose severity.

Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Same as Logger::LogFatal().

|(RS_LT_00049)

8.3.3.7 Logger::IsEnabled

[SWS_LOG_00070]{DRAFT} [

AUTO SAR

Kind: function

Symbol: ara::log::Logger::IsEnabled(LogLevel logLevel)

Scope: class ara::log::Logger

Syntax: bool IsEnabled (LogLevel logLevel) const noexcept;

Parameters (in): logLevel The to be checked log level.

Return value: bool True if desired log level satisfies the configured

reporting level.

Exception Safety: noexcept

Header file: #include "ara/log/logger.h"

Description: Check current configured log reporting level.
Applications may want to check the actual configured reporting log level of certain loggers
before doing log data preparation that is runtime intensive.

|(RS_LT _00045)

AUTOSAR

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document.

Class EthernetNetworkConfiguration
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::AdaptiveModule
Implementation
Note This meta-class defines the attributes for the configuration of a port, protocol type and IP address of the
communication on a VLAN.
Tags: atp.ManifestKind=MachineManifest
atp.Status=draft
Base ARObject, NetworkConfiguration, Referrable
Attribute Type Mul. Kind | Note
communication EthernetCommunication 0..1 ref Reference to the CommunicationConnector (VLAN) for
Connector Connector which the network configuration is defined.
Tags: atp.Status=draft
ipv4Multicastlp Ip4AddressString 0..1 attr Multicast IPv4 Address to which the message will be
Address transmitted.
ipv6Multicastlp Ip6AddressString 0..1 attr Multicast IPv6 Address to which the message will be
Address transmitted.
tcpPort Positivelnteger 0..1 attr This attribute allows to configure a tcp port number.
udpNmCluster UdpNmCluster 0..1 ref Reference to UdpNm cluster specific configuration
settings.
Tags: atp.Status=draft
udpPort Positivelnteger 0..1 attr This attribute allows to configure a udp port number.

Table A.1: EthernetNetworkConfiguration

Class LogAndTracelnstantiation

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::AdaptiveModule
Implementation

Note This meta-class defines the attributes for the Log&Trace configuration on a specific machine.

Tags: atp.ManifestKind=MachineManifest
atp.Status=draft

Base ARObject, AdaptiveModulelnstantiation, Identifiable, MultilanguageReferrable, NonOsModule
Instantiation, Referrable

Attribute Type Mul. Kind | Note

network NetworkConfiguration * aggr Network configuration for transmission of log & trace

Configuration messages.

Tags: atp.Status=draft

timeBase TimeBaseResource 0..1 ref This reference is used to describe to which time base the
Resource the Log and Trace module has access. From the Time
Base Resource the Log and Trace module gets the
needed information to generate the time stamp.

Tags: atp.Status=draft

Table A.2: LogAndTracelnstantiation

AUTOSAR

Class

Machine

Package

M2::AUTOSARTemplates::AdaptivePlatform::MachineManifest

Note

Machine that represents an Adaptive Autosar Software Stack.

Tags: atp.ManifestKind=MachineManifest

atp.Status=draft
atp.recommendedPackage=Machines

Base

ARElement, ARObject, AtpClassifier, AtpFeature, AtpStructureElement, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Attribute

Type Mul.

Kind

Note

default
Application
Timeout

EnterExitTimeout 0..1

agar

This aggration defines a default timeout in the context of a
given Machine with respect to the launching and
termination of applications.

Tags: atp.Status=draft

environment
Variable

TagWithOptionalValue *

aggr

This aggregation represents the collection of environment
variables that shall be added to the environment defined
on the level of the enclosing Machine.

Stereotypes: atpSplitable
Tags: atp.Splitkey=environmentVariable
atp.Status=draft

functionGroup

ModeDeclarationGroup
Prototype

agar

This aggregation represents the collection of function
groups of the enclosing Machine.

Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=shortName, variationPoint.shortLabel
atp.Status=draft

vh.latestBindingTime=preCompile Time

hwElement

HwElement *

ref

This reference is used to describe the hardware
resources of the machine.

Stereotypes: atpUriDef
Tags: atp.Status=draft

machineDesign

MachineDesign 1

ref

Reference to the MachineDesign this Machine is
implementing.

Tags: atp.Status=draft

module
Instantiation

AdaptiveModule *
Instantiation

agar

Configuration of Adaptive Autosar module instances that
are running on the machine.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft

perState
Timeout

PerStateTimeout

aggr

This aggregation represens the definition of
per-state-timeouts in the context of the enclosing
machine.

Stereotypes: atpSplitable
Tags: atp.Splitkey=perStateTimeout
atp.Status=draft

processor

Processor

agar

This represents the collection of processors owned by the
enclosing machine.

Tags: atp.Status=draft

secure
Communication
Deployment

SecureCommunication
Deployment

aggr

Deployment of secure communication protocol
configuration settings to crypto module entities.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
atp.Status=draft

Table A.3: Machine

AUTO SAR

Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest
Note This meta-class provides information required to execute the referenced executable.
Tags: atp.ManifestKind=ExecutionManifest
atp.Status=draft
atp.recommendedPackage=Processes
Base ARElement, ARObject, AbstractExecutionContext, AtpClassifier, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable, UploadablePackageElement
Attribute Type Mul. Kind | Note
design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.
Tags: atp.Status=draft
deterministic DeterministicClient 0..1 ref This reference adds further execution characteristics for
Client deterministic clients.
Tags: atp.Status=draft
executable Executable 0..1 ref Reference to executable that is executed in the process.
Stereotypes: atpUriDef
Tags: atp.Status=draft
logTraceDefault LogTraceDefaultLog 0..1 attr This attribute allows to set the initial log reporting level for
LogLevel LevelEnum a logTraceProcessld (Applicationld).
logTraceFile UriString 0..1 attr This attribute defines the destination file to which the
Path logging information is passed.
logTracelLog LogTraceLogMode 0..1 attr This attribute defines the destination of log messages
Mode Enum provided by the process.
logTrace String 0..1 attr This attribute can be used to describe the logTrace
ProcessDesc Processld that is used in the log and trace message in
more detail.
logTrace String 0..1 attr This attribute identifies the process in the log and trace
Processld message (Applicationld).
preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.
processState ModeDeclarationGroup 0..1 aggr Set of Process States that are defined for the process.
Machine Prototype Tags: atp.Status=draft
stateDependent | StateDependentStartup * aggr Applicable startup configurations.
StartupConfig Config

Tags: atp.Status=draft

Table A.4: Process

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other Functional Clusters
	5.1 Platform dependencies

	6 Requirements Tracing
	7 Functional specification
	7.1 Necessary Parameters and Initialization
	7.1.1 Application ID
	7.1.2 Application Description
	7.1.3 Default Log Level
	7.1.4 Log Mode
	7.1.4.1 Log File Path

	7.1.5 Context ID
	7.1.6 Context Description
	7.1.7 Initialization of the Logging framework

	7.2 Log Messages
	7.3 Conversion Functions
	7.4 Log and Trace Timestamp
	7.5 Log and Trace Network Bandwith Limitation

	8 API specification
	8.1 Type definitions
	8.1.1 LogLevel
	8.1.2 LogMode
	8.1.3 LogHex8
	8.1.4 LogHex16
	8.1.5 LogHex32
	8.1.6 LogHex64
	8.1.7 LogBin8
	8.1.8 LogBin16
	8.1.9 LogBin32
	8.1.10 LogBin64
	8.1.11 LogRawBuffer

	8.2 Function definitions
	8.2.1 CreateLogger
	8.2.2 HexFormat (uint8)
	8.2.3 HexFormat (int8)
	8.2.4 HexFormat (uint16)
	8.2.5 HexFormat (int16)
	8.2.6 HexFormat (uint32)
	8.2.7 HexFormat (int32)
	8.2.8 HexFormat (uint64)
	8.2.9 HexFormat (int64)
	8.2.10 BinFormat (uint8)
	8.2.11 BinFormat (int8)
	8.2.12 BinFormat (uint16)
	8.2.13 BinFormat (int16)
	8.2.14 BinFormat (uint32)
	8.2.15 BinFormat (int32)
	8.2.16 BinFormat (uint64)
	8.2.17 BinFormat (int64)
	8.2.18 RawBuffer

	8.3 Class definitions
	8.3.1 Class LogManager
	8.3.2 Class LogStream
	8.3.2.1 Extending the Logging API to understand custom types
	8.3.2.2 LogStream::Flush
	8.3.2.3 Built-in operators for natively supported types
	8.3.2.4 Built-in operators for conversion types
	8.3.2.5 Built-in operators for extra types

	8.3.3 Class Logger
	8.3.3.1 Logger::LogFatal
	8.3.3.2 Logger::LogError
	8.3.3.3 Logger::LogWarn
	8.3.3.4 Logger::LogInfo
	8.3.3.5 Logger::LogDebug
	8.3.3.6 Logger::LogVerbose
	8.3.3.7 Logger::IsEnabled

	A Mentioned Class Tables

